

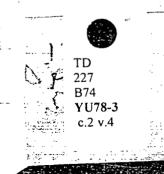
and which is a later when he had been been been been been an all and a state of a later of a later of a later

Environment Canada

Environnement Canada

Environmental Gestion de Management l'environnement

WATER INVESTIGATIONS ALONG THE ALASKA HIGHWAY PIPELINE ROUTE IN THE YUKON TERRITORY


APPENDIX F

MICROBIAL WATER QUALITY OF THE OGILVIE AND SWIFT RIVER BASINS

bу

L.J. Albright, K.V. Masuda and G.L. Ennis

December 1978

Inland Waters Directorate Pacific and Yukon Region Vancouver, B.C.

TD 227 B74

YU18-3

V.4. C.1

WATER INVESTIGATIONS

ALONG THE

ALASKA HIGHWAY PIPELINE ROUTE

IN THE YUKON TERRITORY

APPENDIX F

MICROBIAL WATER QUALITY OF THE OGILVIE

AND SWIFT RIVER BASINS

by

L. J. Albright and K. V. Masuda Dept. of Biological Sciences Simon Fraser University Burnaby, B.C. V5A 1S6

and

G. L. Ennis

Water Quality Branch Inland Waters Directorate

Dept. of Environment

Vancouver, B.C.

December 1978

LIBRARY ENVIRONMENT CANADA PACIFIC REGION

1302.1 A1191

ACKNOWLEDGEMENTS

We thank the staff of the Water Quality Branch and the Water Quality Laboratory, Inland Waters Directorate, Vancouver, for aid and encouragement in conceiving this study, carrying out the field and laboratory portions and writing this report. We are especially appreciative of Woody Erlebach, Fred Mah, Steve Sheehan, Paul Whitfield, Leslie Churchland, Jim Taylor, and Eric Michnowsky for valuable discussions and in the case of the latter three, aid in field operations.

i

The aid of Monty Alford, Water Survey of Canada, Whitehorse, in field operations is appreciated.

We thank John Keays, Powell River, for invertebrate analyses.

Finally, we thank Peter Strilaeff for his patience and encouragement whilst overall coordinator of this project.

TABLE OF CONTENTS

58

		Page
Abstract		iii
List of Figures		iv
List of Tables	, i	v
List of Appendices		vi
Introduction		1
Materials and Methods		3
Results and Discussion		19

Literature Cited

ii

ABSTRACT

The sub-Arctic Ogilvie and Swift Rivers are characterized by annual cycles of microalgal and bacterial standing crops and activities which are maximal in late spring (following ice "break up") and summer with minimal values noted in late winter. Levels of algal standing crops and phytosynthetic rates appear to be regulated by available light whereas numbers and activities of heterotrophic bacteria are probably controlled by DOC content of the water.

Perturbations of those two river waters by streambank materials alter microbial activities, such that Biological Oxygen Demand tends to be increased by streamside materials additions at levels in excess of 0.10 g/litre.

These rivers tend to be most sensitive to streambank materials additions in winter and least sensitive in late spring (following ice "break up") and early summer.

LIST OF FIGURES

Ï

Figure 1.	Sampling stations in the Ogilvie River drainage basin, Yukon Territory.
Figure 2.	Sampling stations in the Swift River drainage basin, Yukon Territory.
Figure 3.	Water Temperatures (C) and time of sunlight (h) of the Ogilvie and Swift Rivers.
Figure 4.	Syringe sampler - incubator for heterotrophic activity assays.
Figure 5.	Epilithic algae / bacteria productivity box.
Figure 6.	Viable phytoplankton concentrations (cell/ml - 500 x magnification) of several streams of the Ogilvie and Swift River drainage basins.
Figure 7.	Total periphytic diatom concentrations (cell/cm ² - 1000 x magnification) of several streams of the Ogilvie and Swift River drainage basins.
Figure 8.	Seasonal distributions of five major phytoplankton species in the Ogilvie and Swift River.
Figure 9.	Seasonal distributions of the seven major periphytic streams in the Ogilvie and Swift Rivers.
Figure 10.	Dissolved (DOC, mg C / ℓ), particulate (POC, mg C / ℓ) carbon concentrations, and non filterable residues (mg / ℓ) of the Ogilvie and Swift Rivers.
Figure 11.	Glucose turnover time (T _t), maximum velocity of uptake (V _{max} and K _t + S _n values of the Ogilvie and Swift River waters.

١v

)

LIST OF TABLES

Table l	Periphytic (mg/m ²) and planktonic (mg/m ³) chlorophyll a concentrations of several streams of the Ogilvie and Swift River drainage basins
Table 2	Percent composition of periphytic algae of several streams of the Ogilvie and Swift River drainage basins
Table 3	Epilithic and planktonic bacterial counts of Ogilvie and Swift River water and stream bottom material, as determined by epifluorescent microscopy and nutrient algal plate counts
Table 4	Invertebrates (numbers/m ²) of several streams of the Ogilvie and Swift River drainage basins
Table 5	A comparison of glucose heterotrophic potentials (V _{max}) of several lakes and rivers
Table 6	Periphytic (mg C/m ² /day) and planktonic (mg C/m ³ /day) algal productivities of the Ogilvie and Swift Rivers
Table 7	Epilithic (mg C/m ² /day) and planktonic (mg C/m ³ /day) and planktonic (mg C/m ³ /day) of the Ogilvie and Swift Rivers
Table 8	Respiration rates for several Arctic and sub-Arctic Canadian water bodies
Table 9	Biological Oxygen Demand (mg $0_2/\ell$) of waters removed from the Ogilvie and Swift Rivers and incubated at 1 \pm 1 C
Table 10	The influences of three Swift River streamside soil horizons upon Biological Oxygen Demand of Ogilvie and Swift River waters (sampled 10 March, 1978). Incubation temperature = 1 ± 1 C.
Table 11	The influence of two streamside soil horizons upon planktonic algal (mg C/m ³ /day) and heterotrophic (mg C/m ³ /day) productivities of the Swift River

LIST OF APPENDICES

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Cellular volumes of algal species listed in Appendices 2 and 3

Viable phytoplankton concentrations of several streams of the Ogilvie and Swift River drainage basins

Periphytic diatom concentrations of several streams of the Ogilvie and Swift River drainage basins

Cyanophyta, Chlorophyta and Chrysophyceae species occurring in the periphyton of the Ogilvie and Swift River basins

Invertebrate concentrations of several streams of the Ogilvie and Swift River drainage basins vi

INTRODUCTION

This biological study was initiated by the Water Quality Branch as part of a much larger Inland Water Directorate program to obtain information necessary to adequately review the Alaska Highway gas pipeline environmental impact statement. This study was restricted to a one-year (Oct. 1977 -Aug. 1978) in-depth investigation of two river basins. Emphasis was placed on understanding processes in these two northern rivers rather than on establishing baseline water quality information on the hundreds of waterways which will be affected by the pipeline.

The study areas were (1) the Swift River Basin $(59^{\circ}45'-60^{\circ}50'N)$ $130^{\circ}45'-132^{\circ}W$) in the Southeast Yukon and (2) the Ogilvie River Basin $(65^{\circ}-65^{\circ}45'N, 132^{\circ}30'-138^{\circ}30'W)$ which is located along the Dempster lateral pipeline route in the northern Yukon. Maps of these two basins showing our sampling sites are presented in Figs. 1 and 2. Criteria used in selecting these basins are listed in Schreier (1978). The most important criterion for this study was that both rivers have a high biological productivity. The Swift River, located in the Yukon River drainage is in a chinook salmon spawning area (Chinook Fry were captured while sampling for invertebrates). Slimy sculpins and arctic grayling are also abundant. Aquatic plants in the Swift River consist of aquatic mosses (Dicramella palustris, and Dichodontium pellucidum), macrophytes, (dominated by Hippuris sp.) and benthic algae. The Ogilvie River, on the other hand, is located in the Mackenzie River drainage basin and has no salmon, although we have captured arctic grayling and sculpins. Algae were the only type of flora observed in the Ogilvie River. Benthic invertebrates, and planktonic and epilithic bacteria

are present in both river basins.

The present study is limited in scope to a microbial (algae, bacteria, invertebrates) investigation. A study of the fisheries resource along the pipeline route has been conducted by Northern Natural Resource Services Ltd. for the Federal Fisheries and Marine Service (1977). At present there is little information on microbial standing crops and productivities in Canadian sub-Arctic and Arctic rivers and, in general, studies which have been done are limited to spring and summer months.

Objectives of this study were (1) assessment of biological activity during the winter months, when pipeline construction is scheduled to occur (2) development of techniques for winter under-ice experiments (3) establishment of seasonal variations and between river differences (4) the relationships of these variations to chemical (see Schreier, 1978) and physical conditions and (5) the evaluation of the sensitivities of the two rivers to disturbance (by performing *in situ* and laboratory perturbation experiments).

MATERIALS AND METHODS

Periphytic algae were sampled by removing representative rocks (usually four from each site, each ca. 20 cm in diameter) from the streambed of each river or creek, at locations noted (Figs. 1 and 2) and ca. 100 cm² areas were immediately scrubbed with a nylon nailbrush. The detached microflora on the rock and brush were then sluiced into a container with the aid of a wash bottle containing distilled water; this entire procedure was repeated twice. See Sheehan *et al.* for a more detailed description of this technique.

The area of each rock sampled was determined by fitting aluminum foil to the scrubbed contour, removing the foil, pressing it flat and measuring its area with a polar planimeter.

Each periphyton suspension was wet filtered, within 3 h, onto either 5.5 or 10 cm diameter Whatman GF/C glass fibre filters using a maximal vacuum of 18 cm Hg. Immediately following this filtration each filter was bisected and the cells of one half of the filter washed into a sterile container, and preserved with acid Lugol's solution till assayed for algal species and numbers. The remaining half of each filter was treated with a MgCO₃ suspension, frozen (Dec., Mar., May (Swift) and June (Swift) samples were not frozen) and kept in the dark until used for chlorophyll a extraction and analysis.

Chlorophyll a content of each sample was assayed by extracting each GF/C filter (with filtered algae) in an acid free acetone: water (9:1)

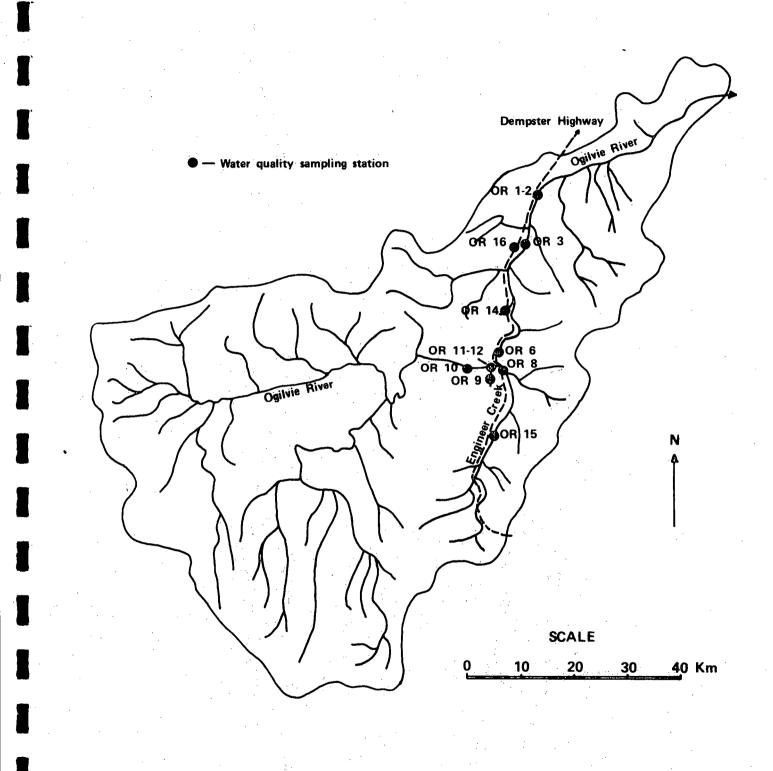
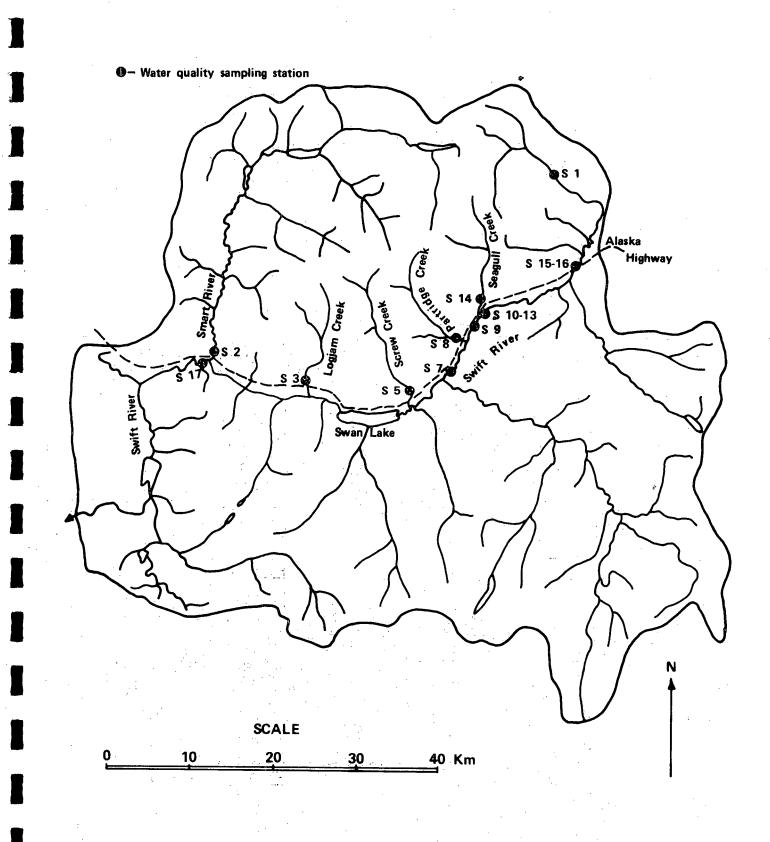



Figure 1 Sampling stations in the Ogilvie River drainage basin, Yukon Territory.

mixture using a High-Speed Polytron homogenizer followed by filtration (0.45 um Gelman Alpha-6 material filter) of the sample to remove debris and particulate matter. The residue was then re-homogenized and filtered again. Both filtrates were combined and made to 15 ml with 90% acetone; chlorophyll a content was measured spectrophotometrically (corrected for phaeophytin) using extinction values of Lorenzen (1967) as described by Strickland and Parsons (1968).

Periphytic diatom identifications and cell counts were made on subsamples which were first cleaned in H_2O_2 or nitric acid (Patrick and Reimer, 1966), evaporated onto cover slips (Battarbee, 1973) and then mounted on microscope slides with Hyrax medium. Microscope transects were then examined using phase contrast microscopy (1000 X magnification); all diatoms were identified and counted till there was a total count of 200 frustules. Suitable conversion factors were then used to transform counts to cells/cm².

The works of Patrick and Reimer (1966), Cleve-Euler (1951-1955), Hustedt (1930, 1931-1959) Huber-Pestalozzi (1942), Sreenivasa and Duthie (1973) and Weber (1966) were consulted for identification of the diatoms. The species classification outlined by Van Landingham (1967-1975) was followed except that *Cymbella caespitosa* was recognized as a distinct species. For genera not covered by Van Landingham (starting after the genus *Navicula*), the species taxonomy of Patrick and Reimer (1966), Cleve-Euler (1951-1955), Hustedt (1930), and Huber-Pestalozzi (1942) was followed.

The relative abundance of each algal phyla was measured in another subsample with an inverted microscope using methods detailed in Northcote *et al.* (1975). Cyanophyta and Chlorophyta species were qualitatively measured for relative abundance and identified using Prescott (1962), Hoek (1963), and Bourrelly (1966, 1968, 1970).

Samples for phytoplankton analyses were obtained by allowing water to flow into a clean 100 ml container placed 5 - 10 cm below the surface of each river or creek sampled. Approximately two ml of acid Lugol's solution were then added to preserve each sample which were subsequently analyzed using the Utermohl (1958) technique which involved sample transfer to 5, 10, or 25 ml settling chambers (depending upon algal density) and enumeration with an inverted phase contrast microscope. Microscope transects were examined at 500 times magnification and all phytoplankters identified and counted until there was a total count of 200 cells (except; colonies composed of small cells were counted as individual colonies). Suitable conversion factors were used to transform counts to cells/ml.

Planktonic diatoms were identified using the reference works described above as well as Patrick and Reimer (1975). Geitler (1932) and Prescott (1962) were used to identify planktonic algae from other planktonic classes.

In all cases both live and dead planktonic microalgae were counted separately.

Phytoplankton and Periphyton diatom species volumes were determined as follows. The dimensions of ten representative cells of each species were microscopically measured and these values used to determine average cell sizes for that species. Surface area of each diatom species (drawn to scale) was then determined using a polar planimeter. This value was then multiplied by the cell's depth to determine the average cell volume in um^3 (Appendix 1). Phytoplankton volumes from other algal classes were calculated by the use of geometric formulae.

Viable heterotrophic bacterial numbers were determined by spreading water and epilithic samples upon the following medium: Bacto-beef extract, 3g; Bacto-peptone, 5g; Bacto-agar, 15g; distilled water, 1 liter; pH 7.2 within several hours of sampling. The Petri plates were then maintained at temperatures of from 1 - 10 C whilst being transported to a laboratory at which time they were incubated at 5 C for 3 weeks before colonies were counted.

One-tenth ml samples of water were plated directly to assay planktonic bacterial numbers whereas epilithic bacterial counts were determined using the "scrub water" obtained as outlined above and before the addition of Lugol's solution.

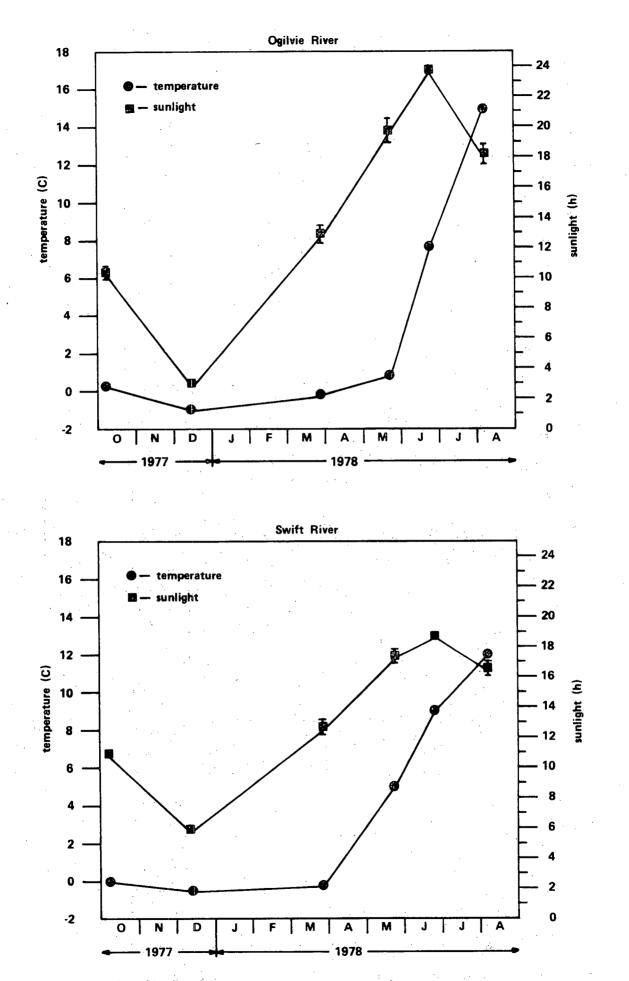
Total planktonic and epilithic bacterial counts using water and "scrub water" respectively were done using epifluorescent microscopy, as described by Daley and Hobbie (1975) and Hobbie *et al.* (1977).

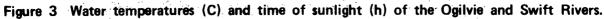
Benthic invertebrates were sampled by placing a Surber sampler (1 mm mesh size) on a streambed (water depth of ca. 20 cm) and picking up all larger rocks and scrubbing them in front of the net. The remaining

fine material was thoroughly stirred to dislodge organisms which were subsequently washed into the net. In this way streambed material was sampled to a depth of ca. 10 cm. At each location 4 or 5 samples were collected and then combined in a single plastic bag, preserved with a 5% formaldehyde solution and transported to the laboratory for analysis by J. Keays, Powell River, British Columbia.

Laboratory analyses were done by placing each sample in a white enamel tray and first removing organisms larger than ca. 1 cm. Each sample was then sorted in Petri plates and organisms smaller than 1 cm were removed. All organisms were identified with the aid of dissecting and compound microscopes. The texts used in identifications were (Johannsen, 1969; Usinger, 1956; Needham *et al.*, 1935; Smith, 1968; Ross, 1944; Edmondson, 1959; Ricker, 1943, and Classen, 1931). Suitable conversion factors were applied to convert counts to number of organisms per square meter.

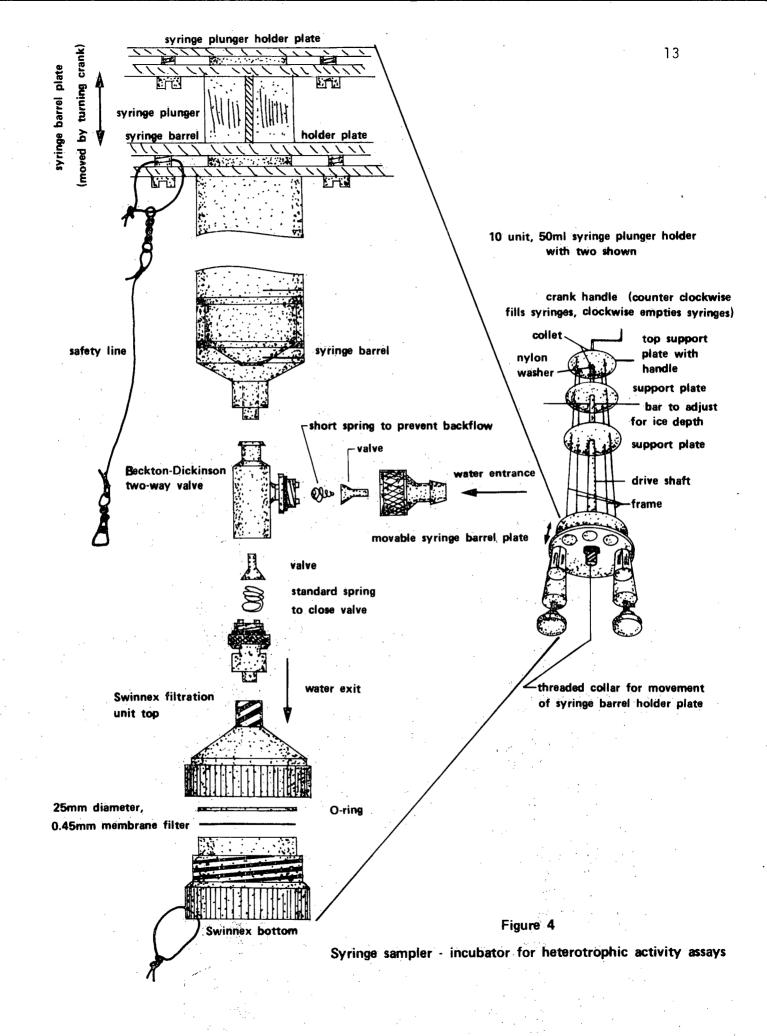
Dissolved organic carbon (DOC) was assayed by the wet oxidation technique of Menzel and Vaccaro (1964) whereas particular organic carbon (POC) values were determined using a Beckman CHN analyzer. Gelman A/E filters were used to separate DOC from POC and all samples were frozen till assayed.


Total inorganic carbon (TIC) values of sampled river waters were determined with the use of a dual channel carbon analyzer - Beckman model 915 equipped with a Beckman model 215B infrared analyzer. Aliquots of blended water were injected into a combustion tube heated to 175 C containing

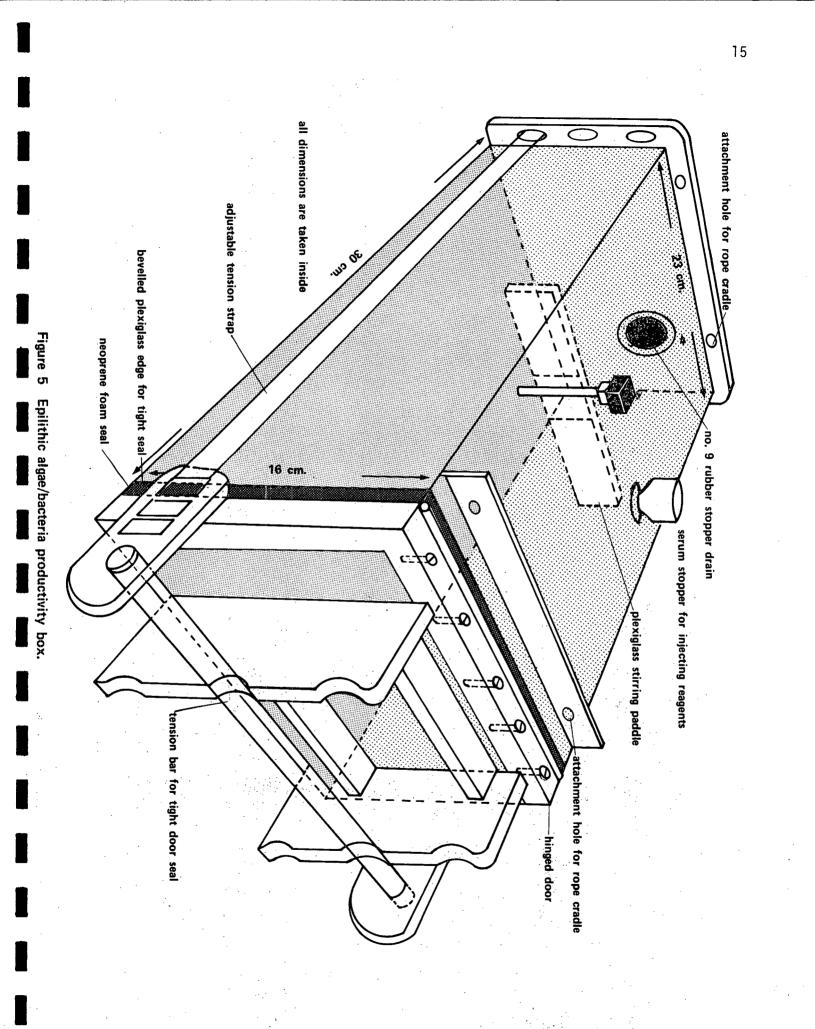

85% H_3PO_4 on quartz chips. The CO_2 liberated was quantitatively assayed using an infrared analyzer and standard inorganic carbon solutions.

Theoretical maximum hours of sunlight at each river were determined using the Nautical Almanac (1976, 1977) (Fig. 3). The actual energy available from the sunlight would be less due to mountain shading, cloud cover, angle of the sun, river ice, snow cover, water turbidity, etc.

Concentrations of non filterable residues were determined by filtering water samples through tared Whatman GF/C filters (previously heated to 450 C for 4 hours). This dried residue remaining upon each filter was considered to be non filterable.


Glucose heterotrophic potentials (V_{max}), turnover times (T_t) and $K_t + S_n$ (K_t refers to the transport constant whereas S_n denotes the natural concentration of substrate) values were determined by aspirating water samples into ten-50 ml disposable plastic syringes (with attached Beckton-Dickinson two way valves). Each syring contained an appropriate concentration of tritiated glucose (D-[6-³H] glucose, specific activity 10 Ci/mmol; Amersham/Searle Corp.) and was inverted several times following water addition to mix the sample. Controls consisted of samples poisoned with 5% glutaraldehyde before addition of water. In this study tritiated glucose was added to yield a final concentration range in the various water samples of from 0.001 uCi/ml (10⁻¹⁰M glucose) to 1 uCi/ml (10⁻⁷M glucose). Water samples were incubated *in situ* for periods of 30 - 240 minutes, depending upon water temperatures; care was taken to ensure substrate utilization was linear with time. The incubations were stopped by filtering the contents of each syringe

through 0.45 um pore size membrane filters, Millipore Corp. (25 mm) in diameter contained within a Swinnex filter holder attached to the exit port of each two way valve. Each filter was then washed with an approximately 30 ml volume of river or creek water by repeating the refilling and evacuation procedure. Care was taken to do all manipulations under water as exposure to ambient air temperatures (in some cases as low as -40C) might immediately freeze the contents of each reaction vessel. The device used for sampling and incubating the water samples is described in Fig. 4. Counter-clockwise rotation of the handle fills each syringe with water whereas a clockwise rotation empties each syringe.


Filters were placed in scintillation vials containing 15 ml of Aquasol scintillation cocktail (New England Nuclear Corp.) with 10% ethyl acetate. All samples were counted in a Beckman LS-250 liquid scintillation spectrometer. Counts per minute (cpm) were corrected for quench (by the external standard method), machine efficiency and half-life decay and were reported as disintegrations per minute (dpm). The tritiated glucose was diluted in carbon-free water prepared by the method of Strickland and Parsons (1968) and filtered through sterile membrane filters (0.22 um pore size, 25 mm diameter, Millipore Corp.) prior to use. No attempt was made to quantitate glucose respiration. See Dietz *et al.* (1977) and Wright and Hobbie (1966) for a more complete description of the technique as well as equations for calculation of V_{max} , $K_t + S_n$ and T_t . Bacterial specific activities were calculated as the glucose heterotrophic activity per viable heterotrophic bacterium.

Light (algal) and dark (mainly bacterial) productivities of the plankton were determined with the use of ${}^{14}\text{CO}_2$. Two light, two dark and two killed (1 ml of 5% glutaraldehyde added to each) BOD bottles (300 ml capacity) were filled with river or creek water and 5 uCi of ${}^{14}\text{CO}_2$ (as bicarbonate or carbonate - pre-membrane filtered (0.22 um)) added to each. The bottles were stoppered, inverted to mix the contents and incubated *in situ* for 4 hours (incubation times between 1000 and 1500 h were chosen). This procedure was used for all but the December 1977 samples when 24 h incubation periods were used. Following incubation, the reactions were stopped by adding 1 ml of 5% glutaraldehyde to the light and dark bottles and filtering the contents of each through 0.45 um pore size membrane filteres (Millipore Corp.) Following this, each filter was washed with 50 ml of pre-filtered river or creek water, placed in scintillation cocktail, as described above, and the dpm determined.

The light minus dark dpm values were used to calculate algal productivities whereas the dark minus killed values were used to determine heterotrophy productivities. See Romanenko *et al.* (1972) for a more complete description of this technique.

Ten-litre plexiglass containers (see Fig. 5) similar to those described by Schindler *et al.* (1973) were used to assay benthic light and dark productivities. River or creek bottom rocks (4-5) of average volume of 400-700 ml each were gently placed into each of one light, one dark and one killed (with 30 ml of 25% glutaraldehyde) control boxes and the remaining space filled with river or creek water. Each box was then placed on the

river bed for ca. 30 min. to allow a resettlement of the partially disturbed material. Following this 55 uCi of 14C-bicarbonate or carbonate (new England Nuclear Corp.) was injected into each box, the contents mixed, and the entire system was allowed to incubate for 4 h (between the hours of 1000 to 1500). The reactions in each light and dark box were then stopped with the addition of 30 ml of 25% glutaraldehyde. Known areas (see above for description of areal determination technique) of incubated rocks were scrubbed (see above) to obtain ¹⁴C-labelled microflora which was then preserved with glutaraldehyde, filtered onto membrane filters, oxidized with the use of a SEARLE combustor, and the released $14_{\rm CO_2}$ collected in scintillation fluor and the dpm of each assayed as described above. The volumes of the water which occupied each box were also determined at this Algal (based upon light minus dark dpm) and heterotrophic (dark time. minus killed control dpm) productivities were subsequently calculated on a per m² basis.

Waters for determinations of biochemical oxygen demand (BOD) values were placed in sterile 5-litre polyprophylene carbouys and shipped to Vancouver. Whilst in transit (for periods up to 2 weeks) the temperature of this water varied between 0 and 10 C. BOD values were obtained with the use of standard BOD bottles which were incubated in the dark for periods of up to 55 days at 1 ± 1 C. At times zero (the time at which the waters were added to the bottles in Vancouver), 21 and 55 days dissolved oxygen (DO) contents were assayed by the Winkler technique (Amer. Pub. Health Assoc., Amer. Water Wks. Assoc., and Water Poll. Con. Fed. (1965)).

Streambank materials for nutrient (DOC and POC) analyses and perturbation experiments were selected from one soil profile located near the stream bank in the alluvial floodplain in the Swift River basin. As is common in floodplain situations, the soil profile has been influenced by polygenesis. In principle, the soil profile belongs to the Brunisolic soil order, in the early stages of development and made up of the following five horizons: LFH, Ae, Bm(t), Bf and C.

The LFH, Ae, and Bm(t) horizons (Plate 1.) were used for the experiments and each can be described as follows:

<u>LFH</u>: an organic horizon characterized by accumulation of organic material in various stages of decomposition.

L = Litter: predominantly sphagnum moss, labrador tea, and spruce needles.

F = Partly decomposed litter, mainly leaves, needles and twigs and the original structure is difficult to recognize.

H = Humus: decomposed organic matter with no evidence of original structure.

(The L and F portions were dominant in the sample with only a small fraction of humus visible.)

- <u>Ae</u>: A leached mineral horizon with coarse sandy texture from which salts and clays have been removed by eluviation.
- <u>Bm(t)</u>: A slightly altered mineral horizon with evidence of illuviation, and changes in texture.

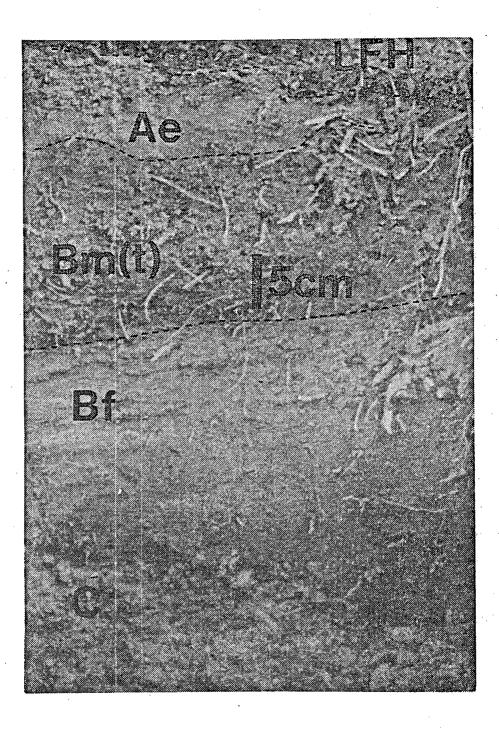


Plate 1. Vertical view of the soil pit adjacent to the Swift River showing the location of the LFH, Ae and Bm(t) horizons.

RESULTS AND DISCUSSION

A significant feature of both the Ogilvie and Swift Rivers was the seasonal changes in the values of many of the microbial (standing crops and activities) as well as chemical and physical parameters assayed. These included microalgal, bacterial and invertebrate cell numbers, algal and bacterial activities, as well as TIC, DO AND DOC concentrations. Generally, maximum and minimum values of each parameter occured in late spring-summer and fall-winter respectively*.

Algal, Bacterial and Invertebrate Standing Crops

Relatively larger concentrations of both planktonic and periphytic microalgae were present in these sub-Arctic Canadian rivers during the spring, summer and fall of 1977 - 1978 as compared to the winter of 1978 (Figs. 6 and 7, Table 1). Massive declines in standing stocks of these cells occured in early winter; generally the phytoplankton values decreased to approximately 1%

* In this manuscript sampling dates which correspond with seasons are 4-10 October, fall; 10-20 December, early winter; 22-30 March, late winter; 15-26 May, late spring; 17-30 June and 1-8 Aug., summer. "Freeze-up" occurred on the Ogilvie and Swift Rivers in the first weeks of October and November 1977 respectively. Ice "break up" occurred in early May 1978 (Ogilvie River, ca. 7.5 months of ice cover) and early April 1978 (Swift River, ca. 6.5 months of ice cover).

Aug.1978 1.50 1.8 0.1 13.8 -8 Periphytic (mg/m²) and planktonic (mg/m³) chlorophyll a concentrations of several streams of the Ogilvie and Swift River drainage basins. 17-30 June 1978 2.7 1.4 I 15-26 May 1978 1.57 2.9 0.3 4.5 0.7 Date of Sampling Mar.1978 1.45 0.0 10.4 22-30 10-20 Dec.1977 1.40 1.0 <0.5 <0.5 4-10 Oct.1977 1.53 2.7 0.2 7.70.6 Periphytic phaeophytin to chl. a ratio Planktonic Periphytic Periphytic Planktonic Table ¹. **Ogilvie** Swift River

1.39 1.4 l.63 1.32 0.1 4. 1.57 0.5 1.62 1.51 2.6 <u>،</u> Periphytic phaeophytin Periphytic phaeophytin to chl. a ratio to chl. a ratio Periphytic Periphytic 0R 8 S 5

Periphytic phaeophytin to chl. a ratio Periphytic

Continued

20

1.57

1.59

1.64

3.2

1.38

1.58

1.62

1.55

1.26

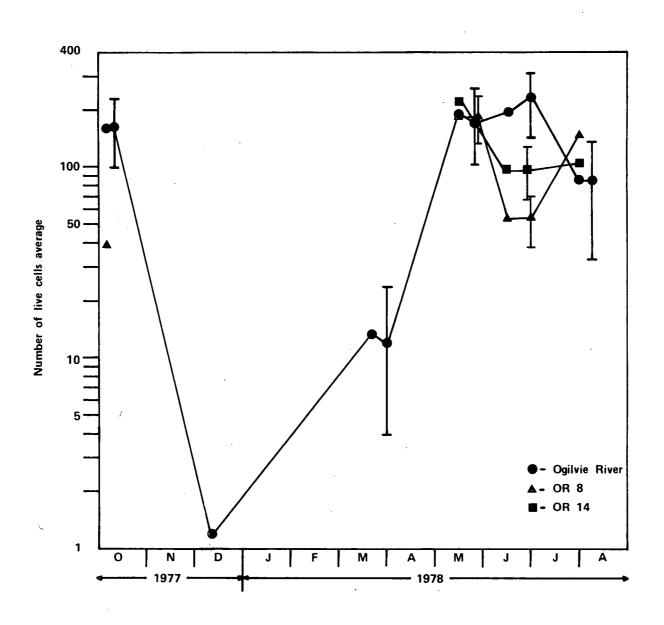
1.49

Periphytic phaeophytin

to chl. a ratio

S 14

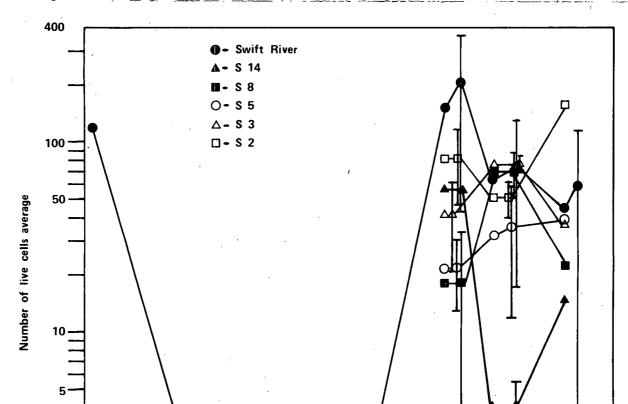
0.8


0.9

2

*For locations refer to Figures l and

Table 1. (continued)


1-8 Aug.1978 1.54 33.8 17-30 June 1978 1.49 1.66 . . . 0.8 143.7 . 15-26 May 1978 1.59 1.55 1.57 .67 4.6 5.6 3.4 1 Date of Sampling 22-30 Mar.1978 10-20 Dec.1977 4-10 Oct.1977 Periphytic Periphytic phaeophytin to chl. a ratio 0R 14 River S 2 S 8 S 3

· · · · · ·

3

ويتوجع بالمجا

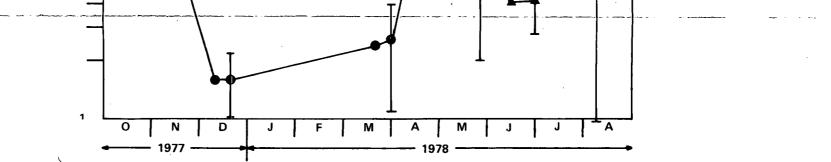
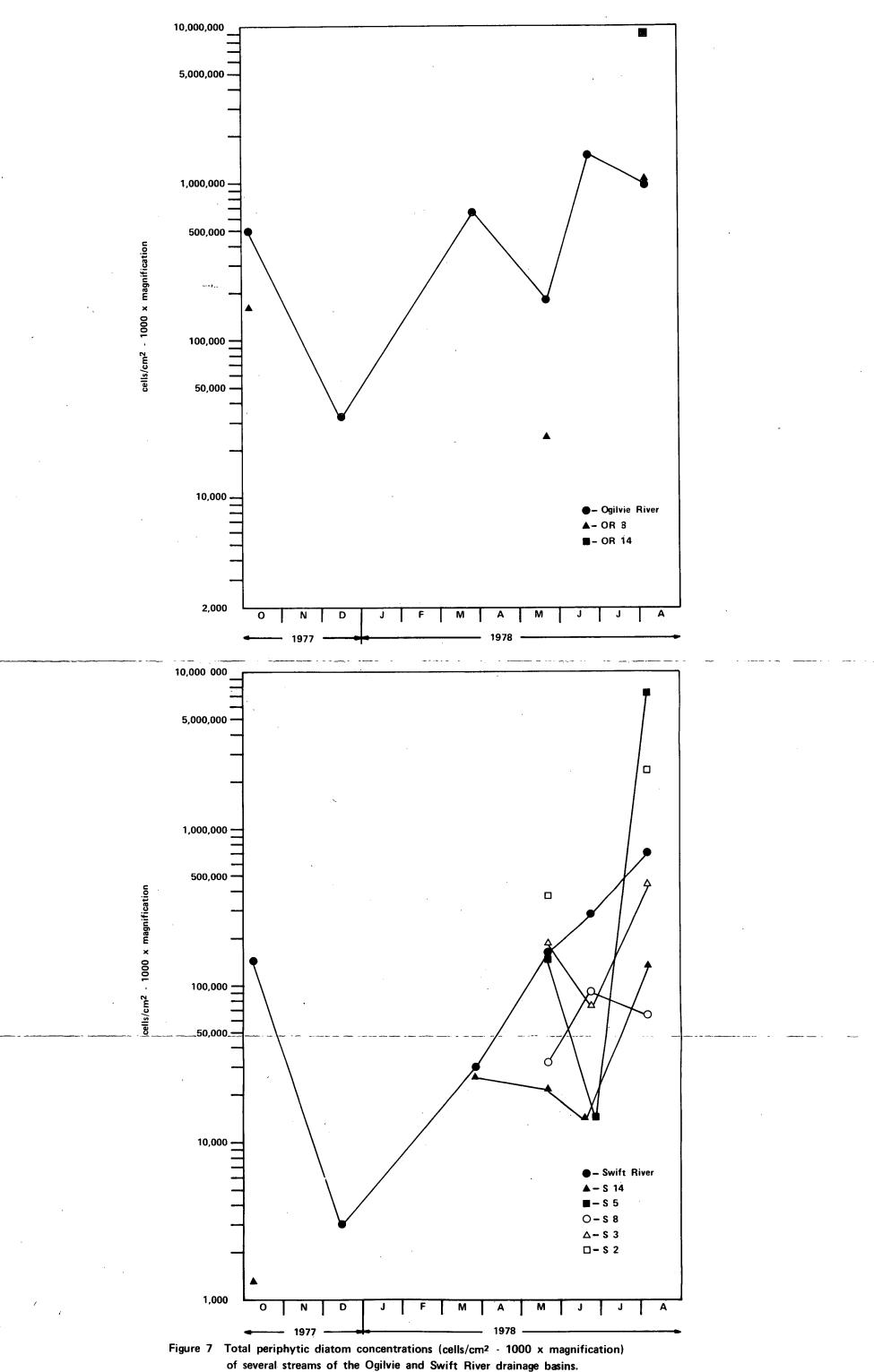



Figure 6 Viable Phytoplankton concentrations (cells/ml - 500 x magnification) of several streams of the Ogilvie and Swift River drainage basins.

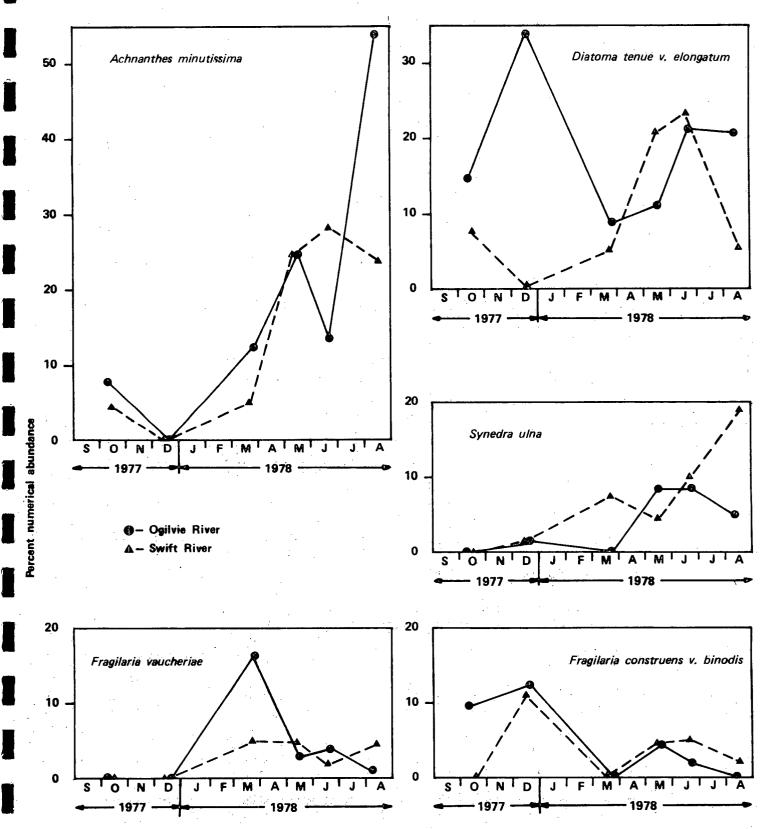
· · · ·

of their spring and summer levels (the percent viable (containing chloroplasts) phytoplanktonic cell numbers of both the Ogilvie and Swift Rivers remained relatively constant throughout the year with mean values of 75.3 and 67.7% respectively) whereas the decline was somewhat less amonst the periphyton (Figs. 6 and 7, Table 1). The periphyton declines noted between October and December 1977 were ca. 93% and 98% for the Ogilvie and Swift Rivers respectively. However, due to difficulty in quantitatively sampling periphyton these values should be interpreted with caution (see Tett *et al.* (1978) for a discussion of adequately sampling benthic microalgae).

Karlstrom and Backlund (1977) noted similar fluctuations in numbers of planktonic diatoms of the river Ricklean (Sweden, lat. of ca. 64° 5' N.). These authors found that cell concentrations were greatest during spring and summer and declined quite abruptly during late autumn and early winter whereas a slight recovery in numbers was noted between January and March. In both the Ogilvie and Swift Rivers we noted a modest recovery in numbers of both phytoplankton and periphyton occurred between early and late winter.

The factors which cause the massive decline in phytoplankton and periphyton numbers in late fall are not known with certainty. However, two significiant features were probably (1) low insolation and (2) low temperatures. By late December daylight lengths in the Ogilvie and Swift River watersheds had decreased to ca. 3 and 6 h from summer values of ca. 18 and 16 h respectively (Fig. 3). Water temperatures in both rivers had decreased to ca. 0 C from summer values of ca. 15 C (Ogilvie River) and ca. 12 C (Swift River) (Fig. 3).

Several investigators have noted that many microalgae are able to withstand exposure to both low temperatures and darkness. Jansz and MacLean (1973) found that when the blue-green alga Anacystis nidulans was exposed to 0 - 5 C culture viability was reduced. However, residual numbers of viable cells remained, even at these low temperatures. Talling (1955) found that two diatom genera (Asterionella and Fragilaria) grew throughout the year in Lake Windermere with the division rates lowest in January. As winter progressed, the division rates increased from January to March. This author concluded that "the mean relative growth rates of cells at 1 m. depth are primarily determined by daylength and temperature". Antia and Cheng (1970) showed that although 31 species of marine unicellular algae showed no significant growth in darkness at 20 C., several species were able to survive up to 24 weeks and resume normal growth rates upon transfer to light. It is possible that some algal cells treated in this fashion, including the microalgae of the Ogilvie and Swift Rivers, may have (1) decreased their endogenous metabolism and (2) shifted to a heterotrophic pattern of cellular Many diatoms are able to survive in the absence of light using maintenance. heterotrophic processes (Hellebust, 1968, Hellebust and Lewin, 1972 and Lewin and Hellebust, 1975).


There is no facile explanation for the minor increase in numbers of both planktonic and epilithic microalgae between early and late winter noted in both this study (Figs. 6 and 7) and by Karlstrom and Backlund (1977) in the river Ricklean. Water temperatures remained approximately the same. However, daylength increased during this time period (see Fig. 3) and it is possible that photosynthetic rates increased which resulted in slow algal growth.

Analysis of planktonic algal species data suggests that most cells of the phytoplankton community actually originated in the periphyton. Of the 85 phytoplankton species with chloroplasts which were identified, 73 species were also found in the periphyton samples. Sixty-two of the diatom dominated planktonic species are considered to be ecologically more important in the periphyton with only 9 species being considered primarily planktonic. The other 14 species are about equally important in both periphyton and phytoplankton assemblages (Appendix 2).

Most phytoplankton species were spotty in occurrence and were only observed a few times from October 1977 till August 1978. Achnanthes minutissima, Diatoma tenue V. elongatum, Fragilaria construens V. binodis, Fragilaria vaucheriae, and Synedra ulna were observed more frequently and their seasonal distribution in the Ogilvie and Swift Rivers is plotted in Fig. 8.

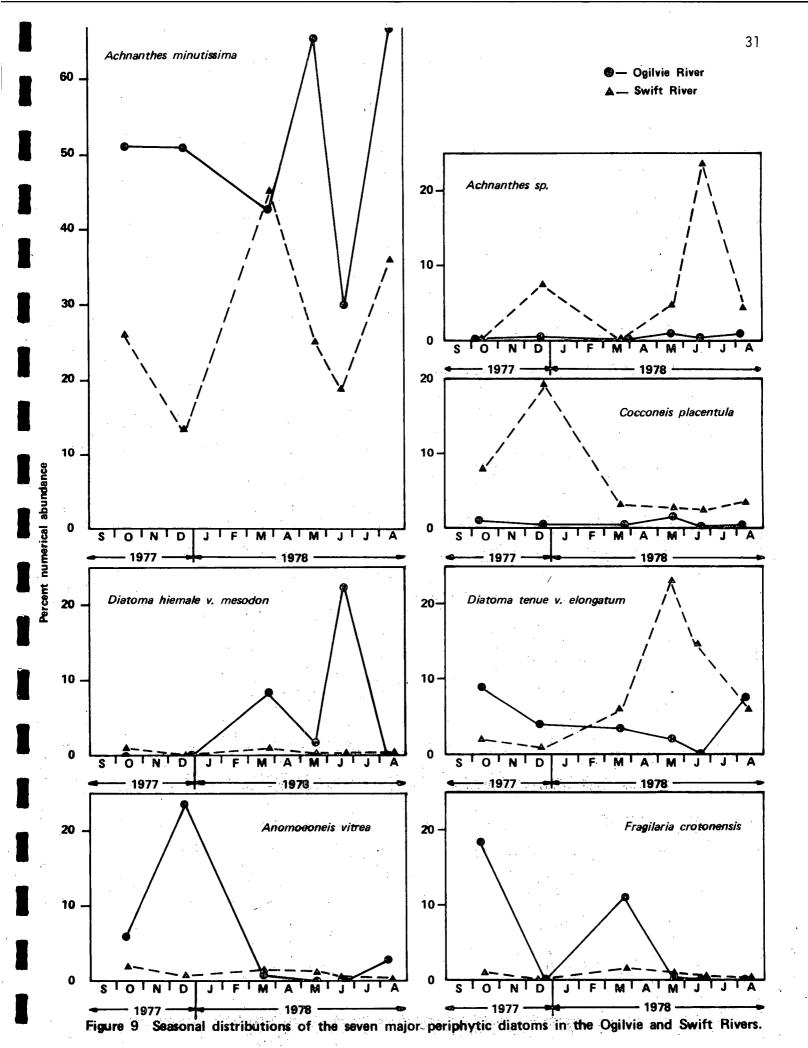
The periphytic algal species composition data showed similar trends in all rivers assayed, ie. the spring - summer - fall populations were predominantly Bacillariophyceae or Chlorophyceae whereas the bulk of the overwintering cells were diatoms (Table 2). The reason for this is not known.

There were 96 species of periphytic diatoms identified in samples removed from the Swift and Ogilvie River Basins (Appendix 3). Eighty-nine of these species were found in the Swift RiverBasin while only 63 species were found in the more northerly Ogilvie River Basin. The lower number of species in the Ogilvie is probably related to the harsher physical environment rather than to chemical conditions. Higher nutrient levels and a more diverse

Percent composition of periphytic algae of several streams of the Ogilvie and Swift River drainage basins.

Table 2.

			Date of	Sampling		
Diver	4-10 Oct.1977	10-20 Dec.1977	8	15-26 May 1978	17-30 June 1978	1-8 Aug.1978
Ogilvie Bacillariophyceae	94 5	100	96 4	100	66 1 0	86 0
Cyanophyceae Swift Bacillariophyceae	- 1 82	0 100 TR*	D 00	00 L	63 37 10	73 27 TB
Cyanophyceae Cyanophyceae S 14 Bacillariophyceae	39 J	0 1 1	0 00	0 00°	26 33 41	39 60
Curophyceae Cyanophyceae OR 8 Bacillariophyceae	2 - 2 6	1 1 1	• • • •		2 I I I -	- 80 ° 0 6
Cyanophyceae S.5 Bacillariophyceae Chlorophyceae	0 , I	1 I I	1 1 1		100 0 TR	001
Cyanophyceae	1		ł	D	Continued	28


* Trace

			Date of	Sampling		
River	4-10 Oct.1977	10-20 Dec.1977	22-30 Mar.1978	15-26 May 1978	17-30 June 1978 1	1-8 Aug.1978
<u>S</u> <u>3</u> Bacillariophyceae Chlorophyceae Cyanophyceae <u>S</u> <u>2</u> Bacillariophyceae Chlorophyceae Cyanophyceae		III III		100 95 0	00	15 15 18 1 18 1 18 1
illari nophyc	н 1 1 1 1	1 1 1	1 1 1	1 1 1	66 6	60 60 40
** 9% of sample beld	sample belonged to class C	Chrysophyceae (<u>Hy</u>	Hydrarus foetidus)		· · · · · · · · · · · · · · · · · · ·	
						29

chemical environment in the Ogilvie (Schreier, 1978) should actually favour a greater species diversity. Also, in the Ogilvie a few dominant species accounted for almost all of the diatom numbers. All the rare species (a rare species is one which accounts for less than 5% of the total diatom number at all times) made up only 24% of the total numbers in the Ogilvie whereas in the Swift River rare species made up 41% of the total diatom numbers.

Achnanthes minutissima was the most abundant diatom in both the Ogilvie and Swift Rivers (Fig. 9), although more common in the Ogilvie. This diatom is also very abundant in temperate waters, being absent only in regions of gross pollution. Anomoeoneis vitrea, Fragilaria crotonensis and Diatoma hiemale v. mesodon were abundant in the Ogilvie but rare in the Swift River. These species showed distinct seasonal abundance patterns and it is interesting to note that Anomoeoneis vitrea, an Arctic species, was at its most dominant during winter. Achnanthes sp., Cocconeis placentula, and Diatoma tenue v. elongatum were abundant only in the Swift River. These species also exhibited definite seasonal abundance patterns (Fig. 9). Most of the other diatom species enumerated were rare, and only 12 other species even accounted for as much as five percent of the numbers at particular seasons.

The distribution of the "non-diatom" forms was much more patchy than that noted for the diatom species. At various times there were nine species of green algae, six blue-green algal species and one Chrysophyceae alga identified in quantitative collections from the Ogilvie and Swift River Basins (Appendix 4). The most abundant green algae were: *Mougeotia* sp., *Oedogonium* sp., *Ulothrix* sp., and *Stigeoclonium* sp. The most common epilithic

blue-green alga was Oscillatoria sp.

Besides the non-diatom species observed in the quantitative samples. (Appendix 4) there were also several other species enumerated in qualitative collections from unusual habitats. In the Ogilvie River the red alga, *Lemanea fucina* Bory was extremely abundant at all the bedrock sills that crossed the river (see Schreier, 1978). These sills created higher current velocities and groundwater influxes also occurred there, which caused the river to remain ice free in these spots, even during mid-winter. The bluegreen algae *Chamaesiphon incrustans* Grun. and *Clastidium setigerum* Kirchn. grew epiphytically on the *Lemanea*. *Hydrurus foetidus* was extremely abundant in springs which flowed into the Ogilvie. And, in Engineer Creek Euglenoid flagellates grew in the acid drainage areas where PH values were as low as 2.8. In the Swift River, the green alga *Tetraspora cylindrica* (Wahl.) C.A. Agardh was sometimes abundant. The blue-green alga *Nostoc verrucosum* grew on large boulders in several creeks flowing into the Swift River.

The levels of both planktonic and periphytic chlorophyll a in these two lotic systems (Table 1) follow a pattern similar to that of the algal standing crops (Fig. 6 and 7). That is, a marked decrease in early winter followed by a partial recovery in late winter and a rapid increase to sping and summer values.

The seasonal changes of bacterioplankton cell numbers in both rivers were remarkably similar to those of the phytoplankton (Table 3, cf. Fig.6). That is, the viable bacteria numbers as determined by plate counts were minimal in winter and increased to greater numbers in spring and summer.

Epilithic and planktonic bacterial counts of Ogilvie and Swift River water and stream bottom material, as determined by epifluorescent microscopy and nutrient agar plate counts. Table 3.

			Date of Sampling	p1 i ng		
River	4-10 0ct.1977 10-20 1	10-20 Dec.1977	22-30 Mar.1978	15-26 May 1978	17-30 June 1978 1-8 Aug.1978	1-8 Aug.1978
<u>Ogilvie</u>		-				٢
Periphytic (ce Planktonic (ce	Periphytic (cells/cm ²)* - Planktonic (cells/ml)* -	1.6 × 10 ⁴	ی ۱۱	1.6 × 10 ⁶	8.4 × 10 ⁵	2.1×10^{2} 3.5 × 105
Periphytic (CF Planktonic (CF	U/cm ²)** - U/ml)** 2.4 x 10 ³	2.5 × 10 ²	3.6×10^{2} 9.0 × 10 ²	1.5 × 10 ⁴	7.0×10^{3}	××
Swift	c			. L		L
Periphytic (ce Planktonic (ce]]s/cm ²) -]]s/m]) -	1.0×10^4	11	8.0×10^{4} 8.4 × 10 ⁴	5.3×10^{4} 4.3 × 10^{4}	1.6×10^{5} 2.7 × 10^{5}
Periphytic (CFU/cm ²) Planktonic (CFU/ml) (U/cm^2) =	3.2×10^2	1.4×10^{2} 9.9 × 10 ²	2.1×10^{3} 1.0 × 10^{3}	××	9.1 x 10^{3} 1.9 x 10^{3}

epifluorescent counts

*

** plate counts, CFU = colony forming units

In both lotic systems, a slight increase in numbers was noted between early and late winter.

Other investigators have noted numbers of both planktonic and epilithic bacteria which were similar to those observed in these two rivers (Table 3). Geesey *et al.* (in press) found that the epilithic and planktonic bacterial numbers (assayed by epifluorescent microscopy) of a pristine subalpine. stream system in the Canadian Rocky Mountains ranged seasonally from 1×10^6 to 1×10^8 cell/cm² and from 2×10^3 to 2×10^5 cells/ml respectively. Both planktonic and epilithic bacterial numbers were minimal in the winter and maximal in the summer. The sessile bacteria numbers were greater than those of the bacterioplankton by approximately 2 order of magnitude.

Total bacterial numbers, as assayed by epifluerescent microscopy, were only done on material collected in later field trips and hence these data were not sufficient to interpret seasonal trends. However, the ratio between planktonic bacterial/ml and sessile bacteria/cm² were between 10^2 and 10^3 in all waters assayed by this technique (Table 3). These are somewhat greater than the values obtained by Geesey *et al.* (see above). Assuming that the average depths of the Ogilvie and Swift River were approximately 1 m, the calculated ratios of the planktonic to epilithic bacterial cell numbers vary from 1.690 to 0.080. The ratios of the phytoplankton to periphyton cell numbers vary from 0.167 to 0.007 (based upon calculation of the chlorophyll a data of Table 1 and an average river depth of 1 m). Within the limites of these experimental data it would appear that a somewhat greater proportion of the total bacterial cells may be suspended in water as compared to the microalgae. However, in most instances, greater levels of microbial

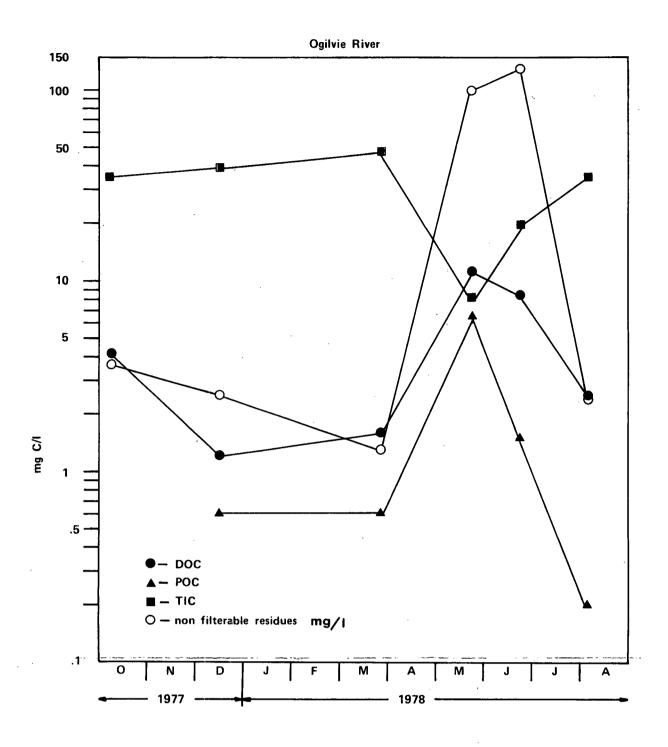
numbers were present in the stream bottoms as compared to overlying waters.

The numbers of invertebrates $/m^2$ of river or stream bottom sampled using a Surber sampler ranged from 5 to 1038 with a mean value for all samples of 227 (Table 4, detailed data in Appendix 5). These densities are somewhat lower than those which have been found by other investigators in similar streams and creeks in both the Yukon and North West Territories. Brunskill *et al.* (1973) found that "zoobenthos density in the Yukon and North Slope areas ranged from a few hundred to a few thousand organisms $/m^2$. Hoos and Holman (1973) found the numbers of organisms to be ca. $3,600/m^2$ at a site in Rose Creek which was not perturbed by mine tailings. Because of the limited number of samples it is difficult to compare invertebrate species and numbers in the Swift River and Ogilvie River drainage basins, although benthic invertebrate numbers appear to be greater in the Ogilvie River (May to August, 1978) (Table 4). The chironomidae were the most numerous macroinvertebrates in the majority of samples, an observation which has also been noted by other investigators (Brunskill *et al.*, 1973 and Hoos and Holman, 1973).

Physico-Chemical Parameters

The average water temperatures of both the Ogilvie and Swift Rivers varied between winter lows of ca. 0 C and summer highs of 12 - 15 C during 1977 - 78. For at least 7 months of the year the temperatures were at or near freezing (Fig.3). Hence, this physical parameter may have had a large influence upon the numbers (see above), as well as activities (see below) of the microflora of these rivers.

Invertebrates (numbers/m²) of several streams of the Ogilvie and Swift River drainage basins. Table 4.


	•			Date of Sampling		
River	4-10 Oct. 1977	28-29 Mar. 1978	1978	22-30 May 1978	17-30 June 1978	1-8 Aug. 1978
Ogilvie	15	*		528	485	227
Swift	424	114	:	06	195	95
S 1.4	55	I		19	73	I
0R 8	25			വ	I	39
S 5	•	•		207	422	291
S 8	•	1	1	139	287	193
S 3	ı	t	•.	153	335	212
0R .14	1				1	1038
	· · ·	·				

*Qualitative sample only

•

. 36 DOC values increased in spring and decreased as the seasons progressed through summer, fall and winter (Fig.10) These spring increases were probably due to both allo- and autochthnous addition of organic matter to the two rivers, although a distinction between the relative importance of each to the total DOC levels cannot be made on the basis of these data. However, the contributions by both of these sources are probably decreased in fall, lowest in winter and highest in spring and summer since (1) freezing conditions would greatly slow tributary and land run-off into these rivers (allochthnous addition) and (2) phytoplankton and periphytic algal productivities were lowest in fall and winter (autochthonous addition) (see below).

TIC values of Ogilvie River water are almost always greater than those of the Swift River (at similar times of the year). Since the Ogilvie River system flows over extensive limestone substratum whereas the Swift River does not, there is probably a much greater non-biological contribution of CO_2 , HCO_3^- and CO_3^- to the former river. However, both rivers displayed marked seasonal variations in TIC. These values increased from summer to their highest concentrations in later winter prior to ice "break-up" (Fig. 10). A reasonable explanation is that this increase may be partially due to community respiration. That is, during the ca. 7 months of ice cover a significant portion of the planktonic and benthic DOC and POC were metabolized with the concomitant release of CO_2 which tended to collect under the ice as TIC. At spring break-up a sudden drop in TIC values were noted in each river (Fig. 10). This may be due to the abrupt release of TIC to the atmosphere as CO_2 as well as its fixation by biological processes, See below.

125-58-1

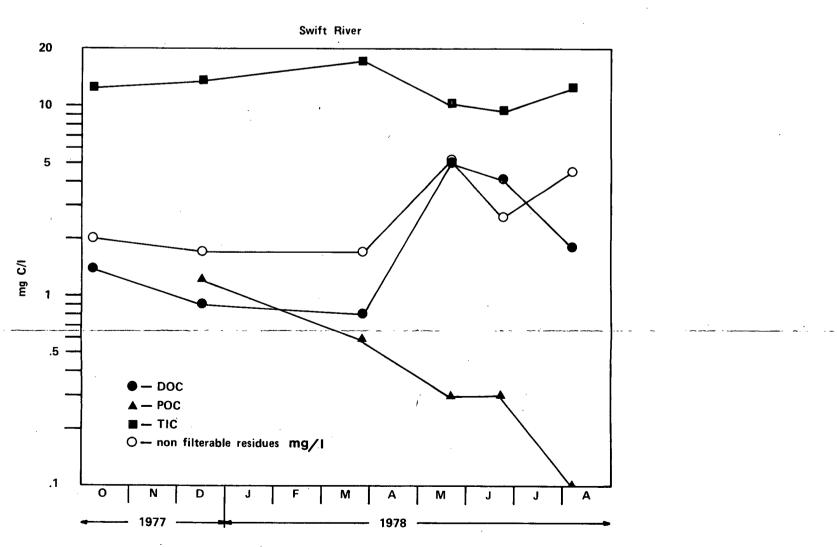
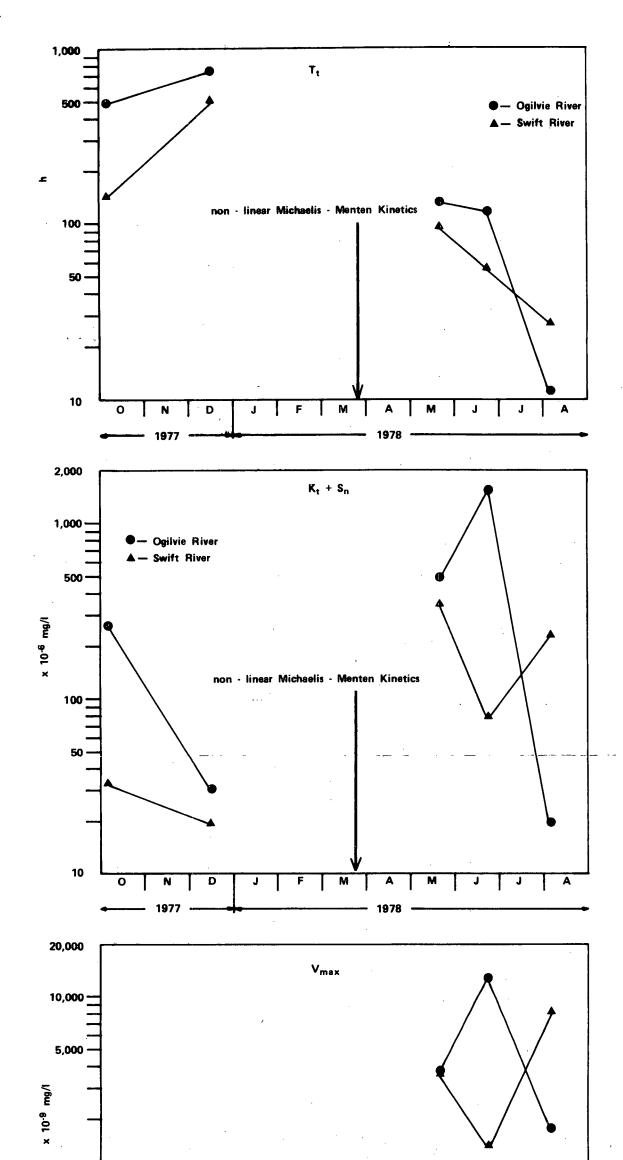


Figure 10 Dissolved (DOC, mg C/I), particulate (POC, mg C/I) and total inorganic (TIC, mg C/I) carbon concentrations, and non filterable residues (mg /I) of the Ogilvie and Swift Rivers.

POC values were generally greater in the Ogilvie than in the Swift River water (Fig. 10). Since these concentrations are a function of both microbial (cf. data of Figs. 6 and 7, Table 3) and detritus content of these waters, the concentrations of which in turn are regulated by many biotic and abiotic factors, it is difficult to interpret these data in a simple fashion other than to state that the Ogilvie River water column appears to be the more productive of the two systems.

Microbial Activities

The planktonic microflora of both the Ogilvie and Swift Rivers displayed glucose heterotrophic activities for most of the year, the exception being late winter of 1978. At that time glucose heterotrophic uptake versus time kinetics by the microorganisms of the water were linear with time, but Michaelis-Menten uptake kinetics were not observed (Fig.11). This phenomenon has been noted previously in other aquatic ecosystems and it is the experience of one of us (L.J.A.) that this occurs under at least three conditions, viz. (1) the microbial contents of the waters are exremely low (2) the concentrations of naturally occurring metabolites are minimal or (3) the microbial ecosystem is stressed by pollutants (e.g. mercury) or by unfavourable physico-chemical conditions (e.g. low temperatures). The bacterial content of these waters were not decreased excessively in winter (Table 3), but, both DOC levels and temperatures did decrease appreciably as compared to summer values. However, linear Michaelis-Menten curves were obtained during the fall and early winter when the temperatures were ca. OC which would tend to eliminate low temperatures as a cause of scattered uptake of glucose in later winter. A more


likely cause may be the quantity and quality of DOC present in late winter (Fig.10). As winter progressed the DOC levels of both rivers decreased, probably due to microbial utilization. Since allochthonous and autochthonous production of DOC is minimal in winter, the DOC remaining in later winter may be highly refractile, and not readily available for heterotrphic microbial utilization. Hence, the bacterial cells may not have been able to readily metrabolize this material and displayed non-linear heterotrophic activity plots. Following spring "break-up" allo- and autochthonous production greatly increased the quantity and quality of DOC. This, coupled with higher water temperatures may have greatly increased glucose heterotrophic activities in spring and summer (Fig.11).

Both DOC concentrations and temperatures have been shown to influence heterotrophic bacterial activities in other aquatic ecosystems (Albright, 1977, Wright and Hobbie, 1965, Hamilton *et al.* 1966 and Dietz *et al.* 1977).

Values of glucose $K_t + S_n$ tended to decrease significantly during the fall and winter months as compared to the spring (following ice "break-up") and summer months which is indirect evidence that glucose utilization rates may exceed production rates from ca. October to March (prior to ice "break-up"). That is, the DOC of the water may have become more refractile during the fall and winter months.

Since the streamside materials of the Swift River have a large organic matter content* addition of this to the Swift River would probably increase

* LFH and Bm (t) contain 0.32 and 1.38 mg DOC, 158 and 13 mg organic carbon and 9 mg and trace (<1mg) organic nitrogen /g dry weight respectively.

1. Street 41

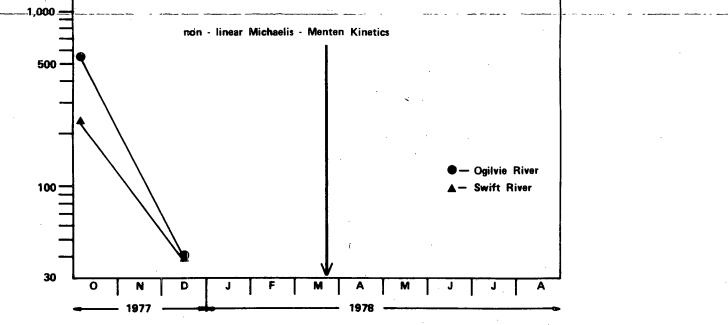


Figure 11 Glucose turnover time (T_t) , maximum velocity of uptake (V_{max}) and $K_t + S_n$ values of the Ogilvie and Swift River waters.

the heterotrophic activities of the microflora at all times of the year. A predicted result would be increased oxygen demands of these aquatic ecosystems.

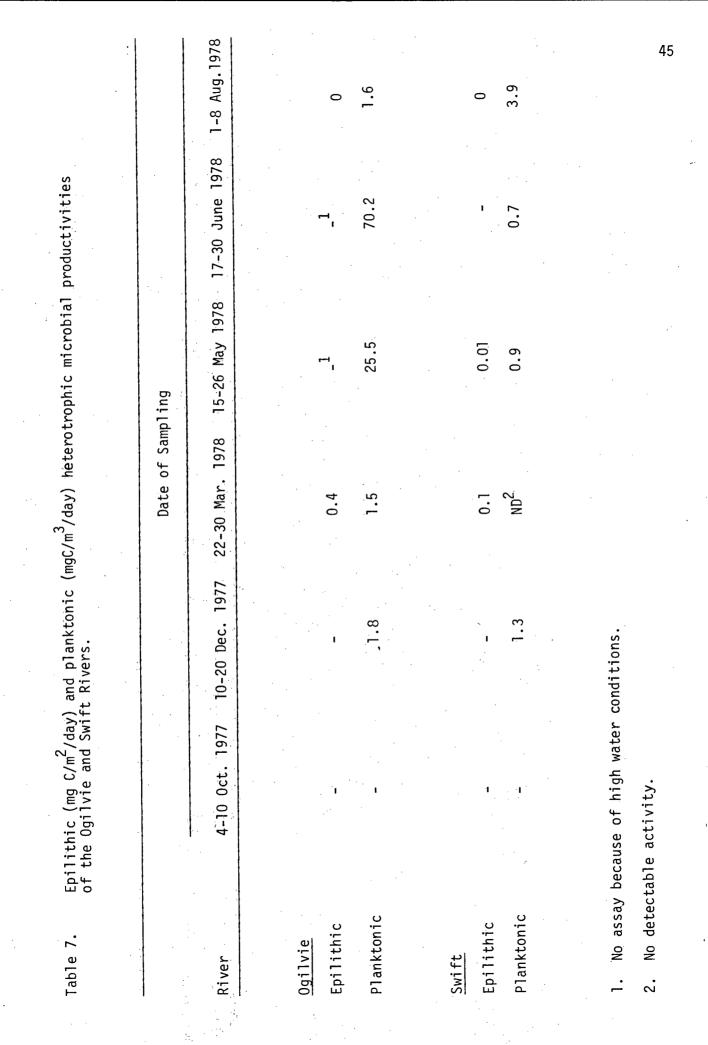
The glucose hetrotrophic potentials assayed in this study fall within the lower part of the range noted for several other freshwater rivers and lakes - and it would appear that the more northerly the water body, the less the glucose heterotrophic potentials (Table 5). However, this generalization must be treated with a great deal of caution at this time since so few Arctic and sub-Arctic freshwater bodies have been assayed for hetrotrophic activities.

Phytoplankton photosynthesis occurred throughout the year in these two rivers with maximal activity in the late spring and summer and minimal activity during winter (Table 6). These data are highly variable which is probably due to changing daily conditions within each watershed. These include silt level, temperature, water discharge (which may tend to suspend periphytic algae in the water column) and sunlight. An example of the results of one of these natural perturbations is that of the minimal photosynthetic rate which was abserved on 23 June, 1978 (Table 6) in the Ogilvie River. Heavy rainfall naturally perturbed this river with suspended matter (non filterable residue, 117 mg/litre) which resulted in heavy turbidity and little light penetration beyond a water depth of ca. 0.1 m. Hence, photosynthesis did not appreciably occur (Table 6) although phytoplankton concentrations were high (Figs. 6 and 7).

A comparison of glucose heterotrophic potentials (V $_{\max}$) of several lakes and rivers. Table 5.

	Range in g potentials	Range in glucose heterotrophic potentials (mg glucose/&/h)	·	· · · · · · · · · · · · · · · · · · ·
Water Body	x)	10 ⁻⁴)	Latitude	Source
Fraser River	0	0.27 = 9	ca. 49 ⁰ N	Albright (1977)
Lake Erken	5	24 - 400	ca. 60 ⁰ N	Hobbie & Wright (1968)
Lappland Lake	m	3.2*		Hobbie & Wright (1968)
Char Lake	0	0.01 - 0.08**	ca. 75 ⁰ N	Morgan and Kalf (1972)
Chilliwack River	0	0.04	ca. 49 ⁰ N	Albright & Wentworth (1973)
Capilano River	0	0.02	ca. 49 ⁰ N	=
Nicomekyl River	2		ca. 49 ⁰ N	=
Serpentine River		.8	ca. 49 ⁰ N	=
Ogilvie River	0	0.00041 - 0.131	ca. 65 ⁰ N	This study
Swift River	0	0.00039 - 0.036	ca. 60 ⁰ N	This study
-			•	
			-	

* Result of one assay only.


** Assays from mid-November to mid-October were not reported.

Periphytic (mg C/m²/day) and planktonic (mg C/m³/day) algal productivities of the Ogilvie and Swift Rivers. Table 6.

			Date of Sampling	ing		
River	4-10 Oct. 1977 10-20 Dec.	10-20 Dec. 1977	22-30 Mar. 1978	15-26 May 1978	17-30 June 1978	1-8 Aug. 1978
<u>Ogilvie</u>			•		,	
Periphytic	1	1	80.2	- ,		56.4
Planktonic	I.	0.8	0.2	17.4	ND ²	12.8
		•				
+ -						
DMITE			•			
Periphytic		ł	0.1	23.7	I	282.0
Planktonic	ľ I ·	4.4	1.8	21.6	1.9 0	10.1
					•	

1. No assay because of high water conditions.

2. No detectable activity.

The planktonic dark productivities were generally greater than light productivities for much of the year in the Ogilvie River whereas the opposite was noted for the Swift River (light productivities generally exceeded dark productivities) (Tables 6 and 7). In addition, the dark productivities of the Ogilvie River exceeded those of the Swift during the yearly cycle assayed (Table 7). The reasons for this are not known although there are several observations which may be pertinent: (1) DOC levels of the Ogilvie River water were greater than those of the Swift River during the annual cycle of Oct. 1977 - August 1978. (2) Ogilvie River bacterioplankton biomasses exceeded those of the Swift River throughout the year and (3) glucose $K_t + S_n$ values of the Ogilvie River were generally greater than those of Swift River water. Thus, bacteriorplankton productivities (which are a major portion of the total dark productivities of aquatic microbial ecosystems) should on the basis of these observations be greater in the Ogilvie as compared to the Swift River.

Assays of benthic algal and bacterial productivities of stream bed materials of both the Ogilvie and Swift Rivers were not always possible because of either (1) extensive ice cover (winter) or (2) high water conditions (spring). Therefore, although the benthic productivity values reported were only for spring through summer of 1978 (Tables 6 and 7) it is probable that both periphytic algal and epilithic heterotrophic bacterial productivities occur throughout the year based upon observed levels of both algal and bacterial standing crops and planktonic productivities (Tables 2 and 3, Figures 6 and 7). Although these data are highly variable (due to fluctuating environmental river conditions as outlined above as well as inherent patchiness of benthic

microorganisms in lotic ecosystems) they nevertheless indicate that the periphytic algal productivities exceeded those of the epiphytic bacterial productivities (often by several order of magnitude). Thus, upon comparison of total bacterial (planktonic and epilithic) and total microalgal (planktonic and periphytic) productivities of each river, microbial productivities of the Ogilvie and Swift Rivers appear to be algal dominated (Tables 6 and 7).

In summary, microbial (microalgal and bacterial) biomasses and activities of these two lotic ecosystems were greatest in spring and summer with decreasing values noted through fall and winter. The data support the hypothesis that lightand DOC may be the major factors controlling standing crops and activities of microalgae and bacteria respectively.

The Ogilvie River appears to be more productive than the Swift River with regard to microorganisms since generally both standing crops and activities of microalgae and bacteria were greater in the former throughout the year. The reasons for this are not know although this difference may be a reflection of the greater levels of both TIC (microalgal substrate) and DOC (heterotrophic bacterial substrate) noted in the Ogilvie as compared to the Swift River at equivalent times of the year (Table 7).

Perturbation Experiments

The foregoing data and observations may be useful in predicting general influences of streamside and sediment additions to the river waters upon standing crops and activities of microalgae and bacteria. Increased loadings by these materials would probably reduce light levels thereby lowering phytoplankton photosynthetic rates (see natural example in Table 6) which in turn would adversely influence algal standing crops. Since streambank material contains relatively large amounts of DOC (see above) and stream sediments probably also have a large DOC component the results of these addtions may be increased standing crops and activities of heterotrophic bacteria (and hence increased BOD) in the water column. The activities of the bacterioplankton of these two lotic systems may be mainly DOC limited (see above, cf. Table 3 and Fig.10). Hence, DOC added at any time of year (including winter) via stream bank material and sediment would probably increase heterotrophic activities. In addition, oxygen levels of these two rivers are lowest in late winter (Schreier, 1978) and therefore these two lotic systems may be most stressed by DOC addition at that time.

Most particulate streambank and sediment materials would tend to settle to the stream bottoms within several km of its site of addition, overlying and smothering some of the benthic flora (mosses, periphyton and epilithic bacteria) which would tend to lower their standing crops, productivities and activities. Recolonization of these stressed areas would eventaully occur with the rates in winter being the slowest. Thus, the least sensitive time for perturbation of these two lotic systems by streambank and seditment materials would probably be late spring following "break up" since microbial productivities are high and natural perturbation by streambank materials and sediments occur at this time. The most sensitive time with regard to influcences upon algal and bacterial activities (which in turn would influence DO levels) as well as recolonization rates would be winter. The remainder of this manuscript deals with a quantitative evaluation of DO levels and BOD values of the Ogilvie and Swift Rivers at various times of the year as influenced by streambank and sediment additions in the context of microalgal and bacterial biomasses and activities.

Data of Scheier (1978) and that of others (Schallock and Lotspeich, 1974) indicate that many Alaskan and Canadian Arctic and sub-Arctic Rivers have similar annual D0 concentration trends. That is "the waters are near saturation during spring "break up" and fall "freeze up" when water temperatures are near 0 C, somewhat lower D0 concentrations during warm summer periods; and yearly minimum concentration during the winter (January - March) interval Data indicate that D0 depression begins in October and continues into February" (Schallock and Lotspeich, 1974). A second important observation of these authors was that D0 depletion may become more severe as the river water flows from its headwaters to its mouth under an ice cover. This is probably due to continued biological and chemical utilization of D0 of each water mass as its travels the length of the river. In several rivers these D0 depletions may be severe, e.g. the Yukon River from the Alaska - Canadian border to its mouth displayed D0 levels of ca. 10.5 mg/l and 1.9 mg/l respectively during March of 1971 (Schallock and Lotspeich, 1974).

In both of our study areas the levels of the DO dropped significantly from early fall (Swift River, ca.11 - 14 ppm; Ogilvie River, ca. 9 - 15 ppm) to late winter (Swift River, ca. 3 - 10 ppm; Ogilvie River, ca. 5 - 11 ppm) and remained at relatively high concentrations during the ice-free seasons. of late spring following ice "break up" (Swift River, ca. 8 - 15 ppm; Ogilvie River, ca.11 - 12 ppm) and summer (Swift River, ca.10 - 12 ppm; Ogilvie River, ca.10 - 12 ppm) (Data of Schreier, 1978) Large spatial variations in DO were found in both rivers during winter (Schreier, 1978). The drop in average DO levels under ice cover was probably due to a variety of physical, chemical and biological influences such as dilution of river water by ground water, abiotic reduction by various types of organic and inorganic materials and respiration by the aquatic micro- and macroorganisms. When these data are used to calculate the in situ rate of DO depletion in the Swift River during the period of ice cover (October to March) a net respiration value of 0.041 mg $0_2/\ell/d$ is obtained. This value is of the same order of magnitude of net respiration rate values reported by Welch (1974) for three Canadian Arctic and sub-Arctic lakes during ice cover (Table 8).

In late winter the experimentally determined BOD values of both the Ogilvie and Swift Rivers were in the range of ca. 0.5 to 1.0 mg $0_2/2/21$ d (ca. 0.023 to 0.048 mg $0_2/2/d$) (Table 9). These were probably maximum values of BOD since the treatments that the waters underwent would tend to increase BOD values. These are (1) on incubation temperature of 1±1C, as compared to ca. 0 C at the time of sampling - this temperature increase would tend to increase biological activity (2) enclosure of natural waters in glass containers tends to accelerate biological activities, including oxygen utilization (bottle effect) and (3) the storage times of the waters at temperatures > 1 C

Respiration rates for several Arctic and sub-Arctic Canadian water bodies. Table 8.

Water Body	Respiration Rate (mg O ₂ /&/day)		Source
Char Lake	0.011	• • • •	Welch (1974)
Resolute Lake	0.021		Welch (1974)
Eleanor Lake	0.010		Welch (1974)
Swift River	0.041 * 0.023 **		This study This study
Ogilvie River	0.048 **		. This study

Assays in situ.

*

** BOD laboratory assays for 21 days at 1 ± 1 C.

Biological oxygen demand* (mg $0_2/\ell$) of waters removed from several streams from the Ogilvie and Swift River drainage basins and incubated in the laboratory at 1 ± 1 C. Table 9.

		Date of Sampling	
River	10-20 Dec. 1977	22-30 Mar. 1978	15-26 May 1978
0gilvie	4	1.0	3.2
Swift	<0.1 (55 days)	0.5	0.7
0R 8		<0.1	•

* 21 day incubation unless otherwise noted.

prior to BOD assays would tend to increase bacterial numbers.

The *in situ* (0.041 mg $0_2/\ell/d$) and experimentally assayed (0.023 to 0.048 mg $0_2/\ell/d$) rates of DO depletion in the Swift River and its water respectively are approximately the same. However, these data comparisons must be interpreted with a great deal of caution since BOD values assayed *in vitro* are subject to experimental errors which tend to bias the results upwards (see above discussion). In addition, these *in vitro* BOD values do not take into consideration both biological and chemical oxygen demands of the stream bottom as well as oxygen utilization by planktonic macroorganisms (including fish). Benthic bacteria, fungi, insect larvae and other inverte-brates may exert a considerable oxygen demand upon the overlying water. McDonnell and Hall (1969), for example, noted that ca. 50% of the benthic oxygen utilization by organisms was due to invertebrates in a river system.

Treatments of both Ogilvie and Swift River waters with several (LFH, Ae and Bm(t)) soil horizon materials (from the Swift Riverbank) markedly influenced BOD values (Table 10). All treatments greater than 0.10g streambank material/litre of stream water significantly increased oxygen utilization by the native microorganisms of these two waters beyond that of the untreated control values.

Both planktonic algal and heterotrophic productivities of the Swift River waters were also influenced by these streambank materials additions (Table 11). Bm (t) and LFH additions at 10 g/ ϵ and 1 g/ ϵ (LFH additions at other concentrations were not done) respectively significantly increased microbial productivities, particularly by heterotrphic microorganisms. However, these The influences of three Swift River streamside soil horizons upon Biological Oxygen Demand of Swift and Ogilvie River Waters. (Sampled 10 March 1978). Incubation temperature = 1 ± 1 C. Table 10

I

	Swift River Water	River er			Ogilvie River Water	li ver
		Days	Days of Incubation at	tt 1 ± 1 C.	i i	
Sediment Addition	21	51			21.	45
None	0.4	1.7*	• • • •		0.0	0.4
0.01 g/& LFH** 0.10 g/& LFH	0.5 1.7	1 .3 9.3			0.0	0.8
1.00_g/& LFH 10.00_g/& LFH	4.5 10.5	10.3			1.2 9.6	4.4 10.4
0.01 g/2 Ae***	0.9	1.7			- 0	- 0.6
1.00 g/ % Ae 1.00 g/ % Ae 10.00 g/ % Ae	3.1 9.4	9.9 10.7	- - 		9.4	1.8 10.1
0.01 g/& Bm(t) **** 0.10 g/& Bm(t)	0.7	1.1 1.4		. ·	- 0.0	-0.6
1.00 g/z Bm(t) 10.00 g/z Bm(t)	1.4 5.5	5.9 10.4	· · ·		0.3	1.0
	· .					

* all values expressed as mg 0₂/%
** leaf, ferment and humus horizon
*** leached mineral horizon
**** mineral horizon

Table 11 - The influence of two streamside soil horizons upon planktonic algal (mg C/m³/day) and heterotrophic (mg C/m³/day) productivities of the Swift River.

Sediment Addition	Pr (25	Algal Productivity (23 June 1978)			Heterotrophic Productivity (7 Aug. 1978)
None	· .	1.4	· · · · · · · · · · · · · · · · · · ·		3.0
0.10 g/& Bm(t)*		3.3	· • •		8.1
1.00 g/& Bm(t)		1.4	- - 	.**	4.9
10.00 g/& Bm(t)	•. •	16.8	•	• .	20.0
1.00 g/& LFH**		6.1		·	27.7
· ·					
to the second			•		

mineral norizon leaf, ferment and humus horizon **

phytoplankton productivity data may be misleading since all perturbant material was contained within BOD assay bottles which were then replaced in the clear stream water for incubation. If sediment and streambank material had been added to the entire river system light penentration into the water would have been markedly less with resultant decreases in algal productivities (see Microbial Activity Section dealing with a natural perturbation by silt of the Ogilvie River in June). Addition research needs to be done on the influence of silt loads upon both planktonic and periphytic activities. Since heterotrophic productivities are not light dependent the greatly increased activities noted at Bm(t) levels of 10 g/2 may be significant in the context of BOD by these rivers in winter (see previous discussion).

It is difficult to forcast the sediment loads which will occur in the Ogilvie and Swift River waters downstream of a construction site as a result of trenching and backfilling operations since these loads will be greatly influenced by factors such as water velocity, trench depth and substrate size(s). One study which attempted to determine downstream sediment loading of river waters as influenced by streambottom trenching and backfilling was that of Landeen and Brandt (1975) in the La Biche and Kotaneelee Rivers, tributaries of the Liaid River. These authors found that suspended sediment concentrations rose abruptly downstream of river trenching and backfilling activities. The La Biche River suspended sediment concentrations rose to between 100 and 200 mg/ ℓ from background levels of less 10 mg/ ℓ . Twenty-four hours after trenching had ceased the suspended sediment loads were < 10 mg/ ℓ (similar to levels noted prior to construction activity).

Schreier (1978) noted that the total non filterable residue of the water of the **O**gilvie River varied greatly from ca. 2 to 270 mg/ ℓ during May - July 1978 (cf. the non filterable residue data of (Fig.10). The Swift River did not display these large variations in non filterable residue levels; these remained below 5.2 mg/ ℓ (Fig.10) (The Swift River was not sampled at freshet when non filterable residue levels were probably much greater.

Perturbation Summary

Additions of several Swift River streambank materials (LFH, Ae and Bm(t) to Swift River water increased BOD values and heterotrophic productivities. Depending upon the biological process, significant influence of streambank materials were noted over the concentration range of 0.10 g/ ℓ to 10 g/ ℓ (Tables 10 and 11).

The time of year at which streamside and sediment additions to river and creek waters occurs is of great importance since these materials increase bacterial activities and BOD values which result in accelerated oxygen depletion rates. These rivers tend to be most sensitive to streambank materials and sediment additions in winter and least sensitive in late spring (following ice "break up") and early summer.

Many swamps and bogs contain waters of relatively high organic matter content which may greatly increase BOD of receiving waters.

LITERATURE CITED

Albright, L.J. (1977). Heterotrophic bacterial dynamics in the lower Fraser River, its Estuary and Georgia Strait, British Columbia, Canada. Mar. Biol. 39:203-211.

Albright, L.J. and J.W. Wentworth (1973). Use of the heterotrophic activity technique is a measure of eutrophication. Environ. Pollut. 5:59-72.

American Public Health Association, American Water Works Association and Water Pollution Control Federation (1965). Standard methods for examination of water and waste water. 12th ed. New York. 769 p.

Antia, N.J. and J.Y. Cheng (1970). The survival of axenic cultures of marine planktonic algae from prolonged exposure to darkness at 20 C. Phycologia 9:179-183.

Battarbee, R.W. (1973). A new method for the estimation of absolute microfossil numbers, with reference especially to diatoms. Limnol. Oceanogr. 18:647-653.

Bourrelly, P. (1966). Les Algues d'Eau Douce. I. Les Algues Vertes. N. Boubee et Cie, Paris. 672 p.

Bourrelly, P. (1968). Les Algues d'Eau Douce. II. Les Algues Jaunes et Brunes, Chrysophycees, Pheophycees, Xanthophycees et Diatomees. N. Boubee et Cie, Paris. 438 p.

Bourrelly, P. (1970). Les Algues d'Eau Douce. III. Les Algues Bleues et Rouges, Les Eugleniens, Peridiniens et Cryptomonadines. N. Boubee et Cie, Paris. 512 p.

Bowden, W.B. (1977). Comparison of two direct-count techniques for enumerating aquatic bacteria. Appl. Environ. Microbiol. 33:1229-1232.

Brunskill, G.J., D.M. Rosenberg, N.B. Snow, G.L. Vascotto, and R.W. Wagemann (1973). Ecological studies of aquatic systems in the Mackenzie-Porcupine drainages in relation to proposed pipeline and highway developments. Canada Task Force N. Oil Dev. Env. Soc. Comm. Vol.I. Report 73-40. Information Canada Cat. No. R72-10073/1-1. QS-1533-010-EE-A1. 131 p. Vol.I.

Burnison, B.K. and R.Y. Morita (1974). Heterotrophic potential for amino acid uptake in a naturally eutrophic lake. Appl. Microbiol. 27:488-495.

Claasen, P.W. (1931). Plecoptera nymphs of America (north of Mexico). Thos. Say Foundation of the Entomol. Soc. Am. Publ. No. 3:1-199.

Cleve-Euler, A. (1951-1955). Die Diatomeen von Schweden und Finnland. Kungl. Svenska Vetensk. Handl. NS 2 (1951), 163 p.:: 3 (1952), 153 p.: 4i (1953), 154 p.: 4ii (1954), 158 p.: 5 (1955), 232 p.

Daley, R.J. and J.E. Hobbie (1975). Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. <u>20</u>:875-882.

Dietz, A.S., L.J. Albright and T. Tuominen (1977). Alternative model and approach for determining microbial heterotrophic activities in aquatic systems. Appl. Envir. Microbiol. <u>33</u>:817-823. Edmondson, W.T. (1959). Fresh water biology, Wiley, N.Y.

Geesey, G.G., R. Mutch and J.W. Costerton. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Oceanogr. <u>In press</u>.

Geitler, L. (1932). Cyanophyceae. <u>In</u> L. Rabenhorst (ed) Kryptogamen -Flora von Deutschland, Osterreich und der Schweiz. 14 Akad. Verlags., Leipzig. 1196 p.

Hellebust, J.A. and J. Lewin (1972). Transport systems for organic acids induced in the dark in the marine pennate diatom *Cylindrotheca fusiformes*. Can. J. Microbial. 18:225-233.

Hellebust, J.A. (1968). The uptake and utilization of organic substrates by marine phytoplankters. In. Proceedings of symposium on organic matter in natural waters (Univ.of Alaska, College) Edited by D. Hood, pp. 225-256.

Hamilton, R.D., K.M. Morgan and J.D.H. Strickland (1966). The glucose uptake kinetics of some marine bacteria. Can. J. Microbiol. <u>12</u>:995-1003.

Hobbie, J.E., R.J. Daley and S. Jasper (1977). Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. <u>33</u>:1225-1228.

Hobbie, J.E. and R.T. Wright (1968). A new method for the study of bacteria in lakes: description and results. Mitt. int. Verein theor. Angew. Limnol. <u>14</u>:64-71.

Hoek, C. van den.(1963). Revision of the European Species of *Cladophora*. E.J. Brill, Leiden, The Netherlands. 248 p. + 55 pl.

Hoos, R.A.W. and W.N. Holman (1973). A preliminary assessment of the effects of Anvil mine on the environmental quality of Rose Creek, Yukon. Environ. Prot. Ser. Man. Rep. No. 5-PR-73-8, 49 pp.

Huber-Pestaloozi, G. (1942). Das Phytoplankton des Susswassers. p. 347-549. <u>In</u> A. Thienemann (ed.) Die Binnengewasser. 16 (2:2). Diatomeen. E. Schweizerbart. Verlags., Stuttgart.

Hustedt, F. (1930). Bacillariophyta (Diatomeae). <u>In</u> A. Pascher (ed.) Die Susswasser-flora Mitteleuropas. 10. Gustav Fischer, Jena. 468 p.

Hustedt, F. (1931-1959). Die Kieselalgen. <u>In</u> L. Rabenhorst (ed.) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. 7 (2). Akad. Verlags., Leipzig. 845 p.

Jansz, E.R. and F.I. Maclean (1973). The effect of cold shock on the bluegreen alga *Anacystis nidulans*. Can.J. Microbiol. <u>19</u>:381-387.

Johannsen, O.A. (1969). Aquatic Diptera Entomological Reprint Specialists, Los Angeles.

Karlstrom, U. and S. Backlund (1977). Relationship between algae cell number, chlorophyll a and fine particulate organic matter in a river in Northern Sweden. Arch. Hydrolbiol. <u>80</u>:192-199.

Landeen, B.A. and C.W. Brandt (1975). Impressions of the construction of the Pointed Mountain gas pipeline. Northern Operations Branch, Fish and Mar. Service, Environment Canada, 58 pp.

- Larsson, K., C.Weibull, and G. Cronberg (1978). Comparison of light and election microscopic determinations of the number of bacteria and algae in lake water. Appl. Environ. Microbiol. 35:397-404.
- Lewin, J. and J.A. Hellebust (1975). Heterotrophic nutrition of the marine pennate diatom *Navicula pavillardi* Hustedt. Can. J. Microbiol. <u>21</u>: 1335-1342.
- Lorenzen, C. (1967). Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12:343-346.

McDonnell, A.J. and S.E. Hall (1969). Effect of environmental factors on benthic oxygen uptake. J. Water Pollution Control Federat. Supp. 41, pp. 353-363.

- Menzel, D.W. and R.F. Vaccaro (1964). The measurement of dissolved organic particulate carbon in seawater. Limnol. Oceanogr. <u>9</u>:138-142.
- Morgan, K.C. and J. Kalff, (1972). Bacterial dynamics in two high arctic lakes. Freshwat. Biol. 2:217-228.
- Nautical Almanac Office.(1976). The nautical almanac for the year 1977. London, Her Majesty's Sationary Office. 276 pp.
- Nautical Almanac Office.(1977). The nautical almanac for the year 1978. London, Her Majesty's Stationary Office. 276 pp.
- Needham, J.G., J.R. Traver and Y -C. Hsu (1935). The biology of mayflies, Cornstock, Ithica, N.Y.
- Northcote, T.G., G.L. Ennis, and M.H. Anderson (1975). Periphytic and planktonic algae of the Lower Fraser River in relation to water quality conditions. Westwater Research Centre, Univ. Brit. Col., Tech. Rep. No. 8. 61 p.
- Northern Natural Resources Ltd. (1977). A collection of fisheries information from water bodies associated with pipeline routes in the Yukon Territroy from Dawson to Watson Lake. 3535 E. 45th Ave. Van. B.C. Prepared for Fish and Mar. Serv. Dept. of Fish and Environ. Vancouver, 403 pp.
- Overbeck, J. and R.J. Daley (1973). Some precautionary comments on the Romanenko Techniques for estimating heterotrophic bacterial production. Bull. Ecol. Res. Comm. (Stockholm) 17:342-344.
- Parsons, T.R. and J.D.H. Strickland (1962). On the production of particulate organic carbon by beterotrophic processes in sea water. Deep-Sea Res. 8:211-222.
- Patrick, R., and C.W. Reimer (1966). The diatoms of the United States, exclusive of Alaska and Hawaii. I. Acad. Nat. Sci. Philadelphia, Monogr. 13. 688 pp.
- Patrick, R. and C.W. Reimer (1975). The diatoms of the United States, exclusive of Alaska and Hawaii. II. Acad. Nat. Sci. Philadelphia, Monogr. 13. 213 pp.
- Prescott, G.W. (1962). Algae of the Western Great Lakes Area. Wm. C. Brown Co. Inc., Dubuque, Iowa. 977 pp.
- Ricker, W.E. (1943). Stoneflies of southwestern British Columbia. Indiana Univ. Publ. Sci. Ser. No. 12:1-145.

Romanenko, V.I., J. Overbeck and Y.I. Sorokin (1972)₁₄Estimation of production of heterotrophic bacteria using ^CC. <u>In:Microbial</u> production and decomposition in fresh waters, pp. 82-85. Ed. by Y.I. Sorokin and H. Kadota. Oxford: Blackwell Scientific.

Ross, H.W. (1944). The caddisflies or tricoptera of Illinois. Bull Illinois, Nat. Hist. Survey, 23:1-326.

Schallock, E.W. and F.B. Lotspeich (1974). Low winter dissolved oxygen in some Alaskan rivers. U.S. Environ. Protection Agency rep. no. EPA-666/3-74-008. Corvallis, OR. 33 pp.

Schindler, D.W., V.E. Frost and R.V. Schmidt (1973). Production of epilithophyton in two lakes of the experimental lakes area, Northwestern Ontario. J.Fish, Res. Bd.Can. 30:1511-1524.

Schreier, H. (1978). Water quality processes and conditions in the Ogilvie and Swift river basins Yukon territory. Water Quality Branch, Inland Water Directorate, Department of the Environment, Vancouver. 108 pp.

Sheehan, S.W., G.L. Ennis and R.L. Hallam. A water quality study of the Flathead River basin in B.C. prior to proposed coal mining. Inland Waters Directorate, Water Quality Branch, Vancouver. <u>In Press</u>

Smith, S.D. (1968). The *Rhyacophila* of the salmon river drainage of Idaho with special reference to larvae. Ann. Enomolog. Soc. Am. 61:655-674.

Sreenivasa, M.R., and H.C. Duthie (1973). Diatom flora of the Grand River, Ontario, Canada. Hydrobiol. 42:161-224.

Strickland, J.D.H. and T.R. Parsons (1968). A practical handbook of seawater analysis. Fish.Res. bd. Can. Bull.167. 311pp.

Talling, J.F. (1955). The relative growth rates of three plankton diatoms in relation to underwater radiation and temperature. Ann. Bot. 19:329-341.

Tett, P., C. Gallegos, M.G. Kelly, G.M. Hornberger and B.J. Cosby (1978). Relationships among substrate, flow and benthic microalgal pigment density in the Mechums River, Virginia. Limnol. Oceanogr. 23:785-797=

Usinger, R.L. (ed.) (1956). Aquatic insects of California. Univ. of Cal. Berkley.

Utermohl, H. (1958). The improvement of quantitative phytoplankton methodology. Mitt. Internat. Verein. Limnol. <u>9</u>:1-39 (Transl. from German). Fish Res. Board Can. Transl. Ser. 2713.

Van Landingham, S.L. (1969-1975). Catalogue of the Fossil and Recent Genera and Species of Diatoms and their Synonyms. Parts I-V. J. Cramer, Lehre. p.1-2963.

Watson, S.W., T.J. Novitsky, H.L. Quinby and F.W. Valois (1977). Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol 33:940-946.

Weber, C.I. (1966). A Guide to the Common Diatoms at Water Pollution Surveillance System Stations. U.S. Environmental Protection Agency, Cincinnati, Ohio. 101 pp.

61

Welch, H.E. (1974). Metobolic rates of Arctic lakes. Limnol Oceanogr. <u>19</u>:65-73.

Wright, R.T. and J.E. Hobbie (1965). The uptake of organic solutes in lake water. Limnol. Oceanogr. <u>10</u>:22-28.

Wright, R.T. and J.E. Hobbie (1966). Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology <u>47</u>:447-453.

Species		Volume:	μm^3
Bacillariophyceae:			<u>_ i</u>
flexella († lancelota (Cutz.) Grun. Cutz.) Grun. Breb.) Grun. a (Kutz.) Cl.	150 160 1270 120 100 60 210	
Amphipleura pellucida	(Kutz.) Kutz.	1920	
Amphora sp. Anomoeoneis vitrea zellensis	(Grun.) Ross (Grun.) Cl.	50 280 370	
Asterionella formosa Cocconeis placentula Cyclotella bodanica comta glomerata ocellata	Hass. Ehr. Eulenst. (Ehr.) Kutz. Bachm. Pant.	220 700 1520 845 200 900	
Cymatopleura solea	(Breb.) W. SM.	2 97 0	
Cymbella affinis caespitosa cistula prostrata sinuata turgida ventricosa sp. "A" sp.	Kutz. (Kutz.) Grun. (Ehr.) Kirchn. (Berk.) Cl. Greg. Greg. Kutz.	4525 2070 16090 3990 100 1760 260 37470 530	
Sp. Diatoma hiemale hiemale V. tenue V. el vulgare		250 1210 110 1460	
Diplon e is decipiens	A. C1.	630	
Denticula elegans sp.	Kutz.	350 430	
Frustulia rhomboides	(Ehr.) DeT.	960	

APPENDIX 1: Cellular volumes of algal species listed in Appendices 2 and 3.

Species					Vo	lume: µm ³
Epithemia	sorex turgida	Kutz. (Ehr.) Kutz.		<u></u>		1720 25030
Eunotia pe	ectinalis sp.	(O.F. Mull.?)	Rabh.			1830 440
Fragilario	construens	v. construens v. binodis v. venter s Kitton ron (Ehr.) Hu	(Ehr.) Gru (Ehr.) Gru ust.	in.		1850 210 480 250 360 520 170
Frustulia	rhomboides	e (Ehr.) De	eT .			9 60
Gomphonem	a acuminati intricatum lanceolati olivaceum parvulum ventricosi	n Kutz. um (Ag.) Ehn (Lyngb.) Kutz.				620 690 630 370 980 700
Gomphonei	s herculear	ia (Ehr.) C	. (Gomphonen	na herculeanum	n)	4750
Didymosph	enia gemina	ata (Lyngb.)	M. Schmidt.	(Gomphonema	geminatum)	21260
Gomphonem	a sp.					300
Gyrosigma	sciotense	(Sulliv.	& Wormley) (C1.		1 41 9 0
Hannaea a a	rcus rcus V. am	(Ehr.) Patr. phioxys (Rabl	h.) Patr.			2520 1070
Meridion	circulare	(Grev.) Ag.			N	1670
Melosira		(Ehr.) Ralfs v. <i>angustissim</i> a	α 0.F. Mull	•		1800 750
Navicula	bicephala convergen cryptocep pupula radiosa salinarum scutelloi	hala Kutz. Kutz. Kutz. V. intermedia	(Grun.) C	1.		360 350 780 420 550 830 970

Species		Volume: µm ³
Navicula tripunctato	z (O.F. Mull.) Bory	1480
viridula	(Kutz.) Kutz.	1690
sp. A		540
sp. B		280
sp. C		480
Neidium sp.		1400
Nitzschia acicularie	3 W.Sm.	280
angustata	(W. Sm.	9 20
dissipata	(Kutz.) Grun.	410
frustulum	(Kutz.) Grun.	170
hantzschia	Rabh.	250
linearis	W. Sm.	3370
palea	(Kutz.) W. Sm.	645
sigma	(Kutz.) W. Sm.	500
sp.		660
Pinnularia sp.		940
i childrat da Sp.		
Rhoicosphenia curva	ta (Kutz.) Grun.	510
Rhopalodia gibba	(Ehr.) O. F. Mull	13470
Stauroneis phoenicer	ntron (Nitz.) Ehr.	3020
anceps	Ehr.	560
sp. ¹		150
Surirella angustata	Hust.	3030
ovata	Kutz.	15350
sp.		1200
Synedra delicatissi	ma lul Sm	4590
ulna	(Nitz.) Ehr.	3460
ulna	yrhychus (Forti) Hust. (Synedra a	
	Kutz.	1240
	Kutz.	1400
		2280
Stephanodiscus astr tenu		230
Tabellaria fenestra	ta (Lyngb.) Kutz.	840

Species	Volume: µm ³
Chlorophyta:	
Ankistrodesmus falcatus (Corda) Ralfs.	260
Chlamydomonas sp.	160
Ulothrix sp.	669,660 μm ³ /mm of algae
Dedogonium sp.	951,200 µm ³ /mm of algae
Mougeotia sp.	473,630 µm ³ /mm of algae
Closterium sp.	14380
Cosmarium sp.	5870
Cryptophyta:	
Chroomonas acuta Utermohl sp.	100 440
Cryptomonas borealis Skuja	1800
Cryptomonas sp.	400
<u>Chrysophyta</u> :	1140
Dinobryon sertularia Ehr.	1140
Cyanophyta:	3
Oscillatoria sp.	13,850 μm ³ /mm of algae
Anabaena sp.	10,180 µm ³ /mm of algae

APPENDIX 2

Viable phytoplankton concentrations (4-10 October 1977) (cells/ml) of several streams of the Ogilvie and Swift River drainage basins. Species that are typically periphytic are indicated with a check (\checkmark), typically planktonic with a solid circle (\circ) and those equally important in both habitats are indicated with a plus (\pm) sign. (analyzed using 500 X magnification). (1 of 2 pages) ı Appendix 2a

SPECIES			SAMPLE	E L O C A T I O	N
			Ogilvie River	Swift River	0R 8
			4VU C		c
Achnanthes flexella	•••		C. 34.	ז ז כ	Ś
/ Achnanthes lancelota		•	0		- 884
' Achnanthes minutissima		•	12.4	5.5	c. /
' Amphipleura pellucida	•		0		Ö
/ Amphora SD.	•		2.0	0	0
l'Anomoeoneis vitrea			42.4	13.2	
' Cocconeis placentula			0	2.2	88
Cuclotella ocellata	•	•	0	0	Ó,
/ Cumatopleura solea		•	.0	0	0
/ Cymbella caespitosa		•	0 · 7	5.5	00
/ Cumbella sinuata			0.7	Ċ.	0
/ Diatoma hiemale			1.47	4.4	. 442
: Diatoma tenue V.elongatum	u		23.4	α.α	0
/ Fragilaria construens V. binodis	binodis		15.5	<u> </u>	
Eragilaria crotonensis			0.4		- -
Fragilaria vaucheriae	:		0,	ġ	50
/ Gomphonema olivaceum	• • •	•	1.4/		56
/ Navicula pupula		*	0.0	0	5 c
/ Navicula punctata	•		0.		50
/ Navicula sp.		-	1.4/	2.2	- 0
/ Nitzschia acicularis		-	.736	0 0	00
/ Nitzschia frustulum			0	22	; ; ;
/ Nitzschia Sp.			44.9	34.1	6.63 00
		•	Ċ	0	88.

CONTINUED NEXT PAGE.

(2 of 2 pages) Appendix 2a - Continued:

ł

SPECIES	•••••••••••••••••••••••••••••••••••••••	3	S A	SAMPLE LOCATION	I I O N
			Ogilvie River	Swift River	OR 8
V Tabellaria flocculosa	•		 	у U U	00
o Chlamydomonas Sp.			2.9 4.42	20.0 20.0	
o Chromonas Sp. o Cryptomonas Sp.	•	• •	1.1 .245	00	000
	•	TOTAL	160.3	114.4	38.4
	• •				

The remainder are carried for * Only figures to the first decimal place are significant. calculation purposes only. Viable Phytoplankton Concentrations (December 10-20 1977) (cells/ml) of several streams of the Ogilvie and Swift River drainage basins. Species that are typically periphytic are indicated with a check (/), typically planktonic with a solid circle ($_{0}$) and those equally important in both habitats are indicated with a plus (\pm) sign. (analyzed using 500 X magnification). (1 of 2 pages) Appendix 2b -

1

SPECIES			SAMPLEL	OCATION	
			Ogilvie River	Swift River	
, Achnanthes flexella		•	.0084*	0	
, Amphipleura pellucida	•		00	.0238	
, Cymatopleura solea				0/00.	
, cymperia ventricosa , Cumbella Sn			.0252	.0141	
/ Cocconeis placentula			0	.0141	
, Diatoma hiemale			0	.0238	•
, Diatoma hiemale V. mesodon		·	.0252	0	
-+ Diatoma tenue V. elongatum			.4116	.0038	
J Epithemia turgida			0.0	1010.	·
/ Eurotia pectinalis	• •	•	0	. 0069	
y Diatoma vulgare			.0168	0	
🗼 Fragilaria capucina			.0588	.0612	
J Fragilaria construens V. binodis			.1512	.188	
J Frustulia rhomboides			0	90200	
, Didymosphenia geminatum	-		0 (.031	
J Gomphonema olivaceum		•	0	. 035	
y Hannaea arcus		•	.0084	, C C	•
+ Melosira granulata			0	. 183	
- Meridion circulare			.0252	0	
y Navicula cryptocephala			0 (.0052	
y Navicula pupula			50	.006	
V Navicula radiosa				0152	•
/ marcana urpunchana			þ		

CONTINUED NEXT PAGE

Appendix 2b - Continued: (2 of 2 pages)

l

Į

SPECIES

Z

CATIO

0 _

لسا

M P. L

S A

Swift River .0133 .0038 .0103 .0032 .0310 .0038 .0038 .0038 0063 .0063 .699 .889 0 **Ogilvie River** .0168 .0168.4284 .0252 1.218 \Box TOTAL Synedra ulna V. oxyrhychus Tabellaria fenestrata Nitzschia dissipata Čymbella caespitosa Rhopalodia gibba Cymbella turgida sp. sp. sp. Synedra acus Synedra Sp. Navicula sp. Synedra ulna sp. Pinnularia Stauroneis Surirella Neidium

Only figures to the first decimal place are significant. The remainder are carried for calculation purposes only.

Viable Phytoplankton Concentrations (22-30 March 1978) (cells/ml) of several streams of the Ogilvie and Swift River drainage basins. Species that are typically periphytic are indicated with a check (/), typically planktonic with a solid circle (\circ) and those equally important in both habitats are indicated with a plus (\pm) sign. (analyzed using 500 X magnification). (1 of 2 pages) I Appendix 2c

SPECIES		SAMPLELO	CATION
		Ogilvie River	Swift River
' Achnanthes flexella		.275*	0
Achnanthes microcephala		0	0
' Achnanthes minutissima		1.65	.122
<i>Achnanthes</i> sp.		Ċ Ċ	.122
' Cymbella affinis		0.092	0
/ Cymbella sinuata		000.0	0,061
/ Cymbella ventricosa		.184	.122
/ Cymbella sp. A		0.092	0
' Cymbella sp.		0.000	0
/ Diatoma hiemale	-	3.85	0
: Diatoma tenue V. elongatum		1.192	.122
/ Epithemia turgida	•	0.000	.061
Fragilaria capucina		.275	0
Fragilaria crotonensis		000.1	0
: Fragilaria vaucheriae		2.20	.122
/ Gomphonema acuminatum		0.000	190.
/ Gomphonema olivaceum		0.184	.061
t Melosira granulata		0.092	0
/ Meridion circulare			.0
/ Navicula radiosa	.*	0.000	.122
/ Navicula sp.		0	0
/ Nitzschia linearis		. 092	0
/ Nitzschia palea		.275	.061
t Synedra acus		1.468	.244
t Sunedra SD.		0.092	.244

CONTINUED NEXT PAGE

Appendix 2c - Continued (2 of 2 pages)

		SAMPLE LOCATION	CATION
		Ogilvie River	Swift River
Tabellaria fenestrata Cocconeis placentula Synedra ulna Chlamydomonas Sp. Dinobryon sertularia		0.000 0.000 0.184 0.000	0 .1835 .1835 .549 .061
	TOTAL	13.573	2.502

Appendix 2d - Viable Phytoplankton Concentrations (15-26 May, 1978) (cells/ml) of several streams of the Ogilvie and Swift River drainage basins. Species that are typically periphytic are indicated with a check (√), typically planktonic with a solid circle (₀) and those equally important in both habitats are indicated with a plus (±) sign. (analyzed using 500 X magnification). (1 of 2 pages)	sn	a	dr	Appendix 2d - Vi
	using 500 X magnification). (1 of 2 pages)	solid circle ($_0$) and those equally important in both habitats are indicated with a plus ($_{\pm}$) sign. (analyzed)	rainage basins. Species that are typically periphytic are indicated with a check (\checkmark), typically planktonic with	iable Phytoplankton Concentrations (15-26 May, 1978) (cells/ml) of several streams of the Ogilvie and Swift River

SPECIES		SAM	PLE L	осаті	0 N			1
	Ogilvie River	Swift River	S 14	0R 8	S 5	8 S	S S	S 2
Achnonthes minutissimo	48.8	37.8	0_	24.6	4.6	1.84	5.9	18.4
	1.65*	•	0	.92	0	0	0	0
	1.38	.613	0	0	0	.92	.92	0
â	.46	• 55	0	0	0	0	•	0
Cocconeis placentula	0	.46	0	0	4.6	0.92	11. 0	1.38
	2.2	1.3	0	0	2.8	0	0	
' Cymbella cistula	1.47	0.3	0	0		0		۰. C
	5.6	2.6	0	2.3	q	0	-	· .
' Cymbella sinuata	0	0	0	0	0	0) C	
	0		0	0.7	0	0.5	0	·.
' Diatoma hiemale	.552	2.3	0	2.8	0	0	1.84	
' Diatoma hiemale V. mesodon	9.9		4.6	4.4	0	2.8	9.7	/.8
tenue V.	21.7	32.4		53.3	0	0	0	- 33
vulgare	0.5	1.4	17.9	8.6	0	0		•
Fragilaria construens V. binodis	8.1	7.3	0	22.6	1.38		.92	• •
Fragilaria construens V. venter	10.8	1.2	. С	0./	8.7.8	. 4		ı د
Fragilaria capucina	14.5	5.2	<u>,</u> C					
Fragilaria vaucheriae	5.52	/.1		6.21	0.5			,
Gomphonema acuminatum	0		• C					
Didymosphenia geminatum	0				20) C	
Gomphonema olivaceum	12.15	6.9		10.0	1.38	3.68		الم
Hannaea arcus	9.38	8.81	26.7	10.0	0.5	1.38	0.9	, I4
Hannaea arcus V. amphioxys	1.84	.76	3.22	3.68	0	00		
a granulat	0	10.4	0	0	0	C		
	0	0.2	0	0	0	0	0.5	· C
circulare	9.5	1.4	0	1.6	0	0) <u></u>
Navicula cryptocephala	0	.92	0	.92				
	1.1	1.84	.0 -	2	0.5	0		C
	4.7	2.6	0.5	4.6	٠	.46	0.9	· .
	0.3	0.8	0		0	0	0	. j
'Nitzschia hantzschia	0	0.9	0	0	0			• C
' Nitzschia palea	4.5	3.4	0	1.4	0	0.5	0.5	
Nitzschia sigma	0	0.2	0	0	0	0	0	0
Synedra ulna	16.9	7.1	2.3	12.8	1.8	0.5		ω
	כ	`			2			-

<u>.</u>

<u>.</u>

Sec. Com

CONTINUED NEXT PAGE

		SPECIES + Tabellaria fenestrata / Nitzschia acicularis / Nitzschia linearis / Nitzschia linearis / Oscillatoria Sp. (mm) Oedogonium Sp. (mm) / Ulothrix Sp. (mm) Ochlamydomonas Sp. Chyptomonas borealis Chroomonas acuta	
	TOTAL		
- - 	197.6	Ogilvie River 0 1.1 0.5 0 0 0 0	
	154.9	Swift River .15 0.3 0.2 0.1 0.2 0.2 0.2 0.2	
 	55.7	00000000000000000000000000000000000000	
	183.7	OR 8 7 1 0 N 00 1.4 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	
	21.9	00000000000000000000000000000000000000	
	16.9	× 00000 × 0000 8 0000 8 0000 8 000 8 000 8 000 8 000 8 000 8 000 8 000 8 000	
	38.7	0000000000 v 5	
	124.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

* Only figures to the first decimal place are significant. remainder are carried for calculation purposes only. The - Arite

74

. `

Appendix 2d - Continued (2 of 2 pages)

Appendix 2e - Viable Phytoplankton Concentrations (17-30 June, 1978) (cells/ml) of several streams of the Ogilvie and Swift River drainage basins. Species that are typically periphytic are indicated with a check (1/), typically planktonic with a solid circle (0) and those equally important in both habitats are indicated with a plus (±) sign. (analyzed using 500 X magnification). (1 of 2 pages)

		6 A M D -						
SPECIES					1	1		
	Ogilvie River	Swift River	S 14	OR 8	S 5	S 8	S 3	S 2
l admonthes florella	.23*	0.63	0	•	0	0	0	0
	27.3	19.5	ੰਹਾਂ	15.6	10.1	0 0 1 0	11.5	14.7
	2.1	ۍ ` س	0	00	,«	•		ר איי
8	0	0	<u>) 0</u>) C) C	> -		- c +
Amphora sp.	,0		, c	> c) C	D C	D	> c
$\tilde{\omega}$	°.6	، ن		> <	C 	> C	ມ ຕ ເງ	⊃ с л
√ Cocconeis placentula		0°.4	0 0	- c	 -	> c	с г	
o Cyclotella ocellata		0.2		o. C	 0		ר כ ת	c Ø
√ Cymbella caespitosa	1.8	, , ,	<u>.</u>		 0	.		
	0.6	0.2		.		-	c >	0
<pre> Cymbella sinuata </pre>	i N i G				s c v v	-		
 Cymbella ventricosa 	<u>5</u> .7	2.0) - 0	
sp.		ر ح				7 4	12 0	0 0
hiemale		1, 1, 0.			•		л і с	ہ م در
o Diatoma tenue V. elongatum	43.0			- 0. 1	•	о с л	ν. 	Э (л (
/ Diatoma vulgare	.				D C		Э (Л	
v inploners decriptions	ີ ວີ	ס ר י ת	50	ט גע ק	- 1 - 2	ມ (\)	י ת ייי	3.7
capucina	7.71	0.0			D - -		0.	0.9
construens v.	 -	лc			2 c 8	3.7	л -	0
construens v.	o - - 7	D L)	5 0	: נו	0	0	0
V Fragilaria construens V. venter	1 L L L L L L L L L L L L L L L L L L L			ວ ດ 	ι	7		
± Fragilaria vauchernae				•	- C - -		- - -	•
V Comphonema acuminatum		- -) с л	-	5 0	5 9
🗸 Didymosphenia geminatum						c >	νc p	e S
√ Gomphonema olivaceum		4 · 7		0		 -) [•
V Gomphonema paruulum					- -	_	ა ი ა	0 0
√ Hannaea arcus	14.1) 				•		•
√ Hannaea arcus V. amphioxys		ر ح ب					 -	<u>р</u> о л
		- -		D C		•	ס ת פ) Л
	»./					•		ວດ
cryptocephala	0.2	U• J	5 0	50	⊃ с л	20	00	ັ ບັ
60		· <u>·</u>		5 0		.	0	Ð
/ Navicula sp.				- c	50	Э с л	⊃ с л	
/ Neidium sp.	2.2	o				•		-
/ Nitzschia acicularis	5 C 3	0.2		50	50		00	00
v Nrtzschra nantzschra	0.0	c	c	c	d		ſ	

CONTINUED NEXT PAGE

Appendix 2 e - Continued (2 of 2 pages)

•

· · ·	TOTAL	<pre>/ Nitzschia linearis / Nitzschia palea / Nitzschia sigma / Nitzschia sigma / Rhopalodia gibba ± Synedra ulna ± Synedra ulna ± Synedra ulna * Chlamydonomas sp. 0 Dinobryon sertularia 0 Chroomonas acuta 0 Chroomonas borealis</pre>	SPECIES
	205.3	0gi ivie River 0.2 0.4 0.4 0.4 17.1 6.9 0.5 0.5 0.6	
· .	69.2	0 .4 0.1 0.1 7.0 7.0 1.7 0.2 0.2	S A M
	4.4	00000000000000000000000000000000000000	PLE L
	54.2	000003.00000 .9	
	36.5	000000000000000000000000000000000000000	n
: : :	64.5	0000.0100000 594 5	o
· .	71.1		Λ ω
	47.7	00000200000	c >

 \star Only figures to the first decimal place are significant. The remainder are carried for calculation purposes only.

Appendix 2f - Viable Phytoplankton Concentrations (1-8 Aug., 1978) (cells/ml) of several streams of the Ogilvie and Swift River drainage basins. Species that are typically periphytic are indicated with a check (√), typically planktonic with a solid circle (₀) and those equally important in both habitats are indicated with a plus (±) sign. (analyzed using 500 X magnification) (1 of 2 pages)

÷

•	 Achi Achi<th>SPECIES</th>	SPECIES
TINNED NEVT	Achnanthes flexella Achnanthes minutissima Achnanthes sp. Amphipleura pellucida Amphora coffeiformis Amphora sp. Anomoeoneis vitrea Cocconeis vitrea Cocconeis vitrea Cocconeis vitrea Combella sinuata Cymbella sinuata Cymbella ventricosa Cymbella ventricosa Cymbella sinuata Cymbella sinuata Cymbella caespitosa Cymbella sonstruea Pragilaria construens V Fragilaria c	
CONTINUED NEXT PAGE	sima sima is is la la la la la is is is is is is is is is is is is is	
	inodis	
	Ogilvie R .37* 45.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
	River	
	Swift Riv 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
· · ·	.24.924.7 .5 .7.7.8 .2.1 .2.24.2 .6 River	SAM
	S 14 S 14 S 14 S 14 S 14 S 14 S 14 S 14	I P L E
		LOCA
•••	S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5	TION
· .	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
	00400-00700040250005534-2000490 4.00700-0040250005534-2000490 4.00700-0040250005534-2000490 55534-2000403 3	
	S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 2	
	OR 14 0R 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
·	00000002022010010010000000000000000000	1

.

Appendix 2f - Continued: (2 of 2 pages)

Ogilvie River	Swift River	S 14	-0 8	ა 5	S B	S W	S 2	0R 14	s S
0.2	0.5	0	-0	-0	, ,		30 9	r 0 r	00
4.1	6.1	00	0.4	۲ - ۲ ۵	2 v 2 x	0.4	ο Γ. α	- 0 0 0	C
00		0.9	0.0	0.	0!	0;		00	•:
0	1.6	0	0	0.9	0	Ò	0	0	0
0	0.5	0	0	0	0	0	0	0	0
0	0	0	0	0	.9	0	0	0	0
0	0.6	0	0	0	0	0	, . 8	0	0
0.6	0.6	0	0	0	0		00		
1.7	0.7	0.9		0	• 0 ,	0	, C	6.0 9	。 C
0	0.2	0	-0	0	 8	00	C		
0	0.8	0	-0	0	0	0	00		
0.7	0	0	0.0	0	0	• O	, O	_3. /) C
0.2	0.2	0	0.0	0	00		00		
0.7	0.3	0	C	C	c	C	0	C	-
84.4	31.9	15.5	173.8	36.7	22.0	150.7	121.4	103.9	39.6
			-						
1	Ogilvie River 0.2 4.1 0 0 0 0.6 1.7 0.2 0.2 0.7 84.4		Swift River S $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Swift River S 14 OR $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Swift River S 14 OR 8 S 0.5 0 0 0 0 6.1 0 0 0 0 0 6.1 0 0 0 0 0 0 6.1 0 0 0 0 0 0 0 6.1 0 0 0 0 0 0 0 0 1.6 0.9 0 <td>Swift River S 14 OR 8 S 5 S</td> <td>Swift River Sum Subscription Subscrippine Subscription Subscript</td> <td>Swift River S 14 OR 8 S 5 S 8 S 3 S 6.15 0 4.4 1.8 9.2 15.4 2.8 9.9 9.0 1.6 0.9 0 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.0 0.9 0.0<</td> <td>Swift River S 14 $0R$ 8 5 5 8 6 0 0</td>	Swift River S 14 OR 8 S 5 S	Swift River Sum Subscription Subscrippine Subscription Subscript	Swift River S 14 OR 8 S 5 S 8 S 3 S 6.15 0 4.4 1.8 9.2 15.4 2.8 9.9 9.0 1.6 0.9 0 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.0 0.9 0.0<	Swift River S 14 $0R$ 8 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 6 0

<u>283</u>

Only figures to the first decimal place are significant. The remainder are carried for calculation purposes only.

. . . .

*

APPENDIX 3

÷

Periphytic Diatom Concentrations (4-10 October, 1977) (cells/cm²) of several streams of the Ogilvie and Swift River drainage basins (analyzed using 1000 X magnification). (1 of 4 pages) I. Appendix 3a

Achnanthes clevei Achnanthes inflata Achnanthes inflata Achnanthes flexella Achnanthes lancelota Achnanthes microcephala Achnanthes microcephala Achnanthes microcephala Achnanthes microcephala Achnanthes microcephala Achnanthes microcephala Achnanthes sp. Achnanthes sp. Achnanthes sp. Arnoneoneis vitrea Amphora sp. Anomeoneis sp. Anomeoneis splucentula Cyclotella glomertata Cyclotella glomertata Cyclotella coellata Cyclotella coellata Cyclotella coellata Cyclotella coellata Cyclotella coellata Cyclotella coespitosa Cymatopleura sp. Cymbella caespitosa	7734 256 174 768 5603	30		
2 22 J	256 174 768 5603	9 -	25.22	
2 1 5 1 5 1	256 174 768 5603	-		
2 2 2 2 2 1	174 768 5603	>	0	
2 1 2 2 2 2 2 1	768 5603	0	1116	
2 22 - 25 -	5603	0	0	
σ 22 22		0	0	
2	37360	538.	82011	
8	2.97	9	 0	
N	0	0	0	
N	0	0	0	
N	3059	0	1674	
2	111	0	0	
2	0	0	0	
R	0	Ô	0	
R	10110	O	0	
2	0	0	0	
	3184	0	Q (
• • •	0	0	0	
	0	0	0	
	0	0	0	
Numbella mistula	1818	30	3347	
	222	0	0	
Cymbella sinuata	881	0	0	
Cymbella turgida	0	0	0	
Cumbella ventrisosa 9466	2953	55	8369	
-	0	0	0	

Appendix 3a - Continued: (2 of 4 pages)

SAMPLE LOCAT

I O N

SPECIES

	Ogilvie River	Swift River	S 14	0R 8
Cymbella sp.	1282	0	0	0
Diatoma hiemale	2550	819	0	5021
Diatoma hiemale v. mesodon	0	1:131	30	0
Diatoma tenue V. elongatum	43824	2867	24	27895
Diatoma vulgare	2587	546	0	0
Diploneis decipiens	0	767	0	0
Denticula sp.	386	0	0	Ö
Epithemia tungida	0	142	Ö	0
Eunotia pectinalis	0	0	Ō	0
Eunotia sp.	0	1013	6.7	0
Fragilaria capucina	733	5051	36	0
Fragilaria construens V. binodis	1031	5073	0	0
Fragilaria construens V. construens	0	15,98	0	0
Fragilaria construens V. venter	0	1056	Ö	0
Fragilaria crotonensis	91121	1574	Ō	0
Fragilaria leptostauron	0	398	0	0
Fragilaria vaucheriae	1900	13217	212	94.84
Didymosphenia geminatum	130	471	0	0
Gomphoneis herculeana	0	533	0	0
Gomphonema intricatum	0.	0	0	0
Gomphonema olivaceum	4508	1268	0	0
Gomphonema parvulum	260	371	0	1116
Gyrosigma sciotense	0	0	0	0
Hannaea arcus	1557	266	26	1116
Hannaea arcus V. amphioxys	0	0	0	0

CONTINUED NEXT PAGE

Appendix 3a - Continued: (3 of 4 pages)

ω 1116 0000 558 558 00 1116 0 3347 Я 4 z S 0 -----A Swift River ပ 0 | 708 | 326 | 026 50 59 192 2219 534 534 111 111 2768 111 447 434 434 00 224 4395 0 557 ____ ш ----٩ Σ Ogilvie River Þ S 130 1279 1086 445 442 4479 666 7428 0 367 \circ Vavicula salinarum V. intermedia phoenicentron Vavicula scutelloides hantzschia tripunctata Vitzschia acicularis dissipata rrustulum angus tata Vitzschia linearis granulata bicephala Meridion circulare Stauroneis anceps Vavicula radiosa Phopalodia gibba Vavicula pupula palea sp. sp. Pinnularia sp Vavicula sp. Vavicula sp. Vavicula sp. Stauroneis Stauroneis litzschia Vitzschia Vitzschia Vitzschia Vitzschia Vitzschia Vavicula Melosira Vavicula Veidium SPECIES

CONTINUED NEXT PAGE

Appendix 3a - Continued: (4 of 4 pages)

•

SPECIES

SAMPLE LOCATION

	Ogilvie River	Swift River	S 14	0R 8	
	•			•	
Surirella angustata	0	0	0	0	
Surirella ovata	0	0	0	0	
Sunedra ulna	56.39	4137	0	8926	
Sunedra	0	0	0	0	
Sunedra delicatissima	733	0	0	0	
Sunedra radians	1135	0	0	0	
Tahellaria fenestrata	0	237	0	0	
Tabellaria flocculosa	0	739	20	0	
TOTAL	496,000	142,875	1,316	159,002	
· ·					

Appendix 3b - Periphytic Diatom Concentrations (10-20 December, 1977) (cells/cm²) of several streams of the Ogilvie and Swift River drainage basins (analyzed using 1,000 X magnification).

	Ogilvie River	Swift River	
Achnanthes flexella	2322	0	
Achnanthes lancelota	0	55	•
Achnanthes microcephala	16.2	32	
Achnanthes minutissima	17563	407	
tchnanthes sp.	144	233	•
Amphipleura pellucida	0	54	
Amphora coffeaformis	68	14	
Amphora sp.	127	63	
Anomoeoneis vitrea	8147	31	
locconeis placentula	133	581	
Cyclotella ⁻ ocellata	273	131	
Cyclotella comta	0	68	
Cymbella affinis	76	0	
Cymbella caespitosa	817	108	
iymbella cistula	468	O	
Cymbella sinuata	0	79	
Cymbella ventricosa	151	0	
Diatoma tenue V. elongatum	1323	30	
Denticula elegans	51	0	
Tragilaria capucina	68	0	
Fragilaria construens V. binodis	29	179	
Fragilaria construens V. construens	0	62	
Tragilaria construens V. venter	.43	74	
Fragilaria leptostauron	0;	48	
ragilaria vaucheriae	/9 ,	32	
Frustulia rhomboides	0	m	

CONTINUED NEXT PAGE

Appendix 3b - Continued: (2 of 2 pages)

SPECIES

		Ogilvie River	Swift River
Componena acuminatum		0	21
Gomphonema olivaceum		388	161
Gomphonema parvulum		57	0
Gomphonema sp.		193	108
Hannaea arcus		51	Q
Melosira granulata		0	ω
Navicula bicephala		0	21
>	intermedia	101	19
Navicula tripunctata		68	0
Navicula sp.		0	30
Neidium sp.		0	17
Nitzschia frustulum		0	. 98
Nitzschia palea	· ·	0	18
<i>Nitzschia</i> sp.		205	- 02
Rhopalodia gibba		0	9
Synedra acus		671	167
Nitzschia dissipata		133	- 0
•			
· · ·	TOTAL	32,556	3,016

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SPECIES	S A I	MPLE LOCAT	1 0 N
e fracella $44,966$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,688$ $1,79$ 200 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ 100 $1,59$ $1,59$ 100 $1,59$ $1,$			Swift River	S
$s \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		44,966	1,688	1,419
s microscepiala 279,783 13,668 14, s minutesima 279,783 13,668 111 353 111 $_{1,0}^{10}$ $_{2,0}^{$		379	0	02
		0 779_783	13.688	14,500
ra pellueida sp		353		305
is bitrea 5,143 6,590 22 a comta 3,655 25,190 3,655 25,190 a glomerata 1,589 0 2,278 a caespitosa 2,278 0 7 a canstructa 2,278 0 7 structa 2,278 0 7 structa 2,278 0 290 structa 2,278 0 290 structa 2,278 0 290 structa 2,278 0 290 structa 2,278 0 200 structa 2,278 0 200 a construens V. construens V. construens 2,187 1,856 a construens V. construens 2,187 1,856 203 a construens V. construens 1,571 1,856 203 a construens V. construens 2,550 1,358 203 a construens V. construens 2,508 1,358 203 a construens V. construens 2,020 16 1,399 a construens 2,030	mphipleura pellucida	0	0	0
placentula 3,655 a glomerata 3,655 a glomerata 1,589 a construens v. econstruens 2,278 a construens v. binodis 1,177 a construens v. binodis 1,188 a construens v. binodis 1,188 a construens v. binodis 1,190 a construens v. binodis 1,190 a construens v. binodis 1,358 a construens v. binodis 1,358 a construens v. construens 1,358 a construens v. construens 1,358 a laptosta	mphora sp.	6,590	31.4	2012 2614
a glomerata a glomerata a glomerata a coelitata a coelitata a coelitata a coelitata a coelitata a construct setuata a construens setuata a construens setuata setu	nomoeoners vitrea	עדע נ ר+ר נ	955	199
a constructa 1,589 376 a cocellata 0 0 7 a cocellata 0 0 7 caespitosa 2,278 0 7 extenda 949 0 7 stnuata 949 0 7 opentricosa 2,278 0 7 stnuata 0 0 7 opentricosa 2,278 0 7 opentricosa 2,278 0 7 opentricosa 2,278 0 70 opentricosa 2,278 0 70 opentricosa 2,278 0 20 opentricosa 2,278 0 20 opentricosa 2,278 0 20 opentricosa 2,351 8,690 20 opentricosa 2,351 1,851 1,851 opentricosa 2,187 1,851 1,851 opentricosa 1,76 1,358 1,355 opentricosa 2,023 1,395 1,395 <	occoners pracentula	() 2005	228	0
a coellata a coellata a coellata a constructa perturbosa perturbosa perturbosa perturbosa perturbosa perturbosa perturbosa perturbosa perturbosa perturbosa a construents a construents b construents a construents a construents b construents a construents a construents b construents a construents a construents b construents b construents a construents b construents b construents a construents b		1,589	376	569
categitosa 2,278 949 eistula 2,278 0 sinata 2,278 0 sp. 477 307 ventricosa 8,690 290 sp. 0 0 290 enmel v. elongatum 8,690 290 200 enme v. elongatum 8,891 0 200 a construens v. binodis 12,785 617 307 a construens v. binodis 9,141 1,881 0 203 a construens v. venter 73,785 6,122 15 6 12,785 203 a construens v. venter 73,785 6,122 15 203 1,358 417 358 452 203 1,358 452 203 1,358 452 203 1,358 452 203 1,358 1,358 1,358 1,358 1,358 1,359 1,359 1,399 1,399 1,399 1,399 1,399 1,399 1,399 1,50 1,399 1,50 1,399 1,50 1,399 1,50 1,50 1,399 <t< td=""><td></td><td>00</td><td>7 U</td><td></td></t<>		00	7 U	
eisevier struata struata sp. sp. sp. sp. sp. sp. semale v. elongatum nigare v. elongatum nigare v. elongatum nigare v. elongatum nigare v. elongatum nigare v. elongatum v. elonstruens v. enter a construens v. venter a construens a const		949	76	0
struata sp. 20 sp. 20 semale v. elongatum ulgare a capucina a capucina a construens v. construens a construens v. binodis a construens v. venter a construent a constru		2,278	0	
sp. 8,690 200 siemale 0 0 0 enuele V. mesodon 23,351 1,856 enue V. elongatum 23,351 1,856 1, a construents V. construents 23,351 1,856 a construents V. construents 23,351 1,856 a construents V. binodis 2,787 687 a construents V. venter 477 687 a construents V. venter 6,136 1,358 a construents 1,571 907 687 a construents V. venter 6,136 1,358 a construents 1,571 907 687 a construent 5,550 0 1,358 a clauceolotum 5,550 0 0 a sherouleana 12,025 1,399 6 a servicense 0 1,399 6 1,399 a clustopolyticozys 0 1,399 6 1,399 a construents 0 1,399 1,399 1,399 a colicozys	ymbella sinuata	477	307	179
smale v. mesodon 0 0 smale v. mesodon 216 0 smale v. mesodon 23,351 1,856 sue v. elongatum 23,351 1,856 1, capucina 23,351 1,856 1, capucina 23,351 1,856 1, construens V. construens 9,141 0 0 construens V. venter 73,785 6,136 1,358 construens V. venter 73,785 203 0 1,358 lanceolotum 6,122 1,358 203 0 0 0 lanceolotum 2,025 1,399 0 <		U D69 ' R	290	66L 021
amale v. mesodon amale v. mesodon apucina capucina capucina construens v. construens construens v. construens v. con	ymoella sp.		0	0
ue v. elongatum 23,351 1,856 1, capucina construens 12,787 8,891 188 construens v. construens 9,141 0 0 construens v. binodis 9,141 907 687 construens v. venter 9,141 9,141 907 construens v. venter 73,785 6,136 1,358 construens v. venter 73,785 203 452 construens v. venter 73,785 203 452 conscience 0 0 1,358 conconductum 2,508 0 1 vacheriae 0 12,025 15 lococeum 0 0 0 6 nia geminatum 12,025 1,399 0 0 olivaceum 0 0 1,399 0 0 cus v. amphriozys 2,031 0 15 0 0	hiemale v.	54,089	216	0
lgare aqpucina construens V. construens construens V. binodis construens C. binodis co	tenue V.	23,35	0001	۵ ۲۹۴ ٬ ۱
construents V. construents 477 687 construents V. binodis 9,141 907 91 construents V. venter 73,785 6,136 1,358 452 1 construents V. venter 73,785 1,571 907 907 1 construents V. venter 73,785 1,571 203 452 203 construent 6,122 15 0 15 203 15 vaucheriae 0 6,122 15 203 203 15 vaucheriae 0 2,508 0 <td< td=""><td>lgare</td><td>12 787</td><td>0</td><td>0</td></td<>	lgare	12 787	0	0
construens V. binodis 9,141 907 construens V. venter 6,136 1,358 crotonensis 1,358 1,358 leptostauron 73,785 203 vaucheriae 6,122 15 nia geminatum 6,122 15 nia geminatum 2,508 0 nia geminatum 2,508 0 nia geminatum 12,025 1,399 olivaceum 0 6 parvulum 0 6 cus V. amphioxys 2,031 15	capucina	477	687	13
construens V. venter 6,136 1,358 crotonensis 1,571 452 leptostauron 1,571 203 vaucheriae 0 6,122 452 vaucheriae 0 6,122 76 vaucheriae 0 6,122 76 vaucheriae 0 6,122 76 vaucheriae 0 5,550 0 nia geminatum 2,508 0 0 nia geminatum 2,508 0 0 nia geminatum 2,508 0 0 nerculeana 12,025 1,399 0 olivaceum 0 6 6 parvulum 0 1,399 6 cus V. amphrioxys 2,031 15 15	construens V.	9,141	907	- 369
crotonensis /3,/85 leptostauron 1,571 vaucheriae 6,122 vaucheriae 6,122 vaucheriae 6,122 vaucheriae 0 vaucheriae 6,122 vaucheriae 0 vaucheriae 12,025 vaucheriae 1,399 otivaceum 0 parvulum 0 outotense 2,031 0 0 0 0 0 0 15 0 0 1 10 0 0 0 15 0 15 0	construens V.	•	1,358	1,622
leptostauron 1,5/1 203 vaucheriae 6,122 76 rhomboides 0 0 rhomboides 0 15 nia geminatum 5,550 0 0 nia geminatum 2,508 0 0 nia geminatum 2,508 0 0 nia geminatum 12,025 1,399 6 parvulum 0 12,025 1,399 parvulum 0 6 82 cus V. amphioxys 2,031 0 15	crotonensis	73,785	452	20L
vaucheriae vhomboides Lanceolotum nia geminatum nia geminatum herculeana olivaceum parvulum ciotense cus V. amphioxys 0,122 0 12,025 1,399 82 0 1,399 82 0 1,399 15 15 10 12,025 1,399 15 15 12,025 1,399 15 15 15 12,025 1,399 15 15 15 12,025 1,399 15 15 15 10 10 10 10 10 10 10 10 10 10		1,5/1 200	202	
5,550 2,508 0 12,025 0 1,399 82 0 2,031 2,031 1,399 15	<	0 771 ' 0	15	
2,508 0 12,025 0 1,399 6 2,031 2,031 15	omphonema lanceolotum	5,550	0	
12,025 0 0 12,025 0 82 82 0 2,031 0 15	ndymosphenia geminatum	2,508		
ema olivaceum 12,025 1,333 ema parvulum 0 82 arcus v. amphioxys 0 15	omphoneis herculeana		006 L Q	213
arcus V. amphioxys		U CZN ⁶ 71	28 66° 1	
arcus V. amphioxys 0 1	iompnonema parvulum	0.0	6 i	67
areus v. amphioxys 0.	annaed ancus	2,031	0	
	arcus	. 0.	<u>.</u>	

CONTINUED NEXT PAGE

Appendix 3c - Continued (2 of 2 pages)

SAMPLE LOCATION

SPECIES

	• .	rata	Tabellaria fenestrata
•		traea	Stephanodiscus astraea
•	•	xyrhychus	Synedra ulna V. oxyrhychus
21	• .		Synedra ulna
		sima	Synedra delicatissima
	•		Rhopalodia gibba
	ĸ		Nitzschia sigma
30	•		Nitzschia palea
10	·		Nitzschia linearis
		hia	Nitzschia hantzsc
6		m	Nitzschia frustulum
		ta	Nitzschia dissipata
•			Neidium sp.
			Navicula sp.
8			Navicula viridula
		salinarum V. intermedia	
1			Navicula radiosa
9		N,	Meridion circulare
,		1	Melosira granulata
0gilvi			

0 9,479 1,931 1,515 10,415 30,979 353 0 21,821 0 659,439	gilvie River
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Swift River
25,599 156 157 157 157 157 157 157 157 157	S 14

TOTAL

<u>Appendix 3d</u> - Periphytic diatom concentrations (15-25 May, 1978) (cells/cm²) of several streams of the Ogilvie and Swift River drainage basins (analyzed using 1000 X magnification).

SPECIES		SAM		CALLO				
	Ogilvie River	Swift River	S14	OR 8	S 5	8 S	S S	S 2
Achnanthes flexella	937	1,293	129	77	0	0	0	0
	483	102	0	0	0	0	, 0	4,686
~	0	0	Q	0	0	0		6,248
	117,691	41,383	3,336	1,017	120,382	14,801	104,728	110,454
	1,688	7,782	54	0	4,607	429	0	
Amphipleura pellucida	0	774		0	38	0	0	
Amphora sp.	2,527	1,492		77	0	0	00	
nomoeoneis vitrea	000	2,089	0_ 0	00		961	0.0	10,1
Cocconeis placentula	2,385	4,412		0	8,548	188	3/.218	385
Cymbella caespitosa	2,453	471	129	0	0	156	20	, ,
		. 157	0	, O	750	466	9,405	, /b
Cymbella ventricosa	2,471	1,876	345	0	1,510	588	1,876	3,12
Cymbella sp.	61	0	366	154	0	196	0	
Denticula sp.	2 - 179	157	.0	10				~ ~
	3,541	313	129	11	38	196		1 2 2
Diatoma hiemale V. mesodon	2,384	861	582	0	0	28/	298'/	89/
Diatoma tenue V. elongatum	3,031	38,086	162	- 39	·3,101	270		100,108
Diatoma vulgare	2,10/		023	149		106 6/6		
	5	U 60 1	120			0		— —
Enandrou sp.		7C7 L	2 010 C				1 520	2 202
capucina	3 E 3 C		2,017		000		0,20,0) 20,0
construens V.	ت <u>ت</u> دہ	77C 11	0 L C 7 C J		3 23 20 2	3) [(5 0 0 0 0
construens V.	200,00		210		02U, C	0CN' 7	076,1	
	4,1/2	0,839		308				7,80,7
Fragilaria crotonensis	300	1,586		0				· ·
Fragilaria vaucheriae	2,404	3,816	1,022	32	3,058	4,/9/	082.2	31,98
Fragilaria leptostauron	7,954	0		154	, 0			
idymosphenia geminatum	0	0	_0	0	755	0	0	
Comphonema olivaceum	263	1,450	129	154	307	1,482	10,499	9,73
Gomphonema parvulum	3,151	5,143	386	32	38	392	0	76
Hannaea arcus	0	3,009	6,680	16	0	294	0	1,15;
Hannaea arcus V. amphioxys	0	0	1,850	0	0	0	0	
Melosira granulata	0	0	129	0	0	196	0	_
Meridion circulare	316	0	Q	0	0	0	2,233	
Navicula radiosa	0	235	. 0	0	0	0	0	
	1,320	1,910	0	0	0	0	0	1,54
tripunctata	28	0	0	ò	0	0	0	
	0	2,324	129	115	0	0	5,629	

٢

1

<u>s. 18.</u>

CONTINUED NEXT PAGE

,

Appendix 3.d	
1	
Continued	
2	
2	
of	
\sim	
pages)	

SPECIES				-				
	Ogilvie River	Swift River	S 14	0R 8	S S	8 S	S 3	S 2
Nitzschia acicularis	61	682	0	0	0	0	0	
Nitzschia dissipata	1,976	1,620	0	0	0	0	0	
Nitzschia frustulum	0	861	- 0	32	0	0	0	
	227	1,364	0	0	.0	0	0	
	765	0	0	0	36	0	0	
Nitzschia palea	4,413	5,997	1,030	0	77	196	1,117	
Nitzschia sigma	179	667	0	0	0	0	0	
Rhoicosphenia curvata	606	0	0	0	0	0	0	
Stauroneis sp.	0	469	0	0	0	0	0	
Surirella angustata	84	682	-0	0	0	0	0	
Synedra delicatissima	56	861	0	0	0	233	0	
Synedra ulna	06	6,919	896	0	793	0	1,117	
Synedra ulna V. oxyrhychus	283	1,078	129	0	0	188	0	
Tabellaria fenestrata	0	0	0	0	0	0	0	
TOTAL	179,674	165,077	21,728	2,433	148,568	30,214	187,004	
							· 	
	· ·					•		
•				•				

Appendix 3e 1 Periphytic diatom concentrations (17-30 June, 1978) (cells/cm 2) of several stream of the Ogilvie and Swift River drainage basins (analyzed using 1000 X magnification).

Eunotia sp. Fragilaria capucina Fragilaria construens V. c Fragilaria construens V. l Amphipleura pellucida Anomoeoneis vitrea Cocconeis placentula Achnanthes flexella SPECIES Amphora sp. Achnanthes minutissima Achnanthes Gyrosigma sciotense Gomphonema parvulum Gomphonema olivaceum Gomphonema lanceolotum Didymosphenia geminatum Frustulia rhomboides Fragilaria crotonensis Fragilaria leptostauron Fragilaria vaucheriae Diatoma tenue v. elongatum Cymbella ventricosa Cyclotella bodanica spithemia sorex Spithemia turgida Diatoma hiemale v. mesodon Symbella prostrata Syclotella ocellata Symbella caespitosa Cyclotella comta riatoma hiemale lymbella iomphoneis herculeana ragilaria construens v. enticula sp. ymbella sinuata hatoma vulgare ymbella cistula sp. sp. construens binodis venter Ogilvie River 117,677 106,426 131,740 460,963 10,695 15,782 344,765 49,328 54,764 28,510 9,924 ,766 ,946 \circ Swift River 2,029 53,031 68,283 1,469 1,706 1,259 6,851 1,745 3,659 8,594 16,891 42,07 1,014 3,865 2,031 1,861 1,861 194 8,571 3,718 ,464 ,950 309 886 0 S Þ 3 σ **—** 4,591 403 ш ,629 S ,282 , 86 564 - -25 14 126 00 90 68 60 560 00 ö -0 0 C Ρ 3,108 3,476 6,71 -0 138 207 402 S н ப 0 0 00 0 Z 0 63,120 14,436 2,646 3,628 ,249 882 0 882 923 121 S 42 4 C ω 0 0 51,288 462 99 2,571 9,591 1,05<u>4</u> 1,848 1,583 1,643 66 ,583 S 363 0 726 132 66 0 ω 00 0 Ó

CONTINUED NEXT PAGE

TOTAL	Synedra ulna Synedra ulna V. oxyrhychus Tabellaria flocculosa	Stephanodiscus tenuis Synedra delicatissima	Rhopalodia gibba Surirella angustata	Nitzschia linearis Nitzschia palea	Nitzschia frustulum Nitzschia hantzschia	-				Navicula radiosa		Navicula convergens	Neidium sp.	circulare	Melosira granulata V. angustissima	z granulat		Hannaea arcus		SPECIES
156,787	46,9/2 0 0		00	0 10,695	3,946	0	41,428	4,962	0	50		0	0	69,004	0	0	7,766	0	Ogilvie River	
286,423	0 17,61 0	232 1,464	226	44 4,424	0 0	1,032	2,622	155	2,549	1.464	222 222	1,464	1,550	0	238	0	0	2,179	Swift River	SAM
14,212	000		185	248	60	-60	30	0	0	0	314		126	376	0	0	0	3/76	S 14	PLE LO
14,312	000		000	00	000	0 0	0	0	0	00	2 0		0	0	0	0	0	207	S 5	LOCATION
90,200	41 0		000	000		0 - 1	0	0	0	00			00	0	0	0	1,764	243	8 S	
74,426	000		000	923 0		0 0	0	0	0	00				0	0	0	0	197	S 3	

<u>States</u>

1.30

Like L

١.

1.

· · · ·

Appendix 3e - Continued (2 of 2 pages)

SPECIES		S	AMPLE	LOCAT	ION				
	Ogilvie River	Swift River	S 114	OR 8	S 5	S 8	S S	S 2	OR 14
Achnanthes flexella Achnanthes lancelota	29,269 0	15,649 2,227	00	00		00	00	55,803 22,321	
	646,293 10.559	260,519 30,765	50,784	293,315 0	5,897,160 0	33,534 0	37,802 0	1,473,186 0	2,582,384 415,026
Achnanthes SP. Emphipleura pellucida	0	7,428		000	000	00	21,263	22,321 0	
Amphora Sp. Anomoeoneis vitrea	26,921	4,494 267	1,270	0.00	0 0	737 0		22,321	- 0
Cocconeis placentula Cyclotella glomerata	043	23,600 12,561	565	000	0 0 0	00	, , , , , , , , , , , , , , , , , , ,		00
Cyclotella ocellata Cymhella affinis	00	1,467	00	00	0	00		00	
	1,134 0	0 3,217	1,270 0	00	151,858 0	00	00	000	000
	0 2,657	3,217 1,467		0 0		00	14,176		ר.
2	23,272 6,490	11,365 0	5,078 0	0 0	0 101,239	/ <i>3/</i> 0	00		
m l	0 71,632	3,295 43,364	2,539 0	0 479,547	0 619,05	U 737	30,714	145,087	0 0 001,0/0
à	50	0	50	00	00	737 0	18,901 0	00	00
Eunotra sp. Fragilaria capucina	52,271	32,917	27,931	, C) (101,239	1,843	A 725	22,321 0	Ρ.
	0 26,614	5,945 62,064	3,174	0 ¢	253,097	3,865	0 0 0		
laria construens V.	0 sec s	43,702	20 948	0 74,493	0 50.619	1,474 13,266	56,702	44,642 66,963	45 92
10 6		1,114	-	00	50.619 0	0 1 .4 74	00	00	ယ
Gomphonema intricatum					151 050 0	1 A7A	54 346 0	960 EE L 0	0 1_475_648
Gomphonema olivaceum Gomphonema ventricosum	0 0	0 0+0, cc	00	0		0	9,450	•	
	а ОГО О	4,684	000	00	0 0	1 843 0		22 - 32 I	
Hannaea arcus Hannaea arcus V. amphiossus	0 8c8 , 7	ר, ו 1, 7, 1 0	0 6 not c	18,623		0 0	0	22,321	00
a granulat	0.0	5,885	50		00	369		00	0 276_684
Meridion circulare Navicula cruptocephala	00	3,694	00	0	00	00	9,450	44,642	
	0	0	Ċ	. O		C	 C	c	c
		•		•	· · ·	• •			
	• •								

• . . . • . . . CONTINUED NEXT PAGE

16

Appendix 3f -

Periphytic Diatom concentrations (1-8 August, 1978) (cells/cm 2) of several streams of the Ogilvie and Swift River drainage basins (analyzed using 1000 X magnification).

Appendix 3f - Continued (2 of 2 pages)

	4×4
SAMPLE SOLUTION	-

SPECIES

	TOTAL	Cymbella sp.	Tabellaria flocculosa	Synedra ulna V. oxyrhychus	Synedra ulna	Synedra delicatissima	Surirella angustata	Stauroneis sp.	Rhopalodia gibba	Nitzschia palea	Nitzschia hantzschia	Nitzschia frustulum	Nitzschia dissipata	Neidium sp.	~	Navicula sp.	Navicula salinarum V. intermedia			
	968,258	1,146	0	1,134	24,894	4,828	0	0	00	6,131	0	3,213	0	ō	0	4,543	0		Ogilvie River) 1 -
	722,787	1,068	934	0	14,355	0	3,21/	000,5	4,/61	36,208	5,580	4.,256	3,21/		1,467	653	3,217		Swift River)
	133,307	11,426	2,539	0	0					2,539					0		0	-	5 14	-
	1,075,489	0		0	130,362					9,312							0		UK 8	
	7,339,811	0	0														0	1	U U	о П
	64,858	0	0		2,211						o ⊂					/3/	0.1		с а	n 0
	444,176															2,303	200		ບ ບ	ი ა
2 - X - 1	2,320,279	22,321			44,642					cna' 111						1 75, 77		, ,	0 C	0 0
	8,900,002				,					,004			004,401			o c		>	UK 14	VL dV

Appendix 4 - Cyanophyta, Chlorophyta and Chrysophyceae species occurring in the periphyton of the Ogilvie and Swift River basins.

Anabaera Sp. Lyngbia Sp. Mertempetia Sp. Metrempetia Sp. Mostor verwoosam Deef lictoria Sp. Clonerium Sp. Closerium Sp. Closerium Sp. Stelevegyra Sp. Ulothrix Sp. Ulothrix Sp. Ulothrix Sp. Lynena Sp. K. X. X. X. X. X. X. X. X. X. X.	SPECIES Cyanophyta	Ogilvie River	OR 8	OR 14	OCCURR Swift River All sites	r'ence s 2	ى ى	<i>м</i> 5		<u>ہ</u>
for title sp.	<u>Cyanophyta</u> Anabaena SP. Lyngbya SP. Merismopedia SP. Nostoc verrucosum Oscillatoria SP.	× × ×		×	×× ××	×	×× ×		×	×
foetidus	sp. sp. sp. sp. sp. sp. sp. sp.	×××× × ××	× × ×	× × ×	×××× ××××	× ××	×× × ×			· · · · · · · · · · · · · · · · · · ·
	<u>Chrysophyta</u> Hydrurus foetidus		•		×	×				

•

	03 03 03	0000 0	> 00	000000	000000	0	0000			
ð	с С	0000 0	00 00	0000000	0000000	8	0000			
	S 8	0000 0	000	0 10 0 0 0 0 0	0000000	0	0000			and a second
	S S	0000 0	000	0000000		0	0000			
1978	6 S	0000 0	000	0000000	0000000	0	0000			
August 1-8,	15-16	0000 0	000	0004000	0000000	0	0000			
Au	OR 14 S	0000 0	24 0	00000000	000 000 000 000 000 000 000 000 000 00	0	0000			 Design - generative entropy
	0R 1-2	0000 0	00 0	0000000	0000000	0	0000			
	0R 6 0	0000 (00 1	೦೦೦೦೦ರ್೦	0000000	0	0000			
	11-12 0	6000 0	0 00	000000	0000000	0	0000			
	ЯС									
	s S	0000 4	<u>6</u> 6	0000000 000000000000000000000000000000	0400000	0	0000			
	s S	0000 C	0 10	0,00000	000000	2	0400			
	S 5	90N0	140	0,000000	0000000	0	0040			
. 1978	S 14	0000 0	0 00	0000000	00000000	0	N000			· 1
	6 S	4000 (0 00	000000	0000000	0	0000			
	15-16	0000	0 [4 0	0000%	10 000 400	0	0000	ant an of the Construct of the planting we wanted in the co	na na galanna (* 19. úna gregor de 19. úna d	1495 Sa Walang Pergel (SL 2004 - 1997) ***
	OR 14 S	0000	0 00	00200	227 0 0 0 0 0 0 0 0 0		0 0 8 0 0			
	0R 14	°°°⊑	28 28	000000000000000000000000000000000000000	210 64 00 00 00 00 00 00 00 00	0	0000			
	0R 8 0	0000	0 00	000000		0	0000			
	C K					0	0000			
	S	0000	020	828888	000000000000					
	S S	000 000	0 00	0000000	000000000000000000000000000000000000000) 0	0000			
22-30, 1978	S S	4000	၀ ရ၀	0000	00 000000000000000000000000000000000000	0	0000			
May 22.	S 14	4000	0 00	000000	00000000		0000		•	a de la compañía de l
	S 14	:: د · سانه، که باه مندر سبب ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	0 00		000000	0	0000	n an	<u>,</u>	<u>n na serie de la serie</u>
	S 15-16	0000	0 00	00000	00000000		0000	• •		
	OR 14 S	0000	0 27	261 261 261			0020			
1978	1	0000	47 2	0 00000	0040000	o c	0000			
March 28-29,	1	•			000000000000000000000000000000000000000	% c	-			
	NO		N .							
	0R 8	0000	0 00		0000000	0 0	0000			
	S 14	0000	0 0	0 000000	0000000	0 0	0000			
									· ·	

feeding types) basins.	1977	Ś	0000	0	00	3000000					
5 5	-10 -	<u>9</u>				0200000	N	0	0000	建加速的运行过度	
feedin	4	S 15	0000	0	00	02000000					
nges and drainage	Date: October	0R 11-12	0000	5	00	0000000	000000	0	0000		
2, length ra Swift River		0R 1-2	0000	0	00	0000000	000000	0	0000		
numbers/m ² lvie and Sv		Feeding Type*	36 26	IJ	IJ	ອວ ອ	ت ت		3G		
trations (of the Oqi	ust 1978)	Length range (mm)	4-7 14-15 9-10 2-4	4-6	1-6 3-4		99999999999999999999999999999999999999	4-5	11-12 3-4 3-6 3-6		
Appendix 5. Invertebrate:concentrations (numbers/m of several streams of the Ogilvie and 3	(October 1977 - August		Insecta Diptera ?Dolichopidae larvae l Larvae 2 Larva 3 Pupa 1	Blepharoceridae Bibiocepiala	Chironomidae Larva Adult	Chironominae Larvae Larvae Tanytarsus T. pupa T. (Stempellina) pupa Diamesinae larvae pupa 1	pupa 2 Orthocladiinae larvae ?Brillia larvae Pupa 1 Pupa 2 Spaniotoma (Sordidella) pupa S. (Smittia) pupa		Empididae ?Larva 1 ?Pupa 1 <i>Hemerodromia</i> larvae <i>H.</i> pupa		

0000 0 00 0000000400000 0 0000

σ

95		0ß 8	óo	0 0 0	000	0000 000	000000000000000000000000000000000000000
6		S S	00	0 0 [000	0000 000	
		S S	00	000	00	0000 00	
		S 5	00	00 0 ~	00	0000 00	
	1978	6 S	0	00 0 0	000	0000 00	000000400000000000000000000000000000000
	August 1-8,	S 15-16	0	00 0 0	000		
	Au	0R 14	o	000	600	0000000	000000000000000000000000000000000000000
		OR 1-2	. C	000	425 0	00000 0	0000 NO
		0R 6		000 0	69 2	00000	000400000000000000000000000000000000000
		0R 11-12		000 0	00		000000000000000000000000000000000000000
			r S	000 0	00		000 000 00 00 00 00 00 00 00 00 00 00 0
			S 8	0000	0	000000	000700000000000000000000000000000000000
			S 5	0000	0	000000	00 N 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	. •	0, 19/8	S 14	000 0	0	00000	000000000000000000000000000000000000000
	-	June 1/-30	9 9	000 0	, 0		000 <u>0000000000000000000000000000000000</u>
			S 15-16	000 0		000000	000000000000000000000000000000000000000
			OR 14	000 (0000000	000000000000000000000000000000000000000
			OR 14	000 0	。 。	000000	000000000000000000000000000000000000000
			DR 8	000	0 0	0000000	0004000000000 0 0 0 0
			s S	000	0	0000000	000000000000000000000000000000000000000
			S 8	000	0	0000000	000000400000400 0 4 0 0
		-30, 1978	S 5	000	0	0000000	000000004000000
		May 22.	S 14	000	0	0000000	00000000000000 V
			S 14	000	0	0000000	000000000000000000000000000000000000000
			S 15-16		0	0000000	000,000,0000000000000000000000000000000
			0R 14	000	0	0000000	
	•.	-29, 1978	6 S	000	0		000000000000000000000000000000000000000
		March 28-29	0R 6		0	000~000	
			OR 8	000	0	0000000	000000000000000000000000000000000000000
			S 14	000	O	0000004	000000000000000000000000000000000000000
10.05			1				•

0

國際高潮

가장

 \mathbf{O}

01

 \mathbf{c}

Appendix 5 continued

t a

Tri i

國際國際 SETENT THEFT 的制度和 S 15-16 0000 0014 0000 2 0 0 2 24 000 OR 11-12 0 0 0 0 N000000 000 0 OR 1-2 0 0 0 N0000000000000000 0 0,000000 000 . 6 6-5 6-?5 6-?5 6-?5 6-?5 Feeding Type* G იიიი G G 2005 2005 2005 ບບ ວວ ပ . 3-6 7-8 6-7 3-7 3-7 1-4 4-10 6-10 5-13 Length rangc (mm) 4-12 4-8 4-10 2-10 2-10 4-6 3-7 2-3 8-14 9-14 9-14 -20 6-7 7-9 5-7 9-10 4-5 9-10 4-6 Order Ephemeroptera Family Baetidae ?Nymph Emerging Adult Baetis 1 nymphs Baetis 2 nymphs Ephemerella nymphs E. cf. aurivilli E. doddsii E. doddsii E. Group Fuscata E. Group Needhami Family Heptageniidae-nymphs Heptagenia Ironopsis Rhithrogena Rhithrogena Rhithrogena Rhithrogena Readdsii. Family Leptophlebia Family Siphlonuridae Ameletus cf. shepherdi Order Plecoptera ' Family Muścidae - larvae Suborder Cyclorrapha - larvae - adult Fragment Filipalia (Herbivores) Family Nemouridae *Capnia* or *Eucapnopsis* pupae Family Tipulidae - larvae Family Psychodidae *Telmatoscopus* larvae Family Simuliidae cf. Prosimulium larvae *Dicranota* larvae Larva 2 Larva 3 Family Tabanidae

4000000000000

· 但是中國國際

Date October 4-10, 1977

和都 和

ŝ.

σ

S

000

0

	9 6		8 QC	5				-		000000		
			с 0	י ר ר	4000 00	00000	00000	0000	00 00	0400000		
			0	n						0000 <u>m</u> 0		
		20	U V C	n n	-					000000 0400 ⁰⁰ 0		
		: 1-8, 1578	C	ń	·							
		August	91 31 3 V	- 0	0000 400				52	00000		
				-	54 120 00 00 00	0 - 000	00000	0000	00 00	000000	8888	
		•	د د د	7	0000000	0 7000	00000	0000	00 00	004000	0000	
An an and a start of the start			-	o XO	0000000	04000	0 0000	0000	00 00	000000		
an a				0K 11-12	ç000000	0000	00000	0000	00 00	000000	0000	
				S 3	000000	00000	, orooo	0000	00 40	0000 ² 0	0000	
				8 8	0000000	0 0 0000	0000	1 0 1 0 4	15 00	o, 0400 <u>-</u> 0	0000	
建築通行わら建築の	a a constant			5						0 40000		
		078	272	14 S						0 0000 00		
	•	17_30_1		S S S	000000					0 000000		
				15–16	00000	0 0700	N 04000		و م	N 00000C	0400	
				OR 14 S	000000	0 0400	0 0000		00 0	0 000000	0000	
and the second				14						0 00000		
				8 O.R	F					0 00000		
				OR	000000	8 8888						
				S 3	000000		00150 00	0 0000			0000	
				S 8	000000	0000	0 0 0 0 0 0	0 4000	200 0 0 0	000000	0000	
n an			30, 1978	S 5	00000	10 0000	0 0000	0 0000	000		0000	
			May 22-	S 14	000000		0000	0 000	000 C	00004	0000	
				S 14	000000	00 00 00	10 0000	0 0 0 0	- 0 0 c	10 00 000	0000	
				S 15-16	000001	00200		0 000	0 10 0		0000	
				OR 14	000000	00 0 × 00			- 00 0	00000	0000	
			1978	თ	· · · · · · · · · · · · ·					00 00 4 00	0 0000	
			28-29,	ŝ								-
			March	08 6	00000	0000		00000	0 00 1	00°00 00	0 0000	•
				0R 8	00000				990		0 0000	
	and the second se			14	110000	00 000			<i>0</i> 0	00 0000	0 0000	
			17	s 6 S	~0000	oo ^N oo	^N o ooo		0 5 11 0	^م مم ⁰ م	0 0000	
			4-10, 1977	15-16	50000	00 200	² 0 000		- v	80 0040 <u>4</u>	0 0000	
			e: October	11-12 S	00000	00 000	00 0000		Б	00 00000	0 000	
			Date:	1 <u>-</u> 2 0₿	00000	00 000	00 000		0 0 1 dae by s		00000	
				ing A	S:-		·		G-?S G-?S Rhvacophil	·		
				th Feeding e Type*	• = = = ف ب	4 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	·		v in	,	¢.,	
				Length range			14-20 7-8 4-8 3-12 8-9	4-5 16-16-12 7-9 7-5	8-1 8-1 5-3 8-1 5-1			
					cont'd,nymphs pada) ncl. <i>hausi</i>)		Ϋ́		-larvae (included	•		V
a sector de la constante de la c		inued			idae cont' g. Zapada) e a t's (incl.	rnivores) idae	nata dae reali sis	ontalis era.	centridae- us ic <i>canu</i> s comatidae	larvae sychidae 2	2 hilidae des	
		dix 5 continue			Family Nemouridae Nemoura (Subg. Za <i>N. cataractae</i> <i>N. cinctipes</i> <i>N. columbiana</i> <i>N. oregonensis</i> (i	Nemoura 2. Nemoura 2. Setipalpia (Carnivores Family Perlodidae Isoperla 1 Isoperla 2	Arcynopteryx signata Isogenus Family Chloroperlidae Alloperla Alloperla Cf. boreal A. Cf. coloradensis	?Alloperla Paraperla fronta Order Trichoptera. Pupa 2 Pupa 2	Pupa 4 Family Brachycentr <i>Brochycentrus</i> 'B. cf. <i>americanu</i> Family Gloscocomat	Glossosoma larvae Glossosoma larvae Glossosoma pupa Larva l Larva 2 Arctopsyche 1 Arctopsyche 2	Farapsyche Parapsyche 2 Enapsyche 2 Ef. Radema Apatania Ecclisomyia Oliaopilebodes	4
		Appendix 5			Fami: Nemc N	Nen Nen Setip Fami Iso	Ar Isc Famil A77 A17 A.1	?Allo Parap Order Tr Pupa Pupa	Fami Bari Bari Bari	Fami Fami Are Are	Farap Parap Family cf. K Apato Eccli	

							의 상황을 통령하게 한 것을 수 있다. 가지를 통하는 것은 가격을 가지 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는다. 것은		
	۲.		0 <u>R</u> 8	ô	000	0000000	6000 000000 60mm.		
			S S	0	၀၀ဗ္ဗ	000000	000000000		
			S 8	0	007	000000	000004000		
			S 5	0	1500	0,40000	000000000		
	3. 1978		6 S	0	000	000000	00000000		
•	August 1–8	· ·	S 15-16	0	000	0000000	00000000000000000000000000000000000000		
	A		0R 14	0	000	, 0000000	000000 2000000000000000000000000000000	-	
			R 1-2	0	000	0000000	000044000m		· · · · · · · · · · · · · · · · · · ·
•			0R 6 0R	0	000	0000000	0004004000		
			0R 11-12 (222222	00000000000000000000000000000000000000		
] .	OR	0	000	8888888			
			s S	0	00	0004000	000000000		
			. σ,						
			S		00	0000004	000000000		
		о С	S S	63	00	с 100040040	000000000		
	1	7-30, 197	S 14	0	00	00000000		una ante a construite e segundo de la segunda de segundo de la segunda de la segunda de la segunda de la segund	
		June 17	6 S	Ο	00	00000000	000000000 E E E		
			S 15-1	0	00	00000000	000000000000000000000000000		
•			OR 14	0	00	0000000	0000000000		
			OR 14	0	00	00000000	00000000000000	- 	
			0R 8	0	00	00000000	0000000000		
		-	S 3	0	00	4000000C	000000000		
			8						
		178	S	0	00	00000000	004000000		
		22-30, 19	S S	0	0 0	00000000	000000000		
		May	S -	0	00				
			S 14	0	00	00000000			
			S 15-16	0	00	0000000	000000000		
			OR 14	7%	00	00000000	000000000000000000000000000000000000000		•. •
		-29, 1978	6 S	Ö	00	0000000	000000000		
		March 28-	JR 6	O	00	0000000	000000000		
				, *					
			OR 8	0	00	0000000	ooo [~] ooo [~] ooo		
			S 14	•	00	0000000	000000000		

· · · ·

	1977	a S	0	۲ 0	000	00000	00000040
endix 5 continued linnephilidae cont'd. Linnephilidae cont'd. Rhyacophilidae cont'd. Rhyacophilidae copiciz larvae ange Type* Rhyacophilidae epicaciz of Ross a-14 P 0 a-14 P 0	4	15-1	0	26 0	000	100000	000004000
endix 5 continued Limmephilidae cont'd. Limmephilidae cont'd. Rhyacophilidae cont'd. Performance Perform	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	00	000	,00000	00000000
<pre>endix 5 continued Limephilidae cont'd. Limephilidae cont'd. Limephilidae cont'd. Limephilidae cont'd. Limephilidae cont'd. Pipe factual arvae Pipe Pice arvaca of Smith Pipe Pice Pice arvaca Pipe Pice Pice arvaea Pipe Pice Pice Pice Pice Pice Pipe Pice Pice</pre>		-	0	00	000	00000	edder edder edder
<pre>Limmephilidae cont'd. Limmephilidae cont'd. Rhyacophilidae cophila larvae pe f fuscula pe f fuscula pe 2 fuscula pe 2 fuscula pe 2 fuscula pe 2 fuscula pe 2 fuscula pe vervia of Smith pe ve vervia of Smith pe ve vervi</pre>		Feeding Type*		ው ው	۵.۵.۵		ا ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب
<pre>bendix 5 continued Limnephilidae cont'd. Rhyacophilidae cophila larvae cophila larvae cophila larvae cophila larvae cophila of Ross pe fuscula pe 2 fuscula pe 2 fuscula pe verula of Smith pe verula</pre>		Length range (mm)	1	Γ'Γ'	3-14 3-8 10-12	6-14 5-12 7-8 10-12 7-9	
	Appendix 5 continued		Limnephilidae Bhvaconhilidae	, ,	type fuscula of Ros type I fuscula type 2 fuscula type 3 fuscula	type vaccua of Smith type vac-acropedes of type verulsa of Smith type verrula of Smith yacophila pupa	aneous. <i>azteca</i> diam. diam. G = Graze