AMERICAN PUBLIC WORKS ASSOCIATION Evaluation of the Magnitude and Significance of Pollution Loading from Urban Stormwater Runoff-Ontario bу Richard H. Sullivan William D. Hurst Timothy M. Kipp American Public Works Association Chicago, Illinois and James P. Heaney Wayne C. Huber Stephan Nix University of Florida Gainesville, Florida Contract No. OSS4-0305 **Project Officers** Dr. Thomas Koplyay Environmental Protection Service Environment Canada Mr. Donald Weatherbe Water Resources Branch Ontario Ministry of Environment 1313 EAST SIXTIETH STREET, CHICAGO, ILLINOIS 60637 TELEPHONE 312/947-2520 # EVALUATION OF THE MAGNITUDE AND SIGNIFICANCE OF POLLUTION LOADING FROM URBAN STORMWATER RUNOFF, ONTARIO by Richard H. Sullivan William D. Hurst Timothy M. Kipp American Public Works Association Chlcago, Illinois > James P. Heaney Wayne C. Huber Stephan Nix University of Florida Gainesville, Florida **Project Officers** Dr. Thomas Koplyay Environmental Protection Service Environment Canada Mr. Donald Weatherbe Water Resources Branch Ontario Ministry of Environment DEPARTMENT OF SUPPLY AND SERVICES Contract No. OSS4-0303 #### **ABSTRACT** An assessment has been made of the magnitude and significance of the pollution loadings from urban runoff from the province of Ontario. The study was conducted under the provisions of the Canada-Ontario and Canada-United States Agreement on Great Lakes and Water Quality. The selected local authorities were interviewed to obtain detailed local data. In addition various maps and demographic information were supplied by the Ministry of the Environment. Methodology used by the American Public Works Association and the University of Florida for a study of similar problems in the United States provided a basis for data manipulation and preparation of cost estimates, modified where possible to reflect conditions relevant to Ontario. The cost estimate performed indicated that to obtain 25 percent control of BOD, an annual cost of \$10,861,000 would be incurred. These costs are exclusive of the storm flow conveyance system. For BOD control at 75 percent, the annual cost would be \$95,471,000. This report is submitted by the American Public Works Association, in partial fulfillment of Contract SS02. KE204-4-EP93, between The Department of the Environment and the American Public Works Association. ### ABRÉGÉ Une évaluation était fait de l'ampleur et l'importance du fardeau de la pollution créé par le drainage du surface urbain dans le province d'Ontario. L'étude était conduit par les provisions d'Accord sur la Qualité d' Eau des Grands Lacs de Canada-Ontario et Canada-les Etats-Unis. Les élements d'information détaile ont obtenus des autorites locales choisies. Des cartes et l'information démographique sont fournies par le Ministère d'Environnement. Une méthodologie employé par l'Association des Travaux Publics d'Amérique (ATPA) et l'Université de Florida pour une étude des problèmes ressemblantes dans les Etats-Unis donne un fondement pour des analyses et des devis estimatifs mais ajusté si faire se peut dans la situation d'Ontario. Le coût estimatif obtenir le réglage de la demande d'oxygéne biochimique à 25 pour cent est \$10,861,000 annuellement pour le traitement primaire. Pour le réglage à 75 pour cent, le coût annuellement montair à \$95,471,000. Ce rapport est presente par ATPA en execution en portie due contrat SS02. KE204-4-EP93 avec le Ministère d'Environnement. ## CONTENTS | A 1 | Page No | |----------|--| | Contan | et | | Table | tsii | | Figur | es | | Summa | resiv | | Conc | Tyv | | Reco | clusionsvi | | Chapter | ommendationsviii | | Chapter | The Duelty Co. | | Chapter | r 3 Description of the Urban Areas | | Chapter | A D CC . 1 D | | Chapter | Standard Pollutant Load Estimates | | • | 19 | | | en e | | Append | ix I Glossary | | Append | ix II Maps of Areas of Data Tabulation for Ten Test Cities | | | m Ontario | | Append | 1X III Field Interview Outline | | Appena | IX IV Provincial Grants | | VICKHOM | deagements, 126 | | Referen | ces | | | TABLES | | | | | | Page No. | | Table 1 | Survey System Problem Areas Identified 8 | | Table 2 | Population, Altitude, Area, and Climate of Interviewed | | | Cities | | Table 3 | Responsibility for Sewer System 15 | | Table 4 | Summary of Wastewater Treatment Facilities. 15 | | Table 5 | Development Unaracteristics. | | Table 6 | Demographic Characteristics of the Urban Argue 22 | | Table 7 | Land Use Distribution in Nine Ontario Cities 24 | | Table 8 | Distribution of Developed Land Uses in Ontario Test | | | Cities and U.S. Cities | | Table 9 | Land Use Distributions for the Ontario Cities 28 | | Table 10 | Population Density Distributions in Nine Ontario | | | Cities29 | | Table 11 | Marginal Population Density for Sewered Portion of Seven | | | Urban Areas in Canada | | Table 12 | Land Uses by Type of Sewerage System | | Table 13 | Population Served by Type of Sewerage System 35 | | Table 14 | Population Density by Type of Sewerage System 36 | | Table 15 | imperviousness and Curb Length Density by Type of Land | | | Use in Nine Ontario Cities | | Table 16 | Effect of Urban Block Size on Curb Length Density | | |------------|--|-----| | | and Imperviousness Due to Streets | 43 | | Table 17 | Comparison of Simulated and Calculated Runoff for | | | | Four Test Cities | 44 | | Table 18 | Annual Wet-Weather Runoff for Combined, Storm, | | | | and Unsewered Areas | 45 | | Table 19 | , | | | | and Unsewered Areas | 46 | | Table 20 | Typical Quality Parameters of Urban Runoff Models | 48 | | Table 21 | Quality Parameters Used in Ontario Assessment | 50 | | Table 22 | | | | m | SWMM and/or STORM | 53 | | Table 23 | | 54 | | Table 24 | | | | o.s | Derived from Effluent Measurements | 57 | | Table 25 | | 63 | | Table 26 | The state of s | 67 | | Table 27 | Pollutant Loading Factors for Ontario Assessment | 69 | | Table 28 | Comparison of BOD Loadings | 70 | | Table 29 | Dry-Weather BOD Loadings | 73 | | Table 30 | Wet-Weather BOD Loadings | 74 | | Table 31 | Dry-Weather T-PO ₄ Loadings | 75 | | Table 32 | Wet-Weather 1-PO ₄ Loadings | 76 | | Table 33 | Dry-Weather T-N Loadings | 77 | | Table 34 | Wet-Weather T-N Loadings | 78 | | Table 35 | Wet-Weather Treatment Plant Performance Data | 83 | | Table 36 | Installed Cost for Wet-Weather Treatment Devices | 83 | | Table 37 | Cost Functions for Wet-Weather Control Devices | 85 | | Table 38 | Capital Cost of Storage Facilities | 87 | | Table 39 | Monthly Evaporation Rates for Test Cities in Inches | | | T 11 40 | (cm) | 92 | | Table 40 | Values of Parameters and Correction Coefficients for | | | T 11 41 | Isoquant Factors | 96 | | Table 41 | | 05 | | Table 42 | Annual Control Costs – Storm Areas | 106 | | Table 43 | Annual Control Costs – Unsewered Areas | 107 | | Table 44 | General Information | 10 | | Table 45 | Land Use by Type of Use | 10 | | Table 46 | Land Use and Population by Type of Sewerage | 10 | | Table 47 | System | 10 | | 1 4016 47 | the state of s | 10 | | T.,1.1. 40 | Runoff | 10 | | Table 48 | read per dime of Beroloped Ofbuil | | | TC-1.1. 40 | Area: \$/acre (\$/ha) | 11 | | Table 49 | i a contract of a pecifical officiali | | | Table 50 | Percent Control | 14 | | Table 50 | i a series in the th | | | Table 51 | Control | 14 | | Table 51 | Optimal Annual Control Costs | 14 | # **FIGURES** | Figure | 1 | | |----------|-----|--| | Figure | 2 | Percent Undeveloped Land Use (U.S.) and Open Space Land Use (Ontario) Versus Population Density 25 | | Figure | 3 | Relationship Between Gross and Developed Population | | Figure | 4 | Paradia Designation of Thunger Day. | | Figure | 5 | or a oparation Delisity III | | Figure | 6 | Urban Areas | | Figure | 7 | Density | | Figure | 8 | Dry-Weather Flows | | Figure | 9 |
Relationships Among Solids Parameters | | Figure | - | Relationships Among Nitrogen Parameters | | Figure | | Relationships Among Phosphorus Parameters 49 | | Figure | | Residential BOD Loadings Versus Population Density 59 | | J | | Normalized BOD Loadings vs Population Density Data are from Table 25 | | Figure | 13 | Annual Average Residential BOD Concentration | | Figure | 14 | Using Estimating Equation | | Figure | 15 | Inputs | | Figure | 16 | for Wet-Weather Quality Control | | Figure | 17 | Basin | | Figure | | Mean Monthly Precipitation | | Figure | | Runoff Frequency, Thunder Bay, 1971 | | Figure | | Runoff Frequency, Windsor, 1973 | | i iguic | 20 | Storage Treatment Isoquant for Percent BOD Removal | | Figure | 21 | with First Flush for Burlington | | Figure : | 22 | with First Flush for Kingston | | Figure 2 | 23 | with First Flush for St. Catharines | | _ | | with First Flush for Sault Ste. Marie | | Figure 2 | 24 | Control Costs for Primary and Secondary Units in | | Figure 2 | 25 | Storm Sewered Areas in Burlington | | Figure 2 | 16 | of Overflow Events | | | | Number of Overflow Events Versus Percent Control109 | | Figure 2 | 4.1 | Total Annual and Initial Capital Costs for Various Levels | | Ciauma C | 10 | of Wet-Weather Pollution Control in Ontario 117 | | Figure 2 | | Area of Data Tabulation in Burlington | | Figure 2 | | Area of Data Tabulation in Guelph | | Figure 3 | | Area of Data Tabulation in Kingston | | Figure 3 | | Area of Data Tabulation in Kitchener | | Figure 3 | | Area of Data Tabulation in Milton | | Figure 3 | | Area of Data Tabulation in St. Catharines | | Figure 3 | 4 | Area of Data Tabulation in Sault Ste. Marie 129 | #### SUMMARY In 1975 the American Public Works Association with the University of Florida conducted a study for the urban Drainage Subcommittee of the Canada-Ontario Agreement on Great Lakes Water Quality. The study was conducted by utilizing methods and procedures developed for a similar study of the United States. Information was supplied directly by the Ontario Ministry of the Environment, Environment Canada, and from field interviews conducted in ten representative cities. The characterization of urban stormwater runoff and combined sewer overflows was taken from the United States study, modified slightly for conditions in Ontario. Information concerning pollution from snow-melt was obtained from Canadian studies. Stormwater modelling using the complete model STORM for four small cities, and similar methods for an additional 52 cities were used to determine storm flows and potential pollution loads. Relationships were developed between population density and pollution control costs for separate and combined sewered areas. Based upon an assumed cost and availability of land by population density, optimization of storage versus treatment was considered. Control of pollution has been generally limited to evaluation of BOD, although other parameters are being controlled at the same time at various degrees of efficiency. The approach used could be adapted for other quality parameters. An important aspect of water quality planning is the tradeoff involved in the decision making process when alternatives such as providing advanced dry-weather treatment and control of stormwater or combined sewer overflows are under consideration. The study indicates that a significant portion of the wet-weather pollution should be controlled prior to initiation of advanced wastewater treatment. The study found that local officials in Ontario were very concerned with flood control aspects of stormflow and were less concerned with quality aspects. Information for detailed individual model studies is not available, nor were plans being made to gather information on key parameters. Thus, local officials should be made aware of the importance of pollution from urban stormwater runoff and combined sewer overflows and the significance of such pollutional discharges compared to their present discharge of treated wastewater treatment plant effluents. The storage requirements for stormflow necessary to economically treat the flow may also serve to alleviate local flooding problems. Likewise, the gathering of data for the stormwater modelling efforts should be of direct benefit in the planning and improvement of the drainage system, a readily perceived benefit. Although the cost calculations may not be accurate to a high degree for an individual city, it is believed that they are reliable for preliminary assessments when considering the entire Provincial urban drainage to the Great Lakes. #### Conclusions - 1. City officials perceive many problems with their stormwater control systems. Local flooding due to hydraulic overloading, infiltration/inflow, deposition of solids, and untreated bypasses were the most common concerns. - 2. Interest in modeling stormwater runoff exists, particularly with regard to quantity predictions. Most authorities appear to not have the necessary resources to conduct studies. - 3. To facilitate modeling, extensive efforts were made to characterize urban land use patterns. The distribution of developed land use in urban areas was taken as: | Residential | 52.5 | |-------------|------| | Commercial | 10.3 | | Industrial | 14.0 | | Other | 23.2 | - 4. The areal extent of combined sewer systems was determined for 49 of the 56 cities based on available data. - 5. The loading factors used to calculate pollutional loadings were based upon a study of available applicable data. However, the overall receiving water quality impact of various sources have not been evaluated in the urban setting. Among the areas where research is minimal are: snow melt, wear products from street surfaces, urban sediments and erosion products, tree and leaf litter, and accumulation from non-street impervious areas. - 6. Primary treatment devices using physical processes such as screening, settling, and flotation have been developed and tested for application with combined sewer overflows. Their application to urban stormflows should be equally effective. BOD removal of efficiency of 40 percent appears reasonable. - 7. For all urban areas of over 10,000 population draining into the Great Lakes, the annual cost of providing 25% BOD removal to urban stormflow and combined sewer overflows using secondary treatment and storage is estimated to cost \$10,861,000 and for 50 percent control, \$31,744,000. - 8. Secondary treatment devices which use biological and physical-chemical processes are suitable for treating both combined sewer overflows and urban stormflow. Contact stabilization is feasible only if the dry-weather flow (DWF) facility is of an activated sludge type. BOD removal efficiency of 85 percent appears reasonable. - 9. The annual cost of providing 75% BOD removal to urban storm-flow and combined sewer overflows using secondary treatment and storage is estimated to be \$95,471,000. NOTE: The above costs are in terms of 1975 dollars. Costs include land, engineering, and sludge disposal but do not include the cost of a sewer system to transport flows to the point of treatment. The primary purposes of the cost estimate were to: (1) develop an order of magnitude for the costs which might be anticipated as control measures are required; and (2) develop a procedure for estimating costs as more refined and specific data are available. - 10. Most DWF facilities offer opportunity for treating wet-weather flow (WWF). The optimal mix of facilities must be determined on a case by case basis. - 11. The optimal cost for WWF facilities is a function of the size of the facility, the unit cost of which decreases with size, and the cost of conveying the flow to the facility, a cost which increases with the size of the facility. Such determinations must be made for specific sites. For the purpose of this study a representative treatment cost was determined. - 12. The optimal sizing of treatment and storage facilities will vary for each area and for the level of control required. - 13. For BOD removals of less than or equal to about 10 percent, the optimal treatment strategy is to use primary treatment devices for a portion of the flow. Secondary treatment device will be required for higher levels of control. - 14. The relationship between level of control and number of overflow events can be predicted by methods which were developed. - 15. To achieve 50 percent BOD removal, combined sewer overflow must be intensively controlled due to their relatively low marginal cost. - 16. Operation and maintenance costs will be affected by the number of hours that the facility is operated. The amount of storage which is provided allows a smaller capacity treatment facility which will operate for a longer period of time to achieve the same relative treatment. For the purpose of this study, annual operation and maintenance costs have been assumed to be 20 percent of the total costs of the treatment facility. Actual costs will vary by the type and size of the individual treatment units. - 17. The assumption of a *first flush*, a high concentration of pollutants in the first portion of the runoff, has a significant effect on cost assumptions. Control costs are about one-third less if a first flush is assumed. - 18. The cost benefit relationship between tertiary treatment of DWF and provision of WWF facilities needs to be investigated prior to instituting either control measure. When analyzed under the assumptions used in this report, it was found that about 16 percent of the stormflow should be controlled before initiating tertiary treatment if additional removal of organics is the purpose of tertiary treatment. - 19. Rooftop and parking lot storage, surface and underground tanks, and storage in treatment units are effective flow attenuation control alternatives. The cost of providing such facilities varies, based upon whether or not they can be designed into new or reconstruction activities and the population density of
the area in which they are to be located. - 20. The unit costs of pollution control are lowest in the unsewered areas because of relatively low storage costs. #### Recommendations 1. Local authorities should be made aware of the benefits and need for urban stormflow planning for quality as well as quantity considerations. Local officials have expressed concern with flooding type problems but exhibited relatively minor interest in pollutional aspects of stormflow. 2. The Ministry of the Environment should take the lead in initiating stormwater modeling efforts. Local officials have shown an interest in modeling but generally do not have the resources to undertake such studies. The results of model studies should be of major assistance in planning for stormflow quantity. 3. Inventories of local demographic characteristics are needed, and compilation made to assist further modeling efforts. Such inventories should include area served by each type of sewer. 4. Reports dealing with runoff and quality predictions should be carefully structured. Quality parameters must be precisely defined along with the averaging method used. Structured demographic data such as population density and land use should be reported for each area where studies are conducted. 5. The cost assessment methodology should be extended to cover additional storage and treatment combinations — cost and performance data for storage and treatment units, and the impact of different storage reservoir operating policies. The relationship between the number of overflow events and percent runoff controlled would be useful. 6. Careful investigation of assumptions used in this study concerning percent imperviousness is needed. Lower unit control costs may be anticipated as it is believed that conservative functions were used. 7. The tradeoff between stormflow control and tertiary treatment should be evaluated on the basis of control of pollutants other than suspended solids and BOD. 8. In conducting receiving water studies to determine the effect of urban stormflow pollution, the water quality indicators that will be used for planning purposes should be identified before the start of data collection. The data collection system must be esigned to obtain representative samples before, during, and after storm events. 9. Modeling efforts require additional work. Such work should include: a. The response of receiving waters to urban runoff and dry-weather flow inputs should be characterized when storage of waste streams is considered in combination with treatment. b. Simplified techniques to approximate the complex mechanisms of pollutant transport in lakes and bays should be developed. 10. Results of present studies of runoff discharges from a completely developed urban drainage basin should be carefully evaluated. Time-related responses of the system as to flow and concentration for a variety of rainfall and runoff events will assist future modeling efforts analysis of discreet samples of runoff to provide quality information, and provide indications of runoff characterization over time. 11. The use of multipurpose units should be given consideration due to the potential cost saving. The following figure includes the estimated cost by percent pollutant (BOD) content for single purpose and multipurpose systems. TOTAL ANNUAL AND INITIAL CAPITAL COSTS FOR VARIOUS LEVELS OF WET WEATHER POLLUTION CONTROL IN ONTARIO. ^{*}Assumes management plan integrating dry weather quality control, wet weather quality control, and wet weather quantity control. #### Chapter 1 #### INTRODUCTION 1.1 Purpose The purpose of the study is to ascertain the magnitude and significance of pollution loadings from urban stormwater runoff. The three principal objectives of the study were: - 1. Prepare planning estimations of the quantity and quality of urban stormwater runoff contributions to the Great Lakes Ontario Watershed. - 2. Develop cost estimates of implementing control and abatement practices with presently available technology. - 3. Transfer the methodology employed in the analysis to technical personnel designated by the subcommittee. 1.2 Scope The American Public Works Association and the University of Florida have previously prepared an assessment of the pollutional effects of urban stormwater runoff and combined sewer overflows. 1,2,3 Data so developed and information from the project officers as well as from field visits to ten Ontario municipalities, was used for this study. Computer models were programmed and exercised to predict pollution loadings and to make overall cost assessments for various storage-treatment combinations at the downstream end of an entire urban catchment. Model outputs allow prediction of given levels of control which may be stated as: - 1. percent of runoff captured, - 2. percent of BOD or other pollutant removed, - 3. Number of overflows per year, and/or - 4. quantity of overflows per year. 1.3 Background COA Research Report No. 26, commissioned by Environment Canada and the Ministry of the Environment, Ontario, entitled "Review of Canadian Design Practice and Comparison of Urban Hydrologic Models," October 1975, by J.F. MacLaren Ltd., 68 describes lucidly the concepts involved in stormwater management. "Stormwater management, considering drainage as a subsystem of the total urban system with environmental aspects and possible benefits, is a relatively new concept. "The traditional storm drainage design philosophy was to collect the runoff and carry it away as fast as possible out to the boundaries of the considered watershed. This was done by connecting all impervious areas such as roofs and driveways to a network of gutters and conduits with considerably higher velocity and density than in the natural drainage system. Stormwater was also considered *clean* and there was no concern with regard to pollution from separate storm-sewers. The design of the storm-sewer system was carried on independently from the studies for flood control from rare events. Negative consequences of this philosophy, such as drastic increase of the peak flows at the outlet of the urbanized watershed, increased incidence of local flooding, depletion of groundwater, considerable increase in the cost of new storm sewerage systems and relief sewers, and the environmental damage are now evident and many attempts for an innovative approach are underway. "The key to the implementation of new management methods, however, is the use of improved hydrologic tools. The design of storage, for example, which is the simplest method for reduction of flow peaks, is possible only through the synthesis of hydrographs. Storage in an urban system is not necessarily concentrated in a reservoir but may be distributed over different elements of the watershed such as parking lots, roofs, elements of the sewer network, etc. Other methods of peak reduction are the retardation of flow by reduction of velocity or increase of infiltrated volumes. The traditional design method for drainage systems, the Rational Method, is aimed at providing only design peak flows and cannot be used for the study of management techniques. Even the use of the Rational Method for the derivation of design peak flows has been subject to numerous criticisms. "Therefore, an increasing number of more sophisticated models dealing with urban stormwater runoff, some of which include quality considerations, are being developed." #### 1.4 Runoff in General Little doubt now exists that urban stormwater runoff represents a significant source of water pollution. It bears importantly upon the quality of our streams, estuaries, lakes, and oceans. Considerable research has taken place to better understand the contamination of runoff in both urban and nonurban environments. Of particular interest, however, is urban surface runoff and its contributions to the deterioration of receiving water quality. The pollutional effects of runoff may be classified in terms of its direct and indirect pollutional contributions. Direct pollutional contributions include those discharged in runoff from separate storm sewer collection systems or contributed within uncontained runoff entering the receiving water by means of and at locations other than clearly defined points of discharge. Indirect pollutional contributions involve point discharges or overflows due to the planned or unplanned addition of stormwater to other wastewater flows. These may include the combined sewer overflows and overflows resulting from uncontrolled runoff inflow into sanitary sewerage systems and, in some cases, excessive infiltration. Traditionally, direct runoff pollutional contributions have been disregarded. Surface runoff was generally characterized as a resource to be *quantitatively* controlled. Drainage and flood control objectives were paramount and runoff pollution was considered nonexistent or at least a low priority problem. Although early investigative efforts in Europe⁴ and the United States⁵ began to suggest the importance of surface runoff pollution, serious consideration of its effects is a fairly recent phenomenon. It was not until a 1964 report by the U.S. Public Health Service that the issue of runoff quality began to assume national importance.⁶ In the ensuing period, a number of research efforts have sought to characterize runoff pollution, its pollutional impacts, and its control and abatement. One approach has been to empirically characterize discharges in various drainage basins across the country. This has often involved the study of drainage flows from urban or urbanizing drainage basins. On occasion, relationships between discharge and effluent quality data have been related to physical basin characteristics and given rainfall events. Inconsistency exists within this body of information, however, due to the variability in research objectives being addressed, the pollutants being evaluated, the sampling techniques employed, and the measurements made. These
studies have identified a number of contaminating constituents. Some may demand considerable amounts of oxygen. Other constituents, such as pathogenic organisms, may produce the risk of infectious disease. Some contaminants are nutrients capable of promoting the growth of algae and aquatic plants within a receiving water. Others bear hazards of toxicity to plants and animals. Still others adversely affect natural stream purification processes or give rise to sediment and solids depositions. From the subsequent water user's point of view, some pollutants cause a water supply to become hard, corrosive, or may render otherwise potable water unacceptable from the standpoint of color, turbidity, odor, or appearance. In the same vein, many of these constituents overtax existing water treatment facilities or make their operation uneconomical. In an urban space, pollutants may be deposited for subsequent pickup by surface runoff or they may be directly introduced into drainage flows. The products of combustion and other suspended materials in the air - particulates and other emissions - may be scavenged from the air by falling rain. Depositions of airborne materials on pervious and impervious surfaces may be removed to contaminate runoff flows. Street paving and surfacing materials; debris from open areas including erosion products, organic plant and animal wastes, and a variety of chemicals such as fertilizers, soil conditioners, and pesticides; transportation related material including depositions of fuel, lubricants, hydraulic fluids, coolants, tire, clutch and brake wear products, exhaust emission particulates, rust and dirt; street litter, household and commercial wastes; and finally snow and ice control, antiskid and corrosion inhibiting materials - all may contribute to the contamination of runoff and its subsequent effects on receiving water quality. Sediment is perhaps the largest single source of water pollution. Current estimates suggest that four billion tons⁷ of sediment makes its way to the rivers of North America annually. Sediments are soils or other surficial materials that are products of erosion and may be transported or deposited by the action of wind, water, snow, ice, or gravity.⁸ Erosion and sedimentation are naturally and continually occurring geological processes. Normally, soils are protected by vegetation and vegetative residue. In areas where moisture is too limited or fertility too low to sustain close-growing vegetation, the land is subject to periodic erosion from intense rains. Man's actions, including construction and many types of urban activity, often remove vegetation in localized areas which tends to increase the rate of erosion. Removal of the protective cover allows the forces of wind and water to act more directly and forcefully on the exposed soil particles. Nonpoint pollutants are organic and inorganic materials entering stormwater from nonspecific or nonlocalized sources in sufficient quantity to constitute a pollution problem. In a rural environment, they include sediment, plant nutrients, pesticides, and animal wastes from cropland, rangeland, pastures, and farm feedlots. Sediment is the major pollutant in terms of volume, and may be a carrier of some pesticides and plant nutrients. In an urban environment, similar pollutants may be experienced from impervious areas as well as those materials that are unique to urban activities, transportation related pollutant sources, air pollution, and so on. A body of knowledge is now being developed through the study of some of the pollutant source characteristics previously described. Although this area of study was developed primarily for nonurban environments and nonpoint discharges, some generalizations are now being applied in urban cases to estimate pollutional effects. The use of the Universal Soil Loss Equation for the estimation of sediment contributions¹⁰ is a good example of a nonurban technology used in appropriate urban applications. In urbanized areas, the pollutional potentials of street litter accumulations have been studied to assess the magnitudes of the pollutants that are available to surface runoff. Considering the developed urban street as a temporary sink for the accumulation of pollutants that are representative waste products of a complex urban environment, methods for estimating the quantity of runoff pollution have been devised under the assumptions that the urban street is a logical extension of the urban drainage system and that the runoff and pollutional contributions from pervious areas will be negligible for most runoff events. This approach to the mechanism of urban runoff pollution may be construed as a special case of the study of contaminant source characteristics. All of these methods represent some of the various mechanisms that have been used for the assessment of the direct pollutional contributions of urban runoff. The priorities associated with the evaluation, abatement, and control of indirect pollutional contributions have generally been much higher. Indirect contributions are overflow pollutional effects due to the admixture of runoff with other wastewater flows. Interest in uncontrolled discharges of combined sewer overflows has generally taken the form of sampling programs and pollutional contributions have been determined through discharge measurements on a case-by-case basis. Similarly, the control and abatement of combined sewer overflows has been developed on a site specific basis. These pollution phenomena are a fact of life. They have been accepted as a matter of fact in the past and their impacts on receiving waters have left their adverse effects on the water resources of the United States and Canada, and on most if not all of the developed nations. The eventual need to control, minimize, or eliminate the pollutional effects of urban and nonurban runoff wastewaters is incontestible. Yet, the costs of achieving this goal are so high that investments must be proven necessary and essential in terms of the benefits to be derived. At the same time that idealistic efforts must be made to overcome runoff pollution, further funds will be required to upgrade dry-weather wastewater treatment standards to reduce or eliminate the impacts of inadequately treated or untreated sanitary flows on receiving waters. In addition, it may be necessary to control, at least in some measure, the pollutional impacts of nonurban surface drainage wastes runoff on the same streams, lakes, and other water sources which are affected by wastewaters from urbanized areas. Of overriding importance in establishing urban wastewater policies for the future is knowledge of the pollutional potentials of stormwater discharges, combined wastewater overflows, and dry-weather flow spill constituents, and their comparative or relative impacts on receiving waters, and also clarification of the "natural" cleanliness or pollution condition of natural streams and other receiving waters before any urban runoff waters reach them. In order that the present study be wholly practical, commentaries on pertinent information gained from field interviews in Burlington, Guelph, Kingston, Kitchener, Milton, St. Catharines, Sault Ste. Marie, Thunder Bay, Toronto, and Windsor, are contained in Chapter 2. Land use information relating to population, land area and location, and population density and land use distribution are examined in Chapter 3. Utilizing such demographic information together with pollutant loading information set out in Chapter 4, a province-wide cost assessment was prepared, which assessment is capable of being improved or expanded as further data becomes available, all as detailed in Chapter 5 of the main report. #### Chapter 2 #### THE PROBLEM IN ONTARIO Problems associated with receiving water pollution from urban stormwater runoff have slowly become recognizable because sanitary waste discharges from local authorities have been corrected by wastewater treatment facilities. Combined sewer overflows and stormwater discharges have been identified as having the potential for creating major pollutional impacts on receiving waters. In Ontario it was found that few local authorities were concerned with or had identified problems associated with stormwater runoff at this time. Rather, attention was primarily focused upon problems associated with flood control aspects, such as flooded basements and overloaded sewers. #### 2.1 Known Sewer System Problems As Perceived in the Province On-site interviews were conducted at the ten representative cities shown in Figure 1 by a trained representative of the APWA Officials of the Ministry of Environment were present for many of the sessions. The interview outline is contained in Appendix III. A broad range of questions were asked to determine basic information and to allow the ministry to gain insight into local perceptions of the stormwater pollution problem. The survey attempted to identify the extent of local problems with four general conditions: - a. Hydraulic overloading of sewers - b. Existence of System Bypasses - c. Solids Deposition in Sewers, and - d. Infiltration/Inflow problems. Hydraulic overloading is caused by either inadequately sized sewers or excessive flows. The results of overloading are generally bypassing of treatment facilities. System bypasses allow excessive flows, or combined sewer overflows to escape from the system without treatment. Solids deposition in sewers results from the use of large or combined sewers or flat grades or poor interior surfaces. Solids are deposited during dry weather and are then flushed out of the system during storm events. Infiltration/Inflow represent a multitude of problems which allow either surface or groundwater to enter the system and contribute to bypasses or excessive flows at treatment facilities. All of these problems may be interrelated — all affect receiving water quality. Table 1 summarizes the responses received as
either major or minor, or as not a problem. Hydraulic overloading due to size of pipe and existence of Infiltration/Inflow conditions appears to be the major problem. #### 2.2 General Comments From Field Interviews During the course of the field interviews many relevant comments were made by local officials which are of importance in FIGURE 1 ONTARIO-GREAT LAKES BASIN TEST CITIES. TABLE 1 SURVEY SYSTEM PROBLEM AREAS IDENTIFIED | | | | Solids | | | |------------------|------------|------------|--------------|---------------|--| | | Overloaded | | Deposited | Infiltration/ | | | City | Sewers | Bypasses | In Sewer | Inflow | | | Burlington | X | _ | - | X | | | Guelph | 0 | 0 | X | X | | | Kingston | _ | . X | 0 | _ | | | Kitchener | 0 | - | _ | × | | | Milton | - | _ | | × | | | Sault Ste. Marie | X | 0 | _ | X | | | St. Catharines | X | - | 0 | _ | | | Thunder Bay | X | - | X | · X | | | Toronto | X | × | X | X | | | Windsor | X | X | _ | X | | Key: X identified general problem - O identified minor problem - not identified as problem Source: APWA Survey, 1975 evaluating the overall problems in the province. This section will highlight the major comments. #### 2.21 Windsor The City of Windsor encounters problems in the area known as Riverside. Riverside is served by a separate system with many interconnections. In some areas the sanitary sewer is laid directly under the storm sewer with a common manhole and a plate at the invert of the storm sewer. This leads to many types of problems: leakage due to improper plate replacement, missing plates, etc. Tapping into the sanitary sewer system is also very difficult. There are a number of sewer sections that are substantially deficient in hydraulic capacity. Storm runoff causes flooding in basements and ponding on the streets. Storm drainage facilities are inadequate in some parts of the cities. Most of the sewer problems occur in early and late winter. Windsor's past experience in receiving grant-in-aid funds has been good and the city would like to receive additional grants. City officials prefer the Central Mortgage and Housing Corporation grants because of the simple grant requirements as compared to provincial grants from Ontario Ministry of Transportation for stormwater drainage projects. #### 2.2.2 Burlington Burlington has established an allocation procedure for funding corrective work. However funding is considered inadequate. Many sewers in the older areas are overloaded, primarily due to underdesign. Burlington also has serious infiltration problems. Infiltration has resulted from open joints and poor bedding. Many subdivisions between 1955/1960 were built with only sanitary sewers; open ditches are used for storm drainage. Basement and backyard flooding in the older areas is attributed to storm sewers backing up due to high rates of inflow and infiltration. This situation generally occurs during the January thaw. As far as abatement of runoff is concerned, Burlington uses neither storage nor detention facilities. There have been no studies of stormwater quality. #### 2.2.3 St. Catharines The financial arrangements for storm and sanitary wastewater works in St. Catharines appear good. However, programs are cut to meet the monies available. Grants-in-aid may act as a restraint as well as an encouragement. Hydraulic overloading shows up in areas of recurrent flooding. This is believed to be due to the undersizing of the combined sewers. The three-year cleaning frequency of the sewers appears to be effective. There has been no concurrent improvement of receiving waters although a long-term program is under study which includes designs for watercourses. There is no formal receiving water sampling program. There has been some effort to verify volumetric and flow gauge data obtained from their sampling activities. Local officials appear interested in runoff planning and hope to learn how to apply stormwater management models for input to their proposed study. Heavy infiltration/inflow is believed to be the cause of widespread flooding all over the city. The watercourses were designed with inadequate cross-sectional areas. The problem is under study with redesign planned in the near future. The practice of building extensions on the separated sewers and then letting these sewer extensions drain into the combined sewers has only aggravated the pollution problem. The bypassing of sewerage during rainstorms is due to the hydraulic inadequacies of the system. This will be corrected by a planned program of improvement. #### 2.2.4 Kingston The financial arrangements for storm and sanitary wastewater works are fair to good. The city relies generally upon the Provincial Ministry of Transportation and Communication for grants-in-aid. They have found that other grant programs involve considerable overhead and therefore they are avoided unless the advantages are substantial. Infiltration and inflow are high, amounting to five to seven times dry-weather flow (DWF) during peak wet-weather flow periods (WWF). The causes are probably bad joints on sewers and laterals, broken sewers, and bad backfill practices. Basement flooding is only a minor problem because of four things: 1) the construction of additional storm sewers, 2) the elimination of the cross connections between storm and sanitary sewers, 3) disconnection of roof leaders, and 4) improved sequencing and operation of pumps. Kingston expressed some interest in runoff planning. They have no quantity/quality management investigation planned or running at the present time. They appeared to be very interested in runoff planning if Ministry-level assistance were available. #### 2.2.5 Thunder Bay Monies received from the Federal Central Mortgage and Housing Corporation are not substantial, about 16 percent of system expenditures. The city has great praise for the Central Mortgage and Housing Corporation and the simplicity of the grants application. Thunder Bay has experienced little difficulty in securing grants. There are no real legal difficulties in requiring the removal of the roof leader connections. However, no attempt has yet been made to enforce removal. There are many inadequately sewered sections of the city. Stormwater collection systems have not always been installed. Basement flooding is prevalent in the Fort Williams area. The city is constructing sewer system relief bypasses with the hope that such construction will eliminate the need for additional storm sewers. #### 2.2.6 Sault Ste. Marie Allocation of money for storm and sanitary wastewater works in the past appears to have been at a reasonable level. The city has received many grants. Sault Ste. Marie has no fixed program for programmed maintenance of their sewer lines, however, the city department cleans the entire system once every three years. Planning activities for quantity/quality have not been conducted. However, Sault Ste. Marie is very responsive to the idea of using runoff planning in the future. Judging from the records of the wastewater treatment facility, infiltration and inflow must be assumed to be high. A general infiltration problem exists all over the city. Flooding of streets is not a serious problem. #### 2.2.7 Toronto Grant experience has been satisfactory. The relief afforded by the road storm sewers is not sufficient. However, the city had not anticipated major relief from such storm sewers. Stormwater runoff causes underpasses and basements to flood, due primarily to hydraulic overloading. Both the Metropolitan and Toronto governments are interested in runoff planning and would provide input to a study sponsored by the Ministry. Toronto has computer capacity and good programmers, but increased sophistication is required. The use of the Ministry's assistance is, of course, a policy matter, but it is believed that a cooperative program would be well received. Toronto presently has no runoff abatement plans. Storage or detention is not applicable at the moment and, therefore, likely locations are not known. #### 2.2.8 Kitchener The City of Kitchener has enjoyed a good relationship with the federal government. Kitchener's record for applying for grants and obtaining them has been good. A study by Proctor and Redfern, Consulting Engineers, on bottlenecks, both present and potential in the sanitary collection system, should identify and allow correction of areas with any major solid deposition problems. Consultants have recommended that an open storage reservoir be built in a natural catchment by damming a branch of Schneider Creek. This would in effect reduce hydraulic flows in that particular branch of Schneider Creek, hence, act as a storage/detention basin. The basis for such a recommendation is the Grand River Conservation Authority report. Roof leader connections are troublesome. There is a history of allowing footing drains to be connected to the sanitary sewers because the storm drains are so shallow. Insofar as the disconnection of roof leaders are concerned, enforcement has not been attempted. There is great expressed interest in learning how to apply runoff planning tools to the Kitchener area. 2.2.9 Guelph Guelph's past experience with the receipt of grants-in-aid has been basically good, although paperwork requirements are considered to be too extensive. In the older areas ponding is a problem because sewers are inadequate. The water usage per capita is increasing and relief trunk sewers may be required. It is believed that a nonlinear rate structure would help discourage excess use. Local deficiencies are recognized in certain areas; sanitary and storm sewers, infiltration, and inflow to name a few. Local officials are interested only in available runoff planning tools if the cost-benefit is apparent. Local officials would be able to produce local inputs by providing manpower for monitoring. #### 2.2.10 Milton The Town of Milton has experienced severe problems with its sewerage system. The main reason is
because of the incomplete system in the old part of town. This area is served by ditches and culverts. The town hopes that this problem will be eliminated in the near future. Basement flooding is usually caused by sanitary sewers backing up through the foundation drains. There are no combined sewer overflow regulators and there are no detention facilities. Local authorities are interested in runoff planning, but through the town's consulting engineers. As far as computer capacity is concerned, there is no available source with a sufficient memory, and they would happily use the assistance of the Ministry of the Environment. #### 2.3 Climate Climatic information was obtained which covered altitude above sea level, mean annual temperature, mean maximum daily temperatures, mean minimum daily temperatures, daily range of temperatures, extreme low and high temperatures, mean annual precipitation in inches, mean annual water surplus in inches and mean daily temperature. Three government publications were consulted in this connection. They are — "The Climate of Southern Ontario," Climatological Studies No. 5, Environment Canada, Toronto, Ont., 1974; "The Climate of Northern Ontario," Climatological Studies No. 6, Environment Canada, Toronto, Ont., 1968; and "The Climate of the Great Lakes Basin," Climatological Studies No. 20, Environment Canada, Toronto, Ont., 1972. A detailed listing of all the factors are included in the summary of responses from the ten cities furnished separately and are not included in this report. Selected factors are shown in Table 2. It was ascertained from a study of the climatic data that in some cases although the rainfall frequency for a particular year was typical, the snowfall was not. Because of this, one year of data from four cities, Burlington (1973), St. Catharines (1973), Kingston (1965), and Sault Ste. Marie (1969), were chosen as being typical for the computer analysis. This selection of four cities to represent the whole region was deemed adequate because of the fact that monthly precipitation below 44° latitude is very stable, while above 44° the trend is towards a peak in the summer months. Snowfall was also an important component of Ontario's precipitation total, ranging from a low of 4.0 in. (10.2 cm) water equivalent near Windsor to a high of 14.0 in. (36 cm) north of Sault Ste. Marie. TABLE 2 POPULATION, ALTITUDE, AREA, AND CLIMATE OF INTERVIEWED CITIES | | | Area/ | | Annual | | | Mean | |----------------|-----------------|-------------|----------------|-------------|----------|------------|--------| | | | 1,000 | Altitude | Precipit'n | Snowfall | | Temp | | | Pop | acres | feet | inches | inches | Days of | F° | | City | 1973 | (hectares) | (meters) | (meters) | (meters) | Precipit'n | (C°) | | Burlington | 91,554 | 13.8 | 300 | 32 | 65 | | 45 | | | | (5.6) | (91.2) | (0.81) | (1.65) | | (7.2) | | Guelph | 63,009 | 11.3 | 1,150 | 33 | | | 44 | | | | (4.6) | (350) | (0.84) | | | (6.67) | | Kingston | 59,289 | 5.7 | 245-355 | 35 | | | | | | | (2.3) | (75-108) | (0.89) | | | | | Kitchener | 121,441 | 22.1 | 1,100 | 34 | | | 44 | | | | (8.9) | (335) | (0.86) | | | (6.67) | | Milton | 15,667 | | 650 | 32-39 | 48 | | 45 | | | | | (198) | (0.81-0.99) | (1.2) | | (7.2) | | Sault Ste. | | | | | | | | | Marie | 77.501 | 12.7 | 700 | 37 | 112 | | 40 | | | | (5.1) | (213) | (0.94) | (2.8) | | (4.44) | | St. Catharines | 112,299 | 16.3 | 300-800 | 33 | 45 | | 48 | | | | (6.6) | (91.3-243) | (0.84) | (1.1) | | (8.9) | | Thunder Bay | 105,954 | 141 | 645 | 29 | 87.0 | 141 | 37. | | | | (57.1) | (196) | (0.74) | (2.2) | | (2.8) | | Toronto | 676,363 | 24.0 | | 31.0 | 56.5 | 134 | 47 | | • | | (9.7) | | (0.79) | (1.4) | | (8.3) | | Windsor | 199,25 0 | 26.3 | | 33.9 | 41.0 | 137 | 52 | | | | (10.6) | | (0.83) | (1.03) | | (8.9) | #### 2.3.1 Windsor From the book "The Climate of Southern Ontario" the following statistics are taken for the City of Windsor. The mean annual temperature is 48°F (9°C). The extreme low temperature for the year has been recorded as -27°F (-33°C) while the extreme high temperature has been recorded at 106°F (41°C). The mean annual precipitation is 30 inches (76 cm), the mean annual snowfall is 40 inches (102 cm). The annual water surplus in inches is somewhat lower than the other parts of Ontario, being in the order of 10 inches (25 cm). #### 2.3.2 Burlington In Burlington the climatic area is described as the Lake Ontario shore. The city has an altitude of about 300 feet (91 m) above sea level. The mean annual temperature is 45°F (7°C). The extreme low temperature is -30° (-34°C) and the extreme high is 104°F (40°C). The mean annual precipitation is 34 inches (86 cm) and the mean annual snowfall is 65 inches (165 cm). The mean annual water surplus is about 13 inches (33 cm). #### 2.3.3 St. Catharines St. Catharines straddles the Niagara escarpment. This deserves special attention because of its influence on the climate of the contiguous region. The escarpment extends from Queenston, where it is a 300 foot (91 m) bluff along the south shore of Lake Ontario through Hamilton northward to Collingwood on Georgian Bay where it is almost 8,000 feet (2,440 m) high. The annual precipitation is 31 inches (79 cm). The mean annual temperature is 48°F (9°C). The extreme low temperature is -16°F (-27°C) and the extreme high temperature is 104°F (40°C). The mean annual snowfall is 45 inches (114 cm). The altitude above sea level is approximately 300 feet (91 m). #### 2.3.4 Kingston Located in Southern Ontario, Kingston's climate is moderated by the Great Lakes. Hence, Kingston's summers are cooler and winters milder than those in eastern Ontario or in the United States west of the Great Lakes. In July the mean temperature range is from 64°F to 70°F (17.7°C to 21.1°C). The corresponding mean temperature in January is 18°F to 24°F (-8°C to -4°C). The effect of the lakes, particularly in the summer when sunny days bring cool lake breezes, tends to lower the maximum temperatures. Precipitation is evenly distributed throughout the year with annual precipitation ranges from 30 to 40 inches (76 to 102 cm). The altitude above sea level is about 300 feet (91 m). #### 2.3.5 Thunder Bay Thunder Bay has an altitude of 600-1,400 feet (183-427 m) above sea level. The mean annual temperature is 36°F (2°C). The mean annual minimum temperature is 40°F (4.4°C). The mean annual snowfall in inches is 73 (185 cm) and the water surplus in inches is 5 (13 cm). #### 2.3.6 Sault Ste. Marie The information obtained about Sault Ste. Marie is taken from "The Climate of Northern Ontario." The statistics are as follows: altitude, about 700 feet (213 m); mean annual temperature is 40°F (4.4°C); mean annual minimum temperature is -30°F (-34°C); the mean annual precipitation in inches is 33 (84 cm); and the mean annual water surplus in inches is 13 (33 cm). The mean annual snowfall is 112 inches (284 cm). #### 2.3.7 Toronto Toronto like the rest of the cities around the Great Lakes area has its weather significantly altered by the Great Lakes. The usual general circulation over Ontario gives Toronto a temperature range from 10°F (12°C) (January) to 70°F (21°C) (July) and a mean annual rainfall of 26.7 inches (68 cm). The winters are cold and dry with an annual snowfall of 59.2 inches (150 cm). The mean annual water surplus is about 11 inches (28 cm). #### 2.3.8 Kitchener Kitchener is located in the climatic area known as the Huron Slopes. The mean annual temperature is 44°F (6.6°C). The extreme low temperature recorded is -43°F (-42°C). The extreme high temperature is 102°F (39°C). The mean annual precipitation varies between 32 and 39 inches (81 and 99 cm). The mean annual water surplus is 6 inches (15 cm). The altitude above sea level is about 1,100 feet (336 m). #### 2.3.9 Guelph The City of Guelph is also situated in the climatic region known as the Huron Slope and has a mean altitude above sea level of approximately 1,150 feet (351 m). The mean annual temperature is 44°F (6.6°C). The extreme high temperature has been 104°F (40°C). 2.3.10 Milton The mid-annual temperature is 45°F (13°C). The daily range in temperatures are 18°F (-7°C) in January and 22°F (-5°C) in July. The extreme low temperature has been recorded as -39° (-39°C), the extreme high is 105°F (40.5°C). The mean annual precipitation is given as between 30 and 38 inches (76 and 97 cm) of rainfall. The mean annual water surplus is 12 inches (30 cm). The mean annual snowfall is 48 inches (122 cm). The altitude above sea level is approximately 650 feet (198 m). #### 2.4 Wastewater Treatment and Collection Systems Wastewater treatment facilities were also examined. As nutrient removal (phosphates) is required by Ontario Regulations most plants are of the secondary type (activated sludge plus physical chemical). For most of the cities examined the responsibility for wastewater treatment is vested either in the Provincial Ministry of Environment with costs borne by the municipality served or in the appropriate regional government. Exceptions are Guelph, Windsor, and Kingston where all collection and treatment is a city responsibility. In Toronto, wastewater treatment is vested in the Municipality of Metropolitan Toronto. Table 3 shows the prevailing situation. A summary by cities of treatment plant type, hydraulic capacities and percentage removal of pollutants is included in Table 4. # TABLE 3 RESPONSIBILITY FOR SEWER SYSTEM Responsibility For | | Responsibility For | | | | | | | |------------------|---|-----------------|------------------------------|--------------------------------|--|--|--| | City | Sanitary
Sewers | Storm
Sewers | Combined Sewers | Wastewater
Treatment | | | | | Windsor | City | City | City | City · | | | | | Burlington | Region (Halton) | City | N/A | Region | | | | | St. Catharines | Region (Niagara) & City depending on size | City | Shared
 Region | | | | | Kingston | City | City | City | City | | | | | Thunder Bay | Ministry of the Environment | City | City | Ministry of the
Environment | | | | | Sault Ste. Marie | City | City | City | Ministry of the
Environment | | | | | Toronto | Shared according to size with Mun. of Metro Toronto | Shared | Shared with
Metro Toronto | Metro
Toronto | | | | | Kitchener | City | City | City | Region (Waterloo) | | | | | Guelph | City | City | N/A | City | | | | | Milton | Region (Halton) | Town | N/A | Region | | | | TABLE 4 SUMMARY OF WASTEWATER TREATMENT FACILITIES | | | | Total I | Viean | Efficiency | Efficiency | Efficiency | |------------------|---------------------|---------------|---------------|---------|--------------|--------------|--------------| | | Type | Number | Daily I | Flow | of Removal | of Removal | of Removal | | | of | of | Treate | | BOD 5 | SS | Nutrients | | City | Treatment | Plants | MIG | M^3/S | In % | ln % | In % | | Burlington | Act Sludge | 3 | 1.57 | .083 | 94.5 | 90.8 | 55.4 | | • | | | 10.6 | .557 | 85. 6 | 78. 3 | 82.4 | | • | | | 1.55 | .08 | 55.4 | 40. 8 | 27.1 | | Windsor | Primary | 2 | 22.1 | 1.16 | 48. | 62. | 70. | | | Activated
Sludge | | 5.0 | .263 | 74. | 80. | 41. | | St. Catharines | Activated
Sludge | 2 | 15.4 | .81 | 86. 2 | 90. 5 | 58. 9 | | | Primary | | · | | 57. 0 | 47.6 | 12.8 | | Kingsto n | Primar y | 1 | 11.0 | .58 | 50.0 | 75. 0 | _ | | Thunder Bay | Primary | 2 | 6.01 | .32 | 23. | 49. | 22. | | • | Primar y | | 6.20 | .33 | 22. | 5 2. | 28. 5 | | Sault Ste. Marie | Primary | 1 | 9.90 | .52 | 43. | 6 6. | 38. | | Toronto . | Conventional | 3 | 69. 0 | 3.63 | 96. | 95. | 87. | | Metr o | Secondary | | 176. 0 | 9.25 | 82. | 91. | 93. | | | | | 8.1 | .43 | 87. | 93. | | | Kitchener | Primar y | 1 | 14.3 | .75 | 89.(?) | 90.(?) | | | Guelph | Conventional | 3 | Not Opera | ting | - | | | | · | Secondary | | 3.0 | .16 | 77. | 90. 5 | _ | | | | | 3.0 | .16 | 81.5 | 93. | - | | Milton | Conventional | | | | | 0.4.7 | | | • | Secondar y | 1 | 1.0 | .053 | 89.7 | 94. 7 | - | Receiving waters are as follows: Windsor Detroit River to Lake Erie Burlington Lake Ontario Kingston Cataraqui River to Lake Ontario Thunder Bay Kaministiqua River to Lake Superior Saulte Ste. Marie St. Mary River to Lake Huron Toronto Don & Humber Rivers to Lake Ontario Kitchener Schneiders Creek & Speed River to Lake Erie Eramosa River to Lake Erie 16 Mile Creek to Lake Ontario St. Catharines Creeks to Lake Ontario #### 2.4.1. Windsor Guelph Milton Windsor is basically served by two sewage treatment plants. One is served by combined sewers; the other is served by separate sewers. The one located in West Windsor has a capacity of 21 mgd, imp, (1,095 l/sec) while the other, located in Little River, Ontario, has a capacity of 4.5 mgd (235 l/sec). The Little River is an activated sludge plant with phosphorous removal. Dry-weather flow goes directly into the interceptor sewer. The West Windsor plant has summary treatment along with phosphorous removal. The Little River plant is equipped with pumping stations, grit chambers, sedimentation basin, aeration tanks, secondary sedimentation, vacuum filters, and centrifugation. #### 2.4.2 Burlington The sanitary wastewater works in Burlington have recently been turned over to the regional government. The operation and maintenance of the storm sewer system beglongs to the city. The operation and maintenance of the sanitary sewer system is the responsibility of the region. There are no combined sewers in Burlington, but there are separate storm sewers and open channels. At this time there are no detention or retention facilities. The mean daily flow in Burlington's three wastewater treatment plants are: 1) Drury Lane, 1.57 mgd (82 l/sec); 2) Skyway, 10.6 mgd (552 1/sec); and 3) Eliz Gardens, 1.55 mgd (81 1/sec). The treatment unit processes that they employ are: 1) Drury Lane-conventional activated sludge; 2) Skyway-extended aeration, aerobic digestion, and sludge thickening; and 3) Eliz Gardens—conventional activated sludge. #### 2.4.3 St. Catharines In the City of St. Catharines there are two types of sanitary sewers: regional trunk sanitary sewers and local sanitary sewers. The wastewater treatment plant is solely the responsibility of the region with charges being made on a user basis. The operation and maintenance of the storm sewers is vested in the city. All the pumping stations are maintained by the region at the cost of the city. Regulator facilities are set to overflow when the wet-weather flow exceeds 2.5 times the dry-weather flow. There is no detention. However, the city has developed a project proposal for evaluation of the performance of a combined wastewater retention facility. In areas where there are combined sewers, restricting runoff from roofs and holding on open spaces is practiced. The Port Weller treatment plant has a mean daily flow of 15.4 mgd (818 l/sec). Port Weller treatment process is activated sludge while Port Dalhousie has a primary treatment unit. #### 2.4.4 Kingston For Kingston, the wastewater treatment works' capacity is about 19 mgd (990 l/sec). Treatment unit processes consist of pumping stations, grit chambers, sedimentation tanks, and digesters. The effluent is chlorinated and discharged into Lake Ontario. Effluent strength for BOD is between 5-100 parts per million. Nutrients are about 5-7 parts per million and are mostly phosphates. The efficiency of the treatment process is approximately 5-50 percent for BOD and 75 percent for suspended solids. Limited size detention tanks are under consideration. Chlorination is proposed if the detention tanks are used, but there are no plans currently for the wastewater treatment plant. The average flow for the plant is 11.0 mgd (574 l/sec). A primary treatment with separate sludge digestion is used. #### 2.4.5 Thunder Bay In Thunder Bay the sanitary wastewater works is the responsibility of the Ministry of Environment of Ontario with the sanitary wastewater sewers being designed by the city and operated by the Ministry. The design construction and operation of the sewage treatment plant is also the responsibility of the Ministry. Thunder Bay has two wastewater treatment plants, South Plant, 6.01 mgd (314 l/sec) and North Plant, 6.20 mgd (324 l/sec). The expansion of the South Treatment Plant is underway and the North Plant is to be abandoned shortly thereafter. The South Treatment Plant contains screening, pumping, grit removal, primary sedimentation, chlorination, and two stage separate sludge digestors. There are no detention facilities being planned at this time. #### 2.4.6 Sault Ste. Marie Sault Ste. Marie is served by a separate storm sewer and a sanitary sewer running side by side and entering a common manhole. The wastewater treatment plant including the pumping stations are maintained by the Ministry of the Environment. Insomuch as dry-weather treatment is concerned, effluent flows can be adjusted from the lift stations as necessary, and through the bypass capability — these are used in emergency purposes less than once a year. There are no detention facilities in use with the exception of a conservation scheme known as the Fort Creek Conservation Dam. There are no control activities for wet-weather flow. The mean daily flow is 9.90 mgd (516 l/sec). The plant uses comminution, grit removal, primary sedimentation, and chlorination as treatment processes. #### 2.4.7 Toronto In Toronto there are two classes of sewers, those that are owned and operated by the city and the Metro sewers. The Metro sewers are all trunk sewers that serve 1,000 acres (405 ha) or greater. The city sewers come under the jurisdiction of the Department of Public Works of Toronto. All the wastewater treatment works are controlled by the Metro Corporation and the same division prevails insofar as operations maintenance and capital construction. Ninety-five percent of the city is served by combined sewers. There is a separate sewer district covering Swansea (discharges into the Humber plant) and Forest Hill Village (discharges into the Toronto system). There are no wet-weather control activities at this time. The mean daily flow in Toronto's three wastewater treatment plants are: 1) Humber, 69.0 mgd (3,600 l/sec); 2) Main 176.0 mgd (9,180 l/sec); and 3) North, 8.1 mgd (422 l/sec), all employ conventional secondary treatment. #### 2.4.8 Kitchener In Kitchener all sewers are the responsibility of the city. The treatment works are the responsibility of the regional government. All sewage treatment plants, all of which are called regional, are, for all intents and purposes, provincial sewage treatment plants. There are very few combined sewers, as there are separate sanitary and storm sewer systems. The treatment plant has been under continuous expansion. Two pumping stations have bypasses to the rivers. The sewage treatment plant bypass operates only when a breakdown takes place. The effluent is chlorinated. Storage methods are not used. None of the other techniques such as tanks or detention facilities are employed. The mean daily flow of Kitchener wastewater treatment plant is 14.3 mgd (746 l/sec), utilizing secondary treatment. 2.4.9 Guelph Guelph has the responsibility for the design and construction of the stormwater facilities. The city is also responsible for the wastewater treatment works. This is unusual in Ontario. The plant is a secondary treatment plant with phosphorous removal. In addition the effluent is chlorinated. Operation and maintenance of the plant, as well as the storm and sanitary sewer systems, is the responsibility of the city. Wastewater treatment works handle a mean daily flow of about 8.5 mgd (433 l/sec) and peak is somewhat higher. The flow is gravity fed to the plant,
and the plant is a conventional activated sludge plant. Actually there are three plants in Guelph, but all are at one geographical location. One has a capacity of 2 mgd (104 l/sec) and is the oldest of the plants; two newer plants have a capacity of 4 mgd (208 l/sec). The 2 mgd (104 l/sec) capacity plant is presently held as a standby. Detention and retention basins will be constructed during the 1975-1976 season. #### 2.4.10 Milton Milton has a conventional activated sludge and with tertiary treatment using lime. This treatment process is a regional responsibility. The rated capacity is 1.58 mgd (82.4 l/sec) the average daily flow is 1.0 mgd (52 l/sec). The raw sewage has a five day BOD of 151, suspended solids of 195, nitrogen of 51, and a phosphorous total of 7.5. The final effluent has a five day BOD of 6.5, suspended solids of 24, nitrogen of 7.5, and phosphorous of 2.9. The percentages of removal are therefore 95.6, 37.7, 85.3, and 61.3, respectively, for five day BOD, suspended solids, nitrogen, and phosphorous. The Ministry of the Environment is committed to allowing a connected population of 18,000 persons to contribute to the existing plant. Milton has established a subdivision priority list to increase the population to 18,000. A further expansion to 2.84 mgd (148 l/sec) will allow for an additional 10,000 persons. Treatment facilities at the plant are very erratic due to pulsing caused by effluent pumps. There are no wet-weather controls and detention facilities in Milton at this time. The town, however, still physically operates and maintains its own sewers. #### 2.5 Development Characteristics Key city development characteristics are listed in Table 5. As noted, most cities have considerable industry. #### 2.5.1 Windsor Situated across the river from the city of Detroit, Windsor is Canada's counterpart of Detroit as an automotive center. Plants of Ford, Chrysler, General Motors, and American Motors are in the city. Windsor is also a distilling center. There are light support industries and the University of Windsor within the city boundaries. #### 2.5.2 Burlington In Burlington secondary industries predominate along with service industries of the "clean" type. Slater steel was expected to come into Burlington in late 1975. Population growth is expected to stay uniform. #### 2.5.3 St. Catharines St. Catharines is strongly supported by the automotive industry. There are some electronic plants, a winery, and canning and agricultural industry sidelines. The construction industry is prominent. The western part of the city is devoted to agricultural use, fruit raising and vineyards, some sparse commercial and industrial uses, and some suburban-type residential development. There are no utilities other than electric and communication. The built up area contains mixed commercial, industrial, and residential developments. #### 2.5.4 Kingston Kingston has little local industry. There is a sparse amount of light industry including a dairy. Kingston is a university center and includes Queens University, The Royal Military College of Canada, and The St. Lawrence Community College. It is also a tourist and historical center serving the Thousand Island region in the St. Lawrence River. #### 2.5.5 Thunder Bay . Thunder Bay is one of Canada's main grain shipping ports. There are four large pulp and paper mills, a major steel and iron fabricating # TABLE 5 DEVELOPMENT CHARACTERISTICS | City | Major Industries | Growth Expected | |------------------|---------------------------|----------------------| | Windsor | Automotive (Primary) | Moderate | | | Distilling | | | Burlington | Secondary types | | | | Steel | Uniform | | St. Catharines | Secondary Automotive | | | | Agricultural | | | | Electronic | Moderate | | Kingston | Sparse with aluminum | | | | and paint industries | | | | in adjacent township | Small | | Thunder Bay | Grain shipping & storage | | | | Pulp & Paper | | | | Steel & Iron | Moderate | | Sault Ste. Marie | One prominent industry | | | | Steel | Uniform | | Toronto | Almost every conceivable | | | | type of industry (primary | Uncertain due | | | and secondary) and | to political | | | commercial endeavor | development disputes | | Kitchener | Furniture manufacturing | | | | Automotive (secondary) | | | | Rubber | | | | Meat Packing | | | _ | Shoe manufacturing | Brisk | | Guelph | Diversified secondary | Steady - at | | • • • • | | about 4% p.a. | | Milton | Steel (secondary) | Brisk | manufacturing plant, and some chemical manufacturers. Industrial support industries include saw mills, a malting plant, and an industrial grain product plant. The city is a tourist center and serves as gateway (eastern) to northwestern Ontario. It is well supplied with service industries and is the location of Lakehead University and Confederation College. It has shipyards. #### 2.5.6 Sault Ste. Marie Sault Ste. Marie is virtually a one industry town with a steel company dominating. Smelted ore is shipped by rail and water to Sault Ste. Marie from Wa Wa to the north, and from the Mesabi and Atikokan ranges to the west by rail and water. There is a local iron foundry and numerous service industries. #### 2.5.7 Toronto In Toronto, one of the most difficult things is predicting changes in land use because of the development dispute that is going on in the various segments of the city. Toronto has a very wide diversity of land use. Residential density varies from a few persons per acre in such communities as Rosedale to as high as 600 persons per acre (1,480 persons per hectare) in St. James Town. Toronto is also an important transportation center and a port city. The City of Toronto is distinct from Metro Toronto, which is responsible for a variety of area-wide services. Major economic activities may be described as business, commerce, manufacturing, transportation, which literally cover the entire field of production of modern goods and services, Toronto being the prime supplier for all of Canada. #### 2.5.8 Kitchener Kitchener is a heavily industrialized city. Major economic activities include furniture manufacturing, automotive manufacturing, tire manufacturing, meat packing, shoe manufacturing, and other industries. Commercial activities are average, as are service activities. #### 2.5.9 Guelph Guelph contains a wide range of commercial, industrial, and cultural activities. A sound economic base is apparent. Present indications suggest that the population should reach 130,000 by the year 2000. The population of Guelph is increasing at an annual rate of about four percent. The northwest area of the city has not been developed while the remainder of the city has been developed. #### 2.5.10 Milton Development pressure is very heavy for the Town of Milton. The urban area of Milton still contains about 90 percent agricultural open space. Major activities in the area include a screw fastening company and a steel products company. There are many other smaller industries scattered throughout the town. #### 2.4 Summary Four main problems, namely, hydraulic overloading, system by-passing, solids deposition, and infiltration-inflow in the ten Canadian cities have been confirmed. Undoubtedly there are many other problems such as flooding and runoff, but the problems commented upon in this report appear to be most prevalent in almost all the cities of Ontario. Broadly characterized, the problems which appear to exist are common to many cities in the United States. Inasmuch as there has not previously existed a major reason for attention to many of the problems of sewer overloading, by-passing, and such, little attention apparently has been given to the sewer system — the buried "conducts of civilization." The general opinion was that grants can act either as a restraint or as an encouragement. When a grant policy is in effect, programs are designed according to the availability of funds. A summary of Federal and Provincial Grant regulations are contained in Appendix IV. Local authorities have generally had favorable experience with Federal (C.M.H.C.) and Provincial (M.O.T.&C.) grants. Interest in runoff planning and management is at a high level and all communities seem willing to cooperate with the technology transfer proposed and will provide input wherever possible. Most, however, are unable to provide computer capacities for rising recently available stormwater runoff models such as STORM.¹¹ Most communities do not have stormwater quality/quantity management programs in operation although some work is being carried out by consultants. #### Chapter 3 #### DESCRIPTION OF THE URBAN AREAS This section presents a summary and analysis of data on the following characteristics of urban areas within the portion of Ontario located in the Great Lakes Basin: - 1. population, land area, and location; and - 2. population density and land use distribution. These categories are discussed below. #### 3.1 Urban Areas Urban areas in this study have been defined as: - 1. an incorporated city or urban core of 10,000 or more inhabitants; or - 2. an agglomeration of census tracts with population densities of one or more persons per acre. Using information found in the "1971 Census of Canada," Statistics Canada, 12. a total of 56 urban areas were defined. The resulting population and land area for each urban area are shown in Table 6, Demographic Characteristics of the Urban Areas. In order to characterize all of the urban areas in the study area, ten test cities were chosen before the study was initiated: Burlington, Guelph, Kingston, Kitchener-Waterloo, Milton, St. Catharines, Sault Ste. Marie, Thunder Bay, Toronto, and Windsor. Milton was not used due to its small population. Toronto was characterized by a section of that municipality known as West Toronto, except for the determination of population density groups in which the entire city was used. The location of these test cities is shown in Figure 1, Ontario-Great Lakes Basin Test
Cities. #### 3.2 Population Density and Land Use Distribution The overall population density for an urban area may be obtained using the data in Table 6. In general, population densities have decreased during the past generation reflecting the availability of improved transportation systems, the desire of individual home ownership, etc. No detailed data on urban land use for all of the urban areas could be found. For the nine urban areas (see Appendix II for maps), the area occupied by each of the following five types of land uses was determined: residential, institutional, industrial, commercial, and open space. Land use maps, if available, were used. Aerial photographs were employed if land use maps were unavailable. These photos presented a problem, in that they were taken at altitudes (1.6 miles or 2.6 km, approximately) that made differentiating among land uses difficult. The percentage of the land use in each of these five categories is shown in Table 7, Land Use Distributions in Nine Ontario Cities. Note that, with the exception of West Toronto which has a very high average population density (29.7 persons per acre), a large percent of the urban area falls in the open space category. This large amount of open space results from the definition of urban areas which includes TABLE 6 DEMOGRAPHIC CHARACTERISTICS OF THE URBAN AREAS | 1 1 | <u> </u> | ! | 1 | |---|-------------------|--------------------|----------------------------------| | INCLURBANIZED AREA | | 1971 POP | | | | ACRES | 1000 | AVE POI | | I TIATAY | 2 3861 | | 4.38 | | I PIAUPORA - I | 6 86 | 11.28 | 1.64 | | 1 31BARRIE 1
1 41BFL1 EVILLE 1 | 7 16
5 94 | | | | A SIBRAMPTON (| 5.81 | 41.21 | 7,091 | | 1 61BBANTFORD | 9 48 | 63.88
80.60 | | | 1 718URLINGTON
 81CHATHAM | 13.81 | 80.60
35.32 | 5.841 | | 1 91CHINGUACOUSY 1 | 2.051 | 1 22 10 | 10.621 | | 1101COROURG | 2 89
3 47 | 11.28 | | | | 30.62 | | 9.23 | | 11316ALT
11416FORGETOWN | 8 - 32 | 38.90 | 4.681 | | - 1 | 3 0 R | 17.05
56.57 | 5.541 | | I 15 I GUELPH
I 16 I HANTL TON | 1 262051 | 305.65 | 11.73 | | 117 KINGSTON
118 KITCH - WATERLOO | 5268 | 59.00 | 1 10 23 9 1 | | 1191LFAMINGTON | 22.07 | 147.86 | 6.701 | | 1201LINDSAY 1 | 3.78 | 12.75 | 7 7 7 1 1 | | ISSIMARKAM I | 33.17 | 220.90
 16.19 | 6.661
2.651 | | TS3TMTDLAND I | 3.40 | 10,991 | 3.231 | | 1241MTSSTSSAUGA I | 23.621 | 150.33 | 6.361 | | 125 (NEWMARKET).
126 INTAGRA FALLS | 18 8 8 | 18.94
62.71 | | | 127 INORTH BAY | 2 261 | 23.641 | 10.461 | | 12810AKVILLE
12910PJ1LJA | 9 991 | 54.69 | | | 1301088488 | 13.61 | 91.591 | 6.731 | | 131 IOMEN SOUND | 6.04 | 18.47
57.79 | 3-961 | | 132 PETERBOROHGH
 133 PTCKERING | 10.81 | 57.79
19.06 | 5.351 | | IZ4IPORT COLROURNE I | 5.22 | 1799 | 3.451 | | 1351PORT ERIE | 2.00 | | 5.821
3.961
2.571
6.561 | | 1371RYCHMOND HILL I | 10.20 | 36.26 | 2.57 | | HBBIST, CATHARINES I | 16.33 | 107.19 | 6.561 | | 1391ST. THOMAS | 4 49 | 57.02 | | | HALISHT. STF. MARTEI | 12.71 | / V • O 6 | 5.56 | | 1421SCARBOROUGH
1431STMCO <u>E</u> | 31.94
2.28 | 331.16 | 1 10.371 | | 1441STRATEORD | I 5 <u>3</u> 02∣ | 10.79 | 4 881 | | 1451SUDBUPY | | 90.48
97.17 | 3.781
6.891 | | 1461THUMDER BAY 1471TORONTO | 14.10
 24.01 | 712.79 | 1 29.691 | | TABITRENTON ! | 2.53 | 14.59 | 5.771 | | TAGINALLACEBURG 1501WELLAND | 2.58
9.77 | 10.55 | 4.091 | | 45) IWHITBY | 4 745 | 15.76 | 1 3.791 | | 1521WINDSOR
1531WOODSTOCK | 26 32
 6 04 | 200.95
26.17 | 7.631 | | 1541YOPK | 5.73 | 147.30 | 1 25.711 | | ISSIYORK, EAST I | 5.25
43.71 | 104.78
504.15 | 19.961 | | 1561YORK, NORTH | | | 43.422 | | ITOTAL | 585.88 | 4725.31 | 8.07 | | | | | | TABLE 7 LAND USE DISTRIBUTION IN NINE ONTARIO CITIES D----- | | Population Density | Percent of Urbanized Area in Indicated Land Use | | | | | | |------------------------|--------------------|---|------------|------------|---------------|--------------|-------| | Urbanized Area | persons/acre | Residential | Commercial | Industrial | Institutional | Open | Total | | Burlington | 5.84 | 34.0 | 3.0 | 3.0 | 5.0 | 55.0 | 100 | | Gueiph | 5.01 | 29.0 | 3.0 | 8.0 | 6.0 | 54.0 | 100 | | Kingston | 10.39 | 32.0 | 5.0 | 7.0 | 12.0 | 44.0 | 100 | | Kitchener-Waterloo | 6.70 | 27.0 | 4.0 | 10.0 | 2.0 | 57.0 | 100 | | St. Catharines | 6.56 | 41.0 | 4.0 | 6.0 | 6.0 | 43.0 | 100 | | Sault Ste. Marie | 5.56 | 40.0 | 4.0 | 19.0 | 4.0 | 33.0 | 100 | | Thunder Bay | 6.89 | 34.0 | 13.0 | 12.0 | 6.0 | 35. 0 | 100 | | Toronto, West | 29.69 | 58. 0 | 19.0 | 14.0 | 4.0 | 5.0 | 100 | | Windsor | 7.63 | 38.0 | 6.0 | 10.0 | 3.0 | 43.0 | 100 | | Average, area weighted | 10.47 | 38.4 | 7.6 | 10.3 | 4.5 | 39.3 | 100 | population densities as low as one person per acre. Thus, this definition includes significant acreages of land which are undeveloped and would not be served by sewerage systems. Manyel et al. ¹³ present data on land use in 106 United States cities. Analysis of these data indicates that the proportion of the urban area in each land use category was relatively similar after deducting for the proportion of the urban area which is in the undeveloped category. This category is deducted from the total urban area to obtain the developed portion of the urban area. Figure 2, Percent Undeveloped Land Use (U.S.) and Open Space Land Use (Ontario) vs Population Density . . . shows the percent undeveloped land as a function of population density for the U.S. cities and the percent open land for the Ontario cities. The open category would include undeveloped land and developed open space land, e.g., parks. As can be seen from Figure 2, the Ontario cities generally fall above the line of best fit for the US undeveloped land. This result appears reasonable since the open space category would include the undeveloped land. Thus, it seemed reasonable to use the U.S. equation to estimate the percent of the urban area which is undeveloped, i.e., $$Z = 1.0e^{-0.170 (\overline{PD})}$$ (r = -0.57) where Z = proportion undeveloped land, \overline{PD} = average gross (developed and undeveloped) population density, persons per acre, and τ = correlation coefficient (-1.0 \leq r \leq 1.0). Using this relationship, then the developed population density, PD_d, can be expressed as a function of the gross population density using $$PD_d = \frac{PD}{(1-Z)} = \frac{PDe^{0.17 PD}}{e^{0.17 PD}-1}$$ (2) FIGURE 2 PERCENT UNDEVELOPED LAND USE (U.S.) AND OPEN SPACE LAND USE (Ontario) VERSUS POPULATION DENSITY. Note that best fit line is forced through 100 percent at PD=0. Equation (2) is shown in Figure 3, Relationship Between Gross and Developed Population Density. Note that the developed population density is about 6 persons per acre at the lowest level of urbanization (one person per acre). The developed population density approaches the gross population density as PD increases. Indeed, they are quite close at $PD \ge 25$ persons per acre. After correcting for the percent undeveloped, the proportion of the land in the developed uses was determined as a percent of developed urban land only. After this transformation was made, the percent of land in the developed uses seemed to be independent of FIGURE 3 RELATIONSHIP BETWEEN GROSS AND DEVELOPED POPULATION DENSITY population density. The resultant distribution of developed land by use and undeveloped land is shown in Table 8, *Distribution of Developed Land Uses in Ontario Test Cities and U.S. Cities.* Note the similarity of the Ontario and U.S. land use distributions. The land distributions for all cities are determined using equation (1) and Table 8. The results are presented in Table 9, Land Use Distributions for the Ontario Cities. In determining the control costs, only the developed portion of the urban area is considered. Thus, it is important to check the validity of this assumption in future assessments. Actual field data need to be gathered and analyzed using a consistent set of assumptions regarding land use categories. # TABLE 8 DISTRIBUTION OF DEVELOPED LAND USES IN ONTARIO TEST CITIES AND U.S. CITIES | Pρ | rcent | of ' | Total | |----|-------|------|-------| | | | | | | Land Use | Ontario | u.s. ^b | |--------------------|---------|-------------------| | Residential | 52.5 | 58.4 | | Commercial | 10.3 | 8.6 | | Industrial | 14.0 | 14.8 | | Other ^a | 23.2 | 18.2 | ^aRecreational, schools and colleges, and cemeteries. # 3.3 Population and Area Served by Type of Sewer System The area served by combined sewers was determined by on-site interviews in the nine cities, a survey by Waller, and questionnaire results from a 1966 survey. ^{14,15} These three sources provide estimates for 49 of the 56 cities. The remaining seven cities are assumed to have the same percentage of combined sewers as the other 49 cities which is very close to 25 percent. Unfortunately, much of the data expressed the combined sewered area as a percent of total sewered area which is unknown. Also, no data are available regarding population served by the combined sewer systems. Thus, indirect estimating procedures were used as discussed below. Information was obtained regarding the population density distributions of the nine test cities. Using these data, the census tracts were ranked by population density and grouped into five categories ranging from lowest density to highest density as shown in Table 10, Population Density Distributions in Nine Ontario Cities. A histogram for the city of Thunder Bay is shown in Figure 4, Populaton Density Distribution of Thunder Bay, Ontario. $$PD = ax^{b}$$ (3) where PD = gross population density, persons per acre (PD \geq 0), $x = percent of urban area (0 \le x \le 100)$, and a,b = parameters, was fit to these data. The average population density in any interval, x_1 to x_2 , is $$PD_{X_1 - X_2} = \frac{1}{X_2 - X_1} \int_{X_2}^{X_2} ax^b dx.$$ (4) To calibrate
the overall average population density with the calculated population density, an approximate value of x₁ was found bHeaney, J.P., W.C. Huber, et al., Nationwide Evaluation of Combined Sewer Overflows and Stormwater Discharges: Volume II, Cost Assessment and impacts, USEPA-600/2-77064, 1977. TABLE 9 LAND USE DISTRIBUTIONS FOR THE ONTARIO CITIES | 1 | | LAND | USE. | AS % | OF TO | TAL A | REA | | |---|--|---|--|--|--|-----------------------------|-------|--| | ND | URBANIZED AREA | VONU | RES | COMM | INDL | HTO | TOTAL | | | 1 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 8 9 0 1 2 | Y R R R R R R R R R R R R R | 4427790594695M97106807
1625730769819025714282
45365373134M545536653 | 4525050505050505050505050505050505050505 | 509000507481462M02196507040057890042M90420
6M854647M46368657464465M46948554M965546500 | 3916817882708695594818795866865682917762487760733219 | 993642245 CR8100456 CC71945 | | | TABLE 10_ POPULATION DENSITY DISTRIBUTIONS IN NINE ONTARIO CITIES | | in Pe | | of Land A Density | | PDG) | | - | ation Der
s/acre in | | | |--------------------|-------|------|-------------------|------|------|------|-------|------------------------|-------|-------| | Urbanized Area | 1 | H | m | IV | V | 1 | П | 111 | IV | V | | Burlington | 36.2 | 13.3 | 17.1 | 16.1 | 17.3 | 1.71 | 3.82 | 5.34 | 8.98 | 13.59 | | Guelph | 35.4 | 15.5 | 15.3 | 18.3 | 15.5 | 0.70 | 2.63 | 3.52 | 8.81 | 14.17 | | Kingston | 37.1 | 16.4 | 17.6 | 13.2 | 15.7 | 4.28 | 7.15 | 11.60 | 18.22 | 25.92 | | Kitchener-Waterloo | 37.6 | 17.7 | 17.4 | 14.8 | 12.5 | 1.89 | 4.65 | 8.06 | 11.67 | 15.82 | | St. Catharines | 32.6 | 22.3 | 12.4 | 15.4 | 17.3 | 3.33 | 5.08 | 6.53 | 7.95 | 13.37 | | Sault Ste. Marie | 26.8 | 22.7 | 16.0 | 18.3 | 16.2 | 1.34 | 2.88 | 5.32 | 9.02 | 12.59 | | Thunder Bay | 33.8 | 12.3 | 18.6 | 18.5 | 16.8 | 2.45 | 4.02 | 6.75 | 9.97 | 14.68 | | Toronto | 32.9 | 16.6 | 16.7 | 16.4 | 17.4 | 8.56 | 24.80 | 36.95 | 47.23 | 74.21 | | Windsor | 31.5 | 19.2 | 16.7 | 16.6 | 16.0 | 1.74 | 4.71 | 7.63 | 11.13 | 19.26 | FIGURE 4. POPULATION DENSITY DISTRIBUTION OF THUNDER BAY, ONTARIO. such that $PD_{x_1-100} = PD_{calc.}$ For example, for Thunder Bay, $$PD = 86.4 \text{ x}^{-0.741} \tag{5}$$ and the actual average population density is 6.89 persons per acre (17.0 persons/ha). Thus $$6.89 = \frac{1}{100 - x_1} x_1 = 100$$ $$84.6 x^{-0.741} dx$$ (6) This equation is solved to find x_1 . To calibrate the overall average population density with the calculated population density, for the other 47 cities, values of b were assigned based on their similarity to the nine test cities. A value of $x_1 = 2$ was used to avoid instability problems. Then, a was calculated such that the average population density, PD is $$PD_{2-100} = \frac{1}{100-2} \int_{2}^{100} ax^{b} dx$$ (7) or $$a = \frac{98 \text{ PD (1+b)}}{100^{(1+b)} - 2^{(1+b)}}$$ (8) Thus the final equation for gross population density is $$PD = ax^b \text{ with } x_1 \le x \le 100$$ (9) Given the equation in the form $PD = ax^b$, one can find the average population density, the proportion of the population within certain densities and so forth. The population density function, PD = ax^b , is given in terms of the total urban area. Thus, it needs to be modified to integrate over only the developed portion of the urban area as shown in Figure 5, Characterization of Population Density in Urban Areas. In order for the area under the two curves to be equal, one must have that $$\int_{ax^{b} dx}^{100} = \int_{a'x^{b} dx}^{100(1-Z)} a'x^{b} dx$$ (10) or $$a' = a[100^{(l+b)} - x_1^{(l+b)}]/[(100[1-Z])^{(l+b)} - x_1^{(l+b)}]$$ (11) FIGURE 5. CHARACTERIZATION OF POPULATION DENSITY IN URBAN AREAS Then. $$PD_d = a'x^b (12)$$ where PD_d = population density in developed portion of the urban area; a' = adjusted coefficient from equation (11), and x_1 = calibrated lower limit on percent urbanized area. The percent of the urban area which is sewered is known for the nine test cities. Computing the corresponding PD_d for seven of the cities resulted in the values shown in Table 11, Marginal Population Density for Sewered Portion of Seven Urban Areas in Ontario. Guelph and Toronto were considered extreme values and not entered into Table 11. Based on these data, a cutoff marginal developed population density of 5 persons per acre (12.4 persons/ha) was used to delineate the sewered part of the urban area. Solving equation (12) for x_2 yields $$x_2 = \min \left[(5/a)^{1/b}, 100(1-Z) \right]$$ where x_2 = percent of the urban area which is sewered. Knowing the percent of the urban area which is undeveloped, i.e., 100Z, the combined sewered area x_c , from the survey data, and the percent of the urban area which is sewered, x_2 , then the other sewered and unsewered developed areas can be calculated as residuals. The calculation procedure is summarized below: # Sewered Areas As a Percentage of Total Urban Area - 1. Undeveloped Land = $100(Z) = x_{ij}$ - 2. Sewered Area = x_2 - 3. Combined Sewer Area = $\alpha(x_2)$, where α is the proportion of the sewered area which is combined. Values of α are taken from survey data for 49 cities. For the remaining 7 cities, it is assumed that $\alpha = 0.25$. - 4. Storm Sewer Area = $(1 \alpha)x_2$ - 5. Unsewered Developed Area = $100 x_{11} x_{22}$. # TABLE 11 MARGINAL POPULATION DENSITY FOR SEWERED PORTION OF SEVEN URBAN AREAS IN CANADA Marginal Sewered Population Density, PD. | | Density, FDA | | | | |---------------------|----------------|--------------|--|--| | City | (persons/acre) | (persons/ha) | | | | Burlington | 3.93 | 9.7 | | | | Kingston . | 7.28 | 18. 0 | | |
 Kitchener | 4.49 | 11.1 | | | | St. Catharines | 5.79 | 14.3 | | | | Sault St. Marie | 4.67 | 11,5 | | | | Thunder Bay | 6.12 | 15.1 | | | | Windsor | 3.87 | 9.0 | | | | Average of 7 cities | 5.16 | 12.8 | | | The results of these calculations are shown in Table 12, Land Use by Type of Sewerage System. TABLE 12 LAND USE BY TYPE OF SEWERAGE SYSTEM | | EAND CSE BI | | | | | | _ | |--|--|--|---|---------|--|---------|-------| | N.3 | UNDANIZED AREA | 1 | LAND U.
I | SE PER(| CENTAG!
I | ES
I | | | | 100000000000000000000000000000000000000 | CMU | СОМВ | STORM | UNSEW | TOTAL | | | -1234557390123#5573901254007390125450739012545
1111111111222234522323355555555555555555 | AJAX AURLKA BARPIE BELLEVILLE BELLEVILLE BEAMPTON BRANTFORD GURLINGTON CHATHAM CHINGUACOUSY COUDDAS LETOLICOKE GALT GLORGETON KITCHWATERLOO KINGSAY LONDON MARKAM MIDLAND MISSISSAUGA NOGHAMA OWEN SOUNO PICKIEITA OWEN SOUNO PICKIEITA OWEN SOUNO PICKIEITA OWEN SOUNO PICKIEITA KICHMOND HILL ST. CATHARINES ST. INA SCAKOGE STRATFORD SIMCOE STRATFORD STRATFORD STRATFORD STRATFORD WALLAND WALL | - 75169154508207610442777905946953971068070276606504539341- 475323333154243411345365373076981902571428237432107788277134- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- | -20055000000074000084300199000600093704500730210107901
500010000000000084300199000600093704500730210107901
6205506003400000000600093704500730210107901
620550000000000000000000000000000000000 | | -31039146639435510064712665906173243153122097295204743270001
-310391466394355100647126659059145597002560453337206019710001
-310221121 231335 | | (00.1 | | | WEIGHTED AVE. | 32.5 | 12.2 | 35.8 | 19.5 | 100.0 | | 33 The population served by the various types of sewerage systems is estimated indirectly since data are unavailable. Combined sewers are installed in the older and typically more densely populated portions of the urban areas. An earlier study by Waller of combined sewers in Canada indicated that the average population density in the combined sewered portion of the two largest cities was 30.7 persons per acre. ^{14, 15} The average density in the other 30 cities reporting combined sewers was 14.7 persons per acre. These results suggest that a good approximation of the population served by combined sewers would be obtained by assuming that the higher density areas are combined. The next highest density is served by storm sewers and the lowest densities are unsewered. Thus, the population served by type of sewer system is calculated as shown below: #### POPULATION SERVED BY TYPE OF SEWERAGE SYSTEM 1. Combined Sewers: $$P_{c} = \frac{A}{100} \sum_{x_{1}}^{x_{c}} a'x^{b} dx \qquad (14)$$ 2. Storm Sewers: $$P_s = \frac{A}{100} x_c^{X_2}$$ $a'x^b dx$ (15) Unsewered (no storm or combined sewers): $$P_{u} = \frac{A}{100} \int_{x_{2}}^{x_{d}} a'x^{b} dx$$ (16) where A = total urban area in acres The resulting population by type of sewerage system is shown in Table 13, Population Served by Type of Sewerage System. Lastly, the population densities by type of sewer system are shown in Table 14, Population Density by Type of Sewerage System. # 4.4 List of Variables a. constant a' adjusted coefficient α proportion of sewered area which is combined b constant P_c population served by combined sewer system (persons) population served by storm sewer system (persons) P., unsewered population PD gross population density (persons per acre) average population density (persons per acre) PD_{cate} calculated average population density (persons per acre) $PD_{x_1-x_2}$ average population density in interval from X_1 to X_2 (persons per acre) PD_d population density in developed portion of urban area (persons per acre) TABLE 13 POPULATION SERVED BY TYPE OF SEWERAGE SYSTEM | NJ URBANIZED AREA COMB STOPM UNSEW TUT. | 1 | |---|-------| | 1 AJAX | \L | | 3 GARRIE | | | 4 G3ELEVILLE 15.6 11.8 7.7 35 5 GEAMPTON 0.0 37.5 3.7 41 6 BRANTFORD 0.0 56.2 7.7 63 7 GURLINGTON 0.0 63.5 17.1 80 80 80 80 80 80 80 8 | | | 6 BRANTFORD 0.0 55.2 7.7 63 7 BURLINGTON 0.0 63.5 17.1 80 80 CHATHAM 16.4 13.9 5.1 35 35 10 35 35 10 35 35 10 35 35 10 35 35 35 10 11 DUNDAS 0.0 13.5 3.5 17 12 ETOBICUKE 0.0 252.2 20.5 292 13 GALT 0.0 30.2 8.7 38 14 GEORGETOWN 0.0 13.5 3.5 17 15 GUELPH 0.0 44.2 12.4 55 15 HAMILTON 272.8 32.9 0.0 30.5 17 15 HAMILTON 272.8 32.9 0.0 30.5 17 17 KINGSTON 28.6 30.4 0.0 59 16 KITCH. WATERLOO 0.0 120.2 27.7 147 19 LEAMINGTON 4.1 4.2 2.2 10 40 LINDSAY 0.0 9.4 3.3 12 | | | 3 CHATHAM | , o | | 10 COBOURG | ٠ - ١ | | 1 2 E TOBICUKE | | | 14 GEORGETOWN | 7 | | 15 HAMILTON | | | 18 KITCH WATERLOO 0.0 120.2 27.7 147 119 LEAMINGTON 4.1 4.2 2.2 10 | . 4. | | 119 LEAMINGTON | | | | | | 121 LUNDUN | 1 | | 23 MIDLAND 7.7 0.3 2.7 11 24 MISSISSAUGA 0.0 120.8 29.3 150 | ٥. | | 25 NEWMARKET 0.0 12.9 6.0 13 125 NIAGRA FALLS 47.0 1.5 14.2 68 | ့မှ ၂ | | 27 NURTH BAY 2.8 20.2 0.6 23 23 UARVILLE 0.9 41.7 13.0 54 | · ΰ | | 129 OBILLIA 0.0 13.4 5.7 24 | 0 | | 31 OWEN SOUND 9.4 4.1 5.0 18 | 5 | | 35 FICKEPING 0.0 14.3 4.8 19 | . 1 | | 34 PORT COLBOURNE 0.0 13.3 4.7 18 | Ö | | 35 PRESTUN | . 3 | | 35 ST. CATHARINES 58.2 34.7 14.3 107 39 ST. THOMAS 18.5 1.9 5.2 25 | . 5] | | 40 5APINA 30.5 26.5 0.0 57
 41 5LT. STE. MARIE 0.0 52.7 17.9 70 | C | | 42 SCARBOROUGH | 8 | | [44 STRATEOPD 0.0 19.1 5.4 24
 45 SUDEURY 0.0 52.4 28.1 90 | | | 46 THUNDER BAY | | | 48 TRENTON | 1 | | 50 WELLAND | . 7 | | 52 WINDSUR 94.8 74.3 31.3 200 | | | 54 YURK | 3 | | | 1 | | TETAL 1773. 2485. 468. 472 | • | TABLE 14 POPULATION DENSITY BY TYPE OF SEWERAGE SYSTEM | | - | | | | F. 2 | |------------|-------------------------------|--------------|----------------|--------------------|---------------| | 1 1 | | | | M DEMS | | | 11/21/04 | RBANIZED AREA | | | NS/ACRE | 1 | | | | COME | STOFM | UNSEW | AVE . | | 11 | | | | | | | $1 \mid A$ | | S5 • 95 | 11.33 | 3.13 | | | | UK URA | | 11.94 | | | | | ARKIE | | 15.73 | | 8.03 | | | | | ნ•83 | | 9.33 | | | RAMPTON | 0.0 | 10.04 | 5.74 | 10.14 | | | RAKTEONO | C•0 | 10.97 | 5.71 | 9.88 | | | JRLINGTUN (| 0.0 | 12.59 | 4.05 | ે • ઽઙ ૄ | | , , – | HA THAM | 10.03 | 12.59
8.01 | 5.70 | | | | HINGUACUUSY 1 | 0.0 | 13.0H | J ⇒ ∠3 ; | 12.71 | | | DUCIURG . | | 15.78 | | | | | UNDAS | 0.0 | 16.91 | 3.18 | | | 1121! | LOPICOKE | | 12.95 | 5.13 | 11-စ်ည | | 13 0 | | | 16.53 | | | | | EDRGETOWN . | 5.0 | 17.45 | 3.18 | | | | UE LPH | 0.0 | 14.95 | 3.51 | | | | AMILTUN | 15.95 | | | 13.59 | | 1: (15) | INGSTON | 22.48 | | | 12.53 | | | ITCHWATERLOD | 3.7€
3.7€ | 12.93
11.59 | 4 • 0 1
3 • 1 8 | 9.85 | | 1 2 1 4 1 | LAMINGTON
INDSAY | | 15.11 | 3.24 | | | 12716 | CNDON | 20.83 | 0.57 | 4.10 | 0.83 | | | AKKAM | 17.09 | 9.87
13.01 | 4 • 19
3 • 35 | 7.31 | | | | 15.37
| 6.73 | 3.26 | 7.65 | | | ISSISSAUGA | | 12.6+ | | | | | EWMARKET | 0.0 | 13.01 | | | | | | 14.15 | | | | | | | | 12.06 | | 1 | | | AKVILLE | | 13.50 | | | | | RILLIA | | 16.17 | 3.19 | | | | AWAHC | | 10.97 | | | | | WEN SCHWO | 20.42 | 8.92 | 3.28 | 7.54 | | 32 10: | ETERBURBUGH | 0.0 | 17.23 | 3.18 | 3.35 | | | ICKERING . | | 15.59 | | | | | ORT COLBOURNE | | 15.21 | | 7.77 | | 135 120 | URT_ERIE | | 11.41 | | 9.27 | | | RESTUN | | 15.85 | | | | | ICHMOND HILL | | 13.91 | 3.37 | | | | T. CATHARINES | | 7.59 | | | | 134 13 | T. THOMAS | 21.23 | 5.45 | | 9.15 | | | ARINA | 28.55 | 9.74
12.37 | 0.0
4.05 | 13.92 | | | LT. STE. MARIE!
Carburdugh | 0.0 | 3.58 | # • 03 | 8.27
12.52 | | | INCUE | 71 60 | 11.74 | 3.13 | 3.55 | | | TKATEGRO | | 15.34 | | | | 1/4 5 6 | ODE URY | | 13.09 | | | | | HUNDER BAY | 22.05 | 9.09 | | 9.9. | | , , | ORUNTO | 35.05 | 14.30 | 5. 6 | 29.37 | | | RENTON | 0.0 | 17.55 | | 0.23 | | | ALLACEBURG | 25.36 | 2.20 | 3.10 | , | | | LLLAID | 25.12 | 3.40 | 3.19 | 8.27 | | | HITLIY | 0.0 | 15.64 | 3.21 | 7.93 | | , , | INDSOR | 25.54 | 9.00 | 4.44 | 10.50 | | 153140 | JODSTUCK | 0.0 | 16.27 | 3.19 | 8.31 | | 54 Y | UR K | 29.11 | 9.39 | 0.0 | 26.04 | | • • | JRK, EAST | 27.61 | 8.80 | 0.0 | 20.65 | | 150 Y | ORK,NORTH | 0.0 | 13.42 |) o•c ∣ | 13.42 | | | | | | | | | 1 100 | EIGHTED AVE. | 24.39 | 11.85 | 4 • 10 | 11.30 | | 11- | ~ | | | | | | r | correlation coefficient | |-----------------------|--| | χ . | percent of urban area | | X ₁ | calibrated lower limit on x such that average PD corresponds to the integrated average PD | | X 2 | calibrated upper limit on x such that average PD corresponds to the integrated average PD and percent of urban area which is sewered | | x_c | percent of urban area served by combined sewers | | \mathbf{x}_{d} | percent of urban area which is developed | | x _u
Z | percent of urban area which is undeveloped undeveloped portion of urban area | # Chapter 4 #### RUNOFF AND POLLUTANT LOAD ESTIMATES The purpose of this chapter is to estimate the quantity and quality of urban runoff from the 56 cities. The first section provides some background information regarding models which are used to assist in making such decisions. Then, precipitation patterns are analyzed to form a basis for predicting the quantity of urban runoff. The relevant water quality parameters are discussed and the results of numerous attempts to estimate runoff quality are presented. Finally, a pollutant load predictive equation is developed which provides the basis for assessing pollutant loads. A summary of the methodology is presented elsewhere. ^{62,63} # 4.1 Modeling of Urban Runoff # 4.1.1 Computer Models The overall goal of urban runoff modeling is to aid in decision-making for the abatement of water quantity and quality problems. Thus, computer models do not provide "solutions" to problems, in and of themselves. Rather, they serve as useful tools to those charged with devising such solutions. Within this context, subobjectives of the modeling process may be identified: planning, design, and operation. Models for the latter category are generally site-specific 16,17 and were not considered during this research study. However, numerous models are available for planning and design purposes, e.g. the Corps of Engineers' STORM and the USEPA Storm Water Management Model (SWMM). However, they are not unique; several other urban runoff models are capable of similar tasks. 18,19,20 Computer models are merely mathematical abstractions of the physics of the urban runoff processes and do not necessarily produce accurate or even logical predictions without extensive calibration/ verification data. These are in addition to data required as model input, such as topography, land use, rainfall, antecedent conditions, description of drainage system and storage-treatment facilities. Among the principal 1965 findings of the ASCE Council on Urban Water Resources²¹ was the serious need for field data on rainfallrunoff-quality for several catchments. Unfortunately, in spite of efforts by federal agencies in the United States and Canada, this need still exists, especially in the area of data for calibration/verification of urban hydrology models. For instance, few new discharge data have been acquired on sewered catchments, using flumes, weirs, or other accurate devices rather than conversion of stage gauge readings for determination of flow rates.²² The state-of-the-art in computation and simulation tools has, thus, outstripped its available calibration/verification data base. However, current analytical techniques will necessarily rely on computer models, especially for planning and design purposes. Hence, the ultimate goal of acquisition of salient field data remains worthwhile and necessary. Throughout this section, gaps in available data for input and calibration/ verification will be apparent. But the useful analyses which can still be performed without these data should also be clear. The modeling procedures developed for the assessment will be discussed in detail. Two levels of sophistication are considered: use of STORM for the development of the parameters used in the assessment methodology described in Chapter 6, and use of a very simple runoff prediction technique for the 56 Urban Areas of the Ontario assessment itself. # 4.1.2 Runoff Analysis Using STORM The Storage, Treatment, Overflow and Runoff Model (STORM) was developed by Water Resources Engineers, Inc., (WRE) for the Hydrologic Engineering Center (HEC) of the Corps of Engineers. The model was designed for planning purposes, i.e., for long-term simulation of many storm events using an hourly time step. For instance, the model has been used to simulate runoff quality and simple storage-treatment options from a 63-year record of hourly rainfalls in San Francisco. When STORM is used for planning, the primary objective is to illustrate the effect of various storage-treatment combinations at the downstream end of an entire urban catchment that provided given levels of control. "Level of control" may refer to percent of runoff captured, percent BOD or other pollutant removed, number of overflows per year, quantity of overflow per year, etc. Use of the model for this primary objective is described in detail in Chapter 6 of this report, including a discussion of the methodology employed. Thus, the use of STORM in this study is deferred to that section. #### 4.2 Runoff Prediction for Ontario Assessment # 4.2.1 The Hydrologic Cycle The hydrologic cycle may be divided into three principal phases: 1) precipitation, 2) evaporation, and 3) surface and groundwater runoff. The hydrologic cycle has neither beginning nor end, as water evaporates to the atmosphere from land and water surfaces. The evaporated moisture eventually precipitates back to the earth where it may be intercepted or transpired by plants, may become surface runoff, or may infiltrate into the ground. Once in the ground, water may be stored as soil moisture and evapotranspired, or percolate to deeper zones to become part of groundwater flow. Surface and groundwater flow from the land eventually reaches streams, lakes, or oceans from which water evaporates to complete the cycle. #### 4.2.2 Form of the Equation Techniques for prediction of runoff quantities vary from very simple methods of the rational method type to sophisticated models of the nature of SWMM. The technique used in STORM is relatively simple, relying on weighted average runoff coefficients and a simple loss function to predict hourly runoff volumes. Nonetheless, because of the nature of the continuous simulation involved, it is at a considerably higher level, and therefore more complex, than earlier, desk-top techniques. Due to the complexities and data requirements of STORM, it was not possible to run the model on all cities of the assessment, or even a majority. Rather it was run only on four test cities as discussed in Chapter 6. However, in its limited application, useful information was learned regarding formulation of a simple runoff prediction method for application to all the cities of the assessment. Runoff is a function of meteorologic, hydrologic, topographic, and demographic factors. On an annual basis, many of the factors may be considered constant, so that runoff is predicted on the basis of differences between areas rather than reflecting seasonal variations within a year. Hence, the prime meteorologic and hyrologic factor is annual precipitation, and other factors are incorporated into a conversion to annual runoff. These considerations lead directly to the use of a simple runoff coefficient method in which runoff is merely a fraction of rainfall. This approach has been used successfully by Miller and Viessman²⁴ for runoff prediction on an individual storm basis in urban areas. This equation was: $$A\dot{R} = 1.165 (I - 0.17) (P - I_a)$$ (17) where AR = runoff, in.; I = fraction imperviousness; P = precipitation, in.; and I = initial abstraction, in. The recommended value of I_a, which accounts for initial losses such as depression storage, interception, etc., was between 0.10 and 0.15 in. (.25 and .38 cm), and the equation was deemed valid for a range of imperviousness between 35 and 80 percent. Extrapolation for use on an annual average basis, however, may be questionable, particularly in the matter of how much water should be abstracted out of the cycle on an annual basis. Hence, an equation will be used that is similar in form to equation (17), but which is consistent with the STORM simulation runs, described in Chapter 6, on which the overall assessment is based. STORM computes a runoff coefficient, CR weighted between pervious and impervious areas by: $$CR = 0.15 (1 - I) + 0.90 I$$ = 0.15 + 0.75 I (18) where I is fraction imperviousness
and the coefficients 0.15 and 0.90 are the default values used in STORM for runoff coefficients from pervious and impervious areas, respectively. Note that in both equations (17) and (18) the effect of demographic factors (e.g., land use, population density) is incorporated into the imperviousness, I. Imperviousness was estimated for the nine cities discussed in Chapter 4 using the same maps used to estimate land use. The average residence was assumed to have an impervious area of 1,500 ft² (139 m²) and the average street width was taken to be 34 ft (10.4 m) regardless of land use. These assumptions were necessary due to the large scale of the aerial photos. Structures on institutional, industrial, and commercial lands were usually large enough to be measured. For each city, the procedure was to choose three or four representative areas for each land use and to determine a figure for percent imperviousness from these samples. The determination of curb length for each land use also required the use of aerial photographs. Again, representative areas of each land use were chosen. Street lengths were measured, and along with the assumption that curb length equals twice the street length, figures for curb length per acre determined. The results of these studies are shown in Table 15, Imperviousness and Curb Length Density by Type of Land Use in Nine Ontario Cities. The American Public Works Association, Graham et al., and Stankowski have developed equations to predict imperviousness as a function of population density. The imperviousness is to be estimated for the developed portion of the urbanized area only. The weighted average imperviousness and population density were calculated for the nine Ontario cities. These results are plotted on Figure 6, Imperviousness as a Function of Population Density, along with the three estimating curves. Also, a tabulation was made of the imperviousness due to streets alone for various block sizes as shown in Table 16, Effect of Urban Block Size on Curb Length Density and Imperviousness Due to Streets. These results are also plotted on Figure 6. A comparison of these various plots and the actual data indicates that the New Jersey²⁶ equation provides a suitable TABLE 15 IMPERVIOUSNESS AND CURB LENGTH DENSITY BY TYPE OF LAND USE IN NINE ONTARIO CITIES Imperviousness, !" or Curb Length Density, G. Residential Commercial Industrial Institutional Open Urbanized Area 11 37 3 Burlington 32 89 G_L 178 (134) 136 (102) 125 (94) 57 (39) 365 (275) 36 89 43 1 Guelph 1 30 G_L 153 (115) 32 (24) 339 (255) 254 (191) 121 (91) 27 87 20 17 3 Kingston t G_L 314 (236) 82 (62) 44 (33) 332 (250) 56 (42) 82 52 36 8 Kitchener-Waterloo ı 29 35 (26) 355 (267) 216 (163) 142 (107) 113 (85) G_{L} 38 4 St. Catharines ı 27 90 42 60 (45) 238 (179) 146 (110) 150 (113) G_{L} 331 (249) 3 22 74 57 22 l Sault Ste. Marie G_L 150 (113) 244 (184) 44 (33) 353 (266) 461 (347) 32 2 78 Thunder Bay ı 29 44 G_{L} 388 (292) 331 (249) 58 (44) 216 (163) 41 (31) 52 44 31 14 44 Toronto ł 355 (267) 261 (197) 307 (231) 345 (260) 362 (273) G۲ 88 48 18 5 Windsor ١ 31 71 (53) G٤ 382 (288) 337 (254) 121 (91) 133 (100) 5 30 81 40 30 Average 1 G_{L} 81 (61) 356 (268) 299 (225) 135 (102) 166 (125) ^a% Measured in percent of total. ^bFt per acre (meters per hectare). FIGURE 6 IMPERVIOUSNESS AS A FUNCTION OF POPULATION DENSITY TABLE 16 EFFECT OF URBAN BLOCK SIZE ON CURB LENGTH DENSITY AND IMPERVIOUSNESS DUE TO STREETS | Block Size
ft x ft (m x m) | Area, ac (ha) | Curb Length Density
ft/ac (m/ha) | Imperviousness due
to Street ^a | |--------------------------------|---------------|-------------------------------------|--| | 660 x 330
(201 x 101) | 5 (2.02) | 392 _. 0 (298.0) | 0.150 | | 1,320 x 660
(402 x 201) | 20 (8.09) | 198.0 (148.0) | 0.077 | | 2,640 x 1,320
(805 x 402) | 80 (32.40) | 99.0 (74.6) | 0.039 | | 5,280 x 2,640
(1,609 x 807) | 320 (130.00) | 49.5 (37.3) | 0.019 | ⁸Assume 34 feet (10.4 m) wide street. predictive equation with population density defined as developed population density. Thus, the equation used to estimate imperviousness is $$I = .096 PD_{d}^{(0.573 \cdot 0.0391 \log_{10}PD_{d})}$$ (19) where I = imperviousness in percent, and PD_d = population density in developed portion of the urbanized area, persons per acre. The simplified equation for estimating annual runoif (AR) is now $$AR = (0.15 + 0.75I)P (20)$$ where AR = annual runoff, inches, I = fraction imperviousness from equation (19), and P = annual precipitation, inches. A comparison of STORM simulated runoff versus calculated runoff using equation (20) is shown in Table 17, Comparison of Simulated and Calculated Runoff for Four Test Cities. The average difference is about 0.5 inches (1.27 cm) per year. A similar comparison in the US assessment indicated a difference of 0.3 inches (0.76 cm) per year. Thus, a correction factor was added to equation (20) to reflect this difference. The final equation is $$AR = (0.15 + 0.75I) P - 0.5$$ (21) Based on equation (21), wet-weather flow estimates were made for the 56 cities for the combined, storm, and unsewered areas. The results are shown in Table 18, Annual Wet-Weather Runoff for Combined, Storm, and Unsewered Areas. 4.2.3 Dry-Weather Flow Prediction Dry-weather flow is predicted based on actual flow data for the test cities indicating an average flow of 108 US gallons per person-day (410 liters per person-day). Upon multiplication by population density and conversion to appropriate units, TABLE 17 COMPARISON OF SIMULATED AND CALCULATED RUNOFF FOR FOUR TEST CITIES | • | Annuala | | Runoff: in/yr (cm/yr) | | | | |------------------|--------------------------------|------------------------------------|-----------------------|-------------------------|------------|--| | City | Precipitation
in/yr (cm/yr) | Runoff ^b
Coefficient | STORMC | Calculated ^d | Difference | | | Burlington | 32.4 | 0.344 | 10.62 | 11.15 | 0.53 | | | | (82.3) | | (26.97) | (28.31) | (1.34) | | | Kingston | 37.8 | 0.306 | 11.11 | 11.57 | 0.46 | | | | (96.0) | | (28.22) | (29.38) | (1.16) | | | St Catharines | 32.4 | 0.372 | 11.41 | 12.05 | 0.64 | | | | (82.3 | | (28.98) | (30.61) | (1.63) | | | Sault Ste. Marie | 36.7 | 0.413 | 14.54 | 15,16 | 0.62 | | | | (93.2) | | (36.93) | (38.50) | (1.57) | | ^aSee Section 6.4 dEquation (20) $$DWF = 1.45 PD_d$$ (22) DWF = annual dry-weather flow, inches per year, and PD_d = developed population density, persons per acre. Results of these runoff calculations are shown in Table 19, Annual Dry-Weather Flow for Combined Storm, and Unsewered Areas. Dry-weather flow is generated for entry into a sanitary sewer for storm or unsewered areas. Dry-weather flow and wet-weather flow for the developed portion of an urban area with a precipitation of 15, 30, or 45 inches per year are shown in Figure 7, Comparative Magnitude of Annual Wet- and Dry-Weather Flows. Note that dry-weather flow predominates at higher population densities which have historically prevailed in cities. However, with the trend towards lower density urban living, wet-weather flows take on greater relative importance. Indeed, they are larger than dry-weather flows at the lower population densities. # 4.3 Quality Parameters ### 4.3.1 Parameter Definitions Quality analyses may be performed at several levels of detail, ranging from an explicit formulation of runoff quality for small subcatchments within a city to a broad representation of pollutant loads for an entire urbanized area or province. It has been necessary to consider the entire spectrum during the course of this study. It is unfortunate that perhaps the only consistent remark about runoff quality analysis in general is that data and results of previous studies are so remarkably inconsistent. Few studies have been made of characteristics of street litter, and they offer a wide range of values of concentrations and loads. Effluent data show a similar scatter. However, it is necessary that a decision be made regarding actual values for use in the analysis. This section will describe bEquation (18) and Table 15 ^cAssumed depression storage = 0.01 inch, runoff coefficient from equation (18), see section 6.4 # TABLE 18 ANNUAL WET WEATHER RUNOFF FOR COMBINED, STORM, AND UNSEWERED AREAS | 1 | | ANNLA | WEILBEAIDER LETER |
---|--|--|---| | ן טאן
יי | URBANIZED AREA | IN/YR | (INCHES PER YEAR) COMB STORMIUNSEW! AVER | | TAMEN 67 & COLUMN 45 | PENUL PRODUCTION SOLUTION SOLU | RIMANAMONANAMAKAMAMAKAMAMAKAMAMAMAMAMAMAMAMAMAMA | 11.828817.1750333.153.172.044.744.93.139.61.44.750.99.103.95.04.51.60.60 11.00.121.121.121.121.121.121.121.121.12 | TABLE 19 ANNUAL DRY WEATHER FLOW FOR COMBINED, STORM, AND UNSEWERED AREAS | 1 | | ANNLA | DR
(IN | Y HEAT | HER YEL | DW (R) | |------------|---|--|--|---|---|---| | I NU | URBANIZED AREA | ANNL PRECP | COMB | Y HEAT
CHES P
STORM! | UNSEWI | AVER | | 1 | AJAX | 33 | 39.8 i | 16.0 | 4.3 | 11.2 | | 3 | AURDKA
BARRIE | 33
32 | 39.8
0.0
0.0
30.7
0.0 | 16.01
16.11
21.11
11.9
14.7
14.7 | 45457 | 2-8565501
1902552501 | | 1 5 | BELLEVILLE | 341 | 30.7 | 14:71 | 7:7 | 13.6 | | 1 6 | IBRANTFURD
 BURLINGTON | 35 | 51.0 | 17:11 | 7 | 2.5 | | 5 | ICHATHAM
ICHINGUACOUSY | 31
31 | 0.0 | 17.6 | 7:1 | 17.1 | | | I COBOUKG
I DUNDAS | 32 | 0.0 | 25.4 | 4.3 | 17.1 | | 113 | GALT CORE | 33 | 00000042004 | 22.7 | MM9MM7-005M | 13.5 | | 15 | IGUELPH
IGUELPH
IGUELPH | 33 | 30.01 | 50.1 | 4:7 | 15.7 | | 117 | KINGSTON | 35 | 30.2 | 11.9 | 0.0 | 16.8 | | 119 | LEAMINGTON | 30 | 45.4 | 15.6 | 4.3 | 13.2 | | 151 | LONDON | 37 | 38.8 | 20.31
13.31
17.51 | 5.6 | 13.2 | | 153 | MIDLAND | 38 | 21.3 | 8.6 | 4.4 | 10.3 | | 125 | NEWMARKET | 31 | 0.01 |
17.51
8.21 | 4.71 | 12.41 | | 27 | INDRTH BAY | 35 I | 08030000100004
0831009300007 | 707127230617503787786814 | 7.1 | 12.41 | | 29 | IORILLIA
IDSHAWA | 36
34 | 0.0 | 21.71 | 4 3 7 | 13.3 | | 31 | IOWEN SOUND
IPETERBOROUGH | 35
32 | 27.4 | 12.0
23.9
20.4 | 4 4 4 1 | 10.1 | | 33 | IPIČKERING
IPORT COLBOURNE | 31 | 00000000000000000000000000000000000000 | 1777 477 477 477 477 477 477 477 477 477 | 454464575474444444474 | 8775N7M8N94N8M94491-M10745981-M7-1856741401 | | 135
136 | IPORT ERIE | 34 | 0.0 | 21.3 | 4 . 3 | 10.91 | | 37
 38 | IRICHMUND HILL
IST. CATHARINES | 32 | 20.1 | 18.7
10.2
8.7 | 7.7 | 13.1 | | 139 | IST. THUMAS | 34 | 38.5 | 11.8 | 0.0 | 18.7 | | 142 | ISCARBOROUGH | 31 | 39.5 | 12.1 | 7.1 | 16.8 | | 44 | STRATEORD | 38 | 40.0 | 25.64 | 4 - 2 | 11.5 | | 46 | THUNDER BAY | 28 | 29.7 | 17.6 | 6.8 | 10.7 | | 48 | TRENTON
LWALL ACERUPG | 33 | 35.4 | 193730 | 4 3 | 10304
4024
11030 | | 50 | INELLAND | 34 | 33.8 | 15.0 | 4 3 | 10.7 | | 52 | IWTADSOR
INDODSTOCK | MANADARAMMENTANA MENENTANA | 470.48030
405304030
30401 | 7.09.00.19.00.0
7.19.00.19.00.0
7.19.00.19.00.0 | 6.0 | 10.7
12.0
15.7
18.0
18.0 | | 154 | LYDRK, EAST | 31 | 39 1 | 13.3 | 0.0 | 35.8
37.8
18.0 | | 50 | POPULATION OF THE STATE | 31 | | | MOM9772718M9MM700MM46M467919M74MM4MMM7M0414MM780MMMM0M00015 | 18.0 | | | WEIGHTED AVE. | 32.75 | 33.4 | 15.9 | 1 2.5 | 16.1 | FIGURE 7. COMPARATIVE MAGNITUDE OF ANNUAL WET- AND DRY WEATHER FLOWS. methods used for predicting runoff quality, data required for their use, and final results used in this study. Urban runoff quality may be characterized by a variety of parameters. However, the list is generally shortened for modeling purposes to those characteristic of solids, oxygen demand, health hazards and aquatic growth potential, as indicated in Table 20, Typical Quality Parameters of Urban Runoff Models. It is discouraging that even at this juncture, a serious problem of definition of terms arises because of various possibilities for analyzing and reporting quality parameters. The assurance that analyses have been performed according to Standard Methods²⁷ is not enough information. For example, solids are sometimes reported as "residue" instead of solids, and "filterable residue" instead of # TABLE 20 TYPICAL QUALITY PARAMETERS OF URBAN RUNOFF MODELS Representative Quality | | Representative Quality | |--------------------------|----------------------------| | Quality Characteristic | Parameters | | Solids | Surface "Dust and Dirt" | | | Surface "Solids" | | | Total Solids | | | Suspended Solids | | | Dissolved Solids | | | Volatile Solids | | | Settleable Solids | | Oxygen Demand | BOD, COD | | | Total Organic Carbon | | | Organic N, NH ₃ | | Health Hazards | Total Coliforms | | | Fecal Coliforms | | Aguatic Growth Potential | Ortho-PO ₄ | | · | Total PO | | | NO_2 , NO_3 , Total N | "dissolved solids," because of the nature of the evaporation and filtration techniques utilized in the chemical analyses. Generally, "solids" and "residue" are synonymous, and "solids" will be used in this report. Another problem arises from the fact that pollutants may be in both soluble and insoluble forms. Some studies report concentrations of only the soluble portions of, say, BOD and PO₄, leading to unrealistically low values if the reader mistakenly thinks of them as total (soluble plus insoluble) concentrations. On the other hand, it is important to know the relative soluble-insoluble fractions of pollutants since this has a major impact upon treatability. That is, pollutants that appear as suspended solids are relatively easy to remove (e.g., by sedimentation) compared to those that are soluble. To further complicate the picture, no clear relationship exists between data derived from studies of surface litter (gathered by sweeping, vacuuming, flushing) and those resulting from analysis of the runoff itself (e.g., samples of storm and combined sewage effluent). Thus, a mixture of data exists, derived from both surface and effluent sources. However, there is no study in which samples of both types have been gathered simultaneously. Hence, the relationship between the two is not well defined, and it is difficult to draw conclusions from all data considered together. In this report, the solids relationship of Figure 8, Relationships Among Solids Parameters, applies. Note that total solids (TS) is the sum of dissolved solids (DS) plus suspended solids (SS), and that total, dissolved, and suspended solids may be separated into a volatile portion (generally considered the organic portion) and a fixed portion. Volatile solids (VS) will refer to a portion of total solids in this report, unless otherwise indicated. Settleable solids are some FIGURE 8 RELATIONSHIPS AMONG SOLIDS PARAMETERS fraction of suspended solids. Note, finally, that an upper limit on the size of total solids reported is imposed by the size of the openings in the sampling equipment (e.g., a quarter-inch mesh screen). Similar diagrams may be prepared for nitrogen and phosphorus, as shown in Figure 9, Relationships Among Nitrogen Parameters, and Figure 10, Relationships Among Phosphorus Parameters. For these parameters, it is necessary to know whether concentrations are being FIGURE 10 RELATIONSHIPS AMONG PHOSPHORUS PARAMETERS reported of the element itself (e.g., phosphorus) or the compound (e.g., PO₄). although conversions can readily be made on the basis of the molecular weight of each. Regarding the nitrogen relationships, all concentrations should be reported in terms of N (i.e., NO₂-N, NO₃-N, NH₃-N) in order for mass balances to be performed easily. #### 4.3.2 Parameters for Assessment For purposes of the Ontario assessment, five parameters will be used that are representative to some degree of the quality characteristics indicated in Table 20. These are indicated in Table 21, Quality Parameters Used in Ontario Assessment. Five-day BOD is used because of its broad acceptance and traditional role in water quality analysis. Its usefulness is severely impaired by the great difficulty in performing accurate and consistent laboratory analyses. For instance, there is no standard for laboratory comparison, and low-level values (e.g., 10 mg/l) are especially susceptible to errors of up to 100 percent. Moreover, studies have shown that results are affected by the percent dilution and are generally not reproducible. In addition, samples are affected by amounts of heavy metals and other parameters present. Use of COD and/or TOC avoids some of these problems for the most part, but their relationship with traditional stream sanitation analysis (i.e., prediction of dissolved oxygen) is unclear, and most people are used to thinking in terms of BOD. It is used in this study, realizing its limitations. The other four parameters are used because of general acceptance and availability of data. It should be borne in mind that many options are available for modeling purposes, and the choice of parameters is somewhat arbitrary. #### 4.4 Quality Prediction Techniques #### 4.4.1 Pollutant Loads The quality prediction techniques found in most urban runoff models (e.g., SWMM, STORM) rely upon generation of an initial surface load of pollutants. This load is usually expressed in units of lbs, lbs/acre, lbs/curb-mile, lbs/day-acre, or lbs/day-curb-mile (or equivalent metric units). Normalized loads are, of course, multiplied by a unit of area, dry days, etc., to produce an initial mass of pollutants at the start of the storm. Pollutants are then "washed off" TABLE 21 QUALITY PARAMETERS USED IN ONTARIO ASSESSMENT | Parameter Parame | Abbreviation | |--|-------------------------------------| | 1. Five-Day Biochemical Oxygen Demand | BOD₅ or BOD | | 2. Suspended Solids | SS | | 3. Volatile Solids | VS | | 4. Total Phosphate (as PO ₄) | PO ₄ or TPO ₄ | | 5. Total Nitrogen (as N) | N |
Note: All parameters (except suspended solids) are totals that include dissolved and insoluble portions, and are usually determined as in Standard Methods. 27 All are usually reported in concentration units of mg/l (equivalent to ppm). during a storm in an exponential fashion in which the amount removed per time step is proportional to the amount present, the runoff rate, and other factors. SWMM^{29,f0} and STORM^{11,23} documentation contain details of this methodology. The key factor in prediction of long-term (e.g., annual) pollutant loads from urban areas is, however, the surface loading rates themselves, and most of the following discussion will be devoted to them. Surface loadings are usually predicted by one of two means: estimates based on surface accumulation data or estimates based on measurements of effluent concentrations and flows. As mentioned earlier, no one study has performed the analysis both ways, so comparisons are not easily accomplished. However, to obtain the study objective, normalization of loading rates by some means that could be converted to total mass of pollutants upon multiplication by area, days, and/or other appropriate parameters was necessary. As a result, both methods were utilized in the developments that follow. 4.3.2 Surface Accumulation Methods Both SWMM and STORM use this method for prediction of the total soluble mass of pollutants (except for solids) available at the beginning of a storm. For suspended or settleable solids calculations, simply the total mass is given since there is no "soluble" portion. The method is based upon the following equation, given in representative English units: $$P_{i,j} = dd_i \cdot F_{i,j} \cdot G_{L,i} \cdot A_i \cdot N_D + P_o$$ where P_{i, j} = total soluble pounds of pollutant p on urban land use i at the beginning of the storm; dd, = pounds of accumulated dust and dirt (or "surface solid") per curb mile per dry day; F_{i, j} = total soluble pounds of pollutant p per pound of dust and dirt found on land use i; G_i = number of curb-miles per acre of land use i; A: = area of land use i, acres; N_D = number of dry days since last storm; and P_o = total soluble pounds of pollutant remaining on land use i at end of last storm. The dust and dirt accumulation rate is often given in terms of pound/day per 100 feet of curb instead of curb-miles, but the latter units are used here for ease in comparison with other portions of the report. The parameter $N_{\rm D}$ is the number of dry days since the last storm, not the number of days since the last storm or street cleaning operation. This is due to the fact that in most cases the interarrival time between storms is less than the street cleaning interval. The latter is generally on the order of several 10's of days and the efficiency of street cleaning operation is uncertain in any event. The parameter dd_L , $\mathrm{F}_{\mathrm{p},L}$, and G_L are functions of land use, L. The dust and dirt loadings, dd_L , and pollutant fractions, $\mathrm{F}_{\mathrm{p},L}$, data are shown in Table 22, Parameters for Surface Pollutant ³¹ Accumulation Used in SWMM and/or STORM. These parameters may be updated to some degree, as will be shown. As indicated in Table 22, SWMM assumes that all dust and dirt will pass through a quarter-inch (6 mm) screen and is insoluble, thereby appearing as suspended solids (i.e., the SS fraction, $F_{i,j}$ is 1.0). STORM assumes that only from seven to 17 percent of dust and dirt meets these requirements. Both models assume that settleable solids are about ten percent of suspended. The SWMM assumptions imply that the total of all pollutants is slightly greater than 100 percent of dust and dirt, while the STORM assumptions imply that the total of all pollutants is only about 12 percent of dust and dirt. TABLE 22 PARAMETERS FOR SURFACE POLLUTANT ACCUMULATION USED IN SWMM AND/OR STORM | 21 | | | • | 1_ | _ | |----|----|---|----|----|---| | 21 | 76 | 1 | n, | 15 | н | | Parameter | Units | Single-family
Residential | Multi-family
Residential | Commercial | Industrial | Open ^a | |---|------------------|------------------------------|-----------------------------|-------------------|-------------------|-------------------| | Dust and dirt
loading, dd; | lb/day-curb-mile | 40.0 | 121.0 | 174.0 | 243.0 | 79.2 | | Pollutant frac-
tions ^b , F _{i, j} | kg/day-curb-km | 11.4 | 34.4 | 49.4 | 69.0 | 22.5 | | ss ^a (swmm) | | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | SS ^a (STORM) Settleable Solids | | 0.111 | 0.08 | 0.17 | 0.067 | 0.111 | | (SWMM) Settleable Solids | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | (STORM) | • | 0.011 | 0.008 | 0.017 | 0.007 | 0.011 | | BOD ₅ | | 0.005 | 0.0036 | 0.0077 | 0.003 | 0.005 | | COD | | 0.04 | 0.04 | 0.039 | 0.04 | 0.02 | | Total PO ₄ | | 0.00005 | 0.00005 | 0.00007 | 0.00003 | 0.00001 | | Total N | | 0.00048 | 0.00061 | 0.00041 | 0.00043 | 0.00005 | | Grease ² | | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | | Total Coliforms | MPN/g | 1.3×10^6 | 2.7×10^6 | 1.7×10^6 | 1.0×10^6 | 0.00 | Except as noted, values are for soluble portion and derived from the 1969 APWA Chicago study 3 1 The insoluble portion of pollutants is accounted for (in SWMM and STORM) by addition of a fraction of the solids concentration to predicted effluent concentrations (of the soluble portion). For example, SWMM adds five percent of the SS concentration to the soluble BOD concentration to obtain total BOD, on the basis of calibration of the original SWMM in San Francisco. This is because of the reliance upon the 1969 APWA Chicago data in which only soluble fractions were reported. It is obvious that equation (23) could be used to predict the total (soluble plus insoluble) mass of surface pollutant accumulation simply by a redefinition of terms (and use of appropriate revised numbers). This would facilitate quality calibration of the models and probably be as accurate considering the available data. Final surface pollutant loads derived subsequently will refer to total pounds of pollutants. Starting with the Chicago study and followed subsequently by others, it has become customary to report data in terms of mass of pollutants per unit length of curb, under the assumption that the curbs and gutters represent the main source area for acquisition of pollutants by the storm runoff. In order to obtain loadings on a unit area basis, it is necessary to obtain the length of curb per area for each land use, thus defining the parameter $G_{L,i}$ in equation (23). All values assumed. b Fraction refers only to soluble fraction of dust and dirt (except for solids). ^cAll values assumed at 10 percent of value for SS. It is expected that $G_{L,i}$ would be a function of land use, which in turn is a function of population density, PD. Curb length (taken as twice street length) was related to population density in the Washington. D.C., area by Graham et al.²⁵ Their data were augmented by data from other parts of the United States by APWA³ resulting in $$G_L = 0.0782 - 0.0668 \cdot 0.839^{PD} d$$ (24) where $G_L = \text{curb length per area, mile/acre, and PD}_d = \text{developed population density, persons/acre}$ Equation (24) seems to work well for residential areas, but the curb length concept is troublesome when one is evaluating commercial, industrial, or open areas. For example, what is the equivalent curb length of a shopping center? Data from other sources are compared in Table 23, Measured Curb Lengths for Various Land Uses. An average of the Tulsa³² and Ontario data is used in the analysis. Ontario data are not used by themselves because of possible differences in measurement techniques which may affect relationships with pollutant loadings that follow. In addition, it will be seen that ratios of curb lengths between different land uses are the important functions; these change little between cities. Specific data for residential areas are used in lieu of equation (24), since the equation was developed to predict curb length as a function of population density averaged over all land uses. However, the equation may be used when considering an overall urban area. To summarize, the surface accumulation methods are convenient for modeling purposes and illustrate the linkages between various causative factors. The key missing factor is a link between the surface TABLE 23 MEASURED CURB LENGTHS FOR VARIOUS LAND USES | | | | | | | | Av | erage of | Two | |---------------|---------------|---------------------|-----------------|---------------|---------|-----------------|--------------------|--------------------|-------------------| | | | Tulsa ³³ | 3 | 10 | Ontario | Citiesa | Locatio | e in Study | | | | mile/
acre | km/ha | 100 ft/
acre | mile/
acre | km/ha | 100 ft/
acre | mile/
acre | km/ha | 100 ft/
acre | | Residential | 0.076 | 0.30 | 4.01 | 0.067 | 0.27 | 3.56 | 0.072 | 0.29 | 3.78 | | Commercial | 0.081 | 0.32 | 4.28 | 0.057 | 0.23 | 2.99 | 0.069 | 0.28 | 3.64 | | Industrial | 0.042 | 0.17 | 2.22 | 0.026 | 0.10 | 1.35 | 0.034 | 0.14 | 1.78 | | Park | 0.042 | 0.17 | 2.22 | _ | _ | | | | | | Open | 0.016 | 0.063 | 0.84 | 0.015 | 0.059 | 0.81 | 0.024 ^b | 0.097 ^b | 1.29 ^b | | Institutional | _ | _ | _ | 0.030 | 0.12 | 1.66 | _ | _ | _ | ²Average of data collected by University of Florida, 1975, Guelph, Kingston, Kitchener-Waterloo, Milton, St. Catharines, Sault Ste. Marie, Thunder Bay, Toronto, Windsor. bA verage of open plus park loads and effluent loads that has been verified by measurements of both. Until this is accomplished, such a link must be hypothesized in its mathematical formulation, as done in SWMM and STORM. However, equation (23) is used in developments that follow to relate loadings between different land uses and pollutants, hence the reason for the previous developments. The other side of the coin, that is, results derivable from
effluent data alone, will be discussed next. ### 4.4.3 Effluent Concentration Methods Many studies in recent years have reported measured concentrations of pollutants in storm and combined sewer discharges. If the flow rate is also known, the mass flow pollutograph may be determined (e.g., lbs/min of BOD) and integrated to produce the total mass emission for the storm discharge. When distributed over the area of the catchment and divided by the number of dry days preceding, normalized loadings (e.g., mass-BOD/area-day) may be determined. Some studies report these values directly, while others report a lesser amount of information. In general, the surface loading may be deduced from a measured flow-weighted average concentration and assumed runoff quantity: $$M = P \cdot C \cdot CR \cdot \rho$$ (25) where M = surface loading, mass/area-time; P = precipitation, depth/time; = average concentration = mass pollutant per mass of total sample; CR = runoff coefficient; and ρ = water density, mass/volume. For an individual storm, preceded by N_D dry days, the total depth of precipitation, P_s , may be given. Then $$M = \frac{P_r \cdot C \cdot CR \cdot \rho}{N_D} \tag{26}$$ For annual average computations it may be assumed that, on an average basis, $$P_{s} = P/n \tag{27}$$ and $$N_{\mathbf{D}} = 365/n \tag{28}$$ where P = average annual precipitation, depth/year; N_D = average number of days between storms; and n = average number of storms per year. Equation (25) may thus be used to compute average annual values since it results from substitution of equations (27) and (28) into equation (26). Equation (25) may be converted to convenient units. For instance, $$M(\frac{lb}{day\text{-acre}}) = P(\frac{in}{yr}) \cdot C(\frac{lb}{10^6 lb}) \cdot CR \cdot 62.4(\frac{lb}{lb})$$ $$\cdot \frac{43.560}{acre} ft^2 \cdot \frac{ft}{12 in} \cdot \frac{yr}{365 day}$$ or $M = 6.206 \times 10^{-4} \cdot P \cdot C \cdot CR$ where (29) M = average surface loading, lb/day-acre; P = annual precipitation, in./yr; C = pollutant concentration, mg/l or ppm; and CR = runoff coefficient, fraction. Use of equation (29) suffers from several difficulties. It is inherently an average, and is susceptible to the assumptions of equations (27) and (28). It requires the use of a flow-weighted average concentration. Unfortunately, such values are seldom reported in the literature, if indeed any specification is made as to the types of "average" concentration presented. Runoff is generated by the simplest of methods, that of a runoff coefficient, with all of its well-documented errors. On the other hand, measured concentrations do in fact represent the real amount of pollutants being discharged, and thus incorporate all of the unknown factors involved in trying to generate surface loads coupled with a wash-off and transport mechanism. These include such factors as dust fall, air pollution, and several others not specifically addressed in this study. Furthermore, for purposes of the assessment performed in this study, very simple methods of runoff and quality generation must be employed. Hence, equation (29) is consistent with other levels of analysis used in this research. In the same manner that surface accumulations could be considered functions of population density and land use, so can surface loadings derived from effluent data. In particular, both the concentration and runoff coefficient are clearly such functions; the latter has been discussed previously. In order to ascertain the functional relationship between the surface loadings and population density, available data for residential areas for which population density is given have been tabulated. Derived surface loadings are given in Table 24, Surface BOD Loadings for Residential Areas as Derived from Effluent Measurements. The cities included in the table all had data for residential areas for which population density was specified and from which surface loadings could be derived. The list is not meant to be exclusive, but represents data that were readily available during the study. The vast disparity among all the data may be seen in Figure 11 Residential BOD Loadings vs Population Density. Both separate and combined loadings vary by more than an order of magnitude. Unfortunately, the variation persists if normalized by dividing by annual precipitation (not shown). Three cities produce very high results compared to the bulk of the data: Atlanta, Bucyrus, and Durham. The reason for this is primarily variation from strictly residential land use. In addition, the open channels sampled in Durham had characteristics of open sewers. The values are so high as to be inconsistent with the rest of the data and are omitted from subsequent analysis. The remaining data still show considerable scatter, but will be utilized to aid in deriving required relationships. The data of Droste⁴² from Windsor are about the only in the study region that provide both a BOD loading estimate and TABLE 24 SURFACE BOD LOADINGS FOR RESIDENTIAL AREAS AS DERIVED FROM EFFLUENT MEASUREMENTS | | | | | | | | | | | | Popu | lation | | |-----------|----------------------|----------|--------|-------|-----|-------|--------|---------------------|-----------|----------|------------|---------|--------| | | | | Catchr | nent | Anı | nual | | BOD Surface Loading | | Density | | | | | | Site or | Sewer | Are | a P | | cip. | Runoff | Conc. | lb/ac-day | | Persons/ac | | | | City | Station ^a | System | ac | (ha) | in. | (cm) | Coef. | mg/i | (kg/ł | na-day) | (perso | ns/ha) | Source | | Tulsa | 3 | Separate | 550 | (223) | 48 | (122) | | | 0.0381 | (0.0428) | 7.13 | (17.61) | 32 | | | 5 | Separate | 507 | (205) | | | | | 0.0901 | (0.1012) | 8.93 | (22.06) | | | | 7 | Separate | 197 | (80) | | | | | 0.0417 | (0.0468) | 11.55 | (28.53) | | | | . 8 | Separate | 211 | (85) | | | | | 0.0899 | (0.1009) | | (28.08) | | | | 9 | Separate | 64 | (26) | | | | | 0.0544 | (0.0611) | 13.67 | (33.76) | | | | 11 | Separate | 815 | (330) | | | | | 0.0963 | (0.1081) | 9.57 | (23.64) | | | | 13 | Separate | 212 | (86) | | | | | 0.0679 | (0.0762) | 2.36 | (5.83) | | | · | 15 | Separate | 74 | (30) | | | | | 0.0688 | (0.0772) | 11.22 | (27.71) | | | Bucyrus | 8 | Combined | 179 | (72) | 35 | (89) | 0.39 | 120 | 1.017 | (1.142) | 11.7 | (28.9) | 33 | | • | 17 | Combined | 614 | (249) | | | 0.41 | 107 | 0.953 | (1.070) | 9.1 | (22.5) | | | | 23 | Combined | 378 | (153) | | | 0.35 | 108 | 0.821 | (0.922) | 5.0 | (12.4) | | | Atlanta | Confed. Ave. | Combined | 1,129 | (457) | 48 | (122) | 0.31 | 210 | 1.94 | (2.178) | 10.9 | (26.9) | 34 | | | Blvd. | Combined | 2,421 | (980) | | | 0.42 | 84 | 1.05 | (1.179) | 16.6 | (41.0) | | | | McDan St. | Combined | 968 | (392) | | | 0.42 | 286 | 3.58 | (4.019) | 13.2 | (32.6) | | | | Harlan | Separate | 954 | (386) | | | 0.33 | 7 | 0.069 | (0.077) | 9.7 | (24.0) | | | | Casplan | Separate | 517 | (209) | | | 0.56 | 20 | 0.334 | (0.375) | 7.3 | (18.0) | | | | Fed. Pris. | Separate | 1,498 | (606) | | | 0.31 | 26 | 0.240 | (0.269) | 4.8 | (11.9) | | | Roanoke | Trout Run | Separate | 997 | (404) | 34 | (86) | | | 0.0363 | (0.0408) | 11.0 | (27.2) | 35 | | | Murray Run | Separate | 909 | (368) | | • • | | | 0.0428 | (0.0481) | 6.6 | (16.3) | | | | 24 St. | Separate | 1,034 | (419) | | | | | 0.0233 | (0.0262) | 9.7 | (24.0) | | | Milwaukee | Hawley Rd. | Combined | 495 | (200) | 31 | (79) | 0.40 | 49 | 0.377 | (0.423) | 35.0 | (86.5) | 36 | Note: Surface loadings are taken directly from the source if given, or derived from mass emission data. Otherwise, equation 29 is used (for cities for which runoff coefficient and BOD concentration are listed). TABLE 24 (continued) | | Site or | Sewer | Catchi | | Anr
Pre
in. | iual
cip.
(cm) | Runoff
Coef. | | lb/ac | Loading
-day
a-day) | Popula
Dens
Person
(person | ity
is/ac | Source | |-------------|----------------------|------------------|--------|-------|-------------------|----------------------|-------------------|----|--------|---------------------------|-------------------------------------|--------------|--------| | City | Station ^a | System | ac | (107) | 41 | (104) | | | 0.063 | (0.071) | 37.6 | (92.9) | 37 | | Wash., D.C. | Good Hope Run | Separate | 265 | • | 41 | (1047 | | | 0.247 | (0.277) | 43.6 | (107.7) | | | | B4 | Combined | 105 | (43) | | | | | 0.381 | (0.428) | 52.6 | (129.9) | | | | G4 | Combined | 222 | (90) | | | | | 0.301 | (0.420) | 52,0 | (120.0) | | | Des Moines | S-1 | Separate | 315 | (128) | 31 | (79) | 0.10 | 48 | 0.093 | (0.104) | 7.4 | (18.3) | 38 | | Des Montes | S-3 | Separate | 356 | (144) | | | 0.10 | 63 | 0.121 | (0.136) | 5.3 | (13.1) | | | | 0-3 | Combined | 4,050 | - | | | 0.15 | 69 | 0.199 | (0.223) | 7.5 | (18.5) | | | | 0-6 | Combined | 5,600 | | | | 0.15 | 95 | 0.275 | (0.309 | 8.3 | (20.5) | | | | 0-8 | Combined | 1,350 | (547) | | | 0.15 | 68 | 0.197 | (0.221) | 10.9 | (26.9) | | | | 0-8A | Combined | 927 | (375) | | | 0.15 | 77 | 0.222 | (0.249) | 10.9 | (26.9) | | | Cincinnati | Mt. Washington | Separat e | 27 | (11) | 40 | (102) | | | 0.0904 | (0.1015) | 9.0 | (22.2) | 39 | | Durham | E-1 | Separate | 56 | (23) | 45 | (114) | 0.29 ^b | 25 | 0.202 | (0.227) | 14.9 | (36.8) | 40 | | Durnam | W-1 | Separate | 169 | (68) | | · | 0.35 ^b | 61 | 0.596 | (0.669) | 2.6 | (6.4) | | | | W-2A | Separate | 69 | (28) | | | 0.34 ^b | 38 | 0.361 | (0.405) | 11.0 | (27.2) | | | | W-2B | Separate | 138 | | | | 0.36 ^b | 51 | 0.513 | (0.576) | 13.4 | (33.1) | | | | N-1 | Separate | 183 | | | | 0.36 ^b | 71 | 0.714 | (0.802) | 4.2 | (10.4) | | | Seattle | Low Dens. | Separate | ı | С | 36 | (91) | | | 0.04 | (0.045) | 11.0 ^d | (27.2) | 41 | | Seattle | Med. Dens. | Separate | | C | | | | | 0.07 | (0.079) | 22.0 ^d | (54.3) | | | | High Dens. | Separate | | C | | | | | 0.13 | (0.146) | 30.0 ^d | (74.1) | | | • | nigii Dens. | Ceparace | | - | | | | | | | | | 40 | | Windsor | Labadie Rd. | Separate | 30
| (12) | 33 | (84) | | | 0.059 | (0.066) | 20.0 | (49.4) | 42 | ^aSite or station as listed in source documentation. b Value computed using imperviousness. chypothetical area based on measured data. d Assumed on basis of dwelling units per acre. FIGURE 11 RESIDENTIAL BOD LOADINGS vs POPULATION DENSITY population density for a residential area. An earlier study in Windsor 43 also provided these required data but was conducted on a developing area that included construction activities and was considered somewhat atypical by Droste. 42 Hence, it was not included in Table 24. Other studies of importance to the analysis include work in Halifax that has been published 44,45 as well as work in Toronto, Burlington, and Aurora sponsored by Environment Canada and the Canada Centre for Inland Waters (CCIW) that has not yet been completed. Of these, only the latter Halifax study of Bhatia 45 provided BOD loads of the type required in this analysis, but data were taken there for only three months in 1971, and it was somewhat questionable as to whether they were representative of a whole year. (Almost all the data included in Table 24 were taken over a period of several months.) In addition, population densities were not given. However, the average surface runoff BOD load calculated for the 2.18 acre (0.9 ha) Cambridge St. residential area of 0.038 lb-BOD/acre-day (0.042 kg-BOD/ha-day) is within the range presented in Table 24 and Figure 11. Clearly a synthesis of data from current studies in Ontario and elsewhere across Canada will provide better estimates of parameters needed for this type of analysis. # 4.5 Pollutant Load Prediction for Ontario Assessment # 4.5.1 Form of Equation Surface pollutant loads generated by the pollutant load estimating equation will be assumed to "wash off" on an annual basis for purposes of the assessment. Hence, they must be representative of actual measured effluent loads. Moreover, they should be functionally related to causative factors in a reasonable manner. They are expected to be functions of land use and population density. In addition, there are apparent observed geographical variations in, say, dust and dirt loadings, although it is not immediately obvious as to why these loadings should differ in a commercial or industrial area from one point in the country to another, other than on the basis of climate. The key climatic parameter is precipitation, since the more precipitation that occurs, the more likely it is that pollutants will be washed off the surface and appear as effluent loads instead of being removed by other means such as street sweeping or wind: Total annual pollutant loads from storm runoff are lower in arid regions for this very reason.47 Precipitation includes both rain and snow, on an annual basis, incorporating the assumption that pollutants accumulate during periods of snow cover and eventually are washed off during periods of melt. These considerations led to the selection of a prediction equation, in which the loading is proportional to precipitation, for all land uses. It will also be proportional to a function of population density for residential areas which is intended to account for many other implicit factors such as age of area, imperviousness, runoff coefficient, etc., all of which are functions of population density. This formulation may be easily applied because precipitation and population density data are readily available. However, these parameters are about the only ones (other than areas) that are available, ruling out more complicated functions. The loading, M, will thus be represented functionally as: $M = \alpha \cdot f_1(P) f_2(PD)$ (30) Where the coefficient α and functions f_1 and f_2 are to be determined below. The procedure to be followed will develop appropriate parameters for residential areas first, which will then be extended to other land uses. # 4.5.2 Precipitation Function If average BOD loadings for the cities of Table 24 (omitting Atlanta, Bucyrus, and Durham) are plotted versus annual precipitation (not shown), no clear relationship is indicated. Hence, the data will simply be averaged to obtain the factor α and f_1 (P) of equation (30) for BOD. That is, it is assumed that the loadings are directly proportional to precipitation, such that zero precipitation generates zero storm water pollution. This is supported by equation (29). Hence, $$f_1(P) = P \tag{31}$$ and the parameter α is obtained as an average of the seven remaining cities of Table 24 for which separate data are available. Thus, for BOD for residential areas, $$\alpha = \frac{1}{7} \sum_{i=1}^{7} \frac{\text{loading}_i}{P_i} = 0.00219 \frac{\text{lb-BOD}}{\text{ac-day-in}}$$ $$= 0.799 \frac{\text{lb-BOD}}{\text{ac-yr-in}} = 0.353 \frac{\text{kg-BOD}}{\text{ha-yr-cm}}$$ (32) Annual average BOD loadings for residential areas are now predicted by $$M = 0.799 \cdot P \cdot f_2 (PD_d)$$ (33) where M = -annual average BOD loading for separate sewered, residential areas, lb-BOD/ac-yr; P = annual precipitation, in.; and PD_d = developed population density, persons/acre For combined areas the equation will be identical, except that a parameter β will be employed instead of α in order to distinquish between combined and separate areas. For BOD for residential areas, the value of β is computed using average values for Des Moines, Milwaukee, and Washington, D.C. from Table 24. $$\beta = \frac{1}{3} \sum_{i=1}^{3} \frac{\text{loading}_i}{P_i} = 0.00902 \frac{\text{lb-BOD}}{\text{ac-day-in}}.$$ = 3.29 $$\frac{1b\text{-BOD}}{\text{ac-yr-in.}}$$ = 1.46 $\frac{\text{kg-BOD}}{\text{ha-yr-cm}}$ (34) Annual BOD loadings for residential areas served by combined sewers are thus, $$M = 3.29 \cdot P \cdot f_2 (PD_d)$$ (35) where parameters are as previously defined. It may be seen that for the same population density and precipitation, combined BOD loadings are 3.29/0.799 = 4.12 times higher than separate loadings. This agrees with an independent survey of available data by Lager and Smith ⁴⁶ in which average BOD concentrations in combined sewage of 115 mg/l are 3.83 times greater than the average BOD concentration of 30 mg/l in separate sewers. The difference in loadings is due mainly to residual matter left in conduits between storms, since simple mixing of stormwater and dry-weather flow, or differences in population density between separate and combined sewer areas, will not explain the four-fold variation in concentrations and loadings. #### 4.5.3 Population Function The data of Table 24 and Figure 11 incorporate all the available information about the relationship of BOD loadings with population density implied by equations (29) and (30). In order to extend the data base slightly further, it will be assumed that combined area loadings increase with population density, PD, in the same manner as do separate area loadings. The data base can then be extended slightly by normalizing by the average loading for separate and combined areas. Omitting the data from Atlanta, Bucyrus, and Durham, Table 25, Normalized BOD Loading Data, may be prepared. Finally, the data of Table 25 may be plotted, as shown in Figure 12, Normalized BOD Loadings vs Population Density. A point has been added that represents the loading in open space of 0.00982 lb-BOD/ac-day (0.0110 kg-BOD/ha-day) where presumably the population density is zero. (The derivation of this value is shown later.) Inspection of Figure 12 shows such scatter that no statistically significant relationship is likely to be derived from the data. Rather, an argument must be made upon the expected form of the functional relationship, and the data used only to obtain a calibration. This relationship is expected to be similar to those developed earlier for imperviousness and curb length, namely increasing rapidly at low population densities and leveling off at high ones. The concentration of stormwater pollutants is M/AR, or $$M/AR = \frac{\alpha P f_2 (PD_d)}{K[0.15 + 0.751]P}$$ (36) where $$I = 0.096 PD_d^{+0.573 - 0.391 \log_{10} PD_d}$$, or $$I \cong 0.096 \, PD_d^{0.54}$$ (37) and K is a conversion factor, for example, the value that appears in equation (29). Depression storage is omitted in the approximation of annual runoff. Thus, $$M/AR \simeq \frac{\alpha \left[f_2 PD_d\right]}{K[0.15 + 0.072 PD_d^{-0.54}]}$$ $$L is assumed that f_{-}(PD_d) is$$ (38) It is assumed that $$f_2$$ (PD_d) is $$f_2$$ (PD_d) = $a + b$ PD_d^m where (39) $$a = 0.142 = value at PD_d = 0$$, TABLE 25 NORMALIZED BOD LOADING DATA | | Average | | | | | |----------|----------|-------------------|--------------|--------------|--------------| | | Loading | | | | | | | Ib-BOD | | Loading | Population | | | | ac-day | City | Ave. Loading | Persons/ac | Persons/ha | | | (kg-BOD) | | | | | | Separate | 0.0693 | Tulsa | 0.550 | 7.13 | 17.61 | | Areas | (0.0778) | | 1.300 | 8.93 | 22.06 | | | • | | 0.0602 | 11.55 | 28.53 | | | | | 1.297 | 11.37 | 28.08 | | | | | 0.785 | 13.67 | 33.76 | | | | | 1.390 | 9.57 | 23.64 | | | | | 0.980 | 2.36 | 5.83 | | | | | 0.993 | 11.22 | 27.71 | | | | Roanoke | 0.524 | 11.0 | 27.2 | | | | | 0.617 | 6.6 | .16.3 | | | | | 0.336 | 9.7 | 24.0 | | | | Wash., D.C. | 0.909 | 37.6 | 92.9 | | | | Des Moines | 1.342 | 7.4 | 18.3 | | | | | 1.746 | 5.3 | 13. 1 | | | | Cincinnati | 1.305 | 9.0 | 22.2 | | | | Seattle | 0.577 | 11.0 | 27.2 | | | | | 1.010 | 22.0 | 54.3 | | | | | 1.876 | 30.0 | 74.1 | | | | Windsor | 0.851 | 20.0 | 49.4 | | Combined | 0.271 | Wash., D.C. | 0.911 | 43.6 | 107.7 | | Areas | | | 1.405 | 52.6 | 129.9 | | | (0.304) | Milwau kee | 1.391 | 35. 0 | 86. 5 | | | | Des Moines | 0.734 | 7.5 | 18.5 | | | | | 1.014 | 8. 3 | 20.5 | | | | | 0.727 | 10.9 | 26. 9 | | | | | 0.819 | 10.9 | 26.9 | Note: Values obtained from Table 24, omitting data from Atlanta, Bucyrus, and Durham. and developed population density will be used for consistency. Note that,
depending on the assumed value of m, the concentration of stormwater pollution will vary accordingly. Since no firm arguments can be made on the nature of the concentration function, it will be assumed that m is equal to the approximate exponent in the runoff equation or m = 0.54. Thus, $f_2(PD_d) = 0.142 + bPD_d^{0.54}$. Lastly, all data points with a PD_d ranging from 5 to 15 persons per acre (12 to 37 persons per ha) are averaged to obtain a calibrated value of $f_2(PD_d) = 0.895$ at 10 persons per acre (25 persons per ha). This range is chosen because data from most cities fall within it. Thus, the final equation is FIGURE 12. NORMALIZED BOD LOADINGS vs POPULATION DENSITY. Data are from Table 25 $$f_2(PD_d) = 0.142 + 0.218 PD_d^{0.54}$$ (40) where PD_d = developed population density, persons per acre. The reasonableness of equation (40) can be checked by estimating the variation in concentration as a function of population density. From equations (33) and (40), the annual BOD loading is $M = 0.799 \cdot P \cdot (0.142 + 0.218 PD_d^{0.54})$ (42) and annual runoff, AR, using the approximate New Jersey.²⁶ equation for imperviousness is $AR = [0.15 + 0.75(0.096)PD_d^{0.54}] \cdot P$ (42) Thus $$M/AR = \frac{0.113 + 0.174 \text{ PD}_d^{0.54}}{K[0.15 + 0.072 \text{ PD}_d^{0.54}]}$$ Using K = 0.227 for these units, this ratio, which is plotted in Figure Using K = 0.227 for these units, this ratio, which is plotted in Figure 13, BOD Concentration Variation Using Estimating Equation, shows concentration increasing with population density which does seem reasonable. The range of average annual concentrations is lower than values shown in Table 24 since it represents the average over the total residential area of a city. Unquestionably, the data base for estimating pollutant loads is very weak, and the resulting estimating equation, supported by such a weak foundation, should be used with extreme caution. #### 4.5.4 Conversion for Alternate Land Uses and Pollutants Different pollutants and land uses will generate different loadings for at least three reasons. First the dust and dirt loadings for different land uses differ. Second, the conversion factor of curb length per area is different for different land uses. Third, the pollutant fractions (as a fraction of dust and dirt) are different for different land uses. These factors are used to extend the equation developed for BOD for residential areas to similar equations for commercial, industrial, and open land uses and for suspended solids, volatile solids, total PO_4 , and total N. It is assumed that fractions and ratios of pollutants as they appear in effluent will be the same as those determined from analysis of surface accumulation data. The parameters shown in Table 26, Surface Loading and Pollutant Fraction Data, are used for conversion purposes. They are selected from the extensive survey material prepared by APWA.³ Where no data are available for pollutants as a fraction of surface dust and dirt, use is made (as a second choice) of similar data developed for pollutants as a fraction of total solids (TS). The BOD data are first converted to other land uses, using equation (23) as indicated below: $$\alpha (i, BOD) = \alpha (res, BOD) \cdot \frac{dd_1}{dd_{res}} \cdot \frac{G_{L,i}}{G_{L,res}} \cdot \frac{F_{i,BOD}}{F_{res,BOD}}$$ (44) $G_{i, BOD}$ = curb miles per acre for land use i from Table 23, and $G_{i, BOD}$ = fraction of dust and dirt that is BOD on land use i. FIGURE 13. ANNUAL AVERAGE RESIDENTIAL BOD CONCENTRATION USING ESTIMATING EQUATION TABLE 26 SURFACE LOADING AND POLLUTANT FRACTION DATA | К | esi | d | en | tiai | | |---|-----|---|----|------|--| | | | | | | | | | Single
Family | Multi
Family | Average | Commercial | Industrial | Open ^a | All
Data | |---|------------------|-----------------|--------------------|--------------------|--------------------|---|------------------| | Dust and Dirt (DD) Accumulation Ib day-curb milkg | 62
e | 113 | 87.5 | 166 | 319 | 50 | 159 | | day-curb me
BOD — ppm of DD | ter 17
5,260 | 32
3,370 | 24.8 | 47
7,190 | 90
2,920 | 14.2 | 45 | | ppm of total solids (7
Total PO ₄ — ppm of DD | • | 2,2 | 29,840 | 83,800 | 25,850 | 18,990 | 170 | | ppm of TS ^a Total N — ppm of DD | | | | | | 1,67 0 | 664 ^b | | ppm of TS ^a Suspended Solids — ppm of TS ^a Volatile Solids — ppm of TS ^a | | | 609,200
353,000 | 582,300
367,700 | 619,500
306,100 | 10,170 ^c
453,200
437,500 | | Except as noted, all data are from Table 82, Reference 3. Missing entries are not given in original table or not used in analysis. For example, the parameter α for BOD for commercial land use for separate areas is $$\alpha(\text{com, BOD}) = 0.799 \cdot \frac{166 \times 7190}{3,53,465} \cdot \frac{0.069}{0.072}$$ $$= 2.59 \frac{\text{lb-BOD}}{\text{ac-yr-in.}} = 1.14 \frac{\text{kg.-BOD}}{\text{ha-yr-cm}}$$ (45) where the number 353,465 is the average product of dd • F for BOD and is equal to $$\frac{62 \times 5,260 + 113 \times 3,370}{2}$$ After determination of BOD for each land use, i. other quality parameters, j, are computed on the basis of relative values of the fractions, F. Thus, $$\alpha(i, j) = \alpha(i, BOD) \frac{F_{i, j}}{F_{i, BOD}}$$ (46) For example, the parameter α for total PO₄ (TPO₄) in commercial areas is $$\alpha(\text{com, TPO}_4) = 2.59 \times \frac{170}{7,190} = 0.0612 \frac{\text{lb-TPO}_4}{\text{ac-yr-in.}}$$ $$= 0.0276 \frac{\text{kg-TPO}_4}{\text{ha-yr-cm}}$$ (47) aValues taken from Table 19, Reference 3. ^bSum of K-N plus NO₃ -N. c Value for organic -N only. For total nitrogen, N, in residential areas the calculation is similar but includes the average product of $dd \cdot F$, $$\alpha(\text{res}, N) = \frac{0.799 \cdot 664 \cdot (62 + 113)/2}{353,465} = 0.131 \frac{\text{lb-N}}{\text{ac-yr-in.}}$$ $$= 0.058 \frac{\text{kg-N}}{\text{ha-yr-cm}}$$ (48) For open land use and for suspended solids and volatile solids no data are available for fractions of dust and dirt, so fractions of total solids are used for values of F in the ratios. For example, for suspended solids in commercial areas, $$\alpha(\text{com, SS}) = 2.59 \times \frac{582,300}{83,800} = 18.0 \frac{\text{lb-SS}}{\text{ac-yr-in.}}$$ $$= 7.95 \frac{\text{kg-SS}}{\text{ha-yr-cm}}$$ (49) Computations for combined areas are carried out in the same manner to calculate the β parameters. Results from the US assessment show that there is a point after which the magnitude of street sweeping frequency has no effect on the computed values of average annual pollutant concentrations. In Des Moines, Iowa, if the streets are swept less frequently than every 20 days, then the STORM model, which accounts for street sweeping, does not show any significant reduction of pollutant load. For intervals up to 20 days, a linear buildup may be assumed. Thus, the final estimating equation includes a street sweeping factor γ as a function of the sweeping interval, $N_{\rm S}$, in days, i.e. f/20 if interval of street sweeping, f, is such that $$\int N_s/20 \text{ if } 0 \le N_s \le 20 \text{ days}$$ $$\gamma = \begin{cases} 1.0 \text{ if } N_s > 20 \text{ days} \end{cases} (50)$$ No variation due to type of sewer system is included. For this assessment the street sweeping intervals exceeded 20 days so it was unnecessary to take explicit account of this factor. The final result is shown in Table 27, Pollutant Loading Factors for Ontario Assessment. Use of the same adjustment factors for combined and separate areas leads to the same ratio $\beta/\alpha = 4.12$ for all entries in the table. On the basis of measured concentration data,⁴⁶ the assumption appears valid except for solids wherein some studies have shown higher ratios of volatile solids to suspended solids for example, in combined sewage than in storm runoff alone.⁴⁴ The BOD loadings are compared to dry weather flow loadings in Table 28, Comparison of BOD Loadings, for residential land use. Storm and combined runoff can be seen to be comparable to treatment plant effluent, although on a city-wide basis they would be greater because of higher loadings for commercial and industrial areas. Of course, BOD loads in both storm and combined sewage are in addition to the dry-weather flow loads since the usual BOD load for the latter of 0.17 lb/person-day (0.08 kg/person-day) is based upon measurements of flows actually received at treatment plants. ## **TABLE 27** POLLUTANT LOADING FACTORS FOR ONTARIO ASSESSMENT The following equations may be used to predict annual average loading rates as a function of land use, precipitation and population density. Separate Areas: $M_8 = \alpha(i,j) \cdot P \cdot f_2(PD_d) \cdot \gamma \frac{1b}{acre-yr}$ Combined Areas: $M_c = \beta(1,j) \cdot P \cdot f_2(PD_d) \cdot Y = \frac{1b}{acre-yr}$ · M = pounds of pollutant j generated per acre of where land use 1 per year, P - annual precipitation, inches per year, PD = developed population density, persons per scre, α, β = factors given in table below, γ = street sweeping effectiveness factor, and $f_2(PD_d)$ = population density function. Land Uses: i = 1 Residential i = 2 Commercial i = 3 Industrial i = 4 Other Developed, e.g., parks, cemeteries, schools (assume $PD_d = 0$) Pollutants: j = 1 BOD, Total j = 2 Suspended Solids (SS) j = 3 Volatile Solids, Total (VS) j = 4 Total PO₄ (as PO₄) j = 5 Total N Population Function: i = 1 $f_2(PD_d) = 0.142 + 0.218 \cdot PD_d^{0.54}$ i = 2,3 $f_2(PD_d) = 1.0$ i = 4 $f_2(PD_d) = 0.142$ Factors a and B for Equations: Separate factors, a, and combined factors, β, have units lb/acre-in. To convert to kg/ha-cm, multiply by 0.442. #### Pollutant, 1 | | Land Use, 1 | 1. BOD ₅ | 2. SS | 3. VS | 4. PO ₄ | 5. N | |----------------------
--|----------------------------------|------------------------------|------------------------------|---------------------------------------|-----------------------------------| | Separate
Areas, α | Residential Commercial Industrial Other | 0.799
2.59
0.994
0.0969 | 16.3
18.0
23.8
2.31 | 9.45
11.4
11.8
2.23 | 0.0336
0.0612
0.0579
0.00852 | 0.131
0.239
0.226
0.0519 | | Combined
Areas, B | Residential Commercial Industrial Other | 3.29
10.7
4.10
0.399 | 67.2
74.2
98.1
9.52 | 38.9
47.0
48.6
9.19 | 0.139
0.252
0.239
0.0351 | 0.540
0.985
0.931
0.214 | Street Sweeping: Factor y is a function of street sweeping interval, N_s, (days): $$\gamma = \begin{cases} \frac{1}{s}/20 & \text{if } 0 \le \frac{N}{s} \le 20 \text{ days} \\ 1.0 & \text{if } \frac{N}{s} > 20 \text{ days} \end{cases}$$ # TABLE 28 COMPARISON OF BOD LOADINGS | | lb/ac-yr | kg/ha∙yr | |-----------------------------------|----------|----------| | Separate Areas | 21 | 24 | | Combined areas | 88 | 99 | | Dry Weather Flow ^a | 621 | 697 | | DWF at 85% Treatment ^a | 93 | 105 | Assume residential land use; $PD_d = 10$ persons/acre (24.7 persons/ha) and P = 30 in./yr (76 cm/yr), and no influence of street sweeping (7=1). The data from which the loadings shown in Table 24 were derived reflect discharges over and above those received by the plants. ## 4.6 Tabulation of Ontario BOD Loads and Runoffs In order to minimize the volume of material presented for each city in the assessment, only BOD, PO₄, and N loadings were tabulated. The equations indicated in Table 27 may easily be used to calculate loadings of any of the desired parameters, given the precipitation and population density of the area of interest. As described in Chapter 4, land use variations are determined by first computing the fraction of undeveloped land in the urbanized area. The remaining land has a constant distribution of land uses, and can be used to weight the pollutant loadings factors to give an average over-all land use as follows: $$\overline{M} = P \sum_{i=1}^{4} w_i \cdot \alpha_1 \cdot f_2 \quad (PD) \cdot \gamma$$ (51) The land use distribution fractions for cities other than the nine test cities, w_i , are given below. | Land Use | Fraction, w. | |-------------|--------------| | Residential | 0.525 | | Commercial | 0.103 | | Industrial | 0.140 | | Open | 0.232 | | • | 1.000 | When equation (51) is applied to BOD loadings for separate areas, the result is $$\overline{M} = 0.419 \cdot P \cdot (0.142 + 0.218 PD_d^{0.54}) + 0.409 P$$ (52) \overline{M} = average annual BOD loadings over four land uses, lb-BOD/ac-yr; P = annual precipitation, in.; and PD_d = developed population density, persons/acre. For application to combined areas, the result is $$M = 1.726 \cdot P \cdot (0.142 + 0.218 PD_d^{0.54}) + 1.685 P$$ (53) These composite equations may easily be applied over the non-test cities. Note that equation (53) is simply equation (52) multiplied by 4.12. Using equation (51) and Table 27, similar equations can be developed for total phosphate and total nitrogen. ^aAssuming 0.17 lb-BOD/persons-day (0.08 kg-BOD/persons-day) These parameters are important as far as pollution of the Great Lakes is concerned. Thus, for T - PO₄ in separate areas, $\overline{M} = 0.0176 \cdot P \cdot (0.142 + 0.218 PD_d^{0.54}) + 0.0147 P$ and for T - N in separate areas, $M = 0.0688 \cdot P \cdot (0.142 + 0.218 PD_d^{0.54}) + 0.0580 P (55)$ Equations (54) and (55) should be multiplied by 4.12 for combined area T - PO₄ and T - N loads, respectively. Dry-weather flow loadings are computed simply on the basis of population density assuming average annual BOD generation of 0.17 lb/person-day (0.08 kg/person-day). Thus, $M_D = 62.1 \cdot PD_d$ (56)where M_D = average annual dry-weather flow BOD loading, lb-BOD/ Dry-weather loadings of total phosphate and total nitrogen may be found using data of Lager and Smith 46 who indicate that the average concentration of T-PO₄ (as PO₄) and T-N in dry-weather flow are 15 and 20 percent, respectively, of the BOD concentration. Thus, equation (56) may be multiplied by these percentages for calculation of T -PO₄ and T - N loadings. Results of the analysis may be seen for each city in Table 29, Dry-Weather BOD Loadings, Table 30, Wet-Weather BOD Loadings, Table 31, Dry-Weather T - PO₄ Loadings, Table 32, Wet-Weather T - PO₄ Loadings, Table 33, Dry-Weather T - N Loadings, and Table 34, Wet-Weather T - N Loadings. Area weighted averages for all areas are also shown. Owing to relatively low precipitation and relatively high population densities, dry-weather pollutant loads are generally higher than corresponding wet-weather values. However, as seen previously in Table 28, if 85 percent treatment is assumed for dry-weather loads, the resulting values are comparable to storm and combined sewered loads. 4.7 List of Variables Value of function $f_2(PD_d)$ when $PD_d = 0$ $_{\Lambda R}^{A_{i}}$ Area of land use i Wet-weather runoff, depth/time Normalized loading factor for separate sewered areas, α mass/area-time-length b Coefficient in function f_2 (PD_d) BOD Biochemical oxygen demand Biochemical oxygen demand at five days BOD₅ Normalized loading factor for combined sewered areas, β mass/area-time-length C Concentration, mass pollutant/total mass COD Chemical oxygen demand Abbreviation for commercial com CR Runoff coefficient DD Dust and dirt Dust and dirt loading factor for land use i, dd; mass/time-curb-length DWF Abbreviation for dry-weather flow and dry-weather flow runoff, depth/time $f_1(P)$ Factor for adjustment of pollutant loads, a function of precipitation f₂(PD_d) Factor for adjustment of pollutant loads, a function of population density Fraction of dust and dirt or land use L that is pollutant p $F_{i,j}$ Length of curb per area of land use L $G_{L,i}$ Street sweeping factor γ Ì Imperviousness as a fraction or percent I a Initial abstraction (loss) from precipitation, depth. Factor to convert runoff times concentration to pollutant K loadings Exponent in function f_2 (PD_d) m M Pollutant loading, mass/area-time \overline{M} Pollutant loading averaged over different land uses, mass/area-time Pollutant loading in combined sewered areas, mass/area-time M_c M_{D} Pollutant loading under dry weather conditions, mass/area-time Pollutant loading in separate sewered areas, mass/area-time M_s Number of storms per year N Nitrogen n $N_{\rm D}$ Number of dry-days preceding a storm Street sweeping interval, days N_s P Precipitation rate, depth/time P_o Mass of poliutant on surface at end of previous storm, mass Mass of pollutants on surface of land use L at beginning of $P_{i,j}$ storm, mass P_s PD Precipitation depth during one storm, length Population density, persons/area Developed population density, persons/acre PD_a PO_{4} Phosphate or total phosphate Correlation coefficient r res Abbreviation for residential Water density, mass/volume SS Suspended solids TOC Total organic carbon TPO₄ Total phosphate TS Total solids VS Volatile solids Fraction of total area that is land use i W_i TABLE 29 DRY WEATHER BOD LOADINGS | ND | URBANIZED AREA | ANNL
PRECP
IN/YR | COMB | RYSWEAT | HER BE | 39 1 | |---
--|---|---------------------------------|--|--|--| | | A I E S S E A J CU C HRS G A I LONGERGE A COLORINTO HR COYCOX BLA HA COLORINTO HR COYCOX BLA COLORINTO HA COLORINTO HR COYCOX BLA COLORINTO HR COYCOX BLA COLORINTO HA COLORINTO HR COYCOX BLA COLORINTO HA COLORINTO HIS CO | | | | | AVER | | 2 | AURORA | 33
31 | 1840. | 738 | 198. | 518
419
498
579 | | 74 | BELLEVILLE | 34 | 1418 | 551 | 274
356 | 498 .
579 . | | 6 | BRANTFORD | 32 | 998 | 681
788 | 755 | 629.
614.
576. | | 9 | CHATHAM
CHINGUACOUSY | 30
31 | 998
0 | 497
812 | 8094659489
99975558509 | 602 | | 10 | | 34
32 | 000 | 980
1050 | 809465948978
9397558509978 | 500. | | 113 | GALT
GALT
GEORGETOWN | 33
33 | 0000 | 1033 | 9187
9187
1991
1918 | 724.
529. | | 15 | GUELPH | 33
32 | 990
1396 | 928
378 | 197
198
218 | 543 | | 117 | KINGSTON
KITCHWATERLOO | 35
34 | 1396 | 550
806 | 299 | 778 | | 20 | LINDSAY | 50
33 | 1794 | /20.
938. | 201 | 480 | | 53 | MARKAM
MIDIAND | 31 | 1794.
1794.
1061.
985. | 808
396 | 208 | 454 | | 25 | MISSISSAUGA
NEWMARKET | 31 | 0 | 785
808 | 303 | 598 | | 127 | NORTH BAY | 35
35 | 879
1992
0 | 749 | 273. | 573.
782. | | 29 | ORILLIA
OSHAWA | 36
34 | 0. | 1004 | 198 | 513 | | 31 | OWEN SOUND
PETERBOROUGH | 351 | 1268 | 838
1081
1085
1078
1078 | 204 | 468 | | 331 | PICKERING
PORT COLBOURNE | 31
34 | 0. | 827-10-1872004348806085866588984-4584944-258965896588984-45857640867040524-27795667489080093587968378378065099798445857085 | 0007-10003007000700000000000000000000000 | 89899462001494558200045845255564544562-70457285657256456567555555555555555555555555555 | | 36 | PRESTON
RICHMOND HILL | 34 | 2272 | 984
864 | 199 | 502. | | 38 | ST. CATHARINES I | 351 | 93779
93779
1779
189 | 471 | 355
198 | 502
451
607
570 | | 40 | SARINA
SLT. STE. MARIE | 34 | 1779 | 543
800 | 252 | 864 | | 43 | STARBURDUGH
SIMCOE | 31
35 | 1823.
1958. | 729 | 326 | 576177285
773395
7554 | | 45 | SUDBURY
THUNDER BAY | 321 | 1370 | 813
565 | 265 | 495 | | 46
47
48 | THUNDER BAY TORONTO TRENTON WALLACEBURG | 33 | 1370
2177
1637 | 888 | 0. | 1855
573 | | 49 | WALLACEBURG
WELLAND | 301
341 | 1637 | 615.
552. | 198° | 507 | | 1.20 0 € 1. | TRENTON WALLACEBURG WELLAND WHITBY WINDSOR WOODSTOCK YORK YORK | MHNI HOMENMANNA MANAMANAMANAMANAMANAMANAMANAMANAM | 1586 | 103008965586500900464
4458570858065950658 | 310888968
999968 | 05374626784
25701951183
68555465628 | | 54 | YORK
YORK, EAST
YORK, NORTH | 31 | 1808
1715 | 614
546 | 0 | 1617
1283
1834 | | 56 | YUKK, NUKTH | | | On 62 49 50 64 | 0. | 多色色色 | | == | MEIGHTED AVE. | 32.75 | 1545.1 | 736.! | 255. | 743. | # TABLE 30 WET WEATHER BOD LOADINGS | | NO | URBANIZED AREA | ANNL.
PRECP
IN/YR | WE
(L
COMB | T WEAT | THER BE | D
AVER | |---|---|---|-------------------------|------------------|--|----------------------|-----------| | | 1 - I - I - I - I - I - I - I - I - I - | | B WUNWWWWWWW B | | GWOORLENG TO SOLVE THE SOL | 70101000
N N10N10 | | | ١ | 167 CE | 名名 医 | 32,75 | | 25.7 | 21.3 | ===== | TABLE 31 DRY WEATHER T - PO₄ LOADINGS | , , | | ΔΝΝΙ <u>1</u> | n.R | Y WEATI | HER PO | 4 1 | |---------
--|---|---|--|---|--| | NO | URBANIZED AREA | PRECPI | راً ﴾ | Y WEATI
BS/ACRI
STURM!! | -YFAR |)
AVED I | | 1 | | | ~ | | | AVER | | 1 1 | AJAX | 33 | 276.11 | 110.7 | 29.7
34.9
29.9 | 77.7 | | 2 | AJAX
AURORA
BARRIE
BELLEVILLE | 321 | 0.01 | 111.31 | 29.91 | 62.8 | | 4 | BELLEVILLE | 341 | 18.81 | 146.61
82.71
102.01 | 41.1 | 86.9 | | 5 | BRAMPIUN
IBRANTFORD | 32 | 8:01 | 102.01 | 33.21 | 92.11 | | 7 | BURLINGTON | 321 | 0.01 | 116.31 | 43.31 | 90.41 | | 8 | ICHIMGUACDUSY | 31 | 0.0 | 102.3
116.3
74.6
121.9
147.1 | 49.2 | 118.5 | | 110 | ICHBOURG | 341 | 0.01 | 147.1
157.6
120.7 | 29.91 | 86.91
94.41
92.51
92.51
118.01
118.01
108.71 | | liż | BELLEVILLE BERAMTFORD BERAMTFORD BERAMTFORD BERAMTFORD BERAMTFORD BERAMTFORD BURLING B | 31 | 0.0 | 120.71 | 47.81 | 108.7 | | 113 | IGALT
IGEOPGETOWN I | 33 | 0.01 | 155.07
155.09
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
15 | 29.71 | 79.5 | | 115 | GUELPH | 33 | 0.0 | 139.31 | 32.7 | 81.4 | | 119 | IHAMTLTUN !
IKINGSTON ! | 351 | 209.51 | 208.0 | 0.01 | 126.6 | | İÅ | KITCH - WATERLOO | 341 | 414 | 181.01 | 44.81 | 82.51
72.01 | | 150 | ILINDSAY | 33 | 0.0 | 140.8 | 30.21 | 119850613
79613 | | 151 | LONDON
IMARKAM | 37
31 | 269.2 | 92.0 | 31.3 | 68.1 | | 2000000 | MIDLAND | 38 | 147.5 | 121.3
59.5
117.8 | 15005109 68677008600544
155059997990004909105 | 71.3 | | 124 | !MISSISSAUGA
!Newmarkft | 51
31 | 27
6002000000000000000000000000000000000 | 121.31 | 32.71 | 65.21 | | 156 | MIDLAND
MISSISSAUGA
NEWMARKET
NIAGRA FALLS
NORTH BAY
LOAKVILLE | 33 | 27 6 0020009000000000000000000000000000000 | 10000000000000000000000000000000000000 | 799150M10968677008600M447009706690784M70799150M1099999999999999999999999999999999 | 86.1 | | 127 | INDRTH BAY
Inakville | 31 | 0.0 | 125.8 | 49.01 | | | 29 | IORILLIA | 36 | 0.0 | 150.71 | 29.71 |
84.21
77.01
92.01 | | 131 | LOVEN SOUND | 35 | 190.3 | 102.31 | 53.21 | 70.3 | | 135 | IPETERBOROUGH | 32 | 0.0 | 161 0
145 3
141 7 | 29.61 | 92.0
70.3
83.5
74.1 | | 34 | NORTH BAY INDRILLIA IDAKVILLA | 34 | 341.0 | 141.71 | 09099
20099 | 9703444370
97087786571 | | 135 | IPORT ERIE
IPRESTON | 1 34 | 341.0 | 1 4 7 . 7 1 | 29.8 | 75.3 | | 137 | PORT ERIE IPRESTON IRICHMOND HILL IST. CATHARINES IST. THOMAS IST. STE. MARIE ISCARBOROUGH ISTRATFORD ISTRATFORD ISTRATFORD ISTRATFORD ISTRATFORD ISTRATFORD | 31 | 1 0.0 | 129.6 | 31.4 | 67.7 | | 138 | IST. THOMAS | 35 | 198.4 | 60.4 | 29.7 | 85.5 | | 40 | ISARINA
ISLT STE MARTE | 34 | 1267.0 | 60.4
81.5
120.1 | 0.01
37.81 | 85.5
129.7
77.3 | | 42 | ISCARBORDUGH | 31 | 0.0
273.7
293.8 | 1 83.7 | 37.89.6.67
42.29.7 | 85.5
129.7
77.3
116.6
79.8 | | 143 | ISINCUE
ISTRATEORD | 1 52
1 38 | 293.8 | 156.9 | 29.6 | 80.71
74.31 | | 45 | SUDBURY | 1 32 | 0.0 | ÎZZ.º | 39.7 | 1 74.31 | | 177 | THOUGHTO THE | 31 | 205.6 | 84.8
133.3
164.6 | , o o | 278.4 | | 148 | TRENTON
TWALLACEBURG | 28 | 1245.7 | 164.6 | 29.7 | 93.1
 278.4
 86.0
 76.1
 77.1 | | 150 | WELLAND | 34 | 1234.1 | 1 82.9 | 1 33.7 | 77.1 | | 55.55 | IWALLACEBURG
IWELLAND
IWHITBY
IWINDSOR | 251304404
25333333333333333333333333333333333333 | 245410 | 164.63
845.88
1451.6 | 4 20999999999999999999999999999999999999 | 97.9 | | 5 | TRENTON TWALLACEBURG WELLAND WHITBY WHITBY WHODSTOCK WOODSTOCK | j 34 | 236.10 | 16984866101
169848512001
15982 | | 97.91
177.51
1242.71
1192.51 | | | 11100015401 | i 31 | 271.3 | 92,1 | 0.0 | 242.7
 192.5
 125.1 | | 156 | YORK, NORTH | 31 | - | | 0.0 | 12241 | | | HEIGHTED AVE. | 32.75 | | 110.4 | 38,2 | 111.5 | | | | 1 | 1 | , | | | TABLE 32 WET WEATHER T - PO₄ LOADINGS | ## ## ## ## ## ## ## ## ## ## ## ## ## | |--| TABLE 33 DRY WEATHER T - N LOADINGS TABLE 34 WET WEATHER T - N LOADINGS | Į NIO | I
IURBANIZED AREA | ANNL | W.E | ET WEAT | THER_N | IT I | |--|--|---|---|---------------------------------|---|--| | | INDANTAEU AREA | ANNL
PRECP
IN/YR | COMB | STORM | THER N
RETYEAT
LUNSEN | R)
 AVER | | 1 1 | AJAX | 33 | | , ~ ~ ~ ~ ~ | 1 | | | 3 | BARRIE | 32 | 0.0 | 3.9
4.3 | 3.0 | 3.3 | | 5 | BRAMPTON | 34
31 | 20.91 | 4.0 | 3.4 | 6.8 | | 1 7 | BURLINGTON | 35 | 0.0 | 3.9 | 3.4 | 3 8 | | 9 | CHINGUACOUSY | 30
31 | 16.7 | 3.4 | 3 2 | 7.1 | | | DUNDAS | 34
32 | 0.0 | 4.6 | 3.3 | 3.8 | | 115 | A POPULATION OF THE | 31
33 | 90090007000000007908045000780
1000000600000007400047100780 | 4.0 | 3.2 | 55555555555555555555555555555555555555 | | 115 | IGFORGETOWN I | 32
33 | 0.0 | 4.4 | 3 1 | 3.6 | | 117 | KINGSTON | 32
35 | 14.5 | 3.4 | 0.0 | 14.3 | | 110 | KITCH WATERLOO! | 34 I
30 I | 20.8 | 3.5 | 2.9 | 3.3 | | 51 | LINDSAY
LONDON
Markam | 331 | 24.4 | 4.41 | 3.2 | 3.6 | | 53 | | 31
38 | 21.0 | 4.0 | 3.7 | 4.6 | | 55 | LONDON
MARKAM
MIDLAND
MISSISSAUGA
NEWMARKET
NIAGRA FALLS
NORTH BAY | 31 | 0.0 | 3.91
4.01 | 3.2 | 3.6 | | 27 | MIDLAND
MISSAUGA
NEWMARKET
NIAGRA FALLS
NORTH BAY
OAKVILLE | 35 | 23:8 | 3 5 4 |
3.3 | 10.4 | | 29 | ORILLIA | 36 | 0.01 | 4.9 | 3.4 | 4.0 | | TE WELLE WIND TO BE A THE T | FAY H R LE FAY NORTHLIA DU D HIL FAY NORTHLIA DU D HIL NORTHLIA DU D HIL NORTHLIA RECERNOTO FAY FAY NORTHLIA RECERNOTO FAY NORTHLIA | MHAHHANO→4A→MAMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM | 900900070000000790804500078000800000000000000000000000000 | -9M089-40640549557440-9054090-4 | NO FOUND TO SECUTION OF SECUTI | MM587871986876MM-MO6866644M6008647784797277786 | | 33 | DWEN SOUND
PETERBOROUGH
PICKERING
PORT COLBOURNE
PORT ERIE | 31 | ŏ.ŏ. | 4.5 | 3.0 | 3.4 | | 1351 | PORT ERIE | 341 | 0040001000000 | 44444MMMMM4 | 3.3 | 5:7 | | 37 | RICHMOND HILL
ST. CATHARINES
ST. THOMAS | 31 | 0.0 | 444MMMMM454 | 3.0 | 3.8 | | 391 | ST. THOMAS | 35 | 21.0 | 3.8 | 3:41 | 7.7 | | 411 | SLT STE MARIE | 37 | 20.0 | 5.8 | 07246A | 8.7 | | 431 | SIMCOE
SIRATFORD | 35 | 23.7 | 4.4 | 3.4 | 5.7 | | 45 | SUDRURY
THUNDER BAY | 38 | ğğ | 5.2 | 3.5 | 3.6 | | 47 | TORONTO | 31 | 25.91 | 4.31 | 0.0 | 20.7 | | 1491 | WALLACEBURG
WELLAND | 301 | 19.2 | 3.6 | 2.6 | 5.4 | | 011234547890125555
44444444555555555 | WHITBY | 34 I | 18.3 | 4.6 | 3.3 | 3.8 | | 54 | WOODSTOCK
YORK | 34
31 | 0.0 | 4.6 | 3.3 | 3.8 | | 56 | DENDITOR BAY THE BAY THE BAY THE BAY THE BAY THE BAY THE BAY WHITTE WHITTE BAY WHITTE BAY WH | (8)13044041111
(8)595959595959 | 9509108000000000000000000000000000000000 | 99660636760
34434434834 | 1 OCOMPUMINA
1 OCO | 736577468-8800
5436035636363744 | | | WEIGHTED AVE. | 32.75 | 9509108000000 | 996606M6760191 | 1 W 1 OCOUNTUMNUOU | 6.8 | | ı ~ - | 有自用的作用的现在分词的有效。 | | | | | | #### Chapter 5 #### OVERALL COST ASSESSMENT This chapter develops and applies a methodology to estimate the cost of controlling pollution from stormwater discharges provincewide. Costs of controlling combined sewer overflows, stormwater runoff, and/or providing tertiary treatment are compared. A general methodology for determining wet-weather pollution control costs is presented. Then, a procedure is described for determining the relationship between storage, treatment, and pollutant control for control of wet-weather flows. Generalized predictive equations are developed based on relatively intensive studies of four cities: Burlington, Kingston, St. Catharines, and Sault Ste. Marie. Knowing this "production function" one can determine the optimal combination of storage and treatment by combining this information with data on the cost and performance of the available control options. This information is combined to produce the Ontario assessment. Results are presented for all cities ≥ 10,000 persons. Related reports describing this methodology are available. 62, 63 #### 5.1 Methodology #### 5.1.1. Principles There are several economic theories which, when applied to environmental resources management, assist in the decision-making process. One such theory is production theory, which provides techniques that aid in evaluating items such as the optimal size of a reservoir for water supply and flood control, or a wastewater treatment plant for pollution control. When the cost of inputs such as the reservoir or treatment plant is known, the cost of achieving a desired level of output (e.g., water supply or pollution control) may be determined. In stormwater management, the inputs are usually in the form of a storage capacity and a treatment rate. Storage is expressed in terms of million gallons or inches over a certain area, typically the watershed being analyzed. The unit for treatment is either million gallons per day or inches per hour, using the same area as storage. When the degree of wet-weather control is considered as a single output, it can be expressed either in terms of the percent of the runoff treated or the number of overflows per year. This is with respect to quantity only and is therefore dependent upon the input storage capacity and treatment rate. When dealing with only two inputs it is feasible to use a graphical method to find the optimal combinations. Isoquants can be constructed which represent equal levels of output for different combinations of input (see Figure 14, *Determination of Least-Cost Combination of Inputs*). For example, each isoquant could represent a specific percent of the runoff treated for different combinations of storage and treatment. Isoquants have the following properties: 48 1. Two isoquants cannot intersect. Intersecting isoquants would imply two different levels of output from the same input. FIGURE 14. DETERMINATION OF LEAST-COST COMBINATION OF INPUTS. - 2. Isoquants slope downward and to the right because as one input increases it takes less of the other input to achieve the same level of output. - 3. Isoquants are convex to the origin because of the decreasing ability of one input to be substituted for another to obtain a given level of output. This is known as the principle of diminishing marginal rate of substitution. Also on Figure 14, a series of parallel lines have been constructed. These lines represent combinations of input 1 and input 2 which may be achieved at the same total cost. The lines are known as *isocost lines*. The slope of the isocost lines is the relative unit cost between input 1 and input 2. The most economical combination of input 1 and input 2 to produce a desired level of output is the point where the isocost lines become tangent to the isoquant representing the desired level of output. The line which joins the points of tangency among several isoquants and the isocost lines is called the expansion path. After the expansion path has been determined, the optimal combination of inputs can be determined for any level of output by finding the intersection of the isoquant representing the desired level of output and the expansion path. The maximum output for a given cost may be found by constructing the isocost line for the given total expenditure. The slope of the isocost line is the relative unit cost of the two inputs. The intercept of the axis depicting input 1 would be the allowed total cost divided by the unit cost of input 1. From this information, the isocost line may be drawn. The point where the isocost line intersects the expansion path gives the combination of inputs which produces the maximum output at the given cost. The stormwater quality management problem can be expressed in the more compact mathematical form shown below: minimize $$Z = c_S(S) + c_T(T)$$ subject to $$f(R_1; S, T) = 0$$ (57) $R_1;S,T \geq 0$ where Z = total control costs, $c_s(S) = storage costs,$ $c_T(T)$ = treatment costs, S = storage volume, T = treatment rate, R_1 = percent pollutant control, and $f(R_i; S,T) =$ production function relating the level of pollutant control attainable with specified availabilities of storage (S) and treatment (T). The next three sections describe the available storage/treatment options — their costs and effectiveness; - the production functions for evaluating tradeoffs between storage and treatment; and - the solution to the optimization problem yielding the optimal expansion path for any city. Given this information, the final assessment is presented. #### 5.1.2 Control Technology and Associated Costs A wide variety of control alternatives are available for improving the quality of wet-weather flows. 49,50,51 Rooftop and parking lot storage, surface and underground tanks and storage in treatment units are the flow attenuation control alternatives. Wet-weather quality control alternatives can be subdivided into two categories: primary devices and secondary devices. Primary devices take advantage of physical processes such as screening, settling, and flotation. Secondary devices take advantage of biological processes and physical-chemical processes. These control devices are suitable for treating stormwater runoff as well as combined sewer overflows. However, the contact stabilization process is feasible only if the existing sewage treatment plant is of an activated sludge type. The quantities of wet-weather flows that can be treated by this process are limited by the amount of excess activated sludge available from the dry-weather plant. At the present time, there are several installations throughout the U.S. designed to evaluate the effectiveness of various primary and secondary devices. A summary of the design criteria and performance of these devices is presented in Table 35, Wet-Weather Treatment Plant Performance Data. Based on these data, the representative performance of primary devices is assumed to be 40 percent BOD₅ removal efficiency and that of secondary devices to be 85 percent BOD, removal efficiency. "Storage" devices will typically be used in conjunction with the above "treatment" devices. The two purposes are interrelated. Wastewater detained a sufficient time in a storage unit will undergo treatment. On the other hand, treatment units also function as storage units in that they equalize fluctuations in influent flow and concentration. DiToro presents approaches for evaluating the equalization and treatment which occurs in both of these units.⁵² The STORM model, which was used in this assessment, assumes the configuration for storage and treatment shown in Figure 15, Storage-Treatment Configuration Used in STORM Model. No treatment is assumed to occur in storage and "treatment" is assumed to be complete removal of all pollutants routed through treatment. Thus, for the purpose of this assessment, no treatment is assumed to occur in storage and control costs are assigned accordingly. This assumption tends to underestimate the costs of storage since all provisions for solids handling are included in treatment. ### 5.2 Cost of Treatment and Storage Cost data for installed wet-weather treatment devices are listed in Table 36, *Installed Costs for Wet-Weather Treatment Devices*. Since wet-weather control facilities operate intermittently, annual operation and maintenance costs are greatly affected by the number of hours
the facility is utilized. As a general rule, a facility will TABLE 35 WET WEATHER TREATMENT PLANT PERFORMANCE DATA | | | Design | ı Criteria | Reported
BOD ₅ Removal | |-----------|-------------------------------------|---------------------|--------------------------|--------------------------------------| | Device | Control Alternatives | gpm/ft ² | (1/min-m ²) | Efficiency, η | | Primary | Swirl Concentrator ^{a,b} | 60.0 | (2,448.0) | 0.25 - 0.50 | | | Microstrainer ^c | 20.0 | (816.0) | 0.40 - 0.60 | | | Dissolved Air Flotation w/ Chemical | | | | | | Additiond | 2.5 | (102.0) | 0.50 - 0.60 | | | Sedimentation ^e | 0.5 | (20.4) | 0.25 - 0.40 | | | Representative Perform | nan ce | | 0.40 | | Secondary | Contact Stabilization ^f | Cont
Stab | 0.25 hours
3.00 hours | 0.75 - 0.88 | | | Physical-Chemical9 | | 3.00 hours | 0.85 - 0.95 | | | Representative Perform | nance | | 0.85 | ^aField and Moffa, 1975⁵³ TABLE 36 INSTALLED COSTS FOR WET WEATHER TREATMENT DEVICES Annual Cost per mgd:h (m³/day) \$/yr | | | | | Obeig | CION ANU | | | |----------|---------------------------|---|--|---|--|--|---| | Capacity | | Amortized Capitala,b | | Maintenan ce | | Total | | | mgd | (m³/day) | per mgd | (m³/day) | per mgd | (m³/day) | mgđ | $(10^6 \text{m}^3/\text{day})$ | | 8.9 | (34,500) | 5,600 | (1.48) | 2,100 | (0.55) | 7,700 | (29.6) | | 7.4 | (28,700) | 14,230 | (3.76) | 3,895 | (1.03) | 18,125 | (8.6) | | 25.0 | (96,900) | 71,706 | (18.94) | 16,700 | (4.41) | 88,406 | (33.5) | | 20.0 | (77,500) | 120,000 | (31.70) | 24,000 | (6.34) | 144,000 | (54.4) | | | mgd
8.9
7.4
25.0 | mgd (m³/day)
8.9 (34,500)
7.4 (28,700)
25.0 (96,900) | mgd (m³/day) per mgd 8.9 (34,500) 5,600 7.4 (28,700) 14,230 25.0 (96,900) 71,706 | mgd (m³/day) per mgd (m³/day) 8.9 (34,500) 5,600 (1.48) 7.4 (28,700) 14,230 (3.76) 25.0 (96,900) 71,706 (18.94) | Capacity Amortized Capitala,b Maint mgd (m³/day) per mgd (m³/day) per mgd 8.9 (34,500) 5,600 (1.48) 2,100 7.4 (28,700) 14,230 (3.76) 3,895 25.0 (96,900) 71,706 (18.94) 16,700 | mgd (m³/day) per mgd (m³/day) per mgd (m³/day) 8.9 (34,500) 5,600 (1.48) 2,100 (0.55) 7.4 (28,700) 14,230 (3.76) 3,895 (1.03) 25.0 (96,900) 71,706 (18.94) 16,700 (4.41) | Capacity mgd Amortized Capitala,b (m³/day) Maintenance mgd (m³/day) To mgd (m³/day) To mgd (m³/day) Maintenance mgd (m³/day) To mgd mgd mgd mgd 8.9 (34,500) 5,600 (1.48) 2,100 (0.55) 7,700 7.4 (28,700) 14,230 (3.76) 3,895 (1.03) 18,125 25.0 (96,900) 71,706 (18.94) 16,700 (4.41) 88,406 | ^aBased on 8 percent interest for 20 years. bAPWA, 197454 ^cMaher, 1974⁵⁵ d_{Lager} and Smith, 1974⁴⁶ $^{^{\}mathbf{e}}$ Performance data based on domenstic wastewater treatment fAgnew et al., 1975⁵⁶ ⁹Estimate based on performance of these units for domestic wastewater ^bConstruction cost. Does not include sludge handling costs. ^cField and Moffa, 1975.⁵³ d_{Maher, 1974.55} $^{^{}m e}$ Lager and Smith, 1974 $^{ m 46}$ for Racine, Wisconsin adjusted to ENR = 2,200. fOperation and maintenance costs based on 480 hours of operation @ \$.0341/1,000 gallons (\$.0126 per 1,000 l). $^{^{9}}$ Agnew et al., 1975. 56 Operation and maintenance costs based on 960 hours of operation. hAll gallons are U.S. gallons. All costs are U.S. dollars. FIGURE 15. STORM MODEL SIMULATION OF STORAGE AND TREATMENT FOR WET-WEATHER QUALITY CONTROL operate a greater amount of the time if it incorporates storage. An examination of Table 36 reveals that annual operation and maintenance costs are 16.7 percent of the total annual costs for the contact stabilization unit. In the case of the swirl concentrator, the percentage is 27.3. Annual operation and maintenance costs for other units fall in between these two values. Based on this analysis, it was decided to assume annual operation and maintenance costs as 20 percent of the total annual costs for all treatment devices. Cost functions developed for various wet-weather quality control devices are presented in Table 37, Cost Functions for Wet-Weather Control Devices. These costs include provisions for sludge handling, engineering, contingencies, and land costs. All treatment units exhibit economies of scale, i.e., unit cost decreases as plant size increases. Thus, there is an incentive to build larger units. The optimal size treatment unit can be found by comparing the savings in treatment cost of going to a larger unit with TABLE 37 ANNUAL COST FUNCTIONS FOR WET WEATHER CONTROL DEVICES^{a,b,i} | | | Annual Cost: \$/yr | | | | | | | |-----------|--------------------------------------|--------------------|------------------|-------------------|-------------|---------------------------|------|--| | | | Amortized Capit | | Operation and | | Total | | | | | | CA = 17 | A = ITm Maintena | | nce | TC = w | Tz | | | | | or ISM | | OM = t | PTc | or wS ² | | | | Device | Control Alternative | | m | р | q | w | Z | | | Primary | Swirl Concentrator ^{c,d,e} | 1,971.0 | 0.70 | 584.0 | 0.70 | 2,555.0 | 0.70 | | | | Microstrainer ^{e, f} | 7,343.8 | 0.76 | 1,836.0 | 0.76 | 9,179.8 | 0.76 | | | | Dissolved Air Flotation ^e | 8,161.4 | 0.81 | 2,036.7 | 0.84 | 10,198.1 | 0.84 | | | | Sedimentation ^e | 32,634.7 | 0.70 | 8,157.8 | 0.70 | 40,792.5 | 0.70 | | | | Representative Primary D | evice – Total | Annual Co | ost = \$4,000 per | mgd (\$1.0 | .06/m³/day) | | | | Secondary | Contact Stabilization ⁹ | 19,585.7 | 0.85 | 4,894.7 | 0.85 | 24,480.4 | 0.85 | | | | Physical-Chemical ^e | 32,634.7 | 0.85 | 8,157.8 | 0.85 | 40,792.5 | 0.85 | | | | Representative Secondary | Device Tota | Annual Co | ost = \$15,000 p | er mgd (\$3 | 3.93/m ³ /day) | | | | Storage | High Density (15/ac) | 51,000.0 | 1.00 | | | 51,000.0 | 1.00 | | | | Low Density (5/ac) | 10,200.0 | 1.00 | | | 10,200.0 | 1.00 | | | | Parking Loth | 10,200.0 | 1.00 | | | 10,200.0 | 1.00 | | | | Rooftoph | 5,100.0 | 1.00 | _ | | 5,100.0 | 1.00 | | Representative Annual Storage Cost^j (\$ per ac-in) = \$122 e^{0.16(PD d)} the increased piping costs. For example, if one is considering building two 10 mgd (37,850 m^3/day) plants with building one 20 mgd (75,700 m^3/day) plant and a pipeline, the breakeven pipe length, L is found using Two plants One plant + pipeline $$s(10)^{z} + s(10)^{z} = s(20)^{z} + K(10)^{y}(L)$$ where (58) s, x, z, K and y = coefficients. Unfortunately, data on the number and flow rate of stormwater discharges in urban areas could not be found. Thus, it is not possible to determine the optimal mix of treatment plants and pipelines. Therefore, representative treatment costs were used as shown in Table 36. A 30 mgd plant size was selected since it represents a reasonable upper limit on the range of strong economies of scale. The average costs are based on a microstrainer for primary treatment and contact stabilization for secondary treatment. T^{k} = Wet-Weather Treatment Rate in mgd; S^{1} = Storage Volume in mg ⁸ENR = 2,200, Includes land costs, chlorination, sludge handling, engineering and contingencies. ^bSludge handling costs based on data from Battelle Northwest, 1974.⁵⁷ cField and Moffa, 1975.53 ^dBenjes, et al., 1975.⁵⁸ ^eLager and Smith, 1974.⁴⁶ f_{Maher, 1974,55} ⁹Agnew et al., 1975.⁵⁶ hWiswall and Robbins, 1975.59 ¹For T \leq 100 mgd. No economies of scale beyond 100 mgd (378,500 m³/day). JPD_d = developed population density, persons/acre. kOne mgd = 3,785 m³/day. One mgd = 3,785 m^3 . Cost data on detention basins built in the Chicago area for temporary storage of runoff are listed in Table 38, Capital Cost of Storage Facilities. Costs of storage tanks built for the purpose of wet-weather quantity and quality control as well as for dry-weather quantity control are also included in this table. Due to the wide variations in these figures, an attempt was made to verify these costs using excavation costs as the basis. Storage costs based on unit excavation costs are listed in Table 38. The unit cost of equalization and the estimated costs of rooftop and parking lot storage basins for sewage treatment plants are also shown in Table 38. Lastly, analysis of recent estimates of storage costs developed by Benjes et al. indicate the following unamortized capital cost C (\$ x 106) as a function of storage volume, S (mg). 58
Unit Cost @ S = 10 mg | Туре | Equation | \$/gal (\$/liter) | | | | |--------------------|-----------------------|--------------------|--|--|--| | Earthen | $C = 0.025 S^{0.73}$ | \$0.013 (\$0.0034) | | | | | Concrete w/o Cover | $C = 0.350 S^{0.58}$ | \$0.133 (\$0.0350) | | | | | Concrete w Cover | $C = 0.400 S^{0.79}$ | \$0.250 (\$0.0660) | | | | The data indicate wide variation in the costs of storage. Thus, the relatively simple relationship shown in Table 38 was used. Annual storage costs are estimated as a function of gross population density. At low population densities, land values are relatively low. Thus land-intensive storage facilities, e.g., shallow ponds, can be used. At higher population densities, land values increase to the point where storage tanks become more economical. The data presented in Table 38 are based on differing assumptions regarding land values. In some cases the land is free (part of an easement) whereas in others it is valued highly. Thus, a simplified approximation was used. The curve was derived using an unamortized capital cost of \$0.10 per gallon (\$0.026 per liter) for $PD_d = 5$ persons per acre (12.4 per ha) and \$0.50 per gallon (\$0.132 per liter) for PD = 15 persons per acre (37.1 per ha). # 5.3 Relationship Between Storage/Treatment And Percent Pollution Control # 5.3.1 Use of STORM STORM was used to evaluate various storage/treatment options for controlling stormwater runoff pollution. This model assumes that the study area can be characterized as a single catchment from which hourly runoff is directed to storage and treatment. STORM uses a simplified rainfall/runoff relationship, neglects the transport of water through the city and assumes a very simple relationship between storage and treatment. However, these simplifications are essential if one hopes to do a continuous simulation. The continuous simulation approach was used because no general concurrence exists regarding an appropriate single event that one should analyze. The degree of control can be expressed in terms of the percent of the runoff treated, the annual number of overflows, or the amount of pollutants discharged to the receiving waters. TABLE 38 INITIAL CAPITAL COST OF STORAGE FACILITIES^a | | Ca | pacity | Capit | al Cost | | |--|---------|-----------------------|-------------------|------------|-----------------------| | | mil gal | $(1,000 \text{ m}^3)$ | \$/gal | (\$/liter) | | | Storage Reservoirs ^b | | | | | | | Hillside Park | 11.4 | (43.1) | 0.01 | (0.003) | Earthen Basin | | Heritage Park | 36.5 | (138.0) | 0.01 | (0.003) | Earthen Basin | | Oak Lawn | 7.8 | (29.5) | 0.02 | (0.005) | Earthen Basin | | Middle Fork North Branch | 195.5 | (740.0) | 0.02 | (0.003) | Earthen Basin | | Wilke-Kirchoff | 32.6 | (123.0) | 0.03 | (0.008) | Earthen Basin | | Melvina Dutch | 53.8 | (204.0) | 0.03 | (0.008) | Earthen Basin | | Oak Hill Park | 25.1 | (95.0) | 0.02 | (0.005) | Earthen Basin | | Dolphine Park | 53.8 | (204.0) | 0.01 | (0.003) | Earthen Basin | | Average | 52.1 | (197.0) | 0.019 | (0.005) | | | Storage Tanks ^e | | | | | | | Cottage Farm, Boston ^c | 1.3 | (4.9) | 5.21 ^d | (1.38) | Covered Conc. Tanks | | Spring Creek, New York ^c | 10.0 | (37.8) | 2.33 | (0.62) | Covered Conc. Tanks | | Chippewa Falls, Wisconsin ^c | 2.8 | (10.6) | 0.29 | (80.0) | Asphalt Paved Basin | | Humboldt Avenue, Milwaukee ^c | 4.0 | (15.1) | 0.5 5 | (0.14) | Covered Conc. Tanks | | Seattle, Washington | 32.0 | (121.0) | 0.25 | (0.07) | In-line | | Whittier Narrow, Columbus ^c | 4.0 | (15.1) | 1.70 | (0.45) | Open Concrete Tanks | | Average | 9.0 | (34.1) | 1.72 | (0.45) | | | Based on Excavation Costs ^f | | | | | | | \$2/yd ³ (\$2.62/m ³) | | | 0.01 | (0.003) | Earthen Basin | | \$5/yd ³ (\$6.54/m ³) | | | 0.025 | (0.007) | Earthen Basin in Rock | | Equalization Basins for Dry | | | | | | | Weather Sewage Treatment | | | | | | | Plants ⁹ | 1.0 | (3.8) | 0.22 | (0.06) | Earthen Basin | | | 3.0 | (11.4) | 0.10 | (0.03) | Earthen Basin | | | 10.0 | (37.8) | 0.06 | (0.02) | Earthen Basin | | | 1.0 | (3.8) | 0.39 | (0.10) | Concrete Basin | | · | 3.0 | (11.4) | 0.28 | (0.07) | Concrete Basin | | | 10.0 | (37.8) | 0.25 | (0.07) | Concrete Basin | | Other ^h | | | | | | | Parking Lots | | | 0.10 | (0.03) | | | Rooftops | | | 0.05 | (0.02) | | | ^a Based on ENR = 2 200 | | | | • | | ^aBased on ENR = 2,200. As described in the User's Manual, STORM computes the runoff based on the composite runoff coefficient and the effective precipitation.²³ The depression storage must be satisfied before the runoff coefficient is applied to the precipitation. The amount of depression storage available in ditches, depressions, and other surfaces is a function of the past precipitation and the evaporation ^bSource: Metropolitan Sanitary District of Greater Chicago. ^cAlso used for stormwater treatment. d_{Includes} pumping station, chlorination and outfall facilities. eSource: Lager and Smith, 1974,46 ^fSoil Conservation Service, Gainesville, FL. gFlow Equalization - Plus for Wastewater Treatment Plants, Civil Engineering, 9/75. hSource: Wiswall and Robbins, 1975, 59 rates. Each hour that runoff occurs, the model compares it to the treatment rate. As long as the runoff rate is less than or equal to the treatment rate, all the runoff passes directly through the treatment plant and storage is not utilized. When the runoff rate exceeds the treatment rate, the excess runoff is sent to storage. If excess runoff occurs frequently enough to exceed the storage capacity then overflow occurs. When runoff falls below the treatment rate then storage is depleted at the excess treatment rate. The hourly occurrence of treated runoff, stored runoff, and runoff that has overflowed is tabulated for the entire record of rainfall. Included in the output is the annual number of overflow events and the percentage of the runoff that overflowed to the receiving waters. This type of analysis was carried out for different storage capacities and treatment rates. #### 5.3.2 STORM Input Data STORM requires several input parameters that characterize the urban area under study. These include hourly precipitation, total area, land use types and percentages, percent imperviousness, and curb length per area for each land use.²³ In order to apply STORM, these data were collected or derived for nine urban areas within the Ontario portion of the Great Lakes Basin. The local data were collected by on-site interviews. Precipitation data were acquired from the Department of the Environment. The records were of varying length, from a few years to several decades. Additionally, the records were supplied in two parts. One part included only rainfall and was usually restricted to the months from April to October. This portion was previously formatted on magnetic tape, which facilitated a frequency analysis of this restricted rainfall record. This allowed the selection of one year (limited) of rainfall to characterize the entire record of each city. After the year was selected, the accompanying months of precipitation (primarily snowfall) were taken from written records and added to the restricted rainfall record. The precipitation for the selected year for each city was totaled and compared to the mean annual average. These values are shown in Figure 16, Mean Annual Precipitation for the Great Lakes Basin. In some cases, it was apparent that although the rainfall frequency for the selected year was typical, the snowfall was not. Therefore, four of the nine cities, Burlington, St. Catharines, Kingston, and Sault Ste. Marie, were chosen to make the final STORM runs. It should be noted that precipitation patterns over Ontario show two distinct trends. In Figure 17, Mean Monthly Precipitation, it can be seen that below 44°N, the monthly precipitation is very stable. Above 44°N the trend is toward a peak in the summer months. Therefore the selection of the four cities to represent the entire region seemed adequate. Sault Ste. Marie provides a good representation of the northern section of Ontario, while the three other cities adequately represent the southern section of the study area. Snowfall is a significant component of Ontario's precipitation total, ranging from a low of 4.0 inches (10.2 cm) water equivalent near Windsor, to a high of 14.0 inches (36 cm) north of Sault Ste. Marie. STORM uses the degree-day for the computation of snowmelt with the option of applying this formulation or simply ignoring snowmelt and allowing snow to act as rainfall. A runoff frequency FIGURE 16. MEAN ANNUAL PRECIPITATION FOR THE GREAT LAKES BASIN. (After Phillips and McCulloch, 60 Chart 21.) FIGURE 17. MEAN MONTHLY PRECIPITATION (After Brown, McKay and Chapman, 61 p. 35) analysis was performed on the cities of Thunder Bay and Windsor to determine the effect of this routine. Runs were made with and without the method shown above. The results are shown in Figure 18, Runoff Frequency, Windsor, and Figure 19, Runoff Frequency Thunder Bay. The figures show a difference in frequency; therefore, the snowmelt routine in STORM was used in the final STORM runs. Daily evaporation rates for each month were estimated from a report by Phillips and McCulloch.⁵⁹ These were available for only a few stations in Ontario and the evaporation rates for the four test cities were assigned on the basis of proximity to these stations. The depression storage is assumed to be 0.01 inches for all cities. The input data used to run STORM for the developed areas of the four selected test cities is summarized in Table 39, STORM Input Data for Test Cities. #### 5.4 Results For each storage/treatment rate combination there is a value for the percent of the runoff and pollutants which are "treated." Preliminary analysis of STORM runs made for the U.S. assessment indicated little year to year variation inresults Thus, only one year of precipitation was
used to derive the isoquant curves. By making several runs at different combinations of treatment and storage, points were generated representing different levels of control. Then isoquants were drawn connecting the points that represent combinations of storage capacities and treatment rates which give equivalent percent runoff and/or pollutant "treated." If the concentration of pollutants is constant and "treatment" efficiency, η , is 1.0, then percent runoff control is synonymous with percent pollutant control. Obviously, this is not the case. Thus, account needs to be taken of - 1. treatment efficiency, and - 2. variable concentration due to first flush effects. # TABLE 39 STORM INPUT DATA FOR TEST CITIES Study Area: Burlington Developed Area: 8687 ac (3516 ha) Test Year: 1973 Precipitation: 32.38 in (82.25 cm) Daily evaporation rates for each month, Jan-Dec, in/day (cm/day) 0.00 0.00 0.05 0.05 0.13 0.15 0.17 0.14 0.10 0.06 0.05 0.00 (0.00)(0.00)(0.13)(0.13)(0.33)(0.38)(0.43)(0.36)(0.25)(0.15)(0.13)(0.00) Study Area: Kingston Developed Area: 4706 ac (1905 ha) Test Year: 1965 Precipitation: 37.81 in. (96.04 cm) Daily evaporation rates for each month, Jan-Dec, in/day (cm/day) 0.00 0.00 0.05 0.05 0.13 0.15 0.17 0.14 0.10 0.06 0.05 0.00 (0.00)(0.00)(0.13)(0.13)(0.33)(0.38)(0.43)(0.36)(0.25)(0.15)(0.13)(0.00) Study Area: St. Catharines Developed Area: 10976 ac (4442 ha) Test Year: 1973 Precipitation: 32.37 in. (82.22 cm) Daily evaporation rates for each month, Jan-Dec, in/day (cm/day) 0.00 0.00 0.05 0.05 0.13 0.15 0.17 0.14 0.10 0.06 0.05 0.00 (0.00)(0.00)(0.13)(0.13)(0.33)(0.38)(0.43)(0.36)(0.25)(0.15)(0.13)(0.00) Study Area: Sault Ste. Marie Developed Area: 8516 ac (3446 ha) Test Year: 1969 Precipitation: 36.69 in (93.19 cm) Daily evaporation rates for each month, Jan-Dec, in/day (cm/day) 0.00 0.00 0.04 0.04 0.09 0.11 0.12 0.10 0.06 0.04 0.04 0.00 (0.00)(0.00)(0.10)(0.10)(0.23)(0.28)(0.30)(0.25)(0.15)(0.10)(0.10)(0.00) Burlington, Kingston, St. Catharines - estimated from Guelph "pan" evaporation: land evaporation = 0.70 "pan" evaporation. Sault Ste. Marie - estimated from Seney, Michigan "pan" evaporation: land evaporation = 0.70 "pan" evaporation. FIGURE 18. RUNOFF FREQUENCY, THUNDER BAY, 1971. #### 5.4.1 Adjustment for Treatment Efficiency Let R denote the percent runoff control and η equal treatment plant efficiency. If R_1 denotes the percent pollutant control, then to realize R_1 , one needs to process R_1/η of the runoff. Note that R_1 may be percent BOD removal, percent SS removal, etc. In Table 39, representative treatment efficiencies, in terms of BOD₅ removal, were derived for primary and secondary devices. These values are as follows: | | Assumed Efficiency, η | |------------------|----------------------------| | Treatment Device | (BOD ₅ Removal) | | Primary | 0.40 | | Secondary | 0.85 | Thus, if one desires 25 percent BOD₅ removal with a primary device, then 62.5 percent of the runoff volume must be processed whereas only 29.4 percent of the runoff needs to be processed if a secondary device is selected. Thus, to convert percent runoff control isoquants to percent pollutant control isoquants, one uses $$R = R_1/\eta \tag{59}$$ # 5.4.2 Adjustment for First Flush STORM estimates the percent pollutant control as well as percent runoff control. The STORM model runs incorporated the standard first flush assumption which is used in the model, i.e., the amount of pollutant removal at any time, t, is proportional to the amount remaining and that a uniform rainfall of one-half inch per hour would wash away 90 percent of the pollutant in one hour. If a first flush is assumed, then storage and treatment can be operated more effectively because of the greater relative importance of capturing the initial runoff. The first flush is accounted for by defining the output in terms of pollutant control directly. # 5.4.3 Mathematical Representation of Isoquants The storage/treatment isoquants are of the form: $$T = T_1 + (T_2 - T_1)e^{-KS}$$ where T = wet weather treatment rate, inches per hour, T₁ = treatment rate at which isoquant becomes asymptotic to the ordinate, inches per hour, T₂ = treatment rate at which isoquant intersects the abscissa, inches per hour, S = storage volume, inches, and $K = constant, inch^{-1}$. A relatively large storage reservoir is required to operate the treatment unit continuously. Thus, first flush effects would be dampened out and the effluent concentration from the reservoir should be relatively uniform. Thus, if stormwater entering the treatment plant has a relatively uniform concentration, then T_1 can be found as follows: $$T_1 = \frac{AR}{8,760} (\frac{R}{100}) = aR \tag{61}$$ where a = coefficient, AR = annual runoff, inches per year, and R = percent runoff control By relating the parameters T_1 , T_2 - T_1 and K to the level of control R, one equation was developed for each of the four cities. The T_2 - T_1 and K terms versus R were found to be of the following general form: $$T_2 - T_1 = be^{cR}$$ (62) $K = de^{-fR}$ (63) Based on this analysis the following general equation for the isoquants is obtained: $$T = aR + be^{cR \cdot (de^{-fR})S}$$ (64) The values of parameters a, b, c, d, and f for various cities are presented in Table 40, Values of Parameters and Correlation Coefficients for Isoquant Factors for percent pollutant control. The correlation coefficients for the equations for the four cities are also shown in this table. In general, the fit is excellent. The results for the four cities are shown in Figure 20, Storage-Treatment Isoquants for Percent BOD Removal with First Flush for Burlington, Figure 21, Storage-Treatment Isoquants for Percent BOD Removal with First Flush for Kingston, Figure 22, Storage-Treatment Isoquants for Percent BOD Removal with First Flush for St. Catharine and Figure 23, Storage-Treatment Isoquants for Percent BOD Removal with First Flush for Sault Ste. Marie. Each figure shows the isoquants calculated by the isoquant equation. Also shown are some actual data points for a treatment rate of 0.01 inches per hour and varying amounts of storage. TABLE 40 VALUES OF PARAMETERS AND CORRELATION COEFFICIENTS FOR ISOQUANT FACTORS Percent BOD Control With First Flush, $\eta = 1.0$ | Test City | a
in hr ⁻¹ (% R) ⁻¹
(cm hr ⁻¹) | b
in hr ⁻¹
(cm hr ⁻¹) | с
(% R) ⁻¹ | d
in ⁻¹
(cm ⁻¹) | f
(% R) ⁻¹ | Correlation T ₂ -T ₁ = be ^{c R} | Coefficients
K=de ^{-f R} | |------------------|--|--|---------------------------|--|--------------------------|--|--------------------------------------| | Burlington | 0.0000121
(0.0000310) | 0.0017093
(0.004340 0) | 0.0414918 | 210.4827
(82.8000) | 0.0298024 | 0.994 | -0.988 | | Kingston | 0.0000127
(0.0000320) | 0.001361 1
(0.003460 0) | 0 .038405 5 | 241.9431
(95.3000) | 0.0306992 | 2 0.995 | -0.99 2 | | St. Catharines | 0.0000130
(0.0000330) | 0.0016126
(0.0041000) | 0.0434050 | 240.426 7
(94.7000) | 0.0298348 | 3 0.995 | -0 .98 3 | | Sault Ste. Marie | 0.0000166
(0.0000421) | 0.0018704
(0.0074900) | 0.0449201 | 191.30 9
(75.300) | 0.0334145 | 0.992 | -0.994 | FIGURE 20. STORAGE-TREATMENT ISOQUANTS FOR PERCENT BOD REMOVAL WITH FIRST FLUSH FOR BURLINGTON FIGURE 21. STORAGE-TREATMENT ISOQUANTS FOR PERCENT BOD REMOVAL WITH FIRST FLUSH FOR KINGSTON FIGURE 22. STORAGE-TREATMENT ISOQUANTS FOR PERCENT BOD REMOVAL WITH FIRST FLUSH FOR ST. CATHARINES FIGURE 23. STORAGE-TREATMENT ISOQUANTS FOR PERCENT BOD REMOVAL WITH FIRST FLUSH FOR SAULT STE. MARIE The optimal expansion path can be found using $$\frac{c_{T}}{c_{S}} = MRS_{ST}$$ (65) where c_S = unit cost of storage, c_T = unit cost of treatment, and MRS_{ST} = marginal rate of substitution of storage for treatment. The values of c_S and c_T are presented in Table 34. Analysis of the figures indicates that if $c_T/c_S \le 25$, then treatment alone should be used. From Table 34 $$\frac{c_{T}}{c_{S}} = \frac{c_{T}}{122 e^{0.16 (PD)}}$$ For primary treatment, $c_T = $2,610/\frac{\text{acre-inch}}{\text{hour}}$. Thus, even at zero population density, $c_T/c_S = 21.4$ so that the optimal policy is to use treatment only. so that For secondary treatment, letting $c_T/c_S = 25$ and knowing that $$c_T = \$9,800 / \frac{\text{acre-inch}}{\text{hour}}$$, yields $$122 e^{0.16(PD)} = \frac{9800}{25}$$, or $PD_d = 7.29$ persons per acre. If PD_d is higher than about 7.5, then the relative cost of storage is such that it is again optimal to use treatment only. Using 7.5 persons per acre as the cutoff, then 12 of the 56 cities would use treatment only for the secondary control level. The remaining 44 cities would select a mix of storage and treatment. It is simple to find the optimal expansion path graphically for the four test cities. Unfortunately, these results need to be extrapolated to all urbanized areas. It appeared that an analytical approach would provide a more general and consistent procedure. Thus, the isoquant parameters were adjusted based on the runoff in the city under consideration relative to the reference city, i.e., let AR_i = annual runoff in city i; i = 1,2,...,56 AR_j = annual runoff for test year in test city for region j (see Figures 20-23); j = 7,17,38,41. Then, the isoquant coefficients are $$a_{ij} = AR_i/(8.76 \times 10^5)$$ (66) $$b_{ij} = \frac{AR_i}{AR_i} b_j, \tag{67}$$ $$c_{i, j} = c_{i, j}$$ (68) $$d_{ij} = \frac{AR_j}{AR_i} d_j, \text{ and}$$ (69) $$f_{ij} = f_i \tag{70}$$ $f_{ij} = f_j$ (70) where $a_{i,j}$, $b_{i,j}$, $c_{i,j}$, $d_{i,j}$, and $f_{i,j}$ are parameters for city i in region j; and b_j , c_j , d_j , and f_j are the
parameters for the test city in region j. The test cities are denoted as follows: | j = | City | |-----|------------------| | 7 | Burlington | | 17 | Kingston | | 38 | St. Catharines | | 41 | Sault Ste. Marie | #### 5.4.4 Wet-Weather Quality Control Optimization The wet-weather optimization problem, assuming linear costs, may be stated as follows: minimize $$Z = c_S S + c_T T \tag{71}$$ subject to $$T = T_1 + (T_2 - T_1)e^{-KS}$$ $T,S \ge 0$ Solving this constrained optimization problem yields $$S^* = \max[\frac{1}{K} \ln \frac{c_T}{c_S} [K(T_2 - T_1)], 0]$$ (72) where S^* = optimal amount of storage, inches, $$T^* = T_1 + (T_2 - T_1)e^{-KS^*}$$ (73) T^* = optimal amount of treatment, inches per hour. Note that T* is expressed as a function of S*, so it is necessary to find S* first. Knowing S* and T*, the optimal solution is $$Z^* = c_S S + c_T T^* \tag{74}$$ where Z^* = total annual cost for optimal solution, dollars per acre. Data needed to estimate T₁, T₂ and K have already been presented in the previous section. For a primary device, $$c_T = $4,000/\text{mgd} = $2,610/\frac{\text{acre-in}}{\text{hr}} ($1.05/\text{m}^3/\text{day})$$ $\eta = 0.40.$ For a secondary device, $$c_T = $15,000/\text{mgd} = $9,800/\frac{\text{acre-in}}{\text{hr}} ($2.32/\text{m}^3/\text{day}).$$ For storage cost, $$C_S(S/acre-in.) = 122 e^{0.16(PD)}$$ (75) PD = gross population density in persons per acre. The above optimization procedure was programmed to generate curves, e.g., Figure 24, Control Costs for Primary and Secondary Units in Storm Sewered Areas in Burlington, showing percent pollutant removed versus total annual costs for primary and secondary treatment in conjunction with storage. Note that for wet-weather control, marginal costs are increasing because of the disproportionately larger sized control units needed to capture the less frequent larger runoff volumes. These results also permit one to decide whether a primary or a secondary level is more cost-effective in controlling smaller percentages of pollution. As seen in Figure 24, a primary control device is less expensive for low removals (say \leq 20 percent), but it loses effectiveness at higher levels because of the disproportionately large storage requirements. Costs will be reported for 25, 50, and 75 percent control levels. Thus, the secondary cost curve can be used in this range. The primary curve will not be discussed further. The curves shown in Figure 24 can be approximated by functions of the form: $$Z = ke^{\beta R_1}$$ (76) = total annual cost, dollars per acre, $k\beta$ = parameters, $\frac{R_1}{R_1}$ = percent pollutant removal, $0 \le R_1 \le \overline{R}_1$, and \overline{R}_1 = maximum percent pollutant removal. The resulting costs for 25, 50, and 75 percent pollutant control for combined, storm, and unsewered areas are shown in Table 41, Annual Control Costs - Combined Areas, Table 42, Annual Control Costs - Storm Areas, and Table 43, Annual Control Costs -Unsewered Areas, respectively. Note that the reference city and values of the cost equation parameters are also shown. #### 5.4.5 Estimating Number of Overflow Events Some urban areas have used the number of overflow events per year as an indication of level of control due to different storage/treatment combinations. The objective in this case would be to find the most economical combination of storage and treatment which would not allow the annual number of overflows to exceed a predetermined value. It would not seem logical to increase the treatment rate or storage capacity if the number of overflows did not The number of overflow events is affected by the definition of an "event" used in the STORM model wherein an event is defined as starting when storage is utilized and ending when storage is depleted. Even though overflow may take place in two separate time frames, the two occurrences are considered to be parts of the same event if storage is utilized throughout the time frame. Because of this definition, the number of overflows may increase with an increase in treatment rate as shown in Figure 25, Effect of Storage and Treatment Capacity on Number of Overflow Events. If the treatment rate is high enough to deplete storage after the first overflow, then the event is over. When storage is utilized later a new FIGURE 24. CONTROL COSTS FOR PRIMARY AND SECONDARY UNITS IN STORM SEWERED AREAS IN BURLINGTON TABLE 41 ANNUAL CONTROL COSTS — COMBINED AREAS | NO URBANIZED AREA | KEF | E ON | (76)
EFS. | Co | NTROL
(SZACR | COST
E) | |--|---------------------|---|------------------------------|--------------|------------------------|--------------------------| | | LTY | _ k | β | 25% | 1 50% | Ī 75% | | 1 1 A JAX | 7 | 30,34 | .0483 | 101. | 339 | 1132 | | 1 A JA X
2 AURORA
3 BARRIE
4 BELLEVILLE
5 BRAMPTON
6 BRANTFORD
7 BURLINGTON | 1 7 | 30.34
0.0
0.0
122.82 | 1.0 | 1 0. | 337 | 0. | | 316ARRIE
41BELLEVILLE
51BRAMPTON
61BRANTFORD | 1 7 | 1,0.0 | 1.0 | 1 61 | 1 0. | 1 0.1 | | 1 5 BRAMPTON | 1 17 | 122.82 | 0435 | 68. | 501 | 597. | | 6 BRANTFORD | 38 | i ŏ.ŏ | i jõ | ŏ. | i ö: | | | 1 0 1 0 1 4 4 4 4 4 4 | 1 7 | 10.0 | 1.0 | ! 0. | 1 0. | O, | | 8 CHATHAM
9 CHINGUACOUSY | 38 | 13.88 | | 3A. | 102. | 275 | | 110 COBOURG | 1 17 | 1 0.0 | 000 | i ŏ. | 0. | ŏ | | 12 ETORICOKE | 1 7 | 8.8 | 1.0 | 0. | į į. | 0. | | 9 CHINGUACOUSY
110 CHINGUACOUSY
111 DUNNAS
112 ETORICOKE
113 GALT
114 GEORGETOWN | i 7 | 0.0 | | i ö. | 0. | | | 114 GEORGETOWN | 7 7 | 1 0.0 | 1.0 | ŏ. | ŏ. | i ŏ: | | | 7 7 | 16.97 | • 0
 • 0 × 9 / | ″ <u>0</u> • | 1 3 | 7,00 | | 116 HAMTLTON | 1 17 | 23.52 | 0394 | 69. | 122. | 326.1
599.1 | | IIB!KIICH##WATERLDU | 7 | [0.0] | 1.0 | 0. | 0. | 0.1 | | 12011 TNNSAV | 38 | 125.43 | 1.0504 | 90. | 316 | 1116. | | ISTILONDON | 38 | 0.0
29.93
18.76 | .ŏ504 | 105 | 371 | 1307 | | RAND AND AND AND AND AND AND AND AND AND | 7 7 7 | 29.93
18.76
20.07 | 0399 | 51. | 138 | 1 374.1 | | 24 MISSISSAUGA | 1 4 | 1 70 70 | .0394 | 54 | 144. | 385. | | CONTRACT OF THE PROPERTY TH | 7 | 1 0.0 | 0504
0504
0399
0394 | ŏ. | o. | i ö.i | | 126 INTAGRA FALLS
127 INDRTH BAY
128 IDAKVILLE | 1 38 | 12.00 | 0390 | 32. | 1 85. | 1 224 | | 12810AKVILLE | i 77 | 0.0 | 0 | 98. | 362 | 1334 | | 12411071174 | 1 7 | 0.0 | 0 1 | ŏ. | i ŏ. | i ŏ.i | | 30 IOSHAWA
31 IOWEN SOUND
132 IPETERSORDUGH
133 IPECKERING
134 IPORT COLBOURNE | 4 | 0.0
128.87 | 0
 0420 | 0. | 1 ,0. | 1 , 2.1 | | IZZÍPETEKAÖRDÍJGH
IZZÍPECKERÍNG | 17 | 28.A7 | 0 | 82. | 536 | 673.1 | | 132 PETERSÖRDIGH
133 PTCKERING
134 PORT COLBOURNE | 17 | 0.01 | .0 | Ò. | i Ö. | i ŏ:i | | 1 1 2 1 P (P) P P P | 38
38 | 29.73 | 0504 | 105. | 370. | 7.00 | | 136 PRESTON I | 77 | 0.0 | .0 | 105. | 370. | 1304.1 | | 137 RICHMOND HILL | 7 ! | 0.0 | 0.704 | 0.1 | l ol | Ŏ, | | 38 ST. CATHARÎNES
 39 ST. THOMAS
 40 SARINA
 41 SLT. STE. MARTE | 38 (
38 (| 12.85
26.83
27.40 | 03941 | 70 | 92
233
339 | 246.
 685. | | 40 SARINA
41 SLT. STE. MARIE | 381 | 27.401 | 05031 | 96. | 233.
1339. | 1193 | | 41 SET STE MARIE | 41 | 0.0 | •0 | Q. | . n. | 0.1 | | 42 SCARBOROUGH
42 SCARBOROUGH
43 SIMCOE
44 STRATFORD
45 SUDBURY
45 SUDBURY | 36 | 28 37 | 04831 | 95.
103. | 317 | 11058 | | 1441STRATEORD | 7 1 | 0.0 1 | .0 | 100. | 1 562. | 0.1 | | 46 THUNDER BAY | 41 | 20.00 | 0/1761 | 0. | . 0 | 0,1 | | 1471TORONTO 1 | 771 | 20,001 | 04761 | 101. | 217
337 | 713. | | 148 TRENTON | 17! | 0.0 | 0 | 0 | 337
0
282
306 | 0.1 | | 150 MELLACEBURG 1 | - 201 | 24.051 | 0493 | 82. | 585 | l 968.l | | 48 TRENTON
49 WALLACEBURG
50 WELLAND
51 WHITEY | 17
38
38
7 | 0.0
24.05
27.56 | .0 | 92. | 306 | 0.1 | | SZIWTNÓSOR
SZIWDUDSTOCK | 301 | 24.161 | 20486 | 81. | 274 | 923. | | 48 TRENTON
49
WALLACEBURG
50 WELLAND
51 WHITEOR
531 WOODS
534 YORK
554 YORK
56 YORK, EAST
56 YORK, NORTH | 36
38
7
7 | 200.10 56 1
200.4.50 6 1
200.4.50 6 1
200.2.70 2
200.2.70 2
200.2.70 2 | 0483 | 94 | 716.
310. | 923
0
1055
1035 | | 54 LYORK
55 LYORK, EAST | 71 | 28.28 27.79 0.0 | 0482 | 93. | 316
310 | 1035 | | 56 YORK, NORTH | 7 | 0.0 | • [™] | | 0. | 0 | | WEIGHTED AVE. | | 23.221 | .04681 | 75,1 | 240. | 775. | | 富貴 有名为基准的金色及自己的自身 | | | | | E E E E E | | TABLE 42 ANNUAL CONTROL COSTS — STORM AREAS | NO | URBANIZED AREA | REF | EQN | (76)
EFS. | 00 | NTROL
(\$/ACR | COST
F) | |--------------|---|----------------------|---|--|------------------------|-------------------------------|---| | | <u> </u> | CTY | k | ļβ | 25% | 50% | 75% | | i 1 | I A .T A Y | 1 7 | 110.24 | 0380 | 26 | 1 | | | 3 | TAURORA
TBARRIE | 1 7 | 9.69 | 0380 | 25. | 65.
118.
37. | 177. | | 1 4 | IBELLEVILLE | 1 7 | 116.54 | 1.0393 | 44 | 1 118. | 167
316
92 | | 5 | BELLEVILLE | 1 17 | 8.41 | 1:0377 | 15. | 55. | 92 | | 1 9 | IBRANTFORD
IBURLINGTON | 3 4 | 110.54
116.54
15.81
7.51 | .0380
.0380
.0393
.0369
.0377
.0379 | 19. | 50. | 1 129 | | | | | 4.59 | 0369 | 26.145.299.122. | 75. | 1 195.1 | | 119 | CHINGUACOUSY | 36 | 1194
1194
1194
1194
1194
1194
1194
1194 | 0383 | I 50. | 1 77. | 201.1 | | iii | IDUNDAS | 1 1/ | 114.38 | 0389 | 38. | 101. | ! 267.I | | 113 | !ETOBICOKE | 1 7 | 111.14 | 1.03A3 | 29. | 1 139.
1 76. | 1 377.1
1 197.1 | | 114 | IGEDRGETOWN | 7 | 13.99 | 0383
0387
0401 | 1 51. | 138. | 373. | | 115 | !GUELP4 | 1 2 | 15.48 | 0390 | 1 41. | 109 | 1 408.1
1 289.1 | | 119 | IKTNESTON | 1 7 | 1 4.21 | 0369 | 10. | 26 | 63. | | 18 | KITCH - WATERLOO | 1 7 | 11 14
19 17
18 17
12 17
17 18
17 18
17 18
17 18
17 18
17 18
17 18 | 0383 | | 38. | 408.
263.
95.
218. | | 129 | ILEAMINGTON
ILINDSAY | 1 38 | 7.67 | 0381 | 20. | ! 52. | 134 | | išī | I CONTON' | i żá | 12.90 | 0375 | 34. | 49 | 235. | | 155 | TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR | 1 7 | [11.34] | 0383 | 29 | 76 | 199 | | 24 | MISSISSAUGA | 7 | 10.58 | 0363 | 729499349
20499349 | 76226
76226 | 80 | | 159 | LINDOAM
LINDOAM
MIDLAND ALGA
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
LINDOAM
L | 1 7 | 110.68
111.24
13.82 | 00.00000000000000000000000000000000000 | 1997A0 | 75. | 3559
3559
3679
3689
1979 | | 16.7 | PAG DAY | 38
41 | 15457.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7 | 0352 | | , , , | 1 28.1 | | 158 | DAKVILLE | ! 7 | 9.89 | 03851 | 1 31 | 82 | 1 215.1 | | 30 | ORILLIA
OSHAWA | 7 | 112.00
119.69
1 9.29
1 7.10 | 0395
0377
0371 | 53 | 142 | 381
157 | | 31 | DWEN SOUND | 7 | 7.10 | .0371 | 18 | 45. | 114.1 | | 33 | PICKERING | 1 7 | 15.90
 15.72 | 03951 | 43.1 | 115 | 308.
 299. | | 134 | OSHAWA
OSHAWA
OND DO UND DO UND DO UND | 38 | 14.19 | 0395
0377
0371
0395
0393
0395 | 38 | 558.2.
110.
10. | 299. | | 136 | PRESTON | 30
 7 | 14.19
 8.53
 17.85 | 0381 | ,,,, | 157
1287
27
27
27 | | | 37 | RICHMOND HILL | 7 | 12.681 | 03941 | 483.1
133.1
15.1 | 128 | 236.1 | | 39 | ST. THOMAS | . 56।
देश | 4.621 | 0368 | 15. | 29.1 | 12.1 | | 1401 | SARTNA | 30 | 5.83 | 0364
0372
0421
0371
0388
0398 | 15. | 27.
37. | 95 | | 1421 | SCARBORDUCH | 41 (| 10.89
 6.31 | .04211 | 31. | 89. j | 256.1 | | 1431 | SIMCOE | 38
38
41
41 | 9.20 | 03/11 | 24.1 | 40
62 | 256.1 | | 1451 | SUDRURY | 41 | 25.491 | .03981
.04221 | 24.
61. | | 445.1 | | 1461 | THUYDER BAY | 4 i i | 4.801 | 04671 | 13. | 79
37
93
124 | 165 | | 148 | TRENTON | 41
7
17 | 4.801
13.351
17.041 | 03881 | 13.1
35.1 | 93. | 244.1 | | 1491 | WALLACEBURG | 38 | 6.051 | 03751 | 46.1
15.1 | 124.1 | 101-1 | | 1501 | MHTTSY ! | 17
38
38
7 | 5.961 | .03721 | <u>į</u> 5. l | 38. | 20244 | | اچڙا | WINDSOR | 38 i | 5.961
17.421
5.311 | .04071
.03881
.039751
.037521
.03731 | 4/•
13-1 | 40.
124.
134. | 331.1 | | 1231
1541 | SUDRURY THUNDER BAY TORONTO TRENTON WALLAND WHITSOR WHITSOR WOORK YORK YORK YORK | 381 | 75548724450692943765756761
| 03344433333333333333333333333333333333 | 213455734851 | 119.1 | 331.
87.
323.
119.
213. | | 1531 | YORK, EAST | 7 | 16.16;
7.21;
6.14;
11.88; | .03991
.03731
.03701 | 18.1 | 47.1 | 119 | | 501 | AUKK' MOBIH | 7 1 | 11.881 | 03851 | 31. | 47
39
81 | 213. | | į į | HEIGHTED AVE. | | 9.951 | .03861 | 26.1 | 68. | 180. | | == = | ***** | | | | **** | | ******* | TABLE 43 ANNUAL CONTROL COSTS — UNSEWERED AREAS FIGURE 25. EFFECT OF STORAGE AND TREATMENT CAPACITY ON NUMBER OF OVERFLOW EVENTS. event starts, and any overflow occurring in this event is considered separate from the first overflow. Thus, the number of overflow events was increased from one to two events, even though the treatment rate was increased. The number of overflow events appears to provide a more meaningful parameter if the event is defined differently than the definition used by STORM. The overflows shown in case 2 in Figure 25, should be considered as a single event since they occur so closely together. Based on the U.S. assessment, a storm event terminates after 12 hours of no precipitation. Using this definition, the approximate relationship between overflow events and percent volume control is derived as shown in Figure 26, Number of Overflow Events vs Percent Control, for Burlington and Kingston. Thus, a rough approximation of the relationship between percent R and overflow events (OE) is d(OE)/dR = -1. #### 5.5 The Overall Cost Assessment #### 5.5.1 Overall Results General results thus far are summarized in Table 44, General Information, Table 45, Land Use by Type of Use, Table 46, Land Use and Population by Type of Sewerage System, Table 47, Quantity FIGURE 26. NUMBER OF OVERFLOW EVENTS vs PERCENT CONTROL. and Quality of Sewerage and Stormwater Runoff, and Table 48, Annual Control Costs per Unit of Developed Urban Area. The only remaining problem is to estimate the province wide costs for 25, 50, and 75 percent control. As a first approximation, assume that an overall 25 percent control level is achieved by 25 percent control on the combined (A_1) , storm (A_2) and unsewered (A_3) areas. Thus the approximate total annual costs, TAC, are TABLE 44 GENERAL INFORMATION | Total Urbanized Area | = | 586,000 acres (237,000 ha) | |----------------------------|---|-------------------------------------| | Total Population Area | = | 4,720,000 persons | | Average Population Density | = | 8.07 persons/acre (19.9 persons/ha) | | Average Precipitation | = | 32.75 inches/year (83.2 cm/hr) | #### TABLE 45 LAND USE BY TYPE OF USE | Use | 1,000 Acres | (ha) | |-------------|-------------|-------| | Undeveloped | 191 | (77) | | Residential | 208 | (85) | | Commercial | 40 | (16) | | Industrial | 55 | (22) | | Other | <u>92</u> | (37) | | Total | 586 | (237) | # TABLE 46 LAND USE AND POPULATION BY TYPE OF SEWERAGE SYSTEM | | | | Deve | loped | |-------------|-------------------------|---|---|---| | | | | Popu | lation | | | | | De | nsit y | | | | | Pers | sons/ | | 1,000 Acres | (ha) | 1,000 Persons | Acre | (ha) | | 191 | (77) | 0 | C |) | | 71 | (29) | 1,773 | 24.9 | (61.5) | | 210 | (85) | 2,485 | 11.9 | (29.4) | | 114 | (46) | 468 | 4.1 | (10.1) | | 586 | (237) | 4,725) | 12.0 | (29.7) | | | 191
71
210
114 | 191 (77)
71 (29)
210 (85)
114 (46) | 191 (77) 0
71 (29) 1,773
210 (85) 2,485
114 (46) 468 | Popul De Persons Acre 1,000 Acres (ha) 1,000 Persons Acre 191 (77) 0 0 71 (29) 1,773 24.9 210 (85) 2,485 11.9 114 (46) 468 4.1 | # TABLE **47**QUANTITY AND QUALITY OF SEWERAGE AND STORMWATER RUNOFF | | | | | Qua | lity: Annu | al Pound | s of | |---------------------|-------|--------|--------------|-------|------------|--------------|---------| | Flow: In/Yr (cm/yr) | | | | | BOD/Acre | (kg/ha) | | | Sewerage Syste | m Sev | verage | Storm Runoff | Sew | erage | Storm F | Runoff | | Combined | 33.4 | (84.8) | 16.2 (41.1) | 1,545 | (1,733) | 137.0 | (153.7) | | Storm | 15.9 | (40.4) | 12.8 (32.5) | 736 | (826) | 25. 7 | (28.8) | | Unsewered | 5.5 | (14.0) | 9.5 (24.1) | 255 | (286) | 21.3 | (23.9) | | | 16.1 | (40.9) | 12.5 (31.8) | 743 | (834) | 44.5 | (49.9) | TABLE 48 ANNUAL CONTROL COSTS PER UNIT OF **DEVELOPED URBAN AREA: \$/ACRE (\$/HA)** | Types of | | Level | of Con | trol, % d | of Tota | 1 | Coef | ficients | |---------------------|---------|---------|------------------|-----------------|---------|--------|-------|----------| | Sewerage System | 2 | 5 | 5 | 0 | 7! | 5 | K | В | | Combined | 75 | (185) | 240 | (593) | 775 | (1915) | 23.2 | 0.047 | | Storm | 26 | (64) | 68 | (168) | 180 | (445) | 9.9 | 0.039 | | Unsewered | 7 | (17) | 18 | (44) | 44 | (109) | 3.0 | 0.036 | | (TAC) ₂₅ | = 75A | , + 26. | A ₂ + | 7A ₃ | | | | | | | | - | _ | _ | 000) | + 7(11 | 4,000 |) (77) | | = | = \$11, | 583,000 |)/yr | | | | | | | Likewise | | | - | | | | | | $$(TAC)_{50} = $33,372,000/yr$$ (78) $(TAC)_{75} = $97,841,000/yr$ (79) $$(TAC)_{75}^{\circ} = \$97,841,000/yr$$ (79) Recall that the cost of wet-weather control using secondary facilities is $$Z_{s} = ke^{\beta R} 1$$ (80) where Z_s = annual cost, dollars per acre, $k\beta$ = constants, and R_1 = percent BOD removal ($0 \le R_1 \le 85$) The cost of wet-weather control in terms of pounds of pollutant removed, w, is $$Z_s = ke^{\beta \left(\frac{10\alpha}{M}\right) w}$$. (81) The marginal cost of BOD removal is $$\frac{dZ_s}{dw} = \frac{100 \beta k}{M} e^{\frac{100 \beta w}{M}}$$ (82) However, the optimal mix of control of storm runoff from combined storm and unsewered areas is found by equating marginal costs. Using equation (82) with the subscript (1) denoting combined, (2) denoting storm, and (3) denoting unsewered, yields $$\frac{100 \, \beta_1 \, k_1}{M_1} \, e^{\frac{100 \, \beta_1 \, w_1}{M_1}} = \frac{100 \, \beta_2 \, k_2}{M_2} e^{\frac{100 \, \beta_2 \, w_2}{M_2}} = \frac{100 \, \beta_3 \, k_3}{M_3} e^{\frac{100 \, \beta_3 \, w_3}{M_3}}$$ (83) If the above approximation is used, and marginal costs are compared for, say, 50 percent BOD removal, one obtains $$MC_1 = \frac{100(0.047) (23.2)}{137.0} e^{100(0.047) (0.5)}$$ = \$8.35/lb BOD (\$18.39/kg BOD) (84) $$MC_2 = \frac{100(0.039) (9.9)}{25.7} e^{100(0.039) (0.5)}$$ $$= $10.56/lb BOD ($23.26/kg BOD)$$ (85) $$MC_3 = \frac{100(0.036)(3.0)}{21.3} e^{100(0.036)(0.5)}$$ (86) = \$3.07/lb BOD (\$6.76/kg BOD) This result indicates that, to achieve 50 percent control, unsewered and combined sewer areas should be controlled more intensively due to their relatively low marginal costs. Storm sewer areas should be the least intensively controlled due to their relatively high marginal cost. The correct solution can be found by solving for w₁ and w₃ as functions of w₂, i.e., $$w_1 = a_{12} + b_{12} w_2 (87)$$ $$w_2 = a_{32} + b_{32} w_2 (88)$$ $$a_{12} = \frac{M_1}{100\beta_1} \ln \left[\left(\frac{\beta_2}{\beta_1} \right) \left(\frac{k_2}{k_1} \right) \left(\frac{M_1}{M_2} \right) \right]$$ $$a_{32} = \frac{M_3}{100\beta_3} \ln \left[\left(\frac{\beta_2}{\beta_3} \right) \left(\frac{k_2}{k_2} \right) \left(\frac{M_3}{M_2} \right) \right]$$ $$b_{12} = (\frac{\beta_2}{\beta_1}) (\frac{M_1}{M_2})$$ $$b_{32} = (\frac{\beta_2}{\beta_3}) (\frac{M_3}{M_2})$$ $M_1, M_2, M_3, \beta_1, \beta_2, \beta_3, k_1, k_2, k_3, w_1, w_2, w_3$ are as defined The total wet-weather pollution load, WP, is $$WP = \sum_{i=1}^{3} M_i A_i$$ (89) where M_i . = annual pounds per acre from i^{th} area, and A_i = area of i^{th} area. Let ρ denote the proportion of WP that one wishes to control. Then, the optimal solution for a given ρ is found by substituting equations (87) and (88) into (89) or $$\rho(WP) = w_1 A_1 + w_2 A_2 + w_3 A_3 \tag{90}$$ $$\rho(WP) = w_1 A_1 + w_2 A_2 + w_3 A_3 \rho(WP) = (a_{12} + b_{12} w_2) A_1 + w_2 A_2 + (a_{32} + b_{32} w_2) A_3$$ (90) $$w_2^* = \frac{\rho(WP) - a_{12}\Lambda_1 - a_{32}\Lambda_3}{b_{12}\Lambda_1 + A_2 + b_{32}\Lambda_3}$$ (92) Knowing w₂*, the optimal pounds of pollutant removal for area 2, one can find the optimal levels of pollutant removed for areas 1 and 3, w_1^* , and w_3^* , by substituting into equations (87) and (88). The results of the Ontario assessment indicate the values for the parameters shown earlier. Using these data, one obtains a. WP = $$M_1 A_1 + M_2 A_2 + M_3 A_3$$ = 137.0(71,000) + 25.7(210,000) + 21.3(114,000) WP = 17,552,000 lbs BOD/yr (7,969,000 kg BOD/yr) b. $$a_{12}$$ and a_{32} $$a_{12} = \frac{M_1}{100\beta_1} \ln \left[\left(\frac{\beta_2}{\beta_1} \right) \left(\frac{k_2}{k_1} \right) \left(\frac{M_1}{M_2} \right) \right]$$ $$= \frac{137.0}{100(0.047)} \ln \left[\left(\frac{0.039}{0.047} \right) \left(\frac{9.9}{23.2} \right) \left(\frac{137.0}{25.7} \right) \right]$$ $$a_{12} = 18.52$$ Similarly, $$a_{32} = 6.43$$ c. $$b_{12}$$ and b_{32} $$b_{12} = \left(\frac{\beta_2}{\beta_1}\right) \left(\frac{M_1}{M_2}\right)$$ $$= \left(\frac{0.039}{0.047}\right) \left(\frac{137.0}{25.7}\right)$$ $$b_{12} = 4.42$$ Similarly, $$b_{32} = 0.898$$ Thus. $$w_2^* = \frac{\rho(17,552,000) - (18.52)(71,000) - (6.43)(114,000)}{4.42(71,000) + 210,000 + 0.898(114,000)}$$ (93) or $$w_2^* = 28.03 \,\rho - 3.27 \tag{94}$$ Then, substituting into equations (87) and (88) to find w₁* and w₃* yields $$w_1^* = 123.89\rho + 4.07$$ (95) $w_3^* = 25.17\rho + 3.49$ (96) $$w_{\bullet}^{*} = 25.17\rho + 3.49 \tag{96}$$ Let $(R_i^*)_{\rho} = 100(w_i^*)_{\rho}/M_i$ denote the optimal percent control of the i^{th} source for control level, ρ . Then $$(R_1^*)_{\rho} = \frac{100(123.89\rho + 4.07)}{137.0} = 90.4_{\rho} + 3.0$$ (97) $$(R_2^*)_{\rho} = \frac{100(28.03\rho - 3.27)}{25.7} = 109.1\rho - 12.7 \tag{98}$$ $$(R_3^*)_{\rho} = \frac{100(25.17\rho + 3.49)}{21.3} = 118.2\rho +
16.4 \tag{99}$$ Let $\lambda_i = A_i M_i / WP$ for i = 1, 2, 3 denote the proportion of total pollutant load from the three areas. $$\lambda_1 = \frac{137.0(71,000)}{17,552,000} = 0.554 \tag{100}$$ $$\lambda_2 = \frac{25.7(210,000)}{17,552,000} = 0.308 \tag{101}$$ $$\lambda_3 = \frac{21.3(114,000)}{17.552,000} = \frac{0.138}{1.000} \tag{102}$$ The optimal percent control for 25, 50 and 75 percent is shown in Table 49, Optimal Percent Control for Specified Overall Percent Control. TABLE 49 OPTIMAL PERCENT CONTROL FOR SPECIFIED OVERALL PERCENT CONTROL | | Optir | mal Level of Co | ontrol | 3
Σ R ₁ λ _i | |------------------|-------|-----------------|--------|--------------------------------------| | Level of Control | R* | R‡ | R‡ | i=1 | | 0.25 | 25.6 | 14.6 | 46.0 | 25.0 | | 0.50 | 48.2 | 41.9 | 75.5 | 50. 0 | | 0.75 | 73.8 | 72.6 | 85.0 | 75.0 | #### TABLE 50 OPTIMAL ANNUAL COST PER ACRE FOR SPECIFIED PERCENT CONTROL | Type of | Optimal Annu | al Cost/Acre (ha) for | Specified % Control | |-----------------|--------------|-----------------------|---------------------| | Sewerage System | 25 | 50 | 75 | | Combined | 77(190 | 224(553) | 745(1,841) | | Storm | 17(42) | 51 (126) | 168(415) | | Unsewered | 16(40) | 45 (111) | 64(158) | TABLE 51 OPTIMAL ANNUAL CONTROL COSTS | Level of Control | Optimal Annual Cost: \$/Yr | |------------------|----------------------------| | 25 | 10,861,000 | | 50 | 31,744,000 | | 75 | 95,471,000 | Knowing $(R_i)_p$, one can find the cost per acre by simply substituting into equation (80), i.e., $Z_{i} = k e^{\beta R_{i}}$ to obtain the optimal annual cost per acre as shown in Table 50, Optimal Annual Cost per Acre For Specified Percent Control. Thus, the optimal annual control costs are shown in Table 51, Optimal Annual Control Costs. #### 5.5.2 Potential Savings Due to Multipurpose Planning The cost of wet-weather quality control can be reduced by integrating this purpose with dry-weather treatment plants and/or storage reservoirs for stormwater quantity control. Dry-weather sewage treatment plants are designed to handle the peak flow anticipated 10 to 15 years after construction. The full capacity of these plants is seldom utilized because peak flows occur infrequently and also because additional capacity is frequently added before the actual flow approaches the design capacity of the plant. Provision of storage to equalize peak flows can greatly enhance the effective capacity of the existing treatment units. Utilization of this excess capacity can reduce the treatment capacity needed for wet-weather quality control. Similarly, utilization of storage available for wet-weather quantity control can result in reducing the storage and treatment requirements for wet-weather quality control. Preliminary results from the U.S. assessment wherein excess capacity of 10 mgd in a 20 mgd plant was assumed and the city needed to store the excess (over *natural*) runoff for a two-year, 24-hour storm indicated that it was possible to achieve significant savings due to multipurpose planning. For these assumed conditions, the savings as compared to the single purpose venture are as shown below: These results are suggestive only. Specific studies are needed to refine these rough estimates. 6.5.3 Tertiary Treatment versus Wet-WeatherTreatment The optimal mix of tertiary treatment and wet-weather control can be found by equating the marginal cost of tertiary treatment with the marginal cost of wet-weather pollution control. The estimated total annual incremental cost of a tertiary treatment plant is:² $$C_{\text{tert}} = 87,000 \, D^{0.787}$$ (104) C_{tert} = total annual incremental cost of tertiary treatment plant, dollars per year, and D = plant size, mgd. Assume a 25 mgd plant. Then, $C_{\rm tert} = \$1,096,000$ per year. The plant is assumed to increase the BOD removal from 85 percent to 95 percent or about 0.017 pounds (7.71 g) per capita-day or 1,550,000 pounds (704,000 kg) per year for the city of 250,000 people. Thus, the unit cost of tertiary treatment, $c_{\rm tert}$, is \$0.71 per pound (\$1.56 per kg) of BOD removed. Equating the marginal cost of wet weather control to the unit cost of tertiary treatment yields $$c_{tert} = \frac{100\beta \,k}{M} \,e^{\frac{100\beta \,w}{M}} \tag{105}$$ or $$w^* = \frac{M}{100\beta} \ln \left[\frac{c_{tert}(M)}{100\beta(K)} \right]$$ (106) where w* = optimal pounds of wet weather pollution to control prior to using tertiary treatment. The optimal percent control in terms of R_1 is $$R_{i}^{*} = \max \left(\frac{1}{\beta} \ln \left[\frac{c_{tert}(M)}{100\beta (k)} \right], 0 \right).$$ (107) The overall average BOD loading per acre, \overline{M} , is $$\overline{M} = \frac{WP}{(A_1 + A_2 + A_3)} = \frac{17,552,000}{395,000}$$ \overline{M} = 44.5 lb BOD/acre (49.9 kg/ha) Then, $$R_1^* = \max \left[\frac{1}{0.044} \ln \frac{0.71(44.5)}{100(0.044)(3.60)}; 0 \right] = 15.7\%$$ (108) Thus, for these assumed conditions, approximately 16 percent of the wet-weather pollution should be controlled prior to initiating tertiary treatment. While these results are for one specific set of assumptions, they do suggest that it is highly desirable to do this tradeoff analysis before committing a community to tertiary treatment. #### 5.6 Summary The purpose of this assessment is to evaluate the cost of controlling varying levels of wet-weather pollution, emanating from the 4,720,000 people in 56 cities in Ontario. Reliable procedures for assessing stormwater pollution are not yet available. Thus, a considerable amount of developmental effort was expended in devising such procedures. Major results are presented, by item, in the next paragraphs. - 1. Land Use Using a definition of urbanized areas which includes population densities as low as one person per acre leads to inclusion of the relatively large amount of land which is undeveloped (about one-third of the total land). Residential development utilizes the majority of the developed land. - 2. Type of Sewerage System Very limited data exist on the population and area served by various types of storm drainage systems. Population served by combined, storm, and unsewered areas were derived by assuming that the highest density areas are served by combined sewers, the intermediate level by storm sewers, and the lowest density areas were unsewered. The transition points were identified using available data on area served by the three systems. This method would tend to overestimate the population served by combined sewers. - 3. Quantity of Stormwater An average of 28.6 inches of water per acre leaves Ontario cities of which 12.6 inches comprise stormwater runoff. Annual stormwater runoff volumes exceed sewage flows in low density urban runoff is significant relative to sewage flows in low density urban development. Thus, on a volumetric basis, urban runoff is significant relative to sewage flows. - 4. Quality of Stormwater Stormwater pollution loads approach wastewater effluent loads after secondary treatment has been installed. The exact quantity of stormwater pollution remains unknown due to lack of sufficient data. Numerous assumptions were needed to develop a general pollutant loading equation. There seems to be general agreement that combined sewer overflows are much more serious than stormwater runoff. However, the results of this assessment indicate relatively low loadings of stormwater pollutants (about one-half of the load coming from secondary treatment plant effluent). Only through carefully conducted sampling programs can these estimates be refined. - 5. Total Single Purpose Control Costs Relatively detailed studies in four Ontario cities provided the basis for evaluating storage-treatment alternative for wet-weather control. One year of hourly data was simulated to predict the performance of various storage-treatment configurations. These results were put in analytical form to expedite extrapolation to all urbanized areas. These results are combined with data on the cost of storage and treatment to derive the optimal mix of storage and treatment to use to obtain a given level of control. The final result is shown in Figure 27, Total Annual and Initial Capital Cost for Various Levels of Wet-Weather Pollution Control in Ontario. A striking feature of the curve is that it bends upward FIGURE 27. TOTAL ANNUAL AND INITIAL CAPITAL COSTS FOR VARIOUS LEVELS OF WET WEATHER POLLUTION CONTROL IN ONTARIO. - (convex) indicating increasing incremental costs (particularly at higher levels of control). The primary reason the curve has this shape is due to the disproportionatelylarger amounts of storage and treatment required to control the larger storms. - 6. Total Multiple Purpose Control Costs Significant savings can be realized if one integrates dry- and wet-weather treatment and storage for quality as well as quantity control. The lower curve in Figure 27 indicates the cost of stormwater quality control in an integrated system. This result suggests that the potential savings are significant enought to warrant further study in evaluating stormwater systems. - 7. Tertiary Treatment versus Stormwater Quality Management A comparison of the marginal costs of tertiary treatment of sewage for further BOD control with initiating control of wet-weather quality indicates that one should initiate some level of wet-weather quality control prior to using tertiary treatment. Of course, a different result would occur if nutrient control is used instead of BOD control. Nevertheless, the relatively low marginal costs of wet-weather control at low levels of control indicate that it should be given serious consideration as an alternative to tertiary treatment. #### 5.7 List of Variables ``` coefficient (inches per hour) a A_1 combined sewer area A_2 storm sewer area A_3 unsewered area \boldsymbol{A}_{t\,o\,t} total developed area AR annual runoff (inches per year) b coefficient (inches per hour) β coefficient in cost
equation С coefficient (percent R⁻¹) unit cost of tertiary treatment (dollars per pound) Ctert unit cost of storage (annual dollars per acre-inch) c_s unit cost of treatment (annual dollars per inch per hour) \mathbf{c}_{\mathbf{T}} C_{tert} total annual incremental cost of tertiary treatment plant (dollars per year) d coefficient (inch⁻¹) D plant size (mgd) ENR Engineering News Record Cost Index treatment plant efficiency η coefficient (percent R)⁻¹ f(R₁:S,T) Production function relating percent pollutant control (R_1) to storage (S) and treatment (T) coefficient k K coefficient breakeven pipe length L proportion of total pollutant load from ith area \lambda_i annual pounds of pollutant (pounds per acre-year) M average annual pollutant loading (pounds per acre-year) M ``` | MC | marginal cost | |----------------|--| | MRS_{ST} | marginal rate of substitution of storage for treatment | | OE | number of overflow events per year | | PD | gross population density | | PD_d | population density in developed portion of urban area | | q - | coefficient | | Ŕ | percent runoff control | | R_1 | percent pollutant control | | R* | optimal percent pollutant control prior to using tertiary | | - | treatment | | \overline{R} | maximum percent pollutant control | | ρ | proportion of WP which is controlled | | S | coefficient | | S | storage volume, inches | | S* | optimal storage volume (inches) | | T | treatment rate (inches per hour) | | T* | optimal treatment rate (inches per hour) | | T_1 | treatment rate at which isoquant is parallel to the ordinate | | | (inches per hour) | | T_2 | treatment rate at which isoquant intersects the abscissa | | | (inches per hour) | | TAC | total annual cost: \$/year | | W | annual pounds of pollutant removed | | w* | optimal pounds of wet-weather pollutants to control prior | | | to using tertiary treatment | | WP | total wet-weather pollutant load (lbs/year) | | У | coefficient | | Z | coefficient | | Z | (otal annual cost (dollars per acre) | | z^* | optimal total annual cost (dollars per acre) | | Z_s | total annual cost for secondary control unit | | | (dollars per acre) | #### Appendix I #### **GLOSSARY** Antecedent conditions — Initial conditions in catchment as determined from hydrologic events prior to storm. Biological treatment processes — Means of treatment in which bacterial or biochemical action is intensified to stabilize, oxidize, and nitrify the unstable organic matter present. Trickling filters activated sludge processes, and lagoons are examples. Catchment -Surface drainage area. Combined sewage — Sewage containing both domestic sewage and surface water or stormwater, with or without industrial wastes. Includes flow in heavily infiltrated sanitary sewer systems as well as combined sewer systems. Combined sewer - a sewer receiving both intercepted surface runoff and municipal sewage. Combined sewer overflow — Flow from a combined sewer in excess of the interceptor capacity that is discharged into a receiving water. Conservative — Non-interacting substance, undergoing no kinetic reaction; examples are salinity, total dissolved solids, total nitrogen, total phosphorus. Convective Precipitation — Precipitation caused by lifting due to convective currents, as in thunderstorms. Cyclonic Precipitation — Precipitation caused by lifting associated with junctions of different air masses, as for instance, with most warm and cold fronts. Depression Storage – Amount of precipitation which can fall on an area without causing runoff. Detention — The slowing, dampening, or attenuating of flows either entering the sewer system or within the sewer system by temporarily holding the water on a surface area, in a storage basin, or within the sewer itself. Domestic sewage — Sewage derived principally from dwellings, business buildings, institutions, and the like. It may or may not contain groundwater. *Economies of scale* — Unit costs decrease as output increases. Equalization — The averaging (or method for averaging) of variations in flow and composition of a liquid. $Expansion \ path - Locus \ of points connecting numerous isoquants indicating the optimal combination of inputs.$ First flush — The condition, often occurring in storm sewer discharges and combined sewer overflows, in which a disproportionately high pollutional load is carried in the first portion of the discharge or overflow. Frequency diagram -- Curve which relates the number of occurences of events to their magnitude. Initial abstraction – Initial precipitation loss including interception and depression storage. *In-system* – Within the physical confines of the sewer pipe network. Interception - Initial loss of precipitation due to vegetation. Isoquant Lines - Lines of equal cost. Isoquants — Curves representing combinations of the inputs yielding the same amount of output. Non-conservative — substance undergoing kinetic interaction, assumed to be a first-order reaction; examples are biochemical oxygen demand (BOD), coliform bacteria, dissolved oxygen (DO). Orographic Precipitation – Precipitation caused by lifting of an air mass over mountains. Orthophosphate — Phosphate that appears as PO₄, HPO₄ or H₂ PO₄, i.e. is hydrolizable. Creates a growth response in algae. Physical-chemical treatment process — Means of treatment in which the removal of pollutants is brought about primarily by chemical clarification in conjunction with physical processes. The process string generally includes preliminary treatment, chemical clarification, filtration, carbon adsorption, and disinfection. Pollutant – Any harmful or objectionable material in, or change in, physical characteristic of water or sewage. Precipitation event -A precipitation event terminates if zero rainfall has been recorded for the previous specified time interval. Primary treatment – Process which removes about 35 percent of the biochemical oxygen demand of the waste. Retention — The prevention of runoff from entering the sewer system by storing on a surface area or in a storage basin. Runoff coefficient — Fraction of rainfall that appears as runoff after subtracting depression storage and interception. Typically accounts for infiltration into ground and evaporation. Sanitary sewer — A sewer that carries liquid and water-carried wastes from residences, commercial buildings, industrial plants, and institutions, together with relatively low quantities of ground, storm, and surface waters that are not admitted intentionally. Secondary treatment — Process which removes about 90 percent of the biochemical oxygen demand of the waste. Sewer - A pipe or conduit generally closed, but normally not flowing full, for carrying sewage or other waste liquids. Sewerage — System of piping, with appurtenances, for collecting and conveying wastewaters from source to discharge. Storm flow — Overland flow, sewer flow, or receiving stream flow caused totally or partially by surface runoff or snowmelt. Storm sewer — A sewer that carries intercepted surface runoff, street wash and other wash waters, or drainage, but excludes domestic sewage and industrial wastes. Storm sewer discharge – Flow from a storm sewer that is discharged into a receiving water. Stormwater — Water resulting from precipitation which either percolates into the soil, runs off freely from the surface, or is captured by storm sewer, combined sewer, and to a limited degree sanitary sewer facilities. Surface runoff — Precipitation that falls onto the surfaces of roofs, streets, ground, etc., and is not absorbed or retained by that surface, thereby collecting and running off. Tertiary treatment - Process which removes about 96 percent of the biochemical oxygen demand of the waste. Urbanized area — Central city, or cities, and surrounding closely settled territory. Central city (cities) have population of 50,000 or more. Peripheral areas with population density of 1,000 persons per acre or more are included. (United States city definition) Urban runoff - Surface runoff from an urban drainage area that reaches a stream or other body of water or a sewer. Wastewater - The spent water of a community. # Appendix II MAPS OF AREAS OF DATA TABULATION FOR TEN TEST CITIES IN ONTARIO FIGURE 28. AREA OF DATA TABULATION IN BURLINGTON (inside hatched line) FIGURE 29. AREA OF DATA TABULATION IN GUELPH (inside hatched line) FIGURE 30. AREA OF DATA TABULATION IN KINGSTON (inside hatched line) FIGURE 31. AREA OF DATA TABULATION IN KITCHENER (inside hatched line) FIGURE 32. AREA OF DATA TABULATION IN MILTON (inside hatched line) ### ST. CATHARINES FIGURE 33. AREA OF DATA TABULATION IN ST. CATHARINES (inside hatched line) FIGURE 34. AREA OF DATA TABULATION IN SAULT STE. MARIE (inside hatched line) #### Appendix III #### FIELD INTERVIEW OUTLINE #### A. General Information - 1. Community Information - a. Demographic population, land uses, etc. - b. Community service area - c. Major economic activities #### 2. Physical Information - a. Topographic characteristics - b. Prevalent soils permeability, etc. - c. General patterns of drainage slopes, location in catchment, etc. #### 3. Annual Climatic Information - a. Precipitation rainfall, snowfall - b. Temperature distribution, etc. #### 4. Local Governmental Information - a. Organization of responsibility for: - design and construction of - storm runoff works - sanitary wastewater works - operations and maintenance of - storm runoff works - sanitary wastewater works #### 5. Financing for storm and sanitary wastewater works - a. Local financing methods - b. Provincial grants - administrative vehicle - determination of provincial share - determination of local share - expense attributable to province - expense attributable to local jurisdiction #### c. National grants - administrative vehicles or agencies involved - determination of national, provincial, and local shares - expenses attributable to national, provincial, and local
jurisdictions - d. Past grants experience #### B. Collection Systems Information - 1. Service area coverage - a. Combined sewer - b. Sanitary sewers - c. Separate storm sewers - d. Unsewered - 2. Mileage of sewer systems - a. Combined sewerage - b. Sanitary sewerage - c. Separate storm sewerage - 3. Problems Experienced - a. Hydraulic overloading - b. System bypasses (and their purpose) - number - location - hydraulic capacity limitation - receiving water - c. System solids deposition problems - general location - cleaning frequencies - d. Infiltration and/or inflow - roof leader connections - other direct inflow locations manholes, etc. - infiltration problems - estimated infiltration rates - general infiltration problem locations - e. Storm runoff inundation areas - locations - cause (no collection systems, hydraulic overloading, etc.) - threshold runoff rate that results in inundation problems - 4. Local Construction Practice - a. Use of catch basins or inlets - b. Construction of system relief bypasses - c. Control of bypasses or overflows - regulators - detention facilities - d. Use of detention facilities - Type on-site, in system, off system - preferable locations for each type - proximate design criteria - e. Use of retention facilities - f. Practices concerning extension of combined sewer systems - g. Practices concerning extension of separate sanitary sewer systems - h. Practices concerning extension of separate storm sewer system #### C. Dry Weather Treatment Works - a. Mean daily flows - b. Treatment unit processes - c. Equalization of influent flows - d. Influent strength - -BOD - COD - -SS - Nutrients - -- Coliform - e. Treatment removal efficiencies - f. Effluent strength - g. Hydraulic treatment plant capacity - h. Bypass capability - how often - bypassing due to? #### D. Receiving Waters For: - 1. Runoff discharges - 2. Overland flow - 3. Combined sewer overflow - 4. System and plant bypasses - 5. Treatment plant effluents #### E. Wet Weather - 1. Control Activities - a. Regulator operation and maintenance - 2. Sampling Activities - a. Combined sewer overflows - b. Urban runoff - c. Bypasses #### 3. Planning Activities For: - a. Control of quantity - b. Control of quality - c. Abatement of runoff effects - storage/detention - types - likely locations for each - treatment - treatment types standard - sedimentation, disinfection exotic - doss air flotation, microstrainer, swirl technologies #### F. Interest In Runoff Planning - 1. Current local activities for investigating runoff induced problems - a. Quantity management (flood control, etc.) - b. Quality management - effluents - bypasses - combined sewer overflows - runoff discharges - overland runoff flow - 2. Does interest exist in locally applied runoff planning tools - a. Would the local jurisdiction be able to produce inputs - b. Do they have computer capacity - c. Would they use Ministry level assistance #### G. Verification of Existing Reduced Data #### H. Miscellaneous - 1. Land acquisition costs - a. Central city land costs for - residential - commercial - industrial - open space - b. Non-central city land costs for - residential - commercial - industrial - open space - undeveloped ## Appendix IV PROVINCIAL GRANTS All municipalities in the Province of Ontario are eligible under provincial legislation for grants. I. General grants — These grants are available for general purposes and are not tied to specific uses. Most municipalities use them for relief from taxation by reduction of the mill rate. None of the municipalities interviewed applied for grants for construction and/or maintenance of urban runoff facilities. Items eligible for II. Subsidy under the Public Transportation and Highway Improvement Act for urban municipalities — The municipalities are eligible for a subsidy allotted annually by the Minister of Transportation and Communications for eligible expenditures made on all roads and streets subject to the limitations of M.T.C. policy on subdivision roads and streets; which limitations are set out in D.T.C. Circular 72-010. #### Part I - Construction - A4 Drainage is covered by the subsidy and includes: - (1) Open ditching, including off-take ditches to nearest outlet - (2) Underdrains - (3) Storm sewers, including pumping stations where require, subject to the limitations of M.T.C. policy currently outlined in D.T.C. Circular 71-040 - (4) Catch basin and connections - (5) Curbs - · (6) Gutters - (7) Municipal drainage assessment on roads - (8) Stream improvement, if required beyond those limits defined in Section B - B. Bridges, culverts, and grade separations subsidizable at bridge and culvert rate. - 3. Outlet sewers for underpasses, including pumping stations when required, subject to limitations outlined in D.T.C. Circular 71-040 - 5. Stream improvement, if required, for 100 feet along bed of stream measured from the outer extremities of a new structure - Stream diversion in lieu of structures only if approved by Head Office #### Part II — Maintenance - A Roads and Streets - 3. Roadside - (1) Entrance culverts cleaning, repairs - (2) Ditches, including off-take-cleaning, repairs, relocation - (3) Erosion control - (4) Catch basins -- cleaning, repairs, replacement - (5) Storm sewers, subject to limitations of M.T.C. policy currently outlined in D.T.C. Circular 71-040 - (6) Underdrains, cleaning repairs, replacement - (8) Curb and gutter repairs and replacement - (12) Municipal drainage assessment on roads B4 Replacement of pipe culvert #### Part III - Overhead Overhead is compensable at 7 percent of the cost of items eligible for subsidy under Parts I and II. Details are set forth in Part III of published guidelines. In D.H.O. OB-M-69 a schedule is set out giving allowable rates for equipment rental. In Circular No. 71-038 a list of approved protective clothing and safety equipment is given. Circular 71-040 is reproduced in full. It sets out the subsidy on storm sewer construction and maintenance. Circular 71-02 outlines the conditions under which the Minister will authorize the payment of subsidy on municipal expenditures made on roads or streets opened or constructed by private interest, or opened or constructed by municipality acting as a subdivider, or opened or constructed by the municipality acting as a constructor for the subdivider. Three cases are set out and eligibility can be determined by a decision-tree concept graph included therein. In addition there are certain municipalities, as of April 1, 1975, that are eligible for provincial grants for water and sewage facilities through the Ministry of the Environment. Municipality of Metropolitan Toronto The Regional Municipalities of Durham Haldimand-Norfolk Halton Hamilton-Wentworth Niagara Ottawa Carleton Peel Sudbury Waterloo York The District Municipality of Muskoka The Cities of Thunder Bay, Timmins - (1) Sewage facilities include "all treatment works operated by the municipality or on behalf of an area muncipality or any local branch thereof. - (11) Intercepting and trunk sanitary sewers including ancillary structures which make practicable the matter of adequate but efficient pollution control (the trunk sewer must terminate at a sewage treatment plant, may serve as a local collector, and must have a theoretical capacity in excess of 6 cfs) Eligible costs include: (a) Cost of design and supervision #### **ACKNOWLEDGEMENTS** The APWA Research Foundation wishes to thank the named individuals for their assistance and help which made this report possible. The background work for this study was accomplished by the APWA and the University of Florida under Contract 68-03-0283 with the U.S. Environmental Protection Agency. Sections 4, 5, and 6 of this study were prepared by the University of Florida under a subcontract from APWA. The assistance of the Ministry of the Environment in providing background information, maps, and land use information was very helpful. #### **Steering Committee** Harry Torno, USEPA (Chairman) Charles Howard and Associates D.H. Waller, Nova Scotia Technical College Richard Field, USEPA Donald G. Weatherbe, Ontario Ministry of the Environment Thomas Koplyay, Environmental Protection Service, Environment Canada Douglas F. Rhodes, Secretary of CAN-ONT Agreement American Public Works Association Richard H. Sullivan M.J. Manning W.D. Hurst Timothy Kipp University of Florida Department of Environmental Engineering Sciences James P. Heaney Wayne C. Huber Stephen Nix #### REFERENCES - 1. American Public Works Association and University of Florida, "Nationwide Evaluation of Combined Sewer Overflows and Urban Stormwater Discharges,": Vol. I, Executive Summary, USEPA, 1977. - 2. Heaney, S.P., W. C. Huber, M. A. Medina, Jr., M.P. Murphy, S.J. Nix, and S.M. Hasan, "Nationwide Evaluation of Combined Sewer Overflows and Urban Stormwater Discharges,"; Vol. II, Cost Assessment and Impacts, USEPA, EPA-600/2-77-064, 1977. - 3. Sullivan, R.H., M.J. Manning, and T.M. Kipp, "Nationwide Evaluation of Combined Sewer Overflows and Urban Stormwater Discharges,": Vol. III, Characterization, USEPA, 1977. 4. Akerlinch, C., "The Quality of Storm Water Flow," Nordisk Hygienish Transkrift, 31,1, 1950. 5. Palmer, C.L., "The Pollutional Effects of Storm Water Overflow from Combined Sewers," Sewage and Industrial Wastes, 22,2,154, February 1950. 6. "Pollutional Effects of Stormwater and Overflows from Combined Sewer Systems—A Preliminary Appraisal," U.S. Public Health Service, November 1964. 7. "Methods for Identifying and Evaluating The Nature and Extent of Non-Point Source of Pollutants," Midwest Research Institute, U.S. Environmental Protection Agency Report 430/9-73-014, USGPO, Washington, D.C., October 1973. 8. "An Overview of Maryland's Sediment Control Problems," Kanerva, R.A., Maryland Water Resources Administration. ASCE National Meeting On Waste Resources Engineering, Washington, D.C., January 1973. 9. "Methods and Practices for Controlling Water Pollution From
Agricultural Non-Point Sources," U.S. Environmental Protection Agency Report, 430/9-73-015, USGPO Washington, D.C., October 1973. Wischmeier, W.H. and Smith, D.C., "Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains," Agricultural Handbook No. 282, Agricultural Research Service, U.S. Department of Agriculture, May 1965. 11. Roesner, L.A., et al., "A Model for Evaluating Runoff-Quality in Metropolitan Master Planning," ASCE Urban Water Resources Research Program, Technical Memo No. 3, ASCE, 345 E. 47 St., New York, NY 10017. 72 pp. April 1974. 12. "1971 Census of Canada, Volume 1" Statistics Canada 1974. 13. Manvel, A.D.; Gustafson, R.H.; and Welch, R.B.; "Three Land Research Studies," National Commission on Urban Problems, Research Report 12, Washington, DC, 1968. 14. Waller, D.H., "Combined Sewers in Canada," Engineering Journal, 1969. 15. "Municipal Sewage System and Sewage Treatment Plants," 1966-67 Pollution Control Manual and Director, Water and Pollution Control, 1966. - 16. Bowers, C.E., Harris, G. S. and Pabst, A. F., "The Real-Time Computation of Runoff and Storm Flow in the Minneapolis-St Paul Interceptor Sewers," St. Anthony Falls Hydraulic Laboratory, Memo No. M-118, University of Minnesota, Minneapolis, December 1968. - 17. Leiser, C. P., "Computer Management of a Combined Sewer System," Office of Research and Development, *USEPA Report EPA-670/2-74-022*, July 1974. - 18. Brandstetter, A. B., "An Assessment of Mathematical Models for Storm and Combined Sewer Management," *EPA Report (in preparation)*, 1975. - 19. Huber, W. C., "Modeling for Storm Water Strategies," A.P.W.A. Reporter, Vol. 42, No. 5, pp. 10-14, May 1975. - 20. Digiano, F. A. and Mangarella, P. A., eds., "Applications of Stormwater Management Models," USEPA Report EPA-670/2-75-065, June 1975. - 21. American Society of Civil Engineers. "Urban Hydrology Research," Report, Engineering Foundation Research Conference, Andover, New Hampshire, ASCE Urban Hydrology Research Council, August 1965. - 22. McPherson, M. B. and Schneider, W. J., "Problems in Modeling Urban Watersheds," Water Resources Research, Vol. 10, No. 3, pp. 434-440, June 1974. - 23. Hydrologic Engineering Center, Corps of Engineers, "Urban Storm Water Runoff: STORM," Generalized Computer Program 723-58-L2520, May 1975. - 24. Miller, C. R. and Viessman, W. Jr., "Runoff Volumes from Small Urban Watersheds," *Water Resources Research*, Vol. 8, No. 2 pp. 429-434, April, 1972. - Graham, P. H., Costello, L. S. and Mallon, H. J., "Extination of Imperviousness and Specific Curb Length for Forecasting Stormwater Quality and Quantity," *Journal of Water Pollution* Control Federation, Vol. 46, No. 4, pp. 717-725, April 1974. - 26. Stankowski, S. J., "Magnitude and Frequency of Floods in New Jersey with Effects of Urbanization," Special Report 38. U.S. Geological Survey, Water Resources Division, Trenton, N.J., 1974. - 27. American Public Health Assn., American Water Works Assn., Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 13th Edition, American Public Health Assn., Washington, D.C., 1971. - 28. Colston, N. V., "Characterization and Treatment of Urban Land Runoff," USEPA Report EPA-670/2-74-096, December 1974. - 29. Metcalf and Eddy, Inc., University of Florida, and Water Resources Engineers, Inc., "Storm Water Management Model, Volume I-Final Report," USEPA Report 11024DOC07/71, NTIS-PB 203 289, September 1971. - 30. Huber, W.C., Heaney, J.P.,, et al. "Storm Water Management Model User's Manual Version II," Office of Research and Development, USEPA Report EPA-670/2-75-017, March 1975. - 31. American Public Works Assn., "Water Pollution Aspects of Urban Runoff," Federal Water Pollution Control Administration, Report WP-20-15, NTIS-PB 215 532, January 1969. - 32. AVCO Economic Systems Corp., "Storm Water Pollution from Urban Land Activity," *USEPA Report 11034FKL07/70*, NTIS-PB 195-281, 1970. - 33. Burgess and Niple. Ltd., "Stream Pollution and Abatement from Combined Sewer Overflows, Bucyrus, Ohio," USEPA Report 11024FKN11/69, 1969. - 34. Black, Crow and Edison, Inc., "Storm and Combined Sewer Pollution Sources and Abatement, Atlanta, Georgia," USEPA Report 11024ELB01/71, NTIS-PB 201 725, January 1971. - 35. Hayes, Seay, Mattern and Mattern, "Engineering Investigation of Sewer Overflow Problem," USEPA Report 11024DMS05/70, May 1970. - Rex Chainbelt, Inc., "Screening/Flotation Treatment of Combined Sewer Overflows," USEPA Report 11020 FDC 01/72, August 1970. - 37. Roy F. Weston, Inc., "Combined Sewer Overflow Abatement Alternatives, Washington, D.C.," *USEPA Report 11024 EXF08/70*, August 1970. - 38. Davis, P.L. and Borchardt, F., "Combined Sewer Overflow Abatement Plan, Des Moines, Iowa," *USEPA Report EPA-R2-73-170*, April 1970. - 39. Weibel, S.R., Anderson, R.J. and Woodward, R.L., "Urban Land Runoff as a Factor in Stream Pollution," *Journal of Water Pollution Control Federation*, Vol. 36, No. 7, pp. 914-924, July 1969. - 40. Bryan, E.H., "Quality of Stormwater Drainage from Urban Land Areas in North Carolina," Report No. 37, Water Resources Research Institute, University of North Carolina, Raleigh, 1970. - 41. Cornell, Howland, Hayes and Merryfield-Hill, Inc., "A Water Resources Management Program, Vol. V. User's Manual: The Hydrocomp Simulation Program for Water Quality," *Appendix E, Land Washoff Parameters*, Report for Municipality of Metropolitan Seattle, 1975. - 42. Droste, R.L., "Pollution Loadings of Urban Storm Runoff," M. Appl. Sc. Thesis, Department of Civil Engineering, University of Windsor, Windsor, Ontario, July 1974. - 43. Singh, M.M., "Urban Storm Runoff, A Qualitative and Quantitative Study," M. Appl. Sc. Thesis, Dept. of Civil Engineering, University of Windsor, Windsor, Ontario, 1972. - 44. Waller D.H., "Poliution Attributable to Surface Runoff and Overflows from Combined Sewage Systems," Central Mortgage & Housing Corp., Ottowa, April 1971. - 45. Bhatia, I., "Mass Discharge Rates and Variations in Composition of Surface Runoff from Two Urban Areas," ME Thesis, Dept. of Civil Engineering, Nova Scotia Technical College, Halifax, Nova Scotia, 1973. - 46. Lager, J.A. and Smith, W.G., "Urban Stormwater Management and Technology: An Assessment," USEPA Report EPA-670/2-74-040, December 1974. - 47. Sartor, J.D. and Boyd, G.B., "Water Pollution Aspects of Street Surface Contaminants," USEPA Report EPA-R2-72-081, NTIS-PB 214 408, November 1972. - 48. James, L.D., and Lee, R.R., Economics of Water Resources Planning, McGraw-Hill, Inc., N.Y., 1971. - 49. Field, R.A. and Struzeski, E.J. Jr., "Management and Control of Combined Sewer Overflows," J. W.P. C.F., Vol. 44, No. 7, 1972, pp. 1393-1415. - 50. Lager, J. and Smith, W., "Urban Stormwater Management and Technology: An Assessment," USEPA Report EPA-670/2-74-040, NTIS-PB 240 697/AS, 1974. - 51. Becker, B.C., et al., "Approaches to Stormwater Management," Hittman and Assoc., U.S.D.I. Contract 14-31-001-9025, 1973. - 52. DiToro, D., "Statistical Design of Equalization Basins" JEE6, ASCE, Vol. 101, No. EE6, 1975. - 53. Field, R.I., and Moffa, P.E., "Treatability Determinations for a Prototype Swirl Combined Sewer Overflow Regulator/Solids-Separator," IAWPR Workshop on Design-Operation Interactions at Large Wastewater Treatment Plants, Vienna, Aus., 1975. - 54. American Public Works Assn., "The Swirl Concentrator as a Grit Separator Device," 11023 GSC, USEPA, 1974. - 55. Maher, M.B., "Microstraining and Disinfection of Combined Sewer Overflows Phase III," USEPA Report EPA-670/2-74-049, 1974. - 56. Agnew, R.W., et al., "Biological Treatment of Combined Sewer Overflow at Kenosha, Wisconsin," USEPA Report EPA-670/2-75-019, NTIS-PB 242 120/AS, 1975. - 57. Battelle-Northwest, Evolution of Municipal Sewage Treatment Alternatives. CEQ and EPA, NTIS-PB 233 489, Washington, D.C., 1974. - 58. Benjes, H., et al., "Estimating Initial Investment Costs and Operation and Maintenance Requirements of Stormwater Treatment Process," USEPA Cont. EPA-68-03-2186 (unpublished), 1975. - 59. Wiswall, K.C., and Robbins, J.C., "Implications of On-Site Detention in Urban Watersheds," ASCE Hyd. Div. Conf., Seattle, Washington, 1975. - 60. Phillips, D.W., and McCulloch, J.A.W., "The Climate of the Great Lakes Basin," *Climatological Studies No. 20*, Environment Canada, Toronto, 1972. - 61. Brown, D.M., McKay, G.A., and Chapman, L.J., "The Climate of Southern Ontario," Climatological Studies No. 5, Second Edition, Environment Canada, Toronto, 1974. - 62. Heany, J.P., W.C. Huber, and S.J. Nix, "Stormwater Management Model: Level I Preliminary Screening Procedures," USEPA, EPA-600/2-76-275, 1976. - 63. Heany, J.P., S. J. Nix, "Stormwater Management Model: Level I Comparative Evolution of Storage-Treatment and Other Management Practices," USEPA, EPA-600/2-77-083, 1977. - 64. J. F. MacLaren, Ltd., "Review of Urban Hydrologic Models, a paper for Environment Canada and the Ministry of the Government, Ontario, October 1975. ciw 92-195 3 9055 1000 8754 2