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Abstract 
This paper evaluates the contribution of allocative efficiency to the aggregate productivity 
growth in Canada and the US. In particular, we are interested in explaining two puzzling facts: 
1) the slowdown in productivity growth during the 1970s and the 2000s in the US, and 2) the 
widening Canada-US productivity gap since the middle of the 1980s. We extend the framework 
of Oberfield (2013) to derive sufficient statistics for allocative efficiency and decompose 
aggregate productivity in an input-output economy à la Jones (2013). The lack of improvement 
in allocative efficiency can explain two-thirds of the US’s productivity slowdown and more than 
one-third of the widening Canada-US productivity gap. The allocation of capital, rather than 
labor, was the main driver behind the overall movement in allocative efficiency. Resources 
allocated to service sectors were significantly lower than the optimal level. It improved 
markedly over time, especially in the US before the 2000s. 

Bank topics: Economic models, Productivity 
JEL codes: C67, D4, D57, E23 



1 Introduction

This paper addresses empirically the role of allocative efficiency in aggregate labor produc-

tivity growth. Figure 1 shows the two motivating facts of this paper. Panel A shows that

real output per worker in the US slowed down significantly in the 1970s and the 2000s. The

post-2000 slowdown in productivity growth is often discussed in the context of the “secular

stagnation” debate and has attracted much attention from both academic and policy circles.

At the same time, the labor productivity growth in Canada has fallen behind the US over the

past three decades, resulting in a widening Canada-US productivity gap. In 1985, Canadian

workers earned 83 percent of their American counterparts’ earnings; in 2015, that number

fell below 75 percent (Panel B).

Panel A Panel B
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Figure 1: Aggregate productivity in the US and Canada
Source: BLS, FRED and PWT 9.1.
Notes: Panel A plots the logarithms and growth of real output per worker in the United States business
sector. Panel B plots the real labor productivity of Canada relative to the US, where labor productivity is
measured as real GDP per worker.

It is not surprising that we are not the first paper that documents and explains these

facts about aggregate productivity (we discuss this literature in section 1.1). The first fact

concerns the slowdown of productivity growth in the world productivity frontier (the US).

The second fact is about whether a country is moving towards the frontier, and at what rate.

These are two aspects of the global economic growth that determine our well-being in the

long-run and form the basis of many policy proposals (Startz, 2020). Thus, understanding
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the forces behind these patterns is of first order importance. It also helps guide economic

policies by distinguishing between the theories of the current and the future state of the

macroeconomy. In this paper, we show that allocative efficiency—or more precisely, the lack

of improvement in allocative efficiency—is the common factor behind all episodes of slow

productivity growth presented in Figure 1.

Our paper performs an exercise that decomposes aggregate productivity growth into

changes in allocative efficiency and a residual term that we interpret as changes in fun-

damental technology. The measure of allocative efficiency closely follows the notion and

approach in the misallocation literature (Hsieh and Klenow, 2009). Using the language of

Baqaee and Farhi (2019), our notion measures the changes in allocative efficiency relative

to the (production possibility) frontier and differs from that in Basu and Fernald (2002) and

Baqaee and Farhi (2019).

Our empirical exercises rely on the sector-level data in KLEMS and the national input-

output tables collected by World Input-Output Table (WIOT), both the 2013 version.

KLEMS and WIOT are harmonized datasets that, to a certain extent, allow us to make

cross-country comparisons. In particular, similar to Oberfield (2013), our analysis relies on

the assumption that the measurement errors in these datasets do not change systematically

over time. We recognize the caveat of using these datasets. Namely, we restrict our study

to the cross-sector allocations, and thus, our results are silent on the movement of within-

sector allocative efficiency. However, without access to high-quality firm-level datasets that

span the entire economy, the detailed sector-level data is the only data source that allows us

to study allocation beyond a few sectors, such as manufacturing. As our results show, the

allocative efficiency of the manufacturing sectors is significantly different from that of the

entire economy. It would have been misleading to assume otherwise (see section 5.2).

Our theoretical framework builds on Oberfield (2013) and Jones (2013) and features a

multi-sector value-added economy and an input-output economy à la Jones (2013). We

compare the results in these two economies to evaluate the role of input-output linkages in
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measuring the changes in allocative efficiency. We characterize a planner’s optimal allocation

problem and derive sufficient statistics for measuring allocative efficiency. Intuitively, the

sufficient statistics of allocative efficiency capture the deviation of the cross-sector allocation

of production factors—capital, labor, and intermediate inputs—in the data from that under

the optimal allocation. The approach we take is closely related to the decentralized approach

used in Hsieh and Klenow (2009) and Jones (2013).

The main finding of this paper is that allocative efficiency played a quantitatively impor-

tant role in explaining the productivity slowdown in the US and the widening Canada-US

productivity gap.

In the US, allocative efficiency improved gradually over time. From 1960 to 2007, alloca-

tive efficiency grew by approximately 18 percent and contributed to approximately 20 percent

of the aggregate productivity growth. The two decades of slow productivity growth—the

1970s and the 2000s—were also the two decades with no improvement of allocative efficiency

(2000s) or even a deterioration of allocative efficiency (1970s). We compare the productiv-

ity growth in the data and that under the optimal allocation to evaluate the quantitative

role of allocative efficiency in causing the slowdown of productivity growth. The lack of

improvement in allocative efficiency can explain approximately two-thirds of the slowdown

in productivity growth.

Compared with the US, allocative efficiency had been stagnant in Canada. It stayed

almost unchanged from 1985 to the early 2000s and decreased afterward. Depending on

the specification, the lack of improvement in allocative efficiency compared to the US can

account for 35 to 62.5 percent of the widening productivity gap between the two countries.

We also study which sectors and production factors contributed the most to the movement

in allocative efficiency. Capital, not labor or intermediate inputs, was the main driver behind

the movements in allocative efficiency in both countries. On average, service sector allocation

had been further away from the optimal level than the rest of the economy. The resources

allocated in service sectors were significantly below the optimal level in the early years of the
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sample. They are much closer to the optimal level now. The magnitude of the improvement

was larger in the US compared with Canada, especially before the 2000s, which contributed

to the aggregate difference between the two countries.

Measurement of allocative efficiency is a challenging task, and it is often carried out

under certain explicit or implicit assumptions. In the following paragraphs, we discuss two

key measurement issues in our paper and how they affect our results.

First, one of the biggest challenges in comparing allocative efficiency across countries

and over time is specification errors. In the main text, we employ two specifications to

obtain output elasticities in the production functions. Specification 1 assumes that the

factor shares are undistorted, corresponding to the form of sectoral level wedges in Jones

(2013). In specification 2, we allow distorted factor shares each year, but we assume that

the factor shares are, on average, undistorted over time (Oberfield, 2013). As a robustness

check, we consider two more specifications. We find our results are robust to the different

specifications.

Second, we explore how the specifications affect the measurement of allocative efficiency.

Recall that allocative efficiency captures the deviation of cross-sector allocation of produc-

tion factors in the data from the optimal allocation. Under specification 1, we show that

the crosssector allocation in the data, when measured using the expenditure of the factors,

is always optimal. Therefore, only when the cross-sector factor allocation measured using

quantity differs from that measured using expenditure can we identify misallocation in the

data. In other words, the type of misallocation we can uncover under specification 1 comes

from the dispersion of implied prices across sectors. This finding, in a very extreme way,

reinforces the common understanding in the misallocation literature that we need both quan-

tity and expenditure to measure misallocation properly. In the data, intermediate inputs are

only measured using expenditure (nominal value). Hence, we cannot evaluate their allocative

efficiency under specification 1. Under specification 2, the allocation of expenditure in the

data is not optimal. However, we show that the misallocation of intermediate inputs under
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specification 2 is quantitatively very small.

Third, we introduced input-output linkages into the model based on the prior that they

might change the measured allocative efficiency. Our empirical result shows that the level

of allocative efficiency is indeed lower in the input-output economy than the value-added

economy. However, the changes of allocative efficiency are almost identical in these two

economies for the period when the input-output information is available. As a result, input-

output linkages do not alter the decomposition of the aggregate productivity growth by much

because it is the change, not the level, that matters for growth. In section 2.3, we provide

some intuitions on why and how the input-output structure matters for measurement.

1.1 Literature review

The literature has studied the US productivity slowdown in the 1970s extensively. Vanden-

broucke (2019) summarizes that the arguments in the literature include the rise in oil price,

measurement errors, information technology, and demography. We show in this paper that

allocative efficiency played an important role in explaining the 1970 productivity slowdown,

which, to our knowledge, has not been discussed in the context of the productivity slowdown

in the 1970s.

The post-2000 slowdown in productivity growth in advanced economies is a topic that

attracted much attention from the academic and policy circles (see Jones, 2017 for a sum-

mary). Byrne et al. (2016) and Syverson (2017) explore whether the increasing difficulty

in measurement can explain the productivity slowdown. Byrne et al. (2016) find that the

slowdown in TFP is not much affected after several adjustments to IT-related hardware,

software, and services. Syverson (2017) also finds that the mismeasurement hypothesis can-

not explain a substantial part of the productivity slowdown. Cette et al. (2016) and Aum

et al. (2018) study the role played by IT technology. Cette et al. (2016) show that the easing

in utilization and adaption of IT technology contributed to the slowdown in productivity

growth before the Great Recession in the US. Aum et al. (2018) instead argue when pro-
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ductivity grows at different rates across sectors or occupations, there will be a slowdown

in aggregate productivity due to the complementarity between the sectors and occupations.

They show that routinization and computerization together explain the aggregate produc-

tivity slowdown since the 2000s. Finally, the last strand of literature explores the role played

by misallocation. Thus they are the closest to our paper. Several papers that study southern

European countries such as Spain and Italy emphasize the impact of an increase in misal-

location on the sluggish productivity growth (Gopinath et al., 2017, Cette et al., 2016 and

Calligaris et al., 2018). Using the Longitudinal Business Dynamics (LBD) dataset, Decker

et al. (2017) show that impaired growth in allocative efficiency can account for the bulk of

the productivity slowdown from the late 1990s to the mid-2000s in the US. Like us, Cette

et al. (2016) use the KLEMS data, but they do not directly measure allocative efficiency,

nor do they take into account input-output linkages. Gopinath et al. (2017) use the Orbis

firm-level data and follow a similar framework as Hsieh and Klenow (2009) to estimate the

within-sector misallocation. Calligaris et al. (2018) decompose misallocation into a within-

and a between-sector component. They show that it is the within-sector component that

contributed the most to the increase in misallocation. Unlike these two papers, our analysis is

based on sector-level data and, therefore, identifies between-sector misallocation. The LBD

data used in Decker et al. (2017) is firm-level data covering all sectors in the US economy,

and they follow the dynamic Olley Pakes method of Melitz and Polanec (2015) to decompose

aggregate labor productivity, which differs from our framework. The data we use also allow

us to evaluate the allocation of all production factors, whereas Decker et al. (2017) focus on

labor. One of our paper’s main findings, which points to the slowdown in the improvement

of allocation in the service sectors, is also new to the literature.

The productivity gap between Canada and the US is also a well-known and well-studied

fact (see Sharpe, 2003 for a review). Leung et al. (2008) and Tang (2014) both point to

the fact that the share of small-firm workers in Canada is larger than in the US and that

small firms are less productive than large ones. Ranasinghe (2017) uses a quantitative
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model to show that differences in innovation costs account for the majority of firm size and

productivity differences between Canada and the US. However, the widening productivity

gap—the focus of our paper—is much less explored in the literature. Bernstein et al. (2002)

and Tang (2014) are the notable exceptions. However, none of these papers explored the

role played by allocative efficiency.

In addition to the papers already mentioned, several other papers of the misallocation lit-

erature are closely related to ours. Caliendo et al. (2018) build a model of the world economy

with both domestic and international input-output linkages and derive sufficient statistics

for the loss from both internal and external distortions. Osotimehin and Popov (2018) study

how the measured allocative efficiency is affected by the substitution of elasticity between

intermediate inputs in an input-output economy. The production system and how we treat

markups are the two notable differences between these two papers and our paper. Both

Caliendo et al. (2018) and Osotimehin and Popov (2018) feature a general CES production

function, whereas we opt for a Cobb-Douglas production system as the benchmark. Epifani

and Gancia (2011) and Osotimehin and Popov (2018) show that the level of allocative effi-

ciency decreases with the degree of substitution between inputs. In section 5.1, we consider

a CES production system and confirm the findings of these two papers. Also, a higher degree

of substitutability leads to larger changes in measured allocative efficiency. Second, since

KLEMS data do not separately report profit from capital income, our benchmark model as-

sumes perfect competition and abstracts from markups. This is different from both Caliendo

et al. (2018) and Osotimehin and Popov (2018), where they make assumptions to separate

markups from capital income in the data.

Lastly, our paper is closely related to Basu and Fernald (2002) and Baqaee and Farhi

(2019) in that both decompose aggregate productivity growth into technology and allocation.

These papers have different notions of changes in allocative efficiency, as pointed out in

Baqaee and Farhi (2019). Our notion measures the distance from the production possibility

frontier. It differs from Baqaee and Farhi (2019) when there are changes in technology and
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factor supplies. Frameworks in Baqaee and Farhi (2019) and Basu and Fernald (2002) allow

the flexibility to apply the theory without knowing the production functions and the form of

the distortions, but they rely on linearization to obtain the results. Our approach requires

the specification of the production system, but the result does not rely on linearization.

The structure of the paper is as follows: in section 2, we characterize the optimal allo-

cation and the decomposition framework. Sections 3 and 4 apply the framework to Canada

and the US. Section 5 presents several robustness checks. Section 6 concludes.

2 Theoretical framework

This section presents the theoretical framework in three steps. First, we characterize the op-

timal allocation across sectors as a planner’s problem. Second, we derive sufficient statistics

to measure allocative efficiency using the optimal allocation from step 1. Last, we show a

simple framework that decomposes the aggregate productivity growth using the measured

allocative efficiency from step 2. In section 2.1 we consider an economy without input-output

linkages. We then turn to the economy with input-output linkages in section 2.2. In the

literature, these are also often referred to as the value-added economy and the input-output

economy, respectively.

2.1 Value-added economy

There are N sectors in the economy (i = {1, ...,N}). In year t, each sector produces a good

Yi,t using capital, labor and a Cobb-Douglas production function

Yi,t = Ai,tK
αi,t
i,t L

1−αi,t
i,t ,

where Ai,t is the sectoral productivity.
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There is one final good Yt, which is produced by aggregating all sectoral goods, such that

Yt =

N∏
i=1

Y
θi,t
i,t ,

in which
∑
i θi,t = 1.

2.1.1 Planner’s problem

The planner’s problem is to allocate aggregate capital Kt and labor Lt into the N sectors to

maximize the output of final good Yt, such that,

max Yt =

N∏
i=1

Y
θi,t
i,t , s.t. Yi,t = Ai,tK

αi,t
i,t L

1−αi,t
i,t ,

∑
i

Ki,t = Kt,
∑
i

Li,t = Lt

The following proposition characterizes the optimal allocation across sectors and the

optimal output.

Proposition 1. The optimal allocation of capital and labor in this economy is such that

Ki,t = χ
k∗
i,tKt and Li,t = χl∗i,tLt, where χk∗i,t =

θi,tαi,t∑
i θi,tαi,t

and χl∗i,t =
θi,t(1−αi.t)∑
i θi,t(1−αi,t)

.

Proof. See Appendix C.1.

Under the optimal allocation, aggregate capital and labor are allocated to each sector

according to the optimal sectoral shares χk∗i,t and χl∗i,t. Intuitively, the optimal sectoral shares

reflect the relative importance of sector i’s capital and labor in the production of the final

good (αiθi and (1 − αi)θi, respectively).

Allocative efficiency We define allocative efficiency Et as the ratio between output in

the data ( Yt ) and output under the optimal allocation ( Y∗t ),

Et =
Yt

Y∗t
.
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It can be shown, using proposition 1, that

Et =

N∏
i=1

[(
χki,t

χk∗i,t
)αi,t(

χli,t

χl∗i,t
)1−αi,t ]θi,t , (1)

where χki,t =
Ki,t
Kt

and χli,t =
Li,t
Lt

are the sector i’s capital and labor as a share of aggregate Kt

and Lt in the data, respectively. Intuitively, (χ
k
i,t

χk∗i,t
)αi,t(

χli,t
χl∗i,t

)1−αi,t measures sector i’s allocative

efficiency, which is the deviations of data allocation from the optimal allocation in sector i.

The aggregate allocative efficiency Et is then simply the weighted geometric average of the

sectoral allocative efficiency with the weights being θi—the share of good i in the final good

production.

2.2 Input-output economy

Similar to the previous section, each sector produces good Qi,t using capital, labor, domestic

and imported intermediate goods, such that

Qi,t = Ai,t(K
αi,t
i,t L

1−αi,t
i,t )1−σi,t−λi,t(

N∏
j=1

d
σij,t
ij,t )(

N∏
j=1

m
λij,t
ij,t ),

where dij,t is the domestic intermediate good j used by sector i, mij,t is the imported

intermediate good j used by sector i, σi,t =
∑N
j=1 σij,t, and λi,t =

∑N
j=1 λij,t.

There is a final good in the economy, produced by aggregating over the sectoral goods,

Yt =
∏
i

Y
θi,t
i,t ,

where
∑N
i=1 θi,t = 1.

The resource constraint on the sectoral good i therefore can be written as

Qi,t = Yi,t +

N∑
j=1

dji,t,
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and the total expenditure on imported goods is

Xt =

N∑
i=1

N∑
j=1

P̄j,tmij,t,

where P̄j,t is the price of imported intermediate good j relative to the final good.1

2.2.1 Planner’s problem

The planner’s problem is to allocate aggregate capital Kt, aggregate labor Lt, intermediate

goods Yi,t, dij,t andmij,t such that the aggregate output net of imports (Y−X) is maximized,

max
{Ki,t,Li,t,dij,t,mij,t}

N
i,j=1

Yt − Xt =
∏
i

Y
θi,t
i,t −

N∑
i=1

N∑
j=1

P̄j,tmij,t

s.t. Qi,t = Ai,t(K
αi,t
i,t L

1−αi,t
i,t )1−σi,t−λi,t(

N∏
j=1

d
σij,t
ij,t )(

N∏
j=1

m
λij,t
ij,t ),

Qi,t = Yi,t +

N∑
j=1

dji,t,
∑
i

Ki,t = Kt,
∑
i

Li,t = Lt.

The optimal allocation is characterized by the following proposition:

Proposition 2. The optimal allocation of capital, labor and intermediate goods in the econ-

omy can be characterized using optimal sectoral shares (χk∗i,t, χl∗i,t, γ∗ij,t, χ
y∗
i,t), such that

K∗i,t = χk∗i,tKt, L∗i,t = χl∗i,tLt, d∗ij,t = γ∗ij,tQ
∗
j,t, Y∗j,t = χy∗j,tQ

∗
j,t, and m∗ij,t = (

θi,tλij,t
χ
y∗
i,t

) Y
∗
t

P̄j,t
such

that

1. χk∗i,t =
θi,tαi,t(1−σi,t−λi,t)

1−
∑
j γ
∗
ji,t

/
∑
s
θs,tαs,t(1−σs,t−λs,t)

1−
∑
j γ
∗
js,t

, ∀i ∈ {1, ...,N}.

2. χl∗i,t =
θi,t(1−αi,t)(1−σi,t−λi,t)

1−
∑
j,t γ

∗
ji,t

/
∑
s
θs,t(1−αs,t)(1−σs,t−λs,t)

1−
∑
j γ
∗
js,t

, ∀i ∈ {1, ...,N}.

1As shown in the next section, our measure of allocative efficiency relies only on the expenditure on
imported intermediate goods, not their prices.
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3. {χy∗i,t}
N
i=1 solve the system of equations

1

χyi,t
= 1 +

1

θi,t

∑
s

(
θs,t

χys,t
σsi,t), i ∈ {1, ...,N}, (2)

and

γ∗ij,t =
θi,tχ

y∗
j,t

θj,tχ
y∗
i,t

σij,t. (3)

4. {Q∗i,t}
N
i=1 solve for the system of equations

Qi,t = χQi,t(

N∏
s=1

Q
σis,t+λi,tθs,t
s,t ), i ∈ {1, ...,N},

where χQi,t = Ai,t[(χ
k∗
i,tKt)

αi,t(χl∗i,tLt)
1−αi,t ]1−σi,t−λi,t(

∏N
j=1 γ

∗σij,t
ij,t )[θi,t

∏
s(
χ
y∗
s,t

χ
y∗
i,t
)θs,t ]λi,t∏N

j=1(
λij,t
P̄j,t

)λij,t .

Proof. See Appendix C.2. Note that the optimal shares only depend on the output elasticities

in the production functions.

Allocative efficiency We define the allocative efficiency as the ratio between the output

net of imports in the data and that under the optimal allocation, such that

Et =
Yt − Xt
Y∗t − X

∗
t

.

It can be shown using proposition 2 that Et can be written as a product of allocative efficiency

of capital, labor, domestic and imported intermediate goods, and intermediate goods used

for final good production, such that

Et = E
kl
t · Edt · Emt · E

y
t , (4)

• Eklt =
∏N
i=1(((

χki,t
χk∗i,t

)αi,t(
χli,t
χl∗i,t

)1−αi,t)1−σi,t−λi,t)
∑
n θn,tCni,t is the allocative efficiency of cap-

ital and labor.
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• Edt =
∏N
i=1(

∏N
j=1(

γij,t
γ∗ij,t

)σij,t)
∑
n θn,tCni,t is the allocative efficiency of domestic interme-

diate goods.

• Emt =
1−

∑N
n=1

θn,tλn,t

χ
y
n,t

1−
∑N
n=1

θn,tλn,t

χ
y∗
n,t

is the allocative efficiency of imported intermediate goods.

• Eyt =
∏N
n=1(

χ
y
n,t

χ
y∗
n,t
)θn,t

∏N
i=1(

∏
s(
χ
y
s,t

χ
y
i,t

)θs,t

∏
s(
χ
y∗
s,t

χ
y∗
i,t

)θs,t
)λi,t

∑
n(θn,tCni,t) is the allocative efficiency of in-

termediate goods used in the final goods production.

where Ct is the N × N Leontif inverse matrix, such that Ct = (I −Ωt)
−1 and Ωt(i, j) =

σij,t + λi,tθj,t. In the above equation, (χk∗i,t, χl∗i,t, γ∗ij,t, χ
y∗
i,t) are the sectoral shares under

optimal allocation, and (χki,t, χli,t, γij,t, χ
y
i,t) are the data analog of these shares.

2.3 Value-added vs. input-output economy

We study both the value-added and the input-output economy based on the prior idea that

input-output linkages might affect the measure of allocative efficiency. In this section, we

provide some intuition of why and how input-output linkages matter to the measurement.

We do this through a simple comparison between equation 1 and 4, the sufficient statistics

of allocative efficiency in the value-added and the input-output economy, respectively.

First, not surprisingly, equation 1 does not contain terms that measure the allocation

of intermediate inputs. This is simply because the value-added economy only concerns the

allocation of capital and labor since they are the only production factors.

Second, we turn to the terms that measure capital and labor allocation—equation 1 and

the Ekl term in equation 4. Both terms are a weighted geometric average of sectoral level

allocative efficiency, but they have different sets of sectoral weights. The weights in the

value-added economy are θi, the share of sector i in the final good production, or final good

consumption. The weights become (1 − σi − λi)
∑
n θnCni in the input-output economy.

In this term,
∑
n θnCni is equal to the Domar weight—sector i’s sales to GDP—in an

undistorted economy. Multiplying it by (1 − σi − λi) yields the value-added share of sector
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i.2 As Leal (2015) pointed out, the value-added share and θi could potentially differ from

each other, in which case the value-added economy is not equivalent to the input-output

economy.

Third, the optimal allocation of capital and labor—χkj,t,χlj,t—differ as well. Recall that

the optimal allocation reflects the relative importance of a sector’s capital and labor in

producing the final good. In the value-added economy, the relative importance of a sector’s

capital and labor is, again, θi, whereas in the input-output economy, it is θi(1−σi−λi)
1−

∑
j γ
∗
ji

. It can

be shown that this term is also equal to sector i’s value-added share.3

Taking stock, adding input-output linkages alters the measurement of allocative efficiency

in two significant ways: 1) it accounts for the allocation of intermediate inputs, and 2) the

set of sectoral weights to measure capital and labor allocation changes from θi to value-

added shares. Intuitively, the level of allocative efficiency would be underestimated in the

value-added economy if θi is smaller than the sectoral value-added share in the highly misal-

located sectors. Similarly, the value-added economy would underestimate the improvement

in allocative efficiency if θi is smaller than the sectoral value-added share in the sectors that

experienced an improvement in allocation.

2.4 Decomposition of aggregate productivity in the data

This section uses the theoretical results in the previous two sections and shows the decom-

position of the aggregate labor productivity in the data.4

Proposition 3. Aggregate labor productivity measured in the data LPt can be decomposed

into 1) allocative efficiency Et and 2) aggregate labor productivity under optimal allocation
2Note that the concept of Domar weights is one related to a decentralized economy because it involves

sales (value of the sectoral gross output) and GDP (value of the final good). See Appendix A.3 for a
decentralized version of our model.

3To see this, we only need to show that θi
1−

∑
j γ

∗
ji

is equal to the Domar weight: θi
1−

∑
j γ

∗
ji

= θi
χi

= PiθiQi
PiYi

=
PiQi
Y

. The second equality holds because of the definition of χi, such that χi = Yi/Qi. The last equality
holds because θiY = PiYi.

4In Appendix A.2, we provide a decomposition framework for aggregate TFP and discuss the difficulties
with the exercise of TFP decomposition.
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LP∗t , such that

LPt = LP∗tEt (5)

∆logLPt = ∆logLP∗t + ∆logEt. (6)

Proof. The proof can be found in Appendix C.3.

Equations 5 and 6 are the decomposition of the level and the growth rate of labor produc-

tivity. The focus of our paper is to study the contribution of changes in allocative efficiency

(∆logEt) to aggregate productivity growth (∆logLPt). In comparing the allocative efficiency

across countries and over time, one key issue is the measurement errors (Hsieh and Klenow,

2009 and Bils et al., 2020). Similar to Oberfield (2013), our exercises rely on the assump-

tion that the extent of measurement error does not systematically change over time in both

countries.

3 Application to Canadian and US data

In this section, we discuss the datasets used in the paper (section 3.1) as well as the empirical

strategies to back out the cross-sector allocation in the data (section 3.2) and the output

elasticities in the production functions (section 3.3).

3.1 Data description

We use the 2013 version of the KLEMS dataset and the 2013 version of the world input-

output table (WIOT) for Canada and the US.5 The 2013 versions of KLEMS and WIOT are

both based on the ISIC Rev. 3 classification, thus allowing us to perform a straightforward

mapping between the two datasets. To the best of our knowledge, the 2013 version of KLEMS

and WIOT is the latest version of the datasets that have the same industry classification
5See http://www.wiod.org/database/wiots13 and http://www.worldklems.net/data.htm.
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and are available for both Canada and the US. For both countries, we restrict our analysis

to N = 28 private sectors in the economy, as shown in Table 1.

The US KLEMS dataset covers the period 1947–2010, while the input-output table covers

1995–2011, thus restricting the analysis with input-output linkages to the period of 1995–

2010. The analysis without input-output linkages spans the longer period of 1947–2010,

which allows us to study the slowdown in US productivity growth during the 1970s. To

study the widening gap between Canada and the US since the middle of 1985, we consider

the model without input-output linkages with the KLEMS datasets in Canada and the US

over the period 1985–2007.

Table 1: List of sectors
Sectors

AtB Agriculture, hunting, forestry and fishing
C Mining and quarrying
D Manufacturing

15t16 Food products, beverages and tobacco
17t19 Textiles, textile products, leather and footwear
20 Wood and products of wood and cork
21t22 Pulp paper, paper products, printing and publishing
23 Coke refined petroleum products and nuclear fuel
24 Chemicals and chemical products
25 Rubber and plastics products
26 Other non-metallic mineral products
27t28 Basic metals and fabricated metal products
29 Machinery nec (not elsewhere classified)
30t33 Electrical and optical equipment
34t35 Transport equipment
36t37 Manufacturing nec (not elsewhere classified); recycling

E Electricity gas and water supply
F Construction
G Wholesale and retail trade

50 Wholesale trade and commission trade except of motor vehicles and motorcycles
51 Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of fuel
52 Retail trade except of motor vehicles and motorcycles; repair of household goods

H Hotels and restaurants
I Transport and storage and communication

60t63 Transport and storage
64 Post and telecommunications

J Financial intermediation
K Real estate, renting and business activities

70 Real estate activities
71t74 Renting of m&eq and other business activities

M Education
N Health and social work
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In the benchmark analysis, we use real capital stock and the number of workers to measure

capital and labor inputs. This choice is based on the fact that real capital stock and the

number workers are taken from national accounts. We are less worried about measurement

errors when using these variables. The construction of these variables does not rely on

survey data as do hours and number of workers of different skill types. Nor do they rely on

optimization conditions as do the measures of compensation of different types of capital.

KLEMS also does not distinguish between profit and capital income, i.e., capital com-

pensation + labor compensation = value added. Since assumptions are needed to split profit

from capital income, we do not try to measure sector-level markups in the data. We note,

however, that our frame can be extended to include markups since markups can be written

as distortions to the allocation of intermediate inputs.

Below we list all the variables used in the empirical exercise. For each variable, we

distinguish whether it is expenditure ($) or quantity. Note that, of all the inputs, the data

provide measures of both expenditure and quantity for capital and labor at the sector level,

but only provide measures of expenditure for intermediate inputs.

KLEMS (1) Sector-level value-added and gross output ($), (2) sector-level capital and

labor compensation, and cost of intermediate goods ($), (3) sector-level real capital stock,

and the number of workers (quantity).

WIOT (1) Sector i’s use of domestic sector j good ($), (2) sector i’s use of foreign sector

j good ($), (3) sector i’s output used in final good production ($).

3.2 Cross-sector allocation in the data

To calculate Et, we first need to compute the allocation of capital, labor and intermediate

inputs across sectors in the data (χki ,χli,χ
y
i ,γij). Ideally, we would like to use inputs mea-

sured in quantities to calculate the allocation across sectors. We are able to do so for capital

and labor, such that χKi,t =
Ki,t∑
iKi,t

and χLi,t =
Li,t∑
i Li,t

, where Ki,t is the real capital stock and
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Li,t is the number of workers in sector i. For γij,t and χyi,t, we use expenditure to compute

these sectoral shares in the data, such that γij,t =
$dij,t
$Qj,t

, where $dij,t is the expenditure of

sector i’s use of sector j good and $Qj,t is the nominal value of sector j’s gross output. We

show in the next section that the lack of measurement for the quantity of intermediate goods

has important implications for the measurement of allocative efficiency.

3.3 Output elasticities in the production functions

We employ two specifications to back out the set of sector-level output elasticities (αi,t,

σij,t, λij,t) from the data. In specification 1, we assume that the factor shares are undis-

torted for both countries in the data. Namely, the distortions are in the form of sector-level

taxes/subsidies as in Jones (2013), and they are not input specific. Although this is a very

strong assumption, we think that this is a good benchmark. In specification 2, we relax this

assumption. Following Oberfield (2013), we assume that sectors might face input-specific

distortions each year, but on average the factor shares are not distorted. More formally,

we take a rolling window of three years (t − 1, t, t + 1 for the year t) and use the average

expenditure share to back out the output elasticities.6 Hsieh and Klenow (2009) assume that

the US factor shares are undistorted and apply them to China and India. As a robustness

check, we follow this approach and apply the US shares to study the allocative efficiency in

Canada and find that our results are robust to the alternative specifications (section 5.3).

In the following, we provide details of the two specifications and analyze the implications of

each specification on the measurement of allocative efficiency.

3.3.1 Specification 1: year-by-year shares

Since the factor shares are undistorted, the output elasticities are equal to the expenditure

shares in the data for each year. We label this specification “year-by-year shares” in the
6In the long-run, the deviation of expenditure share from the average level in the rolling window could

come from both misallocation and technological differences (see discussions in Appendix A.1). As a result,
we construct the factor shares using a relatively short rolling window.
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empirical results.

We find that for this specification, the allocation of the expenditure of the factors across

sectors in the data is always equal to the optimal allocation. Only when the cross-sector

factor allocation measured using quantity differs from that measured using expenditure can

we identify misallocation in the data.

As a corollary of this result, since intermediate goods allocation in the data can only

be computed using their expenditure, not quantity, the allocation of intermediate goods is

always optimal under this specification.

More formally:

Proposition 4. If we assume that the expenditure factor shares are undistorted for all t and

(γij,t, χyi,t)$ are computed using expenditure data, Edt = Emt = Eyt = 1 holds. The measured

allocative efficiency with input-output linkages reduces to

Et = E
kl
t =

N∏
i=1

(((
χKi,t

χ∗Ki,t
)αi,t(

χLi,t

χ∗Li,t
)1–αi,t)1–σi,t–λi,t)

∑
n θn,tCni,t .

Proof. See Appendix C.4.

This proposition highlights the fact that both the expenditure and quantity of the factors

of production are needed to measure allocative efficiency. Any misallocation uncovered in

the data comes from the dispersion in implied prices across sectors, i.e., when the cross-sector

allocation of expenditure differs from that of quantities.7

3.3.2 Specification 2: average shares

In this specification, we take a rolling window of three years (t−1, t, t+1 for the year t) and

use the average expenditure share to back out the output elasticities. Under this specification,
7We call this “implied” prices because we do not observe price directly in the data. However, we can infer

that there is dispersion in price across sectors if the allocation of expenditure differs from that of quantity.
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the misallocation we uncovered in the data comes from 1) dispersion in implied prices, and

2) the deviation of expenditure shares from the average level of that rolling window.8

3.4 Slowdown of productivity growth in the US

In this section, we study the evolution of allocative efficiency in the US and show how it

contributed to aggregate productivity growth.

3.4.1 Allocative efficiency over time

Panel A: year-by-year shares
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Panel B: average shares
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Figure 2: Allocative efficiency in the US over time

Note: In this figure, capital K is measured using real capital stock, and L is measured using the number of
workers. The black line corresponds to the model with the input-output linkage, and the green line is the
one without the linkage.

8In the long-run, the deviation of expenditure share from the average level could come from both misal-
location and technological differences (see discussions in Appendix A.1). As a result, we construct the factor
shares using a relatively short rolling window.
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Figure 2 displays the allocative efficiency with and without input-output linkages over

time. Since solving the allocation problem without input-output linkages does not require

information about the input-output structure, the result goes back to 1947. Measured al-

locative efficiency is higher without input-output linkages, which suggests that missing the

linkages leads to an underestimate of the loss from misallocation. Despite the difference in

level, the two lines show very similar trends for the period 1995–2010. The results are ro-

bust across the two specifications in Panel A and Panel B. In the year-by-year specification,

Em = Ed = 1, as discussed in the previous section. We find that Em and Ed in the average

shares specification are very close to one. However, it is important to note that Em and Ed

might play a more important role if the intermediate goods can be measured in quantity in

addition to expenditure.

Table 2 shows the contribution of allocative efficiency to the aggregate productivity

growth in the US. Except for the 1970s and the 2000s, changes in allocative efficiency con-

tributed significantly to the aggregate productivity growth, ranging from 12 to 32 percent

when using the year-by-year shares (column 4) and 13 to 34 percent when using the average

shares (column 6). Over the period 1960–2007, changes in allocative efficiency account for

18 to 20 percent of aggregate productivity growth. In the next section, we examine how

much the slowdown in productivity growth in the 1970s and the 2000s can be attributed to

allocative efficiency.

3.4.2 Slowdown of productivity growth in the 1970s and 2000s

As shown in the third column of Table 3, these two decades (marked red) are characterized

by a slowdown in productivity compared with their previous decades. In the data, the

growth rate of the 1970s is 12 percentage points lower than that of the 1960s. Under optimal

allocation, however, the slowdown in labor productivity of the 1970s compared with the 1960s

is only 3 percentage points (year-by-year shares) or 4 percentage points (average shares). In

other words, the slowdown in the improvement in allocation contributes to 2/3 to 3/4 of
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Table 2: Contribution of allocative efficiency to productivity growth

Data year-by-year shares average shares
∆log(LPt) ∆logEt

∆logEt

∆log(LPt)
∆logEt

∆logEt

∆log(LPt)

(1) (2) (3) (4) (5) (6)
1960–1969 +0.24 +0.08 +0.32 +0.08 +0.34
1970–1979 +0.13 -0.02 -0.12 +0.00 +0.01
1980–1989 +0.15 +0.04 +0.27 +0.04 +0.30
1990–1999 +0.19 +0.02 +0.12 +0.03 +0.13
2000–2007 +0.16 +0.00 +0.01 +0.00 +0.03
1960–2007 +0.89 +0.18 +0.20 +0.16 +0.18

Source: BLS, FRED, authors’ own calculations.
Note: This table shows the growth rate and the changes in the growth rate of labor productivity
for different periods, both in the data and under optimal allocation. dy/y is the growth in labor
productivity, measured in log differences, and ∆dy/y is the change in growth compared to the previous
period. Labor productivity is computed as real output per worker.

the slowdown in productivity growth in the 1970s. Similarly, during the 2000s, productivity

growth slowed down by 3 percentage points compared to the 1990s. Under the optimal

allocation, however, the growth rate differential between the 2000s and the 1990s is only -1

percentage point.

3.5 The widening Canada-US productivity gap

There exists a sizable labor productivity gap between Canada and the US. This fact is well-

documented and studied in the literature. In this paper, we focus on explaining why the gap

has been widening since the middle of the 1980s, as documented in Panel B of Figure 1. In

1985, Canadian labor productivity is around 83 percent that of the US; the number is now

at approximately 75 percent. Over the period of 1985–2007, Canadian labor productivity

relative to the US declined at approximately 0.4 percent per year.

Figure 3 compares the changes in allocative efficiency in the two countries. Allocative

efficiency in Canada had remained relatively stable before 2000 and declined significantly

afterward. On the other hand, allocative efficiency in the US increased significantly before

the 2000s and started to stabilize afterward. There are two notable patterns. First, allocative
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Table 3: Growth in labor productivity in the data and under optimal allocation

Data Optimal Optimal
year-by-year shares average shares

dy/y ∆dy/y dy/y ∆dy/y dy/y ∆dy/y

(1) (2) (3) (4) (5) (6) (7)
1960–1969 +0.24 +0.16 +0.16
1970–1979 +0.14 -0.12 +0.13 -0.03 +0.13 -0.04
1980–1989 +0.15 +0.02 +0.11 -0.02 +0.10 -0.03
1990–1999 +0.19 +0.04 +0.17 +0.06 +0.17 +0.07
2000–2007 +0.16 -0.03 +0.16 -0.01 +0.16 -0.01

Source: BLS, FRED, authors’ own calculations
Note: This table shows the growth rate and the changes in the growth rate of labor productivity for different
periods, both in the data and under optimal allocation. dy/y is the growth in labor productivity, measured
in log differences, and ∆dy/y is the change in growth compared to the previous period. Labor productivity
is computed as real output per worker.

efficiency has improved faster in the US than in Canada. Second, there is a trend break at

the beginning of the 2000s in both countries.

Figure 4 shows that under the optimal allocation, the productivity gap between Canada

and the United States has been relatively stable over the same period. In the data, Canadian

labor productivity relative to the US has been declining at 0.4 percent per year, compared

with 0.15 percent per year under the optimal allocation in both specifications. In other

words, 62.5 percent (0.25
0.4

) of the widening productivity gap can be accounted for by the lack

of improvement of allocative efficiency in Canada relative to the US.

4 Capital, labor and sector allocation

Next, we explore which sectors and factors have contributed to changes in allocative efficiency.

To avoid repeating the exercise, we study the period 1985–2007 using the model without

input-output linkages and in the context of the Canada-US productivity gap.
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Panel A: year-by-year shares
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Figure 3: Et in Canada and the US over time

Source: KLEMS, authors’ own calculations.
Note: Allocative efficiency is calculated using KLEMS data without input-output linkages. K is measured
using real capital stock and L as number of workers.

4.1 Capital and labor

The allocative efficiency can be decomposed into capital and labor allocative efficiency, such

that

Et = Ek,t · El,t,

where Ek,t =
∏N
i=1[(

χki,t
χk∗i,t

)αi,tθi,t and El,t =
∏N
i=1(

χli,t
χl∗i,t

)(1−αi,t)θi,t are the allocative efficiency

of capital and labor, respectively.

As shown in Figure 5, in the United States capital allocative efficiency improved dras-

tically over the period 1985 to 2000, whereas labor allocative efficiency stayed stable. In
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Panel A: year-by-year shares Panel B: average shares
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Figure 4: Canada-US labor productivity gap under optimal allocation

Source: KLEMS, BLS, FRED, authors’ own calculations.
Note: This figure plots Canadian labor productivity under the optimal allocation relative to US labor
productivity under optimal allocation.

contrast, there is no evidence of improvement in either capital or labor allocative efficiency

in Canada. In fact, the allocative efficiency of capital was in decline throughout the mid-to-

late 2000s.

4.2 Sectors

Similarly, the aggregate allocative efficiency can be decomposed into sectoral allocative effi-

ciency Ei,t, such that,

Et =
N∏
i=1

E
θi,t
i,t ,

where Ei,t = (
χki,t
χk∗i,t

)αi,t(
χli,t
χl∗i,t

)1−αi,t .

Figure 6 plots the distribution of Ei,t over time, where different shades of colors represent

different percentiles of the Ei,t distribution in year t. Under the optimal allocation, sector-

level allocative efficiency Ei,t = 1 for all sectors, and the distribution collapses into one point

at 1. If Ei,t < 1 for sector i, it means that capital and labor allocated to this sector is lower
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Panel A: year-by-year shares
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Panel B: average shares
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Figure 5: Ek and El over time

Source: KLEMS, authors’ own calculations.
Note: This figure plots the evolution of Ek and El in Canada and the US in a model without input-output
linkages.

than the optimal level and vice versa.

There is a significant narrowing of the distribution in the US between the middle of 1985

and 2000, which is most visible among the industries that belong to the top and bottom

tenth percentile of the Ei distribution. In contrast, there are no significant changes to the

distribution in Canada at the same time.

After 2000, the distribution in the US stays relatively stable, whereas it becomes more

dispersed in Canada. Notably, in Canada, the industries that belong to the bottom tenth

percentile in the distribution have moved further away from the optimal level.

Next, we examine why both countries experienced a slowdown (or decline) in allocative

efficiency after 2000. Figure 7 plots the changes in Ei by sector in these two countries for
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Panel A: year-by-year shares

.9

.95

1

1.05

1.1

1985 1990 1995 2000 2005 2010

min−max p10−p90

p25−p75 median

Canada
distribution of Ei,t

.9

.95

1

1.05

1.1

1.15

1950 1960 1970 1980 1990 2000 2010

min−max p10−p90

p25−p75 median

distribution of Ei,t

Panel B: average shares
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Figure 6: Distribution of Ei over time

Source: KLEMS, authors’ own calculations.
Note: This figure plots the distribution of Ei in Canada and the US in a model without input-output
linkages.

the period 1986–2000 and 2000–2007 (the beginning of the financial crisis). The circle and

cross represent the beginning and end of each period, respectively. Therefore, the distance

between the circle and cross is the magnitude of the change. We mark the sectors green/black

if their allocative efficiency has improved/deteriorated during this period (Ei moved closer

to/further away from 1).

In the US, several service sectors experienced significant improvements in Ei during 1986–

2000, most notably the sector of renting machinery and equipment and other business activ-

ities (K71t74), whereas there is very little change in the manufacturing sectors (Panel A). As

shown in Panel B, during 2000–2007, the service sectors’ allocative efficiency continued to

improve, but with a much smaller magnitude. In addition, the sector coke-refined petroleum
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Figure 7: Changes in Ei over 1986–2000 and 2000–2007, year-by-year shares

Source: KLEMS, authors’ own calculations.
Note: This figure plots the evolution of Ek and El in Canada and the US in a model without input-output
linkages. Appendix Figure B.3 plots the same statistics under the average shares.
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products and nuclear fuel (D23) experienced a significant decline in allocative efficiency. The

Ei was close to 1 in 2000 but decreased significantly in 2007, which indicates that the capital

and labor allocated to this sector were significantly lower than the optimal level.

In contrast, in Canada during 1986–2000, the service sectors also experienced some im-

provements in Ei (Panel C). However, the magnitude is smaller than in the US (Panel C). At

the same time, the Ei of the mining sector (C) and the transport equipment sector (D34t35)

deteriorated, which is perhaps the reason why aggregate allocative efficiency did not change

significantly during this period. As shown in Panel D, during 2000–2007, a majority of the

Canadian manufacturing sectors’ Ei improved. However, several sectors, including mining

(C), construction (F), sale, maintenance and repair of motor vehicles, retail sale of fuel (G51),

and financial intermediation (J), experienced a significant decline in Ei. All five sectors’ Ei

were significantly below 1 in 2000, and they became even lower in 2007, which is consistent

with the pattern in Figure 6 that the increase in the dispersion of the Ei distribution is driven

by sectors in the bottom tenth percentiles moving further away from the optimal level.

5 Robustness

In this section, we carry out several robustness checks. Section 5.1 studies the impact of

the elasticity of substitution on our analysis in a CES production system. In section 5.2, we

restrict our analysis to the manufacturing sectors only. Following Hsieh and Klenow (2009),

we consider two more specifications in section 5.3.

5.1 Elasticity of substitution

The literature shows that the elasticity of substitution between production factors has an im-

portant implication on the measurement of allocative efficiency (see Osotimehin and Popov,

2018 and Epifani and Gancia, 2011). On the other hand, however, the elasticities of substi-
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tution between inputs are notoriously difficult to measure from data.9 Our analysis so far is

based on a Cobb-Douglas production system.

In this section, we extend the model into a CES production system and show how changes

in the elasticity could affect our result. Since we are unable to measure profit separately

from capital income at the sector level, we assume that the expenditure share of good i in

the final consumption is not distorted by sectoral markups.10

The final good is a CES aggregation of the N intermediate goods, such that

Y = (
∑
i

ωiY
1− 1

ρ

i )
ρ
ρ−1 , (7)

where ρ measures the elasticity of substitution and ωi is the weight of good Yi in the final

good production.

The production function of the intermediate good Yi is the Cobb-Douglas form, such that

Yi = AiK
αi
i L

1−αi
i ,

and the planner solves the following optimization problem:

max Y, s.t
∑
i

Ki = K,
∑
i

Li = L.

The following proposition characterizes the solution to the problem and the measured

allocative efficiency.

Proposition 5. The allocative efficiency Et can be written as

Et =
Y∗t
Yt

= {
∑
j

{(
PjYj

PY
)
ρ
ρ−1 (

αj/Kj

ᾱ∗/K
)αj [

(1 − αj)/Lj
(1 − ᾱ∗)/L

]1−αj}ρ−1}
1

1−ρ , (8)

9Recent development of the literature includes Oberfield and Raval (Forthcoming) and Ruane and Peter
(2020).

10As shown in Epifani and Gancia (2011), markups only lead to misallocation if they are heterogeneous
across sectors. This framework can be extended to incorporate markups with the availability of sector-level
data.
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The optimal allocation is characterized by {ᾱ∗,χk∗i ,χl∗i }, such that

χk∗i =
K∗i
K

=
PiYi
PY
αi

ᾱ∗
χl∗i =

L∗i
L

=
PiYi
PY

(1 − αi)

1 − ᾱ∗
, ᾱ∗ =

∑
i

PiYi

PY
αi,

where PjYj
PY

is the expenditure share of good j in the final good consumption in the data.

Proof. See Appendix C.5.

We show the impact of ρ on measured allocative efficiency in Figure 8, where lower ρ

means the goods are more complementary to each other. The measured allocative efficiency

is higher when the goods are more complementary to each other (Panel A). This result is

broadly consistent with the findings in Epifani and Gancia (2011) and Osotimehin and Popov

(2018).

Besides, we see from Panel A that the growth rate of Et increases with ρ (the line becomes

steeper). In Panel B, a higher ρ is also associated with higher volatility in measured Et.

This means that our benchmark model underestimates (overestimates) the role of allocative

efficiency in explaining aggregate growth and volatility if the goods are more substitutable

(complementary) than the Cobb-Douglas case.

Panel A Panel B
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.4

.6

.8

1

1950 1960 1970 1980 1990 2000 2010

ρ=0.1 ρ=0.5

ρ=1.0 (Cobb−Douglas) ρ=2.0

ρ=4.0 ρ=10.0

Et

−.2

−.1

0

.1

.2

1950 1960 1970 1980 1990 2000 2010

ρ=0.1 ρ=0.5

ρ=1.0 (Cobb−Douglas) ρ=2.0

ρ=4.0 ρ=10.0

∆log(Et)

Figure 8: Et and ∆log(Et), different ρ

Source: KLEMS, authors’ own calculations.
Note: This figure plots Et and ∆log(Et) under different values for ρ and without input-output linkages.
Capital is measured using real capital stock, and labor is measured using the number of employers.
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5.2 Manufacturing sectors

The literature has focused mostly on studying the allocation of the manufacturing sectors,

which arguably suffers less from measurement errors than the other sectors but has the

caveat of not covering the whole economy. In this section, we study allocation across the 13

manufacturing industries (see Table 1).

In Figure 9, we plot the allocative efficiency of the manufacturing industries in the US

over time. The pattern of Et of the manufacturing sector is significantly different than that

of the entire economy. As shown by the black line (the model without input-output linkages),

Ei of the manufacturing sectors was very stable before 1980; it increased slightly during the

1980s, stabilized again in the 1990s, and declined significantly after the beginning of the

2000s. The green line (model with input-output linkages) has a much shorter time series and

shows a significant decline during the 2000s, especially during the 2007–2009 financial crisis.

.75

.8

.85

.9

.95

1

1.05

1950 1960 1970 1980 1990 2000 2010

without linkages

with linkages

Et
US manufacturing sectors

Figure 9: Ei in the US manufacturing sectors over time, year-by-year shares

Source: KLEMS, WIOT, authors’ own calculations.
Note: This figure plots the allocative efficiency across the 13 manufacturing sectors in the US. Capital
K is measured using real capital stock, and L is measured using the number of workers. The black line
corresponds to the model without input-output linkages, and the green line is the one with input-output
linkages.

As shown in Panel A of Figure B.4, before 2010, the labor productivity of the US man-

ufacturing sector has been growing at a relatively constant rate of 10–11 percent per year.

Interestingly, it has slowed down significantly after 2010, the last year of our data series.
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Unfortunately, we cannot speak to the post-2010 slowdown in productivity growth, given

the current data availability.

5.3 US factor shares

In the literature, the commonly adopted assumption is that the US factor shares are undis-

torted and thus can be applied to other countries (Hsieh and Klenow, 2009). In this section,

we consider two additional specifications inspired by this approach.

First, we assume that the US economy is relatively undistorted in the later years. Then

we apply the factor shares of the later years to study the allocative efficiency over time.

When applied to a long-term horizon, this specification runs into the issue of compounding

the impacts of distortions and technological change on expenditure shares (see Appendix

A.1).

Second, we assume that the US factor shares are undistorted and apply them to evaluate

allocative efficiency in Canada. We find that our results are robust under this alternative

specification. The allocative efficiency of Canada experienced a small increase before 2000

(2 percentage points) and declined after 2000 (Panel A of Figure 10). The Canada-US

productivity gap under optimal allocation widens at 0.26 percent per year, which is faster

than under the two benchmark specifications, but it is significantly slower than the 0.4

percent per year in the data. Under this specification, approximately 35 percent (0.14/0.4)

of the widening productivity gap can be explained by allocative efficiency.

6 Conclusion

In this paper, we showed the importance of allocation in explaining aggregate productivity

growth. Applying the theory to the US and Canada using the KLEMS and WIOT datasets,

we showed that allocative efficiency could go a long way in explaining both the slowdown in

productivity growth in the US and the widening Canada-US productivity gap. Furthermore,
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Panel A Panel B
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.81

.83
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1985 1990 1995 2000 2005 2010

Canada

Et under US share
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.85

.9

.95

1

1985 1990 1995 2000 2005 2010

Canadian labor productivity (US=1)
under optimal allocation and US shares

Figure 10: Canada Ei and the Canada-US productivity gap using the US shares

Source: KLEMS, authors’ own calculations.
Note: Panel A plots the Ei of the Canadian economy over time by applying the US factor shares to the
Canadian economy. Panel B plots the productivity gap under optimal allocation.

we found that capital allocation is the main driver behind the trends in allocative efficiency

in both countries, whereas the allocation of labor stayed relatively unchanged. Most notably,

several service sectors in the US have gained resources over time. They are much closer to

the optimal level now than several decades ago, which contributes significantly to the overall

improvement in allocative efficiency.
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Online Appendix
Not for Publication

A Extensions

A.1 Technologcial change vs. distortions

One commonly-used assumption in the literature is that the US factor shares are undistorted
and thus reflect the fundamental technology and can be applied to evaluate allocation in the
other countries. In this section, we consider a slightly revised specification by assuming that
the factor shares are undistorted in the US in a base year.

It is plausible that the factor shares are more likely to be undistorted in later years
compared with earlier years. We pick 2005 to be the base year to minimize the impact
of the Great Recession. Figure A.1 compares the measured allocative efficiency between
specification 1 in the main text (blue) and the current specification with 2005 as the base
year (grey). It is not surprising that the two lines intersected in 2005. Compared with
specification 1, measured allocative efficiency is in general much lower and smoother under
the current specification. The gap between these two lines gets larger the further one moves
away from 2005. Applying the factor shares of 2005 to the earlier decades seems to run into
the issue of compounding technology change and distortions.

.4

.6

.8

1

1950 1960 1970 1980 1990 2000 2010

Baseline

Assumption 2005

Figure A.1: Ei in the US, assuming undistorted factor shares in 2005

Source: KLEMS, authors’ own calculations.
Note: This figure plots the allocative efficiency (without input-output linkages) in the US under specification
1 (baseline) and the assumption of undistorted factor shares in 2005 (assumption 2005). Capital K is
measured using real capital stock, and L is measured using the number of workers.

Generally speaking, we are concerned with applying factor shares of one year over a
sample of several decades. This concern can be seen more clearly in Figure A.2, where we
plot Et by varying the base year in the specification. Panel A plots the lines with 1960, 1970
and 1980 as the base year, and Panel B plots lines with 1990, 2000 and 2010 as the base
year. For example, as shown in Panel A, if we apply the 1960 factor shares to the whole
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sample, measured allocative efficiency Et is inverted-U shaped and peaked at the beginning
of the 1980s.

Panel A Panel B
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1950 1960 1970 1980 1990 2000 2010

Baseline Assumption 1960

Assumption 1970 Assumption 1980
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1

1950 1960 1970 1980 1990 2000 2010

Baseline Assumption 1990

Assumption 2000 Assumption 2010

Figure A.2: Ei in the US, assuming undistorted factor shares in various years

Source: KLEMS, authors’ own calculations.
Note: This figure plots the allocative efficiency (without input-output linkages) in the US under specification
1 (baseline) and the assumption of undistorted factor shares in year 1960/1970/1980/1990/2000/2005/2010
(assumption 1960/1970/1980/1990/2000/2005/2010). Capital K is measured using real capital stock, and L
is measured using the number of workers.

A.2 The decomposition of aggregate TFP in the data

Proposition 6. Aggregate TFP in the data At can be decomposed into three components:
1) allocative efficiency Et, 2) TFP under optimal allocation A∗t, and 3) a mismeaurement
term (Kt

Lt
)α
∗
t−αt, such that

At = A
∗
tEt(

Kt

Lt
)α
∗
t−αt . (9)

For the economy without input-output linkages, α∗t =
∑
i αiθi; for the economy with input-

output linkages, α∗t =
∑
n(
∑
i(αi,t(1 − σi,t − λi,t)Cni,t)θn,t).

Proof. The proof can be found in Appendix C.6.

Compared with proposition 3, the decomposition of aggregate TFP has one additional
component (Kt

Lt
)αt

∗−αt , where αt is the capital income share in the data and α∗ is the capital
output elasticity in the aggregate production function under the optimal allocation.11 We
show in proposition 7 that under optimal allocation α = α∗.

Proposition 7. If there is no distortion in the economy, capital income share in the data is
equal to α∗, the capital output elasticity in the aggregate production function under optimal
allocation.

11Notice that TFP in the data is computed as At = Yt
K
αt
t L

1−αt
t

.
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Proof. See Appendix C.7

If the economy deviates from optimal allocation, αt measured in the data is different
than α∗t, which leads to a bias in the measurement of the aggregate TFP. We label the
term (Kt

Lt
)αt

∗−αt as “mismeasurement” component in the decomposition. Therefore, any
measurement error in the real capital-labor ratio Kt

Lt
, such as the price of the capital stock,

would lead to changes in this mismeasurement component, making the TFP decomposition
exercise vulnerable to measurement errors.

A.3 Decentralized problem

In this section, we characterize the decentralized problem with inputs-specific distortions.
Firm in sector i will solve the following profit maximization problem:

max
Ki,Li,{dij,mij}

PiAi(K
αi
i L

1−αi
i )1−σi−λidσi1i1 . . .dσiNiN m

λi1
i1 . . .mλiNiN

− (1 + τki )RKi − (1 + τli)wLi −

N∑
j=1

(1 + τdij)Pjdij −

N∑
j=1

(1 + τmij )P̄jmij

First order conditions:
αi(1 − σi − λi)

PiQi

Ki
= R(1 + τki ) (10)

(1 − αi)(1 − σi − λi)
PiQi

Li
= w(1 + τli) (11)

σij
PiQi

dij
= Pj(1 + τdij), j = 1, · · · ,N (12)

λij
PiQi

mij
= P̄j(1 + τmij ), j = 1, · · · ,N (13)

Market clearing condition for sector j

Yj +

N∑
i=1

dij = Qj

or

PjYj +

N∑
i=1

Pjdij = PjQj

Plugging in equation (12)

PjYj +

N∑
i=1

σij
PiQi

(1 + τdij)
= PjQj

From final goods problem

Pj = θj
Y

Yj
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Substitute for Pj and cancel for Y

θj +

N∑
i=1

σij
Qi

(1 + τdij)

θi

Yi
=
θj

Yj
Qj

Following Jones (2013), we define γj =
θjQj
Yj

, then the following equation will solve {vj}

θj +

N∑
i=1

σij

(1 + τdij)
γi = γj, j = 1, · · · ,N

Denote θ=[θ1, · · · , θN]N×1, γ = [γ1, · · · ,γN]N×1, B̄(i, j) =
σij

1+τdij
, then

γ = (I− B̄)−1θ

where γ is the distorted Domar weights.
Given γ, by the first order condition in equation (12), we can solve dij as

dij = σij
PiQi

Pj(1 + τdij)
= σij

γi

γj(1 + τdij)
Qj

From the first order condition in equation (13),

mij

dij
=

1 + τdij
1 + τmij

λij

σij

Pj

P̄j

then
mij =

λij

1 + τmij

Pj

P̄j

γi

γj
Qj =

λij

1 + τmij

γi

P̄j
Y

From the first order condition in equation (10),

Ki = αi(1 − σi − λi)
PiQi

R(1 + τki )
= αi(1 − σi − λi)

γjY

R(1 + τki )

Denote
δki = αi(1 − σi − λi)

γi

(1 + τki )

then Ki = δki
Y
R
, define δ̃ki =

δki∑N
i=1 δ

k
i

Ki = δ̃
k
iK.

Similarly, define
δli = (1 − αi)(1 − σi − λi)

γi

(1 + τli)

and δ̃li =
δli∑N
i=1 δ

l
i

, then

Li = δ̃
l
iL
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define δdij =
σij

1+τdij
and δmij =

λij
1+τmij

, then

dij = δ
d
ij

γi

γj
Qj

mij = δ
m
ij

γi

P̄j
Y

Given {Ki,Li,dij,mij}, the gross output Qi can be computed as

Qi = PiAi[(δ̃
k
iK)

αi(δ̃liL)
1−αi ]1−σi−λi

N∏
j=1

(δdij
γi

γj
Qj)

σij

N∏
j=1

(δmij
γi

P̄j
Y)λij .

Take the log of both sides

log(Qi) = log{PiAi[(δ̃
k
iK)

αi(δ̃liL)
1−αi ]1−σi−λi}+

N∑
j=1

σijlog(δ
d
ij

γi

γj
) +

N∑
j=1

λijlog(δ
m
ij

γi

P̄j
)

+

N∑
j=1

σijlog(Qj) +

N∑
j=1

λijlog(Y)

and write in matrix form
q = D+ σq+ λlog(Y)

where q is N by 1 matrix, q(i) = log(Qi), D is N by 1 matrix,

D(i) = log{PiAi[(δ̃
k
iK)

αi(δ̃liL)
1−αi ]1−σi−λi}+

N∑
j=1

σijlog(δ
d
ij

γi

γj
) +

N∑
j=1

λijlog(δ
m
ij

γi

P̄j
).

σ is N by N matrix, σ(i, j) = σij and λ is N by 1 matrix, λ(i) = λi. Then

q = (I− σ)−1[D+ λlog(Y)]

Since Y =
∏
i Y
θi
i and γj =

θjQj
Yj

=
PjQj
Y

, then Y =
∏
i(
θiQi
γi

)θi . Taking the log we have

log(Y) =
∑
i

θilog(
θi

γi
) +

∑
i

θilog(Qi)

then
log(Y) =

∑
i

θilog(
θi

γi
) + θ

′
(I− σ)−1[D+ λlog(Y)]

where θ is N by 1 matrix, θ(i) = θi, then

log(Y) =
1

1 − θ ′(I− σ)−1λ
[
∑
i

θilog(
θi

γi
) + θ

′
(I− σ)−1D]
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Q.E.D.
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B Additional tables and figures
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Figure B.3: Changes in Ei over 1986–2000 and 2000–2007, average shares

Source: KLEMS, authors’ own calculations.
Note: This figure plots the evolution of Ek and El in Canada and the US in a model without input-output
linkages.
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Figure B.4: Labor productivity of the manufacturing sector

Source: BLS.
Note: This figure plots the logarithms of real labor productivity in the data for the manufacturing sector.
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C Proofs
In the proofs, we drop the time subscript t to simplify notation.

C.1 Proof of proposition 1

The solution to the planner’s problem requires the equalization of MPK and MPL across
sectors, such that

∂ log Y

∂Ki
= λ

∂ log Y

∂Li
= η

They can be written as,

Ki =
θiαi

λ

Li =
θi(1 − αi)

η

Given the resource constraint, we get

Ki =
θiαi∑
i θiαi

K

Li =
θi(1 − αi)∑
i θi(1 − αi)

L

The final good output can be written as

Y =
∏
i

Yθii

= Πi(AiK
αi
i L

1−αi
i )θi

= Πi(Ai(
θiαi∑
i θiαi

K)αi(
θi(1 − αi)∑
i θi(1 − αi)

L)1−αi)θi

= ĀK
∑
iαiθiL

∑
i(1−αi)θi ,

where Ā = Πi(Ai(
θiαi∑
i θiαi

)αi( θi(1−αi)∑
i θi(1−αi)

)1−αi)θi . Q.E.D.

C.2 Proof of proposition 2

The planner’s problem is

C =

N∏
i=1

(Qi −

N∑
j=1

dji)
θi −

∑
i

∑
j

P̄jmij.
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FOCs The first order conditions for Ki,Li,dij,mij are

∂C

∂Ki
= θi

Y

Yi

Qi

Ki
αi(1 − σi − λi)

∂C

∂Li
= θi

Y

Yi

Qi

Li
(1 − αi)(1 − σi − λi)

∂C

∂dij
= θi

Y

Yi
[
Qi

dij
σij − I{i=j}] + θj

Y

Yj
[
Qj

djj
σjjI{i=j} − 1]

∂C

∂mij
= θi

Y

Yi

Qi

mij
λij − P̄j

The FOC ∂C
∂dij

= 0 implies

dij =
θiYj

θjYi
σijQi, (14)

therefore

Yj = Qj −

N∑
i=1

dij = Qj −

N∑
i=1

θiYj

θjYi
σijQi,

Yj[1 +
1

θj

∑
i

(
θiQi

Yi
σij)] = Qj.

Let χj = Yi
Qi

, {χi}Ni=1 solve the following equations:

1

χi
= 1 +

1

θi

∑
s

(
θs

χs
σsi) (15)

or
1 − χj =

∑
i

σij
θiχj

θjχi
.

Let γij =
θiχj
θjχi

σij in equation 14, then dij = γijQj. The market clearing condition for Qi
implies

χi = 1 −
∑
s

γsi.

The FOC ∂C
∂mij

= 0 implies

mij = θi
Y

Yi
Qi
λij

P̄j
. (16)

Since
Y =

∏
i

Yθii =
∏
i

(χiQi)
θi

we have
mij = θi

∏
s

(
χs

χi
)θs

∏
s

(Qs)
θs
λij

P̄j
. (17)
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The FOC ∂C
∂Ki

= 0 and ∂C
∂Li

= 0 lead to

Ki = χKiK (18)

Li = χLiL (19)

where

χKi =

θiαi(1−σi−λi)
(1−

∑
j γji)∑

s
θsαs(1−σs−λs)

(1−
∑
j γjs)

,χLi =

θi(1−αi)(1−σi−λi)
(1−

∑
j γji)∑

s
θs(1−αs)(1−σs−λs)

(1−
∑
j γjs)

. (20)

Solve for Qi Rewrite production function of Qi as

Qi = Ai(K
αi
i L

1−αi
i )1−σi−λi(γi1Q1)

σi1 · · · (γiNQN)σiN
N∏
j=1

{θi
∏
s

(
χs

χi
)θs

∏
s

(Qs)
θs
λij

P̄j
}λij

= Ai(K
αi
i L

1−αi
i )1−σi−λi(

N∏
j=1

γ
σij
ij )(

N∏
j=1

Q
σij
j )[

∏
s

(Qs)
θs]λi [θi

∏
s

(
χs

χi
)θs]λi

N∏
j=1

(
λij

P̄j
)λij

= Ai[(χKiK)
αi(χLiL)

1−αi ]1−σi−λi(

N∏
j=1

γ
σij
ij )[θi

∏
s

(
χs

χi
)θs ]λi

N∏
j=1

(
λij

P̄j
)λij(

N∏
s=1

Qσis+λiθss )

Define

χQi = Ai[(χKiK)
αi(χLiL)

1−αi ]1−σi−λi(

N∏
j=1

γ
σij
ij )[θi

∏
s

(
χs

χi
)θs ]λi

N∏
j=1

(
λij

P̄j
)λij (21)

The above equation can be written as

Qi = χQi(

N∏
s=1

Qσis+λiθss ). (22)

Taking log of equation 22 gives logQi = logχQi +
∑N
j=1[(σij + λiθj) log(Qj)]. Letting

x = [log(Q1), . . . , log(QN)]
′
N×1, equation 22 can be written as

xN×1 = bN×1 +ΩN×NxN×1,

where b(i) = logχQi and Ω(i, j) = σij + λiθj. Therefore x can be solved as x = Cb, where
CN×N = (I−Ω)−1 and Qn =

∏N
i=1(χ

Cni
Qi ).

Rewrite χQi as
χQi = ziK

αi(1−σi−λi)L(1−αi)(1−σi−λi)

where zi = Ai(χKiαiχLi1−αi)1−σi−λi(
∏N
j=1 γ

σij
ij )[θi

∏
s(
χs
χi
)θs]λi

∏N
j=1(

λij
P̄j
)λij .

Then Qn can be rewritten as

Qn = ÃnK
α̃nLβ̃n (23)
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where Ãn = {
∏N
i=1 zi

Cni}, and α̃n =
∑
i(αi(1 − σi − λi)Cni), β̃n =

∑
i((1 − αi)(1 − σi −

λi)Cni).
Next we show that α̃n + β̃n = 1. Let B = I−Ω, following the definition of Ω∑

j

B(i, j) = 1 − (σi + λi).

Since
α̃n + β̃n =

∑
i

(Cni(1 − σi − λi)) =
∑
i

∑
j

C(n, i)B(i, j).

By definition, BC = CB = I, then
∑
j

∑
iC(n, i)B(i, j) = 1, for any n. Therefore (α̃n+β̃n) =

1.
Aggregate output under optimal allocation can be written as a function of aggregate

capital K and aggregate labor L
Y = ĀKᾱLβ̄,

where Ā =
∏N
i=1(χiÃi)

θi is the aggregate TFP under optimal allocation, and ᾱ =
∑
n(α̃nθn),

β̄ =
∑
n(β̃nθn). It can be shown easily that ᾱ+ β̄ = 1.

The expenditure on imported goods is

P̄jmij = [
∏
s

(χsÃs)
θs]{

θi

χi
K

∑
s θsα̃sL

∑
s θsβ̃s}λij = (

θiλij

χi
)Y.

The total expenditure on imported goods is

X = [

N∑
i=1

(
θiλi

χi
)]Y.

The output net of imported goods is

Y − X = Y[1 −

N∑
i=1

(
θiλi

χi
)].

Q.E.D.

C.3 Proof of Proposition 3

According to the definition of Et, the following equation holds: Yt = Y∗tEt. Dividing both
sides by the aggregate labor inputs yields LPt = LP∗tEt. Taking a log difference on both sides
yields ∆log(LPt) = ∆log(LP∗t) + ∆logEt. Q.E.D.

C.4 Proof of Proposition 4

To prove this proposition, we need to show that Emt = Edt = Eyt = 1 in equation 4. It is
sufficient to show that χyi,t = χy∗i,t, where χ

y∗
i,t is the optimal allocation and χyi,t is its data

analog.
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To simplify notations, we drop the time subscript. Note that xy∗i is a solution to the
system of equation 2. We intend to show that χyi also satisfies equation 2, which we have
reproduced here: 1

χ
y
i
= 1 + 1

θi

∑
s(
θs
χ
y
s
σsi). Letting ηi = 1

χ
y
i
, the above system of equations

can be written as,

ηi = 1 +
∑
s

(ηs
θs

θi
σsi),∀i ∈ {1, ...,N},

equivalently,  η1 − 1
...

ηN − 1

 =

 σ11 · · · θN
θ1
σN1

... . . . ...
θ1
θN
σ1N · · · σNN


︸ ︷︷ ︸

Π

 η1
...
ηN

 (24)

in which Π(i, j) = θj
θi
σji.

We compute the data allocation of intermediate inputs as

ηi =
1

χyi
=

$Qi
$Yi

,

where the dollar sign $ indicates a measure of expenditure (nominal value).
Under specification 1, we assume that the expenditure shares are undistorted in each

year and thus they are equal to the output elasticities in the production functions. More
specifically, under this specification, the elasticities θi and σij are calculated as

σijθi =
$Yi∑
s $Ys

, σij =
$dij
$Qi

.

Taking the data ηi, σij and θi back to equation 24, the RHS can be written as
$d11

$Q1
· · · $YN

$QN

$dN1

$Y1... . . . ...
$Y1
$Q1

$d1N

$YN
· · · $dNN

$QN




$Q1

$Y1...
$QN
$YN

 =


∑N
s=1 $ds1

$Y1...∑N
s=1 $dsN

$YN

 =


$Q1−χ1$Q1

χ1$Q1...
$QN−χN$QN
χN$QN

 =

 η1 − 1
...

ηN − 1

 ,

which is equal to the LHS of the equation. The first equality is simple algebra, the second
equality holds because of the market clear condition for Qi, and the third equality is because
of the definition of ηi.12 Q.E.D.

12Note that if intermediate inputs are measured using their quantity, i.e., ηi = Qi
Yi

, the first equality no
longer holds.
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C.5 Proof of Proposition 5

The FOCs of the planner’s problem give

ωi(
Yi

Y
)1− 1

ρ =
Ki/αi∑
i(Ki/αi)

,

ωi(
Yi

Y
)1− 1

ρ =
Li/(1 − αi)∑
i[Li/(1 − αi)]

.

To simplify notations, we denote K̃i = Ki/αi, L̃i = Li/(1 − αi) and define K̃ =
∑
i K̃i

and L̃ =
∑
i L̃i. It is clear that, from the FOCs, K̃i

L̃i
=

∑
i K̃i∑
i L̃i

= K̃

L̃
. We can rewrite Ki and Li

using the production functions as

Ki = (αiK̃)ω
ρ
i [
Ai(αiK̃)

αi [(1 − αi)L̃]
1−αi

Y
]ρ−1,

Li = (1 − αi)L̃ω
ρ
i [
Ai(αiK̃)

αi [(1 − αi)L̃]
1−αi

Y
]ρ−1.

Given
∑
i Ki = K,

∑
i Li = L, we can solve Y, K̃, L̃ with the system of three equations

K =
∑
i

{(αiK̃)ω
ρ
i [
Ai(αiK̃)

αi [(1 − αi)L̃]
1−αi

Y
]ρ−1},

L =
∑
i

{(1 − αi)L̃ω
ρ
i [
Ai(αiK̃)

αi [(1 − αi)L̃]
1−αi

Y
]ρ−1},

Yρ−1 =
∑
i

ωρi {Ai(αiK̃)
αi [(1 − αi)L̃]

1−αi}ρ−1.

In particular,

K

K̃
=

∑
i

{αi
ωρi {Ai(αiK̃)

αi [(1 − αi)L̃]
1−αi}ρ−1∑

jω
ρ
j {Aj(αjK̃)

αj [(1 − αj)L̃]1−αj}ρ−1
},

L

L̃
=

∑
i

{(1 − αi)
ωρi {Ai(αiK̃)

αi [(1 − αi)L̃]
1−αi}ρ−1∑

jω
ρ
j {Aj(αjK̃)

αj[(1 − αj)L̃]1−αj}ρ−1
},

and K

K̃
+ L

L̃
= 1.

Denote ᾱ = K

K̃
, then L

L̃
= 1 − ᾱ, and ᾱ solves the following equation:

ᾱ =
∑
i

{αi
ωρi {Ai(

αi
ᾱ
K)αi [ (1−αi)

(1−ᾱ)
L]1−αi}ρ−1∑

jω
ρ
j {Aj(

αj
ᾱ
K)αj[

(1−αj)

(1−ᾱ)
L]1−αj}ρ−1

}, (25)
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and the output under optimal allocation is

Y∗ = {
∑
j

ωρj {Aj(
αj

ᾱ
K)αj [

(1 − αj)

(1 − ᾱ)
L]1−αj}ρ−1}

1
ρ−1 .

If we replace, in the previous equation, Ai with Yi

K
αi
i L

1−αi
i

and Yi with (
PiYi/ωj
PY

)
ρ
ρ−1Y, we

can rewrite the allocative efficiency as

E =
Y

Y∗
= {

∑
j

ωρj {
(
PjYj/ωj
PY

)
ρ
ρ−1

K
αj
j L

1−αj
j

(
αj

ᾱ
K)αj [

(1 − αj)

(1 − ᾱ)
L]1−αj}ρ−1}

1
1−ρ ,

= {
∑
j

{(
PjYj

PY
)
ρ
ρ−1 (

αj/Kj

ᾱ/K
)αj [

(1 − αj)/Lj
(1 − ᾱ)/L

]1−αj}ρ−1}
1

1−ρ ,

which means that E is a function of ᾱ, the expenditure share PjYj
PY

in the data, capital
allocation Kj

K
and labor allocation Lj

L
in the data. All the other measures, except for ᾱ, are

clearly unitless. We show next that so is ᾱ. By replacing Ai in equation 25, we can write
the equation as follows:

ᾱ =
∑
i

{αi
ωρi {Ai(

αi
ᾱ
K)αi [ (1−αi)

(1−ᾱ)
L]1−αi}ρ−1∑

jω
ρ
j {Aj(

αj
ᾱ
K)αj[

(1−αj)

(1−ᾱ)
L]1−αj}ρ−1

}

=
∑
i

{αi

ωρi {
Yi

K
αi
i L

1−αi
i

(αi
ᾱ
K)αi [ (1−αi)

(1−ᾱ)
L]1−αi}ρ−1∑

jω
ρ
j {

Yj

K
αj
j L

1−αj
j

(
αj
ᾱ
K)αj [

(1−αj)

(1−ᾱ)
L]1−αj}ρ−1

}

=
∑
i

{αi
ωρi {(

PiYi/ωj
PY

)
ρ
ρ−1Y(αi

ᾱ
K/Ki)

αi [ (1−αi)
(1−ᾱ)

L/Li]
1−αi}ρ−1∑

jω
ρ
j {(

PjYj/ωj
PY

)
ρ
ρ−1Y(

αj
ᾱ
K/Kj)αj[

(1−αj)

(1−ᾱ)
L/Lj]1−αj}ρ−1

}

=
∑
i

{αi
Yρ−1{(PiYi

PY
)
ρ
ρ−1 (αi

ᾱ
K/Ki)

αi [ (1−αi)
(1−ᾱ)

L/Li]
1−αi}ρ−1∑

j Y
ρ−1{(

PjYj/ωj
PY

)
ρ
ρ−1 (

αj
ᾱ
K/Kj)αj[

(1−αj)

(1−ᾱ)
L/Lj]1−αj}ρ−1

}

=
∑
i

{αi
{(PiYi
PY

)
ρ
ρ−1 (αi

ᾱ
K
Ki
)αi(1−αi

1−ᾱ
L
Li
)1−αi}ρ−1∑

j{(
PjYj
PY

)
ρ
ρ−1 (

αj
ᾱ
K
Kj
)αj [

(1−αj)

(1−ᾱ)
L
Lj
]1−αj}ρ−1

}, (26)

which makes it clear that ᾱ only depends on the expenditure share PjYj
PY

in the data, capital
allocation Kj

K
and labor allocation Lj

L
in the data. Note that ᾱ is unitless.

In addition, one can easily verify that ᾱ =
∑
i
PiYi
PY
αi and the following allocation of

capital and labor

Ki

K
=

PiYi
PY
αi∑

i
PiYi
PY
αi

=
PiYi
PY
αi

ᾱ
and

Li

L
=

PiYi
PY

(1 − αi)∑
i
PiYi
PY

(1 − αi)
=

PiYi
PY

(1 − αi)

1 − ᾱ

solve equations 8 and 26 and therefore are the optimal allocation. We denote α∗ =
∑
i
PiYi
PY
αi,
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χk∗i =
PiYi
PY αi∑
i
PiYi
PY αi

and χl∗ =
PiYi
PY (1−αi)∑
i
PiYi
PY (1−αi)

. Note that the optimal allocation of capital and labor
does not depend on the elasticity of substitution ρ. We can rewrite the allocative efficiency
as

E = {
∑
j

{(
PjYj

PY
)
ρ
ρ−1 (

αj/Kj

ᾱ/K
)αj [

(1 − αj)/Lj
(1 − ᾱ)/L

]1−αj}ρ−1}
1

1−ρ

= {
∑
j

{(
PjYj

PY
)
ρ
ρ−1 (

αj/Kj

ᾱ/K
)αj [

(1 − αj)/Lj
(1 − ᾱ)/L

]1−αj}ρ−1}
1

1−ρ

C.6 Proof of Proposition 6

Following proposition 2 and the decentralized problem in section C.2, we know that

A∗ =
Y∗

Kα
∗
L1−α∗

.

Since in the data,

A =
Y

KαL1−α
,

we can write the optimal TFP A∗ as

A∗ = A
Y∗

Y
Kα−α

∗
Lα
∗−α = A

1

E
(
K

L
)α−α

∗
.

C.7 Proof of Proposition 7

In this section, we show that α = α∗ when the economy has no distortions. From the FOCs
of the decentralized problem, we know that RKi = piQiαi(1−σi) if there are no distortions
in the economy. Therefore, the measured capital income share in the data αt can be written
as

α =

∑
i RKi

Y
=

∑
i piQiαi(1 − σi)

Y
.

Following the notations of the decentralized problem (see Appendix A.3), denote γi = piQi
Y

as the Domar weight for sector i. We can rewrite the above equation as

α =
∑
i

γiαi(1 − σi).

On the other hand, α∗ can be written as

α∗ =
∑
n

θn
∑
i

(αi(1 − σi)Cni)

=
∑
i

αi(1 − σi)
∑
n

θnCni,

where C = (I −Ω)−1. We’ve shown in the decentralization problem that γi =
∑
n θnCni,
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which implies α = α∗.
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