J. Mar. 1980 St. 1980

Producing Graphs for Water Quality Reports

Using TELL-A-GRAPH

Annette L. Smith

This Report was Prepared under Contract to

Inland Waters and Lands, Conservation and Protection

Environment Canada

Scientific Authority: S.W. Sheehan

Inland Waters and Lands

Conservation and Protection

Environment Canada

Pacific and Yukon Region

1988

TD 227 B74 COM88-1

Producing Graph's for Water Quality Reports
Using TELL-A-GRAPH

Annette L. Smith

This Report was Prepared under Contract to

Inland Waters and Lands, Conservation and Protection

Environment Canada

Scientific Authority: S.W. Sheehan

Inland Waters and Lands

Conservation and Protection

Environment Canada

Pacific and Yukon Region

1988

LIBRARY
ENVIRONMENT CANADA
PACIFIC REGION

ABSTRACT

This report provides examples of the use of the computer graphics software TELL-A-GRAPH for drawing scientific figures. These examples include the use of error bars with scatter plots and bar graphs. Other types of graphs which have been used in Water Quality reports are also illustrated.

RESUME

Le présent rapport illustre au moyen d'exemples l'usage du logiciel TELL-A-GRAPH destiné à la confection de graphes et figures scientifiques. Sont présentés des exemples de diagrammes en bâton et de diagrammes de dispersion avec marges d'erreur, ainsi que d'autres types de graphes qui ont été inclus dans des rapports de la Direction de la qualité des eaux.

ACKNOWLEDGEMENTS

I thank Taina Tuominen and Stephen Sheehan for their support throughout this work. Their editorial comments have been most helpful.

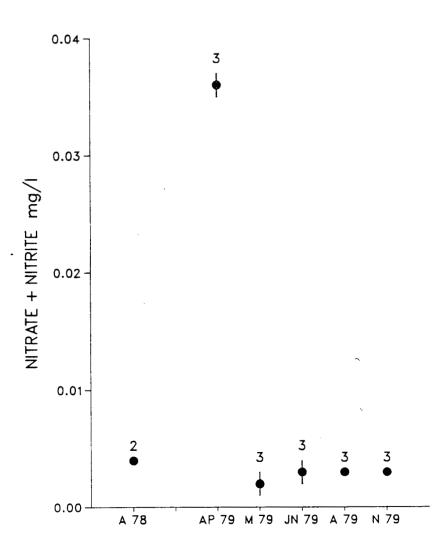
TABLE OF CONTENTS

	Page
Abstract	i
Résumé	ii
Acknowledgements	111
Table of Contents	iv
Introduction	1
Drawing Error Bars on Points	2
Drawing Error Bars on Bar Graphs	8
Drawing Error Bars on Clustered Bar Graphs	12
Use of Hidden Bar Graph	17
Plotting Two Graphs on One Page	22
Use of TELLABANK and Bank Data	29
Drawing Publication Quality Graphs	32
Economical Use of TELL-A-GRAPH	36
References	38

INTRODUCTION

TELL-A-GRAF, the computer graphics software, can be used to produce figures for water quality reports and other publications. Since the examples in the TELL-A-GRAF User's Manual are of business applications, this document has been written to illustrate the use of TELL-A-GRAF for drawing scientific figures, particularly graphs with error bars.

The examples which follow are figures which were drawn for the Akamina-Kishinena interpretative report (Smith et al. 1985) and the Columbia River Algal Assay data report (Tuominen et al. 1987). Each example is presented in three parts:


- 1. The graph
- 2. The layout description of the graph
- A more detailed explanation of specific TELL-A-GRAF commands used in the example.

This document is intended to supplement the TELL-A-GRAF User's Manual. For a basic description of the use of TELL-A-GRAF, please refer to the Manual.

EXAMPLE 1 (NITRATE)

APPLICATION: Drawing error bars on points.

ELDER CREEK


```
Listing of NITRATE at 08:34:29 on OCT 1, 1984 for CCid=WQB3
            **FILE**
     1
     2
             GEN A PLOT.
     3
            PAGE BORDER IS OFF.
             X AXIS SCALE MAXIMUM IS
     5
             X AXIS SCALE MINIMUM IS
     6
             X AXIS SCALE STEP-SIZE IS 1.
            Y AXIS MINIMUM 0, MAXIMUM 0.04 STEP SIZE 0.01.
     7
             X AXIS DIVISION-LABELS IS 'A 78' ' 'AP 79' 'M 79'
     8
              'JN 79' 'A 79' 'N 79'.
     9
    10
             INPUT DATA.
    1 1
             'CURVE 1'
              1 0.004 3 0.036 4 0.002 5 0.003 6 0.003 7 0.003
    12
    13
             END OF DATA.
    14
             CURVE 1.
             CURVE SYMBOL-TYPE IS
    15
    16
             CURVE 1 IS SCATTERED.
    17
             CURVE 1 COLOR IS BLACK.
    18
            X AXIS EXISTENCE IS OFF.
    19
            Y AXIS EXISTENCE IS OFF.
    20
            X AXIS SHIFT IS ON.
    21
            SUBPLOT 1.
    22
             **FILE**
    23
             GEN A STACKED BAR.
    24
            PAGE BORDER IS 0.
    25
            X AXIS MINIMUM 0, MAXIMUM 7, STEP SIZE 1.
            DEPENDENT AXIS MINIMUM 0, MAXIMUM 0.04, STEP SIZE 0.01. X AXIS DIVISION-LABELS IS 'A 78' ' 'AP 79' 'M 79'
    26
    27
    28
               JN 79' 'A 79' 'N 79'.
    29
            DEPENDENT AXIS LABEL IS 'NITRATE + NITRITE mg/l'.
    30
            X ROOM IS 0.3.
    31
            TITLE IS 'ELDER CREEK'.
    32
             INPUT DATA.
    33
             'LOW'
            1 0.004 3 0.035 4 0.001 5 0.002 6 0.003 7 0.003
    34
    35
             'HIGH'
            1 0 3 0.002 4 0.002 5 0.002 6 0 7 0
    36
    37
             END OF DATA.
    38
             DISTRIBUTION 1.
    39
             DISTRIBUTION WIDTH IS
             DISTRIBUTION COLOR IS BLACK.
    40
    41
             DISTRIBUTION LEGEND ENTRY EXISTENCE IS
    42
             DISTRIBUTION 2.
    43
             DISTRIBUTION WIDTH IS
             DISTRIBUTION COLOR IS BLACK.
    44
```

DISTRIBUTION LEGEND ENTRY EXISTENCE IS

DIST 2 DOC TEXT '2' '3' '3' '3' '3' '3'.

DIST 2 DOC CONTENT IS USER-TEXT.

DIST 2 DOC IS EXTERNAL.

SUBPLOT 2.

FILE

45

46

47

48 49

50

TELL-A-GRAF has no option for requesting error bars. The only way to draw error bars is to overlay a stacked bar graph on each point of a curve as shown in the file NITRATE. This procedure requires two subplots:

Lines 2-20 include the information required to produce subplot 1. Mean values are plotted as points by this subplot. Lines 23-48 include the commands necessary to draw the error bars. Subplot 2 is drawn over subplot 1 when the command

Draw 1 2.

is given.

The error bars themselves are drawn with the commands in lines 32-45. The data entered for distribution 1 (line 34) are

 \overline{X} - (error).

Since the width of distribution 1 is 0 (line 39), nothing is actually drawn. The data for distribution 2 (line 36) are 2*(error).

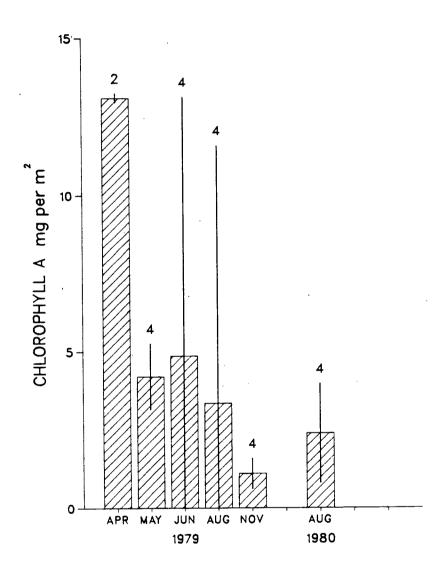
Distribution 2 is stacked on top of distribution 1. The width = 1 (line 43) produces a thin line. Thus a line is drawn from \overline{X} -(error) to \overline{X} +(error).

Several steps must be taken to insure that error bars and points align properly:

- Identical scales must be specified for both subplots. Lines 4-7
 provide the same specifications as lines 25 and 26. (Note three
 different ways of entering the same information.)
- Since the X-axis is labelled rather than numbered, identical labels
 must be specified for both subplots, even though they may not be
 drawn twice (see below). Lines 8 and 9 are identical to lines 27
 and 28.
- 3. It is unnecessary and may be undesirable to draw and label the X and Y axes twice. Lines 18 and 19 have been entered to suppress drawing and labelling these axes in subplot 1. These commands could instead have been entered in subplot 2, but in that case, the Y-axis label (line 29) would have to have been entered in subplot 1.

Note that the title (line 31) is only entered once. This entry may be in either subplot.

4. By default, the lowest X value plotted is aligned on the Y axis for plots but is shifted one unit to the right of the Y axis for bar graphs. Line 20 causes the first point to be shifted off the Y axis to align with the bars.


Other points illustrated by NITRATE:

- Line 30 determines the size of print used for the X-axis division labels. Omitting this command (using the default character sizes) causes the labels (in this example) to be printed at an angle rather than parallel with the X-axis.
- Lines 46-48 cause the number of samples to be printed at the top of each error bar.
- A legend is printed by default when a graph includes two or more distributions. Since a legend of the distributions used to produce the error bars would be meaningless, the legend is suppressed by lines 41 and 45.

EXAMPLE 2 (CHLORO)

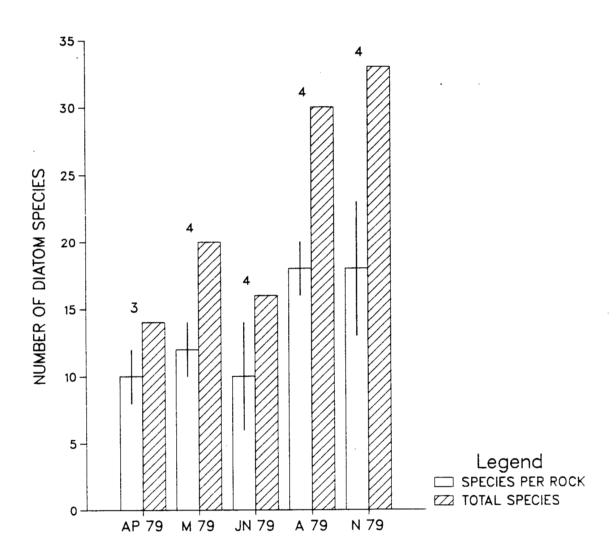
APPLICATION: Drawing error bars on bar graphs.

AKAMINA CREEK


```
Listing of CHLORO at 09:26:54 on OCT 2, 1984 for CCid=WQB3
```

```
**FILE**
 1
        GEN A BAR.
 3
       PAGE BORDER IS 0.
       Y AXIS MINIMUM 0, MAXIMUM 15, STEP SIZE 5.
 5
       X AXIS MINIMUM 0, MAXIMUM 9, STEP SIZE 1.
        INDEPENDENT DIVISION-LABELS IS 'APR ' 'MAY'
 6
         'JUN' 'AUG' 'NOV' ' ' 'AUG' ' ' ' '.
 7
 8
       X ROOM IS .3.
 9
        DEPENDENT LABEL TEXT IS 'CHLOROPHYLL A mg per m<E1.2H.5)2'.
10
        TITLE TEXT IS 'AKAMINA CREEK'
        INPUT DATA.
1 1
       'CHLOROPHYLL'
12
13
        1 13.1 2 4.2 3 4.86 4 3.34 5 1.09 7 2.38
        END OF DATA.
14
15
       EVERY DIST LEGEND ENTRY 0.
16
        DISTRIBUTION 1.
17
        DISTRIBUTION COLOR IS BLACK.
18
        DISTRIBUTION SHADE PATTERN IS
                                         1.
19
       MESSAGE 1 TEXT '1979', CONNECT TC, X=3, Y=-.7, COORDINATE UNITS.
       MESSAGE 2 TEXT '1980', CONNECT TC, X=7, Y=-.7, COORDINATE UNITS.
20
21
       SUBPLOT 1.
22
        **FILE**
23
        GEN A STACKED BAR.
24
       PAGE BORDER IS 0.
25
       DEPENDENT AXIS MINIMUM 0, MAXIMUM 15, STEP SIZE 5.
26
       X AXIS MINIMUM 0, MAXIMUM 9, STEP SIZE 1.
27
        INDEPENDENT DIVISION-LABELS IS 'APR ' 'MAY'
         'JUN' 'AUG' 'NOV' ' ' 'AUG' ' ' ' '
28
29
        INPUT DATA.
30
        'LOW'
31
         1 12.96 2 3.15 3 0 4 0 5 .61 7 .8
        'HIGH'
32
33
       1 .28 2 2.10 3 13.12 4 11.58 5 .96 7 3.16
34
        END OF DATA.
35
        DISTRIBUTION 1.
36
        DISTRIBUTION WIDTH IS
37
        DISTRIBUTION COLOR IS BLACK.
38
        DISTRIBUTION LEGEND ENTRY EXISTENCE IS 0.
39
        DISTRIBUTION 2.
40
        DISTRIBUTION WIDTH IS
41
        DISTRIBUTION COLOR IS BLACK.
42
       DISTRIBUTION LEGEND ENTRY EXISTENCE IS
43
       DIST 2 DOC IS USER-TEXT.
                         '2' '4' '4' '4' '4' '4'.
       DIST 2 DOC TEXT
44
       DIST 2 DOC IS EXTERNAL.
45
46
       Y AXIS EXISTENCE IS OFF.
47
       X AXIS EXISTENCE IS OFF.
48
       SUBPLOT 2.
49
       **FILE**
```

This procedure is identical to placing error bars on point graphs, except that since the default is the same for both subplots, no statement about "AXIS SHIFT" is necessary.


Other points illustrated:

- A superscript is included in the Y-axis label (line 9).
- Years are placed below months for the X-axis labels using the MESSAGE command (lines 19 and 20). There are several methods of specifying the positioning of messages. The one which requires the least trial and error is COORDINATE UNITS (positioning in relation to X and Y points).

EXAMPLE 3 (SPECIES)

APPLICATION: Drawing error bars on clustered bar graphs.

ELDER CREEK


```
Listing of SPECIES at 08:39:50 on SEP 25, 1984 for CCid=WQB3
```

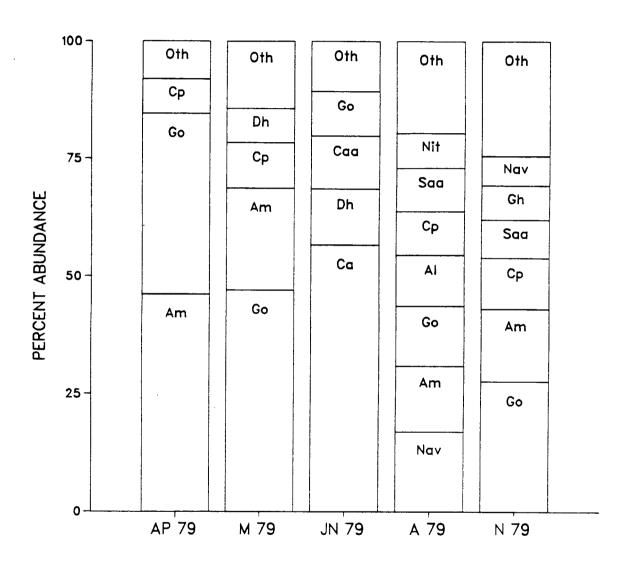
```
**FILE**
 1
 2
        GEN A CLUSTERED BAR.
 3
       PAGE BORDER=0.
       X AXIS MINIMUM 0, MAXIMUM 5, STEP SIZE 1.
 5
        DEPENDENT SCALE MAXIMUM IS
                                      35.
        DEPENDENT SCALE MINIMUM IS
        DEPENDENT SCALE STEP-SIZE IS
        INDEPENDENT DIVISION-LABELS IS 'AP 79' 'M 79'
         'JN 79' 'A 79' 'N 79'.
 9
10
        X ROOM IS
                    0.30.
        DEPENDENT LABEL TEXT IS 'NUMBER OF DIATOM SPECIES'
1 1
        TITLE TEXT IS 'ELDER CREEK'
12
13
        INPUT DATA.
        'SPECIES PER ROCK'
14
       1 10 2 12 3 10 4 18 5 18
15
16
        'TOTAL SPECIES'
         1 14 2 20 3 16 4 30 5 33
17
18
        END OF DATA.
        EVERY DISTRIBUTION.
19
20
        DISTRIBUTION COLOR IS BLACK.
21
        DISTRIBUTION 1.
        DISTRIBUTION COLOR IS BLACK.
22
23
        DISTRIBUTION SHADE PATTERN IS
24
        DISTRIBUTION 2.
25
        DISTRIBUTION COLOR IS BLACK.
        DISTRIBUTION SHADE PATTERN IS
26
27
       DIST 2 DOC IS USER-TEXT.
                         13' '4'
                                 '4' '4' '4'.
       DIST 2 DOC TEXT
28
       DIST 2 DOC IS EXTERNAL.
29
       DIST 2 DOC CONNECT=TL.
30
       LEGEND X ORIGIN 6, Y ORIGIN 0, COORDINATE UNITS.
31
32
       SUBPLOT 1.
        **FILE**
33
        GEN A STACKED BAR.
34
35
       CLUSTERING=2.
36
       PAGE BORDER=O.
       X AXIS MINIMUM 0, MAXIMUM 5, STEP SIZE 1.
37
38
                                      35.
        DEPENDENT SCALE MAXIMUM IS
39
        DEPENDENT SCALE MINIMUM IS
        DEPENDENT SCALE STEP-SIZE IS 5.
40
        INDEPENDENT DIVISION-LABELS IS 'AP 79' 'M 79'
41
         'JN 79' 'A 79' 'N 79'.
42
43
        INPUT DATA.
44
        'LOW'
         1 8 2 10 3 6 4 16 5 13
45
46
       'DUMMY'
47
       1 35 2 35 3 35 4 35 5 35
48
        'HIGH'
49
         1 4 2 4 3 8 4 4 5 10
50
       'DDUM'
51
       1 0 2 0 3 0 4 0 5 0
52
        END OF DATA.
53
        DISTRIBUTION 1.
54
        DISTRIBUTION WIDTH IS
55
        DISTRIBUTION COLOR IS BLACK.
56
        DISTRIBUTION LEGEND ENTRY EXISTENCE IS
57
        DISTRIBUTION 2.
58
        DISTRIBUTION WIDTH IS
```

Listing of SPECIES at 08:39:50 on SEP 25, 1984 for CCid=WQB3

59	DISTRIBUTION COLOR IS BLACK.
60	DISTRIBUTION LEGEND ENTRY IS ZERO.
61	DISTRIBUTION 3.
62	DISTRIBUTION WIDTH IS 1.
63	DISTRIBUTION COLOR IS BLACK.
64	DISTRIBUTION LEGEND ENTRY EXISTENCE IS 0.
65	DISTRIBUTION 4 WIDTH IS 0.
66	DISTRIBUTION 4 COLOR IS BLACK.
67	DISTRIBUTION 4 LEGEND ENTRY IS ZERO.
68	INDEPENDENT ANNOTATION IS 0.
69	DEPENDENT ANNOTATION IS 0.
70	SUBPLOT 2.
71	**FILE**

Error bars are placed on clustered bar graphs using subplots as previously described. The major differences between the present example and example 2 are the statement on line 35 (causing the error bars to be both stacked and clustered) and the need for dummy data (lines 46-47 and 50-51). The dummy data are required because the distributions stack and cluster in the following order:

Since in the example illustrated by SPECIES, only the first bar graph in each pair has an error bar, distributions 2 and 4 must contain dummy data. If both bar graphs were to have error bars, the data for errors associated with the first bar would be entered as distributions 1 and 3 and data for the error of the second bar would be entered as distributions 2 and 4.


Additional points illustrated:

- The number of samples is centered above the two bars in each cluster by lines 29 and 30.
- The legend for subplot 1 is not suppressed. Line 31 describes the position of the legend.

EXAMPLE 4 (DRAW.COMP)

APPLICATION: Use of hidden bar graph.

ELDER CREEK


```
Listing of DRAW.COMP at 08:40:10 on SEP 25, 1984 for CCid=WQB3
```

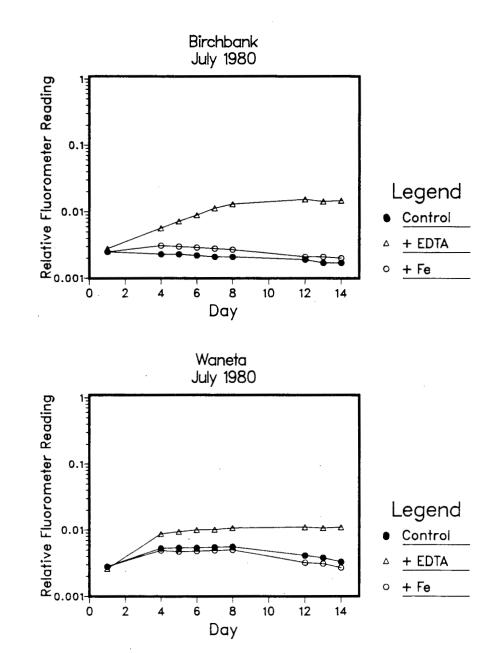
```
GEN A HIDDEN BAR.
2
        PAGE-BORDER IS
3
        INDEPENDENT SCALE MAXIMUM IS
4
        INDEPENDENT SCALE MINIMUM IS
        INDEPENDENT SCALE STEP-SIZE IS
5
        DEPENDENT SCALE MAXIMUM IS
                                      100.
6
7
        DEPENDENT SCALE MINIMUM IS
8
        DEPENDENT SCALE STEP-SIZE IS
                                        25.
        DEPENDENT LABEL TEXT IS 'PERCENT ABUNDANCE'
9
        INDEPENDENT DIVISION-LABELS IS 'AP 79' 'M 79' 'JN 79'
10
11
         'A 79' 'N 79'.
        X ROOM IS
                    0.3.
12
        X AXIS LENGTH IS
13
                           7.5.
        TITLE TEXT IS 'ELDER CREEK' .
14
        INPUT DATA.
15
       'CA'
16
       3 56.7
17
18
       'CAA'
       3 79.83
19
20
       'DHO'
       2 85.62 3 68.65
21
22
       'SAA'
23
       4 72.98 5 62.08
       'AL'
24
25
       4 54.57
26
       'AM'
       1 46.20 2 68.77 4 30.93 5 43.06
27
       'CP'
28
29
       1 91.93 2 78.42 4 63.83 5 53.95
       'GH'
30
31
       5 69.32
       'GO'
32
       1 84.55 2 47.05 3 89.23 4 43.67 5 27.63
33
34
       'NAV'
35
       4 17.00 5 75.60
       'NP'
36
       4 80.38
37
38
       'OTHER'
       1 100 2 100 3 100 4 100 5 100
39
        END OF DATA.
40
        EVERY DISTRIBUTION.
41
        DISTRIBUTION COLOR IS BLACK.
42
43
       DISTRIBUTION SHADE PATTERN IS 4.
       DISTRIBUTION LEGEND ENTRY EXISTENCE IS 0.
44
45
       EVERY DISTRIBUTION DOCUMENTATION IS USER-TEXT.
       DISTRIBUTION 1 DOC TEXT 'Ca'.
46
47
       DISTRIBUTION 2 DOC TEXT 'Caa'
       DISTRIBUTION 3 DOC TEXT 'Dh' 'Dh'.
48
       DISTRIBUTION 4 DOC TEXT 'Saa' 'Saa'.
49
       DISTRIBUTION 5 DOC TEXT 'Al'.
50
       DISTRIBUTION 6 DOC TEXT
                                 'Am' 'Am' 'Am'
51
                                 'Cp' 'Cp' 'Cp'
                                                 'Cp'.
52
       DISTRIBUTION 7 DOC TEXT
       DISTRIBUTION 8 DOC TEXT 'Gh'.
53
       DISTRIBUTION 9 DOC TEXT 'Go' 'Go' 'Go' 'Go'.
54
       DISTRIBUTION 10 DOC TEXT 'Nav' 'Nav'.
55
       DISTRIBUTION 11 DOC TEXT 'Nit'.
56
       DISTRIBUTION 12 DOC TEXT 'Oth' 'Oth' 'Oth' 'Oth' 'Oth'.
57
```

EVERY DISTRIBUTION DOC IS INTERNAL.

58

Listing of DRAW.COMP at 08:40:10 on SEP 25, 1984 for CCid=WQB3

59 **FILE**


In this example, the hidden bar graph has been used to plot percentage abundance of diatom species. The graphs are arranged so that the most abundant species forms the base of each bar and other species are stacked on top in decreasing order of abundance.

To achieve this pattern, the data are entered as <u>cumulative</u> percent abundances (lines 16-39).

The DISTRIBUTION DOCUMENTATION commands are used to place abbreviations of species names inside each bar (lines 45-58).

EXAMPLE 5 (DRAW.JUL)

APPLICATION 1: Plotting two graphs on one page.


```
Listing of DRAW.JUL at 10:46:33 on SEP 17, 1984 for CCid=WQB3
```

```
**FILE**
 1
 2
       GEN A PLOT.
 3
       PAGE BORDER IS OFF.
 4
       DEPENDENT AXIS LABEL IS 'Relative Fluorometer Reading'.
 5
       INDEPENDENT AXIS LABEL IS 'Day'.
 6
       X AXIS SCALE MINIMUM 0, MAXIMUM 15, STEP-SIZE 2.
 7
       Y AXIS TYPE IS LOG.
       Y AXIS SCALE MINIMUM .001, MAXIMUM 1.1.
 8
 9
       X AXIS ORIGIN 2.25, LENGTH 4.0.
       Y AXIS ORIGIN 7.35, LENGTH 3.0.
10
       LEGEND X ORIGIN 16, Y ORIGIN 0.001, COORDINATE UNITS.
11
12
       EVERY CURVE SYMBOL COUNT=1.
13
       EVERY CURVE SYMBOL SIZE=1.
       EVERY CURVE COLOR IS BLACK.
14
15
       CURVE 1 SYMBOL TYPE IS 16.
16
       CURVE 2 SYMBOL TYPE IS 2.
17
       CURVE 3 SYMBOL TYPE IS 17.
       bank data.
18
19
       'BCON'
       'BEDTA'
20
       'BFE'
21
22
       EOD.
23
       curve 1 legend 'Control'.
       curve 2 legend '+ EDTA'.
24
25
       CURVE 3 LEGEND '+ Fe'.
       title is 'Birchbank' 'July 1980'.
26
27
       AXIS FRAME IS ON.
28
       SUBPLOT 1.
29
       **FILE**
30
       GEN A PLOT.
31
       PAGE BORDER IS OFF.
32
       DEPENDENT AXIS LABEL IS 'Relative Fluorometer Reading'.
33
       INDEPENDENT AXIS LABEL IS 'Day'.
       X AXIS SCALE MINIMUM 0, MAXIMUM 15, STEP-SIZE 2.
34
35
       Y AXIS TYPE IS LOG.
       Y AXIS SCALE MINIMUM .001, MAXIMUM 1.1.
36
37
       EVERY CURVE SYMBOL COUNT=1.
38
       EVERY CURVE SYMBOL SIZE=1.
39
       EVERY CURVE COLOR IS BLACK.
40
       CURVE 1 SYMBOL TYPE IS 16.
41
       CURVE 2 SYMBOL TYPE IS 2.
42
       CURVE 3 SYMBOL TYPE IS 17.
43
       bank data.
44
       'WCON'
45
       'WEDTA'
46
       'WFE'
47
       EOD.
48
       curve 1 legend 'Control'.
       curve 2 legend '+ EDTA'.
49
50
       curve 3 legend '+ Fe'.
51
       title is 'Waneta ' 'July 1980'.
52
       X AXIS ORIGIN 2.25, LENGTH 4.0.
53
       Y AXIS ORIGIN 2.6, LENGTH 3.0.
54
       AXIS FRAME IS ON.
55
       LEGEND X ORIGIN 16,Y ORIGIN 0.001, COORDINATE UNITS.
```

56

SUBPLOT 2.

```
Listing of JULY.80 at 13:33:27 on OCT 18, 1984 for CCid=WQB3
           July 24 - August 7, 1980
     2
           Birchbank
     3
           Control
     4
                        Replicates
                                       Mean S. D.
     5
                 1 .0026 .0025 .0024 .0025 .0001
           Day
     6
                 4 .0025 .0021 .0023 .0023 .0002
           Day
     7
                 5 .0027 .0021 .0022 .0023 .00032
           Day
     8
                 6
                  .0024 .0021 .002
                                      .0022 .00021
           Day
     9
                 7 .0022 .0022 .002
                                      .0021 .00012
           Day
    10
           Day
                 8 .0024 .002
                                .002
                                      .0021 .00023
           Day 12 .0019 .0019 .0019 0
    11
    12
                         .0016 .0016 .0017 .00023
           Day 13 .002
    13
                         .0016 .0016 .0017 .00023
           Day 14 .002
    14
           Control + EDTA
    15
                 1 .0028 .0028 .0028 .0028 0
           Day
    16
                 4 .0049 .0066 .0055 .0057 .00086
           Day
    17
                 5 .0066 .0089 .006
                                      .0072 .00153
           Day
    18
                                .0073 .0089 .00269
                 6 .0074 .012
           Day
                         .015
    19
                 7 .01
           Day
                                .0088 .0113 .00329
    20
                                .011
                                      .013
                 8 .011
                         .017
                                             .00346
           Day
                         .019
                                      .0153 .00321
    21
           Day 12 .013
                                .014
                         .017
                                .014
    22
           Day 13 .012
                                      .0143 .00252
    23
                                .014
                                      .0147 .00115
           Day 14 .014
                         .016
    24
           Control + 200ug Fe/L
    25
                 1 .0025 .0025 .0024 .0025 .00006
           Day
    26
                 4 .0032 .0032 .0029
                                      .0031 .00017
           Day
    27
                 5 .0032 .0029 .0028 .0030 .00021
           Day
                 6 .0031 .0028 .0028 .0029 .00017
    28
           Day
    29
                 7 .0032 .0026 .0026 .0028 .00035
           Day
    30
                 8 .0029 .0027 .0024 .0027 .00025
           Day
    31
           Day 12 .0021 .0022 .0019 .0021 .00015
    32
           Day 13 .0021 .0022 .0019 .0021 .00015
    33
           Day 14 .0020 .0022 .0018 .0020 .0002
    34
           Waneta
    35
           Control
    36
                 1 .0028 .0028 .0029 .0028 .00006
           Day
                         .0055 .0053 .0053 .00025
    37
                 4 .005
           Day
    38
                 5 .0046 .0059 .0056 .0054 .00068
           Day
    39
                 6 .0048 .0058 .0057 .0054 .00055
           Day
    40
                 7 .0051 .0059 .0056 .0055 .00040
           Day
                         .0059 .0059 .0056 .00052
    41
                 8 .005
           Day
    42
           Day 12 .0026 .0052 .0046 .0041 .00136
           Day 13 .0024 .0047 .0042 .0038 .00121
    43
           Day 14 .0022 .004
                                .0036 .0033 .00095
    44
    45
            Control + EDTA
    46
                 1 .0026 .0026 .0026 .0026 0
           Day
                                .0087 .0087 .00065
    47
                 4 .0093 .008
           Day
    48
                          .0085 .0096 .0094 .00078
            Day
                 5 .01
    49
                 6 .011
                          .0091 .01
                                      .0100 .00095
           Day
    50
                 7
                   .011
                          .0093 .01
                                       .0101 .00085
            Day
                                .01
                          .01
    51
                 8 .012
                                       .0107 .00115
           Day
                          .01
                                .01
    52
                                       .011
                                             .00173
            Day 12 .013
                                .01
    53
           Day 13 .012
                          .01
                                       .0107 .00115
                                       .011
    54
                                .01
                                             .00173
            Day 14 .013
                          .01
    55
            Control + 200ug Fe/L
    56
                 1 .0028 .0028 .0027 .0028 .00006
            Day
```

4 .0048 .0046 .0053 .0049 .00036

5 .0045 .0045 .0051 .0047 .00035

57

58

Day

Day

```
Listing of JULY.80 at 13:33:27 on OCT 18, 1984 for CCid=WOB3
    59
            Day
                 6 .0047 .0048 .0049 .0048 .0001
    60
                 7 .0049 .0049 .005
                                             .00006
                                       .0049
            Dav
                                       .0050 .00015
    61
                 8
                  .0052 .0049 .005
            Day
            Day 12 .0031 .0035 .003
    62
                                       .0032 .00026
    63
                          .0034 .0029 .0031 .00026
            Day 13 .003
    64
            Day 14 .0026 .0029 .0027 .0027 .00015
    65
            Control + P
                          .0028 .0029 .0029 .00006
    66
                 1 .0029
            Day
    67
                                             .00147
            Day
                 4 .0086
                          .0064 .0092 .0081
    68
                 5 .0089 .0077
                                .011
                                       .0092 .00167
            Day
                  .01
                          .0089 .012
    69
                 6
                                       .0103 .00157
            Day
    70
                 7 .011
                                 .013
                          .011
                                       .0117 .00115
            Day
    71
                          .013
                                       .014
                 8
                   .013
                                 .016
            Day
                                              .00173
    72
                   .023
                                .028
            Day 12
                          .021
                                       .024
                                              .00361
    73
            Day 13 .026
                          .023
                                 .03
                                       .0263 .00351
    74
            Day 14 .03
                          .026
                                 .032
                                       .0293 .00306
    75
            Control + N
                 1 .0028 .0028 .0028 .0028 0
    76
            Day
    77
            Day
                 4
                   .0054 .006
                                .0055 .0056 .00032
    78
                 5
                  .0059 .0066 .0055 .006
                                              .00056
            Day
    79
                  .0054 .0065 .0054 .0058 .00064
            Day
    80
                 7
                                             .00047
            Day
                   .0056 .0065 .0058 .0060
    81
            Day
                 8
                   .0059 .0067
                                .0064 .0063
                                             .00040
    82
            Day 12 .0059 .0059 .0057 .0058
                                             .00012
    83
            Day 13 .0054 .0052 .0058 .0055 .00031
    84
           Day 14 .0046 .0046 .0054 .0049 .00046
            Control + P + N
    85
    86
                 1 .003
           Day
                          .0029 .0029 .0029
                                             .00006
    87
                                       .0084 .00045
           Day
                 4 .0089 .0084 .008
    88
                 5
                  .01
                          .0093 .0089 .0094 .00056
           Day
                          .01
    89
           Day
                 6
                  .013
                                .0095 .0108 .00189
                          .011
    90
                                .012
                 7 .017
                                       .0133 .00321
            Day
    91
                          .011
                                .013
           Day
                 8
                  .022
                                       .0153 .00586
                          .019
    92
           Day 12 .077
                                 .024
                                       .04
                                              .03214
    93
                          .022
           Day 13 .11
                                .029
                                       .0537 .04891
    94
                                .039
                                       .0793 .07868
            Day 14 .17
                          .029
    95
            Control + EDTA + P
    96
           Day
                 1 .0025 .0027 .0028 .0027 .00015
    97
           Day
                 4
                  .0039 .004
                                .0083 .0054 .00251
    98
                                       .0072
           Day
                 5 .0045 .0051 .012
                                             .00417
    99
                   .0038 .0055 .022
                                       .0104 .01005
                 6
           Day
   100
                 7
                   .0045 .0057 .035
                                             .01727
           Day
                                       .0151
   101
           Day
                 8 .0042 .0065 .052
                                       .0209
                                             .02696
   102
           Day 12 .0039 .0082 .08
                                       .0307
                                             .04275
   103
                                       .0319
           Day 13 .004
                          .0087 .083
                                             .04432
   104
           Day 14 .0046 .0082 .081
                                       .0313 .04311
   105
           Control + EDTA + N
   106
           Day
                 1 .0028 .0029 .0026 .0028 .00015
   107
                  .0089 .0075 .0061 .0075 .0014
           Day
                          .012
   108
                 5 .013
                                .0081 .0110 .00259
           Day
   109
                                       .016
                                              .00361
           Day
                 6.019
                          .017
                                .012
   110
           Day
                 7
                   .026
                          .019
                                .014
                                       .0197
                                             .00603
   111
                 8 .032
           Day
                          .022
                                .014
                                       .0227
                                             .00902
   112
           Day 12 .03
                          .026
                                .014
                                       .0233
                                             .00833
   113
           Day 13 .028
                          .029
                                       .0233
                                             .00896
                                .013
   114
           Day 14 .024
                          .028
                                .014
                                       .022
                                              .00721
```

115

116

Day

Control + EDTA + P + N

1 .0029 .0028 .0027 .0028 .0001

```
Listing of JULY.80 at 13:33:27 on OCT 18, 1984 for CCid=WQB3
                 4 .0082 .0069 .009
   117
           Day
                                       .0080 .00106
                          .01
   118
           Day
                 5 .012
                                .016
                                       .0127 .00306
   119
                 6 .019
                          .013
                                .027
                                       .0197 .00702
           Day
                   .029
                                       .0287 .011,50
   120
                 7
           Day
                          .017 .04
   121
                 8 .044
                          .023
                                .056
                                       .041
           Day
                                             .01670
   122
           Day 12 .1
                          .045
                                .12
                                       .0883 .03884
   123
                                .13
                                       .098
                                             .04703
           Day 13 .12
                          .044
   124
           Day 14 .12
                          .05
                                .13
                                       . 1
                                             .04359
   125
           Control (using polycarbonate culture
   126
                 1 .0027 .0028 .0026 .0027 .0001
           Day
   127
                 4 .003
           Day
                          .0032 .0033 .0032 .00015
   128
                 5 .0031 .0039 .0041 .0037 .00053
           Day
   129
           Day
                 6 .003
                          .0036 .0035 .0034 .00032
   130
                 7
                                             .00032
                   .003
           Day
                          .0035 .0036 .0034
   131
                 8
                  .0032 .0035 .0037 .0035 .00025
           Day
   132
           Day 12 .0031 .003
                                .0034 .0032 .00021
   133
           Day 13 .0031 .0029 .0038 .0033 .00047
   134
           Day 14 .0031 .0029 .0038 .0033 .00047
   135
           Control + EDTA (using polycarbonate c
   136
           Day
                 1 .0029 .0028 .0029 .0029 .00006
   137
                 4 .0061 .0055 .0058 .0058 .0003
           Day
   138
                 5 .0076 .0067 .0067 .007
                                             .00052
           Day
   139
                 6 .0094 .0074 .0076 .0081
           Day
   140
           Day
                 7 .012
                          .0084 .0088 .0097
                                             .00197
                                      .0117
   141
                          .009
                                .01
           Day
                 8 .016
                                             .00379
   142
           Day 12 .03
                          .013
                                .014
                                      .019
                                             .00954
   143
                         .013
           Day 13 .028
                                .017
                                       .0193 .00777
   144
           Day 14 .028
                          .014
                                .018
                                       .02
                                             .00721
   145
           TED-135ug Zn/L
   146
           Control
   147
           Day
                 1 .0025 .0026 .0028 .0026 .00015
   148
           Day
                 4 .0044 .0042 .0045 .0044 .00015
                                      .005
   149
                                             .0005
           Day
                 5 .0055 .0045 .005
   150
           Day
                 6 .0065 .0046 .0055 .0055 .00095
   151
                 7
           Day
                   .0074 .005
                                .0059 .0061
                                             .00121
                 8 .0078 .0048 .0072 .0066
   152
           Day
                                            .00159
   153
           Day 12
                   .0087 .0042 .0067 .0065
                                             .00225
   154
           Day 13 .0086 .0049 .0074 .0070 .00189
   155
           Day 14 .0086 .0048 .0076 .007
                                             .00197
   156
           Control + EDTA
   157
                 1 .0028 .0027 .0028 .0028 .00006
           Day
   158
                         .036
                                .034
                                       .0297 .00929
           Day
                 4 .019
   159
                          .046
           Day
                 5 .033
                                .044
                                       .041
                                             .007
   160
                                .049
                                       .0503
                                             .00231
           Day
                 6 .049
                          .053
   161
                 7
                   .055
                                .054
           Day
                          .058
                                       .0557 .00208
   162
           Day
                 8
                  .058
                          .063
                                .055
                                       .0587
                                             .00404
   163
           Day 12 .068
                                       .0593
                         .057
                                .053
                                             .00777
   164
                                       .0623 .00874
           Day 13 .072
                          .06
                                .055
   165
           Day 14 .07
                          .057
                                .053
                                       .06
                                             .00889
   166
           Control + P
   167
           Day
                 1 .0026 .0026 .0028 .0027 .00012
   168
                 4 .0046 .0046 .0047 .0046 .00006
           Day
   169
           Day
                 5 .0049 .0053 .0054 .0052 .00026
   170
                 6 .0056 .006
           Day
                                .0061 .0059 .00026
   171
           Day
                 7 .0063 .0058 .0063 .0061
                                             .00029
   172
           Day
                 8 .0071 .0065 .0066 .0067 .00032
   173
           Day 12 .0086 .0067 .0074 .0076 .00096
```

.0072 .0079 .00133

174

Day 13 .0094 .007

Listing of JULY.80 at 13:33:27 on OCT 18, 1984 for CCid=WQB3

```
175
        Day 14 .0096 .0068 .0072 .0079 .00151
176
        Control + EDTA + P
177
        Day
              1 .0029 .0027
                             .0027
                                    .0028 .00012
178
                             .029
              4 .044
                       .058
                                    .0437 .01450
        Day
179
              5 .073
                       .078
                             .068
                                    .073
        Day
                                           .005
180
                             .071
                                    .0743 .00289
              6 .076
                       .076
        Day
181
        Day
              7 .077
                       .073
                             .071
                                    .0737 .00306
                       .074
182
              8 .075
        Day
                             .066
                                    .0717 .00493
183
        Day 12 .074
                       .067
                             .058
                                    .0663 .00802
                       .063
184
        Day 13 .066
                             .054
                                    .061
                                           .00624
185
        Day 14 .064
                       .06
                             .052
                                    .0587 .00611
186
        Control + 200ug Fe/L
187
              1 .0027 .0027 .0027
                                    .0027 0
        Day
188
              4 .0044 .0056 .006
        Day
                                    .0053 .00083
189
                       .0065 .007
        Day
              5 .005
                                    .0062 .00104
190
        Day
              6 .0053 .0065 .0078 .0065
                                          .00125
191
              7
                      .0072 .0078 .0069 .00108
                .0057
        Day
192
               .0057 .0075 .008
        Day
              8
                                    .0071
                                          .00121
193
        Day 12
               .0043 .0065 .0065 .0058 .00127
194
        Day 13 .004
                       .0067 .0065 .0057 .00150
195
        Day 14 .0038 .0056 .0056 .005
                                          .00104
```

Two graphs may be placed on the same page using subplots. The axis lengths and placements must be specified (lines 9-10 and 52-53).

By default the legend is printed in the lower right hand corner of the page. If legend placements are not specified, the legends for both plots will be printed on top of each other. It is easiest to specify legend placement in coordinate units for each graph (lines 11 and 55).

APPLICATION 2: Use of TELLABANK and bank data

Data can be read from a data file and stored in a second file (bank file) as variable pairs which can be used by TELL-A-GRAF. To create a bank file type

\$RUN *TELLABANK

This program is documented in Appendix D of the TELL-A-GRAF User's Manual.

In the present example, algal growth curves for several treatments are to be plotted. The data (given as relative fluorometer readings) are stored in the file JULY.80. For each treatment "mean" is to be the dependent variable and "day" the independent variable. By giving appropriate responses to TELLABANK's prompts, one can extract the desired variable pairs and store them in a file which will be used by TELL-A-GRAF.

The data set for each curve is stored in a separate "bank file". Each bank file has a unique name. Thus, the bank file 'BCON' (line 19 of DRAW.JUL) contains the X,Y coordinates extracted from lines 5-13 of JULY.80, while 'BEDTA' (line 20 of DRAW.JUL) contains the data from lines 15-23 of JULY.80.

The inclusion of bank data among the TELLAGRAF commands is illustrated in lines 18-22 and 43-47 of DRAW.JUL. The TELLABANK names (BCON, etc.) will appear in the legend unless alternate legend entries are specified, as in lines 23-25 and 48-50.

CAUTION 1: The number of characters allowed in a bank file name is limited (currently 12). TELLABANK will truncate longer names to 12 characters. Thus, a file named 'CONTROL+EDTA+P' will be truncated to 'CONTROL+EDTA'. If a file named 'CONTROL+EDTA' already exists, the data in that file will be replaced by the data in 'CONTROL+EDTA+P' without warning.

CAUTION 2: TELLABANK stores all bank files in the temporary file

-TAGPRM. Since TELLABANK is tedious to run on large data
sets (eg. JULY.80), you may wish to rename -TAGPRM as a
permanent file at the end of the TELLABANK session. Since
TELL-A-GRAF reads bank data from the PRM file, you must COPY
the bank data to -TAGPRM when you run TELL-A-GRAF. Do not
RENAME a permanent file -TAGPRM or TAGPRM if the TELL-A-GRAF

layout description contains subplots. TELL-A-GRAF creates subplot files which it stores in the PRM file. Thus, the PRM file can become long (50-100 pages or more). Subplot files cannot be accessed by TELLABANK, and therefore are impossible to delete once they have been attached to a permanent file containing bank data.

Other points illustrated by DRAW.JUL:

- Line 7 specifies a log scale. Remember that zero's cannot be plotted on a log scale. If zero's are accidentally included, TELL-A-GRAF will not give a warning. Instead, when you attempt to plot the graph, the FORTRAN monitor will give an error message whose meaning may not immediately be obvious.
- In order to have all of the points on the curve drawn, it is necessary to specify SYMBOL COUNT=1 (lines 12 and 37). The default condition draws the entire curve but only draws symbols for the first and last points.
- The graphs in this example are framed (lines 27 and 54). Sometimes the axes do not reproduce well because the lines are too thin. Framing the axis is a way of avoiding this problem.

DRAWING PUBLICATION-QUALITY GRAPHS

To obtain publication-quality graphs you should

1. Draw graphs on the Calcomp plotter at SFU rather than on the HP7470A plotter.

When you are satisfied with the layout of your graph, use the TELL-A-GRAF SEND statement to send the graph to a plotfile. TELL-A-GRAF sends all graphs plotted in one session to the same file. If you wish to have each graph in a separate file, specify -P as the plotfile and after each graph has been sent, type

\$RENAME -P PLOTFILE

where PLOTFILE is a unique name for each graph. (MTS will not confirm that the file has been renamed, but it will carry out the operation.) Note that the next step requires permanent files. At the end of the TELL-A-GRAF session type

\$RUN *CCQUEUE PAR=PLOTFILE

The graph will be drawn at SFU.

Since the quality of drawings varies (pens run low on ink), you may need to have the graph drawn more than once. Be sure to save your plot file until you have a drawing which satisfies you. 2. Draw the graph as close as possible to the size it will appear in the report.

If you draw a full page sized graph and allow TELL-A-GRAF to select the default size for titles and axis labels, the printing will be too small when the figure is reduced. If you specify reduced axis lengths, TELL-A-GRAF will select the appropriate sized print.

Alternatively, you can draw a full page graph and specify the size of print that TELL-A-GRAF is to use. You can determine the best size by trial and error:

Specify the print size and send the graph to a plot file. Run *CCQUEUE and reduce the size of the plot by the desired factor, eg.

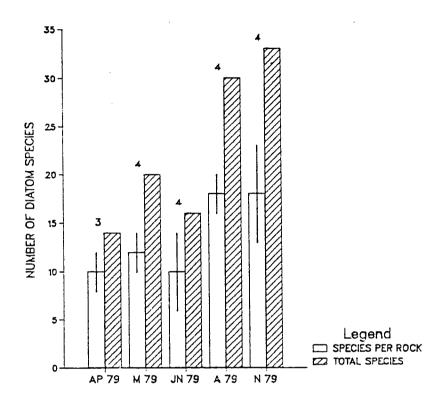
\$R *CCQUEUE

When PAR=PLOTFILE has not been specified, the computer will respond ENTER PLOT REQUEST

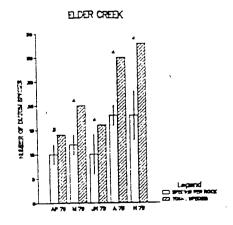
You type

PLOTFILE SCALE = . 5

The computer responds


ENTER PLOT REQUEST

You may respond with new file names and/or scales as many times as you wish. When finished, respond to the plot request with


\$endfile

When you view the plots, you can determine whether you have selected appropriate sizes for the lettering. Note that at SCALE=.25 and below the lettering becomes too small for the pen width. Reductions of this magnitude must be done photographically. Plots at SCALE = .5 and SCALE = .25 are illustrated on the following page. Note all other plots in this report have been reduced to 71% of the original by photoreduction.

ELDER CREEK

SCALE = .5

SCALE = .25

ECONOMICAL USE OF TELL-A-GRAF

TELL-A-GRAF is designed so that the user can easily experiment with different graphic presentations. However, running TELL-A-GRAF is expensive. The most economical use of TELL-A-GRAF can be made when many similar graphs are to be drawn (eg., graphing all of the data in JULY.80, Example 5).

Begin with one graph, and use the interactive feature of TELL-A-GRAF to test different presentations. When you are satisfied with the appearance of the graph, save the layout description using the SAVE command (TELL-A-GRAF User's Manual, Section F). Then exit TELL-A-GRAF and produce layouts for the remaining graphs using MTS:

- Make as many copies as necessary of the layout instructions either in the same file or in separate files.
- 2) Edit each set of instructions, changing titles, data, legend entries, etc., as necessary.

To produce the graphs, run TELL-A-GRAF and enter INCLUDE 'FILENAME'.

You can now view the graph on the computer screen with the GO command or plot the graph with the SEND command. If each graph is contained in a separate file, you must type

INCLUDE 'FILENAME'.

each time you wish to view or plot a new graph.

Since TELL-A-GRAF takes time to read and process each file, it is quicker to have all graphs in the same file. However, it may be difficult to select a particular graph from a large file. This problem can be solved by giving each graph a SUBPLOT name or number (but see caution about using subplots with bank data, Example 5). Then each graph to be plotted is specified, eg.

SEND 3.

sends SUBPLOT 3. To view the graph on the screen, specify

DRAW 3.

instead of GO.

REFERENCES

- Anon, 1981. Tellagraf User's Manual, Version 4.1. Integrated Software Systems Corporation, San Diego, California.
- Smith, A.L. G.L. Ennis, S.W. Sheehan and T.M. Tuominen. 1985. A water quality study of the Akamina-Kishinena watershed and other tributaries to the Flathead River in British Columbia subjected to logging. Data report. Available from Inland Waters Directorate, Pacific and Yukon Region, Water Quality Branch, Vancouver, B.C.
- Tuominen, T.M., G.L. Ennis and S.W. Sheehan. 1987. An algal assay study on the effects of metals and nutrient discharges on the algal growth potential in the Columbia River, British Columbia. Data report.

 Available from Inland Waters Directorate, Pacific and Yukon Region, Water Quality Branch, Vancouver, B.C.