
Plastic deformation capacity of connections in tension
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Strength of connections well characterized
for most potential failure modes

• Bolts in shear

• Plate yielding

• Rupture on net section including
shear lag effects

• Block-shear failure

• Bolt bearing

• …

Plastic deformation capacity has not been
well documented

Plastic deformation capacity depends on failure mode:
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Cyclic test on double-angle braces with connections 
expected to fail by rupture on net section:

Braced Frame Studied

Braced Frame Studied
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 Brace with End Gusset Plate Connections

Fiber Cross-Section

End Connection Model

Stitch Connector

Nonlinear evaluation procedure with explicit consideration 
of brace connection inelastic response  
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Analyses indicate that connection 
failure is likely and may lead to 

structure collapse
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Recent research: Well balanced bolted connections can develop substantial plastic 
deformation capacity through multiple modes (bearing, tension yielding, bolt shear, ...) 

Dc = 7.0 mm
dmax/Dc = 7.1 !!

Specimens taken from existing (1960’s) structures:
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Possible situations:
• Brace connections may not be able to resist tension force demands
• Plastic deformation capacity is variable (detailing, material) and is

generally limited
• Connection failure can have major consequences

Possible retrofit schemes:
• Increase connection strength, but this may have detrimental

impacts on other SFRS components
• Use brace fuses to reduce tension force demands

L

b

Angle with
reduced section

Cut in
HSS

HSS brace

Buckling
restraining box

L Lf

f

t w

Typ.

A
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Possible Fuse Design
for HSS Braces
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NBCC 2015 – TC Bracing with Fuses
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NBCC 2015 – TC Bracing
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Stability of connections in compression?

R. Tremblay, Polytechnique Montreal, Canada   38

Practice in 
Canada:

Braces with 
lap-splice 
bolted 
connections
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Connections designed to meet ultimate limit states
under tension brace forces: 

• Bolts in shear

• Plate yielding

• Plate net section rupture including
shear lag effects

• Block-shear failure

• Bolt bearing

• …

Limited (no?) provisions for the design of connections
for compression
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HSS 127x127x8.0 – Single Shear Connections

Fracture of plate 
due to low-cycle 
fatigue
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HSS 102x102x6.4 - Double Shear Connections

Plate buckling

Rupture of HSS
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Plate buckling

Rupture of HSS
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Double angle braces
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2L 127x75x9.5

Plate buckling 
and low-cycle 
fatigue failure
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2011 Tohoku Earthquake
http://www.eqclearinghouse.org/2011-03-11-sendai/2011/08/03/eeri-steel-structures-reconnaissance-group/
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Instability and low-cycle failures of brace connections 
observed in past earthquakes
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2011 Tohoku Earthquake
http://www.eqclearinghouse.org/2011-03-11-sendai/2011/08/03/eeri-steel-structures-reconnaissance-group/
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• Instability of brace connections should be
prevented as it reduces the brace strength
and may lead to low-cycle failure

• Methods needed for design and evaluation
(in progress)

Single Shear Connections Double Shear Connections
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Plan

• Context

• Bracing members

• Brace Connections 

• Multi-Storey Braced Frames

• Metal Roof Deck Diaphragms

• Conclusions
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• collapse prevention
• 2% in 50 years earthquakes 

Linear procedure not appropriate for capturing
concentration of inelastic deformations along the frame height
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Linear procedure may also result in inadequate seismic retrofit design

R. Tremblay, Polytechnique Montreal, Canada   51

Assessment of retrofitted braces
using linear procedure

Collapse under 50% EQs Collapse under 
30% EQs

Validation of brace retrofits using nonlinear procedure
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Final retrofit strategy included elastic vertical frames
along the building sides to mitigate soft-storey response

This scheme can provide for temporary lateral bracing during the 
retrofit of the existing braced frames and allowed keeping the 
existing braced frame foundations without strengthening
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Plan

• Context

• Bracing members

• Brace Connections

• Multi-Storey Braced Frames

• Metal Roof Deck Diaphragms

• Conclusions
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Roof diaphragms
built with steel deck panels

ROOF JOISTS
(typ.) ROOF BEAMS

(typ.) 

COLUMN
(typ.)

VERTICAL
X BRACING

(typ.)
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Prior to 2000-2010 

• Design provisions and 
quality control implemented 
only in the 1980’s

Situation:
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Cantilever Diaphragm Shear Test

Monotonic
Test

Cyclic
Test

Slip & disengagement 
of the button punches
and brittle weld failure
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Dynamic Seismic Tests
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Possible
Retrofit
Scheme
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• Existing steel BFs in Canada may present several deficiencies
related to lateral strength, brace ductility, brace connections,
concentration of inelastic deformations in multi-storey buildings,
and steel deck diaphragms

• Force-based method may not be appropriate to reliably identify,
assess, and address these deficiencies

• ASCE 41 is a useful tool for evaluation and retrofit, but
adjustments are needed for Canadian construction practice,
including criteria for large HSS braces, bolted brace connections,
sensitivity to inelastic deformation concentration, and steel deck
diaphragms

Conclusions
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RETROFITTING NON-DUCTILE RC STRUCTURES FOR SEISMIC RESISTANCE 

USING POST-INSTALLED WING WALL, SHEAR WALL AND RC JACKET 

By Dr. W.-I Liao, National Taipei University of Technology 

Abstract 

Reinforced Concrete (RC) frame structures that were designed and built according to 
older standards can be damaged during destructive earthquakes as a result of 
insufficient lateral strength and/or deformation capacity. Such structures must be 
retrofitted to satisfy the current requirements and to survive future earthquakes. In this 
study, three cost effectively and general used retrofit methods in Taiwan, i.e., the post-
installed RC wing wall, post-installed RC shear wall and RC jacket, are introduced. 
Procedures for detailed retrofit design, construction method, and encountered 
problems in engineering practical are presented. In addition, the connected 
construction method for RC structure with low strength concrete is provided. The test 
results indicate that the adopted retrofitting methods can effectively improve the seismic 
performance and lateral strength of the non-ductile RC structures. 

Keywords: reinforced concrete, seismic resistance, retrofit, wing wall, RC shear wall, 
RC jacket 
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RETROFITTING NON-DUCTILE RC 
STRUCTURES FOR SEISMIC RESISTANCE 

USING POST-INSTALLED WING WALL, SHEAR 
WALL AND RC JACKET

Department of Civil Engineering, NTUT

• Retrofit of RC structure using Wing Wall

• Retrofit using RC Jacket

• Post installed RC wall for retrofit of structure with low
strength concrete and the connection detail on
interface

• Retrofit of short column

• Concluding Remarks

Outline
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Wing 
wall

Reinforced 
concrete 
jacketing

Shear 
wall

Seismic 
Retrofit

Department of Civil Engineering, NTUT

Retrofit using post installed RC wing wall

Advantage:
Does not affect corridor space
Disadvantage : 
Affect the ventilation and lighting function
Not suitable for low strength concrete 
structure
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Test of retrofit using RC wing wall

Specimen S4 (Taiwan): 

Specimen S5 (Japan): 

Reference: S.Y.Chang, W.I. Liao，2010，既有RC建築物修復補強工法之性能試驗研究期末報告書，ABRI。

spiral

Exist column

#5
#4

#4
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Test results of retrofit using RC wing wall

Failure status 
S5 (Japan) 

Failure status 
S4 (Taiwan) 

S5 

S4 

w/o retrofit 
勝
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Practical construction procedure of RC wing wall 

Department of Civil Engineering, NTUT

RC jacket

Retrofit using RC jacket 

Advantage:
Does not affect the ventilation 
and lighting function Increase 
two-direction capacity

Disadvantage : 
affect corridor space
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Test of retrofit using RC jacket

S3 

S2 

w/o retrofit 

S2 

S3 

with dowel bar

w/o dowel bar

Reference: S.Y.Chang, W.I. Liao，2010，既有RC建築物修復補強工法之性能試驗研究期末報告書，ABRI。

Exist column

jacket
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Practical construction procedure of RC jacket 
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Construction procedure of RC jacket (cont’) 

Happy School start day 

Department of Civil Engineering, NTUT

Post installed RC wall for retrofit of structure 
with low strength concrete and the connection 

method on interface
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• RC wall => high lateral strength and stiffness capacity

• Post-installed RC wall=>widely used technique for non-ductile structure.

• Old RC building => low-strength poor concrete

• Typically used connected construction method on the interface
between existing and new concrete may be not able to provide effective
force transfer mechanism.

• May cause unexpected interface failure in the retrofitted structure.

Retrofit using RC shear wall 

Department of Civil Engineering, NTUT

The sequences of failure:

1. Interface failed in shear friction failure.

2. Load flow to the edge of upper-column.

3. The column top (short column) failed in 

shear.

Research background (1)

Recent studies have completed a test for post-casted RC wall into
frame with traditional interface connected method.

Anchored rebars on interface = rebars of wall panel

 Failure occur on the interface
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Research background (2)

An Ho(安和) elementary school: 
Damaged in the 1999/921 earthquake => retrofit by RC wall 
retrofit RC wall damaged again at 2002/331 earthquake

․shear friction failure on interface 

․force concentrate at column top  

Department of Civil Engineering, NTUT

Research purpose

★ To provide effective interface connected methods and construction

details for low concrete strength structure.

Three specimens have been tested in this study.

(1) Pure RC frame

(2) Frame with post-installed RC wall

(3) Frame with post-installed RC wall (with opening)

=> Expect to achieve design goal after improvement; and effectively

improve the seismic resistance capacity.
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Specimens design (pure frame) 

Column : 30x35 cm
Beam : 63x50 cm
fc’ = 14 Mpa for exist structure, and 28 Mpa
for wall.  
Yielding strength of rebar = 280 Mpa.

Department of Civil Engineering, NTUT

Specimens design (frame + RC wall) 

1.The wall anchorage rebars amounts
(#4@10cm) are higher than wall panel
reinforcements (#3@15cm).

Vf > Vs + Vc

2. Adhesive mortar block on interface.

3. Adding inner frame column.
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Specimens design (frame + opening RC wall) 

Department of Civil Engineering, NTUT

(1) Foundation base (2) Holes for HSB

(3) Foundation reinforcement (4) Column rebar andstrain gauge marker

Construction of specimens (1)
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Construction of specimens (2)

(5) Column main rebar anchored to foundation (6) Foundation formwork

(7) Pouring fresh concrete for foundation (8) Column stirrup binding

Department of Civil Engineering, NTUT

Construction of specimens (3)

(9) Beam reinforcement (10) Beam and column formworks

(11) Pouring concrete for beam and column (12) Remove frameworks, frames completion
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Construction of specimens (4)

(13) RC frame at 28 days and
Roughen the surface

(14) Drill holes with 10 db depth
and rebar anchoring

(15-a) Making cement mortal blocks (15-b) Attaching cement mortal blocks

Department of Civil Engineering, NTUT

Construction of specimens (5)

(16) Internal frame reinforcement and binding (17-a) S2 wall reinforcement and attaching ribs

(17-b) S3 wall reinforcement and attaching ribs (18-a) Wall formwork closure
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(18-b) Fresh concrete channel holes (19) Pouring fresh concrete for wall

(20-a) Remove frameworks and channel holes, 
S2 frames completion

(20-b) Remove frameworks and channel holes, S3 
frames completion

Construction of specimens (6)

Department of Civil Engineering, NTUT

Test setup 

Reversed cyclic loading test was 
conducted with increment drift at every 
step until failure
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Experimental Results (Pure frame)

S1
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w The flexural cracks at the top and 
bottom of the column are gradually 
increase; some of the flexural cracks 
gradually turn into shear cracks; and the 
maximum crack width is 0.5 mm.

The shear cracks at the top and bottom of 
the column appear rapidly. The maximum 
crack width is about 3 mm in the column.
At this drift, the maximum lateral force is 
reached and the overall lateral stiffness 
begins to gradually decrease.
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Experimental Results (PF + Wall)

S2
Inter-story displacement ratio (drift ratio)
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The shear crack of the wall spreads to 
the top and bottom of the column. The 
flexural crack in the end of the column 
continues to increase. The maximum 
shear crack width is 4 mm in the 
diagonal direction of the wall panel.

The shear cracks of the wall continue to 
enlarged; spalling of concrete; slightly 
buckling of. 
At this drift, the lateral force dropped to 
about 30% of the maximum and the test 
is stopped.
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Experimental Results (PF + Wall with opening)

S3
Inter-story displacement ratio (drift ratio)
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w The shear cracks of the section on both 
sides of the opening gradually increase 
and spread to the column boundary. 
The maximum shear crack width is 6 
mm at the corner of the wall.

The shear cracks at the corners of the 
wall continue to enlarge; the concrete is 
cracked and spalled. 
At this drift, the lateral force strength 
dropped to about 60% of the maximum 
and the test is stopped.
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30

Force-Displacement hysteresis curves 
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Force-Displacement hysteresis curves 

Department of Civil Engineering, NTUT

Short Column Effect (caused by infill wall)

High window of toilet 

Short column of windowsillShort column at basement vent
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Tests on short column effect

S1 (Hn/bw=5) S2 (Hn/bw=4)

S3 (Hn/bw=2.5) S4 (Hn/bw=1.67)
Reference: S.Y. Chang, W.I. Liao，2011，既有RC建築物修復補強工法之性能試驗研究(2)，ABRI。
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Retrofit method of Short Column

Install brick 
wing wall 

Install RC wing 
wall (RC wall should
embedded into the 
exist brick wall)

Increase the 
hoop of column

Other method

R2 R1

R3

Reference: S.Y. Chang, W.I. Liao，2012，既有RC建築物修復補強工法之性能試驗研究(3)，ABRI。
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Photos of final failure status

R1

R2 R3

Increase hoop

RC wing wallBrick wing wall
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Capacity Curves of test specimens

S0 Pure frame 
S1 Short column without retrofit 
R1 specimen  
R2  specimen
R3 specimen

RC 
wing 
wall

Brick
wing 
wall

more 
hoops

2.5% 
drift
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Practical construction case 

Before Retrofit After Retrofit

Department of Civil Engineering, NTUT

1. For the post installed RC wall, the proposed connected method to

improve the load transfer mechanism on the interface was verified. The

strength of the RC wall can be fully developed and the test specimens

were damaged in the expected failure mode.

2. The short column effect can be eliminated by just using a small brick

wing wall or a RC wing wall .

Conclusions 
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Many thanks for 
your attention!

Department of Civil Engineering, NTUT

Measurement setup 

• External measurement  equipments

1. Tempo III magnetic telescopic displacement meter (control and measure

specimen displacements, 1 set)

2. Dial gauge (base slip observer, 1 set)

3. NDI optical measurement system (1 set) and Markers photosensitive elements

(24 sets)
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Retrofitting Short Column 

Department of Civil Engineering, NTUT

Capacity curves of test specimens

S3, S4 (shear) 
S1, S2 (flexural) 

Hn/bw=4, 5

Hn/bw=2.5
, 1.67 
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AN OVERVIEW OF SEISMIC RETROFIT TECHNIQUES DEVELOPED AT THE 

UNIVERSITY OF OTTAWA  

By Dr. M. Saatcioglu, University of Ottawa 

Abstract 

A large proportion of existing building and bridge infrastructure across the world 
consists of seismically deficient non-ductile structural systems. Performance of 
structures during recent earthquakes have demonstrated seismic vulnerability of these 
systems, the majority of which were designed prior to the enactment of modern seismic 
codes, though some were designed more recently in areas where code enforcement 
provides challenges. These structures constitute considerable seismic risk, especially 
in large metropolitan centres. Because it is economically not feasible to replace a large 
segment of seismically deficient infrastructures with new and improved systems, 
retrofitting existing structures remains to be a viable seismic risk mitigation strategy. 
The objective of this presentation is to highlight seismic retrofit strategies for deficient 
building and bridge infrastructures, with emphasis on experimental and analytical 
research conducted at the University of Ottawa. The retrofit strategies consist of 
structural upgrades at the system level, as well as at the element level. Non-ductile 
reinforced concrete frame retrofits, in the form of different lateral bracing techniques, 
non-ductile concrete column retrofit strategies, and unreinforced masonry wall retrofit 
methodologies will be presented. The specific areas of research include: column 
retrofitting by either external transverse prestressing or FRP wrapping; masonry wall 
retrofitting with surface bonded FRP sheets, internally added reinforcement and post-
tensioning; bracing of non-ductile reinforced concrete frames with diagonal 
prestressing and buckling restrained braces for strength enhancement and deformation 
control. An overview of these seismic retrofit research projects will be presented. 

Keywords: buckling restrained brace, concrete, fibre reinforced polymer, masonry 
buildings, seismic retrofit. 
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An Overview of Seismic Retrofit Techniques 
Developed at the University of Ottawa

By: Murat Saatcioglu
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 Column retrofit methodologies.

 FRP Wrapping
 Transverse Prestressing

 Lateral bracing of nonductile reinforced concrete frames

 Frames with masonry infill walls
 Bare frames braced with diagonal prestressing or BRBs

 Load bearing masonry.

 Use of externally placed steel strips
 Use of surface-bonded FRP and ductile steel sheet anchors
 Addition of internal reinforcement and/or prestressing

Seismic Retrofit Research @ uOttawa
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FRP Jacketing of Columns 
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CFRP jacketed circular column under 15% Po

6

uOttawa.ca
CFRP jacketed circular column under 47% Po

Retrofitted Column – Flexure-Dominant Response 
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CFRP jacketed square column under 15% Po
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Circular Column Retrofitted for Splice Deficiency 

 FRP Jacketing is effective for
splice clamping in circular
columns provided that the
transverse strain in FRP is
limited to 0.0015.

 FRP Jacketing has limited
effectiveness in square and
rectangular columns and hence
is NOT allowed by CSA S806 in
such columns.
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Transverse Prestressing of Concrete Columns 
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Transverse Prestressing of Columns 
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Transverse Prestressing of Columns 
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Shear Deficient Column 
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Transverse Prestressing for Improved Shear Response 
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Transverse Prestressing for Improved Flexural Response 

Unretrofitted Column Retrofitted Column
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