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Abstract

The k-¢ turbulence model has been used to calculate the velocity
d15tr1but1ons for a large number of channel flows with d1fferent top and
bottom boundary roughnesses. The resulting distributions are used to
review the standard procedures for stream 8auging of ice-covered flows. It
. is found that the average of the velocities at-'two-tent'hs and eight-tenths
of the depth is indeed very nearly equal to the overall mean velocity.
Examination of the velocity proﬁles shows that the proflles -deviate from
the logarithmic distribution for about 40 percent of the flow depth. Other
flow properties, such as the location of the ‘maximum velocity and the

mean velocities in the top and bottom layers, are also examined,



‘ /

Résumé

On a utilisé le modéle de turbulence k-¢ pour calculer la distribution des

- vitesses d'un grand nombre d'écoulements en canal présentant différentes -

\

rugosités limites de surface et de fond. On utilise les distributions résultantes

pour analyser les méthodes normales de jaugeage des écoulements sous une

“couverture de glace. On constate que la moyenne des vitesses aux deux dixiémes

et aux huit dixiémes de la profondeur d'un cours d'eau est en fait trés prés de la
vitesse mO)‘/enne globale. 'L'étude des distributions de v'itesse§ montre que ée_s
distributions s'éca‘vrtent de la distribution logarithmique sur environ 40 pour cent
de la profondeur du cours d'eau. On analyse également les autres propriétés de

I'écoulement, comme le point ol la vitesse est maximale et les vitesses moyennes

| dans les couches de surface et de fond. ‘
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Management perspective

River discharges under ice cover; as estimated by gauging practices,

-are very difficult to verify. In this report, flow under ice covers has been
investigated theoretically and experimentally. The results confirm that velocity

measurements taken at 0.2 and 0.8 of the water channel depth give velocities for

which the average is always very close to the true mean velocity.
Engmeers can therefore utilize river flows under ice as determmed by this
survey method with confidence. Wmter surveys should adopt the procedure as

standard.

T. Milne Dick
Chief, Hydraulics
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. Perspéctive de gestion
.' Le débit dune riviere sous uné couverture de glace, 'eStimé\ par les
.. méthodes de jaugeage, est tres difficile & vérifiet. Dans le présent rapport, on
| présente les résﬁl.tats d'une étude théorique et expérimentale de I'écoulement
SOus une couverture de glace. Ces résultats permettent de cor;/firmer que les
vitesses mesurées 3 0,2 et 0,8 de la 'profondgur d'eau du cahal donnent une

, moyenne qui est toujours trés‘ pres de la vitesse moyenne vraie.
Les ingénieurs peuvent donc utiliser sans crainte les débits de riviéres
obtenus par cette m'éthodé d'estimation. Pour les estimations effectuées en

_ hiver, on devrait adopter cette méthode.

Chef de I'Hydraulique ' )

‘ T. Milne Dick '
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Introduqtim

Although stream gauging techniques for free surface flows have long
bee;i established and are to some extent supported by theory, the same is
not true for stream gauging in flows under ice cover. For ice-covered
'rivérs, the U.S. Geological Survey recommends averaging the velocities at
0.2 and 08 depths as for free surface flows or, when the depth is less than
about 60 cm, 6btaining the velocity at mid-depth and applying a corréc_tjon
coefficient of 0.83. Ess.en.tially the same procedure is used by the Water

Survey of Canada. While this procedure might have been developed with

the aid of some field data, it really has no theoretical basis and it is not

certain how correct it may be over a variety of different flow conditions.
Many methods have béen proposed for calculating the flow between
covers with different roughnesses (f’ratte, 1979). Nearly all of ‘ these
methods involve the— division of the flow into two layers which are
separated by the line of maximum velocity, and' fhe assumption of
logarithmic velocity distribution in each layer. Recently, the k-¢

turbulence model has been applied to study open-channel flows (Rastogi and

Rodi, 1978) as well as the effects on flow distribution and mixing properties -

brought about by ice covers (Lau and Krishnappan, 1981). Model
predicﬁons for open-channel flows have been verified by Rodi (1978). Good
- comparisons with model predictions have also been ‘obt,éiﬁed by this author

in flows under floating covers .and an example is given in Fig. l (éymbols

are defined in Fig. 2). The complete results are being summarized and will

be published in a separate article.
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In this article, the turbulence model has been used to calculate the

velocity dlstrlbunons for a large number of flows under a variety of

conditions. The results are used to review the stream gauging procedure

mentioned previously and to examine some of the flow properties which are

important in the development of many of the equations for ice-covered

flow. _

The k-¢ turbﬁlence mode},

A very brief review of the turbulence model will be glven here,

) Details of the derivation of the equations are given by Rodi (1978). The

procedures used in the calculation of two-dlmensmnal channel flows are
explained by Lau a.nd Knshnappan (1981)

Basically, the, model involves the solution of the equations of

continuity, momentum and the transport equations for the kinetic energy of
turbulence k and its rate of dissipation €. For two-dimensional channel

flow, these equations can be written as:

au av _
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in which u and v are the_velocity éomponents in the X and‘y directioﬁs )
respectively. x is méasured along the channel bed and y is measured
perpendicular to the x a>;is in the vertical plane (see Fig. 2). S is the slope,
g is the gtiavitational acceleration and O Og» C, and C, are empirical

constants. Gis the turbulent energy production due to mean motion given

by
: , U, 2 57 OV, 2
[5] G = Vs [(a_y +2(3—y) ]

and v, is the turbulent kinematic viscosity which is related to k and € by

[6] \)t=Cu

k 2
€
in which C " is an empirical consfcant_.

Besides the use of the Boussinesq eddy viscosity concept, the main
assumptions used l.in formulating this model are.'ithat the turbulence
structuﬁ is governed by two characteristic parameters k and ¢ and that
‘the expressions fof the diffusion of k and e can be written as gradient
terms. As the assumptions involve qnly the turbulence structure, the
. values for the émpirical constants should be the same regardless of the
type of flow. Launder and Spéldi_ng (197.4) tested the model with a variety
of flows such as flows in pipes, channels, mixing layers, jets and-wakgs, and

determined the values of the constants as follows:
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€y = 00% g =10050 = 1.30; C, = L43andC, = L92.

To apply the model, the flow depth H, unit discharge q, and the
"equivalent sand roughnesses of the bottom and top boundaries K, and K 2” '
/are specified. From the asymptotic solution of the model equations, one
can obtain the velocity distribution when the ﬂow. is uniform, as well as the
slope S required for uniform flow. Using an iterative process, one can also
find out, fo'r a particuler discharge, bed slope and roughnesses K, andK,
what the ﬂow depth has to be for uniform flow. It should be mentioned
that the model is applicable for developing flows and. ﬂowsreceiving jet
discharges etc: but is applied here to calculate the simplest case of uniform
flow.

The boundary condmon for the veloc1ty component urequires that, at.
the grid points closest to either wall, the velocity satisfies the un1versal
law of the wall |

[7] L.l v
U, «

in which u, is the shear velocity; k is the Von-Karman constant; v is the
kinematic’ viscosity of the fluid; .y'w is the distance of the nearest grid point

from the solid boundary; and E is a roughness parameter.

(8] E = 9,0 for smooth walls, i.e. K = 0.
| < By I |
I91] E=e °vlukK for rough walls,




Bs is an -empirical expressmn which fits the expenmental relationship
obtained by Nikuradse covermg the smooth-turbulent transitional and fully
rough flow ranges (see Yalin, 1972). For fully rough flow B s takes on the
well known constant value of 8,5. |

A comparison of the model pred1ct10n with the measured veloc1ty
profile in a' flow w1th artifically roughened boundaries is glven in F1g 1.
The model inputs were:

9 = 3049cm?/s; H = 8.92¢cm; K, = 0.7cm and K, = 0.1 cm.

The predicted velocity distribution compares very well with the rﬁe‘asufed ,
distribution. The predicted slope of 0.0017 for umform flow is shghtly ‘

higher than the measured slope of 0.0014.
Selection of flow variables

In this study the velocity distributions for a large nuﬁmber of flows
between covers w1th different roughnesses are to be exammed Therefore,
1t is advantageous to use a dimensional analysis of the problem as a guide
to the selection of flow variables.’

) The shape of the velocity distribution in a channel with a floating
cover depends on the flow depth H; the unit diSCfxarge q or mean velocity
U; the top and bottom roughnesses and the kinematic viTscosity of the fluid,
Any other variable such as the distance to the point of maximum vé_locity,
Ymax’ or the velocity at mxd ~depth, uo 59 €tc. should depend only on the

aforementioned vanables. Therefore, one can write: .t
‘ .




o Ymax K, K, un
[10] - | f(—ﬁ’R—,'T)
and

u K, K, UH
[11] %5 = 4)( H Ki ’ .\)“)

When the flow is rough turbulent, viscosity should be unimportant and one
can expect the velocity distribution to be governed by only two dimension-
less variables - the roughness ratio of the two boundaries and the relative
roughness of one of the boundaries.

Five values for the roughnesvs, ratio K, /kl were chosen, varying frc;m
“ 1.0 to zero. For each value of K 2/K1 » the relative roughness Kl /H was
varied from 0.001 to 0.10. For the cases which are expected to be fully
tUrbulent,_the depth was kept constant at 2 metres, the unit discharge was
maintained at about 0,8 mzls; and the Reynolds number UH/v was about 8
X 105. Several runs were also made in which the ‘roughnes,s ratios were kept
fixed and only the Reynolds number was varied.

When one of the boundaries is smooth, i.e. Kz ‘/K1 =0, the effect of
Reyno!ds number cannot be neglected and the velocity distribuﬁén depends
on both K /H and UH/ V. The effect of Reynolds nﬁmber on these flows
was investigated by varying the Reynolds number and keeping .K1 /H
cosntant. : |

A t‘otal of 50 flows were calculated. The flow conditions are listed in

Table 1.




Results

The variables which were obtained from the calculéted velocity
distributions are listed in Table 1. In these flows, the rougher of the two
boundéries was always taken to be at y=0. Therefore, referring to Fig. 2,
Ymax is the disténce from the rougher boundary to the point of maximum
velocity; U is the velocity two-tenths of the depth away from the
smoother boundary; ugis the velocity two-tenths of the depth away from

the rougher boundary; and u 5 is the velocity at mid-depth. Considering the

4 flow to be separated into two layers by the line of maximum velocity, U, is

the average velocity in thé layer' with the rougher wall and U, is the

average velocity in the layer with the smoother wall.

Velocity Distribution
In flows number 1 to 5, K, /H and K 2/K, were kept constant at 0.0
and 0.5 respectively. The Reynolds number UH/y was varied from 7.9x105 _

to 5.‘Ox104. The calculated velocity dis’tfibutims, non-dimensionalized with

the mean velocities, are 'practic,ally identical, as are the calculated

variables which are shown in Table I, Therefore, when the flow at both

boundaries are fully rough, the ReynoldS nurhber, as expected, has no effect

. on the velocity distribution.

" When one of the walls is smooth, the Reynolds number will have an

effect. In flows 38 to 42, K, /H was kept constant at 0.1 and the Reynolds




% to 2.0x10% by varying either the depth or

number was varied from 7.9x10
| the mean velocity. Two of these distributions are shown in Fig. 3 and
clearly show the change in the velocity profile as the Reynolds number
changes. The position of maximum velocity shifts towards the smooth
boundary as the Reynolds nurﬁber increases. There is/ a much greater
change in the veloc‘:ity'proﬁle‘ near the smooth wall as c'Qmpa/red to the
change near the rough wall. The reason is that the change in Reynolds
number has little effect on the friction factor of the rough wall but affects
the friction factor of the smooth wall significantly.

-Also shown in ’ 'F‘ig. 3 is the velocity distribution for flow number 12 in
which K2[K1=1.O. Predic-tﬁably,lthe profile is symmetrical about y/ H=O,;5.
Together, these profiles in Fig. 3 show that there can be large variations in
the velocity di_stigibutions under ice-covered rivers, depending on the\ﬂow
and boundary conditions. |

In all the two-layer models of flow under ice cover, the velocity
distribgtjon is assumed to Be logarithmic i each'layer up to the point of
maximUm velocity. This assurhption is not entirely satisfactory because
the resulting velocity distribution will have a cusp at the point of maximum
velocity. - This in itself is not too important but it leads to more set:'ious;'
deficiencies as far.as the eddy viscosity énd diffusivilty distributions are
concerned (Lau and Krishnappan 1981). In Fig. 4, the velocities in each
layer, non-dimensionalized with the‘maximurvn velocity, are plotted again_sf
the distances ffom the wall. It can be seén“ thaf the profiles are

log’ar‘ithmic only for about 60 percent of the thickness of each layer., For




A

the 40 percent of the layer thickness near the location of the maximum‘

velocity, the velocity is less than that given by the logarithmie pl"'ofile.
Only two flows are shown in Fig. 4 but the others all have the same
behaviour,

N

Measurement of Average Velocity

It can be seen from Table ] that u, is always larger than the mean
velocity U and ug is always smaller, except for flows with K, =K, when
the vveloeity distribution is symmetrical about y=0.5H. The biggest
difference occurs when one wall is smooth and the other has a large
relative roughness as in the case of flow number 38 when u, is 17 percent,
larger than U and u 3 is 13 percent less. Surprisingly, these differences
always compensate for each other and the average of the veloc:tles at 0.2
and 0.8 aepths are always very close to the mean velocity. For the fifty

flows listed, there were three flows in which the error from this procedure

is three percent; for all the rest the errors were only about one or two,

pereent. This result could not have been predicted at the outset because
the only condition irrlposed by th_e’ model is that the velocity at the grid
point closest to the wall is given by the law of the wall. Nevertheless, this
- shows that the practice of averaging the velocity measurements at 0 2 and
| 0.8 depths should give a true indication of the average veloc:ty.

The velocity at mid-depth varies from 1.07 to 1.21 times the average
velocity. Therefore, the correction coefficient to be applled in order to

_ | obtain the average velocity varies from 0.93 to 0. 83 The coeffxcxent of




0.88 which is normally used is midway between these \v'alue_s,.\ In Fig, 5, the
correction coefficient for all the flows with rough walls are plotted versus
Kx‘ /H. It can be seen that the roughness ratio Kz_/K1 is important only
when the relative roughness K /H is large. For K /H.less than 0.01, the
correction coefficients are larger than 0.88 and are not too much affected
by K /K . Even though the roughness of the ice is not known a priori, Fig.
5 can be used to give a l)>ett'er indication of what the value of the
correction c_oefficient si’lould be. For instance, if the bed 'roughness is not
too large and the ice seems relatively smooth, a correction coefficient of

about 0.91 will be more appropriate. If both the river bed and the ice are

very rough, a smaller value such as 0.84 will be more correct.
Position of the Maximum ‘Velo,city

The values of Y ax/H listed in Table 1 gives the thickness of the
layer adjacent to the rougher boundary and the location of the poi_rit lof
maximum vleocity. This information is important for many of the
equations for ice cover roughness and it is interes\ting‘ to see how it varies .
- with the different flow variebles l

In Fig. 6, the values of y _/H are plotted against K, /H withK /K
as a parameter. The data from ﬂow numbers 6 to 31 are used to produce
"~ the four curves for K /K values of 1.0, 0.5, 0.1 and 0.05 respectively.

These flows are in the range where the velocxty distribution is independent

of the Reynolds number. It can be seen from Fig. 6 that Yma x/H depends

-10-




largely on the roughness ratio K‘2 /K1 and is only very slightly affected by
the relative roughness K1 /H. For K2 / K1 =0.1, a fifty-fold increase in K1 /H
from 0.002 to 0.10 only changed Ymax!H from 0.60 to 0.64.

A curve for KZ/KI:O is also shown in Fig. 6, Saséd on flow numbers
32 to 37. This shows a r\nuch more prominent increase of ymax/H with
K /H. However, it should be noted that this curve is only valid for the
Reynolds number value of 8.0x10°.

The‘ effect of Reynolds number when one wall is s‘rﬁooth is shown in
Fig. 7. As expected, Yoo x/H increases with increase in Reynolds number,

v

largely because of the drop in flow resistance of the smooth wall. When

the Reynolds number decreases to 10°

and the relative roughness decreases
to 0.001, the flow resistance of the smooth and rough boundaries are
practically the same and the velocity distribution becomes’ symmetrical,

/

withy _ /H equal to 0.5.

max

Ismail and Davar (1978) measured Ymax/H for the case of K /K =0
and a constant Reynolds number. Comparison with the present calculations
is difficult because rectangular roughness strips were used and it is not

known what the equivalent sand roughnes$ of the surface was. . It was also

not stated how the Reynolds number was defined. Gogus and Tatinclaux

- (1981) also measured Ymax/H in flows with artificial roughnesses. Again,

direct comparison with their results is not possible because only the
absolute roughness values were presented. However, the trends indicated

are the same as in Fig, 7.

-11-




Mean Velocities in Top and Bottom Layers

One of the basic aséumptions which is often used in the analysis of
flow under floating covers is that thé mean velocities in the top and bottom
layers are equal to each other and to the overall average véloc-it'y. The
accuracy of this assumption can be examined by using the calculated
velocity distributions where the position of maximum velocity can be
determined quite accu‘ra;tely.

Using graphical integration, the mean velocities U1 and U2 in the
layers adjacent to the rougher and smoother walls respectively are
evaluated and non-dimensionalized with the overall mean velocity( u.
Values of U /U ‘ana U, /U are listed in Table 1.

It kcan' be seen from Table 1 that U1 /U remains almost constant
through ehanges in K1 /H and changés only very slightly when the roughness
ratio K2/K’1 is é,ltei"ed_. Its Value is always very close to but slightly less
than unity. Even for the flow with one smooth wall together wi;ch a wall of
fairly large relative roughness (K1 [H=0.10), U, is only 3 percent less than
u. -

The mean velocity in the smoother layer, Uz, is always greater than
the overall mean and the difference is greater than for the rougher layer,
exbecially if K, /K1 is small. U2 /U increasgs as K1 /H increases or as
. l(le1 decreases. When KZ‘/K1 =0, U2 /U. also increases with Reynolds .
pumber. The largest value of U2 / U1 in these flows is 1.09, which occurred

when Kz /K 1:-0, K1 /H:’O.lO and UH'/v:Sx.lOs. For this flow, Ul /U=0.97 and

=12 -




the difference between U1 and U2 is about 12 percent. In general, unless
the difference between the roughnesses of the two boundaries is very large,
the mean ve»lécity in the smoother léyer should be greater than the mean
velocity in the rbugher léyer by not more than 5 percent. Therefore, the
assumption that the mean velocmes are equal in the two layers may be
acceptable for most uniform ice covers.

) f

Conclusions

Using ‘the k-e turbulence model, velocity distributions for channel
flows with floating covers have been calculated. The distributions have
been used to examiné the behaviour of some of the variables which are
significant for the study of flow under ice covers. These calculations are
performed for uniform ﬂo(w conditions and, should be valid for normal ice-
covered flows. Other conditiqns, such as. the flow just downstream of a
large ice jam, may produce different distributions.

The computed velocity distributions show that the velocity profiles
are logarithmic only for about 60 percent of the layer thickness. For the
40 percent of the flow near the location of maximum velocity, the
velocities are less thén that given by the lc)gar'ithmic distribution.

The velocmes at 0.2 and 0.8 depths .may devxate 51gn1f1cantly from
the overall average velocity. However, the dlfferences seem to compen-

sate for each other and the average of these two velocities is only about 2

‘(percent higher than the actual mean velocity for most of the €lows

-13-




| considered. Thﬁs result lends confidence to the twd-point method for flow
* gauging. 4 |

W_hén the depth is small and the velocity has to be measured !;t mid-
depth, the correction coefficient needed to obtain the rmean ;/elocity can be
5 percent larger or smaller than the value of 0.88 which is generally used.
Fig. 5 can l:;e used as a rough guide to select a better. correction
coei_f_idenp - | | |

The distance to the /point of maximum velocity or the thickness of the
rougher layer increas_es as the difference in the roughness of the boundaries
increases. Fo? fully rough flow, this thickness is almost independent of the
relative roughness K,/H. However, when one boundary is smooth or when
: the flow neér the boundar‘y is not fully rdugh, both the Reynolds humber
and the relative rougr;ness can have an appreciable effect. The effect of
K,/K, and K, /H follows the sa\r;ne trend-as found by Gogus and Tatinclaux
(1981). The effect of Reynolds number has not been investigated in
| previous studies. |

v The mean velocities in the top and i)ottom layers are, in most cases,

within 5 percent of/each other. The assumption that these two velocities
are equal will not bé too much in error éxcept when t\he difference between

the boundary roughnesses is large, say K, /K,<0.1, and K, /H> 0.1.
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TABLE 1. Flow Conditions and Derived Variables
? H u K, KzI Kl 53 U;[-! ‘Ymax_u.5 Y2 UYsg ‘u.2;+u.8 _lil Uz
" cm cm/s em  cm H K “H U U U ou U lopy
I 200 39.9 2.0 1.0 0.01 0.5 7.9x10° 0.53 1.12 1.03 0.99 1.01 0.99 1.0l
2 100 39.9 1.0 0.5 0.01 0.5 4.0x10° 0.5 1.12 1.03 0.99 1.01 0.99 1.0l
3 50 39.9 0.5 0.25 0.01 0.5 2.0x10° 0.5% 1.12 1.03 0.9  1.01 0.99 1.0l
4 25 39.9 0.25 0.125 0.01 0.5 1.0x10° 0.53 1.12 1.03 0.99 1.01 0.99 1.01
5 12.5 39.9 0.125 0.063 0.01 0.5 5.0x10* 0.5 1.12 1.03 0.99 1.01 0.99 1.01
6 200 40.1 0 0 0 1.0 8.0x10° 0.50 1.07 1.03 1.03 1.03 1.00 1.00
7 200 4.0 0.2 0.2 .00l 1.0 8.0x10° 0.5 1.09 1.0l 1.0l 1.01 1.00 1.00
8§ 200 40.0 0.4 0.4 .002 1.0 8.0x10° 0.50 1.10 1.0l 1.0l 1.01 1.00 1.00
9 20 39.9 L2 1.2 .006 1.0 8.0x10° 0.50 1.12 1.01 1.0l 1.01 1.00 1.00
10 200 39.8 2.0 2.0 .010 1.0 8.0x10° o.50 1.13 1.01 1.01 1.01 1.00 1.00
11 200 39.7 4.0 4.0 .020 1.0 7.9x10° 0.50 1.15 1.0l 1.0l 1.0l 1.00 1.00
12 200 39.6 6.0 6.0 .030 1.0 7.9x10° 0.50 1.16 1.01 1.0l 1.01 1.00 1.00
13 200 39.2 20.0 20.0 .100 1.0 7.8x10° 0.50 1:21 1.0l 1.0l 1.01 1.00 1.00
h’zoo 40.0 0.2 0.1 .00l 0.5 8.0x10° 0.53 1.09 1.02 0.99 1.01 0.99 1.0l
15 200 40.0 0.4 0.2 .002 0.5 8.0x10° 0.53 1.10 1.02 0.99 1.01 0.99 1.01
16 200 '39.9 1.2 0.6 .006 0.5 8.0x10° 0.53 1.1l 1.03 0.99 1.0l 0.99 1.0l
17200 39.9 2.0 1.0 .010 0.5 8.0x10° 0.53 1.12 1.03 0.99 1.01 0.99 1.0l
18 200 39.8 4.0 2.0 .020 0.5 8.0x10° 0.5 1.14 1.03 0.99 1.01 0.99 1.01
19200 3.7 6.0 3.0 .030 0.5 7.9x10° 0.5 1.15 1.04 0.98 1.01 0.99 1.02
20 200 39.3 20.0 10.0 .100 0.5 7.9x10° 0.5 1.17 1.05 0.98 1.02 0.99 1.03
2L 200 40.0 0.4 0.04 .002 0.1 $.0x10° 0.60 1.09 1.02 0.97 1.00 0.99 1.02
22 200 39.9 1.2 0.12 .006 0.1 8.0x10° 0.60 1.09 1.06 0.9 1.0l 0.99 1.03
23200 39.9 2.0 0.20 .010 0.1 8.0x10° 0.60 1.10 1.06 0.9  1.01 0.98 1.03
26200 39.8 4.0 0.40 .020 0.1 8.0x10° 0.6 .11 I.07 0.95 1.01 0.98 1.03
2> 200 39.7 6.0 0.60 .030 0.1 7.9x10° 0.62 1.12 1.08 0.9 1.01 0.98 1.04
26 200 39.3 20.0 2.00 .100 0.1 7.9x10° 0.64 1.15 1.12 0.92 1.02 0.98 1.06
27 200 39.9 1.2 0.06 .006 0.05 8.0x10° 0.3 1.09 1.07 0.95  1.01 0.98 1.03
’zoo 3.9 2.0 0.10 ".010 0.05 8.0x10° 0.63 1.09 1.08 0.95 1.02 0.98 1.04



S TABLE 1. Flow Conditions and Derived Variables | cont'd.
N’ X H U K1 K2 K1 ' K2 U_\:—l Ymax u.5 u.2l ‘u.8 u.2+u.‘8 Ux’ U2
° m cmfs em  em H X AT T U 2y O
29 200 39.7 4.0 0.20 .020 0.05 7.9x10° 0.64 1.10 1.09 0.94 1.02 0.98 1.04
30 200 .39.7 6.0 0.30 .030 0.05‘7.9x105v 0.65 1.11 1.10 0.93 1.02 0.99 1.04
31 200 3%.3 20.0 1.00 .100 '0.05 7.9x10° 0.66 1.1& 1.14 0.9] ©1.03 0.97 1.07
32200 40.0 0.2 .0 .00l O 8.0x10° 0.58 1.08 1.04 0.98 1.01 0.99 1.02
33 200 40.0 0.4 0 .002 0 8.0x10° 0.6 1.08 1.05 0.97 1.0l 0.99 1.02*
36200 39.9 1.2 0 .006 .0 8.0x10’ 0.66 1.08 1.08 0.95 1.02.0.98 1.04
35, 200 3%.8 2.0 0 .010 0 8.0xl0° 0.67 1.08 1.10 0.93 1.02 0.98 1.05
36 200 39.7 4.0 0  .020 - 0 7.9x10° 0.72 1.09 1.12 0.92 1.02 0.98 1.06
37 200 39.6 6.0 0 .030 0 7.910° 0.74 1.09 1.13 0.9l 1.02 0.98 1.07
38 80 98.3 8.0 o0 0,100 0 7.9x10° 0.79 1.09 1.17 0.87 1.02 0.97 1.09
39 20 98.4 2.0 0 0.100 0 2.0x10° 0.77 1.10 1.17 0.87 1.02 0.97 1.08
’ 20 49.3 2.0 0 0.100 0 9.9x10* 0.74° 1.11 1.16 o0.88 1.02 0.97 1.08
100 9.9 10.0 0 .0.100 0 9.910* 0.74 1.11 1.16 0.88  1.02 0.96 1.08
42 20 9.9 2.0 0 0.100 0 2.0x10 0.69 .1.12 1.15 0.9 1.03 0.97 1.06
43 200 39.8 2.0 0 .00 0 8.0x10’ 0.67 1.08 1.10' 0.93 1.02 0.98 1.05
by 50 39.9 0.5 0 .010 0 2.0x10° 0.65 1.09 1.08 0.95 1.02 0.98 1.02
4525 39.9 0.25 0 .010 0 1.0x10° 0.&2 1.10 1.07 0.96 1.02 0.99 1.02
46 5 3.9 0.5 0 010 0 zo0x10* 0.3 11 L.03 0.9 Lo 0.9 1.01
47 200 40.0 - 0.2 0 .01 0 8.0x10° 0.58 1.08 1.04 0.98 1.0l 0.99 1.02
48 50 40.1 0.05 0 .00l 0 2.0x10° 0.53 1.09 1.02 1.00 1.01 1.00 1.00
49 2> 40.1 0025 0 .00 0 1.0x10° 0.50 1.09 1.01 1.0 1.01 1.00 1.00
50 20 10.1 0.020 0  .001 O 2.0x10* 0.50 1.11 1.01 Lo 1.01 1.00

1.00
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Figure 1 Comparison of turbulence mode] output and measured velocity
distribution ' ‘




Figure 2  Definition sketch
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Figure 6 Variations of the location of maximum velocity
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Figure 7

Effect of Reynolds number on the location of maximum velocity when one wall is smooth
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