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.ABSTRACT 

Fran observations of wind and of water surface elevation at 

14 wave staffs in an array in Lake Ontario and in a large laboratory 

tank, the directional spectrun of wind-generated waves on deep water 

is determined using a modification of‘ Barber's (1963) method. 

Systematic investigations reveal the following: (a) ‘the frequency 

spectrum in the rear face is proportional to the minus 4 power of the 

frequency u with the equilibrium range parameter and the peak 

enhancement factor clearly dependent on the ratio of wind speed to 

peak wave speed; (b) the angular spreading 6 of the wave energy is of 

the form sechz 89, where B is a function of frequency relative to the 

- peak; (c) depending on the gradient of the fetch, the direction of the 

wave at the spectral peak may differ from the mean wind direction by 

up to 50°f, but this observed difference 

similarity analysis; (d) under conditions of strong wind forcing, 

significant effects on the phase velocity due to amplitude dispersion 

and the presence of bound harmonics are clearly observed which are in 

accordance with Stokes theory, whereas (e) the waves under natural 

wind condition show amplitude dispersion, but bound harmonics are too 

is predictable by a 

‘weak to be detected among the background of free waves. 
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RESUME 

A partir d'observations du vent et du niveau de l'eau dans 

un réseau de 14 bouées réparties sur le lac Ontario et sur un grand 

bassin de laboratoire, on a etabli le spectre directionnel des vagues 

souievées par le vent en eau profonde, en utilisant une version 

modifiée de la méthode de Barber (1963). Des recherches systematiques 

ont révéléz a) que le spectre de fréquence a 1'arriere est inversement 

proportionnel a la puissance quatrieme de la fréquence , le parametre 

d'interva11e d'équilibre et le facteur de grossissement maximal étant 

fonctions du rapport de la vitesse du vent a la vitesses maximale des 

vagues; b) que la dispersion angulaire de 1'energie des vagues est 

de la forme sechz 86, on B est une fonction de la fréquence par 

rapport au maximum; c) que, selon Ie gradient du fetch, la direction 

de la vague au maximwm spectrai peut s'écarter de la direction moyenne 

du vent par autant que 50°, cette difference-observée étant previsible 

par analyse de similitude; d) que, en conditions de vent vioient, on 

peut nettement observer ies importants effets de 1a dispersion 

d'amp1itude et de la presence d'harmoniques Iimites sur la vitesse de 

phase, effets qui sont en accord avec Ia théorie de Stokes, tandis que 

e) les vagues soulevées par des vents normaux présentent une 

dispersion d'amp1itude, mais les harmoniques limites sont trop faibles 

pour etre détectées dans le bruit de fond des vagues iibres. 
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MANAGEMENT PERSPECTIVE 

- An accurate description of the spectrum of wfind-generated 

waves is required in coastal engineering, offshore structure design, 

naval architecture, interpreting satellite imagery and in numerical 

forecasting or hindcasting of waves. This report describes the nnst 

comprehensive attempt yet made to tie down the distribution of wave 

energy in direction and frequency and also the speed of propagation of 

different wave components. Some well known theories have been 

verified and other unexpected results have turned up, which will have 

a fundamental effect on the application of wave theory to practical 

purposes. 
Although the study draws on laboratory and lake data, the 

results are presented in non-dimensional form and easily scaled up to 

oceanic conditions. A lake presents some significant advantages over 

an ocean for this sort of research - fetch limits imposed by the 

shoreline permit the study of very young (undeveloped) waves such as 

might be found in typical oceanic storms or in reservoirs. In fact, 

in the context of wind-generated waves, Lake Ontario is an ocean with 

well defined lateral boundaries.
I 

The extraordinary length of this report reflects the authors 

determination to keep together the intimately‘ connected parts of this 

work.
‘ 

T. Milne Dick 
Chief, Hydraulics Division 
February 1983



PERSPECTIVE DE GESTION 

Une description precise du spectre.des vagues soulevees par 

le vent est necessaire dans les domaines suivants: genie cotier, 

conception d'ouvrages marins, architecture navale, interpretation des 

images de satellite et prevision numerique ou a posteriori des 

vagues. Le present rapport decrit la tentative la plus serieuse pour 

etablir la distribution de l'energie des vagues en fonction de la 

direction etv de la frequence, et pour calculer la vitesse de 

propagation des differentes composantes des vagues. Certaines 

theories bien connues ont ete verifiees et d'autres resultats 

inattendus auront une incidence considerable sur la mise en 

application de la theorie des vagues. 

Meme si l'etude s'appuie sur des donnees prises en 

laboratoire et dans le lac, les resultats sont presentes sous forme 

adimensionnelle et peuvent etre facilement ramenes a l'echelle 

oceanique. L'etude d'un lac. plutbt que _d'un ocean presente des 

avantages dans ce genre de recherche: a cause des fetchs limites par 

la ligne de rivage, on peut etudier de tres jeunes vagues (non 

developpees) comme on en observe dans les tempetes oceaniques types ou 

dans les reservoirs. En fait, a l'echelle des vagues de vent, le lac 

Ontario est un ocean aux limites laterales bien definies. 

L'ampleur du rapport denote la determination des auteurs a 

presenter comme un tout les elements, etroitement lies entre eux, de 

cette recherche. 

T. Milne Dick, Chef 

Division de l'hydraulique 

fevrier 1983 
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1. 
1 

A INTRODUCTION 

Directional spectra of wind-generated waves find application 

* in fields as diverse as basic air-sea interaction, upper mixed layer 

dynamics, practical‘ wave forecasting, satellite surveillance and 

engineering design of marine structures and vehicles. 
I 

In recent 

years, the concept of a simple but "significant" wave has been nearly 

displaced by statistical descriptions of the sea-surface based largely 

on fetch-limited data. This paper attempts to provide a carefully 

documented descriptjon of the purely wind-generated wave directional 

spectrun derived frah lake data which is free of residual wave energy 

(swell). Laboratory spectra are used to extend our understanding of 

strongly forced natural waves. 

By far the most widely used and accepted method of studying 

wind waves has been by examination of the spectra of single point time 

traces of the wave surface elevation. This has been born of the 

recognition that observed sea states require a statistical descrip- 

tion, and that the theoretical shape for waves of small anplitude is a 

“sinusoid'(Airy; 1845). «Hence, by the principle of linear superposi- 

tion, the spectral representation is a natural description of wave’ 

kinematics. 
The form of-the (second order) nonlinear correction to the 

sinusoidal fonn of water waves was first computed by Stokes (1847). 

This correction predicts the familiar narrow high crest and broad 

shallow -trough intuitively recognized in observations of wind~ 

generated waves, together with an associated "increase in the wave 

phase speed. In terms of the spectral representation, this would 

appear as enhanced energy at frequencies equal to integral multiples 

of the wave spectral peak frequency and alterations in the distribu- 

tion in wave-number space of the directional spectrmn.’ The first of 

these features has often been recognized in spectral observations 

(e.g. §utherland, 1967; Kinsman, 1960), however, it is only recently 

that the changed phase speed has been verified using correlations 

between adjacent wave height measurements (Ramamonjiarisoa, 1974).

~ ~
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Now, as soon as nonlinear features begin to be discussed, 

the ‘principle of superposition is no longer applicable and the 

spectral representation, although still possible must be treated with 

care, especially when seeking to interpret any higher order features 

which may be present. Indeed, it has been shown by whithmn (1967) 

that the frequency dispersion introduced by the Stokes correction to 

the phase speed will tend to destabilize a train of uniform parallel 

crested waves. Thus, the. wave spectrum should not be_ regarded as 

representing a permanent description of the sea state which would be 

maintained in the absence of wind forces and viscous dissipation, 

instead the spectrmn will be in a state of flux through nonlinear 

interaction of the various spectral components. 

Fortunately, however, the second order nonlinear or Stokes‘ 

interactions do not result large frequency shifts of the wave 

energy. The instability of a Stokes wave train was first discovered 

by Brooke Benjamin (1967) as a ‘side band‘ instability which would 

eventually cause wave breaking but could not transfer energy 
to other 

than adjacent frequencies. 
‘ 

Phillips (1960) has shown that the third order nonlineari- 

ties which transfer energy fran three waves to a fourth, are the first 

ones which can cause continuous energy transfer over large frequency 

distances to a free wave. The size of this transfer was first 

computed by Hasselmann et al. (1973), and has since been the subject 

of _many papers: Hasselmann (1962, 1963a, 1963b), Fox (1976), 

Longuet-Higgins (1976), Korvin-Kroukovsky (1967), Zakharov (1968), 

Webb (1978), Dungey and Hui (1979). However, because of their high 

order, these interactions are only of importance when discussing the 

evolution of the wave spectra with time or fetch. Observations of 

wave spectra at a particular point in time and space might be supposed 

to exhibit principally features associated with linear 
wave theory and 

the Stokes‘ corrections to it. However, to verify that this is indeed 

the case .requires knowledge not simply of the. one-dimensional 

frequency spectrum but of the three-dimensional directional spectrum 

which describes the wavelength and directional distributions of each 

u.frequency component." For this reason and others associated with the 

practical matter of wave forecasting, much attention has recently 
been

~

~

~
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’ paid ~to aobtaining estimates; of“ the_ directional spectrum of wind- 

generated waves. 
Barnett and Kenyon (1975), in a recent review of the study 

of wind waves, discussed the methods then available for the measure- 

ment of directional spectra. At that time, some measurements had been 

made of what we call the two-dimensional spectrum, i.e., in which the 

radian wave-number k and the (radian) frequency an were assumed to 

satisfy the linear dispersion relation on deep water. 

(o2 = gk. 
V 

_ 
,4 

(1.1) 

Using aerial photogrammetry, Cote et al. (1960) had obtained 

the first wave-number (two-dimensional) spectrum. But, apart from a 
A 

pioneering attempt by Garratt (1970), who had obtained four spectra, 

no systematic attempt to explore the properties of the full three- 

dimensional (wave-number frequency) spectrun had come to light. 

Since that time, a completely new family of methods has 

become available for measuring the two- and three-dimensional spectra, 

-namely, .using _remote _techniques (e.g., Tyler et al. 1974; Trizna, 

Bogle, Moore and Howe, 1980; Schuler 1978; Pawka, Hsiao, Shemdin and 

Inman 1980; Mcleish et al. 1980; Fontanel and DeStaerke 1980; Irani et 

al. 1981; Holthuijsen 1981; Wu, 1977). Among the established methods 
reported by Barnett and Kenyon (1975) are those using the pitch-roll 

and cloverleaf buoys (Longuet-Higgins et al. 1963, Hasselman et al. 

1980), and the .measurements from an array of wave staffs. The 
disadvantage of the pitch-roll and cloverleaf buoys is that the linear 

dispersion relationship must be assumed and that only the first few ’ 

‘Fourier coefficients of the angular ’distribution of the spectral 

energy density can be determined. This study was undertaken using an 

array of wave staffs, thus allowing the calculation of much finer 
detail in the directional distribution, at some cost in computer time. 

’ 

The present- investigation began in 1975 when, a tower was 

built at the western end of Lake Ontario to record wave data and wind 
data in order to determine the directional spectrun of wind-generated 
waves. Complimentary laboratory experiments of wind-generated waves 
were performed in the large wind-wave tank of the Canada Centre for 
Inland Haters.
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Our primary purposes in conducting this study are: ' 

(1) determine the dispersion relation appropriate to natural 

wind waves. 

(ii) describe the fetch-limited frequency spectrun in terms of a 

small number of parameters. 

(iii) find a parametric representation for the spreading function 

of the directional distribution.
_ 

(iv) use laboratory data to extend the parameter range of field 

observations. 
In addition the data set is of very high quality and allows 

new information to be obtained on many‘ problems previously not 

resolved, for example, the dependence of the spectral shape parameters 

on fetch and wave age, a more detailed look at the polar distribution 

of the spectral density, and its dependence on wave ‘frequency and 

other parameters. 
Details of the array design are described in §3 and‘ the 

outline of analysis of the directional spectrum from the wave data 

based-on Barber's (1963) idea is given in §4, with details given in 

the appendix. 
A sumary of data of" the experiments is given in §5, 

followed by a descriptionin §6 of typical three-dimensional spectra 

observed in Lake Ontario and in the laboratory. The polar analyses of

~

~ 
the directional spectrum. are given in §7. In §8 we attempt to‘ 

parameterize the fetch-limited frequency spectrum and in §9 we show 

that peak propagation directions may be forecast even in areas of 

. 
appreciable fetch gradient. §10 is devoted to an exploration of the 

dispersion relation of first laboratory and'then field waves, followed 

by the parameterization of the polar directional distribution in §11. 

A summary of our findings is provided in §12 including a list of the 

parametric formulae required to describe the energy content, 

propagation speeds and directional spread of wind-generated waves. 

We begin with a discussion of the fundamental theory 

underlying the analysis and -interpretation of the spectra of- 

wind-generated surface gravity waves. ~
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1 2. FUNI1AMENTALS or mo WWES 

_ 

In this section, a brief summary and extension of the 

fundamental results of wind waves is given which will be used in later 

sections of the paper. Surface tension of water will be neglected 

throughout as the waves observed and discussed in this paper are long 

enough for it to play no significant.role. 

2.1 . grrotational Haves 

2.1.1 Governing eouations 

Observation suggests that, to*a good first approximation, 

surface wave can be regarded as irrotational, for which the velocity 

potential ¢ satisfies 

vs-24> Q o 
g 

(2.1) 

32. 9 0 at z = -h (2.2) 
32 

-15-+§J?.§.‘3+.§53-9.9-ii?-=0, atz = c (2.3) 
at ax ax ay By az — 

a¢ 1 V 2 = _ = 
1

4 
at 

_+ 5- ( ¢) 7 9: pa/ow. at z c (2. ) 

where t is the time variable, (x, y, z) cartesian coordinates with 2 

measured vertically upwards from the equilibrium water surface, h the 

water depth (assumed constant), c(x, y, t) the water surface 

elevation, pw water density, and pa the pressure of the wfind in 

Haves are called free ‘waves or 

forced waves according as pa = 0 or not. 
excess of its equilibrium value. 

For infinitesimal (slope) waves, the boundary conditions 

(2.3) ahd (2.4) may be simplified by neglecting higher order terms, 

resulting in



2 3 
3.-.gL+gi4-’-= --L-E5 atz=0 (2.5) 
M. 82 pw 3t 

when pa is zero or has a sinusoidal dependence on time and the 

horizontal coordinate vector 5 = (x, y), as is likely the case in wind 

wave generation, a solution to the linear equations (2.1), (2.2) and 

(2.5) exists in the following form
V 

. ¢ = A cosh k (z + h) exp [ i (h.° x - wt) ], i = /.-1 (2.6) 

where A is a constant, provided that the frequency w and the magnitude 

of the horizontal wave-number vector k = 
|§| satisfy certain 

dispersion relations as required by (2.5). The phase velocity 9 = m/5 
also depends on the wave-number. 

2.1.2 Free waves

~

~ 
‘For free waves, pa = 0. the Stokes‘ wave has 

calculated analytically to 11th order ‘in wave slope (Hui & Tenti 

1982). To second order: 

C = a exp [ i (kx - mt).] + ;.a2 exp [ 2i (kx - mt) ] (2.7) 

when (2.3) and (2.4) are satisfied to the second order, the dispersion 

relation is (Nhitham. 1974) 

2 97* - 1oI2 + 9 
as = gkT[1+-.,-.—-.§.F,....__ k2 a2] (2.8) 

where 

T = tanh kh 
_ 

(2.9) ~
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In the limit of infinitesimal waves on deep water, (2.8) reduces to 

(1.1). For a single train of harmonic- waves, any departure from the 

linear dispersion relation must be due to one or more of the following 

effects: (a) finite amplitude, (b) finite depth (c) existence of 

currents and (d) forcing of the wind. 

_ 

Comparisons of Equation (2-.8) and (1.1) show that the effect 

of finite anplitude a or finite slope, is to increase the frequency to 

for a given wave-number k or, equivalently, to decrease the 

wave-number (by at most about 20%) for a given frequency. This is 

‘generally called the (local) amplitudedispersion. Finite amplitude 

Stokes effects may also be due to the energy of the second (and 

possibly hi_gher) harmonics of (2.7) at the peak frequency up, say, 

appearing in the wave-number spectrum at frequencies Zmp, 3% 
etc. These will be called higher harmonic effects. For both effects, 

the energy density in the wave-number spectrum for a given frequency 

will appear inside the linear dispersion circle (1.1) in wave-number [_< 

space: the local effect will shift the energy slightly inside the 

circle by up to about 20%, whereas the higher harmonic effect will 

shift it at least half-way inside. So, they are quite distinct. In’ 

both situations, the effect of finite wave amplitude is to increase 

the phase velocity.‘
I 

On the other hand, it can also be seen from Equation (2.8) 

that the effect of finite depth h is to decrease the frequency for a 

given wave-number, or equivalently to increase the wave-number for 

given ‘frequency (hence decreasing the phase velocity) except for very 
‘shallow waterpwhen T2 < (3/2)3/2 ka; in that case, the effect is 

reversed. However, the "latter is outside the scope_ of the present 

study. Thus for moderate depths, the finite depth effect is to move 

the energy density, in the wave.-number space for a given frequency, 

slightly outside the linear dispersion circle (1..1). In fact, this 

effect is negligible in the cases discussed in this paper which 

correspond to deep water waves. 
The water currents in the present investigation are quite 

small compared with the phase velocity of the wave. Their effects on
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the dispersion relation are generally insignificant escept for 

laboratory waves. More detailed discussions are given in §10. 

2.1.3 Forced waves 

To see the effect of windforcing on the dispersion relation, 

consider, for simplicity, a train of infinitesimal waves 

L = aei(kx ' mt) (2.10) 

travelling in x-direction under the action of the wind. On deep 

water, the velocity potential is of the form 

.1» 
= -1 {i e'‘’ e‘“‘* ’ “"‘) (2.11) 

The wind pressure that acts on the irrotational wave 

consists of two parts: one that is associated and correlated with the 

wave form and the remainder that is random and uncorrelated with the 

wave form. To determine the effect of the _wind pressure on the 

dispersion relation, only the first part needs to be taken into 

account. It is found (Phillips 1977, p. 113) that the pressure field 

that is correlated with the wave form is necessarily 

pa 
= (v + in) pwgc. (2.12) 

In (2.12), the part proportional to u is in-phase with the wave slope 

and an important problem in wind-wave generation theory is the 

determination of u, the growth rate. On the other hand, either by 

simple Bernoulli argments or by more detailed consideration (Phillips 

1977, p. 131), it can be shown that v is always negative, i.e. the 

part in (2.12) proportional to v is in antiphase’ with the surface 

elevation.‘
'

~

~

~
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Substitution of (2.10) - (2.12) into (2.5) yields 

«:2 gk[ <1+ v)+iu1- (2.13) 

The magnitude of u, a measure of the shear stress of the wind, is 

2 necessarily small under normal generating conditions in nature. As to 

> the magnitude of v which is a measure of gustiness of the wind, 

although also small in most cases it has been observed (to be reported 

later) that under very active generating conditions |v| may not be 

negligible. In those cases, the effect of the forcing by the wind is 

to decrease the frequency for a given wave-number or equivalently to 
This will move the 

energy density somewhat outside the linear dispersion circle (1.1) in 

wave-number space, similar to the effect of finite depth. 

For studying the properties of wind-generated wave fields, 

it is interesting to ask how the forced waves generated by the forcing 

wind evolve after the pressure force is removed. 

increase the wave-number for a given frequency. 

To consider this 

¢‘problem, let a train of forced waves of infinitesimal amplitude on 

deep water be given by- 

where the frequency a may differ from the frequency of the 

corresponding free wave w(w2 = gk). Once the pressure force is 

removed, the frequency 0 and wave-number k must evolve with time so as 

to satisfy the free surface condition (2.5) with pa = 0. Thus 

[f:_'k + ixk-i(U+t0)]2 

' on “ '2 0 on g 

+[fl'. k + (_-f‘.2...)k2 + ixk-i.g...(a+to ]+gk =0 
A A A dt 

(2.15)
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For (2.15) to hold true for all X and t. we obtain 

k = const. (2.16) 

(o + t«}.)2 = gk. (2.17) 

Equation (2.16) says that the wave-number (hence the wave length) is 

unchanged upon the removal of the pressure force. On the other hand, 

Equation (2.17) yields the following solution 

at = wt + w 
_ 

— (2.18) 

where the constant of integration represents the excess of the forced 

wave frequency a over that of the free wave m at the initial time 

t = 1 when the wave was set free.
_ 

An interpretation of the above result is obtained by 

substituting (2.18) into (2.14). Thus we have 

¢ = A (K) ehz ei(kx 
- mt - ¢) 

. 

(2.19) 

which implies that once the pressure force pa 15 removed. 6 fbrced 

wave instantaneously becomes a free wave of the same wave length but 

with a sudden decrease in its phase equal to the excess of the forced 

wave frequency compared to the corresponding frequency of a free wave 

with the same wave length. Accordingly, if the observed directional_ 

spectrum shows some energy density outside the linear dispersion 

relation in wave-number space, as-reported in §6.1, this must be taken 

.as evidence of the occurrence of forced waves over ea significant 

duration.

~

~

~
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2.2 ' 

. Statistical Representation of the wave Field 

Although some aspects of wind-wave generation, propagation 

and decay can be discussed with single sinusoidal wave components as 

shown in §2.1, a nnre fruitful approach for .a general wave field 

starts with a statistical description. The wave field is assumed to 

be both stationary and homogeneous and thus, according to the Ergodic 

Hypothesis, space and time averages are_ equivalent to ensemble 

averages which willgbe denoted with an over bar. Thus the covariance 
‘of the surface displacement 

p (g, t) = c"‘(‘>_<‘. ‘EU :1 x’_T r: to +17 (2.20) 

depends on the time lag t and the space lag_r only.. Particular cases 

of (2.20) are the covariance of the instantaneous surface displacement 

;b(5) = p(f, 0) and the covariance of the surface displacement at a 

fixed point p(t) = p(9, t). Some properties of the self-correlation 

function p(t) are discussed in Hamilton, Hui and Donelan (1979). 
The wave spectrun is the Fourier transform of p(r, t) 

x (|_<.t-1) = (2«)'3 III a (5. t) exp [ 
-1' (5-5 - wt) 1 d: at (2.21) 

In particular 

:7 = M X (k. w) dk do» 
i (2.22) 

The wave-number spectrun is 

‘I (I5) 
=’ 

X dw (2.23) 

which is the Fourier transform of p(r)
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2 

2 '“.‘-E 

v (5) = (2n)-2 If p (5) e dz; (2.24) 

The frequency direction spectrun F (m, e) is defined as 

F (u, e) = J” x (5, m) kdk (2.25)
0 

where 

5 
= (k cos 9, k sin e) 

softhat 

"2' 
_ TI «» 

c -, 14,10 F (u), e) do) as (2.26) 

Frequently, an approximate directional-frequency spectrun F0 (w, 6) is 

derived by assuming the linear dispersion relation (1.1). Thus 

F0 (m, e) 
=. 

1: 5.( k -1;.) x (5, us) kdk 
V 

(2.27) 

The frequency spectrum 0(m) defined as 

2 M x ()5, m) d2_|§ m > o (2.23 

. 0 V 

' u < 0 
¢(m) 

is the cosine transform of the self-correlation function 

2 ¢ . 

¢(u) = _. I p(t) cos mt dt _ 

(2.29) 
‘II’ o ,

~

~

~
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and in particular 

;2 = j on») dw (2.30)
0 

2.3 lflonlinear Wave—wave Interactions 

The growth of an individual wave component at sea is 

dependent upon the energy input fran the wind, wind-wave interactions 

and wave breaking. The interaction among surface gravity waves is in 

general very weak. However, four waves may interact nonlinearly and 

resonantly, and under these circumstances nonlinear wave-wave 

interaction appears to be an important mechanism for energy exchange 

among surface wave components in the ocean. For a random wave field, 

the rate of energy transfer in this way was determined by Hasselmann 

(1962, 1963). In terms of the spectral density of wave action per 

unit mass 

N (5) = .9. \1f(s_<) 
~ (2.31) 

w
. 

the net rate of increase of action density of the components at wave- 

number 51 is of the form 

3N(E1) _ 

-1;E- = III 5 [ (N1 + N2) N3N» - (N3 * Nu) N1N2] 

X 5(N1 + N2 - wa - mu) 5 (£1 + 52 ' E3 * Eu) dE2 dE3 dfiu (2-32) 

where N = N (5 ); m = (gk )1 2 and the coupling coefficient 6 is a 

complicated funltioniof the‘wave+numbers 51, ..., 54. Numerical 

computations of the six-fold integral of (2.32) were performed by
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Sell and Hasselmann (1972) and used in the JONSHAP (Hasselmann et 31 
I 

1973) to conclude that "most of the growth on the forward face of the 

wind-wave spectrum can be attributed to the nonlinear energy transfer 

to longer waves”. Longuet-Higgins (1976) and Fox (1976) showed that 

the coupling coefficient G between four nearly equal wave-numbers is 

finite and not zero. This implies that the exchange of energy within 

the peak of the spectrum is of dominant importance. Extending the 

idea of Longuet-Higgins, Dungey and (Hui (1979) have developed an 

almost analytical method for efficient calculation of the energy 

transfer rate of (2.32) which is valid for typically narrow wind-wave 

spectra; -They substantiated the JONSHAP conclusion and showed that 

energy transfer due to nonlinear wave-wave interaction is important at 

all stages of development of a wind-wave field, This will be taken 

into account in later sections in analysing the observed directional 

spectra.

~

~
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3.‘ 1’ ’ EXPERIMENTAL‘ARRANGEMENTS 

3 3.1 Field Site 

The map (figure 3.1) shows the location of the stable 

platform (a bottom nnunted tower - figure 3.2) in the western end of 

Lake Ontario. During any given year, Lake Ontario sees several 

episodes of wind speed in excess of 15 metres per second. Its surface 
’ temperature;varies fron about 1°C in the late winter to about 20°C in 

the late sumer. and, with an air temperature range more than twice as 

great, near surfaceéatmospheric stabilities can take on significant 

non-neutral values even in moderate winds. Although the prevailing 

winds are westerly yielding fetches of 1.1 to 2 km, fetches of up to 

300 km occur throughout the year. 
As lindicated in sfigure 3.1 (inset), the bottom slopes 

relatively rapidly (about 11 m/km) from the shore to the location of 

the tower at 12 metres depth; whereas at and beyond the tower the 

bottom slope is gentle (1.5 m/km). In addition, the shoreline is very 

straight and the bottom contours are— parallel for 3 km ‘in both 

directions. The simplicity of the beach geometry allows us to 

account for refractive effects on the longer waves approaching the 

beach and to quite easily deduce the deep water spectrum from the 

measured topography-modified one. Clearly, placing the tower in . 

appreciably deeper water would have multiplied communications and 

access difficulties. 
‘

A 

The annual variation in water level is less than 1/2 metre; 

tides, seiches and wind set-up change the water level by, at most, 

0.1 m; there are no significant tidal or seiche currents and other 

less organized currents are typically less than 10 cm/s. 
' 

The computer-controlled recording equipment (Birch et al. 

1976) is housed in a trailer onshore and communication between tower 

and trailer is by means of an underwater cable. Other cables provide 

up to 6 Kwatts of well regulated mains power. Having laboratory 

quality electrical power at the field site simplified matters to a
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degree which will be apparent to anyone who has had to operate without 

it. ‘About 1 Kwatt of electrical power is consued in sensing and 

recording. The additional power is useful in the operation of flood 

lights and power tools. T 

At the end of June 1977, when the array of wave staffs was 

removed from the ltower, the field site had been in virtually 

continuous operation for 13 months - a track record due in some degree 

to the proximity of the field site to our laboratory (15 minutes by 

boat or car) and its technical support facilities. 

U 

3.2 Array Design 

At the chosen site, wave periods of up to four seconds are 

common with larger peak periods up to eight seconds occurring less 

frequently.“ waves having periods in excess of four seconds and, 

therefore, deep-water wavelengths in excess of 25 m are modified to 

some degree by the bottom topography. He, therefore,-designed the 

array for the more common ‘deep-water‘ waves (periods less than four 

seconds). Barber (1963) has suggested that the dispersion relation 

for surface water waves be invoked to avoid the need for a two- 

‘dimensional array. Ne specifically chose not to follow this piece of 

advice in order to determine the ‘extent to which the dispersion 

relation is modified by nonlinearities in the wave field. Thus the 

array is in the form of a cross with a maximun extent of 28 m. Since 

we wanted to examine the entire gravity wave spectrum, a smaller unit 

spacing or ‘space sampling interval‘ would have been desirable, but 

cost considerations limited the number of wave staffs and hence the 

unit spacing to one metre. ’The final arrangement of 14 wave staffs 

optimized as described by Barber (1963) is shown in figure 3.3. The 

only wave staff which is less than two metres fran a 41 cm diameter 

leg at the point where it intersects the surface, is five metres from 

the nearest other staff so that any reflected waves from the legs 

would have little effect on the correlation between the wave staffs. 

On the longer arm of the array, only four of the 28 possible lags are 

missing, while only two of the 20 on the.shorter arm are missing.

~

~
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‘This array-allows us to estimate the directional spectra in 

the manner described by Barber (1963) or Garrett (1970) for waves 

having wavelengths from 2 to 28 metres. As pointed out by Cartwright 

in the discussion following Barber's (1963) paper, longer waves may be 

resolved in much the same way as discussed by Longuet-Higgins et al. 

(1963).i That is, the various differences between wave staffs may be 

used to estimate spatial derivatives (tilts, curvatures ...) of the 

surface. Therefore, the resolving power for waves longer than 28 m 

depends on the highest order of derivative which may be extracted from 

groups of wave staffs. The first derivatives (tilts) and the surface 

elevation yield the first five Fourier coefficients of the angular 

distribution of energy at a given frequency and the wavelength 

corresponding to that frequency (Longuet-Higgins et al. 1963). 

The array is oriented so that waves from the longest fetch 

directions (57 to 83 degrees true) approach the array at 45° to the 

arms. This maximizes the directional sensitivity of the array to the 

long waves using the method of Longuet-Higgins et al. (1963). If the 

array were oriented so that the long waves approached along the x 

axis for instance, then the slope of the surface in the x direction 

would be insensitive to small variations of the approach direction of 
’ the waves about the x axis; on the other hand, although the slope of 

the surface in the y direction would be maximally sensitive to wave 

approach direction, it would be very small and possibly lost in the 

noise. '_ 

Although a few occasions of ‘long -period waves did occur 

during the experiment, this paper deals only with waves having peak 

period of 4 seconds and less, i.e. deep water waves. The analysis 

vmethod, described in §4.2, draws heavily on the techniques outlined by 

Barber (1963). 

3.3 Have Staffs 

The 14 wave staffs are of the capacitance type in which the 

sensing element is a teflon coated wire 6 m in length. The diameter 

of the wire is 1.6 mm, and the overall diameter is 4.8 mn. Each wave 

staff isrsuspended frun the upper deck of the tower or one of the 
arms by steel cable, and held in 50 Kgm tension by rubber ‘shock 

cords‘ which are anchored to the bottom. The total unsupported length
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is 18 m with the top support being 6 m above mean water level. This 

arrangement avoided additional attachment structures at midédepth, 

which would interfere with the flow field of the waves. The tower 

its_elf was constructed with the minimum of cross bracing, and, in 

fact, is free of any between 3 m above the mean water level and 6 m 

below. This region is disturbed only by the presence of the four 

41 cm diameter legs and a fifth smaller pole of ellipsoidal cross 

section at the mid point of one side of the tower (see figure 3.2). 

The long unsupported length of the staffs has the disadvantage that 

passage. of a wave moves them slightly and hence affects the array 

configuration. The magnitude of thedisplacement so produced is 

roughly proportional to the wave length of the incident wave and less 

than 0.3% (about 1 degree phase error) of it for waves which are 

resolvable by the array. 
Among the characteristics of ‘wave staffs of most interest to 

us were calibration stability, linearity and speed of response. 

Laboratory tests were conducted in a transparent pipe in which the 

water. level could be rapidly adjusted. Readings were made at 1 m 

intervals and figure 3.4 gives some idea of the linearity. The 

deviation from the regression line shown is nowhere greater than 0.33% 

(Der and Watson 1977,) and the slope and intercept of" the regression 

line changed on average by 0.7% and 2,1 mvolts (equivalent to 1.3 cm) 

respectively over four months of field exposure. These laboratory 

tests established the linearity and stability of the wave staffs, but 

the actual calibration used was determined in the field by imnersing 

the staffs to various depths near the tower. These field calibrations 

did not differ, on average, from the laboratory calibrations by more 

than 2% in the slope and 56 mv in the intercept. 

The frequency response of the electronic circuitry of the 

wave staffs was computed and checked by replacing the wave staff with 

a voltage variable capacitor driven by a sine wave generator. The 

amplitude response is flat to 30 Hz and the Phase Shift from 0 to 10 

Hz was: 1.2’/Hz with a maximum variation of 10%_ among the 14 

staffs. Therefore, the maximum relative phase shift between staffs at 

frequencies below 5 Hz was less than 1°. The highest frequencies 

for which ‘can resolve directional spectra are about 1 Hz for the

~

~

~
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field and 4 Hz for the laboratory. wMuch more difficult to establish 

is the deterioration of frequency response due to the adherence of a 

film of water to the staff as the water level drops rapidly. A chart 

recording was made of the output voltage of a wave staff while the 

water level was dropped in the transparent pipe at the rate of about 

1 m/s and then suddenly stopped. The sharpness of the corner, between 

the decreasing voltage part of the trace and its final constant value, 

served as an indication of the degree. to which the surface film 

:_ affected the frequency response of the wave staff. within the time 

“ivresolution (0.2 second) of the chart recorder used, the corner showed 

no roundness." It would appear then that the wave staffs were capable 

of faithful response in the frequency band of interest (0 to 5 Hz) - 

at least while clean. Evidently algal growth and the accumulation of 

dirt on the staffs would affect the ability of the teflon to reject 

water. To reduce this danger, the staffs were cleaned weekly in situ 

with a sponge attached to a rod. As a further precaution, for each 

run the standard deviations of surface displacement, as indicated by 

each of the 14 staffs with its own field calibration, were compared 

with the average standard deviation and any staff which differed from
' 

the average by more than 10% was deemed to be dirty or faulty and 

rejected. The noise level was sufficiently low that no filtering was 

deemed necessary before A to D conversion. The sharp fall off of the 

wave spectrwm reduced the importance of aliasing. The digitization 

step (resolution) was 1.5 mm. 
At the end of the field observations, a 1/28 scaled version 

of the wave staff array was constructed for use in the wind-wave flume 

of the Canada Centre for Inland Haters (figure 3.5). In this case, 

the sensor was made of a single length of teflon insulated hook-up 

wire of 1.1 mn outside diameter. ‘Each staff was attached to plywood 

disks on 'the top and bottom of the wind-wave flume, and held in 

1-1/2 Kgm tension. Calibration of the staffs was achieved during 

filling and emptying of the flume. Figure 3.4 illustrates the 

linearity of these staffs as well as the field staffs. The same 

electronic packages were used in both field and laboratory. In the 

laboratory, there was some evidence of 60 Hz noise on some of the
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wave signals. As a result, all the signals were filtered wfith matched 

12 db/octave Bessel (linear phase shift) low-pass filters, with -3 db 

points set at 30 Hz. The sampling frequency was 20 Hz per channel 

and the maximum resolvable wave-number 28 n rad/m, which corresponds 

to a frequency of about 5 Hz. The total time delay between 

channels, caused by the Bessel filter/A to D converter system, was 

determined by recording a sine wave from a signal generator on all 

channels simultaneously. At 5 -HZ the maximum phase shift between 

any two channels was 1°. The digitization step (resolution) was 0.4 
’ 

mm, It has been demonstrated by theory and experiment (Sturm and 
' 

Sorrell, 1973)‘ that surface intersecting wave gauges effectively 

average over a circle of diameter much larger than that of the gauge. 

The effective diameter increases slowly with the gauge diameter and, 

extrapolating their results, would be about 7 cm for our laboratory 

gauges, which is the limit of wave-length resolution of our laboratory 

array. 

3,4) 
_ 

Meteorological Measurements 

At the tower wind speed, direction and Reynolds stress 

measurements were made with a Gill anemometer bivane (Gill, 1975) 

mounted at 11.5 n: above ‘the water. In addition, air, temperature, 

humidity, water temperature, heat flux and evaporation were also 

recorded. As an indication of horizontal homogeneity a meteorological 

buoy was moored about 11.2 km from the tower on a bearing of 59°. 

Reynolds stress measurements were not made in the laboratory 

during the directional spectrum experiment, but may be inferred from 

an earlier experiment in which an xefilm anemometer was placed 26.2 cm 

above the mean water and at the position shown in figure 3.5. 

In this paper the wind is characterized by its speed rather 

than the momentum transfer (or Reynolds stress) to the surface. Since . 

a‘ significant proportion of’ the stress is supported. by very short 

waves (beyond the limits considered herein) it would seem that the 

wind speed itself is more-useful than the friction velocity as a means 

of relating the wind effects on the "energy containing" gravity waves.

~

~
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4. ANAEYSIS’ VET HOD 

4.1 Introduction 

Directional spectra are generally computed from knowledge of 

s the behaviour of the spatial and temporal correlation function 

~ (2.20). However, although the frequency spectrum of this function may 

. 
be well defined, the spatial structure will be veryi P0orly known. 

a Thus, the pitch-roll buoy (Longuet-Higgins et al. 1963) measures the 

local anplitude and slope of p (r, t) near 5 = 0. An array of N wave 

staffs can yield .at ~the most N(N-1)/2 + 1 ‘independent point 

observations of p (5, t) and, as will become evident, this will not be 

enough to enable direct estimates of the spectral energy density to be 

- obtained at all the required points. Thus, in particular, we have 14 

«s wave staffs (figure 3.3) yielding (allowing. for duplicates) 165 

possible spatial points at which p(r, t) may be determined; whereas 

w the possible resolution is such that we would like knowledge of the 

spectrun at 2337 locations (§4.2). . 

Thus, in practice, it is necessary to make assumptions about 

the location and fonn of the directional energy spectrun in order to 

reduce the number of degrees of freedom of the spectrum 
description to 

less than the number of pieces of available information. The various 

methods proposed for evaluating directional spectra may thus be 

characterized by the objectivity and flexibility of these assumptions. 

. 

The first practical directional spectra were obtained from a 

pitch—roll buoy (Longuet-Higgins et al. 1963). The important 

assumption that the linear dispersion relation m2 = gk was satisfied, 

enabled the (directional) wave spectrum to be expressed in the form 

X (K. W) = 5 (|k| - 2/g) [ao + a1 cos 9 + b1 sin 9 + a2 cos 29 

+ bg sin 28] 

where a0, a1, bl, a2 and b2 are real quantities determined by the 

analysis and e is the polar angle of the wave-number k.



-22- 
‘Subsequently, the "cloverleaf" buoy was 

_ 

developed 

(Cartwright and Smith 1964, Ewing 1969) enabling 
_ 

the polar ~ 
distribution to be calculated including terms up to cos 49 and sin 46,‘ 

still however with the same assumption regarding the distribution of 

x (5, m) with [5]. 
The method utilized in the present analysis is based 

initially on the theoretical work of Barber (1963) who described the 

manner of obtaining a full three4dimensional "(or wave-number 

frequency) spectrum X (kx, ky, m) from an array of wave staffs. 

The spectrum, however, is masked by the sampling window N (or transfer 

function) of the array
‘ 

(kx, k xobs y’ w) 
= If x (kx - 2,‘ky - m, m) w.(2, m) an dm 

This window will generally be extremely confusing (e.g., see figure 

4.2) and the information content (degrees of freedom) will still be 

limited by the number of available astaff separations as indicated 

above. Nevertheless, this procedure was implemented by Garrett (1970) 

. with an array of nine wave staffs, but little quantitative information 

could be obtained because of the masking window and the limited number 

of wave staffs used. The method which we have adopted is an extension 

of the work of Barrett (1970) with post processing of the masked 

Barber spectrum to obtain the underlying true spectrwm. The method 

adopted for obtaining the true spectrum (described in detail below 

§4.2) with the restricted .information available is to choose 

objectively, by computer algorithm, the locations at which directional 

energy is observed to be. The anplitude of the spectral energy 

density is then obtained by a least squares fit to the observed masked 

wave-number.spectrum. A consequence of this method is that confidence 

limits for the estimates arise naturally from the fitting process. 

Since this~nethod was finalized, a number of papers have 

been published suggesting methods of analyzing wave staff records to 

obtain directional spectra. For example, Davis and Regier (1977) 

include an .extensive discussion of the criteria for array and 

processing design. However, the main thrust of their argument seems

~

~
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: 

to be (obtaining optimal results «from -relativelyg-sparse, data. 

‘ Comparatively little. attention was paid therefore to computational 

j 
efficiency and in their companion paper (Regier and Davis, 1977) they 

* consider only two-dimensional spectra (satisfying ‘the linear 

dispersion relationship) obtained from an array of six wave staffs. 

1 
Bergman (1979) proposes both an iterative and a least squares approach 

‘ to establishing the polar distribution which is similar in approach to 
’ that adopted here in the sense that by identifying the location of the 

f energy an improved -representation of the distribution can be 

(iiobtained. However, no attempt is made to suggest methods of either 

estimating the dependence of Xlon lg] or of obtaining confidence 

limits fran the estimates obtained. Rikiishi (1978) proposes a direct 

method for analyzing two-dimensional spectra and considers the case 

m2 = mg |§|. Although his method appears to rely on a correct choice 

4'of a, he proposes a test (the detection of wave energy in the opposite 
2 

quadrant from the major energy concentration) which 'might' enable a 

to berdetermined iteratively. However, this procedure does not allow 
” for the possibility of energy being located at both |§| 

= m2/g and |§| 

- = l/2 Q 2/g as would be expected for a Stokes wave. 

To summarize, the method adopted for obtaining estimates of 

the directional spectra (described below) seems to compare well with 

other nethods suggested both before and since its conception. Its 

advantages are: 
(i) the slack . of an assumption about the location and 

distribution of directional energy, particularly with 

respect to |§|. _ 

(ii) the availability of confidence limits for the estimates. 

4.2 The Moqjfied Barber Method 

All methods of obtaining directional spectra rely on the 

important relation (2.21) We first carry out the time Fourier 

transfofim of (2.21) to get the wave-number spectrum x_(k, mo) at a 

given frequency mo. For simplicity, we will drop the reference to a 

:-fixed frequency mo in the following. Thus X (5) means X (k, mo).



xiu_<> (2n)"JI o (5) e dz: (4.1) 

Following Barber we now introduce the assumption that the wave field 

is invariant with respect to placement in (X, y) space. provided that 

the length T of the time average is sufficiently long. Thus two wave 

staffs placed at fij and 55 will provide an estimate for
4 

o‘( ‘I I 
Ix \/ 

II 
'0 

W’
A X I I s.’ 

1 j 
"j ‘i 

. 

‘ 5 

J5: p(B -3) = (4.2) 
1' 3 

T’ 

where ai is the Fourier transform 

a‘ = Il<<§..t>e'“”‘dti (4.3)
1 

Using these estimates (4.2) for p in (4.1), we obtain the observed or 

raw Barber wavesnumber spectrum. 

2: 
not = 2‘? (:1) exp (-1 5.3‘) 

i 

(4.4) 

where the r are the separations B_ - B , p is known and 3'(r ) is the 

average of $11 the estimates p13 for p it the point 

('1 
ll 

.13

I 
‘T

~

~

~
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9 In figure 4.1 "is plotted a contour map of a typical 5(5). Note 
( 

(i) that negative values occur (this is unphysical) 

M_(ii) 5(5) is periodic outside the region 

-11 < kx'< 11' 

where kx is the x component of 5 and ky the y 
component. This is 

because the 14 wave staffs are separated‘ by Inultiples of one 

metre in the x and y directions. Thus replacing-3 by 5 + Znj or 

+ Zn; in the wave-number spectrum does not effect the observed 

o‘3. 

(iii)there is energy outside the circles k = m2/g corresponding to the 

frequency limits w1, w2 of the band being considered.
I 

w Now as indicated above, the distortion introduced by the incomplete. 

information for 3([ ) (the 14 wave staffs yield only 165 independent 

correlations) can be represented by means of a masking function M 

a (9 = H X(|_<1)M(|_<-'_<1)d2!51 (4.5) 

where 

M (5) = 2 exp (-1 I5-I: ) 
(4.6)) 

2. 1!. 

In figure 4.2 will be found a contour map of the masking 

function (by definition M (5) is real). It will be noticed that: 

there are negative areas explaining the negative areas in the raw 

spectrum; the prominence of the two bands along the kx and ky axis 

(related to the arrangement of the wave staffs along orthogonal axes); 

“ the value of M (I5) at 5 = 0 is larger than values elsewhere; and 

finally the‘ resolution is 0(n/xmax) and 0(n/ymax) in the x and y
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directions were xmax and yha* are the maximum separations of. the 

wave staffs in the x and y directions respectively. 
with "the aid of figure 4.2, the raw wave-number spectrum 

(figure 4.1) can be roughly interpreted and this is the procedure 
adopted by Garrett (1970) (however with fewer wave staffs). This is 

not an acceptable procedure however if any systematic analysis is to 

be done. It is therefore necessary to invert (4.5) to obtain X (5) 

directly. 
The method adopted was to assume that X(§) took the form 

x (5) = 
mil Em 

5 (5 - gm) ( 

(4.7) 

where the 5m are a set of locations (m < 165) chosen using the 

algorithm described in the appendix. The Em are Chosen On the basis 

of a least squares fit to the observed wave-number spectrum. 

M 7 

3--{ II[z(I_<)-Z emu 5(|g-|5m)M.(|§-|§1)d2|51]2d2|5}=0 
aem D 

_ 

m=1 - (4.8) 

in the region 

D: -1T<kx’g 

The cross products such as M (5 - 51) M (5 - 50) (4.9) 

whose calculation is normally required by a least squares fit, would 

prove lengthy. However, as shown in the appendix, the calculation can 

be considerably simplified, and the least squares fit reduced to the 

set of formulae
T

~

~

~
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if am) = 
)1 
5mm (5,) 

- 
g,,,) 

(4.10) 

V 

these being merely the requirement that the residual be zero at the 
‘ chosen locations 5 . Further details and the method of estimating the 

sensitivity of thetinversion may also be found in the appendix. 

In figure 4.3 is graphed the result of inverting the raw 

wave-number spectrum of figure 4.1, 32 points were used for the 

inversion and they explained 96% of the variance. Typical estimates 

for the standard deviations of the inverted spectrum amount to 10% of 

the peak height. Note that the algorithn for choosing the location km 
is not biased towards any particular region, therefore the compactness 

‘ 

of the km and the general confinement within the linear dispersion 

)1 bounds, illustrate the power of the method. 
The steps in this process of recovering the detected wave- 

number spectrum X (k) from the raw (or observed) spectrum 5(5) 

are illustrated in the composite figure 4.4. This figure was produced 

by analysing simulated surface elevation time series corresponding to 

a monochromatic infinite crested wave train travelling along the y 

axis in deliberate and flagrant disregard of the dispersion relation 

(1.1), Such data should yield delta functions in both frequency and 

waveénumber space. Figure 4.4 shows the frequency spectrum, the raw 

(observed) wave-number spectrum, the array transfer function and the 

detected wave-number spectrum. It can be .seen that the raw wave- 

number spectrum looks rather like the array transfer function but 

displaced from the origin along the y axis. In fact, the raw spectrum 

is a convolution of the single delta function wave-number spectrum 

with the array transfer function. The inversion process recovers the 

delta function (within grid resolution) and accounts for 99.88% of the 

energy in the prescribed spectrum.
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4 Note- that the wave-number spectrum whatever its shape is 

always represented by a set of delta functions. These delta functions 

may not be located arbitrarily but must be at one of a cartesian array 

of points 

km = (4.11) r dkxj + S dkyg 

where r,s are integers and 

,2." _1 _ .. .2." . 

' _ 
dkx ‘ “»"_y 

‘ I'Z’°x"Z8"+"l')' “‘ 

the maximun staff separations in the x and y directions being 20 and 

28 metres respectively (figure 3.3). Hence, energy at sub grid 

spacings will be analyzed imperfectly by the inversion method. In 

figure 4.5 may be found the result of analyzing a simulated delta 

function wave-number spectrun with the delta function placed halfway 

between the nodes (4.11). In this case, the detected energy is spread 

principally to the four surrounding grid points. It will be seen 

»that, although the peak is wider, the analyzed wave~number spectrum is 

still reasonably compact and positive definite (94.6% of the variance 

was explained by the analysis). 
Finally in the region D there are 2337 locations Em and only 

a maximum of 165 possible correlations for the analysis to use. This 

is not a problem for the lower frequencies when the expected wave- 

number is small, however, for the higher frequencies it is necessary 

to consider, instead of delta functions, weighted collections of delta 

functions
' 

(4.12) 

at restricted sets of locations 5 (see the appendix for details). 

This reduces the number of free parameters necessary in» the least 

squares” fit and hence decreases the sensitivity of the fit and

~

~

~
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increases thefipossible area covered. ‘Delta functions have been used 

* in preference to pyramidal or obloid functions because of the 

'1 increased resolution available with the former. Also the implied 

smoothing outlined above can be justified on theoretical as well as 

empirical grounds as follows. 
For the higher frequencies the correlations obtained at 

large separations 5, will be less significant than those at small. 

Therefore, in the manner of Hamilton, Hui and Donelan (1979), to 

obtain a best fit raw wave-number spectrum, we should weight the 

’~ larger separations less than the smaller i.e. 

5 (I5) =E w (|:,|) 3 (5,) exp: (- its-5,) (4-13) 

where w(|r£|) are the weights decreasing with increasing rl. This 

_ 

weighting is known to be equivalent to smoothing 5(5) hence less 

‘resolution will be available in fact and (4.12) is justified. 

.The method‘ of analyzing the‘ wave recordings adopted here 

produces compact wave~number spectra which should not be systemati- 

cally distorted by the array geometry and error estimates which will 

be a function of the orientation. The error estimates are available 

from the least squares fit as standard deviations on. the point 

estimates Em (see the appendix). 

4.3 . ,Some Sources of Error 

A further potential source of error (aside from the limita- 

tions of the analysis nethod) is the placement of the wave staffs. 

The wave staffs were designed to be placed at locations which were 

separated in the x and y directions by exact multiples of 1 metre. 

This length determines the Nyquist limit (tn m'1) of the array. On 

recovering the staffs, their locations were checked and some 

significant errors were detected. The designed and actual coordinates 

may be found listed in table 4.1.

~
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.~.TABLE 4.1 

X coordinates y coordinates 

Staff [Design » Actual Design Actual 

1 15 15.2 0 0.0 

2 1'4 14.2 o 0.0 

3 _ 
10 10.2 0 0.0 

4 3 3.0 
’ 

0 0.0 

5 o 0.0 o 0.0 

6 -3 -3.0 0 0.0 

7 -5 -5.0 0 0.0 

8 ,0 0.0 -15 ’ -15.16 

9 0 0.0 ~14 -14.13 

10 0 0.0 -11 -11.13 

11 0' 0.0 e 5 - 5}03 

12 0 0.0 6 5.97 

13 0 0.0 11 11.11 

14 0 0.0 13 13.11 

we were able to test the effect of these misplaced staffs by 

simulating a wave whose wave-number spectrun was a delta function at a 

location corresponding to a data point in the detected wave—number 

spectrum. Thus for‘ the designed staff locations, the correlation 

C(50)-between the transfer function (located at this wave~number) and 

the observed wave-number spectrum W” (5) 

C(50) inn; - 5o)pv° <9 I { [M (5) v° (9 1’ P/2 

would be 1.00. We observed the following values.

~

~
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TABLE 4.2 

I 
_ 

- 

L" 

_ 

Ag 
" ' 

E0 ‘ "dEyJ C(50) 

0.352 0.999 
0.560 0.995 

9 0.993 0.988 

18 ' 2.01 0.95 

27 * 

. 2.95 
9. 

0.89 

Since the anaiysis is stopped after 92% of the variance is 

explained, 
source of error at wave-numbers of 2.5 m 

applies only to the field data. 

-.1 and higher. 
it can be seen that the staff piacement errors must be a 

The error
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5. SUMMARY OF DATA 

_

I 

The field experiment was designed to gather sufficient data 

to describe the directional spectrum of wind-generated waves under a 

variety of natural conditions. A suitably nondimensionalized 

description of the directional spectrum might be expected to be 

sensitive. to nondimensional numbers descriptive of the general 

water-air interfacial conditions. It is difficult to conceive of a 

wind-wave generating .process which is unaffected by the relative. 

speeds of wind and waves; thus the parameter U/c, relating wind speed 

“--to wave phase speed, was regarded as the primary ‘sorting’ variable in 

‘classifying a population of wind-generated wave spectra. Inasmuch as 

the wind profile and the intensity of turbulence (hence the pressure 

fluctuation spectrum) play an important role in the wind-wave coupling 

problan and are strongly affected by the stability of the atmospheric 

surface layer, it would seem that a suitable nondimensional index of 

stability would be an additional parameter against which to examine 

the behaviour of the directional spectra. In this paper, we use the 

h~ bulk Richardson, Rb as a convenient measure of atmospheric 

stability. 

Zg (Ta - T”) 
R = - 

b 
I 

(237 + Ta) U2 

where U and Ta are wind speed and air temperature evaluated at 

height Z; Tw is the water surface temperature. Finally, the degree 
4 

of nonlinearity,.the tendency towards whitecapping (instability) and 

the strength of wind-wave coupling are all, to some extent, reflected 

in the wave slope S. 

we have chosen to classify the data in terms of the 

atmospheric stability Rb. an average wave slope S and the parameter 

U/c, relating wind and wave speeds. Other nondimensional parameters 

may be’ constructed from the ‘variables of the overall flow and

~

~

~
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geometry, but they are either virtually constant throughout our 

measurements or unlikely to influence that part of the directional 

spectrum which is accessible to our observational and computational 

, 
arrangements. 

Clearly, the establishment of the behaviour of the 

directional spectrun in the three-parameter space defined above would 

require a large number of measurements of the directional spectra. 

This led to the design of wholly automatic digital data logging for 

I 

the field site. However, since each directional spectrum would be 

calculated from time series of 14 wave staffs sampled at 5 Hertz for 
" 14 to .60 minutes, some preselection of recording times would be 

required, to limit the collected data to a manageable quantity. Our 

approach was to use a mini-computer to control the data logging and to 

decide when to gather data suitable for the computation of directional, 

spectra. The details of the data logging system are described by 
' 

Birch et al. (1976), but a brief summary of the relevant aspects is 

warranted here. From May 1976 to July 1977, the field site was in 
1' 

nearly continuous operation. During most of that time, recordings 

were made of one-minute averages of wind speed and‘ direction, air 

temperature and humidity, water temperature and currents, and mean 

square wave height. These averges were computed by the miniecomputer 

using the raw data sampled at 5 Hertz. In addition, the fluxes of 

momentum, heat and moisture, and other cross products of the 

atmospheric turbulent fluctuations, were accumulated over 20 minutes 

and recorded. In this way, a continuous record was kept of mean 

parameters and fluxes of the air-water interface. Every ten minutes 
" the‘ average}. wind speed and air temperature over the previous ten 

minutes were computed and, if they differed by‘ a/preset amount from 

stored reference values, samples, taken five times a second 

sequentially from each of the channels mentioned above and all 14 wave 

staffs, were directly recorded for later processing. This mode of 

recording of the instantaneous time series for later spectral 

analysis, continued for one hour, after which the system returned to 

its normal mode of data logging of the one-minute averages. Ten
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minutes after this, the reference wind speed and air temperature were 

updated, and the search for a further change in the wind speed or air 

:temperature continued. It can be seen that this simple method would 

reduce the collection of raw _data during peiods of steady winds, 

thereby avoiding repeated realizations of the wave field under very 

similar overall conditions. By the same token there was, of course, a 

bias towards changing conditions, but not an overwhelming one since it 

was not the rate of change of the wind speed or air temperature which 

initiated the ‘fast’ node but.rather the change itself which may have 

occurred over an hour or several days. 

The net product of this scheme was a series of hour-long 

time series recordings over a wide range of the three parameters of 

interest. In this paper we are concerned with characteristics of the 

directional spectrun at steady state. There were 84 runs analyzed and 

the overall conditions prevailing during these.runs are summarized in 

the histograms of figures 5.1, 5.2 and 5.3. The runs are grouped into 

arbitrary classes of the ‘whole spectrum equivalent‘ values of the 

three parametrs U/c, Rb and S. That is, U/c is referenced to the 

.. peak of the spectrum and the wind at 10 metres height U10/cp and S 

is the "significant slope" as defined by Huang ét al. (1981). 

There were seven laboratory runs and these are separately 

listed in table 5.1 with the -values oft U10/cp, S and »Rb also 

shown. The range of Rb for these cases is small as the wind—waye 

flume is not equipped with temperature controls of air or water.‘

~

~

~
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‘TABLE 5.1. SUDHARY (I-' LABORATORY, DATA 

Symbo1 v+ su 
_ 

6 :2 'U/c s R 
p 9 - b 

Units m/s m/s rad/s cmz % 

Height (m) 0.26 10 10 0.26 

Fetch (m) 49.3 
3 

49.3 53.5 53.5 53.5 53.5 49.3 

Run
A 

2 3.29 '4.53 15.0 0.19 7.5 1.6 +0.011 

3 4.30 6.36 11.5 0.55 3.5 1.6 +0 004 

5 7.79 11.94 9.0 3.37 ’11.3 2.4 +0.001 

6 ~ 9.46 15.40 3.4 5.54 14.0 2.7 +0.001- 

7 10.37 13.33 7.7 9.56 15.9 3.0 +0.001 

29 3.24 4.49 14.9 0.19 7.2 1.6 +0.007 

, 
30 21.33 7.0 20.03 16.5 3.6 +0.001 .12 . 00 

-A '" '1 4 
-I - . 

+vv is the measured wind speed
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'6. 
I 

TYPICAL DIRECTIONAL SPECTRA 

6.1 field Nave-Number Frequency Spectra 

In this section, we present and discuss some representative 
wave-number spectra calculated from wind-wave data recorded in Lake 

Ontario during 1976-1977. In all these calculations, the wave fields 

are assumed to be stationary and homogeneous. 
In each of the two cases to be presented (figures 6.1 and 

6.2),. we show a frequency spectrum and ‘a sequence of wave-number 

spectra X(k) for a frequency band Aw as plots in the wave-number 
‘space k at various frequencies. In these plots, the solid circles 

represent the limits of the deep-water dispersion relation (1.1) for 

infinitesimal waves corresponding to the limits of the frequency bands 

analyzed, whereas the broken circle corresponds to the (energy) 

centroidal frequency of the band. 
All the waves analysed have wave lengths of the dominant 

wave less than twice the water depth at the tower (i.e. less than 24 

m) hence, finite depth effects ‘on the dispersion relation are 

negligible. within the resolution of "these ‘contour plots, higher 

harmonics of the dominant waves are not observed, but they are 

observed in the laboratory experiments as will be seen below. 

In figure 6.1 near the peak frequency, the energy is very 

concentrated and lies between the two-solid circles, indicating that 

the linear-dispersion relation (1.1) is obeyed for these waves which 

are near full development, U/cp = 1.5. At higher frequencies. the 

energy density appears slightly inside the inner solid circle. This 

could be due to the local Stokes effects of finite-wave slope. As 

discussed in §2, such effects can cause a departure from the linear 

dispersion circle by up to about 20%. Figure 6.2, on the other hand, 

corresponds to younger waves (U/cp = 3.1) l-€- 5370099? Wind 

generation near the peak frequency. It can be seen that in this case 

there is evidence of amplitude (finite slope) dispersion just above 

A 

the peak as well as at higher frequencies.

~

~

~
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, intermittency of the generation process. 

‘*«spectral peak_more than 1.15 times the water depth (1.1 m). 
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In a few cases (e.g. figure 6.3), it was observed that the 

energy density lies outside the larger—dispersion circle. This may be 

7 

explained by the presence of forced waves according to the theory in 
A 

§2. Actually, one should expect forced waves to be present much more 
We attribute this 

scarcity of evidence of forced waves in the directional spectrun to 

It was shown in §2 that on 

. removal of the forcing, forced waves instantaneously revert to free 

waves of the same wave length but with a sudden shift in the phase, 

.and hence, since the spectra represent averages over time, the free — 

waves should (as observed) predominate in the spectra. 

6.2 Laboratory wave-Number Frequency Spectra 

Nave data were also recorded in the wind-wave flume at CCIN 

using a 1/28th scale array of wave records in the same configuration 

as the tower. In no case was the wavelength of the waves at the 
There- 

fore, as for the field data, these laboratory waves are deep water 

waves. Wave-number spectra for a typical case (run no. 5) are shown 

in figure 6.4 at various frequencies. The frequency spectrum is 

narrow and the general features of the wave-number spectra resemble 

those in the lake with some very significant differences. Thus, for 

instance, whilst at the peak frequency (mp = 8.96) the wave energy 

is nearly on the linear-dispersion circle, for higher frequencies, the 

_ 

As we will describe 

in detail in §10, this is a reflection first of amplitude dispersion 

and then, at w/up > 1.8, of the appearance of bound harmonics. In 

these plots the lowest positive contour is 12.5% of the peak so that 

the relatively small free energy cannot be seen in (e) and (f). The 

coexistence of free and bound energy is seen clearly in (d). 

energy appears progressively inside the circle.



7. ‘POLAR ANALYSIS 

7.1. Introduction 

In §4 and the appendix, we described how it is possible to 

obtain a representation of the three-dimensional directional-energy 

spectrun in the form 

M L 
x (5) = 

fial 
Em {til vi a (5 - 

gm 
- d5_) } 

(7.1) 

where 

L

I 

£21 
HR = 1, (1 < L, M < 155) (7.2) 

and the dgz are vectors pointing to grid points 
clustered around dgz = 

0. For many purposes, (7.1) can be summarized adequately in the polar 

representation (2.25).
I 

. 

Because of the presence of noise at high wave—numbers in 

X (g,w), we cannot integrate over the entire range of k as implied by 

(2.25). Instead we make use of the fact that the energy in any 

frequency band clusters around a relatively narrow band of wave- 

numbers and proceed as follows: 

(i) If A is the width of the band associated with the corresponding 

frequency bandwith dw
‘ 

A ~ 291 (7.3) 
we 

then we set all values of Em to zero which do not satisfy 

||'.<...|-'<*|.s2° 
<7-4>

~

~
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where k* is the radius of the wave-number circle through the gm 
with maximun associated energy. This procedure is necessary to 

stabilize estimates for the mean wave-number E16) as described 

below. 

we assme that fitting erros in E1, E2 are all perfectly 

correlated so that if
‘ 

E3 ‘ 51 + 52 

then 

03 = 01 + 02 

where 01, 02, 03 are the standard deviations of the errors. 

We then project the energy density Em (positive values only) 

Aand the ieroth and first moments of the energy weighted by the 

"standard-deviation estimates om (say) obtained from the 

fitting procedure
T 

"hm = am Em Mlm = am Igmi an 

‘ 

on to a wave-number circle to obtain F(w,e), M0(e) and M1(e). 

(iv) 

(v) 

These quantities are then binomially smoothed until the half- 

height width of the influence of a single Em just exceeds 20'. 

The mean wave-number can then be obtained from 

15(6) = M1(e)/Mow) (7.5)
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F(m,6) and tie) are the two main quantities of interest, and may 

be found presented in figure 7.1. Also plotted are estimates of 

the standard deviation of F(w,6) (obtained in the same manner as 

the F(w,6) were obtained but using om instead of E...) and 

similar graphs calculated using any negative values which may be 

present. These latter represent an independent estimate of the 

errors. we have the further check that the total positive 

energy resolved should be close to the energy content in the 

frequency band. 

7.2 Parametric Representation 

Since the frequency spectrum ¢(m) is nost easily obtained, 

it is customary to represent the directional-frequency spectrun by: 

F (m,6) 
=' ¢(m). h(6) (7.6) 

It follows from (2.26) and (2.30) that 

Y me) do = 1 
-1: 

The nethod'of analysis adopted yields compact polar distri- 

butions of the energy. ‘Therefore, it is preferable that the represen- 

tations adopted for h(e) retain this quality. Previous representa- 

tions, notably the cos25(9/2) of Mitsuyasu et al. (1975) and later 

Hasselmann et al. (1980), were designed to represent directional 

spectra obtained in the form of a limited number of Fourier 

coefficients. These distributions are therefore not compact. In 

addition, double peaked distributions of h(e) were occasionally 

observed (there are theoretical grounds for expecting double peaks,_ 

In these cases, cos25(6/2) would, of course, be totally 

In figure 7.2 will be found a typical polar 
see §Z). 
inappropriate.

~

~

~
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“ distribution with cos25(Q/2) distributions superimposed. Also shown 

f is the distribution described in §11. The polar representations of 

2 Mitsuyasu et al. (1975) and Hasselmann et al. (1980), both deduced 

from buoys, appear to broaden too quickly with increasing m/%p. 
‘1 Possible reasons for this are discussed in §11. 

A simple similarity argument is advanced here as the basis 

for a parametric representation of the polar directional distribution. 
‘we consider only the high frequency side of the spectrun for 

which U/c > 1 and active generation is taking place. we also neglect 

any Stokes effect (a. function of w/mp where up is the peak 

frequency) and nonlinear wave-wave interaction. Thus the energy 

balance is between the wave generation mechanism and the energy 

dissipation, related to the limited-wave slope.
' 

i 

u F<w.e) o <«».e) 
g 

(7.8) 

where u is the fractional energy input rate due to the wind and D is 

the dissipation. We take u to have a 6 dependence given by Miles‘ 

(1957) theory 

u ‘lag:-‘-1 
" (7.9) 

where z is the vertical coordinate, U the wind velocity and zc the 

height at which 

U (zc) cos 6" = c V (7.10) 

thus assuming

~ 2 “a V

' 

u(z) = In ( 3-) (7.11) 
0.41 20 

we have.

~
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.u 
' exp [ 

(7.12) 
u, cos 6 

For the dissipation we assume that D is a function of the 

local energy density F(w,6) and the speed difference in the direction 

of the waves at soe height A. 

U(A) (cos e - c(w) 

7 

(7.13) . 

Thus, from dimensional arguments, we have 

4/5 4/5 
D “ F (U(A) cos 6-- c) (7.14) 

and hence from (7.6) 

+5 an (A/zo) cos BA/cos e 
4%‘ 

F 
‘ (cos 6 - cos SA)“ exp (7.15) 

where 6A is the half width and satisfies 

U(A) cos BA = c A (7.16) 

Note that the influence of g, the acceleration due to 

gravity on D is neglected since we assume that its effect is limited 

to specifying the total mean slope. 
‘

_ 

These arguments might seem reasonable, however the 

overriding physical objection to (7.12) is that it results in an 

unstable balance of energy and dissipation; increasing F lowers the 

dissipation relative to the generation. 

Nevertheless, we still expect the spectral width to be 

governed by formulae such as (7.15) which provides an excellent family 

of curves of the type. characteristic of observed and theoretical

~

~

~
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directional spectra. That is, (7.15) may take on the bell shape of 

various observed cosine distributions or the double peak which has 

.been suggested by Phillips (1957) on theoretical grounds and a variety 

f.of other symmetrical shapes. We have therefore fitted the observed 

. h(e) with functions f(6) of the form 

(cos (6 - ;)-- cos GA)“ . 
+5L cos 0A(1/cos (6-3)-1) 

exp (7.17) f(e) = 
_ ":oSA)q. 

where the four parameters A0, 3} 9A, L (= in A/Z0) are chosen so 

as to minimize the "unconfidence“ Ql where 

7J.(A0, a‘, 6A, L) = J” [ 
"(°).:_“_(.‘)]2 de (7.18) 

-M '—‘:?(e) 

' and 0(3) is the standard deviation of h(e) calculated as above. In 

figure 7.1 will also be found the distribution fitted from the family 

f(e). An example of a double peaked h(e) and corresponding fit may be 

found in figure 7.3. 
The presence or otherwise of a double peak in the spectrum 

depends both on the parameter L and the width 6A, - Thus zero 

gradients of the shape functions occur at 6 = 0“ and 

.“_"_5_.‘2..=3L(1:./1-$1) (7.19) 
cos GA 

I 

L* L 

where L* = 16/5 is a critical value for L such that if L < L* no 

additional roots other than 6 =0, occur whatever the value of 6A. 

For L > L* the number of zeros depends exclusively on the width 6A. 

For BA close to 90° two pairs of zeros will occur and there will be 

a triple peaked distribution. For BA in an intermediate range only
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twin peaks will occur, and ‘for BA even smaller only a single_peak 

will be possible. In figure 7.4 will be found a plot of the various 

regions in the L, BA representation with examples of typical 

spectral shapes. It can be seen that thi.s representation gives a 

considerable degree of flexibility in the polar distributions 

available for fitting to the experimental data.
V

~

~

~
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8. 
‘ THE FREQUENCY SPECTRUM 

In this section we examine certain characteristics of the
9 

frequency spectrum. we restrict our attention to cases in which there 

was no swell. In fact, Lake Ontario is smaller than typical 

meteorological systems and the wave spectra are usually uni-modal wfith 

little or no evidence of swell. 
Figure 8.1 illustrates the distribution of the data sets on 

a plot of r.m.s. wave height versus peak period in which it can be 

seen that the laboratory and field data are nearly contiguous in this 

sense. It is worth noting that the directional spectra were derived 

from 14 wave staffs, while the frequency spectrum for each case is an 

average of the 14 individual spectra from the separate staffs. 

Kitaigorodskii's (1962) similarity argument on the scaling 

of fetch-limited spectra has provided the basis for a consistent 

description of several sets of field observations and tank experiments 

(Pierson and Moskowitz 1964, Mitsuyasu 1968a, 1969, Liu 1971, 

Hasselmann et al. 1973,» Ramamonjiarisoa, 1973). 

Kitaigorodskii‘s scaling law is strong support for the concept of the 
The success of 

sflnilarity of fetch development of the wind-generated gravity wave 

spectrum, which can be completely described by a length scale 

associated with the fetch, and a velocity scale associated with the 

source of energy - the wind. Such a description, however, is limited 

in its practical usefulness to situations in which the fetch is known 

and the wind is relatively constant along the fetch. In the general 

case of winds variable in speed and direction, a description of the 

parameters of the spectrun in terms of local conditions would be very 

valuable. Therefore, instead of the non-dimensional fetch 7 = xg/U2, 
we lhave chosen to relate the spectral parameters to Uc/cp, the 

ratio of the component of the 10 m wind speed in the direction of the 

waves at the peak of the spectrun to the phase speed of those waves. 

r 
In figure 8.2 we have collapsed the frequency spectra for 

all the. cases on to axes normalized by the magnitude of‘ the peak
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spectral density and of the "peak frequency. The spectra have been 

grouped into classes by the parameter Uc/cp. The standard errors 

of the mean, in each band of width 0.1, are indicated at the top of 

the figure. The position of the vertical bar indicates the average 

value of (.0/mp in each band. It appears that there is a pronounced 

narrowing of the spectra with increasing Uc/cp; The smooth 

variation in width and otherwise smooth variation of the spectra 

support the idea that wind-generated spectra may be described using a 

similarity framework such as proposed by Kitaigorodskii (1962) and 
1 

applied with dramatic effect by Hasselmann et al. (1973). 

8.1 The Rear Face 

It is generally agreed that wind-wave spectra have a very 

sharp cut-off at frequencies below the peak, i.e., on the forward 

face, and a somewhat more gently sloped rear face. Current practice 

in describing wnnd-wave spectra owes its origin to the pioneering work 

of Phillips (1958). He argued that the shorter waves on the rear face 

of the spectrum are limited in amplitude largely through breaking of

~

~ 
their steepest members. Phillips‘ argument, based on dimensional- 

considerations, suggests. that the energy density of the rear face of 

the spectrum should be inversely proportional to frequency to the 

fifth power - the so-called ’m'5 power law. He further argued that, 

although the wave energy in a wind.-wave field may grow with time. or 

down fetch, the growth should be largely by the development of the 

longer waves below the peak without much change to the shorter waves. 

That is, the rear face of the spectrum could be described by aw'5, 

where on is a universal constant. The first attempts to test Phillips’ 

hypothesis (e.g. Burling 1959, Kinsman 1960) supported the idea of an 

"equilibriun range" on the rear face of the spectrum with an «F5 

behaviour.‘ Fore recently, however, both the constancy of on and the 

«V5 frequency dependence have been called into question (Longuet- 

Higgins 1969, Hasselmann et al. 1973, Misuyasu et al. 1975, Garrett 

1969, Ramamonjiarisoa 19.73, Toba 1973, Kitaigorodskii et al. 1975, 

Forristall 1981, Kahma 1981). ~
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' 

Longuet-Higgins (1969) demonstrated that a is related to the 

wave age. Hasselmann et al. (1973) in a careful study of fetch- 

limited waves related a to the non-dimensional fetch 3? = xg/U2. In 

these studies the power law which described the rear face of the 

spectrum varied between -3.5 and -5.0. 

is a not a constant but the frequency dependence_of the rear face may 

also vary considerably. 
Accordingly, as a starting point in describing our spectra 

we examined them to attempt to determine the characteristics of the 

In the "energy containing" region of the 

spectrum, i.e., spectral levels greater than 1% of the peak, the rear
a 

rear face of the spectrum. 

face of the spectru is well described by ‘an m’ 

illustrate the slope of the.rear face the spectra have been multiplied 
power_ law. To 

by m“ and normalized by the average level of the spectral estimates 

‘ 

multiplied by w“ in the frequency region 1.5 up < m < 3.0 mp (see 

figure 8.3). It is clear than an m'" power law is a good description 

= of the rear.face of the spectrun in the energy containing region. For 

l«c0mpariSon«m'5.and w’3apower laws are also shown. Although harmonic 

peaks are clearly evident in the largest UG/cfi spectral group, the 

mean spectral level is in good agreement unth the w'” line. Both the 

laboratory and field_data support an w'“ description of the rear face 

of the spectrum in the frequency region 1.5 up < m < 3.5 up of the 

Although the result we have 

quoted is simply an empirical one, there is theoretical support for an 
m'“ equilibrium range in the work of Zakharov and Filonenko (1967). 

It is not our purpose here to try to reconcile our observa- 

wind-generated gravity wave spectrum. 

tions with the enormous literature of wave spectra which has gone 

before. rue emphasize, however, that we have confined our attention to 

the energy containing region of the rear face of the wind-generated 

gravity wave spectrum, because it is here that a simple and accurate 

spectral description finds »frequent and valuable practical applica- 

tion. _

a 

The establishment of .a power- law appropriate to the rear 

face of the wave spectrum is often troubled by the possibility of 

It would appear that not only .
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Doppler shifting of the spectral estimates by currents (Kitaigorodskii 

et al. 1975). Tidal currents in Lake Ontario are insignificant in 

this context, and the wind-driven and thermal circulation produces 

upper layer currents which are generally less than loicm/s (Simons 

1974, 1975). The field spectra have been analyzed in 15 frequency 

bands with lowest and highest centered on 0.044 H2 and 1.139 H2 

respectively. Therefore the ratio of_phase speeds to current speeds 

is 13 or greater and the calculations of Kitaigorodskii et al. (1975) 

indicate that the oppler shift does not materially alter the slope of 

the rear face. Furthermore there is no reason to suppose that the 

direction of the currents and waves are correlated. In fact the waves 

tend to be offshore or onshore (prevailing wind directions) and the. 

lake currents are inclined to be shore parallel (topography steered). 

Nonetheless, we have indicated (figure 8.3) the maximun distortion to 

‘the observed w'” slope based on Kitaigorodskii et al. (1975) for 10 

cm/s currents with and against the waves. we have used their results 

for the cosine squared distribution since (this is —in reasonable 

with the directional spread (§11) at high w/up Where the 

Doppler shift might be important.‘ It appears that the effect on the 

spectral slope_of the ambient currents is not significant in these 

lake data, and of course does not exist in the laboratory tank data. 

Doppler shifting due to- surface wind drift may, in some 

instances, be an important factor. The combination of short waves and 

strong winds is particularly prone to this source of error,.since the 

current is strongly sheared near the surface and is about 2.5% of the 

wind speed or 0.55 u* (Wu 1975). In §10 we _demonstrate that in 

strong surface shear the short waves appear to be advected at a speed 

corresponding to the current speed at a depth 0(1/k). An approximate 

correction for the wind drift (field data) is indicated on figure 8.3 

based on an average wind speed of 10 m/s and the wind drift profile 

inferred by Donelan (1978). It can be seen that this correction is 

only of importance in these field data for w/up > 3. Furthermore 

correcting for this source of error would make the spectral slope 

slightly more negative than w'“ for m '> 3 up and essentially

~

~

~



unchanged for? m < 3 top. 

e excellent description of the rear face of these lake spectra in the 

; energy containing region 1.5 mp < u < 3 mp. 
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' u Evidently an on’ power law provides an 

The laboratory spectra show a tendency to increase slope 

. above to/mp =A3.2, which is probably due to wind drift currents. We 

will explore this further in §10. However we remark that it is 

difficult to assign a slope to the rear face of the spectrun of the 

.; strongly forced (U/cap > 9) laboratory waves, because of the presence 

., of pronounced harmonic peaks (see §10). Moreover we are attempting to 

find a general description for the’spectra of natural waves, and are 

using the laboratory dat-a only to extend the paramet-er space beyond 

that which can be realized with our field site. The rationale for 

.~ this is that the broader parameter ranges thus achieved help us to 

discern trends which may otherwise be buried in the noise - sampling 

and geophysical variability - of the field data. At the same time we 

remain fully cognizant that in many instances the differences between 

the conditions of the laboratory and lake are sufficient to prevent 

close quantitative,’ correspondence between them. 
‘Inasmuch as the rear face of both the laboratory and field 

spectra falls off as w‘” previous spectral shapes based on an m'5 rear 

face, such as the Pierson-Moskowitz (1964) ‘and JONSNAP (Hasselmann et 

al. 1973), are not appropriate. More recently, Huang et al. (1981) 

have proposed a spectral model in which the slope of the rear face is 

dependent on the "significant slope", an internal parameter of the 

wave field defined as the ratio of root-mean-square surface elevation 

to the wave lengthof the spectral peak. while the model of Huang et 

al. provides some flexibility in the slope of the rear face of the 

spectrum, it does not attempt to describe ' the peak enhancement 

independently - deemed so important in the JONSNAP data. Or 

alternatively, in describing the energy containing region about the 

peak of the spectrum, their model deviates considerably from the 

observed behaviour of the equilibrium region.
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8.2 The Parameters of the Spgectrum 

Our spectra are characterized by relatively consta_nt rear 

face slope (w"’) and pronounced peak enhancement (figure 8.3). 

Accordingly the JONSHAP spectral model, modified to account for the 
'0'“ rather than the W5 rear face, would seen a plausible candidate 

for describing these spectra. The modification consists of replacing 
m'5 by w'“ wp'1: 

-(to-u) )2 
°"P { *"2"*'2‘} 

5 
m 20 m 

¢(w) = agz m‘" w ‘1 exp { — .. ( .3 )“} - V p 
4 w 

(8.1) 

G = 
ca for w _<_ mp 

ob for m > up 

_The five parameters of this model are:‘ up, a._, 
'-1', ca, 

ob. We retain the JONSWAP designations: 

to is the frequency of the spectral peak. » 

up .is the equilibrium range (rear face) parameter. 
is the peak enhancement (over the Pierson-Moskowitz 

spectrum) factor. 

oa, ob 
' 

are peak width parameters. 

The dependence of the equilibriun range parameter a on 

Uc/cp is shown in figure 8.4. Uc = U cos a is the component of 

the wind in the direction of travel of the waves at the spectral 

peak. The ratio Uc/cp is a measure of the wind input and might be 

expected to affect a. In spite of the scatter in the field observa- 

tions, ,there is a clear dependence of a on Uc/cp. The field data 

suggest the following relationship between on and Uc/cp:

~

~

~
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. 0. .= 0,005 ( 
L“-_".5..°.)°-55 (8.2) 

cp 

Kahma (1981) argues strongly in favour of an w’“ rear face 

based on accelerometer buoy data from the Gulf of Bothnia. His 

- spectra are based on Toba's (1973) formulation and have an equilibrium 

range parameter which, converted to the form of on in (8.1), has the 

linear wind speed dependence indicated on figure 8.4 for the rangeof 

Kahma's data. Evidently, Kahma's on is not inconsistent with our data 

for the range in we‘, of his data. However it cannot be comfortably 

extrapolated to cover the wider range of our data. 

It is also apparent from figure 8.4 that the laboratory and 

field data are drawn from different populations. The sudden decrease 

in o. from the field trend (extrapolated) suggests a’ basic field/ 

laboratory change in the. mechanisms of generation or dissipation of 

the short waves on the rear face. The most obvious change. to the 

_ 

generating process is the constraint on the lateral variation of the 

wind vector «imposed bythe tank.wal_ls. , This would be expected to 

reduce the directional spread of the "saturated" waves simply because 

the mean wind meandering has been arrested. However there may be an 

additional reduction in the generation rate because of the reduced 

efficiency of mechanisms such as that hypothesized by Stewart (1974). 

with increasing wind, the wavelengths, group speeds, decay times and 

distances all increase thereby widening the area of influence of 

breaking at the side walls of obliquely propagating waves. This tends 

to narrow the directional spread and hence reduce a. As the winds are 

increased further the rapid inc-rease of the wind input overcomes the 

side wall effects and a increases quickly. 

Another possible reason for the initial decrease of the 

laboratory‘ (1 values is the effectnof wind drift on limiting the 

amplitude of the waves at breaking. Banner and Phillips (1974) have 

shown that the. wave amplitudes are reduced by (1 - q/c)2 where q, the
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wind 'drift,”is approximately 0.025 U. For the waves on the rear face 

at in = Zmp, this reduces to (1 - 0.05 U/cp)2. Initially this has 

the effect of reducing on with increasing U/cp. However, eventually 

the waves become too long for their breaking amplitude to be greatly 

modified by the thin shear layer at the surface and the effect of 

strengthened wind input dominates causing a to increase again. 

when the spectra are normalized with respect to the 

equilibrium range (figure 8.3), systematic changes in the height of 

the peak with respect to the parameter Uc/Cp are manifest. At 

very low values of Uc/cp the peak is actually below the 

equilibrium range in m~“¢(u>)~coordinates. In the terminologyof 

JONSNAP (Hasselmann et al. 1973), the "peak enhancement parar_neter" 7 

is graphed in figure 8.5. A systematic increase of ‘Y with Uc/cp 

is evident. This contrasts markedly with the JONSNAP result 

(Hasselmann et al. 1973) in which the values of Y derived from 

individual spectra were scattered over a range_of 6 with no significnt 

correlation with non-dimensional fetch.‘ _At values of Uc/cp less 

than unity, Y seems to be fairly constant at 2.2. However the peak 

value of the spectrum at full development (Uc/lcp = 0-33) differs 

from Pierson and Noskowitz (1964) by less than 40% because the 

equilibrium range parameter (figure 8.4) is only 0.0054 at Uc/cp = 

0.83 compared to the constant Pierson-Noskowitz value of 
0.0086. For 

the field data, the peak enhancement factor may be described by: 

UC 
2.2 for 0.83 < ?:.«.< 1 . 

Y = U 
" (8.3)_ 

u I 

2.2+7.7log1o(—c£.)' fo'r1_<_.é£<6 
- p p 

Theelaboratory data show a sharp increase in 1 to a maximum 

at Uc/cp = 11 followed by a sharp decrease at higher values of 

U/cps. ==Visual observations of the intensity of wave breaking inthe 

tank suggest the following general interpretation. Increasing the
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rate of windfinput raises the level of the spectrum generally. Energy 

accumulates most rapidly near the peak possibly because wind input is 

strongest there and the nonlinear wave-wave interaction processes are 

too weak to transfer energy to lower frequencies at the rate it is 

being absorbed by the wind. 

peak is so large that wave breaking acts strongly to limit the growth 
Eventually the energy density near the 

near the peak. The growth of the less steep waves on the rear face 

continues (and is perhaps enhanced, by the splashing caused by the 

breaking of the larger waves) and results in an increasing a, but a 

decreasing Y, since Y is, in effect, a measure of enhancement of the 

peak over the equilibrium range extended to the peak. Presumably at 

very high values of U/cp both a and 1, being limited by frequent 

breaking, will approach constancy. 
Supporting evidence for this interpretation is given by the 

behaviour of the bound harmonics (§10). At values of U/cp above 9 

the energy in the bound harmonics of the peak surpasses that in the 

free waves at the same frequency. This.implies rapid steepening of 
' the waves near the peak of the spectrum as U/cp is increased beyond 

9. 
'

‘ 

The spectral width parameters oa and ab (figures 8.6 and 

8.7) show no pronounced dependence on U/cp. In both cases most of 

the estimates fall between 0.1 and 0.2. we have taken 0.15 as 

representative of both cal and ab. Some of the scatter of the 

estimates plotted in figures 8.6. and 8.7 may be due to smnpling 

variability. ' 

8.3 Non-Dimensional Fetch and Energy 

Using the dispersion relation from linear theory for the 

waves near- the peak of- the spectrum, uc/cp is related to the 

JONSNAP non-dimensional frequency‘$'= up U/g by: 

mcOS¢
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where’ ¢ is the angle between the wind and the mean propagation 

direction of the waves at the peak of the spectrum. 

Figure 8.8 shows the dependence of non-dimensional fetch 2' 

on Uc/cp over five orders of magnitude in ii Field and laboratory 

data are nearly contiguous, but a power law (solid line) fitted to the 

field data clearly does not represent the laboratory results. The‘ 
laboratory data fall on a line (dotted) which is displaced upward and 

to the right of the power law representing the field data. Phillips 

(1977) has remarked that the laboratory and field data sumarized by 

Hasselmann let al. (1973) do not necessarily conform to the same 

similarity law and fitted a power law (shown dashed) to the field data 

only. The laboratory wind speeds are the equivalent neutral profile 

wind speeds at 10 m height using the measured friction velocities. 

Had we used the wind speed at a lower height, commensurate with the 

shorter wave lengths of the laboratory waves, the laboratory points 

would have been in closer agreement with the extrapolated field line 

of figure 8.8. However, the opposite trend would have occurred in 

figure 8.9, thereby demonstrating that no wavelength related choice of 

U(z) can reconcile_ the ‘laboratory and field data in terms of 

Kitaigorodskii's (1952) theory.
‘ 

The change in spectral energy density following the waves is 

described by the radiative transfer equation (Hasselmann et al. 

(1973): 

.__ + V‘ .__. = I + H + D 
at i ax 

where V} is the group velocity averaged over direction, and the 

right hand side consists of three sources: wind input I, wave-wave 

interaction N and dissipation D. 

For the conditions of their fetch—limited data Hasselmann et 

al. (1973) estimate that near the peak the sources are dominated by

~

~
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wind" input and wave-wave interaction; dissipation i.s important only at 

higher frequencies. However, in the much steeper laboratory data it 

seems unlikely that dissipation near the peak can be considered 
' negligible. In fact, at high values of U/cp Visual 0bS'eY‘Vati0n 

-— suggests that the waves near the peak of the spectrum are being 

dissipated by wave breaking. Evidently, the wave-wave interaction 

processes are too weak to transport the rapid wind input to lower 

frequencies; there is a pile up of energy near the peak and the 

dissipation is increased there. The net effect is that the peak 

-frequency is higher than it wouldbe if wind input and wave-wave 

interaction dominated the source function. Higher frequency, or lower 

phase speed cp, has the effect of moving the laboratory points to 

the right in figures 8.8 and 8.9. _ 
Figure 8.9 relates non-dimensional variance E’ (=;2g2/Uc“) 

I 

to uc/cp. The field data seem to be in excellent agreement with a 

power law dependence (solid line) on Uc/cp. Here again the 

. laboratory data deviate frompthe line, but the disagreement with the 

-‘*field:;datavxoccurs. atsomewhat higher. values of Uc/cp than in 

figure 8.8. . 

In figure.\8.9 we have indicated the range of U/cp covered 

by the JONSHAP data (Hasselman et al. 1973). Over this range their 

data is sufficiently scattered to cover the solid lines suggested by 

our data in both figures 8.8 and 8.9. In other words, the results of 

both sets of observat-ions (JONSNAP and this work) are consistent. 

However, the lines fitted by Hasselmann et al. to the JONSHAP data 

appear to have been biased away from those fitted to our data by the 

inclusion of l'aboratory‘data in the same similarity framework. 

8.4 Comparison with Other Spectra 

In figure 8.10 we compare the JONSHAP (Hasselmann et al. 

1973) «and Pierson-Moskowi_tz (1964) spectra with the spectra 

represented by (8.1). Two values of U/cp (4 and 0-33) 3'9 Shown 

corresponding to non-dimensional fetches of 102 (fetch-limited) and
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105 (fully-developed). The values of wind speed and fetch appropriate 

to these spectra (up = 2_.5) are respectively 15.6 m/s and 2.5 km 

(fetch-limited) and 3.2 m/s and 104 km (fully-developed). The 

Pierson-Moskowitz spectrun applies only to full development, and it is 

encouraging that the spectrum of (8.1), derived from fetch-limited 

data only and extrapolated to full development, is in good agreement 

with the Pierson-Moskowitz. At the other end of the scale of strongly 

. fetch-limted spectra, the JONSNAP spectrwn is in reasonable agreement 

with (8.1). However, the JONSHAP spectrum, extrapolated to full 
' development, ‘retains its enhanced peak and is therefore unable to 

relax to the broader peaked fully-developed spectrum. The differences 

between the JONSNAP spectrun and (8.1) hinge on the choice of the 

power law for the rear face of the spectrum. Figure 8.3 anply 

establishes the choice of m'“ for these data, and the much-reduced 

scatter in a and 1 relative to the JONSWAP results, coupled with the 

smoother transition frun fetch-limited to fully-developed conditions, 

attests to the appropriateness of the spectral description of (8.1). 

—. 8.5 i Equilibrium Level Versus wind Speed 

Although for most engineering purposes, knowledge’ of the 

spectrum in the energy containing region (1/2 < w/mp < 3) is 

sufficient, the rapid growth of remote sensing of the ocean surface 

has spawned a need for the spectral behaviour at short wave lengths 

(less than 1 metre). Pierson (1981) describes the use of a satellite 

’scatterometer for estimating wind speeds over the ocean. The 

excellent correlation, which he has obtained between ship-borne and 

scatterometer estimates of wind speed, suggests a strong dependence on 

wind speed of the energy in the very short gravity waves (2.5 cm). 

while the scatterometer responds to wavelengths somewhat shorter than 

those included in our field measurements, the changes in energy level
r

~

~

~
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" indication of the behaviour of the shorter waves. 

More direct, but perhaps less well documented, evidence for 

the wind speed dependence of the short gravity waves can be drawn from 

the normalized radar cross section 00. wright (1968) has shown that 

— co is proportional to the wave spectral density of the Bragg 

scatterers. For L-band radar (1.2 GHz) the surface wavelengths are 

a» about 25 cm. Neissman et al. (1979) have obtained a reasonable 

correlation between wind speed to the power 0.58 and do during a 

on hurricane, ..-:2-in} -which the waves would be almost certainly 
I 

. fetch-‘limited. Jones and’ Schroeder (1978) in a review article cite 

co dependencies on wind speed for L-band radar with power laws 

ranging from -0.3 to +1.54‘. 
The rear face of the spectrun (8.1) is described by: 

-u -1 ¢ (w) = u g2 m m ; m > 2m 
P 

g

P 

substituting for at from (8.2): 

91.45“) -0.45 w-’-o U 0.55 
p C 

(8.4) o (w) = 0.016 

Thus, for afixed peak frequency (up, the energy density at 

a given frequency to increases approximately as the square root of the 

wind speed component (Uc = U cos ¢). In terms of Uc/cp (8.4) 

c-an be written: 

cl ._ 

¢ (in) = 0.038 g 'm'" (F9. )°45 u (3.5) 
C C 

W 
Except during storms, open ocean conditions tend to 

approach full development with 0.83 3 U/cp < 1- Thus. under these 

conditions, 00 might be expected to be linearly proportional to wind ‘ speed .
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Evidently the available data on the radar cross section in 

the short gravity wave region are not supplemented by sufficient 
information on the wave field to allow testing of the relationship 
between 00 and o (m). However, the evidence which does exist 

appears to be ¢onsistent unth the spectral form given here (8.1). 
The fetch-limited result (8.4) reveals that, for a fixed 

wind speed, the energy density at a given frequency increases with 
increasing peak period Tp or increasing fetch. Since the spectral 

levels in the equilibrium region reflect a balance between wind input, 
3. dissipation and wave-wave interaction, any of these are possible 

candidates for an explanation of’ this result. In particular, the 

spectral form of nonlinear wave-wave interaction (Hasselmann et al. 

1973, Dungey and Hui 1979) indicates that as the peak moves to lower 

frequencies the rate of energy egress from the shorter waves is 

lessened. The nechanism of attenuation of short waves by wind drift 
and longer wave orbital velocities (Phillips and Banner 1974) would 
also tend to produce this effect, since the mechanism weakens as the 

S. long waves develop thereby becoming less steep. It is also possible 
that the wind input to a particular frequency on the rear face of the 
spectrum could be affected by its position in the spectrum; in 

particular, its closeness to the peak. 
Relation (8.5) suggests that a linear dependence of wind 

speed on 00, based on normal oceanic conditions, might underpredict 

the. wind speed in severe storms where Uc/cp might be appreciably 
greater than 1. See, for example, the huricane data of weissman et 

. al. (1979). 
By contrast, the energy density in the equilibrium range of 

the JONSNAP fetchalimited spectrum depends on U2/3 decreases with 

increasing fetch and, if extrapolated to full development, is 

independent of wind speed.
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.3 9. “ HAVE DIRECTION VERSUS HIND DIRECTION 

Both in7 the execution of steady-state fetch-limited 

I experiments and ’in the application of fetch-limited formulae in 

_ 

hindcasting, it is common practice to assume that the mean wave 
That this 

cannot be true in general is evident fran the fact that waves are not 

q 

strictly locally generated, but instead are the net result of their 

_ 

development along the entire upwind fetch. If, therefore, the 

gradient of’ fetch. about the wind direction is large one might 

reasonably expect the wave direction to be biased towards long fetch, 

where the reduced. generating force of the lower ‘wind component 

(U cos 6) is more than balanced by the longer fetch over which it 

: 

acts. In figure 9.1 the observed mean direction of the waves near the 
I peak of the spectrun is plotted against average wind direction. The 

straight line (dashed) is the line of perfect agreement wfith the wind 

: direction. when the.fetch gradient is small - wind directly offshore 

(-1205) or along the long axis of the lake (75°) - the wave and wind 

directions agree. Otherwise, the discrepancies can be as much as 

I, 50'. Certainly such differences call into question the validity of 

hindcasting techniques which disregard them. 
Initial attempts to use Kitaigorodskii's scaling law for 

non-dimensional frequency with fetch in the wind direction produced a 

much poorer correlation than that of figure 8.8. This supports the 

view that, unless the wind is blowing directly offshore from a 

straight shoreline, more appropriate parameters for similarity scaling 

are the fetch and wind component in the wave direction rather than the 

wind direction. The similarity relation of figure 8.8 may be written 

in terms of the peak period Tp: 

T» = M4 9-0.77 Uo.54 (cos e)o.54 xo.23 
P _ (9.1) 

where x is the-fetch in the wave propagation direction.
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Since the energy’ density at the peak of the spectrum is 

roughly proportional to T5p (Phillips 1977, figure 4.8), it is clear 

that the direction (e) which yields the largest value of TD from 

(9.1) will be the direction of approach of the waves at the peak of 

the spectrum.
_ 

For any wind speed U such that the waves are fetch-limited, 

the right-hand side of (9.1) (cos e.x°°425) may be maximized to 

yield the offwind angle 6 of approach of the peak of the spectrum. 

Running averages.of the geometric fetch at one degree increments over ‘ 

various windows from 10 to :30’ were computed and used to deduce the 
peak wave approach direction. The sensitivity to width of averaging 
window was not large as demonstrated in the inset to figure 9.1 for 

window widths of O and 60 degrees. The best agreement (solid line in 

figure 9.1) with the observed wave approach direction was achieved 
with window width of 30°, i.e. :15 degrees on either side of 6.
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7 1o. PHASE smaco 

Attempts to assess the behaviour of natural waves using 

laboratory tanks often run into some difficulty with the excess of 

steepness of laboratory tank waves over natural waves. This comes 

about because strong wind forcing is necessary to produce a reasonable 

‘ spectrum of gravity waves in the short fetches (<30 m) Possible in 

most laboratory tanks. The presence of harmonics can be seen in the 

powerispectra and the dispersion relation is typically as described by 

Ramamonjiarisoa (1974).. Spectra of natural wind waves, on the other 

hand, do not show pronounced harmonic peaks. In this regard, we were 

able to employ the longer fetch possible with our tank to produce 

waves which were reasonable facsimiles of natural waves. Compare the 

log-log frequency spectra of figure 10.2 and the dispersion relation 

of figure 10.1 for the natural waves of run 128173 (U/cp = 3.6) with 

those of the laboratory run 3 (U/cp = 8.5). On the basis of these 

two figures only, one would be inclined to group laboratory run 3 with 

the natural waves rather than with the steeper laboratory waves of 

runs 5, 7 and 30 (U/cp = 11.8, 15.9 and 16.5‘ respectively). It 

appears that laboratory experiments in large tanks can produce results 

which are contiguous with observations in nature in some respects, 

though not all (see §8). 
In this section we explore the dispersion relation of waves 

in the laboratory and in the field. we make. use of "the greater 

statistical reliability and accuracy of the laboratory measurements to 

assess directly the significance of bound harmonics of the steep waves 

near the peak. Extending these results to the field, we attempt to 

provide a coherent picture of the dispersion relation for 

wind-generated waves in field or laboratory. 

10.1 'Average' Phase Speed" 

Having gained access to the wave-number frequency spectrum 

X(k, u), we are able to examine the phase speed characteristics of
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‘“'wind'-generatedv gravity waves ina direct way. 

a 
The phase speed of any 

frequency component is .defined by c(w) = m/k. Therefore, we may 
examine the average phase speed of any frequency component, ml by 
obtaining an average wave-number k(w1) from X(|5, I91) 

_ H k x (l_<.«-u) dk do 
km) = ————--——--——-— no.1) 

If x (_k,m1).dk as 

Calculations of the phase speed performed in this way are_ 
shown in figure 10.1. They are in ascending order of U/cp. The 

lowest two are derived from field data, the rest from laboratory 
data. The hyperbola (solid line) represents the dispersion relation 
given by linear theory: c = (9/k)1/2. At the lowest value of 

U/cp the wave field is almost fully developed and.the waves at the 

peak are in obedience of the linear dispersion relation. However, at 

somewhat higher frequencies than the peak, the measured phase speeds 

are in excess of thetheoretical. ~- In all but the lowest value of 

ll/c-p the measured phase speeds near and above the peak are in excess 

of the theoretical phase-speed. The deviation from ——the theoretical 

value increases steadily with U/cp,‘ until at the highestvalues of 

U/cp the phase speed at twice the peak frequency up is about equal 

to the phase speed at the. peak.’ As already noted in §6.2, this 
behaviour is due to the presence of bound harmonics as reported 

previously by Ramamonjiarisoa (1974), Lake and Yuen (1978) and 

Mitsuyasu et al. (1979). Plant and wright (1980), on the other hand, 
find that their observed deviations from the linear dispersion 
relation were best accounted for by Doppler shift due to wind drift. 

Komen (1980) has calculated the expected phase speed changes 

based on a balance of free and bound waves. His results are qualita- 

tively similar to figure 10.1. 

Apart from the work of Plant and Hright_(1980), previous 

laboratory phase speed measurements have been based on two-point 
correlations of surface intersecting wave gauges. Longuet-Higgins 

(1977) has pointed out that the apparent deviation of the measured 
phase speed from the theoretical curve could be due to the offwind
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propagation of various wave components _such that their downwind phase 

speed was constant. This leads to a bimodal_ directional distribution, 

much as in Phillips (1957) resonance theory, in which the energy is 

greatest at angles 9 = i-cos‘1 (c/V); where V is the wind speed or 

phase speed of the waves at the spectral peak in the theories of 

Phillips and Longuet-Higgins respectively. The validity of this 

theory cannot be checked from two-point correlations and, in fact, 

some assumption about the directional spread is prerequisite for 

interpreting the observed phase speeds (Mitsuyasu et al. 1979). Our 

method is free of these uncertainties since we obtain the full 

three-dimensional .wave-number — frequency spectrum, from which the 

average wave-number. in any frequency band, and thus the average phase 

speed, may be obtained. 
In strongly forced laboratory situations as in run 5, the 

energy observed in the neighbourhood of m'= Zmp, 3u>p, 4wp, i 

is largely due to higher harmonics bound to the dominant wave near 
the 

peak frequency up.‘ The balance between such bound harmonics and 

free ‘waves will be explored further in this section. Thus the second 

harmonic of the dominant wave up would show up in the wave-number 

spectrum for frequency Zmp at about* 1/2 of the radius of the linear 

dispersion circle, whereas the third harmonic would show up in the 

wave-number spectrum for frequency 3mp but at about 1/3 of the 

radius of the circle, etc. For the bound harmonics the phase speed at 

as = zap, 3mp, ..., is the same as that at the peak cp.A However, 

since the spectrum is not a delta spike at up, but rather a narrow 

spectrum withgmost of the energy concentr-ated in a frequency band Am 

around up; the effects .of higher harmonic-s of the ‘components in the 

frequency band will lead us to the conclusion that the phase speed 

must be almost equal to rep in the frequency bands 2Am around Zwp, 

3Am around 3u>p, etc. All these theoretical predictions are 

* Actually the bound energy in the nth harmonic would appear at 1/‘n 

the radius of the nonlinear dispersion circle corresponding to 

(2.8) since the harmonics travel at- the speed of their 

fundamental which itself, by virtue of the existence of 

'~harmoni’cs, ‘is in obedience of (2.8) rather than (1.1). 

..-.12
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indeed observed experimentally for high values of U/op. While this 
' explanation is similar to those offered by Phillips (1977), it should 

be pointed out that his explanation is not valid for frequencies 

between up and Zwp - Am, and between Zwp + Am and 3wp - 3/2am, 

etc. For these frequencies, the departure from the dispersion circle 

must be due to the local effects of finite-wave slope (as discussed in 

§2.1) which can be up to about 20% in wave-number or 10% in phase 

speed, in agreement with observations (figure 10.1). Combining both 

effects of higher harmonics and of local Stokes‘ effect, theory 
:1 predicts that the curve of average phase speed versus frequency for w 

> mp is wavy, but as m increases it will tend to a relatively 

constant level near cp if the bound harmonics contain much more 

energy than the free waves at these frequencies. This occurs when 

w/up 3_ mp/Aw - 1/2 in strongly forced cases and is clearly 

confirmed by laboratory experiments for large values of U/cp (figure 

10.1). 
For historical perspective we have opened this section with 

a look at average phase speeds. Observations of phase speeds in both 

natural and laboratory conditions ‘have given rise to questions 

regarding the dispersive nature of wind waves. Should we regard the 

wave field at m > 1.5 mp as non-dispersive on the basis of 

observations such as those reported above? Observations of average 

phase speeds are somewhat ambiguous because, if bound waves do exist, 

averages over the wave-number plane or two-point correlations include 

the effect of two dynamically quite distinct sets of waves. 

.Fortunately in our case we can, in principle, restrict our attention 
*» to regions of the wave-number plane containing only free waves or any 

of the several bound harmonics. 

10.2 Phase Speed of_Free waves 

In figure 10.3 we examine the phase speed of the free waves 

only._ This is done by obtaining an average wave-number over a band of 

wave-numbers limited at low wave-number by the arithmetic mean of the 

expected free wave-nmber (kf = m2/9) and _the expected second 

harmonic wave-number (k2 = m2/2g) and limited at high wave-nmber by a

~

~

~
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' band of equal width. The effects of anplitude dispersion are now 

clear. The almost fully—developed case (U/cp = 1.0) Shows no Sign 

of anplitude dispersion below In/mp = ’1-3- ‘Above this there 15 3 

moderate increase in the phase speed above the theoretical curve. 

with increasing U/cp the effects of amplitude dispersion are 

noticeable near the peak and above. On the assumption that the waves 

are distorted in accordance with Stokes‘ theoryl (§2.), the maximwn 

amplitude dispersion corresponding to the Stokesf steepness limit (ak 

= 0.44) is 10%. At the highest values of U/cp the WHVES at 

'. frequencies just above the peak approach the phase speed appropriate 

to the maximally steep Stokes‘ waves. It is interesting to note that 

at the highest value of U/cp the phase speed near the peak shows 

less evidence of anplitude dispersion than in the laboratory runs at 

somewhat lower U/cp. It is possible that widespread breaking of the 

waves near the peak reduces the steepness of these waves. This 

interpretation is consistent with the behaviour of Y, the peak 

enhancement factor §8.2 and the calculations of Longuet-Higgins and 

Cokelet (1976) which .show‘ that waves maximally steep somewhat 

before breaking. r 

10.3 Phase Speed of Bound Harmonics 

One can also determine the dispersion relation of the bound 

harmonics. To avoid contamination of the average wave-number of the 

second harmonic the region in wave-number space considered was bounded 

below by the arithmetic mean of the expected wave-number of the second 

and third harmonics (kn = m2/ng) and above by the arithmetic mean of 

the expected wave-number of the second harmonic and of the free wave 

at that frequency. It was possible to resolve the average waveenumber 

for the second harmonic in the laboratory runs with high values of 

u/cp only. These are shown in figure 10.4. The lower hyperbola is, 

‘Support for this is provided by Lake and Yuen (1978) who have shown 

good agreement between the ratio of spectral amplitudes of harmonic 

and fundamental and the predictions of Stokes‘ (1880) theory.
T
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as before, the theoretical“ linear dispersion relation; the upper 

hyperbola is the locus of speeds twice as great as the lower and is 

the speed at which bound second harmonics would travel if trapped on 

waves of half the frequency on the lower curve. The bars correspond 

to limits of the band of averaging and the dashed line would result 

from a unifonm distribution of energy within the band; i.e. white 

noise. At frequencies below 2.0 Hz we cannot effectively separate 

second and third harmonic contributions to the energy density. 
‘a Therefore, lower frequencies do not appear in figure 10.4. At the 

highest frequencies the points approach the white noise result. 

Between these two extremes, however, the phase speeds very definitely 

support the idea that these are second harmonics of the free waves of 
' figure 10.3. ‘The open circles are taken .from the measured phase 

speeds of figure 10.3 transposed to twice the frequency. They 

represent the speed at which the bound harmonics must travel to be 

consistent with the measurements of figure 10.3. While it is possible 

EV that wind drift could affect the measured phase speed, it will not 

affect the comparison between figures 10.3 and 10.4 discussed above. 

’10.4 Amplitude Dispersion and Doppler Shift;0f Laboratory waves 

It is, of course, impossible to generate wind waves without 

also producing a strongly sheared current near the surface. The 

‘presence of such a current has been used by some researchers (Lake and 

Yuen, 1978; Mitsuyasu et al., 1979; Plant and wright, 1980) to explain 

part of the excess speed of neasured waves above the linear theory. 

In addition Plant and Wright (1980) have pointed out that the wind 

itself will increase the propagation speed of the waves a small but 

measureable amount. we recognize that some effect of both current and 

wind forcing must be present in our data. However, since our 

laboratory waves are somewhat longer that those discussed in previous 

work yet our wind speeds and currents are_similar, these effects would 

-be less pronounced in our data. Nonetheless, in the following we 

assess the effects of currents, 
The ratio of the energy in the bound wave to the free wave 

is graphed versus m/up in figure 10.5 for the laboratory data. It

~

~

~
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reflected in the energy of the second harmonic. 

.thereby.es_tabl_is_h the slope of the fundamental wave. 
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is clear that. with.incre'asing U/cp the energy in the second harmonic 
4' 

waves begins» to dominate the spectrum above us/mp = 1.9 and the shape 

of the peak of the spectrum - forward face sharper than rear - is 

In figure 10.6 the 

ratio of energy in the second harmonic to that in the free waves is 

graphed versus U/cp for various values of an/mp. From this it 

would seem -that at values of U/cp in excess of 9 evidence for bound 

harmonics will appearin the power spectra and the dispersion relation 
at values of an/mp in the neighbourhood of 2.1. Such values of 

U/cp occur only fleetingly in nature except on small ponds. Thus 

the theoretical di__s~pe_rsion relation with some amplitude dispersion is 

generally adequate "to describe natural wind—gen'erated wave spectra and 

laboratory tank spectra for which U/cp < 9. 

we now turn our ‘attention to the question of how much 

amplitude 
__ 
dispersion is appropriate. Since we have access to the 

energy in.the bound harmonics, we may compare this to the energy in 

the corresponding free wave (fundamental) and, in a Stokian model, 
Figure 10.7 

shows the result of this calculation for the laboratory dat_a._ The 

steepness increases steadily above the peak and begins to approach the 

theoretical limit at an/up = 1.5. Beyond this there is insufficient 

resolution of the wave-number spectra to determine the energy in the 

second harmonic which would be found at in/up > 3.0. We know that 

the spectrum falls off to infinitesimal anplitudes at 0.6 < m/mp < 

0.8 (see figure 8.2) so that the extrapolation (dashed lines) towards 

lowm/up values is probably in order. 
_These steepness estimates allow us to compute the Stokes‘ 

phase speeds for the free waves and to compare them with the observed 

phase speeds of figure 10.3. The difference (measured phase speed 

cm minus Stokes‘ phase speed cs _= kg/m[1 + (ak)2 + 1/2(ak)‘+]1/2) 

is further adjusted. by the correction given by Plant" and wright (1980)
l 

The Stokes‘ correction is‘ due'to {the air flow over the waves, ca. 

positive and can account for up to 10% of the linear theory, the air 

flow adjustment ca is negative and between 1 and 3% in all cases.
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The difference (cfi 
-‘ cs '- ca) varies between -4% ‘and +10% and is 

probably due to a combination of experimental error and differential 

advection of the wave components by sheared current. 
. In the laboratory tank the wind-driven current profile has 

been found to scale with the surface friction velocity and the total 

depth (Donelan 1977). Therefore in figure 10.8 ‘we examine the 

difference (cm - cs - ca)k normalized the surface friction 

velocity u* versus the wavelength A = Zn/k to total depth ratio. 

Although the data are somewhat scattered, there is a definite trend 

from‘ slow upwind advection of -the longer wavelengths A/H > 0.8 to 

downwind advection of the shorter wavelengths, which when extrapolted 

to vanishing wavelengths suggests a surface advection of approximately 

15u* ~ 0.02 U. Calculations by Stewart and Joy (1974) suggest that 

the waves are advected by the mean current at a depth corresponding to 

some fraction of a wavelength depending on the current profile; 

Matching the wind-driven current profile obtained by Donelan (1977) 
‘from the same tank as in the present experiment, it would appear that 

the current‘ at depth 2 = 1/k is -reflected in the residual wave 

‘advection speed after amplitude dispersion and wind forcing have been 

accounted for. The advection velocity from the theory of Stewart and 

day (1974) can be calculated frqn a known velocity profile. Thus in 

the region above the change of sign of the velocity gradient, the 

profile measured by Donelan (1977), is reasonably well represented by: 

”_ e - 1.3 + 15.3 e13-5 1/“ . 

" 
(10.2) 

From which, following Stewart and Joy (1974) 

U _
_ 

.1 =.[ . 1_3+_l‘‘.-.3..._] (10.3) 
"tr 1 + 1.18%

~

~

~
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“'Thi§ theoretical wave advective current is graphed_ (solid 

line) in figure 10.8. ‘It is clear that the calculations of Stewart 

and Joy (1974) are ‘inappropriate in this situation. Possibly the 

effects of wave breaking, omitted fran their theory, serve to deepen 

the effect of the currents on these waves. 

' 10.5 Amplitude Dispersion of Field waves 

Lacking sufficient resolution at high frequencies in the 

field directional spectra, we are ‘unable to compute the Stokes‘ 

distortion from the relative magnitudes of free waves and harmonics. 

Instead, having gained confidence from the consistent picture provided 

by the laboratory results, we will do the calculations in reverse 

order for the field data. That is, having first removed the calcu- 

lated effects of wind forcing ca (0.28/k) and drift current Uw 

(-1/k), the residual measured phase speed excess will be taken to be 
” 

‘due. to amplitude dispersion, plotted (figure 10.9) and used to 

estimate the aslope (figure 10.10). The drift current profile is 

computed usingf (10.2) based on the field measurements by _Donelan 

(1977) at the same site. Figures 10.9 and 10.10 are summaries of the 

18 field cases in which the directional spectra were well resolved to 

at least w/up = 2.2. The. are grouped by U/cp. The two higher 

U/cp curves show a consistent picture of appreciably steep waves in 

the region near the peak (0.9 < m/up < 2.0). 

case the steepness rises to nearly 0.3; in the other case (U/cp = 

2.9) the steepness rises to nearly 0.4. _ 

Figures 10.9 and 10.10 show the phase speeds and steepness 

both with and without correction for the assumed drift .current and 

wind forcing. In the steady state these effects are proportional to 

u*. The almost fully-developed case with small u* is hardly 
On the other hand, the nnderately 

generated case has its phase speed excess and concomittant steepness 

reduced to zero near u/up = 2.1, while the strongly generated case 

with large u* appears to be overcorrected. Quite possibly the drift 

affected by these corrections. 

For the lower U/cp ’
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currents have been overestimated. It may be that the steady-state 

profile assumed for the drift current is in error. The spin up time 

for the Ekman boundary layer is of the order of half a pendulum day or 

about 17 hours for Lake Ontario, which is generally longer than the 

duration of the wfind system prior to the wave measureents. The 

matter cannot be resolved without coincident wave and current profile 

measurements, but it seems probable that the correct values lie 

between the corrected and uncorrected curves for each U/cp in 

figures 10.9 and 10.10. In any case, near the spectral peak 0.8 < 

m/mp < 1.6, the estimates of _ak are not greatly affected by the 

drift current. Here we find that the moderately and strongly 

developed cases are more or less uniformly steep, while the nearly 

fully—developed case reaches its maximum steepness at about twice the 

peak frequency. 
The lowest value. of U/Cp (=-1.1.) represents nearly 

fully-developed waves. The steepness at the peak, where there is very 

little direct wind input and wave-wave interaction effects are not 

"strong in this'case (Dungey and Hui, 1979) is negligible. However, at 

w/up ~ 2.2 the steepness increases to a value somewhere between the 

maxima of the other two curves. Evidently near full development the 

wind input at frequencies somewhat above the peak is relatively large 

compared to that of the peak. If wind input determines the maximum 

steepness then there should be a consistent relationship between 

maximum steepness and local U/c. Figure 10.11 supports this idea and 

indicates that under generation conditions somewhere in the spectrum 

there are quite steep waves ak > 0.25 even when the spectrum is near 

full development. It seems likely that the wind input is concentrated 

here, and as the wind picks up the area of maximal steepness moves 

.—towards ‘the peak. In §11 we shall explore some aspects of the 

directional distribution which are consistent with the above 

observations. Figure 10.10 suggests that, except for the nearly 

fully-developed case (U/cp = 1.1), the steepness drops off markedly 

above ‘m = 1.8 up. This is consistent with the idea of peak 

enhancement (figure 8.3) in which the spectral levels at a particular 

frequency can be largest when that frequency is the peak frequency.

~

~
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This occurs when the peak enhancement factor 7 exceeds e5/4 = 3.49. 

The values of Y corresponding to the three curves of figure 10,10 are, 

in order of increasing U/op, 2.4, 3.7 and 5.8. ' 

The spectral levels of frequencies above the peak are only 

. weakly fetch dependent, therefore one may regard than as the result of 

a balance between the source terms: wind input, wave-wave interaction 

. and dissipation. 

10.6 Root Mean Square Slope 

. The root,Inean ‘square (rms) slope, defined as rms surface 

elevation times wave-number of energy peak, is tabulated in Table 

10.1. If the spectrun were a delta spike these rms slopes would 

correspond to akhf7'values. In this context the ak values deduced 

from the phase speed based on Stokes model are a factor of 5 larger. 

Furthermore, the ak values for all strongly generated cases (U/cp > 

2) in -field and zlaboratory approach the theoretical limit in the 

energy containing region. If the energy containing waves show 

amplitude dispersion corresponding to maximum steepness, why_then is 

the rms slope relatively small? One possible explanation is that the 

wave energy at any given frequency is intermittent in time, or that 

the surface is disturbed, not by an infinite sm of infinitesimally 

steep uncorrelated sinusoids, but by short groups of steep waves of 

various frequencies propagating independently. This might be thought 

of in terms of a random collection of "Stokes" "groups which sum to 

yield the observed spectrum. 
'

A 

At 0/cp values above 2 we find that the energy containing 

waves are individually maximally steep, yet increasing the generation 

rate (U/cp) yields a corresponding increase in the nms slope (Table 

10.1) and the peak enhancement factor (figure 8.5) increases until 

finally limited by rapid breaking - all of this unaccompanied by much 

change in the steepness of the energy containing waves as reflected in 

the amplitude dispersion (figures 10.7 and 10.10). If the surface is
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TABLE 10.1. RMS SLOPES OF FIELD DATA ~ 
Year Symbol U w (2 U/c Significant rms 

p 
H 

p Slope Slope

~ 

Units m/s ‘rad/s cmz ' % 

1976 Run 

305093 7.2 2.13 173 1.57 0.97 0.051 

305094 7.1 1.99 151 1.45 0.82 0.051 

339053 7.2 2.20 215 1.51 1.15 0.073 

339054 7.5 2.13 222 1.55 1.10 0.059 

342153 8.5 2.27 125 1.97 0.94 0.059 

342154 8.7 2.27 130 1.70 0.95 0.050 

355123 11.5 2.15 358 2.52 1.44 0.090 

355124 11.5 2.09 379 2.44 1.38 0.087 

352053 5.0 1.77 155 1.08 0.55 0.041 

352054 5.7 1.78 142 1.03 0.51 0.038 7 

1977 005003 5.7 2.32 87 1.34 0.81 50.051 

005004 5.5 2.32 80 1.29 0.78 0.049 

119013 5.7 2.25 91 1.55 0.79 0.050 

119014 7.0 ’2.26 102 1.51 0.84 0.053 

128173 15.4 2.27 220 3.55 1.24 0.078 

128174 15.2 2.31 213 3.51 1.25 0.079 

128203 13.3 1-95 281 2.54 1.03 0.055 

128204 12.7 2.15 294 2.75 1 .29 0.081

~
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composed of ; collection of maximally steep “Stokes” groups then these 
; ‘observations could only result from an increase in length or frequency 

of such groups having carrier frequencies in the energy containing 

region of the.spectrum. Figure 10.12 is a collection of time series 

of surface elevation for various U/cp Values. in which the ordinate 

is in slope units, i.e,, surface elevation times theoretical 

wave-number of the spectral peak kp (= cnpz/g)*, and the time axis 

is normalized by the peak frequency up. It is immediately apparent 

that, apart from the nearly fully-developed case (U/cp = 1.1), the 

largest waves.have comparable slopes approaching the Stokes limit of 

0.4; Since the spectrun falls off rapidly with increasing frequency, 

these steepest waves are closely identified with the spectral peak. 

The striking difference between the various cases is that as U/cp is 

increased the rate of occurrence of maximally steep waves increases 

until‘at high U/cp most of the energy is due to such waves. At the 

other limit (U/cp = 1.1), we see that the steepness of the largest 

waves (still the waves at the spectral peak) is only about 0.2, in 

keeping with the earlier deductions fron measured phase speed (figure 

10310). -
- 

{The .use of the theoretical” value rather than the measured kp 

accentuates ,the steepness of the steepest "waves since anplitude 
dispersion yields kp $ mpz/9.
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11. ‘DIRECTIONAL DISTR1BUT10NS OF HAVE ENERGY 

11.1 Introduction

~ 
Although a full description of the sea surface spectrun isv 

most directly stated in terms of the wave-number frequency or 

three-dimensional spectrun X(5,w; §,t), traditionally and for 
computational simplicity ‘the polar or _frequency direction spectrum 
F(w,6; 5,t) (defined by Eq. 2,25) finds most frequent use in 

application to wave forecasting and engineering calculations. So much 
so that F is often called the directional" spectrum. Here we 

distinguish between the derived frequency direction spectrum F(w,e) 
and the wavesnumber frequency spectrun X(§,m) which is the basic 
product of our experimental method. The description of the sea- 

surface in terms of the polar spectrum F implies a known or assumed 
dispersion relation, m = G(k) allowing a one-to-one correspondence 
between frequency and wave-number magnitude, so that in any observed 

'f”‘frequency band the spectral energy is taken to fall on a corresponding 
wave-number band leaving only the direction of travel 6' to be 

specified. Generally, the linear theory dispersion relation (1.1) is 

assumed and the description of the spectral energy evolution becomes: 

I-3-‘-t-+V‘i-a—x-1-=I+N+D 
‘ 

'

- 

where vi = dw/dki = ’(g/Zw).(k1-/k) is the. deep water group 

velocity under the assumption of the linear theory dispersion 
relation. On the right hand side are the source functions: wind 

input I, nonlinear interaction, W and dissipation D. 

we have seen that the linear theory dispersion relation, 

while not strictly applicable especially near the peak, is not a bad

~

~
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approximation in general for natural waves. However, we have shown 
’ that mnplitude dispersion according to §tokes' theory improves the 

approximation. The important slope parameter ak has been shown (§10) 

to be a function of U/cp and w/mp. Therefore, one may now replace 

the assumption of the linear theory dispersion (1.1) with the nnre 
' accurate approximation (2.8) provided U/cp is known. In §8 we have 

gdescribed the frequency spectrum; in §10 we have described the 

dispersion relation; we now turn our attention to a description of the 

directional distribution of wave energy in terms of the spreading 
‘ function, h(6).' 

In this section we will concern ourselves entirely with the 

description-of natural (field) directional spectra. Two examples of 

* the.twosdimensional directional spectrum are shown in figures 11.1 and 

11.2 for quite different vaues of U/cp; 1.5 and 3.1 respectively. 

- These are derived from the wave-number spectra of figures 6.1 and 6.2 

respectively in the manner described in §7.1. The ordinates are not 

in relative scale but the frequency spectrum ¢(m) is shown in figures 

6.1 and 6.2. ’ A Ineasure of the level of confidence of the polar 

‘spectrum is given by the dashed line. .This is the nominal standard 

deviation of F(mn,6) obtained from the original standard deviations" 

of the point energy density distribution Em by averaging in the same 

way as F(mn,6) has been obtained from fin. The implied assumption 

is therefore that the errors are perfectly correlated and 

Var (a + b) = 
[ J Var(a) + I Var(b) ]2 

1 

(11.2) 

rather than 

Var (a + b) = Var(a) + v'ar(b). (11.3) 

Note that the first assumption is the more conservative of the two. 

i 
The polar spectra are predominantly unimodal and tend to be 

more or less symmetrical about their peaks. The most obvious features 

are the "difference between wave propagation direction and wind 

direction near the peak and the directional broadening with increasing 
frequency above the peak. The first— has been discussed in §9 ‘and

~
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figures 11.1 and 11.2 demonstrate that with increasing frequency the 

mean wave direction becomes more and more closely aligned with the 

wind - a reflection of the short relaxation time of the short waves 

and hence their insensitivity to the distant fetch distribution. The 

second has been noticed by previous authors (Longuet-Higgins et al. 

1963, Mitsuyasu et al. 1975, Hasselmann et al. 1973, Hasselmann et 

al. 1980) and attempts have been made to parameterize the spreading 

function in various ways._ Currently, perhaps because most published 

directional spectra have been obtained from pitch-roll buoys, the most 

popular parametric description is based on the cos25(e/2) form first 

suggested by Longuet—Higgins et al. 1963. Unfortunately, attempts to 

tie down the behaviour of the s parameter have led to disagreement 

rather than concensus in spite of the fact that the best known 

attempts to parameterize s have all been based on floating buoys. In 

the following we will explore the behaviour of s and compare our 

results with previous work-_ Finding that cos25(e/2) does not 

describe our results adequately we will propose another description. 

In order to investigate the shape variability of our polar spectra 

without forcing them into a pre-selected mold, the two-parameter (L, 

BA) fit described in §7.2 was applied to the individual polar 

spectra (dotted line in figures 11.1 and 11.2). The tabulated L,_eA 
' 

pairs could then be used to reconstruct the best fit spectra for 

comparison with favoured models. 

11.2 L and 9A Dependence 

In figures 11.3a, b and c may be found scatter plots of the 

L and QA dependence for values of m/mp in‘ the ranges of 0.90 to 

1.1, 1.1 to 1.25 and 1.25 to 2. 

Figure 11.3a indicates that for frequencies near the peak, 

there is a remarkable grouping of the shape parameters along the line 

(GA ‘
V 

.= < 6 < 70. :4 
L. 25 

_ A ( )

~

~
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’ There are no instances of double or triple peaks in this data and the 

fitting bounds (ea < 90°, L > -1.39) are not approached. This set 

_. of shapes may therefore be regarded as a reliable guide to the energy 

distribution near the peak frequency. The position along this line is 

probably due to the frequency variation within the band 0.9<w/mp<1.1 

- and may be determined by relating the s2 parameter to the half height 

_ 

, 
widths (61/2) implied by L and 6A. For L = 0, SA = 45° the half 

. height width is 17.5° while for L = 1, 6A = 70°, the half height 

width is 31°. These values correspond to s parameters of 29.6 and 9.4 

respectively.. 
However, to a lesser extent in figure 11.3b and to a greater 

in figure 11.3c the distribution of shape paraemters lies in a wide 

band between L = 5,‘ BA = 55° and L = 0.1, BA = 90° say. The 

“implied shape distributions are either relatively narrow with double 

peaks (61/2 = 52.5’, $2 = 3.2) or wide with single peaks (61/2 = 

32.8‘, 52 = 8.3). _ 

This variation and scatter in the results is felt to be due 
"~~ to the reduction.in resolution of the analysis method for these large 

ivalues of m/mp. (for which the energy _content is small and the 

wave-number generally large). . 

The occurrence of double and triple peaks in these data is 

therefore not felt to be statistically significant, and indeed 

examination of individual polar plots indicates that double peaks are 

often fitted due to the skewness of the energy distribution. 

11.3 The s Parameter 

Mitsuyasu et al. (1975) were the first to present a 

reasonably comprehensive set of estimates for 51 using measurements 

obtained from a cloverleaf buoy. They presented a plot of s against 

U/c and showed that although there was good clustering for points on 

the rear face of the spectrum the points on the-front face did not 

cluster. _ 

Subsequently, Hasselmann et al. (1980) using measurements 

made froh a pitch-roll buoy confirmed this behaviour, but also showed 

that, when plotted against the relative frequency, the front face
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(us/mp < 1) could also be made -to cluster. This result, that the 

width distribution of the spectrum is apparently independent of the 

wind strength, was attributed by Hasselmann et‘ al. to the dominance 

of wave-wave interaction over wave generation effects, a point which 

we will discuss further in §11.6.

~ 
Their estimates for s1 were obtained using the first two 

Fourier coefficients for F (on, e) as follows 

F (on, e) = 4» (on) (% + a1 cos 6 + b1 sin 6) (11.5) 

r1 = /1 a12 + b12 
' (11.5) 

51 
= 

T1.._'.‘.r.1.) 
(11.7) 

The Fourier coefficients a, and b1 were obtained from the spectrum of 

the two orthogonal wave slopes: , “ 
nx = H F(m,6)kcosededu: 

. . (11.8) 

ny = II F (m, 6) k sin 6 dedm 

and the assumption of the linear dispersion relation 

on = gk 

Note that a delta function distribution for 

r (1., e) = o (u) 5 (e - '6’) (11.9)

~
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yields“r1.'= :41 and—.s1 = 1», thus for narrow distributions s1 is very 

sensitive to the width. 
In figure 11.4- may be found our results for s, which we 

denote 52, calculated in the same way from the first two Fourier 

coefficients of the observed polar energy distribution. However, the 

linear dispersion relation has not been used to derive the polar 

spectrum. The parameter s2 shows the same sort of dependence on 

, 

(1l/u)p as noted by Hasselmann et al. (1980) and the separate curves, 

grouped according to U/cp, indicate that smaller s2 values (wider 

spreads)yare associated with higher U/cp values. Since for a given 

spectrum tn/mp is proportional to U/c, this ‘amounts to a dependence 

on U/c as reported by both Mitsuyasu et al. (1975) _and Hasselmann et 

al. (1980). The fitted lines to both forward and rear spectral faces- 

given by Hasselmann et al. (1980) are indicated on figure 11.4. while 

the dependence on to/mp is qualitatively similar, Hasselmann et al. 

(1980) report generally smaller values of 52, corresponding to broader 

sp‘ectra.. Note that their data fall within the range 1 < U/cp < 2. 

so that comparison of their regression lines with the top curve of 

figure 11.4 is appropriate. In this rangeof U/cp the results of 

Mitsuyasu et al. (1975) and Hasselmann et al. (1980) are in mutual 

agreement and suggest generally broader spectra than those reported 

here (figure 11.4). We attribute this difference to the use by 

Hasselmann et al. (1980) and Mitsuyasu et al. (1975) of the linear 

dispersion relation which anounts to replacing F (to, 6) by F0 (Lu, 6) 

(see §2). Near the peak their values of s are about 9 while ours are 

about 27. Thus the values of r1 corresponding to these two values 

are: Hasselmann et al. (1980) r1 = 9/10 = 0.90; present analysis, r2 

= 27/28 = 0.964. This implies a 6.6% underestimate by Hasselmann et 

al. (1980) producing a factor of 3 change in s. Such an underestimate 

would arise if the true dispersion relation were
‘ 

«>2 = ék (1+.e) 
, 

_ 
(11.10) 

where e is positive as shown in §10. Their assumption of e 0 

results in a1 and b1 being underestimated’ by a factor of 1/(1 + e).
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In terms of the phase speed, a 6.6% underestimate of r corresponds to 

V 

a 3.5% increase in phase speed above the value assumed by Hasselmann 

et al. (1980). From figure 10.9 we see that such values near the peak 

_are quite characteristic of the observed dispersion relation in the 

range of U/cp between 1 and 2. 

Evidently the value of s is quite sensitive to the assumed 

dispersion relation and the effect of amplitude (Stokes) dispersion is 

to broaden the spectra calculated on the assumption of the linear 

-dispersion relation. It is also possible that the information 

contained in only the first few Fourier coefficients is insufficient 

to describe narrow directional spectra. 
In order to test the appropriateness of various nndels of 

directional spread we have reduced the rather cumbersome and untidy 

set of -directional spectra_ to Ia set of (L, 9A) pairs based on a 

least squares fit of our quite flexible test model to the observed 

spreading functions. In practice one's interest in the directional 

spread is generally focussed on the ‘energy containing‘ region. That 

is, the peak value and width at, say, half height are of more interest 

than the width of the tails of the spreading function. we may compute 

a value of s (which we will call $3) which matches the half-height 

half-width 61,2 of the test (L, BA) model with that of the 

Mitsuyasu type spreading function:
‘ 

cos2s3 (2.§.2.-) = 0.5 (11.11) 

where e1/2 is the angle at which the height of the test model is one 

half its central height. 
‘

' 

The estimates of s3 obtained in this way (figure 11.5) are 

much less scattered than those of s2. Furthermore, the stratification 

with u/cp has disappeared, leaving the spreading function dependent 

only on u/up. The reduced scatter implies that the half-height 

width is a more stable description of the spreading than the first 

Fourier coefficients. The reason for this is probably that the 

half-height width is determined by the energy containing, and thus

~

~

~
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’, less noisy, ;part of the distribution; .whereas the first Fourier 

-, coefficients are affected by the entire distribution. 

, 
tails of the directional spread are more influenced by changes in U/c 

, 
than the peak. 

Possibly the 

In principle, energy from the wind will enter the 

distribution out to 6 = cos '1 c/U; while the peak of the directional 

spread, at least on the rear face of the ‘frequency spectrum, is 

limited by dissipative processes and wave-wave interaction, i.e. 

processes less sensitive to U/c. 
A further check of the appropriateness of the cos25 (6/2) 

spreading function is graphed in figure 11.6. This figure compares 

the peak value of the test (L,9A) "Ddel (abscissa) with the peak of 

the coszs (9/2) distribution (ordinate). The peaks are consistently 

.too high by about 10%. Based on this data set, it would seem that the 

coszs (6/2) spreading function is in 

estimating the wave energy in the peak direction. 
consistently in error 

11.4 The coszm e Spreading Eunction 

The property of the coszs (9/2) distribution, that it is 

non-negative over the complete range of 0, is not necessary to 

describe the present data set wherein there were no measured polar 

distributions more than u in total width. If, indeed, previously 

reported wider distributions for wind-generated seas are really -a 

consequence of inadequate angular resolution of the detection method, 

then the physically more appealing coszm 9 distribution might be 

more appropriate. On the edges of the distribution, where the energy 

’density is quite low, wave—wave interaction cannot be important and it 

is difficult to imagine any input from the wind at angles greater than 

cos‘1 c/U from the mean wind direction. . Of course fluctuations in 

wind direction could broaden the distribution, but these are generally 

of the order of :10’ for the steady wind conditions being considered 

here.
'

~
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Apart from the question of which type of distribution 

(coszs (9/2) or coszm 6) is the more physically appealing, they 

are not significantly different in terms of goodness of fit to the 

data. Appropriate choices of s and m render them virtually 

indistinguishable. Thus the cos2"‘ 6 distribution suffers frmm the 

same peakiness complaint as the coszs (6/2) (see figure 11.7). 

T 

11.5 The_$eChZ(86) Spreading Function 

The failure of the various cosine distributions to model the‘ 

observed polar distributions accurately has led us to consider yet 

another. The three-dimensional evolution of freely-propagating, 

second-order Stokes gravity wave groups (Hui & Hamilton, 1979, Hui, 

1980) indicates that an envelope soliton group propagating around the 

main wave direction is_ described_ by a hyperbolic secant. The 

distribution of wave energy in the direction transverse to the main 

wave direction behaves therefore like sechz. Since the envelope 

solitons survive interactions (Hui, 1979, 1980, Zhakarov, 1968), it 

seems not unreasonable to assume that the wave field consists of only 

(envelope) soliton groups. Then the directional distribution of the 

waves observed at a given point about the main wave direction must 

follow approximately a sechz (as) distribution, at least for small 6. 

This suggestion from theory‘ led to the testing of a 

spreading function for the distribution of energy (amplitude squared) 

of the form sechz (86). The hyperbolic secant squared shape is 

preserved and the width of the spectral spread is determined by the 

parameter 8. The dependence of 8 on w/mp, from fitting to the 

half-height width of the test model, is graphed on logarithmic axes in 

figure 11.8. Here again, as in figure 11.5, the data for various 

values of U/cp collapse onto a single average curve. In fact, in 

this sense there is little to choose between the cos253 (9/2) and 

the sechz (Be) distributions. However, a comparison of the peak 

values of the test model with the peak values- of ’the seen’ (86) 

distribution (figure 11.9) indicates that the sechz (36) distribution
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« models the peak of the spreading function rather more faithfully than 

the various cosine distributions (figures 11.6 and 11.7). In fact, 

the average overestimate of the wave energy in the peak direction is 

‘ now only 2% for the sechz (86) distribution rather than 10% for the 

cos25 (B/2) distribution. 
Of course, the sechz (86) distribution extends beyond in/2 

' 

and as already remarked our observed polar spectra were contained 

within this angular region. However, values of 8 were generally 

larger than 1.3 so that at in/2 the spreading function is less than 7% 

of its peak value and less than 4% of the energy is outside of the 

1‘range -w/2 <56 < «/2. The narrowness of the spectra and the rapid 

(exponential) droploff of the spreading function can be conveniently 

employed in treating the sechz (86) distribution for numerical 

modelling or engineering calculations since little error is introduced 

in using the limits iv rather in and the advantages of integrability 

are considerable. 
In figure 11.8 the dashed lines are a convenient 

representation of B: 

,3 - 2.44 (_..‘‘’..—_)’’1-3 ; 0.55 < 9. < 0.95 
0.95m m 

p p 
(11.12) 

s = 2..44(....“.‘.._._.)'.1'3 ; 0.95 < 2’. < 1.5 
' 0.95 m . m 

1 P P 

8 = 1.24 otherwise 

The range of directional spread given by (11.12) is 

illustrated in figure 11.10. From the narrowest to the widest our 

wind-generated spectra expand by about a factor of 2.
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Hasselmann et al. (1980) have previously noted that »the 

spreading function is more. sensitive to w/wp than to U/c. They 

argue that this implies that nonlinear interactions are ore important 

than direct wind input in establishing the spectral shape. Our 

observations strengthen and extend theirs in that we find that the 

spreading function is adequately described by w/mp alone in the 

U/cp and w/mp ranges of -1 < U/cp < 4; 0.8 < w/mp < 1.6. 

However, we caution against the use of this result to establish which 

of the three source functions, wind input, nonlinear interactions and 

dissipation, is dominant in establishing the spectral shape of the 

rear face. 
depend on both U/c and m/mp since, as we have shown, steepness is 

affected by both of these and all three source functions are steepness 

dependent. 
In view of the dominance of m/mp in the description of the 

spreading function it would not be suprising to find that its effect 

is felt in the frequency spectrun as well. In fact, the broadening of 

the- directional spectrum laway from the peak tends to whiten the 

frequency spectrum. This is, in effect, the behaviour of the rear 

_face noted in §8. Recall that the rear face of the frequency spectrum 

was shown to depend on 

'- '0“, 0 U 
p 

p)-.-U 
ETD. 

This empirical result could be realized by simple 

dimensional considerations if the peak frequency and wind speed are 

included‘ in the list of relevant parameters: 0R, “g, U, u, up; 

where 0R (w) is the energy density on the rear face of the 

spectrum. Appropriate non-dimensional groups of these parameters are: 

oR ms/g2, w/mp, U/cp and the spectrum is of the form:
' 

It seems likely that all three source functions will’
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11.7 The Directional Spread of the Forward Eace . 

It has been reported (Mitsuyasu et al. 1975 and Hasselmann 

et al. 1980) that the spectra tend to be most narrow near the peak 

‘frequency. while this is true of our data as well (figures 11.1 and 

11.2), we note that the maximum in our 8 or 5 values (figures 11.4 and 

11.8) is displaced slightly but distinctly to the low frequency side 

of the peak frequency at about m/up = 0.95. In other words, the 

narrowest spreads .occur on the forward face of the frequency 
’ ispectrum. “As mentioned_in §2, Hasselmann et al. (1973) first showed 

' that the growth of the forward face of the wind-wave spectra can be 

attributed to nonlinear wave—wave interactions; a conclusion that was 

further substantiated by the analytical calculations of Dungey and Hui 

(1979) for narrow spectra. This implies that the shape (and hence the 

angular spreading) of the three-dimensional wave spectrum X(k, m) for 

m < up must be predominantly determined by the energy transfer due 

~ to nonlinear wave-wave interactions, the (direct) energy input from 

the wind and the energy loss due to whitecapping being relatively 

unimportant in this region. Systematic calculations by Dungey and-Hui 

show that the energy transfer rate of a typical narrow windewave 

spectrum is of the shape given in figure 11,11. It is seen that there 

is a highly concentrated energy gain at wave-number slightly below 

kp and in the mean wave-direction. This may be responsible for the 

smallest angular spread occurring at a frequency slightly below the 

peak frequency since wind input, perhaps due to random pressure 

fluctuations (Phillips 1957), would broaden the spectrum somewhat away 

from the area of strong nonlinear transfer. Some support for this
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expianation is provided by the numerical calculations of Sen and 

Hasseimann (1972) reported in Hasselmann et a1. (1973) for the mean 

JONSw_A_P spectrum, in which the positive peak of the noniihear transfer 

occurs at about cu/mp = 0.95 or just where we observe the narrowest 

directionai distributions.
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1'2. coii'cLuume REMARKS 

Based on the idea of Barber (1963), a numerical method has 

been developed for computing the threegdimensional windagenerated wave 

spectrun X (5, u) fran an array of wave staffs. Essentially, the 

method applies the known array transfer function to the observed 

wave-number spectrum to reveal the actual wave-number spectrum. Have 

records were obtained fruh a tower in Lake Ontario, commanding fetches 

of 1.1 km to 300 km, and from the CCIN wind-wave flume at fetches of 

50 m. The array consisted of 14 wave staffs and extended over 28 m in 

the lake and 1 in in the laboratory. Based on the analysis of 84 

steady-state runs frun the lake and 7 from the laboratory, covering a 

range of wind speed to peak wave speed ratio (U/cp) of from 0.8 to 

17, the following general conclusions are drawn. 
The rear face or equilibriun range of the frequency spectra 

in both field and laboratory conditions is ell described by an w’” 

up-1 '13" for 1,5 < m/up < 3.5. Accordingly, a new (modified 

JONSNAP) parametric spectral distribution is proposed, and the new 

equilibriun range and peak enhancement parameters (a and Y) are found 

to be functions of U/c-p. The u)'.+ u)p‘1 = w'5 - (cu/mp) law is 

shown to follow from dimensional considerations. 
One consequence of this spectral shape is that the energy 

density of the waves at a fixed frequency in the equilibrium range 

(wavelengths of 6 cm to 10 m for these data) will depend on wind speed 

to a power between 0.55 and 1.0 as conditions change from strongly 
generating to full development. 

The peak wave and wind directions are often quite different 
and the difference was correlated with the fetch gradient in the wind 

direction. An empirical formula based on a similarity argument is 

given which explains the observed difference between wave and wind 

directions. The formula can be used as a predictive tool in deducing 
steady-state wave directions from meteorological records. 

In general, the observed phase ‘speeds under natural 

conditions are slightly in excess of the linear dispersion relation

~
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for infinitesimal anplitude waves. The excess is satisfactorily 

explained by the amplitude dispersion effects of the Stokes‘ wave. 

Significant‘ energy was detected in the bound harmonics of the 

laboratory waves. within the accuracy of these measurements bound 

harmonics could not be detected in the field data, although they must 

exist to produce the observed amplitude dispersion. From the 

laboratory data it was demonstrated that the ratio of the energy in

~ 

the bound harmonics to the free waves at twice the peak, frequency » 

increases with U/cp. Beyond U/cp = 9.0 it exceeds unity, i.e. 

bound harmonics dominate the spectrum near m/mp = 2. 

The angular spreading of wave energy is found to be smallest 

at a frequency ms slightly less than the peak frequency up. The 

spreading increases both.as m increases and decreases from ms. The 

spreading is best described by sechz (B6) in which 8 is found to 

depend solely on w/Np. V 

Emerging from this is a rather tidy description of the 

wind-generated wave spectrum, in which the energy level at any 

frequency depends on the position of that frequency in the spectrum 

(m/mp) and on the intensity of wind input U/c, while the directional 

spreading is related only to w/mp. 
He reproduce here our description of the wind-generated deep 

water directional spectrun in a form amenable to immediate application 

in wave forecasting and engineering design calculations: 

F (m,6) = 
.% ¢ (w) Bisechz B {e - 3'(u)} (12.1) 

where 3 is the mean wave direction and 

2.51 (2’..)”'3 ; 0.55 < %. < 0.95 
“D 

p‘ 

a = 2.28 (9.-)'1'3 ; 0.95 < 2’. < 1.5 (12.2) 
"’p “’p 

1.24 ; otherwise

~

~
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The frequency 'sp_ectrdm is: 

exp {-220:. - 1)2} 7»_‘2.—s“’ 5-“pt. p 
: 

°("’) ' °' 9 ‘” exp { '1' } -V (12-3)
P 

2 a = 0.006 (:EJ°'55 (12.4)

P 

where uc is the, component of the average 10 m wind in the mean 

direction of the waves at the peak«0f 0(0)). 

UC 
2;2 ; 0.83 < ... < 1 

y 
(12.5) 

Uc Uc 
2.2 .+‘.-7.7~,1og1'o (...) ; 1 < ... <’ 6 

1 

cp °p 

F‘ina11_y, the third order Stokes‘ dispersion relation has 

been verified: 

w2 = 9k {1+<ak)’} (12.6) 

where the U/cp and frequency-dependent va1ues of ak may be gleaned 

from figure 10.10.
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APPENDIX 
DETAILS OF THE DIRECTIONAL SPECTRUfl ANALYSIS METHOD 

for Choosing_Inversion Points 
-The algorithn for choosing the locations gm of (4.7), at 

which the energy is assumed to lie, is based on the transfer function 

M(g) having a strong maximun value at 5 = 0. Thus we proceed as 

follows: 

1. The raw energy is calculated using (4.10) at 41 x 57_equally 
spaced points in -_n < kx, ky < n. 

we find a list of at most 25 locations fl, at which 

5(5) rises to within 75% of its maximun value. It would 

seen reasonable that there is directional energy at these 

A least squares fit is performed to explain the observed 

If less than 92.5% of the variance of 5(5) is explained then 
further searches are made until either a total of 100 points 

Since the order of performing the fitting may influence the 
values of Em; a refit is then performed (in batches not 

exceeding 50 points) to eliminate this bias. This step adds 

considerably to the computation time required. 
in this algorithm no use is made of any dispersion relation. 

2. 

points because of the nature of M(§). 
3. 

5(5). 
4. 

are used or 92.5% is explained. 
5. 

Note’that 

Technique for Least Squares Fitting 

equations 
Performing the differentiations of (4.8) .we obtain the

~

~

~
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N 
251 2,; 

= am) 

where the overbar denotes the appropriate average over D and NE is 

the number of fitting locations. These m simultaneous equations may 

2 be used to obtain estimates for the E1; however, the calculations of 

the product terms 

M(5-glmg-Q) (mm 

would be exceedingly lengthy if calculated directly. we are able to 

demonstrate the equivalence of (A.1) with (4.10), considerably 

shortening the necessary calculations. Thus we note that 

1 r_ 
= 0 

exp (i §.[) = (A.3) 

0 :_ 
= integer vector

/ 

whence using 

M(g) = 2‘ exp (-i §.§) (A.4) 

we obtain 

M(1_< .- gm) Mug -5) E); exp(i l_<m.r__-S 
+ 115.55) exp(—i I_{.(r;s + [t.)) 

(A.5) 

= my-k) 

similarly
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any Mu_<=:_<,,,) = 
E; exP.(1'|5mJ';t)éiP(-1'5-([s*!.“t)) (:5) 

= 
zu_<,,,> 

‘ 

r (M) 

and (A.1) is equivalent to (4.10) or 

E‘ 
Em M(5n'-gm) = E(|_gn). 

m 

(A.7) 

Confidence Limits 

In common with other least squares fitting ‘methods, 
confidence limits can be derived from the coefficients of the inverse 
matrix C"m (say), where 

E = c"”a(I_<n) 
m 

(A_.8) 

Of‘ 

(A.9) nr _ 
E 

"(En ’ Em) C ' arm 

However, as will become apparent, the degree of freedom is not that 
associated with the 2337 points at which £(§ n) is calculated but 

rather the 165 values at which 9 is known. Thus the p(ri). 1 = 1 

... 165 are perturbed by independent complex random variables a‘ of 
zero mean and width, ‘ 

I! Q ~- 
-0. ll Ll 

ex (J ;.aj, (A.10)-



‘ 

2 e5 exp ( -1 5
J 

9 93 - 

where Ex is the expected value. These errors ei, which represent 
‘ the sources of unexplained variance induce errors om (say) in the 

Em, where from (A.8) and (A.9) 

5" 61 = Cm" Cir 
{ Z 

61 exp( —i §m.ri) }{'Z ej exp(-i §r.r3)} (A.11) 
1 J 

Now using 

.rj) = Z e*j exp (i §r.rj) (A,12) 
' 

.i 

T where ‘* denotes the complex conjugate (since 5 is always real) we- 

obtain 

Ex (a" 5”) = 02 c‘" (A.13) 

Thus knowing the inverse matrix and 62 we can obtain directly the 

variances of the estimates for "the gm. Now we observe residual 

errors in 5(5) 

Y(5) = 5(5) - X Em M(E - Em) (A-14) 

where Em is given by A.7. whence 

ex (x(1_<)2) = Ex[ pl 9"‘ - 
E 

E" ans") ] 
= 02 (up - NE) (A.-15') 

Where Np is the number of locations at which p is estimated (165) 

and NE is the number of fitting locations. This equation can be 

used to estimate o2 from the residual errors and hence give estimates 

for the variances of Em.
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Modification at High Frequencies 
As.will be appreciated from (A.15) we cannot choose NE 3_ 

Np, thus we are limited to 164 (in fact we use no more than 100) 

independent parameters to describe the directional spectrum. For 
wave-numbers bigger than 0.4 n however we have to consider 
progressively coarser arrays of possible locations kz representing 

E(k) in the form

N 
E = 2E Emi".-5<L<-Em-§1-> 

m=1 1 } 

where the locations are grouped around km with associated weights Hi 

(see Table A.1). The weights are chosen so that unit values of Em 
at all the available locations km will result in energy density in D 

or rather unit delta functions at all the 2337 points of the 
underlying grid. 

Possibilities for Improvement
_ 

In the present method of calculating 6(3), no allowance has 
been made at the higher frequencies for the relatively greater 
accuracy with which 9(5) is known at smaller separations r than for 
large separations. This is because after the arguments of Hamilton. 
Hui and Donelan (1979) the correlation function decays quickly with 

5 giving greater prominence to the underlying errors. 
Thus weights should be applied to the p(§) decreasing with 

5. These weights will in turn imply a smoother masking function 
M(k). If the energy is then represented with shape functions S(k) say 
(analogous to the delta functions used here) which have dimensions 
comparable to the resolution implied by the M(k), then the fitting 

functions implied by ‘ 

5(5) 2 cm I su_<*) Mu;,,,n- 5*) dz 5* 
In

~

~
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will be even=%moother than the already smoothed M(§).: Hence the 

fitting process-might become extremely sensitive. These arguments 

al§o hold in part for the unweighted 9(3) used here, and this is why 

we have used the perhaps intuitively unattractive delta functions as 

shape functions. For the weighted 9(3) there is however the 

additional point that the simplified form of the product 

-n 

no longer holds, instead we have 

~ 
' ~m l~ = 

~n 
= M2 (Em ' En) 

where M2.is the masking function assocflated with weights H2(r) say 

which are the square of the weights used for the M(5) 

Nit) =_ X N (tn) exp (-i 5-5") 

M2(§) = E N2 (gnl exp (-i 5-5") 

The necessity for calculating separate M(§) and M2(§) for 

each frequency will also increase either the computation or the 

. storage requirements appreciably. We are therefore of the opinion 

that in the light of present knowledge the method of analysis adopted 

has been a reasonable compromise between what would be ideal and what 

would seem practicable.
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TABLE A-1 4 ~

~ 

-_SHO0THING LEVELS AD HEIGHTS . e 

LEVEL FREQUENCIES HEIGHTS 
(unnormalized) 

0 _1-7 * 

0.044 to 0.513 H2 Field * 1 * 

0.176 to 2.051 H2 Laboratory 

1 8,9 * 1 * 

0.591 to 0.670 H2 Field 4 

2.363 to 2.676 H2 Laboratory * 1 

2 ' 10,11,12 1 * 1 

0.748 to 0.904 H2 Field 1 4 6 4 1 

2.988 to 3.613 Hz Laboratory * 6 10 6 * 

4 6 4 1 

1 * 1 

3 13,14,15 1 1 

0.982 to 1.139 H2 Field 1 4 6 4 1 

3.926 to 4.551 H2 Laboratory 1 * 11 16 11 * 1 
‘ 

1 4 11 24 32 24 11 4 1 

6 16 32 '64 32 16 A6 

1 4 11 24 32 24 11 4 1 

1 * 11 16 11 * 1 

1 6 4 1 

1 1 

- Note: "'1?" indicates the nearest ‘available location for additional 0 energy. 
Unit energy at all available locations will give a uniform 
energy distribution.
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4.5 The detected iwaveenumber spectrum corresponding‘ to a simulated 
monochromatic infinite crested wave train. The wave-number of this 
deita function spectrum falls between the grid points described by" 
(4.1%), consequently some smearing of the detected spectrum 
resu ts.
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5.1 Histogram of occurrrences of fie1d runs in classes of U/cp (inverse 
wave age).
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Run 339064 

(a) (b) (c) (d) (e) 
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‘6.1 Have-number spectra _X(k,m ), (‘Z .211) for a reiativei y mature spectrum 
of field waves. The" percent energy in each frequency band is 
indicated. Note that the energy falls within the dispersion circies 
ne_ar the peak, but moves inwards at higher frequencies. ~
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6.2 Have-number spectra for a reTative1y young spectrum of field waves. 
Note that the energy contours are closer to the centre than in 
figure 6.1
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6.3 Wave-number spectra in which the energy density tends to larger 
wave-numbers than are consi with the linear dispersion 
relation. These are eviden r-wind forced waves. , . ~~~
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6.4 Have—number spectra for very young laboratory waves. Evidencie for 

bound harmonics can be seen in (d), (e) and (f).
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7.1 The top part of the figure is the directional spectrum corresponding 
to the wave-number spectrum of figure 6.2(d). 6—————-) the detected directional spectrum; (-e----) the parametric fit described in 57.2; (—- ————) the estimated standard deviation of-the direc- tional spectrum. - 

The lower part of the figure is the average wave-number deduced from 
the wave-number spectrum of figure 6.2 (d). The horizontal dashed line corresponds to the linear dispersion relation (1.1) for the 
frequency of this band m = 3.2.
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~ 7.2 Typica1 directional spectra ( 
_ ) with po1ar representations due to Mitsu asu et a1., 1975 (-----); Hasselmann et a1., 1980 (-—- --——— - ; th1s paper, sechz (3e).§11 (___________)_
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7.3 A d1rectiona1 spectrum and parametric fit showing distinct doub1e 
peaks. The run number is 303172, the wind speed was 7.7 m/s and the 
wind direction is indicated by an arrow.
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7.4 Exampies of the four parameter po1ar fit€?ng function to the detected 
directional spectra. The four parameters correspond to mean direction 9, 
height in that direction Aq, spread BA and peakedness L. Mu1tip1e peak 
occur for L > 3,2. The va ues of L correspond to ( I 

L = 2: (— - -—-.) L = 3.2; (.-----) L = 5.5, 3.5, 3.5 in (a), (b) and 
(c) respectively. 

) L = -5: (----)
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8.2 Normalized frequency spectra grouped into classes by U/c _ _ _ increasing U/fig. The vertical bars at the top of the figupe are an estimate of the 90% confidence 
Note the narrowing of the spectra with 

limits based the standard error of the mean.
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4 normaiized by the rear face [(.u4cl>(w)]~R F which is the average of w4<l>('wf) in 8.3 Frequency spectra x w 

the region 1.5 wp<w < 3wp. The lines corresponding to w"5and w'3 are also shown (——- — —+)-. 
The effect of a 10 cm/s ambient current with or against the waves is aiso shown (-----) as is the 

effect of wind drift in a 10 m/s wind (-—— —-). The spectra are grouped in. classes’ of Uc/cp.
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8.4 The equilibrium range spectral parameteroc versus U /c . The soT1'd 
line is (8.2) and the broken line is from the reqatqon given by 
Kahma (11981).
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8.8 Non-dimensiona"l fetch versus Uc/c. _ (__) fit to the_f1'e'|=d data; 
(-----) fit to the labor-a«tory dgta; (—-—---—-) from Ph1"H‘ips 
(1977).
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8.9 Non-dimensional variance of surface elevation versus U I/cy . 

(I ) fit to the field data; ’(-----) JONSHAP, the lengthy‘? tge 
- Hne indicates the range of data gathered during the JONSHAP . _ 

experiment.
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8.10 Comparison of spectra with = 2.5 for two va1ues of U/cp or, 
equivalently, of non-dfimensio a1 fetch.
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9.1 Mean direction. of waves at the spectral peak versus mean wind direction ‘(approach 

bearing in both cases). the broken line is the line of perfect agreement; the solid 
line has been odeduced from similarity considerations (9.1), using fetch averaged 
over 30 (-15 ) about the wave approach direction. The inset demonstrates the 
relative insensitivity to choice of averaging over 60° (5-o]1d)or not at an 
(broken). .



The two at the bottom of the figure are 10.1 Nurmalized average phase speed versus why for five spectra. 
from field data, the others from laboratod data. As U/c increases the effects of bound harmonics are 

apparent. The normalizer cp is the theoreticai iinear pfiase-speed of the peak waves cp = gfiup.
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10.2 Log-log spectra for three runs of field waves (bottom)" and three 
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narrower and acquire secondary peaks at n cup, The 90; emf,-de,.,ce 
Iimits are indicated by a vertical bar.
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10.3 Normaiized phase speed of free waves for the same five spectra as in 
figure 10.1. The. effects of ampiitude dispersion with increasing 
we‘) are apparent. 
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10.4 Normalized phase speed of the bound second harmonic for the two 
highest Ul: cases. The solid" circles are the measured vaiues; the 
open circigs are taken from‘ figure 10.3 transposed to twice the 
frequency and represent the expected speed of second harmonics 
bound to the observed peak waves.
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10.5 The balance of energy in bound gecond harmonics to free waves at ‘the 
same ‘frequency. In the range 8.5 < U/c < 11.8 the energy in the 
second harmonics of the peak exceeds the ‘energy in the free waves at 
(n = 2 u) '
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Same f"eq"e"cY "e"5"-5 U ‘cp. The ener y in the second harmonic of 
the peak waves exceedsthe my in t e free waves for cp > g_
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10.8 Measured phase speed minus amplitude dispersion minus wind forcing. This residual normal- 
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10.9 Phase speed of field waves from the resiidueai 
of measured speed c minus wind forcing c minus 

wind drift U . The residual is normalized by the theoreticai 
liwear phase speed c = In and 

graphed’ verse s 03/!» . Eighteen field cases have been grouped into three 
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respect‘i~v.e1y. Ihe differehces are Iarger for 1arge—U/c since this corresponds to strong 
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‘ “ DIRECTIONAL SPECTRA F(w,9) 
11.1 Directionai (or po1ar) spectra F (m,e). (2.25) corresponding to the wave- 

number spectra of figure 6.1. The dotted line is the parametric representa- 
tion described in §7.2; the dashed line is a measure of the error in the- estimation of F.
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11.2 D1'rectiona1 spectra ‘corresponding to the wave-number Spectra of 0 figure 6.2 .
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Comparison of the height of the peak of the cos2S(e/2) distribu- 
tion A (s) with the height of the (L, 9 ) test model-A (L). The 
distrigutions have equal integrals ov r 6 (=¢(w))anJ)the same 
half-height widths.
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11.7 Comparison of the height of the peak of the coszme distribution 

Ao(m) with the height of the CL,0A) model A0(L).
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11.8 The B parameter derived from fitting.sech2 (38) fo the ha1f- 
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11.9 Comparison of the height of the peak of the sechz (39) 

dis-tr1'but1"on._ Ao(3) with the height of the (L, 0A) mode] A0(L,).
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1V1-10 The SeCh2(B9) spreading function for various In/mp.
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Rate of transfer of action density dN/dt due to nonlinear 
interaction of waves in a Gaussian spectrum of spectral width 
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