

Section (

Environment Canada

Conservation

Environnement

Canada

THE CHEMICAL and MICROBIOLOGICAL LIMNOLOGY of WOOD LAKE, B.C., 1980

Steve Jasper and Colin B.J. Gray

K-FF.

64 St. - 2

TD 227 B74 OK82-3

Inland Waters Directorate Pacific and Yukon Region Vancouver, B.C.

OK-EF.12

The Chemical and Microbiological Limnology

of Wood Lake, B.C., 1980

Steve Jasper and Colin B.J. Gray

National Water Research Institute Inland Waters Directorate Pacific and Yukon Region 4160 Marine Drive West Vancouver, B.C.

April 1982

ABSTRACT

Jasper, S. and C.B.J. Gray. 1982. The chemical and microbiological limnology of Wood Lake, B.C., 1980. Inland Waters Directorate, Vancouver, B.C.

This report describes a small limnological study of Wood Lake, B.C. carried out in 1980 by the National Water Research Institute, Pacific and Yukon Region.

At a mid-lake station the temporal distributions of temperature, light extinction, dissolved oxygen, nutrients, metals, chlorophyll \underline{a} , ATP, phytoplankton species composition, phosphorus turnover time and alkaline phosphatase activity were determined. In addition, a survey of the spatial distribution of dissolved oxygen and nutrients in the bottom water was completed in September and sediment cores were obtained from the mid-lake station.

On the basis of water clarity, oxygen depletion rates, N to P ratios and phytoplankton biomass and species composition, Wood Lake in 1980 was found to be mildly eutrophic. During the year the dissolved forms of silica, nitrogen and phosphorus were all reduced to very low levels in the epilimnion of the lake by phytoplankton uptake and, in the case of phosphorus, probably by co-precipitation with marl. Dissolved oxygen was reduced to low levels at the sediment-water interface during the fall period. However, there was no evidence for co-release of phosphorus and iron from the sediments. There was no net internal loading of phosphorus between 1980 and 1981.

The sediment, which is rich in organic carbon and phosphorus, did not appear to significantly influence the bottom water concentrations of dissolved oxygen and nutrients in September.

Blue-green algae dominated the phytoplankton throughout the study although a spring diatom population most likely appeared prior to the study period. Evidence from phosphorus turnover times and alkaline phosphatase activities suggests that the annual yield of phytoplankton was ultimately controlled by phosphorus. Both silica and nitrogen, however, were probably responsible for determining the gross composition of the phytoplankton.

RESUME

Jasper, S. et C.B.J. Gray. 1982. La limnologie chimique et microbiologique du lac Wood, C.Br., 1980. Direction générale des eaux intérieures, Vancouver, C.Br.

Ce rapport décrit une petite étude limnologique du lac Wood en C.Br., éffectivée en 1980 par l'Institute nationale des recherches des eaux, Région du Pacifique et du Yukon.

A une station au milieu du lac, la distribution temporelle des températures, l'extinction de lumière, l'oxygène dissout, les substances nutritives, les métaux, la chlorophylle <u>a</u>, l'ATP, la composition des espéces phytoplanctoniques, le temps d'écoulement de phosphore ainsi que l'activité de l'alcaline phosphatase furent determinés. De plus une enquête de la distribution spatiale d'oxygène dissout et des substances nutritives de l'eau près du fond du lac fut completée en septembre et des carrottes de sédiments furent obtenues de la station au milieu du lac.

D'après la clarté de l'eau, le taux d'épuisement d'oxygène, les rapports de N: P ainsi que la biomasse et la composition des espèces phytoplanctoniques, le lac Wood, en 1980, etait légèrement eutrophique. Durant l'année, l'état dissout de silice, d'azote et de phosphore fut réduit à des niveaux très bas dans l'épilimnion du lac par l'absorption des phytoplanctons et dans le cas du phosphore, probablement par la co-précipitation avec la marne. Durant l'autonne, l'oxygène dissout fut réduit à des niveaux très bas au point de contact d'eau et du sédiment. Tontefois, il n'y avait pas d'évidence pour supporter la co-libération du phosphore et du fer provenant des sédiments. Il n'y avait pas de chargement intérieur nette de phosphore entre 1980 et 1981.

Le sédiment qui est riche en carbone et en phosphore organique n'a pas paru influencer, d'un manière significative, les concentrations d'oxygène dissout et les substances nutritives d'eau profonde en septembre. L'alque vert-bleu dominait le phytoplancton durant toute l'étude, quoique, une population de diatomée de printemps apparue probablement avant le début de l'étude. L'évidence du temps d'écoulement de phosphore et d'activité de l'alcaline phosphatase suggére que la production annuelle de phytoplancton est enfin de compte dirigé par le phosphore. Toutefois, le silice et l'azote furent sans doute à la fois responsable pour déterminer la composition brute de phytoplancton.

٠ŕ

18 . C

TABLE OF CONTENTS

. ,		Page
ABSTRACT		·i
LIST OF T	ABLES	vii
LIST OF F	IGURES	viii
1.	INTRODUCTION	1
	l.l Objective l.2 Acknowledgements	. 1 1
2.	SAMPLE COLLECTION	2
3.	ANALYTICAL METHODS	2
	 3.1 Physics 3.2 Chemistry 3.3 Geochemistry 3.4 Biology 3.4.1 Phytoplankton biomass 3.4.2 Phytoplankton precise composition 	2 4 5 5 5
	3.4.2 Phytoplankton species composition and abundance3.4.3 Phytoplankton nutrient limitation	6 7
4.	PHYSICAL MEASUREMENTS	8
• .	4.1 Temperature4.2 Heat Budget4.3 Light Extinction	8 10 12
5.	CHEMICAL MEASUREMENTS	14
л. ¹	5.1 Distributions wth depth and time 5.1.1 Dissolved oxygen 5.1.2 Phosphorus 5.1.3 Nitrogen 5.1.4 Dissolved iron and manganese 5.1.5 Silica	14 15 15 18 22 22
•	5.2 Horizontal variation of bottom water chemistry	23
	 5.3 Internal nutrient and oxygen contents 5.3.1 Dissolved oxygen 5.3.2 Phosphorus 5.3.3 Nitrogen 5.3.4 Chloride, Calcium, Silica and Particulate Carbon 	28 28 28 32 35

			Page
6.	GEOCI	HEMICAL MEASUREMENTS	37
	6.1 6.2	Carbon Phosphorus	37 39
7.	BIOL	OGICAL MEASUREMENTS	41
	7.1 7.2	Phytoplankton biomass Phytoplankton species composition	41
	7.3	and volumes Phytoplankton nutrient limitation 7.3.1 32P uptake 7.3.2 Alkaline phosphatase activity 7.3.3 Unlabelled nutrient uptake	46 51 51 51 54
8.	CONC	LUSIONS	55
REFERENCE	S		58
APPENDIX	1.	Wood Lake temperature data from Station A.	61
APPENDIX	2.	Wood Lake chemical data from Station A.	63
APPENDIX	3.	Wood Lake chemical data from bottom water survey September, 1980.	73
APPENDIX	4.	Wood Lake phytoplankton species list, cell counts and volumes from Station A.	75

•

÷,

vi

LIST OF TABLES

Table

1. Surface temperatures and epilimnion depths of Wood Lake.

- 2. Heat contents and mean temperatures of Wood Lake.
- 3. Comparison of summer heat incomes, 1971 to 1980 for Wood Lake.
- 4. Light extinction parameters for Wood Lake.
- 5. Comparison of Wood Lake extinction coefficients and chlorophyll concentrations, July 18th and 23rd, 1980.
- 6. Hypsographic data for Wood Lake.
- 7. Dissolved oxygen contents and depletion rates in the hypolimnion of Wood Lake.
- Phosphorus contents (Mg) in epilmnion (e), mesolimnion (m) and hypolimnion (h) of Wood Lake. Mesolimnion location (metres) in parentheses.
- 9. Nitrogen contents (Mg), epilimnion (e), mesolimnion (m) and hypolimnion (h) of Wood Lake. Mesolimnion location (metres) in parentheses.
- 10. Chloride content (Mg), calcium, silica and particulate carbon contents (Mg), and water mass volumes (10^6 m^3) in the epilimnion (e), mesolimnion (m) and hypolimnion (h) of Wood Lake. Mesolimnion location (metres) in parentheses.
- 11. Wood Lake phytoplankton biomass measurements at specific depths.
- 12. Wood Lake phytoplankton biomass measurements; epilimnion integrals (mg·m⁻²) and averages (mg·m⁻³). Average values in parentheses.
- 13. Wood Lake phytoplankton volumes.
- 14. Wood Lake cyanophyte heterocyst frequency.
- 15. Wood Lake phytoplankton physiological measurements.

LIST OF FIGURES

1.	Bathymetry of Wood Lake showing sampling stations.
2.	Wood Lake Temperature distribution (°C), 1980.
3.	Time-depth diagram of dissolved oxygen concentrations $(mg \cdot L^{-1})$ in Wood Lake, 1980.
4.	Time-depth diagram of dissolved phosphorus concentrations $(\mu g P \cdot L^{-1})$ in Wood Lake, 1980.
5.	Time-depth diagram of nitrate plus nitrite concentrations $(\mu q N \cdot L^{-1})$ in Wood Lake, 1980.
6.	Time-depth diagram of ammonium concentrations (μ gN•L ⁻¹) in Wood Lake, 1980.
7.	Bottom water survey – dissolved oxygen concentrations $(mg \cdot L^{-1})$ in Wood Lake, September 1980.
8.	Bottom water survey – soluble reactive phosphorus concentrations (μ gP•L ⁻¹) in Wood Lake, September 1980.
9.	Bottom water survey – ammonium concentrations (μ gN+L ⁻¹) in Wood Lake, September 1980.
10.	Bottom water survey – nitrate plus nitrite concentrations (μ gN+L ⁻¹) in Wood Lake, September 1980.
11. 12.	Hypolimnion content of nitrogen components in Wood Lake, 1980. Total (TC), organic (OC) and inorganic carbon (IC) concentrations in the sediment profile of Wood Lake.
13. ,	Concentrations of phosphorus fractions in the sediment profile of Wood Lake.
14.	Time-depth diagram of chlorophyll <u>a</u> concentrations (mg•m ⁻³) in Wood Lake, 1980.
15.	Phytoplankton volumes, average 0.5 to 5 metre values in Wood Lake, 1980.
16.	Phytoplankton taxonomic composition, average 0.5 to 5 metre values, in Wood Lake, 1980.
17.	Comparison of phytoplankton biomass and activities, average 0.5 and 5 metre values, in Wood Lake, 1980.

INTRODUCTION

1.1 <u>Objective</u>

1.

A limnological study of Wood Lake, B.C. was conducted during 1980. It was funded, in part, by the Okanagan Basin Implementation Board. Previous studies (e.g. Canada - British Columbia Okanagan Basin Agreement, Technical Supplement V, 1974; Kalamalka - Wood Lake Basin Water Resource Management Study, 1974) have established the eutrophic nature of the lake and several recommendations for improving the water quality have been put forward (Kalamalka - Wood Lake Basin Water Resource Management Study, 1974). The impetus for the present study was the need to assess the present limnology and to investigate several options, including aeration, as methods to improve the lake's trophic condition.

This report summarizes the limnological data gathered during the course of the 1980 study. The water quality trends over the last decade and future management options (including further monitoring) are discussed in a separate report (Gray and Jasper, 1982).

1.2 Acknowledgements

We would like to thank the staff of NWRI Branch, Pacific and Yukon Region, without whom this report would not be possible: Vivian Chamberlain, Ray Kirkland and Kelly Suzuki who collected and analysed much of the data; Eric Marles for coordinating and maintaining field support; and Drs. Ralph Daley, Max Bothwell and Chris Pharo and Ron Wiegand for advice, general assistance and criticism of this report. The special efforts of Eric Michnowski and Gordan Kan of the Water Quality Branch, and John Keays are gratefully acknowledged.

SAMPLE COLLECTION

Samples were collected for chemical analyses between April 10, 1980 and March 11, 1981 and for biological analyses between May 29, 1980 and October 21, 1980. Measurements of temperature and light extinction were also gathered between April 10, 1980 and November 11, 1980.

2 -

Water samples, from a mid-lake station (Station A, Figure 1), were collected from discrete depths (6 for biology and between 8 and 12 for chemistry) using 8 litre Niskin bottles. The chemistry sampling depths were chosen with reference to the temperature profile. Glass B.O.D. bottles were filled (for oxygen and inorganic carbon analyses) and the water samples then screened through 110 µm nitex mesh to remove zooplankton and placed in plastic bottles. All bottles were kept in cool chests for transportation to the NWRI field laboratory in Vernon, usually within 2 to 4 hours. Sample preparation (filtration, preservation, etc.), most biological analyses and some chemical analyses were performed in the laboratory during the same day. Further chemical analyses were conducted at the NWRI laboratory in West Vancouver and at the Water Quality Branch, Inland Waters Directorate, North Vancouver.

3. ANALYTICAL METHODS

3.1 Physics

A temperature, conductivity, depth sensor (Hydrolab) was used to collect temperature measurements at one metre intervals down to 20 metres and two metre intervals thereafter. Heat content for each 2 metre layer was determined from the temperature and volume of each layer of the lake. The specific areal heat content for the whole lake, expressed as calories per square centimetre, was then obtained from the integral of these individual values divided by the lake's surface area.

2.

Light penetration of photosynthetically active radiation (PAR) was determined using a Licor quantum sensor. Measurements at one metre intervals, from the surface to 12 metres, were used to determine extinction coefficients by linear regression of the natural log (% surface light) with depth. Extinctions have been converted to 1% light levels, and for ease of comparison to earlier studies, have also been converted to secchi depths using the relationship (Vollenweider, 1974):

secchi depth (m) = _____2.2
extinction (ln units)

3.2 Chemistry

Samples for nitrogen and phosphorus analyses were filtered through Sartorius cellulose acetate membrane filters with a 0.45 micron nominal pore size (SM 11106). Particulate carbon and nitrogen samples were obtained by collection of the particulates on pre-roasted Whatman GF/F glass fiber filters. Analyses for all other variables were done on unfiltered samples. The subsamples were cooled in a refridgerator and shipped in cooler chests to the Water Quality Branch laboratory in North Vancouver.

Most chemical analyses were accomplished by the methods described in the Water Quality Branch Analytical Methods Manual (IWD, 1981). Soluble reactive phosphorus was analyzed by the stannous chloride reduction method at the NWRI laboratory, whereas the total and dissolved phosphorus were analyzed by the method utilizing ascorbic acid reduction after persulphate digestion at the Water Quality laboratory. Total inorganic carbon (TIC) samples were collected in 100 ml glass reagent bottles and analyzed using the helium headspace analysis technique on a gas chromatograph (Stainton, 1973). Dissolved oxygen (DO) analyses were done on duplicate samples with the azide modified Winkler Technique. The TIC analyses were done within 8 hours of collection, while the DO analyses were accomplished within 24 hours, both in the field laboratory.

- 4 -

3 <u>Geochemistry</u>

Sediment cores were collected at station A (Figure 1) with a triple benthos corer (Kemp et al., 1971). The 50 cm core tubes were retrieved with approximately 30 cm of sediment and with the sediment-water interface undisturbed. The cores were extruded vertically on shore within an hour of collection. Core subsamples were frozen in plastic bags and freeze dried within 2 weeks on a Labconco freeze drier.

à. · ·

- 5 -

S. 13-

The carbon analyses were done with a Leco Induction Furnace for samples below 3 cm (Chemex Labs Ltd., North Vancouver) and with a Hewlett-Packard CHN analyzer for the 0 to 3 cm interval (Water Quality Branch, North Vancouver).

Phosphorus concentrations in 1N HCl extracts of treated sediments were measured colourimetrically on ascorbic acid reduced molybdate complexes. Different treatments of three subsamples provided extracts which represented total P, total inorganic P and apatite P. Total P was measured in the 1N HCL extract from roasted sediment (550°C). Total inorganic P was measured in the 1N HCL extract of unroasted sediment. Apatite P was measured in the 1N HCL extract of sediment which had been extracted initially with a citrate-dithionite-bicarbonate buffer and then with 1N NaOH. This fractionation scheme is essentially the method of Williams (1976).

3.4 Biology

Investigations centred around the distribution, composition and nutrient limitation of the phytoplankton.

3.4.1 Phytoplankton biomass

Three independent measures of biomass were obtained; chlorophyll \underline{a} , adenosine triphosphate (ATP) and total cell volumes.

For chlorophyll <u>a</u> determinations, 25 mL aliquots were filtered through 0.2 μ m, 47 mm Nuclepore filters and extracted

3.3

in 90% acetone with the aid of a Polytron homogenizer. Each extract was then filtered through a Whatman GF/F filter and analysed using a Turner Designs fluorometer. Readings taken before and after acidification with HCl enabled the estimation of a phaeopigments in addition to chlorophyll a.

ATP was measured following the basic procedure of Holm-Hansen and Booth (1966) except that 25 mL aliquots were filtered through Millipore 0.45 μ m instead of glass-fibre filters. The efficiency of ATP extraction was determined by periodic 'spikes' (100 μ L) of a stock solution of ATP (1 mg·L⁻¹) into replicate extractions. When cool, the extracts were frozen and later analysed using the highly purified luciferin-luciferase enzyme from Dupont (Markham, Ontario) together with an Aminco Chem-glow photometer. The values shown are means of three replicates, with an average standard deviation of 15%.

Total cell volumes were calculated from measurements of cell volumes and abundance of individual species (see below) with the aid of a Hewlett-Packard 9845A computer.

3.4.2 Phytoplankton species composition and abundance

Samples (usually 250 mL) were preserved with Lugol's iodine solution in the field. They were then transported back to Vancouver and enumerated by J. Keays, Powell River, B.C.

The counting procedure generally followed Utermöhl (1958). Samples were shaken and settled in 5 mL or 25 mL settling chambers for approximately 4 hours. They were then checked with a Wild M5 dissecting microscope for random distribution of cells and enumerated using a Wild M40 inverted microscope at 100 X and 400 X magnifications. For each sample over 200 cells were identified and counted. On those occasions where a single species dominated (for example July 18 and 23) as many as five counts were made of that species, on each of two settled aliquots, and the results averaged. For a count of 200 cells of a single species the standard deviation is approximately 15% (Lund et al, 1958). For each species the dimensions of several cells (filaments or colonies) were determined and volumes calculated assuming standard geometric shapes. When cells from a particular species differed greatly in size then more than one size-class was established.

Estimates of the frequency of heterocysts were determined on those samples that were dominated by heterocystous cyanophytes. 500 cells were examined and the occurrence of heterocysts expressed as a percentage of the total cells.

3.4.3 Phytoplankton nutrient limitation

Several methods to assess nutrient limitation were performed five times during the study.

The ${}^{32}P$ uptake procedure followed that outlined by Lean and Rigler (1974). Aliquots of lake water were 'spiked' with carrier free ${}^{32}P-PO_4$ to give approximately 30,000 dpm·mL⁻¹. The removal of isotope into the particulate phase was followed by 10mL filtrations onto Millipore 0.45µm filters at selected time intervals after 'spiking'. 10mLs of Aquasol-2 (New England Nuclear) were added to both the filters and filtrates and the samples were then shipped back to Vancouver for counting on a Beckman LS 330 liquid scintillation spectrometer.

Estimates of the uptake rate constant, k, for each sample, were obtained graphically from the average of both the filter and filtrate data sets. Turnover times were then calculated from the inverse of the uptake rate constants after first normalizing with respect to ATP.

Alkaline phosphatase determinations followed closely the fluorometric procedure described in Healey and Hendzel (1979). The rate of hydrolysis of o-methyl-fluorescein (MF), by alkaline phosphatase, was determined using a Turner Designs fluorometer (CS 5-60 primary filter, 2A12 and 1% neutral density secondary filters). Rates were converted to alkaline phosphatase activities, normalized with respect to ATP in the sample and expressed as nmole $MF \cdot hr^{-1} \cdot \mu g ATP^{-1}$. The use of unlabelled nutrient uptake to examine nutrient limitation is outlined by Healey and Hendzel (1980). Either phosphorus (KH_2PO_4) or nitrogen (NH_4Cl) was added to the water sample (or 0.45µm filtered control) to give a final concentration of 10µM. The samples (in triplicate) were then incubated in the dark, at lake temperature, for approximately 24 hours. Aliquots were removed at the beginning and end of the incubation and filtered through Sartorius 0.45µm filters. For determination of P the filtrates were placed in 50mL acid-cleaned bottles and a few drops of chloroform added. For N determinations the filtrates were placed into 60mL acid-cleaned glass bottles with ground glass stoppers, ensuring no headspace or bubbles. The bottles were kept in a fridge prior to shipment to West Vancouver and analysis.

Uptake of either P or N was determined from the difference between the average 'zero-time' and '24 hour' measurements. The data was then normalized with respect to ATP and recorded as μ mole (PO₄ or NH₄)·d⁻¹·µg ATP⁻¹.

4. PHYSICAL MEASUREMENTS

4.1 Temperature

Temperature data are given in Appendix 1. A depth vs. time isopleth of temperature is given in Figure 2 while Table 1 shows surface temperatures and epilimnion depths. Spring overturn and stratification preceded the first sampling in April. Surface temperatures continued to rise until late July reaching a maximum of 23°C. At this time a strong thermocline had been established between 10 and 18 metres. Since the profile on November 20, 1980 showed isothermal conditions from the surface to 18 metres, fall overturn in the lake probably occurred not long afterwards.

The temperature profile during September shows the

- 8 -

possible occurrence of internal waves. Despite the fact that our sampling station was located approximately mid-lake, the morphology of the lake is such that this station may not represent the mid-point or 'node' for these internal waves (R. Wiegand, personal communication). Further studies using a mid-lake station should keep this point in mind, for example, when calculating heat budgets or oxygen deficits.

Table 1: Surface Temperatures and Epilimnion Depths of Wood Lake

Date	Surface Temperature (°C)	Epilimnion Depth (m)
10/4/80	4.8	_
26/5/80	14.5	5
3/7/80	19.5	5
18/7/80	20.5	7
23/7/80	23.0	8
6/8/80	21.0	8
3/9/80	18.5	10
16/9/80	18.0	11
21/10/80	13.5	14
20/11/80	8.0	>20

4.2 Heat Budget

The calculated heat contents for the whole lake and for the hypolimnion alone are shown in Table 2. The maximum whole-lake value encountered during the sampling was 28,900 cal \cdot cm⁻² on July 23. For comparison to earlier studies, the summer heat

income was calculated by subtracting the heat content of the lake at 4°C (8,580 cal \cdot cm⁻²) from this maximum value. The summer heat income in 1980 (Table 3) was similar to that found in 1972 and 1973, but considerably higher than in 1971. Blanton

Table 2: Heat Contents and Mean Temperatures of Wood Lake.

Date	Whol cal•cm ⁻²	e Lake ⁰C	Hypolimnion* cal•cm ⁻²	٥C
26/09/79	28,000	13.0	5,900	6.6
10/04/80	9,700	4.5	4,020	4.5
29/05/80	20,750	9.7	4,770	5.3
23/07/80	28,900	13.5	4,860	5.4
04/09/80	28,000	13.0	5,840	6.5
21/10/80	24,600	11.5	4,790	6.1

* Hypolimnion boundary was 18 m except on 21/10/80 when it was 20 m

Table 3: Comparison of Summer Heat Incomes, 1971 to 1980, for Wood Lake.

Date	cal•cm ⁻²	Investigator
25/08/71	18,100	Blanton (1973)
02/08/72	20,500	B.C. Research (1974)
02/08/73	21,800	B.C. Research (1974)
23/07/80	20,300	This study

(1973) compared the heat budgets of all the Okanagan valley lakes for the summer of 1971 and concluded that the Wood lake value was too low for a lake of its volume. He postulated the existence of large groundwater inflows having temperatures of l0°C and entering the lake in the 10-12 m zone. Since the heat incomes for 1972, 1973 and 1980 are higher and closer to predicted values for a lake the size and location of Wood Lake, it is probable that the maximum heat content in 1971 occurred between monitors. Thus there is no need to postulate a large, cold input of groundwater to Wood Lake. This conclusion was first reached by the Water Investigations Branch (1974).

4.3 Light extinction

Light extinction values, with corresponding 1% light levels and calculated secchi depths, are given in Table 4. The water clarity of Wood Lake in 1980 was fair with a yearly average extinction of 0.361 m⁻¹ and a secchi depth of 6.1 m.

Water clarity values throughout the year were not strongly correlated with algal biomass levels. Furthermore, there was only a twofold variation in extinction values despite large changes (over 40X) in surface chlorophyll levels.

To demonstrate the effect of algal biomass alone the results from July 18 and July 23 have been recalculated in Table 5. These were the only two dates that showed strong vertical algal heterogeneity together with light extinction profiles which deviated significantly from the normal exponential pattern. 0n both dates Anabaena flos-aquae dominated the phytoplankton. On July 18 the vertical heterogeneity of the algal bloom resulted in average chlorophyll values for the two intervals, 0 to 5 metres and 5 to 10 metres, differing by a factor of four. Extinction coefficients, however, showed only a twofold change. Conversely, on July 23, a large change in extinction was accompanied by only a small change in average chlorophyll. It is difficult, therefore, to relate historical variations in

Date	Extinction Coefficient (ln units•m ⁻¹)	l% light Level (m)	Secchi Depth (m)
29/5/80	0.272	16.9	8.1
3/7/80	0.268	17.2	8.2
18/7/80	0.376	12.3	5.9
23/7/80	0.517	8.9	4.3
6/8/80	0.308	15.0	7.1
3/9/80	0.334	13.8	6.6
16/9/80	0.491	9.4	4.5
21/10/80	0.318	14.5	6.9
Average	0.361 (<u>+</u> 0.095)	12.8	6.1

Table 4: Light Extinction Parameters for Wood Lake.

, 1. M.

Table 5: Comparison of Wood Lake extinction coefficients and chlorophyll concentrations, July 18th and 23rd, 1980.

Date	Depth interval (m)	Extinction Coefficient (ln units•m ⁻¹)	Chlorophyll <u>a</u> average (mg•m ⁻³)
18/7/80	0 to 5	0.466	25.5
18/7/80	5 to 10	0.222	5.9
23/7/80	0 to 5	0.679	7.7
23/7/80	5 to 10	0.397	5.2

. 0

light extinction to variations in algal biomass levels alone. Changes in species composition over the last decade (Gray and Jasper, 1982), for example, could have affected extinction levels as could changes in non-algal turbidity such as that entering the lake surface from stream freshets. For this reason the sizeable increases in water clarity observed over the last few years (Nordin, 1980) are not obviously coupled to decreases in algal concentration.

A further contributing factor is the possible decrease in the number of 'blooms' that have occurred during the summer. Since secchi depth measurements reflect the turbidity in the top few metres only, the occurrence of vertical heterogeneity in algal biomass in the epilimnion may result in larger decreases in secchi depth than expected for the same amount of biomass uniformly distributed in the water column. During a 'bloom' of cyanophytes, much of the biomass may be concentrated in the top few metres (e.g. July 18th). Thus the measured increases in water clarity over the last few years may be reflecting, to some extent, decreases in the frequency of these cyanophyte blooms.

5. CHEMICAL MEASUREMENTS

A complete list of chemical measurements is given in Appendices 2 and 3.

5.1 Distributions with depth and time

Figures 3 to 6 show the seasonal changes of several chemical parameters for the mid-lake station. These figures are drawn to show vertical mixing during fall overturn, which is assumed to have occurred at the end of November. Data from the last 1980 monitor, October 16 are used to calculate the fall overturn concentrations.

5.1.1 Dissolved oxygen

Dissolved oxygen decreased with depth in the hypolimnion during the stratified period, almost disappearing near the sediment-water interface during September and October (Figure 3). This depletion is probably due to respiration. In contrast, elevated oxygen concentrations occurred in the epilimnion and upper mesolimnion in April, May and July, presumably as a result of photosynthesis. The concentration at fall overturn was 7.1 mg·L⁻¹. Although the sampling in winter was very limited, no indication of oxygen depletion was found in 1981. This was due to the absence of continuous ice cover in 1972 (Koshinsky & Stockner, 1972), showed considerable depletion near the bottom (<2 mg·L⁻¹).

5.1.2 Phosphorus

Total phosphorus (TP) at the start of the 1980 growing season was 85 μ g·L⁻¹ compared to approximately 80 μ g·L⁻¹ in 1981. In April, most of this TP was in the dissolved form (DP, Figure 4) of which over 85% was soluble reactive P (SRP). Particulate phosphorus (PP) generally varied between 5 and 15 μ g·L⁻¹. At these levels it contributed only a small percentage to the spring epilimnion TP, but over half to the summer and fall totals.

DP and its major constituent, SRP, both decreased during spring and summer in the epilimnion due to algal uptake. At the same time, increases occurred in the hypolimnion through phytoplankton sedimentation and regeneration together with the possible release of P from the sediments (see Section 5.2 below). SRP concentrations remained very low (1 to 2 $\mu g \cdot L^{-1}$) in the epilimnion from July through October; these levels are suggestive of possible phytoplankton P limitation.

- 15 -

- 16 -

Figure 3 Time-depth diagram of dissolved oxygen concentrations (mg.L⁻¹) in Wood Lake, 1980.

Time-depth diagram of dissolved phosphorus concentrations (µgP•L⁻¹) in Wood Lake, 1980. Figure 4

- 17 -

At fall overturn the concentration of DP was calculated to be 57 μ g·L⁻¹. In January 1981, however, the average concentration had increased to 71 μ g·L⁻¹, a level similar to the 74 μ g·L⁻¹ found in April 1980.

5.1.3 Nitrogen

The total nitrogen (TN) concentration at the start of the growing season was 570 μ g·L⁻¹ with the majority, 86%, in the dissolved form. Almost 40% of this dissolved nitrogen was inorganic (DIN), primarily nitrate. During the growing season nitrate decreased rapidly in the epilimnion to undetectable levels, remaining low until fall overturn except for occasional near surface increases in July and early September (Figure 5). In the hypolimnion, by contrast, there was an initial increase to maximum levels in July followed by a very strong depletion near the sediment-water interface in September and October. This seasonal pattern was presumably due to oxidation of regenerated ammonium to nitrate followed by denitrification of DIN at fall overturn was calculated to be 64 μ g·L⁻¹.

Ammonium concentrations were always low (<10 μ g·L⁻¹) in the epilimnion, but two episodes of ammonium build-up occurred in the hypolimnion (Figure 6). The first accumulation, in late May, occurred throughout the hypo- and mesolimnion and was presumably due to regeneration from decaying phytoplankton, grazing by zooplankton, or both. During July, this accumulation was oxidized to nitrate. When the oxygen was depleted and denitrification of nitrate commenced the release of ammonium from the sediments again accelerated (concentrations reached 500 μ g·L⁻¹ by mid-October). Ammonium concentrations did not rise appreciably above 22 m, presumably as a result of active oxidation to nitrate above this depth. The ammonia concentration at fall overturn was calculated to be 40 μ g·L⁻¹.

At the pH and temperature conditions of the bottom waters,

- 18 -

Time-depth diagram of nitrate plus nitrite concentrations (µgN•L-1) in Wood Lake, 1980.

Figure 5

- 19 -

Time-depth diagram of ammonium concentrations ($_{\mu}\text{gN} \cdot \text{L}^{-1}$) in Wood Lake, 1980. Figure 6

the amount of ammonia gas in solution, at maximum, is calculated to be less than 5 μ g·L⁻¹, or 1% of the total ammonium ion. This concentration is well below the fish toxicity level of 20 μ g·L⁻¹ (Thurston et al., 1979). In fact the low oxygen concentrations would be more 'toxic' than the ammonia.

Nitrite concentrations only occasionally exceeded $5 \ \mu g \cdot L^{-1}$, with the maximum concentration was 43 $\mu g \cdot L^{-1}$. The highest levels were observed in late May and mid-October in zones of intense ammonium oxidation. These oxidation zones were at the bottom in May and 5 m above the bottom in October. Two lesser accumulations occurred at 15 m in late May and on the bottom during late summer. The May occurrence may have been due to nitrate uptake and reduction by phytoplankton while the summer increase was probably the result of activity by denitrifying bacteria.

Dissolved organic nitrogen began the growing season at 300 μ g·L⁻¹ and increased to almost 400 μ g·L⁻¹ in the epilimnion by mid-summer. Hypolimnion concentrations over the same period increased from 300 to 350 μ g·L⁻¹.

Particulate nitrogen (PN) concentrations were highest in the epilimnion. The maximum occurred in April at 88 μ g·L⁻¹. Similar concentrations were observed all summer except during late May when average epilimnion concentrations dropped to 34 μ g·L⁻¹. These concentrations are surprisingly low for a productive lake (Stadelmann et al., 1974). Examination of the dissolved nitrogen components, however, suggests that higher levels, around 200 μ g·L⁻¹, may have occurred between the April and May samplings.

The ratio of TN to TP, in April, was around 7 and increased slightly, in May, to 11. The ratio of the biologically available components, DIN to SRP, however, started the growing season at 3 and dropped to 0.4 in the epilimnion by May. Ratios of less than 10 for the biologically available N and P components are considered to favour the appearance of nitrogen fixing algae and are not unusual for a productive lake.

5.1.4 Dissolved iron and manganese

Iron was generally below 30 $\mu q \cdot L^{-1}$. This level is low enough to suggest the possibility of iron deficiency for some phytoplankton species. Manganese, however, showed marked increases near the lake bottom between April (4 μ g·L⁻¹) and May (430 $\mu q \cdot L^{-1}$): the maximum concentration observed was 700 $ud \cdot L^{-1}$. Presumably, the redox potentials at the sediment water interface were not low enough to reduce iron from the insoluble ferric to the soluble ferrous form, but were low enough to reduce manganese to its soluble form. Phosphate associated with iron oxide minerals in the sediment is usually released together with iron when these minerals are reduced. Consequently, the lack of increase in iron suggests that there was no release of phosphate from this sediment fraction in 1980. However, the appearance of manganese in the hypolimnion suggests that the threshold for phosphate release by this process, is fairly close.

5.1.5 Silica

Dissolved reactive silica started the growing season at a concentration of 2.3 mg·L⁻¹ and was rapidly depleted in the epilimnion, by diatom uptake, to 0.3 mg·L⁻¹ in May. Concentrations slowly increased from May to October in both the hypo- and epilimnion, reaching maxima of 4.2 and 1.4 mg·L⁻¹, respectively. The fall overturn concentration was calculated to be 2.1 mg·L⁻¹. By mid-January, 1981 the epilimnetic concentration had risen to 3.2 mg·L⁻¹ only to fall again to 2.3 mg·L⁻¹ in early March, 1981. This late winter decrease suggests that diatom growth and sedimentation begins very early in the spring, especially if there is no ice cover.

- 22 -

Horizontal variation of bottom water chemistry

5.2

- 23 -

This sampling program, in early September, attempted to determine whether the sediment strongly influences the concentrations of oxygen and nutrients in the overlying water masses. Water was sampled 1 metre above the bottom at 23 locations (see Figure 1); water depths ranged between 10 and 31 metres.

Strong depletion of oxygen occurred everywhere in the basin below the 25 m depth, (Figure 7). Near shore depletions were not observed even near macrophyte beds (eg station 21).

SRP distributions were the mirror image of dissolved oxygen, in that strong accumulations were observed below 25 m (Figure 8). The highest concentrations were approximately 250 $\mu g \cdot L^{-1}$. When all the September nearbottom data are plotted against depth, the resultant "profile" is essentially the same as the measured depth profile at station A for the same date (Figure 4).

Ammonium followed a similar pattern to SRP except for two stations (4 and 17) which showed very low concentrations for their depth (Figure 9). The highest concentrations were observed in the south central sector of the basin.

Nitrate plus nitrite distributions one metre off the bottom were more complicated than the previous components (Figure 10). Concentrations increased with the depth of the water column down to about 25 m; the maximum observed was 470 μ g·L⁻¹ at the south end of the lake (station 17). Below the 25 m depth, concentrations decreased, with the southern half of the lake showing the most depletion (levels of 200 μ g·L⁻¹).

In general the concentration of bottom water chemicals reflect their absolute depth rather than their location 1 metre above the sediment. This does not rule out sediment influences on the overlying water, however, because algal uptake and physical mixing may mask changes at the shallower depths. It does, however, simplify the calculation of budgets since the

Z

25 --

mid-lake concentrations (Station A) can be extrapolated across the lake.

5.3 Internal Nutrient and Oxygen Contents

Internal contents for nutrients and oxygen were prepared by interpolating between data points and then calculating the content of a constituent in 2 m slices. (This is simpler but not quite as accurate as the volume weighted average method of Edmondson and Lehman, 1981). The volume of each 2 m slice was calculated from a hypsographic curve presented by D.J. Williams (1973) and is summarized in Table 6.

5.3.1 Dissolved Oxygen

The content of dissolved oxygen in the hypolimnion progressively decreased from early April to the end of summer stratification in October (Table 7). The rate of decrease, however, varied between the monitors. The largest decrease, 0.083 mg·L⁻¹, occurred between late July and early September when large amounts of blue-green algal sedimentation probably occurred. During the stratified period, the rate averaged 0.054 $mg^{+}L^{-1}$ and $(1.6 mg^{+}L^{-1}\cdot month)$. On an areal basis, the depletion rate was 490 mg·m²·day⁻¹ (15g·m⁻²·month⁻¹) for the water beneath the 18 m depth. This rate is within the range for mesotrophic lakes (10-15g·m⁻²·month⁻¹; Hutchinson, 1957).

5.3.2 Phosphorus

The content of total phosphorus (TP) in the water column decreased during spring, remained constant through to fall overturn and then increased in mid-winter (Table 8). The most rapid change occurred between April 10 and May 29 when TP decreased by 26%. A similar pattern was observed with dissolved phosphorus (DP) and soluble reactive phosphorus (SRP).

Depth	Area	Volume of slice	Cumulative Volume		
(m)	(Km ²)	(10 ⁶ m ³)	(10 ⁶ m ³)		
0	9.3	18 3	18 3		
2	9.0	17.7	36.0		
4	8.7	17.2	53.2		
6	8.5	17.2	29.2 (9.8		
8	8.25	16.7	69.9		
10	7.9	16.2	86.1		
12	7.6	15.5	101.6 Z _{V50} =11.7m		
14	7.2	14.8	116.4		
16	6 75	14.0	130.4		
10	6.75 6.05	13.0	143.4		
18	6.22	11.9	155.3		
20	5.6	10.5	165.8 Z=21.5m		
22	4.9	9.2	175.0 Z _{A50} =23.0m		
24	4.3	7.9	182.9		
26	3.6	6.6	189.5		
28	3.0		10/.0		
30	2.4	2.4	194.9		
32	1.45	3.9	198.8		
33	0	0.7	199.5		

Table 6: Hypsographic data for Wood Lake.

Date	Z _h (m)	Vh (10 ⁶ •m	02 3) (Mg)	Mean 02 (mg•L ⁻¹)	Inte: Char (Δmg•L ⁻¹)(rval nge (∆days)	Int R (mg•∟-l•d-l)	erval ates (g•m-2•d-1)
80/04/10	18	56.1	650	11.57				
80/04/29	18	56.1	520	9.27	-2.30	49	0.047	0.42
	10		720		-2.85	55	0.052	0.47
80/07/23	18	56.1	360	6.42	-3.57	43	0.083	0.75
80/09/4	18	56.1	160	2.85	1 40		0.075	0 70
80/10/16	20	44.2	60	1.36	-1.49	42	0.035	0.32
80/04/10 to 80/10/16		· ·	-590		-10.21	189	0.054	0.49

Table 7:	Dissolved oxygen	contents a	and depletion	rates in	the hypolimn	ion of
	Wood Lake.				•	

- 30 -

Lake.	• .
Mood	
٥f	
£	
and hypolimnion	
Ē	
mesolimnion	
(e),	eses
epilimnion	in parenthe
(Mq), in	(meters)
Contents (location
Phosphorus	Mesolimnion
Table 8:	•

			-				
-		Iota	а Т	Particu	<u>ulate P</u>	Dissolved P	Soluble reactive P
Date	Ð	<u>ج</u> ۲	total	د ع	total	e m h tot	al e m h total
79/09/26 (12-20)	1.27	3.12 9.53	13.9	0.66 0.15 0.20	1.0	0.61 2.97 9.33 12.9	
80/04/10 (6-18)	4.48	7.68 4.82	17.0	0.75 1.29 0.79	2.9	3.72 6.37 4.04 14.1	3.2 5.63 3.60 12.4
80/05/29 (6-18)	1.91	4.85 5.77	12.5	0.28 0.61 0.19	1.0	1.63 4.24 5.59 11.5	1.24 3.68 5.07 10.0
80/07/23 (8-18)	1.10	3.48 7.59	12.2	0.57 0.47 0.21	1.25	0.53 3.01 7.38 10.9	0.11 2.68 6.79 9.8
80/09/04 (10-18)	1.43	1.40 10.21	13.0	0.91 0.38 0.37	1.7	0.52 1.02 9.84 11.4	0.17 0.91 9.44 10.5
80/10/21 (14-20)	1.89	2.01 9.18	13.1	1.24 0.24 0.33	1.8	0.64 1.78 8.84 11.3	0.12 1.45 8.69 10.3
81/01/21			15.9		1.3	14.6	14.1
81/03/11			15.7		2.4	13.3	12.7

- 31 -

Particulate phosphorus (PP) was also maximal in early spring but showed a fall peak preceding a mid-winter minimum.

When the water column contents were split into epilimnion, mesolimnion and hypolimnion components, losses from the water column during summer were seen to occur in the epi- and mesolimnion, whereas the hypolimnion generally accumulated TP (mainly as SRP). This accumulation only partly compensated for the losses in the upper two water components, thus there was a loss of phosphorus to the sediments during summer. During late fall and winter, however, part of this loss is recovered by regeneration from the sediments. Consequently the mid-winter water column content is similar to that of the previous spring.

5.3.3 Nitrogen

The content of total nitrogen (TN) in the whole water column remained constant (95 to 114 Mg) even though the contents of the epi-, meso- and hypolimnions fluctuated considerably (Table 9).

Nitrate + nitrite nitrogen (NN) contents reflected the algal uptake of these nutrients and their subsequent release as other nitrogen components. There was also a considerable loss of NN from the hypolimnion between September 9 and October 21 due to denitrification (Figure 11). However, winter regeneration of nitrate from ammonia, dissolved organic N and particulate N more than doubled the NN content between late October and late January.

The ammonia nitrogen (AN) content in the whole water column was highest in autumn and following the spring bloom (see Section 7.1). The majority of the AN occurred in the hypolimnion, except during mid-summer when the rate of oxidation to AN presumably exceeded the rate of hydrolysis from particulate and dissolved organic N. Unlike the other dissolved N components, the hypolimnion content of AN in autumn, 1979 was much higher than that observed in autumn, 1980. The difference may be due to a larger input of sedimenting phytoplankton to the

- 32 -

	Nitrate + Nitrite N e m h total	0.51 8.24 10.8 19.6 9.35 16.6 10.9 36.9	0.13 4.02 10.3 14.5	0.51 2.74 16.4 19.7	0.81 2.99 17.4 21.2	0.40 4.86 8.46 13.7	34.7	31.8
· .	<u>ammonium N</u> e m h total	0.17 0.05 12.7 12.9 0.20 0.43 0.38 1.0	0.32 1.74 4.09 6.2	0.50 0.43 0.08 1.0	0.24 0.23 2.54 3.0	0.16 0.10 7.72 8.0	2.1	.0.8
in parentneses.	<u>Dissolved Organic N</u> e m h total	36.4 18.5 13.0 67.9 15.9 26.9 16.9 59.7	1.7 30.3 19.8 68.8	27.4 23.3 19.8 70.5	33.2 19.8 17.4 70.4	39.2 12.4 11.9 63.5	55.0	58.1
nion location (meters)	<u>Particulate N</u> I e m h total		1.82 2.54 0.66 5.0	4.86 2.44 1.37 8.7	6.32 2.74 2.56 11.6	8.57 1.71 1.44 11.7	3.7	7.6
Mesolim	<u>Total N</u> e m h total	 29.9 51.2 32.6 114	21.0 38.9 35.3 95.2	33.4 29.1 37.7 100	40.7 25.8 39.9 106	47.7 19.1 29.8 96.6	95.4	103
	Date	79/09/26 (12-20) 80/04/10 (6-18)	80/05/29 (6-18)	80/07/23 (8-18)	80/09/04 (10-18)	80/10/21 (14-20)	81/01/21	81/03/11

Table 9: Nitrogen Contents (Mg), in epilimnion (e), mesolimnion (m) and hypolimnion (h) of Wood Lake.

Hypolimnion content of nitrogen components in Wood Lake, 1980. Figure 11

hypolimnion in the summer of 1979.

The dissolved organic nitrogen (DON) content increased in the epilimnion throughout the growing season while it initially increased and subsequently decreased in the meso- and hypolimnions. The epilimnion increases probably result from the release of cellular N during the growth, scenescence and recycling of phytoplankton. The decreases in the hypolimnion after mid-summer suggest that dentrifying bacteria were utilizing DON using NN as an oxidizing source (Figure 11).

The lake's content of particulate N (PN) was highest in early spring and lowest during early winter and during the period immediately following the spring bloom. Except for early spring the epilimnion contained the most PN.

5.3.4 Chloride, Calcium, Silica and Particulate Carbon

Since chloride is essentially conservative in freshwater systems, annual changes in chloride content reflect the input-output balance of the element and the relative precision of the mass balance calculations. Although not calculated, the input-output balance of chloride was assumed to be a small component of the fluctuations in content because the flushing rate of the lake is very low. The content was found to average $712 \pm 26 \text{ Mg}$ (n = 6, Table 10). This 4% variation indicates that the sampling program was adequate.

There was a 20% decrease in the calcium content of the epiand mesolimnion between the end of May (4600 Mg) and the beginning of September (3800 Mg). A decrease of this magnitude suggests that calcium carbonate precipitation was a significant process and that any further attempts to evaluate nutrient cycles in this lake should include studies of this process.

The spring epilimnion content of silica (Table 10) dropped from 125 to 16 Mg in 6 weeks, presumably as a result of a diatom bloom. The sedimented silica was partially regenerated in the hypolimnion since the silica content increased from 148 to 214

, and Water Mass Volum	Mesolimnion		
Chloride Contents (Mg); Calcium, Silica and Particulate Carbon contents (Mg)	(lO ⁶ m ³) in epilimnion (e), mesolimnion (m) and hypolimnion (h) of Wood Lake	location (meters) in parentheses.	
Table 10:			

)ate	<u>Chloride</u> total	e m h total	l e <u>Silica Si</u> (02e <u>Particula</u> total e m h	te C total	<u>Volumes</u> e m h
9/09/26 12-20)	8	3450 1790 1490 6730	170 445 157	445		116 38.9 44.2
0/04/10 6-18)	717	1610 2800 1710 6120	125 224 148	29.3 45.1 497 27.4	102	53.2 90.2 56.1
0/05/29	675	1690 2890 1800 6370	16 53 144	20.1 26.1 213 210.0	56.2	53.2 90.2 56.1
30/07/23 8-18)		1900 2200 1660 5160	49 82 175	52.7 43.9 306 29.4	126	69.9 73.5 56.1
30/09/04 (10-18)	725	2210 1560 1630 5410	86 84 214	51.8 27.2 384 26.3	105	86.1 57.3 56.1
30/10/21 (14-20)	713	2950 1140 1430 5530	152 76 76	69.1 14.4 414 15.7	99.2	116 38.9 44.2
31/01/21	751			588	44	199.5
31/03/11	696	6630		465	702	199.5

- 36 -

Mg between April and September. Between late January and early March 1981, however, there was a disappearance of 120 Mg of silica from the whole water column suggesting significant diatom growth during that period. The lack of ice cover and resultant higher light levels probably contributed to this early algal growth.

Particulate carbon (PC) contents had generally the same seasonal pattern as PN (Table 10). The peak content, however, occurred in mid-summer as opposed to the spring peak of PN. The majority of PC occurred in the epi- and mesolimnions and is probably associated with autochthonous production of plankton and detritus.

GEOCHEMICAL MEASUREMENTS

Carbon

6.

6.1

Total carbon (TC), and its major constituent, organic carbon (OC), decreased dramatically in the top two cm of the core and then more gradually to the 6 cm depth (Figure 12). The levels of inorganic carbon (IC), however, remained reasonably constant. The 6-7 cm interval showed elevated amounts of IC comprising approximately 35% of the TC; although the other sections of the core were dark grey to black, this section was observed to have a light grey band which could indicate enrichment with calcite. Below 7 cm the OC levels increased, slightly, whereas IC levels decreased.

The large decreases in OC from the sediment-water interface to the bottom of the core cannot be entirely due to increased sedimentation of organic matter relative to detrital mineral matter. An unknown amount of sedimentary OC is converted through time to carbon dioxide, methane and dissolved organic carbon which are lost to the overlying waters. These losses are most intense in the top few cm of a sediment column.

The elevated IC concentrations at 6 cm may be recording an episode of increased calcium carbonate precipitation from the water column.

6.2 Phosphorus

The sedimentary phosphorus was fractionated analytically into organic P (OP), apatite P (AP) and non-apatite inorganic P (NAIP) components. OP decreased from 1.4 mg·g⁻¹ at the surface to approximately 0.35 mg·g⁻¹ at 7 cm and remained fairly constant below this depth (Figure 13). AP levels doubled from the surface to the 5 cm depth, then remained unchanged (at about 0.38 mg·g⁻¹) down to 18 cm. NAIP, at the surface, was almost as high as OP and decreased in a similar fashion to constant levels of around 0.25 mg·g⁻¹, below 5 cm.

The total P(TP) content of the surface cm, 2.9 mg·g⁻¹, is higher than reported previously for any of the Okanagan Lakes (Williams, J.D.H. 1973). This value is also higher than the TP content of suspended sediments entering the lake via Vernon Creek in late April, 1981 (1.48 mg·g⁻¹ TP and 0.95 $mg·g^{-1}$ AP, unpublished data). The fact that typical stream suspended sediments entering the lake have a lower phosphorus content than the lake sediments suggests that the biological uptake of dissolved phosphorus in the epilimnion and its eventual sedimentation in organic form is an important process in the phosphorus budget of the lake.

The increase in relative concentration of AP with depth in the top 3 cm may be due to losses of the organic matter in this layer rather than a decrease in the input of AP to the lake in recent years.

The very large increase of NAIP from 5 cm to the surface probably reflects the movement of phosphate in the pore waters to the sediment-water interface (Carignan and Flett, 1981) as opposed to significant increases in sedimentation.

40 -

BIOLOGICAL MEASUREMENTS

7.1 Phytoplankton biomass.

Table 11 lists all the measurements of chlorophyll <u>a</u>, <u>a</u> phaeopigments, ATP and total cell volumes. The integral and average epilimnion values for each date are given in Table 12.

- 41 -

In late May, when the study began, biomass levels were generally very low (Figures 14 and 15) and remained low until mid-July when a bloom was recorded (maximum chlorophyll <u>a</u>, 38.9 mg·m⁻³; cell volume, 8.1 mL·m⁻³). In August the biomass returned to lower levels but increased somewhat in mid-September and October (average ATP 0.5 - 0.8 mg·m⁻³; cell volumes 1 - 3.5 mL·m^{-3}).

Although the late start of the field sampling prevented measurement of the spring phytoplankton bloom, indirect evidence that it occurred comes from changes in the nutrient profiles (especially silica, Table 10) and from previous data (Buchanan and Kirk, 1974; B.C. Water Investigations Branch, unpublished data). The annual average epilimnion chlorophyll <u>a</u> value of 5.5 $mg \cdot m^{-3}$ should therefore be regarded as a minimum. Although inclusion of the spring data would raise this average, an examination of historical data suggests that the change would be small.

The fall increases in ATP and total cell volumes (see Table 11 and Figure 14 and 15) were not accompanied by significant changes in chlorophyll <u>a</u>. One possible explanation is a change in chlorophyll <u>a</u> content per cell resulting from a change in species composition (Berman and Pollinger, 1974). In fact, a shift in the dominant species of phytoplankton did occur during the month of September (see below).

7.

Date	Depth (m)	Chloro- phyll a (mg•m ⁻³)	<u>a</u> phaeo- pigments (mg•m ⁻³)	ATP (mg•m ⁻³)	Total Volume (mL•m ⁻³)	Dominant phytoplankton (by volume)
29/5/80	0.5 2 5 10 15 20	1.96 1.89 2.16 1.98 0.91 0.64	0.74 0.35 0.77 0.75 0.41 0.33	0.26 0.21 0.28 0.24 0.12 0.16	0.26 0.36 - -	Chlorophytes - Chlorophytes - - -
3/7/80	0.5 2 5 10 15 20	0.91 1.06 1.22 1.11 1.09 1.33	0.27 0.20 0.20 0.22 0.35 0.41	0.25 0.19 - 0.24	0.02	Cyanophytes - Cyanophytes - - - -
18/7/80	0.5 2 5 10 15 20	38.9 28.4 10.0 1.7 0.83 0.40	0.87 1.80 1.30 0.40 0.29 0.30		8.14 4.73 0.90 0.06	Cyanophyte: - <u>Anabaena</u> <u>flos-aquae</u> - -
23/7/80	0.5 2 5 10 15 20	7.42 7.88 7.70 2.66 1.39 0.66	0.44 0.38 0.77 0.47 0.33 0.25	- - - - -	0.63 0.40 - - -	Cyanophyte: - <u>Anabaena</u> flos-aquae - - -

Table 11: Wood Lake Phytoplankton Biomass Measurements at specific depths

					· · · · · · · · · · · · · · · · · · ·	
Date	Depth (m)	Chloro- phyll_a (mg•m-)	<u>a</u> phaeo- pigments (mg•m ⁻³)	ATP (mg•m ⁻³)	Total Volume (mL•m ⁻³)	Dominant phytoplankton (by volume)
6/8/80	0.5 2 5 10 15 20	2.90 3.25 3.42 2.00 1.50 1.25	0.87 0.71 0.83 0.81 0.55 0.37	0.45 0.45 0.39 0.34 0.33 0.17	0.09 0.06 -	Cyanophytes Cyanophytes - - -
3/9/80	0.5 2 5 10 15 20	3.03 3.51 3.62 3.79 1.21 0.34	0.92 1.06 0.96 1.12 0.78 0.42	0.27 0.22 0.24 0.25 0.27 0.15	0.10	Cyanophytes - Cyanophytes - - -
16/9/80	0.5 2 5 10 15 20	3.25 3.67 4.17 3.67 1.10 0.51	0.63 0.77 0.97 0.67 0.59 0.48	0.89 0.73 0.70 0.81 0.62 0.53	1.37 0.95 1.48	Cyanophyte: - Lyngbya " - -
21/10/80	0.5 2 5 10 15 20	3.02 3.30 3.34 3.34 2.08 0.96	0.86 0.83 0.74 0.69 0.62 0.56	0.61 0.59 0.55* 0.51 0.48 0.19	1.26 3.45 - - - * Interp	Cyanophyte: - Lyngbya - - - - oolated Value

Table 11: Wood Lake Phytoplankton Biomass Measurements (cont'd)

- 43 -

Date	Epilimnion depth (m)	Chlorophyll <u>a</u>	<u>a</u> Phaeopigments	ATP
29/5/80	5	9.9 (2.0)	2.9 (0.6)	1.22 (0.24)
3/7/80	5	5.4 (1.1)	1.1 (0.2)	1.10 (0.22)
18/7/80	7	144.2 (20.6)	9.3 (1.3)	
23/7/80	8	57.1 (7.1)	4.6 (0.6)	-
6/8/80	8	25.1 (3.1)	6.4 (0.8)	3.29 (0.41)
3/9/80	10	35.6 (3.6)	10.2 (1.0)	2.42 (0.24)
16/9/80	11	41.6 (3.8)	8.7 (0.8)	8.37 (0.76)
21/10/80	20	44.3 (3.2)	10.3 (0.7)	7.55 (0.54)

-

Ç

Table 12:	Wood Lake Phytoplankton biomass measurements; epilimnion
•	integrals (mg·m ⁻²) and averages (mg·m ⁻³). Average
	values in parencheses.

.

•

Month

Figure 14 Time-depth diagram of chlorophyll <u>a</u> concentrations $(mg \cdot m^{-3})$ in Wood Lake, 1980.

7.2 Phytoplankton species composition and volumes

A list of the phytoplankton species identified in Wood Lake, 1980, together with cell volumes and counts, is given in Appendix 4. The computed volumes of the major groups, for each sampling date, are shown in Table 13 and plotted, with time, in Figure 15.

- 46 -

Except for late May, when chlorophytes were the main constituent, cyanophytes clearly dominated throughout the study period (Figures 15 and 16). The only major bloom, during July, was almost a pure culture of the heterocystous blue-green <u>Anabaena flos-aquae</u> (95% by volume). This species persisted throughout the summer until replaced, in mid-September, by another blue-green, the non-heterocystous <u>Lyngbya</u>. Also, at this time, a small population of chlorophytes and chrysophytes appeared. Few diatoms were seen during the study period although indirect evidence, such as silica depletion during April and May (Table 10), strongly suggests that they bloomed in spring.

Determining the composition of the phytoplankton from cell numbers rather than volumes is misleading because of large variations in cell sizes (see Appendix 4). On most sampling dates the very small cyanobacteria (about $0.5 \ \mu m^3$ per cell) numerically dominated the population, but their contribution to the total cell volume was also very small. For example on September 16 the cyanobacteria comprised 99% of the cells, but only 4% of the total biomass. In addition, identification and counting of these minute phytoplankton is very difficult using the standard 'settling' method; epifluorescence microscopy (Hobbie et al, 1977) is needed to obtain accurate numbers and sizes.

					Volume	(mL•m ⁻³)	· · · ·	· .
Date	Depth (m)	Total Volume (mL•m ⁻³)	Cyano- phyte	Chloro- phyte	Diatom	Chryso- phyceae	Crypto- phyte	Others
29/5/80	0.5 5.0	0.26 0.36	0.01 0.008	0.24 0.35	0.01 0.007	0 0.001	0 0	0.008
3/7/80	0.5	0.02 0.03	0.02	0.001 0.004	0.001 0.001	0 0.001	0 0	0.002
18/7/80	0.5 2.0 5.0 10.0	8.14 4.73 0.90 0.06	8.13 4.71 0.88 0.05	0.001 0.005 0.006 0	0.002 0.002 0.004 0.002	0 0 0 0	0 0 0.001 0.002	0.003 0.003 0.004 0.003
23/7/80	0.5 5.0	0.63 0.40	0.61 0.38	0.02 0.003	0 0.003	0	0.002	0.007
6/8/80	0.5 5.0	0.09 0.06	0.06	0.006 0	0 0	0.01	0.004 0.009	0 0.004
3/9/80	0.5 5.0	0.10 0.12	0.08 0.10	0.009	0.001 0.006	0 0.002	0.005	0.004 0.003
16/9/80	0.5 5.0 10.0	1.37 0.95 1.48	1.30 0.83 1.30	0.03 0.05 0.12	0.003 0.003 0.006	0.03 0.04 0.01	0.003 0.006 0.01	0.006 0.02 0.03
21/10/80	0.5 2.0	1.26 3.45	1.09 3.31	0.11 0.04	0.008 0.03	0.01 0.04	0.006	0.04 0.02

Table 13: Wood Lake Phytoplankton Volumes

- 47 -

Figure 15 Phytoplankton volumes, average 0.5 to 5 metre values in Wood Lake, 1980.

Figure 16 Phytoplankton taxonomic composition, average 0.5 to 5 metre values, in Wood Lake, 1980.

Those populations of blue-green algae capable of utilising molecular nitrogen (N_2) in the absence of nitrate and ammonium characteristically have specialised cells called heterocysts. Thus the dominance of a heterocystous population is indicative of nitrogen limitation of the community as a whole. Heterocysts were only visible in the blue-green populations in late July, at frequencies (as a % of total cells) between 2.2 and 4.4 (see Table 14). These numbers are very close to those found by Kellar and Paerl (1980) in a similar species of blue-green, <u>Anabaena spiroides</u>. They measured heterocyst frequencies between 2.3 and 3.8% at a time when there was significant nitrogen fixation (as measured by the acetylene reduction technique).

Depth (m)	% Heterocysts
0.5	3.6
2	3.0
5	4.2
0.5	4.4
2	* *
. 5	2.2
	Depth (m) 0.5 2 5 0.5 2 2 5

Table 14: Wood Lake Cyanophyte Heterocyst Frequency

* Not counted

- 50 -

7.3

Phytoplankton nutrient limitation

The results of the various physiological tests are given in Table 15.

7.3.1 ³²P uptake

Figure 17 shows epilimnion trends in 32 P turnover times, alkaline phosphatase activities and chlorophyll <u>a</u> values for the study period.

Chemical estimates of orthophosphate (P) as SRP are prone to error and may seriously overestimate P when levels are low (Rigler, 1968). ³²P turnover times reflect demand for P (Rigler, 1956) and can be used, in a general way, to follow trends in P levels where chemical measurements are unreliable. The turnover times reported here have been normalized with respect to ATP to remove variations due to changes in biomass.

Prior to August the turnover times were very long, suggesting low demand for P (see Figure 17). After the cyanophyte bloom in July, however, the demand increased dramatically (turnover times of a few minutes) and remained high throughout the fall period. These data indicate low ambient P levels from July through October and suggest that the phytoplankton community were probably limited by phosphorus during this period.

7.3.2 Alkaline phosphatase activity

This enzyme is produced by the phytoplankton during conditions of P deficiency (Healey and Hendzel, 1979). Thus high levels of alkaline phosphatase (APase), per unit biomass, are indicative of P limitation.

APase levels were low prior to the bloom in July and very high afterwards (Figure 17). Activity dropped throughout September reaching low levels at the end of October. Thus the

		32	011-01-0-0		
Date	Uepth (m)	Time (hrs•μg ATP•L ⁻¹)	Alkaline Phosphatase (nM MF•hr ⁻¹ •µg ATP ⁻¹)	P Optake (μm PO ₄ •d ⁻¹ • μg ATP ⁻¹)	N Uptake $(\mu M NH_4^+ d^{-1})$ $\mu g ATP^{-1}$
29/5/80	0.5 5 20	1000 1000 1000	- -		
3/7/80	0.5	600	11.6	N.S.	N.S.
	5	650	46.8	N.S.	N.S.
	20	1000	46.7	N.S.	N.S.
6/8/80	0.5	0.19	391	0.31	N.S.
	5	0.15	377	0.35	N.S.
	20	1000	724	N.S.	N.S.
3/9/80	0.5	-	169	0.38	N.S.
	5	-	152	N.S.	N.S.
	20	-	168	N.S.	N.S.
16/9/80	0.5	0.66	65.3	N.S.	N.S.
	5	0.67	128	0.17	N.S.
	20	1000	0	N.S.	N.S.
21/10/80	0.5	3.2	48.9	N.S.	N.S.
	5	7.3	77.8	0.21	N.S.
	20	1000	0	N.S	N.S.

Table 15: Wood Lake Phytoplankton Physiological Measurements

N.S. = No Significant Uptake

Figure 17

Comparison of phytoplankton biomass and activities, average 0.5 and 5 metre values, in Wood Lake, 1980.

seasonal pattern of APase is similar to that of 32 P turnover and reinforces the conclusion of strong P limitation in the epilimnion during August and September.

APase levels in some 20 metre samples, were very high (Table 15), despite very long ³²P turnover times and high SRP levels. The explanation for this anomaly is probably related to the fact that high cellular APase levels are not necessarily lowered by the presence of additional P, but are more likely reduced by cell division and growth (Healey, 1973). Thus the 20 metre populations may have sedimented down from the surface layers to the lake without sufficient time to divide and deplete their cellular APase reserves.

7.3.3 Unlabelled N & P uptake

The sensitivity of both of these measurements is dependent not only on the degree of nutrient starvation of the phytoplankton but also on their absolute biomass. If biomass levels are low enough, net nutrient uptake over 24 hours may be undetectable even during severe nutrient limitation. For this reason lack of measured nutrient uptake is not necessarily indicative of nutrient sufficiency.

The measurements of unlabelled orthophosphate (P) and ammonium (N) uptake are given in Table 15. The only significant P uptake within the epilimnion occurred during August and in sporadic samples thereafter. This reinforces the earlier observations of P limitation after July. At no time was a significant uptake of N measured. For the reason stated above this does not rule out N limitation at any time during the study. Indeed, one would have expected to see N uptake during early July given the very low epilimnion N:P ratios and the presence of heterocystous blue-greens at that time. However biomass levels were also very low reducing the sensitivity of the method.

CONCLUSIONS

Wood Lake, during 1980, became strongly stratified with a well defined epilimnion and thermocline. The maximum heat content was consistent with the lake's size and location and was comparable to several other study years. Hence the existence of a cold groundwater input suggested previously, is not substantiated.

- 55 -

Light extinction levels were characteristic of a mesotrophic lake. However, these extinction measurements did not correlate well with chlorophyll <u>a</u> levels making it difficult to relate historical changes in biomass levels to corresponding changes in water clarity. Changes in the species composition and bloom frequency of algae and variations in non-algal turbidity appear to have been the major complicating factors.

Dissolved oxygen concentrations throughout the year decreased in the hypolimnion at rates typical of a mesotrophic lake. Low levels were observed at the sediment-water interface during the fall. However, due to the absence of ice cover no winter oxygen depletion was observed in 1980.

Dissolved phosphorus concentrations at the start of the growing season were high relative to the other two major nutrients, nitrogen and silica. Despite this fact, DP levels were driven to very low levels in the epilimnion during summer and fall by algal uptake and probably also by co-precipitation with marl. There was a net loss of phosphorus from the water column to the sediments during the summer resulting in high concentrations of organic P in the surface layers of the sediment.

There was no net internal loading of phosphorus observed during 1980. This conclusion was based on similar springtime DP concentrations in 1980 and 1981, and was substantiated by the absence of elevated iron concentrations in the hypolimnion during the year. However, the high concentrations of the reduced form of manganese in the bottom waters suggests that the threshold for release of iron, and thus phosphorus from the sediments, is close to being reached. Thus further inputs of organic material to the hypolimnion may reduce redox potentials sufficiently to promote this P release (internal loading).

The ratio of biologically avaliable nitrogen to phosphorus in the spring was indicative of an eutrophic lake. During the growing season dissolved nitrogen levels in the epilimnion were reduced to very low levels. Regeneration of this nitrogen in the hypolimnion occurred initially as nitrate but, with decreasing oxygen concentrations and denitrification of nitrate, resulted eventually in ammonium. This hypolimnetic ammonium did not reach levels normally thought to be toxic to fish.

Dissolved silica concentrations in the epilimnion were reduced to low levels early in the growing season, presumably by diatom uptake. Furthermore, reductions in this nutrient from mid-January 1981 to March 1981, suggests that diatom growth can occur in winter or early spring.

The concentrations of near-sediment bottom water chemicals in September, throughout the lake, seemed to correlate with the absolute water column depth not proximity to the sediments. Thus the sediment did not appear to significantly affect the chemistry of the overlying water masses.

Phytoplankton biomass levels in the euphotic zone, measured by chlorophyll <u>a</u>, ATP and cell volumes, were indicative of a mesotrophic to mildly eutrophic lake. Blue-green algae dominated the phytoplankton (on a cell volume basis) throughout the study period. However, the rapid depletions of silica in the epilimnion during the spring strongly suggests an early diatom bloom. The blue-greens consisted of a heterocystous, bloom-forming species, <u>Anabaena flos-aquae</u>, in July and a non-heterocystous species, <u>Lyngbya sp.</u>, throughout the remainder of the growing season. The use of cell numbers rather than volumes to determine phytoplankton composition in Wood Lake is not recommended because of the large variation in cell sizes that occur. Of the three major phytoplankton nutrients it appears that phosphorus (P) ultimately controls the annual yield of biomass. This is evidenced by low epilimnetic P concentrations in midsummer coupled with low P turnover times and high alkaline phosphatase activities. Low levels of dissolved nitrogen and dissolved silica, however, are probably responsible for determining the gross composition of the phytoplankton. Thus the early depletion of silica probably limits the size of the spring diatom bloom whereas the depletion of dissolved nitrogen leads to the appearance of nitrogen fixing blue-green algae. Relative increases in either silica or nitrogen in future may thus select for the more aesthetically desirable phytoplankters, without significantly affecting the total annual algal yields.

On the basis of water clarity, oxygen depletion rates, N to P ratios and phytoplankton biomass and species composition, Wood Lake, in 1980, would be classed as mildly eutrophic. However, normal interannual variability may modify the magnitude and distribution of some of these parameters. Without a long-term data base it is difficult to establish whether 1980 was an average year. For example, the water inflow to the lake, in 1980, was low relative to previous years (Gray and Jasper, 1982) and no ice cover developed.

Further studies, if undertaken, should include measurements of water clarity, oxygen, nutrients, phytoplankton biomass and composition, frequency of blue-green blooms and determination of net phosphorus internal loading, if it occurs. The use of correct sampling methodologies is important, namely, two or more sampling stations to correct for internal waves, an early spring sampling to determine the starting nutrient supplies prior to algal uptake and growth, and a sampling routine with sufficient frequency to monitor the phytoplankton. A monitor strategy for Wood Lake is included in a companion report from this study (Gray and Jasper, 1982).

REFERENCES

- 58 -

- Berman, T., and U. Pollingher. 1974. Annual and seasonal variations of phytoplankton, chlorophyll, and photosynthesis in Lake Kinneret. Limnol. Oceanogr. 19(1): 31-54.
- Blanton, J.O. 1973. Some comparisons in thermal structure of Lakes Wood, Kalamalka, Okanagan, Skaha and Osoyoos, B.C. J. Fish. Res. Board Can. 30: 917-925.
- B.C. Research. 1974. Water quality of the Kalamalka-Wood Lake basin. Vancuver. 163 pp.
- Buchanan, R.J., and N.M.F. Kirk. 1974. Natural phytoplankton communities in lakes of the Kalamalka - Wood Lake drainage basin. B.C. Water Resources Service, Dept. of Lands, Forests and Water Resources, Victoria, British Columbia.
- Canada-British Columbia Okanagan Basin Agreement. 1974. The limnology of the major Okanagan Basin lakes. Technical supplement V to the Final Report, published by the office of the Study Director, box 458, Penticton, B.C. 261 pp.

Carignan, R., and R.J. Flett. 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26 (2): 361-366.

Edmondson, W.T., and J.T. Lehman. 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26 (1): 1-29.

Gray, C.B.J., and S. Jasper. 1982. Limnological trends in Wood Lake, B.C. (1971–1981) with some implications for lake management. Inland Waters Directorate, Pacific and Yukon Region, Vancouver, B.C.

Healey, F.P. 1973. Characteristics of phosphorus deficiency in <u>Anabaena</u>. J. Phycol. 9: 383-394.

Healey, F.P., and L.L. Hendzel. 1979. Fluorometric measurement of alkaline phosphatase activity in algae. Fresh. Biol. 9: 429-439.

Healey, F.P., and L.L. Hendzel. 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. Aquat. Sci. 37: 442-453.

- Hobbie, J.E., R.J. Daley, and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.
- Holm-Hansen, O., and C.R. Booth. 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr. 11: 510-519.

Hutchinson, G.E. 1957. A treatise on limnology. Volume I. J. Wiley, New York.

- Inland Waters Directorate. 1981. Analytical methods manual. Water Quality Branch.
- Kalamalka-Wood Lake Basin Water Resource Management Study. 1974. Published by the Water Investigations Branch, British Columbia Water Resources Service, Department of Lands, Forests and Water Resources, Parliament Buildings, Victoria, British Columbia. 208 pp.
- Keller, P.E., and H.W. Paerl. 1980. Physiological adaptations in response to environmental stress during an N₂ - fixing <u>Anabaena</u> bloom. Appl. Environ. Microbiol. 40: 587-595.
- Kemp, A.L.W., H.A. Savile, C.B. Gray, and A. Mudrochova. 1971. A simple corer and a method for sampling the mud-water interface. Limnol. Oceanogr. 16 (4): 689-694.
- Koshinsky, G.D., and J.G. Stockner. 1972. Some winter observations of nutrient levels in the Ellison-Wood Lakes system 10-14 February, 1972. Interim data report prepared by F.R.B. for the Canada-B.C. Okanagan Basin Study. 5 pp.
- Lean, D.R.S, and F.H. Rigler. 1974. A test of the hypothesis that abiotic phosphate complexing influences phosphorus kinetics in epilimnetic lake water. Limnol. Oceanogr. 19(5): 784-788.
- Lund, J.W.G., C. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143-170.
- Nordin, R.N. 1980. Strategies for maintaining water quality in two British Columbia lakes. Can. Water. Res. Jour. 5: 90-101.
- Rigler, F.H. 1956. A tracer study of the phosphorus cycle in lake water. Ecology. 37: 550-562.

- Rigler, F.H. 1968. Further observations inconsistent with the hypothesis that the molybdenum blue method measures orthophosphate in lake water. Limnol. Oceanogr. 13(1): 7-13.
- Stadelmann, P., J.E. Moore, and E. Pickett. 1974. Primary production in relation to temperature structure, biomass concentration, and light conditions at an inshore and offshore station in Lake Ontario. J. Fish. Res. Board Can. 31: 1215-1232.
- Stainton, M.P. 1973. A syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in fresh water and carbonates in sediments. J. Fish. Res. Board Can. 30: 1441-1445.
- Thurston, R.V., R.C. Russo, C.M. Fetterolf, T.A. Edsall, Y.M. Barber (Eds.) 1979. A review of the EPA Red Book: Quality criteria for water. American Fisheries society, Bethesda, Maryland. 313 pp.
- Utermöhl, H. 1958. Zur vervollkommung der quantitative phytoplankton methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38.
- Vollenweider, R.A. 1974. A manual on methods for measuring primary production in aquatic environments. 2nd ed. IBP Handbook 12. 225 pp. Williams, D.J. 1973. General limnology of the Okanagan mainstem lakes.

Okanagan Basin Study Committee Preliminary Report no. 19. 14 pp.

- Williams, J.D.H. 1973. Phosphorus in the sediments of the Okanagan mainstem lakes. Task 121 report to Canada-B.C. Okanagan Basin Study. 75 pp.
- Williams, J.D.H., J.M. Jaquet, and R.L. Thomas. 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish. Res. Board Canada. 33: 413-429.

Appendix 1

Wood Lake Temperature Data (°C) from Station A

DEPTH (Metres)	26/9/79	10/4/80	29/5/80	3/7/80	18/7/80	23/7/80
0	19.0	5	14.5	19.8	20.5	23.0
1		4.8	14.5	19.8	20.2	22.5
2	19.1	4.6	14.5	19.8	20.0	22.0
3		4.5	14.5	19.8	20.0	21.0
4	• •	4.5	14.25	19.8	19.8	20.5
5	19.1	4.5		19.5	19.7	20.0
6		4.5	14.0	19.0	19.6	19.5
7		4.5		18.5	19.5	19.4
8	·	4.5	12.5	17.5	19.0	19.1
9		4.5	11.75	15.8	18.3	17.2
10	17.6	4.5	11.0	15.0	17.0	17.0
11		· ·	10.0			14.5
12	•	4.5	9.0	11.0	11.7	12.1
13			8.0	· · ·		10.3
14		4.5	7.5	8.5	9.7	9.0
15	7.8	4.5	7.0			8.5
16		4.5	6.75	7.25	8.0	7.5
17			·			7.0
18		4.5	6.0	6.5	7.0	6.5
19		×			•	6.3
20	6.9	4.5	5.7	6.3	6.1	5.6
22		4.5		5.8		5.5
24		4.5	5.1	5.5	5.8	5.2
26		4.5		5 . 5 ′		5.0
28		4.5	5.0	5.3	. ·	5.0
30	5.5	4.4	•	·		5.0

- 61 ·

Appendix 1 (cont.) Wood Lake Temperature Data (°C) from Station A

DEPTH (Metres)	6/8/80	4/9/80	16/9/80	16/10/80	21/10/80	20/11/80	11/3/81
0	21.0	18.1	17.8	14.3	13.5	8.5	3.5
1	21.0		17.8	14.3	13.5	8.5	3.2
2	20.9	18.1	17.8	14.3	13.5	8.5	3.2
3	20.9		17.8	14.3	13.5	8.5	3.2
4	20.9	18.1	17.8	14.3	13.5	8.5	3.2
5	20.9	.•	17.8	14.3	13.5	8.5	3.2
6	20.9	18.1	17.7	14.3	13.5	8.5	3.2
7	20.8		17.7	14.3	13.5	8.5	3.1
8	20.6	18.0	17.6	14.3	13.5	8.5	3.1
9	18.0	18.0	17.6	14.3	13.5	8.5	3.1
10	16.7	18.0	17.5	14.3	13.5	8.5	3.1
11	13.2	16.0	17.5	14.3	13.5	8.5	3.1
12	11.9	13.0	14.5	14.3	13.5	8.5	3.1
13	10.6	11.2	12.0	14.3	13.5	8.5	3.2
14	9.6	10.5	10.2	14.3	13.5	8.5	3.2
15	8.6	9.0	9.3	11.7	11.0	8.5	3.2
16	7.8		8.5	9.5	9.5	8.5	3.2
17	6.8	7.5	8.2	8.5	8.5	8.5	3.1
18	6.6		7.8	7.7	7.9	8.5	3.1
19	6.2	6.8	7.5	7.5	7.5	8.4	3.1
20	6.0		6.6	7.0	7.0	8.3	3.1
22	5.6	6.2	6.3	6.3	6.7	8.3	3.1
24	5.4	5.9	5.6	6.0	6.0	8.0	3.1
26	5.4	5.7	5.6	5.6	5.7	7.6	3.1
28	5.3	5.5	5.4	5.5	5.5	7.0	3.1
30	5.2	5.5	5.4	5.5	5.5	5.8	3.1

- 62 -

Appendix 2

Wood Lake Chemical Data from Station A

PARAMETER	SYMBOL	UNITS
	•	
Depth	. Z	Meters
Temperature	°C	Degrees Centigrade
Specific Conductivity	C ₂₅	Micro Seimens/Centimeter
Turbidity	Turb	Jackson Turbidity Units
рН	рH	рH
Total Alkalinity	T Alk	Milligrams/Liter Ca CO ₃
Phenolphthalein Alk	P Alk	Milligrams/Liter Ca CO_3
Total Inorganic Carbon	TIC	Milligrams/Liter C
Total Nitrogen	TN	Micrograms/Liter N
Particulate Nitrogen	PN	Micrograms/Liter N
Total Dissolved Nitrogen	TDN	Micrograms/Liter N
Nitrate plus Nitrite	N+N	Micrograms/Liter N
Nitrate Nitrogen	NO3	Micrograms/Liter N
Nitrite Nitrogen	NO2	Micrograms/Liter N
Ammonium Nitrogen	AN	Micrograms/Liter N
Dissolved Inorganic Nitrogen	DIN	Micrograms/Liter N
Dissolved Organic Nitrogen	DON	Micrograms/Liter N
Total Phosphorus	TP	Micrograms/Liter P
Particulate Phosphorus	PP	Micrograms/Liter P
Dissolved Phosphorus	DP	Micrograms/Liter P
Soluble Reactive Phosphorus	SRP	Micrograms/Liter P
Reactive Silica	Si0 ₂	Milligrams/Liter SiO ₂
Particulate Carbon	PC	Milligrams/Liter C
Iron	Fe	Micrograms/Liter Fe
Manganese	Mn	Micrograms/Liter Mn
Dissolved Oxygen	DO	Milligrams/Liter O
Calcium (by Titration)	Ca	Milligrams/Liter Ca
Calcium Direct (by A.A.)	Ca D	Milligrams/Liter Ca
Magnesium (by Calc.)	Mg	Milligrams/Liter Mg
Magnesium Direct (by A.A.)	Mg D	Milligrams/Liter Mg
Appendix 2 (cont)

Wood Lake Chemical Data from Station A

PARAMETER	SYMBOL	UNITS
Sodium	Na	Milligrams/Liter Na
Potassium	к	Milligrams/Liter K
Sulphate	SO4	Milligrams/Liter SO ₄
Chloride	Cl	Milligrams/Liter Cl
Fluoride	F	Micrograms/Liter F
(Field Measurement)	(F)	
(Lab Measurement)	(L)	

Appendix 2 (cont.) Monitor Date: 1979/09/26

Z 2.0 5.0 10.0 15.0 20.0 29.0 31.0	TN	PN	TDN 365.0 365.0 360.0 425.0 710.0 910.0 997.5	N+N 2.0 1.0 5.0 80.0 365.0 167.5 35.5	NO3	NO2	AN 1.0 3.0 1.0 1.0 502.5 680.0	DIN 3.0 4.0 6.0 81.0 366.0 670.0 715.5	DON 362.0 361.0 354.0 344.0 344.0 240.0 282.0
Monito	or Date:	1980/04	/10						
Z 1.0 4.0 8.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 31.0	TN 5559.0 569.0 566.0 580.0 591.0 591.0	PN 89.0 84.0 81.0 70.0 81.0 79.0	TDN 470.0 485.0 485.0 490.0 485.0 500.0 510.0 500.0 510.0 505.0 495.0	N+N 171.0 179.0 180.0 185.0 193.0 193.0 193.0 198.0 193.0 194.0	NO3 170.0 178.0 179.0 184.0 183.0 191.0 191.0 193.0 196.0 191.0 192.0	NO2 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	AN 4.0 2.0 4.0 9.0 6.0 7.0 9.0 5.0 6.0	DIN 175.0 183.0 182.0 194.0 199.0 199.0 202.0 207.0 198.0 200.0	DON 294.0 301.0 302.0 300.0 289.0 299.0 309.0 296.0 301.0 305.0 293.0
31.5 Monito	or Date:	1980/05	505.0	194.0	192.0	2.0	8.0	202.0	301.0
Z .5 2.0 5.0 8.0 10.0 12.0 15.0 15.0 15.0 20.0 27.0 27.5 28.5 Monito	TN 411.0 396.0 386.0 391.0 403.0 441.0 470.0 483.0 530.0 624.0 747.0 778.0 or Date:	PN 36.0 31.0 36.0 41.0 33.0 12.0 15.0 12.0 9.0 13.0 13.0 13.0	TDN 375.0 365.0 350.0 370.0 408.0 458.0 468.0 518.0 615.0 734.0 775.0 765.0	N+N 2.0 4.0 1.0 2.0 18.0 39.0 89.0 112.0 162.0 200.0 220.0 210.0 210.0	NO3 1.0 3.0 0.0 16.0 35.0 83.0 111.0 161.0 194.0 180.0 167.0 206.0	NO2 1.0 1.0 2.0 2.0 4.0 6.0 1.0 1.0 6.0 40.0 43.0 4.0	AN 9.0 8.0 2.0 7.0 13.0 27.0 29.0 28.0 27.0 49.0 140.0 148.0 152.0	DIN 11.0 12.0 3.0 9.0 31.0 66.0 118.0 140.0 189.0 249.0 360.0 358.0 362.0	DON 363.0 352.0 346.0 339.0 337.0 338.0 334.0 327.0 328.0 360.0 334.0 374.0 399.0
Z .5 2.0 5.0 8.0 10.0 15.0 20.0 25.0 30.0 31.0 31.5	TN 532.0 500.0 471.0 413.0 373.0 379.0 555.0 760.0 799.0 805.0 814.0	PN 112.0 55.0 71.0 58.0 43.0 19.0 30.0 25.0 14.0 15.0 19.0	TDN 420.0 445.0 400.0 355.0 330.0 360.0 525.0 735.0 785.0 790.0 795.0	N+N 2.0 18.0 3.0 2.0 2.0 47.0 190.0 360.0 420.0 420.0 420.0	NO3 0.0 16.0 1.0 0.0 45.0 189.0 359.0 419.0 419.0 419.0	NO ₂ 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0	AN 4.0 10.0 8.0 3.0 10.0 1.0 1.0 1.0 2.0 1.0	DIN 5.0 28.0 11.0 4.0 5.0 57.0 191.0 361.0 421.0 422.0 421.0	DON 413.0 415.0 387.0 323.0 301.0 333.0 373.0 363.0 367.0 373.0

Monito	r Date:	1980/09	0/04						
Z 1.0 5.0 10.0 15.0 20.0 25.0 29.0 30.0	TN 532.0 446.0 443.0 414.0 657.0 753.0 821.0 772.0	PN 77.0 71.0 29.0 67.0 23.0 41.0 47.0	TDN 455.0 395.0 370.0 385.0 590.0 730.0 780.0 725.0	N+N 17.0 6.0 36.0 280.0 390.0 370.0 220.0	NO3 16.0 5.0 35.0 279.0 389.0 369.0 213.0	NO2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0	AN 2.0 1.0 7.0 1.0 10.0 32.0 92.0 170.0	DIN 19.0 7.0 13.0 37.0 290.0 422.0 462.0 390.0	DON 435.0 9.8 9.6 7.9 1.7 .4 .4
Monito	r Date:	1980/10	0/16			• • •			
Z 1.0 5.0 13.0 16.0 20.0 25.0 30.0 31.0 31.5	TN 402.0 418.0 440.0 609.0 739.0 747.0 755.0	PN 67.0 82.0 68.0 50.0 24.0 37.0 34.0 37.0 35.0	TDN 335.0 350.0 390.0 585.0 705.0 710.0 720.0	N+N 3.0 2.0 3.0 65.0 280.0 240.0 24.0 11.0 13.0	NO3 2.0 1.0 2.0 64.0 279.0 201.0 23.0 6.0 8.0	NO2 1.0 1.0 1.0 1.0 39.0 1.0 5.0 5.0	AN 1.0 2.0 3.0 2.0 115.0 440.0 450.0 500.0	DIN 4.0 3.0 5.0 68.0 282.0 355.0 464.0 461.0 513.0	DON 330.0 344.0 321.0 302.0 240.0 244.0 202.0
Monito	or Date:	1981/01	1/21						
Z 1.0 16.0 31.0	TN 481.0 460.0 532.0	PN 21.0 15.0 24.0	TDN 460.0 445.0 508.0	N+N 170.0 172.0 189.0	NO3 169.0 171.0 188.0	NO2 1.0 1.0 1.0	AN 5.0 7.0 34.0	DIN 175.0 179.0 223.0	DON 285.0 266.0 285.0
Monito	or Date:	1981/03	3/11						
Z 1.0 4.0 7.0 9.0 14.0 21.0 27.0 28.0 28.5	TN 574.0 466.0 763.0 460.0 499.0 488.0 458.0 459.0 459.0	PN 34.0 41.0 38.0 35.0 39.0 38.0 38.0 39.0 44.0	TDN 540.0 425.0 485.0 425.0 460.0 450.0 420.0 420.0 410.0	N+N 161.0 158.0 161.0 159.0 159.0 158.0 161.0 161.0 159.0	NO3 159.0 156.0 157.0 158.0 157.0 156.0 160.0 160.0 158.0	NO2 2.0 4.0 1.0 2.0 2.0 1.0 1.0	AN 14.0 2.0 1.0 2.0 6.0 7.0 3.0 2.0	DIN 175.0 159.0 163.0 160.0 161.0 164.0 164.0 164.0 161.0	DON 365.0 266.0 322.0 265.0 299.0 286.0 252.0 256.0 249.0

- 66 -

Monito	or Date:	1979/09	0/26	<i>.</i>			-		
Z 2.0 5.0 10.0 15.0 20.0 29.0 31.0	TP 12.0 11.0 13.0 28.0 138.0 278.0 305.0	PP 6.0 8.0 2.0 2.0 6.0 9.0	DP 6.0 5.0 26.0 136.0 272.0 296.0	SRP	SiO2 1.7 1.6 1.7 2.0 2.8 4.1 4.5	PC	Fe	Mn	DO 9.7 9.7 9.1 5.7 4.2 .6 .2
Monito	or Date:	1980/04	1/10						
Z 1.0 4.0 8.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 31.0 31.5	TP 83.0 85.0 85.0 85.0 86.0 86.0 86.0 86.0 84.0 85.0	PP 13.0 15.0 15.0 13.0 14.0 14.0 14.0 12.0 16.0 13.0 14.0	DP 70.0 70.0 70.0 72.0 70.0 72.0 71.0 74.0 72.0 70.0 71.0 71.0	SRP 59.0 61.0 64.0 62.0 63.0 63.0 65.0 65.0 65.0 64.0 64.0	SiO2 2.3 2.4 2.5 2.5 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.6 2.6	PC 569.0 509.0 489.0 477.0 511.0 479.0	Fe 1. 32. 5. 5. 1. 4. 6. 60. 2. 3.	Mn 1. 2. 1. 1. 1. 1. 2. 0. 2. 4.	DO 12.2 12.2 12.1 11.8 11.9 11.6 11.8 11.6 11.7 11.4 11.6 11.5
Monito	or Date:	1980/05	5/29						
Z .5 2.0 5.0 8.0 10.0 12.0 15.0 15.0 18.0 20.0 24.0 27.0 27.5 28.5	TP 35.0 35.0 37.0 40.0 58.0 54.0 62.0 66.0 73.0 92.0 150.0 150.0	PP 11.0 1.0 7.0 5.0 17.0 5.0 3.0 5.0 2.0 5.0 5.0 5.0	DP 24.0 34.0 30.0 35.0 41.0 49.0 59.0 61.0 71.0 90.0 145.0 145.0 145.0	SRP 24.0 23.0 23.0 28.0 37.0 43.0 52.0 54.0 62.0 85.0 127.0 131.0 134.0	SiO ₂ .3 .3 .4 .5 .9 1.1 1.8 2.5 3.8 3.7 3.8	PC 379.0 378.0 376.0 382.0 342.0 314.0 171.0 174.0 179.0 184.0 168.0	Fe 11. 20. 15. 22. 17. 16. 27. 10. 20. 15. 24. 32. 40.	Mn 13. 13. 13. 17. 15. 15. 23. 31. 31. 110. 350. 400. 430.	D0 11.4 11.3 11.3 11.7 11.9 12.2 11.9 11.8 11.1 9.5 6.6 6.5 6.3
Monite	or Date:	1980/0	1/23				* .	×	
Z 2.0 5.0 8.0 10.0 15.0 20.0 25.0 30.0 31.0 31.5	TP 12.0 14.0 18.0 17.0 23.0 66.0 99.0 155.0 182.0 190.0 187.0	PP 6.0 6.0 11.0 8.0 7.0 6.0 4.0 3.0 3.0 10.0 5.0	DP 6.0 8.0 7.0 9.0 16.0 60.0 95.0 152.0 179.0 180.0 182.0	SRP 2.0 1.5 1.0 2.5 12.0 55.0 94.0 141.0 165.0 168.0 169.0	SiO ₂ .7 .7 .7 .8 1.3 2.2 3.6 4.3 4.3 4.4	PC 1210.0 707.0 629.0 717.0 660.0 516.0 570.0 615.0 274.0 309.0 375.0	Fe 4. 1.	Mn 20. 550.	D0 12.4 13.2 12.1 10.7 10.9 11.4 9.1 5.1 2.8 3.1 2.6

Monito	or Date:	1980/09	9/04						
Z 1.0 5.0 10.0 15.0 20.0 25.0 29.0 30.0	TP 17.0 16.0 17.0 10.0 123.0 219.0 248.0 272.0	PP 11.0 10.0 11.0 4.0 6.0 9.0 4.0 6.0	DP 6.0 6.0 6.0 117.0 210.0 244.0 266.0	SRP 2.0 2.0 10.0 116.0 198.0 232.0 255.0	SiO ₂ 1.0 1.0 1.5 2.8 4.4 4.9 5.2	PC 630.0 581.0 604.0 354.0 695.0 291.0 349.0 367.0	Fe 3. 1.	Mn 1. 80.	DO 9.8 9.6 7.9 1.7 .4 .4
Monito	or Date:	1980/10	0/16						
Z 1.0 5.0 13.0 16.0 20.0 25.0 30.0 31.0 31.5	TP 15.0 17.0 16.0 17.0 128.0 220.0 270.0 272.0 272.0	PP 10.0 11.0 5.0 6.0 8.0 9.0 5.0 6.0	DP 5.0 5.0 12.0 122.0 212.0 261.0 266.0	SRP 1.0 1.0 4.0 111.0 212.0 259.0 266.0 268.0	SiO ₂ 1.3 1.3 1.9 2.3 4.7 5.3 5.4 5.5	PC 496.0 714.0 509.0 420.0 229.0 349.0 497.0 488.0 502.0	Fe 7. 14. 28. 2. 29. 1. 5. 5.	Mn 1. 1. 1. 1. 90. 410. 700. 570.	DO 9.4 9.4 10.0 6.6 3.6 .2 .1 .2
Monito	or Date:	1981/0	1/21						
Z 1.0 16.0 31.0	TP 79.0 78.0 88.0	PP 7.0 5.0 10.0	DP 72.0 73.0 78.0	SRP 70.0 70.0 74.0	SiO ₂ 2.5 3.2 3.2	PC 213.0 183.0 230.0	Fe	Min	D0 12.2 12.1 9.4
Monito	or Date:	1981/0	3/11		•			·	
Z 1.0 4.0 7.0 9.0 14.0 21.0 27.0 28.0 28.5	TP 75.0 86.0 79.0 75.0 79.0 80.0 76.0 76.0 79.0	PP 9.0 18.0 11.0 9.0 13.0 13.0 10.0 10.0 12.0	DP 66.0 68.0 66.0 66.0 67.0 66.0 66.0 67.0	SRP 63.0 63.0 64.0 64.0 64.0 64.0 65.0 65.0	SiO ₂ 2.3 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.3 2.3	PC 338.0 373.0 345.0 318.0 361.0 347.0 356.0 356.0 410.0	Fe	Μ'n	D0 13.1 12.6 13.1 12.5 12.4 12.5 12.5 12.5 12.5

- 68 -

Monitor Date: 1979/09/26 Z, °C(F) C25 Turb pH(F) pH(L)°C(L) T Alk P Alk TIC(F) 2.0 19.1 312.0 8:6 27.2 1.8 . 8.8 18.9 137. 5.5 5.0 19.1 312.0 1.5 8.8 8.6 19.1 137. 6.0 27.0 10.0 17.6 313.0 1.6 8.8 8.3 18.8 137. 0.0 28.5 15.0 7.8 323.0 .8 8.0 8.0 18.8 142. 0.0 31.1 20.0 6.9 328.0 7.7 7.9 18.9 142. 31.7 .8 0.0 29.0 5.6 332.0 7.4 3.9 7.6 19.6 144. 0.0 33.7 31.0 5.5 331.0 4.2 7.2 7.5 19.6 146. 0.0 34.4 Monitor Date: 1980/04/10 Z. °C(F) Ċ25 Turb pH(F)pH(L) -°C(L) T Alk P Alk TIC(F) 1.0 4.8 .7 .7 327.0 8.1 20.6 8.3 143. 0.0 30.8 4.0 4.5 330.0 8.3 20.8 144. 0.0 31.2 4.5 329.0 .6 8.0 8.1 8.3 20.7 143. 0.0 29.5 12.0 4.5 329.0 .7 8.3 20.7 144. 0.0 29.3 15.0 4.5 329.0 . .7 .8.1 8.3 20.7 144. 0.0 30.1 18.0 4.5 329.0 .6 8.3 20.7 144. 0.0 30.2 4.5 21.0 •.5 328.0 8.1 8.2 20.9 143. 0.0 30.4 24.0 4.5 329.0 .6 8.2 21.1 145. 0.0 30.3 27.0 4.5 329.0 .7 8.0 8.2 21.0 143. 29.5 0.0 4.4 329.0 30.0 .6 8.2 21.0 144. 0.0 30.5 31.0 329.0 8.0 4.4 .7 8.2 21.0 144. 31.2 0.0 31.5 4.3 329.0 .8 8.2 21.0 144. 0.0 29.7 Monitor Date: 1980/05/29 Ζ °C(F) C25 Turb pH(F)°C(L) T Alk P Alk pH(L) TIC(F) .5 14.5 323.0 .5 8.6 8.7 19.8 146. 5.6 33.5 .6 2.0 14.5 . 321.0 19.7 8.7 8.7 146. 4.6 33.1 .5.0 14.1 324.0 .6 8.7 8.6 19.6 146. 4.7 33.0 8.6 8.0 12.5 321.0 .6 8.7 19.6 146. 4.8 31.4 11.0 10.0 326.0 .7 8.5 8.5 19.8 1.9 146. 31.4 12.0 9.0 326.0 .5 8.4 1.2 8.4 20.0 148. 32.8 15.0 7.0 321.0 8.1 .6 8.3 20.4 146: 35.1 0.0 18.0 6.0 319.0 8.1 .5 8.2 19.8 146. 0.0 33.1 20.0 5.7 329.0 .5 8.0 8.2 19.6 145. 0.0 33.5 24.0 5.0 313.0 .7 7.9 19.5 8.0 146. 0.0 36.0 27.0 328.0 5.0 7.7 8.1 .6 19.6 146. 0.0 35.8 27.5 5.0 324.0 .8 7.6 8.2 19.7 145. 0.0 36.1 28.5 5.0 327.0 .6 7.9 7.9 19.9 146. 0.0 36.6 Monitor Date: 1980/07/23 Z °C(F) C25 Turb pH(F) pH(L)°C(L) T Alk P Alk TIC(F) 298.0 .5 23.0 1.0 9.0 8.4 12.8 125. 1.4 34.7 2.0 22.0 291.0 .9 9.1 8.4 13.9 135. .7 32.3 5.0 20.0 328.0 •8 9.0 8.3 13.1 142. 32.8 0.0 8.0 19.1 310.0 9.0 .5 8.4 13.4 142. 1.1 33.7 8.4 10.0 .6 17:0 344.0 8.7 14.3 143. .6 34.2 15.0 8.5 329.0 .4 8.3 8.2 13.8 147. 0.0 37.0 20.0 5.6 342.0 .7 7.9 8.2 150. 14.6 0.0 39.0 .25.0 5.1 332.0 :7 7.7 8.3 15.2 145. 0.0 41.0 30.0 5.0 339.0 1.5 7.7. 8.2 15.6 149. 0.0 41.6 31.0 1.0 5.0 322.0 8.2 7.9 16.6 146. 0.0 41.6

1.0

7.7

8.0

16.6

148.

0.0

41.3

31.5

5.0

321.0

10112001	Duto.	1,00,							
Z 1.0 5.0 10.0 15.0 25.0 29.0 30.0	<pre> •C(F) 18.1 18.1 18.0 9.0 5.8 5.5 5.5 5.5 </pre>	C25 296.0 304.0 305.0 329.0 343.0 337.0 335.0	Turb .7 .8 .6 .4 .8 1.0 1.6	pH(F) 9.0 8.9 8.9 8.4 8.5 8.0 7.8	pH(L) 8.7 8.6 8.0 7.7 7.9 7.6	°C(L)	T Alk P 137. 137. 137. 149. 153. 152. 154.	Alk 5.0 5.9 4.6 0.0 0.0 0.0 0.0	TIC(F) 29.9 28.1 25.4 30.5 32.3 32.7 32.1
Monitor	Date:	1980/	10/16						
Z 1.0 5.0 13.0 16.0 20.0 25.0 30.0 31.0 31.5	<pre> •C(F) 14.3 14.3 14.3 9.5 7.0 5.8 5.5 </pre>	C25 314.0 316.0 315.0 329.0 345.0 345.0 347.0 349.0 348.0 348.0	Turb .4 .4 .3 .3 .9 3.0 2.5	pH(F) 8.7 8.7 8.7 8.3 8.0 8.1 7.6 7.7 7.6	pH(L)	°C(L)	T Alk P 137. 139. 138. 147. 151. 153. 155. 156. 155.	Alk 6.2 5.8 6.4 0.0 0.0 0.0 0.0 0.0 0.0	TIC(F) 26.1 27.0 27.1 30.4 32.7 35.1 36.1 36.6 36.1
Monitor	Date:	1981/	01/21						
Z 1.0 16.0 31.0	℃(F) 2.4 2.9 3.4	C25 325.0 319.0 328.0	Turb .2 .3	pH(F)	pH(L)	.ºC(L)	T Alk P	Alk	TIC(F)
Monitor	Date:	1981/	03/11						
Z 1.0 4.0 7.0 9.0 14.0 21.0 27.0 28.0 28.5	◦C(F) 3.2 3.1 3.1 3.1 3.2 3.1 3.1 3.1 3.1 3.1	C25 334.0 333.0 334.0 335.0 333.0 333.0 332.0 332.0 333.0 339.0	Turb .5 .5 .4 .5 .4 .4 .4 .4	рН(Ғ)	pH(L) 8.1 8.0 8.0 8.1 8.0 8.0 8.0 8.0 8.1 8.0	<pre>°C(L) 19.3 19.1 19.4 19.2 19.3 19.1 19.3 19.1 19.3 19.2 19.6</pre>	T Alk P 144. 143. 144. 142. 145. 145. 143. 144. 142.	Alk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TIC(F)

1980/09/04 Monitor Date:

Monitor	Date:	1979/09/3	26		f		•		
Z 2.0 5.0 10.0 15.0 20.0 29.0 31.0	Ca 34.0 34.0 32.8 34.1 33.2 34.6	Ca D	Mg 13.4 13.6 15.3 15.0 15.6 14.4	Mg D	Na "	κ.	S04 25.0 24.0 26.0 25.0 25.0 25.0	CL	F
Monitor	Date:	1980/04/	10			•			
Z 1.0 4.0 8.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 31.0 31.5	Ca 30.7 29.8 31.4 30.7 31.4 30.6 30.6 30.6 30.0 30.5 30.8 31.2 30.9	Ca D 31. 30 30. 31. 31. 31. 30. 31. 30. 30. 30. 30.	Mg 15.4 15.9 15.0 15.4 15.2 15.4 15.4 15.6 15.5 15.3 15.1 15.3	Mg D 15. 17. 16. 15. 15. 16. 16. 15. 15. 15. 15.	Na 16.4 16.5 16.4 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	K 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	S04 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	CL 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.6 3.5 3.6	F 300. 290. 290. 290. 290. 290. 290. 290. 2
Monitor	Date:	1980/05/	29				• •	· ·	
Z .5 2.0 5.0 8.0 10.0 12.0 15.0 18.0 20.0 24.0 27.0 27.5 28.5	Ca 32.6 33.1 31.9 36.6 30.7 32.6 31.1 31.5 30.7 31.9 31.5 32.7 31.9	Ca D 33. 31. 32. 32. 32. 32. 32. 32. 32. 32. 32. 32	Mg 15.2 13.2 15.1 11.8 15.9 15.0 15.4 15.4 15.4 15.4 15.9 15.1 15.6	Mg D 16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	Na 15.9 16.0 16.2 16.2 16.1 16.0 16.0 15.9 16.0 15.8 15.8 15.8	K 3.4 3.5 3.5 5.5 3.5 5.5 3.6 6.6 3.6	S04 26.0 26.0 25.0 25.5 25.5 25.5 25.5 25.5 25.5 25	CL 3.4 3.4 3.4 3.5 3.4 3.3 3.3 3.3 3.5 3.5 3.5 3.5	F 280. 290. 290. 285. 285. 280. 280. 280. 295. 280. 290. 285. 290.
Monitor	Date:	1980/07/:	23			• •		·	
Z .5 2.0 5.0 8.0 10.0 15.0 20.0 25.0 30.0	Ca 25.6 25.3 27.6 29.4 30.7 30.5 30.2 30.8 32.1	Ca D 25. 28. 30. 30. 29.	Mg 16.5 16.7 17.0 16.4 15.9 15.5 16.7 15.6 16.0	Mg D 18. 18. 18. 18. 18.	Na	Κ	SO ₄ 24.5 25.0 25.0 25.0 25.0 25.0 24.5 25.0 24.5	CL.	F
31.0 31.5	30.6 30.5	28.	15.9 16.5	18.	• • •		24.5 24.5		

Monitor	Date:	1980/09	/04						
Z 1.0 5.0 10.0 15.0 25.0	Са	Ca D 25.	Mg	Mg D 18.	Na	ĸ	S04 27.5 24.5 24.0 23.0 25.5	CL 3.7 3.6 3.6 3.6 3.6	F
30.0		<i>J</i> 0.		10.			23.5	3.6	
Monitor	Date:	1980/10	/16						
Z 1.0 5.0 13.0 16.0 20.0 25.0 30.0 31.0 31.5	Ca	Ca D 25. 25. 26. 29. 31. 33. 33. 33. 32.	Mg	Mg D 16. 16. 16. 16. 16. 16. 16. 16.	Na 16.6 16.5 16.4 16.3 16.3 16.3 16.3	X 3.7 3.6 3.6 3.6 3.7 3.8 3.7 3.7	S04 27.0 28.0 26.5 27.5 25.5 25.0 25.0 26.5 24.5	CL 3.6 3.6 3.5 3.5 3.6 3.6 3.7 3.6	F
Monitor Z	Date: Ca	1981/01 Ca D	/21 Mg	Mg D	Na	K	SO4	CL	F
1.0 16.0 31.0							.:	3.7 3.8 3.8	
Monitor	Date:	1981/03	/11						
Z 1.0 4.0 7.0 9.0 14.0 21.0 27.0 28.0 28.5	Ca 30.7 34.6 31.8 33.5 32.5 35.2 35.2 35.1 34.7 34.7	Ca D	Mg 15.4 13.0 14.7 13.2 14.4 12.7 12.7 13.0 13.0	Mg D	Na 16.2 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3	K 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	S04 24.0 25.0 24.5 24.0 24.5 24.5 24.5 24.5 24.5 24.0	CL 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	F 280. 300. 270. 300. 310. 310. 310. 320. 320.

•

- 72 -

Appendix 3

Wood Lake Chemical Data from Bottom Water Survey, September, 1980

						*			
Day/Time	Stn #	Z (m)	TDN (µg/l)	N+N (µg/l)	ΝΟ ₃ (μg/l)	NO ₂ (µg/1)	NH4 (µg/1)	DIN (µg/l)	DON (µg/l)
05/1120	1	9	355	5	4	1	1	6	349
05/1110	2	13	360	34	33	1	4	38	322
05/1045	3	13.5	370	24	23	1	3	27	343
05/1055	4	17	500	177	176	1	5	182	318
05/1105	5	16	565	160	159	1	61	221	344
05/1035	6	17.5	565	195	194	1	37	232	333
05/1030	7	24.5	750	310	309	1	85	395	355
05/1020	8	18.5	625	290	289	1	14	304	321
04	9.	16	450	87	86	1	35	122	328
04	10	27	770	360	358	2	63	423	347
04	11	18	490	142	141	- 1	13	155	335
04	12	17	435	87	85	2	· 6	93	342
05/1005	13	24	740	370	369	1	39	409	331
05/0945	14	18	590	240	239	1	35	275	315
05/0935	15	28.5	750	230	229	1	147	377	373
05/0954	16	18	495	152	151	1	22	174	321
05/0920	17	25	785	470	468	2	1	471	314
05/0905	18	20	580	230	229	1	11	241	339
05/0848	19	15	380	28	27	1	22	50	330
05/0840	20	15	400	52	51	1	19	71	329
05/0830	21	15.5	375	22	20	2	2	24	351
05/0836	22	10	360	3	1	2	2	5	355

Appendix 3 (cont)

Wood Lake Chemical Data from Bottom Water Survey, September, 1980.

Day/Time	Stn ∦	Z (m)	C25 (µs/cm)	Turb (UTU)	ΤΡ (µg/1)	PP (µg/l)	DP (µg/1)	SRP (µg/l)	DO (mg/1.)
05/1120	1	9	308	.52	15	9	6	4	9.3
05/1110	2	13	324	.54	23	10	13	8	6.7
05/1045	3	13.5	329	.28	24	11	13	17	6.9
05/1055	4	17	326	.26	97	8	89	80	5.4
05/1105	5	16	331	.48	122	20	102	93	4.6
05/1035	6	17.5	330	.41	150	14	136	127	4.0
05/1030	7	24.5	337	.67	141	5	136	201	0.4
05/1020	8	18.5	333	.23	154	11	143	137	4.0
04	9	16	304	.64	70	10	60	58	6.5
04	1Ó	27	342	.83	239	7	232	212	0.7
04	11	18	335	.24	206	5	201	76	6.5
04	12	17	317	.47	42	7	35	33	7.5
05/1005	13	24	337	.31	105	7	98	183	1.1
05/0945	14	18	328	.39	138	7	131	131	4.6
05/0935	15	28.5	343	1.30	163	5	158	246	0.3
05/0954	16	18	328	.38	91	0	91	83	6.3
05/0920	17	25	332	.23	191	2	189	181	1.3
05/0905	18	20	330	.53	120	7	113	108	5.0
05/0848	19	15	332	.57	31	10	21	19	6.8
05/0840	20	15	331	.47	40	11	29	27	6.7
05/0830	21	15.5	325	.62	18	10	8	12	7.8
05/0836	22	10	307	.68	16	9	7	6	9.9

- 74 -

Appendix 4

Wood Lake Phytoplankton species list, cell counts and volumes

from Station A

Appendix 4 (cont): Phytoplankton species list and species volumes for Wood Lake, 1980.

	<u>VOLUME</u> (µm ³ per cell;
CYANOPHY TA	except where noted)
Anabaena flos aquae Anacystis Aphanizomenon Cyanobacteria Dactylococcopsis Lyngbya Unknown species (filamentous) size 1 Unknown species (filamentous) size 2 Unknown species (filamentous) size 3 Unknown species (Rivulariaceae)	65.5 210/colony 15910/mm 0.52 60 13000/mm 12570/mm 44250/mm 73650/mm 1697
CHLOROPHYTA	
Actinastrum Closterium size 1 Closterium size 2 Echinosphaerella Eudorina Oocystis size 1 Oocystis size 2 Oocystis size 3 Sphaerocystis Staurastrum Unknown species (biflagellate) size 1 Unknown species (biflagellate) size 2 Unknown species (biflagellate) size 3 Unknown species (biflagellate) size 3 Unknown species (biflagellate) size 4 Unknown species (4 flagellae) size 1 Unknown species (4 flagellae) size 2 Unknown species size 1 Unknown species size 1	33.8 92.4 960 524 17152/colony 1390 5800 904/colony 450/colony 24000 45 92 603 1002 715 14142 152 2828
DIATOM Achnanthes Asterionella size 1 Asterionella size 2 Cocconeis Cyclotella size 1 Cyclotella size 2 Cyclotella size 2 Cyclotella size 3 Cymbella Fragilaria species Fragilaria crotonensis Melosira granulata Navicula Synedra size 1 Synedra size 2 Tabellaria fenestrata	32.8 876 1860 240 2613 18857 41428 500 714 343 1060 913 127.5 866 115 2571

Appendix 4 (cont): Phytoplankton Species List and species values for Wood Lake, 1980.

CHRYSOPHYCEAE	<u>VOLUME</u> (um ³ per cell; except where noted)
Chrysococcus size l Chrysococcus size 2 Dinobryon Mallomonas coronata Mallomonas species size 1 Mallomonas species size 2 Mallomonas species size 3 Mallomonas species size 4 Syncrypta Synura Unknown species	65.5 221 65.5 523 90.6 418 1150 5800 1072/colony 920 65.5
CRYPTOPHYTA	
Chroomonas acuta	10.2
PYRRHOPHYTA	
Ceratium hirundinella Cystodinium	8100 7241

WOOD LAKE ALGAL VOLUMES 29/5/80 0.5M

	NAME	· · · · · ·	GPOUP	:	CELLS /ml	VOLUME cu.micr/ml
ASTER CYMBE FRAGI SYNED SYNED CYCLO CYCLO ANABA APHAN CYANO	IONELLA LLA SPP LARIA RA TELLA SP. TELLA SP. TELLA SP. ENA flos IZOMENON BACTERIA	aquae	DIATOM DIATOM DIATOM DIATOM DIATOM DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE	SIZE# 1 SIZE# 1 SIZE# 2 SIZE# 2 SIZE# 3	3.5 .1 2.7 .2 .1 .1 .1 .51 4800	3066 50 1927.8 25.5 346.4 1885.7 4142.8 52.4 8114.1 2496
EUDOR OOCYS OOCYS OOCYS SPHAE	INA TIS TIS TIS SP. ROCYSTIS		CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE	SIZE# 1 SIZE# 2 SIZE# 3	7 25 3 14 38 1-04	120064 34750 17400 12656 17100 24960
UNKNO UNKNO UNKNO CHROO	WN SP. Bi WN SP. Bi WN SP. Bi WN SP. Bi WN SP. Bi MONAS acu	flasellate flasellate flasellate flasellate ita	CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CRYPTOPHYTE	SIZE# 1 SIZE# 2 SIZE# 3 SIZE# 4	1 2 14 5 10	45 18.4 8442 5010 102
	'IUM hirun)WN spher)WN spher)WN spher)WN cilia	ndinella rical cells rical cells rical cells rical cells	UNIDENTIFIC UNIDENTIFIC UNIDENTIFIC UNIDENTIFIC UNIDENTIFIC	D SIZE# 2 D SIZE# 3 D SIZE# 5 D SIZE# 5 D SIZE# 1	10 1.2 .2 .1 .6	335 135.6 104.76 90.5 160.8
	· ·	:	TOTA	_S	4939	263643
	RANK SPE	ECIES BY VOLU	JME cu.mi	ст/м1 .	%	
1234567891	EUDORINA DOCYSTIS STAURASTE SPHAEROCY UNKNOWN APHANIZON CYCLOTELL ASTERION CYANOBAC FRAGILA	RUM YSTIS SP. Biflasel MENON LA SP. ELLA TERIA RIA	120 648 249 171 135 811 602 306 249 192	064 06 50 15.4 4.1 8.5 6 7.8	45.54 24.58 9.46 6.48 5.12 3.07 2.28 1.16 .94 .73	24
	RANK SPI	ECIES BY CEL	LS cell	s/ml	Χ.	
1234 5678910	CYANDBAC DOCYSTIS SPHAEROC UNKNOWN UNKNOWN CHROOMON EUDORINA ASTERION FRAGILAR STAURAS	TERIA YSTIS sp. Biflasel spherical c AS acuta ELLA IA TRUM	480 42 38 ells 11. 7 3.5 2.7 1.0	0 2 4	97.19 .85 .76 .4 .23 .2 .14 .07 .05 .02	

. RANK GROUPS BY VOLUME

123456

cu.micr/ml

%

CHLOROPHYTE	240445.4	91.2
DIATOM	11444.2	4.34
CYANDPHYTE	10662.5	4.04
UNIDENTIFIED	826.66	.31
PYRRHOPHYTE	162	.06
CRYPTOPHYTE	102	.03

!	NAME	A			G	20UP				CELLS /ml	cu	VOLUME .micr/ml
ASTER ASTER FRAGIL SYNED	IÓNELL IONELL LARIA RA	A A	· .			ATOM ATOM ATOM ATOM		SIZE# SIZE#	12	2.6 1.1		2277.6 186 785.4
SYNED	RALARIA	fenes	trata	•		TOM		SIZE#	Ż	14		1212.4
CYCLO ANABAE APHAN CYANOE	TELLA ENA F1 IZOMEN BACTER	SP. OS A9 ON IA	uae			ATOM ANOPH ANOPH ANOPH		SIZE#	2	.1 1.2 .38 3400		1885.7 78.6 6045.8 1768
EUDOR OOCYS OOCYS OOCYS SPHAE	INA TIS TIS TIS SP ROCYST	is				OROF OROF OROF OROF	9HYTE 9HYTE 9HYTE 9HYTE 9HYTE	SIZE# SIZE# SIZE#	1 2 3	11 28 2.2 18 95		188672 38920 12760 16272 43200
STAUR UNKNOI UNKNOI UNKNOI UNKNOI	ASTRUM WN SP. WN SP. WN SP. WN SP.	Bifl Bifl Bifl Bifl	asell asell asell asell	ate ate ate ate		OROF OROF OROF OROF OROF	PHYTE PHYTE PHYTE PHYTE PHYTE	SIZE# SIZE# SIZE# SIZE#	1234	1.4 1.4 .4 17 3		33600 63 36.8 10251 3006
CHRYSI CHROOI CERAT	OCOCCU MONAS IUM hi	S acuta rundi	nella		CHI CR1 PYI	RYSÖF PTOF RRHOF	PHYTE PHYTE PHYTE	SIZE#	1	20 10 .02		1310 102 162
UNKNOI UNKNOI UNKNOI UNKNOI	WN SP WN SP WN SP WN Ci	heric heric heric liate	al ce al ce al ce	115 115 115		IDENT IDENT IDENT IDENT	IFIED IFIED IFIED IFIED	SIZE# SIZE# SIZE# SIZE#	2 3 4 1	40 2.8 .4 .4		1340 316.4 107.2 107.2
	• • • •					7	OTALS			3659	•	364760
	RANK	SPECI	ES BY	VOLUM	IE	CU	I.MİCT	/m1		%		
123456789	EUDORI DOCYST SPHAER STAURA UNKNOW APHANI ASTERI CYCLOT CYANOB	NA IS DCYST STRUM STRUM ZOMELL CNELLA ACTER	IS Bifl ON A SP. IA	asella	ite		18867 67952 43200 33600 13356 6045 2463 1885 1768	2 •8 8 6 7		51.72 18.62 11.84 9.21 3.66 1.65 .51 .51		
10	טאאאני אאסס	WW 5	Freri				1/63.1	ь		.48		
		375UI	E5 BT	CELLS)	C	elis/(M1 .		7.		
	LYANDB SPHAER DOCYST UNKNOW UNKNOW CHRYSO EUDORI CHROOMI	ACTER OCYST IS N SP COCCÚ NA ONAS ONFLI	IA IS beric Bifl S acuta	al cel asella	ls ite		3400 96 48.2 21.8 20 11 10 2.7			92.91 2.62 1.31 1.18 .59 .54 .3 .27		
ĭo '	SYNED	RA					1.7			:ŏ4		

- 80 -

CHLOROPHYTE CYANOPHYTE DIATOM UNIDENTIFIED CHRYSOPHYTE PYRRHOPHYTE CRYPTOPHYTE 346780.8 7892.4 6642.45 1870.8 1310 162 102 95.07 2.16 1.82 .51 .35 .04 .02

RANK GROUPS BY VOLUME

% cu.micr/ml

12345 67

81 -÷

WOOD LAKE ALGAL VOLUMES 277/80 .5M

	NAME	· · · ·	<u>G60176</u>		CELLS /ml	VOLUME cu.micr/ml
ASTE ASTE SYNE ANAB APHA ANAC	RIONELLA RIONELLA DRA AENA flo NIZOMENC YSTIS)))N	DIATOM DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE	SIZE# 1 SIZE# 2 SIZE# 1	.2 .7 .1 48.2 .1 13	175.2 1302 12.75 3157.1 1591 2730
CYAN DOCY	OBACTERI STIS STIS SP.	IA v i i	CYANOPHYTE CHLOROPHYTE CHLOROPHYTE	SIZE# 1 SIZE# 3	8000 •2	4160 278 180-8
SPHA	EROCYSTI OWN sp.	IS Biflasellate	CHLOROPHYTE CHLOROPHYTE	SIZE# 3	.4	180 241.2
CERA UNKN UNKN UNKN UNKN	TIUM hir OWN sph OWN sph OWN sph OWN sph	rundinella nerical cells nerical cells nerical cells nerical cells	PYRRHOPHYTE UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 2 SIZE# 3 SIZE# 4 SIZE# 5	02 20 1 2	162 670 113 53.6 419.04
UNKN UNKN	OWN cil OWN cil	liate	UNIDENTIFIED	SIZE# 1 SIZE# 2	1	268 125
			TOTALS		8087	15940
	RANK S	SPECIES BY VOLUM	E cu.micr.	/ml	%	
1234 5678910	CYANOBA ANABASA ANACYST APHANIZ ASTERIC UNKNOWN UNKNOWN SPHAES	ACTERIA VA flos aquae TIS ZOMENON DNELLA N spherical cel IS N ciliate N sp. Biflasella ROCYSTIS	4160 3157. 2730 1591 1477. 1s 1255. 458.8 393 ite 241.2 180	1 2 54	26.09 19.8 17.12 9.98 9.26 7.87 2.87 2.46 1.51 1.12	`
	RANK S	SPECIES BY CELLS	cells/	nl	%	
12345578910	CYANOBA ANABAEN UNKNOWN ANACYST UNKNOWN ASTERIC UNKNOWN SPHAEPC ODCYST	ACTERIA NA flos aquae N spherical cel TIS N ciliate DNELLA N sp. N sp. Biflasella DCYSTIS TIS	8000 48.2 13 1.1 .9 .8 14 .4 .4	· .	98.91 .59 .27 .16 .01 .01 0 0 0	
	RANK C	GROUPS BY VOLUME	cu.micr	/ m 1	%	
1 23 4	רא נע נע	YANOPHYTE NIDENTIFIED IATOM HLOROPHYTE	11638 1648. 1489. 1001.	.1 64 95 6	73.01 10.34 9.34 6.28	

PYRRHOPHYTE

.

162

1.01

NOOD LAKE ALGAL VOLUMES 2/7/20 510 M

coniio

NAME	4 <u>1</u> 049		CELLS /ml	VOLUME cu.micr/ml
ASTERIONELLA ASTERIONELLA ANABAENA flos aquae APHANIZOMENON ANACYSTIS DACTYLOCOCCOPSIS CYANOBACTERIA EUDORINA DOCYSTIS SPHAEROCYSTIS UNKNOWN sp. Biflasellate CHRYSOCOCCUS CHROOMONAS acuta UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN ciliate	DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 1 SIZE# 2 SIZE# 1 SIZE# 1 SIZE# 1 SIZE# 2 SIZE# 3 SIZE# 4 SIZE# 5 SIZE# 5 SIZE# 1 SIZE# 1	.4 183 .14 16 1.2 11200 .2 .1 .14 20 20 40 2.4 2.4 2.4 .2 2.1	350.4 744 11986.5 2227.4 32360 72 5824 3430.4 139 45 24.12 1310 204 1340 271.2 536 209.52 181 53.6
- ·				

11487

32433

TOTALS

	RANK SPECIES BY VOLUME	cu.micr/ml	7.
12345678910	ANABAENA flos aquae CYANOBACTERIA EUDORINA ANACYSTIS UNKNOWN spherical cells APHANIZOMENON CHRYSOCOCCUS ASTERIONELLA CHROOMONAS acuta UNKNOWN	11986.5 5824 3430.4 3360 2356.72 2227.4 1310 1094.4 204 181	36.95 17.95 10.57 10.35 7.26 4.03 3.37 .62 .55
	RANK SPECIES BY CELLS	cells/ml	7
12345678910	CYANOBACTERIA ANABAENA flos aquae UNKNOWN spherical cells CHROOMONAS acuta CHRYSOCOCCUS ANACYSTIS DACTYLOCOCCOPSIS ASTERIONELLA UNKNOWN ciliate UNKNOWN	11200 183 44.8 20 20 16 1.2 .8 .3 .2	97.5 1.59 .39 .17 .17 .13 .01 0 0
•	RANK GROUPS BY VOLUME	cu.micr/ml	%
123	CYANOPHYTE CHLOROPHYTE UNIDENTIFIED	23469.9 3638.52 2716.32	72.36 11.21 9.37

- 84 -

WOOD LAKE ALGAL VOLUMES 18/7/80 0.5M

	NAME	៥ចប់ក្មម	•	CELLS /ml	VOLUME cu.micr/ml
ASTEI ANABA ANABA UNKNO CYANO SPHAO CYANO	RIQNELLA DRA AENA flos aquae NIZOMENON YSTIS DWN sp. Rivulariaceae DBACTERIA EROCYSTIS RASTRUM DMONAS acuta TIUM hirundinella IDIOPSIS DWN spherical cells DWN ciliate	DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 1 SIZE# 1 SIZE# 2 SIZE# 1	2.2 1.4 124000 .22 23 .08 8500 .1 .04 40 .04 1.2 80 .4	1927.2 178.5 8122000 3500.2 4830 125.76 4420 45 960 408 324 27 2680 107.2
		TOTALS		132649	8141543
	RANK SPECIES BY VOLUME	E cu.micr/	ml	X	
12345678910	ANABAENA flos aquae ANACYSTIS CYANOBACTERIA APHANIZOMENON UNKNOWN spherical cel: ASTERIONELLA STAURASTRUM CHROCMONAS acuta CERATIUM hirundinella SYNEDRA	812200 4830 4420 3500.2 15 2680 1927.2 960 408 324 178.5		99.75 .05 .04 .03 .02 .01 0 0	·
	RANK SPECIES BY CELLS	cells/m	1	x	
12245678910	ANABAENA flos aquae CYANOBACTERIA UNKNOWN spherical cel: CHROOMONAS acuta ANACYSTIS ASTERIONELLA SYNEDRA RAPHIDIOPSIS UNKNOWN ciliate APMANIZOMENON	124000 8500 15 80 23 2.2 1.4 1.2 .4 .22		93.48 6.4 .06 .03 .01 0 0 0 0	
	RANK GROUPS BY VOLUME	cu.micr/	'm 1	%	
123456	CYANOPHYTE UNIDENTIFIED DIATOM CHLOROPHYTE CRYPTOPHYTE PYRRHOPHYTE	813488 2814.2 2105.7 1005 408 324	5.96	99.91 .03 .02 .01 0	

WOOD ALGAL VOLUMES 18/7/80 2M

NAME	GDOND	CELLS /ml	5 VOLUME cu.micr/ml
ASTERIONELLA FRAGILARIA crotonensis ANABAENA flos aquae APHANIZOMENON ANACYSTIS DACTYLOCOCCOPSIS UNKNOWN sp. Rivulariacea CYANOBACTERIA STAURASTRUM UNKNOWN sp. Biflasellate CHROOMONAS acuta UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN ciliate UNKNOWN ciliate	DIATOM SI DIATOM SI DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE UNIDENTIFIED SI UNIDENTIFIED SI UNIDENTIFIED SI	ZE# 1 2.2 .6 .714 2.0 3 10. .2 100 .2 100 .2 .2 .00 .2 .2 .00 .2 .2 .2 .00 .2 .2 .2 .00 .00	1927.2 205.8 4676700 33092.6 630 2 612 339'.4 00 5200 4800 4800 4800 48.24 714 1340 1130 53.6 150
	TOTALS	815	39 4726943
RANK SPECIES BY VO	LUME cu.micr/ml	%	
1 ANABAENA flos aquae 2 APHANIZOMENON 3 CYANOBACTERIA 4 STAURASTRUM 5 UNKNOWN spherical 6 ASTERIONELLA 7 CHROOMONAS acuta 8 ANACYSTIS 9 DACTYLOCOCCOPSIS 10 UNKNOWN sp. Rivula	4676700 33092.8 5200 4800 2470 1927.2 714 630 612 riaceae 339.4	98.93 .7 .11 .1 .05 .04 .01 .01 .01 0	
RANK SPECIES BY CE	LLS cells/ml	%	
1 ANABAENA flos aquae 2 CYANOBACTERIA 3 CHROOMONAS acuta 4 UNKNOWN spherical 5 DACTYLOCOCCOPSIS 6 ANACYSTIS 7 ASTERIONELLA 8 APHANIZOMENON 9 FRAGILARIA crotonen 10 UNKNOWN ciliate	71400 10000 70 50 10.2 3 2.2 2.08 515 .32	87.56 12.25 .08 .06 .01 0 0 0 0	
PANK GROUPS BY VOL	JME cu.micr/ml	%	
1 CYANOPHYTE 2 CHLOROPHYTE 3 UNIDENTIFIED 4 DIATOM 5 CRYPTOPHYTE	4716574. 4848.24 2673.6 2132 714	2 99.78 .1 .05 .04 .01	

WOOD LAKE ALGAL VOLUMES 18/7/80 5M

	NAME	<u>GPQUP</u>		CELLS /ml	VOLUME cu.micr/ml
ASTER FRAGI ANABA APHAN DACTY	IONELLA LARIA LARIA crotonensis ENA flos aquae DIZOMENON LOCOCOPSIS	DIATOM DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE	SIZE# 1	1.2 3.7 13000 22 2.4	1051.2 2641.8 34.3 851500 3500.2 144
UNKNO CYANO STAUR	NAN SP. Filamentous BACTERIA ASTRUM	CYANOPHYTE CYANOPHYTE CHLOROPHYTE CHLOROPHYTE	SIZE# 1	.21 40000 .24	2639.7 20800 5760
UNKNO	WWN spherical cells WWN spherical cells WWN	UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 2 SIZE# 4	120 .8 .04	4020 214.4 36.2
		TOTALS		53272	898521
	RANK SPECIES BY VOLUM	E cu.micr/	'm1	7.	
12345678910	ANABAENA flos aquae CYANOBACTERIA STAURASTRUM UNKNOWN sp. Rivulariac UNKNOWN spherical cel APHANIZOMENON FRAGILARIA UNKNOWN sp. filamentou CHROOMONAS acuta ASTERIONELLA	851500 20800 5760 1s 4234.4 3500.2 2641.8 s 2639.7 1428 1051.2) 4 2 3 7 2	94.76 2.31 .52 .52 .47 .38 .29 .29 .15 .11	
	RANK SPECIES BY CELLS	cells/m	n 1	. %	
1234567891	CYANOBACTERIA ANABAENA flos aquae CHROOMONAS acuta UNKNOWN spherical cel FRAGILARIA UNKNOWN sp. Rivulariac DACTYLOCOCCOPSIS ASTERIONELLA STAURASTRUM APHANIZOMENON	40000 13000 140 15 120.8 3.7 eae 2.8 2.4 1.2 .24 .22 .22		75.08 24.4 .26 .22 0 0 0 0 0 0 0	•
	RANK GROUPS BY VOLUME	cu.micr/	'm1	%	
12345	CYANDPHYTE CHLOROPHYTE UNIDENTIFIED DIATOM CRYPTOPHYTE	883333 5760 4270.6 3727.3 1428	5.5 3	98.3 .64 .47 .41 .15	

-

NOOD LAKE ALGAL VOLUMES 18/7/80 10M

. •	NAME		៥មហិភូមិ	÷	CELLS /ml	VOLUME cu.micr/ml
ASTER ASTARA APRACIA DAYACINO DOCKOC UCHRKNO UCHRKNO UNKKNO	RIONELLA DRA Flos VIZOMENON STIS COCOCCOPS DBACTERIA DBACTERIA DWN SP. Bi DWN SPher DWN SPher DWN SPher DWN SPher	aquae IS flasellate ta ical cells ical cells ical cells ical cells ical cells	DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE UNIDENTIFIE UNIDENTIFIE UNIDENTIFIE	SIZE# 1 SIZE# 1 SIZE# 1 SIZE# 2 D SIZE# 2 D SIZE# 3 D SIZE# 4 D SIZE# 5	2.5 .1 525 .05 .8 1.2 23000 .2 .8 180 80 .8 .4 .12	2190 12.75 34387.5 795.5 168 72 11960 278 73.6 1836 2680 90.4 107.2 62.856
			TOTAL	S	23792	54786
· · ··	•					- · · ·
	RANK SPE	CIES BY VOLUME	cu.mic	r/ml	%	
1 2 3 4 5 6 7 8 9 10	ANABAENA CYANOBACT UNKNOWN ASTERIONE CHROOMONA APHANIZOM DOCYSTIS ANACYSTIS UNKNOWN S UNKNOWN	flos aquae ERIA spherical cell LA S acuta ENON P. Biflasellat	3438 1196 2940 1836 795. 278 168 73.6 72.4	7.5 0 .456 5	62.76 21.83 5.36 3.99 3.35 1.45 .5 .3 .13 .13	
	RANK SPE	CIES BY CELLS	cells	/ml	%	· .
1234567890	CYANQBACT ANABAENA CHROQMONA UNKNOWN ASTERIONE DACTYLOCO UNKNOWN 5 ANACYSTIS OUCYSTIS SYNEDRA	ERIA flos aquae S acuta spherical cell LLA CCOPSIS P. Biflasellat	2300 525 180 81.3 2.5 1.2 .8 .9 .2 .1	2	96.67 2.2 .75 .34 .01 0 0 0 0	
	RANK GRO	UPS BY VOLUME	cu.mic	r/m1	1	
1 2 3 4 5	CYAN UNID DIAT CRYP Chlo	OPHYTE ENTIFIED OM Tophyte Rophyte	4738 3012 2202 1836 351.	3 .856 .75 6	86.48 5.49 4.02 3.35 .64	

WOOD LAKE ALGAL VOLUMES 22/7/80 0.5M

	NAME	<u>GBOÑB</u>		CELLS /ml	VOLUME cu.micr/ml
ASTE FRAG SYNEI ANABI	RIONELLA ILARIA crotonensis DRA AENA flos aquae NIZAMENON	DIATOM DIATOM DIATOM CYANDPHYTE CYANDPHYTE	SIZE# 1 SIZE# 1	.2 .1 .4 8900	175.2 34.3 51 582950 8523 1
ANAC UNKNI CYANI ODCYI UNKNI UNKNI UNKNI	YSTIS JWN sp. filamentous JBACTERIA STIS JMONAS acuta JWN spherical cells JWN spherical cells JWN spherical cells	CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE CRYPTOPHYTE UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 2 SIZE# 1 SIZE# 2 SIZE# 3 SIZE# 4	.8 .33 6000 11 240 120 20 2	168 14602.5 3120 15290 2448 4020 2260 535
UNKNI	JWN ciliate	UNIDENTIFIED	SIZE# 1	.8 15296	214.4 632393
	RANK SPECIES BY VOLUM	E cu.micr/	/ml [%	
1234557890 10	ANABAENA flos aquae DOCYSTIS UNKNOWN sp. filamentou UNKNOWN spherical cel APHANIZOMENON CYANOBACTERIA CHROOMONAS acuta UNKNOWN ciliate ASTERIONELLA ANACYSTIS	582950 15290 1 4602 1 s 6816 6523.1 3120 2448 214.4 175.2 168) .5 !	92.18 2.41 2.3 1.07 1.03 .49 .38 .03 .02 .02	
	RANK SPECIES BY CELLS	cells/n	nl	%	
1 204 567 89 10	ANABAENA flos aquae CYANOBACTERIA CHROOMONAS acuta UNKNOWN spherical cel OOCYSTIS UNKNOWN ciliate ANACYSTIS APHANIZOMENON SYNEDRA UNKNOWN sp. filamentor	8900 6000 240 15 142 11 .8 .8 .8 .41 .4 .4 .4 .3		58.18 39.22 1.55 .92 .07 0 0 0 0 0	
	RANK GROUPS BY VOLUME	cu.micr/	/ml	%	•
1 2 3 4 5	CYANOPHYTE CHLOROPHYTE UNTDENTIFIED CRYPTOPHYTE DIATOM	60736: 15290 7030.4 2448 260.5	3.6	95.04 2.41 1.11 .38 .04	

WOOD	LAKE	ALGAL	JULUMES	22/7/20	5M
		ine and			

NAME	9U992	CELLS /ml	VOLUME cu.micr/ml
ASTERIONELLA ASTERIONELLA SYNEDRA ANABAENA flos aquae APHANIZOMENON GYANDAGETERIA	DIATOM SIZE# DIATOM SIZE# DIATOM SIZE# CYANOPHYTE CYANOPHYTE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	87.6 2232 280.5 366800 2386.5
OCCYSTIS UNKNOWN sp. Biflagellate CHROOMONAS acuta	CHLOROPHYTE SIZE# CHLOROPHYTE SIZE# CRUPTOPHYTE SIZE# CRYPTOPHYTE	1 1.2 2 10 210	13520 1668 920 2142
UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN spherical cells	UNIDENTIFIED SIZE# UNIDENTIFIED SIZE# UNIDENTIFIED SIZE# UNIDENTIFIED SIZE#	2 40 3 20 4 5	1340 2260 1340 90.5
UNKNOWN ciliate UNKNOWN ciliate	UNIDENTIFIED SIZE# UNIDENTIFIED SIZE#	1 .4 2 .2	107.2 250
	TOTALS	31891	396072
RANK SPECIES BY VOLUME	cu.micr/ml	%	
1 ANABAENA flos aquae 2 CYANOBACTERIA 3 UNKNOWN spherical cell 4 APHANIZOMENON 5 ASTERIONELLA 6 CHROOMONAS acuta 7 DOCYSTIS 8 UNKNOWN sp. Biflasellat 9 CERATIUM hirundinella 10 UNKNOWN ciliate	366800 13520 \$ 4940 2386.5 2319.6 2142 1668 e 920 648 357.2	92.6 3.41 1.24 .58 .54 .42 .23 .16 .09	
RANK SPECIES BY CELLS	cells/ml	%	
1 CYANOBACTERIA 2 ANABAENA flos aquae 3 CHRODMONAS acuta 4 UNKNOWN spherical cell 5 UNKNOWN sp. Biflagellat 6 SYNEDRA 7 ASTERIONELLA 8 DOCYSTIS 9 UNKNOWN ciliate 10 APHANIZOMENON	26000 5600 210 s 65 e 10 2.2 1.3 1.2 .6 .15	81.52 17.56 .65 .2 .03 0 0 0 0 0 0	

RANK GROUPS BY VOL	UME cu.micr/ml	Z
1 CYANDPHYTE	382706.5	96.62
2 UNIDENTIFIED	5387.7	1.36
3 DIATOM	2600.1	.65
4 CHLORDPHYTE	2588	.65
5 CRYPTOPHYTE	2142	.54

91 -

WOOD LAKE ALGAL VOLUMES E/8/20 .5

NAME

FRAGILARIA ANABAENA flos aquae APHANIZOMENON ANACYSTIS

UNKNOWN SP. ?DINOERYON CHROOMONAS acuta PAPHIDIOPSIS

ciliate

Biflasellate

spherical cells spherical cells spherical cells

DACTYLOCOCCOPSIS CYANDBACTERIA EUDORINA

UNKNOWN SP. I CHRYSOCOCCUS

UNKNOWN UNKNOWN

UNKNOWN UNKNOWN

1 234

567 8

9 10

ĕ

GROUP

DIATOM

CYANOPHYTE

CYANOPHYTE

CYANOPHYTE

CYANOPHYTE

CHLOROPHYTE

CHLOROPHYTE CHRYSOPHYTE

CHRYSOPHYTE SIZE# 1 CHRYSOPHYTE CRYPTOPHYTE UNIDENTIFIED UNIDENTIFIED SIZE# 2 UNIDENTIFIED SIZE# 4 UNIDENTIFIED SIZE# 5 UNIDENTIFIED SIZE# 1

TOTALS

CELLS	VOLUME
/ml	cu.micr/m1
.8 440	571.2

1.53

712000

.12 67 40

140 520 10 20 .2 .24 .2

13248

X

33.1 27.96 10.53 7.16 7.08 6.09 3 2.26 .97 .65

7

SIZE# 2 SIZE# 1

1

24342.3 210

2058.24

9170 5304 225 670 53.6 125.712 53.6

420 6240

6164 2620 9170

RANK SPECIES BY VOLUME	cu.micr/ml
ANABAENA flos aquae APHANIZOMENON UNKNOWN sp. ?DINOBRYON CYANOBACTERIA UNKNOWN sp. Biflasellate CHROOMONAS acuta CHRYSOCOCCUS EUDORINA UNKNOWN spherical cells FRAGILARIA	28820 24342.3 9170 6240 6164 5304 2620 2058.24 849.312 571.2
RANK SPECIES BY CELLS	cells/ml

	CYANOBACTERIA	12000	90.57
	CHROOMONAS acuta	520	3.92
	ANABAENA flos aquae	440	3.32
	UNKNOWN sp. ?DINOBRYON	140	1.05
	UNKNOWN sp. Biflagellate	67	.5
	CHRYSOCOCCUS	40	.3
	UNKNOWN spherical cells	20.44	.15
	RAPHIDIOPSIS	10	.07
	DACTYLOCOCCOPSIS	7	.05
	APHANIZOMENON	1.53	.01
	RANK GROUPS BY VOLUME	cu.micr/ml -	7.
123456	CYANOPHYTE	60032.3	68.96
	CHRYSOPHYTE	11790	13.54
	CHLOROPHYTE	8222.24	9.44
	CRYPTOPHYTE	5304	6.09
	UNIDENTIFIED	1127.912	1.29
	DIATOM	571.2	.65

WOOD LAKE ALGAL VOLUMES 6/8/80 5M

N	AME		GROI	<u>1</u> P		CELLS /ml	VOLUME cu.micr/ml
ACHNANI ANABAEL APHANI DACTYLI UNKNOWI CYANOBI UNKNOWI CHROOMI RAPHID UNKNOWI UNKNOWI UNKNOWI	THES NA flos ZOMENON DCOCCOPS N SP. Ri AIS P. Bi COCCUS N SP. ?D ONAS acu IOPSIS N Spher N Spher N Spher	aquae IS vulariacea flasellate INOBRYON ta ical cells ical cells ical cells	DIAT CYAN CYAN CYAN CYAN CYAN CHLO CHLO CHLO CHLO CHRY CRYP UNID UNID	DM DPHYTE DPHYTE DPHYTE DPHYTE COPHYTE COPHYTE SOPHYTE SOPHYTE ENTIFIED ENTIFIED ENTIFIED ENTIFIED	SIZE# 2 SIZE# 2 SIZE# 1 SIZE# 2 SIZE# 3 SIZE# 3 SIZE# 5	10 83 .19 30 64000 .08 3 20 20 20 870 30 870 30 80 2 .2	327.6 5436.5 3022.9 1800 1697 33280 464 276 1310 1310 1310 8874 675 2680 226 104.76
				TOTALS		65149	61484
	RANK SPE	CIES BY VO	LUME	cu.micr.	/m1	%	•
1234 567 8910	YANOBACT HROOMONA NABAENA PHANIZOM NKNOWN ACTYLOCO NKNOWN S NKNOWN S HRYSOCOC RAPHIDIO	ERIA S acuta flos aquae ENON spherical CCOPSIS P. Rivular P. Rivular P. 7DINOBR CUS PSIS	cells iaceae YON	33280 8874 5436. 3022. 3010. 1800 1697 1310 1310 675	5 9 76	54.12 14.43 8.84 4.91 4.89 2.92 2.76 2.13 2.13 1.09	· · · · · · · · · · · · · · · · · · ·
· · · ·	RANK SPE	CIES BY CE	LLS	cells/	m 1	X	
12345678910 100 12345678910 100	YANOBACT HROOMONA NABAENA NKNOWN APHIDIOP ACTYLOCO NKNOWN HRYSOCOO CHNANTHE UNKNOWN	ERIA S acuta flos aquae spherical SIS CCOPSIS F. 7DINOBR CUS S sp. Biflas	cells YON ellate	64000 870 83 82.2 30 20 20 20 10 3		98.23 1.33 .12 .04 .04 .03 .03 .01 0	
	RANK GRO	UPS BY VOL	UME	cu.micr	/ml	%	• • •
12 34 56	CYAN CRYF UNIE CHRY CHLC DIAT	IOPHYTE PTOPHYTE SOPHYTE SOPHYTE IROPHYTE OM		45236 8874 3685. 2620 740 327.6	.4 76	73.57 14.43 5.99 4.26 1.2 .53	

- 93 -

WOOD LAKE ALGAE VOLUMES 2/9/80 .5M

	NAME		GROUP		CELLS /ml	VOLUME cu.micr/ml
	SYNEDRA SYNEDRA CYCLOTELLA ANABAENA fli APHANIZOMENI ANACYSTIS DACTYLOCOCCI	se. os aquae DN DPSIS	DIATOM DIATOM DIATOM CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE	SIZE# 1 SIZE# 2 SIZE# 2	1.4 .2 .04 67 1.21 .68 258	178.5 173.2 754.28 4388.5 19251.1 142.8 15480
	LYNGBYA UNKNOWN SP. CYANDBACTER:	filamentous IA		SIZE# 1	1.15 .03 48000	14950 377.1 24960
		·		SIZE# 1	.8	1112
	UNKNOWN SP. UNKNOWN SP. MALLOMONAS (CHROOMONAS)	Biflasellate Biflasellate coronata acuta	CHLOROPHYTE CHLOROPHYTE CHRYSOPHYTE CRYPTOPHYTE	SIZE# 2 SIZE# 4	23 .32 .12 480	2116 320.64 62.76 4896_
	KIRSCHNERIEU RAPHIDIOPSI UNKNOWN SP UNKNOWN SP UNKNOWN SP	LLA 5 herical cells herical cells herical cells	UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 2 SIZE# 4 SIZE# 5	10 11 80 1	176.8 247.5 2680 268 523.8
			TOTALS		48937	98135
		te de la companya de La companya de la comp				
	RANK	SPECIES BY VOLUME	cu.micr.	/ m l	%	
-	1 CYANOB 2 APHANI 3 DACTYLI 4 LYNGBY 5 CHROOM 6 ANABAE 7 EUDORI 8 UNKNOW 9 UNKNOW 10 DDCYS	ACTERIA ZOMENON DCOCCOPSIS A DNAS acuta NA flos aquae NA N spherical cell N sp. Biflagellat TIS	24960 19251 15480 14950 4896 4388 4116 3471 1 2 2436 1112	. 1 5 48 5 5 4	25.43 19.61 15.77 15.23 4.98 4.47 4.19 3.53 2.48 1.13	
	RANK	SPECIES BY CELLS	cells/	ml	%	•
	1 CYANOB 2 CHROOM 3 DACTYL 4 UNKNOW 5 ANABAE 6 UNKNOW 7 RAPHID 8 KIRSCH 9 SYNEDR 10 APHAN	ACTERIA DNAS acuta DCOCCOPSIS N spherical cell NA flos aquae N sp. Biflagellat IOPSIS NERIELLA A IZOMENON	48000 480 258 15 82 67 te 23.32 11 10 1.6 1.21		98.08 .98 .52 .16 .13 .04 .02 .02 0 0	
	RANK	GROUPS BY VOLUME	cu.micr	/ m 1	%	. .
	1 C	YANOPHYTE	79549	.5	81.06	

			•		
· •	CHLOROPHYTE		1 - F		
	CRYPTOPHYTE				
	UNIDENTIFIED				
	DIATOM	۰.			
	CHRYSDPHYTE				

23456

8625.12	8.78
4896	4.98
3896.1	3.97
1105.98	1.12
62.76	.06

95 -

WOOD LAKE ALGAL VOLUMES 2/9/20 5M

 •	NAME	GROUŘ		CE	LLS ml	VOLUME cu.micr/ml
ASTE CYMBI FRAG NAVIO SYNEI ANABO	RIDNELLA ELLA SPP ILARIA CULA DRA AENA flos aquae	DIATOM DIATOM DIATOM DIATOM DIATOM CYANOPHYTE	SIZE#	1	.6 .9 .8 .8	1401.6 100 2070.6 2556.4 229.5 3275
APHAI ANAC' DACT' LYNGI UNKNI CYANI EUDOI	VIZUMENUN YSTIS YLDCOCCOPSIS BYA DWN sp. filamentous DBACTERIA RINA	CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE	SIZE#	1	92 92 92 92 01 24000 04	58867 483 13800 11960 125.7 12480 686.08
	STIS RASTRUM DWN sp. Biflasellate DWN sp. Biflasellate DWN sp. Biflasellate SOCOCCUS	CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHRYSOPHYTE	SIZE# SIZE# SIZE# SIZE#	1 2 3 4 2	12 12 24 12	166.8 2880 294.4 144.72 120.24 1768
CHROI KIRSI RAPH UNKNI UNKNI	DMONAS coronata DMONAS acuta CHNERIELLA IDIOPSIS DWN spherical cells DWN spherical cells DWN spherical cells	CRYPTOPHYTE UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# SIZE# SIZE#	1 2 5	12 180 20 10 20	62.76 1836 353.6 45 141.4 670 1047.6
UNKNI	DWN ciliate	UNIDENTIFIED TOTALS	SIZE#	2	.2 24542	250 117815
	RANK SPECIES BY VOLUM	E cu.micr.	/m1	%		
12345678910	APHANIZOMENON DACTYLOCOCCOPSIS CYANOBACTERIA LYNGBYA ANABAENA flos aquae STAURASTRUM NAVICULA FRAGILARIA UNKNOWN spherical cel CHROOMONAS acuta	58867 13800 12480 3275 2880 2556. 2070. 1s 1859 1836	4 5	49.9 11. 10. 2.7 2.4 2.10 1.7 1.5	96 71 59 15 15 15 75	

	RANK SPECIES BY CELLS	cells/ml	7
1	CYANDBACTERIA	24000	97.78
2	DACTYLOCOCCOPSIS	230	.93
3	CHROOMONAS acuta	180	.73
ã.	ANABAENA flos aquae	50	.ź
5	UNKNOWN spherical cells	32	.13
6	KIRSCHNERIELLA	20	.08
7	CHRYSOCOCCUS	8	.03
8	APHANIZOMENON	3.7	.01
<u>ĝ</u>	UNKNOWN SP. Biflagellate	3.56	.01
10	FRAGILARIA	2.9	.01

- 96 -

 RANK GROUPS BY VOLUME
 cu.micr/ml
 %

 CYANDPHYTE
 100990.7
 85.71

 DIATOM
 6358.1
 5.39

 CHLORDPHYTE
 4292.24
 3.64

 UNIDENTIFIED
 2507.6
 2.12

 CRYPTOPHYTE
 1836
 1.55

 CHRYSOPHYTE
 1830.76
 1.55

122456

- 97 -

WOOD ALGAL VOLUMES 16/9/80 .5M

NAME	GROUP	•	CELLS /ml	VOLUME cu.micr/ml
ACHNANTHES ASTERIONELLA COCCONEIS CYCLOTELLA SP.	DIATOM DIATOM DIATOM DIATOM DIATOM	SIZE# 1 SIZE# 3	10 .5 .4 .04	327.6 438 96 1657.12
ANACHSHENAN FIOS Aquae APHANIZOMENON DACTYLOCOCCOPSIS LYNGBYA UNKNOWN sp. filamentous CYANOBACTERIA ACTINASTRUM	CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CYANOPHYTE CHLOROPHYTE	SIZE# 1	100 .16 38 210 97 .05 16000 1.12	6550 2545.6 7980 12600 1261000 754.2 8320 37.8
ECHINOSPHAERELLA EUDORINA STAURASTRUM UNKNOWN sp. Biflasellate UNKNOWN sp. Biflasellate UNKNOWN sp. Biflasellate UNKNOWN sp. Biflasellate UNKNOWN sp. 4 Flasellae	CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE	SIZE# 1 SIZE# 2 SIZE# 3 SIZE# 4 SIZE# 1	.04 .2 1.9 5.1 .08 16 .4	20.95 3430.4 7680 85.5 469.2 48.24 16032 286
UNKNOWN SP. CHRYSOCOCCUS MALLOMONAS coronata MALLOMONAS sp. MALLOMONAS sp. MALLOMONAS sp.	CHLOROPHYTE CHRYSOPHYTE CHRYSOPHYTE CHRYSOPHYTE CHRYSOPHYTE CHRYSOPHYTE CHRYSOPHYTE	SIZE# 2 SIZE# 1 SIZE# 2 SIZE# 3	.12 1 .42 .08 .12 .2	18.24 221 219.66 7.248 50.16 230
MALLOMONAS sp. UNKNOWN sp. ?DINOBRYON CHROOMONAS acuta KIRSCHNERIELLA RAPHIDIOPSIS UNKNOWN spapical collo	CHRYSOPHYTE CHRYSOPHYTE CRYPTOPHYTE UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 4	.04 440 310 20 2	232 28820 3162 353.6 45
UNKNOWN spherical cells UNKNOWN spherical cells UNKNOWN UNKNOWN ciliate UNKNOWN ciliate	UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED UNIDENTIFIED	SIZE# 1 SIZE# 2 SIZE# 3 SIZE# 1 SIZE# 2	20 2 .04 .08 3	670 226 36.2 21.44 3750
	TOTALS		17340	1369270

TOTALS

	RANK SPECIES BY VOLUME	cu.micr/ml	%
12345678910	LYNGBYA UNKNOWN SP. ?DINOBRYON UNKNOWN SP. Biflasellate DACTYLOCOCCOPSIS CYANOBACTERIA ANACYSTIS STAURASTRUM ANABAENA flos aquae UNKNOWN ciliate EUDORINA	1261000 28820 16634.94 12600 8320 7980 7680 6550 3771.44 3430.4	92.09 2.1 1.21 .92 .58 .58 .56 .47 .27 .25

RANK SPECIES BY CELLS

cells/ml

7. -

12345678910	CYANOBACTERIA	16000	92.26						
	UNKNOWN SP. ?DINOBRYON	440	2.53						
	CHROOMONAS acuta	310	1.78						
	DACTYLOCOCCOPSIS	210	1.21						
	ANABAENA flos aquae	100	.57						
	LYNGBYA	97	.55						
	UNKNOWN Spherical cells	82	.47						
	ANACYSTIS	38	.21						
	UNKNOWN SP. Biflasellate	23.08	.13						
	KIRSCHNERIELLA	20	.11						
	RANK GROUPS BY VOLUME	cu.micr/ml	%						
123456	CYANDPHYTE	1299749.8	94.92						
	CHRYSOPHYTE	29780.068	2.17						
	CHLOROPHYTE	28108.34	2.05						
	UNIDENTIFIED	5950.64	.43						
	CRYPTOPHYTE	3162	.23						
	DIATOM	2518.72	.18						
	NAME	*,		GPI	ŨŨ₽			CELLS /ml	VOLUME cu.micr/ml
--	---	--	---	--	--	--	-------------	--	--
ASTE SYNE ANAE APHA DACT LYNC	ERIONELL DRA BAENA FI NIZOMEN CYSTIS TYLOCOCC BBYA	.A los aqua ION COPSIS	16	DIA DIA CYAI CYAI CYAI CYAI	TOM TOM NOPHYTE NOPHYTE NOPHYTE NOPHYTE NOPHYTE	SIZE# SIZE#	12	.5 3.4 530 .56 18.7 53 59	438 2944.4 34715 8909.6 3927 3180 767000
UNKN UNKN UNKN CYAN ACTI	IOWN SP. IOWN SP. IOWN SP. IOWN SP. IOBACTER INASTRUM INASTRUM	, Rivula Filame Filame Filame RIA	ariaceae entous entous entous	CYAI CYAI CYAI CYAI CYAI CHLI CHLI	NOPHYTE NOPHYTE NOPHYTE NOPHYTE OROPHYTE OROPHYTE OROPHYTE	SIZE# SIZE# SIZE#	123	.08 .11 .02 .1 5900 1.6 2.54	135.76 1382.7 885 7365 3068 54 45281.28
ÖÖČY Stal Unkn	STIS JRASTRUM IOWN SP.	Biflas Biflas	ellate ellate		OROPHYTE DROPHYTE DROPHYTE DROPHYTE	SIZE# SIZE# SIZE#	1 1 2	.24 .24 3.4 4.2	333.6 5760 153 386.4
UNKN MALL MALL	IOWN SP. IOWN SP. OMONAS OMONAS	Biflas Biflas coronat	aellate sellate ta		OROPHYTE DROPHYTE YSOPHYTE YSOPHYTE	SIZE# SIZE#	3 4 1	.1 1.2 1.24 .24	60.3 1202.4 648.52 21.744
MALL MALL UNKN CHRC	OMONAS OMONAS NOWN SP DOMONAS	SP. SP. ?DINOE acuta	BRYON	CHR CHR CHR CHR	YSOPHYTE YSOPHYTE YSOPHYTE PTOPHYTE	SIZE# SIZE#	2 4	.12 .08 580 600	50.16 464 37990 6120
KIRS RAPH UNKN UNKN UNKN UNKN	SCHNERIE HIDIOPSI HOWN SF HOWN SF HOWN SF HOWN SF HOWN SF HOWN SF	LLA [S •herica] •herica] •herica] iliate iliate	cells cells cells cells	UNII UNII UNII UNII UNII UNII UNII	DENTIFIED DENTIFIED DENTIFIED DENTIFIED DENTIFIED DENTIFIED DENTIFIED DENTIFIED	SIZE# SIZE# SIZE# SIZE# SIZE# SIZE#	1234 12	40 19 80 50 20 1 •04 7	707.2 427.5 1131.2 1675 2260 268 10.72 8750
					TOTALS			7978	947705
	RANK	SPECIES	S BY VOLU	ME	cu.micr	/m1		x	
12345678910	LYNGB) EUDADA UNKNOL ANABAA UNKNOL APHAN) UNKNOL CHRODA STAURA UNKNO	YA INA NN SP. INA flos NN SP. f IZOMENON NN cili IONAS ac ISTRUM JWN SP	PDINOBRYO s aquae filamento N iate cuta nerical c	N us ells	76700 45281 37990 34715 9632. 8909. 8760. 6120 5760 5334.	• 28 7 6 72 2		30.93 .77 .66 .01 .94 .92 .64 .56	
	RANK	SPECIES	BY CELL	S	cells/	ml		7	

73.95 7.52 7.27

CYANOBACTERIA CHROOMONAS acuta UNKNOWN sp. ?DINOBRYON

1 2 3 WOOD ALGAL VOLUMES 16/9/80 5M

4	ANABAENA flos aquae	530	6.64
5	UNKNOWN spherical cells	151	1.89
6	LYNGBYA	59	.73
7	DACTYLOCOCCOPSIS	53	.66
8	KIPSCHNERIELLA	40	.5
9	RAPHIDIOPSIS	19	.23
10	ANACYSTIS	18.7	.23
	RANK GROUPS BY VOLUME	cu.micr/ml	%
123456	CYANDPHYTE	830568.06	87.63
	CHLOROPHYTE	53230.98	5.61
	CHRYSOPHYTE	39174.424	4.13
	UNIDENTIFIED	15229.62	1.6
	CRYPTOPHYTE	6120	.64
	DIATOM	3382.4	.35

- 101 -

WOOD LAKE ALGAL VOLUMES 16/9/80 10M

NAME	<u>G</u> BŪŪb		CELLS /ml	VOLUME cu.micr/ml
ACHNANTHES ASTERIONELLA FRAGILARIA	DIATOM	SIZE# 1	5.5	163.8 438 499.8
SYNEDRA SYNEDRA CYCLOTELLA SP.	DIATOM DIATOM DIATOM	SIZE# 1 SIZE# 2 SIZE# 3	.1	12.75 86.6 4971 36
ANABAENA flos aquae APHANIZOMENON ANACYSTIC	CYANOPHYTE CYANOPHYTE		30	1965 9705.1
DACTYLOCOCCOPSIS	CYANOPHYTE		26.2 70 89_	4200 1157000
UNKNOWN sp. filamentous UNKNOWN sp. filamentous UNKNOWN sp. filamentous	CYANOPHYTE CYANOPHYTE CYANOPHYTE	SIZE# 1 SIZE# 2 SIZE# 3	.17 .94 .23	2136.9 41595 16939.5
CYANOBACTERIA ACTINASTRUM EUDORINA	CYANOPHYTE CHLOROPHYTE CHLOROPHYTE		120000 2.4 7	62400 81 120064
ODCYSTIS SPHAEROCYSTIS STAURASTRUM	CHLOROPHYTE CHLOROPHYTE CHLOROPHYTE	SIZE# 1	.12	166.8 18 950
UNKNOWN sp. Biflagellate UNKNOWN sp. Biflagellate	CHLOROPHYTE CHLOROPHYTE	SIZE# 1 SIZE# 2	4.2	189 460
UNKNOWN SP. 51-14Bellate UNKNOWN SP. UNKNOWN SP.	CHLOROPHYTE	5125# 4	.04	6.08 113.12
MALLUMUNAS coronata MALLOMONAS sp. MALLOMONAS sp.	CHRYSOPHYTE CHRYSOPHYTE CHRYSOPHYTE	SIZE# 1 SIZE# 2	.88 .48 .04	460.24 43.488 16.72
MALLOMONAS SP. MALLOMONAS SP. Synura	CHRYSOPHYTE CHRYSOPHYTE CHRYSOPHYTE	SIZE# 3 SIZE# 4	.44 .04	506 232 184
UNKNOWN se. ?DINOBRYON CHRODMONAS acuta KIRSCHNERTELLA	CHRYSOPHYTE CRYPTOPHYTE UNTDENTIETED		196 970 20	12838 9894 353 6
RAPHIDIOPSIS UNKNOWN spherical cells	UNIDENTIFIED UNIDENTIFIED	SIZE# 1	15 120	337.5 1696.8
UNKNOWN SPHErical cells UNKNOWN spherical cells UNKNOWN	UNIDENTIFIED	SIZE# 2 SIZE# 5	1.04	523.8 36.2
UNKNUWN Ciliate	UNIDENTIFIED	51ZE# 2	12	15000

TOTALS

121800

1480970

	RANK SPECIES BY VOLUME	cu.micr/ml	7
1 234 5 L 234 5 L 567 89 10	YNGBYA EUDORINA CYANOBACTERIA JNKNOWN sp. filamentous JNKNOWN ciliate JNKNOWN sp. ?DINOBRYON CHROOMONAS acuta APHANIZOMENON JNKNOWN spherical cells ANACYSTIS	1157000 120064 62400 60671.4 15000 12838 9894 9705.1 9590.6 5502	78.12 8.1 4.21 4.09 1.01 .86 .65 .65 .64 .37

- 102 -

	RANK SPECIES BY CELLS	cells/ml	%
1	CYANOBACTERIA	120000	98.52
2	CHROOMONAS acuta	970	.79
3	UNKNOWN spherical cells	341	.27
4	UNKNOWN sp. ?DINOBRYON	196	.16
5	LYNGBYA	89	.07
6	DACTYLOCOCCOPSIS	70	.05
7	ANABAENA flos aquae	30	.02
8	ANACYSTIS	26.2	.02
9	KIRSCHNERIELLA	20	.01
10	RAPHIDIOPSIS	15	.01
	RANK GROUPS BY VOLUME	cu.micr/ml	%
1	CYANOPHYTE	1301443.5	87.87
2	CHLOROPHYTE	123861.6	8.36
3	UNIDENTIFIED	25317.9	1.7
4	CHRYSOPHYTE	14280.448	.96
5	CRYPTOPHYTE	9894	.66
6	DIATOM	6172.31	.41

WOOD LAKE ALGAL VOLUMES 21/10/80 .5M

	NAME										GF	ומי	İÞ								CELLS /ml	cu.	VOLUME micr/ml
ACTED	י		۸								חזמ	тг	1 M				C 1		#	4	1		87.6
FRAGI	LARI	Ā									ĎİA	Ť	M						. п	÷ _	11_		71.4
SYNED	RA	^		_		,					DIA	\T[\T[)M NM				S		# #	2	3.6		3117.6
ANABA	ENA	.H F	sı İog	5.	a 9	ua	2				CYA)P	HY	ТΕ		3		. 77	J	1.3		85.15
APHAN	IZOM	1EI	ND!	V			-				ĈŶŕ	N	jp	ΗÝ	ŢĒ						.12		1909.2
ANACY	STIS	i iri	וחי	20	TC					. •)NI)NI	יאך אר	HY HY							13.4 210		12600
LYNGB	YA	101	- 0 -	ų.	1 -						ČÝ	N(jp	ΗÝ	ŤĒ						82		1066000
CYANO	BACI	E	RI (A .							CYF		<u>]</u> ף	HY	TĘ	.					8000		4160
ACI IN FUDÔR	AS IN	<u>i</u> nt	7		•	•					CHI	יט. חח	20 20	PH PH	Ϋ́́Ύ́Τ	Ē					5 12		87818.2
ÖÖČYS	TIS										ČН	Ö	ŠŎ	PH	ΎΤ	Ē	S	IZE	E#	1	2		278
SPHAE	ROCI	(S)	<u>,</u> Il	5							CHI	-06	20	PH	ΥŢ	Ē					.08		36
SIAUR HNKNO	AS IF	(U) : P	ק . ו	Ri	F 1	39	e 1 '	la	t.e		CHI	יט. מח	70 70	PH	Ϋ́́	r F	S	175	=#	1	21		945
UNKNO	WN	5 P		Bi	fÌ	39	el	la	te		CHI	Ŏ	έŏ	PH	Ϋ́Τ	Ē	Š	ÎŻĒ	E#	2	24_		2208
UNKNO	WN 9	5 P	• !	9i	£l	88	el	la	te		CHI	-06	20	PH	ΥŢ	Ē	S	ĮZS	E#	4	4.3		4308.6
UNKNO	IWN 9 IWN 4	5 P	• (4 1	ך ז רו	25. 06	еі. 61	1 a 1 a	e e		CHI	יט. חו	40 70	PH	YT	F	5	120	177 17	2	.04		565.68
CHRYS	loco	ζĊΙ	JS	-		0.3	G 1 .		c		Сн	₹Ÿ	sŏ	PH	Ϋ́Ť	Ē	Š	ÎŻŚ	Ξ#	ž	6		1326
DINOB	RYO	۱. ۲	5 P	•		_ •	_				CH	?Y?	50	PH	YT	<u></u>					8.1		530.55
MALLU		15	C :	OT P-	0 N	JB	a					γŗ; γγ;	50 50	PH	YT	Ē	S	IZE	E#	1	.12		10.872
MALLO	MON	ÅŠ	Ś	Ρ.							ČН	ŻÝ	50	PH	ΎΤ	Ē	Š	ÎŻ	Ë#	Ž	1 04		434.72
MALLO	MONA	AS	S	Ρ.							CHI	<u>P</u> YS	SQ	PH	YT	Ē	S	IZ	E#	3	.04		45
SYNCH	Δ	9									CHI	₹Ÿ ₽¥9	50 50	PH	ΥT	F					2		1840
UNKNO	WN -	5 P		?D	IN	108	RY	ON			Сні	ŶŶ	SÕ	PH	Ϋ́́Τ	Ē					110		7205
CHROO	MON	AS	a	cu	ta	9					CR'	YP.	ŢO	PH	ΥŢ	Ē					610		6222
KIRSU	TUTU	21		LA	I							יעו הז	EN Fn	TT	F 1	FD					50		1125
UNKNO)WN	5	Ph	er	ic	al	С	e l	1 s		UN	ĪD	ĒN	ΤÎ	FÎ	ĒĎ	S	IZ	E#	2	272		9112
UNKNO)WN	5	Ph	er	10	:a1	C	ēĺ	15		<u>UN</u>	ID	EN	ŢI	FI	ED	S	ΙĮ	E#	3	10		1130
	}WN HUN	S	рђ 11	er	10	al	C	e 1	15			1 D 1 D	EN		FI	ED	5	ŧŞ	と伴	4	3.2		21300
Sande		4	• •	1 G		-					0.0		- 1 -		• •		U			-			
														TO	TA	LS					9543		1258324
	0.01		c	05	· ~ 1		0	v			-		-				/	1			•/		
	KΗ)	N N	5	25	.	120	5	ĩ	VU	CUM	-		C	u.	m 1	C I.	/ m	1			/s		
1	LYN	G8	YA											1	0E	60	00	_			84.71		
2	EUD	DR	IN	A	_		- •							- 8	178		• 2	4			6.97		
.3 4	TINK	NU NU	wn WN		C: P	. 4	a t	e la	9 P	Ha	p			1	34	64	.2	8			1.07		
5	DAC	ΤŸ	LO	CĆ	ici	COP	SI	Š			-			1	ŽĘ	ĢŌ		-			1		•
5	UNK	NO	MM NM		51	phe	Γİ ; C	ça		cel	15			1	10	999	.6 6				. 88 59		
8		NO	WN WN	9	i Pi	. 7	DI	NO	IBR	YON				1	20)5	U				.57		
ğ	CHR	oŏ	MO	NĒ	S	ac	ũt	a				•		É	sźż	2					.49		
10	CY	CL	<u>0</u> T	EL	LI.	A s	Ρ.							4	197	1.	36				.39		

RANK SPECIES BY CELLS CYANOBACTERIA 1

4971.36

cells/ml

8000

% 83.82

2345678910	CHRODMONAS acuta	610	6.39
	UNKNOWN spherical cells	285.2	2.98
	DACTYLOCOCCOPSIS	210	2.2
	UNKNOWN sp. ?DINOBRYON	110	1.15
	LYNGBYA	82	.85
	KIRSCHNERIELLA	70	.73
	RAPHIDIOPSIS	50	.52
	UNKNOWN sp. Biflasellate	49.3	.51
	UNKNOWN sp. 4 Flasellae	18.08	.18
	RANK GROUPS BY VOLUME	cu.micr/ml	%
1	CYANOPHYTE	1087568.35	86.42
2	CHLOROPHYTE	110024.87	8.74
3	UNIDENTIFIED	34762.2	2.76
4	CHRYSOPHYTE	11498.782	.91
5	DIATOM	8247.96	.65
6	CRYPTOPHYTE	6222	.49

.

WOOD LAKE ALGAL VOLUMES 21/10/80 2M

NAME	·· · ·	· · · ·	9 <u>00</u> 9		CELLS /ml	VOLUME cu.micr/ml
ASTERIONELLA ASTERIONELLA	·		DIATOM	SIZE# 1 SIZE# 2	1.4	1226.4 9300
SYNEDRA SYNEDRA	· ,		DIATOM DIATOM DIATOM	SIZE# 1 SIZE# 2	4./ 3.6 3.9	3355.8 459 3377.4
TABELLARIA s CYCLOTELLA s	P		DIATOM DIATOM	SIZE# 1	1	115 2613
APHANIZOMENO	P. N		DIATUM CYANOPHYTE CYANOPHYTE	SIZE# 3	.12 .24	4971.36 3818.4 3360
DACTYLOCOCCO	PSIS		CYANDPHYTE CYANDPHYTE		207 253	12420 3289000
UNKNOWN SP. CYANOBACTERI	filamen A	tous	CYANOPHYTE CYANOPHYTE	SIZE# 1	14 4680	1759.8 2433.6
ACTINASTRUM CLOSTERIUM			CHLOROPHYTE CHLOROPHYTE	SIZE# 1	.72	24.3 11.0832 38.4
EUDORINA			CHLOROPHYTE	SIZE# 1	1.28	21954.56 333.6
ÖÖCÝSTIS UNKNOWN sp.	Biflase	llate	CHLOROPHYTE CHLOROPHYTE	SIZE# 2 SIZE# 1	.04 20	232 900
UNKNOWN SP. UNKNOWN SP.	Biflase	llate llate		SIZE# 2 SIZE# 4 SIZE# 1	4 20 8	92 4008 14872
UNKNOWN SP. CHRYSOCOCCUS	4 Flase	llae	CHLOROPHYTE CHRYSOPHYTE	SIZE# 2 SIZE# 2	-08 66	1131.36 14586
DINOBRYON SP MALLOMONAS C	oronata		CHRYSOPHYTE CHRYSOPHYTE		2.65	173.575
MALLOMONAS S MALLOMONAS S	P.		CHRYSOPHYTE	SIZE# 1 SIZE# 2	.16 .2	14.495 83.6 138
MALLOMONAS S	Ρ.		CHRYSOPHYTE CHRYSOPHYTE	SIZE# 4	.08 6.2	464 5704
UNKNOWN SP. CHROOMONAS a	2DINOBR Icuta	YON	CHRYSOPHYTE CRYPTOPHYTE		· 270 560	17685 5712
RAPHIDIOPSIS	LA Senierl	nelle	UNIDENTIFIED UNIDENTIFIED	5175# 2	280	4950.4 607.5 2680
UNKNOWN SPP	erical	cells cells	UNIDENTIFIED UNIDENTIFIED	SIZE# 3 SIZE# 4	20 3	2260 804
UNKNOWN SPE UNKNOWN cil	erical iate	cells	UNIDENTIFIED UNIDENTIFIED	SIZE# 5 SIZE# 1	.4	209.52
UNKNUWN C12	late		TOTALS	5125# 2	6548	3446682
			•			
RANK S	PECIES	BY VOLUME	cu.micr	/ m 1	%	•
1 LYNGBYA 2 EUDORIN	A		32890 21954	00 .56	95.42 .63	
3 UNKNOWN 4 UNKNOWN	SP. 2[SP. 4	INOBRYON Flagellae	17685	.36	.51	
5 CHRYSOC 6 DACTYLC 7 ASTERIC	UCCUS COCCOPS	SIS	14586 12420 10526	Д	.42 .36	
8 UNKNOWN	cilia	ıte	\$760 .	7Ź	.Ž5	

- 106 -

9	CYCLOTELLA sp.	7584.36	•22
10	UNKNOWN spherical cells	5953.52	•17
	RANK SPECIES BY CELLS	cells/ml	X
1	CYANDBACTERIA	4680	71.46
2	CHROOMONAS acuta	550	8.55
3	KIRSCHNERIELLA	280	4.27
4	UNKNOWN sp. ?DINOBRYON	270	4.12
5	LYNGBYA	253	3.86
5	DACTYLOCOCCOPSIS	207	3.16
7	UNKNOWN spherical cells	103.4	1.57
8	CHRYSOCOCCUS	66	1
9	RAPHIDIOPSIS	27	.41
10	UNKNOWN sp. Biflasellate	25	.38
	RANK GROUPS BY VOLUME	cu.micr/ml	۲
12345E	CYANOPHYTE	3312791.8	96.11
	CHLOROPHYTE	43597.3032	1.26
	CHRYSOPHYTE	38890.511	1.12
	DIATOM	25417.96	.73
	UNIDENTIFIED	20272.14	.58
	CRYPTOPHYTE	5712	.16

		3312 4359
IYTE		3889 2541
FIED	•	2027 5712

\$