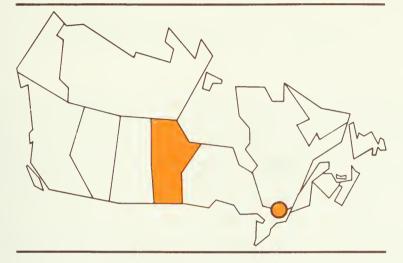


BEF CATTLE BERFORMANCE SELECTION



'N CANADA

Digitized by the Internet Archive in 2011 with funding from Agriculture and Agri-Food Canada – Agriculture et Agroalimentaire Canada

http://www.archive.org/details/beefcattleperfor00otta

A FEDERAL/PROVINCIAL PUBLICATION

CANADA / MANITOBA

BEEF CATTLE PERFORMANCE SELECTION

This publication was originally produced by the Manitoba Department of Agriculture Extension Service. Under the provisions of the Federal-Provincial Coordinating Committee on Agricultural Publications, the Canada Department of Agriculture has agreed to print this publication.

CANADA DEPARTMENT OF AGRICULTURE PUBLICATION 1480 1972 Copies of this publication may be obtained from INFORMATION DIVISION CANADA DEPARTMENT OF AGRICULTURE OTTAWA K1A 0C7

©INFORMATION CANADA, OTTAWA, 1975

Printed 1972 Reprinted 1975 Cat. No.: A63-1480

CONTENTS

What is record of performance?	5
Factors that determine rate of improvement from selection	6
Performance traits, their inheritance and importance	8
Performance programs	14
Understanding performance programs	18
Index—what it means	19
Purchasing performance-tested cattle	19
Sources of tested cattle	20
Summary	21

To obtain further information on enrolling herds in a recording and selection program, contact your local agricultural representative

BEEF CATTLE PERFORMANCE SELECTION

Prepared by W. A. Davis Livestock Specialist (Beef) Manitoba Department of Agriculture Revised by D. W. Ahner

More pounds to market in less time and at less cost is the challenge of the future for the beef cattle industry. Beef producers are faced with tremendous pressures from such things as labor problems, large capital requirements and alternative uses for lands resources, as well as improvements in other classes of livestock and in grain production. They can no longer afford 75 percent calf crops averaging 400 pounds, with an average feedlot gain of only 2 pounds a day.

Improving the genetic profit potential of the cow-calf operation must become the major concern of the beef cattle industry. Although improvement of rations and other aspects of animal management will be important, the extent to which they will increase production depends, primarily, on the inherited capacity of the cattle to reproduce and develop. Only by improving the genetic potential to produce more and better beef on less feed will the industry make lasting improvement and be able to keep pace with the future.

WHAT IS RECORD OF PERFORMANCE?

The primary purpose of a herd improvement program is to help you improve the performance of your herd in terms of your needs and those of the cattle feeder and the beef consumer. Herd improvement is based on the long-established practice of selecting superior bulls and mating them to the best cows available. Future success will depend more and more on improved accuracy in identifying superior animals. Research has shown that systematic measurement of performance and evaluation of the records give the necessary information for more accurate identification of superior bulls and cows.

Performance is the sum total of all traits that are of economic value. These include:

- fertility;
- rate of gain;
- mothering or nursing ability;
- efficiency of gain;
- carcass desirability; and
- longevity.

Record of Performance is the systematic measurement and recording of these traits that contribute to the efficient production of good beef. Lesser traits such as hair color, shape of head or leg length may be considered. However, selection for these lesser traits slows progress in improving characteristics that are more important economically.

FACTORS THAT DETERMINE RATE OF IMPROVEMENT FROM SELECTION

The rate of improvement from selection is determined by:

- heritability;
- selection differential;
- genetic association between the traits; and
- generation interval.

Heritability is the proportion of the differences measured or observed between animals that are transmitted to the offspring. The higher the heritability for any trait, the greater the rate of genetic improvement or the more effective selection will be for that trait.

Selection differential is the difference between the selected individuals and the average of all animals from which they were selected. The degree of differential is influenced by the proportion needed for replacement, the number of traits that are considered in selection, and the differences or variations that exist among the animals.

Genetic association between traits refers to the relationship, or correlation, between inherited characters, such as feed conversion, to rate of growth.

Generation interval is the average age of all parents when their progeny are born. Generation interval averages 5 years in many beef cattle herds.

The expected rate of genetic improvement in beef cattle is relatively slow. This is mainly because of the low reproductive rate, the large number of traits of economic value and the long generation interval. The low reproductive rate (which makes it necessary to keep a high proportion of the offspring, especially females, as replacements) and the large number of traits involved limit the amount of selection that can be practiced (selection differential). The major encouraging feature is that most of the economically important traits seem to have reasonable high heritabilities (fertility being the most notable exception).

The average heritability estimates obtained from many research herds for some of the economically important traits are shown in Table 1. These heritability estimates are the part of the difference between the selected individuals and the average of the population from which they were selected that is actually transmitted to the offspring of the selected individuals. For example, if the selected bulls and heifers were 30 pounds above herd average in weaning weight, their progeny would be expected to average 9 pounds heavier than if no selection had been practiced for this trait $(30\% \times 30 = 9)$.

Trait	Heritability (%)
Calving interval	not heritable
Weaning weight	30
Feedlot gain	45
Efficiency of gain	40
Yearling weight	50
Carcass traits: carcass cut-out	25 - 50
rib-eye area	70
tenderness	60

*Breeding for Beef Production, Publication 1373, C.D.A.

PERFORMANCE TRAITS, THEIR INHERITANCE AND IMPORTANCE

REPRODUCTIVE PERFORMANCE OR FERTILITY

A high level of reproductive performance or fertility is basic to efficient beef production. No single factor in commercial cow operations has a greater bearing on production costs than weaning age and percentage calf crop do. Because of the importance of fertility to efficient production, it must command some attention in a breeding program, even though research results indicate that heritability is low and rate of improvement will be slow. The management practice of a limited breeding season and culling open cows, combined with adequate bull-cow ratios, nutrition, and disease control, will improve fertility faster than will selection as a heritable trait.

Time of conception is extremely important. Analysis of the information collected under the R.O.P. program indicates 1.75 pounds per day can be used as an average gain to weaning for most herds. For every heat cycle a cow does not conceive, it

	IVIEE	I UPER	ATING	0515			
Weaning wt in Ib		500	450	425	400	375	350
% Calf crop	a)	450	405	382	360	337	315
90	b)	15.5	17.2	18.3	19.4	20.7	22.2
	c)	20.0	22.2	23.6	25.0	26.7	28.5
80	a)	400	360	340	320	300	280
	b)	17.5	19.4	20.5	21.8	23.3	25.0
	c)	22.5	25.0	26.4	28.1	30.0	32.1
70	a)	350	315	297	280	262	245
	b)	20.0	22.2	23.5	25.0	26.7	28.5
	c)	25.7	28.5	30.3	32.1	34.3	36.7

TABLE 2. RELATIONSHIP OF WEANING WEIGHT, PERCENTAGE CALF CROP PER COW BRED AND NECESSARY SELLING PRICE TO MEET OPERATING COSTS

Lines (a)-pounds of calf weaned per cow bred;

(b) —calf selling price per pound required to meet operating cost of \$70 per cow;
 (c) —calf selling price per pound required to meet operating cost of \$90 per cow. *Explanation*—When the average weaning weight of the weaned calf crop is 500 pounds, and the percentage calf crop per cow bred is 90 percent, the actual weight of calf weaned per cow in the herd is 450 pounds. With an operating cost of \$70 per cow, calves must sell for 15.5 cents per pound. With an operation cost of \$90 per cow, calves must sell for 20.0 cents per pound.

means her calf will be 21 days \times 1.75 pounds, or 37 pounds, lighter at weaning.

Mothering or Nursing Ability

Weaning weight of the calf is used as a measure of mothering ability. Selection of bulls and replacement heifers that have heavy weaning weights relative to the herd average will lead to genetic improvement in mothering ability. Selection for heavy weaning weight also selects for the calf's own ability to grow. Selection for mothering ability is reasonably effective as cows weaning calves heavier than average in 1 year tend to wean calves heavier than average in succeeding years. Review of the information collected in the herds enrolled on R.O.P. programs shows that calves from cows in the top one third of the herd are able to gain ²/₃ pound more to weaning than calves from the bottom one third of the

					Difference
	No.	205-day	205-day	205-day	between
	of	wt*	wt* all	wt* bot-	top and
Preweaning	calves	top 1/3	calves	tom 1/3	bottom
			pou	nds	
Males	16,350	575	498	422	153
Females	18,082	519	453	387	132
Sex difference		56	45	35	

herd. At 7 months, or 210 days of age, this represents nearly 140 pounds of beef.

For all practical purposes the weight of 500 pounds adjusted to the 205-day weight can serve as a national average for male calves to weaning, and 455 pounds adjusted 205-day weight for female calves. This 45 pounds difference is due to sex influence alone. In a commercial herd where steer calves replace the male calves, the average daily gain to weaning will be lower.

For a calf to weigh 475 pounds at 205 days of age he must weigh 75 pounds at birth and gain 1.95 pounds per day. Less than half the cows in the herds are producing at this rate at the present time.

The two cows illustrated (Figure 1) are three-quarter sisters from the same calf crop and have been managed as nearly alike

Figure 1. The differences in lifetime production of cows are large. Cow A (top) produced six calves with an average weaning weight of 470 pounds; Cow B (bottom) produced six calves with an average weaning weight of 370 pounds.

as possible. Both calved first as 2-year-olds and have calved each year since. Cow A has produced 2,820 pounds of calf. Cow B has produced 2,220 pounds. This is a total difference of 600 pounds in six calves. If these cows produce four more calves each this difference will reach 1,000 pounds which, if valued at 35 cents per pound, is \$350.

Growth Rate

Growth rate is usually measured in a post-weaning feeding test. Research has shown ability to grow is highly heritable and can be improved by selection. Feeding tests on the ability to grow have shown wide differences between individual animals and sire groups fed and managed under uniform conditions. The following examples indicate some of these differences and the importance of having test information available when selecting a herd sire.

Results of the R.O.P. home test program show a ²/₃ pound average variation in gain during the feeding period between the calves in the top third of the herd and those in the bottom third. In a 168-day feeding period this amounts to over 100 pounds of beef. Combined with the over 100 pounds difference to weaning, this means at 1 year of age well over 200 pounds difference in production between the top and bottom one third of the cowherd.

DOLLS AT			.MILN		
	1966	1967	1968	1969	1970
	lb/day	lb/day	lb/day	lb/day	lb/day
Highest-gaining bull	4.09	4.04	3.89	4.07	4.16
Lowest-gaining bull	1.82	2.18	1.61	1.87	1.80
Difference	2.27	1.86	2.28	2.20	2.36
Difference in beef					
produced in 140 days	319 lb	260 lb	319 lb	308 lb	330 lb

TABLE 4. DIFFERENCES BETWEEN HIGHEST- AND LOWEST-GAINING BULLS AT AN INDEXING CENTER

	1966	1967	1968	1969	1970
	lb/day	lb/day	lb/day	lb/day	lb/day
Top third	3.17	3.26	3.23	3.36	3.46
Bottom third	2.39	2.55	2.42	2.48	2.64
Difference	0.78	0.71	0.81	0.88	0.82
Difference in beef					
produced in 140 days	109 lb	99 lb	113 lb	123 lb	115 lb

TABLE 5. DIFFERENCES BETWEEN HIGHEST- AND LOWEST-GAINING ONE THIRDS OF HERD AT AN INDEXING CENTER

Not only has the indexing center noted marked differences in gains among individual test bulls but also among sire groups, indicating differences in the ability of herd bulls to sire fast-gaining cattle. A comparison of 12 Hereford sire groups (1966-67) follows:

Top-gaining sire group—average daily gain3.42 lb/dayLowest-gaining sire group—average daily gain2.40 lb/dayDifference1.02 lb/day

On the 140-day test period this difference of 1.02 pounds per day means 143 pounds difference per bull, or a total of 715 pounds for the five animals in the top-gaining sire group over the gains of bulls in the lowest-gaining sire group. These gains have been consistently close to those in tests conducted since 1967.

Efficiency of Gain

Efficiency of gain and growth rate are closely related. Cattle that gain rapidly usually produce more-economical gains.

Since rate of gain is a good indication of economy of gain, breeders may depend on differences in rate of gain as an indication of economy of gain.

In the Bassano Test the feed conversion difference between the high and low Hereford sire progeny group was 1.56 pounds of feed per pound of gain, or a difference in feed cost of 4 cents per pound. As in previous years, the sire group with the best

	A.D.G.	Feed/lb	Feed cost/lb
	Ib/day	gain, lb	gain
Top-gaining group	3.00	6.16	15.5¢
Lowest-gaining group	2.48	7.72	19.5¢

A.D.G. (average daily gain) on feed also had the best feed conversion.

Carcass Desirability

Carcass merit is of fundamental importance to the beef cattle industry. It is highly heritable and rapid improvement can be made through selection. Selecting for conformation should give maximum emphasis to development of muscling in the regions yielding higher-priced cuts—the back, loin, rump and round. Recent research information indicates that selection for increased rate of gain will result in increased carcass value.

Longevity

This is not a highly heritable trait but still should be considered. The fewer replacements that are needed, the greater the selection pressure that can be applied. Cost of producing replacement heifers must be figured in production costs. Every calf a cow produces reduces this overhead cost against her.

Average age of the cow herd influences the weaned weight of the calf crop. It is important that the average age of the herd be near the peak production age of 6 or 7 years.

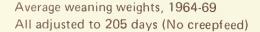
PERFORMANCE PROGRAMS

FEDERAL-PROVINCIAL R.O.P. HOME TEST PROGRAM

This program, sponsored by the federal and provincial departments of agriculture, is designed for beef cattle producers interested in developing a set of production records on their cow herds. The information from these records to be used in culling poor-producing cows and selecting replacement heifers.

The procedure for establishing these records is to weigh and calculate the gain of each calf at weaning and after a 168-day feeding period. These gains are then compared, or indexed, against the rest of the calves within the same herd that are born within 90 days and managed alike. No attempt to compare herds can be made under this program. Examples of the information obtained are shown in figures 2, 3 and 4.

Use Your Records


Many producers are not keeping cow sheets up to date. Some are not keeping them at all. The result is that you make limited progress or none at all. The following two charts are actual situations. The two breeders involved have not changed breeds and have not changed management techniques, i.e., creepfeeding.

NAME O. COM									FEDERAL - F	POVINCI	A 1				г	N OF A NO.		П	ORN BRANC		
GAIN-Fast	Asset								FEUERAL = F	ROVINCI	AL				l					10	
REGISTRATION NO		DATE OF BIRT		_	1	TATTO		15					-		-						
439270		March	1, 1961		l	XY	<u> </u>	12	RECORD OF PERFOR	MANCE F	OKB	EE	F			TES	T RE	CORD OF C	:ow		
GAIN-FAST	FARMS_	NC.							CATTLE BREEDING AND PROGENY			WEANING		RATE OF	CONFORMATION		GIRTH TO	NOOF	TEST		
PURCHASED FROM									PERFORMANCE RECORD							GAIN INCE		SCORES AND RA			RATING 8 g 3/10
																114	2		2,22		2/20
	SIRE		DAM						CALF												
REGISTRATION NO	TATTOO		GATE OF BERVICE		TE OF		sex.	TATTOO NO ANO YEAR LETTER	мање	REDISTRATION	WEANING INDEX	SCORE	RATE OF GAIN INCEX	SCORE B	A D B	IN TO END OF TE	ST 471HB		REMARK	6	
Gain-Fast			Pasture	Τ													7/				
RESISTRATION NO. 397641	XYZ	1T	1962	1	4	63	M	10			105	2	104	3	2.00	104	20	good c	alf, no	prob	lems
GAIN-Fast RESISTRATION NO	Prince		1963	25	3	64	F	7V			109	2	106	2	2.03	3 107	5/	good ci	alf-repl	acerr	nen†
397641	XYZ	<u>1</u> T		-	-		-							-		F K	16	3			
Gain-Fast REGISTRATION NO 397641	TATTOO	1T	1964	26	3	65	M	8W			103	1	110	I.	2.10	107	12	good c	alf		
Gain-Fast	Prince							-								1 1 1	8/				~~~~
REGISTRATION NO 397641 NAME	XYZ	<u>1</u> T	1965	15	3	66	F	3X			100	2	105	3	2.01	103	18	replac	ement he	ifer	
Gain-Fast	Prince		1966	130	3	67	F	107			104	3	104	2	2.00	104	7/	11			
397641 NANE	XYZ	<u>1</u> T	1900				-	101			104		-	-	2.00		17				
REGISTRATION NO	TATTOO		-																		
NAWE				+		+	1										-7				
REBISTRATION NO	TATTOO		-																		
NANE																					
REGISTRATION NO	TATTOO															/					
REBISTRATION NO.	TATTOD		-		1																
NANE						-								_							
REBISTRATION NO	TATTOO		-														/				
																I					
		AGE CONOI	TION HEALT	н	s	DLO I	OR	RETURN	GENERAL REMARKS (Treatment, ease of c	olving etc.)					Conforme	A ofion score of	wean	ing [0 W NO.		
DISPOSAL OF	FCOW														SCORE Conforme	B Non score of		ox i year			

Figure 2. The type of record common on the top producing cows in a herd. These are the calibre of cows from which heifers and herd bulls should be selected.

Figure 3. The type of record often made by the poor producing cows in a herd. The production ability of this cow was apparent in her first calf and she could have been culled at that time.

NAME OF COM				_	-				_	FEDER	AL - P	ROVINCI	AL				E F	H OF A NO			HORN BRA		
GAIN-FAST L	.IABILIT	Y															L					17	
REBISTRATION NO		TE OF BIRT	15, 1961		7	ATTO XY		175		050000.05.5					-		_						
439275		Mprii	15, 1901		l-	AL.		175		RECORD OF F	ERFOR	MANCE F	OKE	EE	-			т	EST F	RECORDO	FCOW		
GAIN-FAST F	ARMS IN	IC.								CATTLE BR	CATTLE BREEDING AND PROGENY				NING RATE OF			NFORMATION	BIRT	HTOEND	DFTEST		
PUNCHABED PROM										PERFORMANCE RECORD							EX	GAIN INO	EA	SCORES	A 0.G	IN OE X	RATING 8 9 3/10
																	18	103		A B 3 3	1.98	100	11
5	SIRE		DAM	T							CALF						-			1	1		×. 20-
NAME RESISTRATION NO	TATTOO		GATE OF SERVICE		NONTI		3E X	TATTOO NO ANO YEAR LETTER		<** NABE		REDISTRATION	WEANING	SCORE Å	RATE OF GAIN	SCORE	ACG	N TO ENO OF	RATING	ī	REM	ARKS	
NANE				1		1164	·	CONTEN	-						THULL	-			0 9 30	1			
Gain-Fast F REDISTRATION NO. 397641	TATTOO XYZ	1T	Pasture 1962	þ.	5	63	М	190					89	3	97	3	1.80	95	20	calv	ing pr	oblem	
NANE						+	1-												×	1			
Gain-Fast F RERIETRATION NO 397641	TATTOO	ιT	1963	19	4	64	м	21V												died	at bi	rth	
Gain-Fast F						-	1						_			-			19/				
397641	XYZ	1T	1964	13	6	65	F	27W					78	4	89	4	1,50	80	/20	very	poor	calf-o	sulled
Gain-Fast F																			/	1			
ACOLETRATION NO 397641	XYZ	17	1965	1	4	66	F	17X					90	3	Solo	fc	r bee	f with	mot	Her			
NAME																			/	1			
RESISTRATION NO.	TATTOO																						
NANE	_			1															/	1			
RESISTRATION NO	TATTOO		1																				
NAME							Γ												/	1			
REGISTRATION NO	TATTOO																		/				
NANE																			/	1			
REEISTRATION NO.	TATTOO																			1			
NANE																			/	1			
REBIRTRATION NO	TATTOO		1			1													/				
HANE				T		1													/	1			
REBISTRATION NO	TATTOO		1																				
	6	E CONOI	TION HEALTH		6/		EO B	RETUR		ENERAL REMARKS (Treatme	at eace at co	ture etc. I					CORE #	1					
DISPOSAL OF							hter			poor producer	, euse di co	INTING CIC /				10		tion score	of wea	ning	COWNO		
PL 149		1 10	good		51	aug	ner			poor producer						č			ot opp	rox 1 year			

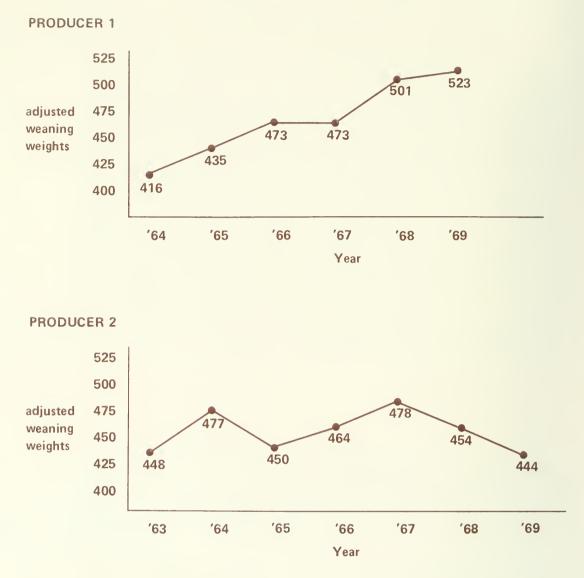


Figure 4 Producer No. 1 (upper graph) uses his records for culling and selection of cows. Producer No. 2 (bottom graph) has kept poor producing cows in spite of consistently belowaverage indices.

Central Bull Test¹

The testing program conducted at a Central Bull Testing Station, or Indexing Center, is designed to provide a breeder with the opportunity to compare the gainability of a sample of his herds' offspring with calves from other breeders' herds.

In Manitoba this program is sponsored by the Manitoba Beef Cattle Performance Association Inc. in cooperation with the federal and provincial departments of agriculture and National Feeds.

Under this program a group of bull calves, preferably five, sired by one bull and born within 90 days, are fed and managed under uniform conditions for 168 days to measure their rate of gain. The information collected on the sire group provides a breeder with the opportunity to assess his herd sires' ability to transmit the characteristics of economic importance.

		On test	Off test	140- day			wt/day of	
Lot	Birth	wt,	wt,	gain,	A.D.G.,		age,	
No.	date	lb	lb	lb	lb/day	Index	lb	Index
Sire	Group A							
1	Mar 13	675	1060	385	2.75	95	2.66	103
2	Apr 8	605	1043	438	3.13	108	2.80	109
3	Mar 31	65 8	1095	437	3.12	108	2.87	112
4	Apr 7	603	1100	497	3.55	122	2.94	114
5	Apr 24	498	980	482	3.44	119	2.74	107
Sire	Group B							
6	Mar 9	650	1055	405	2.89	100	2.62	102
7	Mar 23	61 8	940	322	2.30	79	2.42	94
8	Mar 21	64 8	1013	365	2.61	90	2.59	101
9	Apr 15	540	870	330	2.36	81	2.38	93
10	May 3	533	925	392	2.80	96	2.66	103

TABLE 6 COMPARISON OF TWO SIRE GROUPS

The bulls in sire group A gained an average of 85 pounds more per bull, and a total of 425 pounds more for the group, than the bulls in sire group B.

As research tells us that about a guarter of this superiority can be expected in the offspring, the value of this information to the breeders who owned sires A and B and to individuals wishing to purchase bulls from these groups is rather obvious.

Commercial Cattle Program

This program is designed as a home test program for the commercial cattle industry. Sponsored by the provincial Department of Agriculture and the provincial Beef Cattle Performance Association, it provides participants with the opportunity to develop a set of individual production records of their cow herds. The procedure is for the owner to identify each cow and calf, weigh the calves at weaning, and provide this information to the Department of Agriculture for processing. If calves are available at 12 months they can be reweighed.

The key to this program is to use R.O.P. tested sires. The greatest portion of improvement possible in a commercial herd must come from the bulls. Cow records indicate poor producers, whose elimination gives immediate improvement, but lasting genetic improvement must come from the sires.

Further information concerning this commercial program can be obtained from your local agricultural representative.

UNDERSTANDING PERFORMANCE PROGRAMS

As cattlemen become more conscious of performance testing programs, and place more emphasis on them, it becomes extremely important that they have a good understanding of these cattle and what they can do for them.

The purebred breeder has the responsibility of making a thorough study of the program to enable him to make maximum use of the information he receives. This information will help him produce bulls that will continue to increase the genetic profit potential of the commercial cattle industry.

The commercial cattleman has the responsibility of realizing that by all odds the bull is the most effective way to make genetic progress. Over a period of years, 90 percent of the genetic improvement in a commercial herd will come from the bulls used. The producer must understand enough about the information available on tested cattle to be able to tell which breeders are doing a good job of performance selection and which of their bulls have the most potential to improve his herd.

It is important to understand and remember that:

Performance testing does not change a bull. He is exactly the same bull as he would be if he wasn't tested, except that there is a record of how the animal has performed on a test designed to measure his potential in the traits of economic importance.

• A performance-tested bull will not work miracles, or make up for bad management.

• The home test program information applies only to the one herd and cannot be used to compare herds.

The Indexing Center program allows comparison of the bulls' rate of daily gain. Differences in preweaning environment can make weight-per-day-of-age comparisons misleading.

INDEX—WHAT IT MEANS

In order to understand the information available on performance-tested cattle, the meaning of the word "index" must be understood. "Index" is used to indicate how much a bull or female differs from the other individuals in a herd of the same age-group and sex, fed and managed under the same conditions. The index is expressed as a percentage. An index of 100 means that the animal is equal to the average of the group for whatever trait the index is calculated. An index of 110 means that animal is 10 percent better than the average of the group in which it is tested. An index of 85 means that the animal is 15 percent below the average of the group.

PURCHASING PERFORMANCE-TESTED CATTLE

Performance bulls are more numerous now than ever. The big problem when purchasing them is in deciding how they'll work in your herd.

First, you need to review the economically important traits, which have been discussed on previous pages. This is especially important now with the costs of producing a calf at an all-time high.

It is essential that the bulls you use will sire calves that continue to grow to 1100 or 1200 pounds without excessive fat cover. The most important trait to the cowman's profit is gaining ability, or the genetic power to grow fast and add pounds more efficiently.

Many cattlemen think that they can't find growthy bulls that will sire fast-gaining calves, while maintaining or increasing conformation or type. This isn't true. The bulls that will do both jobs aren't easy to find, but they are available if you look long enough and have records to check.

SOURCES OF TESTED CATTLE

Indexing Center

Cattlemen wishing to purchase tested bulls with records and conformation will find them available at the numerous indexing centers located across North America. The bulls at an indexing center have been fed and managed under the same conditions since they arrived there. Consequently, their average daily gain index makes a sound basis for selection. By referring to Table 6, a sample of the information available on these test bulls can be studied.

Home Test Cattle

Indexing centers will not be able to supply enough tested bulls to meet more than a small part of the demand from the cattle industry. Cattlemen will have to become used to buying most of their tested bulls and all tested females from herds on the home test program.

It is extremely important to remember that on a home test program the cattle are fed and managed under a different set of conditions on each farm. The gains recorded apply only to the cattle on that farm. There can be no comparison between herds. The important thing is how these animals have compared in their management group and this is what the index tells you.

Much of this home test information is of interest only to the breeder of the cattle, and is not of great concern to the individual interested in purchasing the cattle. Only the weaning index, the rate-of-gain index and yearling index are of real importance to the prospective purchaser.

It can be seen that bull 25V performed 20 percent above the average of this group from birth to end of test. If he meets the visual requirements of the purchaser he definitely would be the bull to buy.

Bulls 27V, 57V and 18V were well above the average of the test group from birth to end of test. There are some small differences in their weaning and rate of gain indexes, and the choice of bull would depend on the buyer's herd requirements. In the interest of producing heavy weaning calves, 27V should probably be considered as the poorest choice of the three.

Bull 39V had an excellent weaning index but has a 12

Calf	Weaning	Rate of	Yearling	
tattoo	index	gain index	index	Rating
25V	119	125	120	1
27V	102	115	108	2
57V	111	102	107	3
18V	112	105	106	4
39V	113	88	101	5
29V	109	101	100	6
35V	97	92	95	7
32V	91	96	91	8
58V	92	86	90	9
12V	80	89	82	10

TABLE 7. IMPORTANT INFORMATION IN BULL SELECTION

percent below average rate of gain index.

Bull 29V had a 9 percent above average index at weaning and was average in the other indexes and probably would be useful in some herds.

Bulls 35V, 32V, 58V and 12V should not be used in herds interested in the traits of economic importance.

SUMMARY

Record of Performance is an additional tool to be used in a cattle breeding program leading to more economical production of more desirable beef. It is simply a record-keeping program designed to identify superior-producing animals in the herd. In no way does the program change the animal; it simply gives us a record of the individual's performance on a test studying the traits of economic importance.

Heritability and relative economic importance determine the attention each trait should receive in selection. The greater the number of traits selected, the less progress that can be made for any one trait. Maximum selection should be used for the traits of greatest economic value.

The accumulated information from tested herds shows the tremendous differences in production of individuals fed and managed under uniform conditions. When it is realized that a portion of these differences, depending on the heritability of the trait, is

passed from parent to offspring, the value of records when selecting breeding stock becomes readily apparent. With the present programs available, both purebred and commercial cattlemen have the opportunity to use performance selection in their herds.

It must be remembered that lasting genetic improvement must come from the bulls used. Cow record-keeping programs will identify poor producers, but each new herd sire must have superior performance to the previous sire if continued genetic progress is to be made. Rate of genetic improvement is slow, yet it tends to be permanent in nature and accumulates from year to year and is transmitted to future generations. Thus, over a period of years, production in a herd or breed subjected to systematic selection should be superior to that where no such effort is made.

CONVERSION FACTORS FOR METRIC SYSTEM

Approximate inversion factor	Results	in:
x 25 x 30 x 0.9 x 1.6	millimetre centimetre metre kilometre	(cm)
× 6.5 × 0.09 × 0.40	square centimetre square metre hectare	(cm²) (m²) (ha)
x 16 x 28 x 0.8 x 28 x 0.57 x 1.1 x 4.5 x 0.36	cubic centimetre cubic decimetre cubic metre millilitre litre litre litre litre hectolitre	(m ℓ) (ℓ) (ℓ) (ℓ)
x 28 x 0.45 x 0.9	gram kilogram tonne	(g) (kg) (t)
°F-32 x 0.56 (or °F-32 x 5/	9) degree Celsius	(°C)
h x 6.9	kilopascal	(kPa)
x 746 x 0.75	watt kilowatt	(VV) (kVV)
x 0.30 x 1.6	metres per second kilometres per hour	(m / s) (km / h)
x 11.23 x 2.8 x 1.4 x 70 x 2.24 x 1.12 x 70 x 2.47	litres per hectare litres per hectare litres per hectare millilitres per hectare tonnes per hectare kilograms per hectare grams per hectare plants per hectare	(ℓ/ha) (ℓ/ha) (ℓ/ha) (mℓ/ha) (t/ha) (kg/ha)
	x 30 x 0.9 x 1.6 x 6.5 x 0.09 x 0.40 x 16 x 28 x 0.8 x 28 x 0.57 x 1.1 x 4.5 x 0.36 x 28 x 0.45 x 0.36 x 28 x 0.45 x 0.9 °F-32 x 0.56 (or °F-32 x 5/ h x 6.9 x 746 x 0.75 x 0.30 x 1.6 x 0.90 x 1.23 x 2.8 x 1.4 x 70 x 2.47	x 30 x 30 x 0.9 x 1.6 x 6.5 x 0.09 x 0.40 x 16 x 28 x 16 x 0.40 x 16 x 28 x 16 x 0.40 x 16 x 28 x 0.57 x 1.1 x 1.1 x 4.5 x 0.36 x 28 x 28 x 0.45 x 0.36 x 745 x 0.45 x 1.6 x 1.7 x 0.57 kilogram x 0.45 x 0.57 kilogram x 0.9 kilopascal x 746 x 0.30 metres per second x 1.6 kilometres per hectare x 1.23 litres per hectare x 1.23 litres per hectare x 1.4 litres per hectare x 1.23 x 70 millilitres per hectare x 1.4 litres per hectare x 1.2 x 0.90 hectolitres per hectare x 1.4 litres per hectare x 1.4 kilograms per hectare x 1.12 kilograms per hectare x 70 millilitres per hectare x 70 millitres per hectare x 70 millitres per hectare x 70 x 0.90 x 0.90

INFORMATION Edifice Sir John Carling Building 930 Carling Avenue Ottawa, Ontario K1A 0C7

IF UNDELIVERED, RETURN TO SENDER

EN CAS DE NON-LIVRAISON, RETOURNER À L'EXPÉDITEUR