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Borehole Wall Roughness Sonic Velocities Structural Analyses Fluid Logs
Stereonets from televiewer analyses show the same key 
trends between borehole pairs, but cored boreholes show a 
greater variety of structural orientations from finer features 
which can be identified in a smoother wall.  The cored wells 
have more open features and, in general, more features 
interpreted as flowing.  Circulation of water during diamond 
drilling likely opened up many of the discontinuities. 

Evaluation of full waveform sonic logs indicated P-wave 
slowness is, on average, 5% higher in the hammered 
boreholes than cored, while the S-wave slowness is 
significantly higher and often appeared to merge with the 
Stoneley mode. 

Fluid logs were helpful in identifying the depths of continuous 
fractures transmitting fluid into the wells for sampling and 
model development.  Comparison of these logs in co-located 
wells did not always reveal fluid anomalies at common depths. 
Discontinuous features in porous zones, often the result of 
matrix dissolution, also created fluid anomalies without an 
associated continuous fracture trace around the borehole wall. 

Flow meter data revealed that natural vertical fluid movement, 
present in wells at all four sites, could be flowing at different 
rates in each well depending on the features intersected by the 
boreholes. In borehole pair PO-04 & PO-07, the casing was set 
deeper into the rock in the hammered hole, and showed a very 
different flow profile than was measured in the adjacent cored 
borehole.  
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Video log comparison of wall roughness at the same depth 
from hammer drilling (left) and diamond drilling (right) in 
boreholes spaced 6 m apart (PO-07, PO-04).
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Caliper logs show hammered holes have a rough wall surface 
along the entire length, while cored boreholes have a smoother 
surface.  Cored holes, however, have fractures extending 
further into the borehole wall, likely through flushing of 
circulating fluids. 

Jo
rd

an
 M

ou
nt

ai
n 

Fa
ul

t

S
m

ith
 C

re
ek

 F
au

lt

Pictou Group

Cumberland Group

Mabou Group

Windsor Group

Sussex Group

Horton Group

Basement

Fault 

Upper Devonian 
to Mississipian

Silurian and older

Mississippian 
to Pennsylvanian

PO-04/
PO-07

PO-06/
PO-09

PO-05

PO-03

PO-02/
PO-13

PO-01/
PO-14

GSC obs. well

Berry
 M

ills
 F

ault

Gordon Falls Fault

Penobsq
uis 

Fault

Fold

2 km

Thrust fault 

McCully Gas Field

PO-14

0°

180°

PO-01

0°

180°

PO-04 

0°

180°

PO-07

0°

180°

PO-06

0°

180°

PO-09

0°

180°

Open bedding

 

Closed bedding

 

Open joint

Open bedding - Flowing

 

Open joint - Flowing

Closed joint 

 

Cored Hammered

Open                n=19
Open Flowing   n=11

Open                n=2
Open Flowing   n=2

Open                n=17
Open Flowing   n=3

Open                n=7
Open Flowing   n=7

Open                n=21
Open Flowing   n=3

Open                n=5
Open Flowing   n=1

Open bedding

 

 

Open bedding - Flowing

Closed joint 

 

 

Open joint

Closed bedding

 

 

Open bedding - Flowing

Closed joint 

Open joint

Closed bedding

Open bedding

 

 

D
e
p

th
 (

m
)

Fluid Temperature

6.6 7.8deg C

Fluid Conductivity

2700 3700uS/cm

N
a

tu
ra

l U
p

 F
lo

w

0 2L/min

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Diamond-
drilled

Hammer-
drilled

PO-01 vs PO-14 (6 m separation)

7.7 8.2Deg C 800 1800uS/cm 0 4L/min
15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

PO-02 vs PO-13 (4 m separation)

Fluid Temperature Fluid Conductivity Flow Meter (ambient flow)

-4 0L/min7 9deg C 380 500uS/cm

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

PO-04 vs PO-07 (6 m separation)

Fluid Temperature Fluid Conductivity Flow Meter (ambient flow)

Fluid Temperature Fluid Conductivity Flow Meter (ambient flow)

D
e
p

th
 (

m
)

D
e
p

th
 (

m
)

A
rte

sia
n

 U
p

 F
lo

w

D
o

w
n

 F
lo

w

7 8deg C 260 300uS/cm -0.5 0L/min

30.0

35.0

40.0

45.0

50.0

PO-06 vs PO-09 (4.5 m separation)

D
o

w
n

N
o

 m
e

a
su

re
d

D
e
p

th
 (

m
)

D
e
p

th
 (

m
)

Flow Meter (ambient flow)

Flow 
meter 
upper 
limit

Hammer-drilled Diamond-drilled BOC Base of Casing

Up-flowing wells Down-flowing wells

BOC

BOC

BOC

BOC

BOC

BOC

*Casing 
at 17 m

Significantly more fluid 
entering diamond-
drilled hole through a 
fracture zone at the 
base of the casing.  
This zone was cased 
off in the adjacent 
hammered hole, where 
casing was set deeper.

Flow 
meter 
upper 
limit

Continuous fracture transmitting groundwater into/out of well

Series of 
discrete 
dissolution 
features

Discontinuous 

Fracture zone

Identified 
during 
pumped 
flow meter 
test (results 
not shown) 

a
m

b
ie

n
t flo

w

Identified during 
pumped flow meter test 
(results not shown) 

Identified during 
pumped flow meter test 
(results not shown) 

Geophysical Logs in Side-by-side Wells

Quebec City

   Over the past eight years, the Geological Survey of Canada (GSC) in collaboration 
with different partners has been investigating potential upward fluid migration pathways 
from deep shale and tight sandstone gas reservoirs to shallow aquifers in regions of 
eastern Canada (Raynaud et al., 2016, Rivard et al., 2017, Rivard et al., 2018). As part of 
the bedrock aquifer studies underway in Sussex, New Brunswick, the GSC drilled, 
geophysically logged, and hydrogeologically tested 14 bedrock observation wells (50 to 
130 m in depth).  
   The study area is located within a sedimentary sub-basin of the Upper Devonian to 
Permian Maritimes Basin. The shallow observation wells intersect the bedrock units of 
the Mabou Group which consist of interbedded fine to coarse-grained, fluvial to 
continental, clastic units including conglomerate, sandstone, siltstone and mudstone 
(St. Peter and Johnson, 2009).  Rapid and irregular lateral facies changes are the norm 
in these deposits and lateral persistence of marker beds across the study area was not 
observed (Crow et al., 2017). 

   Differences between the datasets raise questions on the ultimate benefits and 
drawbacks of interpreting geomechanical (e.g. moduli) and hydrogeological (e.g 
transmissivity) parameters for critical projects in wells with different wall roughness 
conditions. While drilling hammered boreholes is less expensive and time consuming 
than coring holes, are there potential trade-offs with data quality?  Leveraging the 
placement of adjacent boreholes, this question is examined in the context of a terrestrial, 
clastic sedimentary bedrock setting.  This work is developing knowledge to support 
design choices for future GSC groundwater studies.

   Boreholes were advanced using a combination of hammer and diamond drilling 
techniques.  In four locations, hammer and diamond drilled boreholes were co-located 4 
m to 6 m apart, providing a unique opportunity to assess how drilling methods influence a 
downhole geophysical dataset in this geological setting. The suite of logs included fluid 
temperature/conductivity, heat pulse flow meter, optical and acoustic televiewers, 
acoustic caliper, video camera, gamma-gamma density, guard resistivity, full waveform 
sonic, and spectral gamma. This poster presents some comparisons of the logs collected 
in the side-by-side boreholes.
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