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Abstract 

The k-5; turbulence model has. been used to calculate the velocity 
distributions for a large number ofpchannel flows‘ with different top and 
bottom‘ boundary roughnesses. The resulting distributions are used to 
review the standard procedures for stream gauging of ice-covered flows. It 

_ is found that the average ofithe velocities at-‘two-tenths and eight-tenths 
of the depth is indeed very nearly equal! to‘ the overall mean velocity. /

. 

Examination of the velocity profiles shows that the profiles deviate from 
the logarithmic distribution for about 40 percent of the flow depth. Other 
flow prop'er't'ies, such as the location of the maximum velocity and the 
mean velocities in the top and bottom’layers, are also examined.



Q I 

Résumé 

On a utilisé le modele de turbulence k-e pour calculer la distribution des 
-. vitesses d'un grand hombre d'éc_oulements en canal‘ présentant diffé‘rentes'

\ 

rugosités limites del surface et de fond. On utilise les distributions résultantes 
pour analyser les méthodes normales de jaugeage des écoulements sous une 

' couverture de glace. On constate que la moyenne des vitesses aux deux dixiémes 
et aux huit dixiémes de la profondeur d'un cours d'eau est en fait trés pres de la

I 

vitesse moyenne globale. 'L'étude des distributions de vitesses montre que cefls 

distributions s'écartent de la distribution logarithmique sur environ #0 pour cent 

de la- profondeur du cours d'eau. On analyse également les autres propriétés de 
l'écoulement, comme le point 01‘: la vitesse est rnaximale et les vitesses mo/yennes 

I 

dans les couches de surface et de' fond.
A



Management perspective O 1 

‘River discharges under ice cover, as estimated by gauging practices, 
are very difficult to verify. In this report, flow under ice covers has been 
investigated theoretically‘ and experimentally. The results confirm that velocity 
‘measurements taken at 0.2 and 0.8 of the water channel depth give velocities for 
which the average is always very cldse to the true mean ‘velocity. 

Engineers can “therefore utilize river flows under ice as determined by this 
survey method with confidence. "Winter surveys should adopt the procedure as 
standard. 

T. Milne Dick 

a Chief, Hydraulics 

iii



i Perspective de gestion 

Le débit d'une riviére sous une coutverture de— glace, ‘es'timé\ par les 
, 

_ 
méthodes de jaugeage, est trés diffificile 5 vérifier._ Dans le présent rapport, on 
présente les résultats d'une étude théorique et expérimentale de l'écoulement 
sous. une couverture de glace. Ces résultats permettent de corttirmer que. les 
vitesses mesurées 21 0,2 et O,-8 'de la Iprofondelur d'eau du canal donnent une 

, moyenne qui est toujours trés‘ pres‘ de la vitesse moyenne. vraie. 
Les ingénieurs peuvent donc utiliser sans crainte les débits dekritviéres 

obtenus par cette méthode d'estimation. Pour les estimations effectuées en 
_ hiver, on devrait adopter cette méthode. 

Chef de l'Hydraulique ’

x 

T. Milne Dick 
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Introductim 

Although stream gauging techniques for free surface flows have long 
been established and are to some extent supported by theory, the same is 
not true for stream gauging in flows under ice cover. For ice-‘covered 
‘rivers, the U.S. Geological Survey recommends averaging the velocities at 
0.2 and depths as for free surface flows or, when the depth is less than 
about 60 cm, obtaining the velocity at mid-depth and applying a correction 
coefficient of 0.88. Essentially the same procedure is used by the Water 
Survey of Canada. While this procedure might have been developed with 
the aid of some field data, it really has no ‘theoretical basis and it is "not 
certain how correct it may be over a variety of different ‘flow conditions. 

-Many methods have been proposed for calculating the flow between 
covers with different roughnesses (l3‘rat~te, 1979). Nearly all of 

‘ 

these 
methods involve the‘ division of the flow’ into, two layers which are 
separated by the line of maximum velocity, and‘ the assumption of 

logarithmic velocity distribution in each layer. Recently, the k-e 
turbulence model has been applied to study open-channel flows (Rastogi and 
Rodi, 1-978) as well as the effects on flow distribution and mixing properties A‘ 

brought about by ice‘ covers (Lau and Krishnappan, 1981). Model 
predictions for open-channel flows have been verified by Rodi (1978). Good 

_ comparisons with model predictions have also been ‘obtained by this author 
in flows under floating coversyand an example is given in Fig. 1 (symbols 
are defined in Fig. 2). The complete results are being summarized a'nd;will’ 
be published in a separate article.
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In this article, theturbulence modelhas been used to calculate the 
velocity distributions for a large number of flows under a ~ variety of 

conditions. The results are used to review the stream gauging procedure 
mentioned. previously and to examine some of the flow p_r'oper,ties which are 
important in the development of many of the equations for ice-covered 
flow.

I 

Thetk-e‘ turbulence model, 

A very brief review of the turbulence model will be given here. 
‘I 

Details of the derivation of the equations are given by Rodi (1978), The 
procedures used in the calculation of two-dimensional channel flows are 
explained by Lau and Krishnappan (1981). 

Basically, the model involves the solution of the equations of 
continuity, momentum and the transport equations for the kinetic energy of 
turbulence k and its rate of dissipation e. For two-dimensional channel] 

\ 

flow, these equations can be written as: 

Bu‘ 8v__ [1] 37+-a7V—0 

Vau" auv_ a au [21 
, as: +77-'ry‘“ts7’+85 

' '8uk .3vk._ a "t.ak [3] s;r*‘s'y'- y ‘a-=;7s’+Ge'€
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in which ’u and v are the,velocity components in x and y directions
\ 

respectively. is measured along the channel bed and y is measured 

perpendicular to the x axis in the vertical plane (see Fig. 2). S is -the slope, 

g is the gravitational acceleration and ok, 08, C1 and C2 are empirical 

constants; ‘G is the turbulent energy production due to mean motion given 
by 

[51 G = vt [(§§ 
2 +i2(-$21] 

and vt is the turbulent kinematic viscosity which is related to k and e by 

[6] vt=Cu Ee 
in which C H is an empirical constant, 

Besides the use of the Boussinesq eddy viscosity concept, the main 
assumptions used _.in formulating this model the turbulence 
structure is governed by two characteristic parameters k and e and that 
"the expressions for the diffusion of kand s can be written as gradient 
terms. As the assu__mptions involve‘ only the turbulence structure, the 

I 

values for the empirical constants should be the sa_me regardless of the 
type of-flow. Launder and Spaldi_ng (1974) tested the model with a variety’ 
of flows such as flows in pipes‘, channels, mixing layers, jets andwakes, and 
determined the values of the constants as follows: 

-3-
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cu = 0.09; ck = 1.00; as = 1.30; c, = 1.43 andC2 = 1.92. 
To apply the model, the flow depth H, unit discharge q, and the 

’equivalent sand roughnesses of the bottom and top boundaries and K 2" V 

are specified. From the asymptotic solution of the model equations, one 
can obtai_n the velocity distribution when the flow is uniform, as well as the 
slope S required for uniform flow. Using an iterative process, one can also 
find out, for a particular discharge, bed slope and roughnesses K1 and K2,‘

_ 

what the flow depth has to be. for uniform flow. It should be mentioned 
that the model is applicable for developing flows ’and. flows receiving jet 
discharges etc. but is applied‘ here to. calculate the simplest case of uniform 
flOW’. 

The boundary condition for’ the velocity component u requires that, at. 
f . 

the grid points closest to either wall, the velocity satisfies the universal 
law of the wall 

ui-yw~ . 

I M [71 :—*=Eln(E
i 

in which u* is the shear velocity; It is the Von-Karman constant; y is the 
kinematic’ viscosity of the fluid; yw is theldistance of the nearest grid point 
from the solid boundary; and'E is a roughness parameter. 

[8 1 E '= 9.0 for smooth‘walls,i.e. K = 0._ 
' 

K‘ BS 
_

_ l9 1 E = e_ v/u*K for rough walls. .



BS is an empirical expression which fits the experimental relationship 

obtained by Nikuradse covering the smooth-turbulent, transitional and fully 
rough flow ranges (see Yaiin, 1972). For fully rough‘ flow B 

5 takes on the 
well known constant value of 8.5.

i 

A comparison of the modelfprediction with the measured velocity 
profile in a'flow with artificaily roughened boundaries is given in Fig. 1. 
The model inputs were:

A 

. q = 304.9 cm’/s; H = 3.92 cm; K1 = 0.7 cm and K2 = 0.1 cm. 
The predictedvelocity doistribution compares very well with the measured . 

distribution. The predicted slope of 0.0017 for uniform flow is slightly‘ 
higher than the measured-slope of 0.0014. 

Selection of flow variables 

In this study the velocity distributions for. a large number of flows 
betw'een"covers with different roughnesses are to be examined. Therefore, 
it is advantageous to’ use a dimensional analysis of the problem as a guide 
to the selection of flow variables.' 

y 
The shape of the velocity distribution in a channel with a floating 

cover dependsofn the flow depth H; the unit discharge q or mean velocity 
U; the top and bottom roughnesses and the kinematic viscosity of the fluid. 
Any other variable such as the distance to the point of maximum velocity, 
ymax, or the velocity at ‘mid-depth," 5, etc. should depend only the 
aforementioned variables. Therefore, one can write: _ ;'‘ .



Q‘ 3' ‘y K1 K2 UH [1o]i —'1‘[—_;"‘—"= i(—g.,-(-1.74) 

and 

u K ‘K 
i .5 

, 

1 3 U1‘! [111 (ii "’("fi'i<T’T) 

Whenlthe flow is rough turbulent, viscosity should be unimportant and one 
can_ expect the velocity distribution to be governed by only two dimension"- 
less variables - the roughness ratio of the boundaries and the relative 
roughness of one of the boundaries. 

Five values for the roughness ratio K2 /K1 were chosen, varying from 
L 

1.0 to zero. "For each value of K 2/K1 , the relative roughness Kl /H was 
varied from 0.001 to 0.10. For the cases which are expected to be fully 
t’urbulent,.the depth was kept constant at 2. metres, the unit discharge was 
maintained at about 0.8 m2/s; and the Reynolds number UH/v was about 8 
x 105. Several rms werealso made in which the roughness ratios were kept 
fixed and only the Reynolds number was varied. 

When one of the boundaries is smooth, i.e. K20/K1=0, the effect of 
Reynolds number cannot be neglected and the velocity distribution depends 
on both K1/I’-I and U1-ii/v. The effect of Reynolds number on these flows 
was investigated by varying the Reynolds number and keeping .K1 /H 
cosntant. 

I
I 

A total of 50 flows were calculated. The flow conditions are listed in 
Table 1.



Results 

The variables which were obtained from the calculated velocity 

distributions are listed in Table _I__. In_ these flows, the rougher of the two 
boundaries was always taken to be at y=0. Therefore, referring to Fig, 2, 

ymax is the distance from the rougher boundary to the point _of maximum 
velocity; ,u.2 is the velocity two,-‘tenths of the depth away from the 

smoother boundary; u.8 is the velocity two-tenths of the'__depth away -from 
the rougher boundary; and u_ 5 is the velocity at mid-depth. Considering the 

T 

flow to be separated into two layers by the line of maximum velocity, U, is 
the average velocity in the layer with the rougher ‘wall and U2 is the 

average velocity in the layer with the smoother wall. 

Velocity Distri_bution 

In flows number 1 to 5, K, /H and K ,/K, were kept constant at 0.01‘ 
and 0.5 respectively. The Reynolds number VUH/v was varied from 7.9xl05

_ 

to 5.‘OxlO4. The.calcul,at'ed velocity distributions, Anon—dimensio_n_al'iz'ed with 
the mean velocities, are ‘practically identical, as are the calculated 
variables which are shown in "Table 1. Therefore, when the flow at both 
boundaries are fully rough, the Reynolds number, as expected, has no effect 

. on the velocity distribution.— 
’ 

When ‘one of the walls is smooth, the Reynolds number will have an 
effect. In flows 38 to 42, K1/H was kept constant at 0.1 an_d the._Rey_nolds



number was varied from 7.9xl.0 5 to 2.-ox!1o“ by va_ryi_ng either the depth or 
the mean velocity. . Two of these distribu-tions are shown in Fig.3 and 
clearly show the change in the velocity profile as the Reynolds number 
changes. The position of maximum velocity shifts towards the smooth 
boundary as the Reynolds number increases. There is a much greater 
change in the velocitywprofile near the smooth wall as compared to the 
change near the rough wall. The ‘reason is that the change in Reynolds 
number has little effect" on t_he friction factor of the rough wall but affects- 
the friction factor of the smooth wall significantly. 

Also shown i_n/ Fig. 3 is the velocity distribution for flow number l_2 in 

which K2/.K"1=l.O. Predictably, the profile is symmetrical about y/H=O,..5. 
Together, these profiles in Fig. 3 show that there can be large variations in 
the velocity distributions under ice-covered rivers, depending on the flow 
and boundary conditions. 

‘In all the two-layer models of flow under ice" cover, the velocity
K 

distribution is assumed to be logarithmic in eachlayer up to the point of 
maximum velocity. This assumption is not entirely satisfactory because 
the resulting velocity distribution will have a cusp at the point of maximum 
velocity.’ This in itself is not too important but it leads to more serious‘ 
deficiencies as far_as the eddy viscosity and diffusivity distributions are 
concerned (l.au and Krishnappan 1981). In’ Fig. 4, the velocities in each 
layer, non.-dimensionalized with theimaximum velocity, are plotted against 
the distances from the wall. It [can be seen“ that the profiles are 
logarithmic only for about 60 percent of the thickness ofeach layer._. For



, I 

the 40 percent of the layer thickness 'near“the location of the maximum 
velocity, the velocity is less than that given by the logarithmic profile. 

Only‘two flows are shown in Fig. 4 but the others all’ havelthe same 
behaviour,

.

\ 

Measurement of Average Velocity 

It can be seen from Table 1‘ that u.2 is always larger than the mean 
velocity U and us is always smaller, except for flows with K.2=K1 when 
the velocity distribution is symmetrical about y=0.5H. The biggest 

difference occurs when one wall is smooth and the other has a large 

relative roughness as in the case of flow number 38, when u.2 is 17 percent, 
larger ‘than U and u 8 is 13 percent less. Surprisingly, these differences 

always compensate for each other and the average of the velocities at 0.2 
and 0.8 depths are always very close to the mean velocity. For the fifty 
flows listed, there were three flows in whichthe error from this procedure 
‘is three percent; for all the rest theierrors were only about one or two, 
percent. This result could not have been predicted at the outset because 
the only condition imposed by the model is that the velocity at the grid 

point" closest tothe ‘wall is given by the law of the ‘wall. Nevertheless, this 
. shows that the practice of» averaging the velocity measurernents at 0.2 and 

0.8 depths should give a true indication of the average /velocity. 

The velocity at mid-depth varies from 1.07 to 1.21 times the average 
velocity. Therefore, the correction coefficient to be applied in order to 

_ 

A 

obtain the average velocity varies from 0.93 to 0.83. The coefficient of 

V“ 9,-



0.88 which is normally used‘ is midway between these \values,.\ In Fig. 5,_ the 
correction coefficient for all the flows with rough walls are plotted versus 

K1/H. It can be seen that theroughness ratio K2‘/K1 is important only 
when the relative roughness Kl/H is large. For.K1/Huless than 0.01, the 
correction coefficients are larger than 0.88 and are not too much affected 
by K2 /K1 . Even though the rjoughness of theice is not known a priori, Fig’. 
5 can be ’used to give a better indication of what the value of the 
correction coefficient should be. For instance, if the bed roughness is not 
too large and the ice seems‘ relatively smooth, a correction coefficient of" 
about 0.91 will be more appropriate. If both the river bed and the ice are 
very rough, a smaller value such as 0.84 will be more correct. - 

Position of the Maximum ‘Velocity 

Thevalues of ymax/H listed in ITable 1 gives the thickness of the 
layer adjacent to the rougher boundary and the location of the poi_nt of 
maximum vleocity. This information is important for many of the

\ equations for ice cover roughness and it is interesting to see how it varies . 

with the different flow variables. 

In Fig. 6, the values of ymavx/l-I are plotted against K1/H with K2 /K1 
as a parameter. The data from flow numbers 6 toV3l are used to produce 

fjthe four curves for K2/K1 values of 1.0, 0.5, 0.1 and 0.05 respectively. 
These flows areiin the range where the velocity distribution is independent 
of the Reynolds number. It can be seen from Fig. 6 that ymax/H depends 

eiOj -



largely on the roughness ratio K2 /K1 and is only very slightly affected by 
the relative roughness K1/H, For K2 /K1 =O.l, a fifty-fold increase in K1 /H 
from 0.002 to 0.10 only changed ymax/H from 0.60 to 0.64. 

A curve for K2/K1.=O is also shown in Fig. 6, based on flow numbers 
32 to 37. This shows a much more prominent increase of ymax/H with 
K1/H. However, it should be noted that this curve .is only valid for the 
Reynolds number value of 8.OxlO5. 

The‘ effect of Reynolds number when one wall is smooth is shown in 
Fig’, 7._ As expected, Ymax/H increases with increase in Reynolds number, 
largely“ because of the drop in flow resistance of the smooth wallt When

5 the Reynolds number decreases to 10 and the relative roughness decreases 
to 0.001, the flow resistance’ of the smooth and rough boundaries are 

practically the same and the velocity distribution becomes‘ symmetrical,
/ 

with y / H equal to 0.5-. max 
Ismail and Davar (1978) measured ymax/I-‘I for the case of K1/K2=0 

and a constant Reynolds number. Comparison with the present calculations 
is difficult because rectangular roughness strips were used and it is not 
known what the equivalent sand roughness Of the surface was. . It was also 
not stated how the Reynolds number was defined. Gogus and Tatinclaux. 

‘ 

(1981) also measured ymax/l-l'i_n flows with artificial roughnesses. Again, 
direct comparison with their results is not possible because only the 
absolute roughness values were presented. However, the trends indicated 
are the same as in Fig. 7. 

-1.1-



Mean Velocities in Top and Bottom Layers
_ 

One of "the basic assumptions which is often used in the analysis 0: 
flow under floating covers is that the mean veloc-ities in the top and bottom 
layersiare equal to each other and to the ‘overall average velocity. The 

accuracy of this assumption can be examined by using the calculated 

velocity dis't'r.ibutions where the position of maximum velocity can be 
determ_ined quite accurately. 

Using graphical integration, the mean velocities U1 and U2 the 

layers adjacent to the rougher and smoother walls respectively are 

evaluated and non-dimensionalized with the overall mean velocity( U. 

Values of U1/U‘and U2 /U are listed in Table 1. 
It can‘ be seen from Table 1 that U1/U remains almost constant 

throu 
, 
c-han es in K /H and chan only ve_ry sli htl when the rou hness 8 1 8 

i S Y 8 
ratio K2/K1 is altered_. Its value is always very close to but slightly less. 

than unity. Even for the flow with one smooth wall together" with a wall of 
fairly large relative roughness (K1/H=O.lO), U1 is only 3 percent less than 
U. ~ 

The mean velocity in the smoother layer‘, U2, is always greater than 
the overall mean and the difference is greater than for the rougher layer, 
expecially if K2 /K1 is small. U2 /‘U increases as K1/Hvincreases or as 

. K2/K1 decreases. When K2 /K1 :0, U2 /U. also increases with Reynolds . 

number. The largest value of U2 /U1 in these flows is 1.09, which occurred 
when K: /K 1:0, K1 /H=o".1o and UH‘/v»=sx.1o5. For this flow, u /U=0.97 and 

_ , 

. 
1 g 

.-12-.



the difference between U1 and U2 is about 12 piercent. In general, unless 

the_ difference between the roughnesses of the two boundaries is very large, 
the mean velocity in the smoother layer should be greater thanithe mean, 
velocity‘ in the rougher layer by not more than 5 percent. Therefore, the 
assumption that the mean velocities are equal in the two layers may be 
acceptable for most uniform ice covers. 

I

I 

Conclusions 

Using -the k-e turbulence model, velocity distributions for channel 
flows with floating covers have been calculated.’ The distributions have 
been used to examine the behaviour\ of some of the variables which are 
significant for the study of flow under ice covers. These calculations are 
performed for uniform flow conditions and’ should be valid for normal ice- 
covered flows. Other conditions, such as the flow just downstream of a 
large ice jam, may produce different distributions. 

The computed velocity distributions show (that the velocity profiles 
are logarithmic only for about 60 percent of the layer thickness. For the 
40 percent‘ of the flow near the location of maximum velocity, the 
velocities are less than that given by the_logarithmic distributicm. 

The velocities‘ at. 0.2 and 0.8 depths may deviate significantly from 
the overall average velocity. However, the differences seem to compen- 
sate for each other and the average of these. two‘ velocities is only about 2 

_ 

h 

(percent higher than the actual mean velocity for most of the flows 

-13-
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considered. This result lends confidence to the two.-point method for flow 
' 

gauging.
' 

When the depth is small and the velocity has to be measured at mid- 
depth, the correction coefficient needed to obtain the mean velocity can be 
.5 percent larger or smaller than the value of 0.88 which is generally used. 
Fig. '5‘ can be used as a rough guide to select a better. correction 

coef;_f_icient.a 
A T 

A A

T 

The distance to the /point of maximum velocity or the thickness of the 
rougher layer increases as the“ difference in the roughness of the boundaries 
increases. For fully rough flow, this thickness is almost independent of the 
relative roughness K1 / H. However, when one boundary is smooth or when 

I‘ 

the flow near the boundary is not fully rough, both the Reynolds number 
and the relative roughness can have an appreciable effect. The effect of 
K 2/K1 and K1/H follows the same trend~~as found by Gogus and Tatinclaux 
(1981). The effect of Reynolds number‘ has not been investigated in 
previous studies. 

\ The mean velocities in the top and bottom layers are, in most cases, 
within 5 percent of each other. The assumption that these two velocities 
are -equal will not be too much in error except when the difference between 
the boundary roughnesses is large, say K2 /K,-< 0.1, and K, /H>,O.l. ‘ 
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TABLE 1. Flow Conditions and Derived Variables 

y H U K1 K2] K1 E3 Liv}-‘—l ‘Yma.50u.5 u.2 ".8 .u.2;+u.8 U2 ’ cm cm/s cm» cm FT K1 ‘U’ ‘U 
2U U- 

1 zoo 39.9 2.0 i1.0 0.01 0.5 7.9x105 0.53 1.12 1.03 0.99" 1.01 0.99 1.01 
2 100 39.9 1.0 0.5 0.01 0.5 4.0x105 0.54 1.12 1.03 0.99 1.01 0.99 1.01 
3 50 39.9 0.5 0.25 0.01 0.5 2.0x105 0.54 1.12 1.03 0.99. 1.01 0.99 1.01 
4 25 39.9 0.25 0.125 0.01 0.5 1.0x105 0.53 .1.12 1.03 0.99 1.01 0.99 1.01 
5 12.5 39.9 0.125 0.063 0.01 0.5 .5.0x10” 0.54 1.12 1.03 0.99 1.01 0.99 1.01 

6 200 -40.1- 0 0 .0 1.0 8.0x105 0.50 1.07 1.03 1.03 1.03 1.00 1.00
" 

~ 7 200 40.0 0.2 0.2 .001 1.0 8.0x105 0.50 1.09 1.01 1.01 1.01 1.00 1.00 
8 

_ 

200 40.0 0.4 0.4 .002 1.0 8.0x105 0.50‘ 1.10 1.01 1.01 1.01 1.00 1.00 '9 200 39.9 1.2 ‘1.2 .006 1.0 8.0x105 0.50 ‘1.12 1.01 1.01 1.01 1.00 1.00 .10 39.8 2.0 2.0 .010 1.0 8.0x105 0.50 1.13 1.01 1.01 1.01 1.00 1.00 
11 .200 

' 

39.7 4.0 4.0 .020 1.0 7.9x107 ,0.50 1.15 1.01 1.01 1.01 1.00 1.00 ‘12 200 39.6 6.0 6.0 .030 ‘1.0‘ 7.9x105 0.50 1.16 1.01 1.01 1.01 1.00 1.00 
13 

‘ 

200 39.2 20.0 20.0 .100 1.0 7.8x105 0.50 1121 1.01 1.01 1.01 1.00 1.00 

“200 40.0 0.2 0.1, .001 0.5 8.0x105 0.53 1.09 1.02 0.99 1.01 0.99 1.01 
15 200 

° 

40.0 0.4 0.2 .002 '0.5 8.0x105 0.53 1.10 1.02, 0.99 1.01 0.99 1.01 16 200 139.9 1.2 0.6 .006 0-5 8.0x105 0.53 1.11 1.03 0.99 1.01 0.99 1.01 
17 200 39.9 2.0 1.0 .010 0.5 8.0x105 0.53 1.12 1.03 0.99 1.01 0.99 1.01 
18‘ 200 39.8 4.0 2.0 .020 0.5 8.0x105 0.54 1.14 1.03 0.99 1.01 0.99 1.01 19 200 39.7 6.0 3.0 .030 0.5 7.9x105 ’0.54 1.15 1.04 0.98 1.01 0.99 1.02 20 200 39.3 20.0 10.0 .100 0.51 7.9x105 0.54 1.17 1.05 0.98 1.02 0.99 1.03 

21 200 40.0 0.4 0.04 .002 0.1 8.Ok1O5 -0.60 1.09 1.02 0.97 1.00 0.99 1.02 22 200 39.9 1.2 0.12 .006 0.1- 8.0x105 0.60 1.09 1.06 O.96- 1.01 0.99 1.03 23 200 39.9 2.0 0.20 .010 0.1 8.0x105 0.60 1.10 1.06 0.96 
. 1.01 0.98 1.03 24 200 39.8 4.0 0.40 .020 0.1 8.0x105 0.61 1.11 1.07 0.954 1.01 0.98 ‘1.03 

25 ‘ 

200 39.7 6.0 0.60 .030 0.1 7.9x105 0.62 1.12 1.08 0.94 1.01 0.98 1.04 26 200 
' 

39.3 20.0 
‘ 

2.00‘ .100 0.1 7.9x105 0.64 1.15, 1.12 0.92 1.02 0.98 1.06 

27 200 39.9 1.2 0.06 .006 0.05 8.0x105 ‘0.63 1.09. 1.07 0.95 1.01_ 0.98 1.03 .200 39.9 2.0 0.10 ".010 0.05 8.051105 0.63 1.09 1.08 0.95 1.02 0.98 1.04



TABLE 1. Flow Conditions and Derived Vartiables ‘ 

cont'd. 

$1.1‘ U K K ' 

1_< ‘K’ “UH Y u_5 u.2_ u.2+u._8 U, U 1 2 1 2 -.— max . No‘ cm cm/s Cm _cm H" K" V —H-"U' '~ 
211 

29 200 39.7 4.0 0.20 .020 0.05 7.9x105 0.64 1.10 1.09 0.94 1.02 0.98 1.04 
30 200 . 39.7 ' 

6.0 0.30 .030 0.051 7.931105 0.65 1.11 1.10 0.93 1.02 0.99 1.04 
31 200 39.3 20.0 1.00 .100 10.05 7.9x105 0.66 1.14 1.14 0.91 1.03 0.97 1.07 

32 zoo 40.0 0.2 0 .001 0 8.0x1o5 0.58 1.08 1.04 0.98 . 1.01 0.99 1.02 
33 200 40.0 0.4 

, 

0 .002 0 8.0x105 0.61 1.08 1.05 0.97_ 1.01 -0.99 1.02“ 
34 200 39.9 1.2 0 .006 .0 8.0x105 0.66 1.08 ‘1.08 0.95 — 1.02 .O.98 1.04 
35_ 200 39.8 2.0 0 .010 -0 8.0x105’ 0.67 /1.08 1.10 0.93 1.02 0.98 1.051 
36 200 39.7 4.0 0 .020 ~ 0 7.9x105 0.72 1.09 1.12 0.92 1.02 0.98 1.06 37 200 39.6 

1 

6.0 0 .030 0 7.9x105 0.74 1.09 1.13 0.91 1.02 0.98 1.07 

38 80 98.3 8.0 
1 

0 
, 

0.100 0 7.9x105 0.79 1.09 1.17 0.87 1.02 0.97 1.09 39 20 
‘ 

98.4 2.0 0 0.100 0 .2.0x105 0.77 1.10 1.17 0.87 1.02 0.97 1.08_ p 201 49.3 2.0 0 0.100 0 9.9x10“ 0.74‘ 1.11 1.16 0.88 1.02 0.97 1.08 100 9.9 10.0 0 _ 0.100 0 9.9x10” 0.74 71.11 "1.16 0.88 ‘ 

1.02 0.96 1.08 42 20 9.9 2.0‘ 0 0.100 0. 2.0x10 0.69 .1.12 1.15 0.90 1.03 0.97 41.06 

43 2008 39.8 2.0 0 .010 
, 0 8.0x105 0.67 1.08 1.10’ 0.93 1.02 0.98 1.05 44 50 39.9 0.5 0 .010 0 2.0x105 0.65 1.09 1.08. 0.95 ‘1.02 0.98 1.02’ 

45 
“ 

25 39.9 0.25 0 .010 0 1.0x105 0.62 1.10 1.07’ 0.96 1.02 0.99 1.02 46 5 39.9 0.05 0 .010 0 2.ox10“ 0.54 1.11 1.03 0.99 1.01 0.99 1.01 

47 200 ‘40.0 A 0.2 0 .001 0 8.0x105 0.58 11.08 1.04 0.98 1.01 0.99 1.02 48’ 50 40.1 0.05 0 .001 0 2.0x105 0.53 1.09 V1.02 1.00 1.01 1.00 1.00 49 25 40.1 0.025 0 .001 0 1.0x1o5 0.50 1.09 1.01 1.01’ 1.01 1.00 1.00 50 20 .10.1 0.020 '0 .001 0 2.0x10# 0.50 1.11 -1.01 1.01‘ 1.01 1.00 1.00
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Figure 2 Definition’ sketch
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