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Knowledge would be fatal. It is the uncertainty that charms one.
A mist makes things wonderful.

— Oscar Wilde (1890, The Picture of Dorian Gray)
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Preface

Our original aim was to write an introduction to the evaluation and expression of mea-
surement uncertainty as accessible and succinct as Stephanie Bell’s little jewel of A Be-
ginner’s Guide to Uncertainty of Measurement [Bell, 1999], only showing a greater variety of
examples to illustrate how measurement science has grown and widened in scope in the
course of the intervening twenty years.

The recent, very welcome Introduction to Measurement Uncertainty that Blair Hall and Rod
White have made available to the community [Hall and White, 2018], occupies a middle
ground in terms of complexity. It presents two realistic examples in considerable detail
(using a ruler, and calibrating a thermometer), and it excels in typographical design, from
which we have obviously drawn inspiration.

We have organized our narrative so that a reader who is primarily interested in weighing
may skip the discussion of counting, and similarly for all the other sections. Even subsec-
tions within the same section can, in most cases, be read independently of one another: for
example, to learn how to compare two measurement methods, while remaining uncon-
cerned with how to compare a measured value with a corresponding certified value.

While some of our examples are very simple and likely to appeal to a broad audience
(measuring the volume of a storage tank, or surveying a plot of land), others may inter-
est only a more narrowly specialized sector of the readership (measuring abortion rates,
or calibrating a resistor using a Wheatstone bridge). Some may appear, at first blush, to
be narrowly focused (measuring the Hubble-Lemaître constant), but in fact employ tech-
niques that are widely applicable. Still others are fairly complex, yet are likely to draw
the attention of many readers (calibrating a gc-ms system, or averaging models for a flu
epidemic).

The predominant approach to measurement uncertainty involves probabilistic concepts
and requires the application of statistical methods. We have chosen not to hide the attend-
ing difficulties, and have striven instead to explain the models we use, and the calculations
necessary to apply them, in fair detail, providing computer codes to carry them out.

These technicalities, no matter how clearly one may be able to explain them, inevitably will
be challenging obstacles for many readers. Two appendices, one on probability, the other
on statistics, may help motivated readers familiarize themselves with concepts and meth-
ods sufficiently to overcome such obstacles, yet they demand considerable commitment
from the reader.

We have illustrated the application of a wide range of statistical models and methods,
some from the classical school, others of a Bayesian flavor, especially when it is advanta-
geous to incorporate preexisting knowledge about a measurand. However, the choice of
school or flavor is not critical.

The key resolution is to approach each problem with flexibility, being deferential to the
data and attentive to the purpose of the inquiry: to select models and employ data reduc-
tion techniques that are verifiably adequate for the data in hand; to give each problem a
custom solution tailored for the purpose that the results are intended to serve; all along
heeding Lincoln Moses’s advice that “You have to have a good data-side manner.”
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In ancient Egypt, measurement was
considered important even in the

afterlife: Anubis (god of death) leads
the scribe Hunefer to judgement, where
his heart is weighed against the Feather
of Truth. Thoth (god of writing) records

the result, while Ammit, Devourer of
the Dead, awaits the verdict.

— Book of the Dead (1275 bce) British
Museum (EA 9901,3)

Measurement

Recognizing and quantifying the
uncertainty that invariably clouds our

knowledge of the world is a hallmark of
science. It informs actions and decisions

in all fields of the human endeavor:
protecting against incoming storms,

planning crops, responding to
epidemics, or managing industrial

inventories. Measurement uncertainty
is an integral part of every

measurement result, characterizing its
quality.

Our ancestors were shepherds that counted sheep, surveyors that
sized agricultural land, traders that weighed gold pieces, time-
keepers that relied on sundials, merchants that graded silk according
to its fineness, and healers that assigned medicinal plants to cate-
gories reflecting their powers (cf. Todd [1990]).

Counting, surveying, weighing, timing, ranking, and classifying
all serve to assign a value to a property (measurand) of an object of
interest, and all are instances of measurement provided they satisfy
these requirements: (i) the assignment of value is based on compari-
son with a standard that is recognized as a common reference by the
community of producers and users of the measurement result; (ii)
the measured value is qualified with an evaluation of measurement
uncertainty whose practical meaning is well understood and agreed
upon; (iii) the measurement result (measured value together with its
associated measurement uncertainty) is used to inform an action or
decision.

A measured value is an estimate of the true value of a property,
which may be quantitative or qualitative. Counting, surveying,
weighing, and timing all produce estimates of quantitative mea-
surands. Ranking applies to qualities that come by degrees that
can meaningfully be ordered from smallest to largest, or weakest
to strongest (for example, the Mohs hardness of a mineral, or the
spiciness of a curry). Classification (or identification) assigns objects
to categories that are either identical or different, but that cannot
otherwise be ordered or quantified (for example, the identity of the
nucleobase at a particular location of a dna strand, or the gender of
an athlete).
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Measurement Uncertainty

Truth lies hidden in a castle’s keep,
surrounded by uncertainty, which is

represented by the moat. The width of
the moat portrays the margin of doubt,
and its depth illustrates the severity of

the doubt [Bell, 1999] (Almourol Castle,
Portugal — Wikimedia Commons,

Daniel Feliciano, 2003).

Measurement uncertainty is the doubt about the true value of the
measurand that remains after making a measurement [Possolo, 2015].
The corresponding margin of doubt is characterized by its width (size
of the uncertainty) and by its depth (severity of the uncertainty): the
wider this margin, the larger the range of values of the measurand
that are consistent with the measured value; the deeper this mar-
gin, the smaller the confidence that the true value of the measurand
indeed lies within that margin [Bell, 1999].

There is no science without measurements, no quality without
testing, and no global commerce without standards. Since no mea-
surement is perfect, evaluating measurement uncertainty and taking
it into account are prerequisites for interpreting and using measure-
ment results.

Uncertainty often originates not only from imperfections in mea-
surement, but also from the natural variability of the true values of
the properties we seek to measure. For example, the exact amount
of aspirin may vary slightly among nominally identical pills, and the
volume of dishwashing liquid in nominally identical bottles often
varies enough to be perceptible to the naked eye.

The speed of light in vacuum has
exactly one true value that is invariant

in time and space, according to the
prevailing view of the universe. But the

true value of the atomic weight of
oxygen varies significantly across usa

river waters, reflecting the spatial
variability of the amount fractions of its

different isotopes
[Kendall and Coplen, 2001].

In addition to imperfect measurements or natural variability of
the true values of measurands, it is fairly common for there to be
ambiguity, or incomplete specification, of the very definition of what
we are trying to measure. The following three examples describe
cases where such ambiguity was an important source of uncertainty.

In January, 2015, the U.S. Supreme Court1 decided a case where 1 Teva Pharmaceuticals USA, Inc. v.
Sandoz, Inc. 574 U. S. 318 (2015), 2015the basic dispute concerned the meaning of the term “molecular

weight” as it had been used in a patent filed by Teva. The Court con-
sidered that “the term might refer to the weight of the most numer-
ous molecule, it might refer to weight as calculated by the average
weight of all molecules, or it might refer to weight as calculated by
an average in which heavier molecules count for more.”

Driving under the influence (dui) court cases rely on measure-
ments made to determine whether alcohol concentration exceeded
0.08 g per 100 mL of blood, or 0.08 g per 210 L of breath. Typically,

Measurement uncertainty is crucial to
determining whether laws are broken

(excerpt from a 2010 King County
District Court ruling, Washington, usa).the prosecution has to demonstrate that the alcohol concentration in-

deed exceeded the 0.08 level beyond reasonable doubt, which is often
taken to mean 99 % confidence.

Besides the sizable measurement uncertainty, which in large part
is attributable to calibration uncertainty,2 the factors affecting the

2 S. Cowley and J. Silver-Greenberg.
These Machines Can Put You in Jail.
Don’t Trust Them. The New York Times,
November 3, 2019. Business Section;
and J. Silver-Greenberg and S. Cowley.
5 Reasons to Question Breath Tests.
The New York Times, November 3, 2019.
Business Section

outcome of breath tests include body temperature, blood makeup
(hematocrit, the volume fraction of red blood cells in the blood),
or the manner of breathing. Moreover, uncertainty can surround
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many other aspects of the measurement: some parts of the body
will have higher blood-alcohol concentration than others, with the
alcohol levels in arterial and venous blood possibly differing by as
much as a factor of two [Simpson, 1987]. Even the very definition of
alcohol, surprisingly can include not only ethanol but also other low
molecular weight alcohols such as methanol or isopropanol.

Defining gender, in particular of athletes participating in sports
where men and women compete separately, has become a vivid in-
stance of definitional uncertainty, as the understanding has widened,
among biologists, that the binary notion of gender (male or female)
is an inaccurate oversimplification. In fact, gender is a spectrum,3 for 3 C. Ainsworth. Sex redefined. Na-

ture, 518:288–291, February 2015.
doi:10.1038/518288a. News Feature

there are several different ways in which its value may be expressed
or assigned — based on anatomical features, hormonal profile, chro-
mosomal structure, or self-identification —, which may contradict
each other, giving rise to uncertainty.

The foregoing served to highlight how consideration of measure-
ment uncertainty pervades not only areas of science and technology,
but also many aspects of everyday life. Next we illustrate how mea-
surement uncertainty associated with measured values can be propa-
gated to the results of simple calculations involving these values.

https://doi.org/10.1038/518288a


12

Sums, Products, and Ratios

In many cases, quantities of interest are expressed as sums, products,
or ratios of other quantities that may have been measured previously
or that are measured in the course of the measurement experiment.
Such fairly simple measurement models serve to illustrate the basic
procedures involved in uncertainty evaluations, including the propa-
gation of uncertainties from input quantities to an output quantity, as
in the following three examples: (i) the plasma anion gap (expressed
as a sum of four measured amount concentrations); (ii) the volume of
a cylindrical storage tank (expressed as a product of two measured
lengths); and (iii) the resistance of an electric resistor (which is given
by a ratio involving several measured resistances). In this third exam-
ple we will also illustrate the use of the NIST Uncertainty Machine.4 4 T. Lafarge and A. Possolo. The

NIST Uncertainty Machine. NCSLI
Measure Journal of Measurement Sci-
ence, 10(3):20–27, September 2015.
doi:10.1080/19315775.2015.11721732

Plasma Anion Gap

The plasma anion gap, ∆cAG, is used in clinical biochemistry to de-
termine whether there is an imbalance of electrolytes in the blood,
which may be a result of diabetes or of kidney disease, among other
possiblities. It is defined as a linear combination of the amount con-
centration of two cations and two anions:

∆cAG = c(Na+) + c(K+)− c(Cl−)− c(HCO−3 ).

Consider the values that were measured for a particular patient,

There are several different definitions of
the anion gap. For example, it is
common to omit potassium or to

include corrections due to albumin.

shown in the table alongside. For this patient,

∆cAG = (137 + 4− 106− 10)mmol/L = 25 mmol/L,

which generally would be regarded as being of clinical concern.
However, the interpretation of any result of laboratory medicine re-
quires consideration of the complete clinical profile of the patient,5 5 G. H. White, C. A. Campbell, and

A. R Horvath. Is this a Critical, Panic,
Alarm, Urgent, or Markedly Ab-
normal Result? Clinical Chemistry,
60(12):1569–1570, December 2014.
doi:10.1373/clinchem.2014.227645

and requires also that measurement uncertainty be taken into ac-
count.

ion c u(c)

Na+ 137 1.48

K+
4 0.04

Cl− 106 0.72

HCO−3 10 0.84

Amount concentrations of ions
(mmol/L) that were measured for a

particular patient [White, 2008].

The uncertainty associated with the value of ∆cAG is determined
by the reported uncertainties for the individual ion amount concen-
trations. These are the sizes of the margins of uncertainty discussed
above, under Measurement Uncertainty. White [2008] does not describe
how they were evaluated, or which sources of uncertainty may have
contributed to these values, but refers to them as standard deviations.

This suggests that the underlying model for the measured amount
concentrations involves random variables and probability distri-
butions, which provides a way forward to evaluate the standard
uncertainty of the anion gap.

http://uncertainty.nist.gov
https://doi.org/10.1080/19315775.2015.11721732
https://doi.org/10.1373/clinchem.2014.227645
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Indeed, if those four amount concentrations can be regarded as
outcomes of independent random variables, then ∆cAG also is a ran-
dom variable because it is a function of these random variables. Its
variance, denoted u2(∆cAG) below, can be computed exactly because
the AG is a linear combination of the four amount concentrations,
and the corresponding standard deviation, which will become its
standard uncertainty, u(∆cAG), is the square root of this variance: If an output quantity

Y = α1X1 + · · ·+ αnXn is a linear
combination of uncorrelated input

quantities for which estimates x1, . . . , xn
and associated standard uncertainties

u(x1), . . . , u(xn) are available, α1, . . . , αn
are known constants, and

y = α1x1 + · · ·+ αnxn, then
u2(y) = α2

1u2(x1) + · · ·+ α2
nu2(xn)

u2(∆cAG) = u2(c(Na+)) + u2(c(K+)) + u2(c(Cl−)) + u2(c(HCO−3 ))

= (1.48 mmol/L)2 + (0.04 mmol/L)2+

(0.72 mmol/L)2 + (0.84 mmol/L)2

= (1.85 mmol/L)2

Even though ∆cAG involves sums and differences, the variances of
the quantities being added or subtracted are all added.

The precise meaning of u(∆cAG) = 1.85 mmol/L depends on the
probability distribution of the random variable that is being used
as a model for ∆cAG. If the four ion concentrations were modeled

It is a surprising fact that, for many
distributions that the ∆cAG may have,

the interval ∆cAG ± 2u(∆cAG) will
include the true value of ∆cAG with

approximately 95 % probability
[Freedman et al., 2007].

as Gaussian (or, normal) random variables, then so would be the
∆cAG, because a linear combination of independent Gaussian random
variables is also Gaussian. In these circumstances, the conclusion
would be that the true value of the ∆cAG is 25 mmol/L to within
1.85 mmol/L, with approximately 68 % probability.

Volume of Storage Tank

Consider the problem of evaluating and expressing the uncertainty
that surrounds the internal volume V of a cylindrical storage tank,
derived from measurement results for its radius R, and for its height
H. Since the volume is a nonlinear function of the radius and height,
V = πR2H, the form of calculation illustrated for the anion gap does
not apply to this case.

The volume of a cylindrical, oil storage
tank is a non-linear function of its

height and diameter — PixelSquid (use
licensed 2020).

The radius was measured by climbing a set of stairs to the tank’s
roof, whose shape and size are essentially identical to its base, mea-
suring its diameter with a tape, and reporting the estimate of the ra-
dius as 8.40 m, give or take 0.03 m. This “give or take” is the margin
of uncertainty, but without additional information it is not partic-
ularly meaningful or useful: one needs to know, for example, how
likely the true value is of lying between 8.37 m and 8.43 m. That is,
one needs to be able to translate uncertainty into probability. This is
often done by regarding the measured value, 8.40 m, as the observed
value of a random variable whose mean is the true value of R, and
whose standard deviation is 0.03 m. This interpretation motivates
calling the “give or take” standard uncertainty.
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In order to define the meaning of “give or take” fully we need to
specify what the 0.03 m actually subsumes, that is, which sources of
uncertainty contribute to it, how they may have been evaluated, and
how their contributions may have been combined. In addition, we
must specify how likely it is that the true value of the radius indeed
lies within 0.03 m of the measured value, 8.40 m.

What does the 0.03 m actually subsume? The standard uncertainty
should reflect contributions from all recognized sources of uncer-
tainty.

• Some of these contributions originate in the tape itself (how and
when it was calibrated, or the effect of temperature on the tape);

• Other contributions derive from how the tape will have been laid
out along a diameter of the roof (how stretched it may have been,
how closely it will have passed to the actual center of the roof, and
whether it touched and went over any rivets or ridges that may
have made it deviate from a straight line parallel to the roof);

• Still other effects are attributable to how the tape was used by the
person making the measurement (whether multiple measurements
were made of the length of the diameter, and if so whether they
were averaged or combined in some other way);

• And there will also be contributions from sources that are specific
to the tank itself (how close to a perfect circle its roof may be, or
how the temperature may affect the tank’s size and shape)

How likely is it that the true value of the radius indeed lies within 0.03 m
of the measured value, 8.40 m? To answer this question one needs a
particular model for the uncertainty that the question alludes to.
The kind of model used most often in metrology to address this
question is a probabilistic model that characterizes in sufficient detail
the random variable mentioned above. Such model is a probability
distribution.

But which probability distribution? The answer depends on what
is known about the sources of uncertainty listed above, and on how
their contributions will have been combined into the reported margin
of uncertainty. A common choice (but by no means the best in all
cases) is to use a Gaussian distribution as the model that lends mean-
ing to the margin of uncertainty. In such case one can claim that the
probability is about 68 % that the true value of the radius is within
0.03 m of its measured value.

The same questions need to be answered, and comparable model-
ing assumptions need to be made for the tank’s height, H, which was
measured using a plumb line dropped from the edge of the roof to
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the concrete platform that the tank is anchored to. The result turned
out to be 32.50 m give or take 0.07 m. The estimate of the volume is
V = πR2H = 7204 m3.

The measurement model, V = πR2H, expresses the output quan-
tity V as a function of the two input quantities, R and H, whose
values are surrounded by uncertainty. If, for the purposes of uncer-
tainty evaluation, both R and H are modeled as random variables,
then V will also be a random variable and the problem of evaluating
its uncertainty can be solved either by characterizing its probabil-
ity distribution fully, or, at a minimum, by computing its standard
deviation.

We’ll do both under the assumption that R and H are independent
random variables, and that both have Gaussian distributions centered
at their measured values, with standard deviations equal to their
standard uncertainties.

Gauss’s formula
6 [Possolo and Iyer, 2017, VII.A.2], which is used

6 C. Gauss. Theoria combinatio-
nis observationum erroribus min-
imis obnoxiae. In Werke, Band IV,
Wahrscheinlichkeitsrechnung und Ge-
ometrie. Könighlichen Gesellschaft der
Wissenschaften, Göttingen, 1823. URL
http://gdz.sub.uni-goettingen.de

in the Guide to the expression of uncertainty in measurement (gum)
[JCGM 100:2008], provides a practicable alternative that will pro-
duce a particularly simple approximation to the standard deviation
of the output quantity because it is a product of powers of the input
quantities: V = πR2H1. The approximation is this(

u(V)

V

)2

≈
(

2× u(R)
R

)2

+

(
1× u(H)

H

)2

. In general, if the measurement model
expresses the output quantity as

Y = κXα1
1 . . . Xαn

n , with mean η and
standard deviation τ, and X1, . . . , Xn

are independent random variables with
means µ1, . . . , µn and standard
deviations σ1, . . . , σn, such that
σ1/µ1, . . . , σn/µn are small (say,

< 10 %), and α1, . . . , αn are constants,
then (τ/η)2 ≈

(α1σ1/µ1)
2 + · · ·+ (αnσn/µn)2.

Note that π does not figure in this formula because it has no un-
certainty, and that the “2” and the “1” that appear as multipliers on
the right-hand side are the exponents of R and H in the formula for
the volume. The approximation is likely to be good when the relative
uncertainties, u(R)/R and u(H)/H, are small — say, less than 10 %
—, as they are in this case. Therefore

u(V) ≈ 7204 m3

√(
2× 0.03 m

8.40 m

)2
+

(
0.07 m

32.50 m

)2
= 54 m3.

A Monte Carlo method [Possolo and Iyer, 2017, VII.A.3] for un-
certainty propagation introduced by Morgan and Henrion [1992] and
described in JCGM 101:2008, provides yet another eminently prac-
ticable alternative, whose validity does not depend on the relative
standard uncertainties being small. The idea and execution both are
very simple, like this:

(1) Make a large number (K ≈ 106) of drawings from the proba-
bility distributions of R and H, using their measured values as

http://gdz.sub.uni-goettingen.de
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the means of these distributions, and their reported standard
uncertainties as the standard deviations.

(2) For each pair of these draws, rk and hk, calculate the volume of
the cylinder vk = πr2

k hk, for k = 1, . . . , K.

(3) Calculate the average of these values of the volume, v1, . . . , vK,
and use it as an estimate of the mean value of V, and their stan-
dard deviation as an estimate of u(V).
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Histogram of 106 replicates of the value
of V simulated using the Monte Carlo
method, and probability density (red

curve) of the Gaussian distribution with
the same mean and standard deviation

as those replicates.

Using samples of size K = 106, we reached the conclusion that
V = 7204 m3, give or take 54 m3, and the histogram of these one mil-
lion replicates shows that V has a probability density that is virtually
indistinguishable from the density of a Gaussian distribution with
this mean and standard deviation. Note, however, that in general
the probability distribution of the output quantity need not be close
to Gaussian, even when the distributions of the input quantities are
Gaussian.

Wheatstone Bridge

Wheatstone bridge comprising the
resistor U whose resistance, RU, one
intends to measure, a resistor F with

fixed resistance, and three resistors (G,
E, and H) with adjustable resistances.

The Wheatstone bridge is an electrical circuit used to obtain accurate
measurements of resistance by balancing both sides of a bridge cir-
cuit, one of which includes the component with unknown resistance
(resistor U). In its simplest version, the Wheatstone bridge comprises
a dc power supply, a voltmeter, and four resistors, one of which has
adjustable resistance. The bridge illustrated here comprises three
adjustable resistors, two of which are arranged in parallel so as to
achieve finer control over their joint resistance, which is the harmonic
mean of their individual resistances, RE and RH:

REH =
1

R−1
E + R−1

H

Resistor G is a General Radio decade resistor that can take values
of resistance up to 1 MΩ in steps of 0.1 Ω, with relative standard un-
certainty 0.05 %. Resistor E is an eico decade resistor that can take
values up to 100 kΩ in steps of 1 Ω, with relative standard uncer-
tainty 0.5 %, and resistor H is a Heathkit RS-1 Resistance Substitution
Box that allows the user to select one of several values of resistance.

The choice of instrumentation pays
homage to a bygone era of analog

electrical devices. The General Radio
Company designed and manufactured

test equipment for resistance,
inductance, and capacitance, from 1915

until 2001, in West Concord ma. The
Electronic Instrument Company (eico)

was established in Brooklyn ny, in
1945, and remained in business for 54

years. Besides test equipment, eico also
produced Geiger counters, amateur

radio, and high-fidelity audio
equipment.

We assume that the measurement experiment was carried out
quickly enough, and at sufficiently low voltage (4 V), so that changes
in resistance caused by heating of the resistors are negligible. We
also assume that the error is negligible in achieving zero volt when
balancing the bridge by adjusting the resistances of G, E, and H, thus
reaching the point where RU/RG = RF/REH. Hence, we have the
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following measurement equation for RU:

RU =
RGRF

REH
= RGRF

(
R−1

E + R−1
H

)
The observed resistance values with the associated standard uncer-
tainties are listed in the table alongside. Since RU is not a simple

resistor R u(R)

E 951 Ω 5 Ω
F 997 Ω 5 Ω
G 909 Ω 0.5 Ω
H 225.2 kΩ 2.3 kΩ

Observed resistance values that result
in zero volt potential difference across

the Wheatstone bridge.product of powers of RE, RF, RG, and RH, the approximation used
above, for the uncertainty of the volume of the storage tank, cannot
be used here. For this we use the Gauss method in its general form,
which relates the uncertainties associated with uncorrelated input
quantities RE, RF, RG, and RH, with the output quantity RU:

u2(RU) ≈
(

∂RU

∂RE

)2
u2(RE) +

(
∂RU

∂RF

)2
u2(RF)+(

∂RU

∂RG

)2
u2(RG) +

(
∂RU

∂RH

)2
u2(RH).

The partial derivatives of the measurement model are given in the
table alongside. By substituting these partial derivatives into the

derivative value

∂RU/∂RE −RGRF/R2
E

∂RU/∂RF RG(R−1
E + R−1

H ) = RU/RF
∂RU/∂RG RF(R−1

E + R−1
H ) = RU/RG

∂RU/∂RH −RGRF/R2
H

Partial derivatives of the output
quantity, RU, with respect to all four

input quantities. These and other
derivatives can be readily obtained

using a variety of online tools such as
www.wolframalpha.com

expression above, we obtain

u2(RU) =
R2

GR2
F

R4
E

u2(RE) +
R2

U
R2

F
u2(RF) +

R2
U

R2
G

u2(RG) +
R2

GR2
F

R4
H

u2(RH).

Finally, the estimate of the measurand is

RU = 909 Ω× 997 Ω×
(

1
951 Ω

+
1

225.2 kΩ

)
= 957 Ω,

with associated standard uncertainty u(RU) ≈ 7 Ω.
The NIST Uncertainty Machine7 can produce the results in a single

7 T. Lafarge and A. Possolo. The
NIST Uncertainty Machine. NCSLI
Measure Journal of Measurement Sci-
ence, 10(3):20–27, September 2015.
doi:10.1080/19315775.2015.11721732

stroke. Modeling all the resistances as Gaussian random variables
with means equal to the observed values and standard deviations
equal to the standard uncertainties, we obtain not only RU = 957 Ω
and u(RU) = 7 Ω, but also a probability distribution for RU and, in
turn, a 95 % coverage interval for the true value of RU, which ranges
from 943 Ω to 971 Ω. Furthermore, we learn that the (squared) un-

Resistance is a positive quantity while
the Gaussian uncertainty model

entertains the possibility of negative
values. For this reason, the lognormal

model is sometimes chosen. The
Gaussian and lognormal models are
just about identical when the relative
uncertainties are small (say, < 5 %).

certainties of the different resistances contribute to the u2(RU) in
these proportions: F, 48 %; G, 0.6 %; E, 52 %; and H 0.004 %.

www.wolframalpha.com
http://uncertainty.nist.gov
https://doi.org/10.1080/19315775.2015.11721732


18

The measurement model considered above does not recognize
the uncertainty associated with balancing the Wheatstone bridge. A
more elaborate model that accounts for this is as follows:8 8 H. Zangl, M. Zine-Zine, and K. Hoer-

maier. Utilization of software tools for
uncertainty calculation in measurement
science education. Journal of Physics:
Conference Series, 588:012054, 2015.
doi:10.1088/1742-6596/588/1/012054

RU =
U0RG(RF + REH)

U0REH + U(RF + REH)
− RG.

Here, U0 is the potential difference across the terminals of the dc

power supply, U0 = 4 V, and U is the potential across the balanced
bridge (U ≈ 0 V). Uncertainty analysis of this more complete mea-
surement model using the NIST Uncertainty Machine reveals that
balancing the Wheatstone bridge becomes the dominant source of
uncertainty of RU if the uncertainty associated with U is larger than
5 mV.

https://doi.org/10.1088/1742-6596/588/1/012054
http://uncertainty.nist.gov
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Counting

Fuentes-Arderiu and Dot-Bach [2009, Table 1] report results of clas-
sifying and counting white blood cells (leukocytes) of different types
in a blood smear, known as a differential leukocyte count. The typical
procedure when such counting is done manually while examining
the sample under the microscope, is to count 100 leukocytes in total,
while keeping a tally of the different types of leukocytes.

leukocytes n uS(n) uB(n)

Neutrophils 63 5 4

Lymphocytes 18 4 6

Monocytes 8 3 4

Eosinophils 4 2 3

Basophils 1 1 3

Myelocytes 1 1 1

Metamyelocytes 5 2 4

Table showing the leukocyte count (n).
uS(n) quantifies the uncertainty

attributable to sampling variability, and
uB(n) does the same for differences

between examiners.

In this case, there were 4 eosinophils among the 100 leukocytes
that were counted. It is to be expected that, if another blood smear
from the same patient were to be similarly examined, the number of
eosinophils would turn out different from 4, owing to the vagaries of
sampling.

This source of uncertainty is often modeled using either the bino-
mial or the Poisson probability distributions. Since the probability of
finding an eosinophil is small, these two models lead essentially to
the same evaluation of this uncertainty component: that the propor-
tion of eosinophils should vary by about

√
4/100 = 2 % around the

measured value of 4, which is taken as the estimate of the Poisson
mean, whence the count will have standard deviation

√
4.
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Probabilities from Poisson distribution
with mean 4, which is the number of

eosinophils in the differential leukocyte
count listed above.

Counting the eosinophils involves: (i) identifying them, that is,
defining the subset of the 100 leukocytes under examination that are
eosinophils; (ii) actually counting the eosinophils that were identi-
fied; and (iii) qualifying the count with an evaluation of uncertainty,
which should include contributions from sampling variability and
from differences between examiners (which express identification
uncertainty).

The standard for the identification task (i) should be the holotype
(paradigm, reference exemplar) for an eosinophil. For species of
plants and animals, the holotype is the individual specimen used
to define a species, but there are no formal holotypes for different
types of leukocytes. Because eosinophils are not identical copies of
one another, accurate identification requires familiarity with their
natural variability and reliance on distinctive traits that allow distin-
guishing them from the other types of leukocytes. For this reason,
when different examiners count the same set of 100 leukocytes, it is
likely that they will arrive at different counts for the different types of
leukocytes.

Holotype of a female Agrias amydon
phalcidon butterfly from Brazil —

Wikimedia Commons (Notafly, 2011).

Fuentes-Arderiu et al. [2007] have evaluated this source of un-
certainty that is attributable to the effect of examiners, concluding
that the coefficient of variation for the proportion of eosinophils
was 69 %. Therefore, the uncertainty component for the count of
eosinophils that arises from differences between examiners amounts
to 4× 69 % = 3 eosinophils.
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The standard for the counting task (ii) is the unique finite set I
comprising consecutive, positive integers, starting with 1, that can be
put in one-to-one correspondence with the leukocytes that have been
identified as being eosinophils: the measured value of the number
of eosinophils is the largest integer in I. Task (ii) is counting sensu
stricto, after identification, and is susceptible to counting errors. How-
ever, and in this case, since the numbers of leukocytes of the different
types all are fairly small, and typically they are tallied using mechan-
ical counters, we will assume that there are no counting errors above
and beyond any identification errors.

Regarding task (iii), uncertainty evaluation, we need to take
into account the fact that the total number of leukocytes that are
identified and counted is fixed. Therefore, and for example, if an
eosinophil is misclassified as a basophil, then the undercount for
eosinophils results in an overcount for basophils. This means that

Eosinophils (left) are leukocytes that
fight parasitic infections and mediate
allergic reactions. Basophils (right)
control the response to allergens —
Wikimedia Commons (BruceBlaus,

2017). Unless the blood smear being
measured is stained to emphasize

basophils, they may be confused with
eosinophils.the uncertainty evaluation for the counts cannot be performed sepa-

rately for the different types of leukocytes, but must be done for all
jointly, taking the effect of the fixed total into account: the so-called
closure constraint.9

9 F. Chayes. On correlation between
variables of constant sum. Journal of
Geophysical Research, 65(12):4185–4193,
1960. doi:10.1029/JZ065i012p04185

Performing a differential leukocyte count is equivalent to placing
100 balls (representing the 100 leukocytes) into 7 bins (representing
the different types of leukocytes considered in this case), where the
probability of a ball landing in a particular box is equal to the true
proportion of the corresponding type of leukocyte in the subject’s
blood.

The probability model often used to describe the uncertainty asso-
ciated with the numbers of balls that actually end-up in the different
bins is the multinomial probability distribution. This model also
takes into account the fact that no count can be negative. For the
eosinophils, considering both sampling and examiner sources of un-
certainty, their true count is believed to lie between 0 and 10 with
95 % probability, using methods reviewed under Counts.

https://doi.org/10.1029/JZ065i012p04185
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Surveying

In 2019, non-irrigated pastureland in Kansas was valued at around
$4620 per hectare (1 ha = 10 000 m2). A plot, shaped like an irregular
heptagon on an essentially flat plain, is for sale with asking price
$206 000. The seller offered to provide coordinates of the vertices in
triplicate, determined using a portable, consumer-grade gps receiver.

easting / m northing / m

A 826 821 848 615 625 619
B 673 698 699 752 782 763
C 440 419 434 781 795 802
D 82 98 107 415 411 380
E 131 121 115 149 105 117
F 471 495 480 -9 42 14
G 796 807 777 217 258 225

Coordinates of vertices of heptagonal
plot of pastureland in Kansas, usa. One
of the three determinations of location
for vertex A has coordinates (826, 615),

and similarly for all the others.

The potential buyer insisted that the triplicates should be obtained
in three separate surveys. In each survey, the vertices were visited
in random order, and the gps receiver was turned off after taking a
reading at a vertex, and then turned on again upon arrival at the next
vertex, so that it would reacquire satellites and determine the location
afresh.

These are the questions the potential buyer wishes a surveyor will
answer: (i) How to estimate the plot’s area? (ii) How to evaluate the
uncertainty surrounding this estimate? (iii) How may have the seller
come up with that asking price? The reason for this last question is
that some understanding of the origin of the asking price may be
a valuable element when the potential buyer will make a decision
about how much to offer.
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Plot of pastureland in Kansas, usa. The
small (red) dots mark the triplicates of

the vertices as determined by a gps

receiver, and the large (green) dots
mark the averages of the triplicates.

To estimate the plot’s area one may use the Surveyor’s Formula.10

10 B. Braden. The surveyor’s area for-
mula. The College Mathematics Journal, 17

(4):326–337, 1986. doi:10.2307/2686282

However, before using it, one needs to decide how to combine the
triplicate determinations of the location of each vertex. One possible
way consists of averaging them. For example, the average easting for
vertex A is e(A)/m = (826 + 821 + 848)/3 = 831.7. Let (e(A), n(A)),
(e(B), n(B)), . . . , (e(G), n(G)) denote the averages of the Cartesian
coordinates (easting and northing) of the triplicates at each vertex of
the polygon in counterclockwise order (A, B, . . . , G). These are the
coordinates of the large (green) dots in the plot alongside. The area
of the shaded polygon is S = 41.3 ha, and it was computed as follows:

S =
1
2

(∣∣∣ e(A) e(B)
n(A) n(B)

∣∣∣+ ∣∣∣ e(B) e(C)
n(B) n(C)

∣∣∣+ · · ·+ ∣∣∣ e(F) e(G)
n(F) n(G)

∣∣∣+ ∣∣∣ e(G) e(A)
n(G) n(A)

∣∣∣) ,

where
∣∣ a b

c d

∣∣ = ad− bc.
The question may well be asked of why the averages of the trip-

licates, instead of some other summary. The average will be optimal
when the measurement errors affecting the easting and northing co-
ordinates are independent and Gaussian, and the goal is to minimize
the mean squared error of the estimates of the vertices.
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Four of the 37 = 2187 heptagons that
can be constructed using the replicate

determinations of the vertices.

Given the replicated determinations that were made of the loca-
tions of the vertices, it is possible to construct many different versions
of the heptagon by choosing one of the three replicates made for
vertex A, one of the three made for vertex B, etc. Each of these hep-
tagons is consistent with the measurements that were made. Running
through all 37 = 2187 possible combinations of vertex determinations

https://doi.org/10.2307/2686282
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(each of which comprises a pair of values of easting and northing),
and computing the areas of these alternative heptagons, yields a set
of 2187 conceivable values for the area, whose average and median
both equal 41.3 ha.

The area of the largest of these 2187 heptagons is 44.6 ha, with
corresponding value 44.6 ha× $4620/ha ≈ $206 000, which explains
the likely rationale behind the asking price. Since the area of the
smallest heptagon is 37.6 ha, the same rationale would support an
offer of 37.6 ha× $4620/ha ≈ $174 000.

However, an offer based on a value for the area close to the av-
erage area is more likely to be accepted by the seller than one that
is as deviant from the average, but on the low side, as the one that
the seller’s asking price is based on, which is correspondingly on the
high side. But the buyer should also take into account the uncertainty
associated with the area.
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Probability density estimates for the
area of the heptagon: based on the

areas of the 2187 alternative heptagons,
and on the bootstrap. The former (dark

orange) ignores the correlations
between the areas of the alternative

polygons: the corresponding standard
deviation is 1.17 ha. The latter (blue)
reflects the impact of measurement

errors affecting the easting and
northing coordinates of each vertex, and

recognizes the small numbers of
replicates per vertex: it has heavier tails,

and the corresponding standard
deviation is 1.32 ha.

Considering that each replicate of each vertex appears in 36 = 729
heptagons built as just described, hence that there are correlations
between the 2187 areas of the alternative heptagons, the standard
deviation of these areas, 1.17 ha, may not be a reliable evaluation of
the uncertainty associated with the area of the plot of land.

To evaluate this uncertainty, the buyer hires a statistician, whose
first task is to quantify the uncertainty associated with the measure-
ment of each vertex. The statistician applies the Fligner-Killeen test11

11 M. A. Fligner and T. J. Killeen.
Distribution-free two-sample tests
for scale. Journal of the American Statis-
tical Association, 71(353):210–213, March
1976. doi:10.2307/2285771

to the replicated determinations of the easting and northing coor-
dinates of the vertices of plot, and concludes that there is no reason
to doubt that all 14 sets of replicates have the same variance. The
statistician proceeds by pooling the variances of the 14 groups of
replicates, which yields a standard uncertainty of 16 m (on 28 de-
grees of freedom) for an individual determination of the easting or
northing of a vertex.

The pooled variance for easting and
northing is the sum of the sums of

squared deviations from their averages
for the values of easting and northing,

over all the vertices, divided by the sum
of the corresponding numbers of

degrees of freedom (3− 1) per vertex.
The pooled standard deviation, s, is the

square root of the pooled variance.

east = array(c(826, 673, 440, 82, 131, 471, 796, 821, 698, 419, 98,

121, 495, 807, 848, 699, 434, 107, 115, 480, 777),

dim=c(7,3))

north = array(c(615, 752, 781, 415, 149, -9, 217, 625, 782, 795,

411, 105, 42, 258, 619, 763, 802, 380, 117, 14, 225),

dim=c(7,3))

z = data.frame(east=c(east), north=c(north),

east.vertex=I(paste0("E", rep(1:7, 3))),

north.vertex=I(paste0("N", rep(1:7, 3))))

fligner.test(x=c(z$east, z$north), g=c(z$east.vertex, z$north.vertex))

east.s = apply(east, 1, sd)

north.s = apply(north, 1, sd)

s = sqrt(sum((3-1)*east.s^2 + (3-1)*north.s^2) /

((3-1)*length(east.s) + (3-1)*length(north.s)))

s.nu = (3-1)*length(east.s) + (3-1)*length(north.s)

c(s=s, s.nu=s.nu)

https://doi.org/10.2307/2285771
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The statistician’s next task is to propagate this uncertainty to the
uncertainty of the area, which she does employing the parametric sta-
tistical bootstrap [Efron and Tibshirani, 1993]. This involves repeating
the following two steps a large number of times:

• For each vertex i = 1, . . . , 7 in turn, simulate an easting of the
form ei + εi and a northing of the form ni + νi, where (ei, ni) are
the averages of the three determinations of easting and northing
of vertex i = 1, . . . , 7, and εi and νi represent measurement errors
with zero mean and standard deviation 16 m — these measure-
ment errors are drawings from Student’s t distributions with 28
degrees of freedom, rescaled to have this standard deviation.

• Use the Surveyor’s Formula to compute the area of the heptagon
whose vertices’ locations were simulated in the previous step.

The statistician repeated these steps one million times and found
that the average of the areas of the simulated heptagons was the
same as the area determined originally, and that the standard devia-
tion of the simulated areas was 1.3 ha. In light of this fact, the statis-
tician suggested to the buyer than an offer between (41.3− 1.3)ha×
$4620/ha = $184 800 and (41.3 + 1.3)ha × $4620/ha = $198 612
would be reasonable.

e = apply(east, 1, mean)

n = apply(north, 1, mean)

m = length(e)

K = 1e6

areaB = numeric(K)

for (k in 1:K)

{

eB = e + s * rt(m, df=s.nu)/sqrt(s.nu/(s.nu-2))

nB = n + s * rt(m, df=s.nu)/sqrt(s.nu/(s.nu-2))

surv = (eB[m]*nB[1] - nB[m]*eB[1])

for (i in 1:(m-1)) {

surv = surv + (eB[i]*nB[i+1] - nB[i]*eB[i+1])}

areaB[k] = (abs(surv)/2) / 10000

}

c(mean(areaB), sd(areaB))

The case just discussed involves a rather simple geometric figure:
a heptagon whose boundary is clearly well defined. In practice, one
often has to deal with more complex situations. Benoit Mandelbrot12

12 B. Mandelbrot. How long is the
coast of Britain? statistical self-
similarity and fractional dimen-
sion. Science, 156:636–638, May 1967.
doi:10.1126/science.156.3775.636

famously asked the question “How long is the coast of Britain?” It

The estimated length of the uk coastline
depends on the size of the ruler used

(modified from Gurung [2017]).

so turns out that the answer to this question depends on the spa-
tial scale at which the question is considered: or, in other words, on
the size of the ruler used to measure it. Mandelbrot notes that “geo-
graphical curves are so involved in their detail that their lengths are
often infinite or, rather, undefinable.” In fact, the apparent length of
the coastline decreases as the length of the ruler increases.

https://doi.org/10.1126/science.156.3775.636
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Weighing

Radwag AK-4/2000 Automatic Mass
Comparator (Radom, Poland).

A laboratory weight C, of nominal mass 200 g, is to be calibrated
using two previously calibrated reference weights A and B, whose
masses exceed 200 g by 0.22 mg and 0.61 mg, respectively, both
known to within 0.14 mg with 95 % probability, which suggests that
these may be class E2 weights.13

13 International Organization of Legal
Metrology (OIML). Weights of classes
E1, E1, E2, F1, F2, M1−2, M2, M2−3, and
M3 — Part 1: Metrological and technical
requirements. Bureau International
de Métrologie Légale (OIML), Paris,
France, 2004. URL https://www.oiml.

org/en/files/pdf_r/r111-1-e04.pdf.
International Recommendation OIML R
111-1 Edition 2004 (E)

The calibration involves determining three mass differences using
a mass comparator: the observed difference between the masses of
A and B is DAB = −0.38 mg, and similarly DAC = −1.59 mg and
DBC = −1.22 mg.

Since the weight A has a nominal mass 200 g, we write mA =

200 g + δA, where δA is the true deviation from the nominal mass,
and similarly for the other weights. That is, we have the following
simultaneous observation equations:14

14 P. E. Pontius and J. M. Cameron.
Realistic Uncertainties and the Mass
Measurement Process — An Illustrated
Review. Number 103 in NBS Mono-
graph Series. National Bureau of
Standards, Washington, DC, 1967. URL
http://nvlpubs.nist.gov/nistpubs/

Legacy/MONO/nbsmonograph103.pdf

DAB = δA − δB + εAB

DAC = δA − δC + εAC

DBC = δB − δC + εBC

where εAB, εAC, and εBC denote the (non-observable) measurement
errors incurred in the mass comparator. The conventional approach15

15 R. N. Varner and R. C. Raybold. Na-
tional Bureau of Standards Mass Calibra-
tion Computer Software. NIST Technical
Note 1127. National Bureau of Stan-
dards, Washington, DC, July 1980. URL
https://nvlpubs.nist.gov/nistpubs/

Legacy/TN/nbstechnicalnote1127.pdf

involves finding values for δA, δB, and δC, that minimize the sum of
the squared errors,

(δA − δB − DAB)
2 + (δA − δC − DAC)

2 + (δB − δC − DBC)
2,

subject to the constraint δA + δB = 0.83 mg, which is one of several
alternative constraints that could be applied.

The solution of this constrained linear least squares problem
produces the estimate δ̂C = 1.82 mg, with associated uncertainty
u(δ̂C) = 0.049 mg. Even though the maximum permissible error for a
200 mg class E1 weight is 0.10 mg, it would be inappropriate to place
the weight C into this class, considering that the calibrants are class
E2 weights.

Alternatively, an estimate of δC can be obtained using Bayesian
statistical methods. For this, we model the measured mass differences
probabilistically, as outcomes of Gaussian random variables:

DAB ∼ GAU(δA − δB, σ),

DAC ∼ GAU(δA − δC, σ),

DBC ∼ GAU(δB − δC, σ).

For example, the observed value of DAB is viewed as a drawing from
a Gaussian distribution with mean δA − δB and standard deviation σ.

https://www.oiml.org/en/files/pdf_r/r111-1-e04.pdf
https://www.oiml.org/en/files/pdf_r/r111-1-e04.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph103.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph103.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1127.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1127.pdf
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We also use probability distributions to express what we know about
the deviations from nominal of the masses of weights A and B, thus:

δA ∼ GAU(0.22 mg, 0.07 mg),

δB ∼ GAU(0.61 mg, 0.07 mg).

All we know about weight C is that it has a nominal mass of 200 g,
but we also have good reasons to believe that its true mass lies within
a reasonably narrow interval centered at 200 g. Providing a generous
allowance for the length of this interval, we adopt the model

δC ∼ GAU(0 mg, 100 mg).

The fact that this prior standard deviation is comparable to the max-
imum permissible error for a class M3 weight, does not signify that
the weight C may be of this class. Rather, this choice serves only to
give the data ample opportunity to make themselves heard, unen-
cumbered by overly restrictive prior assumptions.

Since the Bayesian approach requires that all unknown parameters
be modeled probabilistically, we need to assign a probability distribu-
tion also to the standard deviation, σ, of the measurement errors. To
this end, we assume that the true value of σ is a priori equally likely
to be larger or smaller than 1 mg, and assign a half-Cauchy distribu-
tion to σ, with median 1 mg. This choice provides great latitude for
the value that σ may truly have, and gives the data ample opportu-
nity to express themselves.

The Monte Carlo Markov Chain
method, implemented using the Stan

modeling language in tandem with the
R package rstan as detailed alongside,
was used to draw a large sample from
the posterior probability distribution of

δC. A robust estimate of the mean of
this sample equals 1.82 mg (which
happens to be identical to the least

squares estimate above), and a robust
estimate of its standard deviation

equals 0.074 mg, which is substantially
larger than the uncertainty associated

with the least squares estimate.
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require(rstan); require(robustbase)

m = "data { real DAB; real DAC; real DBC; }

parameters { real dA; real dB; real dC;

real<lower=0> sigma; }

model {

// Prior distributions

dA ~ normal(0.22, 0.07); dB ~ normal(0.61, 0.07);

dC ~ normal(0.00, 100); sigma ~ cauchy(0.0, 1.0);

// Likelihood

DAB ~ normal(dA - dB, sigma); DAC ~ normal(dA - dC, sigma);

DBC ~ normal(dB - dC, sigma); }"

fit = stan(model_code = m,

data = list(DAB = -0.38, DAC = -1.59, DBC = -1.22),

init = function() list(dA=0.22, dB=0.61, dC=1.8, sigma=0.1),

warmup=75000, iter=250000, chains=4, cores=4, thin=25,

control= list(adapt_delta=0.99999, max_treedepth=15))

dC.posterior = rstan::extract(fit)$dC

c(MEAN=huberM(dC.posterior)$mu, SD=Qn(dC.posterior))

The results of this Bayesian calibration are mC = 200 001.82 mg,
give or take 0.23 mg, with 95 % probability.
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Optimal design of experiments can use the results of uncer-
tainty propagation as a guide. Consider a situation where we wish to
determine the individual weights of three gold coins with the small-
est uncertainty possible. We have access to a good balance but only
for a limited time, enough to perform three weighings. The uncer-
tainty associated with each weighing in this balance is constant, and
does not depend on the mass being weighed, u(m) = u.

We could devise two experimental designs: (1) weigh each coin
individually or (2) weigh them in pairs (coin 1 and coin 2 together,
then coin 1 and coin 3 together, and finally coins 2 and 3 together).
This is the measurement model corresponding to the latter design:

m1 = 1
2
(
+ m1+3 + m1+2 −m2+3

)
,

m2 = 1
2
(
−m1+3 + m1+2 + m2+3

)
,

m3 = 1
2
(
+ m1+3 −m1+2 + m2+3

)
.

Applying Gauss’s formula to these expressions yields, for exam-
ple,

u2(m1) =

(
∂m1

∂m1+3

)2
u2(m1+3)

+

(
∂m1

∂m1+2

)2
u2(m1+2)

+

(
∂m1

∂m2+3

)2
u2(m2+3)

=
1
4

u2 +
1
4

u2 +
1
4

u2,

and similarly for u(m2) and u(m3). Thus,

u(m1) = u(m2) = u(m3) = u
√

3/4.

That is, by weighing the three coins in pairs we achieve 13 % lower
uncertainty than by weighing them separately. Since the expressions
above are linear combinations of the weighings, Gauss’s formula is
exact in this case.
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Ranking

Ranking is assigning a place for an object being measured in an or-
dered sequence of standards, based on the value of a property whose
values can be ordered from smallest to largest but not necessarily
quantified. To distinguish harder and softer pencil leads, for exam-
ple, pencil manufacturers rank pencils on a grading scale: from 9B
(super black, very soft) to 9H (a gray scratch, very hard).

The Mohs scale of hardness is determined by comparing a
mineral specimen against a set of reference standards by means of
a scratch test, whose results place it in the rank order of increasing
hardness. The Mohs reference standards16 are samples of various

hardness mineral

1 talc
2 gypsum
3 calcite
4 fluorite
5 apatite
6 orthoclase
7 quartz
8 topaz
9 corundum
10 diamond

The minerals defining the Mohs
hardness scale.

16 C. Klein and B. Dutrow. Manual of
Mineral Science. John Wiley & Sons,
Hoboken, NJ, 23rd edition, 2007. ISBN
978-0-471-72157-4

minerals with ordinal values 1 to 10 assigned to them without imply-
ing that the increase in hardness from gypsum to calcite is the same
as the increase in hardness from apatite to orthoclase. For exam-
ple, tourmaline typically scratches quartz and is scratched by topaz,
hence its Mohs hardness is between 7 and 8. The numbers used to
denote ranking order on an ordinal scale are nothing but labels for
which arithmetic operations are not meaningful. Thus, numbers 1–10
could very well be replaced by letters A–J to convey the same mes-
sage. In practice, when one says that the hardness of tourmaline is
7.5, all one means is that its hardness lies between the hardness of
quartz and topaz.

Numbers are often used as labels with
only an ordinal or nominal connotation.

Examples of this use are the numbers
used in the Saffir-Simpson ordinal scale
of hurricane strength, and the numbers
printed on the shirts of football players,

where they serve to indicate the
different players (nominal scale).

Our ancestors have pondered for ages the question of which
planet is the closest to Earth. Most textbooks state that it is Venus

Which planet is closest to Earth? —
Wikimedia Commons (Clon, 2016)

because it makes the closest approach to Earth compared to any
other planet.17 The answer, however, depends on what is meant by

17 T. Stockman, G. Monroe, and S. Cord-
ner. Venus is not earth’s closest neigh-
bor. Physics Today, 72, March 2019.
doi:10.1063/PT.6.3.20190312a

“closest” — whether it means closest ever, closest on average, or
closest most of the time —, because planets do not stand still and
therefore distances between them are in constant flux.

On January 1st, 2019, for example, Venus indeed was the planet
closest to Earth, but that was no longer the case on the following
February 24th, when Mercury moved closer. In the long term (over
the period 2020-2420) Mercury will be Earth’s closest neighbor 47 %
of the time, Venus 37 % of the time, and Mars 16 % of the time, ac-
cording to the nasa Jet Propulsion Laboratory horizons system
[Giorgini, 2015]. And it may be surprising that Pluto will be closer to
Earth than Neptune 4 % of the time, even though its median distance
to Earth is almost 1.5 times larger than Neptune’s.

To characterize the positions of the planets relative to Earth prop-
erly, one needs to consider the distributions of the daily distances, as
depicted in the histograms below. Except for Uranus, the average dis-

https://doi.org/10.1063/PT.6.3.20190312a
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tance does not represent a typical distance from Earth. Neither does
the standard deviation of the daily distances capture the variability of
the distances accurately. Even though the uncertainty of the distance
from Earth to any other planet, computed for a particular day by the
horizons system, is rather small, the variability of the distances is
quite large, and it is best communicated by means of the probability
distributions depicted in these histograms, which may be interpreted
as representing the uncertainty about the distance on a randomly
selected day.

Histograms of the daily distances from
Earth (expressed in astronomical units,
AU), for the planets in the Solar System
during the period 2020-2420. Each blue
dot indicates the average distance from

Earth.

Alina Zagitova performing in the
ladies’ skating short program at the
2018 Winter Olympics — Wikimedia

Commons (David W. Carmichael, 2018).

In the 2018 Winter Olympics, the gold, silver, and bronze medals
in Ladies Single Skating were awarded to Alina Zagitova, Evgenia
Medvedeva, and Kaetlyn Osmond, respectively, who earned to-
tal scores of 239.57, 238.26, and 231.02 points, from a panel of nine
judges.

The medals are awarded considering only the final ranking of
the athletes, regardless of whether the differences in the underly-
ing scores are large or small. In 2018, a mere 1.31 point gap (that is,
0.55 %) separated Olympic gold from silver. How significant may this
difference be considering the uncertainty that inevitably is associated
with the assignment of scores?

Figure skating scores are produced by a complex scoring system
that involves intrinsic levels of difficulty for technical elements, a
priori weights, subjective evaluations made by nine judges indepen-
dently of one another, and consideration of whether the elements
are performed early or late during each routine. This example serves
to illustrate how Monte Carlo methods — that is, methods based
on simulations of contributions from recognized sources of uncer-
tainty — can be used to carry out uncertainty evaluations. In this
case, the Monte Carlo method will serve to shed light on the sig-
nificance of the difference in scores that earned Zagitova the gold
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medal, and Medvedeva the silver. The table shows an excerpt from

executed element

judge 3S 3F 2A

1 2 3 1
2 2 2 1
3 3 3 1
4 2 3 2
5 1 3 2
6 2 2 1
7 2 2 1
8 2 2 1
9 2 2 1

Base value, b 4.84 5.83 3.63
Weight, w 0.7 0.7 0.5

Total, s 6.24 7.53 4.20
Excerpt of score sheet for Alina

Zagitova’s final free skating component.
3S stands for triple Salchow, 3F for
triple flip, and 2A for double Axel.

the score sheet for Zagitova’s free skating component in the ladies fi-
nals: each executed technical element i has a particular, agreed-upon
base value, bi, and the quality of its execution is evaluated by nine
judges. After removing the lowest and highest scores, the average
score of the other seven is computed (trimmed mean) and added to
the base value after multiplication by a predetermined weight, wi.
The combined score for element i is computed as follows, where Ji,j

denotes the score that judge j gave the athlete for the execution of
this element:

si = bi +
wi

9− 2

(
9

∑
j=1

Ji,j − min
j=1,...,9

{Ji,j} − max
j=1,...,9

{Ji,j}
)

The final scores are the sums of such element-specific scores, and
certainly include expressions of the subjective, professional opinions
of the nine judges. Given that judges do not always agree on their
scores, it is reasonable to explore the extent of their disagreement.
One way to assess the reliability of the judging scores is to simulate
samples by randomly drawing scores, with replacement, from the set
of actually observed scores, and then calculating the total score for
each such random sample. This method is known as nonparametric
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Probabilistic interpretation of the ladies
single figure skating medal scores at the

2018 Winter Olympics.

bootstrap resampling [Efron and Tibshirani, 1993] and is widely used
for uncertainty evaluations in science, medicine, and engineering. In
this case, we generated 50 000 bootstrap samples, which enabled us
to conclude that the probability of Medvedeva having won the gold
medal was 6 %, thus quantifying the effect that judging uncertainty
had upon the final result.
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Comparing

One of the most important applications of uncertainty evaluation is
to compare two quantities whose measured values are surrounded by
uncertainty. There is no margin for doubt when comparing numbers
about which there is no uncertainty: everyone agrees that 9 > 7.
But it is impossible to decide conclusively whether meitnerium-277

and meitnerium-278 isotopes have the same or different longevity,
considering that their half-lives18 are estimated as t1/2(

277Mt) = 18 G. Audi, F.G. Kondev, M. Wang, W. J.
Huang, and S. Naimi. The Nubase2016

evaluation of nuclear properties. Chi-
nese Physics C, 41(3):030001–1–138,
March 2017. doi:10.1088/1674-
1137/41/3/030001

9 s and t1/2(
278Mt) = 7 s with standard uncertainties 6 s and 3 s,

respectively. We shall illustrate five kinds of comparisons:

(i) a set of replicated observations of a quantity with the specified
target value that the quantity is supposed to have;

(ii) a value measured by a user of a reference material with the corre-
sponding certified value;

(iii) a set of replicated observations with a reference value qualified
with an associated uncertainty;

(iv) two independent sets of observations obtained using two differ-
ent methods for measuring the same quantity;

(v) contributions from different sources of uncertainty.

Comparing Replicated Determinations with Target Value

A particular kind of artillery shell is supposed to be loaded with
333 g of propellant. The values of the mass of propellant in 20 such
shells, expressed in g, were: 295, 332, 336, 298, 300, 337, 307, 312, 301,
333, 344, 340, 339, 341, 297, 335, 345, 342, 322, 331.

The conventional treatment of this problem19 involves computing 19 M. G. Natrella. Experimental Statistics.
National Bureau of Standards, Wash-
ington, D.C., 1963. National Bureau of
Standards Handbook 91

the difference between the average of these 20 determinations, 324 g,
and the specified target value, using as unit the standard uncertainty
of the average:

324 g− 333 g
18.3 g/

√
20

= −2.2.

The denominator has the standard deviation of the determinations,
18.3 g, divided by the square root of their number, which is the Type
A evaluation of standard uncertainty for the average, according to
the gum (4.2.3). Therefore, the average of these determinations is 2.2
standard uncertainties below the specified target value.

Still according to the conventional treatment, this standardized dif-
ference is to be interpreted by reference to a Student’s t distribution
with 19 degrees of freedom. The probability that such random vari-
able will take a value that is more than 2.2 units away from zero, in

https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1088/1674-1137/41/3/030001
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either direction, is 4 %. The reason why we consider deviations from The p-value of a two-sided Student’s t
test can be calculated using a variety of
software. Since any software may suffer

from errors, it is recommended that
important calculations be replicated
using implementations developed
independently of one another in
different software environments

command

R 2*pt(-2.2, df=19)

Python 2*stats.t.cdf(-2.2, df=19)

Excel t.dist.2t(2.2, 19)

zero in either direction is that we are testing a difference between the
mean of the measured values and the specified value, regardless of
whether that mean is larger or smaller than this specified value.

That probability, 4 %, is called the p-value of the test. It is the
probability of observing a difference at least as large, in absolute
value, as the difference that was observed, owing to the vagaries of
sampling alone, on the assumption that in fact there is no difference.
For this reason, a small p-value is usually interpreted as suggesting
that the observed difference is significant.

The test just described is a procedure for statistical inference: the
derivation of a conclusion from a sample, where the confidence in
the conclusion is characterized probabilistically. The validity of the
results of all such procedures hinges on the adequacy of the model
and on particular assumptions, which are much too often neglected
or taken for granted.

In this case, the assumptions are that the values in the sample are
like outcomes of independent, Gaussian random variables, all with
the same mean and standard deviation. The Probability Appendix
points out that independence is a powerful property and a costly
assumption, which is next to impossible to verify empirically in most
cases. However, the assumption that the data originate in a Gaussian
distribution can be evaluated using the Anderson-Darling test,20 for

20 T. W. Anderson and D. A. Dar-
ling. Asymptotic theory of certain
“goodness-of-fit” criteria based on
stochastic processes. Annals of Math-
ematical Statistics, 23:193–212, 1952.
doi:10.1214/aoms/1177729437

example. This test yields a p-value of 0.2 %, computed in R as

m = c(295, 297, 298, 300, 301, 307, 312, 322, 331, 332,

333, 335, 336, 337, 339, 340, 341, 342, 344, 345

library(nortest); ad.test(m)$p.value

This suggests that the test aforementioned may not be appropriate
for these data, and that conformity with the target value ought best
be evaluated in some other way.

Wilcoxon’s one-sample signed rank test
21 does not require

21 M. Hollander, D. A. Wolfe, and
E. Chicken. Nonparametric Statistical
Methods. John Wiley & Sons, Hoboken,
NJ, 3rd edition, 2014

that the distribution the data come from be Gaussian, only that it
be symmetric. The corresponding p-value is 0.22, obtained in R as

wilcox.test(m, mu=333)$p.value.
Therefore, the result of this test contradicts the result of Student’s t
test above, suggesting that the observations are consistent with the
target value.

In 2014, 29 teams of researchers were
asked to analyze the same data about

red cards in soccer, using statistical
procedures of their choice. Twenty

teams concluded that there is a
significant correlation between a

player’s skin color and his being given
a red card, whereas nine teams

concluded that there is none [Silberzahn
and Uhlmann, 2015]

This example shows that conclusions drawn from data depend on
assumptions and models used to describe particular patterns of vari-
ability of the data, and that the conclusions may change drastically
when assumptions or models change.

https://doi.org/10.1214/aoms/1177729437
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Comparing Measured Value with Reference Value

When comparing two estimates of the same quantity, in particular a
measured value and a certified value, while taking their uncertainties
into account, the overlap of corresponding coverage intervals is not
sufficient reason to conclude that the corresponding true values are
identical [Possolo, 2020, Example 7.2.A]. Note that equality to within specified

uncertainties is not a transitive relation.
Thus, if objects A and B are found to
have identical masses to within their

uncertainties, and if the same is true for
objects B and C, it does not necessarily
follow that the masses of A and C also
are identical to within their respective

uncertainties.

The certified mass fraction of nickel in nist Standard Reference
Material (srm) 59a ferrosilicon is 328 mg/kg with expanded uncer-
tainty 73 mg/kg for 95 % coverage. This means that the correspond-
ing true value lies between 255 mg/kg and 401 mg/kg with 95 %
probability. Suppose that a user of this material measured the mass
fraction of nickel and obtained 172 mg/kg with expanded uncertainty
132 mg/kg, also for 95 % coverage. Since the corresponding coverage
interval, ranging from 40 mg/kg to 304 mg/kg, overlaps the interval
above, the inference may be drawn that there is no significant differ-
ence between the true mean of the user’s measurement and the true
value of the measurand.

The difference between the two measured values is 328 mg/kg−
172 mg/kg = 156 mg/kg and the standard uncertainty of the dif-
ference between these values is the square root of the sum of the
individual, squared standard uncertainties,√

((73/2) mg/kg)2 + (132/2) mg/kg)2 = 75 mg/kg.

The test statistic is the standardized difference, 156/75 = 2.08. The
p-value of the test is the probability of a Gaussian random variable
with mean 0 and standard deviation 1 being either smaller than
−2.08 or larger than +2.08. This probability is 3.75 %, which in most
cases suggests a significant difference.

This statistical test assumes that the two
values being compared are outcomes of

independent Gaussian random
variables, and that their associated
standard uncertainties are based on

infinitely many degrees of freedom. The
p-value is the probability of observing a
difference as large or larger (in absolute

value) than the difference that was
observed, by chance alone, owing to the
vagaries of sampling and measuring the

material, if the corresponding true
values were identical. A small p-value

suggests a significant difference.Comparing Replicated Determinations with Reference Value

To validate a measurement method, a laboratory often makes mea-
surements of a reference material, and then compares the measure-
ment results with the certified value. nist srm 1944 is a mixture of
marine sediments collected near urban areas in New York and New
Jersey, intended for use in evaluations of analytical methods for the
determination of polychlorinated biphenyls (pcb) and several other
hydrocarbons in similar matrices.

A quality control test yielded the following replicates for the mass
fraction of pcb 95: 63.9 µg/kg, 48.4 µg/kg, and 46.1 µg/kg. Their
average and standard deviation are 52.8 µg/kg and 9.7 µg/kg. The
Type A evaluation of the standard uncertainty associated with the
average is 9.7 µg/kg/

√
3 = 5.6 µg/kg, on 2 degrees of freedom.
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The certified mass fraction of pcb 95 in srm 1944 is 65.0 µg/kg,
with standard uncertainty 4.45 µg/kg. The comparison criterion is

t =
52.8− 65.0√
5.62 + 4.452

= −1.7.

The hypothesis of no difference
between measured and certified values
entails that the criterion t should be like

an outcome from a Student’s
t-distribution with 5.3 degrees of

freedom. The larger the absolute value
of t is, the more surprising it is that it
should have occurred by chance alone,

without there actually being a
difference between measured and
certified values. The questionable

“logic” behind conventional tests of
hypotheses is that rare events should

not happen. Here, however, the
probability is 15 % that an absolute

value of 1.7 or larger might happen by
chance alone owing to the vagaries of
sampling, a far cry from a rare event,

hence the conclusion that there is
insufficient reason to reject the
hypothesis of equality between
measured and certified values.

On the hypothesis of no difference between the mean of the labo-
ratory results and the certified value, this should be approximately
like an outcome of a Student’s t random variable with effective num-
ber of degrees of freedom (ν) given by the Welch-Satterthwaite for-
mula [JCGM 100:2008, G.4], where the infinity appearing in the de-
nominator is the “effective” number of degrees of freedom associated
with the uncertainty evaluation for the certified value:

ν =
(5.62 + 4.452)2

5.64

2
+

4.454

∞

= 5.3.

Since the probability is 15 % that such random variable will devi-
ate from 0 by more than 1.7 standard deviations, we conclude that
the laboratory measurements do not differ significantly from the
certified value. This conclusion is contingent on the three replicated
determinations the laboratory made being like a sample from a Gaus-
sian distribution — an assumption that is next to impossible to verify
reliably with so few observations. Still, the Shapiro-Wilk test of Gaus-
sian shape, whose R implementation accommodates samples this
small, yields a comforting p-value of 23 %.

Comparing Two Measurement Methods

Laboratory practice often involves comparing a new or less-established
method with an established standard method. The mass concentra-
tion of fat in human milk may be determined based on the mea-
surement of glycerol released by enzymatic hydrolysis of triglyc-
erides [Lucas et al., 1987], or by the Gerber method [Badertscher
et al., 2007], which measures the fat directly with a butyrometer, after
separating the fat from the proteins.

γTrig γG γTrig γG γTrig γG

0.96 0.85 2.28 2.17 3.19 3.15
1.16 1.00 2.15 2.20 3.12 3.15
0.97 1.00 2.29 2.28 3.33 3.40
1.01 1.00 2.45 2.43 3.51 3.42
1.25 1.20 2.40 2.55 3.66 3.62
1.22 1.20 2.79 2.60 3.95 3.95
1.46 1.38 2.77 2.65 4.20 4.27
1.66 1.65 2.64 2.67 4.05 4.30
1.75 1.68 2.73 2.70 4.30 4.35
1.72 1.70 2.67 2.70 4.74 4.75
1.67 1.70 2.61 2.70 4.71 4.79
1.67 1.70 3.01 3.00 4.71 4.80
1.93 1.88 2.93 3.02 4.74 4.80
1.99 2.00 3.18 3.03 5.23 5.42
2.01 2.05 3.18 3.11 6.21 6.20

Pairs of values of the mass
concentration of fat in human milk

(expressed in cg/mL) determined based
on enzymatic hydrolysis of triglycerides

(Trig), and by the Gerber method (G),
from Bland and Altman [1999, Table 3].

The correlation coefficient for these two sets of measured values is
quite high, 0.998, but it is a misleading indication of agreement be-
tween two measurement methods because a perfect correlation only
indicates that the value measured by one method is a linear func-
tion of the value measured by the other, not that the corresponding
measured values are identical.

A paired t-test indicates that the mean difference does not differ
significantly from zero.22 However, this, too, falls short of establish-

22 B. Carstensen. Comparing Clinical
Measurement Methods. John Wiley &
Sons, Chichester, UK, 2010

ing equivalence (or, interchangeability) between the two measure-
ment methods. If the paired samples are of small size, then there is a
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fair chance that a statistical test will fail to detect a difference that is
important in practice. And if they are of a large size, then a statistical
test very likely will deem significant a difference that is irrelevant in
practice.

This article by Bland and Altman is the
most often cited article in the Lancet,
which reveals the exceptional interest

that measurement issues enjoy in
medicine. In 2014, Nature recognized

this article as the 29th most-cited
research of all time, over all fields.For these reasons, Bland and Altman [1986] suggest that graphi-

cal methods may be particularly informative about the question of
agreement between methods.

The Bland-Altman plot shows how the difference between the
paired measured values varies with their averages [Altman and
Bland, 1983; Bland and Altman, 1986]. Except for the inclusion of
limits of agreement (the average of the differences between paired
measured values plus or minus twice the standard deviation of the
same differences), the Bland-Altman plot is similar to Tukey’s mean-
difference plot.23

23 J. Chambers, W. Cleveland, B. Kleiner,
and P. Tukey. Graphical Methods for Data
Analysis. Wadsworth, Belmont, CA,
1983
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Bland-Altman plot, with the average
difference and the limits of agreement
indicated by horizontal (blue) lines.

In this case, the difference between the methods tends to be posi-
tive for small values of the measurand, and negative for large values.
This feature can be illustrated using a variant of the Bland-Altman
plot that recognizes such trend. Function BA.plot from R package
MethComp was used to draw the Bland-Altman plots.
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Bland-Altman plot recognizing that the
differences between paired measured
values depend on the averages of the

same values.

Two methods are commonly employed to obtain the linear equa-
tion that “converts” a value produced by the Gerber method into the
value that Trig would be expected to produce: the so-called Deming
regression and Passing-Bablok regression.

These two regression lines can be
computed using R functions defined in

package MethComp [Carstensen et al.,
2020] as follows:

Deming(x=Gerber, y=Trig, boot=TRUE)

PBreg(x=Gerber, y=Trig)

Deming regression fits a straight line to points of a scatterplot
when both coordinates are measured with error (ordinary linear
regression assumes that only the response variable is measured with
error). Passing-Bablok regression estimates the coefficients a and b in

γTrig = a + b× γG

as follows: the slope b is the median of the slopes of the straight
lines between every pair of points (excluding any resulting slopes
that are either 0 or infinity), and the intercept a is the median of the
intercepts {yi − bxi} determined by each of the points. In this case,
these methods yield the following lines:

Deming: γTrig = 0.078 + 0.972× γGerber,

Passing-Bablok: γTrig = 0.055 + 0.976× γGerber.

With 95 % confidence, the true slopes are believed to lie in these

The slope is consistent with the fact that
only about 98 % of the fat in human

milk is present as triglycerides [Lucas
et al., 1987], which are the target of Trig.

intervals:

Deming Slope:[0.953, 0.988],

Passing-Bablok Slope:[0.956, 0.995].

Since these intervals exclude the equivalence value of 1.000, we can
conclude that the two methods do not provide equivalent results.
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To declare that two measurement methods are equivalent, not
only should they produce results that are in agreement with due
allowance for their respective uncertainties, over the relevant range of
concentrations, but the measurement uncertainties that they typically
achieve also should be in fair agreement.

Comparing Sources of Uncertainty

Assessing the homogeneity of a candidate reference material involves
comparing the variability of the values of a property between units of
the material, with their variability within units.

nist srm 2684c is a bituminous coal intended primarily for evalu-
ations of analytical methods used for coals. Each unit of the material
is a bottle containing 50 g of the finely powdered material. Between
two and four aliquots from each of 23 selected bottles of the mate-
rial were analyzed by X-ray fluorescence spectroscopy for aluminum
content.

The conventional assessment of homogeneity is based on a sta-
tistical technique called analysis of variance (anova).24 Here, we will

24 R. A. Fisher. Statistical Methods for
Research Workers. Hafner Publishing
Company, New York, NY, 14th edition,
1973

employ a model-based approach to evaluate potential heterogeneity,
which is not observable directly but expresses itself in a parameter of
the measurement model.

The model, which will reappear in the discussion of Consensus
Building, expresses the fluorescence intensity attributable to alu-
minum as

Iij = µ + β j + εij,

where j = 1, . . . , n (with n = 23) denotes the bottle number,
i = 1, . . . , mj denotes the aliquot (subsample) from bottle j, µ is
the overall mean intensity, β j denotes the effect of bottle j on the mea-
surement result, and εij denotes the effect of aliquot i from bottle j.
Only the {Iij} are observable.
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X-ray fluorescence intensity from
aluminum in aliquots drawn from

bottles of nist srm 2684. Each red,
open diamond represents the average of

the determinations made in aliquots
from the same bottle.

The bottle effects, {β j}, are modeled as outcomes of random vari-
ables all with mean zero and standard deviation τ, and the aliquot
effects {εij} are modeled as outcomes of random variables all with
mean zero and standard deviation σ. These random variables do
not need to be independent: it suffices that the bottle effects among
themselves, and the aliquot effects among themselves, be exchange-
able.

Material with undetectable inhomogeneity in the aluminum con-
tent corresponds to τ being zero: this means that readings of flu-
orescence intensity in aliquots from different bottles are not more
variable than readings in aliquots from the same bottle. Suppose that
H = θ(I) is a criterion that gauges heterogeneity (the opposite of
homogeneity), where I denotes the set of 49 observations of fluores-



36

cence intensity, and θ denotes a function of these observations whose
values are indications of heterogeneity. Suppose also that small val-
ues of H suggest that the material is homogeneous, and large values
suggest that it is not.

Permute the elements of I randomly, similarly to how one would
shuffle a deck of playing cards, so that the value a particular aliquot
from a particular bottle may take the place of the value of any other
aliquot, from any other bottle, the result being I∗. If the material
really is homogeneous, then H∗ = θ(I∗) should be fairly close to H.

Now, imagine repeating this process a large number K of times,
thus obtaining H∗1 , . . . , H∗K, which together characterize the distribu-
tion of values of the heterogeneity criterion to be expected owing to
the vagaries of sampling alone, on the assumption that the material
indeed is homogeneous. Finally, compare the value of H that cor-
responds to the actual data, with the set {H∗k }, and determine how
“unusual” H may be among the {H∗k }. If H should be unusually
large, then this may warrant concluding that the material is heteroge-
neous.

The criterion we shall use is an estimate of the standard deviation
of the bottle effects, τ, which quantifies the component of variability
above and beyond the within-bottle variability. There are many dif-
ferent ways of estimating τ, and it does not matter very much which
one we will choose. For this example, we will rely on one of the most
widely used estimators of τ — the restricted maximum likelihood
estimator (reml).25 We compute the value of τ corresponding to the 25 S. R. Searle, G. Casella, and C. E.

McCulloch. Variance Components. John
Wiley & Sons, Hoboken, NJ, 2006. ISBN
0-470-00959-4

measurement data (what above we called H), and also the values of
τ for each of K = 10 000 permutations of the data (what above we
called {H∗k }).

Out of 9990 permutations of the data (for 10 permutations the
estimation procedure did not converge), only 458 yielded an esti-
mate of τ that is larger than the estimate obtained for the actual data
(τ = 0.31 kcps). Therefore, the p-value of the permutation test of
homogeneity is 458/9990 = 4.6 %, which is commonly regarded as
suggesting that the material is not homogeneous.

z = data.frame(

bottle=c("B01", "B01", "B02", "B02", "B03", "B03", "B04", "B04", "B05",

"B05", "B06", "B06", "B07", "B07", "B08", "B08", "B09", "B09", "B10",

"B10", "B11", "B11", "B12", "B12", "B12", "B12", "B13", "B13", "B14",

"B14", "B15", "B15", "B16", "B16", "B17", "B17", "B18", "B18", "B19",

"B19", "B19", "B20", "B20", "B21", "B21", "B22", "B22", "B23", "B23"),

kcps=c(62.37, 61.18, 60.73, 60.03, 60.91, 60.59, 60.71, 61.15, 60.39,

60.59, 61.3, 61.32, 61.09, 61.14, 60.5, 61.91, 60.47, 60.15, 61.39,

61.07, 61.08, 60.34, 60.51, 60.66, 61.81, 61.09, 61.79, 60.97, 60.96,

61.23, 60.33, 59.9, 59.91, 60.3, 61.3, 60.81, 60.83, 61, 60.3, 60.49,

60.55, 62.24, 60.9, 60.61, 60.8, 60.69, 60.91, 60.78, 60.94))
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library(nlme)

z.lme = lme(kcps~1, random=~1|bottle, data=z, method="REML")

tau = as.numeric(VarCorr(z.lme)["(Intercept)", "StdDev"])

K = 10000

zB = z; tauB = rep(NA, K);

for (k in 1:K)

{ zB$kcps = sample(z$kcps, size=nrow(z), replace=FALSE)

zB.lme = try(lme(kcps~1, random=~1|bottle, data=zB, method="REML"))

if (class(zB.lme) == "try-error") {next

} else {tauB[k] =

as.numeric(VarCorr(zB.lme)["(Intercept)", "StdDev"])} }

tauB = tauB[complete.cases(tauB)]
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aluminum data (tauB in the alongside R
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the area under the curve.

The same model, Iij = µ + β j + εij, can also be fit to the data using
a Bayesian procedure. The R package brms26 provides a user friendly

26 P.-C. Bürkner. Advanced Bayesian
multilevel modeling with the R package
brms. The R Journal, 10(1):395–411, 2018.
doi:10.32614/RJ-2018-017

way to implement a wide variety of Bayesian regression models. This
one-liner does it in this case:

brm(kcps ~ 1 + 1|bottle, data=z)

The best estimate of τ produced by this approach is τ = 0.28 kcps.
Since the true value of τ is believed to lie between 0.03 kcps and
0.53 kcps with 95 % probability, we can reject the hypothesis that
τ = 0 kcps and conclude confidently that there is evidence of hetero-
geneity in this material.

The first approach, based on permutations, involves fewer mod-
eling assumptions than the Bayesian approach. However, all that it
could do was perform a test of homogeneity, while the second ap-
proach both quantifies the heterogeneity and assesses its significance.

https://doi.org/10.32614/RJ-2018-017
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Calibrating

When a truck stops at a highway scale to be weighed, it applies a
force to one or more load cells under the scale, which generates a
potential difference between the electrical terminals that the load
cells are connected to. Calibration is the procedure that establishes a
relation between values of the force applied to a load cell and corre-
sponding values of potential difference, thereby making possible to
“translate” indications of voltage into values of force. These values of
force, in turn, are translated into values of mass using the local value
of the Earth’s gravitational acceleration and Newton’s second law of
motion.

Calibrating a measuring instrument consists of determin-
ing a relationship between values of the measurand, and the typical,
corresponding instrumental responses (or, indications), and character-
izing the uncertainty surrounding such relationship. This is usually
done by exposing the instrument to several different, known (up to
measurement uncertainty) values of the measurand in measurement
standards, making suitably replicated observations of the instrumen-
tal responses that these exposures generate, and finally deriving the
typical responses from these observations.

The aforementioned relationship is often described by means of a
calibration function that maps values of the measurand to typical (or,
expected) values of the indications produced by the instrument being
calibrated. For example, the result of calibrating a thermocouple for
use as a thermometer is either a mathematical function that maps
values of temperature into values of voltage, or a table that lists the
values of voltage that correspond to specified values of temperature.

To be able to use the instrument to make measurements, the in-
verse relationship is needed, which produces an estimate of the value
of the measurand given an observed instrumental response. This
is variously called the analysis function, measurement function, or the
evaluation function, depending on the field of application.

We begin by illustrating the development of calibration and anal-
ysis functions for the measurement of the mass concentration of
chloromethane using gas chromatography and mass spectrometry,
and in the process introduce criteria for model selection, and demon-
strate Monte Carlo methods for uncertainty evaluation.

In this case, a very simple function, a cubic polynomial without
the quadratic term, strikes just the right balance between goodness-
of-fit to the calibration data and model simplicity. Many measure-
ment systems, however, require calibration functions of much greater
complexity.
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For example, the calibration of capsule-type standard platinum
resistance thermometers over the range 13.8033 K (triple point of hy-
drogen) to 273.16 K (triple point of water) in nist srm 1750 involved
determining a polynomial of the 7th degree to describe the devia-
tions between the its-90 reference curve for this range, and the actual
values of resistance for these resistance thermometers 27. An even

27 W. L. Tew and G. F. Strouse. Stan-
dard Reference Material 1750: Standard
Platinum Resistance Thermometers,
13.8033K to 429.7485K. NIST Special
Publication 260-139. National Insti-
tute of Standards and Technology,
Gaithersburg, MD, November 2001.
doi:10.6028/NIST.SP.260-139

more complex model is often used to characterize the dose-response
of many bioassays, involving a five-parameter logistic function.28 28 P. G. Gottschalk and J. R. Dunn.

The five-parameter logistic: A char-
acterization and comparison with
the four-parameter logistic. Analyt-
ical Biochemistry, pages 54–65, 2005.
doi:10.1016/j.ab.2005.04.035

One of the most complex calibration models used currently in
science involves a Bayesian spline model with consideration of errors-
in-variables that serves to convert measurements of carbon-14 con-
centration into measurements of the age of a biological material, in a
technique known as radiocarbon dating.

Calibrating a GC-MS System

Chloromethane is a volatile organic compound with boiling point
−24 °C at normal atmospheric pressure, and chemical formula
CH3Cl. It is currently used industrially as a reagent and solvent,
and in the past was widely used as a refrigerant. Chloromethane
is water-soluble and its concentration in water is usually measured
using gas chromatography and mass spectrometry (gc-ms).29

29 J. W. Munch. Method 524.2. Measure-
ment of Purgeable Organic Compounds
in Water by Capillary Column Gas Chro-
matography/Mass Spectrometry. National
Exposure Research Laboratory, Office
of Research and Development, U.S.
Environmental Protection Agency,
Cincinnati, OH, 1995. Revision 4.1

The table below lists replicated instrumental indications ob-
tained with a gc-ms system to measure mass concentration of
chloromethane, using fluorobenzene as internal standard [Lavagnini
and Magno, 2007]: the indications are ratios between areas of peaks
in the traces produced by the measuring system, one corresponding
to chloromethane, the other corresponding to a known amount of the
internal standard, which is injected into the system simultaneously
with each sample of each chloromethane standard, thereby correcting
for losses of the measurand (or, analyte) in the standard as it travels
through the gc column.
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Graphical representations of the data
produced to calibrate a gc-ms system,

before and after re-expression using
logarithms. The choice of 0.015, which
was added to c/(µg/L) to avoid taking

logarithms of zero, is arbitrary and
inconsequential: in this case, it is half of
the smallest positive value chosen for c

in the calibration experiment.

Concentration of chloromethane, c (µg/L)
0.00 0.03 0.10 0.20 0.40 0.80 1.60 3.20 4.00

0.009 22 0.012 87 0.024 12 0.036 82 0.051 04 0.111 98 0.174 22 0.344 97 0.355 10
0.009 10 0.012 68 0.020 21 0.038 46 0.053 50 0.084 40 0.172 28 0.297 68 0.341 71
0.006 91 0.014 31 0.020 90 0.031 08 0.064 27 0.095 43 0.168 29 0.308 67 0.365 22
0.008 31 0.012 29 0.020 33 0.036 36 0.055 83 0.118 92 0.152 62 0.277 52 0.363 19
0.007 60 0.009 01 0.023 62 0.044 51 0.071 74 0.125 51 0.229 08 0.351 52 0.417 58
0.009 01 0.011 42 0.019 58 0.037 59 0.057 60 0.089 32 0.216 99 0.302 68 0.389 76
0.006 06 0.014 70 0.026 16 0.030 71 0.075 69 0.116 85 0.186 97 0.389 64 0.411 68
0.008 03 0.013 76 0.018 47 0.034 26 0.066 60 0.138 12 0.176 93 0.323 14 0.390 48
0.005 93 0.012 90 0.030 00 0.037 08 0.059 65 0.126 42 0.242 47 0.358 24 0.465 81
0.006 03 0.012 80 0.029 38 0.042 27 0.064 50 0.105 84 0.239 47 0.366 87 0.444 20

A plot of the values of r against corresponding values of c shows
that the dispersion of the replicated values of r increases substantially
with increasing values of c. This undesirable feature is much reduced

https://doi.org/10.6028/NIST.SP.260-139
https://doi.org/10.1016/j.ab.2005.04.035
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once the data are re-expressed using logarithmic scales, which also
implies that the focus is on the relative uncertainties.

For each of nine chloromethane
calibration standards, ten replicate

measurements of the ratio r of areas of
peaks produced by the gc-ms

measuring system, that correspond to
chloromethane and to the internal

standard [Lavagnini and Magno, 2007,
Table 2].

We will neglect the uncertainty surrounding the values of c be-
cause, in this particular case, in fact it is negligible by comparison
with the dispersion of the replicated values of r. (Possolo [2015, E17]
describes an instance of calibration where uncertainties surrounding
the values of the measurand in the calibration standards, and the
instrumental indications, both have to be recognized.)

Model selection is the task of choosing a model to represent
how R = log10(r) varies as a function of C = log10(c/(µg/L) +
0.015). Several polynomial models may be used to summarize the
relationship between them: for example R = α + βC, R = α + β1C +

β2C2 + β3C3, or R = α + β1C + β3C3, because one may either add or
remove terms while searching for the best model. As more and more
terms involving different powers of C are added to the model, the
polynomial fits the data ever more closely. When to stop, and which
model to choose?

Suppose we would summarize the replicated values of r that cor-
respond to each value of c with their median, and fitted a polynomial
of the 8th degree to these nine points. This polynomial fits the sum-
mary data exactly, but look how it behaves around the two leftmost
points!

log10((c  (µg L)) + 0.015)

lo
g 1

0(r
 

 (m
2

m
2 ))

−1.5 −1.0 −0.5 0.0 0.5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

●

●

●

●

●

●

●

●
●

A polynomial may fit the data exactly
and still be an awful calibration

function.

While inappropriate here, polynomials
of high degree are used occasionally as
models. The International Temperature

Scale its-90, for example, uses
polynomials of the 9th and 15th order

as reference functions.

The goal in model building is to achieve a representation of the
data that is accurate enough for the purpose the model is intended
to serve, while keeping the model as parsimonious as possible. Par-
simony, in this case, means small number of adjustable parameters,
or low degree of the polynomial. The reason why parsimony matters
is that simple models generally have better real-world performance
than extravagant models, in the sense that they tend to be more accu-
rate when applied to data similar to, but different from the data they
were derived from.

For a polynomial model, fitting the model to the data amounts to
finding values of the coefficients that make the graph of the polyno-
mial pass as closely as possible to the data points. Several aspects of
this issue are discussed under Least Squares.

model, ϕ bic(ϕ)

α + β1C −190
α + β1C + β2C2 −226
α + β1C + β2C2 + β3C3 −231
α + β1C + β3C3 −235
α + β1C + β2C2 + β3C3 + β4C4 −227
α + β1C + β2C2 + β3C3 + β4C4 + β5C5 −222

The smaller the value of Bayesian
Information Criterion, bic, the more
adequate the model for the data. In
general, a difference in bic values
greater than 10 is strong evidence
against the model with the higher bic

value, whereas a difference of less than
2 is considered insignificant. Thus, and
in this case, the models in the third and
fourth rows of this table are comparably
adequate for the data.

A reliable guide for model building will strike a compro-
mise between goodness of fit and simplicity. One such guide is the
Bayesian Information Criterion (bic) [Burnham and Anderson, 2004],
which is explained under Model Selection. For now, it suffices to note
that the smaller the bic, the more adequate is the model for the data.

For the gc-ms calibration data listed above, the best model hap-
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pens to be a polynomial of the third degree without the quadratic
term, ϕ(C) = α + β1C + β3C3, with α̂ = −0.8931, β̂1 = 0.8327, and
β̂3 = −0.0473. This defines the calibration function, which character-
izes how the gc-ms measuring instrument responds when exposed
to standard solutions of chloromethane.

The analysis function is the mathematical inverse of the calibra-
tion function: ψ such that ψ(ϕ(C)) = C, for each value of C at which
ϕ is defined. The analysis function is used to assign values of the
measurand to samples whose mass concentration c of chloromethane
is unknown, and which, upon injection into the gc-ms measuring
instrument, produce a value of the ratio r.
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Calibration function, whose graph is the
red curve, is a polynomial of the third

degree without the quadratic term.
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Determination of the value of c that
corresponds to an instrumental

indication r = 0.1718 m2/m2. Inversion
of the calibration function produces

log10((c/µg/L) + 0.015) = 0.155, hence
c = 1.41 µg/L.

Depending on the mathematical form of the calibration function
ϕ, it may or may not be possible to derive an analytical expression
(that is, a formula) for the analysis function ψ. However, it is always
possible to determine it numerically given an observed value of R, by
finding the values of C such that ϕ(C) = R. In case this equation is
satisfied by more than one value of C, then some additional criterion
needs to be employed to determine the appropriate solution: for
example, the appropriate solution should lie between the minimum
and maximum of the values of c in the standards used for calibration.

The mathematical inversion that leads from ϕ to ψ can be per-
formed without any mathematics or computation at all: draw the
graph of the calibration function ϕ on a sheet of transparent acetate,
with the axis with values of c horizontal and increasing from left to
right, and the axis with values of r vertical and increasing from bot-
tom to top. Then flip the sheet and look at it from the back side, and
rotate it so that the axis that was horizontal becomes vertical, and the
one that was vertical becomes horizontal, the former now with values
of c increasing from bottom to top, and the latter with values of r
increasing from left to right. The resulting graph depicts the analysis
function ψ.

In this case the calibration function is a polynomial of the third
degree, and indeed it is possible to solve ϕ(C) = R analytically for
C using a celebrated formula published in 1545 by Gerolamo Car-
dano, which implements the solution derived by Scipione del Ferro.
In practice, however, even in cases like this, solving the equation nu-
merically may be the more expeditious route, focusing most of the
effort on determining the appropriate solution among the several that
typically are available for polynomial calibration functions. And this
is how the graph of ψ was constructed that is displayed alongside, by
solving ϕ(C) = R for C for many equispaced values of R.
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Calibration function and 95 % coverage
band derived from 50 000 bootstrap

replicates of the calibration function.

The evaluation of the uncertainty surrounding the calibra-
tion and analysis functions may be performed using a Monte Carlo
method, which in this case will be the non-parametric statistical
bootstrap invented by Bradley Efron and explained to perfection by
Diaconis and Efron [1983]. The uncertainty evaluation is based on the
results from many repetitions of these two steps:

(1) Draw a sample of size 90 from the set of 90 pairs {(cij, rij)} listed
in the foregoing table, uniformly at random, with replacement:
this means that all pairs have the same probability of being se-
lected, and that each pair may be selected more than once;

(2) Use this sample as if it were the original data, and select and
build a calibration function as described above — this is called a
bootstrap replicate of the calibration function.
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Analysis function ψ and 95 % coverage
band. Given an instrumental indication
r, the function produces an estimate of

the mass concentration c, and an
evaluation of the associated uncertainty,
in the form of a 95 % coverage interval

Repeating these two steps 50 000 times, and finding the band that
contains 95 % of the graphs of the resulting calibration functions,
leads to the figure where the calibration curve is depicted in red
with the pink uncertainty band. The similar, light blue band shown
alongside, which surrounds the analysis function, was obtained by
mathematical inversion of the upper and lower boundaries of the
pink band that surrounds the calibration function.

Shroud of Turin

Caravaggio (1603-1604) La Deposizione di
Cristo, Pinacoteca Vaticana, Vatican City
— Wikimedia Commons (in the public

domain, PD-US-expired).

The discovery of radiocarbon dating earned Willard F. Libby the 1960
Nobel Prize in Chemistry, and the accolade from the Nobel Com-
mittee that “seldom has a single discovery in chemistry had such an
impact on the thinking in so many fields of human endeavor.”

14C atoms are continuously generated in the atmosphere as neu-
trons produced by cosmic rays strike nitrogen atoms, and eventually
are absorbed by living organisms. The concentration of 14C in the
living tissues stays in equilibrium with its atmospheric counterpart
until the organism dies. Thereafter, the ratio of concentrations of 14C
and of 12C in the remains decreases steadily over time.

By measuring this ratio in the remains, and assuming that the
ratio of concentrations of 14C and 12C in the atmosphere during
the organism’s lifetime was the same as it is today, it is possible to
estimate how long ago the plant or animal died.

While simple in principle, radiocarbon dating is challenging in
practice. First, the amount fraction of 14C in pure carbon is minus-
cule: about 1 atom of 14C per trillion atoms of carbon (of which the
vast majority are 12C and 13C atoms). This implies that, in 4 grams
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of carbon, only one atom of 14C will decay per second, on average.
Therefore, radiocarbon dating based on measurements of activity
requires fairly large samples of material. Mass spectrometry, which
actually counts atoms of different mass numbers, has enabled radio-
carbon dating of very small samples of material.

Second, radiocarbon dating rests on two key assumptions: (i) that
the ratio of concentrations of 14C and 12C atoms in the atmosphere
has remained constant over time, and equal to its present value; and
(ii) that its value is the same for all biological tissues. Neither of these
assumptions is valid. The first because the burning of fossil fuels
(which contain no 14C) has steadily decreased the fraction of 14C
in the atmosphere, while detonations of nuclear weapons from the
1940s until the early 1960s, increased it. The second because isotopic
fractionation changes the relative concentrations of the three isotopes
of carbon according to the provenance of the biological material used
for dating.

These contingencies imply that accurate dating cannot be achieved
without calibration, which establishes a correspondence between
radiocarbon ages based on the ideal assumptions aforementioned,
and known calendar ages of particular samples.

The most recent calibration curve is intcal20.30 For the most

30 T. J. Heaton, M. Blaauw, P. G. Black-
well, C. Bronk Ramsey, P. J. Reimer,
and E. M. Scott. The INTCAL20 ap-
proach to radiocarbon calibration curve
construction: a new methodology
using Bayesian splines and errors-in-
variables. Radiocarbon, pages 1–43, 2020.
doi:10.1017/RDC.2020.46

recent 14 000 years, this curve is based entirely on tree-ring mea-
surements, which can be dated by counting rings from outermost to
innermost. Also, each ring’s isotopic composition is a snapshot of the
atmospheric composition at the time when the ring was growing.

Positive and negative versions of a
portion of the Shroud of Turin —

WikiMedia Commons (in the public
domain, PD-US-expired).

The measurement of the age of the Shroud of Turin using radio-
carbon dating is one of the most talked-about applications of the
technique. The shroud is a linen cloth kept in the Cathedral of Saint
John the Baptist, in Turin, Italy, which bears marks of the body of a
tall, bearded man who may have been flogged. Some people believe
that it is the burial cloth of Jesus of Nazareth.

Mass spectrometric measurements made in 1988 by Damon et al.
[1989] at laboratories in Tucson (Arizona, U.S.A.), Oxford (England),
and Zurich (Switzerland), yielded average radiocarbon age of 691
years Before Present (bp), with standard uncertainty 31 years.

By convention, radiocarbon ages are
expressed as numbers of years before
1950, denoted as “before present” (bp)
although there is some uncertainty
about whether this means the the very
beginning of 1950 [Townsley, 2017] or
mid-1950 [Ramsey, 2009].

Calibration of the 1988 radiocarbon age
measurement of the Shroud of Turin

using the intcal20 [Reimer and et al.,
2020] calibration curve, to obtain an

estimate of the calendar age, as
produced by the online version of OxCal

v4.4.2 from the University of Oxford
Radiocarbon Accelerator Unit [Ramsey,

2009].

The resulting distribution of calendar age is a bizarre bimodal dis-
tribution whose mean (1317 ad) and standard deviation (40 years)
tell us very little about the likely age of the shroud. Hence, it pro-
vides a cogent illustration of the fact that probability densities are
well suited to capture the uncertainty of complex outcomes whereas
summary estimates can be spectacularly deceiving. According to
OxCal, the age of the Shroud lies between 1271 ad and 1319 ad with
65.8 % probability, and between 1359 ad and 1389 ad with 29.6 %
probability, hence it is Medieval and not from Antiquity.

https://doi.org/10.1017/RDC.2020.46
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Categorizing

Nominal and ordinal properties are kinds of categorical properties,
which are qualitative [Agresti, 2019]. The values of a nominal prop-

The values of ordinal properties can be
ranked (ordered from smallest to

largest) yet they are not quantitative: of
them it can be said whether one is more

or less than another, but not by how
much. For example, the Mohs hardness
of a mineral is determined by finding
out which in a collection of reference
minerals it scratches, and which it is

scratched by.

erty are names of sets of objects that have the same values of the
(qualitative or quantitative) properties that define these sets. For ex-
ample, when presented with an animal of the genus Panthera, one
compares it with standard specimens of the five species in this genus,
to determine whether the animal is a tiger, leopard, jaguar, lion, or
snow leopard. This comparison may involve examining qualitative
attributes such as the body shape, size, or color of the fur. If only
a sample of tissue from the animal is available, then the compar-
ison may involve sequencing particular areas of the genome, and
comparing these sequences with paradigmatic sequences of known
provenance that are available in gene databases.31

31 Y. Cho, L. Hu, and H. et al. Hou. The
tiger genome and comparative analysis
with lion and snow leopard genomes.
Nature Communications, 4:2433, Septem-
ber 2013. doi:10.1038/ncomms3433

Measuring Abortion Rates

Unsafe abortion caused 5 % to 13 % of maternal deaths worldwide
during the period 2010–2014, and a large proportion of the abortions
were performed unsafely.32 The prevalence of abortion therefore is 32 WHO. Preventing unsafe abortion.

Evidence Brief WHO/RHR/19.21,
World Health Organization, Geneva,
Switzerland, 2019

an important public health measurand. Having ever had an induced
abortion is a nominal property of every woman, whose values are
yes or no. Determining its value reliably is challenging because
women often are reluctant to report it.

In a randomized response, house-to-house survey conducted in
Mexico City in 2001, each participating woman was asked one of two
questions, selected at random, as if by tossing a fair coin: whether
she had ever attempted to terminate a pregnancy, or whether she was
born in the month of April.33 33 D. Lara, J. Strickler, C. D. Olavarrieta,

and C. Ellertson. Measuring induced
abortion in Mexico: A comparison of
four methodologies. Sociological Methods
& Research, 32(4):529–558, May 2004.
doi:10.1177/0049124103262685

Only the woman being interviewed could see which of these two
questions had been drawn for her, and she truthfully answered yes

or no to the question she was presented with. Since this survey tech-
nique preserves confidentiality, it tends to produce more reliable re-
sults than, for example, interviews where a woman is asked directly,
face-to-face, the sensitive question about abortion. This type of survey safeguards the

confidentiality of responses and by
doing so improves the reliability of its
results. However, confidentiality could
possibly be breached if the interviewer
knew the participant personally, and
also knew that she was not born in
April. In such case, a yes answer
reveals the attempted abortion.

Of the 250 women that participated in the house-to-house survey,
33 answered yes to the question they were presented with. This
number includes women who had had an abortion and were asked
the question about abortion, as well as women who were born in
the month of April and were asked whether it was so, regardless
of whether they had ever had an abortion. Since the survey design
prevents determining individual values of the nominal property,
the goal is to measure its prevalence, α, which is the proportion of

https://doi.org/10.1038/ncomms3433
https://doi.org/10.1177/0049124103262685
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women who had ever attempted an abortion.
The following diagram shows how yes and no answers may arise,

where p = 1/2 is the probability of being asked the sensitive ques-
tion, and q = 1/12 denotes the probability of having been born in
April. The last column lists the probabilities of the different instances
of yes and no. Note that the six probabilities sum to 1.

YES αp

YES α(1 − p)q

NO α(1 − p)(1 − q)

NO (1 − α)p

YES (1 − α)(1 − p)q

NO (1 − α)(1 − p)(1 − q)

Born
in April

Not Born
in April

Born
in April

Not Born
in April

Ever had an abortion?

Born in April?

q

1 − q

Ever had an abortion?

Born in April?

q

1 − q

Abortion

p

1 − p

No Abortion

p

1 − p

Woman

α

1 − α

FACT QUESTION FACT ANSWER

PROBABILITY

The probability of yes is θ, which is the sum of the three terms
above that appear in red in the last column of the diagram:

θ = αp + α(1− p)q + (1− α)(1− p)q = αp + q(1− p).

Since the estimate of θ is 33/250, p = 1/2 by design, and q = 1/12
on the assumption that births are equally likely to fall on any month
of the year, α can be estimated by solving 33/250 = αp + q(1− p) for
α, which yields α̂ = 271/1500 = 0.18.

Randomized response survey to
measure prevalence of abortion.

To evaluate the uncertainty, u(α̂), let θ̂ denote the estimate of θ, so
that

α̂ = θ̂/p− q(1− p)/p.

The second term on the right-hand side is a constant, whose variance
therefore is zero. And the first term is a random variable divided by
a constant. Now, the random variable, θ̂, has a binomial distribution
based on 250 trials, whose variance can be estimated as θ̂(1− θ̂)/250,
with θ̂ = 33/250 = 0.132. Therefore,

u(α̂) = u(θ̂)/p =

√
0.132

(
1− 0.132

)
250

/(1/2) = 0.043.

A 95 % coverage interval for α can be derived from a correspond-
ing coverage interval for θ, which can be computed as described
under Counts, finally to obtain (0.10, 0.28), which is the output of the
following R command:
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(prop.test(x=33, n=250)$conf.int - q*(1-p))/p

The assumption that births are equally likely to fall in any of the
twelve months of the year is approximately true for Mexico but is not
quite true for the U.S. where the probability of a birth falling in April
is only 0.079, while it is 0.091 for August.34

34 J. A. Martin, B. E. Hamilton, M. J. K.
Osterman, and A. K. Driscoll. Births:
Final data for 2018. National Vital
Statistics Reports 68(13), National
Center for Health Statistics, Centers for
Disease Control and Prevention (CDC),
Hyattsville, MD, November 2019Considering that each value of q specifies one particular model

for the randomized response survey, the uncertainty in q may be
incorporated via model-averaging, and using the statistical bootstrap.

Assuming that q has a uniform distribution between 0.075 and
0.091 (the extreme rates of birthdays in the twelve months of the year,
observed for the U.S.), the estimate of the prevalence of abortion
becomes α̃ = 0.16, and a 95 % uncertainty interval for the true value
of α now ranges from 0.15 to 0.17.
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Uncertainty in Measurement Models

All measurements, however simple, are instances of model-based
inference, and most measurements cannot be completed without
some statistical data reduction because measurements are contingent
on mathematical or statistical models. Building or selecting a mea-
surement model is an integral part of measurement, and the same as
other parts, typically it is surrounded by uncertainty.

Mass of Pluto

Modeling the motion of the heavenly bodies that comprise the solar
system has fascinated scientists for centuries. As a feat of mathemat-
ical modeling and precision measurements, Neptune was discovered
in 1846 based on the analysis of observational data about the motion
of Uranus. This discovery remains one of the best examples of the
power of the scientific method, and it prompted many at the time to
look for the next planet that might lurk beyond the newly-discovered
Neptune.

Four images from New Horizons
Long Range Reconnaissance Imager
were combined with color data from
the Ralph instrument to create this
global view of Pluto in July 2015 —
Wikimedia Commons (nasa, 2015).

Already in 1848, well in advance of Pluto’s discovery, Jacques
Babinet estimated the mass of a foretold new planet as 12 times that
of Earth. Percival Lowell’s 1915 prediction for “planet X” was 6.6
times Earth’s mass. And when Clyde Tombaugh finally discovered it
in 1930, the world’s newspapers announced “a ninth planet, greater
than earth, found.” Only a few decades ago Pluto was thought to
be several orders of magnitude heavier than we now know it to be.
What happened that so drastically changed our estimates of Pluto’s
mass?

Estimated mass of Pluto (mPluto/mEarth)
over the last two centuries [Duncombe

and Seidelmann, 1980] serves as a vivid
example of how important

measurement models and all
assumptions that go into these models

are in creating knowledge.

Pluto is so distant that it is difficult to learn much about it from
direct observation. Our knowledge of its mass therefore depends
heavily on the physical models we adopt. For a long time, Pluto’s
mass was estimated based on perturbations to the motions of Uranus
and Neptune. In 1978, however, a sharp-eyed us astronomer, James
Christy, discovered Pluto’s first moon. At half the size of Pluto,
Charon has a significant effect on Pluto’s movements and enabled
estimating its mass by application of Kepler’s laws of planetary mo-
tion.

In the late 1980s, the orbits of Pluto and its largest moon Charon
were aligned with the line-of-sight from Earth (an arrangement that
occurs once in 120 years) which allowed for accurate mass estimates
for the first time.35 In 2015, nasa’s New Horizons probe flew near

35 R. P. Binzel. Pluto-Charon mutual
events. Geophysical Research Letters,
16(11):1205–1208, November 1989.
doi:10.1029/gl016i011p01205

Pluto and was able to answer one of the most basic mysteries about
Pluto conclusively, estimating its mass to be 0.0022mEarth.

Scientists tend to overestimate the confidence in their results and

https://doi.org/10.1029/gl016i011p01205
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the quest for the mass of Pluto is not the only example where our
collective scientific judgment has fallen short. Determinations of the
atomic weights of tellurium and iodine made in the 19th century did
not favor Mendeleev’s suggestion that the atomic weight of tellurium
should be smaller than that of iodine. It is therefore not surprising
that the estimates of these two atomic weights should have changed
gradually to conform with Mendeleev’s suggestion. Although now
we know that the atomic weight of tellurium is greater than that of
iodine, it is plausible that Mendeleev’s pronouncement played an in-
visible guiding role in contemporary atomic weight measurements of
these two elements. This phenomenon is known as the expectation bias
and it is a reminder that uncertainty estimates are often influenced
by unknown effects that have little to do with the measurement they
pertain to.

Mount Everest: view from the south
— Wikimedia Commons (shrimpo1967,

2012).

Height of Mount Everest

Only in 1849, in the course of the Great Trigonometrical Survey of
India (1802–1871), was Mount Everest recognized as the highest
mountain on Earth.36

36 S. G. Burrard. Mount Everest:
The story of a long controversy.
Nature, 71:42–46, November 1904.
doi:10.1038/071042a0

The quest to measure the height of Mount Everest reveals how
aspects of measurement models that are far too often hidden from
view can influence the results. The earliest observations were made
from northern India, some 160 km away, and involved measurements
of angles made using theodolites. The simplest approach to estimate

Troughton & Simms theodolite from
around 1910, used to measure angles in

horizontal and vertical planes —
Wikimedia Commons (Colgill, 2020).

the height involves only the elevation angle (a), the distance from the
observing station to the mountain (d), the altitude of the station (hS),
and a trigonometric relation:

h = hS + d tan a.

For the Jirol station, which stands 67 m above sea level, this formula
yields h = 67 m + (190 966 m) × tan(1◦ 53′ 33.35′′) ≈ 6377 m, which
grossly underestimates the height of the mountain.

https://doi.org/10.1038/071042a0
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If left uncorrected, the principal sources of error in trigonometrical
determinations of height made from long distances are the curvature
of the Earth and the refraction of light as it travels through the at-
mosphere. Accounting for the curvature of the Earth (modeled as a
sphere of radius R = 6371 km) leads to a more complex model:

sin(π
2 − a) =

(R + h) sin(d/R)√
(R + hS)2 − 2(R + hS)(R + h) cos(d/R) + (R + h)2

.

Solving this equation for h numerically, again using the elevation
angle measured from the Jirol station, gives h ≈ 9251 m, now overes-
timating the height.

station distance angle height

Jirol 190.966 km 1
◦

53’ 33.35” 8836 m
Mirzapur 175.219 km 2

◦
11’ 16.66” 8841 m

Janjipati 174.392 km 2
◦

12’ 9.31” 8840 m
Ladnia 175.195 km 2

◦
11’ 25.52” 8839 m

Harpur 179.479 km 2
◦

6’ 24.98” 8847 m
Minai 183.081 km 2

◦
2’ 16.61” 8836 m

Determinations of the height of Mount
Everest extracted from the Records of
the Great Trigonometrical Survey of
India, based on observations made

between November 1849 and January
1850 [Burrard, 1904]

The fact that atmospheric refraction tends to increase the apparent
elevation angle of a mountain peak relative to the observer, is the
main reason why the previous height estimate is biased high. While
atmospheric refraction depends on several environmental conditions,
its magnitude is approximately 10 % of the effect of the curvature
of the Earth. The Manual of Surveying for India [Thuillier and Smyth,
1875, Page 505] explains how refraction was modeled:

“There are no fixed rules for Terrestrial refraction, but [. . . ] in deter-
mining the heights of the peaks of the Snowy Range (Himalayas),
about one-thirteenth of the contained arc was assumed.”

The contained arc is the value (in
radian) of the angle with vertex at the
center of the Earth subtended by an arc
of length d on the surface of the Earth.
It is the ratio of d to the Earth’s radius.

Thus, the effect of light refraction was modeled by reducing the ob-
served elevation angle from a to a− (d/R)/13 (expressed in radian).
As a result, the estimate of the height of Mount Everest, still based
on the observation made from Jirol, but now taking into account
both the curvature of the Earth and atmospheric refraction, becomes
h ≈ 8810 m.

Other influences on the height estimates were recognized later,
such as the effect of temperature on the refraction of light and the
gravitational influence of these large mountains on plumb lines and
leveling devices. Despite all these challenges, the original estimate
from the 1850s, 8840 m, is remarkably close to the current estimate of
8848 m, based on gps measurements made at the mountaintop.

In 1914, Nature noted that “when all is said and done, it is the
errors arising from the deflection of the plumb-line [. . . ], and the pos-
sible variation in the actual height of the point observed (common
enough in the case of snow-capped peaks), which chiefly affect the
accuracy of angular determinations of altitude, and it is probably
to these [. . . ] that we must ascribe [. . . ] the doubt whether Kinchin-
junga or K2 is to hold the honourable position of second in altitude to
Everest amongst the world’s highest peaks.”
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Averaging Models for an Epidemic

In many measurement situations, several alternative models naturally
present themselves, with no a priori reason to favor one over the
others. In some cases it may be most convenient to select and use the
“best” model among a collection of alternatives, like we did when
we introduced a reliable guide for model building in the context of
building a calibration function. In other cases, the best performance
is achieved by a weighted average of alternative models.

In general, model averaging does not mean averaging the param-
eters of the alternative models. The alternative models may have
different numbers of parameters, or, even if they have the same num-
ber of parameters, the parameters of different models may not be
the same kinds of quantities that one could reasonably average. In-
stead, the averaging will be of predictions that the alternative models
make of the same quantities, and the question is how to evaluate the
uncertainty of such averages.

The following example illustrates model averaging to produce
an estimate of the basic reproduction number (R0) for an influenza
epidemic that ravaged a boarding school for boys between the ages
of 10 and 18 in the north of England, during January and February of
1978.

The concept of R0 is often regarded to
be one of the most useful tools in

mathematical biology. It is the average
number of infections produced by an
infective person that interacts freely
with others who are susceptible to

becoming infected.

date no. of cases

1978-01-22 3
1978-01-23 8
1978-01-24 26
1978-01-25 76
1978-01-26 225
1978-01-27 298
1978-01-28 258
1978-01-29 233
1978-01-30 189
1978-01-31 128
1978-02-01 68
1978-02-02 29
1978-02-03 14
1978-02-04 4

English boarding school epidemic of
1978 [BMJ News and Notes, 1978;

Martcheva, 2010]

Measurement models for epidemics in human or animal pop-
ulations typically comprise a deterministic component that describes
the temporal evolution of the expected number of cases (and the cor-
responding expected numbers of individuals who are susceptible but
not yet sick, of individuals who have already recovered, etc.) [Het-
hcote, 2000]. These models also comprise a stochastic component
that describes how the actual counts of individuals in the different
categories vary around their expected values [Bjørnstad, 2018].

The particular epidemic we will be concerned with started in late
January and ended in early February of 1978, eventually infecting 512
of the 763 boys in the school. At the peak of the epidemic, 298 boys
were confined to bed in the school’s infirmary.

We will consider two mathematical models for the daily counts of
influenza cases in the boarding school. Their deterministic compo-
nents are so-called compartment models, and their stochastic compo-

Schematics of two epidemiological,
compartmental models of influenza.

The sir model considers only the
SUSCEPTIBLE, I INFECTED, and

RECOVERED, whereas the siqr model
considers also the QUARANTINED.

nents are collections of independent Poisson random variables.
At each epoch (a day in this case) a compartment model partitions

the relevant population into several categories. For the sir model
these categories are the susceptible, the infective, and the recovered
— whose initials, sir, make the acronym of the model. The siqr

model comprises yet another category, the quarantined. The same



51

person will belong to different categories at different times as the
epidemic spreads and the disease progresses.

We will assume that, at the outset of the epidemic, exactly one boy
is infective, and all the others are susceptible. Therefore, the initial
counts (on day 1) in the different compartments are

S(1) = 762, I(1) = 1, Q(1) = 0, R(1) = 0.

According to the sir model, an infected boy will remain infec-
tive for some time, and then will recover, in the process acquiring
immunity against reinfection with the same virus. But while he is
infective, he continues to interact with the other boys in the school,
likely spreading the disease. The sir model was introduced in the

1920s [Kermack and McKendrick, 1927]
and remains one of the simplest models

for infectious diseases that are
transmitted from human to human, and

where recovery confers lasting
resistance. This three-compartment

model has undergone many
improvements and additions tailored

for a variety of situations. Recently, for
example, the covid-19 epidemic and

the implementation of nationwide
interventions in Italy were modeled

using an extension of this model that
comprises eight compartments:

susceptible, infected, diagnosed, ailing,
recognized, threatened, healed, and

extinct [Giordano et al., 2020]

This is not what actually happened: sick boys were isolated (that
is, quarantined) in the school infirmary as soon as the obvious symp-
toms developed. Quarantining removed them from the pool of those
that were spreading the disease. Regardless of whether a sick boy
was quarantined or not, eventually he will recover. The siqr model
takes into account the effect of quarantining.

The deterministic components of the sir and siqr models are so-
lutions of systems of differential equations, thus assuming that the
numbers of boys in the different categories vary continuously over
time. The three simultaneous differential equations for the determin-
istic component of the sir model are

dS/dt = −βSI/N,

dI/dt = +βSI/N − γI,

dR/dt = +γI.

where N = 763 is the total number of boys in the school. Note that S,
I and R all are functions of time, t, even if this is not shown explicitly.
The observations are the numbers of boys that are sick in bed on

Since the time derivatives of the
numbers of boys in the different

compartments add to zero, the total
N = S + I + R remains constant over
time. More complex models can take

into account births and deaths
(regardless of whether these are caused

by the disease).

each day of the epidemic, which are modeled as outcomes of inde-
pendent Poisson random variables with means I(1), . . . , I(14). If the
variability of these counts were much in excess of

√
I(1), . . . ,

√
I(14),

then a negative binomial model might be preferable.
The siqr model has an additional parameter, α, which is the quar-

antining rate. We assume that the same recovery rate γ applies to all
infectives, regardless of whether they are quarantined or not. The
siqr model is represented by the following system of four simultane-
ous differential equations:

dS/dt = −βSI/(N −Q),

dI/dt = +βSI/(N −Q)− γI − αI,

dQ/dt = +αI − γQ,

dR/dt = +γI + γQ.
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These two epidemiological models were fitted to the data using
the Stan modeling language, in tandem with the R package rstan.37

37 B. Carpenter, A. Gelman, M. Hoff-
man, D. Lee, B. Goodrich, M. Be-
tancourt, M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A probabilistic
programming language. Journal of
Statistical Software, 76(1):1–32, 2017.
doi:10.18637/jss.v076.i01; and Stan De-
velopment Team. Stan User’s Guide.
mc-stan.org, 2019. Stan Version 2.23

The estimates of all non-observable quantities are the means of their
Bayesian posterior distributions.

The following R and Stan codes were used to fit the sir model,
assuming that the counts of boys in the different compartments are
like outcomes of Poisson random variables whose means satisfy the
systems of differential equations presented above.

modelSIR = "functions {

real[] sir(real t, real[] y, real[] ps, real[] xr, int[] xi) {

real N = xi[1];

real dSdt = - ps[1] * y[1] * y[2] / N;

real dIdt = ps[1] * y[1] * y[2] / N - ps[2] * y[2];

real dRdt = ps[2] * y[2];

return {dSdt, dIdt, dRdt}; } }

data { int N; real y0[3]; real ts[14]; int cases[14]; }

transformed data { real xr[0]; int xi[1] = {N}; }

parameters { real<lower=0> ps[2]; }

transformed parameters {

real y[14,3] = integrate_ode_rk45(sir, y0, 0, ts, ps, xr, xi); }

model { ps ~ normal(1, 10); // Priors for beta and gamma

cases ~ poisson(y[,2]); } // Sampling distribution

generated quantities { real R0 = ps[1] / ps[2]; }"

library(rstan); library(outbreaks)

cases = influenza_england_1978_school$in_bed

N = 763; n_days = length(cases)

dataSIR = list(n_days=n_days, y0 = c(S=N-1, I=1, R=0),

N = N, cases = cases, t0 = 0, ts = seq(1, n_days),

ts_pred = seq(1,1+n_days,length.out = 100) )

## Compile STAN model

modelSIR.poisson = stan_model(model_code=modelSIR)

## Fit STAN model

fitSIR.poisson = sampling(modelSIR.poisson, data = dataSIR)

## Estimate of R0

print(fitSIR.poisson, pars = 'R0')

Observed daily numbers of cases and
corresponding predicted counts

produced by sir and siqr models with
Poisson variability on the observed

cases, surrounded by 95 % probability
bands.

https://doi.org/10.18637/jss.v076.i01
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The basic reproduction numbers for the sir and siqr models are

R0(SIR) =
β

γ
,

R0(SIQR) =
β

γ + α
.

The estimates were R0(SIR) = 3.55 with u(R0(SIR)) = 0.08 for the
sir model, and R0(SIQR) = 3.38 with u(R0(SIQR)) = 0.08 for the
siqr model. Although numerically different, they are not signifi-
cantly different once their associated uncertainties are taken into ac-
count: their standardized difference is (3.55− 3.38)/

√
0.082 + 0.082 =

1.5. Since Bayesian estimates are approximately like outcomes of
Gaussian random variables, a z-test for their difference yields p-value
0.13.

R0 captures various aspects of the
outbreak. For simple models such as

these, the proportion of the population
that needs to be immunized to prevent
sustained spread of the disease (that is,

to achieve herd immunity), has to be
larger than 1− 1/R0 and the maximum

number of cases on any given day is
Imax = N − N(1 + ln R0)/R0.

The estimates of R0 produced by these two models can be aver-
aged using Bayesian stacking weights [Yao et al., 2017] to produce
an estimate corresponding to the best mixture of these models. The
weights were computed using R package loo [Vehtari et al., 2019].
Since the stacking weights were 0.24 for sir and 0.76 for siqr, the
combined estimate is

R0 = (0.24× 3.55) + (0.76× 3.38) = 3.42,

with uncertainty u(R0) =
√
(0.24× 0.08)2 + (0.76× 0.08)2 = 0.06.

The basic reproduction number, R0, represents the average number
of new infections per existing case. In other words, if R0 = 3, then
one person with the disease is expected to infect, on average, three
others. Despite its simplicity, R0 is a messy quantity because the def-
inition allows for a multitude of interpretations. For example, do we
estimate this quantity at the beginning of the outbreak, at the end, or
somehow estimate the average during the entire infectious period?

For measles, R0 is widely believed to be
somewhere between 12 and 18. Yet, as
an example of the real-world messiness
of the R0 estimates, a recent systematic

review of 18 studies of measles
outbreaks reported R0 values ranging

from 4 to 200 [Guerra et al., 2017]A common way to estimate R0, among the many available alterna-
tives,38 is based on the total number of susceptible patients at the end

38 J. M. Heffernan, R. J. Smith, and
L. M. Wahl. Perspectives on the basic
reproductive ratio. Journal of The
Royal Society Interface, 2:281–293, 2005.
doi:10.1098/rsif.2005.0042

of the outbreak, which for the boys school was S(∞) = 763− 512 =

251, using the “final size equation:”

R0 =
ln(S(0)/S(∞))

1− S(∞)/N
=

ln(762/251)
1− 251/763

= 1.65.

Although ad hoc, rather than model-based as the estimates computed
above, the very fact that it differs from them to such enormous extent
highlights the role of models and the uncertainty that is associated
with the selection of a model to estimate the quantities of interest.

https://doi.org/10.1098/rsif.2005.0042
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Consensus Building

Burgess and Spangler [2003] explain that “consensus building (also
known as collaborative problem solving or collaboration) is a conflict-
resolution process used mainly to settle complex, multiparty dis-
putes.” In the sciences, consensus building serves to blend mea-
surement results for the same measurand that have been obtained
independently of one another. In measurement science in particular,
besides this role, consensus building is also used to characterize and
compare the different measurement results, by estimating the differ-
ence between the true value that each purports to measure, and the
true value of the consensus value, and evaluating the corresponding
uncertainty — the so-called degrees of equivalence [Koepke et al., 2017].

In medicine, where consensus building is often referred to as meta-
analysis [Higgins et al., 2019], and where the same techniques are
also employed to merge results of multicenter trials [Friedman et al.,
2015], the goal is to ascertain confidently that a medical procedure or
therapy is superior to another, by pooling results from different stud-
ies that, if taken individually, may be inconclusive. This approach is
also known as borrowing strength.

Hubble-Lemaître Constant

In the 1920s, Edwin Hubble and Georges Lemaître discovered that
galaxies appear to be moving away from the Earth at speeds (v) that
are proportional to their distance (D) from Earth [Hubble, 1929]
[Lemaître, 1927, 2013]:

v = H0D.

The constant of proportionality, H0, is known as the Hubble-Lemaître
constant. This discovery motivated Einstein to visit Hubble at the
Mount Wilson observatory on January 29, 1931, and acknowledge
that the universe is expanding.
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Measured values of distance and
velocity for 24 galaxies reported by

[Hubble, 1929, Table 1]. The red line has
slope 592± 28 (km/s)/Mpc.

A parsec is the distance from the Sun to
an astronomical object that has a

displacement (parallax) angle of one arc
second, which is how it got its

portmanteau name from parallax and
second: it is approximately 3.26

light-years, or 3.1× 1013 km.

The data in Table 1 of Hubble [1929] suggest the estimate H0 =

592± 28 (km/s)/Mpc, computed using the procedure described by
Bablok et al. [1988] and implemented in R function deming::pbreg()

(https://CRAN.R-project.org/package=deming). As we shall see
next, this estimate of H0 is much larger than contemporary estimates.

Since the final release of the results from the Planck survey [Aghanim
et al., 2018], which include an estimate of H0, several other measure-
ment results have been produced for this constant, by application of a
wide variety of methods. These results can be combined into a single
consensus estimate using the following statistical measurement model:

H0,j = H0 + λj + ε j j = 1, . . . , n

https://CRAN.R-project.org/package=deming
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The {λj} denote experiment effects, and the {ε j} denote measure-
ment errors: the former are modeled as a sample from a Gaussian
distribution with mean 0 and standard deviation τ, and the latter are
modeled as outcomes of independent Gaussian random variables
all with mean 0 and with standard deviations equal to the reported
uncertainties {u(H0,j)}.

H0 u(H0)

67.4 0.5 Planck [Aghanim et al., 2018]

72.5 2.2 h0li [Birrer et al., 2019]
67.8 1.3 des [Macaulay et al., 2019]
69.32 1.42 ryan [Ryan et al., 2019]
74.03 1.42 hst [Riess et al., 2019]
67.4 6.1 flat [Domínguez et al., 2019]
70.3 5.15 lv [Hotokezaka et al., 2019]
73.3 1.75 h0l6 [Wong et al., 2019]
69.8 1.9 hst [Freedman et al., 2019]
73.5 1.4 rpr [Reid et al., 2019]
70.3 1.35 dutta [Dutta et al., 2019]
76.8 2.6 sh3 [Chen et al., 2019]
74.2 2.85 stri [Shajib et al., 2019]
73.9 3.0 mega [Pesce et al., 2020]

Estimates of the Hubble-Lemaître constant,
H0, all expressed in (km/s)/Mpc. The

standard uncertainties are such that each of
the intervals {H0,j ± u(H0,j)} is believed (by
its authors) to include the true value of H0

with probability 68 % approximately. Some of
the uncertainties were originally expressed
asymmetrically, but since the asymmetries

were very mild, here they have been replaced
by the geometric averages of the

corresponding, reported “left” and “right”
uncertainties.

Neither the {λj} nor the {ε j} are observable. However, it is pos-
sible to tell whether τ > 0 (hence conclude that the {λj} are not all
zero) by comparing the dispersion of the measured values {H0,j}
with the {u(H0,j)}, which are regarded as input data, too. If the
measured values are more dispersed than the reported uncertainties
suggest they should be, then this means that there are yet unidenti-
fied sources of uncertainty in play whose joint effect is accounted for
by the introduction of the experiment effects {λj}, whose typical size
is gauged by τ. Since this “extra” uncertainty manifests itself only
when results from multiple, independent experiments are compared,
τ is often called dark uncertainty [Thompson and Ellison, 2011].

The standard deviation of the thirteen values {H0,j} listed along-
side (excluding Planck) is 2.8 (km/s)/Mpc, while the median of the
{u(H0,j)}, 1.9 (km/s)/Mpc, is 1.5 times smaller. Cochran’s Q test of
mutual consistency of the measurement results (that is, of the hy-
pothesis that τ = 0) [Cochran, 1954] has p-value 0.016, suggesting
that there is significant dark uncertainty.

H
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Each diamond represents a measured
value, and each vertical line segment
represents an interval H0,j ± u(H0,j).

The horizontal line segment represents
the consensus value derived from all
measurement results except Planck’s,
and the horizontal, shaded rectangle

depicts the associated standard
uncertainty.

The model for the {H0,j} may be fitted in any one of several dif-
ferent ways. We will use the DerSimonian-Laird procedure as imple-
mented in the the NIST Consensus Builder [Koepke et al., 2017], which
produces the estimate of dark uncertainty τ̂ = 1.92 (km/s)/Mpc, and
consensus value Ĥ0 = 71.8 (km/s)/Mpc with u(Ĥ0) = 0.8 (km/s)/Mpc.

The estimates of H0 have been steadily shrinking,39 and by an

39 V. Trimble. H0: The incredible shrink-
ing constant, 1925-1975. Publications
of the Astronomical Society of the Pa-
cific, 108:1073–1082, December 1996.
doi:10.1086/133837

order of magnitude, from the early values obtained by Hubble and
Lemaître, which were in the range 500-600(km/s)/Mpc, to contem-
porary estimates around the foregoing consensus value.

The Hubble time, tH = 1/H0 ≈ 14× 109 years, may be interpreted
as an estimate of the age of the universe, which is believed to lie
between tH and (2/3)tH , depending on the cosmological model.
Since H0 and the age of the universe are related, the value of H0 may
also be inferred from cosmological models. For example, Ryan et al.
[2019] treats H0 as an adjustable parameter when fitting flat and non-
flat variants of the ΛCDM model to observations, obtaining estimates
for H0 from 68 (km/s)/Mpc to 75 (km/s)/Mpc.

To compare the cosmological estimate derived from the Planck sur-
vey with the foregoing consensus value, we compute the normalized

http://uncertainty.nist.gov
https://doi.org/10.1086/133837
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difference
z =

71.8− 67.4√
0.82 + 0.52

= 4.66.

On the hypothesis of no difference between the corresponding true
values, this normalized difference would be like an outcome of a
Gaussian random variable with mean 0 and standard deviation 1.
The probability of attaining or exceeding such a difference (regard-
less of sign) is p = 3× 10−6, thus suggesting a very significant differ-
ence.

This discrepancy, which the astrophysical literature refers to as
Hubble tension [Poulin et al., 2019], suggests that the pattern of expan-
sion of the universe may have been somewhat more complex than the
Hubble-Lemaître “law” contemplates, and indeed may lead to new
physics.40

40 J. Sokol. A recharged debate over the
speed of the expansion of the universe
could lead to new physics. Science,
March 2017. doi:10.1126/science.aal0877

Arsenic in Kudzu

Kudzu, “the vine that ate the South.”
— Kerry Britton, USDA Forest Service,

Bugwood.org.

Kudzu comprises several species of perennial twining vines native
to East Asia, which were introduced into the United States in 1876,
originally intended as ornamental plants, and subsequently also used
as food for cattle and ground cover. Their astonishingly rapid growth
and ability to climb and develop roots opportunistically have turned
kudzu into a damaging infestation, snuffing other plants large and
small, including trees, and covering man-made structures.

The development of nist srm 3268 Pueraria montana var. lobata
(Kudzu) Extract, included an interlaboratory study where 22 labora-
tories made triplicate determinations of the mass fraction of arsenic
in this material, listed and depicted alongside.

A 0.851 0.866 0.871
B 0.779 0.956 1.026
C 0.702 0.702 0.723
D 0.649 0.686 0.595

E 0.608 0.587 0.576
F 0.899 0.852 0.830
G 0.912 0.912 0.922
H 0.949 0.948 0.952

I 0.947 0.982 0.945
J 0.978 1.015 0.936
K 1.008 1.004 1.002
L 0.908 0.928 0.911

M 1.027 1.030 1.044
N 0.747 0.795 0.823
O 0.801 0.793 0.794
P 0.892 0.886 0.857

Q 0.838 0.817 0.828
R 0.531 0.545 0.535
S 0.922 0.978 0.988
T 1.376 1.399 1.388

U 0.873 0.881 0.916
V 0.913 0.957 0.956

Triplicate determinations of arsenic,
where the letters denote laboratories
and the numbers are values of mass

fraction, expressed in mg/kg.

The Shapiro-Wilk test of Gaussian shape offers no compelling rea-
son to abandon the hypothesis that all triplets are like samples from
Gaussian distributions. Therefore, the triplets will be replaced by
their corresponding averages {wj} and associated standard uncer-
tainties {uj} evaluated using the Type A method from the gum. For
example, for laboratory U,

wU =
0.873 + 0.881 + 0.916

3
= 0.890 mg/kg,

uU =

√
(0.873− wU)2

3− 1
+

(0.881− wU)2

3− 1
+

(0.916− wU)2

3− 1
= 0.013.

Cochran’s Q-test [Cochran, 1954] suggests significant heterogene-
ity, even if the determinations made by laboratories B, D, Q, R, and
S were to be left out — they will not be left out in our subsequent
analyses because there is no substantive reason to.

The symmetry test proposed by Miao et al. [2006] and imple-
mented in R package symmetry [Ivanović et al., 2020], applied to the

https://doi.org/10.1126/science.aal0877
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averages of the triplicates obtained by the participating laboratories,
yields p-value 0.37, hence no reason to dismiss a symmetrical model
for the random effects. And the Anderson-Darling test of Gaussian
shape, applied to the coarsely standardized laboratory-specific aver-
ages, yields p-value 0.004. The “coarsely standardized” averages are
{(wj − M)/u(wj)}, where M denotes the median of the {(wj}, and
each wj is the average of the three replicates obtained by laboratory j,
for j = A, . . . , V. w
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Each open circle represents a measured
value, and each vertical line segment

links the replicates from one laboratory.

Thus, we are faced with a situation where the laboratory-specific
lack of repeatability may be modeled using Gaussian distributions,
but the laboratory effects require a model that is symmetrical and has
tails heavier than Gaussian tails. Consider a random effects model
of the form wj = ω + λj + ε j, where ω denotes the true value of
the mass fraction of arsenic in the material, the {λj} have a Laplace
distribution with mean 0 and standard deviation τ, and the {ε j} are
Gaussian, all with mean 0 but possibly different standard deviations
{σj} that also need to be estimated. The Laplace random effects will
dampen the influence that the results from laboratories B and D will
have upon the consensus value and associated uncertainty.

Since the {uj} are estimates of the {σj} based on only 2 degrees of
freedom each, and an estimate of τ will be based on the dispersion
of only 22 observations, we employ a Bayesian formulation that is
best capable to recognize such limitations, and take into account
their impact on the evaluation of uncertainty for the consensus value.
To this end, we will use the following prior distributions: a largely
non-informative, Gaussian prior distribution for ω, a half-Cauchy
prior distribution for τ, with median γ, and a half-Cauchy prior
distribution for the {σj}, with median δ.

Since γ and δ are parameters of prior distributions, they are often
called hyperparameters. Similarly to how the NIST Consensus Builder
assigns default values to these parameters, we set γ equal to the mad

of the laboratory-specific averages, and δ equal to the median of the
{uj}.

The following Stan and R codes implement and fit the model
described above, assuming that the Stan code is in a file called
LaplaceGaussian.stan located in R’s working directory, and that
w and u are vectors of laboratory averages and associated standard
uncertainties, and nu is the corresponding vector of numbers of de-
grees of freedom (whose 22 elements all should be equal to 2).

library(rstan)

As.Data = list(N=n, w=w, u=u, nu=nu, gamma=mad(w), delta=median(u))

As.Fit = stan(file="LaplaceGaussian.stan", data=As.Data,

warmup=75000, iter=500000,

chains=4, cores=4, thin=25)

http://consensus.nist.gov
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data {

int < lower = 1 > N; // Number of labs

real gamma; // Prior median of dark uncertainty tau

real delta; // Prior median of {sigma[j]}

real w[N]; // Measured values

real u[N]; // Standard uncertainties

real nu[N]; } // Numbers of degrees of freedom

transformed data{

real u2[N];

for (j in 1:N) {u2[j] = u[j]^2;} }

parameters {

real omega; real < lower = 0 > tau;

real theta[N]; real < lower = 0 > sigma[N]; }

model {

omega ~ normal(0, 100000); // Prior for omega

// Half-Cauchy prior for tau with median gamma

tau ~ cauchy(0, gamma);

// Random effects {theta[j]-omega}

// Division by sqrt(2) makes tau the prior SD

theta ~ double_exponential(omega, tau/sqrt(2));

// Half-Cauchy prior for sigma[j] with median delta

for (j in 1:N) sigma[j] ~ cauchy(0, delta);

// Likelihood for u2[j]

for (j in 1:N) {u2[j] ~ gamma(nu[j]/2,

nu[j]/(2*(sigma[j]^2)));}

// Likelihood for w[j]

for (j in 1:N) w[j] ~ normal(theta[j], sigma[j]); }

// Must end with empty line

The Stan code treats both the measured
values {wj} and the associated

uncertainties {uj} as data. Therefore,
the likelihood includes a term for the
{u2

j } that recognizes the fact that, under
the Gaussian assumption for the

measured values, the {νju2
j /σ2

j } are like
outcomes of independent random

variables with chi-square distributions,
which are particular gamma

distributions.
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top panel: Posterior probability
density of the consensus value, with

mean ω̃ = 0.895 mg/kg (red diamond).
middle panel: Posterior probability
density of the dark uncertainty, with

median τ̃ = 0.17 mg/kg (red diamond).
bottom panel: Reported standard
uncertainties, {uj}, versus posterior
medians of the corresponding {σj}.

An estimate of the posterior probability density of the consen-
sus value ω is depicted in the top panel, alongside. The poste-
rior mean is ω̃ = 0.895 mg/kg, whose associated uncertainty is
u(ω̃) = 0.029 mg/kg. A 95 % credible interval for ω ranges from
0.839 mg/kg to 0.951 mg/kg.

The posterior median for the dark uncertainty, τ̃ = 0.17 mg/kg is
about 20 times larger than the median of the reported uncertainties.
The corresponding probability density is depicted in the middle
panel.

The bottom panel depicts the relationship between the reported
standard uncertainties {uj} and the posterior medians of the cor-
responding {σj}, showing the shrinkage effect that is typical of
Bayesian estimates: the posterior median uncertainties tend to be
larger than the reported uncertainties for the smaller uncertainties,
and smaller than them for the larger uncertainties. In this case,
each reported uncertainty is based on only 2 degrees of freedom:
the Bayesian model recognizes this limitation explicitly, and takes it
into account as it estimates the consensus value and evaluates the
uncertainty of the associated uncertainty.
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It is worth noting that nearly identical results can be obtained us-
ing the following one-liner from brms package without summarizing
the triplicate results from the individual laboratories:

library(rstan)

library(brms)

brm(formula = bf(w ~ 1 + 1|lab, sigma ~ 0 + lab, quantile = 0.5),

family = asym_laplace, data = df)

Since the model implemented in brm and the model specified above
using the Stan language differ only in the choice of prior distribu-
tions, the fair agreement of the respective results is a welcome out-
come of this sensitivity analysis.
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Appendix: Uncertainty

Measurement uncertainty is the doubt about the true value of
the measurand that remains after making a measurement. Measure-
ment uncertainty is described fully and quantitatively by a probabil-
ity distribution on the set of values of the measurand.

This definition acknowledges explicitly that measurement un-
certainty is a kind of uncertainty, and intentionally disconnects the
meaning of measurement uncertainty from how it may be repre-
sented or described.

Uncertainty is the absence of certainty, and certainty is either a
mental state of belief that is incontrovertible for the holder of the be-
lief (like, “I am certain that my son was born in the month of Febru-
ary”), or a logical necessity (like, “I am certain that 7253 is a prime
number”).

Uncertainty comes by degrees, and measurement uncertainty,
which is a kind of uncertainty, is the degree of separation between
a state of knowledge achieved by measurement, and the generally
unattainable state of complete and perfect knowledge of the object of
measurement.

Measurement uncertainty can be represented most thoroughly by
a probability distribution. This representation applies equally well to
the measurement of qualitative as of quantitative properties.

For quantitative, scalar measurands, measurement uncertainty
may be summarily, albeit incompletely, represented by the standard
deviation of the corresponding probability distribution, or by similar
indications of dispersion. A set of selected quantiles of this distri-
bution provides a more detailed summarization than the standard
uncertainty.

The uncertainty surrounding quantitative, multivariate or func-
tional measurands, can be summarized by covariance matrices or
by coverage regions, for example coverage bands for calibration and
analysis functions.

For categorical measurands, the dispersion of the probability dis-
tribution over the set of possible values for the property of interest
may be summarized by its entropy.41 Alternatively, the uncertainty

41 A. Possolo. Simple Guide for Eval-
uating and Expressing the Uncertainty
of NIST Measurement Results. Na-
tional Institute of Standards and
Technology, Gaithersburg, MD, 2015.
doi:10.6028/NIST.TN.1900. NIST
Technical Note 1900

may be expressed using rates of false positives and false negatives,
sensitivity and specificity,42 or receiver operating characteristic

42 D. G. Altman and J. M. Bland.
Statistics Notes: Diagnostic tests 1:
sensitivity and specificity. British
Medical Journal, 308(6943):1552, 1994.
doi:10.1136/bmj.308.6943.1552

curves.

When it proves impracticable to express
measurement uncertainty quantitatively
(either for quantitative or for categorical
measurands), it may be expressed using

an ordinal scale comprising suitably
defined degrees of uncertainty, or levels
of confidence. For example, using terms

like “Virtually certain”, “Very likely”,
etc., in climatology [Mastrandrea et al.,

2011]; or “Most Confident”, “Very
Confident”, etc., in the identification of
nucleobases in DNA (nist srm 2374

DNA Sequence Library for External
RNA Controls), or of a biological

species (nist srm 3246 Ginkgo biloba).

https://doi.org/10.6028/NIST.TN.1900
https://doi.org/10.1136/bmj.308.6943.1552
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Appendix: Probability

Probability map for the location of Air
France 447 site after three unsuccessful
searches from June 2009 to May 2010.
Red areas indicate highest probability
that the wreckage is located there, and
the white cross shows the location of

where the wreckage was found in 2011.
Modified version of Figure 33 in Stone

et al. [2011].

Imagine an explorer looking for the wreckage of an airplane resting
at the bottom of the sea, with the aid of a map that is colored with
a gradation of colors starting from blue, which indicates the lowest
probabilities, then progressing through green, yellow, and orange,
and finally reaching red, which indicates the highest probability of
the wreckage being there. A probability distribution is like this map,
or like a distribution of mass over the set of possible values for a
measurand: where the colors are reddest, or where the mass density
is largest, the more likely it is for the true value of the measurand
to be there. For a scalar measurand, the “region” is a subset of the
real numbers equipped with the appropriate measurement units.
For multivariate measurands, the “region” is a subset of a suitable,
multidimensional space. For categorical measurands, the “region” is
the set of its possible values.

Probability distributions over sets of values of quantities or
qualities are mathematical objects very similar to distributions of
mass in space. Probability, the same as mass, may be distributed
continuously, smoothly (as one spreads jelly on bread), or it may be
distributed discretely, in lumps (as one places blobs of cookie dough
on a baking sheet).

A distribution of probability, like a distribution of mass, may have
both features: being smooth in some regions, and lumpy in others.
For example, an estimate of dark uncertainty (discussed under Con-
sensus Building) typically can be zero with positive probability (hence
its probability distribution places a lump of probability at 0), but is
otherwise distributed continuously over all positive numbers. The set
to which a probability distribution assigns its whole unit of probabil-
ity is called the support of the distribution.

But while different masses may be distributed over the same or
different regions of space, all distributions of probability have avail-
able a single unit of probability to spread around. Where probability
piles up and stands out it suggests where it is more likely that the
treasure lies. Distance from Earth / AU
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Histogram depicting the probability of
finding Venus within particular
distances from Earth. The pink

rectangle from 0.5 AU to 0.6 AU, has an
area 0.04544 which is the probability

that, on a randomly chosen day, Venus
will be between 0.5 AU and 0.6 AU

from Earth. This probability was
computed by determining the number
of days, between December 25th, 2020,

and December 24th, 2420, when the
distance to Venus will be in that

interval, and dividing it by the total
number of days in this period:

6638/146097 = 0.04544.

Consider the probability density of the distance from Earth to
Venus as both planets travel in their orbits around the sun as de-
scribed by Kepler’s laws. The function whose graph is the dark blue
polygonal line that tops the histogram is a probability density func-
tion: it represents probabilities by areas under its graph. The total
area painted light blue or pink is 1. The assignment of the unit of
probability to the horizontal axis according to the areas under the
polygonal line defines what is called a probability distribution on this
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axis. In this case, probability piles up toward the ends of the range of
distances, and it is scarcer in the middle.

If the area under the polygonal line is conceived as representing
matter of uniform density, and this matter collapses to form a rigid
rod of negligible thickness on the horizontal axis, then the probability
distribution is the distribution of mass of this rod, and the probability
density function depicts the variation of the mass density along the
rod.

The mean of the distribution is the center of mass of this rod, and
the variance of the distribution is the second moment of inertia of
the rod when it rotates about its center of mass, with axis of rotation
perpendicular to the rod.

Probability distributions naturally arrange themselves into fam-
ilies: Gaussian distributions, Weibull distributions, etc. The mem-
bers of the same family have probability densities of the same form,
differing only in the values of some parameters, which identify the
individual members of the family. For example, individual Gaussian
distributions are identified by the mean and standard deviation, and
individual Weibull distributions by the shape and scale parameters.
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Probability density of the uniform
distribution on the interval [1, 3], with

mean 2 and standard deviation
1/
√

3 = 0.58. The pink region
comprises 68 % of the area under the

curve.

A uniform (or rectangular) probability distribution over
an interval [a, b], where a < b, has a probability density function
whose value is 1/(b − a) over that interval, and zero everywhere
else. Since its graph is a rectangle, the distribution is also called
rectangular. It has mean µ = (a + b)/2 and standard deviation
σ = (b − a)/

√
12. Since probabilities are given by areas under the

graph of the probability density, the probability assigned to an inter-
val [x− δ, x + δ], for some δ > 0 and any real number x, either is zero
or decreases to zero as δ decreases to zero. For this reason, the dis-
tribution is said to be continuous. Every continuous distribution thus
has the apparently paradoxical property that even though it assigns
probability zero to every individual real number, the probability it
assigns to its support still adds up to 1.

A Gaussian (or normal) probability distribution with mean
µ and standard deviation σ > 0 is a continuous distribution whose
support is the infinitely long interval that comprises all real numbers.
Its probability density has the familiar bell-shaped curve as its graph:
it is symmetrical around µ and has inflection points at µ ± σ. The
area under the curve between the inflection points is 68 %, and the
corresponding area between µ± 2σ is 95 % approximately.
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Probability density of the Gaussian
distribution with mean 2 and standard

deviation 1/
√

3 = 0.58. The pink region
comprises 68 % of the area under the

curve.
The Gaussian distribution plays a central role in probability the-

ory because the probability distribution of the sum of several inde-
pendent random variables can, under very general conditions, be
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approximated by a Gaussian distribution — a remarkable fact first
established in fair generality by Pierre Simon, Marquis de Laplace, in
1812.

A unique, surprising property of the Gaussian distribution is that
“a necessary and sufficient condition for the normality of the parent
distribution is that the sampling distributions of the mean and of
the variance be independent.”43 This is surprising because both the

43 E. Lukacs. A characterization of the
normal distribution. Annals of Math-
ematical Statistics, 13(1):91–93, March
1942. doi:10.1214/aoms/1177731647

sample average and the sample variance are functions of the same
data.

The distribution takes its name from Carl Friedrich Gauss (1777–
1855) because he proved that the arithmetic average is the best com-
bination of observations (in the sense of minimizing mean squared
error) when the errors of observation are Gaussian, thus providing a
rationale for the widespread practice of averaging observations.

The distribution is also called “normal.” However, John Tukey

“The reference standard for shapes of
distribution has long been the shape

associated with the name of Gauss, who
combined mathematical genius with

great experience with the
highest-quality data of his day — that

of surveying and astronomy. Later
writers have made the mistake of

thinking that the Gaussian (sometimes
misleadingly called normal)

distribution was a physical law to
which data must adhere — rather than
a reference standard against which its
discrepancies are to be made plain.”

— John Tukey (1977, §19B)

in particular, has made clear that it is far from being a universally
adequate model for data. On the contrary, he places the Gaussian
distribution among the defining elements of what he calls the utopian
situation for data analysis — an “ideal” situation that is as mathemat-
ically convenient as it often is disjointed from reality.

P
ro

b.
 D

en
si

ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Probability densities of Student’s t
distributions with center 0, scale 1, and

number of degrees of freedom 1
(orange), 3 (blue), and 9 (green).

A Student’s t probability distribution with center θ, scale
τ > 0, and number of degrees of freedom ν > 0 is a continuous
distribution whose support is the set of all real numbers.

The graph of its probability density also is bell shaped, but its tails
are heavier (and its center lighter) than in the Gaussian distribution
with the same mean and standard deviation. The parameter ν con-
trols its tail heaviness: the smaller the ν, the heavier the tails. For
example, Student t-distribution with mean 0 and standard deviation√

3 (which has 3 degrees of freedom), assigns almost seven times
more probability to the interval [6, 7] than a Gaussian distribution
with the same mean and standard deviation.

This distribution is remarkable, and pervasive, owing to this fact:
if x1 , . . . , xm are a sample of size m drawn from a Gaussian distribu-
tion with mean µ and standard deviation σ, xm is the sample average
and s2

m =
(
(x1 − xm)2 + · · · + (xm − xm)2)/(m − 1) is the sample

variance, then (xm − µ)/(sm /
√

m) is like an outcome of a random
variable with a Student’s t distribution with center 0, scale 1, and
m − 1 degrees of freedom. This is remarkable because the probability
distribution of this ratio does not involve the unknown σ.

If ν 6 2, then the Student’s t distribution has infinite variance.
A Student’s t distribution with ν = 1 is called a Cauchy or Lorentz
distribution: it has neither variance nor mean. Random variables
with Cauchy distributions are truly wild things. This is how wild:

https://doi.org/10.1214/aoms/1177731647
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the average of a sample from a Cauchy distribution has the same
distribution as the individual sample values.

The Half-Cauchy distribution is the result of truncating at
zero a Cauchy distribution that is centered at zero, so that it assigns
all of its probability to the positive real numbers. Gelman [2006]
suggests the half-Cauchy as a general purpose, weakly informative
prior distribution for standard deviations in Bayesian random effects
models. We use it in this role when computing a consensus value for
the mass fraction of arsenic in kudzu.
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Probability density of the Half-Cauchy
distribution with median 1.
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Probability density of the gamma
distribution with mean 2 and standard

deviation 1/
√

3. The pink region
comprises 68 % of the area under the

curve.

The Gamma and Chi-square probability distributions are
members of the same family. The gamma distribution is determined
by two positive parameters, shape α and rate β, and its support are
the positive real numbers. The distribution is skewed to the right,
with a right tail longer and heavier than the left tail. The mean is
α/β, and the variance is α/β2. A gamma distribution with shape
α = 1.7 and rate β = 762 kg/mg is used in the measurement of nitrite
in seawater to encapsulate prior knowledge about measurement
uncertainty associated with Griess’s method [Griess, 1879].
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The dark blue, steadily decreasing
curve is the probability density of the

chi-square distribution with both mean
and standard deviation equal to 2. The
pink region comprises 68 % of the area
under the curve. When the number of
degrees of freedom ν is greater than 2,

the curve has a single hump, reaching a
maximum at ν− 2.

If ν > 0, shape α = ν/2, and rate β = ½, then the gamma distribu-
tion is the chi-square distribution with ν degrees of freedom (its sole
adjustable parameter), with mean ν and variance 2ν.

The Gaussian, chi-square, and Student’s t distributions are interre-
lated in a remarkable manner. If x and s are the average and standard
deviation of a sample of size m drawn from a Gaussian distribution
whose mean µ and standard deviation σ both are unknown, then:
(i) x and s are like outcomes of two independent random variables
(even though they are functions of the same data); (ii) (m− 1)s2/σ2

is like an outcome of a chi-square random variable with m − 1 de-
grees of freedom; and (iii) (x − µ)/(s/

√
m) is like an outcome of a

Student’s t random variable with m − 1 degrees of freedom, hence
its distribution does not depend on the unknown σ. This last fact is
the basis for the coverage intervals specified in Annex G of the gum

[JCGM 100:2008].
The Stan code that implements a random effects model for the

determinations of the mass fraction of arsenic in kudzu employs the
chi-square distribution in the likelihood function to express the un-
certainty associated with sample standard deviations based on small
numbers of degrees of freedom as follows: if ν denotes the number of
degrees of freedom that s is based on, then νs2/σ2 is like an outcome
of a chi-square random variable with ν degrees of freedom, and s2

is like an outcome of a gamma random variable with shape ν/2 and
rate ν/(2σ2).
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The Weibull probability distribution may be the most im-
portant continuous, univariate distribution, after the Gaussian, chi-
square, and Student’s t distributions. Its support is the positive
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Probability density of the Weibull
distribution with mean 2 and standard

deviation 1/
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3 = 0.58. The pink region
comprises 68 % of the area under the

curve.

real numbers, and it is indexed by two parameters: shape β > 0
and scale η > 0, with mean ηΓ(1 + 1/β) and standard deviation
η(Γ(1 + 2/β)− Γ2(1 + 1/β))½, where “Γ” denotes the gamma func-
tion of mathematical analysis (whose values can be computed in R
using function gamma). The exponential distribution is a particular
case of the Weibull distribution (when the shape is 1). The Weibull
distribution is renowned for being an accurate model for the strength
of many materials, and for the longevity of mechanical parts and
machinery. We will illustrate its use in such setting, when we will
describe maximum likelihood estimation and Bayes methods.

A lognormal probability distribution is a continuous dis-
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distribution with mean 2 and standard

deviation 1/
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3 = 0.58. The pink region
comprises 68 % of the area under the

curve.

tribution whose support is the positive real numbers. If a random
variable X has a lognormal distribution with mean µ and standard
deviation σ > 0, then ln(X) has a Gaussian distribution with mean
ln(µ/

√
(σ/µ)2 + 1), and variance ln((σ/µ)2 + 1).

Ratios, U/V, arise often in metrology, and the Gaussian distribu-
tion just as often is the natural candidate to model the uncertainties
that surround them. However, assigning a Gaussian distribution to
the denominator, V, implies that the probability is positive that V
shall take a value arbitrarily close to zero, hence that the ratio may
become arbitrarily large in absolute value, or, in other words, that
the uncertainty of the ratio will be infinite. Of course, if zero lies
many standard deviations away from V’s expected value, then this
difficulty may not matter in practice.
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Probability densities of the lognormal
(blue thick curve) and Gaussian (red
thin curve) distributions, both with

mean 7 and standard deviation 0.525.
The coefficient of variation is 7.5 %, and

the two densities already provide a
close approximation to one another.

When the coefficient of variation of V (standard deviation divided
by the mean) is small (say, less than 5 %), then Gaussian and lognor-
mal distributions with identical means and with identical standard
deviations will be essentially identical, and the lognormal model may
be used to avoid the possibility of inducing an unrealistically large
variance for the ratio.
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The Laplace probability distribution, also called the double
exponential distribution, is specified by its mean and scale param-
eters. We use the Laplace distribution in a model for the results of
an interlaboratory study of the mass fraction of arsenic in kudzu be-
cause its tails are heavier than the tails of the Gaussian distribution
with the same mean and standard deviation, thus reducing the influ-
ence that measured values far from the bulk of the others have upon
the consensus value.
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A binomial distribution is often appropriate to characterize the
uncertainty surrounding the number of entities of a particular type
that are being identified and counted. For example, in a differen-
tial leukocyte count where 100 white blood cells were identified and
counted, there were 4 eosinophils. This count may be regarded as
outcome of a binomial random variable based on 100 trials (examina-
tions of individual cells), each of which yields a eosinophil (success)
or a cell of some other type (failure), provided different trials are in-
dependent events, and the probability of a cell being identified as an
eosinophil remains constant for the duration of the examination.
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Probability density of the Binomial
distribution with mean 2, based on 10
trials, with probability of “success” 0.2

in each trial.

The binomial distribution is indexed by two parameters: the num-
ber, n, of “trials”, and the probability of “success”, 0 6 p 6 1, in each
trial. A random variable with such binomial distribution can take any
integer value between 0 and n, inclusive. Its mean, or expected value,
is np, and its variance is np(1− p). This variance does not express the
component of uncertainty attributable to identification errors: for ex-
ample, where a true eosinophil is misidentified as being a leukocyte
of some other type — the contribution that misidentification makes
to combined uncertainty needs to be evaluated separately.

A Poisson probability distribution with mean λ > 0 has
standard deviation

√
λ. It is a discrete distribution because it dis-

tributes its unit of probability in lumps at 0, 1, 2, . . . . The probability
that a Poisson random variable with mean λ will take the value x is
exp(−λ)λx/x!, where x! = x(x − 1)(x − 2) . . . 1. The number of
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alpha particles emitted per second, as a result of the radioactive dis-
integration of 1 ng of 226Ra, is a Poisson random variable with mean
λ = 36.6 /s. The numbers of boys that were sick in bed on each day
of an influenza epidemic in an English boarding school were mod-
eled as outcomes of independent, Poisson random variables whose
means varied from day to day.

The Poisson distribution is often used as a model for the number
of occurrences of a rare event because Poisson probabilities can ap-
proximate binomial probabilities quite closely, when the probability
of “success” is small. A river’s 100-year flood is a rare event that oc-
curs once per century on average. This implies that the probability of
it occurring on any particular year is 0.01. The binomial probability
of it occurring exactly once (meaning once and once only) in a cen-
tury is 100(0.01)1(1− 0.01)99 = 0.3697. The corresponding Poisson
approximation is computed by putting x = 1 and λ = 100× 0.01 = 1
in the formula above, to get exp(−1)(1)1/1! = 0.3679.
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A negative binomial probability distribution with mean
µ > 0 and dispersion φ is a discrete distribution whose support
are the non-negative integers. Its variance is µ + µ2/φ. Since the
mean and the variance are identical for the Poisson distribution, the
presence of the term µ2/φ suggests that the negative binomial may
be used as a model for counts whose variance appreciably exceeds
their average.

The woodlark: colored lithograph by
Magnus von Wright (1805-1868) —
Wikimedia Commons (in the public

domain, PD-US-expired)

The northern European woodlark (Lullula arborea) migrates south
in the autumn. These counts were made at the Hanko bird observa-
tory in southwestern Finland, by the Baltic Sea, during the 2009 fall
migration season (September-November) [Lindén and Mäntyniemi,
2011], where nk denotes the number of days with k sightings:

k 0 1 2 3 4 5 6 8 9 17 19 21 25 39
nk 39 8 4 4 3 2 2 2 2 1 1 1 1 1
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distribution with mean µ = 3.1 and
dispersion φ = 0.22, and from the

Poisson distribution with mean λ = µ,
along with relative frequencies of

woodlark sightings.

For example, in each of 2 days there were 9 sightings of wood-
larks at the observatory, and there were 39 days with no sightings.
There were, on average, 3.1 sightings per day, and the variance of
the number of daily sightings was 44. The negative binomial model,
calibrated with maximum likelihood estimates of the parameters,
µ̂ = 3.1(8) and φ̂ = 0.22(5), fits these data quite well, and incompara-
bly better than the corresponding Poisson model. The overdispersion
may be a consequence of the woodlarks’ tendency to flock in small
groups during autumn.

A multinomial probability distribution assigns its unit of
probability to K different sets or categories, so that set k = 1, . . . , K
receives probability pk > 0 and p1 + · · · + pK = 1. Identifying
and counting 100 leukocytes is equivalent to placing 100 balls into 7
bins, the balls representing leukocytes and the bins representing the
types of leukocytes. The probabilities {pk} may be estimated by the
relative frequencies of the different types of leukocytes. In general, if
n denotes the number of items to be categorized and counted, then
the mean number of items expected for category k is npk, and the
standard deviation of this number is npk(1 − pk). The correlation
between the numbers of items in categories 1 6 j < k 6 K is
−
√

pj pk/((1− pj)(1− pk)). Note that all the correlations are negative
because an overcount in one category will induce an undercount in
another.

Random variables are quantities or qualities that have a probabil-
ity distribution as an attribute, and indeed as their most distinctive
trait. This attribute serves to indicate which subsets of their respec-
tive ranges (the sets where they take their values) are more likely to
contain the value that the random variable takes when it is realized.
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The volume of wine in a bottle of Volnay Clos des Chênes (Domaine
Michel Lafarge), from the Côte-d’Or, France, is a random variable that
is realized every time a bottle is filled at the winery. The probability
distribution of this random variable is continuous, and it is concen-
trated in a fairly narrow range around 750 mL.

Volnay Clos des Chênes (Domaine Michel
Lafarge), from the Côte-d’Or, France

The identity of the nucleotide at a particular locus of a strand of
dna is a random variable whose possible values are adenine, cyto-
sine, guanine, and thymine, and whose realized value is the identity
of the nucleotide that is actually there. The probability distribution
of this random variable is discrete, its unit of probability being allo-
cated in lumps to those four possible compounds: for example, in the
human genome the probability of adenine is 30 %.

The adjective random in the expression “random variable X” bears
no metaphysical connotation: in particular, it does not suggest that X
is an outcome of a game of chance that Nature is playing against us.
It is merely a mnemonic and allusive device to remind us that X has
a probability distribution as an attribute.

Suppose the random variable in question is the Newtonian con-
stant of gravitation, G, which is generally believed to be constant, but
whose true value is known only imperfectly. A probability distribu-
tion associated with it can be used to describe the corresponding un-
certainty. Similarly, if the quantity is the distance between Venus and
Earth, which varies constantly, and in a predictable way, a probability
distribution associated with it can describe how it varies over time, or
the uncertainty about the distance on a day chosen at random.

The probability distribution of a random variable allows us to
compute the probability that it will take a value in any given subset
of its range. Doing so is particularly easy when the corresponding
probability density is specified analytically. How this is done de-
pends on whether the distribution of the random variable is continu-
ous, discrete, or of a mixed type (that is, has a continuous component
over its range, as well as lumps of probability at some of the values in
its range).

Suppose that X is a scalar random variable (for example, the life-
time of a 25 W incandescent light bulb ge A19, whose expected life-
time is 2000 h) and that its probability distribution is continuous and
has probability density pX . Then, the probability that X takes a value
in a set A (which may be an interval or a more complicated set), and
which we write as Pr{X ∈ A}, is the area under the graph of pX

over the set A. If X has an exponential probability distribution, with
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ge A19 25 W incandescent light bulb.
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density pX(x) = λ exp(−λx) and mean λ−1 = 2000 h (as depicted
alongside), then Pr{3000 h < X < 4000 h} is the area colored pink,
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which in this case can be computed analytically:

∫ 4000

3000

1
2000

exp(−x/2000)dx = 0.09.

Independence is an important property and a consequential as-
sumption. Two random variables, X and Y, are said to be independent
when the probability that X takes a value in a set A, and that Y takes
a value in a set B, when both are realized jointly, or simultaneously, is
equal to the product of their individual probabilities of taking values
in such sets one separately from the other.

For example, the number of Aces in a poker hand, and the number
of cards from the suit of diamonds in the same hand, are dependent
random variables, because knowing that there are five diamonds
implies that there cannot be more than one Ace.

The uncertainty of the average of
replicated, independent determinations
of the same quantity generally will be

smaller than the uncertainty of any
individual measurement — the prize of

claiming independence.
Consider three such determinations

with the same standard uncertainty. If
modeled as outcomes of independent
random variables, then their average

will have a standard uncertainty that is√
3 times smaller than the common

standard uncertainty of the individual
determinations. If, however, they all are
affected by the same error (for example,

resulting from miscalibration of the
measuring instrument used to obtain

them), then averaging the replicates will
not reduce the uncertainty.

Independence is next to impossible to verify empirically in most
cases, because doing so involves showing that Pr(X∈A and Y∈B) =

Pr(X∈A)× Pr(Y∈B) for all subsets A and B of the respective ranges
of X and Y. If these ranges have infinitely many values, then this
verification requires an infinitely large experiment.

Two events are independent when the probability of their joint
occurrence is equal to the product of their individual probabilities. If
the probability of one of them occurring depends on the knowledge
of the other one having occurred or not, then the events are depen-
dent.

For example, when rolling two casino dice (perfect cubes with 1,
2, . . . , 6 pips on their faces), one red and the other blue, getting 3
pips on the red die, and 7 pips in total, are independent events, but
getting 3 on the red die, and 8 (or any other number different from 7)
pips in total, are dependent events.

When one says that {x1, . . . , xn} is a sample from a probability
distribution, one means that these are outcomes of n independent,
identically distributed random variables whose common distribution
is the distribution that the sample allegedly comes from.

Exchangeable random variables are such that the random
vectors (X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n)) have the same joint prob-
ability distribution, for any permutation π of the indices {1, . . . , n}.
Exchangeable random variables have identical distributions, but
generally they are dependent, with correlations never smaller than
−1/(n− 1).

The results of five draws (made without
replacement) of balls from an urn

containing at least five numbered balls,
are outcomes of five exchangeable (but

dependent) random variables.

Exchangeability is often much easier to establish than indepen-
dence, typically via symmetry arguments. For example, when consid-
ering a set of triplicate determinations of the mass fraction of arsenic
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in kudzu, (w1, w2, w3), we may conclude that the order in which the
determinations were made is irrelevant for any conclusions to be
derived from them, hence that they are exchangeable.

Mean, Variance, Bias, and Mean Squared Error are proper-
ties of quantitative random variables (or of their probability distri-
butions): the first two (mean and variance) are intrinsic properties
of the random variables, and the last two (bias and mean squared
error) arise when a random variable plays the role of estimator of a
quantity whose true value is unknown.

The mean of a random variable is the center of mass of its proba-
bility distribution, when the distribution is regarded as the distribu-
tion of a unit of mass over the range of the random variable. And its
variance is the second moment of inertia of such distribution of mass,
about its mean. The standard deviation is the (positive) square root
of the variance: it describes how scattered around the mean the unit
of probability is.

The mean is also called the expected value (or mathematical ex-
pectation), and for this reason the mean of the random variable X is
often denoted E(X). The variance is V(X) = E[X −E(X)]2, and the
standard deviation is the (positive) square root of the variance.

If X has a discrete distribution, and the different values that it
can take are x1, x2, . . . , then E(X) = x1 p1 + x2 p2 + . . . , where pi =

Pr(X = xi) for i = 1, 2, . . . , provided this sum, which may involve
infinitely many summands, is finite.

If X has a continuous distribution, then E(X) =
∫
X xp(x)dx,

where p denotes the corresponding probability density, and X de-
notes the range of X, provided this integral converges.

Now suppose that a random variable X is to play the role of es-
timator of a quantity θ whose value is unknown. For example, X
may be the mass fraction of inorganic arsenic in a sample of shellfish
tissue, and θ may be the true mass fraction of arsenic in it.

Owing to incomplete extraction of the arsenic during sample
preparation, the expected value of X may well be less than θ. The
bias of X as estimator of θ is the difference between its expected and
true values, E(X)− θ. The mean squared error (MSE) of X as estimator
of θ is the bias squared plus the variance, (E(X)− θ)2 + V(X).

If X and Y are scalar random variables, and a and b are real num-
bers, then E(aX + bY) = aE(X) + bE(Y), regardless of whether X
and Y are dependent or independent. And if X and Y are indepen-
dent, then V(aX + bY) = a2V(X) + b2V(Y). In particular, note that
V(X − Y) = V(X + Y) = V(X) + V(Y), provided X and Y are
independent. However, nothing like this holds for products, ratios, or
any other nonlinear functions of random variables.
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Appendix: Statistics

Jimmy Savage [Savage, 1972, Chapter 8] defined “statistics proper
[. . . ] as the art of dealing with vagueness and with interpersonal
difference in decision situations.” The focus on decision-making sug-
gests an action oriented discipline, “vagueness” refers to uncertainty,
whereas the interpersonal difference comprises differences of taste
and differences of judgment, both typically varying from person to
person.

“The evaluation of uncertainty is
neither a routine task nor a purely
mathematical one; it depends on
detailed knowledge of the nature of the
measurand and of the measurement.”
— gum 3.4.8 [JCGM 100:2008].

And statistics is an art, similarly to carpentry or cobblery: a prac-
tice involving specialized skills and know-how that are developed
in apprenticeship with master artisans. Generally not ends in them-
selves, the statistical arts serve to extract information from data in
situations of uncertainty, to enable actions and decisions in all fields
of the human endeavor.

Counts

Under Counting, we discussed evaluations of uncertainty for counted
quantities: numbers of white blood cells (leukocytes) of different
types, in particular. We considered a sample of 100 leukocytes com-
prising 4 eosinophils.

If this count should be modeled as an outcome of a binomial ran-
dom variable that counts the number of “successes” in 100 indepen-
dent trials with probability of “success” 4/100, then the correspond-
ing standard uncertainty will be

√
100× (4/100)× (96/100) = 1.96.

The Poisson model that approximates this binomial distribution has
mean 100× (4/100) = 4, hence standard deviation 2.

A method proposed by Wilson [1927]44 to build confidence inter- 44 E. B. Wilson. Probable inference,
the law of succession, and statistical
inference. Journal of the American
Statistical Association, 22:209–212, 1927.
doi:10.2307/2276774

vals for binomial proportions performs quite well in general.45 For

45 R G. Newcombe. Two-sided con-
fidence intervals for the single pro-
portion: comparison of seven meth-
ods. Statistics in Medicine, 17(8):857–
872, 1998. doi:10.1002/(sici)1097-
0258(19980430)17:8<857::aid-
sim777>3.0.co;2-e

the true proportion of eosinophils, based on the aforementioned ob-
served count of 4 in a sample of 100, it produces a 95 % confidence
interval ranging from 0.013 to 0.11 (thus asymmetrical relative to the
observed proportion, 0.04), obtained by executing the R command
prop.test(x=4, n=100)$conf.int.

The uncertainty analysis reported for eosinophils takes two sources
of uncertainty into account: sampling variability and between-
examiner variability.

Sampling variability is modeled using a multinomial model, to
take into account the fact that the counts of the different types of
leukocytes are like outcomes of dependent, binomial random vari-
ables.

Between-examiner variability is modeled using Gaussian distribu-
tions (one for each kind of leukocyte), all with mean zero and with

https://doi.org/10.2307/2276774
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
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standard deviations that depend on the type of leukocyte, and are
set equal to the standard uncertainties that Fuentes-Arderiu et al.
[2007] evaluated. These Gaussian “errors” are added to the counts
simulated using the multinomial distribution, using a Monte Carlo
method.

Bootstrap

The statistical bootstrap46 is a computationally-intensive method 46 B. Efron and R. J. Tibshirani. An
Introduction to the Bootstrap. Chapman
& Hall, London, UK, 1993; and A. C.
Davison and D. Hinkley. Bootstrap
Methods and their Applications. Cam-
bridge University Press, Cambridge,
UK, 1997. ISBN 0-521-57471-4. URL
statwww.epfl.ch/davison/BMA/

for statistical inference, and in particular for uncertainty evaluation.
Diaconis and Efron [1983] provide a compelling, accessible introduc-
tion to the bootstrap, and Hesterberg [2015] describes bootstrapping
techniques, copiously illustrated with examples.

There are two main versions of the bootstrap: parametric and non-
parametric. Both can be applied to univariate and multivariate data
(for example, for the scores in the Ladies Single Skating competition
of the 2018 Winter Olympics, and for the calibration of a gc-ms in-
strument used to measure concentration of chloromethane). Here we
begin with a set of replicated determinations x1, . . . , xm of a scalar
quantity, obtained under conditions of repeatability.

The parametric bootstrap regards these determinations as if
they were a sample from a probability distribution Pθ that is indexed
by a possibly multidimensional parameter θ. The underlying as-
sumption is that this distribution is an adequate model for the vari-
ability of the replicates. We also assume that the true value of the
measurand, η = ψ(θ), is a known function ψ of θ.

The parametric bootstrap involves three steps:

(pb1) Estimate θ using the observations {xi}, to obtain θ̂.

(pb2) Draw a large number, K, of samples of size m from P
θ̂
, and

compute the estimate of θ for each of these samples, obtaining
θ∗1 , . . . , θ∗K.

Note that we are sampling from P
θ̂
: that

is, pretending that θ̂ is θ (which is
unknown). K should be no smaller than

103 when the method is used to
compute standard deviations of

functions of the data, and ideally of the
order of 106 for most purposes.

(pb3) Compute the corresponding estimates of the measurand, y1 =

ψ(θ∗1 ), . . . , yK = ψ(θ∗K), and use them as if they were a sample
drawn from the distribution of the measurand, to evaluate the
associated uncertainty.

The standard deviation of the {yk} is an
evaluation of standard uncertainty, and
the 2.5th and 97.5th percentiles of the
{yk} are the endpoints of a coverage

interval for the true value of the
measurand, with 95 % probability.The parametric bootstrap is used below to evaluate the uncer-

tainty associated with the maximum likelihood estimate of the tensile
strength of alumina coupons in a 3-point flexure test.

The non-parametric bootstrap requires that a “recipe” R be
available to combine the replicated observations and produce an

statwww.epfl.ch/davison/BMA/
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estimate of the measurand: y = R(x1, . . . , xm). This “recipe” may
be as simple as computing their median, or it may be an arbitrarily
complicated, nonlinear function of the data. The observations again
are regarded as a sample from some probability distribution, but
here this distribution remains unspecified (hence the qualifier non-
parametric).

The non-parametric bootstrap is even bolder than the paramet-
ric one. For the parametric bootstrap we estimated a parameter of a
probability distribution, and proceeded to sample from this distri-
bution pretending that the estimate of the parameter is equal to the
true value of the parameter. For the non-parametric bootstrap we
will treat the set of replicates in hand as if it were an infinitely large
sample from the unspecified, underlying probability distribution, by
taking these steps:

(npb1) Select a large, positive integer K, and for each k = 1, . . . , K
draw s1k, . . . , smk uniformly at random, and with replace-
ment, from the set {x1, . . . , xm}. Each sik is equal to one of the
{xi}. For each k, the {sik} are called a bootstrap sample.

This means that we get s1k by drawing
one of the observations we have as if

drawing a ball from a lottery bowl, and
then return it back to the bowl, mix the
contents, and then draw the observation

that will become s2k and so on. Note
that the same observation may appear
multiple times in a bootstrap sample.(npb2) For each bootstrap sample, compute the corresponding esti-

mate of the measurand, yk = R(s1k, . . . , smk), and then use the
{yk} to evaluate the associated uncertainty, similarly to what
was suggested above, under (pb3).

The number K should be as large as practicable, the guidelines
being the same as offered above, for the parametric bootstrap. When
applying the bootstrap, the first thing to do is to examine the proba-
bility distribution of the bootstrap estimates of the measurand, {yk},
for example by building a histogram of these values (if the measur-
and indeed is a scalar quantity).

If this distribution is very “lumpy”, with only a few different val-
ues, then the bootstrap may not produce a reliable uncertainty evalu-
ation. This may happen when the number m of observations is small,
or when the way of combining them tends intrinsically to produce
a small number of different values (this can happen, for example, if
R(x1, . . . , xm) is the median of the {xi}).

In general, m should be large enough for there to be an appre-
ciable number of possible, different bootstrap samples. This can be
the case even when m is surprisingly small, because given a set of
m observations whose values are all different from one another, it is
possible to form (2m−1

m−1 ) ≈ 22m−1/
√

mπ different bootstrap samples
using the non-parametric bootstrap.

For m = 14 (the number of replicated determination of the mass
fraction of magnesium discussed below), the number of different
bootstrap samples is already over 20 million (of course, not all of
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these bootstrap samples produce different estimates of the mea-
surand). It is very unlikely that, with m < 12, the non-parametric
bootstrap will produce reliable results even when the estimate of the
measurand is highly sensitive to each single observation. Chernick
[2008] suggests that the number of observations should be at least 50.

Under Combining Replicated Observations, we apply the non-parametric
bootstrap to evaluate the uncertainty associated with the median of
the Walsh averages (Hodges-Lehmann estimator), using facilities
available in R package boot [Canty and Ripley, 2020]. Here, we il-
lustrate the non-parametric bootstrap without resorting to these
facilities, to make transparently clear what is involved.

Year S Q Year S Q

1989 10.8 535.2 2005 8.6 277.8
1990 4.7 34.5 2006 11.3 563.5
1991 5.2 74.5 2007 9.4 382.3
1992 5.2 73.3 2008 5.9 137.1
1993 8.6 286.0 2009 12.4 835.3
1994 8.1 317.1 2010 11.3 600.3
1995 8.6 311.5 2011 11.8 770.2
1996 8.8 281.5 2012 5.4 116.7
1997 12.1 792.9 2013 10.1 458.7
1998 7.6 243.8 2014 8.5 294.5
1999 6.3 138.8 2015 5.9 139.3
2000 6.8 159.4 2016 5.2 95.4
2001 11.2 574.8 2017 6.8 160.3
2003 6.9 190.0 2018 5.7 130.0
2004 6.2 153.8

Values of flood stage (S), expressed in
meters above the reference level, and

discharge (Q), expressed in m3/s, at the
yearly peak discharge, for the Red River
of the North, measured at Fargo, North

Dakota (usgs station 05054000).

River flood stage (S) is the height of the water surface above a ref-
erence level, and discharge (Q) is the volumetric flow rate. The record
of yearly peak discharges in the Red River of the North, for the pe-
riod 1989–2018, and the corresponding flood stages measured at
Fargo, North Dakota, can be used to calibrate a relationship between
flood stage and discharge, so that flood stage, which is easier to mea-
sure accurately than discharge, can be used to estimate discharge.
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Relation between discharge (Q) and
flood stage (S) for the Red River of the
North, at the yearly peak discharge, for

the period 1989-2018.

S = c(10.8, 4.7, 5.2, 5.2, 8.6, 8.1, 8.6, 8.8, 12.1, 7.6,

6.3, 6.8, 11.2, 6.9, 6.2, 8.6, 11.3, 9.4, 5.9, 12.4,

11.3, 11.8, 5.4, 10.1, 8.5, 5.9, 5.2, 6.8, 5.7)

Q = c(535.2, 34.5, 74.5, 73.3, 286, 317.1, 311.5, 281.5,

792.9, 243.8, 138.8, 159.4, 574.8, 190, 153.8, 277.8,

563.5, 382.3, 137.1, 835.3, 600.3, 770.2, 116.7, 458.7,

294.5, 139.3, 95.4, 160.3, 130)

z = data.frame(S=S, Q=Q)

The following R code fits a non-parametric, locally quadratic re-
gression model, loess,47 which expresses discharge as a function of

47 W. S. Cleveland, E. Grosse, and
W. M. Shyu. Local regression models.
In J. M. Chambers and T. J. Hastie,
editors, Statistical Models in S, chapter 8.
Wadsworth & Brooks/Cole, Pacific
Grove, California, 1992

flood stage, and then uses the fitted model to estimate the discharge
that corresponds to flood stage S = 11 m: Q̂(11 m) = 567.4 m3/s. The
R function predict evaluates the associated standard uncertainty as
u(Q̂(11 m)) = 9.3 m3/s.

z.loess = loess(Q~S, data=z)

Q11.loess = predict(z.loess, newdata=data.frame(S=11), se=TRUE)

The non-parametric bootstrap, implemented below, involved draw-
ing 10 000 samples, each of size 29, from the set of 29 pairs of obser-
vations {(Si, Qi)}, with replacement, fitting the loess model to each
such sample, and then using the fitted model to predict the discharge
corresponding to S = 11 m. The standard deviation of the resulting
10 000 predicted values of the discharge, 13.1 m3/s, is an alternative,
41 % larger and more realistic evaluation of u(Q̂(11 m)) than the
evaluation derived from the original loess fit.
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Q11.boot = numeric(10000)

for (k in 1:10000) {

iB = sample(1:29, size=29, replace=TRUE)

zB.loess = loess(Q~S, data=z, subset=iB)

Q11.boot[k] = predict(zB.loess, newdata=data.frame(S=11)) }

c(mean(Q11.boot, na.rm=TRUE), sd(Q11.boot, na.rm=TRUE))

Combining Replicated Observations

“The problem of summarizing the
location of a single batch of numbers is
surely the simplest and most classical of
the problems recognized as analysis of
data. It was first attacked about 1580,

by the use of the arithmetic mean. The
next few centuries included the

statement and proof of the
Gauss-Markoff theorem which asserted

the minimum-variance property —
among all unbiased estimates linear in the

data — in any problem where the
parameters entered linearly into the

average value of each observation, for
the results of linear least squares. Since

the use of an arithmetic mean to
summarize a batch was a special

instance of this general theorem, the
naive might conclude that the problem

of summarizing a batch had been
settled. Far from it.”
— John Tukey (1986)

Consider the problem of estimating the mass fraction of magnesium
in a breakfast cereal, based on 14 determinations made using induc-
tively coupled plasma optical emission spectroscopy (icp-oes), under
conditions of repeatability, which are expressed in mg/kg — 1130.0,
1083.3, 1091.7, 1072.0, 1083.2, 1014.6, 1068.0, 1125.6, 1124.6, 1115.3,
1088.1, 1075.0, 1126.8, 1121.1. (These, together with other measure-
ment results, were used to produce the certified value of the mass
fraction of magnesium in nist srm 3233.)

Choosing to minimize the mean squared difference between the
estimate and the true value, or to minimize the absolute value of this
difference, are different options that can be interpreted as means to
achieve optimal estimation under different assumptions: that these
determinations are either a sample from a Gaussian distribution, or
a sample from a Laplace distribution. The former suggests the arith-
metic mean, the latter the median. However, many other modeling
choices are conceivable, each leading to a different estimate.

The simple average, or arithmetic mean, is the optimal estimate if
one chooses to gauge performance in terms of mean squared error,
and if one judges the following model to be adequate for the obser-
vations: wi = ω + εi for i = 1, . . . , m, where m = 14 is number of
observations, ω is the true value of that mass fraction, and the {εi}
are measurement errors regarded as a sample from a Gaussian distri-
bution with mean 0 and standard deviation σ. The statistical model,

In his 1755 letter to the Royal Society,
Thomas Simpson, Professor of

Mathematics at the Royal Academy at
Woolwich, outlined the advantages of

averaging observations. As an example,
the probability that the mean of six

observations will have a larger absolute
error than a single observation is only
25 % when the errors follow Gaussian

distribution. [Simpson, 1755]
(credit: archive.org).

as just formulated, involves the assumption that the observations are
not persistently offset from the true value they aim to estimate. This
is formalized in their mathematical expectation being equal to the
true value: E(Wi) = E(ω) + E(εi) = ω because ω is a constant, and
the assumption was made above that E(εi) = 0 mg/kg. Note that
here we have used Wi, the uppercase version of wi, to denote the ran-
dom variable that the observation wi is regarded as a realized value
of. Since the expected value of each Wi is ω, we say that there is no
bias (persistent, or systematic error) in the measurement.

The assumption that the measurement errors {εi} are Gaussian
implies that so are the {wi}, which can be tested. The Shapiro-Wilk48

48 S. S. Shapiro and M. B. Wilk. An
analysis of variance test for normality
(complete samples). Biometrika, 52(3,4):
591–611, 1965. doi:10.2307/2333709

and the Anderson-Darling49 tests, for conformity of a sample with

49 T. W. Anderson and D. A. Dar-
ling. Asymptotic theory of certain
“goodness-of-fit” criteria based on
stochastic processes. Annals of Math-
ematical Statistics, 23:193–212, 1952.
doi:10.1214/aoms/1177729437

https://doi.org/10.2307/2333709
https://doi.org/10.1214/aoms/1177729437
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a Gaussian distribution, are commonly used: in this case, the for-
mer yields a p-value of 0.06, and the latter of 0.1. It is a common
convention in science that only p-values smaller than 0.05 indicate a
statistically significant discrepancy, but this is a matter of (subjective)
judgment. Indeed, one cannot identify a single universal threshold of
statistical significance, and some argue that the level of significance
should be set at 0.005.50

50 V. E. Johnson. Revised stan-
dards for statistical evidence. Pro-
ceedings of the National Academy
of Sciences, 110:19313–19317, 2013.
doi:10.1073/pnas.1313476110

Suppose that, to test a hypothesis H (in
a significance test) one rejects H when

the value of some test criterion (a
suitable function of the data) is too
large. The p-value of the test is the

probability, computed on the
assumption that H is true, of observing

a value of the test criterion at least as
large as the value that was obtained
using the data available for the test.

Since a small p-value suggests that the
data are unlikely if H is true, the

common practice is to reject H in such
case. Of course, one needs to decide in

advance how small the p-value needs to
be to warrant rejecting H.

The median of the observations is responsive to choices different
from those that suggest the average. That instead of seeking to min-
imize mean squared error, one wishes to minimize mean absolute
error, which may be particularly appropriate when the measurement
errors {εi} have a probability distribution with heavier tails than the
Gaussian: for example, Laplace (also known as double exponential).
The median is found by ordering the observations from smallest to
largest, and selecting the middlemost (when the number of observa-
tions is odd), or the average of the two middlemost ones (when the
number of observations is even).

For the determinations listed above, the average is 1094.2 mg/kg,
and the median is 1089.9 mg/kg. The average has one serious short-
coming: it offers no protection against the influence of a single value
that, for one reason or another, lies far from the bulk of the others.
Suppose that, owing to a clerical error, the last value is reported as
11 211 mg/kg instead of 1121.1 mg/kg: in consequence, the aver-
age will shoot up to 1814.9 mg/kg, while the median stays put at
1089.9 mg/kg.

But the median is also open to criticism. First, it seems to gloss
over most of the information in the data: it uses the data only to the
extent needed to determine which is the middlemost value. Second,
it is sensitive to small perturbations of the middlemost observa-
tions. Suppose that the last two digits of the third determination,
1091.7 mg/kg, are transposed accidentally, and 1097.1 mg/kg is re-
ported instead. The average hardly budges, becoming 1094.6 mg/kg,
while the median slides to 1092.6 mg/kg.

The median of the Walsh averages (better known as the Hodges-
Lehmann estimate51) affords a fairly general, flexible solution to the

51 J. L. Hodges and E. L. Lehmann.
Estimates of location based on rank
tests. The Annals of Mathematical
Statistics, 34(2):598–611, June 1963.
doi:10.1214/aoms/1177704172

problem of combining replicated observations. It is computed by
taking these three steps for a sample of size m: The Walsh averages are these:

{(wi + wj)/2 : 1 6 i 6 j 6 m}, thus
including averages like
(1130.0 + 1130.0)/2 and

(1130.0 + 1083.3)/2, but not both
(1083.3 + 1130.0)/2 and

(1130.0 + 1083.3)/2, because
{1130.0, 1083.3} and {1083.3, 1130.0} are

the same subset.

(1) Compute the averages of all different subsets with two observa-
tions each (since two subsets are identical if they have the same
elements regardless to order, there are 1

2 m(m− 1) such subsets);

(2) Form a set with these averages together with the m observations;

(3) Find the median of the 1
2 m(m + 1) values in this set.

https://doi.org/10.1073/pnas.1313476110
https://doi.org/10.1214/aoms/1177704172
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The following facts make the Hodges-Lehmann estimate par-
ticularly attractive, and an excellent, general purpose replacement
for the average and the median, particularly when the replicated
observations may be assumed to be a sample from a symmetrical
distribution:

• It uses the information in the data almost efficiently as the average,
when the average is at its best;

• It can use the information in the data far more efficiently than the
average, when the average is not at its best;

• It is resistant to outliers;

• It is easy to compute its standard uncertainty, as well as expanded
uncertainties and coverage intervals for different coverage probabili-
ties, for example using R:

w = c(1130.0, 1083.3, 1091.7, 1072.0, 1083.2, 1014.6, 1068.0,

1125.6, 1124.6, 1115.3, 1088.1, 1075.0, 1126.8, 1121.1)

w68 = wilcox.test(w, conf.int=TRUE, conf.level=0.68)

HL = w68$estimate; names(HL) = NULL

uHL = diff(w68$conf.int)/2

w95 = wilcox.test(w, conf.int=TRUE, conf.level=0.95)

U95HL = diff(w95$conf.int)/2

Lwr95 = w95$conf.int[1]; Upr95 = w95$conf.int[2]

c(HL=HL, "u(HL)"=uHL, "U95(HL)"=U95HL, Lwr95=Lwr95, Upr95=Upr95)

For the 14 replicates of the mass fraction of magnesium, the
median of the Walsh averages is 1098.8 mg/kg, with standard un-
certainty 9.4 mg/kg, and expanded uncertainty for 95 % coverage
18 mg/kg. Their counterparts for the average are 1094.2 mg/kg,
8.6 mg/kg, and 19 mg/kg, respectively.

And for the median, using the non-parametric statistical bootstrap
as implemented in the following R code, gives standard uncertainty
14 mg/kg and expanded uncertainty 24 mg/kg:

miB = replicate(1e5, median(sample(w, 14, replace = TRUE)))

u = sd(miB)

U95 = diff(quantile(miB, c(0.025,0.975)))/2

c("u(median)"=u, "U95(median)"=U95)

Weighted averages may be appropriate under the same general
conditions that make the average optimal, but when the different
observations being combined have different uncertainties, for exam-
ple in the case of the determinations of equivalent activity reported
for 59Fe in a key comparison organized by the bipm using the In-
ternational Reference System.52 The synthetic radionuclide 59Fe has

52 C. Michotte, G. Ratel, S. Courte,
K. Kossert, O. Nähle, R. Dersch,
T. Branger, C. Bobin, A. Yunoki, and
Y. Sato. BIPM comparison BIPM.RI(II)-
K1.Fe-59 of activity measurements
of the radionuclide 59Fe for the PTB
(Germany), LNE-LNHB (France) and
the NMIJ (Japan), and the linked
APMP.RI(II)-K2.Fe-59 comparison.
Metrologia, 57(1A):06003, January 2020.
doi:10.1088/0026-1394/57/1a/06003

half-life of 44.5 days, and decays to stable 59Co via beta decay.
The weighted average of values x1, . . . , xm, with non-negative

weights w1, . . . , wm (which do not necessarily sum to 1), is

xw =
x1w1 + · · ·+ xmwm

w1 + · · ·+ wm
.

https://doi.org/10.1088/0026-1394/57/1a/06003
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If wi = 1/u2(xi) then

uI(xw) =
1√

1/u2(x1) + · · ·+ 1/u2(xm)
.

This is the so-called “internal” estimate of u(xw). The “external”
estimate is based on the weighted standard deviation of the observa-
tions:

uE(xw) =

√
w1(x1 − xw)2 + · · ·+ wm(xm − xw)2

m(w1 + · · ·+ wm)
.

The weighted average of the measured values of the equivalent ac-
tivity of radionuclide 59Fe is 14 619 kBq. The “internal” standard un-
certainty is 10 kBq, and the “external” standard uncertainty is 19 kBq.
The non-parametric statistical bootstrap, applied to the weighted av-
erage of these equivalent activities, produces standard uncertainty
21 kBq, suggesting that uE(xw) is the more realistic assessment, even
if biased low.

lab year activity

bkfh 2001 14 685(32) kBq
iaea/rcc 1978 14 663(24) kBq
ptb 2012 14 609(25) kBq
nist 2001 14 641(60) kBq
npl 1979 14 668(55) kBq
ansto 1980 14 548(54) kBq
cmi-iir 1984 14 709(36) kBq
lne-lnhb 2013 14 603(36) kBq
nmij 2014 14 576(23) kBq
barc 1998 14 511(28) kBq
kriss 1999 14 728(50) kBq

The measurement results for equivalent
activity, Ae, of iron-59 from continuous

long-term interlaboratory study
Michotte et al. [2020].

The “internal” and “external” evaluations of the standard uncer-
tainty are very different in this case because the measurement results
are mutually inconsistent, exhibiting substantial dark uncertainty
(explained under Consensus Building), and should not be combined
using either the simple average or the weighted average with weights
inversely proportional to the squared reported uncertainties.

Weighted medians are preferable to the simple median when the
observations being combined have different uncertainties, and the
median is appropriate to begin with. R function weighted.median, as
defined in package spatstat,53 computes the weighted median cor-

53 A. Baddeley and R. Turner. spatstat:
An R package for analyzing spatial
point patterns. Journal of Statistical
Software, 12:1–42, 2005. URL www.

jstatsoft.org/v12/i06/

rectly. The weighted median of the measured values of the equivalent
activity of 59Fe is 14 606 kBq. The associated standard uncertainty and
expanded uncertainty for 95 % coverage, computed using the non-
parametric statistical bootstrap, are 31 kBq and 54 kBq, respectively.

Maximum Likelihood Estimation

Maximum Likelihood Estimation (mle) is a technique used to esti-
mate the values of parameters that appear in observation equations
(that is, statistical measurement models). mle may be used to esti-
mate an input quantity that appears in a conventional measurement
model as specified in the gum, based on replicated observations, or
it may be used to estimate the output quantity if the measurement
model lends itself to such treatment.

mle produces not only an estimate of the quantity of interest,
but it produces also an approximate evaluation of the associated
uncertainty. And if supplemented with the statistical bootstrap, when

www.jstatsoft.org/v12/i06/
www.jstatsoft.org/v12/i06/
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this is practicable, then it can characterize uncertainty much more
accurately than the approximation to standard uncertainty described
in the gum. The idea of supplementing mle with the bootstrap is
illustrated below, in relation with the measurement of the tensile
strength of alumina.

mle can be used whenever there is
an explicit relationship between the
true value of the quantity one wishes
to estimate, and the parameters of the
probability distribution of the data that
is used for the purpose.

For example, when the replicated
observations are from a Gaussian
distribution, and the true value of
the quantity of interest is the mean
of this distribution. Likewise, in the
example presented below, the quantity
of interest (the mean tensile strength
of alumina) is an explicit function of
the two parameters of the Weibull
distribution used to model replicated
observations of the stress at which
coupons of alumina break in a flexure
test.

In its most succinct and general form, a statistical measurement
model comprises these two statements:

(1) X ∼ Pθ ;

(2) η = ϕ(θ).

In the first statement, X = (X1, . . . , Xn) is a vector of random vari-
ables whose probability distributions characterize their uncertainties.
Statement (1) says that the joint probability distribution of these
random variables is Pθ , where the true value of the parameter θ (typ-
ically also a vector, but with a number of components that does not
vary with n) is an unknown element of a set H. Statement (2) says
that η, denoting the true value of the measurand (which may be a
vector), is a known function ϕ of θ.

Now, suppose that Pθ has probability density pθ , and that x is the
observed value of the vector X. The maximum likelihood estimate of
θ is θ̂ that maximizes pθ(x) as θ ranges over H: the idea is to choose a
value for the parameter θ that makes the data “most likely.” The mle

of the measurand is η̂ = ϕ(θ̂).
In this process, x is kept fixed at its observed value, while θ is al-

lowed to vary until a maximum of pθ(x) is found. To emphasize this
fact, one often defines a function Lx, called the likelihood function, as
follows: Lx(θ) = pθ(x). None of the pieces changes, only the view-
point: the subscript x in Lx is a way of saying that Lx depends on x
but that x remains fixed while we seek to maximize Lx(θ) by varying
its argument, θ, over the set H of its possible values. In applications,
the subscript x is often suppressed because the dependence on x is
understood, and one writes simply L(θ).

Therefore, maximum likelihood estimation amounts to maximiz-
ing the likelihood function. In some cases this can be done analyti-
cally, based on the first and second derivatives of Lx with respect to
θ. In other cases it has to be done via numerical optimization.

Under very general circumstances, maximum likelihood estima-
tion enjoys several remarkable properties, including these:

• It is the estimate of the measurand with smallest uncertainty;

• The probability distribution of θ̂ (which is the value of a random
variable because it is a function of the data) is approximately
Gaussian, and the quality of the approximation improves as the
number, n, of inputs increases;
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• The standard uncertainties and correlations of the components of
η̂ can be computed approximately based on the matrix of second-
order partial derivatives of ln Lx(θ) with respect to the components
of θ.

These properties, and the ease with which the mle can be com-
puted, make maximum likelihood estimation a very attractive, gen-
eral purpose technique. We illustrate the calculation of the mle, and
the evaluation of the associated uncertainty, using as inputs 30 obser-
vations made under conditions of repeatability, of the rupture stress
of alumina coupons in a 3-point flexure test.

Three-point flexural strength test of
alumina coupon. Courtesy of George D.

Quinn (Material Measurement
Laboratory, nist).

The model selected for the variability of the replicated determina-
tions is the Weibull probability distribution, which has two param-
eters, generally called shape and scale, but that, in this context, are
usually called the characteristic (or, nominal) strength σC, and the
Weibull modulus m, respectively.54 Note that, throughout this exam-

54 J. B. Quinn and G. D. Quinn. A
practical and systematic review
of Weibull statistics for report-
ing strengths of dental materials.
Dental Materials, 26:135–147, 2010.
doi:10.1016/j.dental.2009.09.006

ple, the Greek letter σ is used to denote stress (with the same units as
pressure), not standard deviation.

Consistently with the notation used for the general description of
the mle above, we should then write θ = (m, σC). The measurand
is the tensile strength η = σCΓ(1 + 1/m), which is the mean of that
Weibull distribution (and Γ is the gamma function).

σ/MPa

307 407 435 455 486
371 409 437 462 499
380 411 441 465 499
393 428 445 466 500
393 430 445 480 543
402 434 449 485 562

Rupture stress for 30 alumina coupons
in a 3-point flexure test. Courtesy of

George D. Quinn (Material
Measurement Laboratory, nist).

The Weibull model may be characterized by saying that the rup-
ture stress σ of an alumina coupon is such that it has the following
probability density:

p(σi |m, σC) =
m
σC

(
σi
σC

)m−1
e(−σi/σC)

m
,

where the scale parameter σC and the shape parameter m are positive
quantities.

Assuming that the n = 30 replicates are like outcomes of indepen-
dent Weibull random variables, with σ = (σ1, . . . , σn) denoting the
vector of observations, the likelihood function is L such that

L(m, σC | σ) =
n

∏
i=1

p(σi |m, σC).

The maximum likelihood estimates of the Weibull modulus and of
the characteristic strength are the values of m and σC that maximize
L(m, σC | σ) as a function of m and σC, with σ1, . . . , σn kept fixed at the
observed rupture stresses.

Since L(m, σC | σ) is a product of terms involving m and σC, it is
generally preferable to maximize ln L(m, σC | σ) instead. The reason is
that the gradient of a sum is generally better behaved during numer-
ical optimization than the gradient of a product, in the sense that the
second derivatives either do not change too much or too rapidly. The

https://doi.org/10.1016/j.dental.2009.09.006
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following R code minimizes − ln L(m, σC | σ), which is equivalent to
maximizing the likelihood function.

sigma = c(307, 371, 380, 393, 393, 402, 407, 409, 411, 428,

430, 434, 435, 437, 441, 445, 445, 449, 455, 462,

465, 466, 480, 485, 486, 499, 499, 500, 543, 562)

negLogLik = function(par, s = sigma) {

-sum(dweibull(s, shape=par[1], scale=par[2], log=TRUE)) }

# Find maximum likelihood estimates

opt = optim(par = c(m=10.6, sigmaC=465), fn = negLogLik,

s = sigma, hessian = TRUE)

# Estimates of the shape and scale parameters

opt$par

# Approximate covariance matrix of the parameter estimates

V = solve(opt$hessian)

# Approximate standard uncertainties of the parameter estimates

sqrt(diag(V))

The R function optim minimizes the
value of the function negLogLik with

respect to its argument, the vector par,
whose elements are the Weibull

parameters, using the Nelder-Mead
method [Nelder and Mead, 1965]. It

requires that initial guesses be provided
for the values of the parameters.

The code requests that the matrix of
second-order partial derivatives

(Hessian matrix) be computed and
returned because its inverse is an

approximation to the covariance matrix
of the parameter estimates. The larger

the sample size, which is 30 in this case,
the better the approximation.

The results are m̂ = 9.24, σ̂C = 467 MPa, hence η̂ = 443 MPa. The last
line of the previous R code will produce approximate evaluations of
u(m̂) = 1.23 and u(σ̂C) = 9.8 MPa.

To compute u(η̂) one can use the fact that η = σCΓ(1 + 1/m)

is a measurement model of the kind the gum contemplates, while
recognizing that m̂ and σ̂C are correlated. The correlation between
them is 0.33, which can be obtained in R using cov2cor(V). The NIST
Uncertainty Machine then yields u(η̂) = 10.4 MPa.
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of η.

These uncertainty evaluations all are made possible by the afore-
mentioned mle magic. However, this magic requires a large number
of observations, while we have only 30. May this be enough? To
answer this question, and to avoid this magic, we can redo the uncer-
tainty analysis employing the parametric statistical bootstrap [Efron
and Tibshirani, 1993], and compare the evaluations we will get this
way with those we got above. The idea is to take the above mles of
m and σC and use them to generate many samples of size 30 from
the Weibull distribution with these values of the parameters. For
each such sample, we find the best parameter values by minimizing
− ln L(m, σC | σ).

m.HAT = opt$par['m']

sigmaC.HAT = opt$par['sigmaC']

boot = array(dim=c(1e5, 3))

colnames(boot) = c('m', 'sigmaC', 'eta')

for (j in 1:1e5) {

sigmaB = rweibull(30, shape=m.HAT, scale=sigmaC.HAT)

thetaB.MLE = optim( par = c(m=10, sigmaC=440),

fn = negLogLik, s = sigmaB)$par

## Calculate eta

etaB = thetaB.MLE['sigmaC']*gamma(1 + 1/thetaB.MLE['m'])

boot[j,] = c(thetaB.MLE, etaB)

}

apply(boot, 2, sd)

http://uncertainty.nist.gov
http://uncertainty.nist.gov


82

This R code produces u(m̂) = 1.47, u(σ̂C) = 9.8 MPa, and u(η̂) =
10.5 MPa. Not only does this exercise validate the mle magic in this
case, it also gives us the ingredients fully to characterize the joint
probability distribution of m̂ and σ̂C, as well as the distribution of η̂.

Least Squares

Least squares is a criterion of estimation, often also described as a
method for the adjustment of observations. Consider the simplest
instance of such adjustment, where one has made m replicated deter-
minations of the same quantity, x1, . . . , xm, which one wishes to com-
bine by choosing the value θ that minimizes the sum of squared devi-
ations of the observations from it: S(θ) = (x1 − θ)2 + . . . + (xm − θ)2.
Such θ is the solution of S′(θ) = 0, where S′ denotes the first deriva-
tive of S with respect to θ. That is, (−2)(x1 − θ) + . . . + (−2)(xm −
θ) = 0. Solving this equation for θ yields θ = (x1 + · · ·+ xm)/m = x,
the average of the observations. This is indeed the value where S(θ)
achieves its minimum because S′′(θ) = 2m > 0.

If the measurement errors are Gaussian, then least squares is
equivalent to maximum likelihood estimation. The method was de-
veloped by Adrien-Marie Legendre (1752–1833) and Carl Friedrich
Gauss (1777–1855) at the beginning of the 19th century. In an early,
and most remarkable application of the method, Gauss predicted
where the asteroid Ceres should be found again after it had last been
observed by its discoverer Giuseppe Piazzi.55 And it was indeed 55 C. F. Gauss. Summarische Uberficht

der zur bestimmung der bahnen der
beyden neuen hauptplaneten augewan-
den methoden. Monatliche Correspondenz
zur Beförderung der Erd- und Himmels-
Kunde, XX(Part B, July-December,
Section XVII):197–224, September 1809

at the location predicted by Gauss that Franz Xaver von Zach and
Heinrich Olbers spotted Ceres in the skies on the last day of 1801.

If measurement errors are best modeled
using a probability distribution other
than Gaussian, then an adjustment of

observations based on a different
criterion may be preferable. For

example, minimizing the sum of the
absolute values of the errors will lead to

the median, which is the maximum
likelihood solution when the errors

follow a Laplace (double -exponential)
distribution.

The method of least squares can be illustrated with an example
we encountered earlier — determining the mass of three objects
whose mass differences were recorded using a mass comparator.
This example involves three observations (DAB = −0.38 mg, DAC =

−1.59 mg, and DBC = −1.22 mg), three parameters whose values we
are seeking (δA, δB, and δC), and a constraint K = δA + δB = 0.83 mg
that must be satisfied while also taking into account its associated
uncertainty, u(K) = (0.07 mg) ·

√
2.

The three observations are mutually inconsistent because, for
example, DAB − DAC = −1.21 mg while DBC = −1.22 mg. To make
them consistent we introduce non-observable “errors” ε1, ε2, and ε3,
such that the following three equations hold true simultaneously

DAB = δA − δB + ε1,

DAC = δA − δC + ε2,

DBC = δB − δC + ε3.

Applying the method of least squares in this case amounts to choos-
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ing values for δA, δB, and δC that minimize the sum of the squared
errors, ε2

1 + ε2
2 + ε2

3, while also satisfying the constraint

K = δA + δB = 0.83 mg.

This constraint is “soft” because it is surrounded by uncertainty,
u(K) = (0.07 mg) ·

√
2. However, let us begin by pretending that it is

“hard” so that we can replace δB with K− δA and write the optimiza-
tion criterion as follows:

S(δA, δC) = ε2
1 + ε2

2 + ε3
3

= (DAB − δA + (K− δA))
2 + (DAC − δA + δC)

2

+ (DBC − (K− δA) + δC)
2.

The values of δA and δC that minimize S(δA, δC) correspond to a
situation when both partial derivatives equal zero, ∂S(δA, δC)/∂δA =

0 and ∂S(δA, δC)/∂δC = 0, that is

δ̂A = DAB/3 + DAC/6− DBC/6 + K/2 = 0.227 mg

δ̂C = −DAC/2− DBC/2 + K/2 = 1.82 mg.

These indeed correspond to a minimum of the criterion because the
matrix of second order partial derivatives of S(δA, δC) is diagonal
and both elements in its main diagonal are positive. Applying the
constraint yields the estimate of the remaining parameter, δ̂B = K −
δ̂A = 0.603 mg.

Now we need to bring into play the “softness” of the constraint,
which is its uncertainty, u(K). This can be accomplished in any one
of several different ways. The most intuitive one may be a Monte
Carlo procedure.

The idea is to solve the same optimization problem we just solved,
when we pretended that the constraint was “hard”, but to do it many
times over, each time using a value for the constraint drawn from a
probability distribution with mean K and standard deviation u(K).
We will use a Gaussian distribution for this purpose, in keeping with
the spirit of least squares.

D.AB = -0.38; D.AC = -1.59; D.BC = -1.22

abc = array(dim=c(1e6, 3))

for (i in 1:1e6) {

k = rnorm(1, mean=0.83, sd=0.07*sqrt(2))

A = D.AB/3 + D.AC/6 - D.BC/6 + k/2

B = k - a

C = -D.AC/2 - D.BC/2 + k/2

abc[i,] = c(A, B, C)

}

apply(abc, 2, mean)

apply(abc, 2, sd)
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The final, constrained least squares estimates are δ̂A = 0.227 mg,
δ̂B = 0.603 mg, and δ̂C = 1.82 mg, with associated uncertainties
u(δ̂A) = 0.049 mg, u(δ̂B) = 0.049 mg, and u(δ̂C) = 0.049 mg.

More general constrained least squares problems can be solved us-
ing the method of Lagrange multipliers, as described by Zelen [1962]
and Seber [2008, §24.3]. R function solnp, in package Rsolnp imple-
ments a versatile algorithm for constrained, nonlinear optimization
using an augmented Lagrange method.56

56 Y. Ye. Interior Point Algorithms: Theory
and Analysis. John Wiley & Sons, New
York, NY, 1997. ISBN 978-0471174202;
and A. Ghalanos and S. Theussl. Rsolnp:
General Non-linear Optimization Using
Augmented Lagrange Multiplier Method,
2015. R package version 1.16

The method of least squares is very often used to fit models to
data, and it is also very often misused because users fail to realize
how attentive this method is toward every little detail in the data,
while such solicitude may, in many cases, prove excessive. For ex-
ample, a single data point that markedly deviates from the pattern
defined by the others can lead the least squares fit astray, and a least
squares fit may reproduce the data exactly yet be ridiculous.

A figure presented earlier and reproduced here illustrates this
point in spades. The fit, which may be computed using the R code
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Even though a polynomial of the 8th
degree fits the median values of r at
each value of c (red dots) exactly, it
would be an unrealistic calibration

function.

below, goes through each data point exactly, but at the price of an
odd, obviously unrealistic contortion of the curve. The residuals,
which are the differences between observed and fitted values of
log10(r/(m2/m2)), are all zero because the method of least squares
forces a polynomial (regardless of degree), with as many coefficients
as there are data points, to pass through all of them, at any cost.

x = c(-1.824, -1.347, -0.939, -0.668, -0.382, -0.089, 0.208, 0.507, 0.604)

y = c(-2.107, -1.892, -1.653, -1.432, -1.208, -0.942, -0.74, -0.476, -0.409)

summary(lm(y~poly(x, degree=8, raw=TRUE)))

When the method of least squares is used either to adjust observa-
tions, or to fit a function to empirical data, often it is applied subject
to constraints. For example, when the purpose is to adjust mass frac-
tions of a compound whose constituents are determined separately
from one another, one will wish to constrain the adjusted mass frac-
tions to be non-negative, or to be less than 1 g/g, or to sum to 1 g/g,
or possibly to satisfy more than one such constraint simultaneously.
Similarly, when fitting a piecewise polynomial function to data, one
may wish to constrain the result to be continuous and smooth, that is,
to be a spline [Ferguson, 1986].

Between approximately −260 °C and
960 °C, the International Temperature
Scale (its-90) is defined by means of

platinum resistance thermometers
calibrated at specified fixed points (such
as melting points of various metals). In

this temperature interval, the its-90

reference function is given by two
high-order polynomials constrained to
join at the triple point of water without
discontinuity of either the polynomials

or of their first derivatives.

Model Selection

When we built a model for the calibration function used to measure
the mass concentration of chloromethane we employed the Bayesian
Information Criterion (bic) as a guide to select one among several
alternative models, and pointed out that the smaller the bic, the
more adequate the model. Here we describe how bic is computed,
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and explain why the best model (among several under consideration)
has the smallest value of bic.

Consider fitting a straight line (first degree polynomial) to the
same data we considered above, using the following R code:

x = c(-1.824, -1.347, -0.939, -0.668, -0.382, -0.089, 0.208, 0.507, 0.604)

y = c(-2.107, -1.892, -1.653, -1.432, -1.208, -0.942, -0.74, -0.476, -0.409)

summary(lm(y~poly(x, degree=1, raw=TRUE)))

The model treats the m = 9 values of x as known without un-
certainty, and regards the values of y as outcomes of m independent
Gaussian random variables whose means depend on the values of x.
More precisely, yi is an outcome of a Gaussian random variable with
mean β0 + β1xi and standard deviation σ, for i = 1, . . . , m.

The likelihood function corresponding to these data is a function L
of the three parameters β0, β1, and σ, where the data {xi, yi} are kept
fixed, such that

L(β0, β1, σ | x, y) =
(

1
σ
√

2π

)m
exp

{
−

m

∑
i=1

(yi − β0 − β1xi)
2

2σ2

}
.

In these circumstances, the maximum likelihood estimates of β0,
and β1 are the least squares estimates, β̂0 and β̂1, and the maximum
likelihood estimate of σ2 is the average of the squared residuals {yi −
ŷi}, where ŷi = β̂0 + β̂1xi, for i = 1, . . . , m: that is,

σ̂2 =
m

∑
i=1

(yi − ŷi)
2/m.

The bic for this model and data is

bic = −2 ln L(β̂0, β̂1, σ̂ | x, y) + k ln m,

where k = 3 denotes the number of model parameters. The closer

Note that k is not the degree of the
polynomial; it is the number of ad-
justable parameters. For polynomial
regression models, like the ones we
are comparing here, k is the number of
coefficients of the polynomial plus the
additional parameter, σ.

the model fits the data, the larger the value L(β̂0, β̂1, σ̂ | x, y) that the
likelihood function takes at the maximum likelihood estimates. Or,
equivalently, the more accurate the model, the smaller (the more neg-
ative) the first term on the right-hand side of the foregoing definition
of the bic will be (because it has a minus sign in front of it and the
logarithm is an increasing function).

In general, the larger the number of parameters in a model, the
closer it will fit the data. Therefore, the greater the degree of the
polynomial, the closer the fit (above we saw that a polynomial of
the 8th degree will fit these data exactly), and the smaller (the more
negative) − ln L will be. On the other hand, since k denotes the num-
ber of parameters in the model, the larger this number the larger the
second term in the definition of the bic, which is added to the first.

degree k bic

1 3 −19.9
2 4 −32.3
3 5 −43.4
4 6 −41.3
5 7 −43.1
6 8 −41.7
7 9 −41.3

The smaller the value of the Bayesian
information criterion, bic, the more
adequate the model for the data. In this
case bic decreases appreciably as the
degree of the polynomial increases from
1 to 3, but then stabilizes, fluctuating
around the same value. This suggests
that a polynomial of the third degree
may be the best choice for these data.

That is, the two terms in the bic move in opposite directions as the
number of parameters in the model increases: the first term becomes
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smaller, while the second increases. The first term rewards goodness
of fit (the smaller the better), while the second term, k ln m, penalizes
model complexity (the larger the worse), where “complexity” here
means number of adjustable parameters. In summary, when we select
the model that minimizes bic we are striking a compromise between
goodness-of-fit and model complexity.

The following R code computes bic for the data and first degree
polynomial model described above. It does it both from scratch and
also using the built-in function BIC.

x = c(-1.824, -1.347, -0.939, -0.668, -0.382, -0.089, 0.208, 0.507, 0.604)

y = c(-2.107, -1.892, -1.653, -1.432, -1.208, -0.942, -0.74, -0.476, -0.409)

y1.lm = lm(y~poly(x, degree=1, raw=TRUE))

n = nrow(y1.lm$model) ## Size of the sample the model was fitted to

k = length(y1.lm$coefficients) + 1 ## sigma is the extra parameter

sigmaHAT = sqrt(mean(residuals(y1.lm)^2)) ## MLE of sigma

yHAT = fitted.values(y1.lm)

loglik = sum(dnorm(y, mean=yHAT, sd=sigmaHAT, log=TRUE))

c(BIC=-2*loglik + k*log(n), BIC=BIC(y1.lm))

log10((c  (µg L)) + 0.015)

lo
g 1
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The best model according to bic,
among those under consideration, is a

polynomial of the 3rd degree.

Bayesian Estimation

Bayesian estimation provides the means to blend prior information
about the measurand with the fresh information in newly acquired
measurement results.57

57 A. O’Hagan. The Bayesian Ap-
proach to Statistics. In T. Rudas,
editor, Handbook of Probability: The-
ory and Applications, chapter 6. Sage
Publications, Thousand Oaks, CA,
2008. ISBN 978-1-4129-2714-7.
doi:10.4135/9781452226620.n6

The Bayesian approach is also very
useful in situations where there are
about as many parameters as there are
observations, for example in image
reconstruction [Geman and Geman,
1984].

The prior information may originate in similar studies carried
out in the past, or it may reflect expert knowledge: in either case,
it must be cast in the form of a probability distribution on the set
of possible values of the measurand. When an expert is the source
of prior information, one should employ a disciplined approach to
elicit the relevant information and to encapsulate it in a probability
distribution.58

58 A. O’Hagan, C. E. Buck,
A. Daneshkhah, J. R. Eiser, P. H. Garth-
waite, D. J. Jenkinson, J. E. Oakley,
and T. Rakow. Uncertain Judgements:
Eliciting Experts’ Probabilities. Statis-
tics in Practice. John Wiley & Sons,
Chichester, England, 2006. ISBN 978-
0-470-02999-2; and D. E. Morris, J. E.
Oakley, and J. A. Crowe. A web-based
tool for eliciting probability distri-
butions from experts. Environmental
Modelling & Software, 52:1–4, February
2014. doi:10.1016/j.envsoft.2013.10.010

Besides this practical value, the Bayesian approach to drawing
inferences from data also aligns the interpretation of such inferences
with how most people are naturally inclined to interpret them. This
advantage is clearest in relation with the interpretation of coverage
intervals.

The conventional interpretation, which has pervaded the teaching
of statistics for at least 70 years now, goes like this: a 95 % interval for
the true value of a quantity is a realization of a random interval, and
the 95 % probability does not apply specifically to the interval one
actually gets, but is a property of the procedure that generates such
interval.

This interpretation typically goes hand in hand with an interpre-
tation of probability that equates it with frequency in the long run.
In this vein, one finds statements like this: the 95 % means that, of all
such intervals that a statistician produces in her lifetime, 95 % cover

https://doi.org/10.4135/9781452226620.n6
https://doi.org/10.1016/j.envsoft.2013.10.010
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their intended targets, and 5 % miss them.

Bayesian statistics gets its name from
the 18th century English statistician,
philosopher, and minister, Thomas

Bayes, whose most famous
accomplishment was published only

posthumously [Bayes and Price, 1763].

The Bayesian interpretation of coverage intervals is more intuitive,
and certainly applies to the specific interval that one actually gets:
the 95 % is the probability that the value of interest is in that particu-
lar interval that one has computed.

This interpretation is enabled by a change in viewpoint: the in-
terval one gets is as concrete and definite as can be — there being
nothing random about it. The “randomness” is transferred to the
quantity whose true value is unknown, while the very meaning of
“random” is refreshed. From a Bayesian viewpoint, a random quan-
tity does not have a value that fluctuates unpredictably like a leaf
fluttering in the wind — its value is what it is, and either we just do
not know it at all, or our knowledge of it is incomplete.

Bayesians use probability distributions to quantify degrees of be-
lief (in the truth of propositions about the true values of properties
under study), or to describe states of partial or incomplete knowl-
edge about these properties. A random variable is simply a property
(quantitative or qualitative) that has a probability distribution as an
attribute. This attribute is not an intrinsic attribute of the property.
Instead, it describes an epistemic relation between the person aiming
to learn the true value of the property, and this true value.

The Bayesian approach is eminently practical because its specific
results have the meaning common sense expects them to have, and
they are immediately relevant because they are not contingent on
what may happen in the rest of anyone’s lifetime (refer to the discus-
sion above of the meaning of confidence intervals).

In a nutshell, the Bayesian approach to estimation and uncertainty
evaluation for statistical measurement models involves modeling
all parameters whose true values are unknown as (non-observable)
values of random variables, and the measurement data as observed
outcomes of random variables whose distributions depend on the
unknown parameters values. The estimate of the measurand, and
an evaluation of the associated uncertainty, are derived from the
conditional distribution of the unknowns given the data.

We demonstrate the approach in the context of the estimation of
the tensile strength η of alumina coupons, which we addressed above
using the method of maximum likelihood estimation.

The prior distribution tells us the likely
whereabouts of the parameters before
we gather any new data. The likelihood
tells us how likely the data are given

any particular values of the parameters.
Bayes’s rule [DeGroot and Schervish,

2012, 2.3,7] puts these two pieces
together to tell us how likely it is that
the true values of the parameters will

be in any specified subsets of their
ranges, in light of the fresh data, and

with due allowance for the prior
information.

(a) The prior knowledge in hand consists of facts about the Weibull
modulus m and the characteristic strength σC that have been
established in previous studies of rupture of the same material,
also in 3-point flexure testing: that m is around 8.8, give or take
1.25, and that σC is around 467 MPa give or take 11 MPa. We
capture these facts by modeling m and σC a priori as independent
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random variables with Gaussian distributions, m with mean
8.8 and standard deviation 1.25, σC with mean 467 MPa and
standard deviation 11 MPa. This defines the prior distribution,
whose probability density, π, is the product of two Gaussian
probability densities, one for m, the other for σC.

(b) Given any hypothetical values of m and σC, the observed values
of rupture stress, for the 30 coupons that were tested, are mod-
eled as outcomes of 30 independent random variables, all with
the same Weibull distribution with shape m and scale σC. The
product of the corresponding 30 Weibull densities, each eval-
uated at an observed value of rupture stress, then becomes a
function of m and σC alone (the observations of rupture stress,
{σi}, are all frozen at their observed values). This is the same
likelihood function, Lσ(m, σC), where σ = (σ1, . . . , σ30), that we
encountered while discussing maximum likelihood estimation.

(c) The conditional distribution of the parameters given the data
(which actually is the version of the prior distribution suitably
updated by incorporation of the fresh data), the so-called posterior
distribution, has probability density given by Bayes’s Rule: Referring to Bayes’s Rule, Jeffreys [1973,

2.3] pointed out that “This theorem
(due to Bayes) is to the theory of

probability what Pythagoras’s theorem
is to geometry.”

qσ(m, σC) =
Lσ(m, σC) · π(m, σC)∫ +∞

0

∫ +∞
0 ps,t(σ)π(s, t)dsdt

.

Typically, Bayes’s Rule is not used directly in practice because the
formula that it produces for the probability density of m and σC

given the data and the prior information involves integrals that
cannot be evaluated analytically, and that may be impracticable
to compute numerically. Other tools have to be employed to coax
the wheels of the Bayesian machinery to turn.

An invention dating back to the 1950′s, Markov Chain Monte
Carlo (mcmc) sampling59, coupled with the contemporary preva-

59 C. Robert and G. Casella. A short
history of Markov Chain Monte Carlo:
Subjective recollections from incomplete
data. Statistical Science, 26(1):102–115,
2011. doi:10.1214/10-STS3510

lence of fast personal computers, has revolutionized the practice
of Bayesian statistics.

mcmc frees users from constraints of mathematical tractability,
and allows them to employ realistically appropriate Bayesian
models and still be able to draw samples from the posterior dis-
tribution without computing its density explicitly (for example,
qσ above).

The Russian mathematician Andrey
Markov (1856-1922) found that the

sequence of consonants and vowels in
Alexander Pushkin’s Eugene Onegin

could be described as a random
sequence with a particular structure:
the probability of the appearance of a
vowel or consonant largely depends

only on the type of letter immediately
preceding it. This model is still in use
today to help identify the authors of

texts of unknown authorship [Khmelev
and Tweedie, 2001].

Markov Chain Monte Carlo is an iterative procedure. At
each step, first it generates proposed values for the parameters by
making random drawings from a suitable (generally multivari-
ate) distribution (fittingly called the proposal distribution).

https://doi.org/10.1214/10-STS3510
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Then it compares the proposed values with the values that had
been accepted in the previous step by computing the ratio r
of the value that the posterior probability density takes at the
proposed parameter values, to the value it takes at the previously
accepted parameter values. (Note that, to compute this ratio only
the numerator of Bayes’s formula needs to be evaluated, not the
denominator, which usually is the challenging or impracticable
piece to compute.)

When r > 1, the proposed values of the parameters are accepted
for the current step without further ado. When r 6 1, a number z
is drawn that is distributed uniformly between 0 and 1: if z < r,
then the proposed values are still accepted; otherwise, the pro-
posal is rejected and the values of the parameters in the previous
step are taken also for the current step.

Since the result of each step depends only on the result of the
previous step, the resulting sequence of parameter values is a
Markov chain on the space of parameter values. The manner,
specified above, of transitioning from one step to the next, en-
sures that the stationary (or, equilibrium) distribution of this
Markov chain is the posterior probability distribution sought.

The chain eventually “forgets” its initial state — which is an
arbitrary assignment of values to the parameters —, and the
sequence of accepted values of the parameters is like a sample
from the posterior distribution, albeit with some dependence.

Nowadays there are many different ways of implementing
mcmc. The procedure sketched above is one of the oldest, called
the Metropolis-Hastings algorithm [Metropolis et al., 1953; Hast-
ings, 1970].

The following R code shows an example of how the Markov
Chain Monte Carlo can be used to sample the joint posterior
distribution of m and σC. We begin by defining an R function that
computes the logarithm of the numerator of Bayes’s Rule.

lup = function (theta, x) {

m = theta[1]; sigmaC = theta[2]

## Prior distribution for m

prior.m = dnorm(m, mean=8.8, sd=1.25, log=TRUE)

## Prior distribution for sigmaC

prior.s = dnorm(sigmaC, mean=467, sd=11, log=TRUE)

## Log-likelihood function

loglik = sum(dweibull(x, shape=m, scale=sigmaC, log=TRUE))

## Compute value of numerator of Bayes rule by summing

## the logarithms of the prior densities and of the likelihood

return(prior.m + prior.s + loglik) }

The R function lup evaluates the
logarithm of the numerator of Bayes’s
rule, ln(pm,σC ) + ln(π), which is all that
is needed to be able to do mcmc. (The
name “lup” refers to the logarithm of
the unnormalized posterior density.)
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Next we place the determinations of rupture stress that we used
above, when discussing maximum likelihood estimation, into
the vector sigma, and then take K steps of the Markov chain
defined above, drawing candidate values for the parameters
from Gaussian distributions. Since some of these values could
conceivably be negative, we effectively truncate the proposal
distributions at zero, thus ensuring that the candidate values for
the parameters are always positive, which they must be because
they are the shape and scale of a Weibull distribution.

Once these K steps are completed, we discard the initial 25 %
of the chain to remove the effects of the starting values, 9 and
470 MPa. And we keep only every 20th pair of parameter values
from the remaining steps to reduce the impact that correlations
between accepted values may have upon the estimates of stan-
dard uncertainty for the Bayes estimates that we will derive from
the mcmc sample.

## Determinations of rupture stress of alumina coupons (MPa)

sigma = c(307, 371, 380, 393, 393, 402, 407, 409, 411, 428,

430, 434, 435, 437, 441, 445, 445, 449, 455, 462,

465, 466, 480, 485, 486, 499, 499, 500, 543, 562)

K = 1e6

mcmc = array(dim=c(K,2))

## Assign initial values to Weibull parameters

mcmc[1,] = pars = c(m=9, sigmaC=470)

for (k in 2:K) {

## Generate new candidate values for the parameters

## in the vicinity of the previous values,

## while ensuring that both are positive because they are

## supposed to be Weibull shape and scale parameters

parsCandidate = abs(rnorm(2, mean=pars, sd=0.05*pars))

## Calculate the acceptance ratio

r = exp(lup(parsCandidate, x=sigma) - lup(pars, x=sigma))

## Accept candidate values if r is greater than

## a number drawn uniformly at random from [0,1]

if (r > runif(1)) { mcmc[k,] = parsCandidate

pars = parsCandidate } else { mcmc[k,] = pars }

}

## Discard the initial 25 percent of the chain,

## and keep only every 20th of the accepted parameters

mcmc = mcmc[seq(0.75*nrow(mcmc), nrow(mcmc), by=20),]

m.TILDE = mcmc[,1]

sigmaC.TILDE = mcmc[,2]

(d) What do we do with such sample? The sky is the limit, really,
because by making this sample very large (which can be done
at the expense of very quick computation), we characterize it
sufficiently well to be able to compute any function of it that will
be required, and to do so with high accuracy.

In the case we are considering, this sample comprises pairs of
values of m and σC (which, a posteriori, are no longer indepen-
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dent, because they draw information from the same data). The
first thing we do with this sample of pairs of values of the pa-
rameters is to compute a value of η from each of these pairs, thus
producing a sample from the distribution of the measurand.

eta.TILDE = sigmaC.TILDE*gamma(1 + 1/m.TILDE)

Then we can reduce this sample in any way that is fit for pur-
pose: by computing its mean or its median, its standard devia-
tion, coverage intervals of any probability, etc.

η    MPa

P
os

te
rio

r 
P

ro
b.

 D
en

si
ty

400 420 440 460 480

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

●

Posterior probability density of η
obtained using the simple

implementation of the mcmc sampler
described above, posterior mean (blue

dot), and 95 % credible interval centered
at the posterior mean (blue line

segment).

The mle and Bayes estimates of η, 443 MPa and 442 MPa, are
almost identical, but the associated uncertainties are markedly differ-
ent: mle’s is 10.4 MPa, while its Bayesian counterpart is 7.8 MPa.

The estimates are almost identical because the information in the
data is in very close agreement with the prior information, and be-
cause there is enough data to weigh fairly heavily upon any possibly
unfortunate specification of prior information. The uncertainty for
the Bayes estimate is appreciably smaller than for the mle because
the prior information is very specific, which the mle is not privy to.
In fact, the mle may be interpreted as a particular Bayesian estimate
(the so-called maximum a posteriori estimate) when the parameters
are uniformly distributed a priori over their ranges (such uniform dis-
tribution is a concept of questionable validity, considering that their
ranges are infinitely long).

The power of Bayesian methods lies in the fact that they allow us
to incorporate relevant information that the likelihood function may
be unable to accommodate. For example, natural constraints that the
parameter values must satisfy, or information about the precision of
some parameters.

The mass fraction of nitrite ions in a sample of seawater was
measured using Griess’s method,60 based on four determinations 60 P. Griess. Bemerkungen zu der

abhandlung der hh. weselsky und
benedikt “ueber einige azoverbindun-
gen”. Berichte der Deutschen Chemis-
chen Gesellschaft, 12(1):426–428, 1879.
doi:10.1002/cber.187901201117

obtained under conditions of repeatability:

w(NO−2 ) = 0.1514, 0.1523, 0.1545, 0.1531 mg/kg

While we might not have any strong prior information about the
nitrite levels in this seawater sample, based on the performance of
the measurement method we do expect that the relative measure-
ment uncertainty is 1 % to within a factor of 3. We can model this
prior knowledge about the standard deviation, σ, of the measure-
ment errors affecting the individual determinations, using a gamma
distribution whose 10th and 90th percentiles are 0.33 % and 3 % of
0.150 mg/kg, respectively. Using R we can obtain the parameters of
the gamma distribution that has these percentiles as follows:

https://doi.org/10.1002/cber.187901201117
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require(rriskDistributions)

get.gamma.par(p = c(0.10, 0.90), q = 0.150*c(1/3, 3)/100)

This yields shape α = 1.696 and rate β = 762.3 kg/mg.
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The following Stan and R codes fit the model wi(NO−2 ) = ω + εi

to the replicate determinations i = 1, 2, 3, 4, where ω denotes the
true value of the mass fraction of nitrite in the sample of seawater,
and the measurement errors {εi} are assumed to be a sample from
a Gaussian distribution with mean 0 and standard deviation σ. The
prior information about σ is encapsulated in the gamma distribution
specified above. For ω we adopt a weakly informative Gaussian prior
distribution.

require(rstan)

w = c(0.1514, 0.1523, 0.1545, 0.1531)

m = "data { real w[4]; }

parameters {

real<lower=0> omega;

real<lower=0> sigma;

}

model {

// Priors on parameters

// True mean mass fraction of nitrite

omega ~ normal(0, 1);

// Std. Dev. of measurement errors

sigma ~ gamma(1.696, 762.3);

// Likelihood

w ~ normal(omega, sigma);

}"

fit = stan(model_code = m, data = list(w=w),

warmup=75000, iter=750000,

chains=4, cores=4, thin=25)

print(fit, digits=5)

The posterior mean of ω is 0.1528 mg/kg, with standard uncertainty
0.0010 mg/kg, which is 50 % larger than the conventional Type A
evaluation of the standard uncertainty for the average of the repli-
cates.
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