

magnitude of floods vancouver island

LIBRARY
ENVIRONMENT CANADA
PACIFIC REGION

Planning and Studies Section
Water Survey of Canada
Vancouver, February 1979

MAGNITUDE OF FLOODS -- VANCOUVER ISLAND

PREFACE

This report is a compilation of annual flood series from 47 stream gauging stations on Vancouver and Queen Charlotte Islands. As an aid to forecasting the probability of occurrence of high flows, the historical annual flood series have been plotted on log-extremal paper.

At the back of the report is a table giving the 50 -year, 100 -year and $200-$ year flood estimates obtained by fitting five probability distributions to those stations with at least 10 years of record. The distributions used are: Gumbel I, log-normal, three parameter log-normal, power transformation-normal and logPearson III. Unless otherwise noted, the first three distributions have been fitted by the method of maximum likelihood only, while the log-Pearson III distribution has been fitted by both the method of maximum likelihood and by the method of moments. The user is referred to reference (1) for a description of the method used to fit the power transformation-normal distribution. A summary of the period of record, the highest peak flow, and corresponding runoff at each station is also included. Envelope curves of the extreme maximum daily and instantaneous flows and a map showing the location of most of the stream gauging stations complete the report.
Source of data: Most of the data were obtained from 1istings of streamflows and stations descriptions that were produced from the magnetic tape files maintained by the Water Survey of Canada. These listings provide the latest, revised version of data originally published in the Surface Water Data papers.

Selection of streams: Included in the report are streams having at least five years or more of flood record. There are 44 stations from Vancouver Island and three from the Queen Charlotte Islands.
Compilation of data: One flow is given for each year of record of a stream. This flow is the highest daily mean flow of the year; it is not the instantaneous peak flow. Where incomplete records were used, the records of neighbouring streams indicated that the partial record period coincided with the time of highest flow.

The flows of some streams have been modified either by storage dams or by diversions. Brief notes about known modifications are given below the tables of flows.

Accuracy of the data: The flows are not all of equal quality. First, no distinction has been made between those flows obtained by daily staff gauge readings and those obtained by continuous recorders. Second, the highest peak flows are necessarily estimates that are obtained by extending the upper end of a rating curve. Of course, some rating curves are better defined than others.

The drainage areas have been redetermined since the last publication of this report. There have been several revisions.
Calculations: The mean flow and the standard deviation given below the tables of flows are the arithmetic mean and the unbiased standard deviation respectively. The plotting positions are determined by the Weibull formula: $\mathrm{T}=(\mathrm{N}+1) / \mathrm{M}$.

Flood frequency estimates, obtained by fitting the log-Pearson III distribution by the method of moments, are presented on the frequency plots.

A note of caution: The user is cautioned not to infer from the uniform fornat used for data presentation, that short records can be used with the same assurance as the longer records in predicting the probability of high flows.
Reference (1)
Chander, S., S.K. Spolia, and A. Kumar, Flood Frequency Analysis by Power Transformation, Journal of the Hydraulics Division, A.S.C.E., November 1978.

Ce compte rendu est une compilation d'une série annuelle des 47 stations de jaugeage à l'Ile de Vancouver et à les Iles de la Reine Charlotte. Pour prédire la probabilité de rencontre des débits de pointe au maximum, la série des crues annuelles et chronologiques était developée sur papier log-extrémal de probabilité.

Au dos de ce compte rendu une table donne les estimations des crues pour 50 ans, 100 ans et 200 ans, obtenues par établir cinq distributions de probabilité pour celles stations ayant observations portent sur une période de 10 ans au moins. Les distributions utilisées sont: Gumbel I, log-normal, log-normal à trois paramètres, la conversion de la puissancenormale et log-Pearson III. Au moins de noter autrement, les trois premières (distributions) ont été établies par la méthode de probabilité maximal seulement, tandis que la distribution \log-Pearson III a été établie par la méthode de probabilité maximal et aussi par la méthode des moments. En faisant usage de celui-ci il faut qu'on lise la référence (1), au dessous, pour une description de la méthode employée pour utiliser la distribution puissance d'agrandissement-normale. Aussi compris est un sommaire de la durée des registres, le débit de pointe le plus élevé et l'intensité de l'écoulement correspondant à chaque station. Courbes d'enveloppes au maximum extrême de débit quotidien et débits maximum instantanés aussibien qu'une carte donnant l'emplacement des stations de jaugeage compléttent le compte rendu.

Source des données: La plupart des données sont obtenues d'après listes des débits des courants et par les descriptions des stations, produit par la collection des rubans magnétiques, maintenue par la Division des relevés hydrologiques du Canada. Ces listes pourvoient la version la plus récente et révisée des données, publiée originairement et intitulée Données sur les eaux de surface.
La selection des cours d'eaux: Ce compte rendu rapporte sur les cours d'eaux ayant cinq ans au moins, ouplus, d'enregistrement. Il y a 44 stations à l'Ile de Vancouver et trois des Iles de la Reine Charlotte.

La compilation des donnēes: Un débit seul (le plus haute de la moyenne du débit quotidien) sert pour chaque an de recueillir des données; ce n'est pas le débit maximal instantané. Quand on a utilisé relevés imparfaits, les relevés des courants voisins montraient que la période d'enregistrement, en partie, s'accordait avec le temps du débit maximal. Les barrages et les diversions pourvoient un effet modifiant sur les débits de quelques courants. Il y a quelques notes brèves au sujet des modifications spécifiques - sous les tables des débits.

L'exactitude des données: Tous débits ne nous donnent une qualité égale. D'abord, aucune distinction $n^{\prime} e s t$ fait entre débits obtenus par interpretations quotidiennes par les jauges manuelles et ceux obtenus par enregistreur continu. Deuxième les débits de pointe maximale, sont de nécessité, les données estimatives, déterminées par extrapolation. Bien sûr, quelles telles courbes soient plus définissables que les autres.

Les superficies des bassins versant ont été déterminée de nouveau depuis la dernière publication de ce compte rendu. Les révisions avaient été fait à plusieurs reprises.
Les calculs: La moyenne du débit et la déviation normale (au-dessous des tables des débits) sont, respectivement, la moyenne arithmétique et la déviation normale sans biais. L'emplacement des points du graphique s'établit par la formule We1bull: $T=(N+1) / M$.

Les évaluations de la fréquence des crues obtenues par utiliser la distribution logPearson III par la méthode des moments, se présentent sur le graphique.

Avis: On est obligé de prendre garde à ne pas inférer, du format uniforme de présenter les données, que les relevés de durée brève pourvolent à la même assurance que les relevés pendant longtemps pour prédire la probabilité des débits au maximum.

Référence (1)

Chander, S., S.K. Spolia, et A. Kumar, Flood Frequency Analysis by Power Transformation, Journal of the Hydraulics Division, A.S.C.E., November 1978.

starion NUMBER	STATION		
O8HBO23			
O日HBOL6			
O8HEOO 3			
O8HAOL6			
08 H 4025			
$08 \mathrm{HOOO1}$			
O8HOOO3			
O8Ha048			
O8H4001			
O8HAOO2			
OBHAOLL			
08 HBOSO			
08 HCO 01			
$08 \mathrm{HSO45}$			
O8HEOOS			
$08 \mathrm{HBC4} 1$			
O8HFOOS			
OBHAOO3			
O8HDOU4			
U6HE029			
OBHEOU1			
OBHEOO2			
O3HBOL7			
O日HdOL2			
O甘HiSO 34 O8HBO22			
O8HFOO2			
0803002			
OXOAOOS			
$08 \mathrm{HBOO6}$			
O8H3007			
0848001			
08HDUOS			
O8HDOS 7			
08H0007			
08HDO06			
OBHA010			
OBHBO14			
08H3017			
0848008			
O8HBO10			
$08 \mathrm{HBOO9}$			
O6HB024			
O8HSOL1			
O8HCOO2			
O8UAOO2			
O8HEOO6			

ASH KIVER UELUN MORAN CKEEK - STAIIUN NO. DOHBOZ3

REMARKS: SIURAGE AND OIVERSIÜN SINLE Lý (ASH RIVEK DAM)

ash kiver near great ceivikat - siallun no. ubheolb

BENSON RIVER NEAR PORT ALICE - STATION NO. OBHEOO3

bings creek near the mouth - station no. obhaolg

BINGS CREEK NEAR THE MOUIH - STAIIUN NU. UBHAOIG

I

BRUWNS RIVER NEAR COURIEIAAY - STATIUN NO. U8HBO2S

CAMPBEIL RIVER AT OUTLET OF CAMPBELL LAKE - SIATLUN NU. OBHOOOL

CAMPBELL RIVEK NEAR CAMPUELL KIVER - STATIUN NU. OUHOUOS


```
GARNATIUN CREEK al The mOUT'H - SIAIION NU. u&hbu4d
```


[^0]
CUHICHAN RIVER AT LAKE CUWICHAN - STATION NO. O8HAOO2

MEAN ANNUAL FLOOD: 6300
6300 CFS
STANDARD DEVIATION: 1910 CFS

1	RANK.	1 1	RECURRENCE INIERVAL IN YEARS	1	MAXIMUM DAILY FLOW IN CFS	1 1 1	Year
1		1		1		1	
1	1	1	44.0	1	11300	1	1468
1	\angle	1	22.0	1	10900	1	1961
I	3	1	14.7	1	10100	1	1966
1	4	1	11.0	1	9000	1	1949
1	5	1	S. ${ }^{\text {d }}$	1	8940	1	1953
I	6	1	7.3	1	8350	1	1775
1	7	1	6.3	1	8260	1	1972
1	8	1	5.3	1	7920	I	1918
1	7	1	4.89	1	7770	1	1974
1	10	1	4.40	1	7610	1	1971
1	11	1	4.00	1	7600	1	1954
1	12	1	3.67	I	1520	1	1955
1	13	1	3.30	1	7300	1	1914
1	14	1	3.14	1	7000	1	1963
1	15	1	2.93	I	6850	1	1958
1	16	1	2.75	1	0440	1	1917
1	17	1	2.59	1	6390	1	1947
1	18	1	2.44	1	6330	1	1951
1	19	1	2.32	1	6120	1	1946
1	20	1	$<.20$	1	6040	1	1962
1	21	1	2.10	1	5970	1	1964
1	22	1	2.00	1	5950	1	1950
1	23	1	1.91	1	5820	1	1967
1	24	I	1.83	1	5660	1	1977
1	25	1	1.76	1	5630	1	1945
I	26	1	1.69	1	5550	1	1941
1	27	1	1.63	1	5550	1	1952
1	28	1	1.57	1	5410	1	1965
1	29	1	1.52	1	5360	1	1944
1	30	1	1.47	1	5320	1	1948
1	31	1	1.42	1	5250	1	1957
I	32	1	1. 38	1	4980	1	1915
1	33	1	1.33	1	4920	1	1960
1	34	1	1.29	1	4870	1	1956
1	35	1	1.26	1	4800	1	1971
1	36	1	1.22	1	4740	1	1959
1	37	1	1.189	1	4280	1	1943
1	38	1	1.158	1	4130	1	1940
1	39	1	1.128	1	4040	1	1916
1	40	1	1.100	1	3970	1	1969
1	41	1	1.073	1	3840	1	1976
1	42	1	1.048	1	3780	1	1970
1	43	1	1.023	1	3530	1	1942
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	
1		1		1		1	

DRAINAGE AREA:
210
SO

COWICHAN RIVER NEAR DUNCAN - STATION NO. OZHAOII

thos cheek at wurlet of enus lakt - station no. u8hbuso

GOLO KIVER JELUW UCUNA KIVER - SIAIION NO. UOHCUOL

REMARKS: FLON DIVERTEO SINCE 1957

GRAHAM CREEK AI THE MOUTH - STAIION NU. UBHBU4S

heslam creek nerr cassioy - station no. obhboo3

HASLAM CREEK NEAR CASSIUY - STAJIUN NU. OXHBUUZ

$$
25
$$

JUMF CKEEK AI THE : MUUIH - SIATION NU். UBHBUムI

KUKISH RIVER BELUN BONANLA KIVER - SIAIION NO. UOHFUOS

KOXSILAH RIVER AI COWIChAIV SIAIIUN - STAIIUN NU. O8HAOO3

little qualicum rivek near jualicum beach - sialiun mu. obhbuzy

1
1
1
1
mardle kiver at ouilef of alict lakt - siation vo. ubituol

KEMARKS: FLON OIVEKIED SINCE $1 \nrightarrow 17$

MILLSIONE RIVER VEAR wELLINGIUN - SIAIIUN NU. UDHBJZI

TVANAIMU रIVEK NEAR LYDJIUY - JIAfIUN NU. UOHdOS4

píemier creek near nueen charlotite - siatiun no. uboadou

PUNTLEDGE RIVER AT CUURTENAY - STAIIGIV NU. O8HBOCO

funtledge river near cumberlano - station nue oambúot

PUNTLEDGE KIVER NEAR CUMBERLAND - STAIIUN fNU. OBHBOOI

QUALICUM RIVER GEAR BOWSER - STATIUN NO. O OHBOOL

QUINSAM RIVER NEAR CAMPBELL RIVER - STAIION NO. O8HDOOS

REMARRS: FLOW IIVERTED SINCE 1957

RUSEWALL CREEK AT IHE MOUTH - SIAFION NU. U8HBUSI

1	date	1	MAXIMUM DAILY FLOw IN CFS	1 1 1	1 1 1	KAINK	1	RECURKENCE INTERVAL IH YEARS		MAXIMUM dally flow IN CFS	1	YEAR
1		I		1	1		1		1		1	
115	DEC 1968	81	2540	1	1	1	1	8.0	1	2540	1	1968
129	MAY 1969	91	745	1	1	2	1	4.00	1	1670	1	1971
19	APR 1970	01	1040	1	1	3	1	2.67	1	1660	1	1971
19	NOV 1971	1 1	1660	1	1	4	1	2.00	1	1540	1	1972
119	OEC 1972	21	1540	1	1	5	1	1.60	1	1180	1	1976
126	DEC 1976	61	1180	I		6	1	1.33	1	1040	1	1970
128	UCT 1977	71	1670	1	1	7	1	1.143	1	745	1	1969
1		I		1			1		1		1	
1		1		1	1		1		1		1	
1		I		1	1		1		1		1	
1		1		1	1		1		1		I	
1		1		1	1		1		1		1	
1		I		I	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1			1		1		1	
1		I		1	1		1		I		I	
1		1		1	1		1		1		1	
1		1		I	1		1		1		1	
1		I		1	1		1		1		1	
1		1		1			1		1		1	
1		1		1	1		1	.	1		1	
1		1		1	1		1		1		1	
1		I		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		I		1	1		1		1		1	
1		1		1	1		I		1		1	
1		1		1			1		1		1	
1		1		1	1		1		1		1	
1		1		1			1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1			1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1			1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1			1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		1		1	1		1		1		1	
1		I		1	I		1		1		1	
1		1		1	1		1		1		1	
1		1		I	1		I		1		1	
1		1		1	1		1		1		1	
1		I		1	1		1		1		1	
1		1		1	1		1		1		1	
1		I		1			1		1		1	
MEAIV	ANNUAL FL	FLOO	OD: 14		CFS			DRAI	NAGE	Ge AREA:		. 7
STANO	OARD DEVIA	IATI	ION: $\quad 5$	80	CFS							
REMAR	RK5: 1908	08 に	-LOW ESTIMA		FROM	ART I A	EC	COROS				

SALMON RIVER ABOVE MEMEKAY KIVEK - STAIIUN NU. OBHOOUI

salmon river near saymaro - station no. obhdoos

SALMUN RIVER NEAR SAYGARD - SIAIIUN NU. OXHOOOG

SAN JUAN RIVER NEAR PORI RENFREW - STATIUN NO. OBHAOLO

SARIIA KIVER NEAK GAMFIELO - SIAIIJN NIJ. OUABUI4

SUMASS RIVER NEAR ALBERNI - STATIUN NO. OUHBOI7

REMARKS: FLOW REGULATEO AND DIVERTED SINCE 1956

REMARKS: FLOH REGULATED AND DIVERTED SINCE 1956

STAMP RIVER NEAR ALBERIVI - STAIION NO. UBHBUIO

STAMP RIVER NEAR GREAT CENTRAL - STATIUN NU. OBHBOUG

REMARKS: FLOW UIVERTED INTO BASIN SINCE 1958 (ASH RIVER POWER PLANT)

TSABLE RIVEK NEAR FAINNY GAY - STATION NO. O8HBO24

tsulum river near courtenay - station no. obhboll

I

tSUlum river near coukreitay - station nue oahbull

UCONA RIVER AT THE MOUTH - STATION NO. O8HCOOZ

YaKOUN RIVER NEAR PORT CLEMENTS - STATION NO. OBUAOO2

94

IEBALLOS RIVER NEAR ZEBALLOS - STATION NO. UBHEOOG

period of record of maximum oaily flobs

FLOOD ESTIMATES FROM PROBABILITY DISTRIBUTIONS

Station Number	River or Creek	Return Period in years	Gumbel I	Lognormal	Three Parameter Lognormal	Power Transformation	Log Pearson III by the method of:	
							Max. Likelihood	Moments
08HB023	Ash*	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 21900 \\ & 24600 \\ & 27400 \end{aligned}$	$\begin{aligned} & 27800 \\ & 33200 \\ & 39100 \end{aligned}$	$\begin{aligned} & 31900 \\ & 39600 \\ & 48200 \end{aligned}$	$\begin{aligned} & 26400 \\ & 31000 \\ & 35800 \end{aligned}$	--------	$\begin{aligned} & 27100 \\ & 32100 \\ & 37400 \end{aligned}$
08HB016	Ash*	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	-----	-----	--------	$\begin{aligned} & 43000 \\ & 62600 \\ & 92700 \end{aligned}$	----	-----
08HAO16	Bings	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 523 \\ & 578 \\ & 633 \end{aligned}$	$\begin{aligned} & 565 \\ & 631 \\ & 699 \end{aligned}$	$\begin{aligned} & 651 \\ & 761 \\ & 880 \end{aligned}$	$\begin{aligned} & 673 \\ & 817 \\ & 994 \end{aligned}$	$\begin{aligned} & 638 \\ & 755 \\ & 886 \end{aligned}$	$\begin{aligned} & 617 \\ & 715 \\ & 822 \end{aligned}$
08HD001	Campbel1	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 27200 \\ & 29800 \\ & 32400 \end{aligned}$	$\begin{aligned} & 27800 \\ & 30400 \\ & 33100 \end{aligned}$	$\begin{aligned} & 33000 \\ & 38200 \\ & 43900 \end{aligned}$	$\begin{aligned} & 32600 \\ & 38800 \end{aligned}$ 46800	33700 39800 46900	30400 34400 38800
08HDO03	Campbell*	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 32400 \\ & 36200 \\ & 39900 \end{aligned}$	$\begin{aligned} & 37200 \\ & 42900 \\ & 48900 \end{aligned}$	$\begin{aligned} & 26700 \\ & 28500 \\ & 30200 \end{aligned}$	$\begin{aligned} & 26700 \\ & 28500 \\ & 30100 \end{aligned}$	26700 28100 29200	$\begin{aligned} & 25700 \\ & 26500 \\ & 27200 \end{aligned}$
08HA001	Chemainus	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 13700 \\ & 15000 \\ & 16300 \end{aligned}$	$\begin{aligned} & 13700 \\ & 14900 \\ & 16100 \end{aligned}$	$\begin{array}{r} 14100 \\ 15500 \\ 16800 \end{array}$	$\begin{aligned} & 14100 \\ & 15600 \\ & 17200 \end{aligned}$	$\begin{aligned} & 14000 \\ & 15400 \\ & 16900 \end{aligned}$	$\begin{aligned} & 14600 \\ & 16200 \\ & 17900 \end{aligned}$
08HA002	Cowichan	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 11200 \\ & 12300 \\ & 13300 \end{aligned}$	$\begin{aligned} & 11000 \\ & 12000 \\ & 12900 \end{aligned}$	$\begin{aligned} & 11600 \\ & 12700 \\ & 13900 \end{aligned}$	$\begin{aligned} & 11300 \\ & 12500 \\ & 13600 \end{aligned}$	$\begin{aligned} & 11500 \\ & 12600 \\ & 13800 \end{aligned}$	$\begin{aligned} & 11300 \\ & 12400 \\ & 13500 \end{aligned}$
08HAOII	Cowichan	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 20400 \\ & 22500 \\ & 24700 \end{aligned}$	$\begin{aligned} & 21400 \\ & 23800 \\ & 26300 \end{aligned}$	$\begin{aligned} & 25500 \\ & 29900 \\ & 34800 \end{aligned}$	$\begin{aligned} & 22300 \\ & 25400 \\ & 28700 \end{aligned}$	$\begin{aligned} & 24600 \\ & 29000 \\ & 34000 \end{aligned}$	$\begin{aligned} & 21900 \\ & 24600 \\ & 27500 \end{aligned}$
08HB030	Enos	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 42 \\ & 47 \\ & 51 \end{aligned}$	$\begin{aligned} & 45 \\ & 51 \\ & 56 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 44 \\ & 47 \end{aligned}$	$\begin{aligned} & 37 \\ & 39 \\ & 41 \end{aligned}$	$\begin{aligned} & 42 \\ & 46 \\ & 50 \end{aligned}$
08HC001	Gold	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	72600 80200 87700	$\begin{aligned} & 75800 \\ & 84200 \\ & 92700 \end{aligned}$	$\begin{array}{r} 80100 \\ 90400 \\ 101000 \end{array}$	$\begin{aligned} & 77700 \\ & 87500 \\ & 97700 \end{aligned}$	$\begin{aligned} & 78200 \\ & 88300 \\ & 98900 \end{aligned}$	$\begin{aligned} & 77500 \\ & 86900 \\ & 96500 \end{aligned}$
08HB003	Haslam	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 2720 \\ & 3010 \\ & 3290 \end{aligned}$	$\begin{aligned} & 2870 \\ & 3190 \\ & 3530 \end{aligned}$	$\begin{aligned} & 3120 \\ & 3570 \\ & 4040 \end{aligned}$	$\begin{aligned} & 2920 \\ & 3270 \\ & 3630 \end{aligned}$	-----	$\begin{aligned} & 2890 \\ & 3230 \\ & 3570 \end{aligned}$
08HF003	Kokish	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 8020 \\ & 8900 \\ & 9770 \end{aligned}$	$\begin{array}{r} 8910 \\ 10100 \\ 11200 \end{array}$	$\begin{aligned} & 11000 \\ & 13400 \\ & 16100 \end{aligned}$	$\begin{aligned} & 11800 \\ & 15900 \\ & 22300 \end{aligned}$	$\begin{aligned} & 11200 \\ & 13900 \\ & 17300 \end{aligned}$	$\begin{aligned} & 11100 \\ & 13800 \\ & 17000 \end{aligned}$
08HA003	Koksilah	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} 8920 \\ 9820 \\ 10700 \end{array}$	$\begin{array}{r} 8710 \\ 9540 \\ 10400 \end{array}$	-------	$\begin{aligned} & 7380 \\ & 7730 \\ & 8050 \end{aligned}$	---------	$\begin{aligned} & 7660 \\ & 8050 \\ & 8390 \end{aligned}$

[^1]FLOOD ESTIMATES FROM PROBABILITY DISTRIBUTIONS

[^2]FLOOD ESTIMATES FROM PROBABILITY DISTRIBUTIONS

Station Number	River of Creek	Return Period in years	Gumbe 1 I	Lognormal	Three Parameter Lognormal	Power Transformation	Log Pearson III by the method of:	
							Max. Likelihood	Moments
08 HAO 10	San Juan	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 39000 \\ & 42700 \\ & 46400 \end{aligned}$	$\begin{aligned} & 39400 \\ & 43000 \\ & 46600 \end{aligned}$		$\begin{aligned} & 42000 \\ & 46800 \\ & 51800 \end{aligned}$	40700 45200 49900	40600 44800 49200
08 HB 014	Sarita	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 23800 \\ & 26500 \\ & 29200 \end{aligned}$	$\begin{aligned} & 26700 \\ & 30600 \\ & 34600 \end{aligned}$	$\begin{aligned} & 32900 \\ & 40000 \\ & 48000 \end{aligned}$	$\begin{aligned} & 31200 \\ & 38900 \\ & 48600 \end{aligned}$	$\begin{aligned} & 33400 \\ & 41800 \\ & 52000 \end{aligned}$	$\begin{aligned} & 29100 \\ & 34400 \\ & 40300 \end{aligned}$
$08 \mathrm{HB017}$	Somass	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 48300 \\ & 53500 \\ & 58700 \end{aligned}$	$\begin{aligned} & 50800 \\ & 56900 \\ & 63100 \end{aligned}$	$\begin{aligned} & 49100 \\ & 54500 \\ & 59900 \end{aligned}$	$\begin{aligned} & 47200 \\ & 51500 \\ & 55700 \end{aligned}$	$\begin{aligned} & 42800 \\ & 45300 \\ & 47500 \end{aligned}$	$\begin{aligned} & 48400 \\ & 53200 \\ & 58000 \end{aligned}$
08HB008	Sproat	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 12800 \\ & 14200 \\ & 15500 \end{aligned}$	$\begin{aligned} & 13000 \\ & 14400 \\ & 15800 \end{aligned}$	$\begin{aligned} & 12700 \\ & 13900 \\ & 15100 \end{aligned}$	$\begin{aligned} & 12400 \\ & 13500 \\ & 14700 \end{aligned}$	$\begin{aligned} & 12200 \\ & 13300 \\ & 14300 \end{aligned}$	$\begin{aligned} & 12500 \\ & 13700 \\ & 14800 \end{aligned}$
$08 \mathrm{HB010}$	Stamp	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 29600 \\ & 32700 \\ & 35900 \end{aligned}$	$\begin{aligned} & 30600 \\ & 34000 \\ & 37600 \end{aligned}$	$\begin{aligned} & 31900 \\ & 35900 \\ & 40100 \end{aligned}$	$\begin{aligned} & 30900 \\ & 34500 \\ & 38200 \end{aligned}$	-----	$\begin{aligned} & 30700 \\ & 34200 \\ & 37800 \end{aligned}$
08HB009	Stamp*	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 15400 \\ & 17000 \\ & 18500 \end{aligned}$	$\begin{aligned} & 15200 \\ & 16600 \\ & 18100 \end{aligned}$	$\begin{aligned} & 14200 \\ & 15200 \\ & 16200 \end{aligned}$	$\begin{aligned} & 14000 \\ & 14900 \\ & 15800 \end{aligned}$	$\begin{aligned} & 13500 \\ & 14200 \\ & 14800 \end{aligned}$	$\begin{aligned} & 14300 \\ & 15300 \\ & 16200 \end{aligned}$
08HB024	Tsable	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 10700 \\ & 12000 \\ & 13200 \end{aligned}$	$\begin{aligned} & 12400 \\ & 14300 \\ & 16400 \end{aligned}$		$\begin{aligned} & 11400 \\ & 12800 \\ & 14300 \end{aligned}$	$\begin{aligned} & 10300 \\ & 11100 \\ & 12000 \end{aligned}$	$\begin{aligned} & 11700 \\ & 13200 \\ & 14800 \end{aligned}$
08HB011	Tsolum	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} 8930 \\ 9930 \\ 10900 \end{array}$	$\begin{array}{r} 9580 \\ 10800 \\ 12100 \end{array}$	8290 9010 9720	$\begin{aligned} & 7980 \\ & 8580 \\ & 9130 \end{aligned}$	-----	$\begin{array}{r} 8610 \\ 9390 \\ 10100 \end{array}$
08HCOO2	Ucona	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 20500 \\ & 23100 \\ & 25600 \end{aligned}$	$\begin{aligned} & 25300 \\ & 30000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 27900 \\ & 33900 \\ & 40500 \end{aligned}$	$\begin{aligned} & 26800 \\ & 32500 \\ & 38900 \end{aligned}$	$\begin{aligned} & 26900 \\ & 32700 \\ & 39400 \end{aligned}$	$\begin{aligned} & 26200 \\ & 31400 \\ & 37200 \end{aligned}$
080A002	Yakoun	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 20700 \\ & 22900 \\ & 25200 \end{aligned}$	$\begin{aligned} & 22500 \\ & 25300 \\ & 28100 \end{aligned}$	$\begin{aligned} & 25500 \\ & 29700 \\ & 34300 \end{aligned}$	$\begin{aligned} & 25000 \\ & 29900 \\ & 35600 \end{aligned}$	$\begin{aligned} & 25000 \\ & 29400 \\ & 34300 \end{aligned}$	$\begin{aligned} & 24600 \\ & 28600 \\ & 33000 \end{aligned}$
08HE006	Zeballos	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 28600 \\ & 37800 \\ & 34900 \end{aligned}$	31600 35700 40100	$\begin{aligned} & 33900 \\ & 39300 \\ & 45000 \end{aligned}$	33500 39100 45300	$\begin{aligned} & 33200 \\ & 38500 \\ & 44400 \end{aligned}$	33100 38100 43500

ENvELOPE CURVE OF EXTREME FLOODS ON VANCOUVER AND QUEEN CHARLOTTE ISLANDS

[^0]: Chemainus river near westhulme - stailun no. obhaoul

[^1]: Values not presented on frequency plots.
 Cannot be fitted.

[^2]: Values not presented on frequency plots.
 ---- Cannot be fitted.

