WIND/WAVE FLUME OPERATING MANUAL

by
T. W. Nudds

> Technical Services Section
> Hydraulics Division
> National Water Research Institute
> Canada Centre for Inland Waters
> September, 1979
1.0 LIST OF ILLUSTRATIONS Page
= 2.0 INTRODUCTION 2
2.1 General Preamble 2
2.2 Description of Facilities 2
3.0 PRE-OPERATION 7
4.0 WAVEBOARD OPERATION - REGULAR WAVES 10
5.0 WAVEBOARD OPERATION - RANDOM VAVES 14
6.0 FAN OPERATION 15
7.0 PUMP OPERATION 17
8.0 COMPUTER OPERATION 20
9.0 FOILS 23
10.0 MEASUREMENT DEVICES 24
10.1 Wave Probes 24
10.2 Differential Pressure Transducers 25
10.3 Temperature Probes 252
10.4 Dew Point Hygrometer 26
11.0 BIBLIOGRAPHY 27
12.0 APPENDICES
A Transducer Indicator Instruction Manual 28
B Dew Point Hygrometer Instruction Manual (Excerpts) 36
C Psychrometric Chart 41
1.0 LIST OF ILLUSTRATIONS
Figure 1 Basic References 2.1 .2
Figure 2 Wind/Wave Flume 2.2.1
Figure 3 Waveboard 2.2.2
Figure 4 Water Supply Valves and Drains 3.3
Figure 5 Nitrogen Pressure Chart 4.4
Figure 6 Compensation Factor Chart 4.5
Figure 7 Pump Circulation Paths 7.1
Figure 8 Computer Terminal Displays 8.3

INTRODUCTION

2.1.2 There are two basic references in the Wind/Wave Flume. The first is
2.1.3 For the purposes of this manual, the symbol "W/W" will be used to mean "wind/wave flume".

2.2 Description of Facilities

2.2.1 The W/W structure (Figure 2) consists of a tunnel section and a beach section. The tunnel is 83.5 meters long by 4.5 meters wide by 3.0 meters high. The east end of the tunnel houses the hydraulic waveboard while the west end leads to the beach area which is approximately 20 meters long by 14 meters wide by 5 meters high. The transition from the tunnel ceiling to the beach ceiling is a gradual slope over the 6.7 meters just before the observation area (see Figure 1), which is 9 meters of glass windows in both sides of the tunnel and is located just before the beach area, opposite the control room. The W / W control room contains the majority of the control equipment for the various facilities.
\square :

AND ASSOCIATES LMMITED
TORONTO.
THE WIND WAVE FLUME SHOWN IN PLAN AND SECTION IS A BOUNDARY LAYER WIND TUNNEL. THE CONTROLS FOR WAVE MACHINE, PUMP AND FAN WITH THE DATA FIGURE 2.
2.2.2 The hydraulic waveboard (Figure 3) is capable of generating waves of up to 3 HZ and has a stroke of ± 70 centimeters from its centre position. The hydraulic power supply for the waveboard is located externally and should not have to be touched for the daily operation of the system except to turn on the cooling water.
2.2.3 The recirculating wind tunnel of the W / W is located on top of the flume structure. Air is drawn up from the beach area and is returned to the tunnel above the waveboard. Flow is in one direction only; from waveboard to beach. The fan is capable of producing winds of up to 16 meters per second, dependent on water depth and fan speed.
2.2.4 The pump is located outside of the W / W control room in a pit which also contains the valves used for determining flow. The pump system is capable of producing flow either towards or from the waveboard as well as a circulating flow within the beach area. The volume of flow that the pump is capable of is a function of the water depth. Figure 2 shows the layout of the pumping system.
2.2.5 The computer used in conjunction with the W / W is located in the control room. Through a network of probes and cabling, the computer assists in the generation, measurement, and analysis of waves and other parameters necessary for the various experiments carried out in the W / W. Section 8.0 of this manual is a beginner's guide to the use of the computer. However, as the system is rather a complicated one, it is best to receive instruction in its use from an experienced operator.
2.2.6 There are facilities for two traversing mechanisms located on the side of the W / W. One is approximately thirty meters from the datum line and the other is sixty meters from datum. The mechanism is motorized and is capable of raising and lowering an air-foil type of support on which various measurement devices can be secured.

3.7 The intercom system consists of a master station, located in the W/W control room, and a number of remote stations. Each remote station consists of a paging talk-back horn speaker and a voice call-in switch.

The master station can be used to select any or all of the remote stations. The master is left turned on with both the Standby and Private buttons depressed. This permits any remote stations to call the master by using its call-in switch. When the Standby button is up, the master station listens to the selected remote stations as long as the Talk button is up. With the Talk button depressed, the master station can talk to the remotes. Locations of the remote stations at present are:

1. behind the waveboard
2. in the hammerhead beach
3. at the external south-west corner of the W/W.

Proposed future locations are:
4. at the remote Fan Control Panel
5. at the fan motor drive
6. at the MTS Hydraulic Power Supply
7. in the Electronics Lab.
4.1 Turn on TV camera, lights and intercom. Go down to the waveboard end of the W / W and turn on the hydraulic power supply cooling water. Pump up the waveboard seal to between 18 and 22 pounds using the bicycle pump located on the ledge outside of the waveboard room. This should be done on a daily basis as should the lubrication of the board guide rails. A can of Spray Lube A and a can of Silicone Spray are kept outside of the waveboard room. Once the rails have been wiped clean, a thin film of Spray Lube A should be applied to them. The can of Silicone Spray should be used on a weekly basis to lubricate the waveboard seal.
4.2 The waveboard control rack is located in the W / W control room. Turn on the Power switch on the MTS 436 Control Unit. Press the Limit Detect Reset button on the MTS 406 Controller. Press the Hydraulic Pressure-Low button on the Control Unit, wait five minutes, then press the Hydraulic Pressure-High button on the Control Unit. Make sure that the INT/RWS switch on the Control Unit is set to INT. Wait 15 minutes before attempting to move the waveboard.
4.3 Using the Set Point Potentiometer on the Controller, slowly move the waveboard back until it is in the mid-position of the stroke. When the trace of the oscilloscope, which is incorporated in the MTS control rack, is in the centre of the screen, the waveboard is then at the midposition of the stroke. For this to be true, the Volts/Div dial of the oscilloscope should be set at 2 and the Seconds/Div dial should be set at .2 m .
4.4 Determine the required nitrogen pressure, to apply to the waveboard, for the particular water depth using the chart in Figure 5. Set the nitrogen pressure at the gas cylinder located near the MTS Hydraulic Power Supply.
4.5 To set the desired wave amplitude: Obtain the compensation factor by using the chart in Figure 6. Multiply the wave height in centimeters by the compensation factor, then divide by 100 to obtain the ram stroke. Divide the ram stroke by two to get the amplitude in centimeters which is set on the Span control of the Controller. Note: This is a ten turn potentiometer and one turn is equal to ten centimeters of waveboard amplitude.

To maximize performance capability, the precharge in the N_{2} chamber of the Actuator must be at the correct level for the water depth. Refer to the curve below, or calculate the required pressure as follows:
where: $p=$ required N_{2} static pressure in psi
$\mathrm{W}=$ width of waveboard in inches
$\rho .=$ density factor (.036)
$h=$ water depth in inches
β

$$
p=765+\left(\frac{W \times \rho \times \mathbf{h}^{2}}{22}\right)
$$

PRECHARGE PRESSURE - PSI

Figure 5: Nitrogen Pressure Chart

Figure 6:
Compensation Factor Chart
*orcompensp

 M

 PERIOD IN SECONDS

 .
4.6 Set the desired wave-form and frequency on the built-in Function Generator in the Control Unit. The sinusoidal wave form is almost always used, though triangular and square waves are available. If a continuous train of waves is desired, put the Count Input of the Control Unit to Off and press the red reset button. If only a certain number of waves is desired, set the Count Input to Program, press the Pre-setting button and set the required number of waves. At the end of each sequence, the reset must be pressed in order to uninhibit the controls for another series. Switch the Soft Run/Stop switch to In.
4.7 To activate the waves, press the Program-Run button on the Control Unit. If you are using a set number of waves, the Program-Stop will be activated after the prerequisite number of waves have been generated. If you are using a continuous series of waves, it is necessary to press the Program-Stop in order to terminate the waves.
4.8 To shut down the waveboard: press the Program-Stop; park the waveboard in the forward position using the Set Point; press Hydraulic Pressure-Low, then Hydraulic Pressure-Off; turn off Power switch, then the cooling water to the Hydraulic Power Supply; finally, turn off the television camera, lights, intercom.

IMPORTANT: Do NOT shut off the hydraulic pressure unless the waveboard is parked in the forward position or the waveboard will be damaged.

wAVEBOARD OPERATION - RANDOM WAVES

Follow the same procedure used for setting up the waveboard for regular waves up to and including section 4.4 , with the exception that the INT/RWS switch on the Control Unit should be set to RWS.

Connect a BNC cable from the output of the Random Wave Synthesizer to the Program BNC input on the front panel of the Controller. At this point, the Span potentiometer on the Controller should be at zero and the output knob of the Synthesizer should be set to Clear.
5.3 With the Random Wave Synthesizer set up (see the Operating Manual for Generating Random Waves Using the Random Wave Synthesizer by M. G. Skafel), turn the output knob of the Synthesizer to Run. Slowly turn the Span control to maximum.

To shut down: turn the Span to zero, set the Synthesizer to Clear, then follow sections 4.8 and 4.9 of this manual.
6.3 Each time the main fan motor is to be started, the boiler plant (extension 542) has to be notified.
6.4 Decide which motor you require: main motor goes up to 873 rpm ; auxiliary motor goes up to 87 rpm . Press the Motor Run button, wait 15 seconds, then press the Clutch Run. Using the Run Speed control, set the fan speed to what you desire, using either the readout on the Control Dial (\% of full speed) or the fan speed digital readout (rpm.). To shut down, reduce the fan rpm to zero using the Run Speed control. Press the Clutch Stop button, then the Motor Stop, and finally remove the Remote Lockout Key. If only the auxiliary motor has been used, the power panels may be shut down immediately. However, if the main motor was used, it will be necessary to wait five minutes before shutting off the main power control panels on the side of the W / W.
6.6 . If the auxiliary motor was in use and you wished to go to the main motor, you may do so immediately. However, if you wished to go from the main motor to the auxiliary, there must be a waiting period of five minutes due to a blower controlled lock-out relay which inhibits direct change from the main to the auxiliary motor.
There are two operational control panels for the fan; one is located inside the W/W control room, and the other is located beside the main power control panels on the side of the W/W. The same lockout key works in both panels.
6.8 Do not run at 700 rpm as this is the resonant frequency of the fan.
6.9 There is no standard procedure for wind measurement. Both cup anemometers and pitot tubes have been used. Considerable data on wind measurement will be found in the report, "Wind Velocity Profiles in the Wind/Wave Flume" by Paul W. Szczucinski.
7.1.1 Path \#1 is basically a flow of water in the tunnel section of the W/W. Valves \#1 and \#3 are open while \#2 is closed. The flow of water, within the W / W, is between the distributor plate in front of the waveboard and the distributor plate at the end of the tunnel before the beach area. Flow can be either towards or away from the
7.1.2 Path \#2 is an extension of path \#1 and includes the hammerhead beach area. Valve \#2 is closed; valves \#1 and \#3 are open. The distributor plate at the beach end of the tunnel section is sealed for this flow path. Flow can be either towards or away from the waveboard. Drop gates \#3 and \#4 must be removed; while drop gates \#1, \#2, \#5 and \#6 must be installed.
7.1.3 Path \#3 is basically a flow within the beach area. Valve \#1 is closed; valves \#2 and \#3 are open. For the main flow path, the distributor is open; drop gates \#1, \#3 and \#4 are removed; drop gates\#2, \#5 and \#6 are installed. For the modified flow path, which is used to achieve a cross-flow in the beach area, the distributor must be sealed. Drop gates \#1, \#3 and \#6 are removed and drop gates \#2, \#4 and \#5 are installed. Flow, for either the main or the modified path, can be clockwise or counterclockwise.
7.2 . Turn on the main power switch on the ST6 Solid State Drive Power Supply, located at the corner of the pump pit and wave basin. In the control room, set the FWD/REV switch for determining the direction of flow within the W/W. Set the switch to REV for a waveboard to beach flow, and FWD for a beach to waveboard flow.
7.3 Turn on the digital tachometer. Press the Start button. Using the Speed Set control (\% of full speed), set the desired speed of the pump, either by percentage of full speed or by rpm, utilizing the digital tachometer.
7.4 To stop the pump: reduce the speed to the zero setting of the Speed Set control; press the Stop button; turn off the digital tachometer; turn off the main power supply switch.
7.5 When using the pump, listen carefully for any sound of cavitation. If this occurs, reduce the speed of the pump immediately and, if necessary, shut down.
7.6 The measurement of water flow is accomplished through the use of two differential pressure transducers (section 10.2) in conjunction with two transducer indicators (Appendix 12A).

Figure 7. Pump Circulation Paths

8.0
 COMPUTER OPERATION

Turn on the power switches for the computer, the keyboard terminal and the hard copy unit. Insert the System Disk into the disk drive unit \#0. Insert the desired user disk into the disk drive unit \#1. Press the run switches on the fronts of both disk drives. When the Ready light comes on, press the Halt switch which is on the main panel of the computer. Also on this panel is a series of 18 switches which operate in a digital fashion: up is 1 , down is 0 . The number 173100 should be entered onto these keys, in octal. Press the Load Address switch. Change the Enable/Halt switch to Enable. Enter the number 177406, in octal, onto the series of 18 switches. Press the Start switch. The display screen of the terminal should read - RT-11SJ V02C-02E.

Type in the data in the following format -
DAT 04-APR-79
Press the Return key, then type in -
R ADF4M
Press the Return key; the following should appear -
BASIC V01B-02C

Type the letter A, then the Return key, to get USER FNS LOADED
READY
The computer is now ready to operate.
8.3 Decide which program you wish to use. In this example, we will use

BREAK. Type in OLD, press Return, to get -
OLD FILE NAME - -
Type in DK1:BREAK, press Return, to get -
READY
Type in Run and press Return. The program BREAK will commence to operate. Figure $8(a)$ is a sample of the terminal display up to the point of being ready to run the program BREAK. Figure $\mathbf{8 (b)}$ is a

```
RT－11SJ VOBC－aZE
```

．DAT 13－APR－78
．R，RDF 4 M
BRSIC UB1B－82C
＊
USER FNS LOADED
REAOY
0 O
OLD FILE NAM－DKI：BREAK
READY
RUN

Figure 8 （a）：Computer Display－Turning System On

BZ二厶⺝ 13－PBR－78 BASIC VOIB－QAC
10 of Scxis（MuLT．of $2552-7256$
Delta Tr ips
THPE Y TO ENTER CELTY
1 valt＝
Prose 0 ？ 1
PROSE 1？2
PROBE 273
PROEE 3 ？4
PROSE 475
TYPE Y FOR MEAHSTY

－118217	1	2		
$\overline{T Y P E} \text { Y FOR }$	$\operatorname{RHS} \bar{Y} \cdot 124016$	－． 113858	8	$-2.98535=-03$
RTHS UALUES				
$.118247$	1	2	3	

STOP AT LINE 176
REROY

Figure 8 （b）：Computer Display－Running Program BREAK
sample of the operation of the program BREAK. In both cases, those parts which are underlined are data which must be entered by the operator." The use of each program is, of course, different. The majority of the instructions and commands necessary will be self- evident from the questions which the computer will ask. Once you enter the required number/command, you then press the Return key. In order to clear the display screen, press the Page key.
8.4 To make a copy of the terminal screen, press either the Make Copy key on the terminal or the Copy button on the Hard Copy Unit.
Some of the commonly used programs and their uses are:
JNSWP, PADSP, RAND2, VSDRAN, CMPARE - generation of random waves,
BREAK, WHEAT - measurement of waves, VSD1 - analysis of waves,
REGRES - linear regression,
WAVES - calculate wave parameters and values to set the wave machine for regular waves,
GRPH - a subroutine used with other programs for graphics.
9.0
9.1

The upper large foil is located approximately in the centre of the wind tunnel section of the flume, just in front of the waveboard. This foil has a symmetric airfoil cross section and is pivoted. Movement of this foil is accomplished by means of a chain which hangs along the side of the flume. On the window at this location, there is a scale which indicates the height of the tip of the foil above the W / W Bench Mark as well as the angle from horizontal. Normally this foil rests at 2.171 meters above the Bench Mark at an angle of 4.4° below horizontal.
9.3 The lower large foil is located directly above and in front of the waveboard and is hinged at the waveboard end. There is a crank outside of the flume which controls the positioning of this foil. Normally, it is kept at its highest position.

The set of six small "wing"-shaped foils is located at the upstream end of the throat of the wind tunnel and they are set one above the other. On the outside of the flume, there are six levers which control the positioning of these foils. Normally, they are kept in a horizontal position.

MEASUREMENT DEVICES

10.1 Wave Probes
10.1.1 A wave probe assembly consists of a length of teflon wire, a ground strip, and a Robertshaw Level-Tel Transmitter. The teflon wire is secured to the bottom of the W / W and this end of the wire must be sealed. The other end of the wire is fed into the transmitter via cabling. The ground strip is attached to the output ground of the transmitter and is usually made of an adhesive aluminum tape. Since the transmitter is a current output device, a 1000 ohm resister is placed in parallel with the output in order to convert it to a voltage. With this resistor in parallel, the transmitters which we have are capable of a zero to ten volt output swing.
10.1.2 Setting up a waveprobe

In this procedure example, the waveprobe will be set to measure waves over a ten centimeter range with the water depth equal to 55 centimeters. Therefore, zero is at 50 centimeters and the maximum (ten volts) will be at 60 centimeters. In this case, one centimeter will equal one volt.
10.1.3 Setting the waveprobe
a. Set the water level above the zero point (51 centimeters).
b. Adjust the coarse and fine Span controls to their maximum (fully clockwise).
c. Set the coarse and fine zero controls to achieve the desired above zero output (one volt)..
d. Reduce the Span controls to minimum (fully counterclockwise).
e. If the output has changed from step c (one volt), adjust the Null control to return the output to the desired level (one volt).
f. Set the Span controls to maximum.
g. If the output has changed, reset it with the Zero controls. Repeat steps d through f until you can adjust the Span controls from maximum to minimum without affecting the output level (one volt).
h. Set the Span controls to minimum and raise the water level to just below the maximum desired height (59 centimeters).
i. Using the Span controls, adjust the output level to correspond to the new water level (in this case to nine volts, since one centimeter is equal to one volt).
10.1.4 Calibrate the waveprobe by taking an output reading for various water levels. At least six points should be used. Enter these points into the DEC PDP-11/40 computer using the program REGRES. This program will give you the slope, the intercept, and the correlation of the points. The slope is the calibration; the intercept is the zero point, and the correlation is a comparative relation of the accuracy of the entered points. The correlation should be between . 99 and .9999; if there is any greater discrepancy, calibration should be redone.

10.2 Differential Pressure Transducers

10.2.1 There are two differential pressure transducers which are used to measure water flow within the pipes of the pump system. There is one located on either side of the pump and they are hooked into the system through annubars. The signals from the transducers are cabled back to the W/W control room and attached to the two Validyne Transducer Indicators. For operation of the Indicators see Appendix 12A.
10.2.2 Every time the transducers and indicators are to be used, the lines of the annubars must be bled, to remove all air bubbles from the system.

10.3 Temperature Probes

10.3.1 There are two temperature probes installed in the W / W; one to measure air temperature and one to measure water temperature. Both of them are platinum wire resistance probes and are very linear. The outputs for these devices are located in the W / W control room above the Hard Copy Unit in the computer rack. The outputs are calibrated at $1 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ and can be read directly by either a voltmeter or strip chart recorder.
10.3.1 The water temperature sensor is located just above the floor within the hammerhead beach, on the east wall.
10.3.2 The air temperature probe is located on the ceiling of the flume, $\mathbf{3 0}$ meters from the datum line.
10.4 Dew Point Hygrometer
10.4.1 The Dew Point Hygrometer is used in the measurement of the moisture of air in the W/W tunnel. For operation of this device, see Appendix 12B.
10.4.2 The sensor for the hygrometer is located on the ceiling of the W / W tunnel at a point 30 meters from the datum line. The dew point temperature meter is kept in the W/W control room.

1. Dilworth, Secord, Meaher and Associates Ltd: Technical Specification for Fan Installation, Report No. 567/711, 1973.
2. Dilworth, Secord, Meagher and Associates Ltd: Final Report - Design, Construction and Commissioning of a Wind-Wave Flume, Report No. 567/795, 1975.
3. Dynamatic: Manual for 350 H.P. Motor No. SPC-8140, Manual No. 0541901; Eaton Power Transmission Systems.
4. E.G.\&G.: Dew Point Hygrometer Instruction Manual, Manual No. TM71174; E.G.\&G. International, Inc., 1973.
5. MTS: Reference Manual, Servohydraulic Wave Motion Generator, Manual No. 911.43 ; MTS Systems Corp., 1974.
6. MTS: Service Manual Servohydraulic Wave Motion Generator, Manual No. 911.43; MTS Systems Corp., 1974.
7. MTS: Operator's Manual, Servohydraulic Wave Motion Generator, Manual No. 911.43; MTS Systems Corp., 1974.
8. Robershaw: Technical Service and Maintenance Manual, Manual No. 909-605-158; Robershaw Controls Company, 1976.
9. Sheldons: Erection, Operation and Maintenance Instructions for Sheldons Heavy Duty Industrial Fans, Manual No. 732352; Sheldons Engineering Ltd.
10. Skafel, M. G.: Operating Manual for Generating Random Waves Using the Random Wave Synthesizer, Unpublished Report; CCIW, 1976.
11. Szczucinski, P. W.: Wind Velocity Profiles of the Wind/Wave Flume, Contraçt No. OSS77-00072; CCIW, 1977.

3.3 Control Functions
3.3.1 ZERO Control

The front panel dERD control is calibrated by a 10 -tum locking
 ducer. A transducer unbelance of up to $\pm 10 \mathrm{~m} / \mathrm{V}$ excitation can szasjyo deyzo do alqpo buol of anp auypliqun levolalppe !petinu aq
 Input connector (Pin 3). Connect pin 1 to pin 3 for a nominal * $47 \mathrm{mV} / \mathrm{V}$ input. Connect pin 4 to pin 3 for a $-47 \mathrm{~mm} / \mathrm{N}$ input. Resistors may be used to simulate other inputs; a 41.2 K ohm resistor from pin 1 to 3 produces a nominal $+10 \mathrm{mv} / \mathrm{V}$ shift.

In setting zero and span the ZERO control should be set LaST, as there is slight interaction between the controls, particularly when auxiliary balance resistors are used.
3.3.2 SPAN Control

The SPAil control provides continuous gain control from a maximum
 This occurs at a dial setting of 1000. At a dial setting of 500 , the CO12 products full scale output with a transducer output of approximately $30 \mathrm{mw} / \mathrm{V}$. The dial settings are arbitrary, and should be used only to log and reset calibrations.

Appendix 12B: Dew Point Hygrometer Instruction Manual (Excerpts)

THE DEW POINT HYGROMETER MODEL 880 INSTRUCTION MANUAL TM71-174

REVISED JANUARY 1973

This Instruction Manual applies to Instruments with Serial Numbers 540 thru 889.

Prepared by
EG\&G International, Inc.
ENVIRONMENTAL EQUIPMENT DIVISION
151 Bear Hill Rood
Waltham, Massachusetts 02154

Telephone (61.7) 890-3710

INTRODUCTION

Model 880

SECTION 1

INTRODUCTION

1:1 GENERAL DESCRIPTION

The Model 880 Dew Point Hygrometer, Figure 1, is an instrument designed for use in the measurement of moisture in gases in laboratory and limited, industrial applications. The instrument is a portable, line operated, bench-top hygrometer which utilizes the dew point condensation principle to determine the water vapor concentration in gas mixtures. It incorporates a direct reading, front panel dew point temperature meter with both Fahrenheit and Centigrade scales which can also be used with a remote thermistor probe to measure temperature. The instrument provides a 0 to 50 -millivolt output to record the meter deflection. The sensor is normally mounted at the rear of the instrument but can be used at a remote location.

1. 2 SPECIFICATIONS METER SCALE:

TEMPERATURE READOUT:
DEW POINT DEPRESSION:

OUTPUT:
SAMPLE PRESSURE:

SAMPLE FLOW RATE:
INSTRUMENT AMBIENT TEMPERATURE:

COOLING RATE:
RESOLUTION:
ACCURACY:
POWER:
$=$
WEIGHT:
$-40^{\circ} \mathrm{F}$ to $+120^{\circ} \mathrm{F}, 2^{\circ} \mathrm{F}$ increments. $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}, \quad 1^{\circ} \mathrm{C}$ increments.

Thermistor (non-linear), $1 \mathrm{~K}-\mathrm{Ohm}$ at $25^{\circ} \mathrm{C}$ 。 Maximum depression capability $80^{\circ} \mathrm{F}$ for Standard Sensor and $100^{\circ} \mathrm{F}$ for Accessory Sensor, at ambient temperature of $80^{\circ} \mathrm{F} ; 1^{\circ} \mathrm{F}$ depression is lost for each $3^{\circ} \mathrm{F}$ decrease in ambient temperature. 0 to 50 mV proportional to meter deflection.
2 psia to 60 psia - Standard Sensor
2 psia to 200 psia - Accessory Sensor
0. 5 SCFH to 5 SCFH .
$+40^{\circ} \mathrm{F}$ to $+120^{\circ} \mathrm{F}$.
$4^{\circ} \mathrm{F} / \mathrm{sec}_{\text {, maximum. }}$
$0.5^{\circ} \mathrm{F}$, nominal.
$2^{\circ} \mathrm{F}$, nominal.
$50 W, 115-\mathrm{V}, \mathrm{ac}, \pm 10 \%$. Can convert to 230-V,ac.

12 lb.

Figure 1. Model 880 Dew Point Hygrometer.

SECTION 3

3.1 OPERATING PROCEDURE

To assure proper operation of the Model 880 refer to Figure 1 and Figure 5, Rear View of the Model 880 Dew Point Hygrometer, before attempting the standard operating procedure, described in the following paragraph.

1. Locate the Model 880 in a clean area, free of vibration and with free air circulation for convection cooling.
2. Connect the sensor to the air sample via the air infake port (Figure 3) with cleaned, non-hygroscopic, leak-free connections and provide a flow rate of about 2 SCFH.
3. Connect the power cable to a $115 \mathrm{~V}, 60 \mathrm{~Hz}$ power source (230 V when modified internally).
4. Place the rear METER (Figure 5) switch in the DEW POINT position.
5. Place the front panel control switch (Figure 1) to the TEST position.
6. After switching to the TEST position, allow the meter pointer to move toward the center scale position as the mirror's water or frost film evaporates. When the meter pointer is at a maximum and appears to stop, adjust the BALANCE knob* for a center scale reading (at the diamond below the words DEW POINT). If a balance condition cannot be achieved, clean the mirror (para 6.2) and repeat Steps 4, 5 and 6. If the balance condition is still unattainable, adjust the internal SENS CAL adjustment (para 6.2(5) and proceed with Step 7**.
7. Turn the front panel switch to the OPR position. The COOLING lamp should increase to maximum brightness*** and the front panel meter will now display the mirror temperature. The temperature will initially indicate above the ambient temperature and then drop to below the dew point of the gas somple. At this point condensate will form on the mirror surface, inside the sensor, causing a reduction in intensity of the cooling lamp and a decrease in the cooling rate of the mirror. In a short time the indicated

[^0]temperature will stabilize at the sample dew point. When this occurs the cooling lamp intensity will depend on the dew point depression, dim for low depression and bright for maximum depression. The dew point depression is the difference in temperature between the ambient temperature and the dew point temperature of the sample. Sudden changes in the sample dew point will cause a fluctuation in the lamp intensity followed by a change in the indicated dew point reading. A constant fluctuation of the lamp intensity is indicative of control-loop oscillation and may occur at high sample flow-rates or at high gain settings (an internal instrument adjustment). The constant fluctuation is not detrimental to good readings when the dew point temperature indication is steady.
8. In the event that the air sample is very dry and the dew point is below the capability of the instrument, the COOLING lamp will remain at maximum intensity indicating that the temperature is slowly approaching a minimum reading. If it is desirable to determine the hygrometer's lowest temperature capabilities, an unmarked (fourth) position is provided on the front panel switch beyond the OPR position. When the control switch is in the unmarked position the instrument will constantly cool to maximum capability. However, when in this position, if the sample is of a high dew point, excessive condensate will tend to collect and it will take a long time with the control switch in the TEST position, to remove all the condensate.

Appendix 12C: Psychrometric Chart

[^0]: *Adjust BALANCE knot within one minute after the pointer reaches a maximum and appears stoble, otherwise the pointer may begin to drift up or down as the Sensor electro-optical components heat while in the TEST position.
 **When the 880-SU Selector Unit is used, all balancing is performed at the Selector Unit per instructions in the 880-5U Manual.
 ***Momentarily switch fo unmarked position beyond OPR position to determine appearance of lamp af maximum brighiness.

