AGRI-ENVIRONMENTAL INDICATOR PROJECT

Agriculture and Agri-Food Canada

 REPORT NO. 21
AGROECOSYSTEM GREENHOUSE GAS BALANCE INDICATOR: METHANE COMPONENT

Technical Report: Nei Methane Emissions from Agroecosystems in Canada for the Years 1986 and 1991

R.L. Desjardins, Agriculture and Agri-Food Canada
S.P. Mathur, Consultant

PREFACE

The Agri-Envrionmental Indicator (AEI) Project of Agriculture and Agri-Food Canada (AAFC) was initiated in 1993 in response to recommendations made by several agencies, organizations and special studies. The overall objective of the project is to develop and provide information to help integrate environmental considerations into decision-making processes of the agri-food sector.

The project aims to develop a core set of regionally-sensitive national indicators that build on and enhance the information base currently available on environmental conditions and trends related to primary agriculture in Canada. The methane component of the Agroecosystem Greenhouse Gas Balance indicator is an important part of the agri-environmental indicator set. Indicators are also being developed for other aspects of agricultural greenhouse gases and in relation to issues of water quality, agroecosystem biodiversity, farm resource management, soil quality and agricultural production efficiency.

Research results in the form. of discussion papers, scientific articles and progress reports are released as they become available. A comprehensive report is planned for fiscal year 1998-1999 which will include data from the 1996 Statistics Canada Census of Agriculture.

Comments and questions on this paper should be addressed to:
Dr. Raymond Desjardins
Eastern Cereal and Oilseed Research Centre
Research Branch, Agriculture and Agri-Food Canada
Central Experimental Farm, Building No. 74
Ottawa, Ontario
K1A 0C6

Telephone: (613) 759-1522
Facsimile: (613) 966-0646
E-mail: Desjardins@em.agr.ca

Digitized by the Internet Archive in 2012 with funding from
Agriculture and Agri-Food Canada - Agriculture et Agroalimentaire Canada

TABLE OF CONTENTS

Abstract 1
1.0 Introduction 2
2.0 Methane from Animals 3
2.1 The Empirical UK- OECD Approach 4
2.2 The Detailed Level U.S.- OECD Approach 4
2.3 The Canadian Approach 4
3.0 Methane from Animal Waste 8
4.0 Methane from Agricultural Soils 13
5.0 Summary and Conclusion 13
Lists of Tables and Figures 15
Acknowledgements 16
References 17

Abstract

Methane emissions from agroecosystems in Canada were estimated for 1986 and 1991. The principle source of CH_{4} was from livestock production. According to these estimates, farm animals produced about 639 kt of CH_{4} during 1986 and 681 kt of CH_{4} during 1991. An additional 203 and $209 \mathrm{kt} \mathrm{of} \mathrm{CH}_{4}$ were also emitted from animal manures in 1986 and 1991, respectively. The regional magnitude of these sources is presented in $\mathrm{kg} \mathrm{CH}_{4} / \mathrm{km}^{2}$ for both eastern and western Canada. Agricultural soils, which can either be a source or a sink of CH_{4} depending on the soil moisture conditions, were estimated to emit about $12 \mathrm{kt} \mathrm{CH}_{4} / \mathrm{yr}$ and absorb $7 \mathrm{kt} \mathrm{CH}_{4} / \mathrm{yr}$. Burning of fossil fuels on farms produced about $1 \mathrm{kt} \mathrm{CH}_{4} / \mathrm{yr}$. Overall, the net CH_{4} emissions from agroecosystems during 1986 and 1991 were estimated to be 848 kt and 896 kt , respectively. For a 100 year time horizon, the total CH_{4} emissions during 1986 and 1991 were equivalent to 17.8 and 18.8 million tonnes of CO_{2}, respectively.

1.0 Introduction

Carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$ and nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ gases are all natural components of the atmosphere that trap heat radiated from Earth. This process is referred to as the greenhouse effect. Under natural emissions and removal processes, the concentration of these gases should be relatively constant. However, in the last century, human-induced activities have significantly altered the atmospheric concentration of these gases.

Since 1750, the atmospheric concentration of CO_{2} has increased by $30 \%, \mathrm{~N}_{2} \mathrm{O}$ by 15% and CH_{4} by 145% (IPCC, 1996). The sharp rise of CH_{4} is of particular concern because on a kg for kg basis, CH_{4} is considerably more potent as a greenhouse gas than CO_{2}. This is due to the type of radiation trapped by CH_{4}, and its important role in atmospheric chemistry. Methane is estimated to be responsible for $15-18 \%$ of present global warming, second only to CO_{2} whose contribution is estimated at $55-60 \%$. However, the concentration of CH_{4} is increasing at a higher annual rate (0.6%) than that of $\mathrm{CO}_{2}(0.4 \%)$. With this rate of increase and its many indirect effects, CH_{4} is predicted to become even more important in its potential for global warming.

Human activities are responsible for 64% of the total annual emissions of CH_{4} (Duxbury et al., 1993), while only 3% of the CO_{2} emissions are anthropogenic. On a global basis, agriculture contributes 26% to the anthropogenic emissions of CO_{2}, which are produced mainly from fossil fuels, while it is responsible for 65% of the anthropogenic CH_{4} emissions. Of these, approximately one-quarter have been estimated to originate from livestock operations.

It is predicted that a reduction of anthropogenic CH_{4} emissions by 10% would stop the rise in the atmospheric level of CH_{4}. Since CH_{4} has a relatively short atmospheric lifetime (about 11 years), a reduction in CH_{4} emissions would help mitigate global warming relatively quickly (Williams, 1994). By contrast, reductions of 50 to 100% would be necessary to prevent increases in other greenhouse gases with longer atmospheric lifetimes.

Presently, there are an estimated $4850 \mathrm{Tg}\left(1 \mathrm{Tg}=10^{12} \mathrm{~g}\right)$ of CH_{4} in the atmosphere, corresponding to a concentration of 1721 ppbv . Sources contribute an estimated 535 Tg per year, whereas sinks account for the removal of an estimated 560 Tg per year (Prather et al., 1996). This implies that either there are unknown or underestimated sources, or overestimated sinks, which must be better defined if the estimated yearly increase of 37 Tg in the atmosphere is to be explained.

This report presents an estimate of the 1986 and 1991 net CH_{4} emissions from agroecosystems in Canada. Its focus is on the CH_{4} emissions from farm animals and their manure, but the exchange of CH_{4} with respect to agricultural soils is also discussed.

2.0 Methane from Animals

On a global scale, enteric fermentation by ruminants accounts for the input of an estimated 80 Tg of CH_{4} into the atmosphere per year (Watson et al., 1992), of which domestic cattle contribute about 85%. The primary products of fermentation in the rumen are volatile fatty acids, propionic and butyric, as well as CO_{2} and CH_{4}. Volatile fatty acids (VFAs) are the major sources of energy for ruminant animals, but they have the inescapable consequence of generating CH_{4} (McAllister et al., 1997). Methane production can be decreased by promoting a shift in the rumen toward propionic acid generation. However, the production of VFAs cannot be completely eliminated without compromising the animal's capacity to convert forages and grains to meat and milk.

Factors that influence ruminal CH_{4} production include the type of feed, level of feed intake and the variation of feed. For example, the CH_{4} yield from ruminal fermentation of legume forage tends to be lower than the yield from grass forage. Generally, it was found that when the feed intake was increased, the percentage of dietary energy lost as CH_{4} decreased (Johnson and Johnson, 1995). The addition of ionophores may also decrease CH_{4} loss. lonophores are compounds that facilitate the transport of ions across a lipid membrane by making the membrane more permeable. lonophores, such as monensin, reduce feed intake by $5-6 \%$, and thus decrease CH_{4} losses. However, these effects are short-lived and are likely to be related to the reduction in feed intake rather than to any effects on biomethanogenesis (Johnson et al., 1994). All properties of the forage that decrease the rate of digestion or prolong the residence time of feed within the rumen, generally increase the CH_{4} produced per unit of forage digested.

Other factors that affect the rate of CH_{4} production include ambient temperature and the digesta passage rate. McAllister et al. (1997) observed a decrease of 20% in the CH_{4} production of adult sheep when the ambient temperature was lowered from 33 C to 8 C . Unlike temperature, an inverse relationship exists between CH_{4} production and digesta passage rates. Methane emissions decreased 29% when the fractional passage rate of particulate matter was increased 63\% in steers (McAllister et al., 1997).

Methane emitted by exhalations and eructations from animals is difficult to measure because it varies between individual cows, and according to the type of feed. Enzymes, inhibitors and antibiotics also affect CH_{4} generation. The CH_{4} emission per head per year depends on the breeds and lines of cattle, the live weight, the rate of weight gain, the level of exercise and age of the animal. These factors must all be taken into account in order to obtain an accurate estimation of the CH_{4} produced from farm animals.

2.1 The Empirical UK - OECD Approach

A working group within the Organization for Economic Co-operation and Development (OECD) developed broad guidelines to estimate greenhouse gas emissions for large groups of animals (IPCC/OECD, 1994). Based on these guidelines, CH_{4} emissions from cattle in the U.K. were estimated to be $64.3 \mathrm{~kg} \mathrm{CH}_{4} / \mathrm{hd} / \mathrm{yr}$. As can be observed from Table 1, the emission rate for cattle is very dependent on the proportion of the various types of cattle.

2.2 The Detailed Level U.S. - OECD Approach

The U.S. EPA (1994) employed a version of the draft Tier 2 methodology recommended by the IPCC to arrive at a rate of CH_{4} emission for cattle of 53.3 kg $\mathrm{CH}_{4} /$ hd/yr (IPCC/OECD, 1994). This value was obtained using a mechanistic model of ruminal digestion and animal production that was applied to thirty-two different diets and nine different cattle types. The cattle types represented different weights, ages, feeding systems and management systems that occur typically in the U.S.

2.3 The Canadian Approach

Methane emissions from animals in Canada, for 1986 and 1991, were calculated using the livestock inventory data from Statistics Canada (1993), and are shown on a provincial basis in Tables 2 and 3. The estimated CH_{4} emission rates from livestock used to calculate the CH_{4} emissions are shown in Table 1. Based on recent studies in Canada, these numbers might be slightly underestimated, but the actual emissions are most likely within the range of errors that the measurements have reported.

Table 1. Estimated CH_{4} emission rates from farm animals in Canada for 1986 and 1991

Animals	Emission rates $(\mathrm{kg} / \mathrm{hd} / \mathrm{yr})$
Dairy Cattle	91.2
Beef Cattle	57.3
Slaughter Cattle	43.0
Calves	29.1
Total Cattle	$52.4(1986)$
Hogs	1.6
Poultry	0.005
Sheep and Lambs	7.0

Table 2. Methane emissions from various farm animal types by province in 1986

Provinces	Dairy Cattle		Non-Dairy Cattle		Hogs		Poultry		Sheep/Lambs		Total Livestock	
	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{k} t / \mathrm{yr}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{k} / \mathrm{yr}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\underset{(\mathrm{kt} / \mathrm{yr})}{\mathrm{CH}_{4}}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \\ \hline \end{gathered}$	Pop. 1 $\left(10^{3}\right)$	$\begin{array}{r} \mathrm{CH}_{4} \\ (\mathrm{kt}(\mathrm{yr}) \end{array}$
Att. Prov.	125.8	11.5	220.9	9.4	373.0	0.6	7280.9	0.04	61.2	0.4	7840.9	21.9
Quebec	830.0	75.7	676.0	27.2	2927.0	4.7	20503.4	0.10	112.5	0.8	24372.9	108.5
Ontario	723.0	65.9	1661.0	69.8	3172.0	5.1	32008.2	0.16	205.5	1.4	36108.7	142.4
Manitoba	94.5	8.6	996.5	44.2	1089.0	1.7	6298.1	0.03	22.6	0.2	7504.2	54.7
Sask.	73.5	6.7	1962.5	87.9	608.0	1.0	3769.7	0.02	53.0	0.4	4504.1	96.0
Alberta	175.0	16.0	3571.0	159.5	1508.0	2.4	8852.4	0.04	183.6	1.3	10719.0	179.2
B.C.	113.0	10.3	564.5	25.0	214.3	0.3	9229.5	0.05	56.5	0.4	9613.3	36.1
Canada	2134.8	194.7	9652.4	423.0	9891.3	15.8	87942.2	0.44	694.9	4.9	100663.2	638.8

${ }^{1}$ Statistics Canada, 1993;

Table 3. Methane emissions from various farm animal types by province in 1991

Provinces	Dairy Cattle		Non-Dairy Cattle		Hogs		Poultry		Sheep/Lambs		Total Livestock	
	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \end{gathered}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{array}{r} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \end{array}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\underset{(\mathrm{kt} / \mathrm{yr})}{\mathrm{CH}_{4}}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \end{gathered}$	$\begin{aligned} & \text { Pop. } 1 \\ & \left(10^{3}\right) \end{aligned}$	$\begin{array}{r} \mathrm{CH}_{4} \\ (\mathrm{kt} / \mathrm{yr}) \end{array}$
Att. Prov.	110.1	10.0	226.8	9.7	335.5	0.5	7884.3	0.04	61.2	0.4	8610.5	20.7
Quebec	744.0	67.9	694.0	28.2	2997.5	4.8	23386.3	0.12	112.5	0.8	27936.8	101.8
Ontario	671.0	61.2	1604.0	68.1	2960.0	4.7	37632.2	0.19	205.5	1.8	43117.2	136.0
Manitoba	80.0	7.3	1015.0	45.3	1310.0	2.1	7172.7	0.04	22.6	0.2	9612.7	54.9
Sask.	62.0	5.7	2217.0	99.7	843.0	1.3	3969.4	0.02	53.0	0.6	7183.4	107.3
Alberta	152.0	13.9	4519.0	201.9	1760.0	2.8	9664.2	0.05	183.6	2.1	16394.2	220.7
B.C.	111.0	10.1	637.0	28.3	238.5	0.4	12253.2	0.06	56.5	0.5	13312.7	39.4
Canada	1930.1	176.1	10912.8	481.2	10444.5	16.6	101962.2	0.52	694.9	6.4	126167.4	680.8

${ }^{1}$ Statistics Canada, 1993:

Figure 1a shows the CH_{4} emitted in $\mathrm{kg} \mathrm{CH}_{4} / \mathrm{km}^{2}$ by cattle, hogs and poultry in western Canada during 1991. The highest emissions were in the province of Alberta. The prairie provinces accounted for more than half the cattle in Canada that year (Dyer, 1995). Figure 1b shows the CH_{4} emitted by cattle, hogs and poultry in eastern Canada during 1991, with the highest emissions in southern Ontario and Quebec.
wramenemonamanas
FROM CATTLE, HOGS, POULTRY
 WESTERN CANADA

Several studies have been carried out in Canada in recent years to quantify CH_{4} emissions from animals. A 120-head dairy barn, located near Ottawa, Canada, was modified and effectively transformed into a large laboratory in which CH_{4} production from cows was monitored on a continuous basis for about three years. This approach kept the animals in their accustomed environment, eliminating the stress associated with placement in special respiratory chambers. Over a three year period the mean 24$\mathrm{hr} \mathrm{CH}_{4}$ emission per cow was $561 \pm 72 \mathrm{LCH}_{4} \mathrm{~d}^{-1} \mathrm{cow}^{-1}$. This is equivalent to $137 \pm 18 \mathrm{~kg}$ $\mathrm{CH}_{4} / \mathrm{hd} / \mathrm{yr}$ (Kinsman et al., 1995). This value is considerably larger than the value of 91.2 used by other groups (Table 1). Similar numbers to those obtained by Kinsman et al. (1995) have been obtained by Schuepp et al. (1997) during July and August 1996, by measuring concentration profiles of CH_{4} and SF_{6} downwind of a dairy barn housing lactating cows and a feedlot/paddock housing dry holstein heifers.

Other techniques have been developed to measure CH_{4} production for free ranging animals, notably the simultaneous release of SF_{6} in the rumen of the animal (Johnson et al., 1994; McCaughey et al., 1997). The eructed gases are collected at the mouth of the steer into an evacuated flask which is hung around the neck of the animal during an 8 - to 24 -hour period, and subsequently analysed for CH_{4} and SF_{6}. Methane emissions were estimated at an average of $270 \mathrm{LCH}_{4} \mathrm{~d}^{-1}$ animal ${ }^{-1}$ ($66 \mathrm{~kg} / \mathrm{hd} / \mathrm{yr}$) under Canadian conditions for an average 400 kg steer (McCaughey et al., 1997). It is estimated that an additional 10% of CH_{4} is released by the animal through flatulence.

3.0 Methane from Animal Wastes

The IPCC (1990) Working Group III report has underlined the potential importance of CH_{4} emissions from animal wastes, suggesting that under anaerobic waste management systems "uncontrolled" CH_{4} emissions from cattle wastes might be of similar magnitude as CH_{4} emissions from livestock digestive processes. The potential for CH_{4} generation from manure depends on its moisture and the bioavailable carbon content, which in turn is dependent on the type of animal and the nature of its feed.

The CH_{4} production factors for Canada, calculated in units of $\mathrm{kg} \mathrm{CH}_{4} / \mathrm{kg}$ volatile solids (VS), are shown in Table 4. These numbers are based on: (a) standard types of storage and management; (b) the maximum theoretical convertibility of organic carbon in the wastes to CH_{4}, and; (c) the actual amount of organic matter in the wastes voided by each animal type. Methane production factors were combined with the population of the various animal types to obtain the emission estimates given in Tables 5 and 6.

Table 4. Factors used in the calculation of CH_{4} emissions from farm animal manures for 1986 and 1991

Animals	Typical Live Animal Mass 1 $(\mathrm{~kg})$	kg Manure per day / 1000 kg Live Animal Mass 2	\% Volatile Solids 2 $($ VS $)$	CH_{4} Production Factor 3 $\left(\mathrm{~kg} \mathrm{CH}_{4} / \mathrm{kg} \mathrm{VS}\right)$
Bulls	720	58	7.2	0.011
Dairy Cattle	610	86	10.0	0.019
Beef Cattle	500	58	7.2	0.011
Dairy Heifers	360	86	10.0	0.019
Beef Heifers	415	58	7.2	0.011
Heifers for Slaughter	360	58	7.2	0.011
Steers	415	58	7.2	0.011
Calves	180	58	7.2	0.011
Boars and Sows	181	84	8.5	0.043
All Other Hogs	46	84	8.5	0.044
Sheep and Lambs	27	40	9.2	0.019
Chickens	1.15	68	14	0.024

Taiganides and Stroshine, 1971.
${ }^{2}$ U.S. E.P.A, 1994 (Table C-14).
${ }^{3}$ Jaques, 1992 (Table 25).

Table 5. Methane emissions from various farm animal manures in 1986

	Cattle		Hogs		Sheep/ Lambs		Poultry		Total Livestock	
Province	$\begin{aligned} & \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & \text { (kt) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & (\mathrm{kt}) \end{aligned}$	$\begin{aligned} & \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & \text { (kt) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { manure } \\ \left(10^{3} \mathrm{kt}\right) \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & (\mathrm{kt}) \end{aligned}$	$\begin{aligned} & \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & (\mathrm{kt}) \\ & \hline \end{aligned}$
Atl. Prov	3.72	5.27	0.69	2.57	0.02	0.04	0.21	0.70	4.64	8.58
Quebec	18.40	29.92	5.33	19.81	0.04	0.08	0.59	1.97	24.36	51.78
Ontanio	24.10	32.23	5.96	22.10	0.08	0.14	0.91	3.07	31.05	57.54
Manitoba	9.23	9.06	2.02	7.52	0.01	0.02	0.18	0.60	11.44	17.20
Sask.	16.43	14.39	1.16	4.29	0.02	0.04	0.11	0.36	17.72	19.08
Alberta	30.75	27.63	2.83	10.51	0.07	0.13	0.25	0.85	33.90	39.12
B.C.	6.18	6.97	0.40	1.47	0.02	0.04	0.26	0.89	6.86	9.37
Canada	108.81	125.47	18.39	68.26	0.26	0.48	2.51	8.43	129.97	202.67

Table 6. Methane emissions from various farm animal manures in 1991

	Cattle		Hogs		Sheep/Lambs		Poultry		Total Livestock	
Province	$\begin{aligned} & \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & \text { (kt) } \end{aligned}$	$\begin{gathered} \hline \text { manure } \\ \left(10^{3} \mathrm{kt}\right) \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & (\mathrm{kt}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{4} / \mathrm{yr} \\ & \text { (kt) } \end{aligned}$	$\begin{aligned} & \hline \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\mathrm{CH}_{4} / \mathrm{yr}$ (kt)	$\begin{aligned} & \text { manure } \\ & \left(10^{3} \mathrm{kt}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{CH}_{4} / \mathrm{yr} \\ \text { (kt) } \\ \hline \end{array}$
Att. Prov	3.56	4.81	0.62	2.31	0.02	0.04	0.23	0.76	4.43	7.92
Quebec	17.14	27.36	5.48	20.35	0.05	0.08	0.67	2.24	23.34	50.03
Ontario	22.93	30.42	5.52	20.49	0.10	0.17	1.07	3.61	29.62	54.69
Manitoba	9.12	8.71	2.45	9.09	0.01	0.02	0.28	0.69	11.86	18.51
Sask.	18.21	15.59	1.56	5.80	0.04	0.06	0.11	0.38	19.92	21.83
Alberta	37.65	32.64	3.31	12.29	0.12	0.21	0.28	0.93	41.36	46.07
B.C.	6.70	7.35	0.45	1.66	0.03	0.05	0.35	1.18	7.53	10.24
Canada	115.31	126.88	19.39	71.99	0.37	0.63	2.99	9.79	138.06	209.29

Many factors enter into the interpretation of these data. For example, Casada and Safely (1990) assumed that cold temperatures reduce CH_{4} generation from manure by about 20%. However, it must be realized that in cold climates, such as Canada, the storage time is longer than the storage periods in warmer climates. This is because of reduced opportunity for spreading the waste on non-frozen land without a standing crop more than a few inches high. Since it is possible that the stockpiles of manure may warm up to mesophillic temperature (even in the winter), methanogenesis may occur even at these lower temperatures.

Figures $2 a$ and $2 b$ show the CH_{4} emitted from cattle, hog and poultry manure for western and eastern Canada in terms of annual averages of $\mathrm{kg} \mathrm{CH}_{4} / \mathrm{km}^{2}$. In 1991, the Prairie provinces were responsible for the production of half of all Canadian manure. However, most of eastern Canada experienced higher manure production per hectare of farmland than western Canada (Dyer, 1995)(Tables 5 and 6). More than 95\% of all CH_{4} emissions from manure were produced from hogs and cattle.

Manure management is known to affect CH_{4} and other greenhouse gas emissions. In a recent study, Pattey et al. (1997) showed that manure stored as slurry from dairy and beef cattle produced the highest CH_{4} emissions. When dairy cattle manure was composted, the CH_{4} emissions from stockpiled manure were reduced at least six-fold. Composting beef manure resulted in even lower CH_{4} emissions. Of the total direct contribution of CH_{4} from dairy cattle manure, approximately 65% was from slurry, 31% from stockpiled manure and less than 4% from compost. The direct contribution of CH_{4} produced from beef manure was slightly different. Over a three month period, the direct CH_{4} contribution from slurry was 76%, and after five months it increased to 83%. The direct contribution of CH_{4} from stockpiled manure was 16% and less then 1% from compost (Table 7). Before making recommendations based on these emissions, the emissions of other greenhouse gases such as $\mathrm{N}_{2} \mathrm{O}$ and CO_{2} must also be considered (Monteverde et al., 1997).

Table 7. Methane emissions from manure stored under different conditions

Storage type	CH_{4} from Beef Cattle Manure ${ }^{1}$	CH_{4} from Dairy Cattle Manure ${ }^{1}$
Compost	0.005	0.038
Stockpile	0.097	0.247
Slurry (3 months)	0.332	0.524
Slurry (5 months)	0.519	

* data expressed in kg of CO_{2} equivalent per mass of initial dry manure for a 20 year time horizon.
${ }^{1}$ Pattey et al., 1997.
METHANE FROM MANURES WESTERN CANADA

4.0 Methane from Agricultural Soils

The oxidation of atmospheric CH_{4} by well-drained soils accounts for approximately 10% of the global CH_{4} sink. Whether a soil acts as a source or a sink for CH_{4} depends on the relative rates of methanogenic and methanotropic activity. Methane emission occurs from soils when the activity of methanogens dominates, while CH_{4} consumption is prominent when methanotrophic activity dominates. The ability of soil to consume or produce CH_{4} depends on the land use and the type of soil. Soils can consume CH_{4} at rates ranging from a few to a fraction of $1 \mathrm{mg} \mathrm{m}^{-2} \mathrm{~d}^{-1}$. Although there is little information available on waterlogged areas in agroecosystems, a well-drained soil that normally acts as a sink could become a source of CH_{4} when it becomes saturated (Topp and Pattey, 1997). The CH_{4} emissions from soil were estimated to be $12 \mathrm{kt} \mathrm{CH} 4 / \mathrm{yr}$ using an emission rate of $1 \mathrm{~g} \mathrm{CH} / \mathrm{m}^{2} / \mathrm{yr}$ for wet areas (Liu, 1995).

Numerous studies have shown that the application of nitrogenous fertilizers to soils frequently inhibits CH_{4} oxidation (Mosier, 1993). Ammonia acts as a competitive inhibitor of the enzyme which oxidizes CH_{4} to CO_{2} (Bedard and Knowles, 1989). It is also predicted that the nitrite produced by methanotrophic nitrification is toxic to microorganisms, possibly because it inhibits the last enzyme in the CH_{4} oxidation pathway (King and Schnell, 1994).

Cultivated soils are not an important source or sink of CH_{4}. However, dried, uncultivated soils and pastures may absorb CH_{4} (Williams, 1994). The area of nonimproved cropland in 1986 was about 22.5 million ha and in 1991 it was 22.3 million ha (Dumanski et al., 1994). Assuming an estimated uptake rate of $2.5 \times 10^{-4} \mathrm{~g} \mathrm{CH}_{4} / \mathrm{m}^{2} /$ day and a dry season of four months, the CH_{4} uptake of the soils was then calculated to be about 7 kt for both 1986 and 1991 (Liu, 1995).

5.0 Summary and Conclusion

Table 8. Summary of CH_{4} emissions from agroecosystems in Canada

Source	1986 (kt)	1991 (kt)
Livestock	639	681
Animal Manures	203	209
Soils	5	5
Fossil Fuel Combustion	1	1
Total	848	896

This report presents an estimate of CH_{4} emissions from agroecosystems in Canada for 1986 and 1991 (Table 8). The CH_{4} production from livestock was estimated
to be 639 kt and 681 kt in 1986 and 1991, respectively. The contributions from cattle, hogs, sheep and poultry to these values were, respectively, about 617.7, 15.8, 4.9 and 0.4 kt in 1986 and 657.3, 16.6, 6.4 and 0.5 kt in 1991. The CH_{4} estimated to have been produced from livestock manure in 1986 and 1991 was 203 kt and 209 kt , respectively. The approximate contributions from cattle, hogs, sheep/lambs and poultry were 125.5 , $68.3,0.5,8.4 \mathrm{kt}$ in 1986 and 126.9, 72.0, 0.6, 9.8 kt in 1991. Soil may act as both source and sink of CH_{4}. The CH_{4} emitted from soils in Canada was estimated to be 12 kt , and the CH_{4} uptake of soils was 7 kt in both years. Fossil fuel combustion on farms has been estimated to produce about 1 kt of CH_{4} per year. The net annual contributions per year, resulting from these estimates, are $848 \mathrm{kt} \mathrm{CH}_{4}$ for 1986 and $896 \mathrm{kt} \mathrm{CH}_{4}$ for 1991. When interpreting these figures on greenhouse gas contributions from livestock operations, the compensating effects of CO_{2} through carbon storage in grasslands should also be considered. This factor is not considered in this report, but increased carbon storage in soils has recently been documented by Smith et al. (1995). Future work on agricultural greenhouse gases will integrate all factors into a net greenhouse gas budget.

LIST OF TABLES

Table 1: Estimated CH_{4} emission rates from farm animals in Canada for 1986 and 1991 4
Table 2: Methane emissions from various farm animal types by province in 1986 5
Table 3: Methane emissions from various farm animal types by province in 1991 5
Table 4: Factors used in the calculation of CH_{4} emissions from farm animal manures for 1986 and 1991 9
Table 5: Methane emissions from various farm animal manures in 1986 9
Table 6: Methane emissions from various farm animal manures in 1991 9
Table 7: Methane emissions from manure stored under different conditions 10
Table 8: Summary of CH_{4} emissions from agroecosystems in Canada 13
LIST OF FIGURES
Figure 1a: Methane emissions from cattle, hogs and poultry in western Canada during 1991 6
Figure 1b: Methane emissions from cattle, hogs and poultry in eastern Canada during 1991 7
Figure 2a: Methane emissions from cattle, hog and poultry manure in western Canada during 1991 11
Figure 2b: Methane emissions from cattle, hog and poultry in eastern Canada during 1991 12

Acknowledgments

The authors would like to thank the following in various phases of the work; Barry Grace, the Agriculture and Agri-Food manager of the Program on Energy Research and Development (PERD) for financial support; Dan Sabourin and Brian Monette for creating the maps; Richard Riznek, Corinne Merrill, Michelle Buckley and Ward Smith for assisting in the preparation of the report.

References

Bernard, C, and R. Knowles. 1989. Physiology, biochemistry and specific inhibitors of $\mathrm{CH}_{4}, \mathrm{NH}_{4}^{+}$and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53:68-84.

Casada, M.E., and L.M. Safely, 1990. Global methane emissions from livestock and poultry manure. U.S. Environmental Protection Agency. CX-816200-01-0.

Dumanski J., L.J. Gregorich, V. Kirkwood, M.A. Cann, J.L.B. Culley, and D.R. Coote. 1994. The status of land management practices on agricultural land in Canada. Centre for Land and Biological Resource Research, Agriculture and Agri-Food Canada, Technical Bulletin 1994-3E, Ottawa, Canada.

Duxbury, J.M., L.A. Harper, and A.R. Mosier. 1993. Contributions of agroecosystems to global climate change. p 1-18. In L.A. Harper, A.R. Mosier, J.M. Duxbury and D.E. Rolston (eds.), Agricultural ecosystems effects on trace gases and global climate change. ASA Special publication. No.55. ASA, CSSA, SSSA, Madison, WI.

Dyer, J.A. 1995. Agri-environmental indicators for an environmental report card on Canadian livestock densities and manure production with some Canada-USA comparisons. pp. 58. Centre for Land and Biological Resources Research, Research Branch, Agriculture \& Agri-Food Canada, Ottawa.

IPCC. 1996. Climate change 1995: the science of climate change. pp. 56. Houghton, J.T., L.G. Mecrofilho, B.A. Callander, N. Harris, A. Katterby, and K. Maskell (eds). Cambridge University Press, Cambridge.

IPCC/OECD. 1994. IPCC guidelines for national greenhouse gas inventories. 1-3 vol. Reporting instructions, workbook, and draft manual. Paris, France.

IPCC. 1990. Methane emissions and opportunities: workshop results of Intergovernmental Panel on Climate Change. Coordinated by the Japan Environment Agency and U.S. EPA, office of air and radiation. 1 vol., Washington, D.C.

Jaques, A.P. 1992. Canada's greenhouse gas emissions: estimates for 1990. pp. 78. Report EPS 5/AP/4. Environmental Protection, Conservation and Protection Branch, Environment Canada, Ottawa.

Johnson K., M. Huyler, H. Westberg H., B. Lamb, and P. Zimmerman. 1994. Measurement of methane emissions from livestock using SF_{6} tracer technique. Environ. Sci. Technol. 28:359-362.

Johnson, K.A, and D.E. Johnson, 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.

King, G.M and S. Schnell, 1994. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370:282-284.

Kinsman, R., F.D Sauer, H.A. Jackson and M.S. Wolynetz. 1995. Measurements of methane emissions from dairy cows in full lactation monitored over a six-month period. J. Dairy Sci. 78:2760-2766.

Liu, J. 1995. A preliminary estimate of net CH_{4} emissions from Canada's agroecosystems in 1986 and 1991. pp.7. Internal report, Agriculture and AgriFood Canada, Ottawa.

McAllister, T.A., E.K. Okine, G.W. Mathison, and K.J. Cheng. 1997. Dietary, environmental and microbiological aspects of methane production in ruminants. In press.

McCaughey W.P., K. Wittenberge and D. Corrigan. 1997. Methane production by cattle on pasture. Proceedings of workshop on greenhouse gas research in agriculture, Agriculture and Agri-Food Canada, Sainte-Foy, Quebec, 12-14 March.

Monteverde, C.A., R.L. Desjardins, E. Pattey. 1997. Estimates of nitrous oxide emissions from agroecosystems in Canada for 1986 and 1991 using the revised 1996 IPCC/OCED methodology. Agri-environmental indicator project. Agriculture and Agri-Food Canada, report No. 20.

Mosier A.R. 1993. Nitrous oxide emissions from agricultural soils. p.273-285. Methane and nitrous oxide: methods in national emissions inventories and options for control. Proceedings of the International IPCC Workshop, National Institute of Public Health and Environmental Protection, the Netherlands, 3-5 February.

Pattey, E., R.L Desjardins, P. Rochette, E.G. Gregorich, M. Edwards and S.P. Mathur. 1997. Emissions of greenhouse gases from manure under contrasting storage conditions. Proceedings of Workshop on Greenhouse Gas Research in Agriculture, Agriculture and Agri-Food Canada, Sainte-Foy, Quebec, 12-14 March.

Prather, M, R. Derwent, D. Ehnalt, P. Fraser, E Sanhueza, and X. Zhou. 1996. Radiative forcing of climate change: other trace gases and atmospheric chemistry. p. 86-103. In J.T Houghton, L.G. Meirofilho, B.A. Callander, N. Harris, A. Katterby, and K. Maskell (eds.), Climate change 1995: The science of climate change. Contribution of Working Group 1 to the Second Assessment Report of the IPCC. Cambridge University Press, Cambridge.

Schuepp, P. H., S.K. Kaharabata, and L.A. Wittebol. 1997. Observations and modelling of methane emissions from agricultural livestock operations. Interim report, Agriculture Canada 1996-1997, contract file No. 01E86-6-0807/001/SS.

Smith, W.N., P. Rochette, C. Monreal, R.L Desjardins, E. Pattey, and A. Jaques. 1995. Agroecosystems greenhouse gas balance indicator: carbon dioxide component. pp.26. Agri-environmental indicator project. Agriculture and AgriFood Canada, report No. 13.

Statistics Canada. 1993. Livestock and animal products section: livestock statistics. Statistics Canada Cat. No. 23-603E.

Taiganides, E.P, and R.L Stroshine. 1971. Impact of farm animals production and processing on the total environment. p. 95-98. Livestock and waste management and pollution abatement proceedings.

Topp, E. and E. Pattey. 1997. Soils as sources and sinks for atmospheric methane. In press.
U.S. - EPA. 1994. Inventory of U.S. greenhouse gas emissions and sinks. 1990-1993.

Williams, A. (ed.). 1994. Methane emissions. Watt Committee on Energy. Report No. 28, London, UK.

Watson, R.T., L.G. Meirofilho, E. Sanhueza, A. Janetos. 1992. Greenhouse gases: sources and sinks. p. 24-46. In J.T. Houghton, B.A. Callender, S.K. Varney (eds.), Climate change 1992: the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge.

DATE DUE

MAR U 4	2015		
$\triangle P R \quad \& 7$	003		
			1
GAYLORD			PRINTED INUSA

