
 

  

 

  

 

 Development of a Hybrid 
Algorithm to predict room 

fire flashovers based on   
Vision data   

 
 

Author(s):  Yuchuan Li and Yoon J. Ko, Ph.D 
Report No.: A1-020368.1 

Report Date: Aug. 13th, 2021 
Project No.: A1-020368 

 

 

CONSTRUCTION 



 

  

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Her Majesty the Queen in Right of Canada, 
as represented by the National Research Council Canada. 
 

 

 PDF: Cat. No.   NR24-97/2021E-PDF 
  ISBN       978-0-660-40138-6 
 
 
 

 

 

NRC.CANADA.CA 
 

 
 

 
 

https://www.linkedin.com/jobs/national-research-council
https://twitter.com/nrc_cnrc
https://www.instagram.com/nrc_cnrc/


Ko, Yoon Digitally signed by Ko, Yoon 
Date: 2021.09.03 16:54:57 
-04'00'

Kashef, AH
2021.09.13 16:31:48 -04'00'



 

 

 

 

 



 

 

 

NRC REPORT A1-020368.1  PAGE i 
 

Table of Contents 
Table of Contents ........................................................................................................................... i 

List of Figures ............................................................................................................................... ii 

List of Tables ................................................................................................................................ iv 

Executive Summary ...................................................................................................................... 1 

1 Introduction ............................................................................................................................. 2 

1.1 Objectives ......................................................................................................................... 3 

2 Literature Review .................................................................................................................... 3 

2.1 Flashover Prediction ......................................................................................................... 3 

2.1.1 Flashover Prediction with Machine Learning .............................................................. 5 

2.1.2 Flashover Prediction with Deep Learning ................................................................... 5 

2.1.3 Limitations of the previous studies ............................................................................. 6 

2.2 Deep Learning Algorithms ................................................................................................ 7 

3 Design and Methodologies ..................................................................................................... 8 

3.1 Design of Entire System ................................................................................................... 8 

3.2 Design of sub-modules ................................................................................................... 10 

4 Evaluation ............................................................................................................................. 16 

4.1 Experimental Setup ........................................................................................................ 16 

4.1.1 Software and Hardware Setup ................................................................................. 16 

4.1.2 Dataset Preparation ................................................................................................. 16 

4.1.3 Sub-module Parameters Settings ............................................................................ 21 

4.2 Evaluation of sub-modules ............................................................................................. 22 

4.2.1 Color2IR Module ...................................................................................................... 22 

4.2.2 Video Semantic Segmentation Module .................................................................... 24 

4.2.3 Video Prediction Module .......................................................................................... 26 

4.3 Evaluation of Entire System ........................................................................................... 28 

5 Conclusions .......................................................................................................................... 32 

6 References ........................................................................................................................... 33 

7 Appendix: .............................................................................................................................. 37 

Designs of sub-modules .......................................................................................................... 37 

 



 

 

 

NRC REPORT A1-020368.1  PAGE ii 
 

List of Figures 
Figure 1: Examples of flashover. a) A flashover captured on GoPro, from [5]. b) Fire 
development of ceiling layer that shows flashover happening, from [6]. ....................................... 2 
Figure 2: An example of flashover in experiments, from [11]. ....................................................... 4 
Figure 3: An example of temperature development for traditional compartment fire, from [11]. ... 4 
Figure 4: An illustration of decision boundary for flashover prediction, from [17].......................... 5 
Figure 5: An illustration of temperature analysis for flashover prediction, from [19]. .................... 6 
Figure 6: Overview of our system. ................................................................................................ 9 
Figure 7: An illustration of DAGAN architecture. (‘×’ stands for multiplication of matrices, ‘+’ 
denotes the sum of matrices, and ‘Softmax’ is the Softmax activation function. ‘ Loss’ is the 
Cycle-Consistency Loss inspired by CycleGAN.) ....................................................................... 11 
Figure 8: An illustration of applicable predictions and the temperature data curve..................... 13 
Figure 9: An illustration of temperature variation with time. The fluctuation point is between 
flashover and the growth stage of fire development. .................................................................. 13 
Figure 10: An example of the comparison of ordinary linear regression and locally weighted 
linear regression in prediction. a): ordinary linear regression. b): locally weighted linear 
regression. .................................................................................................................................. 14 
Figure 11: Samples from Color2IR dataset. ................................................................................ 17 
Figure 12: Samples and their annotations (R: flame, G: smoke) from the FS Segmentation 
dataset. The Upper left image pair is Christmas Tree tests from NIST. The upper right one is 
image pair from a Fire rescue video posted on YouTube [49]. The lower left image pair is 
synthetic images generated in this study using Blender. The lower right image pair is from the 
NRC PRF-07 test. ....................................................................................................................... 19 
Figure 13: Samples from FSVP dataset (First row: FSVP-V, Second row: FSVP-IR). ............... 20 
Figure 14: Part of samples from the FP dataset (5th and 6th of each row is the start of 
flashover). ................................................................................................................................... 21 
Figure 15: Samples of images, the label above denotes the source of each column. ................ 23 
Figure 16: Images samples for accuracy, labels at left denotes the source of each row. ........... 25 
Figure 17: Quantitatively study for methods on the FS Segmentation dataset. a) Comparison of 
mIoU and mAcc. b) Comparison of Speed. ................................................................................ 26 
Figure 18: Extended information of quantitatively study for methods on FS Segmentation 
dataset. ....................................................................................................................................... 26 
Figure 19: Samples of predicted images, the label at left denotes the source of each row. ....... 28 
Figure 20: Plots of PSNR and SSIM scores with prediction time variation. ................................ 28 
Figure 21: Raw statistics of flashover prediction performance of our system on the FP dataset.
 .................................................................................................................................................... 29 
Figure 22: Sample of flashover prediction demo by our system. ................................................ 30 
Figure 23: An illustration of time and period in a sequence of flashover predictions. ................. 30 
Figure 24: An illustration of the detailed structure of TD-Net, from [38] ...................................... 41 
Figure 25: An illustration of the detailed structure of SAVP, from [42] ........................................ 42 
Figure 26: An illustration of applicable predictions and the temperature data curve................... 44 



 

 

 

NRC REPORT A1-020368.1  PAGE iii 
 

Figure 27: An illustration of temperature variation with time. The fluctuation point is between 
flashover and the growth stage of fire development. .................................................................. 45 
 
  



 

 

 

NRC REPORT A1-020368.1  PAGE iv 
 

List of Tables 
Table 1: A summary of classifications of existing models on flashover prediction. ....................... 6 
Table 2: Description of the Color2IR dataset. ............................................................................. 17 
Table 3: Description of the FS Segmentation dataset ................................................................ 18 
Table 4: Description of the FSVP dataset. .................................................................................. 19 
Table 5: Description of the FP dataset. ....................................................................................... 20 
Table 6: A comparison of the structure and components of algorithms for the Color2IR 
Conversion Module. .................................................................................................................... 22 
Table 7: A comparison of the structure and components of algorithms for Video Semantic 
Segmentation Module. ................................................................................................................ 24 
Table 8: A comparison of the structure and components of algorithms for the Video Prediction 
Module. ....................................................................................................................................... 27 
Table 9: Comparison of flashover prediction performance with other models. ........................... 31 
 
  



 

NRC REPORT A1-020368.1  PAGE 1 

Development of a Hybrid Algorithm to predict room 
fire flashovers based on Vision data   

Yuchuan Li and Yoon Ko, Ph.D 

Executive Summary 
One of the most deadly situations that firefighters could face in firefighting is flashover, which is sudden fire 
propagation occurring in a room with all the items in the room bursting into the fire. In general, firefighters need 
years of training to identify and predict flashovers. Although the decades of experimental and numerical fire 
research shed light on the room fire dynamics, there are still gaps in transferring the fire science to the fire 
ground where innovative, yet simple solutions are needed to overcome the harsh environment.  

This project is to develop a robust smart firefighting tool that can be easily deployed like cameras to the fire 
ground and provide effective assistance to firefighters. One critical ability of the smart fighting tool would be 
assisting firefighters in detecting impending deadly flashovers. An explorative study is conducted adopting deep 
learning methods in the processing of smoke and flame video images. Scientific knowledge of room fires is also 
coupled to build an algorithm that requires less hardware but produces high accuracy. The hybrid system 
combining deep learning methods and fire safety knowledge only requires RGB vision data for flashover 
prediction, which can be acquired by any camera used by firefighters. The system converts the RGB inputs to 
thermal images and processes the flashover analysis with images classified as smoke and flame. 

The system was tested with video data obtained from various fire tests, and the performance was evaluated 
and compared with other existing models.  The hybrid algorithm of the flashover prediction system 
demonstrated promising performance by surpassing other existing methods designed for similar tasks, with 
high prediction accuracy. 
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1 Introduction 
A fire may cause a catastrophic impact on the economics due to the potential property loss/damage and, more 
importantly, on human life and safety. A report [1] shows that the total number of direct property losses due to 
fires is over $25 billion, and 1,318,500 fire cases were reported in 2018 in the US. In addition, home fires alone 
have caused 2,720 civilian fire deaths and 15,200 civilian fire injuries. Also, more than 30,000 firefighters are 
injured each year during firefighting operations [2,3].  

One of the most deadly situations that firefighters could face in firefighting is flashover, which is sudden fire 
propagation occurring in a room with all the items in the room bursting into the fire, as shown in Figure 1. The 
risk of flashover comes mainly because it occurs very rapidly, and predicting its onset is very difficult in general.  
Besides, a compartment fire develops rapidly since modern furniture contains highly combustible/flammable 
materials, which tend to burn rapidly and release high heats [4], such as chemical fiber/plastic products.  

 

   a)                                                               b) 

Figure 1: Examples of flashover. a) A flashover captured on GoPro, from [5]. b) Fire development of ceiling layer that 
shows flashover happening, from [6]. 

Researchers have poured much effort into room fire research to understand the phenomenon of flashover and 
the risk associated with it. The decades of experimental and modeling research have elucidated that there are 
typical indicators for flashovers, such as the smoke layer temperature in a typical room reaching approximately 
550 °C to 600 °C [7], and the heat flux on the floor reaching 20 kW/m2 to 25 kW/m2 [8]. In addition, there are 
also modeling tools to simulate a room fire and predict the onset of flashover.  

However, judgments for those indicators require measured thermal data captured by sensors in fire scenes, 
which are often difficult to obtain due to the harsh environment and lack of reliable sensors. Thus, firefighters 
are trained to identify and predict flashover based mainly on visual signs such as thick dark smoke build-ups 
near the ceiling, intense heat, active flame rolling across the ceiling, and smoldering of combustibles in a room. 
However, it is easy to miss these visual signs since a flashover occurs rapidly, and the visibility in a fire room is 
often very low due to the dark and smoke-filled environment. In addition, IR cameras have become prevalent 
tools to assist firefighters in locating hot spots or a point of egress. However, it is questionable whether the 
common firefighting IR cameras effectively assist accurate flashover prediction. Furthermore, accurate 
interpretation of the information received from these IR cameras is challenging because the thermal images 
and temperature readings vary depending on the different measurement wavelengths, temperature 
sensitivities, and configurations [9,10]. These problems cannot be easily solved by regular training of 
firefighters often conducted in simulated room fires.   

Predicting a flashover under such harsh extreme conditions would be significantly supported by employing a 
smart tool for the automatic processing of visual information. With the advancement in image processing 
techniques, images of smoke and flame can be effectively analyzed using neural networks and deep learning 
methods. Recently, these techniques have been used in vision-based fire flame and smoke detection systems 
(VFSDS), which overcome the limitations of conventional spot-type smoke and flame detection systems. These 
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techniques can be applied to the analysis of visual signs of flashover, and when combined with Machine 
Learning (ML) and Artificial Intelligent (AI) technologies, predicting flashover would also be possible. 

Therefore, the long-term objective of this project is to develop a robust smart firefighting tool that can be easily 
deployed to the fire ground and provide effective assistance to firefighters in actual building fire scenarios. One 
key ability of the smart fighting tool would be assisting firefighters in detecting impending deadly flashovers.  

This report describes the preliminary study conducted to explore the feasibility of adopting Machine Learning 
(ML) and Artificial Intelligent (AI) technologies in developing a tool to assist firefighters in predicting impeding 
flashovers. Unlike previous studies focusing on point measurements (e.g., temperature and heat flux), this 
project explores the potential benefits of analyzing visual data (vison and thermal data) to observe incremental 
development of the smoke layer and the associated temperature rises in the room. The report discusses a 
hybrid algorithm employing both ML and pre-informed fire science knowledge, such as the flashover criteria of 
temperature and heat flux, and for validation, in-house archived image data are mainly used.  

1.1 Objectives 
The objectives of this explorative project are the following:  

• To conduct a literature review to explore the feasibility of adopting ML and AL in predicting flashover 
based on image data.  

• To design and develop a hybrid algorithm based on ML, which is suitable for processing fire/smoke 
vision data and thermal data.  

• To test the hybrid algorithm and evaluate the performance 

2 Literature Review 

2.1 Flashover Prediction 
Flashover is a complicated fire phenomenon observed in a compartment and is defined as a near-simultaneous 
ignition of all the combustible materials in the enclosure. Most materials undergo thermal decomposition when 
heated and release fuel vapors, and they burn while spreading out. Flashover would happen in a typical room 
when the hot smoke layer near the ceiling heats the exposed surface of furniture or items in the room to 
specific temperatures, which are also called autoignition temperatures. In general, the upper smoke layer in the 
room reaches the temperature around 500°C to 600°C, a flashover occurs with simultaneous ignition of all the 
items in the room. At the onset of the flashover, the heat flux measured on the floor reaches 20 kW/m2 [11]. A 
typical example of flashover in fire experiments is shown in Figure 2. The most dangerous part of flashover is 
that it could spread rapidly, so the entire room would burst into fire. Consequently, it could kill the occupants 
and firefighters; and block the exit path for escape.  
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Figure 2: An example of flashover in experiments, from [11]. 

Room fires have been studied rigorously with mathematical models to predict parameters of temperature and 
heat release rate (HRR) as well as the onset of the flashover. One of the earliest technical definitions and 
analyses of flashover dates back to the 1970s [12]. Barbrausks et al. [13] introduced a mathematical model 
using regression to analyze the relationship between HRR, ventilation factor, and flashover. It discussed HRR 
and ventilation factors for different scenarios. In addition to experimental works, room fire modeling has helped 
to improve the understanding of flashover. Beshir et al. combined the benefit of simulations and actual tests 
and suggested semi-imperial flashover prediction models [14]. They used Fire Dynamic Simulator (FDS) 
developed by NIST (the National Institute of Standards and Technology) as their simulation engine and 
conducted sensitivity and parametric studies to understand the heat balance for under-ventilated 
compartments.  

An example of temperature development for traditional compartment fire is shown in Figure 3. Once ignited, a 
room fire grows with the increase in the room temperature, and the growth rate depends on the 
combustibility/flammability of the fuels/items in the room.  At the onset of flashover, the whole room will be 
involved in the fire, and the HRR is generally dependent on the amount of air supply through the windows or 
doors. With the parameters of temperature and HRR, a flashover could be forecasted.  

 
Figure 3: An example of temperature development for traditional compartment fire, from [11]. 

Experimental and numerical studies conducted for decades to understand flashovers found criteria to 
determine the onset of flashovers, such as smoke layer temperature and heat flux on the floor.  Using these 
criteria, an algorithm and a device prototype were developed for flashover prediction in 2010 [15]. Their 
attempts to measure smoke layer temperatures (by thermocouples, multispectral IR optical sensors, and 
radiometric sensors) were partially successful due to the intense heat, so the heat received by a sentinel on the 
floor was used instead in the prediction.  The effectiveness of the predictor in real scenarios was not thoroughly 
tested in the study. The major limitation of their predictor was relying on single-point measurement of the 
temperature of a sentinel since the radiative heat received by the sentinel from the smoke layer and fire varies 
significantly by its location on the floor. 
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2.1.1 Flashover Prediction with Machine Learning 
Machine Learning (ML) methods are widely used in flashover prediction with classification tasks. A study 
proposed in [16] presented an ML approach for predicting flashover in a compartment fire. They used a 
traditional machine learning method: Support Vector Machine (SVM) as their core method and built a prediction 
model taking temperature and HRR as input. Their works provided flashover prediction based on a combination 
of HRR and temperature data. Another study proposed by [17] introduced an ML algorithm to predict flashover 
onset in archival experiments in a 1/5-scaled ISO enclosure. It used lasso regression to significantly reduce the 
amount of variance with a negligible increase in bias. The decision boundary is shown in Figure 4 below. 𝑥𝑥1 
and 𝑥𝑥2 are two input features from different dimensions of fire. 𝑦𝑦 is the possibility of flashover occurrence (i.e., 
𝑦𝑦 = 1 for 100% possibility and 𝑦𝑦 = 0 for 0% possibility). ‘x’ marks the test samples that flashover happened and 
‘o’ marks the test samples that flashover never happened. Moreover, their algorithm showed a remarkable 
ability to make accurate predictions for unseen samples and test conditions. Their later work [18] conducted a 
similar study using a penalized logistic regression model, which could help identify factors that impact the 
flashover occurring. 

 
Figure 4: An illustration of decision boundary for flashover prediction, from [17]. 

2.1.2 Flashover Prediction with Deep Learning 
The success of Deep Learning in recent years also drew the attention of fire researchers. With the help of Deep 
Learning, new solutions are sought for many classification and prediction problems in fire research, and the 
processing speed and accuracy have also been improved. 

Fu et al. [18] built a flashover prediction model with deep neural networks, which can be used to warn 
firefighters before flashover occurs. They used CFAST developed by NIST as a simulation engine and used it 
to generate synthetic data. They then validated the fire simulations with full-scale fire experiments, and the 
overall results showed that their model's prediction accuracy was around 75%. Besides, generative models 
were also introduced in flashover prediction. Yun et al. applied conditional Generative Adversarial Network 
(cGAN) for image enhancement in [19] to enhance the dark video images of fire and smoke, which could be 
used to analyze and predict temperature variation for flashover. Their temperature analysis for flashover 
prediction is shown in Figure 5. This figure shows the variation of the number of pixels with a specific 
temperature range. They also used temperature as the criterion for flashover occurrence. The ‘Flashover’ at 
190 seconds is the real flashover occurrence time and the ‘Prediction’ at 135 seconds is the prediction results 
of their system.  
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Figure 5: An illustration of temperature analysis for flashover prediction, from [19]. 

Besides, hybrid models of deep neural networks are also popular in flashover prediction to analyze various 
parameters. Yap et al. [20] introduced a model based on the Generalized Adaptive Resonance Theory (GART) 
neural network developed based on integrating Gaussian Supervised Real-Time Learning and Classification of 
Nonstationary Data by a Self-Organizing Neural Network (ARTMAP) and the Generalized Regression Neural 
Network. Their model demonstrated that it outperformed other networks and produced meaningful rules from 
data samples. In addition, Lee et al. introduced a network called GRNNFA, which is a fusion of the Fuzzy 
Adaptive Resonance Theory (FA) model and the General Regression Neural Network (GRNN) model in their 
work. They compared the performance of the GRNNFA with other published results, and it surpassed other 
models with deep neural networks. 

Synthetic datasets were built using a fire modeling tool, Fire Dynamics Simulator (FDS), in many studies [21–
23] for room fire research adopting ML or deep learning. Others used the established mathematical models to 
analyze an intermediate variable for flashover, such as HRR [24,25]. They further analyzed the data with fire 
research knowledge and experiences.  

2.1.3 Limitations of the previous studies 
Deep Learning is a hot topic in almost all current research areas. It has demonstrated capabilities surpassing 
traditional and human-level methods in recent years in image-related research, especially image recognition, 
segmentation, and classification. Utilizing the potential of Deep Learning, fire research also tried to integrate 
Deep Learning into fire research with image-related analysis, and it opened up new research ideas. Some 
researchers explored the possibility of combing temperature information with visual information in fire scenes to 
build their models for occluded object reconstruction and fire development analysis [19,26]. Meanwhile, some 
others brought Deep Learning models to fire simulation to improve the efficiency and accuracy of flashover 
analysis and prediction [14,18].  

Table 1: A summary of classifications of existing models on flashover prediction. 

Algorithm basis Source of dataset Types of data capture device 
Deep 
Learning 

Fire 
knowledge  Real-world Synthetic Real-world + 

Synthetic Sensors Video 
cameras 

27.3% 72.7% 9.1% 72.7% 18.2% 88.9% 11.1% 
 

However, flashover analysis and prediction are very challenging tasks. Many of the existing flashover 
forecasting research methods and models have problems and cannot be put into practical use. Table 1 
summarizes the survey conducted under this project on the previous flashover prediction studies using data 
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science. A total number of 22 studies conducted between 1995 and 2020 are reviewed for the classifications of 
their methods (Deep Learning-based or fire knowledge-based) and the source of data set (real-world data or 
synthetic data or combined) and the types of data (sensor data or image data).  The survey results indicate that 
one of the weaknesses of the models from the previous studies is that their datasets are not representative of 
real scenarios since many studies used synthetic data due to the lack of real-world data. Also, the types of data 
used in the previous studies are primarily sensor data, which are difficult to be obtained from real fire scenes 
unless they are readily installed in the fire scene and high temperature/harsh environment endurable. For 
example, the upper limit of the temperature recorded by an existing handheld IR camera is mostly about 500K, 
and the temperature of an indoor fire can reach 800K [27]. It leads to insufficient accuracy of real-world data 
and range of existing equipment suitable to collect data from fire scenes [28]. For the reasons, many of the 
previous studies used synthetic or simulated data from tools, such as FDS, which has been proved to be an 
accurate and effective fire simulation tool.  

Another crucial problem is the lack of evaluation metrics. The prediction results from the previous studies for 
flashover are limited to binary outputs, whether it will happen or not [29,30]. In an actual fire scene, firefighters 
need to know how much time is available prior to a flashover. In addition, most of the existing flashover 
prediction methods that could predict the onset of flashovers are based on post-fire analysis because they 
need to analyze the entire information from start to end. It makes their methods not applicable to real-time 
analysis. 

Thus, to overcome the limitation of the previous studies, it is suggested to develop a smart firefighting tool to 
predict flashover using real-world data, based on image data rather than sensor data since vision cameras and 
IR cameras are currently used by firefighters. Vison RGB images could be used as inputs for the prediction 
system as long as real-time image data processing is possible.  

2.2 Deep Learning Algorithms 
There are several deep learning algorithms reviewed and used in the present study. This section describes the 
algorithms adopted in the system that is developed in the present study and other algorithms reviewed for 
comparisons with the system.   

Generative Adversarial Networks (GANs), which are a group of unsupervised Deep Learning frameworks, are 
reviewed for data generation required in the training process. For effective data generation and learning, two 
existing methods are selected and explored in the present study since they are designed for tasks like image 
translation and augmentation. They are Cycle Generative Adversarial Network (CycleGAN) [31] and Attention-
Guided Generative Adversarial Network (AGGAN) [32].  

There are three critical components in these algorithms: cycle structure, foreground attention, and background 
attention. The cycle structure is a basic structure for un-paired image conversion tasks, and both CycleGAN 
and AGGAN are equipped with the cycle structure to deal with un-paired images as input for the neural 
network.  

The foreground attention aims to provide clear and better quality for foreground contents of images, such as 
flame and smoke of a fire. While CycleGAN has the foreground attention feature, AGGAN does not have it. So, 
this structure makes AGGAN generate images with better quality than CycleGAN. The background attention 
could improve image quality by separating the foreground and background areas in image conversion. 
However, both CycleGAN and AGGAN do not have the background attention feature. As described in the later 
chapter 3, the present study proposed a new algorithm called Dual Attention Generative Adversarial Network 
(DAGAN) with both the foreground and background attention features. The comparisons of the performances of 
these algorithms are discussed in Chapter 4.2.1. 
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One of the fundamental tasks in the Computer Vision field is segmentation, especially semantic segmentation. 
Sematic segmentation plays a broad role in various applications such as processing medical image analysis, 
robotic perception, video surveillance, augmented reality, and image compression.  

Several deep learning algorithms are reviewed in the present study for Video Semantic Segmentation. Pyramid 
Scene Parsing Network (PSPNet) [33] and Deep learning Lab V3 (DeepLab V3) [34] are studied since they are 
designed for image semantic segmentation algorithms. Also, this study explored video semantic segmentation 
algorithms: Reference-Guided Mask Propagation (RGMP) [35], Semantic Video Convolutional Neural Network 
(SV-CNN) [36], Semantic Video Segmentation (SVS) [37], and Temporal Distributed Network (TD-Net) [38].  

PSPNet and DeepLab V3 are designed for image semantic segmentation, which means that they do not use 
inter-frame information. However, as our input would be video, the inter-frame information is vital to form a 
segmentation result with high quality and high consistency.  

The four algorithms designed for video semantic segmentation tasks use residual feature extraction methods 
for the in-frame information, which is a good base for segmentation performance. As for the structure for inter-
frame information, RGMP uses reference-guided masks, which have been popular in the past few years, to 
improve pixel-wise recognition ability. Both SV-CNN and SVS use Dual-CNN for inter-frame calculation, while 
SV-CNN focuses on optical flow and SVS focuses on overall pixel intensity. TD-Net is the method that is 
chosen for our system. It has knowledge distillation and group convolution, which are an excellent boost for 
scene understanding for segmentation and high segmentation speed. It is hard to tell which one of the four 
would better perform for flame and smoke segmentation tasks before evaluation.  

Video prediction is necessary for a self-supervised learning task to develop a smart tool to predict future events 
based on video feeds. The video prediction algorithms are capable of extracting meaningful representations of 
the patterns in input videos. Although video prediction tasks would be easy for humans with additional physical 
knowledge, deep learning algorithms are still highly challenging. Factors contributing to such complexity are 
occlusions, camera movement, lighting conditions, clutter, or object deformations. For the video prediction, the 
present study reviewed Convolutional Neural Network with Laplacian pyramid (CNN-LP) [39], Convolutional 
Long Short Term Memory (Conv-LSTM) [40], Stochastic variational video prediction (SVVP)[41], Appearance 
and Motion Conditions Generative Adversarial Network (AMC-GAN) [42] and Stochastic Video Prediction 
(SAVP) [43].  

CNN-LP and Conv-LSTM use Convolutional Neural Network and Recurrent Neural Network, respectively, for 
prediction tasks, both of which are traditional network structures making their performance stable but not very 
high in prediction quality. Variational Autoencoder adopted in SVVP is a conditioned generative model, which 
means that it would generate prediction with good plausibility but lack of variety. On the other hand, AMC-GAN 
uses Generative Adversarial Network, an unconditioned generative model that would produce prediction with 
diversity. The SAVP uses both Variational Autoencoder and Generative Adversarial Network, which would 
provide prediction with diversity and visual plausibility. For video prediction, diversity guarantees the number of 
choices that a user could choose for fine-tuning, and plausibility makes sure that data generation is good in 
video quality. As a result, SAVP, which is chosen by this study for our module, has the potential for the best 
performance for prediction in the flashover prediction asks.  

3 Design and Methodologies 

3.1 Design of Entire System 
A smart firefighting tool is designed to predict room fire flashover based on images analysis to process input 
image data in real-time and provide a prediction for the onset of flashovers. This tool is an end-to-end system 
that takes an RGB image as input and returns flashover prediction results as output.  
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The overall process design of the tool is depicted in Figure 6. For the input, the system reads RGB video data 
obtained from a vision camera. A frame from the video input is generated and processed as designed for 
flashover analysis at each time step. The system aims to analyze those frames in real-time and predict an 
occurrence of flashover based on the analysis of information from input frames. 

 

 

Figure 6: Overview of our system. 

The system consists of four modules: the Color2IR Conversion Module, Video Semantic Segmentation Module, 
Analysis with Fire Knowledge Module, and Video Prediction Module. A fusion part is also proposed in order to 
maximize the integration analysis of that information. 

As the first module in our system, the Color2IR Conversion Module processes thermal information from input 
vision frames by converting them to IR frames. It is a core part of the entire system, as it provides thermal 
information by transferring color images to IR images. Knowing the temperature/thermal condition of the entire 
room provides much better information in predicting flashover than working with limited point measurements of 
temperature. Although some other parameters could also be suitable information bases for fire analysis, like 
HRR and flame height, the temperature is first explored in this study. The crucial part in the IR conversion is a 
deep neural network by DAGAN, which is evolved from famous existing cross-domain image conversion 
methods such as the DiscoGAN [44] and DualGAN [45]. In addition, self-attention in the Computer Vision 
areas, like Self-Attention [46] and loop structure used in CycleGAN [31] are also incorporated. These features 
are optimized to work together and contribute to a powerful model for the Color-to-IR image conversion 
algorithm.  

The input data also goes to Video Semantic Segmentation Module, which produces semantic information for 
flame and smoke areas. The core part of this module is also a deep neural network called TD-Net [38]. Due to 
its excellent performance in segmentation, accuracy and speed is the best choice for our module in detecting 
smoke and flame patterns/areas. It also incorporates the Knowledge Distillation [47] for the speedy and 
accurate transformation of knowledge from a deep teacher network. 

The processed data from the Color2IR Conversion Module and Video Semantic Segmentation Module is fused 
to flow into the analysis with fire knowledge, which processes a pair of the converted IR frame sequence and 
corresponding segmented flame and smoke patterns in vision frame based on a mathematical model and 
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statistical analysis. This hybrid approach employs the experience and knowledge gained through years of room 
fire research, validated and reliable [13]. Besides, the hybrid approach is suitable to explore the feasibility of 
image processing of smoke and flame; and predicating impeding flashover adopting Deep Learning methods.  

Simultaneously with the analysis with fire knowledge, the Video Prediction Module also takes the fused data to 
produce possible future information in image formats. The direct source of the video prediction is the collected 
frames of the input vision frames and the converted IR images. The core part of this module is a deep neural 
network called Stochastic Adversarial Network (SAN) [43]. It takes advantage of combining the high-quality 
output without blurry and diverse predictions. These are important to our system since future information in 
clear image format would result in high accuracy predictions in the next step of the system. It becomes 
important for dynamic/diverse images, such as images of fire phenomena.  

In the end, our system will make a decision of flashover prediction based on the analysis results from the 
Analysis with Fire Knowledge Module and Video Prediction Module. Our system is not only capable of 
providing both binary prediction of flashover occurrence but also an Estimated Time Arrival (ETA) as a 
countdown of flashover occurrence for the future. Those two results would assist the users in making decisions 
for escaping from flashover or firefighting tactics.  

3.2 Design of sub-modules 
The system adopts a modular design aiming to split specific functions and characters, making real-time 
prediction feasible.  The system is designed to generate the final prediction results via fusion of the results from 
each step and linear mathematical analysis. This section provides brief descriptions of each sub-module, and 
more detailed processes of each sub-module are provided in Appendix, which also provides parameter settings 
in loss function for our deep neural networks.  

As one of the most crucial sub-modules in the system, Color2IR Conversion aims to provide corresponding IR 
images that could tell the temperature of each pixel from a visual image captured from a standard camera that 
could be taken into fire rescue with firefighters. The input videos would be cut into independent frames in this 
module and processed as a single unit. Besides, it is a kind of cross-domain image transfer task in the 
Computer Vision field as the images of input and output are from different types.  
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Figure 7: An illustration of DAGAN architecture. (‘×’ stands for multiplication of matrices, ‘+’ denotes the sum of 
matrices, and ‘Softmax’ is the Softmax activation function. ‘ Loss’ is the Cycle-Consistency Loss inspired by 
CycleGAN.) 

Figure 7 shows the overall structure of Dual-Attention GAN (DAGAN), a novel deep neural network used in the 
system, which is inspired by the success of CycleGAN in un-paired image conversion. The input images of 
DAGAN are from the visual videos of fire scenes, which are denoted as 𝑥𝑥 in Figure 7. The input 𝑥𝑥 will be fed 
into the generator 𝐺𝐺1, which consists of an encoder 𝐺𝐺𝐸𝐸1 and two mask generators: 𝐺𝐺𝐶𝐶1 and 𝐺𝐺𝐴𝐴1. 𝐺𝐺𝐸𝐸1 is a 
parameter-sharing encoder which could generate low-level feature maps. While 𝐺𝐺𝐶𝐶1 is a content mask 
generator that could generate a set of masks 𝐶𝐶𝑥𝑥

𝑓𝑓, which contains sets of the content feature captured from the 
encoder 𝐺𝐺𝐸𝐸1.  

𝐺𝐺𝐴𝐴1 is a generator for attention mechanism providing attention-level feature maps from the encoded 
information. The direct output of 𝐺𝐺𝐴𝐴1 is processed by a Softmax activation function, and it would produce two 
types of attention masks: 𝐴𝐴𝑥𝑥

𝑓𝑓 and 𝐴𝐴𝑥𝑥𝑏𝑏.The foreground attention mask and background attention mask enable 
DAGAN to differentiate the foreground and background images. Then, the foreground information and 
background information extracted from input 𝑥𝑥 will be processed independently. The final generated image 
𝐺𝐺1(𝑥𝑥) would be the sum of them. 
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That is the end of the generation process and the start of the reconstruction process. The reconstruction is 
inverse to the generation process in structure, while the training process would be independent.  

In addition, vanilla discriminators are used to distinguishing the generated images 𝐺𝐺1(𝑥𝑥) and real images 𝑦𝑦 or 
𝐺𝐺2(𝑦𝑦) and 𝑥𝑥. The system also employs loss functions proposed by us. There are several loss functions in 
DAGAN: an adversarial loss that same as vanilla GAN, and a loop loss or cycle loss (as shown in the dotted 
line in DAGAN between original input 𝑥𝑥 and reconstruction result 𝐺𝐺1(𝐺𝐺2(𝑥𝑥)),  as in Figure 7).  DAGAN also 
employs pixel loss (to constrain the generator without discriminator information at pixel level), identity loss for 
pixel-level measurement in CycleGAN, and Attention Adversarial loss in AGGAN (to form a stable attention 
mask in the training process without any annotations on the image pairs in the training set) as well as a pure 
attention loss (to improve the stability and performance of attention masks). These loss functions used in 
DAGAN are optimized by piecing them all together with weights.  

In this way, a closed-loop for the DAGAN process is finally formed, starting from the input 𝑥𝑥 to the 
reconstruction of 𝐺𝐺2.  

There is another sub-module that takes the original input images, which is Video Semantic Segmentation 
Module generating semantic information for fire scenes. Real-time video semantic segmentation results are 
required for accurate and speedy processing of the input images. The system adopts TD-Net [39], which is a 
type of neural network for video semantic segmentation. The basic idea of TD-Net is Group Convolution, which 
extracts features with separated filter groups instead of only one guaranteed model parallelization and 
representations. The sub-networks design and Attention Propagation Module (APM) contribute to fast and 
consistent segmentation.  

TD-Net conducts the Encoding Phase, first, where the network generates path-specific feature maps and 
Query and Key maps for across-frames correlating between pixels. Then, it calculates the attention from Value, 
Query, and Key as a self-attention mechanism. These feature maps are merged to effectively capture non-local 
correlations between pixels across frames with the help of this self-attention mechanism. After that, there is a 
down sampling process to reduce the computation costs. The second phase of TD -Net is the segmentation 
phase, which includes a propagation approach that measures the attention of neighboring frames. Then, it 
finally computes the final feature representative at each time frame, generating segmentation maps. To 
enhance the sub-feature maps in the entire feature space, it adopts Grouped Knowledge Distillation 
mechanism.  

As shown in Figure 6, after the Color2IR Conversion Module and Video Semantic Segmentation Module, 
Video Prediction Module runs the subsequent processing using the power of neural networks to provide 
reliable visual results for fire scenes. Generative models (the state-of-the-art methods) are employed for 
Encoder-Decoder models, which provide predictions with diversity, and GANs models are used for naturalistic 
predictions. Thus, a combination of them is Stochastic Adversarial Video Prediction (SAVP), which provides a 
prediction with stochasticity as well as plausibility.  It consists of two parts. The first part is a Variation 
Autoencoder (VAE) that also acts as a generator. The generator predicts the future frames with the previous 
ones and latent codes, which specifies a distribution based on a fixed variance Laplacian distribution.  The 
second part is GAN, where a generator provides a prediction of future frames. With a discriminator 
distinguishing the generated frames from original ones, the generator would be trained using binary cross-
entropy loss. Compared with VAE, GAN could generate predictions with higher diversity. The results of VAE 
would be more visual plausibility. As a result, the combination of VAE and GAN in SAVP would make our Video 
Prediction Module produce predictions with high diversity and visual plausibility.  

Another essential step in the present Flashover Prediction System is Fire Knowledge Module. While Deep 
learning is a popular choice for many research fields, yet a hybrid approach is taken in the present explorative 
study by employing Fire Knowledge Module. Many previous fire safety research studies show that linear 
mathematical models are still influential in processing conventional measurement data, such as temperature. 
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Thus, taking a similar approach, the Analysis with Fire Knowledge Module in our Flashover Prediction System 
is proposed to extract and process the data acquired from the input images using statistical analysis methods. 
There are several choices for parameters (e.g., temperature, HRR, and flame height) for the statistical and 
mathematical models in flashover analysis and prediction. As the temperature distribution information could be 
directly extracted from the output of the previous modules in our system, the temperature is chosen for a 
flashover criterion. As widely accepted, a typical flashover happens when the upper layer of smoke in the room 
is approaching or above 600℃ for normal conditions in a typical room [11]. Using the temperature data 
extracted from the input, a statistical graph for the real-time analysis of flashover occurrence. 

In addition, for forecasting the onset of flashover, the system combines the prediction frames from the Video 
Prediction Module and extracts information in the converted IR and visual domain. The detailed solution 
proposed for this problem only produces a limited number of prediction frames, like 5 or 10 frames. And, it 
would make them visually plausible and full of contextual information from the original input. It is called 
applicable predictions. Then, the system combines data and generates the graph of statistical information; thus, 
it could be regarded as a tangent of specific points representing the original input, shown as in the figure below. 

 

Figure 8: An illustration of applicable predictions and the temperature data curve. 

Then, following the definition of derivatives, we could approximate the future point on the graph with current 
data and the tangent, formulated as the equation below. 

𝑓𝑓�𝑐𝑐𝑓𝑓� = 𝑓𝑓(𝑐𝑐) + 𝜎𝜎 ∙ (𝑐𝑐𝑓𝑓 − 𝑐𝑐) eq. 1 

Where   𝑐𝑐 is the point of original frames.  
𝑐𝑐𝑓𝑓 denotes the points for the future.  
𝜎𝜎 is the tangent value. 

The statistical temperature graph is in a discrete domain, it needs to be linked and form a continuous curve. 
The tangent is updated with every input frame. It could also help prevent collapse problems in fluctuation points 
or spikes in the temperature curve, shown in Figure 9. 

 

Figure 9: An illustration of temperature variation with time. The fluctuation point is between flashover and the growth 
stage of fire development. 
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Furthermore, locally weighted linear regression is introduced as the core mathematical model in this sub-
module. Locally weighted linear regression is a supervised, non-parametric learning algorithm. The model 
does not learn a fixed set of parameters as it is done in ordinary linear regression. Parameters 𝜃𝜃 are computed 
individually for each query point 𝑥𝑥. While computing 𝜃𝜃, a higher “preference” is given to the points in the training 
set lying in the vicinity of 𝑥𝑥 than the points lying far away from 𝑥𝑥. There is no training phase in the overall 
process of this algorithm, and all the work is done during the testing phase or while making predictions. 
Compared with ordinary linear regression, it could prevent overfitting and underfitting problem and give a 
better regression model for prediction. An example of linear regression and locally weighted linear 
regression is shown in the figure below.  

 

a)                                                                b) 

Figure 10: An example of the comparison of ordinary linear regression and locally weighted linear regression in 
prediction. a): ordinary linear regression. b): locally weighted linear regression. 

For ordinary linear regression, it needs to minimize a target in the equation as follow: 

𝐽𝐽(𝜃𝜃) = ��𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖)�2
𝑚𝑚

𝑖𝑖=1

eq. 2 

And the prediction for query point 𝑥𝑥 will be 𝜃𝜃𝑇𝑇𝑥𝑥. 

While the locally weighted linear regression assigns weights 𝑤𝑤(𝑖𝑖) to each regression point, as shown in 
equation 3. 

𝐽𝐽(𝜃𝜃) = �𝑤𝑤(𝑖𝑖)�𝜃𝜃𝑇𝑇𝑥𝑥(𝑖𝑖) − 𝑦𝑦(𝑖𝑖)�2
𝑚𝑚

𝑖𝑖=1

eq. 3 

If the 𝑥𝑥(𝑖𝑖) is lying closer to the query point 𝑥𝑥, the value of 𝑤𝑤(𝑖𝑖) will be larger. Otherwise, it will be smaller. 

A typical choice for the weights 𝑤𝑤(𝑖𝑖) is: 

𝑤𝑤(𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒 �
−�𝑥𝑥(𝑖𝑖) − 𝑥𝑥�

2

2𝜏𝜏2 � eq. 4 

Where   𝜏𝜏 is the bandwidth parameter and controls the rate at which 𝑤𝑤(𝑖𝑖) falls with distance from 𝑥𝑥. 

For the FPS setting, we set the FPS in Analysis with Fire Knowledge module to 1, matching the settings in 
previous modules, which could reduce computation cost and remain precision analysis. The number of 
predicted frames is set to 3 to match the FPS for a better prediction result. 
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With the locally weighted linear regression and tangent prediction model set for our system, this sub-module 
could smoothly proceed the data from previous sub-modules and do the analysis and prediction of flashover 
with fire knowledge criterion of flashover.  
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4 Evaluation 

4.1 Experimental Setup 

4.1.1 Software and Hardware Setup 
The hardware is a workstation computer with Intel and NVIDIA chips. For specs, it has Intel Core I9-10900K, 
64GB system memory, and 3TB Solid-State-Drive (SSD). For the GPU part, which is essential for deep 
learning research, we use dual RTX2080 Ti with 11GB GDDR6 dedicated video memory and an RTX3090 with 
24GB GDDR6X dedicated video memory.  

For the software on the computer, we use Windows 10 build 19041.985 and Ubuntu 18.04 for the operating 
system. We chose Pytorch as our deep learning framework and CUDA 11.1 and CUDA 10.2 for the GPU driver 
framework. Besides, there are also some other packages, such as NumPy, matplotlib, OpenCV, tensorboardX, 
etc. 

4.1.2 Dataset Preparation 
For training, testing, and validation of the Deep Neural Networks studied in the current project, image datasets 
are gathered and prepared. The data sets were prepared for the sub-module training/testing and the entire 
system testing/validation. A well-designed model alone cannot achieve good performance in real-world 
situations without extensive training and testing over data sets sufficiently representative to the problem of 
interest. Therefore, fire test data were collected and sorted by the types of images (e.g., vision and IR), and the 
collected video data were also identified with the corresponding test data (e.g., temperature and HRR) for the 
temporal fire development and flashover, if available. 

 Sub-module Dataset Preparation 
The sub-module of the Color2IR is tested with 1800 image pairs from 17 fire experiments conducted under the 
CFMRD (Characterization of Fires in Multi-Suite Residential Dwellings) project [48] by the National Research 
Council (NRC), Canada. In the project, single and multiple household furniture and items were burned in a 
typical room with heavy instrumentations to characterize fires in residential dwellings. The selected 17 fire 
experiments used in this study are listed in Table 3. The tests with the name starting with ‘SI’ were individual 
furnishing tests where a mattress, bed assembly, workstation, or upholstered furniture was placed in the test 
room (with dimensions 3.8 m wide x 4.2 m long x 2.4 m high) with a window (1.5 m x 1.5 m).  The tests with the 
name starting with ‘RBF’ tested a set of fully furnished living rooms (RBF-12) or bedrooms (RBF-07). The living 
room (3.8 m wide x 4.2 m long x 2.4 m high) had a window of 1.5 m x 1.5 m, and the bedroom (3.2 m wide x 
3.5 m long x 2.4 m high) had a window of 1.4 m x 1.2 m. The test rooms were instrumented to measure HRR, 
room temperature, heat flux on the floor. A vision and IR camera1 were also placed outside the test room to 
capture the temporal fire development. The tests with the name starting with ‘M’ were burning tests in a metal 
box. A vision camera and an IR camera were also placed outside the test room to capture the temporal fire 
development for this test. 

                                                        

 

1 A VarioCAM infrared camera with the specifications of 384x288 pixels, the IR images were pre-
processed with Cubic spline interpolation to match the resolution with vision images. 
Spectral range: 7.5 to 14 μm, Temperature measurement range: -40°C to 1200°C and measurement 
accuracy: ± 2 K, ± 2 %*. 
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The image data are cut from the video recording of the vision and IR sources. All the image pairs have been 
verified and synchronized according to the official record of NRC test reports. A detailed description of the 
Color2IR dataset is shown in the table below. The ratio of training and testing part is 9:1. An overview of the 
Color2IR dataset is shown in Figure 11 below. IR images use a 1024-level constant Colorbar that ranges from 
(280, 1400) Kelvin (K) to transform the temperature information to the color domain. The Colorbar is shown on 
the right side of IR images.  

 

Table 2: Description of the Color2IR dataset. 

Name of NRC test Burning items Resolution of image pairs Total number of 
images 

PRF-07 - 400 × 400 120 
PRF-12 - 400 × 400 90 

M-1 metal box 640 × 480 230 
05-SI-03 Mattress 400 × 400 90 
08-SI-04 Mattress 400 × 400 100 
14-SI-06 Mattress 400 × 400 80 
31-SI-13 Bed assembly 400 × 400 100 
16-SI-16 Wardrobe 400 × 400 140 
33-SI-21 workstation 400 × 400 80 
22-SI-22 Toys 400 × 400 90 
10-SI-24 Chair 400 × 400 100 
09-SI-25 Chair 400 × 400 60 
26-SI-26 Chair 400 × 400 70 
15-SI-27 Chair 400 × 400 80 
23-SI-76 Bed assembly 400 × 400 80 

19-SI-83-1 Bed clothes 400 × 400 60 
19-SI-83-2 Bed clothes 400 × 400 80 

 

 

   

   

Figure 11: Samples from Color2IR dataset. 
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For the Video Semantic Segmentation Module, which is required to be trained and tested for classifications of 
smoke and flame patterns, a new dataset of FS segmentation was prepared. The dataset contains 40 image 
sequences collected from various sources. The selected data from the CFMRD project conducted by NRC 
(introduced in the Color2IR dataset) were used, and video data publicly available were also included. These 
data are videos captured by firefighters’ equipment [5] and fire rescue videos posted on YouTube [49]. Also, 
video data from one of the room fire tests conducted by NIST is also included in the dataset [50]. In addition, 
some of the synthetic fire images generated by Blender are also included in the FS Segmentation dataset. 
Shown in the seconds' row of Figure 12 is a sample image of the synthetic smoke and flame pattern is 
generated using Blender2, a free and open-source 3D computer graphics software for computer animation. It 
builds life-like smoke and fire patterns and merges them into real scenes, such as the room shown in Figure 
12. Thus, the Video Semantic Segmentation Module was trained and tested with various fire and smoke 
scenes captured in a fire room, through the window of a fire room, and outside a building in fire. 

Each sequence in the dataset contains images in 2 seconds of the original videos. The number of images in 
each sequence depends on the Frame Per Second (FPS) of its original video. The ratio for training and testing 
is 9:1. A description of the FS Segmentation dataset is listed in Table 3 below. An overview of samples with 
their annotations from the FS Segmentation dataset is shown in Figure 12 below. 

 

Table 3: Description of the FS Segmentation dataset  

Source and sequence 
name 

Numbers of images 
in each sequence 

FPS of the 
original video 

Number of 
sequences 

Total number of 
images 

Firefighters, Firerescue-1 48 24 2 96 
Firefighters, Firerescue-2 48 24 3 144 

NRC, PRF-07 60 30 3 180 
NRC, PRF-12 60 30 4 240 

NRC, M-1 60 30 4 240 
NRC, 16-SI-16 60 30 4 180 
NRC, 26-SI-26 60 30 4 180 
NRC, 23-SI-76 60 30 4 240 

YouTube, NISTvideo-1 48 24 4 192 
YouTube, NISTvideo-2 48 24 4 192 

Synthetic, Blender-1 60 30 2 120 
Synthetic, Blender-2 60 30 2 120 

 

 

                                                        

 

2 We use α-channel edge processing for blending. 
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Figure 12: Samples and their annotations (R: flame, G: smoke) from the FS Segmentation dataset. The Upper left 
image pair is Christmas Tree tests from NIST. The upper right one is image pair from a Fire rescue video posted on 
YouTube [49]. The lower left image pair is synthetic images generated in this study using Blender. The lower right 
image pair is from the NRC PRF-07 test. 

Next, for the Video Prediction, a new dataset of video fire scenes was prepared for training and testing. This 
dataset, Fire-Smoke Video Prediction (FSVP), consists of two parts: visual image sequences (FSVP-V) and IR 
(FSVP-IR) image sequences. We prepare two independent groups of images to train our Video Prediction 
Module to predict IR images and visual images. For FSVP-V, 60 image sequences were collected from the 
same four sources used for the FS Segmentation dataset: the videos captured firefighters’ equipment, the NRC 
fire safety tests, and the fire rescue video of YouTube. Each sequence in the dataset contains images in 20 
seconds of the original videos. The number of images in the sequence depends on the FPS of its original 
video. For FSVP-IR, 20 image sequences were collected from the NRC fire safety tests. Each sequence in the 
dataset contains 120 images of the original videos. The ratio of training and testing part is 9:1. A description of 
the FSVP dataset is listed in Table 4 below. An overview of sample sequences from the FSVP dataset is 
shown in Figure 13 below. 

 

Table 4: Description of the FSVP dataset. 

Partition 
of dataset 

Source and sequence 
name 

Numbers of images 
in each sequence 

FPS of the 
original video 

Number of 
sequences 

Total number 
of images 

FSVP-V 

Firefighters, 
Firerescue-1 480 24 4 1920 

Firefighters, 
Firerescue-2 480 24 4 1920 

NRC, PRF-07 600 30 4 2400 
NRC, PRF-12 600 30 6 3600 

NRC, M-1 600 30 6 3600 
NRC, 16-SI-16 600 30 6 3600 
NRC, 26-SI-26 600 30 6 3600 
NRC, 23-SI-76 600 30 6 3600 

YouTube, NISTvideo-1 480 24 6 2880 
YouTube, NISTvideo-2 480 24 6 2880 

Synthetic, Blender-1 600 30 3 1800 
Synthetic, Blender-2 600 30 3 1800 

FSVP-IR 
NRC, PRF-07 120 1/2 4 480 
NRC, PRF-12 120 1/2 4 480 
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NRC, M-1 120 1/10 3 360 
NRC, 16-SI-16 120 1/3 3 360 
NRC, 26-SI-26 120 1/3 3 360 
NRC, 23-SI-76 120 1/3 3 360 

 

 

 

 

Figure 13: Samples from FSVP dataset (First row: FSVP-V, Second row: FSVP-IR). 

 Full System Dataset Preparation 
For testing and validation of the entire system, a dataset was prepared. It is essential to have datasets that 
recorded actual fire scenes together with recorded flashover times for the Flashover Prediction System to 
provide a fast and precise prediction for flashover. A dataset of FP was prepared using the videos recorded 
from the NRC CFMRD project, selecting only the data from the fire tests where a flashover occurred. Also, fire 
video data from a room fire test conducted by NIST was also included together with their analysis for flashover 
time by the HRR and temperature measured in the test. Thus, the entire system was tested against the eight 
individual fire scenes. This hybrid system does not need to be trained on those samples, all of them were used 
for testing purposes. A description of the FP dataset is listed in Table 5 below. Samples from the FP dataset 
are shown in Figure 14 below.  

 

Table 5: Description of the FP dataset. 

Source of video Sequence name Sequence length (s) Flashover time (s) 

NRC 

PRF-07 250 185 
PRF-12 150 94 
08-SI-04 250 169 
14-SI-06 250 157 
21-SI-10 150 95 
23-SI-76 200 113 
31-SI-13 300 227 

NIST NISTtest-1 50 22 
 

 

 



 

NRC REPORT A1-020368.1  PAGE 21 

⋯  ⋯   ⋯   

⋯  ⋯   ⋯   

Figure 14: Part of samples from the FP dataset (5th and 6th of each row is the start of flashover). 

4.1.3 Sub-module Parameters Settings 
To successfully run the training and testing with the datasets prepared, sub-module parameters need to be set 
properly for secure organic cooperation between the submodules. As illustrated in Chapter 2, each sub-module 
of the present system is designed with a specific target, whether to provide analysis or prediction for the 
flashover, and the sub-modules are configured to flow the image data in the system to yield a solid prediction 
as output finally. 

There are generally two steps in the overall process of our Flashover Prediction System.  

The first step in the overall process of the present Flashover Prediction System is generating temperature 
distribution features and semantic segmentation features for flame and smoke independently by the two sub-
modules of the Color2IR Conversion and Video Semantic Segmentation. What becomes vital in this step is the 
synchronization of the two modules since they do not exchange shared information while processing the 
incoming data. When the input video feeds in, it will first be segmented into a sequence of frames, the selected 
of which go to the next step. The selection rate can be set by defining the FPS, and FPS=1 is used as it can 
provide continuous visual information over time. Then, the selected frames will be sent into the subsequent two 
sub-modules for processing. Since the two modules use different network architectures, the processing time of 
each frame is different, even with the same input with the same resolution. To solve the issues, FPSs are 
required to be set for each module. The Video Semantic Segmentation Module uses TD2-PSP50, which is 
designed for fast and accurate processing and could achieve a processing speed of up to 10 FPS for an HD 
video. On the other side, the Color2IR Conversion Module, a speed of about 1.7 FPS, is suitable for an HD 
video. Considering the above, the FPS was set to 1 so as to match the speed of both sub-modules while 
reducing computation costs at the same time.  

At the final step of the analysis and prediction for flashovers, the Video Prediction Module produces future 
frames in both vision and converted IR formats. The IR prediction is particularly important for predicting the 
temperature development in the test room.  

The visual prediction is generally for the purpose of future reference and real-time evaluation of prediction 
results. 

Due to the processing time differences between the two modules of the Video Prediction Module and the 
Analysis with Fire Knowledge, the overall processing speed is largely limited.  The speed of IR frame prediction 
is 7.6 FPS, which means it takes less than 0.4 seconds to provide a 3-frames prediction for the future. Although 
the Video Prediction Module itself could achieve a high process speed, the four modules in our system need to 
match the speed with each other for cooperation. Thus, considering the FPS limitation in the previous step, the 
FPS is set as 1 for the final step.   
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Therefore, the entire system runs the Flashover Prediction System with all the sub-modules and provides a 
real-time prediction for flashover occurrence at 1 FPS for an input video at HD resolution. 

 

4.2 Evaluation of sub-modules 
The performance of each of the sub-modules was first evaluated as an independent task. Then, in order to 
evaluate the performance results from each sub-module, we not only introduced evaluation metrics for each of 
them but also evaluated the performance on our custom dataset.  

4.2.1 Color2IR Module 
The evaluation of the Color2IR module adopting the algorithm DAGAN was conducted with the Color2IR 
dataset. It is an unpaired dataset for image conversion. As a result, a qualitative evaluation study is conducted 
with the dataset. The performance of DAGAN was compared with other existing algorithms: CycleGAN and 
AGGAN. TABLE compares the features of the two algorithms with DAGAN used in this study. Chapter 2.2 
provides the details of these features. As summarized in Table 6, both CycleGan and AGGAN do not have the 
background attention feature, while DAGAN is designed for both background and foreground attention features. 
With the Background attention feature improving the image quality by separating the foreground and 
background areas, DAGAN demonstrated better performance than the other algorithms. 

 

Table 6: A comparison of the structure and components of algorithms for the Color2IR Conversion Module. 

Name of methods Cycle Structure Foreground Attention Background Attention 
CycleGAN True False False 
AGGAN True True False 
DAGAN True True True 

 

Some sample images generated by DAGAN, CycleGAN, and AGGAN are shown in Figure 15 below. As 
indicated by the labels above the images, each input is compared with the images generated by the deep 
neural networks of CycleGAN, AGGAN, and DAGAN, as well as the Ground Truth (GT) images (i.e., actual IR 
data).  
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             Input                      CycleGAN                 AGGAN                     DAGAN                          GT     Colorbar 

     

     

     

     

Figure 15: Samples of images, the label above denotes the source of each column. 

From the samples presented in Figure 15, the quality of the generated images from DAGAN is consistently 
better than CycleGAN, which seems not to capture the ‘conversion principle’ between visual images and IR 
images. When compared to DAGAN and AGGAN, the performance of CycleGAN varies with the state of the 
fire development. For an early stage of fire, such as the images in the third row, AGGAN and DAGAN have 
similar conversion results of the background, while DAGAN could capture more details for the flame. When the 
fire goes on and a smoke layer appears, like the images in the first and fourth rows, DAGAN gives a more 
apparent transformation of the smoke layer and better temperature accuracy, compatible with the 
corresponding GT. For a fully-developed fire, like the images in the second row, DAGAN is dominantly better 
than AGGAN in producing the thermal image with higher accuracy, especially in the hot area.  

However, DAGAN is not fully compatible with the GT even though it performed better than AGGAN and 
CycleGAN. A possible reason is that the Color2IR dataset is challenging for image conversions since it 
contains image pairs with different view angles in various test conditions. However, the Color2IR module 
contributed significantly to successful flashover prediction by the system.  



 

NRC REPORT A1-020368.1  PAGE 24 

4.2.2 Video Semantic Segmentation Module 
The Video Semantic Segmentation Module is evaluated with the FS Segmentation dataset. As discussed in 
CHAPTER 3, TD-Net is used in the module. TD-Net's performance is evaluated by comparing it to the other 5 
existing state-of-the-art methods for accurate and speedy image/video segmentation, as shown in TABLE. The 
existing methods tests with the FS Segmentation dataset can be divided into two categories, depending on the 
purpose of their usage. The first is image semantic segmentation: PSPNet and DeepLab V3. The other is video 
semantic segmentation: RGMP, SV-CNN, SVS and TD-Net (used in our module). TABLE summaries the 
feature of each method, and detailed descriptions of the method are in CHAPTER#.  

Table 7: A comparison of the structure and components of algorithms for Video Semantic Segmentation Module. 

Name of 
methods Usage of frame information Usage of inter-frame information 

PSPNet True, Pyramid feature extraction False 
DeepLab V3 True, Dual feature extraction False 

RGMP True, Residual feature extraction True, reference-guided masks 
SV-CNN True, Residual feature extraction True, Dual-CNN for Netwarp calculation 

SVS True, Residual feature extraction True, Dual-CNN for transform flow calculation 
TD-Net True, Residual feature extraction True, Knowledge distillation and group convolution 

 

Figure 16 shows segmented images results, which compare the performance of each method. The labels at 
the left of the images are the method used in each row of images. The images in the same column are 
segmented frames simultaneously (Segmentation 1, Segmentation 2, and Segmentation 3). The video 
semantic segmentation methods show better performance in the segmentation accuracy. TD-Net employed in 
our module is one of the best among them, contributing significantly to the stable prediction of flashover. 

 Segmentation 1 Segmentation 2 Segmentation 3  

PSPNet:    

DeepLab 
V3:    

RGMP:    

SV-CNN:    
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SVS:    

TD-Net:    

GT:    
 

Figure 16: Images samples for accuracy, labels at left denotes the source of each row. 

The performance of the methods studies is further analyzed adopting five different evaluation metrics, they are 
Intersection of Union (IoU), mean Intersection of Union (mIoU), Accuracy (Acc), mean Accuracy (mAcc), and 
Speed scores.  

IoU and mIoU are popular metrics for segmentation tasks. They are both defined as the ratio of intersection 
and union of ground truth and predictions, while mIoU evaluates several classes. They are defined as the ratio 
of area size that has successful segmentation.  

Acc and mAcc are defined as the accuracy in pixel level, while mAcc evaluates on several classes. In detail, it 
is the ratio of the number of pixels.  

Compared with IoU and mIoU, Acc and mAcc calculate the accuracy on the pixel level, which could be a lot 
better for comparison among different classes having a big difference in the area. Besides, Acc and mAcc 
metrics only measure the impact of False Positive (FP). For example, IoU and mIoU calculate both FP and 
False Negative (FN).  

Unlike the metrics listed above, speed is a unique evaluation metric for video semantic segmentation. It 
measures the ability of models to provide real-time and instant segmentation results. It is defined as the ratio of 
the number of frames and the time for processing.  

The results from the comparison based on mIoU, mAcc, and Speed are shown in the figure below. TD-Net 
shows the dominant performance both in mIoU and mAcc metrics. However, some methods demonstrate better 
performance than TD-Net in specific metrics (e.g., DeepLab V3 showing higher mIoU scores than TD-Net), but 
TD-Net has the best overall performance, both accuracy and speed.  
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                                                  a)                                                               b) 

Figure 17: Quantitatively study for methods on the FS Segmentation dataset. a) Comparison of mIoU and mAcc. b) 
Comparison of Speed. 

Figure 18 shows the extended information for flame and smoke segmentation. Although calculated for different 
classes (smoke or fire), TD-Net resulted in excellent performance depicting the balance between the accuracy 
and speed for segmentation.  

 

Figure 18: Extended information of quantitatively study for methods on FS Segmentation dataset. 

4.2.3 Video Prediction Module 
For the quantitative evaluation of the Video Prediction Module, two different metrics are introduced. They are 
the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR is one of the most 
popular metrics in image conversion tasks as it has reconstruction loss of images. It is defined as the equation 
below. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 × 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐿𝐿2

1
𝑃𝑃∑ �𝐼𝐼𝑖𝑖 − 𝐼𝐼𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1

� eq. 5 

Where   𝐼𝐼𝑖𝑖 is the GT image. 
𝐼𝐼𝑖𝑖 is the result of conversion or reconstruction.  
𝑃𝑃 is the number of pixels in them.  
𝐿𝐿 is the maximum pixel value. It is measured in dB via the 𝑙𝑙𝑙𝑙𝑙𝑙10 function.  
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For the quality, the higher the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is, the better quality of images is.  

On the other hand, SSIM measures the structural similarity between images in terms of independent 
comparison with luminance, contrast, and structures from the Hue Saturation Value (HSV) color space. It is 
defined as the equation below. 

𝑃𝑃𝑃𝑃𝐼𝐼𝑆𝑆 =
2�𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 + 𝐶𝐶1��2𝜎𝜎𝑥𝑥𝑦𝑦 + 𝐶𝐶2�

�𝜇𝜇𝑥𝑥2 + 𝜇𝜇𝑦𝑦2 + 𝐶𝐶1��𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝐶𝐶2�
eq. 6 

Where   𝜇𝜇𝑥𝑥and 𝜇𝜇𝑦𝑦 are local means for image 𝑥𝑥 and image 𝑦𝑦. 
𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are the standard deviation of image 𝑥𝑥 and image 𝑦𝑦.  
𝜎𝜎𝑥𝑥𝑦𝑦 is the cross-covariance between them. It is ranged in (0,1).  

For the quality, the higher the 𝑃𝑃𝑃𝑃𝐼𝐼𝑆𝑆 is, the better the quality of images is. 

To conclude, PSNR is a metric that counts on the Mean Square Error (MSE) of pixel-level, indicating that a 
high PSNR score would make the generated images similar to the GT in corresponding pixel values; however, 
the visual perception is not guaranteed. SSIM is similar to the evaluation system of human vision. So, a high 
SSIM score guarantees that the generated images and GT are visibly similar in human eyes. To some extent, 
these two evaluation metrics have a complementary relationship, which is also why both of them are chosen in 
our evaluation. 

With those metrics, the video prediction methods, as listed in Table 8, are evaluated with the FSVP dataset.  

Table 8: A comparison of the structure and components of algorithms for the Video Prediction Module. 

Name of methods Structure Basis 
CNN-LP Convolutional Neural Network 

Conv-LSTM Recurrent Neural Network 
SVVP Variational Autoencoder 

AMC-GAN Generative Adversarial Network 
SAVP Variational Autoencoder & Generative Adversarial Network 

 

 

 Initial Frames Predicted Frames 

GT: ⋯   

CNN-LP:  

Conv-LSTM:  
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SVVP:   

AMC-GAN:  

SAVP:  
 

Figure 19: Samples of predicted images, the label at left denotes the source of each row. 

The qualitative results from the evaluation study are shown in Figure 19. The quantitative evaluation results in 
terms of PSNR and SSIM are plotted in Figure 20.  

 

 

Figure 20: Plots of PSNR and SSIM scores with prediction time variation. 

Overall, in the evaluation of the FSVP-IR dataset, SAVP is the best performer among the methods tested, and 
it delivers a better shape of the upper hot layer and flame area, while other methods fail on one aspect. For 
example, AMC-GAN brought a good prediction for the background and upper layers while its prediction for the 
flame area was poor.  

As for the quantitative study on PSNR and SSIM scores, it somehow proves that the visual results from the 
qualitative study can be considered as quick evaluation methods. Moreover, SAVP shows leading performance 
among them. 

4.3 Evaluation of Entire System 
The entire system's performance is evaluated for flashover prediction with the 8 fire cases in the FP dataset. 
The raw performance of our system over the 8 cases is presented in Figure 21, which plots the prediction time 
of flashover by our system (in the gray bar), the offset between the real flashover time and prediction (in yellow 
bar), and the forecast time (i.e., the ability to predict flashover in advance, in the dark blue bar).  
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Figure 21: Raw statistics of flashover prediction performance of our system on the FP dataset. 

In Figure 21, our system results in accurate prediction and early forecast in all 8 cases. In fact, accurate and 
early warning is crucial to firefighters responding to compartment fires. Among all the cases, the largest offset 
comes from the evaluation of the case of NIST test-1 since the fire scene was different from the other scenes 
from the NRC fire tests, and the system’s sub-modules, including the Color2IR, were not trained with such 
scene including corresponding IR scene (due to the absence of the IR data). The view angle of the NIST Test-1 
contained illumination both from the fire and lighting fixture in the room, for which our system is not yet trained.   

Figure 22 shows a real-time analysis and prediction demo snapshot of the system. It presents several system 
components, including IR conversion, video semantic segmentation, predictions of visual and IR frames for the 
next few seconds, as well as statistical analysis of smoke and flame temperatures from the segmentation. The 
judgment of flashover occurrence is made based on the fusion of the predicted future frames and the 
temperature analysis among them. The system can provide a warning and Estimated Time Arrival (ETA) for the 
flashover in real-time.  
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Figure 22: Sample of flashover prediction demo by our system. 

Furthermore, new evaluation metrics are proposed for quantitative evaluations of flashover prediction enabling 
comparisons of different models with various cases. Applying the concept of the observation ratio widely used 
in the field of action prediction, a new evaluation metric of observation ratio for flashover prediction (𝑟𝑟𝑓𝑓) is 
proposed. It is defined as the equation below; 

𝑟𝑟𝑓𝑓 =
𝑡𝑡𝑐𝑐
𝑡𝑡𝐹𝐹

eq. 7 

Where   𝑟𝑟𝑓𝑓 is the observation ratio defined in flashover prediction.  
𝑡𝑡𝑐𝑐 and 𝑡𝑡𝐹𝐹 are the current time and the ground truth of flashover occurrence, shown in Figure 23.  

 

 

Figure 23: An illustration of time and period in a sequence of flashover predictions. 

Accuracy (Acc) aims to measure the ability of a flashover prediction system in producing binary prediction (that 
is, happen or not) of flashover occurrence. Here, we use an average of all accuracy. It would be regarded as a 
successful prediction as long as the flashover prediction system identifies a happening of flashover in the 
future. Accuracy could be combined with observation ratio 𝑟𝑟𝑓𝑓 to give evaluation over the predictions made with 
different observed frames in a sequence. Thus, the accuracy of flashover prediction would be measured at 
different observation ratio 𝑟𝑟𝑓𝑓. 

Similar to the idea of accuracy at different observation ratio 𝑟𝑟𝑓𝑓, a new Forecast Accuracy (FA) score is 
formulated. Unlike Acc, FA aims to measure the system’s ability to predict flashover in terms of the time 
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forecast of flashover occurrence. It would be regarded as a successful forecast only when the time forecasted 
by a flashover prediction system matches the real happening time of flashover. It could be formulated as 
equation 8. 

𝐹𝐹𝐴𝐴 = 1 −
|𝑡𝑡𝐹𝐹 − 𝑡𝑡𝐹𝐹𝐶𝐶|𝑎𝑎𝑏𝑏𝑎𝑎

𝑡𝑡𝐹𝐹
eq. 8 

Where   𝑡𝑡𝐹𝐹𝐶𝐶 is the predicted time of flashover, shown in Figure 23. 
 𝑡𝑡𝐹𝐹 is the real time of flashover, shown in Figure 23. 

𝐹𝐹𝐴𝐴 with observation ratio 𝑟𝑟𝑓𝑓 would allow evaluations of different models can be achieved without the influence 
of sequence lengths.  

Finally, using the two new evaluation metrics, the performance of our system is compared with other state-of-
the-art flashover prediction systems proposed in recent years. The results are shown in Table 9. 

Table 9: Comparison of flashover prediction performance with other models. 

Name of model Acc@rf FA@rf 
Acc@0.5 Acc@1 FA@0.5 FA@1 

Dexters et al. [17] - 0.91 - - 
Fliszkiewicz et al.[16]  - 0.6569 - - 

Yap et al. [20] - 0.94 - - 
Lee et al. [51] - 0.92 - - 
Fu et al. [18] 0.761 1 0.681 0.813 

Yun et al. [19] - 1 - 0.92 
ours 0.875 1 0.813 0.94 

 

Most of the models only provide accuracy at 𝑟𝑟𝑓𝑓 = 1, which means those models conduct only a ‘classification’ 
task given the entire sequence. Some of them provided the forecast time and prediction time so that both 
accuracy and FA could be measured at different observation ratio 𝑟𝑟𝑓𝑓.  

As shown in TABLE, the prediction performance of our system is in the top place among all other models in 
accuracy and 𝐹𝐹𝐴𝐴 at 𝑟𝑟𝑓𝑓 = 0.5 or 𝑟𝑟𝑓𝑓 = 1. While some methods might show comparable results at one particular 
metric (e.g., Yun et al. [19] got 0.92 in FA@1), our model shows a much powerful forecast ability for flashover 
as shown in metrics Acc@0.5 and FA@0.5. It points out that our system has a high flashover prediction 
accuracy and high flashover forecast ability.  
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5 Conclusions 
A smart firefighting tool is developed to predict the flashover occurrence in compartment fire only based on 
visual images and videos. The tool adopts deep learning neural networks structuring 4 sub-modules for image 
conversion of vision data to thermal data, segmentation for smoke/flame, video predictions, and determination 
for flashover based on pre-defined fire science knowledge.  This hybrid system using not only Deep Learning 
methods but also fire research knowledge showed successful flashover predictions.   

Color2IR module, as the most important module in the system, adopts a novel deep neural network, DAGAN, 
which is capable of producing both foreground attention masks and background attention masks. The 
conversion to IR data performed a stable foreground conversion and a clear background with high quality. The 
other three modules also demonstrated the state-of-the-art performance in their individual tasks and fit specific 
conditions in flashover prediction. Instead of using image semantic segmentation models, a video semantic 
segmentation method of TD-Net is used for smoke/flame segmentation accuracy as well as processing speed. 
For the video prediction module, SAVP is used to take advantage of the visually plausible results from GAN 
and diverse output from VAE. Also, statistical models are used in applying fire experience and knowledge to 
improve prediction accuracy. To further make these sub-modules collaborate as a system, the parameters are 
optimized within each module to provide a real-time prediction of flashover and maintain high accuracy.  

The hybrid system resulted in a promising performance on flashover prediction. The performance of the system 
was evaluated in comparison with other existing models using a new metric inspired by the action prediction 
evaluation. The overall comparison shows that our system delivers not only high accuracy in top-tier but also is 
capable of giving early and accurate forecasts at the same time. 

Finally, some suggested future works are as follows; 

• It is suggested to further evaluate the system and improve its design.  
• In particular, the conversion to IR images would require evaluations and validation by training the 

conversion module with various data obtained from different types of IR cameras.  
• It is also necessary to consider using IR images directly instead of using the converted IR images (i.e., 

due to lack of IR data) to improve the prediction quality of IR future frames.  
• Instead of the hybrid approach, pure deep learning could be adopted in the system.  
• It is suggested to build a universal dataset for benchmarking in the flashover prediction field.  
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7 Appendix:  

Designs of sub-modules 
The prediction of flashover is complex. Other currently available methods are either limited to the success of 
synthetic simulation test data or limited to post-fire analysis. Thus, it often becomes difficult to make real-time 
predictions. In order to better solve this problem, we use a modular design in our system. Each sub-module has 
its specific function and character. The different sub-modules combine the results through image fusion or 
mathematical analysis to generate the entire system's flashover prediction. This section provides detailed 
descriptions of each sub-module, including parameter settings in loss function for our deep neural networks.  

As one of the most crucial sub-modules in the system, Color2IR Conversion aims to provide corresponding IR 
images that could tell the temperature of each pixel from a visual image captured from a standard camera that 
could be taken into fire rescue with firefighters. The input videos would be cut into independent frames in this 
module and processed as a single unit. Besides, it is a kind of cross-domain image transfer task in the 
Computer Vision field as the images of input and output are from different types. For the IR conversion, a novel 
structure of deep neural networks: Dual-Attention GAN (DAGAN), is designed. The architecture of DAGAN is 
illustrated in Figure 7 in Chapter 3, and it is inspired by the success of CycleGAN in un-paired image 
conversion. The input images of DAGAN are the sequence cut from the visual videos of fire scenes in the 
dataset, which is denoted as 𝑥𝑥 in Figure 7. There is no restriction for the Frame Per Second (FPS), as 
someone might have relatively low computational capability hardware and would like to convert them for real-
time usage. The input 𝑥𝑥 will be fed into our generator 𝐺𝐺1, which consists of an encoder 𝐺𝐺𝐸𝐸1 and two mask 
generators: 𝐺𝐺𝐶𝐶1 and 𝐺𝐺𝐴𝐴1. 𝐺𝐺𝐸𝐸1 is a parameter-sharing encoder which could generate low-level feature maps. 
While 𝐺𝐺𝐶𝐶1 is a content mask generator that could generate a set of masks 𝐶𝐶𝑥𝑥

𝑓𝑓, which contains sets of the 
content feature captured from the encoder 𝐺𝐺𝐸𝐸1.  

Unlike 𝐺𝐺𝐶𝐶1, 𝐺𝐺𝐴𝐴1 is a generator for attention mechanism providing attention-level feature maps from the encoded 
information. The direct output of 𝐺𝐺𝐴𝐴1 is processed by a Softmax activation function to change the scope of 
mapping. Then, it would produce two types of attention masks: 𝐴𝐴𝑥𝑥

𝑓𝑓 and 𝐴𝐴𝑥𝑥𝑏𝑏. We used the definition of the self-
attention mechanism proposed by others to build a simple but super effective one to be used in our system. To 
be specific, the foreground attention mask and background attention mask enable DAGAN to differentiate the 
foreground and background images, which could help solve background blurry and foreground color drift. In 

total, the two attention mask generators would produce a total number of 𝑃𝑃 attention masks: [�𝐴𝐴𝑥𝑥
𝑓𝑓�

𝑓𝑓=1

𝑁𝑁−1
,𝐴𝐴𝑥𝑥𝑏𝑏] in the 

generation process. There is only one background attention mask 𝐴𝐴𝑥𝑥𝑏𝑏 , and there is a set of (𝑃𝑃 − 1) foreground 

masks �𝐴𝐴𝑥𝑥
𝑓𝑓�

𝑓𝑓=1

𝑁𝑁−1
. This is because the foreground is rather important than the background information to provide 

contextual information. The amount of information in the foreground is also more than that of the background, 
as defined by the attention mask generator. This also allows the process of foreground context and background 
context independently. 

Then, the foreground information and background information extracted from input 𝑥𝑥 will be processed 

independently. For the foreground information, foreground attention masks �𝐴𝐴𝑥𝑥
𝑓𝑓�
𝑓𝑓=1

𝑁𝑁−1
 would be used to generate 

the foreground content by combing the set of content masks in earlier steps. At the same time, the background 
attention mask would help keep a clean and tidy background of generated images by combing it with the 
original input 𝑥𝑥. The final generated image 𝐺𝐺1(𝑥𝑥) would be the sum of the two content images selected from 
extracted feature maps by our attention mechanism. It is, which could be calculated as the formula below. 
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𝐺𝐺1(𝑥𝑥) = ��𝐴𝐴𝑥𝑥
𝑓𝑓 × 𝐶𝐶𝑥𝑥

𝑓𝑓� + 𝑥𝑥 ×
𝑁𝑁−1

𝑓𝑓=1

𝐴𝐴𝑥𝑥𝑏𝑏 eq. 9 

That is the end of the generation loop and also the start of the reconstruction loop. The basic idea of loop 
structure is that we should be back to where we start if we walk in a loop. It also works for the image 
conversions as the loop conversion should make the reconstruction back into the same domain as the input 𝑥𝑥. 
The reconstruction is inverse to the generation process in structure, while the training process would be 
independent. Let  

𝑦𝑦 = 𝐺𝐺1(𝑥𝑥) eq. 10 

And we will have an equation that describes the calculation of the corresponding attention masks and content 
masks in the reconstruction process in a way that is similar to the generation process. That equation is shown 
as equation 12 below. 

𝐺𝐺2(𝑦𝑦) = ��𝐴𝐴𝑦𝑦
𝑓𝑓 × 𝐶𝐶𝑦𝑦

𝑓𝑓� + 𝑦𝑦 ×
𝑁𝑁−1

𝑓𝑓=1

𝐴𝐴𝑦𝑦𝑏𝑏 eq. 11 

The only difference between them is that the foreground and background areas for 𝑥𝑥 and 𝑦𝑦 would be different 
as they are from different domains.  

In this way, a closed-loop for the DAGAN process could be finally formed a closed-loop for the DAGAN 
process, starting from the input 𝑥𝑥 to the reconstruction of 𝐺𝐺2(𝑦𝑦) or, in other words, 𝐺𝐺2(𝐺𝐺1(𝑥𝑥)) if we take equation 
9 into it. The process of the loop is shown below.  

𝑥𝑥 → 𝐺𝐺1(𝑥𝑥) → 𝐺𝐺2(𝐺𝐺1(𝑥𝑥)) ≈ 𝑥𝑥 eq. 12 

Where   𝑥𝑥 stands for the input image in the vision domain. 
𝐺𝐺1 and 𝐺𝐺2 are generators mentioned above. 

Then, if we could bring the process denoted in equation 11 into it, the detailed calculation process should be: 

𝐺𝐺2(𝐺𝐺1(𝑥𝑥)) =  ��𝐴𝐴𝑦𝑦
𝑓𝑓 × 𝐶𝐶𝑦𝑦

𝑓𝑓� + 𝐺𝐺1(𝑥𝑥) ×
𝑁𝑁−1

𝑓𝑓=1

𝐴𝐴𝑦𝑦𝑏𝑏 ≈ 𝑥𝑥 eq. 13 

For another direction of the loop that starts from the image in the IR domain: 

𝑦𝑦 → 𝐺𝐺1(𝑦𝑦) → 𝐺𝐺2(𝐺𝐺1(𝑦𝑦)) ≈ 𝑦𝑦

𝐺𝐺2(𝐺𝐺1(𝑦𝑦)) =  ��𝐴𝐴𝑥𝑥
𝑓𝑓 × 𝐶𝐶𝑥𝑥

𝑓𝑓� + 𝐺𝐺2(𝑦𝑦) ×
𝑁𝑁−1

𝑓𝑓=1

𝐴𝐴𝑥𝑥𝑏𝑏 ≈ 𝑦𝑦 eq. 14 

Where   𝑦𝑦 stands for the input image in the IR domain.  
𝐺𝐺1 and 𝐺𝐺2 are generators mentioned above. 

In addition, for the discriminators in DAGAN, there are two types of discriminators. The first type is the 
discriminators 𝐷𝐷𝑌𝑌1 and 𝐷𝐷𝑌𝑌2, which are vanilla discriminators used to distinguish the generated images 𝐺𝐺1(𝑥𝑥) and 
real images 𝑦𝑦 or 𝐺𝐺2(𝑦𝑦) and 𝑥𝑥.  

Besides, we also proposed a brand-new type of discriminator, which is the second type of discriminator. They 
are 𝐷𝐷𝑌𝑌𝐴𝐴1 and 𝐷𝐷𝑌𝑌𝐴𝐴2, which are attention discriminators that capable of taking both images and feature maps 
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generated by the attention mask generator as input. As we have generated a total number of 𝑃𝑃 attention masks 
in the generation process. Let 

𝐴𝐴𝑥𝑥 = ��𝐴𝐴𝑥𝑥
𝑓𝑓�
𝑓𝑓=1

𝑁𝑁−1
,𝐴𝐴𝑥𝑥𝑏𝑏� eq. 15 

And we make a concatenation of it with the generated images 𝐺𝐺1(𝑥𝑥) And real images 𝑦𝑦. So, it should be 

𝑆𝑆1𝑦𝑦 = [𝐴𝐴𝑥𝑥 ,𝑦𝑦],    𝑆𝑆1𝑥𝑥 = [𝐴𝐴𝑥𝑥 ,𝐺𝐺1(𝑥𝑥)] eq. 16 

After that, the attention discriminator would take 𝑆𝑆1𝑦𝑦 or 𝑆𝑆1𝑥𝑥 as input and will also try to distinguish the 
generated images with attention masks 𝑆𝑆1𝑥𝑥 and the real images with attention masks 𝑆𝑆1𝑦𝑦. 

Building a brand-new neural network is just half of success, even if it has excellent design. Another part of our 
contribution to DAGAN is the design of loss functions for it. There are several parts of loss function for DAGAN, 
and we are going to introduce them one by one.  

The first part of the loss function is an adversarial loss that same as vanilla GAN, which is formulated as the 
equation below. 

ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺1,𝐷𝐷𝑌𝑌1) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)[log(𝐷𝐷𝑌𝑌1(𝑦𝑦))] + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) �log �1 − 𝐷𝐷𝑌𝑌1�𝐺𝐺1(𝑥𝑥)��� eq. 17 

In this equation, generator 𝐺𝐺 aims to minimize the adversarial loss: ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺1,𝐷𝐷𝑌𝑌), while 𝐷𝐷𝑌𝑌1 tries to maximize it 
at the same time. The target of 𝐺𝐺1 is to generate an image 𝐺𝐺1(𝑥𝑥) that is similar to the images from domain Y, 
while 𝐷𝐷𝑌𝑌1 aims to distinguish between the generated images 𝐺𝐺1(𝑥𝑥) and the real images 𝑦𝑦.  

Similar to the relationship between equation 12 and equation 14 that lasted above, there is a similar process for 
the generator 𝐺𝐺2 and discriminator 𝐷𝐷𝑌𝑌2. Their adversarial loss is defined as the equation below. 

ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺2,𝐷𝐷𝑌𝑌2) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log(𝐷𝐷𝑌𝑌2(𝑥𝑥))] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦) �log �1 − 𝐷𝐷𝑌𝑌2�𝐺𝐺2(𝑦𝑦)��� eq. 18 

Where   𝐷𝐷𝑌𝑌2 tries to distinguish between the generated image 𝐺𝐺2(𝑦𝑦) and the real image 𝑥𝑥.  

As a network with the loop structure, there is also a loop loss or cycle loss in DAGAN between original input 𝑥𝑥 
and reconstruction result 𝐺𝐺1(𝐺𝐺2(𝑥𝑥)). The cycle-consistency loss in DAGAN is formulated as the equation below. 

ℒ𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝐶𝐶(𝐺𝐺1,𝐺𝐺2) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[‖𝐺𝐺2(𝐺𝐺1(𝑥𝑥) − 𝑥𝑥)‖1] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)[‖𝐺𝐺1(𝐺𝐺2(𝑦𝑦) − 𝑦𝑦)‖1] eq. 19 

Where the reconstruction result 𝐺𝐺2�𝐺𝐺1(𝑥𝑥)� is closely related to input 𝑥𝑥 in pixel level.  
𝐺𝐺1�𝐺𝐺2(𝑦𝑦)� should match the input of 𝑦𝑦 under similar circumstances.  
Here, the L1 loss is used to measure the image difference in pixel level.  

Besides, we also use pixel loss in DAGAN in order to constrain the generator without discriminator information 
at the pixel level. It could be formulated as follow. 

ℒ𝑃𝑃𝑖𝑖𝑥𝑥𝐶𝐶𝐶𝐶(𝐺𝐺1,𝐺𝐺2) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[‖𝐺𝐺1(𝑥𝑥) − 𝑥𝑥‖1] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)[‖𝐺𝐺2(𝑥𝑥) − 𝑥𝑥‖1] eq. 20 

Here, we also use the L1 loss for pixel-level measurement. It is also called identity loss in CycleGAN.  

Another type of loss that we also introduce is Attention Adversarial loss in AGGAN. We brought the idea of the 
formation of adversarial loss shown in equations 15 and 16. Also, We made a few modifications so that it could 
fit the dual-attention mechanism in DAGAN. While the original idea is similar to the formation of adversarial loss 
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shown in equations 12 and 13, we also made a modification to fit the dual-attention mechanism in DAGAN. 
Thus, this loss comes from the attention discriminator 𝐷𝐷𝑌𝑌𝐴𝐴1 and 𝐷𝐷𝑌𝑌𝐴𝐴2 and the generator 𝐺𝐺1 and 𝐺𝐺2. It could be 
formulated as the equation below. 

ℒ𝐴𝐴𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺1,𝐷𝐷𝑌𝑌𝐴𝐴1) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)�log(𝐷𝐷𝑌𝑌𝐴𝐴1�𝑆𝑆1𝑦𝑦�)� + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)�log�1 − 𝐷𝐷𝑌𝑌𝐴𝐴1(𝑆𝑆1𝑥𝑥)�� eq. 21 

Where   𝑆𝑆1𝑦𝑦 = [𝐴𝐴𝑥𝑥 ,𝑦𝑦],    𝑆𝑆1𝑥𝑥 = [𝐴𝐴𝑥𝑥 ,𝐺𝐺1(𝑥𝑥)] as illustrated in equation 16.  

This loss helps form a stable attention mask in the training process without any annotations on the image pairs 
in the training set.  

Furthermore, we also propose a pure attention loss to improve the stability and performance of attention 
masks. This loss only uses the information in generated attention masks that aims to solve the problem that 
attention masks saturation problem. The attention loss is shown in the equation below. 

ℒ𝐴𝐴𝐴𝐴(𝐴𝐴𝑥𝑥) = � |𝐴𝐴𝑥𝑥(𝑤𝑤 + 1, ℎ, 𝑐𝑐) − 𝐴𝐴𝑥𝑥(𝑤𝑤, ℎ, 𝑐𝑐)| + |𝐴𝐴𝑥𝑥(𝑤𝑤, ℎ + 1, 𝑐𝑐) − 𝐴𝐴𝑥𝑥(𝑤𝑤, ℎ, 𝑐𝑐)|
𝑊𝑊,𝐻𝐻

𝑤𝑤,ℎ=1

eq. 22 

Where   𝐴𝐴𝑥𝑥 is the attention mask for calculation.  
𝑊𝑊 and 𝐻𝐻 is the width and height dimension of 𝐴𝐴𝑥𝑥.  

Finally, we could finally get our loss function for DAGAN optimization by piecing them all together with weights. 
The loss function of DAGAN is formulated as follows; 

ℒ𝐷𝐷𝐴𝐴𝐺𝐺𝐴𝐴𝑁𝑁 = 𝜆𝜆𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝐶𝐶 × ℒ𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝐶𝐶 + 𝜆𝜆𝑃𝑃𝑖𝑖𝑥𝑥𝐶𝐶𝐶𝐶 × ℒ𝑃𝑃𝑖𝑖𝑥𝑥𝐶𝐶𝐶𝐶 + 𝜆𝜆𝐴𝐴𝐴𝐴 × ℒ𝐴𝐴𝐴𝐴 + 𝜆𝜆𝐺𝐺𝐴𝐴𝑁𝑁 × (ℒ𝐴𝐴𝐺𝐺𝐴𝐴𝑁𝑁 + ℒ𝐺𝐺𝐴𝐴𝑁𝑁)
= 𝜆𝜆𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝐶𝐶 × ℒ𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝐶𝐶(𝐺𝐺1,𝐺𝐺2)
+𝜆𝜆𝑃𝑃𝑖𝑖𝑥𝑥𝐶𝐶𝐶𝐶 × ℒ𝑃𝑃𝑖𝑖𝑥𝑥𝐶𝐶𝐶𝐶(𝐺𝐺1,𝐺𝐺2)

+𝜆𝜆𝐺𝐺𝐴𝐴𝑁𝑁 × �ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺1,𝐷𝐷𝑌𝑌1) + ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺2,𝐷𝐷𝑌𝑌2) + ℒ𝐴𝐴𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺1,𝐷𝐷𝑌𝑌𝐴𝐴1) + ℒ𝐴𝐴𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺2,𝐷𝐷𝑌𝑌𝐴𝐴2)�

     +𝜆𝜆𝐴𝐴𝐴𝐴 × �ℒ𝐴𝐴𝐴𝐴(𝐴𝐴𝑥𝑥) + ℒ𝐴𝐴𝐴𝐴�𝐴𝐴𝑦𝑦�� eq. 23
    

 

Where   𝜆𝜆𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝐶𝐶 = 10.  
𝜆𝜆𝑃𝑃𝑖𝑖𝑥𝑥𝐶𝐶𝐶𝐶 = 1. 
𝜆𝜆𝐺𝐺𝐴𝐴𝑁𝑁 = 0.5. 
𝜆𝜆𝐴𝐴𝐴𝐴 = 1 × 10−6 in our setup. 

In this way, a closed-loop for the DAGAN process is finally formed, starting from the input 𝑥𝑥 to the 
reconstruction of 𝐺𝐺2.  

There is another sub-module that takes the original input images, which is Video Semantic Segmentation 
Module.  This is used to generate semantic information for fire scenes. Firefighters usually face a super dark 
room with hot gases around them without good lighting conditions, which will dramatically increase the difficulty 
of flame and smoke recognition. Thus, one of the most demanding needs for our system is real-time video 
semantic segmentation. The system adopts TD-Net [38], a type of neural network for video semantic 
segmentation made of efficient networks, smaller than most of the existing networks. It could also provide 
segmentation results as accurate as those ‘big’ networks. The basic idea of TD-Net is Group Convolution, 
which extracts features with separated filter groups instead of only one guaranteed model parallelization and 
representations. The sub-networks design and Attention Propagation Module (APM) contribute to fast and 
consistent segmentation.  
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Figure 24: An illustration of the detailed structure of TD-Net, from [38] 

The detailed structure of TD-Net is shown in Figure 24. The first phase of TD-Net conducts the Encoding 
Phase. The network generates feature maps, which are path-specific, and Query and Key maps for cross-
frames correlating between pixels. After that, it calculates the attention from Value (V), Query (Q), and Key (K) 
as a self-attention mechanism formulated as the equation below. 

𝑨𝑨𝑨𝑨𝑨𝑨𝑝𝑝 = 𝑃𝑃𝑙𝑙𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑥𝑥 �
𝑄𝑄𝐴𝐴𝐾𝐾𝑝𝑝𝑇𝑇

�𝑑𝑑𝑘𝑘
� eq. 24 

Where   𝑑𝑑𝑘𝑘 is the dimension of 𝑄𝑄𝐴𝐴 and 𝐾𝐾𝑝𝑝. 

Then, those feature maps are merged together at current frames, and previous (𝑆𝑆 − 1) frames as follow: 

𝑉𝑉𝐴𝐴′ = 𝑉𝑉𝐴𝐴 + � 𝜙𝜙�𝑨𝑨𝑨𝑨𝑨𝑨𝑝𝑝𝑉𝑉𝑝𝑝�
𝐴𝐴−1

𝑝𝑝=𝐴𝐴−𝑚𝑚+1

eq. 25 

Those feature maps could effectively capture non-local correlations between pixels across frames with the help 
of this self-attention mechanism. After that, there is a downsampling process to reduce the computation costs.  

The second phase of TD -Net is the segmentation phase, which includes a propagation approach that 
measures the attention of m neighboring frames, which is formulated as the following. 

𝑣𝑣𝑝𝑝′ = 𝜙𝜙 �𝑃𝑃𝑙𝑙𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑥𝑥 �
𝑞𝑞𝐴𝐴𝑘𝑘𝑝𝑝𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑣𝑣𝑝𝑝−1′ � + 𝑣𝑣𝑝𝑝 eq. 26 

Where   𝑞𝑞𝐴𝐴 is the downsampled version of 𝑄𝑄𝐴𝐴. 
 𝑘𝑘𝑝𝑝 is the downsampled version of  𝐾𝐾𝑝𝑝. 
 𝑣𝑣𝑝𝑝 is the downsampled version of 𝑉𝑉𝑝𝑝. 
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 Then, it finally computes the final feature representative at each time frame, computed as: 

𝑉𝑉𝐴𝐴′ = 𝜙𝜙�𝑃𝑃𝑙𝑙𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑥𝑥 �
𝑄𝑄𝐴𝐴𝑘𝑘𝐴𝐴−1𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑣𝑣𝐴𝐴−1′ � + 𝑉𝑉𝐴𝐴 eq. 27 

And the segmentation maps are generated by the equation as follows. 

𝑃𝑃𝑚𝑚 = 𝜋𝜋𝑚𝑚(𝑉𝑉𝑚𝑚′ ) eq. 28 

Where   𝜋𝜋𝑚𝑚 is the final prediction layer of sub-networks 𝑆𝑆. 

There is also a Grouped Knowledge Distillation mechanism in order to enhance the sub-feature maps in the full 
feature space. The loss function is illustrated in equation 26. 

ℒ = 𝐶𝐶𝐶𝐶�𝜋𝜋𝑆𝑆(𝑉𝑉𝑖𝑖′,𝑙𝑙𝑡𝑡)� + 𝛼𝛼 ∙ 𝐾𝐾𝐿𝐿(𝜋𝜋𝑆𝑆(𝑉𝑉𝑖𝑖′)||𝜋𝜋𝑇𝑇(�𝑓𝑓)) + 𝛽𝛽 ∙ 𝐾𝐾𝐿𝐿(𝜋𝜋𝑆𝑆(𝑉𝑉𝑖𝑖)||𝜋𝜋𝑇𝑇(𝑓𝑓𝑖𝑖)) eq. 29 

Where   𝐶𝐶𝐶𝐶 denotes 𝐶𝐶𝑟𝑟𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑙𝑙𝑒𝑒ℎ𝑦𝑦 loss.  
𝐾𝐾𝐿𝐿 is the KL-divergence.  
𝜋𝜋𝑆𝑆 is the prediction of student network.  
𝜋𝜋𝑇𝑇 is that of teacher network.  

In our system, we set the 𝑆𝑆, which is the number of sub-networks to 2.  

 

After the Color2IR Conversion Module and Video Semantic Segmentation Module, Video Prediction Module 
runs the subsequent processing using the power of neural networks to provide reliable visual results for fire 
scenes. The module that is directly related to prediction purposes in our system is the Video Prediction Module.  

For existing methods on video prediction tasks, generative models are the state-of-the-art methods now. 
Encoder-Decoder models provide predictions with diversity, and GANs models are capable of giving naturalistic 
predictions. Thus, a combination of them will promise a prediction with stochasticity as well as plausibility. 
Stochastic Adversarial Video Prediction (SAVP) is used in our system. An illustration of the detailed structure of 
the SAVP model is shown in Figure 25. 

 

Figure 25: An illustration of the detailed structure of SAVP, from [42] 
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It consists of two parts. The first part is a Variation Autoencoder (VAE) that also acts as a generator. The 
generator 𝐺𝐺 predicts the future frames with the previous ones 𝑥𝑥�𝐴𝐴−1 and latent codes 𝑧𝑧𝐴𝐴−1, thus it actually 
specifies a distribution 𝑒𝑒(𝑥𝑥𝐴𝐴|𝑥𝑥0:𝐴𝐴−1, 𝑧𝑧0:𝐴𝐴−1), based on a fixed variance Laplacian distribution  with mean as 𝑥𝑥�𝐴𝐴 =
𝐺𝐺(𝑥𝑥0, 𝑧𝑧0:𝐴𝐴−1). For the VAE part, there is a conditional VAE which has a conditional encoder and decoder on the 
previous frames 𝑥𝑥�𝐴𝐴 or 𝑥𝑥𝐴𝐴. Then, they rewrite the reconstruction term to allow the backpropagation through the 
encoder. That term is formulated as follows. 

ℒ1(𝐺𝐺,𝐶𝐶) = 𝔼𝔼𝑥𝑥0:𝑇𝑇,𝑧𝑧𝑑𝑑~𝐸𝐸(𝑥𝑥𝑑𝑑:𝑑𝑑+1)|𝑑𝑑=0
𝑇𝑇−1 ���𝑥𝑥𝐴𝐴 − 𝐺𝐺�𝑥𝑥0, 𝑧𝑧0,𝐴𝐴−1��1

𝑇𝑇

𝐴𝐴=1

� eq. 30 

Where   𝑥𝑥�𝐴𝐴 denotes reconstructed frames.  
𝑥𝑥𝐴𝐴 is the ground truth frames.  
𝑧𝑧𝐴𝐴 is the latent variables. 

Besides, there is a regularization term for the encoder to approach the prior distribution. It is shown as equation 
31. 

ℒ𝐾𝐾𝐾𝐾(𝐶𝐶) = 𝔼𝔼𝑥𝑥0:𝑇𝑇 ��𝒟𝒟𝐾𝐾𝐾𝐾(𝐶𝐶(𝑥𝑥𝐴𝐴−1:𝐴𝐴)||𝑒𝑒(𝑧𝑧𝐴𝐴−1))
𝑇𝑇

𝐴𝐴=1

� eq. 31 

Where KL is the KL-divergence.  

So, for the optimization of VAE, it involves minimizing the objects listed above in equation 30 and equation 31. 
It is shown in the equation below. 

𝐺𝐺∗𝐶𝐶∗ = arg min
𝐺𝐺,𝐸𝐸

𝜆𝜆1 ℒ1(𝐺𝐺,𝐶𝐶) + 𝜆𝜆𝐾𝐾𝐾𝐾ℒ𝐾𝐾𝐾𝐾(𝐶𝐶) eq. 32 

The second part is GAN, which is shown in the left part of Figure 25, where a generator 𝐺𝐺 provides a prediction 
of future frames 𝑥𝑥�1:𝑇𝑇. The discriminator 𝐷𝐷 distinguishes the generated frames 𝑥𝑥�1:𝑇𝑇 from the original ones 𝑥𝑥1:𝑇𝑇. 
Thus, the generator would be trained using binary cross-entropy loss, formulated as follow. 

ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥1:𝑇𝑇[log𝐷𝐷(𝑥𝑥0:𝑇𝑇−1)] + 𝔼𝔼𝑥𝑥1:𝑇𝑇,𝑧𝑧𝑑𝑑~𝑝𝑝(𝑧𝑧𝑑𝑑)|𝑑𝑑=0
𝑇𝑇−1 �log �1 − 𝐷𝐷�𝐺𝐺(𝑥𝑥0, 𝑧𝑧0:𝑇𝑇−1)��� eq. 33 

For the generator, it could be learned with an adversarial process, formulated as follow. 

𝐺𝐺∗ = 𝑆𝑆𝑟𝑟𝑙𝑙min
𝐺𝐺

max
𝐷𝐷

ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺,𝐷𝐷) eq. 34 

The optimization objective with VAE and GAN part could be put together for the final loss, shown in the 
equation below. 

𝐺𝐺∗,𝐶𝐶∗ = 𝑆𝑆𝑟𝑟𝑙𝑙min
𝐺𝐺,𝐸𝐸

max
𝐷𝐷,𝐷𝐷𝑉𝑉𝑉𝑉𝑉𝑉

𝜆𝜆1ℒ1(𝐺𝐺,𝐶𝐶) + 𝜆𝜆𝐾𝐾𝐾𝐾ℒ𝐾𝐾𝐾𝐾(𝐶𝐶) + ℒ𝐺𝐺𝐴𝐴𝑁𝑁(𝐺𝐺,𝐷𝐷) + ℒ𝐺𝐺𝐴𝐴𝑁𝑁𝑉𝑉𝐴𝐴𝐸𝐸(𝐺𝐺,𝐶𝐶,𝐷𝐷𝑉𝑉𝐴𝐴𝐸𝐸) eq. 35 

For the detail of the structure, they use Conv-LSTM in generators 𝐺𝐺 and the discriminator in SNGAN as 
discriminator 𝐷𝐷. 

Another critical step in the present Flashover Prediction System is Fire Knowledge Module. While Deep 
learning is a popular choice for many research fields, yet a hybrid approach is taken in the present explorative 
study by employing Fire Knowledge Module. Many previous fire safety research studies show that linear 
mathematical models are still influential in processing conventional measurement data, such as temperature. 
Thus, taking a similar approach, the Analysis with Fire Knowledge Module in our Flashover Prediction System 
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is proposed to extract and process the data acquired from the input images using statistical analysis methods. 
There are several choices for parameters (e.g., temperature, HRR, and flame height) for the statistical and 
mathematical models in flashover analysis and prediction. As the temperature distribution information could be 
directly extracted from the output of the previous modules in our system, the temperature is chosen for a 
flashover criterion. Research has found the relationship between temperature and flashover. As widely 
accepted, a typical flashover happens when the upper layer of smoke in the room is approaching or above 
600℃ for normal conditions in a typical room [11]. Temperature data are extracted from the input through the 
IR conversion and the segmentation of smoke and flame areas, and the data are analyzed for flashover 
occurrence. 

In addition, for forecasting the onset of flashover, the system combines the prediction frames from the Video 
Prediction Module and extracts information both in the converted IR and visual domain. The detailed solution 
proposed for this problem is only producing a limited number of prediction frames, like 5 or 10 frames. It would 
make them not only visually plausible but also full of contextual information from the original input. Hence, it is 
called applicable predictions. Then, the system combines data and generates a graph of statistical information. 
Thus, it could be regarded as a tangent of specific points representing the original input, as shown in the figure 
below. 

 

Figure 26: An illustration of applicable predictions and the temperature data curve. 

Then, following the definition of derivatives, we could approximate the future point on the graph with current 
data and the tangent, formulated as equation 36. 

𝑓𝑓�𝑐𝑐𝑓𝑓� = 𝑓𝑓(𝑐𝑐) + 𝜎𝜎 ∙ (𝑐𝑐𝑓𝑓 − 𝑐𝑐) eq. 36 

Where   𝑐𝑐 is the point of original frames.  
𝑐𝑐𝑓𝑓 denotes the points for the future.  
𝜎𝜎 is the tangent value. 

Since the time domain of the statistical temperature graph is discrete, we need to link them together to form a 
continuous curve. The tangent is updated with every input frame. It could also help in preventing collapse 
problems in fluctuation points or spikes in the temperature curve, shown in Figure 27. 
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Figure 27: An illustration of temperature variation with time. The fluctuation point is between flashover and the growth 
stage of fire development. 

Furthermore, locally weighted linear regression is introduced as the core mathematical model in this sub-
module. It is a type of supervised, non-parametric learning algorithm. The difference between it and the 
ordinary linear regression model is that it does not learn a fixed set of parameters. It would contribute to better 
performance on the data curve with more fluctuation and spikes, which is typical for temperature data. is 

For the FPS setting, we set the FPS in Analysis with Fire Knowledge module to 1, matching the settings in 
previous modules, which could reduce computation cost and remain precision analysis. In addition, the number 
of predicted frames is set to 3 to match the FPS for a better prediction result. 

With the locally weighted linear regression and tangent prediction model set for our system, this sub-module 
could smoothly proceed the data from previous sub-modules and do the analysis and prediction of flashover 
with fire knowledge criterion of flashover.  
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