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SUMMERY AND COMCLUSIONS

Summary

In response to ths incrsasing pace of development in
tha Canadian Norths there is an intensified need for
flexible hydrologic models to be used for engineering
designs wazltler resourcss planning, environmental impact as-
sassmant, and other aoplications. Considzration must be
given to a number of spscial problems such as missing data
pointss shortnsass of hydrologic recordss and the physical
charactsristics of tha wuniQQue hydrologic regimzs found in
the Arctic. This paper is concarnsad with the examination of
a broad family of stochastic models to be used for applica-
tion to monthly hydromatz2orologic tims serias from ths
NHorthwest Territories of Canada. Univariate modelis are
fitted to hydrometric data ahd transfer function-noisa
modz21ls are deavelopsd to link hydrometric ana meteorologic
tims series. Thuss the relativsly long meteorologic record
can be used to "extend" the shorter hydrometric recerds and
mors precise estimates may be obtained for missing data
points. Valuss for missing data points are astimated using
an intervention analysis approach. VYarious othsr applica-
tions of the models are developad, and the limitations of

the models and the available data ars pointed out.



Conclusions
Box-Jenkins models and othar closasly reiated modsls can
bs employed to successfully model month!y hydromsteorologic
data from the Canadian Arctic. Thsse models have baesn shown
to bs ussful in thse following arsas:
- summarizing and describing data ssats
- filling in missing data peoints
- "gxtension” of hydrometric records
- intervention analysis and snvircnmental impact
assessment
- simulation and enginasring design
Tha application of intervention models to tha assess-
mant of the impact of both human and natural interventions
on the environmesnt should be of particular intserest to En-
vironment Canada as man's activitiss i the Arctic in-
creasingly alter the natural environment. Becauss interven-
tion analysis allows the caicuiation of confidencas limits
for the chzange in the mean level of a tims series relavant

conclusions can be drawn from the analysis.

Of the  hydromstric stations in the MNorth West Ter-
ritoriess only about sixteen stations have 2a length of
racord that |Is adequate for stochastic modelling purposss.
Data collection at thess stations should be continued jn
order to improve the relizability of ths models for such pur~
poses as engineering design and intervention analysis. In

particular, ths minimum change in level that can be detacted




by an intervention model will decrezse =2s more data is
available.

Another forty or more stations will have adeduate
langths of record if data collection continues for ths next
decz2de. At that time 2 regional analysis taking into ac-
count verious physiographic regions and basin charac-

teristics should also bhe viable,




Notation

Abbreviations

ACF -

AR &

AIC -

ARIMA -

AR MA =

daf =

MAICE -

Autocorreliat ion Function
Autorsgressi ve

Akaike Information Criterion
Lutoregressive Integrated Moving Averags
Autorsgressive Moving Average

Degrees of Freadom (for a Chi-s3uared tsst)
Minimum Akaikes Information Criterion Estimation
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the ith autoregrsssivs paramstar

autorsqgressive operator
standard deviation of a time ssrias

numarator of transfer function



1 INTRODUCTION

Ths purpose of this study is to examinas stochastic
modalling technidues for application to  watsr relatoed
problens in the Canadian Arctic. A numbsor of linear
stochastic tims series modsls are scrutinized and sampls ap-
plications are considoarad.

The study is divided into four scections. Tha introduc-
tory section presants som3 of the background and

"
philosophical considerations required for the later sec-
tions. The second ssction describes the various models that
are used. The mathematics of the models 2as well as ths
techniques for modei identification, estimations 2nd diag-
nostic checking ara discussed briefly. In the third sec-
tion, the mcdels ars fitted to monthly hydrometric and
metsorologic tims seriss from the Northwest Territorics.
Modzlling proceduras and results are indicated for each
class of models. Finally, the fourth saction deals with
sample applications of ths models. Where possiblas, "raal
lif=2" problems from the Arctic are considerad. In othsr

casess potzntial applications 2re discussad.




l.1 Available Data

In responsa to the increasing need for hydromstric data
in the North, the Water Survey of Canada (W.5.C.) has sat ud
and is currently expanding a network of hydrometric gauging

stations in the Nor thwest Territories. Of thasez stations,

{#]

sixtsen locations havs between seven and fiftaan years of
reasonably continuous monthly Zatar a bare minimum required
for time series analysis. Also in place is a natwork of
mataorologic stations run by the stmospheric Environmszn:
Service of Canada and having up to forty-six years of con-
tinuous data. Of these stations, five ars considered to b=
near enough to a gauged watershad to be of hydrometecrologic
interest. The hydromstric and matzorologic stations from
which data was used for this study are listed in Table 1 and
T

-f &

their locations ars marked on & map of the North eest

ritories in Figure 1.




Table 1
Availzbls Data

Sta.No. Name (map code)

Meteorologic Stations

2300500 Baker Lzke (1)
2200850 Contwoyto Lakz (2)

2200900 Copperming (3)

230110 Ennadai Laks (4)

220240 Hay River A (5)

4ydromstric Stations

06;3002 Thelon R at out. of Beverly L (6)
C6kc003 Dubawnt R BI Marjoriz L (7)
0612001 Kazan R at Ennadai L (8)

061c001 Kazan R at Kazan Falls (9)
05mb001 Quoich R ab St. Ctlair Falls (10)
070b001 Hay R nr Hay River (11)

07rd00l Lockhart R at artillery L (12)
07ucO0]l Kakisa R at out. Kakisa L (13)
10ed001 Liard R at Fort Liard (14)
10fb001 “ackenzie R nr F. Providencs (15)
10gc 001 “Mackenzie R nr F, Simpson (16)
10j2002 Camsell R at out. Clut L {17}
10jc002 Greaz Bear R at Gresat Bear L (13)
10ka001 *"ackenzise R at Norman Wells (19)
1092001 Tree R nr the mouth (20)

19rcG01 Back R bl Dssp Ross L (21)

Position
fat. fong.
64 18 96 00
65 29 110 . 22
67 50 115 07
61 C8 100 55
60 51 115 46
64 32 101-2%
64 16 99 35
61+1% 100 28
63 40 G5 45
64 27 94 G7
60 44 Y15 Bl
62 53 108 238
60 56 L7725
60 14 123 22
6115 VES 31
6l 52 121 20
65 35 117 45
65 €8 123 30
65 16 126 51
67 38 111 52
66 05 96 30



Figuras 1
Locations of Hydromstric and Meteorologic St=ztions
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1.2 Tima Series

A time series is dafined as a ssat of chronologically
ordared observations. Ths order of observations is crucial
to time ssries analysis. If the chronological orcdering of»
says a river flow series were ignored much of the infarma-
tion in the data would be Inost and a hydrologist would havs
a difficult time in forecasting future flows,

Some :types of observation such as temperature or water
levz]l <can be racorded continuously, and hence form 2 con-
tinuous time series. Other types of obsarvations such as
suspended solids concentration or ra2infall may be takzn at
discreta intervals, and constitute 2 discrete time sariss.
In the cass of discrets time serizs with regular measurcment
intervals the mathsmatics of time series modslling is
gresatly simolifieds Fortunately, mazny types of geophysical
tims series are discrete with fagular measurement intervals.
Dftens data that is not in the corract forms, such as con-
tinuous temperature or runoff recordss can be convarted to
discreta =equispaced data by taking averages. The time
seriss used in this study are produced by the monthly
averaging of daily data. This is donz by tha various
govsrnmental agsancies involvsd in data collection and is =2

rout ine procedure.



1.3 Stochastic Processss
A stochastic procass may bs defined for the purposzc of

this study as a procsss consisting of the sum of two compo-

nentss» one deterministic and th= other random. Ths datsr-—
ministic <componsesnt is wusuzlly considered as a signal or
overall trends whila the random component is interpreted as

white noise. Thuss 2 river flow may be thought of as being
stochastic in that it is to some axtent predictabls but
there will always be some error in ths prediction. In this
report it is not necessary to distinguish between randonness
that is dus to some specific physical phenomenon znd random-
ness dues 1o the analyst's innerfect knowlsdge of ths physics
of the DpProcass. (For an interssting discussion of th2
scizntific and philosophical asnects of this qusstion ses
Klenes (1978).) From =20 enginssring standpoint on=z nead only
develop 2 method for dzaling with ths analysis and modsiling
of a stochastic procass. A stochastic model is one which
descr ibes nmathematically both ths dsterministic and the ran-

dom componsnts of a prncess. Stochastic models are usually

process = deterministic componsnt + random component

{signal) {white noise)

The deterministic component may bse represznted by a pol yno-
mials a genaralized transfer function, or any other suitable

mathematical function. The mathematics of the modas! arse




greatly simplified if a linear function is used, and this
study deals axlusively with linsar stochastic tims saries
mods ls. The random component is usually dsscribed in tefms
of a probability distribution such as the normals log-normal

or log-Pearson distributions.

l.4 Stationarity

Stationarity of a stochastic process can be defined as
a form of statistical squilibrium, This msans that ths
underlying statistical properties of the procasss such as
m3aans variancse and s=arial corrslations do not change with
tims. For examples if a naturz2l river bz2sin is not sub-
jsctsed to changes such as urbaﬁiZationp cultivations foresst
tire» or climatic changass it would be reasonabls to assums
that the statistical propsrties of +ths streamflow tims
series would not chanc¢s significantly over ths design psriod
of an enginssring projsct. Whsn modslling a gesophysical
time series for use in engin=sering assign one would normally
use stochastic models da2siansd in such a way that the mzan
and variance of ths model are indspandant of tims, wunless
thare is soms reason to believe that some changs or intsr-
vention has takasn place in ths undsrlying process. As e8x-
plained by Hipel et al. (1979a) ths use of nonstationary
modsels in simulation for anginearing design is wusually not
aopropriate. In addition, tha mathod used in this study to
estimate missing data noints reqQuiras the use of a

stationary modsl. This study thersefors concerns itself only




Wwith classss of stationary modsls., These models will be

desribed in mors detail in Saction 2.

1.5 Akaike Information Criter ion

A question that freQuently arises in stochastic
mods I ling is the qusstion of which of two or more compating
modsls should bs usa2d to modal a Pprocess. A ussful

criterion for choosing betwe=n models should considsr two
ganaral mozslling nrinciples: simalicity of tha modal (par-
simony) and good statistical fit. The oprinciole of model
parsimony is of gre2at statistical and practical importancse,

In intervention analysiss for sxampler, th=2 detactability of

environmzntal changes is greatly impaired by ths uss of an
overly complex modal (Lettenmaier et al. 1978). From a
practical viewpoints mora complex modals are morz difficult

to work withs and freduantly more exosnsive in terms of com-
putation and data collaction, Mods! parsimony can be gquan-
titfied in terms of the number of astimated paramstars in the
fitted models while goodness of fit can be quantifisd in
terms of ths meximum likslihood of the fitted model. A
mod21 with slightly highar maximum likslihood, and hencs
better statistical goodnass of fit, but having many
parameters may bs less accsptabla than one that hzs slightly
lowsr maximum likelihood but fewer parameters. Tha Akaiks

Information (Critarion (AIC) (Akaika 1974) is basad on

information thsory and considsrs both ths aforesaid orin-




ciples. The AIC for a fitted statistical model is dsfined

by:

AIC = = 2 (in ML) + 2k (1.5-1)

where ML the maximum likelihood

=
[}

the number of modsl paramsters

Th: 2k term reflacts model parsimony whils goodnass of
fit is incorporated in tha -2 (in ML) term. ‘The mods! with

the lowsst value of the AIC is considsred to be tha best

modz 1. Thus the modsl may be chosen according to ths
minimum AIC. This is termed minimum AIC estimation or
MAICE.

It is also possibla to calculate the relative
plausibilility of two competing modsis if thes AIC valuss of
the mods!ls are known. The relativa nlausibility is agiven
by:

AlIC2 - AIC1
relative plausibility = exp (=-—~==—===-—= ) (1.5-2)

st
"

wher s AIC the AIC of the lst modal

|}

and AlC2 the AIC of tha 2nd model
As a general modetling philoscphy» whsn moaslling com-
plex stochastic situations it is bettsar to start with simpl2

mode | s» and folivwing this» perhanos examine more compleax
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mode | s. 1f» for example, one has a river flow serles and a
pracipitation seriess and one is interastsd in a mode | for
the river flowss ong might first fit a univ2riate modsl to
tha flow ssries. Then, if dzsired, ona could go on to fit a
transfer function model to link the flows to precipitation.
Tha information gainad in constructing the univariate modsel
may be useful in identifying the most appropriate form for

the mors complex transfer function modal.



S

11
2 DESCRIPTION OF THE MODELS

A class of linsar stochastic time seriss models com-
monly known as Box-Jenkins (Rox and Jenkins 1970) or ARIMA
(Autoreqressive Integrated Moving Average) modals havse besn
gaining increasing acceptance for use in the field of hy-
drology (Hipel and “cleod 19792) and thess modals constituts
the basis for the procedures usad in this study. In recent
yaars numerous thsorstical and technical advances have takan
place in ARIMA modalling. The utility of th; mode Is has
baen incrsased through advances in the identification,
estimation and diagnostic checking stzges of the modelling
pProcess:» as well as through the zxtsnsion of the models for
uss in intervention analysis and transfer functior-noise
mods lling. For a datailed daescription of ths mathematics

S

and theory undarlying the models the reader is refarred Lo
Box and Jsnkins (IQfO)p and for an account of some of ths
mors contemborary advances the readsr is referrsd to the
relavant statistical and anginsearing literatura (see for ex-
ample Hipel et al. 1977a» Bo0ox and Tiao 1975, and “clLeod and
Hipsl 1978b). A briaf outlina of the models and modsl|
building technidues ussd in this paner is given iﬁ this sec-
tion. Ssctions 2.1 to 2.5 deal with modals for nonseasonal

tima seriess while models for ssasonal time series are con-

sidsred in sections 2.6 to 2.1l1.




2.1 Honssasonal Autorsgressive Yodals

An Autoreqgressive (42) model is a special typs of Box-
Jankins modal which describss a time seriss in terms of
pravious obsearvations, and in tarms of a ssrizs of whits
noise innovations. Ths most simpls example of an AR model

is the Markov models, definad by:

z = 6 z + a (2.1-1)
i 1 t-1 t 2
wher e
7 =‘the valus of the procass at times t ( usually aftear
t
the subtracting th:e m2an leval of the ssries )
¢ = the lag 1 Ak parameter
1
a = the random o~ white noise comdonant, assumed
t
to be idantically and independently distributad
2 Z
with m2an zero and variance o . (iz a ~1ID(0,c )
a t a

Thus the valus of the ssri2s at time t despends on th2
valus of the observation at time t-1» and on the random
value of the white noiss series at tima t. This is eAquiva-
lant to regressing tha seriss at tima t on thes same serias
at time t-l. An alternative name for ths *“arkov modsl is
thercefors the 4R model of order one or AR(1l) model. For the

purnose of algebraic maninulation, ths model may be wWrittsn
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in a more convenient notation using the backshift operator.,

B defined by:

Bz = 2z and Bz 2= Z (2.1-2)
t t-1 t t=k
B is a linear operator and can thercsfore be manipulated
as if it Wwere a variabls by using the normal rulses of al-

gebra. The model can now be written in several alternate

formns:
T m W Z + a (2.1-3)
t 1 ¢-1 %
z = 46 B 2 + 2 (2.1-4)
t 1 L t
z - 6B z = a (2.1-5)
t 1 t o
(1L - 68) z = a (2.1-6)
1 t t
or @(B) z = a (2.1-7)
t t
where 5(3) =1 - # B = the AR operator of order 1.
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Gensral Autoregressive Yodel

Thz &R(1) mecde! can b2 extasnded to gsnz=ral case whars
there are o AR parameters. The AR model of ordsr p s

denoted by &2R(p) and is written as:

z - 2 -4 6 .4 T eesa = 6 z = a {2.1'_8)

whare 6 = the ith AR parameter.
i

Thus the valus of the series at time t depsnds on the
value of the szriss a2t the o prece=sding timess plus a whitz

noise tarm.

The modal can a2lso b= written using ths B notation:

1 2 p
z = ﬁ B 4 - 6 B z - e ™ 6 B Z = & {2.1-9)
t 1 t 2 t o) % t
1 2 D
1 2 o} t
or @(8) z = a f2s1=11)
t t
1 2 p
where ©D(B) = (1 - 6 B8 — 6 B = ... — 6 B ) = the AR
1 2 D

oparator of ordsr p.
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2.2 Nonseaconal Yoving Averags “Yodzls

Th2 Yoving Average (“44) model is ons which describss a
time s=z=ries in terms of 2 white noiss time sseriss. An MA
mode] of order q» ds=notsd by MA(q)s definss thas value of a
time sarics at ¢time t In tearms of the 4 most recent white
noise innovations at times t» t-1» t-25s...2t-q+l. The Malaq)
modz=1l is wWritten as:

Z = a "9 a "ea ™~ es e -9 a (2-2"1,

t t 1 t-1 2 t-2 Q t-g
whear e 6 = th=s ith MA parameter.
i
In 3 notation the model is written:
1 2 q
Z = a -a B a - 63 a - . e e -9 B A {2!2"2)
t t 1 t 2 t q
1 2 q
Z = { 1 _GB "9 B - s s e “9 B ) a (2.2—3)
t 1 2 q t
or z = ©e(B) a (2.2-4%)
t t
1 2 q
where H8(E) = (1 - 8 B - € 8 - ... — € B ) = ths MA
1 2 q
opsrator of ordsr q.

It shoulid be noted that ths M&(d) model ma} also ba
equivalently writtzan as an AR mods!l of infinits ordsr by
rewriting gQuation 2.,2-4 as:

1
_______ z = a (2-2“5)
8(8) t



Tha 1 / ©(B) term may then ba 2xpandzd by poly

16

nomial expan-

sion. Similarily ths AR(p) model may be written as an M4

modal of infinite order by writing squation v A |
1
Z = mm————=a a
) 2(8) t

2.3 Nonssasonal Autoregressivs Moving Average “

AN autoracressive Mmoving averags or &RYA
having both AR and MA terms» defined by:
2(B) z = ©8(B) a
t t
Thus ths= value of the series at time t depends
term at tim2 ts the a precseding noise2 terms,

preceeding values of ths seriss.

An ARMA model having p AR paramaters
parameaters is danoted by ARMA(p-Q). As an

ARM4Z(1s1) modal is given by:

This can be equivalantly aritten as:

z - ¢ Bz =3 -6 B a
t 1 t t 1 t

or (1 -68B1)Yz =(1-988) a2
1 t 1 t

It may bs notsd that the notation ARMA(1,0)

=11 as:

odels

mods!l is on:z

on the noiss

and the 0

and q MA

exampla ths

(2.3-3)

or (2.3-4%)

is synonymous
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With AR(1) and likewiss ARMA(O,1) is the same as MA(l).

Soms properties of ARML models are:

1) ARML models ars parsimonicus. This means that in
most practical apolications only a few AR and M4 parameters

are required to provids an adequate dsscriotion of a tims

series.
2} AIMA modals have bean found to provide good
statistical fits to hydromatrics meteorologic and othear

gaophysical time series (Hipel st al. 1977a» “cleod st al.

1977, Hipel and "cleod 1978).

2.4 Box-Cox Powsr Transformation

A powerl transformation freduantly ussd in Box-Jenkins
modalling (Box and Cox 1974, Hinel at al. 1977a) is the Box-

Cox transformation given by:

(A) Z + const
z e il | for X # 0 (2.4-1)
A
= In (z + const) for A =0 (2.4-2)

Ths Box-Cox transformation can often bes used to correct
situations whare an examination of the model residuals in-
dicates that soms of the wunderlyin3y modelling assumptions
have bszn wviolatad. The model residuals constitute an

estimatz of the whits noiss ssriess and can therafors Dbe
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statistically tested for violations of the assumption of
whitensss» as weil as the less important assumptions of con-
stant variance and normality of ths white noise s2ries. For
a more detz2iled descr iption of the use of the transformation

please see Section 2. 7.
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2.5 HNonssasonal Autorsgressiva Integrated Moving Avarags

Mod=e 1l s

Autoregressiva Integrated Moving A4varages or AR MA
models are wused to modsl nonstationary time series. The
proczecdure is to first transform the data by differencing ths
series to remove ths nonstationz2rity and to then fit an ARMz
mod2|l to the stationary transformsd serizs. The dif-

ferancing transformation is defined by:

d
W = (1-8B) z (24 5=1)
t t
whare w = ths value of the transformed series at tims t
t
d = ths degrse of diffarencinag
To illustrate the differencing transformations, for 4 = 1:
1
A = (1-B) z =z -8 z =z =z (2.5-2)
t t t t ;4 t-1

Therefore cdifferencing of order ons simply subiracts ths

value at time t-1 from ths value at time t.

ARIM4 models are denoted by ARIMA(D,»d»Q)

n

whar e n number of AR paramaters

d degree of diffarencing

numbar of MA parameters

el
L[]
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ARIMA models have bszen found to be narticularly usef ul
for applications such 2s forecastings buts as has besn &x-
plained in Section l.4, thsy are not appropriate for ths ap-

plications considsred in this study.

2.6 Des=zasonalized Models

HMany typss of data, such as wsskly or monthly Hu-
dronetric and msteorologic data show seasonal or «cyclic
trends. In the case of stationary seasonal ssriszs, they can

bs modell=d by the following procedure:

1) The apolication of a desszssonalizing transformation.

2) Using an ARMA modsl to raoresent the transformed ssriss
{(which is now nonseasonal).
Two &slternate desseasonalizing transformations are 3availzble
and are descr ibad bslow for the case of monthly data.

Similar transformatiors are zvailable for wesekly data.

1) z" = Z - (2.6-1)
ysm ysm m
2) " = (z = N ) I o (2.6-2)
Yy m Yem m m
Wwhera z = ths value of the saries for the mth month
ys M

of the yth yaar

z! = the dessasonalized value

Y I

H = the msan of ths mth month

m

o = the standard daviation of the mth month
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In general it is prefarable to use the first transfor-
mation in order to reducs tha total numbar parameters.
Howvaver: in some cases the ssasonality is not entirely
removed by simply subtracting out the monthly means, bscauss
the standard deviation also changss from month to month. SO
it is also neacessary to dividse by the monthly standard
deviations.

In those instances where the monthly mszans and standard
dsviations follow a roughly sinusoidatl pattsrns it is
possible to reduce th:z number of mogel parametars by using 2a
Four ier series rapressntation of the monthly means and stan-
dard deviations. In the cass of monthly data parhaps 4 or 5
Fourier componsnts Fan be used to represent 12 monthly
valuess for a modest reduction in the number of nparameters.
For weskly data the reduction in ths number of paramaters
can ba dramatics with 52 weskly values beiny represanted by
only a few Fourier components.

1f Fm and Fs are the number of Fourier components used
for ths monthly msans and standard daviations respactively»

then F and & aras estimated by the following eduations:

Fm 27w km 27 Km
p =a+ I A cos ----- B gin wewes (2,6-3)
m 0 k=1 k s K s

Fs 27m km 27 Kkm
g =C + I C co0s =---- +0r B ——p = (2.6-4)

m 0 h=1 h s h s
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whare M= 1r2s0earsS
1 s
A = ——— b3 M
0 s m=1 m
1 S
C = e —— 'Z a
0 s m=1 m
2 s 2 T kn
A, = mee X7 HEOE Sesms
k s m=1l m 5
2 s 2T km
B =y I g SIN rem——
K s m=1 m s
2 S 2w km
b womes o AF Q05 e
h s m=l . m s
2 s 2T km
D = —--- ¥ osin ——-—=--
h s m=1 m s

k'_‘ 1!2!...)Fm s h = 1’2’--.":5

v
it

the number of seasons (ig. 12 for monthly data)

Thus for each Fourier component thars are two estimated

parametz=rsy on: cosfficient for ths sine term z2nd ona for

the cosins term. Nots also that if Fm = 0 thsras is no
ssasonal adjustment for the means and tharsfore the mean of
the sntire serias is used for pﬂ If Fs = 0 there is no ad-

Justment for the standard d:sviations and @ is szt to unity

in equations 2.6-2 and 2.6-4%.
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2.7 Modzlling Techniquszs

The recommendsd precadure for the construction of both
seasonal and nonsz2asonal models is a process that may b2
divided into three distinct stagsss each consisting of a
number of operations (8ox and J:snkins 1970, Hipal at al,.
1977a). The first stz2qge is to tentztively idantify from the
data thse most appropriats molel. In the second stags thsz
mods | paramsters ars astimatsds, and hence the model is
fitted to the data. In the third stags the model is taestad
for adeduats fit and to insure that the underlying assumo-
tions havs not ba2ar violatesd. [f svidence of noor fit or
violations of the model assumntions is found tha precsss is
rapsated iterativaly until an adequats mbdel is found. Ths

thrass stagss of modsl construction zare outlined in Table 2.

Identification

The vary first step in mode!l construction is to ex2min2
a plot of the data. A data piot will show immediatsly if
the series is seasconal or nons=asonal, although for
geophysical data this is usually known in advancs. Figure 2
is 2 plot of the monthly mesan flows of th: Liard River 2t
Fort Liard. Figure 3 shows the sama series after tha ap-
plication of tho deseasonalizing transformation. It can be

readily s=2n that the cyclic or seasonal component has besn

remaved.



1)

2)

3)

Table 2

The Threz Stagss of Modal Construction

Identification

a) Flot of the data

b) Plot of autocorrelation function (ACF)

c) Plot of partial autocorratation function (PLCF)
tstimation .

a) Maximum likelihocd estimate of parameters

b) Box-Cox pow=sr transformation

¢) Akaike Information Critarion (AIC)

Diagnostic Checks

indspendant ?

a homoscedastic ? can often be corrscted

258

ncermal ? by Bex-Cox transfcrmaticon



Figurs 2
Monthiy Flovis of the Liard River fron 1960 to 1976
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Figure 3
Dessasonalizaed Liard Rivar Series
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Two wery uszsful tools in identifying Bex-Jenkins models
are the Auto Corrslation Function (ACF) and ths Partial Auto
Correlation Function (PACF) (Strictly spsaking, the ACF and
PACF calculated from measursed data are known as the samplsz
ACF and sample PA4CFs but this distinction is dropped hers
for reasons of convanisnca). The ACF at lag k gives th:
linear dJdesendencs or correiation of values of the tims
sariss ssparated in tim2 by k lags. The PACF at ltag k gives
the valus of the kih 4R paramater of an A(k) model fitted
to the series (Pagano 1972}. Plots of thz ACF and ths PACF
are wussd in datarmining how many Y4 and AR paramsters will
probably bz necessary to model! a givan seriszs. Tha ACF and
PACF are are calculatsd from nonssasonal or deseasonalized
dzta for use as an identification tcol for nonszasonal ARMA
modsls and ARYA models fit to daseasonalized deta.

The use of an AR(p) model is "indicatsd if the ACF dies
off slowly towards =zero and ths PACF is not significantly
diffarent from zero (truncatsd) after lag p. Converselys
the wuss of an MA(Q) model is indicated if the PACF dies off
slowly and the ACF is truncated after lag q. If both’ ths
ACF and the PACF dis off slowly the use of an ARMA(p,Q)
modz1l is indicatad. If the ACF and PACF show cyclic fluc-
tuations, this may indicats that the serias has not been
adeduataly dessasonalizeds and a transformation with morz2
Fourier componants may be necessary.

Combining th: information from ths. &CF and PACF- bplots




givas a good idea of the numbger of AR and MA parametars =2

modal will naed. This information greatly simplifies ths
problem of choosing the most aopropriate modsl, although
SOms experisnce may be necsssary in dsaling with ambiguous

pints.

Tha ACF and PACF for the des=asonalizsed Liard River
flow series are shown as sample plots in Figurses 4 and 5. 4
further dascription of the idantification process for this

series may be found in Section 3.1.



Figure 4
ACF for the Daszasonalizad Liard Piver Series
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Estimation

The values of ths AR and MA paramsters of the ARYA
model are not known, and must be estimated from the data,
This is conmonly known as fitting the modszl. In aagdition,
the standard errors of estimation can be calculatsed. An
estimatad paramstar can be compared to its standard srror of
estimation to check if it is significantly different from
zaro. 1if not it should be omitted from ths modzl. Ths
residuals of tha fitted model constitute 2n estimzate for ths

2
Wwhitle noise sari=s so at and o can b3 readily calculatsd.

a
Paramsters are estimated by maximizing ths 1log
likzlihood function for ths model in question (maximum
likslihood westimation). For ltarge sample sizes (100 or
more) ths least squar'2s estinates formsd by minimizing the
residual sum of sduares is almost idsesntical to tha maximun
like lihood sstimates (Box and Jankins 1970). For smalier

sample sizes the modified sum of sQuares msthod proposszd by
Mcl=2o0d (1977) has been shown to giv2 a clossr approximation
to the trus maximum likelihood estimatess espscially for the
MA paramstars. The programs usad to estimate ARMA
parameters in this study wuse the modified sum of sQuares

mathod.

Diagnestic Checks

Aftar a tima sar izs has bsasn fittad, it is important to

check to insure that tha assumptions mads in the model are
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not violated. The primary assumption of Box-Jenkins modsls
is that thsz a serjss is inoepandently distributzd. [If ths
noise is <corralatad, the mode!l will not give valid results
for simulation and foreacasting apnlications. Furthermora,
the mode! parameters may be very poorly estimated. Ths as-

sumation of an independaent nois2 seriss is <chacked by

1]

testing the mode! rasiduais for whiteness. 1t signifticany

4

rasidual autoccrrelations ars found, particularly at {ow
lags, ths modsal cannot b2 acceptsd (Ycleod 1979al)l. The
mods 1 may then ba corractzd by itzratively rensating tha thz
thres stages of model construction,

Another frasqusnt assumption is that thes varianca of
noise term is constant. This is refarred to 2as
homoscedasticity. Eon~cons;ant variance is tarnsad
hataroscedasticity. Statistical tests are availabls to tsst
for changes in variance dspending on ths time and also on
the current levsel of the seriss (Hipel st al. 19772). Also»
it is frsquently assumed that ths whits noise componsnt fol-
lows a particular probability distribution, usually the ner-
mal distribution. Tha skswna2ss of ths estimeatad residuals
provides a2 test of ths normality asgumotion (D'Agostino
1970). Thes abova tssts ars: included in ths estimation

programs used in this study.
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2.8 Monthly Autoregressive Mecdsals

Monthly rivar flow data frsQuently exhibits 2n autocor-
ralation structurs that depends not only on the timas lag
between observations, but also on the month or season of tha
yaar. Seasonal variation in ths autocorrelation structurs
may be due to such physical conditions 2as the @presence or
absancs of ica covsrr» whather ths orzcipitation is in th=
form of snow or rain, 6ilCa.. Autoregressive modals with
monthly wvarying paramsters were first suggssted by Thomas
and Fiering (1952) and later by Jon=ss and Brelsford (1967).»
Yevjevich (1972)s Croley and Rao {(1973), Clark (1973)s and
Tao and Celisur (1976). Recent edvances in the identifica-
tions estimation, and diagnostic chz2cking stages (Mcleod and
Hipel 1378b) havs greatly incrsased ths utility of monthly

varying autoregressive (MiR) mocdels.

Mod=l Description

)

Let zy 0 be the valus of a transformed tima saries on
]

A
the mth month of ths yth year. 1[It m2y be noted that Z§§2 4
|
(A

A
26,;4’ and zé,% all rsfer to the same observation, The

monthly =2utoregressive modal of ordsr (%_:02’...012) for ths

month m is definsd by:

i (x) (2)
z -H C A R (z -p )+ a (2.8-1)
i=1 i»m yrm—i m—i ysm
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(A) (A)
wheaer @ H = the mean of z for ths mth month
m ysm
0 = thse ith AR coefficient for the mth month
i»m
a = the whitz noisz term for the mth month
Y1

of the yth year

Modal !dentification and Estimation

Because ths parametzr sstimates for the 12 months arz
indepeniant it is ©Dpossibic to estimate the MAR pzramsters
using multiple linsar rearzssion (vMcLaod and Hiosl 1978b).
The algorithm of “organ and Tatar (1972) can therefore b=z
used to calculate ths rasidual sum of squarss and hence ths
AIC for all possible ™“MiAR models. Fbr instances if all
modsls uo to order lé ars consideresds, the AIC value for
12)(212 possibla regressions may be looked at in about 50
saconds of Honaywslil Ssriss 66 comouter time. If onily ths
1st» 2nds 3rd, and l2th parametsrs for sach month ars con-
sidared, 12x24 possible ragrassions ars nesded and comduta-
tion time drops to about 1.8 seconds. Thus thes modsl may bea
identifisad and estimated automatically wusing a MAILE
procadure. Typically MAICE will choosa 2 model with two t2
four AR parametsrs for sach month, usually at lags 1l» 2, 3»
or 12. It may ba notad that MAICE will brzak down if one
attempts to fit a modal whers the numbar of parameters ao-

proachsas the number of data points, (ie. if one trias to fit

an 4YAR(12) modasl to less than 13 yszsars of data). For short
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data sats this problsm can be overcoma by constraining soms
of the parametsrs to Zzero- thus reducing the numbsr of
pnarametsrs to be estimatasd, In this study the paramsters of
ordar 4-11 are sst to zero for this reason. 4s befores the
model <chossn by MAICE nssd not centain all th: possibls
parametars, and oftan only ons or two wWill bs choszn for

each month.

Diagnostic Checks )

As With thes othar modsls alreéady described, “AR modsls
are rejocted if there is evidence of significant residual
autocorrzlation. Tssts based on ths residual autocorrelia-
tion and a Chi-sQuared portsmanteau statistic, Q, due o
MclLeod and Hip=zl (1973b) are included in thz proarams used
in this study. A model may be rajected if the residual

autocorrelations are largsr than twics their standard error,

or eduivalently if the Q statistic is too large.




2.9 Transfer Function-Hoise “Modsls

If a process is affected by some sxtsrnal inputs, and
tim: series data is availabla for ths inputs, a transfer
function-noise modsal can ba used to link tha procaess wWith

the inputs. In this study msteorologic series such as
precipitation and temperaturs are considsrsed as extarnal in-
puts to the river flow process. Tho mode | can ba inter-
prated 2s a black box in which inputs of precipitation are
transferred into an outout of straamflow, Temperature
entsrs into the system in that it is the controlling factor
in detsrmining at what lag precipitation in the form of snow
will melt to form runoff.

Ths transfer function-noisa model is made up of the sum
of two componentss ths transfer functions for 2sach of Il in-
put ssries PO i = 1’2"°"Il' and ths noise componsnt

r
i

which is reprasentad by an ARMA model. ransfer function
models may be apolied to either ssasonal, nonszasonal, or
dessasonalized data depending on the situation. In Ssction

3.3 it is explained why deseasonalized seriss are the most

appropriats for the Arctic data mod=1led in this study.
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are applied only where necessary to ramove seasonzlity or to

corract for violations of model assumptions.

Modal Idantification
The method of chocsing an appropriats transfer
function-noise model may be broken down into ths stsps shown

bziow:

1} ARMA models are fitted separately to the rssponse serias
and the inout ssriss and the rssiduals area calculated.

2) The <cross—correlation structure of the residuals is &x-
aminad as describsd in Box and Jenkins (1970) and Haugh
and 3ox (1977). (This procedure is similar to tha
uszd in the idsntific2tion of ARMA model!ss =2xceot ths
cross-coerrelation function is wused instead of the
autocorrelation function.) fhe form of ths transfar
function should be chosan in the light of a physical
undsrs tanding of the procsss in ordszr to <chooss a
reasonable model.

3) #han the transfar functions have besn idsntified a modal
is estimated using an ARMALA(0,0) noise component (is. no
noise term) and the residuals are calculated.

4) An ARMA model is identifisd for the time seriss of
residuals of ths modsl in step (3) using the tachniques
praviously describsd in Section 2.7. This ARMA model
becom=s ths noiss component. Linking this noisa model

to the transier functions identifked in stap (2) givas



ths complete transfer function—-noise model.

Parzmeter Estimation and Diagnostic Chscks

The dynamic and noise ccmponents are estimated simul-
tanaously by numarically maximizing ths log likalihood func-
tion. The method of doing this is describsd by “cleod
(1979b).

Ths diagnostic checks used for transfer function-noisa
mode ls 2re wvary simiifar to those for APMA modsls., Ba2causs
the noisc term of the transfer function-noise model is in
fact an LIMA models the identical diagnosticss dszscribsd in
Sections 2.7 and 3.1, are uscd for this component. In addi-
tions sevszral tests are available for the transfer func-
tions; tech estimatad parameter can be compared to its
standard =zrror to chack whether the parameter is sig-
nificantly differsnt from zero. If noter it should not be
included in the model. Fqually importants, the transfar
functions must be reasonable in the light of a physical
understanding of ths process. For instance, a negativs
relationship batween pracipitation and runoff may be sig-
nificant from the point of viaw of the various statistical
testss but it must be rejected bscaussa it dozs not mzks:
sanse physically. Finallys alternats modsls may bs

estimatad to choose thz one with tha lowsst AIC.




2.10 Intervention “odsls

. special form of thz transfer function model is the
intervention model which ccnsidars extarnal intasrventions on
a process as a special typs of transfear function {Box and
Tiao 1975, Hipel at al. 1975, 1977b). An intervention on a
river flow procass might be 2 man-made change such as thz
construction of a dams the ramoval of forest cover, or ths

construction of irrigation or drainage wWorks. A forest fire

is an =xanpls of 2 natural intervention. In ths intervzan-

tion model the intervsntion is considered as an input tims

series denated by gt. g, is a binary variabiz whoss valus2
[

is zero when the intarvantion is not accurring and one when
the intervention is OCCUrr inge. The effect of a dam con-
structions for examplesr i3 renrasentsd by gt= 0 before the
construction and Et: 1 aftsr the dam is in operation.
Mods! D=sscription

The form of the intervention model is given by:

response = intsrventions + noise (2.10-1)

For the general case of I intarvantions ths model is

dafined by:

2
z' = r ¥-.1B1 E + N (2.10-2)
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Mods | Constructioen

In general the modeller Wwill know the —causs of an
intervention and will therefors be able to choos2 the intsr-
vention mode! in the tight of a physical understanding of
the process and ths intszrvsntion and also an understanding
of the mathematical bshaviour of the transfer functions usad
to model the intervsention. Descriptions of this procedures
as well as soms other useful aids to identification can bs
found in Box and Tiao (1975) and Hiosl et al. (1977b) .

The astimation and diagnostic st2ges are idantical to
those for the transfer function-noise modal of which ths

intervention mods! is a spscial case.
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2.11 Ths Gsneral Intsrvention “odel

Mod=1 Da2scription

Ths ganeral intervention mode!l is a combination of the
transfer function-noise modsl dascibsd in Section 2.9 and
the the intarvention rodei described in -Section: 2.10, The
gsnzral intervantion mode!l can thsrefor2 includs Il inouts
and 12 external intervention in a2 modal of the form:

resoonss = inputs + intsrvantions + noise (2.0 1=1)
or
1 1
1 2
z' = L . N 48palxy. )} + I v (B) & + N
t i=1 i T i=1 +1 i ti L
1
{2.11=2)

The three stages of mode! construction ar2 the sams as
descr ibed for transfer function-noise modals and intarven-

tion models.



41
3 MODELLING ARCTIC RIVERS

In this section of the raport the deseasonalizad ARMA
mode ls» monthly autoregressive modals» and transfer
function-noise models which were dascribsd in Section 2 ars
fittsd to monthly hydromstric time ssries from the Northwsst
Toerritories. In the case of transfer function-noisa modsls,
monthly rainfalls snowfall, and tempsratur2z data are in-
cluded as input seriss. The wuss of ths identificaticny
estimation, and diagnostic checking stages in the modelling
procedure is soxplained for aach type ©of modals, and th2

rasuits arz presesntaed in tabular form.

3.1 Dessasonalized ARMA Models

In keeping with the mod:z1ling philosophy of starting
with simole modals and examining more comolex modals oniy if
the simple models are not adzquate, the first modesls fitted
to the monthly hydrometric data from the Arctic ar2

dassasonzalized ARYMA modsls.

Procedures

The recommanded stochastic modelling procedure consists
of thres stages: idantification of a reasonable modal,
estimation of the model parameters, and diagnostic checking
of the fitted mode! (Box and Jsnkins 1970, Hipel ot al.
1979a). To illustrate the use of the three stags procedur 2,
the modailing of the flow series of the Liard Rivzr at Fort

©

Lierd is given as an sxampla. The Liard River drains an
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area of 230,000 kmz extending into a varjety of
physiographic regionss including the Rocky Mountzains and
their foothills, the Fort Nelson Lowl2ands, the Liard
Plateaus the Liard Plain, and the Hyland Platsau. Monthly

flow cdate is availabla from 1960 onwards.

1) Identification

The first steo in the identification stage is to ex-
amine a opolot of ths monthly flow data. Figure 2 (pags 25)»
shows that the Liard River data is highly ssascnai» with
monthly msans ranging from about 325 m3is in Fsbruary to
about 6,302 m3ls in Juna, The seriess must thereforz ba
deszasonalized by ons of the two methods defined by sdqua-
tions 2.5-1 and 2.6-2. Ths oreferrsd method is to subtract
out the monthly mesans and divide by the monthly standard
deviations as defined in equation 2.6-2. As was shown in
Section 2.6» when a Fourier raprssentation is usesd for the
monthly msans and standard deviations, gquation 2.6-1
becomes a special caseo of eQuation 2.6-2. Figure 3 (page
25}, a plot of ths deszasonalizad series:» shows that ths
seasonal component has been removed.

The next stsp is the inspection of ths ACF and PACF of
the deseasonalized series. Tha ACF =2nd PACF for ths
deszasonalized Liard River s2ria3s are shown in figures 4 and
5 (pegs 28). It can be sesn that the PACF is truncatead
after lag l» indicating that a ¢, AR:.tarm should be includeqd

3
in ths modsl. This Is furthar supportad by the ACF which
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dias away from lag 1l to lag 4. A final spike in the ACF at
lag 6 indicates that 2 96 A term may alsc bs nscassary,
Therefore the modsl is tentatively idsntified as an AR(1l) or
possibly a2n ARYMi(1s6) modeil with el to 95 constrained to

ZeT 0.
2) Zstimation

The model params ters are estimated from the data by
using ths method of maximum likalihood. Thi§ step is dona:
numarically using approprizate computer programs, The
estimation programs usad for this study are from A.].
MclLsod'!s T.S. packaga of interactive time series analysis
proarams on the Univarsity of Waterloo Yathesmatics Faculty
Honsywell Ssries 66 system. The diagnostics naeded for tha
next stage are also calculatad by ths sams programs. Sample

outputs ars shown in Appendix 1.
3) Diagnostic Checks

Models are rejected if the assumption of z2n indepsn-
dently distributed noisa term is violated., Evidsnce z2gz2inst
ths assumption is given by a valus of the residual autocor-
relation function (RACF) greatsar than twice its standard er-
ror of estimations especially at low fags. It is also
desirable to have 2 modal with 3 normally distributsd nois:
term with constant variance. Th3 hypothssis of normality

can be rajactad if significant avidanc2 of skewnsss can be
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found and the assumption of <constant variance can be
rajacted if there is evidence of hztaroscedasticity. In
this study varlious statistical tests are used for this pur-
posc. Skerness is indicatad by a skewness statistic sig-
nificance level of less than 0.05 (D'Agostino 1970).
Heteroscadasticity is indicated by Chi statistics in thsz
tests foir changes in the variance dz2psnding on the currant
lev=1l and changss in ths variance ovsr tims bsing agrsatsr
than twics their raspective standard errors of estimation
(Hioz2l st 2al. 1977a). Finally, of the modsls which pass ths
above tests» ths one with the lowsst A1C is chosan as ths
bsst modz1. For the two modz1s idantifisd in the oprecsding

secticns, the diagnostics ara listed in Table 3.

Table 3
Diagnostic Rasults for the Liard River Models
tode | AIC RACF Skewnsss Het=roscdasticity
Wwith leval ovar tims

at (5.L.) (354} (S.E.)

AR (1) 2340.5 lag 6 0.61 0.00019 -0.0042
(0.00090) (0.C00047) {0.00156)
ARMA(Ll,6) 2312.4% nons2 0.37 0.000138 -0.0033

(0.028) (0.000047) (C.0016)

(significance level (S.L.) and standard error (S.E.)

in brackets)
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The &R(1) model is r=zjacted because it has a sig-
nificant residual autocorralztion at lag 6. Thz ARMA(1,6)
mode | residuals are badly skewed» with a skewnass test sig-
nificance level of only 0.024.

Residual skswness can oftan bs corrected in practice by

using a Box-Coex transfermation, Incorporzting a Box-~-Cox
arametor A =0 transformatien into th: modzls yizlds ths
results listed in Table 4.

Table 4

Diagnostic Rassults for the Ravissd Liard Rivar “odels

Mods | AIC RACF Skewness Hstsroscadasticity
with level over time
at (S.L.) {S.E.) (5.E.)
22(1) 2315.9 lag 6 0.13 ", 0.13 -0.0032
{(0.43) (0.08) (0.0017)
ARMA(1,6) 2312.4 none -0.021 I ~0.0027
(0.90) (0.08) (G.0015)

(significance lsvel (S.L.) and standard error (S.F.)

in bracksts)

Again the AR(1) model is unacceptable dus to a sig-
nificant residual autocorrelation at lag 6. The ARMA(1l»6)
modal has no significant residuai sutocorrelations and ap-
pears to satisfy ths normality assumptions reascnably well

excspt for a si-ightly significant heteroscadasticity Chi
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statistic. Tha AR“MA(L1,6) modsl also has a lowar 2IC.

Fourier Raaresentation

After the best dsssasonalized ARYMA mode | has besn
tfitteds model parsimony can be improved by using a Fourier
reprasentation of the month!y msans and standard deviations.
Using six Fourier componsnts to represent the msans and six
for the standard dsviations is equivalsnt to an 2xact «cal-
culation of s&zch. The model is re-esstimated with smaller
numbers of Fourisr components until the mode | with th:
lowsst AIC valua is found.

For the Liard Rivers ths improvamant in the- AlC Wwith

the Fourier repressntation is illtustrated in Tabls 5.
Table 5
AIC of Desaasonaliz?d Mode ls
Numher of Fourier Componznts AIC

for maans ~for s.da's

6 6 231234
6 5 2308.9 - lowzst AIC
6 4 2312.4
5 5 2310.6

6 0 2334.5



The model that is finally chossn to reprasent ths

monthly flows of the Liard River 2t Fort Liard 1is an
ARMA(1s6) deseasonalized wsing six Fourier components for
ths monthly means and five Fouriar componants for thsa
monthly standard deviations, with a Box-Cox transformation
paramaeter of zero. For some data sets a model having zaro
Fourier componsnts for the standard deviations is found to
give the lowest AIC. In such cases pzrhzps 4 or 5 Fourier
componsnts would ba usad to reprssent the monﬁhly means but
nons would be used for the monthly standard deviations,
gcecauses the Fourier represantation r2quires con-
sidarzbly more uss of the computsr, it has not been apolisd
to the remaining modals of Arctic rivsr flows in this study.
It is felt that one example is sufficisant to illustrats the
technique and that the computing r:sourcss should b2 con-

served for other applications.

Rasults

Using the procedures outlinasd in th:s prsvious saction:
mode }ls ares fitted to each of 16 hydromstric ssriss from the
Northwast Territories. Table 6 lists ths modsl specifica-

tionss constrained parametsrss and AIC valuas for thes

[

mods ls. Further information is containsed in Appendix 1.
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Table 6

Dessasonalizzd ARMA Yode!ls

Sta.No. Nama Model Lambda Type of % s
(AR »MA) Deseason-
constrainad alization

parametars

06jc002 Thzlon (1»1) 0 1 444, 4
06.jc0C03 Dubawnt {1-1) 1 2 794.0
0612001 Kazan (1-1) 0 1 674.1
C61c001 Kazan (1-0) 0 £ 506.0
06mo001 Quoich (0s1) 0 1 67,0
070b001 Héy (1,10) € to 3 0 2 830.5
07r30C1 Lockhart (1,12) 62t0 6;1 0 1 641.5
07ucz 001 Kakisa (1L-3) © p H 0 1 5384.2
10ed 001 Liard (156) Gzto 8 0 2 2312. 4
10f5001 “ackenzie (5+0) éito 65 1 F+ 1495.6
10gcQ01l “ackenzie (1,0) t : 1 2 1912.2
10 ja002 Camsell (1-1) 0 1 563.1
10jc002 Gr. Bear (1.1) 1 1 514.2
10ka001l Macksnzie (1»1) 0 2 1817.1
10Qa001 Tres {1,1) 0 1 367.8
10rc 001 Back (1,2) 91 0 2 1235.5

Typss of deseasonalization:
1 - as defined by 99, 2.6-1 (subtract monthly msans)
2 = as dafinad by eq 2.6-2 (subtract monthly msanss

divida by monthly standard deviations)



49

A number of points of interest regarding these modals
are worthy of mzntion:

1) In most cases it is necassary only to subtract
monthly means to daseasonalize thas data. Nonathelesss in
soma situations it is also necassary to divide by the stan-
dard deviations in order to remove seasonality in ths
residual &LCFe. This also has the effect of lowering the AIC
of the fitted models in spite of the 12 extra paramaters
needsd for this oparation. The more complex form of
des2asonalization is only us<cd where the final model can bs
justified.by a lowsr AIC.

2) Mogel uncertainty can take on two different forms:

mods | uncertainty and parametsar uncertainty. In the first

cass ths modslizr is not certain if tha2 corr=ct mocdel has
bsen identified and in tha ssecond he is not sure if the
parametsrs have besn correctly &estimatad. In both in-

stances, the more date availabla, ths lsss uncertzinty in
the identification and estimation of thsz stochastic modsl.
The westimztion programs wused in this study czalculate tha
standard ¢errors of all estimated oparametsrs so it is
possible to have some idea of the magnitude of the narametsr
uncsrtainty. Similarliy» at ths identification stagas
approximats confidencs limits are calculated for tha ACF and
the PACF., Because standard errors and confidence intervals
decreass as the amount of data increasess, the need for con-

tinusd collection of data in the Arctic is semphasized. Ths



langth of racord currently availabl2 is ths bare minimum ra-

qQuired for stochastic modelling. In mzany cases the
estimatad paramstaers have largs standard errors» and thsz
identificatior of the corract model is made difficult by the

large wuncartainty of the ACF and PACF estimates that are

used in the model identification stzge,

3) In all cases ths assumption of an independsnt noiss
term is well satisfiads, and nons of tho models show sig-
nificant rssidual autocorrzlation. Howevers many of the

modsls showed highly skswed o©r hsteroscedastic residuals,
and thus do not satisfy the less important assumotions of a
normslly distributed noise seriss having constant variance.
Wwhen using thesa models for simulation it would be important
not to try to uss a normally distributad random gensarator
for the noise tarm. Rathers as suqggssted by Mcleod and
Hipel(1978z), ths modgl residuals themselves may be placsc
in a tablz and chossn at random to form ths noiss term. As
explzined by McLeod (1979b)» non-normal residuals are fre-
quently a sign that an important covariate series has been
laft out of the modal, and that =& transfer function-noisse
mods! might be more appropriate. With this in mind » ths
next stesp in the modsliling procsss is to fit transfer
function-noise modsls that includs the msteorologic data as

covariate series (sese saction 3.3).
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3.2 Monthly Autoregressive Modsls

Procedurss

The MAICE techniQue davelopsd by Mcleod and Hipel
(1978b) ic used to automatically fit ths best monthly
autoragressive model of ordser 12 according to ths lowest
AlIC. Bacause of the short time series availabls from ths
Arctic it is necessary to constrain some of the model
parametors to zsro to avoid the overfitting of ths modse l.
Ths parameters of order & to order 11 are c;nstrained to

Zsro ¢or the automatic identification and estimztion of MAR

mod=1ls for 12 Arctic river flow seriss.
Results

The resulting models, fitted with Box-Cox paramstsrs of
zaro and unitys are shown in Tabla 7 and samnls outpuls
listing th: complete estimated modals are includsd in Anﬁen—
dix 2. A portemanteau statistic, Qs is calculated for each

modsz 1. Each valus of QO has associated wWwith it numbar of

U]

degrases of fresdoms df, that depends on ths numbsr of
estimatad paramza2ters in the mods! and on ths auantity of
data. The Q statistic is distributed as Chi-sQuared with df
degr ses of fraadom, so any standard mathematical tablas of
the Chi-sAuared distribution can be usad to test whather ths
value of Q is significant. A larga value of 0 indicatss

mode |l inadsquacy. .



Sta.

06jc003
070h001
07rdd01
07uc 001
108d001
10fb001
10gc 001
10ja002
10jc002
10kaQ01
10qa001

10rc Q01

Month!ly Autoregrsssivs

Dubzwnt
Hay

Loc khart
kakisa
Liard
Mackenzis
Hackanzie
Camsell
Gr. Besar
“ackenzie

-

i r
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<

Back

Table

MAR(12) A

AIC

805.9
792.9
589.1
540.56
2335.8
1535,1
1979.7
495.8
551.2
1942.2
354.3

1262.2

7
Mod=21s
= 0 MAR(L12)A
Q/df AIC

1727161 807.5
204/165 875.5
1997159 599,2
194/164 562.6
1687167 2359.8
22571159 1539.9
1957154 1984.8
170/159 489.6
20071690 551.3
1927161 191654
1907159 385.5
194/164% 1262.0

o 7

1

Q/dft

1587161
199/154
184/158
2047161
16271656
2177161
2067164
169/1548
2007159
1997142
19 HL5T

1837165




For many of the models tha Q statistic indicates a
rather poor fit. This could be due to the necessity of con-
straining parameters. In spitz of the high values of Q»
five of ths MAR models show 3 much lowser AIC than do tha
descasonalized ARMA models for the sama series. Ths Im-
proved AIC would indicata that there does indsed exist
important variation in ths autocorrelation structure from
month to month. For those series where the MAR models =are
significantly bettar> it would also make senss to try
fitting 2 transfer function-nois2 model incorporating a
monthly autoregressivs noisa ta2rm, Howevers th3 programming
of transfer function YAR modzls rsmains a subject for future

study.
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3.3 Transfer Function-Noisa Modeliiing

Four river flow time saries zre chosen on ths basis of

proximity of a meteorclogic station for analysis wusing

transfer functionm-noise models, River flows ars modailad
with tenperature, rainfalls and snowfall as input sseriess
and wusing an ARMA noise term, In all four cases ths
transfer function-nois2 model is supsrior in terms of th=

AIC and the other diagnostics than were the oreviously

a

fittoed d=szasonalizad ARMA mod=sls,
Proceduras
1) Transformation and Dssaasonalization

The modeis are fittsd using transformed <csries. The
flow ssries are transformed using a Box-Cox transformation
Wwith A= 0 » and then dsseasonalized by subtracting out
monthly m:sans. The rainfall and temparaturs seriss ars
deseasonalized in ths same way but without the Box-Cox
transformation.

Where the seasonal variation of a time seriss con-
stitutes a significant part of the total variation of tha
serisss transfar function-noisse modsls are significantly im-
provsd if the sarizs is first dessasonalized by subtracting
out the monthly means. This improvemsnt is due te a much
lass severe assumption of linsarity for the desseasonalizsad

modal, In transfer function mode!lings the transfer func-
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tion is assumed to onerate linsar!ly over ths entire range of
the sericss from the smallast to the largest valusa. Whan
the monthly means have been subtracted out» the raznge of the
deszasonalized ssries is much smallzsr than the range of tha

original series. This is indicated for the Tree River in

Table 8.

Table 8

Range of Tree River Series

Series Min. Value Max. Vvalue Range
3 3 3
m /s m /s it odS
Tree R. (original) 1.9 145.6 143.7
Tra3s R. {(deseas.) - 4.6 78.7 93.3

Th2 range of the deszasonz!ized series is eduzl to D465
timas the range of thz original! data. The decrease in the

variancs is even mors dramatic. The variance of tha trans-

o

tforned series is 1.0863. After deseascnalization th

i

residual variance is only 0.1425, a drop to O.131 timas th
original variance. Thuss, a deseasonalized transfer function
needs only assume linsarity over a much smaller range. Ths
non-dessasonalized model assumes linearity over the entirs
range of values that the time series can take on, while ths
deszasonalized transfsr function-nois2 model assumes only
that ths deviation of the from the monthly means are lingar.

This is analogous to the assurmption of linsar small signal
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gain in an amplifi=sr that is nonlinear for large signals,
In practicer dassasonalized transfar function-noise models
fit monthly hydrologic series from the Arctic much batter
than do non-d2sezasonalizzad modals. As an exanplar
daszasonalized and non-deseasonalized transfer function-
noise modsls are fittsd to the Back River datas linking ths
series to precicitation and tenperaturs saries from the
Bakar Lakz and Contwoyto L3ake wsathsr stations. Thz

rasulting 4IC values are shown in Table 9.

Table 9

AIC values for Back River Modsls

Mode | T ETe
desaasbna!ized 1136
non—-dasasasonalized 1316

Tha relative plausibility of tha models is given by:

AIC2 - AlIC}
relative plausibility = axp (=~=-======—=-= )

1319 - 1196

@ED e eeasieaws ) s Rsl6-%26
2
Thus ths dsssasonalized model is much mors oplausiblsa
than the non-desesasonalized model. In fact, a2 rsestativs
J
plausibility greatsr than, say, 1.5» would normally ba quits:

sufficiant for discriminating betwsen two compating models.
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2) Snowmelt

Th= nonthly snowfalls ar2 summed ovar each wintsrs zand
then the total snowfall for the winter is introduced as a
pulsse input to tha modesl during the first month that the
mean tampesraturs risas above zero Caslsiuss for each year.
The snowmzlt opulse input is "shaped” by the transfer func-
tion to more closely resemble the shape of the actuzl hy-
drograph. As sxplainad by Box and Jsnkins (1970) and Hiosl
et al. (1977) the transfer function can bs used to modal a
Wide variasty of impulse rassponscss. For example, a transfer
function with wy, = 0.5, ©; = 2.0, 6 = 0.5 would produce tha

0

impulse responsa2 shown in Figure 6.

Fiqura 6

Snowmelt Transfer Function Imoulse esponse
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As can be seen by the granh of tha output, this impulss
respons= constitutes a nlausiblz2 discrete representation of
the peak and recession iimb of 2 snowmslt hydrogragh.

Snowfzlls that occur during months when the mzan tem-
psrature was above zero Celsius are assumed to have malted
immadiatelys and are addsd to the rzainfall saries rathsr

than summed in with the winter's snow accumulation.
3) Modsl Identification

Ls sungestad by Box 2nd Jenkins (1970)s Haugh =2nd Box
(1977)» and Hipal =2t =al. (15877c)» the transfer function-
noise models are identified by first fitting wunivariata
models to each of the covariate series and then sxamining
the cross-corralation function of the residuals for the two
sarias. In this way spurious correlations dus to th:z
autocorrelation or seasonality of the covariate series can
hopsfully b3 rejected. When temperaturs is used as an input
series, the cross-correlation function is <calculated for
each month of the yaar. Tha temparatures for a given month
are included in thes model only if a significant residual
cross-corrzlation with the flow szriss is found for that
month. In soms cases the tempsrature may have a positivs
residual cross-corrslation with the flow for one month, Dbut
a nogative residual cross-correlation with the flow for the
following month. A physical explanation can be given for

[}

this phancmencn. _Consider a river where peak runoff usuzlly
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occurs in May or Juns dus to snowmelt. I1f the May temnera-
tures w=2re highsr thar usuals more snow would melt in May
and ™ay runoff wWould be highzr. Becz2use the peak flcws
would have already occurread in May» and most of the snow
would bas already mslteds the flows in June would bs lowsr
than ususl. Converselys, if May temosraturss were lowar than
normnals, May runotf would also b2 lowsar becauszs lsss snowmslit
would occur and June runoff would be higher bscause more
snow would be ieft over from May. Thus for ths exanmple
citad there would be a positive correlation betwesen Yay tam-
paratures and May flows, but & negative corrslation betwsen
May temperatures and June flows. One could thersfors i n-
clude the May tempsraturs twice in tha models with a oosi-
tive cosfficient for 2 non-delayed tarms and a noqgativa
coasfficiznt for a tarm with a dzlay of 1.

An input seriaes is includsd in_the mode | only if 3 sig-
nificant and physically reasonabls residuzal Cross-
correlation is found betwzen the input sarias and the flow
series. In some cases a statistically significant cross-
corrslation is founds, but the relationshio 1is rejacted
becauss it doss not maks sense in the light of 2 physical
undsrstanding of the process. For instancas if ths
statistical tests indicate a nsgative correlation belwWwszn
rainfall and runoff, it must none the less be rejectsd on
physical grounds. Tharafore tha modals uszd in this study

do not nacessarily have three input series. Only the sariss




that ware statistically and reasonably acceptable are in-

cludzd.

4) Weighting of Msteorologic Datsa

Whaere thare arse mor= than ons meteorologic stations in
or near a2 wWwatershads ths wesighted averags of data frem ths
various stations is frequsntly ussd in hydrologic studies,
Mathods commonly in use for detsrmining the waighting *tzc-
tors ars the Thiesssan polygon method and th: Isohy=tal
method (Bruce 2and Clark 1966). *

In this study it is only nescessary to calcuiata
weighting factors in ons instance:; for the analysis of the
Back River below Dsep Rose Lak=2, Thse Back Rivsr grains an
arasa of 956200 km about midwzy between ths Beker Lzks 2nd
Contwoyto Lake meteorologic stations. Becausz only two
waather stations ars invelved, 2 weighting factor may be
calculatsd by including th:z two ssts of meteorologic data
saparately in the transfer function-noisa model. and com-
paring th=s maximun likelihood estimates of tha modal

parzmeters for 3ach input szriss. The wzighting factors

(80

calculatzd in this manner may bs considaerzd to be optimal in
that thzy minimize the modifiad sum of sduares of ths final
mod= 1. In additions, the cumbsrsom:z apolicztion of the mors:
comolicated methods are avoided. For the Back Rivsr ths
waighting turns out to bYs a 53:47 weighting ratio for data

from Baker Lake and Contwoyto Lake.
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Results
Ths transfer functicn-noises models fitied to four Arc-

tic River fiow ser i€s ars shown in Tables 10 and computsar

listings of the estim=zted models ars presented in &ippandix

3.
Table 10
Transfer Function-Noiss Yodels
River Input S=zrias - AIC
Back (1) rainfall ~ Baker Lake 328.1
-Contwoyto Laks
(2) tempsrature - Bakar L
-~ Contwoyto L
Kakisa (1) rainfall - Hay River 568.1
(2) temperature- Hay R
Kazan (1) snowfall - fnnadai Laka 635.7
(2) rainfall - Ennadai L
(3) tamparature - Snnadaij L
Tr es (1) rainfall - Coposrmins 35649

{(2) tempsrature - Coppsrmina



In atl cases ths transfsr function-nociss modse!l is an
improvemant ovser thas dssaasonalizad ARMA model in terms of
the residual variance» the LIC» and the various diagnostic
tests. The reduction in the skswnzsss of the resicuals of
the transfer function-noiss modal verifies the earlier
presumpction that skawz2d rasiduals indicate that an important
covariats input series is missing.

To illustrate the raeduction in rssidual varizncs as the
sophistication of the model is increasedyﬁ ths rasidual

varianczs of various models fitted to thes Tree River flow

serias are shown in Table 1ll.

Table 11

Residual Variance of Tree River Models

Variance 7 AIC
transformed seriss : 1.0863 100.0 5952
rasiduals - dessasonalized
ARM2(0,0) 0.1425 13.1 422 .2
rasiduals - dessasonalized
ARMA(1,1) 0.0770 Tal 367.8
rasiduals - transfer function-
ARMA(1-0) 0.0632 5.8 356.5

Thz variancse of the saries aftesr tha appropriats Box-
Cox transformation is performad (A = 0) is 1.0863. This is

raducsd by 86.77 to 0.1425 when th2 series is modelled as a



63

sinusoid (deseasonalizaed) wusing six Fourisr components for
the monthly msans. The residuzl variance of this mode! is
reduced by 45.8% by the introduction of 2n ARMA noiss term.
A further reduction of 18.3% in the residual variance is du=
to the transfer function term. It may be noted howsver that
this final reduction is equal to only 1.37 of ths original
varianca. The same relative importancse of the differert
tarms in the model is shown in the AIC. There is a tlarg:
drop in the AIC when ths Fourier and the ARMA terms are
add=d to the modsl, and a somzwhat smallsr dron whan ths
transfer function terms 2are included. Thuss, while thsz
transfer function term makss a statistically significant im-
provement to the final model, the practical importance may
be limited. None the less, when thz input s=ries data s
availabls: it makes sonse to use ths stochastic model that
gives ths best statistical goodness of fit,

ks wWith the deseasonzlized ARMA and thes MAR models
there may be mores paramster uncartainty than is indicated by
the calculated standard errors of estimation. In the fu-
turz», as more data ©bacomaes available, this problem will

become less seaverese.



4 APPLICATIONS

4.1 Uses of Box-Jenkins Models

Because of the flexibility of Box-Jenkins modsls and
their extsznsionss, they have been utilized in many fields of
studys A number of the potential aoplications of Box-
Jenkins modelling that are relevant to water rasource

problams arec listsed below:

1) The "extznsion" of hydromstric records wusing the dynamic
relatijonships gstabliished bstwassen hydromstric and
meteorologic tims series.

2) The anzlysis of interventions and environmental impacts
due to man-mads or natural causes.

3) The estimation of missing data points.

4) The simulation of possibls occurresnces of 2 process fer
use in the design of snginsaring proj=zcts.

5) The presentation of an efficient summary of hydrometric
and meteorologic data using only a fzw modsl paramstears.,

6) The forscasting of future events.

Examples of some of these applications ars presentad

and discussed in this section of the report. Please nota
that wuse (5), data summarys is implicit in th: modalling
procsss 2nd reduireas no further discussion, Loplication

(6)» for=casting, is left for a further study.
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4.2 Extension of Hydroma2tric Record

Weather records have bsen kept in tho Arctic for a much
longer psriod of time than have hydromstric racords. 3asead
on a knowledga of the dynamic ralationship betwesn hy-
drometric series and matcorologic series, it is possible to
givs an estimate of the valugs tha hydremstric s8riss is
lixsly to havs takan during the pariod when weather datz is
avai lables but bafore flow racords wara kespt. This may b3
thought of as an artificial extension of ths hydromatric
record. The true values of ths unmsasursed flows can of
course never bs obtainesd by this method, but likely valusss
givan the covariate msteorologic input sarizs» can be cal-
culated. Thess estimatas ars simply the output of the
transfer function—-noise modzl with th:z noise term ssat to
zero (the expectad value of the noiss tarmi.

Ths va2lud of this type of extsnsion of rscord is due to
the possibility of a persistence offect in the mesteorologic
S8risse. A sequence of above-avsrage or below-avarag:
precipitations will often last for a number of years. If
the flow data ware collected during tﬁose yearss analysis of
that data would give a misleading idsa of the long term msan
flow. That iss flow data collzctad during a p=ariod of
atynical! wsather will itself bs atypical, If the flow model
takes into account ths s&xtra information provided by
studying the long term weathsr dat2s a better understanding

can bs gainsd of fhe long term behaviour of ths rivsr flows.
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As an illustrationr, ths extansion of racord techniques is
applied to the Tree River flow series. The Tree river flow

saries used to fit the transfer function-noise model Is

eight ysars iongs trom 1969 to 1976. The <covariate input
salriesss rainfall and tamperaturses from the Coppearmins
weather station arse 44 yesars 1ong» from 1933 to 1977. Tha

outnut seriesr predicted flows is Dlotted in Figure 10. The
predicted and actual msasures flows are plotted on onse graoh
for comparison PUrposess in Figura 1l. It can b=z se2n that
the the predicted flows follow the actuzl measurad flous
fairly wall and that the largaest srrcrs are in the pradic-

tion of peak flows.
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Figure 7

Tre=z River from 1933 to 1977
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The means of the artificially extended and measur ed

flow series ara shown in Table 12.

Table 12
Means of Trez Rivar Serias
length
of
series maan SaEs record
3

m /s
artificially axtended 31.98404 1.22 tb4yrs
measursd series 34.01510 3.35  Byrs

The mean of ths zartificizlly sxt=ndad series is mors

than 2 m3/s lower than the m2an of the measured sceriss, Ths
differsencs iss howaver, less than twice the standsrd arrvor
and could oplausibly be accounted for by random variation,
Therefors thers is no evidsence that ths mean of the measured
seriss is not rapreszantativs of the long term mean of ths

procass.
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4.3 Environmental Impact Assessment

As a result of the increasing rate of developmsnt in
the North, and tha heightened public awaraness of
environmental issuss, an effort is currently being made to

collect data and devslop analytic tools in ordsar to Quantify

the impact of human activities on ths envircnmant.
Envircnmental impact assessmznt techniQues can be classifiasd
as zithsr beforz-the-fazct or after-the-fact assassment, To

datse most of ths effort has been in before~-theg-fzct a2ssess-
ment of large projects. An example is the multi-million
dollar *“ackenzie Valley Pipselinse study which attempted to
predict th: possibla saffects of thes construction of a
natural gas pipelins=s. Typicallys, the impact of a pronocssd
projzct may be predictad by using physically bassd simula-
tion models anz/or sinaly relying on exnart opinion.

On the other hand, aftsr-the-fact ass=assmant has
reccived ralatively little attention. Evan in the case of
largs proj2cts such as ths N=21son Rivar devzlopment in Nor-
thern *“anitobar whers a2 considerable effort at before-ths-
fact assessment took placz» comparitivaly little follow-up
work has been done to verify the actual impact of the hydro
project on the environmant,

It is in the area of aftser-the-fact assessment that
intzrvention analysis promises to be particularly wussful.
Al though the tachniQue is still nsws, intervention analysis

has alrgsady been used sevaral timss to successfully modsl




the effact of intarvantions en hydreclogic systems. Hipal et
ale. (1975) used intervention analysis to determins the &f-
foects of the Aswan dam on the avsrage za2nnual flows of ths
Nile River. Hip=21 et al. (1977b) ussd an intervention model
to describs the effects of ths Gardiner dam on ths monthly
flows of the South Saskatchawzn Rivar. Hipzsl at al, (1377c¢)
also modnal the effzact of a2 devastating forast fire on the
monthly hydrologic characteristics of thz Pipzsrs Yole River
basin in Newfoundiand. In particulars the suddan chzngse in
the runoff regime whar the vagstation cover was dsstroysd by
the firer» and the gradual return to normal as ths basin was
ravagetated, was modellad pDarsimoniously using a minimum of
estimated oara;etars. D'astous and Hipel (1979) used an
intzrvention model in the analysis of ths effsct cf thae in-
troduction of naWw sewage trsatment facilitiss on ths monthly
mean phosphorous levels in the Spesd Rivaer at Guzlphs O0On-
tarios» and in thes Grand River at Cambridgz, Ontario.

Thus intervention analysis can be used to model both
natural and man-made snvironmental impacts. In fact,
changss in a tims sar ies that are dus to modifications to
ths. data collection procedure, rather than to soms specific
physical intervantion in the underlying process may also be
mods |l led. The wutility of ths models is greatly incraased
bacause confidance levals can bs calculated for tha effcsct
of the intervention. Furthermorses ths models may also bs

used for forecasting and simulation.’



Data Collzction for Intervantion Analysis

Intervention analysis Is a statistical tool for detzr-
mining changes in thé mean level of a stochastic process.
Intervsntian analysis can bsa thouaht of as a test for
distinguishing batwean tha effects of an external interven-
tion on 2 ophysical procsess and the varijiation dus to random-
ness and mesasurzament errorse. The ability of the modsel to
datsct changes can be improved by thz use of an zopropriat:
data collec tion program, Intervantion an2lysis is 2aspa-
cially wussful in thoss casss where ths standard t test can-
not be used because the data is serially dependent (autocor-
related). Because the affects of an intervention may be

masked by the noise term of 2 ceriess or the random occur-

rance of ths noise may purely by chanca appszar to ba the s=f-
fect of an interventions it is iﬁpossible to be absclutcely
sSurs that any statistical anzlysis will corresctly modzl the
intervention. Ths probability that an intsrvention that
really does exist wili be detected by the analysis is callad
the power of the test. Conversely, the probability that
analysis will indicata an intervention whsare none actually
exists is called the significancs leavsl. The significanca
teval and the powsr of a test are invarsely r=zlated, and
dep=nd also on other considerations such =as sanmple siza»
rasidual variancs of the mod21ls, and the complexity of ths
modsl. Tha powsr of the model to corrsctly detect an inter-

vention incresas=s wWith the sample size, and decreases wWith
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the rasidual variance and moda!l complexity. Clearly:, in
order to correctly detect the effects of an envirconmantal
intz=rvention» it is necessary to collect thas appropriats
typs and anount of dat=z.

In planning a data collection program for uss in intsr-
vantion anzlysis tha environmental manager is concernead with

four main qusstions (Lettsnmnzisr st al 1978). These aras:

1) What ralative lengths of pre—-intervention and post-

intervention data racords shoulc ba cotllected?
2) What sampling frelusncy should be ussd?

3) For existing data collection programmes, how fong should

collz=cticon continus 2fter the intsrvention has occurrsd?

4) How doss the minimum detactabls changs vary with (a)

monitcring systsm dasign» and {(b) moniteoering systsm cost?

Qusstions 1 to 4a ars dszalt with extsnsivaly by Lettsn-
miier et al (1978) whsrss, among othar observationss it .is
noted that:

1) Data must be collactsd at even intervals in time.

2) Contrary to what might be intuitively gxoectad, it
is not necessarily bettar for the pre—intervention and oost-
intervention records to bs of the sam2 langth, In thres of
four examples the power of ths modsl was improvsd when ths
post-intarvantion record was substantially longar than the

pre-intervention facord.
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3) Jnless the sampls= size is at least 50, and

preferabiy 100, tha powar of ths modzl to dset=zct changes

will bs Quite low.

Ths question concerning program costs (4a) is mors an-
propriately handled by experts In the particular areas of
data collection. It is recommendsds, howevers, that data col-
lection systems intendsd to supply data for after~the-fact
envircnmental impact assassﬁent should bz plannsd with con-
siderztion of the guidelinass set forth by Lettenmaier et al

(19738).

Samnle application

No suitabls intervantion due to projsct construction is
currently available in the Arctics soran example is shown
whers the effects of an intarvention dus to a2 changa in data
collaction procoedure 2are tssted.

In th: early 1960'ss nsw snow gauges of th2 Ninhsr tyos

wara installed at most metsorologic stations in tha
Northwest Territories. Soma concarn has bsan sxpressad
(Wedel 1975) that the msasured Quantity of snowfall may have

baan affected by this changes. Intarvention analysis is used
to test for a significant changs in the mean annuzl snowfall
mesasursment at the Copparmine w2athser station as a result of
the installation of the nsw eQuipment in Zctober 1963, Tha

psriod of record is from 1933 to 1977.

Because ths intsrvantion occurs'during ths thirty-first

-
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yaar of the seriss: and bscauss the change in aQuipmen:
could be expacted to have an immediats and permans<snt effect
on ths amount of measured snowfallsy the intarvention is

modsilad by a dynamic stap r2sponss of the form:

z = pH touw 3 (4.3-1)
& 0 t
whare = 0 for t <31 and ¢g=1 for t 2 31
t t
Ths noiss term N is idantifiad a3as ARMA(1,0) by e&x-

amining the ACF and PACF of the s2ries. Th=2 complets modal,
including both the intsrvention and noisz terms given in
equation 4.3-2 and maxinum likelihood =sstimates Tor ths

parameters are shown in Table 13.

zZ = ¥ o E 4 —==-- a (4.3-2)
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Table 13

Intervention Anzalysis Paranster Estimatss

Estimated parameter Estimate Standard Error
i 263 183
0
b 0.571 0.124%
1

Diagnostic checks indicate that the model . does indsad

givs an -adequate fit to th: data. Because the =stimate of

W is smaller than twice it's standard error of estimation
it is concludszd {at a 57 sfgnificance level) that ths:
evidenca does not indicate thzat thare is a changs in tha
maasured snowfall due to the instailation of the new gaugss.
It may be notsed that this doszs not rule cut the possibitity

that such a <changs may actually exist; it is simply not
detactable from the data currently 2availables., The péwar of
the mods! with the present lsngth of record is such that ths
minimum dstectable changer, at a 95% confidence laval, is
about 360 mm, or approximately a 347 changs in ths mean

lavz 1.
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4,4 Estimating Missing Data Points

The problem of missing data points occurs in tims
seriss modsz11ing bacause of the requiremant for measurements
at sQually spacsd intarvals in time. Due to the difficul-
ties of access to Arctic hydrometric stationss and becauss
of problems dus to low temperatures in the winter and ica
conditions in ths springs ssctions of hydromnetric record are
somastimes lost. In order to carry on with timas series
analysis of ths data it is necessary to havs a mathod for
filting in the missing data points Hith. reasonabla
estimates; Some of ths traditicnal methods currantly in uss
include granphical masthods and polynrncmial interpolation. No
matter how powarful the analytic tcols used for the estima-
tion of missing data points: the trus wvalus of th2 un-
mesasured point can nevsr be pracisaly known., Th2 problam
becomes one of recognizings from ths incomplete dz2ta, cer-
tain patterns or relationships betw2sn pointss and using
thess to deducs what wvalus the missing point may most
probably have taksn. An experienced analyst may develop a
good deal of skiil at this tasks, but tha experieancsa nz2edead
to perform competsntly is gained from years of working in
the field of hydromatric anzalysis.

A newly dsvelooad wmsthod for filling of missing data
pointss based on tha intervsention model: is particularly
suitabla for wusa in tim2 seriss analysis. Soms advantagss

of this method araea’
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1) the method doss not despend on ths sxoeriencs of the user,

so it can be applied by novice ussrs;
2) only part of the series is needsd to fit the model:

3) confidence limits can be calculated for the =stimated

points:

4) the method can bs wusad to fill more than onas missing

point at a time:;

"

£y
=
h

5) the method can be ussd to fill points anywhsare in

seriess including ths initial and final points:

6) diagnostic checks are availablse to confirm ths ap-

plicability of tha mo-el,

Ths mnode! used for the filling of missing data points
is a special cass of ths transfsr function-noise interven-

tion model describsd in Section 2.11. Th:z model uszd to

fill ons missing data point 32t tims T may be written 2as:
z' = W £ + N (4.5~-1)
t 0 t t

with z! sst to zero

At timse T the model reduces to:

-w = N (4.5-2)
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Ths maximum likelihood sstimate of -w constitutas an
estimate of the missing observation zT 5 Because this
estimats depends only on the AKMA noiss tarm N the zautocor-
relation structure of the series is preserved,

1f mors than one obsarvation must be fillads ths model
is axtended by simply adding more intervention terms. For

I missing points tha modsl is:

1
3 (i) .
z' = I w E + N (4.5-3)
t i=1 O ti t
The model can also be extasnded to the general casz of

multiple missing pointss multiple interventions dus to known

extarnal cazusess and multiple input szries. Tha oerformance
of the intervention model data filling tecnniQue is assassad
by D*Actous and Hipsl (1979) by estimating absarvations

whare ths actual historical values are known. The sestimated
valuss wers in all cases wWithin one standard warror of
measured valuss. This result is consistent with ths
stochastic natura of tha oprocesses involved.

In this study ths intsrvention model method is used to
provide estimatss for unobssrved flows for sevaral rivars in
the MNorthwsst Territories. Two estimatss are obtained for
each points ons using only the flow series itself in ths
intervention models, and the other including mztsorologic in-

put seriss in a gqneral intarvention model, Thase astimates
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are comaparsd to estimates supplied by the Water Survsy of
Canada. The results are listed in Table 14. As a further

refarence for the performance of the techniquar the values

of known historical measuremants on the Tresa River are
estimated. Thase values are within one standard error of
the trus values. For the estimatas of actual missing

valuass, the valuss obtzined by the intervsntion model are in
good agreem:znt with the estimatas obtazined by the Water Sur-
vey of Canadas Wwith the Water Survey estimatas lying well
within the 95% confidence intsrval of the intervsntion modal
estimates. As would bs exnected, the general intarvention
medz1ls which include the metzorologsic input serias yisld
estimates with tighter confidence bounds than 40 ths mor:z

simole intervention modals.

-

This is dus to tha extrz infor-

mation included in the gsneral intervention models.
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34 99

(2.59-4.97)



a1

4.5 Simulation and tEngineering Design

In the design of a water resources project such as a
resarvoir the design enginssr would ideally liks to know
what flows inito the reservoir will occur during ths dasign
life of the project. Because it is impossible to know what
fl1o+ sedlusnces will occur in tha futures the design must be

based on 2 knowledge of the past flows. However it is car-

\V]

tain that the historic seduence of flows will not occur
again in the futurs. A common approach to tnis problam is
to use simulation. Simulated flow seduences are gensrated
with thz same statistical propertiss as the historical se-
quences and used to test the propose design on the com
puter. In this ways a variety of aitsrnative designs can bs
comnared a2t relatively low cost. The designs are compared
basad on their parformancas undsr simulated flow conditicnssy
cenditions that could have occurred in the past, and ars
just as likely to occur in th2 future.

Recant advances in Box-Jenkins mode | simulation
tachigques include exact simulation mathods that eliminats
bias in ths initial values, as well as a oprocadurs for
incorporating parametsr uncertainty into ths simulation
(McLeod 2nd Hipe!l 1978a). Bscause of ths short psriod of
hydromstric record in ths Arctics and the resulting high
degras of parameter uncertaintys, It is strongly suggested
that thess techniquas b:s used in tha simulation of Argtlc

rivsar flow series. It is also strasssd that in the intarast
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of reliable enginesring dssigns, data collection should be
cont inusd and extendsd in ordser to reducz uncertainty in ths

modals.

4,6 Regionzl Anzlysis

A regional hydrologic analysis is ons that would:s for
instancsz, link th2 tyns of model that best fits a particular
rivar flow seriss to such physical factors as basin area»

physiographic regions anc latitude. Howzvars, With data frcna

M

only 16 stations covering an immense 2area that }ncludes somsa
22 major physiographic rsgions (GSC-Mzp 12544, 1967»
“physiograchic Regions of Canzada") such a. genar al analysis
is not possibles the spatial distribution of ths data is
simply not adeduats. The only obssrvations that can be made
at this tinme are rathasr basic. For instancz» basin storzage,
which is reflected in the autocorrelation structurs of the
flow sSeriess increases with ths size of the river basin and
the number of lakses. Another example is that spring runoff
occurs later at highar lz2titudsas. More data will b2
available during the next 10 to 20 ysars from the many sta-
tions currsntly having only 1-3 years of data. At that tims

a regional analysis may yield more interasting results.
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APPERDIX I
ARMA Models for 16 Arctic River Series

In Section 3.1 of the accompanying paper deseasonalized ARMA
models are fitted to 16 Arctic river series. These models are presented
here in the form of computer listings of A.I. McLeod's USES program for
Box-Jenkins models. The computer listings are more or less self-explanatory,
but a brief description of some of the special notations is included in
this appendix. For further details please see McLeod, A.I:, Box-Jenkins

Computer Program Manual, University of Waterloo, 1979.

Special Notation

SARIMA (p, d, q) (P, D, Q)s - denotes the general seasonal ARIMA model
of order (p, d, @) (P, D, Q) with s seascne, as defined in Box and
Jenkins (1970) where

p is the order of the nonseasonal AR operator $(B)

d is the order of nonseasonal differencing

q is the order of the nonseasonal MA operator 6(B)

P is the order of the seasonal AR operator &(B)

1

D is the order of the seasonal differencing

Q is the order of the seasonal MA operator 0(B)




The nonseasonal ARIMA model is described in Section 2.5. The
seasonal ARIMA model contains the nonseasonal ARIMA model as a special
case, and also includes the seasonal terms of orders P, D and Q. The

. deseasonalized ARMA (p, q) models used in the modelling of monthly Arctic

river data are the special case of the SARIMA model denoted by:
SARIMA (p, 0, q) (O, 0, 0) 12

The seasonal operators are defined below:

The seasonal AR operator is defined by

&(B) = 1 - @lBS " @2325- s = B8

where @i = the ith seasonal AR parameter.

The seasonal AR parameter may be written alternatively as a
nonseasonal AR parameter as shown below, for s = 12 (i.e. 12 months in

a year): etc.

& = =
P) T 0100 %y T by

Seasonal differencing is defined by:

Seasonal differencing stbtracts values of a time series that

are separated by s lags.

The seascnal MA operator is defined by:

_ B s _ 2s _ i Qs
O(B) =1 el B 62 B %0k OQ B
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where Oi = the ith seasonal AR parameter.

As with the seasonal AR parameters, the seasonal MA parameters

_can be alternatively written as nonseasonal MA parameters, that is:
0, =6 5 0, =6 s ete,

BETA parameters - denotes the vector of estimated AR and MA parameters

S ,...
!eq’®l)-2! b

-

1,92,...

2,...,OQ). For an ARMA (1,1) model BETA would be (¢l,el).

which are listed in the order (¢1,¢2,...,¢p,8
@P,OI,G

Diagnostic Checks

Statistical tests of the model assumption are calculated under the heading
of RESIDUAL ANALYSIS. Model inadequacy is indicated by evidence against
the assumptions.
1) Test for SKEﬁNESS of residuals
- evidence against assumption of normally distributed noise term
if the significance level, SL, of the Gl statistic is less than 0.05.
2) Tests for HETEROSCEDASTICITY and TRENDS in the variance of the residuals
- evidence against assumption of a homoscedastic noise term if the
CHI statistic is greater th;n twice its standard error, SE(CHI).
3) Test for RESIDUAL AUTOCORRELATIONS
- evidence against assumption of a white noise series if the residual
autocorrelation at lag L, RA(L), is greater than twice its standard
error, SE(L). It is especially important that there be no large

residual autocorrelaticns in the low lags (i.e. lags 1 - 6) as this

is an indication of gross model inadequacy.
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06JC002 THELON R AT BEVERLY L 72-76 FLOW

SARIMA( 1, 0, 1)( 0s 0, 0)12

LENGTH OF THE INPUT TIME SERIES = 60
SUM DF SQUAPRES RESIDUAL VARIANCE AlIC
5.80525616D 04 1.665075420-01 4.446855730) 02

BOX-COX TRANSFORMATION PARAMETERS
LaMDA CONS
0. 0.

FITTED SEASONAL MEANS AND STANDARD DEVIATIONS
(TRANSFDRMED SERIES)

SEASON ME AN S.D.
1 3.1772410 00 - 1.0000000 00
2 2.871136D 0N 1.000000D 00
3 2.549443D 00 1.0000000 00
4 2.650037D 00 1.00000CD 00
5 4.256725D 00 1.000000D 00
6 6.43953380 00 1.000000D Q0
7 6.043775D 00 1.620002D0 00
8 5.6740700 090 1.0002000 00
9 5.7028630 00 1.000000D 00
10 4.8G1961D 00 1.0000000 00
11 4.2295480 00 1.000002D0 09
12 3.4758120 00 1.000000D 00

NO. OF FOURIER COMPINENTS FOR M“MEAN 6
NO. OF FOURIER COMPONENTS FOR SD 0O

ESYIMATED BETA PAJAMETERS

BETA SE(RETA)
0.2798 Ce2llD
-0.3664% €C.2050

CORRELATION MATRIX OF BETA
1.000
0.810 1.000



90

SKEWNESS
Gl SL
0.1743 0.546478

TEST FOR HETEROSCEDASTICIYY DEPENDING ON THE CURRENT LEVEL

CHI SE(CHI)
0.033437 0.120853
TEST FOR TRENDS IN THE YARIANCE OVER TIVE
CHI SE(CHI)
-0.0253238 0.010542

RESIDUAL AUTOCORRELATIAONS

- .
C VRN HWN ==

PP NN = e et et s pd pd et et
S LN O 00 Wm > Wwh -

RA(CL)
0.02197
~0.02607
-0.14037
0.09547
0.13591
0.19107
0.08414
0.02943
-0.04245
-0.06547
-0.06993
=02 1'3975
0.03359
0.16705
=0.08256
-0.19223
-0.29844%
0.02948
0.09012
0.04743
-0.09613
0.06926
-0.036385
=-0.279838

SE(L)
0.01323
0.01208
0.12796
0.12833
0.12907
g.12909
0.12910
0.12910
0.12910
0.1291¢0
0.12910
0.12910
0.12910
0.12210
0.12910
0.12910
0.12910
0.12910
C.12910
0.12910
0.12910
0.12910
0.12910
0.12910

QL)
0.03043
0.07378
1.35962
1.96507
3.21447
572939
6.22628
6.28846
6.41993
6.73389
T«11011
8&.53329
8.62758

10.88437
11.44780
14.572C2
22.27731
22.35429
23.99116
23.3008¢
24.18231
24.6519!
24.78841
32.38273
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06KCO0D3 DUBSAWMT R 8L “ARSG. L 69-75 FLOW
SAPIMAL 1, C» 1)L O 0y 2.3 12

LENGTA 9F THE IMpPUTY TIXME SERIEZS = 96

SUM OF SCUARES RES INDUAL VARIANCE A1C

2.1375401200 €5 4,5519644140—21 7.939923959 12

FITTED SEASOMAL MEFANS AMD) STANDARD DEVIATIAONS

SEASON MEAN 5«

1 2.4731120 02 9,199313D T1
2 2.1641120 02 A 6715190 £}
3 1.9483232D0 Q2 7.62947640 21
4 2,02723520 02 Gu HI205TTE €]
5 2.36941 20 N2 3.,8227250 01
6 4,5363750 02 1: 2362360 L2
7 51217370 &2 9.5%93%11D0 C1
8 4,5413250 02 7.7313380 1
9 4,27934300 02 5.4983970 1
10 3.83305700 C2 £H.3537TK2D 71
11 3,2252370 Q2 5 3HDCGRG O]
12 2.553475D 02 6.5352350 =1

NO. OF FRJRIER COMPINENTS FD2 MEXM 6
NO. OF FOURIER COMPIMNENTS FOR SD 6

ESTIMATED RETA PARAMCETERS

BETA Sz {3:=74)
D,465670 J.1142
-2 +5137 0.1108

CORRELATIIN MATIX IF BETA

1.000
0.612 1.C20
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------ FESIDUAL ANALYSIS------
SKEWNESS
51 SL
C.8997 0.091C25

TEST FOR HETERISCEDASTICITY DEPENDING ON THE CUPRENT LEVEL
CHI SEGCHT )
c.,002222 C.001¢73

TEST FOR TRENDS [IN THE VYARJIANCE NVER TIVE

CHI SEGEYL )
-C.N29215 C.2€C5209

"RESIDUAL AUTOCORPELATIONS

OV DN W=

R4(L)
“«0e 02815
—C.06653

0.02C4 7%
€, 06965
2.02150
C. 02694
G.0984/3
=0 O LT 7O
C. 02195
-C.N2637
C.09793
0. 0rag9aq

. 07133

J.28851
-C.07848

G LE31S
«0. LEP25H

Co0l142

0.06623
-0.2058)0
—-0. 00363
=C. 266095
£, 022790

C.05290

SE(L)
C.02443
0.N2517
0.09917
0.29922
C.10129
€.10189
0410225
. 10205
c.102Ch
0.102C6
015206
C.102C6
C.102C»5
0.102C5h
Q.10206
0.,10226
f.1C2¢C6
0.102Gh
Cu1C2CH
0.102C6
N.102C6
0.10225%
N.102C6

otL)

T.l4417
ND.36121
Cea5517
a5 L2 )
Y.299¢0"
1.07485
2.10312
2s13 662
2.188%0
22 5365
3.31627
3.32745
4.,278C9
4,797H84%
5.,69222
Hhe4426
834503
2« 35575
R.89245
3.39661
339926
9.46822

"9,53465

2.23CC133
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06LA0N] KAZAM 2 AT ENNADAT L 67-76 FLOW
SARIMAL 1, O, 1)( D» O, 0)y12
LENGTH OF THE INPUT TIME SERIES = 120
SUY OF SoUx=2¢€Ss RESIDUAL VARIAMNCE AlIC
2.92944970) 04 1.920823032-02 6.74102048D 02

30X-COX TRANSFCRMATION PARAMETERS
L4408 CONS
0. 0.

FITTED SEASAMAL MFANS AND STANDARD DEVIATIONS
(TRANSFORMED SERIES)

SEASON MEAN SeN.
1 4.419313D 00 1.000007°D 00
2 4.3316590 00 1.0000020 02
3 T 4,2459649) 00 1.000002D 02
4 4.277634D 09 1.090009D Q0
5 4.4843320 20 1.0000090 09
6 5.1057550 00 1.0000000 00
i 5.1140130 00 1.0000009 09
8 4,9717920D 00 1.00000020 00
9 4.838622D0 00 1.000000D0 Q0
10 4.765935D 00 1.0000092 Q¢
il 4.H26050D0 00 1.0000000 oOcC
12 4.50341 80 00 1.000009D0 02

NO. OF FOURIER COYPONENTS FOP MEAN 6

NO. OF FCURIER COMPINENTS F3R SO 0

ESTIMATED BETA PARAMETERS

BETA SE(BETA)
0.8710 0.0431
-0.3244 0.0926

COARELATION MATRIX OF BETA
1.009

0.362 1.000




P

—————— RESIDUAL ANALYS[S—--==--

SKEWNESS
51 St
1.2979 0.000014

TEST FOR HETERISCEDASTICI TY DEPEHDIMNG OM THE CU2RENT LEVEL
CHI SE(CHI)
0.551194% J.129010

TEST FOR TRENDS IN THE VARI[ANCE QOVER TIWE

CHI SE(CHI)
C.000713 0.003727

RESIDUAL AUTOCORPRELATIONS

W N

-

LD w0,

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Ra(L)
-0.,01219
-C.0554"

0.06845
0.10344
-0.048A44
0.12734

0.0323%

-0.00254

0.01089
-0.12625
-0 00113
-0.05209

0.02615
-0.11274
-0.00060
-0.01342
-0.049467

0.014138
-0.0975)
-0.05953

0.02084

0.03213

-0.16343

0.12015

SE{L )
0.02579
0.76900
0.08464
0.08509

0.08710.

0.08801
0.08385
0.08943
0.08989
0.09023
0.090438
0.090638
0.09083
0.0909%%
0.09102
0.009109
0.09113
0.03117
0.00120
0.09122
0.09124
0.09125
0.09126
0.09127

Q(L)
0.01827
N.39206
0.98541
2.33582
2.hA3047
4.73813
4.87371
4. BT537
4.8907%6
7.01216
7.01233
7.38020
7.47376
9.2293%4
Y. 22939
9.25474
9.6053¢8
3.63425

11.01219
11.51377
11.57801
11.73225
15:76579
20.71488
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06LC0O01 KAZAN R a7 KAZAN FALLS 72-76 FLOW

SARIMAL L» O, 0)( O» 0, O0)12

LENGTH OF THE INPUT TIME SERIES = 60
SUM OF SQUARES RESIDUAL VARIENCE AIC
1.673847170 05 5.93243935D0-02 5.06022334D 02

BOX-COX TRANSFORMATION PARAMETERS
LAMDA CONS
0. 0.

FITTED SEASONAL MEANS AND STANDARD DEVIATIONS
(TRANSFORMED SERIES)

SEASON ME AN S Dy
1 4.3417100 00 1.000000D0 00
2 4.0036310 00 1.000000D 00
3 i 3.8008760 00 1.0000000D0 00
4 4.1667260 00 1.0%0003CD0 00
5 5.6230380D 00 1.000000D 00
6 6.9711980 00 1.000000D0 00
¥ 6.918739D0 00 1.0450000D 092
8 6.5295130 00 1.0006050 00
9 6.2439340 00 1.0000000 Q0
10 5.8054350 00 1.000000D0 0O
11 5.2725510 00 1.0000000 00
12 4.714314D 00 1.0000000 00

NO. OF FOJRIER COMPINENTS FJIR MEAN &
NO. OF FOJRIER COMPINENTS FJR SD O

ESTIMATED BETA PARAMETERS
BETA SE(BETA)
0.8922 0.0583
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SKEWHESS
51 5L
0.0568 0.843957

TEST FO2 HETERISCEDASTICITY DEPENDING AN THE CURRENT LEVEL

CHI SIECCHI.)
0.006171 0.126433
TEST FOR TRENDS IN THE YARIANCE OVER TI“E
CHI SE(CHI)
0.013676 0.010542

-

RESIDUAL AUTOCORRELATIONS

— .
QD OoONCN HWN =

NN NI NN e e e pt st ot pst ot et
S WN= O D~ N -

RA(L)
0. 06409
0.12313
-0.00170
-0.01005
-0.15872
-0.09922

0.18809
-0.03051

-0.07959

-0.09694

-0.235847

-0.05671
0.17542
0.00059
0.14487

-0:12613

-0.12275

-0.11058

0.01334
0.01116
0.01449

0.19936

-0.01896
-0.26399

SE(L])
0.11518
0.11815
0.12047
0.12228
0.12370
0.12482
0.12571
0.12641
0.12696
0.12740
0.12775
0.12302
0.12824
0.12842
0.12856
0.12867
0.12876
0.12883
0.123838
0.12893
0.12896
0.12899
0.12301
0.12903

QL)
0.25901
1.23216
1.23234
1.23905
2.94289
3.62112
6.10417
6.17076
b.632284
7.33199
7+59155
7.84081
10.27653
10.27655
12.C01158
13.35650
14.66001
15.74305
15.75920
15.77079
15.79082
19.68175
19.71788
26.91936
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0648001 QUOICH RIVER 72~-75 FLOW

SARIMA( Os O, 1)( Os 0, 0)12

LEHGTH OF THE INPUT TIME SERIES = 60
SU4 OF SQUARES RESIDUAL VARIANCE AlC
1.650135860 04 3.046457040-01 3.67011206D0 02

BOX-COX TRANSFORHMATION PARAMETERS
LAMDA CONS
0. 0.

FITTED SEASOMAL MEANS AND STANDARD DEVIATIONS
(TRANSFORMED SERIES)

SEASON MEAN 5.0.
h 1.37715%4D 00 : 1.C20000D0 02
2 9.7334530-01 1.0000000 00
3 - 1.1357500 00 1.0000000 09
& l.4466110 00 1.0200000 00
5 2.9591590 00 1.000000D0 00
6 5.9728090 00 1.00G0000 00
7 6.047031D 00 1.C000000 0©O
8 5.2005750 00 - 1.0000000 0O
9 5.476098D 00 1.000000D 00
10 4.5437710 00 1.000000D 00
11 3.515768D 00 1.0000000 CO
12 2.122093D0 00 1.000000D 00

NO. OF FOJRIER COMPONENTS FOR MEAN 6
NO. OF FCURIER COMPJINENTS FOR SD 0

ESTIMATED BETA PARAMETERS
BETA SE(BETA)
-0.6800 0.0947
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SKEWNESS
Gl SL
=52 338 0.420922

TEST FOR HETEROSCEDASTICITY DEPEMNDING ON THE CURRENT LEVEL

CHI SELCHI)
-0.033924% 0.091839
Te5T FGOR TRENDS IN THE VARIANCE DVER TIME
CHI SE(CHI)
0.002541 0.010542
RESIDUAL AUTOCORRELATIONS
L RA(CL) SE(L) QL)

1 0.09994 0.0877¢9 0.62973
2 0.0665C 0.11191 C.91223
3 0.04682 0.12145 1.05637
4 0.10113 0.12562 1.73575
> -0.06707 0.12750 2.040C4
& 0..06506 0.12436 2.34069
7 0.05477 0.12876 2.95121
8 0.08%295 0.1289% 3.16925
9 0.06076 0.129¢C3 3.43856
10 0.10865 0.12907 4.31695%6
11 -0.20293 0.12908 Te&4497
12 -0.03474% 0.12909 7.53349
13 0.07628 0.12910 7.939905
14 0.00659 0.12910 8.00257
15 0.03859 0.12910 8.12564
16 -0.03008 C.12910 8.20216
LA -0.06030 0.12910 851672
18 0.04559 0.12910C 8.70C80
19 0.065%37 0.12910 9.09452
20 -0.04615 0.129190 9.29256
21 ~0.14521 0.12910 11.30396
22 -0.00148 0.12910 11.30417
23 -0.11275 0.12910 12.58233
24 -0.23091 0.12910 18.0918¢9
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0708001 HAY RIVER NR HAY RIVER 64-76 FLOW
SARIMA( 1s 0,10)( 0» O» 0)12

LENGTH OF THE INPUT TIME SERIES = 156

SU¥ DOF SOUARES
2.20682599D 04

RESIDUAL VARIANCE ATC
5.595180700-01 5.305188910 0?2

BOX-CCX TRANSFORMATICY PARAMETERS
LAMD2a CONS
OB O.

FITTED SEASONAL MEANS AND STANDARD DEVIATIONS
{TRANSFORMED SERIES)

SEASON MEAN S0,
1 1.1453100 00 3.535714D-01
2 7.37138150-01 5.1061130-01
3 4.0603350-01 5.5519230-01
4 N 3.4302250 00 1.6020470 00
5 6.040763D 00 3.101826D-01
6 5.3232070 00 3.3615170-01
T 4.931128D 00 4.9482645D-01
8 4.420134D5 00 8.5562410~-01
9 3.884440D 00 1.0300650 090

10 3.6649180 00 8.5003130-01
11 2.936328D 00 7.5243590-01
1.2 1.9898230 00 7.015937%0~-C1

NO. OF FOURIE® COMPONENTS FOR MEAN 6
NO. OF FOURIER COMPONENTS FOR SD 6

ESTIMATED BETA PARAMETERS

BETA « SE(BcTA)
0.8591 0.0567
0.4100 0.0966
0. 0.

0. 0.
0. 0.
0. 0.
O. 0.
0. 0.
0. 0.
0. 0.
-0.2042 0.0744

CORRELATYIIN MATRIX OF BETA
1.000
0.680 1.000
0.311 0.286 1.000
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SKEWNESS
G1l SL
-0.2778 0.145845

TEST FOR HETZROSCEDASTICITY DEPENDING ON THE CURRENT LE VEL

CHI SE(CHI)
0.030011 0.060443
TeST FOR TRENDS IN THE VARIANCE OVER TIvE
CHI SE(CHI)
0.003441 0.002514
RESIDUAL AUTOCORFELATIONS
L RE(L) SE(L) QL)
1 0.00691 0.03625 0.00760
2 -0.12432 0.07137 2.4813
3 0.07407 0.07294 3.36516
4 -0.0023% 0.07348 3.36604
> 0.07466 0.07459 4.27591
6 0.04%53 0.07580 4.61658
flé -0.07345 C.07684 5.50908
8 0.00179 0.07766 5.90961
9 0.01054 0.074829 5.52824
0.02937 0.03642 5.67390
-0.10321 007199 7.48475
-0.09841 0.07644 9.14238
0.16431 6.07833 13.824%35
0.15867 0.07920 18.19421
0. 02232 0.07960 18.23131
-0.13802 0.07978 2L.63510
-0.0151¢4 0.07983 21.67573
-0.00510 0.07994 21.68037
-0.09997 0.07993 23.47832¢9
-0.027456 0.07335 23.61498
0.04460 0.07908 23.97816
=0.07251 0.07967 24.94528
0.1313%4% 0.07962 28.14206
-0.0183% 0.08002 25.20489




072D001 LICKHART R AT ARTIL. L 63-76 FLOW
SARIMA(C 1s 0, 1)( O» O» 1)12

LENGTH OF THe IMPUT TIME SERIES = 168

SUYM OF SQUARES RESIDUAL VARIANCE AlC
6.247862150 03 2.537513100-02 6.414931495

80X=-C3X TRANSFORMATION PARAMETERS
LAMDA CONS
0. 0.

FITTE) SEASIONAL MEANS AND STANDARD DEVIATIONS
(TRANSFJIRMED SERIES)

SCASON ME AN S.D.
1 4.309444D 00 1.00000CD 00
2 4.694956D0 00 1.000000D0 CO
E- - 4.5721500 00 1.000000D0 09
4 4.474510C 00 1.0000CCD 00
5 4.4620680 00 1.000009D 00
b 4.6764230 00 1.0000000 090
7 4.8669000 00 1.0000000 00
8 4.9984420 00 1.000000D0 00
9 5.045535D0 00 1.000000D 0O
10 5.014313D 00 1.000000D0 00
11 4.9537580 00 1.0000000 00
12 4.8832960 00 1.C000000 00

NO. OF FOURIER COMPINENTS FOR MEAN 6
NO. OF FOJRIER COMPONENTS FJOR SD O

ESTIMATED BETA PARAMETERS

; BETA SE(BETA)
0.9135 0.0330
-2.3964 o s e
I ~Del3T] 0.0773

CORRELATIIN MATRIX OF BETaA
! 1.000
0.277 1.000
0.148 0.041 1.000
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SKEWNESS
Gl SL
0.4232 0.0245 83

TEST FOR HETERJISCEDASTICI TY DEPENDINSG ON THE CURRENT LEVEL

CHI SE(CHI)
0.153302 0.108476

TEST FOR TRENDS IN THE VARIANCE OVER TIME
CHI SE(CHI)
-0.0025820 0.092250

RESIDOUAL AUTOCORRELATIONS

L Ra(L) SE(L) e(L)

1 0.04062 0.02787 0.28212
2 0.08055 0.06084 1.39853
3 ~0.0026% 0.072356 1.39973
4 0.00562 D..07235 1.40524
5 -0.033880 0.073738 1.60542
6 0.03691 0.07418 l1.84564
T 0.03852 0.07475 2.10882
) -0.03703 C.07513 2.35361
9 €.02322 0.07%43 2.45050
10 0.03358 0.079575 2.65435
11 -0.12066 0.07599 5.30260
12 0.00374% 0.01055 5.30516
13 -0. 01196 0.07634 5.33151
14 -0.04939 0.07648 5.753286
15 0.00221 0.07659 5.78477
16 =0.10557 0.07668 T.873871
17 -0.02141 0.07676 T«36540
18 -0.07131 0.07683 8.+.93372
19 -0.02434% 0.07688 9.04729
20 -0.0213% 0.07692 9.13517
21 -0.01792 0.07696 P« 19753
22 0.01355 0.07699 9.23343
23 -0.07564 0.07702 10.36034
24 0.05670 0.07622 10.99799
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07UCO001 KAKISA 2 AT KAXISA L 64-76 FLOW
SABIMA( 1, O» 3)(C 0, O, 0)12

LEMGTH OF THE INPUT TIME SERIES = 156

SuM OF SQJLFES RESIDUAL VARTANCE LIC
5.306314932 03 hie 2295529 ED=0 2 5.841803139) 02

BOX-COX TRAMSFORMATION PARLMETERS
LavDA CONS
0. 0.

EITTED SEASTONAL MEANS AND STANNDARD DEVIATIONS
(TRANSFORMED SERIES)

SEASON ME & 5.0.
1 2.80324620 00 1.000009D 00
2 2.5455h4D 00 1.000007D 00
3 2.2795565 00 1.00000950 00
4 2.31L99360 09 1.00000050 0N
5 3.885125D 09 1.0000000 09
6 4,5864370 09 1.000002D0 €GO
7 4.055A110 00 1.000000D0 0O
8 31.72430230 00 1.000000D 00
9 3.6825450 00 1.0000000 00
10 3.65514570 00 1.000000D CC
11 3.4071330 00 1.0000000 00
12 3.119734D 00 1.0n0000D 00

NO. OF FOURIER COMPIMENTS FOR MEAN 6
NO. OF FOJRIER COMPONENTS FOR SD O

ESTIMATED BETA PARAMETERS

BETA SE(BRETA)
0.90283 0.03486
-0 2251 0.0829
0. 0.
0.2271% 0.0307

“ORRELATION MATRIX JF BETR

1.000
0.404 1.000

0.342 0.139 1.000
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SKEWNESS
51 St
0.6332 0.002192 ~

TEST FOR HETEROSCEDASTICITY DEPEMDING ON THE CURKENT LEVEL
CHI SECCHIL)
0.175843 0.096705

T=S5T FOR TRENDS IH THE VARTANCE OJVER TIME

CH1I SELGHE )
0.004560 0.002514

RESIDUAL AUTDCORREZLATIONS

L R&E(L) SE(L) a(L)

1 —Qs 02255 0.02515 0.08090
2 -0.081339 0.06559 1.19395
3 -0.00741 0.02524 1.20231
4 -0.02510 0.07120 1.30496
5 =0.00055 0.07444 1.305¢C1
6 0.01495 0,07652 1.36401
7 0.06035 0.07623 1.96A43
8 0.01750 0.07749 2.01746
9 =0x0:2953 0.07833 2.16367
10 -0.02119 0.07822 2.23947
11 =0.04422 0.07371 2+.57181
12 -0.06931 0.078929 3.39409
13 -0.01564 0.07910 3.43623
14 0.12134 0.07931 5.99195
15 0.12859 0.0794%4 8.83265
15 0. 0l164 0.07954 8.900689
17 0.11747 0.07964 11.35225
18 -0.08824% 0.07971 12.74400
19 -0.02811 007977 12.88613
20 0.04717 0.07982 13.28931
21 0.04275 0.07937 13.622%2
22 0.02203 0.07990 13.71220
23 -0.01734% 0.07993 13.76791
24 0.0493% 0.07395 1415181



(A ]

10EDOO1 LIARD R AT FORT LIiARD 60-76 FLOW
SARIMA( 1s, O 6L 0, 0> 0y12

LENGTH OF THE INPUT TIME SERIES = 204

SUM OF SQUARES RESIDUAL VARIANCE ALC
1.29801 408) 07 6.85218643)-01 2.312405470 03

BOX-COX TRANSFORMATIGH PARAMETERS
AMDA CONS
0. 0.

FITTED SEASONAL MEANS AND STANDARD DEVIATIONS
{ TRANSFORMED SERIES)

SEASON ME AN SaDe
1 5.9654230 00 2.2778050-01
2 5.7852190 00 2.3677090-01
3 5.6969180 00 2.1847310-01
4 - 6.0744300 00 4.8553020-01
5 8.0466383D0 00 3.3697690-01
6 8.75247 80 00 2.0901650-01
7 8§.4516510 CO 3.0318380-01
8 7.939430D 00 3.5361240-01
L 9 7.6776830 00 2.628292D0-01
3 10 7.3522650 00 1.785471D0-01
11 6.5564450 00 2.729607D-01
| 12 6.166921D 00 2.373222D-01
!
NO. OF FOJRIER COMPONENTS FOR MEAN 6
I NO. OF FOURIER COYMPONENTS FOR SD 6
ESTIMATED BETA PARAMETERS
» BETA SE(BETA)
) 0.5331 0.0593
8 O
; 0. 0.
| D4 4
B 0l
» 0. 0.
' -0.1654 0.0691

‘ CORRELATIIN MATRIX JF BETA
1.000
0.036 1.000




106

SKEWNESS
Gl SL
-0.0213 0.898208

TEST FOR HETEROSCEDASTICITY DEPENDING ON THE CURRENT LEVEL

CHI SELCHT )
0.174288 0.080153
TEST FOR TRENDS IN THE VARIANCE ODOVER TIlMt
CHI SECCHL )
-0.002699 0.001681

RESIDUAL AUTOCORRELATIONS

| A T s e e

N D700

L Ra(L) SE(L) QL)
1 -0.04779 0.03726 0.647274
2 0. 06205 0.06248 1.27376
3 0.05138 0.067936 1.82571
4 0.01583 0.06944 1.37835
5 0.02149 0.06955 1.97585%
6 0.00511 0.01158 1.98138
7 0.02592 0.07000 2.12463
8 -0.06555 0.07001 3.04605
9 =0.04452 ~ 0.07001 3. 47315
-0.00583 0.07001 3.48063
-0.05290 0.07001 4.09004
0.00699 0.06907 4.10074
0.13071 0.07001 7.86001
-0.17325 0.07001 14.49488
0.09746 0.07001 16.61102
-0.00475 0.07001 16.61609
-0.040538 0.07001 16.98621
0.00450 0.069359 16.990738
0.068156 0.07001 18.04601
-0.0318% 0.07001 18.27759
0.05703 0.07001 19.02548
0.105%43 0.07001 21.59260
-0.07117 0.07001 22.76847
-0.04577 0.07001 23291057
0.1349% 0.07001 27.536497
0. 05544 0.07001 28.2605%
0.00257 0.07001 28.26211
0.03355 0.07001 28.53083
-0.09956 0.07001 30.91105
0.05207 0.07001 31.56594
-0.00222 0.07001 31.56713
0.05669 0.07001 32.35246
-0.05515 0.07001 33.09990
0.04163 0.07001 33.52837
-0.06673 0.07C01 34.63565
-0.14011 0.07001 30.54596
0.04706 0.07001 40.10329
=05 02151 0.07001 40.20568
-0.07620 0.07001 41.77433
0.03927 0.070901 42.16958
-0.06395 0.G7001 43.22405
-0.Nn1625 0.07001 43,29258
=0 VLS T% 0.07001 43.33496

£ TA2AILOT
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10FB8001 MACKENZIE R NR F PROV. 64-73 FLOW
SARIMA(L &5 O, O)( 925 O 1)12

LENGTH OF THE INPUT TIME ScRIES = 120

SUY4 OF SQUARES RESIOUAL VARTIANCE AlC
1.9458939905) 07 3.06502207D-01 1.495559360 032

FITTED SEASOMAL MEANS AND STAMNDARD OEVIATIONS

SEASON ME &M S0
1 2.16009590 03 5.3504720 02
2 1.9748160 03 5.0108500 02
3 1.820772D0 03 4.4337520 02
4 1.860133D0 03 4.3000610 02
5 4.8251900 03 7.9085645D0 02
6 6.7224200 03 7.5899680 &2
7 7.0395680 03 1.096209D0 03
8 6.651627D 03 1.1670840 03
9 6.2438530 03 1.1656950 03
10 . 5. 7393260 03 1.1330440 03
11 3.7683710 03 9.0316580 0©2
12 2.4171260 03 4,2765730 02

NO. OF FOURIER COMPONENTS FOR MEAN 6
NO. OF FCURIER CCOMPINENTS FOR SD 6

ESTIMATED BETA PARAMETERS

! BETA SE(BETA)
0.6740 0.0624
0. O
0. 0.
0. 0.
0. , O
0.2063 0.0640
’ -0.1354% 0.0918

| CORRELATIOJN MATRIX OF BETA
1.000
-0.478 1.000
] 0.023 0.138 1.000




Gl

SKEWNESS

SL
0.118746

TEST FOR HETEROSCEDASTICITY DEPENDING OM THE CURRENT LEVEL

Do do N WM =

" CHI

-0.000013

CHI

-0.001887

SE(CHI)
0.000058

TEST FOR TRENDS IN THE VARIANCE OVER TIME
SE(CHI)
0.003727

RESIDUAL AUTOCORRZLATIONS

RA(CL)
-0.05869

-0.01257

0.01358
0.04577
-0.11423
-0.03906
-0.02676
-0.00879
0.02637
0.039156
0. 11967
-0.00810
0.00890
-0.07822
-0.01262
0.09930
-0.01037
-0.05052
0.09500
0. 02565
-0.01055

0.03404

-0.14685
-0.02652

SECLD
0.06569
0.080567
0.08663
0.08920
0.09035
0.06857
0.08304
0.087320
0.08895
0.08981
0.09035
0.01228
0.08924%
0.08942
0.08982
0.09C21
0.09052
0.09058
0.09056
0.09056
0.09061
0.09070
0.090380
0.08962

a{L)
0.423717
0.46337
0.46645
0.73088
2.39209
2.583073
2.680719
2.hA5068
Z.78242
2.98365%
£.91008
4.71897
4.92981
5.77485
5.739706
718513
(20041
7.56666
8.87473
5.97114
8.98760
9.16106

12.41588
12.52312
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10GC001 MACKENZIE R AT F SIMP. 65-76 FLOY
SARIMAL 1 0, O)( O0s 0, Q)12

LENGTH OF THE INPUT TIME SERIES = 144

SUM OF SQUARES RESIDUAL VARIANCE AIC
5.87105273D 07 5.442437650-01 1.912237550 03

FITTED SEASONAL MEANS AHND STANDARD DEVIATIONS

SEASON MEAN S.0.
1 2.734699D 03 5.669348D 02
2 2.4435070 03 5.2888920 02
3 2.290361D 03 4.8771280 072
4 2.770567D 03 5.919110D0 02
5 9.8094270 03 2.0306820 03
6 1.418438D0 04 1.319113D0 03
i 1.290776D 04 _ 1.93569230 03
8 1.0276650 04 1.5086300 03
9 A 8.6885520 03 1.052168D 63
10 T«.3411420 03 8.4248590 02
11 £4.3546590 03 9.063236D0 02
12 2.889970D 03 3.1660640 02

NO. OF FRLURIER COMPONENTS FDOR MEAN 6
NO. OF FOURIER COMPONENTS FQR SD &6

ESTIMATED BETA PARAMETERS
BETA SE(BETA)
0.6737 0.0616
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————— —-RESIDUAL ANALYSIS—-—-----

SKEWNESS
51 5L
0.0115 0.953310

TEST FOR HETEROSCEDASTICITY DEPENDING ON THE CURRENT LEVEL

ot
O ®~NOWM S WN =

PN PO N N b bt ot ot ot et et s et
N O O N DA W R e

N

CHI SE(CHI)
G.00005% 0.000027
TEST FOR TRENDS IN THE VARIANCE OVER Ti“E
CHI SEVGHE)
0.00268% 0.002835

RESIDUAL AUTOCORRELATIONS

RA(L)

-0.04522

0.01642

-0.00024

0.07832

-0.03399

0.108239
0.01629

-0.02176

0.03634%
0.01090
0.08678
0.06297
0.11766
0.01460
0.17278
0.00413

~0.05201

0.07228
0.0749%
0.04623
0.1125%
0.06189
0.01125

-0.04464%

SE(L)
0.05614
0.07227
0.07851
0.08118
0.08236
0.08239
0.08313
0.0832%
0.08329
0.08331
0.08332
0.08333
0.083323
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333
0.08333

QL)
0.30067
0.340514
0.3405%
1.26176
1.43651
3.24300
3.28373
3.35692
3.56261
3. 58127
4.77171
5.4032¢4
762519
7.65968

12.52490
12.52771
12.97548
13.84725
14,791 79
15.15405
17.33097
17.929106
18.01306
18.36214
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10Ja002 CAMSELL R &T CLUT L 65-76 FLOW
SARIMA( 1» O» 1)(C 0» G, 0)12

LENGTH OF THE INPUT TIME SERIES = 144

SUY OF SQUARES RESIDUAL VARIANCE ALC
%« 195203387 D3 5.26092051D0-03 5.63078676D 02

BOX-COX TRANSFORMATION PARAMETERS
LavDA CONS
0. 0.

FITTED SEASONAL MEANS AND STANDARD OEVIATIONS
{TRANSFORYMED SERIES)

SEASDN MZ AN S.D.
1 4.45834410 00 1.0000000 0O
2 4.3758938D0 00 1.0000000 00
3 4,2846170 00 1.00000C0 00
4 4.19033820 00 1.00000CHO 00
5 4.2412900 00 1.0000092D 00
6 4.5528290 00 1.00000C00 00
7 4.6753920 00 1.0000000 0O
8 4.6483490 00 1.000000D 00
9 4.5972220 00 1.0000000 0O
10 4.5336360 00 1.00000G6D 00
11 4.4931530 00 1.000000D 00
12 4.4504160 00 1.0000000 0O

NO. OF FOJRIER COMPIHNENTS FOR MEAN 6
NO. DOF FOURTIER COMPONENTS FCR SD O

ESTIMATED BETA PARAMETERS

BETA SE(RETA)
0.9088 0.0362
-0.4147 0.0789

CORRELATI3N MATRIX OF BETaA
1.000
0.276 1.000



k2

SKEWNESS
Gl St
0.9632 0.000083

TEST FOR HETEROSCEDASTICITY DEPENDING ON THE CURRENT LEVEL
CHl SE(CHI)
-0.095270 0.119059

TEST FOR TREMDS IN THE VARIANCE OVER TIME
CHI SE(CHIL)
-0.000187 0.0G2835

-

RESIDUAL AUTOCORRELATIAONS

N —

it
OV N WMSsWN =T

PR PPN = e et P s e e e e
LW OO NS N

RE (L)
0.01835
0.04543
0.03694

-0.00930
0.003566

0.07109

0.05574
-0.00669
-0.07143
-0,02210

-0.07479

205119
-0.04961
0.03926
-0.08874
= 0. 11357
0.00492

— 03259

0.00240
0.09401
0.04891
0.01686
-0.16925
0.08724

SE(L)
0.03141
0.06481
0.07805
0.07805
0.07976
0.08015%
0.08083
0.0812%
0.08162
0.08192
0.08217
0.08237
0.0825%
0.08268
0.08279
0.08289
0.08296
0.08303
0.08308
0.08313
0.08316
0.08319
0.08324
0.08324

QL)
0.05224
<35 882
0.56128
0.57427
0.57629
1.34¢€16
1.82298
1.82%590
2.62441
2.701C5
3.58515
4.,00246
4,39752
4.64675
59300
8.04863
8.05263
8.22939
8.23086
G.72932
10.13823
10. L8721
15.16457
16.493810
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1040003 G2 BCAR R AT GR BEAR L 69-76 FLOW

SARIMHMA(C 1s O0» 2)( Os» O> 0)1lz

LENGTH OF THE INPUT TIMYE SERIzS = 96
SuM OF SQUIRES RESIDUAL VARIANCE 41C
1.439252897 04 1.522975730 02 5.1424960930D 02

FITTED SEASONAL MEANS AND STAMDAED DEVIATIONS

L

SEASON MEAN S.D.
1 5.2456870 02 1.0000000 0O
2 5.203225% 02 1.000380C3 00
3 Bl 132620 02 1.0005000 00
4 5.0616250 02 1.0000000 00
5 5.1678120 02 : 1.000000D 00
6 5.5678120 02 1.0300000 00
7 s 5.8191250 02 1.000003D0 00
8 $5.9147120 02 1.0000000 00
9 5.8863620 02 1.0000000 00
10 5.6TT5620 02 1.0000000 0O
11 5.3695870 02 1.0000000 00
12 5.2457000 02 1.00000080 00

NO. OF FDJRIER COMPONENTS FOR MEAN 6
NO. OF FOURIER COMPONENTS FOR SD O

ESTIMATED BETA PARAMETERS

BETA SE(BETA)
0.7593 0.0673

-0.4100 D.1022

CORRELATIIN MATRIX OF BETA
1.000
0.413 1.000



TEST FOP HETERDSCEDASTICI TY DEPENDING ON THE CURRENT LEVEL

[
OV o~NOWM PN -~

BN MR NN et b e e et e e e
W~ O DN SN -

51
0.3446

TEST FOR TRENDS

SKEWNESS

CHI
0.004449

CHI
0.001357

SL

0.150542

SE(CHI)
0.004456

SELEHL)
0.0C5%209

3

IN THE VARIANCE OVER TI™E

RESIDUAL AUTCCORRELATIONS

R4 (L)
-0.04770
-0.0972%8

0.11693
0.07692
-0.06002
-0.06038
0.079381
0.07351
~-0.17982
0.21822
0.05175
~-0.05859
0.01944
0.03987
-0.01706
-0.11145
0.16503
0.01563
-0.15775
0.00470C
0.095566
0,00235
0.11232
-0.07113

SE(L)
0.03345
0.06246
0,09424
0.09479
0.09858
0.09956
0.10057
0.10108
0.10145
0.10167
0.10181
0.10190
0.10196
0.10200
0.10202
0.10204
0.10204
0.10205
0.10206
0.10206
0.10206
0.10206
0.10206
0.10206

O(L)
0.22529
1,17243
2.55669
3.16174
3.53417
3.92167
4,594012
5.17423
8.6709¢
13.880621
14.176632
14,56115
14,50397
14.78639
14.82019
16.28096
20.81054
20.84005%
23.88064%
23.88337
29:03114
25.03189
26.65791

7.31909

114
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1GKAQO1 MACKENZIE 2 AT NeWe 66-76 FLOW
SARIMA( 1, C» L)( O, G» d)1e

LENGTH OF THE INPUT TIME SERIES = 132

SUM JF SQUXARES RESIDUAL VARTANCE A1 €
8.217735692 07 6.,135103050-01 1.817989670 C

BOX—=CDOX TRANSFORMATION PARAMETERS
LAMDA CONS
0. 0.

*

FITTED SEASINAL MEANS AN) STANDARD DEVIATIONS
(TRANSFORMED SERIES)

SEASON MEAN S.D.
1 8.1199740 €O 2.9239730-C1
2 8.0063520 Q9 1.9939450-71
3 - 7.94371 3D 02 1xi022347D~-01
4 8.0114520 GO 1.4434830-C1
5 9,3427130 €3 2.6119630-C1
6 9.823354C 929 9. 454074002
7 9.7379210 0O 1.171837D-C21
8 9.50121 70 €D 1.404403D0-C1
9 9.2959310D 0O 1.083743D=01
10 9.29223CD &2 9.3516530-C2
11 8.557973D 0O 1.4434530-01
12 8.1411325D0 00 1.6202770-01

NO. OF FOJRIER COMPINENTS FOR MEAN 6
NO. OF FOJRIER CZOMPINENTS FOR SD 6

ESTIMATED BETA PARAMETERS

3ETA SE(BETA)
3.9033 D851 5
2.5716 0.1016

CORRELATIIN MATRIX JF BETA
1.002
C.711 1.000



S gy

61

~0.24538

RESIDUAL

SKEWNESS

ANALYSTS ——-m—m

SL
0.232058

116

TEST FOR HETEZRISCEDASTICI TY DEPENDING ON THE ZURPENT

WO =NTWT N =

TEST FOR TRENDS

CHI
0.190474

CA1

-0.022617

SE(CHI)
3.127500

IN THE VAITANCE OVER TIME
SE(CHIT )
2.003230

RESIJUAL AUTOCORRELATIONMS

RA(L)
C. 02352
-0.22781
-0.09512
-C. 06075
- 03454
C.14600
0.01222
-0.01625
-0.03687
-0.27373

-0005Q69

-0.,35048
0.13996
0.021781

. 03754

- 02085
0.00481
0.1C417
0.22161

~0s 04724
0.0564%

-0.04449

-0.044638
0.01031

SE(L)
0.04524
0.27667
0.28167
D.08222
0,08223
C.08243
0.08284
C.08335
0.08387
0.08436
0.2B479
0.58517
0.08549
0.08575
0.C8597
0.086156
0.08631
0.08644
0.0365%
0.08663
0.0867C
0.08676
0.08681
0.08635

ey
C.)7457
D.17993
1.42059
1.93256
2.39673
B 38924
S.11832
S5«148C1
9.34348
6.131469
6. 55251
s 29071
9.93985
9.98738
10.20L43
10.26678
10.27C33
11.95395
19.64103
19.99503
20490257
2C.82082
21.14480
21.16221




1004071 TREE RIVEF 69-175

SARIYAa( 1,

LENGTH OF THE

SU* OF SQUARES RESINUAL

FLOW

0,

0, 0)172

INPUT TIYEZ SERIES

I VARTANCE
3.172971783 03 T«701C86422D-02

EOX-COX TRANSFORYATION

L&Y DL
O. 0.

FITTED SEASINAGL MEANS AN
(TRENSFORYED SE]

ME &t
2.2921390
2.034451D
1.7923110
1.7937100
2.231454D
3.907545D
4.563334D0
4 .,2668740
3.97371L4D
10 3.6%41493D
11 3% 1361090
12 2.6633410

Do ddU s W -

NO. GF FOJRPIER CDYPINE
NO. DF FOURIER COMPINE

ESTIMATED RETA

BETA
0.3936
=2 .4453

CORRELATION MATRIX JF BETA

1.000

0.700 1.0900

3.6741

Sels
1.0C000N0
1.000000D
1.00092000
1.0000009D
1.0270009D
1.07200090
1.¢00000D
1.0000090
1.00200950D
1.0003030
1.000020920
1.0000099

PARAMETERS,
SE(RET AT

0.1314
2.1279

IC
26

00
00
06
(030)
0o
00
oc
00
00
00
0c
00

114

8> 02
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NN NN 1) = e b et et ot et et i
S W N O Dw NN N~

51
-0.234C

~Rz51DUAL ANALYSIS—--===-

SKEWHESS
SL
0.233335

118

HETZRODSCEDASTICI TY DEPENDI
CHI SE
-0 305533 e 1.

FCR OTRENDS IN THE VARIANCE

CHI
-0.204551
RESINDUAL
<A(L) SE(L)

-0.00343 0.017731
0.011575 0.N1A897
0."6713 0.10040
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11.03417
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SKEWNESS
1 SE
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TEST FO2 HETERISCEDASTICITY NEPENNING ON THE URRENT LEVEL

o4l SE(CHI)
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1 DR E22 C.04953 315244
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3 0.0 45K95 n,37410 P T
4 C.78755 G.07864 1. 7QTLD
5 -0, 09955 ¢.08252 3,%23665
b 8. 51978 BT 3,22553
7 ~C. 20057 C.28244 3. 3 IGH Y
8 -C.01417 $.Nn8207 3.37266
9 C.D8R59 C,N8305 4,50578
Be L) €.08320 4,4 4147
11 =~ 01 B9l 008324 4,HR30649
12 -0, 07748 0.f8229 5.52330
13 Ce17225 0.33330 17,2745 4
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21 -0.24002 638323 14.93560
22 -C.74525 0.73333 15.2979:
23 0.02¢11 ¢.08233 15,29292
24 6,19113 0.28333 21.30274
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APPENDIX II

MAR Models

In Section 3.2 of the accompanying paper MAR models are fitted
to 12 streamflow series from the Arctic. 7Two sample listings of the
MONAR subroutine output are presented here. Because of space limitations

the other 22 models are not shown.

Special Notation

phi(j,i) - the ith AR parameter for the jth month, eg. phi(é,?) is the
7th AR parameter for March, the 3rd month

se(phi) - standard error of phi

ra - residual autocorrelation

se — standard error

q - portemanteau statistic

df - degrees of freedom-
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0.
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2525

Ty e

P

e e

— e e s -

MNINODOTWwwEoo a
.

S ENNM ATO0IID A

12.6
1hah
15.3

BA LN D Loy —

s .
>

.
~

NAN P DWNAaNDO A
.

O

E R I
s e
R - B I |

.

el I . B - |
v . v s s e,
M ND O NN LD D

16,7
14.6
15.5
1e.s
21.4
214

220 a
.

-0.14627 0.2425
0.0705% 0.2475
0.14A0 0.2425
C.1C% 0.2425%

=-0,181 0.242%

=0.2¢F10 0.7242%

month 4
ra 59
0.01%54 N.2425

-0.0272 Q.724725
0.1267 0.2425%
0.07hH4 N.2425%
0.0511 Lo P T ]

=0.74114 0.2426
0.0801 0.2425
Q.38 0.2425%

~0.1141 0.2425
0.31757 0.2425

=0.5474 0.24625

=-0.12P64 N.2425
0.03R? 0.242%
0.1012 0.2425

=-0.0751 De?425

month £
ra <o

=0.04hH" 0.24725
0.2142 0.2425

~0.00n7¢ 0.7425
0.48R0 0.?242%

=0.0456 0.2425%
0.40%52 0.2425%
C.340n 0.2425

=0.1071 0.2425

-0.232¢ 0.2425

=0.107% 0.24625
n.oaT! 0,.247%
0.23480 0.2425

=0.0201 0.2425

-0.4Kk5 N.?2425
0.31214 0.2425

month A
L 58

0. 1604 0.2425%
0.0741 N.?242%

=0.,N7%51 N.26425

-N,1727 0.26725%

=0.3741 00,2425

-0.%17% 0.2825%

-0.2311 C.2425%
0.1404 D.242%

“0.l2ch N, 2425

-N.N722 0.2472%

=0.0511% Ciu 75

-0.%Fh) 0.2472-

-r)_ll,‘ll N.?2428

-0.1%1 5% Q.2425%
(o B ] N.?2425
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ra e
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DI AT AD DN e

-0.0729
0.0771
0.2754

=0.1002

=N.2104
0.7296N
C.247%
0.1760
0.1291
0.7500
=0.04%4
0.0700

ra
=0.01%10
N.21479
-0, 1076
-0.N3n0
-0.CN4Y
-0.029n
=0.17648
~0.014%2
~0.0024
0.320¢
0.72274
=-0.0140
=0.1404A
0.?24576
0.9042

N.282%
0.24725%
N.24A7%
0.2425
N.242%
0.24793
0.7242%
0.7425
0.2425
N.2425
ND.2425
ND.2425

month 11
se
02425
Ne?282%
N.242%
0,.242%
0,425
0.2429
0,2825%
ND.2425
N.2472%
0.2629%
0.7425
N.2425
D.7482%
D.72425%
N.2425

overall a-statistic

0.5 -~0.0%17 0.2625 0.7
D.h N.9n9% 0.242% 14.A
1.9 0.1191 N, 2425 15.1
=il 0.0144 N.72425 %l
cah =-0.112% 0.2425% 19.7
A.0 =0.3117 0.2425 7
5. =0.1+0N 0.2425 17.6
5.9 0.164H19 Q. 24879 H P |
SaA =0.29%% 0.2425 16.2
ha n.1al?z 0.2425% =
1.0 -0.0147 0.24725 1a.7
7.0 =0.7591% 0.2425 20.9
month 12

a ra se a

0.0 -0.NA27 N.2425 0.1
0.8 0.1422 0.2425 0.9
1.0 N,133%q 0.726425% 0.4
o | -0.1722 N0.2425 1.1
1.1 0.2041 0.2429% 1.4
1.1 =0,1104% 0.242% 2.0
1.% 0.1724 0.2425 2%
1.4 -0.10n" 0.242% 4.1
2.0 0.2791 0,.242% 5.6
Ta? -0.0C04 0.,242% Gk
4.6 =0.726A0 0.2475 6H.A
bt n.291n 0.242% R.3
Tl -0.0059% 0.2425 R.3
[ ) 0.4212 0.2425 12.73
6.4 0.72595 0.2425 11.4

= 162.2 on 1AH df

20 411S¥3A 1NN

COVIILVIA

(Y4
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APPENDIX ITI

Transfer Function-Noise Models for 4 Arctic River Series

In Section 3.3 of the accompanying paper, transfer function-
noise models are used to dynamically link hydrometric and meteorologic
time series. The models are presented in the form of computer listings
of the output of A,I, McLeod's TEST program. The outputs are identical
to those for the USES program (see Appendix I) except that the transfer

functions Vi(B) from equations 2.9-2 and 2.9-3 are also specified.

Special Notation

IV - order of the numerator of Vi(B), (i.e. one plus the number of

@ parameters)
IU - order of the denominator of Vi(B), (i.e. the number of & parsmeters)
IDELAY - the delay term in transfer function

TAU - the vector of estimated parameters, always listed in the order

(mO’ml,‘..’&)vi’ 1)525"'!§ui)
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& KAKISA R 64~76 - HAY R DSRAIN,APRILTEMP
SARIMA( 1» O, 3)( O, O, O) O
LENGTH OF THE INPUT TIME SERIES = 156

LENGTH OF QUTPUT SERIES DOF TRANSFER FUNCTIGMN = 154

Su4 OF SQUAPRES RESIDUAL VARIANMNCE alcC
5.868835530 00 3.760728340-02 568.1
ESTIMATED MEAN OF SERIES
MEAN SeE.(HMEAN)
4.6242720~02 1.0105880-03

ESTIMATED BETA PARAMETERS

BETA SE{BET2)
0.9010 ' 0.01396
=0x2637 0.0821
0. 0.
0.2051 0.0793

CORRELATION MATRIX DOF BETA
1.000
0.390 1.000
0.324 0.113 1.000

TRANSFER FUNCTION NO. 1» IU=0, IV=0, IDELAY= 1
MEAN CORRECTION = 2.230769D0-06
TAU S«D.{(TAU)
1.7297540-03 6.6578210-04

d TRANSFER FUNCTION NO. 2» IU=0s, IV=0, IDELAY= 2
MEAN CORRECTION ==-1.687179D-07
TAU S.D.(TAU)
) -3.144248D0-02 9.0609870-03

] CORRELATIIN MATRIX OF TAU

1.000
-0.025 1.000
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—————— RESIDUAL ANALYSIS---=--

SKEWNESS
Gl SL
0.4721 0.016396

TEST FOR HETEROSCEDASTICITY DcPENDING ON THE CURRENT LEVEL
CHI SE(CHT)
-0.78552¢9 0.253698

TEST FCOR TREKNDS IN THE VARIANCE OVER TIVME
CHI SE(CHI)
0.C02950 0.002514

O oo~N NS WN

RESIDUAL AUTIOCORRELATIONS

RA(L)

-0.01970
-0.07603

0.00302
0.00081

=0.03938

09‘02(‘)70
0.10974
0.05042

-0.02637
-0.07317

0.049303

-0.12760

0.02602
0.038283
0.132284%
0.03584
0.10883

-0.04823
-0.06451

0.05655
0.04728
0.04544

-0.00537

0.38221

SELL)
0.02542
0.06375
€.02591
0.07012
0.07455
0.07632
0.07626
0.07770
0.07842
0.075838
0.073836
0.07310
0.07923
0.07942
C.07954%
0.07963
0.07972
0.07978
0.079383
0.07988
0.07991
0.07994
0.07995%
0.07998

QL)
0.06172
0.98700
C.G8347
0.983858
1.24171
1.33669
3.37882
3.80216
3.91879
4.82273
D.23144
8§.01843
8.1351¢4
9. 32599

12.41093
12.63708
14.73942
¥59: 18571
15.90442
16.48401
16.89216
17.28383
17.2941 8
18.556272



Responsa:

0.8694830 00
0.416723D0 00
0.149569D 00
0.679823D 00
0.1555220 00
0.2652310 00
0.4031260 00
0.277124D 00
~0.243023D-01
=0.1332600 00
-0.3194139 00
0.118323D 00
-0.1140550 00
-0.420389D 00
0.467392D 00
0.246959D 00
0.2638120 00
-0.4725040 00
-0.3108832 00
0.114%24D0 00
-0.4411250 00
-0.333783D0 00
-0.1920090 00
-0.8785730 00
-0.1185860 01
-0.5496440 00
-0.3881910 00
=0.2564814D 00
-0.634192D0 00
-0.115833D0 00
-0.3936180 00
-0.335646D0 00
0.15%6160 00
0.110718D 00
0.307461D 00
0.265231D 00
0.4761440 00
0.9653270 00
0.89925%4D 00

Kakisa R.

0.57247010 Q0
0.403724D 092
0.5966080 00
0.6270580 00
0.1433330 00
0.259253D5 00
0.3972950 00
0.3503370 00
-0.10468%30 09
-0.1458520 00
0.530299D 00
-0.5703330-01
-0.3677819-01
-0.3267190 09
0.4061380 00
0.199782D0 00
0.4352360-01
-0.282026D 09
~0.2261223 00
-0.3403460-01
-0.4859902D 00
~0.1207610 00
-0. 7301380 00
-0.104363D 01
-0.128144D 01
0.9467540-01
-0.560042D 00
-0.172520D0 00
-0.1120700 01
-0.4271330 00
-0.389161D 00
-0.3108730-01
0.1004360 00
0.1340370 00
0.76053850-01
0.4350020 00
0.4197090 00
0. 6007260 00
0.1163020 01

Flow 64-T76 m%%3/g

0.269783D 00
0.129238D0 00
0.913395D 00
0.701470D 00
0.2197430 00
0.3078410 00
0.392422D 00
0.4570250 00
0.3954256D=-02
=0.571967D~-01
0:59%721D 00
-0.67537150-01
-0.1174830 09
-0.1875310 00
0.323331D 00
0.29372CD 00
-0.103035> 00
=-0.204041D0 00
=0.177964D 00
-0.141391D 00
=-0.581064D 00
=0.4214250-01
~0.1143456D0 01
=-0.1200020 01
-0.130133D0 01
0.1959650 00
-0.5068710 00
-0.7578660-01
-0.8949380 00
-0.7392710 0C
-0.3111460 00
0.133541D0 00
0.167397D 00
-0.3414600-02
-0.394279D0-01
0.5189350 00
0.4290610 00
0.78C5500 00
0.1054680 01

133

lanbda=0 Fm=6 Fs=0

0.1370359 00
-0.8829720-01
0.3042570 00
0.5175220 00
0.4121432 00
0.323082D0 09
0.274522) 00
0.2180550 o¢¢C
-0.2333480-01
-0.1040490 CO
0.4563722 00
-0.35612050-01
-0.338985D) 00
0.430038D0 00
0.2954130 00
0.25795592 00
-0.370895D 00
-0.3202842 00
-0.214634D 00
-0.276540D CO
-0.6664559 00
-0.3158070 00
-0.8¢1678) 00
-0.98%27520 00
-0.6809900 00
-0.5155310=0]
-0.4224530 00
-0.2109869 00
-0.424769D 00
-0.535517D0 00
-0.124133D-01
0.2014250 00
0.2278349 00
0.3234070--01
-0.1497132 00
3.5713940 00
0.658091D 00

9.535415) 00
N.7,Q2QL450 AN
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Rainfall mm

Transfer Function No. 1: Hay River
lambda=1 Fm=6 Fs=0

0. 0% -0.23076G9 02 -0.346154D

0.6923038) 01 -9.299231D0D 02 -0.241538D0 02 -0.1107690

0.77290000 02 0.216923D 02 -0.307692D 00 0.

D 0 -0.2307692 D0 -0.2461540
-0.1427690 02 0.807692D0 01 -0.1153350 01 -0.1307690

0.1200000 02 0.363231D0 01 -0.307692D0 40 0.

0. 0. -0.230765D 00 -0.346154D

C.192308D0 01 0.2007650 02 0.7846152 01 =-0.3107690

0.1900002 02 -0.2307650 01 0.169231D0 01 0.

0. 0 -0.2307690 00 -0.3461540
-0.1076920 01 ~0.923077D 09 0.208462D 02 -0.340769D
-0.280000D 02 -0.23076CSD 01 -0.307692" 20 0.

0. 0. -0.2307690 0O 0.453845D
-0.1076922 01 -0.6923080 01 0.3354622 02 =0.1507690D

0.110000D0 02 -0.4307658D 01 -0.3076920 00 0.

0. 0. -0.23075690 00 0.1053485D
-0.130769D 02 =-0.1192310 02 -0.2315330 02 0.1792310
-0.2700000 02 ~-0.1530770 02 -0.3076929 00 ¥

0 ks 0.276923D0 01 =-0.346154D
-0.7076%20 01 -0.1492310 02 -0.1915389 02 -0.1107€£30D
-0.2120002 02 -0.9307630 01 -0.3076920 09 0.

0. 0. -0.230769D 00 -0.345K154%D

0.149231n 02 =-0.269231D 02 0.8461540 00 =-0.1607690
-0.2800002 02 -0.930769D 01 -0,3076G82D 00 0.

9 = i 0. -0.2307690 00 =-0.246154D

0.2523080 01 0.9076920 01 -0.2515389 02 0.149231D

0.1700002 02 -0.103077D 02 =-=0.307692D 00 0.

0. s -0.230769N0 00 =-0.246154D

. =0,2076322 01 0.180769D 02 0.298462D 02 0.,5792310
-0.4100000 02 —=0.1430770 02 -=-0.3076927 00 0.

0. Ol -0.2307690 90 -0.2461549

0.9230772 00 0.14076GD 02 0.7846150 01 0.8923080

0.210000D0 (2 -0.630765%D0 0! -0.307692D 00 0.

0s O. -0.2307690 00 0.7538480D

0.692308) 01l -0.229231D0 02 -0.141538D 02 03292310
-2.1100009 02 0.415923D0 02 -0.3076920 00 0.

" : s -0.2307690 00 0.45383460D

0.39230480 01 0.410769D 02 0.5846150 01 =-0.10756920
-0.1000000 C1 Q.6632310 01 0.1692310 01 0.

01
02

01
02

01
G2
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KAZAN R 67-76 -~ ENNADAI SNOW,DSRAIM,JUNE TEHP
SARIMA( 1» 0> 1)( 0s» 0» 0) O
LENGTH OF THE INPUT TIME SERIES = 120

LENGTH OF QUTPUT SERIES OF TRANSFER FUNCTION = 11

SUM OF SQUARES RESIDUAL VARIANCE LIC
1.51465774D 00 1.258535620-02 635.7
ESTIMATED M=ZAN OF SERIES
MEAN S.E.(MEAN)
6.245424D0-013 2.8221120-03

ESTIMATED BETA PARAMETEFS

BETA SE(BETA)
0.7363 0.0651

CORRELATION MATRIX JF BETA
1.000
0.511 1.000
TRANSFER FUNCT ION NO. 1» IU=1, IV=1, IDELAY= ¢
MEAN CORRECTION = 9.685833D 01
TaU S.0.(TaU)
9.73959530-01 3.4413700-02
1.140342D0-04 2.935676D-05
-6.6090760-05 3.040664D-05

TRANSFER FUNZTIGN NO. 2» IU=1, IV=1, IDEZLAY= 0
MEAN CCRRECTION =-2.942030D-18
TAU S.D.(TAU)
8.8114092-01 3. 864001D-02
2.1332120-03 4. 628873D0-04
~2.4900170-03 5.0673340-04

TRANSFER FUNCTION NO. 3, IU=0, IV=0, IDELAY= 1
McAN CCRRECTIZN =-1.807004D-20
Tau S.D.(TAU)
-2.1363780-02 1.038115D-02

CORRELATION MATRIX OF TAU
1.000
0.020 1.000
0.072 -0.202 1.000
-0.152 -0.014 -0.015 1.000
-0.045 -0.036 0.054 -0.041 1.000
0.021 -0.010 -0.0l4 0.249 0.121 1.000
-0.014 -0.003 -0.165 0.033 0.069 0.052 1.000
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SKEWNESS
G1 SL
0.1783 0.403613

TEST FOR HETCEROSCEODASTICITY DEPENDING ON THE CURRENT LEVEL

CHI SE(CHI)
1.080076 0.363518
TEST FOR TRENDS IN THE VARIAMNCE OVER TIVE
CHI SE(CHI)
-0.001226 0.003727

e
O WD~ &S WN =

PO PN PP et bt et bt ot bt e e
SWMN O 00N FH N -

Ratl)
0.J1619
0.036b65

-0.03114
-0.00733
0.00230
0.10130
0.018%3

-0.00915

-0.15798
-0.118&77
-0.05269
-0.02 831
0.17212
-0.13174
-0.02148
-0.06923
0.05053
0.00760
-0.015009
-0.0238%8
-0.10655
-0.11730
0.20924%

RESIDUAL AUTOCORRELATIONS

SEfL}
0.01569
0.06318
0.08284
0.08525
0.08773
C.08906
0.08391
0.08043
0.09G75
0.09095
0.091038
0.09116
0.09121
0.09124
0.09126
0.09127
0,09127
0.09128
0.0912¢8&
0.09128
0.09129
0.09129
0.09129
0.09129

QL)
0.03224
0.198385
0.32022
0.32709
0.3277T7
l1.661173
1.70560
1.71655%
5.00847
6b.8232¢
7.19612
7.30866

11.36206
11.36605
13.78585
13.85079
14.53204
14.89651
14.9069C
14.96024
15.08356
16.77951
18.85600
25.53272



Responsa:

oo jeleolNeNeNeNo e lNe Ry
OO0 OO0 O0COOOoOWw

-0.7162540-01
-0.2246140 0C
0.196771D 00
0.3442180 00
0.140052D 00
0.8014040 09
0.7582980 00
0.277415D 00
0.5029750-01
-0.1476660 00
-0.4730070 0O
-0.106373D 00
-0.4263220-01
-0.6202030-02
-0.6450360 00
-0.522004D 00
-0.248922D0 00
0.4564400 00
0.2511700 0O
0.413060D0 00
-0.2114950 00
-0.287358D 00
-0.41582155 00
=0.231055D 00
-0.2004000 00
0.799120D0-01
=0.2743780 00
-0.3255160-0C1
0.4605200 00
-0.3657020-01

nsfer Function No. 1: Ennadai
00 01729 0 0 G 0 0O O
006 0 639 00 0O0O00O0
00 0 1125 0000 OO
00 0 1291 0 00O 0O OO
C OO0 975 0 0 C 0 0O
00 0 951 00 00 0 O
00 1393 0 0 0 0 0 0 O
00 0 473 0 0 0 0 0 O
00 01101 0 00 O0O0O
00 2249 0 00O 0O 0O

Kazan R.

at Ennadai
-0.1333%56D 0C
-0.1136270 00
0.267635D 00
0.4130120 00
0.589084D 00
C.116527D0 01
0.7540220 00
0.260904D-01
-0.1223140 00
-0.1211630 00
-C.3836000 00
-0.106083%D 00
0.8763300-02
-0.322443D 00
-0« 6T 7LD 00
-0.505848D0 00
-0.9272650-01
0.521978D0 00
0.181176D2 00
0.2310530 00
-0.3072350 00
-0.315276D 00
~-0.5744510 00
-042637960 00
-0.2083830 00

-0. 4310070-01 .

-0.3106530 00
-0.7194150-01

0.68A4A717D Q0
-0.1633700 00

Flow 67-76

-0.213179D 00
0.182452D0 00
0.2613420 00
0.472497D0 00
0.763134D 00
0.105873D 01
0.7127930 00
0.1781850 00

-0.134031D 00

-0.1748050 00

-0.314264D 00

-0.8364770-21

-0.1389450-01

-0.3743120 00

=0.6044680 00

-0.4314830 00

<0s 1123520 00
0.453150D CO
0.1954540 00
0.442944D-01

-0.392424D 00

-0.3608310 0C

=0.5931120 00

-0.2209510 ¢C

~0.9797210-01

-0.318640D0-01

=0.1676160 00

-0.339739D-01
0.2628330 00

-0.1201440 00

m*x%3 /s

138

lanbda=0 Fn=6 Fs=0

-0.1187510 00
0.180023D 00
0.2916282 00
0.449577) 00
0.732614D 00
0.348251D 00
0.594045D 00
0.1467110 02

-0.185397D 00

-0.256219D0 09

-0.1837100 00

-0.6808760-01

~-0.1100392 00

-0+493570D0 €0

*=0.534070D 00

-0.197051D 00
0.14329%4D 00
C.374752D 0O
0.2866100 00

-0.7640230~C1

-0.3761220 00

~0.415432D 00

-0.344574D0 00

-0.170459) €O

-0.5460340~-01

-0.128617D0 CO

-0.109092D 00

-0.1781360 00
C.2422610-01

-0.714115D0-01

Accumulated Snowfall mm



Transfar Function

Transfer Functicn

OO 0CO0O0DO0O00O0O0OO0OO0O0OOCOOO

lambda=1
0.
-0.6100000D
-0.34000900D
6
-0.9100000
0.1446000D
0
-0.71C0000D
-0.464000D
0.
-0.9100000
-0.254C000D
0's
-0.410C000
-0.440000D
0.
0.1190000
0.4860000D
0. )
0.900C00D
-0.34492000
9]
-0.1010000
-0.524000D
0.
0.1590000
-0.4540000D
0.
0.1690000D
0.1860000D

No. 2:Ennadai
Fm=6 Fs=0
Qe
01 0.400000D 01
01 -0.1220000 02
0.
01 0, 5000000 01
03 0.728000D 02
0.
01 -0,250020D 02
02 -0.1520000 02
0.
01 0.
02 -0.920000D0 01
0.
01 =-0.400000D0 01
01 -0,620000D 01
0-
02 0.1100000 02
G2 -0.152000D0 02
0.
00 0.230000D 02
02 -0.1520200D 02
0.
02 -0,190000D 02
02 =-0.6200000 01
0.
02 0.1200000 02
02 0.1680000 02
0.
02 -0.110000D0 02
02 -0.1020000 02
Mcs 3: Ennadai

maan has bsen subtracted

(=Jeo e NeoleoNeNeoNoNoNeNoNoNoloNoRoloNoNo X e
(lelie oo NeoNoNoleNoNeoleNoNoloNeReloNo e R e
(=lie e oo NeNolleNoNoNeoNeoNeoleoNeRelelleoNe N
elielolololoNeloleNoNoNoNoleNoNoloNeoRe N o)

-1.81 ©
-1:91 O
5.5l ©
2.49 0
-.51 0
*w11 B
1.69 0
2.49 0
1.29 ©
1.39 0

Rainfall mm
Dia
0.291000D
0.

0.
0.29109000
0.
0.

-0.2290000D

0.
0.
0.141000D
Q.
O

-0.3490000

0.
O
C.221000D
0.
0.

-0.2290000

0.
0.
0.591000D
0.
0.

-0.265000D
Da
O

-0.4190000D
0.

Temperature

02

02

02

02

02

02

02

02
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-0.700000D
=0.1620000
0.
-0.7000C0D
0.2800009
0.
-0.7000000D
-0.1520000D
0.
-0.7000000D
0.7800009D
C.
=0.700000D
-0.122G000
0.
-0.70000G0
0.138000D
c.
-0.700000D
0.48C0C0D
0.
0.3000000
0.143000D
0.
-0.7000009
0.1420000
0.
0.530000D
-0.2120C00
0.

(Juns onty)

co
02

00
01

00
02

0o
01

00
02

00
02

00
Ccl

cC
02

00
2

Ot
02

C
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o 2o back r 65-76 - RMEAM, TM» TCJUNE
SARIMA( 1, 0» 4)( 1» 0, O0)12
LENGTH OF THE INPUT TIMEe SERIES = 144

LENGTH OF DOUTPUT SERIES OF TRANSFER FUNCTION = 143

SUY OF SQUARES
5.817753250 0l

RESIDUAL VARIAMNCE
4.013358350-01

AT1C
328.1

ESTIMATED MEAN OF SERIES
S.E.(MEAN)
2.46924830-01

MEAN
7.2862400-04%

ESTIMATED BETA PARAMETERS

-2.0451710-01

1.000
-0.133 1.000
0.001 -0.200 1.000
0.029 0.139 -0.453
~0.089 0.379 0.007

1.000
0.159

5.7313030-02

CORRELATICN MATRIX OF TAU

1.000

BETA SELBETA)
0.4748 0.0866
-0.4123 0.0973
O. O.
0. C.
-0.1947 0.0742
0« 2755 0.05601
CORRELATION MATRIX OF BET2
1.000
0.649 1.000
0.072 0.030 1.000
-0.017 -0.026 0.008 1.000
TRANSFER FUNCT ION NO. 1» IU=1, 1V=0, IDELAY= 0
MEAN CORRECTION = 1.861111D0-06
TAU S.D.(TAU)
7.834067D-01 1+ 2557510~01
1.348415D-02 6. 4095960-03
TRANSFER FUNCTION HNO. IU=0» IV=1, IDELAY= 0
MEAN CCORRECTIGN = 1.378472D-07
Tau ' SN {TAU)
1.666685D=-01 3.0598060-02
-1.264470D0-01 2.9714470-02
TRANSFER FUNCT ION NO. IU=0, I1V=0, IDELAY= 1
4EAN CORRECTION = 1.944444D-07
TAU S.D.(TAW
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SL

0.355785

TEST FOR HETEROSCEDASTICITY DEPENDINSG ON

—
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T
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THE CUFRENT

QL)
0.000438
0.06536
0.11982
0.12314
0.52145
0.86778
2.20830
3.52588
4.23089
4.6£4179
4,69520
4.,70166

18.24545
19.05384
20.90236
20.96734
21.01511
21.C8777
21.91059
22.43340
22. 44047
2h.11081
24.19270
24.50931

CHI SE(CHI)
0.131942 0150335
TEST FOR TRENDS IN THE VYARIANCE OVYER TIME
CHI SE(CHI)
0.0069381 0.002835
RESIDUAL AUTOCCRRELATIDNS
Raftb) SE(L)

0.00181 0.01846
0.02093 0.02911
=0.01911 0.08163
-0.00479 0.03651
~0. 09132 0.07462
0.04763 0.0812¢
0.09346 0.08255
0.09232 0.08230
0.06723 0.08259
-0.051138 0.082936
0.01455 0.08313
-0.0G535 0.02296
0.290590 0.08329
0.07092 0.08330
0.10635% 0.08331
-0.01939 0.08333
0.01699 0.083133
0.02087 0.08333
-0.067394 0.08333
0.05579 0.08333
0.00349 0.08333
0.09845 0.08333
0.02171 0.08333
0.04251 0.08035

A

LEVEL



Responsa: Back F.
-0.8904100 00
-0.1084410 01
-0.6922030 00

0.1668520 00
0.71634620-01
0.131112D0 01
0.5576900-01
-0.1092310 01
0.257323D0 00
0.8941680D 00
0.718955D 00
0.395%9561D 00
0.1530830 01
~-0.9434240D 00
0.5190990 390
-0.1490290 00
-0.579190D0 00
0.17493230 01
0.1598110 Q1
-0.1996750 00
-0.124174D 01
0.2350%90 00
-0.35%0454D0 00
~-0.648630D 00
-0.112923D 01
0.843524D 00
0.1158070 01
0.4025410 00
0.2245400 00
-0.5037440 20
-0.173147D0 01
0.262732D0 01
-0.101747D 01
-0.98313%3D 00
-0.236505D 00
-0.128703D 01

Flow 65-76
-0.8936567D 00
-0.1909440 00
-0.637937D 20

0.5608793D0 00

0.616439D Q0

0.1340560 01
-0.5%862410 00
-0.773019D 00

0.489010D 00

0.824956D 00
-C.2A185610 00

0.1355370 01

0.1675570 01
-0.219978D 01
-0.2602630-01

0.1071230 00

0. 6047490 00

0.1422800 01

0.1416A3D 01
-0.6679760 00
-0.3234430 00
-0.263533D 090
-0.105141D0 01
-0. 6730300 00
-0.8535960 00

0.9192300 00

0.3398559 00

0.7175260 00

0.7015440 00
=C. 1028460 01
~0.117470D0 0}

0.1401040 01
-0.775974D 00
-0.1530G65D0 01

0.92195%80 00
-0.1482720 01

142

m*%3/s5 lambda=0 Fm=6 Fs=6

-0.644453D
0.1328330D
-0.5387470
0.816429D
0.223899D
0.10158200D
-0.5511380
0.%077970
0.1140456D
0.124273D
0.970571D
0.1329770
0.125534D
0.110325D

~0.4805710-

0.1549700
-0.960707D
0.83146530D
0.774051D
~0:37L596D

-0.875556D~

0.2941070D
-0.1282260D
=0.7600758D
-C.1642410
-0.184270D
0.8501420D
0.788579D
-0.5449293D
-0.1056450
-0.815981D
-0.352834D
~-0.6347730
=0« LHT2720D
0.8231620D
~0.20275560

00
01
00
00
00
01
00
00
01
01
00
01
01
0l
01
00
00
00
2C
00
01
o0
01
00
01
01
00
00
Q90
o1l
0o
00
90
01
00
01

~0.5392590 00
0.2077323 00
-0.1193230 00
0.9584490~-02
-0.325307D 00
0.323865%0 00
-0.623809D €O
0.1288460 01
0.1156180 0C1
0.18253380 01
0.5929070-01
0.1512180 01
0.331872D0 00
0.215858D 01

-=0.136348D0 GO

-0,642435D-01]
-0.496550% 00
. 7328620 00
0.7612010 CO
-0.706553D 00
0.4590120 00
0.9169249 00
0.327176D 00
-0.4639000 00
-0.182964) (1
-0.119943%9% 01
0.846379D 09
0.9166242 CO
0.583404D 00
-0.1128560 01
-0.2142330 00
-0.1£8603D 01
=0, 1255480 01
-0.1476400 01
-0.2152930 00C
-0.1901870 01
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Transfar Functicn No. 1t averzged rainfall mm
Baker L. and Contxoyto L. lambda=1 Fm=6 Fs=0

0 0 0 =-.15566665

-4.708335 -3.3743385 —10.125 ~18.41665

-31.29165 -2.25 0 0O

0 0 0 -.1lhAHEELS

8.291665 -4.875 1.A75 =5.916¢&5

-4,29165 ~2.25% 0 0

0 0 0 - 16666065

5. 208335 P3.125 13.875 ~-5.4165665

8.708335 5.25 0 O

0 0 0 =.16h66663

-1.708335 -15.375 -12.625 -13.416K69

25.20835 .75 0 O

0 0 0 -.1665665

-6.208335 =4.375015 23.875 -11.416865

-24.79165 =-1.75 0 O

0O 0 0 =.1666665

=5 908335 12.124985 13.375 17.583335

18.70839% 5.25 0 O

0 0 0 =-.166K56065

-1.708335 =9.374235 1.375 2.08335

16.203335 6.75 0 O

0 0 0 -.16466665

-2.2083335 -13.375 .-9.125 3.083335

-17.791665 =-3.25 0 O

0 O 0 -.1666665

.2916665 -.875 -28.125 33.58335

20,203%35 -2.7% 0 O

0 0 0 =-.l166666%9

- 208335 - 8. 125015 T.875 ~B.91665

-22.26165% =-3.25 0 0

g 0 9 1.533335

—-.208335 ~-7.374935 7.375 26.58335

.208335 .79 0 O

0 0 0 =-.1666665

18.79165 16.625015 =-9.625 -19.415669

11.203335% -3.25 0 0O
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Transfoar Functicn Ho. 2: Averaged Tamozratursas C
Raker L. and Contwoyto L. lambda=1 Fm=6 Fs=0
months 1 4 7 8 11 12 constrainesd
~-5.47083 1.28125 0 =1.12129% -1.970%35% 0
-2.54125 =2.2375 0 O
1.02916925 1.35625 0 213759 .82914725 O
2.2187% =2.4125 0 O
-2.69533 -1.14379 0O =-1.78125 -2.22C835 0O
<3137% 2:x112% @& 0O
2.27917 3.88125 O =-2.2%625 -.1958335% O
1.94375 3.412% 0 O
5.75417 =-.36875 0 -3.43125 -3.845835 O
-.25625%5 1.812% 0 O
-1.17033075 1.75625 0 =3.48'25 .92916Kh% O
.01875% 1.2625 0 O
3.50417 75625 0 1
1.563875% 2.8625 0 O
-4,39533 _.2812% O ~-1.%3129% -2.73583575 O
-3.03125%5 -5.5%375 0O O .
-.72083075 1.00625 0 4.01875 2.404165 O
2.34375 3.0375 0 0
-.195833075% -3.25375 0O 1.71875 3.029155 O
=3.1812% =-5.0A7% 0 O .
2.87917T =2.3637T5 0 -3.7647T5 3.029165 @
1.01875 .7375 0 O
-.795830825 -3.16875 0 2.16875 -.3458335 O
-.,08125%5 .2375 0 0 :

ransfer Functicn No. 3: Contwoyto Lak=2 Temperzture (

Juna only

« 76875 1.154165 O

4 0000000000000 O00OODDCOO0 00O

0 2. %3333 ©
2.76667 0
-3.73333 O
-+433333 0O
-4.%3333 0
L766667 0O

1.06667 0.

-«933333 ¢

3.66657 0

1.66667 O

2.26667 O

=e:l 33333 10

oNoleoNoNeloNeNolloNeoNollo N ololleNoNoeNloleNeNolNeoNoNe
[eNeleoNe oo NeoNe oo NoloNole ool leNeoNeNoNoRo e
COO0O QOO0 O0OODO0OO0OCOO0CO0OO0COOO0ODOOODOOO

[eNeoleNeNeoNeNeNoNeNeoNeolleBoNolNeoNoNoleoNoloNeNoNo e
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TREE RIVER : T . oartl COPPERMINE — DSRAIN,t»APRILTEMP

SaARTYA( &» 0, 1)( 0, O, 0) O

LENGTH OF THE INPUT TIME SERIES = 95
LENGTH OF OUTPUT SERIES OF TRANSFER FUNCTION = 95
SUM OF SQUARES  RESIDUAL VARIANCE B1C
6.09264652D 00 6.317126180-02 356.5
ESTIMATED MEAN OF SERIES
MEAN S.E.(4EAN)
-1.5528157D-03 2.2362152-C1

ESTIMATED BETA PARAMETERS

BETA SE(BETA)
0.3165 C.1195
8. 0.

D4 : 0.
0. | 0.
0. 0.
B 0.
0. 0.
-0.25038 0.0931
-0.5732 0.1076

CORRELATION MATRIX OF BETA
1.000
0.112 1.000
0.629 0,061 1.000

TRANSFER FUNCTION NO. 1» IU=0, [VY=0, IDELAY= 0
MEAN CCORRECTION =-3.8172950-19
TAU S.D.(TAU)
1.8072210-03 l. €555440-03

TRAMNSFER FUNCTIJIN NO., 2. IU=0s IV=0s IDELAY= 0
MEAN CCRRECTION =-3.3881320-20
Tau S.D.(TAU)
3.933774D~-02 l. €624170-02

TRANSFER FUNCTIOHN NO. 3» [U=0s IV=0, IDELAY= 1
MEAN CCRRECTION =-9.035018D-21
TAU S.D.(TAU)
3.095679D-02 1. 749%5450-02

CORRELATION “ATRIX JF TAU
1.000
0.130 1.000
-0.241 ~-0.349 1.000
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SKEWNESS
Gl SL
-0.3037 0.203322

TEST FOR HETEROSCEDASTICI 1Y DEPENDING OW THE CURRENT LEVEL

CHI Sc(CHIL)
-0.566156 c.510702
TEST FCR TRENDS IN THE VARIAHNCE OVER TIME
CHI SE(CHI)
-0.003757 0.0G5209

RESIDUAL AUTOCORRELATIONS

L RA(L) SE(L) QL)

1 -0.002058 0.026%39 0.0C0043
2 0.03533 0.04741 0.12538
3 0.07335 0.09776 0.A6970
4 -0.04083 0.09947 0.44016
5 -0.00714% 0.10148 0.265672
6 -0.05341 0.101283 1.14362
7 -0.07235 0.10199 1:69691
8 0.01542 0.06142 L.722:32
9 -0.00311 0.09383 172337
10 0.03769 0.10012 1.37379
11 -0.03333 0.10163 2.04610
12 -0.08549 0.10200 2.86474
13 0.02760 0.10205 2.95106
14 -0.05394% 0.10206 32 8%85
15 0.03752 0.10206 3.54927
16 -=0.012732 0.0993% 3.4689C
17 -0.00697 0.10083 3.474569
18 -0.00773 0.101¢63 3.431990
19 0.02723 0.10193 3.572838
20 -0.02301 0.10203 3+:66999
21 0.02509 0.10226 3.7489¢6
22 -0.04225 0.10206 3.97588
2.3 0.07760 0.102C6 4.75203
24 -0.11339 0.101 89 6.44699



Recsponsa: Tras R. Flow 69-76 m**3/s lambda=0 Fm=6 Fs=C
-0.162763D 20 -0.182852D 00 -0.16%476D0 00 =-0.1272370 00
0.2323630 00 -0.827931D 00 -0.5223300 00 0.472827D0 00
0.666694D 00 0.4406950 00 0.234237D ©C9 0.2943430-01
-0.1231360 00 -0.13%333D 00 -0.5938710-01 -0.3056040-01
-0.4652670-01 0.406738D0 00 -0.314572D0-01 0.511474D-01
0.3231340 00 0.4822370 00 0.592712D 00 0.240872D0 00
-0.2419580-01 =-0.761971D-02 =0.1364900 Q0 ~-0.399993D 00
-0.360273D N0 =0.5639770 00 -0.9405000-01 -0.4795460-01
0.3161100-01 0.152953D 00 0.4384820 00 0.6334779 00
0.7169530 00 0.6386170 00 0.715975D 00 0.3620055 00
-0.4447070 00 0.5444740 00 0.32411210 0C -0.1923620-C1
~0.204428D 00 -0.331164D CO -0.33760730 00C -0.2907370 00
-0.190497D 00 -C.68733450D-01 0.1488040D 00 0.271943) 0606
0.3487630 00 0.2013600 00 =-0.6851840-01 -0.125964D 00
-0.1234150 08 -0.7955370-01 -0.4354190D 00 -0.5512062 QO
-0.3723300 00 -0.1473320 00 0.A97023C=-01 0.1500530 00
0.3109350 00 =-0.185714D 00 =-0.192247D0 00 -0.1957930 CO
-0.351116D 00 -0.4628500 00 -0.21294790 0O 0.1297769 00
0.4589200 00 0.6451990 00 0.5670990 00 0.8835960-01
0.1378490-01 0.2860410 00 0.155244K0 00 =0.2659252 00
-0.358578D 00 -0.418219D 00 -0.5020640 0O ~-0.37020960 0C
-0.3029460 00 -0.801891D 00 =-0.1156230 01 =-0.3125709 00
0.440624D CO 0.139009D 00 0.411635D0 00 0.130903D 00
0.1609830-01 0.26598420 00 0.172603D 00 0.178741D2 00
Transfar Function Mo. 1: Coopsrmine Rainfall mm
fambda=l Fm=6 Fs=0

0. 0. 0 0.

0.225002D 01 -0.1137500 02 -0.83750CD 01 0.127500D
-0.6125000 01 0.2375000 01 0. 0.

0. 0. 0. 0.
-0.7750090 01 =-0.113750D0 02 0.36250C0 0l 0.879000D

0.308750D0 02 -0.1625000 Ol 0. 0.

0. 0. 0. 0.
-0.3750000 C1 0.8625000 01 0.1262500 02 -0.1425000

0.5875000 01 0.3375000 01 0. C.

0. 0. 0. 0.
-0.6750020 01 -0.153750D0 02 -0.173750D0 02 -0.2500000
-0.712500D0 01 -0.1625000 Ol 0. 0.

0. 0. 0. C.

0.425000D0 01 0.4362500 02 -0.113750D0 02 0.3375000
-0.125200D 09 0.2375000 01 0. 0.

0. 0. 0. 0.
-0.775002D0 01 =-0.375C00D0 00 0.1562500 €2 -0.2325900
~-0.8125000 01 =-0.1625007 0l 0. 0.

0. 0. 0. 0.

0.2500070 00 =-0.1037500 02 =-0.3375000 0! -0.3225000
-0.1125000 01 =-0.1625000 0l 0. _ 0.

0. 0. 0. 0.

0.192500D0 02 =-0.2375000 01 0.1362500 02 0.1475000
-0.141250D0 02 =-0.1625000 01 0. 0.

02
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Transfer Function No. 2: Coppermine Temnarsture C
|l ambda=1 Fm=6 Fs=0 months 1 2 3 4 8 11 12 constrained

0 0 0 0 =-1.5125 =~-2.225 .25
0 1.1375 4.537% 0 0
0 0 0 0 =~2.7125 .975 =-.3%
0 =1.2625% =.,5125 O O
0 O 0O 0 1.6375% 575 .45
0 .6375 2.6875 0 O
0 0 0 0 =-3.2125 =-1.929 =1.55
0 -3.4625 =3.2125 0 O
0 0 0 0 2.6375 1.475 1.55
0 3.0375 3.4875 0O 0
6 0 ¢ 0 =-.8125 =~,62% =-.1315%5
O =2+41625 =65125 0O 0
0O 0 0 G¢ 3.08%7% 13.079 =.05
0 .6375 =2.0125 0 0
0O 0 0 0 .7875 =-1.02% .05 -
0 1.4375% 1.4875 0 ©

Transfer Function No. 3: Copparmine Temperature G

April only mean has been subtractad

0O 0 0 2.125 0 0 O

0O 0 0 0 o

0 0 0 =-1.47%5 0 0 O

0O 0o 0 0 0

0O 0 0 =-.679 0 0O O

0 0 0 o0 o0

O 0 0 =4.77% 0 0 O

0O 0 0 0 o

0 0 0 =-.175 0 ¢ O

0O 0 0 0 o0

0 0 0 -5.075 O 0 O

0O 0 0o 0 0

0 0 0 5.725 0 0 O

¢ 0 0 0 o

0 0 0 4.325 0 0 O

0O 0 0 0 o0



e




