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INTRODUCTION 

Many of us assume that the water surface of a lake is 

a true level surface because the water always tends to seek the 

equilibrium. Surveyors sometimes use such level surfaces in 

establishing elevations, thus saving time and effort while trying 

to maintain the usual accuracy of instrumental level loops. It 

has been mentioned however by several investigators that a lake 

surface is not level since natural oscillations caused by wind 

tides, wind set—up, variation of discharge, difference of water 

.temperature and different density may tilt the lake surface 

permanently or over a prolonged period of time. 

Each of these causes have their particular effects on 

the water level variation while an observer sees only the total 

change. Our purpose is to study these causes separately and to 

evaluate the influence each of them has on the water surface. 

This first report is an analysis on the variation of 

the water level of Lake Ontario caused by the relation of the inflow 
of the Niagara River and the outflow through the St. Lawrence River; 

THEORY’
' 

Dronkers (l96h) shows that in a two—dimensional model 

as shown in Figure l, the equations of motion for long waves in a 

horizontal plane in a large body of water are:
0
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_where u = velocity of the flow in the x direction 

v = velocity of the flow in the y direction 

t = time 

f = Coriolis parameter 

g = gravitational force of the earth 

h = height above the mean water level 

Pa = atmospheric pressure 

= air density 

= bottom stress in the x direction 

= bottom stress in the y direction céfle 

8% 
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In these two equations, the corrective terms 

3
. 

(ugg-+ U35; ugg-+ vggi can be neglected because of their small 

amplitude. The influence of the wind and the variation in the 
. 
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D0 ax, T:, 00 By 
) are neglected in atmospheric pressure (Ti, 

this paper. The equations (l) and (2) can then be rewritten in 

a simplified form:
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The Coriolis parameter can be expressed as 

f=2wsin‘¥ 
b 

(5) 

Where w - angular velocity of the earth 

-E ll latitude of the area 

Dronkers (l96h) shows that the bottom stress I: and 

Z: are expressed as follows: 

Tb = —————L- 11/] 
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where C = De Chezy's coefficient

2 V ¢h2+v 

Cl 0 mean depth 

-To solve this set of equations (3 and h), we need 

‘another relation between the velocity components and the 

elevation of water. This function is_given by the continuity 

equation and can be expressed as:
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Equations (3), (M) and (8) represent completely the 

-motion of water in the time and space domain and have to be solved 

simultaneously. 

NUMERICAL MTHOD 

The analytical solution of these three differential 

equations is impossible. Several methods have been developed 

to overcome this difficulty. One might use a representation of 

the phenomenon by a suitable continuous function, as for example 

.a truncated Fourier series. But, as stated by Welander (1961), 

as most numerical prediction experiments made in the past have 

been based on a step—by—step integration, finite difference 

methods have been used in this work. As central differences 

are exact to a higher order in "At" than the forward difference 

and since such a solution is more stable than the forward 

difference, we prefer to use central difference in the time 

direction. 

In order to solve the differential equations numerically, 

‘they have to be broken down so that the independent variables are 
» represented by-discrete numbers. lf m, a and k represents 

respectively the integer increment in the x, y and_t as shown in 

Figure 2, we can write equations (3), ()4) and (8) as follows:
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I 

In order to compute the values of U, V, and H at time 

(k+1) we need to know the values at time (R) and at time (k—1). 

At the beginning of the calculation process we apply the boundary 

conditions at time (1), while all the values at time (0) and 

(-1) are set to zero. It takes at least three iterations in the 

time domain before the results come to significant figures. 

Numerical methods being an approximation of the real 

solution, errors can be expected if nothing is done to control 

them. Platzman (1953) shows that to obtain numerical stability, 

the following conditions have to be fulfilled: 

¢2gh At/As <1 (12) 

For safety practice it is recommended to use such small time- 

steps that the above condition is well below one. Unstability 

arises too with repetitive numerical errors introduced in the 
' 

calculation because of the generation of noise in the model. 

Welander (1961) suggests using a smoothing operator:
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where As is the smoothed value and a is a constant, 0:g<1. This 

smoothing operator is very useful when numerical unstability is 

introduced by the non—linearity in the differential equations. 

ANALYSIS OF THE MODEL 

A: Simplified Model
I 

i 

A simplified rectangular model as shown in Figure 3 of 

uniform depth equals to 61 meters was first used to test the 

equations (9), (10) and (ll) on the computer. The width and 

length are equal to 89 and 283 kilometers respectively. A value 

of 17.7 kilometers was used for Ay and Ax. The mesh system was 

established to have a "U" and "V" calculation at the outlet of the 

Niagara River (M=h,N=l) and at the entrance of the St. Lawrence 
— River (M=l5,N=6 and M=17,N=6). It should be noted that an "H" is 

calculated only at every second space step as shown in Figure 2. 

The grid system.remains the same at every time step of the calculation. 

The boundary conditions applied to the model are the discharge of the 

Niagara and the St. Lawrence Rivers. 

In the first trial, the discharge was assumed to be a step 

function applied at both the inlet and the outlet of the model. 

Depending on the values used for the parameters in the model, the steady 

state condition was reached at different times. Figures 5 to 8 show
‘V
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the variation of this time with respect to Chezy's coefficient 
i"C", the smoothing coefficient "a", the time—step "At" as used 

in the calculation and the magnitude of the discharge "Q".. The 

time to steady state was determined when there was no change 

(or less than five percent) in the computed values. As there are 

fifty-one "H" points'in the model, we determined the mean, the 

maximum and the minimum time to steady state. "This first analysis 

gave us the following information: 

a) the variation'of Chezy's coefficient is not 

significant because of the depth of the lake used in the calculation.‘ 

b) the smoothing coefficient "a" is critical for value 

higher than 0.90. meaning if no smoothing is used, noise is generated 

in the model and the steady state is never reached. We found out 

that a value for a of 0.85 gave good results. 

c) the time step must be chosen very carefully and further- 

more a big time step does not necessarily save calculation time as the 

total running time has to be increased quite considerably to reach the 

steady state. Even with the same value of Ay and Am the numerical 

stability is reduced only if the condition stated by equation (12) is 

verified. 

d) the magnitude of the discharge does not affect 

appreciatively the mean value of the time to steady state.



B: Real Model. 

Specifying the Chezy's coefficient "0" equals to 30.h
1 

A masec-1, the smoothing coefficient "a" to 0.85, the time step 
4 "At" equals to 2 minutes, the same step function of magnitude 

equals to 8858 m§sec_l was run on the real and the simplified model. 

Comparison between the two models cannot be made easily 

because they react quite differently to the same step input function. 

Figure 9 illustrates the difference between the response of the two 

models for five selected points corresponding to the coordinates of 

the gauging stations. The simplified model illustrates only the 

tendency and the shape of the response curve while the values of 

elevation differe appreciably. It clearly shows that too much 

simplification cannot be made and that the elevation of the points 

and the general shape of the lake must be as close as possible to 

reality. 

Then the model is tested by simulating a sinusoidal 

variation of discharge at one inlet while the other is kept constant. 

This flow condition can be represented as: 
I

. 

Q 1 
. I .Q 2 

constant 
' 

_ 

I 

(14) 

Q0 + Q1 sin wt (15) 

The time has to be expressed in seconds and w is taken as the 

fundamental frequency of Lake Ontario as stated by Rockwell (1966) 

being one cycle every h.8 hours.
V

'
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The magnitude of Q0, Q1 and QCTE as shown in Table l 

was established by analysing the l968 data available. meaning 

the hourly mean discharge for the Niagara River and the daily mean 

discharge for the St. Lawrence River. These values were chosen 

so that the sine function represents the greatest variation in the 

discharge function, thus simulating the river flow during the winter 
imonths. Figures 10 and ll show the response of five selected points

~ 

when the first and the second conditions are applied respectively. 

The bottom stress is neglected in this part of the study. 

The response of the model is more pronounced on the points 

surrounding the inlet than to those surrounding the outlet. This is 

due to the fact that the cross section area of the St. Lawrence is 

so big that the computed flow (V = Q/A) becomes too small. The figures’ 

show too that the period of the sine wave is conserved and that the 
amplitude remains the same during all the calculation time. _The 
absence of the damping effect in the model is also noticeable. To 

observe the damping effect, one has to introduce the bottom stress 
into the calculation procedure. This has been done, but as Chezy's 
coefficient is not significant as stated earlier, only the third 

significant digit changed when the bottom stress is applied. ‘Figures 

10 and 11 show that there is a consideramm difference in the amplitude 
from point to-point and that the phase difference is also very 

significant. Figure ll illustrates that the convergence time differs 

for the calculated points.
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Figures 12 and l3 give the water level for fifty—one 
I 

"HT points at time 7&0 minutes after the start of the calculation. 

The water level varies from point to point because each one reacts 

differently to the_applied functions. It shows that the lake is 

tilting, with other words that one end of the lake is at a higher 

elevation than the other. We can notice too that there is no 

correspondence between an (n) and an (n+1) line. For example, this 

results in the following pattern: 

n+2 72 . 44 

n+1 
-1 

n 450 204 

m i 
' m+1 m+2 

The (-1) value looks suspicious among the other values. This is 

caused by the calculation process because the grid system is.not 

refined enough. A smoothing technique should be used to reduce 

this effect of computation. 

Table 2 shows the maximum, the mean and the amplitude of 

the sine wave for various points. Figure lh illustrates the amplitude 

of the sine wave for different locations on the lake. As it is 

expected, the amplitude is decreasing with the distance from the 

inlet of the lake. We can see that the amplitude is decreasing from
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130 to lO2 millimeters when the distance increases in the x direction 

. to station 52 and it decreases from 382 to 30 millimeters in the y 

direction to station 53. The difference between 130-and 382 millimeters 

for two points with the same distance from the inlet is caused by the 

direction of the flow. Most of the flow is moving in the positive y 

direction while only a small part is moving in the negative x direction. 

CONCLUSION
: 

With this numerical model we have been successful in 

analysing the change of water level caused by the relation of the 

inflow—outflow on Lake Ontario. We plan to study the other causes 

. of variation such as wind and atmospheric pressure with the same 

model. Before doing so, we think that we should analyse the effect 

of changing the value of the space step. Will a more refined grid 

system give better results? This will have to be analysed with the 

real model because the influence of the shape of the lake is not 

negligible. Work will be carried out on the combined effects of all 

the causes of variation. On shore meteorological data will be 

required as input in the model. Several stations will be installed 

this summer around the lake for this purpose.’ Then it will be
I 

possible to compare the results with the water level data available 

on Lake Ontario and make appropriate corrections to bring the water 

level to a levelling surface.
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Tflflel 
Discharge Values Used in the Model 

in Cubic Meters/Second 

Q0 > Q1 QCTE 

St. Lawrence River 6866.8 1175.1 7135.7 

Niagara River 6532 .1 2325.7 629h.3 

frequency w = 0.0003628hh radian/second
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