

Red Seal Occupational Standard Instrumentation and **Control Technician**

red-seal.ca sceau-rouge.ca

Employment and

Emploi et Social Development Canada Développement social Canada

RED SEAL OCCUPATIONAL STANDARD INSTRUMENTATION AND CONTROL TECHNICIAN

Title: Instrumentation and Control Technician

This publication is available for download at <u>canada.ca/publicentre-ESDC</u>. It is also available upon request in multiple formats (large print, Braille, MP3, audio CD, e-text CD, DAISY, or Accessible PDF), by contacting 1 800 O-Canada (1-800-622-6232). By teletypewriter (TTY), call 1-800-926-9105.

© Her Majesty the Queen in Right of Canada, 2019 For information regarding reproduction rights: <u>droitdauteur.copyright@HRSDC-RHDCC.gc.ca</u>.

PDF

Cat. No.: Em15-3/25-2020E-PDF ISBN/ISSN: 978-0-660-36617-3

FOREWORD

The Canadian Council of Directors of Apprenticeship (CCDA) recognizes this Red Seal Occupational Standard (RSOS) as the Red Seal standard for the Instrumentation and Control Technician trade.

Background

The first National Conference on Apprenticeship in Trades and Industries, held in Ottawa in 1952, recommended that the federal government be requested to cooperate with provincial and territorial apprenticeship committees and officials in preparing analyses of a number of skilled occupations. Employment and Social Development Canada (ESDC) sponsors the Red Seal Program, which, under the guidance of the CCDA, develops a national occupational standard for each of the Red Seal trades.

Standards have the following objectives:

- to describe and group the tasks performed by skilled workers;
- to identify which tasks are performed in every province and territory;
- to develop instruments for use in the preparation of Interprovincial Red Seal Examinations and assessment tools for apprenticeship and certification authorities;
- to develop common tools for apprenticeship on-the-job and technical training in Canada;
- to facilitate the mobility of apprentices and skilled workers in Canada;
- to supply employers, employees, associations, industries, training institutions and governments with occupational standards.

Any questions, comments, or suggestions for changes, corrections, or revisions to this standard or any of its related products may be forwarded to:

Trades and Apprenticeship Division Apprenticeship and Sectoral Initiatives Directorate Employment and Social Development Canada 140 Promenade du Portage, Phase IV, 6th Floor Gatineau, Quebec K1A 0J9

ACKNOWLEDGEMENTS

The CCDA and ESDC wish to express sincere appreciation for the contribution of the many tradespersons, industrial establishments, professional associations, labour organizations, provincial and territorial government departments and agencies, and all others who contributed to this publication.

Special thanks are offered to the following representatives who contributed greatly to the original draft of the standard and provided expert advice throughout its development:

Jim Armstrong	British Columbia
Adam Beck	United Association Canada
Roger Blanchard	Nova Scotia
Terence Côté	Saskatchewan
Jonathan Davis	New Brunswick
Brad Gautreau	Ontario
Mike Hillsdon	Saskatchewan
James Howard	Yukon
Alex LeBlanc	Nova Scotia
Roger Leblanc	New Brunswick
Tim J. Lloyd	Alberta
Scott Marr	Ontario
Wade McNenly	Alberta
Scott Sanders	Manitoba
Shane Stirling	British Columbia

This standard was prepared by the Apprenticeship and Sectoral Initiatives Directorate of ESDC. The coordinating, facilitating and processing of this standard was undertaken by employees of the standards development team of the Trades and Apprenticeship Division and of Alberta, the host jurisdiction for this trade.

STRUCTURE OF THE OCCUPATIONAL STANDARD

This standard contains the following sections:

Methodology: an overview of the process for development, review, validation and weighting of the standard

Description of the Instrumentation and Control Technician trade: an overview of the trade's duties, work environment, job requirements, similar occupations and career progression

Trends in the Instrumentation and Control Technician trade: some of the trends identified by industry as being the most important for workers in this trade

Essential Skills Summary: an overview of how each of the nine essential skills is applied in this trade

Industry Expected Performance: description of the expectations regarding the level of performance of the tasks, including information related to specific codes, regulations and standards that must be observed

Language Requirements: description of the language requirements for working and studying in this trade in Canada

Pie Chart of Red Seal Examination Weightings: a graph which depicts the national percentages of exam questions assigned to the major work activities

Task Matrix: a chart which outlines graphically the major work activities, tasks and sub-tasks of this standard

Major Work Activity (MWA): the largest division within the standard that is comprised of a distinct set of trade activities

Task: distinct actions that describe the activities within a major work activity

Task Descriptor: a general description of the task

Sub-task: distinct actions that describe the activities within a task

Skills:

Performance Criteria: description of the activities that are done as the sub-task is performed

Evidence of Attainment: proof that the activities of the sub-task meet the expected performance of a tradesperson who has reached journeyperson level

Knowledge:

Learning Outcomes: describes what should be learned relating to a sub-task while participating in technical or in-school training

Learning Objectives: topics to be covered during technical or in-school training in order to meet the learning outcomes for the sub-task

Range of Variables: elements that provide a more in-depth description of a term used in the performance criteria, evidence of attainment, learning outcomes, or learning objectives

Appendix A - Acronyms: a list of acronyms used in the standard with their full name

Appendix B – Tools and Equipment / Outils et équipement: a non-exhaustive list of tools and equipment used in this trade

Appendix C – Glossary / Glossaire: definitions or explanations of selected technical terms used in the standard

METHODOLOGY

Development of the Standard

A draft standard is developed by a broad group of trade representatives, including tradespersons, instructors and employers at a National Workshop led by a team of facilitators. This draft standard breaks down all the tasks performed in the occupation and describes the knowledge and abilities required for a tradesperson to demonstrate competence in the trade.

Draft Review

The RSOS development team forwards a copy of the standard and its translation to provincial and territorial authorities who consult with industry representatives to review it. Their recommendations are assessed and incorporated into the standard.

Validation and Weighting

Participating provinces and territories also consult with industry to validate and weight the document for the purpose of planning the makeup of the Red Seal Interprovincial Examination for the trade. They validate and weight the MWA, tasks and sub-tasks, of the standard as follows:

MWAEach jurisdiction assigns a percentage of questions to each MWA for an examination
that would cover the entire trade.TASKSEach jurisdiction assigns a percentage of exam questions to each task within a MWA.SUB-TASKSEach jurisdiction indicates, with a YES or NO, whether or not each sub-task is
performed by skilled workers within the occupation in its jurisdiction.

The results of this exercise are submitted to the RSOS development team who then analyzes the data and incorporates it into the document. The RSOS provides the individual jurisdictional validation results as well as the national averages of all responses. The national averages for MWA and task weighting guide the Interprovincial Red Seal Examination plan for the trade.

The validation of the RSOS is used to identify common core sub-tasks across Canada for the occupation. If at least 70% of the responding jurisdictions' industry performs a sub-task, it shall be considered common core. Interprovincial Red Seal Examination questions are limited to the common core sub-tasks identified through this validation process.

Definitions for Validation and Weighting

YES	sub-task performed by qualified workers in the occupation in that province or territory
NO	sub-task not performed by qualified workers in the occupation in that province or territory
NV	standard <u>N</u> ot <u>V</u> alidated by that province or territory
ND	trade <u>N</u> ot <u>D</u> esignated in a province or territory
NOT COMMON CORE (NCC)	sub-task, task or MWA performed less than 70% of responding jurisdictions; these will not be tested by the Interprovincial Red Seal Examination for the trade
NATIONAL AVERAGE %	average percentage of questions assigned to each MWA and task in Interprovincial Red Seal Examination for the trade

Provincial/Territorial Abbreviations

NL	Newfoundland and Labrador
NS	Nova Scotia
PE	Prince Edward Island
NB	New Brunswick
QC	Quebec
ON	Ontario
МВ	Manitoba
SK	Saskatchewan
AB	Alberta
BC	British Columbia
NT	Northwest Territories
ΥT	Yukon Territory
NU	Nunavut

DESCRIPTION OF THE INSTRUMENTATION AND CONTROL TECHNICIAN TRADE

"Instrumentation and Control Technician" is this trade's official Red Seal occupational title approved by the CCDA. This standard covers tasks performed by instrumentation and control technicians whose occupational title has been identified by some provinces and territories of Canada under the following names:

	NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
Instrumentation and Control Technician													
Instrument Technician													
Industrial Instrument Technician													
Industrial Instrument Mechanic													

Instrumentation and control technicians are knowledgeable in measurement and automation of process control systems. Examples of industries that use process control systems are oil and gas refineries, power generation plants, pulp and paper mills, and manufacturing facilities.

Instrumentation and control technicians install and service a variety of systems including safety and security, energy delivery (hydraulic, pneumatic and electrical), communication, and process control systems. They also install and service measuring and indicating instruments to monitor process control variables, monitor the operation of equipment and measure the characteristics of the material within a process. Instrumentation and control technicians work with final control elements such as valves, actuators and positioners to manipulate the process medium. They install and terminate electrical, pneumatic and fluid connections. They may also work on network and signal transmission systems such as fibre-optic and wireless.

Along with the calibration, repair, adjustment and replacement of components, instrumentation and control technicians inspect and test the operation of instruments and systems to diagnose faults and verify repairs. They establish and optimize process control strategies, and configure related systems such as Programmable Logic Controllers (PLC), Distributed Control Systems (DCS), Human Machine Interfaces (HMI) and Supervisory Control and Data Acquisition (SCADA) systems. Instrumentation and control technicians maintain backups, documentation and software revisions as part of maintaining these computer-based control systems. Scheduled maintenance and the commissioning of systems are also important aspects of the work. Instrumentation and control technicians consult technical documentation, drawings, schematics and manuals. They may assist engineering in plant design, modification and hazard analysis, and work with plant operators to optimize plant controls.

Instrumentation and control technicians use hand and power tools, electronic test equipment and material handling equipment. They work on a range of instruments including primary control elements, transmitters, analyzers, sensors, detectors, signal conditioners, recorders, controllers and final control elements. These instruments measure and control variables such as pressure, flow, temperature, level, motion, force and chemical composition.

Instrumentation and control technicians work in various industrial sectors such as pulp and paper/fibre processing; food and beverage processing; pharmaceuticals processing; nuclear, thermal and hydropower generation; landfill/cogeneration; mining; petrochemical; pipeline; oil and gas; military; steel; water and wastewater treatment; medical instrumentation; manufacturing; and industrial/commercial instrument servicing.

When performing their duties, instrumentation and control technicians must comply with federal, jurisdictional, industrial and site-specific standards, codes and regulations. They install and commission new instrumentation systems according to these requirements. They contribute to keeping processes operating and equipment maintained within these set standards, codes and regulations. Keeping up-to-date with advances in technology in industry and in the trade is essential.

Instrumentation and control technicians may work in a variety of hazardous environments where they could be exposed to confined spaces, heights, noise, dust, cold and heat. There may also be risks working with chemicals, gases, electricity, radiation, laser equipment and substances under pressure. Instrumentation and control technicians are trained to identify hazards and work safely in these environments.

Key attributes for people entering this trade are manual dexterity, attention to detail, strong problem solving skills, ability to troubleshoot problems, communication skills, technological aptitude, and mathematical and scientific aptitude.

This standard recognizes similarities or overlaps with other tradespersons and professionals such as process operators, steamfitters/pipefitters, boilermakers, industrial mechanics (millwrights), electricians, information technology technicians and engineers.

With experience, instrumentation and control technicians may act as mentors and trainers to apprentices in the trade. They may also move into supervisory, design, advanced control, training, sales and other related positions.

TRENDS IN THE INSTRUMENTATION AND CONTROL TECHNICIAN TRADE

Digital Technology

As technology is ever changing, instrumentation and control technicians must forever be adapting to these new technologies. This has increased the need for more technology-driven competencies to perform this trade and an increase in time being spent using digital technology.

Process control systems are increasingly being designed with more components that communicate with one another. Control systems have traditionally been separate entities from the internet. However, in order to keep software up to date, systems now require the ability to connect to the internet to acquire software and licensing. Instrumentation and control technicians must be aware of the use and implications of internet connectivity such as one-way communication devices (data diodes), cyber security and firewalls.

Increasingly, process systems are seeing more automation including HMI, DCS, SCADA, PLC and open systems interconnection (OSI) systems. There is also more automation in networking/communication systems.

Some applications of wireless technologies are being introduced for functions such as monitoring process systems and meter verification.

Predictive technologies are increasingly being used in process optimization. Trends in optimization will require that the instrumentation and control technician be knowledgeable in the use of advanced diagnostics.

Tools and Equipment

Portable digital communication devices are being used to diagnose and perform tasks more efficiently and effectively.

Quality Acceptance

When installing and replacing parts, there is an increase in the need to perform quality acceptance activities and properly document and store this information to meet regulatory requirements and traceability.

Health and Safety

An increased emphasis on safety in the workplace has led to an increase in documentation for instrumentation and control technicians.

There are more safety instrumented systems (SIS) being implemented. This requires that instrumentation and control technicians be familiar with the functioning of these systems.

Regulations

There is a continued increase in industry practices for environmental monitoring driven by governmental regulations. This has increased the workload of instrumentation and control technicians in areas such as reporting on carbon capture and emissions.

ESSENTIAL SKILLS SUMMARY

Essential skills are needed for work, learning and life. They provide the foundation for learning all other skills and enable people to evolve with their jobs and adapt to workplace change.

Through extensive research, the Government of Canada and other national and international agencies have identified and validated nine essential skills. These skills are used in nearly every occupation and throughout daily life in different ways.

A series of CCDA endorsed tools have been developed to support apprentices in their training and to be better prepared for a career in the trades. The tools can be used independently or with the assistance of a tradesperson, trainer, employer, teacher or mentor to:

- understand how essential skills are used in the trades;
- learn about individual essential skills strengths and areas for improvement; and
- improve essential skills and increase success in an apprenticeship program.

The tools are available online or for order at: <u>https://www.canada.ca/en/employment-social-development/programs/essential-skills/profiles.html</u>.

The application of these skills may be described throughout this document within the skills and knowledge that support each sub-task of the trade. The following are summaries of the requirements in each of the essential skills, taken from the essential skills profile. A link to the complete essential skills profile can be found at http://www.red-seal.ca/.

READING

Instrumentation and control technicians require reading skills to locate and interpret technical information for their trade. These texts include technical articles about new products and industry practices, bulletins from manufacturers and on health and safety, calibration and service guides, codes and regulations, incident reports, procedures, manuals and notes.

DOCUMENT USE

Instrumentation and control technicians locate and interpret information in both print and electronic formats. Types of documents referenced include computer printouts with numeric information, supplier catalogue listings and engineering documentation such as forms, databases, graphs, tables, charts, schematics, assembly diagrams and drawings. They may also create documents such as on-site sketches and detailed schematics, assembly drawings, graphs and charts.

WRITING

Writing skills are used by instrumentation and control technicians to create parts lists, maintenance schedules and inspection reports. Instrumentation and control technicians write procedures for the control and operation of equipment and to troubleshoot faults. They use writing skills when communicating through e-mail and providing status updates in logbooks.

ORAL COMMUNICATION

In order to coordinate work, instrumentation and control technicians interact with other tradespersons and professionals such as process operators, steamfitters/pipefitters, boilermakers, industrial mechanics (millwrights), electricians, information technology technicians and engineers. They may also discuss systems design and problems with supervisors and engineers, and provide expert advice and opinion. Instrumentation and control technicians also exchange technical repair and troubleshooting information and speak to process operators about equipment and machinery breakdown. At times, they may make formal presentations to explain monitoring procedures or new equipment.

NUMERACY

Instrumentation and control technicians must apply measurement and calculation, data analysis and numerical estimation skills to their tasks. Some of these tasks include measuring analyzer malfunctions, calculating flow, calculating volume displacement, monitoring pressure, interpreting deviations on graphs, and comparing values and measurements. Instrumentation and control technicians evaluate sets of data collected from tests and simulations to troubleshoot faults, assess equipment performance and assess the progress of wear.

THINKING

Instrumentation and control technicians troubleshoot malfunctions, take corrective measures to avoid potential hazards and decide whether to repair or replace components based on time and cost factors. They plan and organize maintenance schedules and the installation of new machinery. Instrumentation and control technicians must be able to think quickly and synthesize the information at hand to deal with emergencies such as serious equipment malfunctions that could cause injury, or property and environmental damage.

DIGITAL TECHNOLOGY

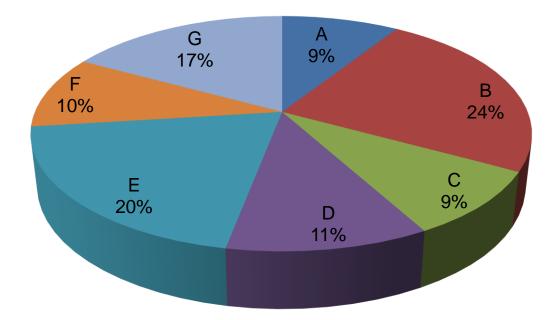
Instrumentation and control technicians install and service process automation controllers such as PLC, DCS, SCADA systems and HMI. They may use portable digital communication devices to configure settings and to access data such as measurement and operational values. Instrumentation and control technicians may use a variety of software and applications such as word processing software, databases, spreadsheets, communication software and devices, the internet, and computer-assisted design (CAD).

WORKING WITH OTHERS

Even though instrumentation and control technicians often work alone, they may also work with other tradespersons, professionals and process operators. Instrumentation and control technicians work with process operators to ensure instrumentation is properly maintained and operational and emergencies are handled quickly. They work with other professionals to perform functions such as testing transmitters or controllers, and installing control valves. Instrumentation and control technicians sometimes work as part of a crew, for example when running wires. In doing so, they may fill the role of either team member or team leader on project teams.

CONTINUOUS LEARNING

Instrumentation and control technicians may attend training in areas that are new or continually evolving in the trade such as safety, digital technology and more sophisticated computer applications relating to process control. They may attend technical courses offered by suppliers' representatives covering new equipment, as well as team leadership/communication seminars. Continuous learning also occurs through the reading of technical literature and by troubleshooting.


INDUSTRY EXPECTED PERFORMANCE

All tasks must be performed according to the applicable jurisdictional codes, regulations and standards. All health and safety standards must be respected and observed. Work should be done efficiently and to a high quality without material waste or environmental damage. All requirements of employers, engineers, designers, manufacturers, clients and quality control policies must be met. At a journeyperson level of performance, all tasks must be done with minimal direction and supervision. As a journeyperson progresses in their career, there is an expectation they continue to upgrade their skills and knowledge to maintain pace with industry and promote continuous learning in their trade through mentoring of apprentices.

LANGUAGE REQUIREMENTS

It is expected that journeypersons are able to understand and communicate in either English or French, which are Canada's official languages. English or French are the common languages of business as well as languages of instruction in apprenticeship programs.

PIE CHART OF RED SEAL EXAMINATION WEIGHTINGS

MWA A	Performs common occupational skills	9%
MWA B	Installs and services process measuring and indicating devices	24%
MWA C	Installs and services safety and security systems and devices	9%
MWA D	Installs and services hydraulic, pneumatic and electrical systems	11%
MWA E	Installs, configures and services final control elements	20%
MWA F	Installs and services communication systems and devices	10%
MWA G	Installs and services control systems and process control	17%

This pie chart represents a breakdown of the interprovincial Red Seal examination. Percentages are based on the collective input from workers from the trade from across Canada. The Task Matrix on the next pages indicates the breakdown of tasks and sub-tasks within each Major Work Activity and the breakdown of questions assigned to the tasks. The Interprovincial examination for this trade has 125 questions.

INSTRUMENTATION AND CONTROL TECHNICIAN TASK MATRIX

A – Performs common occupational skills

Task A-1 A-1.01 Maintains safe work A-1.02 Uses personal protective A-1.03 Performs de-Performs safety-related functions environment equipment (PPE) and safety energizing, lock-out and tag-30% equipment out procedures Task A-2 A-2.01 Uses calibration. A-2.02 Uses hand and power tools A-2.03 Uses access Uses tools and equipment configuration and test equipment 34% equipment A-2.04 Uses rigging, hoisting and lifting equipment A-3.01 Uses documentation A-3.02 Interprets drawings and A-3.03 Plans tasks Task A-3 **Organizes work** schematics 24% Task A-4 A-4.01 Uses communication A-4.02 Uses mentoring Uses communication and mentoring techniques techniques techniques 12%

B – Installs and services process measuring and indicating devices 24%

Task B-5 Installs and services pressure, temperature, level and flow devices 30%	B-5.01 Installs pressure, temperature, level and flow devices	B-5.02 Maintains pressure, temperature, level and flow devices	B-5.03 Diagnoses pressure, temperature, level and flow devices
	B-5.04 Repairs pressure, temperature, level and flow devices		
Task B-6 Installs and services signal transducers 1499	B-6.01 Performs installation and configuration of signal transducers	B-6.02 Diagnoses signal transducers	B-6.03 Performs maintenance and repairs on signal transducers
Task B-7 Installs and services motion, speed, position and vibration devices 12%	B-7.01 Installs motion, speed, position and vibration devices	B-7.02 Maintains motion, speed, position and vibration devices	B-7.03 Diagnoses motion, speed, position and vibration devices
	B-7.04 Repairs motion, speed, position and vibration devices		
Task B-8 Installs and services mass, density and consistency devices 14%	B-8.01 Installs mass, density and consistency devices	B-8.02 Maintains mass, density and consistency devices	B-8.03 Diagnoses mass, density and consistency devices
	B-8.04 Repairs mass, density and consistency devices		
Task B-9 Installs and services process analyzers 17%	B-9.01 Installs process analyzers	B-9.02 Maintains process analyzers	B-9.03 Diagnoses process analyzers
	B-9.04 Repairs process analyzers		

Task B-10 Installs and services multiple variable computing devices 13%	B-10.01 Installs multiple variable computing devices	B-10.02 Maintains multiple variable computing devices	B-10.03 Diagnoses multiple variable computing devices
	B-10.04 Repairs multiple variable computing devices		

C – Installs and services safety and security systems and devices

Task C-11 Installs and services safety systems and devices 55%	C-11.01 Installs safety systems and devices	C-11.02 Maintains safety systems and devices	C-11.03 Diagnoses safety systems and devices
	C-11.04 Repairs safety systems and devices		
Task C-12 Installs and services facility security systems (NOT COMMON CORE)	C-12.01 Installs facility security systems (NOT COMMON CORE)	C-12.02 Maintains facility security systems (NOT COMMON CORE)	C-12.03 Diagnoses facility security systems (NOT COMMON CORE)
	C-12.04 Repairs facility security systems (NOT COMMON CORE)		
Task C-13 Installs and services safety instrumented systems (SIS) 45%	C-13.01 Installs SIS	C-13.02 Configures SIS	C-13.03 Maintains SIS
	C-13.04 Diagnoses SIS	C-13.05 Repairs SIS	

D – Installs and services hydraulic, pneumatic and electrical systems

Task D-14 Installs and services control devices for hydraulic systems 19%	D-14.01 Installs control devices for hydraulic systems	D-14.02 Diagnoses control devices for hydraulic systems	D-14.03 Performs maintenance and repairs on control devices for hydraulic systems
Task D-15 Installs and services pneumatic equipment 40%	D-15.01 Installs pneumatic equipment	D-15.02 Diagnoses pneumatic equipment	D-15.03 Performs maintenance and repairs on pneumatic equipment
Task D-16 Installs and services electrical and electronic equipment 41%	D-16.01 Installs electrical and electronic equipment	D-16.02 Diagnoses electrical and electronic equipment	D-16.03 Performs maintenance and repairs for electrical and electronic equipment

E – Installs, configures and services final control elements

Task E-17 Installs and services valves 25%	E-17.01 Installs valves	E-17.02 Maintains valves	E-17.03 Diagnoses valves
	E-17.04 Repairs valves		
Task E-18 Installs and services actuators 27%	E-18.01 Installs actuators	E-18.02 Maintains actuators	E-18.03 Diagnoses actuators
	E-18.04 Repairs actuators		
Task E-19 Installs and services positioners 32%	E-19.01 Installs positioners	E-19.02 Maintains positioners	E-19.03 Diagnoses positioners
	E-19.04 Repairs positioners		
Task E-20 Configures and services variable speed drives (VSD) 16%	E-20.01 Configures VSD	E-20.02 Maintains VSD	E-20.03 Diagnoses VSD
	E-20.04 Repairs VSD		

F – Installs and services communication systems and devices

9%

Task F-21 Installs and services control network systems 42%	F-21.01 Performs installation and configuration on control network systems	F-21.02 Diagnoses control network systems	F-21.03 Performs maintenance and repairs on control network systems
Task F-22 Installs and services signal converters	F-22.01 Performs installation and configuration of signal converters	F-22.02 Diagnoses signal converters	F-22.03 Performs maintenance and repairs on signal converters
Task F-23 Installs and services gateways, bridges and media converters 25%	F-23.01 Performs installation and configuration of gateways, bridges and media converters	F-23.02 Diagnoses gateways, bridges and media converters	F-23.03 Performs maintenance and repairs on gateways, bridges and media converters

G – Installs and services control systems and process control

Task G-24 Establishes and optimizes process control strategies 22%	G-24.01 Determines process control strategy	G-24.02 Optimizes process control	
Task G-25 Installs and services stand-alone controllers (SAC) 12%	G-25.01 Installs SAC	G-25.02 Configures SAC	G-25.03 Performs maintenance, diagnostics and repairs on SAC
Task G-26 Installs and services programmable logic controllers (PLC) 23%	G-26.01 Installs PLC	G-26.02 Configures PLC	G-26.03 Performs maintenance, diagnostics and repairs on PLC
Task G-27 Installs and services distributed control systems (DCS) 19%	G-27.01 Installs DCS	G-27.02 Configures DCS	G-27.03 Performs maintenance, diagnostics and repairs on DCS

Task G-28 Installs and services human machine interface (HMI) 14%		G-28.01 Installs HMI	G-28.02 Configures HMI	G-28.03 Performs maintenance, diagnostics and repairs on HMI
Task G-29 Installs and services supervisory control <u>and</u> data acquisition (SCADA) systems		G-29.01 Installs SCADA systems	G-29.02 Configures SCADA systems	G-29.03 Performs maintenance, diagnostics and repairs on SCADA systems

MAJOR WORK ACTIVITY A

Performs common occupational skills

TASK A-1 Performs safety-related functions

TASK DESCRIPTOR

Instrumentation and control technicians must ensure a safe work environment by complying with safety regulations and procedures. They use personal protective equipment (PPE) and safety equipment to ensure their safety and that of others. They also use de-energizing, lock-out and tag-out procedures to ensure safe conditions when working on equipment.

A-1.01

Maintains safe work environment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

		SKILLS
	Performance Criteria	Evidence of Attainment
A-1.01.01P	follow safety procedures	safety procedures are followed according to Occupational Health and Safety (OH&S), site specifications and standards
A-1.01.02P	identify potential hazards	<i>potential hazards</i> are identified according to site conditions
A-1.01.03P	maintain a clean and safe work site	work site is kept clean and safe to avoid injuries to self and others
A-1.01.04P	coordinate tasks with other workers	tasks with other workers are coordinated to avoid injury to self and others
A-1.01.05P	install barricades and signage	barricades and signage are installed to identify hazards in work areas
A-1.01.06P	handle hazardous materials	hazardous materials are handled according to Workplace Health Management Information System <i>(WHMIS) procedures</i>
A-1.01.07P	participate in safety meetings and discussions	safety meetings and discussions are attended to ensure that information is recorded and distributed to all team members

A-1.01.08P	recognize and report unsafe conditions and personal injury hazards	unsafe conditions and personal injury hazards are reported so that they may be rectified
A-1.01.09P	use safety mechanisms	<i>safety mechanisms</i> are used according to OH&S, site specifications and standards

safety procedures include: fall arrest, job safety hazard assessment (JSHA), confined space procedures *potential hazards* include: high voltage, rotating equipment, nuclear radiation, hazardous gases, environmental extremes, working at heights, noisy locations, arc flash, confined space, temperature extremes, discharge/spills

WHMIS procedures include: disposal, labelling, using PPE

safety mechanisms include: double-block-and-bleed, railings, tie-offs, SWP

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
A-1.01.01L	demonstrate knowledge of safe work practices (SWP)	identify hazardous area classifications
		describe safety policies and procedures
		identify potential hazards
		describe housekeeping practices
		identify emergency procedures and location of safety equipment
		describe disposal and recycling procedures
A-1.01.02L	demonstrate knowledge of regulatory requirements pertaining to safety	identify and describe workplace safety and health regulations
		identify workers' rights and responsibilities
		identify training requirements
		identify fire safety codes and procedures
		identify work permit and safe work analysis requirements

RANGE OF VARIABLES

potential hazards include: high voltage, rotating equipment, nuclear radiation, hazardous gases, environmental extremes, working at heights, noisy locations, arc flash, confined space, temperature extremes, discharge/spills

workplace safety and health regulations include: WHMIS, transportation of dangerous goods (TDG), jurisdictional health and safety acts

training requirements include: fall protection, confined space entry, hoisting and rigging and elevated work platforms, hazardous gas awareness

work permit and safe work analysis requirements include: JSHA, SWP, lock-out and tag-out procedures, hot work permits, field level risk assessment (FLRA)

A-1.02

Uses personal protective equipment (PPE) and safety equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	KILLS
	Performance Criteria	Evidence of Attainment
A-1.02.01P	select and wear PPE	PPE is used as appropriate for task as identified by site policies, jurisdictional regulations and WHMIS
A-1.02.02P	inspect <i>PPE</i> prior to use	PPE is inspected prior to use for appropriate fit, expiration date and damage
A-1.02.03P	locate and use <i>safety equipment</i>	<i>safety equipment</i> is located and used according to OH&S, site specifications and standards
A-1.02.04P	maintain PPE and safety equipment	PPE and safety equipment are maintained according to manufacturers' specifications
A-1.02.05P	test, recertify or replace PPE and safety equipment	PPE and safety equipment are tested, recertified and replaced according to jurisdictional regulations, company policies and manufacturers' specifications

RANGE OF VARIABLES

PPE includes: safety glasses, safety boots, gloves, coveralls, face shields, personal monitors, hearing protection, hard hats, arc flash protection, respirators, fall protection harness, self-contained breathing apparatus (SCBA)

damage includes: excessively worn boots, cracked safety glasses, expired hard hats, safety harness integrity

safety equipment includes: first aid kits, fire extinguishers, eye wash stations, chemical showers

	KNOWLEDGE			
	Learning Outcomes	Learning Objectives		
A-1.02.01L	demonstrate knowledge of PPE and safety equipment , their applications, maintenance and procedures for use	identify PPE and safety equipment and describe their applications, maintenance and procedures for use		
		identify PPE and safety equipment operation and limitations		
		identify maintenance schedules and certification requirements for PPE and safety equipment		

PPE includes: safety glasses, safety boots, gloves, coveralls, face shields, personal monitors, hearing protection, hard hats, arc flash protection, respirators, fall protection harness, SCBA **safety equipment** includes: first aid kits, fire extinguishers, eye wash stations, chemical showers

A-1.03 Performs de-energizing, lock-out and tag-out procedures

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	S	KILLS
	Performance Criteria	Evidence of Attainment
A-1.03.01P	identify sources of potential energy	sources of potential energy are identified
A-1.03.02P	select isolation points	<i>isolation points</i> are identified to ensure that energy cannot be added to system
A-1.03.03P	de-energize system	system is de-energized according to site specifications and procedures
A-1.03.04P	perform lock-out and zero energy verification	lock-out is performed and verified for zero energy according to site specifications and procedures
A-1.03.05P	document equipment lock-out specifics	equipment lock-out specifics are documented according to site specifications and procedures
A-1.03.06P	perform work on energized equipment and systems	live work is performed within jurisdictional limitations and according to special procedures

RANGE OF VARIABLES

sources of potential energy include: suspended weight, trapped pressure, electrical potential, radiation sources

isolation points include: valves, blinds/blanks on piping systems, brakes, motor control centre (MCC), local disconnects and breakers

	KNOWLEDGE		
	Learning Outcomes	Learning Objectives	
A-1.03.01L	demonstrate knowledge of energizing, de-energizing, lock-out and tag-out procedures	identify sources of potential energy	
		describe procedures for shutting down equipment and processes	
		describe procedures for isolating equipment from energy sources	

describe <i>methods for de-energizing system</i> and verifying zero energy of all energy sources
describe methods for energizing equipment
identify types of equipment that can be energized and de-energized
identify special procedures that require work on live equipment and processes

methods for de-energizing system include: relieving pressure, removing electrical potential, applying grounds, releasing brakes

equipment that can be energized and de-energized includes: electrical, mechanical, hydraulic, pneumatic, nuclear

TASK A-2 Uses tools and equipment

TASK DESCRIPTOR

Instrumentation and control technicians must be able to select, use and maintain tools and equipment in a safe and effective manner relevant to the task performed.

A-2.01 Uses calibration, configuration and test equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
A-2.01.01P	inspect <i>calibration and test equipment</i>	<i>calibration and test equipment</i> is inspected according to manufacturers' specifications and regulatory requirements
A-2.01.02P	inspect and verify functionality of configuration equipment	<i>configuration equipment</i> is inspected according to manufacturers' specifications and regulatory requirements
A-2.01.03P	confirm versions of software and firmware and perform updates	software and firmware are updated to required version
A-2.01.04P	recertify <i>calibration and test equipment</i> and devices	<i>calibration and test equipment</i> and devices are recertified according to known and traceable standards, manufacturers' recommendations and regulations

A-2.01.05P	store configuration, calibration and test equipment	configuration, calibration and test equipment is stored according to manufacturers' recommendations
A-2.01.06P	document maintenance and certification of <i>configuration</i> , <i>calibration and test equipment</i>	maintenance and certification of configuration, calibration and test equipment is documented according to site and regulatory requirements

calibration and test equipment includes: multimeters, process calibrators (temperature, pressure, frequency), hand-held communicators, dead weight testers, networking/communication testers *configuration equipment* includes: hand-held communicators, computers, associated software

	KNOW	LEDGE
	Learning Outcomes	Learning Objectives
A-2.01.01L	demonstrate knowledge of <i>configuration</i> , <i>calibration and test equipment</i> , their applications, maintenance and procedures for use	identify types of <i>configuration</i> , <i>calibration and test equipment</i> and describe their applications
		describe procedures used to inspect and maintain <i>configuration</i> , <i>calibration and test equipment</i>
		describe limitations of configuration , calibration and test equipment
		identify maintenance schedule and certification requirements of <i>configuration</i> , <i>calibration and test</i> <i>equipment</i>

RANGE OF VARIABLES

configuration equipment includes: hand-held communicators, computers, associated software *calibration and test equipment* includes: multimeters, process calibrators (temperature, pressure, frequency), hand-held communicators, dead weight testers, networking/communication testers

A-2.02

Uses hand and power tools

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	S	KILLS
	Performance Criteria	Evidence of Attainment
A-2.02.01P	organize and store <i>hand and power</i> <i>tools</i> and <i>components</i>	<i>hand and power tools</i> and <i>components</i> are organized and stored in designated cases and areas according to company and job site requirements
A-2.02.02P	maintain <i>hand and power tools</i>	hand and power tools are maintained according to manufacturers' specifications
A-2.02.03P	identify worn, damaged and defective <i>hand and power tools</i>	damaged and defective hand and power tools are tagged and replaced or repaired according to manufacturers' specifications
A-2.02.04P	change tool <i>components</i>	<i>components</i> are changed according to job requirements
A-2.02.05P	identify hazards associated with <i>hand</i> and power tools	hazards are identified and hand and power tools are used with PPE and safety equipment according to location, environment and application

RANGE OF VARIABLES

hand and power tools include: see Tools and Equipment (Appendix B) *components* include: chucks, bits, blades, cords, attachment plugs

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
A-2.02.01L	demonstrate knowledge of <i>hand and power tools</i> , their <i>components</i> , applications and procedures for use	identify types of <i>hand and power tools</i> and their <i>components</i> , and describe their applications, limitations and procedures for use
		describe operating and maintenance procedures of <i>hand and power tools</i> and their <i>components</i>
A-2.02.02L	demonstrate knowledge of inspection procedures	describe procedures used to inspect <i>hand and power tools</i>
A-2.02.03L	demonstrate knowledge of powder- actuated tools, their applications and certification requirements	identify types of powder-actuated tools and describe their applications, limitations and procedures for use
		describe certification requirements to use powder-actuated tools

hand and power tools include: see Tools and Equipment (Appendix B) *components* include: chucks, bits, blades, cords, attachment plugs

A-2.03 Uses access equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	XILLS				
	Performance Criteria	Evidence of Attainment				
A-2.03.01P	identify traffic areas and <i>potential hazards</i>	traffic areas and potential hazards are identified according to job site				
A-2.03.02P	install barricades and signage to contain work zone	barricades and signage are installed according to regulations and <i>potential hazards</i>				
A-2.03.03P	select access equipment	<i>access equipment</i> is selected according to their limitations and task at hand				
A-2.03.04P	set up and secure stepladders and extension ladders	ladders are set up and used according to manufacturers' recommendations, site specifications and jurisdictional regulations				
A-2.03.05P	visually and mechanically inspect for worn, damaged and defective <i>access equipment</i>	<i>access equipment</i> is inspected for <i>damage</i>				
A-2.03.06P	report, tag and decommission <i>access</i> <i>equipment</i>	unsafe, worn, damaged and defective <i>access equipment</i> is tagged and removed from service				
A-2.03.07P	organize and store <i>access equipment</i>	<i>access equipment</i> is organized and stored according to manufacturers' specifications and job site requirements				
A-2.03.08P	work from approved and certified <i>access</i> <i>equipment</i>	<i>access equipment</i> is certified and approved for job task and operator is certified in equipment use according to job site requirements and jurisdictional regulations				

RANGE OF VARIABLES

potential hazards include: overhead hazards, ladder footing and stability, confined spaces, trenches, slips, trips and falls

access equipment includes: ladders, elevated work platforms, scaffolding, fall protection (fall arrest and fall restraint)

damage includes: broken ladder, leaking oil, defective safety chains and gates, fall protection integrity

	KNOV	VLEDGE
	Learning Outcomes	Learning Objectives
A-2.03.01L	demonstrate knowledge of <i>access</i> <i>equipment</i> , their characteristics, applications, limitations and procedures for use	identify types of <i>access equipment</i> and describe their characteristics, applications and limitations
		identify hazards and describe safe work practices pertaining to <i>access equipment</i>
		describe procedures used to inspect, maintain and store <i>access equipment</i>
		identify certification for use of <i>access</i> <i>equipment</i>
A-2.03.02L	demonstrate knowledge of <i>regulatory</i> <i>requirements</i> pertaining to <i>access</i> <i>equipment</i>	identify and interpret <i>regulatory</i> <i>requirements</i> and responsibilities pertaining to <i>access equipment</i>

access equipment includes: ladders, elevated work platforms, scaffolding, fall protection (fall arrest and fall restraint)

regulatory requirements include: inspection documentation, training and certification

A-2.04 Uses rigging, hoisting and lifting equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
A-2.04.01P	identify traffic areas and <i>potential hazards</i>	traffic areas and potential hazards are identified according to job site requirements
A-2.04.02P	install barricades and signage to contain work zone	barricades and signage are installed according to regulations, job site requirements and potential hazards
A-2.04.03P	select rigging, hoisting and lifting equipment	rigging, hoisting and lifting equipment are selected according to their limitations, task at hand and job site requirements
A-2.04.04P	visually and mechanically inspect for worn, damaged and defective rigging, hoisting and lifting equipment	rigging, hoisting and lifting equipment is inspected for <i>damages</i>
A-2.04.05P	report, tag and decommission unsafe, damaged and defective rigging, hoisting and lifting equipment	damaged and defective rigging, hoisting and lifting equipment is tagged and removed from service

A-2.04.06P	secure rigging, hoisting and lifting equipment	rigging, hoisting and lifting equipment is secured according to manufacturers' specifications and job site requirements
A-2.04.07P	use and interpret hand and audible signals	hand and audible signals are used to direct load to intended position
A-2.04.08P	secure load for application	load is secured according to engineer and manufacturers' specifications, and industry practices
A-2.04.09P	move load to final position	load is moved to final position according to required location
A-2.04.10P	clean, lubricate and store rigging, hoisting and lifting equipment	rigging, hoisting and lifting equipment is cleaned, lubricated and stored according to manufacturers' specifications and job site procedures

potential hazards include: overhead hazards, overhead power hazards, dropped loads, damaged rigging hardware, congested worksites, confined spaces, trenches, uneven surfaces, weather conditions *damages* include: worn slings, worn shackles, missing or distorted safety catches, frayed ropes and slings, oil leaks

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
A-2.04.01L	demonstrate knowledge of hoisting, lifting and rigging equipment, their applications, limitations and procedures for use	identify <i>types of rigging equipment</i> and accessories, and describe their applications, limitations and procedures for use						
		identify types of hoisting and lifting equipment and accessories and describe their applications and procedures for use						
		identify potential hazards and describe safe work practices pertaining to hoisting, lifting and rigging						
		describe procedures used to inspect, maintain and store hoisting, lifting and rigging equipment						
		identify hoisting and lifting capacities						
		identify <i>material handling equipment</i>						
A-2.04.02L	demonstrate knowledge of <i>regulatory</i> <i>requirements</i> pertaining to hoisting, lifting and rigging equipment	identify and adhere to codes and regulations pertaining to hoisting, lifting and rigging						
A-2.04.03L	demonstrate knowledge of basic hoisting and lifting operations	identify types of knots, hitches, splices and bends, and describe their applications and procedures used to tie them						

describe <i>considerations</i> when rigging material/equipment for lifting
identify and describe procedures used to communicate during hoisting, lifting and rigging operations

types of rigging equipment include: chains, ropes, cables, slings, shackles

potential hazards include: overhead hazards, overhead power hazards, dropped loads, damaged rigging hardware, congested worksites, confined spaces, trenches, uneven surfaces, weather conditions *material handling equipment* includes: pallet jacks, forklifts, portable or stationary cranes and rigging equipment

regulatory requirements include: inspection documentation, training, certification

considerations include: load characteristics, working load limit (WLL), equipment and accessories, environmental factors, anchor points, sling angles

procedures used to communicate include: hand signals, electronic communications, audible/visual

TASK A-3 Organizes work

TASK DESCRIPTOR

Instrumentation and control technicians organize work effectively using tools and procedures. They interpret and update drawing schematics and documentation to access information required for their work. Instrumentation and control technicians plan and coordinate their tasks with other trades and services when required. They also ensure work site, tools and equipment are prepared prior to performing tasks.

A-3.01 Uses documentation

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
A-3.01.01P	update <i>documentation</i>	<i>documentation</i> is updated according to maintenance procedures				
A-3.01.02P	update and develop maintenance procedures	maintenance procedures are updated and developed to reflect equipment changes				
A-3.01.03P	create backup databases of equipment configuration and software	backup databases of equipment configuration and software are created according to maintenance procedures				
A-3.01.04P	maintain and update maintenance records and operation procedures	maintenance records and operation procedures are maintained and updated				

A-3.01.05P	provide condition and assessment reports of equipment to supervisors	condition and assessment reports of equipment are provided to supervisors
A-3.01.06P	use forms and data sheets to create service reports	service reports are created
A-3.01.07P	file and update regulatory documentation	regulatory documentation is filed and updated according to regulatory requirements
A-3.01.08P	use asset management systems	asset management systems are used to log, predict and validate maintenance

documentation includes: calibration sheets, data sheets, drawings, work orders, maintenance schedules *asset management systems* include: work orders, preventative maintenance programs, instrument databases

	KNOV	NLEDGE
	Learning Outcomes	Learning Objectives
A-3.01.01L	demonstrate knowledge of trade-related documentation and their use	identify types of trade-related <i>documentation</i> and describe their purpose, applications and procedures for use
		identify <i>standards and codes</i> used in the trade

RANGE OF VARIABLES

documentation includes: calibration sheets, data sheets, drawings, work orders, maintenance schedules *standards and codes* include: International Society of Automation (ISA) standards, Canadian Standards Association (CSA) standards, Canadian Electrical Code (CEC), site-specific standards

	Δ	-3		עו)
--	---	----	--	----	---

Interprets drawings and schematics

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SI	KILLS
	Performance Criteria	Evidence of Attainment
A-3.02.01P	identify symbols found on drawings and schematics	symbols are identified from legends, notes and specifications
A-3.02.02P	determine location of equipment and devices	location of equipment and devices is determined by making a measurement using drawings

A-3.02.03P	locate and cross-reference information on plans, drawings, specifications and contract documents	installation information is obtained by interpreting plans, drawings, specifications and contract documents
A-3.02.04P	determine if plans, drawings, schematics and specifications are current	plans, drawings, schematics and specifications are compared with existing installation
A-3.02.05P	create, modify and update diagrams, drawings, schematics and other documentation	diagrams, drawings, schematics and other documentation are created, modified and updated according to industry and company standards

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
A-3.02.01L	demonstrate knowledge of drawings, schematics, their applications and <i>information contained in them</i>	define terminology associated with drawings and schematics				
		identify types of drawings and describe their applications				
		identify symbols and conventions used in diagrams and schematics				
		describe metric and imperial systems				

NV

yes

ND

yes

information contained in drawings and schematics includes: lines, legends, symbols, abbreviations, notes, specifications, metric and Society of Automotive Engineers (SAE) dimensions

types of drawings include: mechanical, plant layout, process equipment details, process, process and instrument diagrams/process and control (P&ID/P&C), Scientific Apparatus Makers Association (SAMA), loop drawings, electrical, hydraulic, pneumatic, orthographic, isometric, schematics, wiring diagrams, asbuilts, logic

A-3.0	3	Plans ta	asks									
NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU

yes

yes

yes

yes

	SKILLS				
	Performance Criteria	Evidence of Attainment			
A-3.03.01P	schedule tasks	tasks are scheduled according to operations, personnel availability and tools and equipment			
A-3.03.02P	interpret drawings and schematics	drawings and schematics are interpreted according to task requirements			

NV

NV

NV

yes

yes

A-3.03.03P	select PPE, safety equipment, tools, equipment, materials, parts and personnel	PPE, safety equipment, tools, equipment, materials, parts and personnel are selected according to <i>task requirements</i>
A-3.03.04P	coordinate tasks with other trades	tasks are coordinated with other trades according to <i>task requirements</i>
A-3.03.05P	coordinate tasks with operations	tasks are coordinated with operations for process equipment availability and safety
A-3.03.06P	identify Management of Change (MOC) procedures	<i>MOC procedures</i> are identified according to site-specific policies and requirements
A-3.03.07P	identify sources of potential energy	sources of potential energy are identified
A-3.03.08P	identify inventory requirements	inventory requirements are identified according to <i>factors</i>
A-3.03.09P	prepare work site	work site is prepared by performing activities

task requirements include: job planning, safety procedures planning, permits, emergency protocols, commissioning

MOC procedures include: authorized sign-offs, traceability, quality control/quality assurance, equipment replacement

factors include: criticality, operational needs, manufacturers' recommendations

activities include: hazard assessment, environmental assessment, setting up barricades

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
A-3.03.01L	demonstrate knowledge of procedures used to plan and organize jobs	identify sources of information relevant to job planning					
		describe considerations for determining task requirements					
		describe procedures used to plan job tasks					
		explain importance of maintaining a parts inventory					
		identify <i>MOC procedures</i>					
		identify forms used in job planning					
		identify regulations related to environment and measurement					

sources of information include: documentation, drawings, related professionals, clients

task requirements include: job planning, safety procedures planning, permits, emergency protocols, commissioning

MOC procedures include: authorized sign-offs, traceability, quality control/quality assurance, equipment replacement

forms include: bill of materials, purchase orders, material requisitions, MOC documents *environment* includes: hazardous designations, ambient conditions, contamination

TASK A-4 Uses communication and mentoring techniques

TASK DESCRIPTOR

Learning in the trades is done primarily in the workplace with tradespersons passing on their skills and knowledge to apprentices, as well as sharing knowledge among themselves. Apprenticeship is, and always has been about mentoring – learning workplace skills and passing them on. Because of the importance of this to the trade, this task covers the activities related to communication in the workplace and mentoring skills.

A-4.01	Uses communication techniques
--------	-------------------------------

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
A-4.01.01P	demonstrate communication practices with individuals or in a group	instructions and messages are interpreted by all parties involved in communication					
A-4.01.02P	listen using active listening practices	active listening practices are utilized					
A-4.01.03P	receive and respond to feedback on work	response to feedback indicates understanding and corrective measures are taken					
A-4.01.04P	explain and provide feedback	explanation and feedback is provided and task is carried out as directed					
A-4.01.05P	use questioning to improve communication	questions enhance understanding, on-the-job training and goal setting					
A-4.01.06P	participate in information meetings	meetings are attended, information is relayed to workforce, and is applied					

RANGE OF VARIABLES

active listening includes: hearing, interpreting, reflecting, responding, paraphrasing

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
A-4.01.01L	demonstrate knowledge of trade terminology	define terminology used in the trade						
A-4.01.02L	demonstrate knowledge of effective communication practices	describe importance of using effective verbal and non-verbal communication with people in the workplace						
		identify sources of information to effectively communicate						
		identify communication and <i>learning</i> styles						
		describe effective listening and speaking skills						
		identify personal responsibilities and attitudes that contribute to on-the-job success						
		identify value of diversity in the workplace						
		identify communication that constitutes <i>harassment, discrimination</i> and <i>code</i> of conduct						

people in the workplace include: other tradespersons, colleagues, apprentices, supervisors, clients, authorities having jurisdiction (AHJ), manufacturers

sources of information include: regulations, codes, occupational health and safety requirements, AHJ requirements, prints, drawings, specifications, company and client documentation

learning styles include: seeing it, hearing it, trying it

personal responsibilities and attitudes include: asking questions, working safely, accepting constructive feedback, time management and punctuality, respect for authority, good stewardship of materials, tools and property, efficient work practice

harassment includes: objectionable conduct, comment or display made either on a one-time or continuous basis that demeans, belittles, or causes personal humiliation or embarrassment to the recipient

discrimination is prohibited based on: race, national or ethnic origin, colour, religion, age, sex, sexual orientation, gender identity or expression, marital status, family status, disability, genetic characteristics, pardoned conviction

code of conduct includes: ethics, policies regarding conflict of interest, respectful workplace

A-4.02

Uses mentoring techniques

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
A-4.02.01P	identify and communicate learning objective and point of lesson	apprentice or learner can explain objective and point of lesson						
A-4.02.02P	link lesson to other lessons and the job	lesson order and unplanned learning opportunities are defined						
A-4.02.03P	demonstrate performance of a skill to an apprentice or learner	steps required to demonstrate a skill are performed						
A-4.02.04P	set up conditions required for an apprentice or learner to practice a skill	<i>practice conditions</i> are set up so that skill can be practiced safely by the apprentice or learner						
A-4.02.05P	assess apprentice or learners' ability to perform tasks with increasing independence	performance of apprentice or learner improves with practice to a point where skill can be done with little supervision						
A-4.02.06P	give supportive and corrective feedback	apprentice or learner adopts best practice after having been given supportive or corrective feedback						
A-4.02.07P	support apprentices or learners in pursuing technical training opportunities	technical training is completed within timeframe prescribed by apprenticeship authority						
A-4.02.08P	support anti-harassment in workplace	workplace is <i>harassment</i> and <i>discrimination</i> -free						
A-4.02.09P	assess apprentice or learner suitability to the trade during probationary period	apprentice or learner is given feedback that helps them identify their own strengths and weaknesses and suitability for the trade						

RANGE OF VARIABLES

steps required to demonstrate a skill include: understanding the who, what, where, when, why, and how, explaining, showing, giving encouragement, following up to ensure skill is performed correctly *practice conditions* means: guided, limited independence, full independence

harassment includes: objectionable conduct, comment or display made either on a one-time or continuous basis that demeans, belittles, or causes personal humiliation or embarrassment to the recipient

discrimination is prohibited based on: race, national or ethnic origin, colour, religion, age, sex, sexual orientation, gender identity or expression, marital status, family status, disability, genetic characteristics, pardoned conviction

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
A-4.02.01L	demonstrate knowledge of strategies for learning skills in workplace	describe importance of individual experience			
		describe shared responsibilities for workplace learning			
		determine one's own learning preferences and explain how these relate to learning new skills			
		describe importance of different types of skills in workplace			
		describe importance of essential skills in workplace			
		identify different <i>learning styles</i>			
		identify different <i>learning needs</i> and strategies to meet them			
		identify strategies to assist in learning a skill			
A-4.02.02L	demonstrate knowledge of strategies for teaching workplace skills	identify different roles played by a workplace mentor			
		describe teaching skills			
		explain importance of identifying point of a lesson			
		identify how to choose a good time to present a lesson			
		explain importance of linking lessons			
		identify components of skill (context)			
		describe considerations in setting up opportunities for skill practice			
		explain importance of providing feedback			
		identify techniques for giving effective feedback			
		describe a skills assessment			
		identify methods of assessing progress			
		explain how to adjust a lesson to different situations			
A-4.02.03L	demonstrate knowledge of workplace harassment and discrimination	identify legislation related to <i>harassment</i> and <i>discrimination</i>			

essential skills are: reading, document use, writing, oral communication, numeracy, thinking, working with others, digital technology, continuous learning

learning styles include: seeing it, hearing it, trying it

learning needs include: learning disabilities, learning preferences, language proficiency

strategies to assist in learning a skill include: understanding the basic principles of instruction, developing coaching skills, being mature and patient, providing feedback

teaching skills include: identifying the point of the lesson, linking the lesson, demonstrating the skill, providing practice, giving feedback, assessing skills and progress, demonstrating empathy

harassment includes: objectionable conduct, comment or display made either on a one-time or continuous basis that demeans, belittles, or causes personal humiliation or embarrassment to the recipient

discrimination is prohibited based on: race, national or ethnic origin, colour, religion, age, sex, sexual orientation, gender identity or expression, marital status, family status, disability, genetic characteristics, pardoned conviction

code of conduct includes: ethics, policies regarding conflict of interest, respectful workplace

MAJOR WORK ACTIVITY B

Installs and services process measuring and indicating devices

TASK B-5 Installs and services pressure, temperature, level and flow devices

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair these devices to ensure process operations using various conversion calculations. These measuring devices are used to monitor and control various processes and equipment.

B-5.01	Installs pressure	, temperature,	, level and flow devices
--------	-------------------	----------------	--------------------------

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

		SKILLS
	Performance Criteria	Evidence of Attainment
B-5.01.01P	select and use tools and equipment	tools and equipment are selected and used according to <i>type of device</i>
B-5.01.02P	confirm device selection	device selected is confirmed to meet process application, environmental conditions and engineered designs
B-5.01.03P	select mounting location	mounting location is selected according to engineered designs and manufacturers' specifications
B-5.01.04P	mount device	device is mounted according to industry practices, engineered designs, manufacturers' specifications and codes
B-5.01.05P	modify enclosures and panels	enclosures and panels are modified to hold devices and indicators according to code and site requirements
B-5.01.06P	connect device to process	device is connected to process using <i>connection methods</i> according to industry practices, engineered designs, manufacturers' specifications and codes
B-5.01.07P	terminate wiring to device	wiring to device is terminated according to industry practices, engineered designs, manufacturers' specifications and codes

B-5.01.08P	configure and calibrate device	device is configured and calibrated according to manufacturers' instructions, process requirements and data sheets
B-5.01.09P	verify operation of device	operation of device is verified within specified parameters by using certified test equipment
B-5.01.10P	commission device and loop	device and loop are commissioned according to engineered designs and site specifications
B-5.01.11P	backup and document configuration and calibration settings	configuration and calibration settings are backed up and documented for future data recovery according to site-specific procedures

type of device includes: pressure, temperature, level, flow *connection methods* include: tubing, piping, wiring, in-line installation, thermowell, wireless

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
B-5.01.01L	demonstrate knowledge of pressure measurement and calibration	define terminology associated with pressure measurement and calibration
		identify types of pressure and vacuum measuring devices
B-5.01.02L	demonstrate knowledge of temperature measurement and calibration	define terminology associated with temperature measurement and calibration
		identify types of temperature measuring devices
B-5.01.03L	demonstrate knowledge of level measurement and calibration	define terminology associated with level measurement and calibration
		identify types of level measuring devices
B-5.01.04L	demonstrate knowledge of flow measurement and calibration	define terminology associated with flow measurement and calibration
		identify types of flow measuring devices
B-5.01.05L	demonstrate knowledge of relationships between pressure, temperature, level and flow	explain relationships between pressure, temperature, level and flow
B-5.01.06L	demonstrate knowledge of procedures used to install pressure, temperature, level and flow measurement devices	identify hazards and describe safe work practices pertaining to pressure, temperature, level and flow measurement and calibration
		identify tools and equipment used to install pressure, temperature, level and flow measuring devices and describe their applications and procedures for use

		identify types of indicating devices
		identify <i>units of measurement for</i> pressure
		perform conversions and calculations
		identify types of temperature scales
		interpret information pertaining to pressure, temperature, level and flow measuring devices found on drawings, specifications and nameplates
		interpret and maintain calibration records
		describe connection methods
		describe <i>primary pressure elements</i>
		describe primary temperature elements
		describe primary level elements
		describe primary flow elements
B-5.01.07L	demonstrate knowledge of procedures used to calibrate pressure, temperature, level and flow measurement devices	identify pressure, level and flow calibration instruments and describe their applications
		identify <i>temperature calibration</i> <i>instruments</i> and describe their applications
		determine accuracy, certification and limitations of calibration instruments
		determine required <i>calibrating</i> parameters of measuring devices
		describe procedures used to install and calibrate pressure, temperature, level and flow measurement devices

types of pressure and vacuum measuring devices include: pneumatic, electronic, mechanical *types of temperature measuring devices* include: contacting, non-contacting

types of level measuring devices include: differential pressure (DP) transmitter, ultrasonic, radar, floats/float switches, displacers (mechanical), nuclear, sight glasses, capacitance probes

types of flow measuring devices include: vortex, thermal mass, Coriolis, magnetic flowmeters, ultrasonic, turbine, DP transmitter, positive displacement (PD) meters

safe work practices include: permits, isolation, lock-out/tag-out, blowdown procedure, commissioning/decommissioning procedures

types of indicating devices include: chart recorders, digital display, gauges, flow measuring devices, variable area flowmeters

units of measurement for pressure include: Pascals, pounds per square inch (psi), inches of water, Torr, millimetres of mercury, bars (atmospheres)

types of temperature scales include: Kelvin, Celsius, Rankine, Fahrenheit

connection methods include: tubing, piping, wiring, in-line installation, thermowell, wireless

primary pressure elements include: capsules, strain gauges, capacitance gauges, cells, bourdon tubes, bellows

primary temperature elements include: thermocouples, resistive thermal device (RTD), thermistor, filled thermal systems, pyrometers

primary level elements include: displacement floats, capacitance probes

primary flow elements include: orifice plates, V-cone, venturi tubes, flow nozzles, pitot tubes, weirs, flumes, vortex bluff body, turbines, Coriolis tubes

pressure, level and flow calibration instruments include: pressure calibrators, dead weight testers, multimeters, manometers

temperature calibration instruments include: multimeters, temperature baths, dry block calibrators, thermometers

calibrating parameters of measuring devices include: zero, span, range, repeatability, specific gravity, accuracy

B-5.02 Maintains pressure, temperature, level and flow devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
B-5.02.01P	select and use tools and equipment	tools and equipment are selected and used according to <i>type of device</i>		
B-5.02.02P	perform inspection	inspection is performed to detect irregularities		
B-5.02.03P	perform function check of devices	function check of devices is performed to confirm proper operation		
B-5.02.04P	clear sensing lines and sensing taps of devices	sensing lines and sensing taps of devices are cleared by isolating, equalizing or blowing down, to ensure lines are not plugged		

B-5.02.05P	clean devices using <i>cleaning materials</i>	devices are cleaned using <i>cleaning</i> <i>materials</i> according to manufacturers' instructions and process requirements
B-5.02.06P	verify calibration of devices	calibration of devices is verified according to maintenance specifications
B-5.02.07P	calibrate device	device is calibrated according to manufacturers' instructions and data sheets before returning to service

type of device includes: pressure, temperature, level, flow *irregularities* include: leaks, loose connections, corrosion, physical damage, process build-up *cleaning materials* include: solvents, fine wire, abrasives, contact cleaners, steam, water

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
B-5.02.01L	demonstrate knowledge of pressure measurement and calibration	define terminology associated with pressure measurement and calibration
		identify types of pressure and vacuum measuring devices
B-5.02.02L	demonstrate knowledge of temperature measurement and calibration	define terminology associated with temperature measurement and calibration
		identify types of temperature measuring devices
B-5.02.03L	demonstrate knowledge of level measurement and calibration	define terminology associated with level measurement and calibration
		identify types of level measuring devices
B-5.02.04L	demonstrate knowledge of flow measurement and calibration	define terminology associated with flow measurement and calibration
		identify types of flow measuring devices
B-5.02.05L	demonstrate knowledge of relationships between pressure, temperature, level and flow	explain relationships between pressure, temperature, level and flow
B-5.02.06L	demonstrate knowledge of procedures used to maintain pressure, temperature, level and flow measurement devices	identify hazards and describe <i>safe work practices</i> pertaining to pressure, temperature, level and flow measurement and calibration
		identify tools and equipment used to maintain pressure, temperature, level and flow measuring devices and describe their applications and procedures for use
		identify types of indicating devices
		identify units of measurement for pressure

		perform conversions and calculations
		identify types of temperature scales
		interpret information pertaining to pressure, temperature, level and flow measuring devices found on drawings, specifications and nameplates
		interpret and maintain calibration records
		identify types of basic pressure, temperature, level and flow measurement devices and describe their applications
		describe connection methods
		describe primary pressure elements
		describe primary temperature elements
		describe primary level elements
		describe primary flow elements
		identify documentation and scheduling related to maintenance of pressure, temperature, level and flow measurement devices
B-5.02.07L	demonstrate knowledge of procedures and instruments used to calibrate pressure, temperature, level and flow measurement devices	identify <i>temperature calibration</i> <i>instruments</i> and describe their applications
		identify pressure, level and flow calibration instruments and describe their applications
		determine accuracy, certification and limitations of calibration instruments
		determine required <i>calibrating</i> parameters of measuring devices
		describe procedures used to maintain and calibrate pressure, temperature, level and flow measurement devices

types of pressure and vacuum measuring devices include: pneumatic, electronic, mechanical *types of temperature measuring devices* include: contacting, non-contacting

types of level measuring devices include: DP transmitter, ultrasonic, radar, floats/ float switches, displacers (mechanical), nuclear, sight glasses, capacitance probes

types of flow measuring devices include: vortex, thermal mass, Coriolis, magnetic flowmeters, ultrasonic, turbine, DP transmitter, PD meters

safe work practices include: permits, isolation, lock-out/tag-out, blowdown procedure, commissioning/decommissioning procedures

types of indicating devices include: chart recorders, digital display, gauges, flow measuring devices, variable area flowmeters

units of measurement for pressure include: Pascals, psi, inches of water, Torr, millimetres of mercury, bars (atmospheres)

types of temperature scales include: Kelvin, Fahrenheit, Celsius, Rankine

connection methods include: tubing, piping, wiring, in-line installation, thermowell, wireless

primary pressure elements include: capsules, strain gauges, capacitance gauges, cells, bourdon tubes, bellows

primary temperature elements include: thermocouples, RTD, thermistor, filled thermal systems, pyrometers

primary level elements include: displacement floats, capacitance probes

primary flow elements include: orifice plates, V-cone, venturi tubes, flow nozzles, pitot tubes, weirs, flumes, vortex bluff body, turbines, Coriolis tubes

temperature calibration instruments include: multimeters, temperature baths, dry block calibrators, infrared thermometers

pressure, level and flow calibration instruments include: pressure calibrators, dead weight testers, multimeters, manometers

calibrating parameters of measuring devices include: zero, span, range, repeatability, specific gravity, accuracy

B-5.03 Diagnoses pressure, temperature, level and flow devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS				
	Performance Criteria	Evidence of Attainment			
B-5.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to <i>type of device</i>			
B-5.03.02P	perform inspection and function check to detect <i>faults</i>	inspection and function check is performed to detect <i>faults</i>			

B-5.03.03P	perform as-found calibration check	as-found calibration check is performed according to data sheets
B-5.03.04P	determine probable root cause and location of <i>faults</i> , and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified

diagnostic tools and equipment include: software, hand-held configurators, multimeters, simulators, pumps, manometers

type of device includes: pressure, temperature, level, flow

faults include: leaks, physical damage, poor wiring connections, failures, plugged sensing line, inadequate power, depleted impulse lines

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
B-5.03.01L	demonstrate knowledge of pressure measurement and calibration	define terminology associated with pressure measurement and calibration					
		identify types of types of pressure and vacuum measuring devices					
B-5.03.02L	demonstrate knowledge of temperature measurement and calibration	define terminology associated with temperature measurement and calibration					
		identify types of temperature measuring devices					
B-5.03.03L	demonstrate knowledge of level measurement and calibration	define terminology associated with level measurement and calibration					
		identify types of level measuring devices					
B-5.03.04L	demonstrate knowledge of flow measurement and calibration	define terminology associated with flow measurement and calibration					
		identify types of flow measuring devices					
B-5.03.05L	demonstrate knowledge of relationships between pressure, temperature, level and flow	explain relationships between pressure, temperature, level and flow					
B-5.03.06L	demonstrate knowledge of procedures used to diagnose pressure, temperature, level and flow measurement devices	identify hazards and describe safe work practices pertaining to pressure, temperature, level and flow measurement and calibration					
		identify <i>diagnostic tools and equipment</i> used to diagnose and calibrate pressure, temperature, level and flow measuring devices, and describe their applications and procedures for use					
		identify types of indicating devices					
		identify units of measurement for pressure					

perform conversions and calculations
identify types of temperature scales
interpret information pertaining to pressure, temperature, level and flow measuring devices found on drawings, specifications and nameplates
interpret and maintain calibration records
describe connection methods
describe primary pressure elements
describe primary temperature elements
describe primary level elements
describe primary flow elements
describe procedures used to perform root cause diagnostics and analysis of pressure, temperature, level and flow measurement devices

types of pressure and vacuum measuring devices include: pneumatic, electronic, mechanical *types of temperature measuring devices* include: contacting, non-contacting

types of level measuring devices include: DP transmitter, ultrasonic, radar, floats/ float switches, displacers (mechanical), nuclear, sight glasses, capacitance probes

types of flow measuring devices include: vortex, thermal mass, Coriolis, magnetic flowmeters, ultrasonic, turbine, DP transmitter, PD meters

safe work practices include: permits, isolation, lock-out/tag-out, blowdown procedure, commissioning/decommissioning procedures

diagnostic tools and equipment include: software, hand-held configurators, multimeters, simulators, pumps, manometers

types of indicating devices include: chart recorders, digital display, gauges, flow measuring devices, variable area flowmeters

units of measurement for pressure include: Pascals, psi, inches of water, Torr, millimetres of mercury, bars (atmospheres)

types of temperature scales include: Kelvin, Celsius, Rankine, Fahrenheit

connection methods include: tubing, piping, wiring, in-line installation, thermowell, wireless

primary pressure elements include: capsules, strain gauges, capacitance gauges, cells, bourdon tubes, bellows

primary temperature elements include: thermocouples, RTD, thermistor, filled thermal systems, pyrometers

primary level elements include: displacement floats, capacitance probes

primary flow elements include: orifice plates, V-cone, venturi tubes, flow nozzles, pitot tubes, weirs, flumes, vortex bluff body, turbines, Coriolis tubes

B-5.04

Repairs pressure, temperature, level and flow devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
B-5.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to <i>type of device</i>						
B-5.04.02P	select required replacement <i>components</i>	required replacement <i>components</i> are selected according to codes and manufacturers' specifications						
B-5.04.03P	replace <i>components</i>	<i>components</i> are replaced according to manufacturers' specifications						
B-5.04.04P	clear plugged lines	plugged lines are cleared using inert/compatible pressurized fluids						
B-5.04.05P	inspect and clean process-wetted components where device contacts process	process-wetted components are inspected and cleaned where device contacts process						
B-5.04.06P	calibrate device	device is calibrated according to manufacturers' instructions and data sheets						

RANGE OF VARIABLES

tools and equipment include: digital multimeters, process calibrators, test gauges *type of device* includes: pressure, temperature, level, flow

components include: sensor boards, liquid crystal displays, temperature elements

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
B-5.04.01L	demonstrate knowledge of pressure measurement and calibration	define terminology associated with pressure measurement and calibration						
		identify types of types of pressure and vacuum measuring devices						
B-5.04.02L	demonstrate knowledge of temperature measurement and calibration	define terminology associated with temperature measurement and calibration						
		identify types of temperature measuring devices						
B-5.04.03L	demonstrate knowledge of level measurement and calibration	define terminology associated with level measurement and calibration						
		identify types of level measuring devices						
B-5.04.04L	demonstrate knowledge of flow measurement and calibration	define terminology associated with flow measurement and calibration						

		identify types of flow measuring devices		
B-5.04.05L	demonstrate knowledge of relationships between pressure, temperature, level and flow	explain relationships between pressure, temperature, level and flow		
B-5.04.06L	demonstrate knowledge of procedures used to repair pressure, temperature, level and flow measurement devices	identify hazards and describe safe work practices pertaining to pressure, temperature, level and flow measureme and calibration		
		identify tools and equipment used to repair pressure, temperature, level and flow measuring devices, and describe their applications and procedures for use		
		identify <i>units of measurement for pressure</i>		
		perform conversions and calculations		
		identify types of temperature scales		
		interpret information pertaining to pressure, temperature, level and flow measuring devices found on drawings, specifications and nameplates		
		interpret and maintain calibration records		
		identify types of basic pressure measurement devices and describe their applications		
		describe connection methods		
		describe primary pressure elements		
		describe primary temperature element		
		describe primary level elements		
		describe primary flow elements		
		describe procedures used to repair and replace <i>components</i> of pressure, temperature, level and flow measuremen devices		
B-5.04.07L	demonstrate knowledge of procedures used to calibrate pressure, temperature, level and flow measurement devices	describe procedures used to calibrate pressure, temperature, level and flow measurement devices		
		identify <i>pressure, level and flow</i> <i>calibration instruments</i> and describe their applications		
		identify <i>temperature calibration</i> <i>instruments</i> and describe their applications		
		determine accuracy and limitations of calibration instruments		

determine required <i>calibrating</i> parameters of measuring devices
identify documentation and scheduling related to repair of pressure, temperature, level and flow measurement devices

types of pressure and vacuum measuring devices include: pneumatic, electronic, mechanical *types of temperature measuring devices* include: contacting, non-contacting

types of level measuring devices include: DP transmitter, ultrasonic, radar, floats/ float switches, displacers (mechanical), nuclear, sight glasses, capacitance probes

types of flow measuring devices include: vortex, thermal mass, Coriolis, magnetic flowmeters, ultrasonic, turbine, DP transmitter, PD meters

tools and equipment include: digital multimeters, process calibrators, test gauges

units of measurement for pressure include: Pascals, psi, inches of water, Torr, millimetres of mercury, bars (atmospheres)

types of temperature scales include: Kelvin, Celsius, Rankine, Fahrenheit

connection methods include: tubing, piping, wiring, in-line installation, thermowell, wireless

primary pressure elements include: capsules, strain gauges, capacitance gauges, cells, bourdon tubes, bellows

primary temperature elements include: thermocouples, RTD, thermistor, filled thermal systems, pyrometers

primary level elements include: displacement floats, capacitance probes

primary flow elements include: orifice plates, V-cone, venturi tubes, flow nozzles, pitot tubes, weirs, flumes, vortex bluff body, turbines, Coriolis tubes

components include: sensor boards, liquid crystal displays, temperature elements

pressure, level and flow calibration instruments include: pressure calibrators, dead weight testers, multimeters, manometers

temperature calibration instruments include: multimeters, temperature baths, dry block calibrators, infrared thermometers

calibrating parameters of measuring devices include: zero, span, range, repeatability, specific gravity, accuracy

TASK B-6 Installs and services signal transducers

TASK DESCRIPTOR

Instrumentation and control technicians install, configure, calibrate, diagnose, maintain, repair and replace signal transducers. A signal transducer converts an analogue signal from one form of energy to another form of energy. This could include converting pneumatic-to-electric, electric-to-pneumatic, electric-to-electric and pneumatic-to-pneumatic.

B-6.01 Performs installation and configuration of signal transducers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

		SKILLS
	Performance Criteria	Evidence of Attainment
B-6.01.01P	select signal transducers	signal transducers are selected according to required functionality and environment
B-6.01.02P	mount signal transducers	signal transducers are mounted according to industry practices, engineered designs, manufacturers' specifications and codes
B-6.01.03P	terminate wiring	wiring is terminated according to industry practices, engineered designs, manufacturers' specifications and codes
B-6.01.04P	connect tubing	tubing is connected according to industry practices, engineered designs, manufacturers' specifications and codes
B-6.01.05P	configure signal transducers	signal transducers are configured according to manufacturers' specifications, process requirements and data sheets
B-6.01.06P	calibrate signal transducers	signal transducers are calibrated to required specifications using <i>calibration</i> <i>instruments</i> according to manufacturers' specifications, process requirements and data sheets
B-6.01.07P	document <i>information</i>	<i>information</i> is recorded for future reference

RANGE OF VARIABLES

calibration instruments include: hand-held configurators, current calibrators, pressure calibrators, process calibrators, software, laptops

information includes: overall condition, maintenance record, settings

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
B-6.01.01L	demonstrate knowledge of signal transducers and describe their characteristics and applications	define terminology associated with signal transducers
		identify types of signal transducers and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to installation and configuration of signal transducers
		interpret information pertaining to signal transducers found on drawings and specifications
B-6.01.02L	demonstrate knowledge of regulatory requirements pertaining to signal transducers	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to signal transducers
B-6.01.03L	demonstrate knowledge of procedures used to install and configure signal transducers	identify tools and equipment used to install and configure signal transducers and describe their applications and procedures for use
		describe procedures used to select, install and configure signal transducers
		describe conditions of surrounding environment to consider when installing signal transducers
		describe <i>utilities</i> required to operate signal transducers
B-6.01.04L	demonstrate knowledge of procedures used to calibrate signal transducers	describe procedures used to calibrate signal transducers
		describe procedures and parameters to calibrate signal transducers
		perform conversions and calculations

types of signal transducers include: pneumatic-to-electric, electric-to-pneumatic, electric-to-electric, pneumatic-to-pneumatic

standards, codes and regulations include: CEC, Institute of Electrical and Electronic Engineering (IEEE), ISA, CSA, Canadian Radio and Telecommunications Council (CRTC)

conditions of surrounding environment include: ambient conditions, contamination, hazardous/non-hazardous

utilities include: quality of instrument air, access to instrument air, possible use of natural gas as pneumatic signal

parameters include: zero, span, range, accuracy, trim adjustments

conversions and calculations include: pneumatic-to-electric, electric-to-pneumatic, electric-to-electric, pneumatic-to-pneumatic

B-6.02

Diagnoses signal transducers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ALLS
	Performance Criteria	Evidence of Attainment
B-6.02.01P	perform inspection of signal transducers	inspection of signal transducers is performed
B-6.02.02P	check calibration and configuration of signal transducers	calibration and configuration of signal transducers is checked using calibration instruments
B-6.02.03P	review documentation and historical data	documentation and historical data is reviewed to assist in determining probable root cause

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
B-6.02.01L	demonstrate knowledge of signal transducers and describe their characteristics and applications	define terminology associated with signal transducers
		identify types of signal transducers and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to signal transducers
		interpret information pertaining to signal transducers found on drawings and specifications
B-6.02.02L	demonstrate knowledge of regulatory requirements pertaining to signal transducers	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to signal transducers
B-6.02.03L	demonstrate knowledge of procedures used to diagnose signal transducers	identify types of calibration instruments used to diagnose signal transducers and describe their applications and procedures for use
		describe procedures used to inspect and diagnose signal transducers
		describe possible problems associated with signal transducers
		perform conversions and calculations
		describe conditions of surrounding environment to consider when installing signal transducers

types of signal transducers include: pneumatic-to-electric, electric-to-pneumatic, electric-to-electric, pneumatic-to-pneumatic

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

types of calibration instruments include: hand-held configurators, current calibrators, pressure calibrators, process calibrators

problems include: inadequate power supply, inadequate air supply, calibration errors, linearity errors *conversions and calculations* include: pneumatic-to-electric, electric-to-pneumatic, electric-to-electric, pneumatic-to-pneumatic

conditions of surrounding environment include: ambient conditions, contamination, hazardous/non-hazardous

B-6.03 Performs maintenance and repairs on signal transducers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
B-6.03.01P	perform inspection of signal transducers	inspection of signal transducers is performed to detect problems
B-6.03.02P	perform function check of signal transducers	function check of signal transducers is performed to confirm proper operation
B-6.03.03P	perform scheduled maintenance activities	scheduled maintenance activities are performed according to maintenance specifications and procedures
B-6.03.04P	repair or replace signal transducers	signal transducers are repaired or replaced according to manufacturers' instructions and site-specific procedures
B-6.03.05P	verify operation and calibration	operation and calibration are verified before returning to service
B-6.03.06P	document <i>information</i>	<i>information</i> is recorded for future reference

RANGE OF VARIABLES

problems include: inadequate power, physical damage, faulty connections, contamination, corrosion, improper grounding/shielding

information includes: overall condition, maintenance record, settings

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
B-6.03.01L	demonstrate knowledge of signal transducers and describe their characteristics and applications	define terminology associated with signal transducers
		identify types of signal transducers and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to signal transducers
		interpret information pertaining to signal transducers found on drawings and specifications
		describe importance of documenting information and changes
B-6.03.02L	demonstrate knowledge of regulatory requirements pertaining to signal transducers	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to signal transducers
B-6.03.03L	demonstrate knowledge of procedures used to maintain, repair and replace signal transducers	identify tools and equipment used to maintain, repair and replace signal transducers and describe their applications and procedures for use
		describe procedures used to inspect signal transducers
		describe procedures used to maintain, repair and replace signal transducers
		describe possible problems of signal transducers
B-6.03.04L	demonstrate knowledge of procedures used to calibrate signal transducers	describe procedures used to calibrate signal transducers
		perform conversions and calculations

types of signal transducers include: pneumatic-to-electric, electric-to-pneumatic, electric-to-electric, pneumatic-to-pneumatic

information includes: overall condition, maintenance record, settings

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

problems include: inadequate power, physical damage, faulty connections, contamination, corrosion, improper grounding/shielding

conversions and calculations include: pneumatic-to-electric, electric-to-pneumatic, electric-to-electric, pneumatic-to-pneumatic

TASK B-7 Installs and services motion, speed, position and vibration devices

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair these devices to protect the integrity of equipment and to control equipment and processes. These devices sense motion, speed, position and vibration to monitor the operation of equipment.

B-7.01 Installs motion, speed, position and vibration devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
B-7.01.01P	select and use tools and equipment	tools and equipment are selected and used according to type of device
B-7.01.02P	select device	device is selected according to process application, environment and engineered designs
B-7.01.03P	select cable	cable is selected according to manufacturers' specifications, engineered designs and CEC
B-7.01.04P	select mounting location and hardware	mounting location and hardware is selected according to manufacturers' specifications and engineered designs
B-7.01.05P	mount device	device is mounted according to industry practices, engineered designs, manufacturers' and site specifications, and codes
B-7.01.06P	terminate wiring to device	wiring to device is terminated according to industry practices, engineered designs, manufacturers' specifications, and <i>standards, codes and regulations</i>
B-7.01.07P	set gap of sensor on device	gap of sensor is set according to manufacturers' specifications
B-7.01.08P	verify operation of device	device operation is verified within specified parameters by using test equipment and procedures
B-7.01.09P	back up and document configuration and calibration settings	configuration and calibration settings are backed up and documented for future data recovery

tools and equipment include: wrenches, feeler gauges, multimeters *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC

	KNOW	LEDGE
	Learning Outcomes	Learning Objectives
B-7.01.01L	demonstrate knowledge of motion, speed, position and vibration devices, and their <i>components</i> , principles and operation	define terminology associated with motion, speed, position and vibration devices, and their <i>components</i>
		identify hazards and describe safe work practices pertaining to motion, speed, position and vibration devices, and their <i>components</i>
		interpret information pertaining to motion, speed, position and vibration devices, and their components found on drawings and specifications
		identify types of motion and position/displacement devices
		identify types of speed devices
		identify types of vibration devices
		identify types of indicating devices
		describe principles of operation
B-7.01.02L	demonstrate knowledge of regulatory requirements pertaining to motion, speed, position and vibration devices	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to motion, speed, position and vibration devices
B-7.01.03L	demonstrate knowledge of procedures used to install motion, speed, position and vibration devices, and their <i>components</i>	identify <i>tools and equipment</i> used to install motion, speed, position and vibration devices, and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to select and install motion, speed, position and vibration devices, and their <i>components</i>
		describe procedures used to configure, calibrate and validate calibration of motion, speed, position and vibration devices, and their <i>components</i>
		identify <i>motion, speed, position and vibration calibration instruments</i>
		explain required calibrating of <i>measuring parameters</i>

identify types of <i>motion, speed, position</i> and vibration measurements
describe procedures used to back up and document configuration and calibration settings

components include: optical lenses, probes, cables, mounting hardware, amplifiers

types of motion and position/displacement devices include: torque switches, proximity switches, proximity probes, analogue position sensors, linear variable displacement transformer (LVDT)

types of speed devices include: tachometers, strobes, proximeters

types of vibration devices include: probes, proximeters

types of indicating devices include: chart recorders, digital displays and gauges

principles of operation include: speed, velocity, magnetism, harmonics, periodic motion

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

tools and equipment include: wrenches, feeler gauges, multimeters

motion, speed, position and vibration calibration instruments include: strobe lights, multimeters, tachometers, wobulators

measuring parameters include: zero, span, range, accuracy

motion, speed, position and vibration measurements include: speed, axial/radial motion, key phasors, thrust, frequency, amplitude

B-7.02 Maintains motion, speed, position and vibration devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
B-7.02.01P	perform inspection	inspection is performed to detect irregularities				
B-7.02.02P	perform function check of device	function check is performed to confirm proper operation of device				
B-7.02.03P	clean <i>components</i>	<i>components</i> are cleaned using <i>cleaning</i> <i>materials</i>				
B-7.02.04P	verify calibration of device	calibration of device is verified according to manufacturers' specifications and data sheets				
B-7.02.05P	calibrate device before returning to service	device is calibrated before returning to service according to manufacturers' specifications and data sheets				

irregularities include: dirt, loose connections, corrosion *components* include: optical lenses, probes, cables, mounting hardware, amplifiers *cleaning materials* include: solvents, abrasives, contact cleaners

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
B-7.02.01L	demonstrate knowledge of motion, speed, position and vibration devices, and their <i>components</i> , principles and operation	define terminology associated with motion, speed, position and vibration devices, and their <i>components</i>
		identify hazards and describe safe work practices pertaining to motion, speed, position and vibration devices, and their <i>components</i>
		interpret information pertaining to motion, speed, position and vibration devices, and their <i>components</i> found on drawings and specifications
		identify types of motion and position/displacement devices
		identify types of speed devices
		identify types of vibration devices
		identify types of indicating devices
		describe principles of operation
B-7.02.02L	demonstrate knowledge of regulatory requirements pertaining to motion, speed, position and vibration devices, and their <i>components</i>	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to motion, speed, position and vibration devices, and their <i>components</i>
B-7.02.03L	demonstrate knowledge of procedures used to maintain motion, speed, position and vibration devices, and their <i>components</i>	identify <i>tools and equipment</i> used to maintain motion, speed, position and vibration devices, and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to maintain motion, speed, position and vibration devices, and their components
		identify motion, speed, position and vibration calibration instruments
		explain required calibration of <i>measuring parameters</i>
		identify types of <i>motion, speed, position</i> and vibration measurements

components include: optical lenses, probes, cables, mounting hardware, amplifiers

types of motion and position/displacement devices include: torque switches, proximity switches, proximity probes, analogue position sensors, LVDT

types of speed devices include: tachometers, strobes, proximeters

types of vibration devices include: probes, proximeters

types of indicating devices include: chart recorders, digital displays and gauges

principles of operation include: speed, velocity, magnetism, harmonics, periodic motion

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

tools and equipment include: wrenches, feeler gauges, multimeters

motion, speed, position and vibration calibration instruments include: strobe lights, multimeters, tachometers, wobulators

motion, speed, position and vibration measurements include: speed, axial/radial motion, key phasors, thrust, frequency, amplitude

measuring parameters include: zero, span, range, accuracy

B-7.03 Diagnoses motion, speed, position and vibration devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
B-7.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to application				
B-7.03.02P	perform inspection and function check	inspection and function check are performed to detect				
B-7.03.03P	determine probable root cause and location of <i>faults</i> and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified				

RANGE OF VARIABLES

diagnostic tools and equipment include: oscilloscopes, multimeters, hand-held configurators, laptops, frequency generators, high-speed cameras

faults include: misalignment, physical damage, poor electrical connections, failed probes, faulty amplifier, dirty optics, faulty sensors, inadequate power

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
B-7.03.01L	demonstrate knowledge of motion, speed, position and vibration devices, and their <i>components</i> , principles and operation	define terminology associated with motion, speed, position and vibration devices, and their <i>components</i>
		identify hazards and describe safe work practices pertaining to motion, speed, position and vibration devices, and their <i>components</i>
		interpret information pertaining to motion, speed, position and vibration devices, and their components found on drawings and specifications
		identify types of motion and position/displacement devices
		identify types of speed devices
		identify types of vibration devices
		identify types of indicating devices
		describe principles of operation
B-7.03.02L	demonstrate knowledge of procedures used to diagnose motion, speed, position and vibration devices, and their <i>components</i>	identify <i>diagnostic tools and equipment</i> used to diagnose motion, speed, position and vibration devices, and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to diagnose motion, speed, position and vibration devices, and their <i>components</i>
		identify types of <i>faults</i> with motion, speed, position and vibration devices, and their <i>components</i>

components include: optical lenses, probes, cables, mounting hardware, amplifiers

types of motion and position/displacement devices include: torque switches, proximity switches, proximity probes, analogue position sensors, LVDT

types of speed devices include: tachometers, strobes, proximeters

types of vibration devices include: probes, proximeters

types of indicating devices include: chart recorders, digital displays and gauges

principles of operation include: speed, velocity, magnetism, harmonics, periodic motion

diagnostic tools and equipment include: oscilloscopes, multimeters, hand-held configurators, laptops, frequency generators, high-speed cameras

faults include: misalignment, physical damage, poor electrical connections, failed probes, faulty amplifier, dirty optics, faulty sensors, inadequate power

B-7.04

Repairs motion, speed, position and vibration devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	S	KILLS
	Performance Criteria	Evidence of Attainment
B-7.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to application requirements
B-7.04.02P	select replacement components	replacement <i>components</i> are selected according to manufacturers' specifications
B-7.04.03P	remove and replace <i>components</i>	<i>components</i> are removed and replaced according to manufacturers' instructions and site-specific procedures
B-7.04.04P	inspect and clean <i>components</i>	<i>components</i> are inspected and cleaned according to manufacturers' instructions and site-specific procedures
B-7.04.05P	calibrate device	device is calibrated according to manufacturers' instructions
B-7.04.06P	update documentation	documentation is updated with repair information according to site-specific procedures

RANGE OF VARIABLES

tools and equipment include: multimeters, wrenches, feeler gauges, tachometers, oscilloscope, frequency generators

components include: optical lenses, probes, cables, mounting hardware, amplifiers

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
B-7.04.01L	demonstrate knowledge of motion, speed, position and vibration devices, and their <i>components</i> , principles and operation	define terminology associated with motion, speed, position and vibration devices, and their <i>components</i>				
		identify hazards and describe safe work practices pertaining to motion, speed, position and vibration devices, and their <i>components</i>				
		interpret information pertaining to motion, speed, position and vibration devices, and their <i>components</i> found on drawings and specifications				
		identify types of motion and position/displacement devices				
		identify types of speed devices				

		identify types of vibration devices
		identify types of indicating devices
		describe principles of operation
B-7.04.02L	demonstrate knowledge of regulatory requirements pertaining to motion, speed, position and vibration devices, and their <i>components</i>	interpret standards, codes and regulations pertaining to motion, speed, position and vibration devices, and their components
B-7.04.03L	demonstrate knowledge of procedures used to repair and replace <i>components</i> of motion, speed, position and vibration devices	identify tools and equipment used to repair components of motion, speed, position and vibration devices, and describe their applications and procedures for use
		describe procedures used to repair, replace and calibrate motion, speed, position and vibration devices, and their <i>components</i>
		identify motion, speed, position and vibration calibration instruments
		explain required calibration of <i>measuring</i> parameters
		identify types of <i>motion, speed, position</i> and vibration measurements

components include: optical lenses, probes, cables, mounting hardware, amplifiers

types of motion and position/displacement devices include: torque switches, proximity switches, proximity probes, analogue position sensors, LVDT

types of speed devices include: tachometers, strobes, proximeters

types of vibration devices include: probes, proximeters

types of indicating devices include: chart recorders, digital displays and gauges

principles of operation include: speed, velocity, magnetism, harmonics, periodic motion

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

tools and equipment include: multimeters, wrenches, feeler gauges, tachometers, oscilloscope, frequency generators

motion, speed, position and vibration calibration instruments include: strobe lights, multimeters, tachometers, wobulators

measuring parameters include: zero, span, range, accuracy

motion, speed, position and vibration measurements include: speed, axial/radial motion, key phasors, thrust, frequency, amplitude

TASK B-8 Installs and services mass, density and consistency

devices

TASK DESCRIPTOR

These devices measure the mass, density and consistency of the material within the process. Instrumentation and control technicians install, maintain, diagnose and repair these devices to control processes and maintain product quality.

B-8.01 Installs mass, density and consistency devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
B-8.01.01P	select and use tools and equipment	tools and equipment are selected and used according to <i>type of device</i>					
B-8.01.02P	select device	device is selected according to process application, environment and engineered designs					
B-8.01.03P	select mounting location and hardware	mounting location and hardware are selected according to engineered designs and manufacturers' specifications					
B-8.01.04P	mount device and connect to process	device is mounted and connected to process using <i>connection methods</i> according to industry practices, engineered designs, manufacturers' specifications and codes					
B-8.01.05P	terminate wiring to device	wiring is terminated to device according to industry practices, engineered designs, manufacturers' specifications and codes					
B-8.01.06P	configure and calibrate device	device is configured and calibrated according to manufacturers' instructions, process requirements and data sheets					
B-8.01.07P	commission device and loop	device and loop are commissioned according to engineered designs and site specifications					
B-8.01.08P	verify operation of device	device operation is verified within specified parameters by using test equipment and procedures according to manufacturers' instructions					
B-8.01.09P	back up and document configuration and calibration settings	configuration and calibration settings are backed up and documented for future data recovery					

type of device includes: mass, density, consistency *connection methods* include: bolting, piping, tubing, wiring

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
B-8.01.01L	demonstrate knowledge of <i>mass, density</i> and <i>consistency devices</i> , their components and operation	define terminology associated with mass, density and consistency devices , and their components
		identify hazards and describe safe work practices pertaining to mass, density and consistency devices, and their components
		interpret information pertaining to mass , density and consistency devices found on drawings and specifications
		explain principles of operation for mass , density and consistency devices
		identify types of <i>mass, density</i> and <i>consistency devices</i> , and their components
		identify types of <i>indicating devices</i> and their components
B-8.01.02L	demonstrate knowledge of regulatory requirements pertaining to <i>mass</i> , <i>density</i> and <i>consistency devices</i> , and their components and operation	interpret codes and regulations pertaining to mass , density and consistency devices , and their components
B-8.01.03L	demonstrate knowledge of procedures used to install <i>mass</i> , <i>density</i> and <i>consistency devices</i> , and their components	identify tools and equipment used to install <i>mass</i> , <i>density</i> and <i>consistency</i> <i>devices</i> , and describe their applications and procedures for use
		describe procedures used to select and install <i>mass</i> , <i>density</i> and <i>consistency</i> <i>devices</i> , and their components
		identify connection methods used to install devices
B-8.01.04L	demonstrate knowledge of procedures used to calibrate <i>mass</i> , <i>density</i> and <i>consistency devices</i> , and their components	describe procedures used to calibrate <i>mass</i> , <i>density</i> and <i>consistency devices</i> , and their components
		describe required <i>calibrating measuring parameters</i>
		identify types of calibration instruments
		describe procedures used to back up and document configuration and calibration settings

mass devices include: load cells, scales, strain gauges

density devices include: displacers, nuclear gauges, refractometers, Coriolis tubes, DP transmitters, tuning forks

consistency devices include: optical, rotary, blade, paddle, microwave, nuclear

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical *indicating devices* include: chart recorders, digital displays, gauges

codes and regulations include: environmental regulations, nuclear safety regulations, installation codes *connection methods* include: bolting, piping, tubing, wiring

calibrating measuring parameters include: zero, span, range, repeatability, accuracy, specific gravity *types of calibration instruments* include: multimeters, radiation survey meters, certified measurement standards

B-8.02 Maintains mass, density and consistency devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
B-8.02.01P	perform inspection and function check of device	inspection is performed to detect <i>irregularities</i> and confirm proper operation				
B-8.02.02P	clean devices	devices are cleaned using <i>cleaning</i> <i>materials</i> according to manufacturers' instructions				
B-8.02.03P	verify calibration of devices	calibration of devices is verified according to manufacturers' instructions and maintenance specifications				
B-8.02.04P	calibrate device	device is calibrated before returning to service according to manufacturers' instructions and maintenance specifications				

RANGE OF VARIABLES

irregularities include: leaks, loose connections, corrosion, faulty sensors *cleaning materials* include: solvents, fine wire, abrasives, contact cleaners

	KNOW	LEDGE			
	Learning Outcomes	Learning Objectives			
B-8.02.01L	demonstrate knowledge of <i>mass, density</i> and <i>consistency devices</i> , their components and operation	define terminology associated with mass, density and consistency devices , and their components			
		identify <i>hazards</i> and describe safe work practices pertaining to <i>mass, density</i> and <i>consistency devices</i> , and their components			
		interpret information pertaining to mass, density and consistency devices found on drawings and specifications			
		explain principles of operation for mass, density and consistency devices			
		identify types of <i>mass, density</i> and <i>consistency devices</i> , and their components			
		identify <i>types of indicating devices</i> and their components			
B-8.02.02L	demonstrate knowledge of procedures used to maintain <i>mass, density</i> and <i>consistency devices</i> , and their components	identify tools and equipment used to maintain <i>mass, density</i> and <i>consistency</i> <i>devices</i> , and describe their applications and procedures for use			
		describe procedures used to maintain <i>mass, density</i> and <i>consistency</i> <i>devices</i> , and their components			
		describe factors affecting system performance			
B-8.02.03L	demonstrate knowledge of procedures used to calibrate <i>mass</i> , <i>density</i> and <i>consistency devices</i> , and their components	describe procedures used to calibrate <i>mass, density</i> and <i>consistency devices</i> , and their components			
		identify types of calibration instruments			
		describe required <i>calibrating measuring parameters</i>			
		describe procedures used to back up and document configuration and calibration settings			
		identify sampling methodologies for calibration of mass , density and consistency devices			
		describe procedures used to analyze calibration samples of mass, density and consistency			

mass devices include: load cells, scales, strain gauges

density devices include: displacers, nuclear gauges, refractometers, Coriolis tubes, DP transmitters, tuning forks

consistency devices include: optical, rotary, blade, paddle, microwave, nuclear

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical *types of indicating devices* include: chart recorders, digital displays, gauges

factors affecting system performance include: temperature, vibration, pressure, electromagnetism *types of calibration instruments* include: multimeters, radiation survey meters, certified measurement standards

calibrating measuring parameters include: zero, span, range, repeatability, accuracy, specific gravity *sampling methodologies* include: Technical Association for the Pulp and Paper Industry (TAPPI), American Petroleum Institute (API), site-specific procedures

B-8.03

Diagnoses mass, density and consistency devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
B-8.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to application requirements		
B-8.03.02P	perform inspection and check function of device	inspection to detect <i>faults</i> is performed		
B-8.03.03P	perform as-found calibration check	as-found calibration check is performed		
B-8.03.04P	determine probable root cause and location of <i>faults</i> and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified		

RANGE OF VARIABLES

diagnostic tools and equipment include: multimeters, software, hand-held configurators, test equipment, laptops, survey meters

faults include: leaks, misalignment, physical damage, poor electrical connections, dirty lenses, faulty sensors, inadequate power

	KNOWLEDGE			
	Learning Outcomes	Learning Objectives		
B-8.03.01L	demonstrate knowledge of <i>mass, density</i> and <i>consistency devices</i> , and their components and operation	define terminology associated with <i>mass,</i> <i>density</i> and <i>consistency devices</i> , and their components		
		identify <i>hazards</i> and describe safe work practices pertaining to <i>mass, density</i> and <i>consistency devices</i> , and their components		
		interpret information pertaining to mass, density and consistency devices found on drawings and specifications		
		explain principles of operation for mass, density and consistency devices		
		identify types of <i>mass, density</i> and <i>consistency devices</i> , and their components		
		identify <i>types of indicating devices</i> and their components		
B-8.03.02L	demonstrate knowledge of procedures used to diagnose <i>mass, density</i> and <i>consistency devices</i> , and their components	identify <i>diagnostic tools and equipment</i> used to diagnose <i>mass, density</i> and <i>consistency devices</i> , and describe their applications and procedures for use		
		describe procedures used to diagnose faults in <i>mass, density</i> and <i>consistency</i> <i>devices</i> and their components		
		identify types of <i>faults</i> with <i>mass,</i> <i>density</i> and <i>consistency devices</i> and their components		

mass devices include: load cells, scales, strain gauges

density devices include: displacers, nuclear gauges, refractometers, Coriolis tubes, DP transmitters, tuning forks

consistency devices include: optical, rotary, blade, paddle, microwave, nuclear

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical

types of indicating devices include: chart recorders, digital displays, gauges

diagnostic tools and equipment include: multimeters, software, hand-held configurators, test equipment, laptops, survey meters

faults include: leaks, misalignment, physical damage, poor electrical connections, dirty lenses, faulty sensors, inadequate power

B-8.04

Repairs mass, density and consistency devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
B-8.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to application requirements		
B-8.04.02P	replace <i>components</i>	<i>components</i> are replaced according to manufacturers' instructions		
B-8.04.03P	inspect and clean <i>components</i>	<i>components</i> are inspected and cleaned according to manufacturers' instructions		
B-8.04.04P	calibrate device	device is calibrated according to manufacturers' specifications		
B-8.04.05P	update documentation	documentation is updated with repair information according to site-specific procedures		

RANGE OF VARIABLES

tools and equipment include: multimeters, certified measurement standards *components* include: sensors, sensor boards, reflectors, lenses

	KNOW	LEDGE
	Learning Outcomes	Learning Objectives
B-8.04.01L	demonstrate knowledge of <i>mass, density</i> and <i>consistency devices</i> , and their <i>components</i> and operation	define terminology associated with <i>mass,</i> <i>density</i> and <i>consistency devices</i> , and their <i>components</i>
		identify <i>hazards</i> and describe safe work practices pertaining to <i>mass, density</i> and <i>consistency devices</i> , and their <i>components</i>
		interpret information pertaining to mass, density and consistency devices found on drawings and specifications
		explain principles of operation for <i>mass, density</i> and <i>consistency devices</i>
		identify types of <i>mass, density</i> and <i>consistency devices</i> , and their components
		identify types of indicating devices and their components

B-8.04.02L	demonstrate knowledge of procedures used to repair and replace <i>mass, density</i> and <i>consistency devices</i> , and their <i>components</i>	identify tools and equipment used to repair and replace mass, density and consistency devices , and describe their applications and procedures for use
		describe procedures used to repair and replace <i>mass, density</i> and <i>consistency</i> <i>devices,</i> and their <i>components</i>
B-8.04.03L	demonstrate knowledge of procedures used to calibrate <i>mass, density</i> and <i>consistency devices</i> , and their components	describe procedures used to calibrate <i>mass, density</i> and <i>consistency devices</i> , and their components
		identify types of calibration instruments
		describe required <i>calibrating measuring parameters</i>

mass devices include: load cells, scales, strain gauges

density devices include: displacers, nuclear gauges, refractometers, Coriolis tubes, DP transmitters, tuning forks

consistency devices include: optical, rotary, blade, paddle, microwave, nuclear

components include: sensors, sensor boards, reflectors, lenses

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical

types of indicating devices include: chart recorders, digital displays, gauges

tools and equipment include: multimeters, certified measurement standards

types of calibration instruments include: multimeters, radiation survey meters, certified measurement standards

calibrating measuring parameters include: zero, span, range, repeatability, accuracy, specific gravity

TASK B-9 Installs and services process analyzers

TASK DESCRIPTOR

Process analyzers are used to measure and verify that processes are working correctly and following quality control and regulatory standards. Instrumentation and control technicians must be able to install, maintain, diagnose and repair process analyzers to maintain process quality and to protect the environment and personnel.

B-9.01 Installs process analyzers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
B-9.01.01P	select and use tools and equipment	tools and equipment are selected and used according to type of device		
B-9.01.02P	select analyzers	analyzers are selected according to process application, environmental conditions, manufacturers' specifications and engineered designs		
B-9.01.03P	select mounting location and hardware	mounting location and hardware are selected according to engineered designs and manufacturers' specifications		
B-9.01.04P	mount devices and connect to process using <i>connecting methods</i>	devices are mounted and connected to process using connecting methods according to industry practices, engineered designs, manufacturers' instructions and codes		
B-9.01.05P	terminate wiring to devices	wiring is terminated to devices according to industry practices, engineered designs, manufacturers' specifications and codes		
B-9.01.06P	configure and calibrate analyzer	analyzer is configured and calibrated according to manufacturers' instructions, process requirements and data sheets		
B-9.01.07P	install sampling systems and conditioners	sampling systems and conditioners are installed according to process requirements and manufacturers' specifications to ensure sample is representative of process being analyzed		
B-9.01.08P	verify operation of analyzer and sampling system within specified parameters	operation of analyzer and sampling system are verified within specified parameters by using known standards, sampling routines and procedures		

B-9.01.09P	develop or maintain sample phase	sample phase is developed or maintained according to analyzer specifications and physical characteristics of sample
B-9.01.10P	back up and document configuration and calibration settings	configuration and calibration settings are backed up and documented for future data recovery

connecting methods include: in-line, tubing, piping, wiring, in-situ, extractive, dilution extractive

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
B-9.01.01L	demonstrate knowledge of process analyzers, their components, purpose, applications, characteristics and operation	define terminology associated with process analyzers and their components
		identify <i>hazards</i> and describe safe work practices pertaining to process analyzers and their components
		interpret information pertaining to process analyzers and their components found on drawings and specifications
		explain principles of operation for process analyzers and their components
		identify types of process analyzers and their components, and describe their purpose, applications, characteristics and operation
		describe operating parameters of process analyzers
		describe accuracy and repeatability limitations of process analyzers
		describe possible contamination of process analyzers
B-9.01.02L	demonstrate knowledge of regulatory requirements pertaining to process analyzers and their components	interpret codes and regulations pertaining to process analyzers and their components
B-9.01.03L	demonstrate knowledge of process sample systems and conditioning	describe process sampling and its importance to process analysis
		describe procedures and equipment used to obtain and condition samples for process analysis
		describe how sample phase changes affect analyzer
B-9.01.04L	demonstrate knowledge of procedures used to install process analyzers and their components	identify tools and equipment used to install process analyzers and their components, and describe their applications and procedures for use

		identify calibration material
		identify required calibration parameters of process analyzers
B-9.01.05L	demonstrate knowledge of procedures used to calibrate process analyzers and their components	describe procedures used to calibrate process analyzers
		identify required installation conditions
		identify connection methods
		describe procedures used to select and install process analyzers and their components

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical *types of process analyzers* include: pH, oxidation reduction potential (ORP), conductivity, dissolved oxygen, mass and density, viscosity, humidity, turbidity, specific ion, nuclear (solids composition, liquids composition), chromatography, consistency, spectrographic, flue gas analyzers (continuous emissions monitoring system [CEMS] – opacity, S02, NOx, CO2), environmental (gas, noise, fluids, solids), X-ray, colour, tunable laser diodes

operating parameters include: sampling time, lag time, measurement limitations

codes and regulations include: environmental regulations, installation codes, nuclear safety regulations

process sampling includes: in-situ installations, extraction sample systems, grab samples, sample conditioning (temperature, pressure, filtering, coalescing), fast loop applications, stream switching, sample disposal

connecting methods include: in-line, tubing, piping, wiring, in-situ, extractive, dilution extractive *installation conditions* include: ambient conditions, contamination

calibration material include: inert gases, standard gases, water, oil, buffer solutions, certified mixtures

B-9.02 Maintains process analyzers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
B-9.02.01P	perform inspection	inspection is performed to detect irregularities					
B-9.02.02P	check function of analyzer and sampling system	function of analyzer and sampling system is checked to confirm proper operation					
B-9.02.03P	analyze operational history and trends data	operational history and trends data are verified using statistical analysis					
B-9.02.04P	clean devices	devices are cleaned using <i>cleaning</i> <i>materials</i> according to manufacturers' instructions					

B-9.02.05P	clear sample lines	sample lines are cleared by flushing using <i>purging methods</i> according to manufacturers' specifications
B-9.02.06P	verify calibration of devices	calibration is verified according to maintenance procedures
B-9.02.07P	calibrate device before returning to service	device is calibrated before returning to service according to manufacturers' instructions

irregularities include: leaks, incorrect sample flow and pressure, corrosion, incorrect phase of sample *cleaning materials* include: solvents, cleaning solutions, brushes, water, steam *purging methods* include: air, steam, nitrogen, solvents

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
B-9.02.01L	demonstrate knowledge of process analyzers, their components, purpose, applications, characteristics and operation	define terminology associated with process analyzers					
		identify hazards and describe safe work practices pertaining to process analyzers and their components					
		interpret information pertaining to process analyzers found on drawings and specifications					
		explain principles of operation for process analyzers and their components					
		identify <i>types of process analyzers,</i> their purpose, applications, characteristics, operation and components					
		describe operating parameters of process analyzers					
		describe accuracy and repeatability limitations of process analyzers					
		describe possible contamination of process analyzers					
B-9.02.02L	demonstrate knowledge of regulatory requirements pertaining to process analyzers and their components	interpret codes and regulations pertaining to process analyzers and their components					
B-9.02.03L	demonstrate knowledge of process sample systems and conditioning	describe process sampling and its importance to process analysis					
		describe procedures and equipment used to obtain and condition samples for process analysis					
		describe how sample phase changes affect analyzer					

B-9.02.04L	demonstrate knowledge of procedures used to maintain process analyzers and their components	identify tools and equipment used to maintain process analyzers and their components, and describe their applications and procedures for use		
		describe procedures used to maintain process analyzers and their components		
		identify <i>cleaning materials</i> used to clean devices		
B-9.02.05L	demonstrate knowledge of procedures used to calibrate process analyzers and their components	describe procedures used to calibrate process analyzers and their components		
		identify required calibration parameters of process analyzers		
		identify calibration material		

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical

types of process analyzers include: pH, ORP, conductivity, dissolved oxygen, mass and density, viscosity, humidity, turbidity, specific ion, nuclear (solids composition, liquids composition), chromatography, consistency, spectrographic, flue gas analyzers (CEMS – opacity, S02, NOx, CO2), environmental (gas, noise, fluids, solids), X-ray, colour, tunable laser diodes

operating parameters include: sampling time, lag time, measurement limitations

codes and regulations include: environmental regulations, installation codes, nuclear safety regulations *process sampling* includes: in-situ installations, extraction sample systems, grab samples, sample conditioning (temperature, pressure, filtering, coalescing), fast loop applications, stream switching, sample disposal

cleaning materials include: solvents, cleaning solutions, brushes, water, steam *calibration material* include: inert gases, standard gases, water, oil, buffer solutions, certified mixtures

B-9.03 Diagnoses process analyzers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
B-9.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to manufacturers' instructions				
B-9.03.02P	perform inspection and check function of process analyzer	inspection to detect <i>faults</i> is performed				
B-9.03.03P	perform as-found calibration check	as-found calibration check is performed				

B-9.03.04P	select and use <i>diagnostic materials</i>	<i>diagnostic materials</i> are selected and used according to process requirements and manufacturers' instructions
B-9.03.05P	determine probable root cause and location of <i>faults</i> and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified

diagnostic tools and equipment include: multimeters, software, internal diagnostics, portable analyzers *faults* include: leaks, dirty probes, physical damage, poor electrical connections, improper readings, software faults, temperature control, dirty optics, faulty sensors, inadequate power, failed components, sample phase

diagnostic materials include: buffers, certified mixtures

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
B-9.03.01L	demonstrate knowledge of process analyzers, their components, purpose, applications, characteristics and operation	define terminology associated with process analyzers and their components					
		identify hazards and describe safe work practices pertaining to process analyzers and their components					
		interpret information pertaining to process analyzers found on drawings and specifications					
		explain principles of operation for process analyzers and their components					
		identify types of process analyzers , their components, purpose, applications, characteristics and operation					
		describe operating parameters of process analyzers					
		describe accuracy and repeatability limitations of process analyzers					
		describe possible contamination of process analyzers					
B-9.03.02L	demonstrate knowledge of regulatory requirements pertaining to process analyzers and their components	interpret codes and regulations pertaining to process analyzers and their components					
B-9.03.03L	demonstrate knowledge of process sample systems and conditioning	describe process sampling and its importance to process analysis					
		describe procedures and equipment used to obtain and condition samples for process analysis					
		describe how sample phase changes affect process analyzers					

B-9.03.04L	demonstrate knowledge of procedures used to diagnose process analyzers and their components	identify <i>diagnostic tools and equipment</i> used to diagnose process analyzers and their components, and describe their applications and procedures for use
		describe procedures used to diagnose process analyzers and their components
		identify <i>faults</i> with process analyzers and their components

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical *types of process analyzers* include: pH, ORP, conductivity, dissolved oxygen, mass and density, viscosity, humidity, turbidity, specific ion, nuclear (solids composition, liquids composition), chromatography, consistency, spectrographic, flue gas analyzers (CEMS – opacity, S02, NOx, CO2), environmental (gas, noise, fluids, solids), X-ray, colour, tunable laser diodes

operating parameters include: sampling time, lag time, measurement limitations

codes and regulations include: environmental regulations, installation codes, nuclear safety regulations *process sampling* includes: in-situ installations, extraction sample systems, grab samples, sample conditioning (temperature, pressure, filtering, coalescing), fast loop applications, stream switching, sample disposal

diagnostic tools and equipment include: multimeters, software, internal diagnostics, portable analyzers *faults* include: leaks, dirty probes, physical damage, poor electrical connections, improper readings, software faults, temperature control, dirty optics, faulty sensors, inadequate power, failed components, sample phase

B-9.04 Repairs process analyzers

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
B-9.04.01P	select and use <i>tools and equipment</i>	tools and equipment are selected and used according to manufacturers' specifications					
B-9.04.02P	replace components	components are replaced					
B-9.04.03P	clean components	components are cleaned according to process requirements and manufacturers' instructions					
B-9.04.04P	rebuild <i>devices</i>	<i>devices</i> are rebuilt according to manufacturers' instructions					

B-9.04.05P	repair sampling system faults	sampling system faults are repaired
B-9.04.06P	verify operation and calibration before returning to service	operation and calibration are verified before returning to service using buffers, certified mixture and lab sample

tools and equipment include: multimeters, oscilloscopes

devices include: regulators, solenoids, valves

sampling system faults include: plugged sampling lines, faulty solenoids, clogged filters, sticking and passing valves, faulty regulators, pump failure

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
B-9.04.01L	demonstrate knowledge of process analyzers, their components, purpose, applications, characteristics and operation	define terminology associated with process analyzers and their components			
		identify hazards and describe safe work practices pertaining to process analyzers and their components			
		interpret information pertaining to process analyzers found on drawings and specifications			
		explain principles of operation for process analyzers and their components			
		identify types of process analyzers , their components, purpose, applications, characteristics and operation			
		describe operating parameters of process analyzers			
		describe accuracy and repeatability limitations of analyzer			
		describe possible contamination of analyzers			
B-9.04.02L	demonstrate knowledge of regulatory requirements pertaining to process analyzers and their components	interpret codes and regulations pertaining to process analyzers and their components			
B-9.04.03L	demonstrate knowledge of process sample systems and conditioning	describe process sampling and its importance to process analysis			
		describe procedures and equipment used to obtain and condition samples for process analysis			
		describe how sample phase changes affect process analyzers			

B-9.04.04L	demonstrate knowledge of procedures used to repair, replace and rebuild process analyzers, their components and <i>devices</i>	identify tools and equipment used to repair, replace and rebuild process analyzers, their components and devices , and describe their applications and procedures for use
		describe procedures used to repair, replace and rebuild process analyzers, their components and <i>devices</i>
B-9.04.05L	demonstrate knowledge of procedures used to calibrate process analyzers and their components	describe procedures used to calibrate process analyzers and their components
		identify required calibration parameters of analyzers
		identify calibration material

hazards include: chemical, temperature, pressure, radiation, biological, electrical, mechanical

types of process analyzers include: pH, ORP, conductivity, dissolved oxygen, mass and density, viscosity, humidity, turbidity, specific ion, nuclear (solids composition, liquids composition), chromatography, consistency, spectrographic, flue gas analyzers (CEMS – opacity, S02, NOx, CO2), environmental (gas, noise, fluids, solids), X-ray, colour, tunable laser diodes

operating parameters include: sampling time, lag time, measurement limitations

codes and regulations include: environmental regulations, installation codes, nuclear safety regulations

process sampling includes: in-situ installations, extraction sample systems, grab samples, sample conditioning (temperature, pressure, filtering, coalescing), fast loop applications, stream switching, sample disposal

calibration material include: inert gases, standard gases, water, oil, buffer solutions, certified mixtures

TASK B-10 Installs and services multiple variable computing devices

TASK DESCRIPTOR

Instrumentation and control technicians must be able to install, maintain, diagnose and repair multiple variable computing devices to provide accurate measurements where a higher degree of accuracy is required.

Multiple variable computing devices are stand-alone systems or are integral to measuring devices, SCADA and control systems. They bring in multiple inputs and use these to perform calculations that compensate for variables such as temperature and pressure when calculating flow or level. There are some devices including flow computers that have many configuration parameters such as product composition and primary flow element specifications.

B-10.01 Installs multiple variable computing devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
B-10.01.01P	select and use tools and equipment	tools and equipment are selected and used according to type of device
B-10.01.02P	select device	device is selected according to process applications, environmental conditions, engineered designs and manufacturers' specifications
B-10.01.03P	select mounting location and hardware	mounting location and hardware are selected according to engineered designs and manufacturers' specifications
B-10.01.04P	terminate wiring to device	wiring is terminated to device according to manufacturers' specifications and engineered designs
B-10.01.05P	connect tubing to device	tubing is connected to device according to manufacturers' specifications and engineered designs
B-10.01.06P	configure and calibrate device	device is configured and calibrated according to manufacturers' specifications, application and data sheets
B-10.01.07P	verify operation of device	device operation is verified within specified parameters by using test equipment and procedures
B-10.01.08P	back up and document configuration and calibration settings for future data recovery	configuration and calibration settings are backed up and documented for future data recovery

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
B-10.01.01L	demonstrate knowledge of multiple variable computing devices, their components and operation	define terminology associated with multiple variable computing devices and their <i>components</i>			
		identify hazards and describe safe work practices pertaining to multiple variable computing devices and their <i>components</i>			
		interpret information pertaining to multiple variable computing devices and their <i>components</i> found on drawings and specifications			
		identify multiple variable computing device <i>components</i> and describe their purpose and operation			
		identify types of multiple variable computing devices and their components , and describe their protocols, features and limitations			
		describe operating parameters and configurations of multiple variable computing devices and their components			
		identify <i>connection methods</i> for multiple variable computing devices and their <i>components</i>			
		identify potential causes of interference			
		describe grounding methods			
		describe interaction of various loops			
		describe accuracy and repeatability limitations of multiple variable computing devices			
		describe required configuration parameters of multiple variable computing devices			
		explain compensation algorithms combining pressure, temperature, flow and level			
B-10.01.02L	demonstrate knowledge of regulatory requirements pertaining to multiple variable computing devices and their <i>components</i>	interpret codes and regulations pertaining to multiple variable computing devices and their components			
B-10.01.03L	demonstrate knowledge of procedures used to install multiple variable computing devices and their <i>components</i>	identify tools and equipment used to install multiple variable computing devices and their components , and describe their applications and procedures for use			
		describe procedures used to select and install multiple variable computing devices and their components			

		describe <i>environmental conditions</i> to address when installing variable computing devices and their <i>components</i>
B-10.01.04L	demonstrate knowledge of procedures used to calibrate multiple variable computing devices and their <i>components</i>	describe procedures used to calibrate multiple variable computing devices and their <i>components</i>
		identify types of calibration equipment
		interpret accuracy of <i>calibration</i> <i>equipment</i> and multiple variable computing devices

components include: circuit boards, power supplies, displays

types of multiple variable computing devices include: flow computers, mass flow computers, density measurement

connection methods include: hardwired, wireless

environmental conditions include: ambient conditions, contamination

calibration equipment includes: pressure, multimeters, software, temperature

B-10.02 Maintains multiple variable computing devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
B-10.02.01P	perform preliminary backup of system data	system data is backed up prior to maintenance
B-10.02.02P	calibrate device during routine maintenance	devices are calibrated during routine maintenance according to manufacturers' specifications, regulatory requirements, process requirements and data sheets
B-10.02.03P	upgrade software and firmware	software and firmware are upgraded for <i>reasons</i>
B-10.02.04P	verify configuration of device	device configuration is verified according to applicable engineered and jurisdictional standards
B-10.02.05P	document configurations and calibrations	configurations and calibrations are documented to comply with regulatory requirements and to facilitate maintenance activities

reasons include: avoiding obsolescence, achieving optimal equipment efficiency and accuracy, meeting jurisdictional standards, following manufacturers' specifications

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
B-10.02.01L	demonstrate knowledge of multiple variable computing devices, their <i>components</i> and operation	define terminology associated with multiple variable computing devices and their <i>components</i>
		identify hazards and describe safe work practices pertaining to multiple variable computing devices and their <i>components</i>
		interpret information pertaining to multiple variable computing devices and their <i>components</i> found on drawings and specifications
		identify multiple variable computing device <i>components</i> and describe their purpose and operation
		identify <i>types of multiple variable</i> <i>computing devices</i> and their <i>components</i> , and describe their protocols, features and limitations
		describe operating parameters and configurations of multiple variable computing devices and their <i>components</i>
		identify <i>connection methods</i> for multiple variable computing devices and their <i>components</i>
		identify potential causes of interference
		describe grounding methods
		describe interaction of various loops
		describe accuracy and repeatability limitations of multiple variable computing devices
		describe required configuration parameters of multiple variable computing devices
		explain compensation algorithms combining pressure, temperature, flow and level
B-10.02.02L	demonstrate knowledge of regulatory requirements pertaining to multiple variable computing devices and their <i>components</i>	interpret codes and regulations pertaining to multiple variable computing devices and their <i>components</i>

B-10.02.03L	demonstrate knowledge of procedures used to maintain multiple variable computing devices and their <i>components</i>	identify tools and equipment used to maintain multiple variable computing devices and their <i>components</i> , and describe their applications and procedures for use
		describe backup procedures before maintaining multiple variable computing devices and their <i>components</i>
		describe procedures used to maintain multiple variable computing devices and their <i>components</i>
		describe procedures used to document configurations and calibrations of multiple variable computing devices and their <i>components</i>
B-10.02.04L	demonstrate knowledge of procedures used to calibrate multiple variable computing devices and their <i>components</i>	describe procedures used to calibrate multiple variable computing devices and their <i>components</i>
		identify types of <i>calibration equipment</i>
		interpret accuracy of <i>calibration</i> <i>equipment</i> and multiple variable computing devices

components include: circuit boards, power supplies, displays

types of multiple variable computing devices include: flow computers, mass flow computers, density measurement

connection methods include: hardwired, wireless

calibration equipment includes: pressure, multimeters, software, temperature

B-10.03	Diagnoses multiple variable computing devices
---------	---

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
B-10.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to manufacturers' specifications				
B-10.03.02P	perform inspection	inspection is performed to detect <i>faults</i>				
B-10.03.03P	check function of device	function of device is checked to identify problems				

B-10.03.04P	perform as-found calibration check	as-found calibration check is performed
B-10.03.05P	determine probable root cause and location of <i>faults</i> and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified

diagnostic tools and equipment include: multimeters, software, hand-held configurators *faults* include: faulty electrical connections, condition of primary elements, leaks *problems* include: loss of power and communication, erroneous results

	KN	OWLEDGE
	Learning Outcomes	Learning Objectives
B-10.03.01L	demonstrate knowledge of multiple variable computing devices, their <i>components</i> and operation	define terminology associated with multiple variable computing devices and their <i>components</i>
		identify hazards and describe safe work practices pertaining to multiple variable computing devices and their <i>components</i>
		interpret information pertaining to multiple variable computing devices and their <i>components</i> found on drawings and specifications
		identify multiple variable computing device <i>components</i> and describe their purpose and operation
		identify types of multiple variable computing devices and their components , and describe their protocols, features and limitations
		describe operating parameters and configurations of multiple variable computing devices and their <i>components</i>
		identify <i>connection methods</i> for multiple variable computing devices and their <i>components</i>
		identify potential causes of interference
		describe grounding methods
		describe interaction of various loops
		describe accuracy and repeatability limitations of multiple variable computing devices
		describe required configuration parameters of multiple variable computing devices
		explain compensation algorithms combining pressure, temperature, flow and level

demonstrate knowledge of regulatory requirements pertaining to multiple variable computing devices and their <i>components</i>	interpret codes and regulations pertaining to multiple variable computing devices and their <i>components</i>
demonstrate knowledge of procedures used to diagnose multiple variable computing devices and their <i>components</i>	identify <i>diagnostic tools and equipment</i> used to diagnose multiple variable computing devices and their <i>components</i> , and describe their applications and procedures for use
	describe procedures used to diagnose multiple variable computing devices and their <i>components</i>
demonstrate knowledge of procedures used to calibrate multiple variable computing devices and their components	describe procedures used to calibrate multiple variable computing devices and their <i>components</i>
	identify types of <i>calibration equipment</i>
	interpret accuracy of <i>calibration</i> <i>equipment</i> and multiple variable computing devices
	requirements pertaining to multiple variable computing devices and their <i>components</i> demonstrate knowledge of procedures used to diagnose multiple variable computing devices and their <i>components</i> demonstrate knowledge of procedures used to calibrate multiple variable

components include: circuit boards, power supplies, displays

types of multiple variable computing devices include: flow computers, mass flow computers, density measurement

connection methods include: hardwired, wireless

diagnostic tools and equipment include: multimeters, software, hand-held configurators *calibration equipment* includes: pressure, multimeters, software, temperature

B-10.04 Repairs multiple variable computing devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
B-10.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to manufacturers' specifications					
B-10.04.02P	replace <i>components</i>	components are replaced					
B-10.04.03P	confirm restored configurations	restored configurations are confirmed					

B-10.04.04P	verify calibration of multiple input signals	calibration of multiple input signals are verified according to manufacturers' specifications
B-10.04.05P	verify operation and calibration before returning to service	operation and calibration are verified before returning to service

tools and equipment include: configurators, software *components* include: circuit boards, power supplies, displays

	KN	OWLEDGE
	Learning Outcomes	Learning Objectives
B-10.04.01L	demonstrate knowledge of multiple variable computing devices, their <i>components</i> and operation	define terminology associated with multiple variable computing devices and their <i>components</i>
		identify hazards and describe safe work practices pertaining to multiple variable computing devices and their components
		interpret information pertaining to multiple variable computing devices and their <i>components</i> found on drawings and specifications
		identify multiple variable computing device <i>components</i> and describe their purpose and operation
		identify types of multiple variable computing devices and components , and describe their protocols, features and limitations
		describe operating parameters and configurations of multiple variable computing devices and their component .
		identify <i>connection methods</i> for multiple variable computing devices and their <i>components</i>
		identify potential causes of interference
		describe grounding methods
		describe interaction of various loops
		describe operational theory of multiple variable computing devices
		describe accuracy and repeatability limitations of multiple variable computing devices
		describe required configuration parameters of multiple variable computing devices

		explain compensation algorithms combining pressure, temperature, flow and level
B-10.04.02L	demonstrate knowledge of regulatory requirements pertaining to multiple variable computing devices and their <i>components</i>	interpret codes and regulations pertaining to multiple variable computing devices and their <i>components</i>
B-10.04.03L	demonstrate knowledge of procedures used to repair and replace multiple variable computing devices and their <i>components</i>	identify <i>tools and equipment</i> used to repair and replace multiple variable computing devices and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to repair and replace multiple variable computing devices and their <i>components</i>
B-10.04.04L	demonstrate knowledge of procedures used to calibrate multiple variable computing devices and their <i>components</i>	describe procedures used to calibrate multiple variable computing devices and their <i>components</i>
		identify types of <i>calibration equipment</i>
		interpret accuracy of <i>calibration</i> <i>equipment</i> and multiple variable computing devices

components include: circuit boards, power supplies, displays

types of multiple variable computing devices include: flow computers, mass flow computers, density measurement

connection methods include: hardwired, wireless

tools and equipment include: configurators, software

calibration equipment includes: pressure, multimeters, software, temperature

MAJOR WORK ACTIVITY C

Installs and services safety and security systems and devices

TASK C-11 Installs and services safety systems and devices

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair safety systems and devices. Safety systems and devices are used to detect and react to hazards such as gas leaks, fires and spills. Reactions may range from alarms to plant shutdowns and evacuations. The proper installation, calibration and maintenance of these systems are imperative to the safety of the personnel, process operation, equipment and environment.

C-11.01 Installs safety systems and devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
C-11.01.01P	identify hazard to be detected	hazard to be detected is identified					
C-11.01.02P	select type of safety system	<i>type of safety system</i> is selected according to process applications, industry standards, codes and practices					
C-11.01.03P	determine location for safety system and devices	location for safety system and devices is determined according to manufacturers' instructions, industry standards and codes					
C-11.01.04P	select and use tools and equipment	tools and equipment are selected and used according to industry standards and practices					
C-11.01.05P	select and mount device	device is selected and mounted according to industry practices, engineered designs, manufacturers' specifications and codes					
C-11.01.06P	configure safety system	safety system is configured according to industry standards, codes and practices					
C-11.01.07P	calibrate safety system components	safety system components are calibrated using calibration instruments					

C-11.01.08P	verify operation of safety systems, alarms and devices	operation of safety systems, alarms and devices are within specified process parameters by using test equipment and procedures			
C-11.01.09P	back up and document configuration and calibration settings	configuration and calibration settings are backed up and documented for future data recovery			

types of safety systems include: gas detection, heat detection, fire detection, smoke detection, spill detection, leak detection, emission monitoring equipment, water quality, vibration, overspeed, burner management system (BMS), radiation, pressure

	KNOW	/LEDGE			
	Learning Outcomes	Learning Objectives			
C-11.01.01L	demonstrate knowledge of safety systems and devices, their components and operation	define terminology associated with safety systems and devices, and their components			
		interpret information pertaining to safety systems found on drawings and specifications			
		identify types of safety systems and devices, and describe their components, characteristics and applications			
		identify types of <i>hazardous materials</i> and impact on area hazard classification			
		describe acceptable limits according to codes			
		describe accuracy limitations of safety systems and devices			
		describe interaction between safety systems and processes			
C-11.01.02L	demonstrate knowledge of regulatory requirements pertaining to safety systems and devices, and their components	identify codes and regulations pertaining to safety systems and devices, and their components			
C-11.01.03L	demonstrate knowledge of procedures used to install and configure safety systems and devices, and their components	describe procedures used to select and install safety systems and devices, and their components			
		describe procedures used to configure safety systems and devices, and their components			
		identify hazards and describe safe work practices pertaining to safety systems and devices, and their components			

		identify tools and equipment used to install safety systems and devices, and describe their applications and procedures for use
		validate certification requirements for calibration equipment
		describe procedures used to back up and document configuration and calibration settings
C-11.01.04L	demonstrate knowledge of procedures used to calibrate safety systems and their devices	describe procedures used to calibrate safety systems and their devices
		identify types of calibration instruments
		identify required calibrating parameters of safety systems
		validate that certified process standards are being used in calibration and tests

types of safety systems include: gas detection, heat detection, fire detection, smoke detection, spill detection, leak detection, emission monitoring equipment, water quality, vibration, overspeed, BMS, radiation, pressure

hazardous materials include: gases (chlorine, hydrogen sulfide [H₂S], methane, ammonia), liquids (sulfuric acid, sodium hydroxide), solids (radioactive materials)

types of calibration instruments include: multimeters, certified calibration gases, configuration software

C-11.02 Maintains safety systems and devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
C-11.02.01P	select and use <i>test equipment and</i> <i>materials</i>	test equipment and materials are selected and used to verify protection system or device					
C-11.02.02P	verify systems for proper operation using verification methods	systems are verified for proper operation according to jurisdictional regulations and manufacturers' specifications					
C-11.02.03P	calibrate safety system components	safety system components are calibrated using calibration instruments					
C-11.02.04P	perform routine function testing of entire safety loops	routine function testing of entire safety loops are performed according to regulatory requirements					

test equipment and materials include: ultraviolet/infrared (UV/IR) source, calibration gases, filters, smoke generators, multimeters, dosimeters

verification methods include: bump testing, dry run, sample gas application

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
C-11.02.01L	demonstrate knowledge of safety systems and devices, their components and operation	define terminology associated with safety systems and devices, and their components						
		identify codes and regulations pertaining to safety systems and devices, and their components						
		interpret information pertaining to safety systems found on drawings and specifications						
		identify <i>types of safety systems</i> and describe their components, characteristics and applications						
		identify types of <i>hazardous materials</i> and impact on area hazard classification						
		describe acceptable limits according to codes for <i>conditions</i>						
		describe accuracy limitations of safety systems						
		describe interaction between safety systems and processes						
C-11.02.02L	demonstrate knowledge of regulatory requirements pertaining to safety systems and devices, and their components	identify applicable codes and regulations pertaining to safety systems and devices, and their components						
C-11.02.03L	demonstrate knowledge of procedures used to maintain safety systems and devices, and their components	describe procedures used to maintain and troubleshoot safety systems and devices, and their components						
		identify hazards and describe safe work practices pertaining to safety systems and devices, and their components						
		identify tools and equipment used to maintain safety systems and describe their applications and procedures for use						
		describe shutdown procedures, actions and implications						
		validate certification requirements for calibration equipment						
		describe traceable process standards used in calibration and tests						
		identify types of test equipment and materials						

C-11.02.04L	demonstrate knowledge of procedures used to calibrate safety systems and devices, and their components	describe procedures used to calibrate safety systems, devices, and their components
		identify types of calibration instruments
		identify required calibrating parameters of safety systems

types of safety systems include: gas detection, heat detection, fire detection, smoke detection, spill detection, leak detection, emission monitoring equipment, water quality, vibration, overspeed, BMS, radiation, pressure

hazardous materials include: gases (chlorine, H₂S and methane, ammonia); liquids (sulfuric acid, sodium hydroxide); solids (radioactive materials)

conditions include: oxygen levels, H₂S levels, radiation levels, water quality

test equipment and materials include: UV/IR source, calibration gases, filters, smoke generators, multimeters, dosimeters

types of calibration instruments include: multimeters, certified calibration gases, configuration software

C-11.03 Diagnoses safety systems and devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
C-11.03.01P	select and use <i>test equipment and materials</i>	<i>test equipment and materials</i> are selected and used according to regulatory requirements
C-11.03.02P	verify operation of safety systems and devices are within specified parameters	operation of safety systems and devices is verified that they are within specified parameters by using test equipment, documentation and procedures
C-11.03.03P	verify documentation, manufacturers' specifications and historical data to assist in determining probable root cause	documentation, manufacturers' specifications and historical data are verified to assist in determining probable root cause
C-11.03.04P	analyze process information	process information is analyzed
C-11.03.05P	perform as-found recorded calibration check	as-found recorded calibration check is performed
C-11.03.06P	identify probable root cause and location of faults	probable root cause and location of faults are identified
C-11.03.07P	determine steps required to address deficiencies	steps required to address deficiencies based on results of root cause are determined

test equipment and materials include: UV/IR source, calibration gases, filters, smoke generators, multimeters, dosimeters

process information includes: trends and operator logs

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
C-11.03.01L	demonstrate knowledge of safety systems and devices, their components and operation	define terminology associated with safety systems						
		interpret information pertaining to safety systems found on drawings and specifications						
		identify types of safety systems and describe their components, characteristics and applications						
		identify types of <i>hazardous materials</i> and their impact on area hazard classification						
		describe acceptable limits according to codes for <i>conditions</i>						
		describe accuracy limitations of safety systems						
		describe interaction between safety systems and processes						
C-11.03.02L	demonstrate knowledge of regulatory requirements pertaining to safety systems and devices, and their components	interpret codes and regulations pertaining to safety systems and devices, and their components						
C-11.03.03L	demonstrate knowledge of procedures used to diagnose safety systems and devices and their components	describe procedures used to diagnose safety systems and devices and their components						
		identify test equipment and materials used to diagnose safety systems and describe their applications and procedures for use						
		identify hazards and describe safe work practices pertaining to safety systems						
C-11.03.04L	demonstrate knowledge of procedures used to calibrate safety systems and devices and their components	describe procedures used to calibrate safety systems, devices and their components						
		identify types of calibration instruments						
		identify required calibrating parameters of safety systems						

describe traceable process standards used in calibration and tests
describe certification requirements for calibration equipment

types of safety systems include: gas detection, heat detection, fire detection, smoke detection, spill detection, leak detection, emission monitoring equipment, water quality, vibration, overspeed, BMS, radiation

hazardous materials include: gases (chlorine, H₂S and methane, ammonia); liquids (sulfuric acid, sodium hydroxide); solids (radioactive materials)

conditions include: oxygen levels, H₂S levels, radiation levels, water quality

test equipment and materials include: UV/IR source, calibration gases, filters, smoke generators, multimeters, dosimeters

types of calibration instruments include: multimeters, calibrated gases, configuration software

C-11.04 Repairs safety systems and devices

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	S	KILLS
	Performance Criteria	Evidence of Attainment
C-11.04.01P	select and use tools, equipment and materials	tools, equipment and materials are selected and used according to industry standards and practices
C-11.04.02P	select replacement components	replacement components are selected according to manufacturers' specifications
C-11.04.03P	replace faulty components	faulty components are replaced according to manufacturers' specifications
C-11.04.04P	calibrate and verify operation of safety systems and devices	operation of safety systems and devices are calibrated and verified according to manufacturers' specified parameters by using test equipment and procedures

RANGE OF VARIABLES

tools, equipment and materials include: multimeters, calibration gases, smoke generators

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
C-11.04.01L	demonstrate knowledge of safety systems and devices, their components and operation	define terminology associated with safety systems
		interpret information pertaining to safety systems found on drawings and specifications
		identify <i>types of safety systems</i> and describe their components, characteristics and applications
		identify types of <i>hazardous materials</i> and impact on area hazard classification
		describe acceptable limits according to codes for <i>conditions</i>
		describe accuracy limitations of safety systems
		describe interaction between safety systems and processes
C-11.04.02L	demonstrate knowledge of regulatory requirements pertaining to safety systems and devices, and their components	interpret codes and regulations pertaining to safety systems and devices, and their components
C-11.04.03L	demonstrate knowledge of procedures used to repair safety systems and devices and their components	describe procedures used to repair safety systems and devices and their components
		identify <i>tools, equipment and materials</i> used to repair safety systems and describe their applications and procedures for use
		identify hazards and describe safe work practices pertaining to safety systems
C-11.04.04L	demonstrate knowledge of procedures used to calibrate safety systems and devices and their components	describe procedures used to calibrate safety systems and their components
		identify types of calibration instruments
		identify required calibrating parameters of safety systems
		describe traceable process standards used in calibration and tests
		describe certification requirements for calibration equipment

types of safety systems include: gas detection, heat detection, fire detection, smoke detection, spill detection, leak detection, emission monitoring equipment, water quality, vibration, overspeed, BMS, radiation

hazardous materials include: gases (chlorine, H₂S and methane, ammonia); liquids (sulfuric acid, sodium hydroxide); solids (radioactive materials)

conditions include: oxygen levels, H₂S levels, radiation levels, water quality

tools, equipment and materials include: multimeters, calibration gases, smoke generators *types of calibration instruments* include: multimeters, configuration software

TASK C-12 Installs and services facility security systems (NOT COMMON CORE)

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair facility security systems. Security systems are used to monitor and alarm security conditions such as intruder alerts. The proper installation and maintenance of these systems are imperative to the safety of facilities and personnel.

C-12.01 Installs facility security systems (NOT COMMON CORE)

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	no	yes	yes	yes	no	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
C-12.01.01P	select type of security system	type of <i>security system</i> is selected				
C-12.01.02P	determine location for security system	location for security system is determined according to factors				
C-12.01.03P	select and use tools and equipment	tools and equipment are selected and used according to industry standards and practices				
C-12.01.04P	select mounting hardware for <i>security</i> system and devices	mounting hardware for <i>security system</i> and devices is selected				
C-12.01.05P	mount and connect <i>security system</i> <i>components</i>	security system components are mounted and connected according to industry practices, manufacturers' specifications, engineered designs and codes				
C-12.01.06P	configure and program security system	security system is configured and programmed according to manufacturers' specifications and engineered designs				

C-12.01.07P	verify operation of <i>security system</i> within specified parameters	operation of security system within specified parameters is verified by using test equipment and procedures
C-12.01.08P	back up and document system configuration	configuration settings are backed up and documented for future data recovery

security systems include: closed-circuit television (CCTV), radio frequency identification (RFID) scanner, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection

factors include: environmental conditions, ambient temperature, engineered designs, regulations *components* include: cables, cameras, network switches, gateways, media converters, wireless devices

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
C-12.01.01L	demonstrate knowledge of <i>security</i> <i>systems</i> , their <i>components</i> and operation	define terminology associated with security systems and their components
		interpret information pertaining to security systems found on drawings and specifications
		identify types of <i>security systems</i> and their <i>components</i> , and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to security systems and their components
C-12.01.02L	demonstrate knowledge of regulatory requirements pertaining to <i>security</i> <i>systems</i> and devices, and their <i>components</i>	interpret codes and regulations pertaining to security systems and devices, and their components
C-12.01.03L	demonstrate knowledge of procedures used to install and configure <i>security</i> <i>systems</i> and devices, and their <i>components</i>	describe procedures used to install security systems and devices, and their components
		describe procedures used to configure security systems and their components
		identify tools and equipment used to install <i>security systems</i> and their <i>components</i> , and describe their applications and procedures for use
		describe installation requirements

security systems include: CCTV, RFID scanner, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection *components* include: cables, cameras, network switches, gateways, media converters, wireless devices *installation requirements* include: ambient temperature, location, environmental conditions

C-12.02 Maintains facility security systems (NOT COMMON CORE)

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	no	yes	yes	yes	no	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
C-12.02.01P	select and use tools and equipment	tools and equipment are selected and used according to industry standards and practices					
C-12.02.02P	inspect security system components	security system components are inspected					
C-12.02.03P	verify security system operation	<i>security system</i> operation is verified according to jurisdictional regulations and manufacturers' specifications					
C-12.02.04P	clean security system components	security system components are cleaned					

RANGE OF VARIABLES

security systems include: CCTV, RFID scanners, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection *components* include: cables, cameras, network switches, gateways, media converters, wireless devices

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
C-12.02.01L	demonstrate knowledge of <i>security systems</i> , their <i>components</i> and operation	define terminology associated with security systems and their components			
		interpret information pertaining to security systems found on drawings and specifications			
		identify types of <i>security systems</i> and their <i>components</i> and describe their characteristics and applications			
		identify hazards and describe safe work practices pertaining to security systems and their components			

C-12.02.02L	demonstrate knowledge of regulatory requirements pertaining to <i>security systems</i> and their <i>components</i>	interpret codes and regulations pertaining to security systems and their components
C-12.02.03L	demonstrate knowledge of procedures used to maintain <i>security systems</i> and their <i>components</i>	describe procedures used to maintain security systems and their components
		identify tools and equipment used to maintain <i>security systems</i> and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to clean security system components

security systems include: CCTV, RFID scanners, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection *components* include: cables, cameras, network switches, gateways, media converters, wireless devices

C-12.03	Diagnoses facility security systems (NOT COMMON CORE)
---------	---

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	no	yes	yes	yes	no	NV	NV	NV

	SKILLS		
	Performance Criteria	Evidence of Attainment	
C-12.03.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices	
C-12.03.02P	select and use diagnostic software to determine system faults	diagnostic software is selected and used to determine system faults	
C-12.03.03P	determine probable root cause and location of faults	probable root cause and location of faults are determined	
C-12.03.04P	determine steps required to address <i>deficiencies</i>	steps required to address <i>deficiencies</i> based on results of probable root cause analysis are determined	

RANGE OF VARIABLES

tools and equipment include: multimeters, hand-held monitors *deficiencies* include: faulty power supply, damaged camera lens

	KNOWLEDGE			
	Learning Outcomes	Learning Objectives		
C-12.03.01L	demonstrate knowledge of <i>security systems</i> , their <i>components</i> and operation	define terminology associated with security systems and their components		
		interpret information pertaining to security systems found on drawings and specifications		
		identify types of <i>security systems</i> and their <i>components</i> , and describe their characteristics and applications		
		identify hazards and describe safe work practices pertaining to security systems and their components		
C-12.03.02L	demonstrate knowledge of regulatory requirements pertaining to <i>security systems</i> and their <i>components</i>	interpret codes and regulations pertaining to <i>security systems</i> and their <i>components</i>		
C-12.03.03L	demonstrate knowledge of procedures used to diagnose <i>security systems</i> and their <i>components</i>	describe procedures used to diagnose security systems and their components		
		identify tools and equipment used to diagnose security systems and their components , and describe their applications and procedures for use		

security systems include: CCTV, RFID scanners, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection *components* include: cables, cameras, network switches, gateways, media converters, wireless devices *tools and equipment* include: multimeters, hand-held monitors

C-12.04 Repairs facility security systems (NOT COMMON CORE)

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	no	yes	yes	yes	no	NV	NV	NV

	SKILLS		
	Performance Criteria	Evidence of Attainment	
C-12.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices	
C-12.04.02P	select replacement <i>components</i>	replacement <i>components</i> are selected according to manufacturers' specifications	

C-12.04.03P	replace faulty <i>components</i> and devices	faulty components and devices are replaced according to manufacturers' specifications and procedures
C-12.04.04P	verify operation of <i>security systems</i> and devices are within specified parameters	operation of security systems and devices are verified to be within specified parameters by using test equipment and manufacturers' procedures

tools and equipment include: multimeters, hand-held monitors

components include: cables, cameras, network switches, gateways, media converters, wireless devices *security systems* include: CCTV, RFID scanners, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection

	KNOWLEDGE			
	Learning Outcomes	Learning Objectives		
C-12.04.01L	demonstrate knowledge of <i>security systems</i> , their <i>components</i> and operation	define terminology associated with security systems		
		interpret codes and regulations pertaining to <i>security systems</i>		
		interpret information pertaining to security systems found on drawings and specifications		
		identify types of <i>security systems</i> and their <i>components</i> , and describe their characteristics and applications		
		identify hazards and describe safe work practices pertaining to security systems and their components		
C-12.04.02L	demonstrate knowledge of regulatory requirements pertaining to <i>security systems</i> and their <i>components</i>	interpret codes and regulations pertaining to <i>security systems</i> and their <i>components</i>		
C-12.04.03L	demonstrate knowledge of procedures used to repair <i>security systems</i> and their <i>components</i>	describe procedures used to repair security systems and their components		
		identify tools and equipment used to repair security systems and their components , and describe their applications and procedures for use		
		identify types of test equipment used to verify operation of <i>security systems</i> and their <i>components</i>		

security systems include: CCTV, RFID scanners, intrusion alarm, video recorder, card readers, process security camera, personnel tracking systems, computing device, firewall, password protection

components include: cables, cameras, network switches, gateways, media converters, wireless devices *tools and equipment* include: multimeters, hand-held monitors

TASK C-13 Installs and services safety instrumented systems (SIS)

TASK DESCRIPTOR

Instrumentation and control technicians install, configure, maintain, diagnose and repair SIS. SIS are used to reduce the risk and eliminate the likelihood of a previously identified safety, health and environmental event ranging from minor equipment damage to the uncontrollable release of energy or material. The ultimate goal is to bring the process to a safe state in a timely manner.

The proper installation and maintenance of these systems are imperative to the safety of facilities, personnel and environment.

C-13.01 Installs SIS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
C-13.01.01P	identify <i>hazardous condition</i> of process	<i>hazardous condition</i> of process is identified					
C-13.01.02P	label SIS components	SIS components are labelled due to importance of dedicated purpose					
C-13.01.03P	verify accuracy and operation of S/S components	accuracy and operation of SIS components are verified according to specifications					
C-13.01.04P	select mounting hardware for system and SIS components	mounting hardware for system and S/S components are selected according to manufacturers' specifications and engineered designs					
C-13.01.05P	verify and determine location of SIS components	location of SIS components is verified and determined to ensure process can be brought to a safe state					
C-13.01.06P	position and mount SIS components independently from process control components	SIS components are positioned and mounted independently from process control components according to industry practices, engineered designs, manufacturers' specifications and codes					

C-13.01.07P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices
C-13.01.08P	verify operation of SIS and components are within specified parameters	operation of SIS and components are within specified parameters by using test equipment, documentation and established procedures
C-13.01.09P	back up and document configuration settings for future data recovery	configuration settings are backed up and documented for future data recovery

hazardous conditions include: high pressure, low pressure, high level, low level, high temperature, low temperature, flow, fire, gas emissions

SIS include: alarming, emergency stop monitoring, safety sensors and devices

components include: valves, transmitters, controllers, switches

tools and equipment include: stop watches, high accuracy process calibrators, special measurement devices

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
C-13.01.01L	demonstrate knowledge of SIS , their components , characteristics and applications	define terminology associated with SIS and their components
		interpret information pertaining to SIS found on drawings and specifications
		identify types of <i>SIS</i> and their <i>components</i> , and describe their characteristics and applications
		describe purpose and operation of SIS and their components
		identify hazards and describe safe work practices pertaining to SIS and their components
C-13.01.02L	demonstrate knowledge of regulatory requirements pertaining to SIS and their components	interpret codes and regulations pertaining to SIS and their components
C-13.01.03L	demonstrate knowledge of procedures used to install SIS and their components	describe procedures used to select and install SIS and their components
		identify tools and equipment used to install SIS and their components , and describe their applications and procedures for use
		describe procedures used to back up and document <i>SIS</i> configuration settings
		describe installation requirements

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches

purpose and operation of SIS and their components include: layers of protection analysis (LOPA), safety integrity level (SIL), safety instrumented functions (SIF)

tools and equipment include: stop watches, high accuracy process calibrators, special measurement devices

installation requirements include: ambient temperature, location, environmental conditions

C-13.02 Configures SIS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
C-13.02.01P	select and use tools, equipment and software	tools, equipment and software are selected and used according to manufacturers' recommendations					
C-13.02.02P	update firmware	firmware is updated					
C-13.02.03P	upload and download SIS controller programs	SIS controller programs are uploaded and downloaded					
C-13.02.04P	program and verify S/S controllers and input/output (I/O) devices	SIS controllers and I/O devices are programmed and verified to achieve safe state according to <i>factors</i>					
C-13.02.05P	configure external communication with other systems and devices	external communication with other systems and devices are configured					
C-13.02.06P	back up and document programming, configuration and parameters	configuration and parameters are backed up and documented for future data recovery according to site specifications and standards					

RANGE OF VARIABLES

SIS include: alarming, emergency stop monitoring, safety sensors and devices *factors* include: predetermined hazardous conditions, codes, manufacturers' specifications, company and industry standards

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
C-13.02.01L	demonstrate knowledge of SIS , their components , characteristics and applications	define terminology associated with SIS and their <i>components</i>			
		interpret information pertaining to SIS found on drawings and specifications			

		identify types of SIS and their components , and describe their characteristics and applications
		describe <i>purpose and operation of SIS</i> and their components
		describe difference in commissioning and testing SIS versus other basic process control systems
		identify hazards and describe safe work practices pertaining to <i>SIS</i> and their <i>components</i>
C-13.02.02L	demonstrate knowledge of regulatory requirements pertaining to <i>SIS</i> and their <i>components</i>	interpret codes and regulations pertaining to SIS and their components
C-13.02.03L	demonstrate knowledge of procedures used to configure <i>SIS</i> and their <i>components</i>	describe procedures used to configure SIS and their components
		identify tools, equipment and software relating to SIS , and describe their applications and procedures for use
		identify types of programming languages used to configure SIS
		describe voting structures
		describe procedures used to back up and document S/S programming, configuration and parameters

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches

purpose and operation of SIS and their components include: LOPA, SIL, SIF

programming languages include: function block diagram (FBD), sequential function chart (SFC), ladder logic, Boolean, structured text (ST)

voting structures include: 1 out of 1, 1 out of 1D, 1 out of 2, 1 out of 2D, 2 out of 2, 2 out of 3

C-13.03

Ma	inta	ins	SIS
----	------	-----	-----

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	(ILLS
	Performance Criteria	Evidence of Attainment
C-13.03.01P	select and use tools and equipment	tools and equipment are selected and used according to industry standards and practices
C-13.03.02P	visually inspect system <i>components</i> for faults	system <i>components</i> are visually inspected for faults
C-13.03.03P	perform self-diagnostics, observe alarm indicators and interpret results	self-diagnostics are performed, alarm indicators are observed, and results are interpreted
C-13.03.04P	perform function checks of <i>components</i> for <i>factors</i>	function checks of <i>components</i> are performed for <i>factors</i>
C-13.03.05P	perform routine function testing of SIS	routine function testing of SIS is performed
C-13.03.06P	back up and document programming, configuration and parameters for future data recovery	configuration and parameters are backed up and documented for future data recovery according to site specifications and standards

RANGE OF VARIABLES

components include: valves, transmitters, controllers, switches*factors* include: response times, operation of power supplies, set points*SIS* include: alarming, emergency stop monitoring, safety sensors and devices

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
C-13.03.01L	demonstrate knowledge of SIS , their <i>components</i> , characteristics and applications	define terminology associated with SIS and their <i>components</i>				
		interpret information pertaining to SIS found on drawings and specifications				
		identify types of SIS and their components , and describe their characteristics and applications				
		describe <i>purpose and operation of SIS</i> and their components				
		identify hazards and describe safe work practices pertaining to SIS				

C-13.03.02L	demonstrate knowledge of regulatory requirements pertaining to <i>SIS</i> and their <i>components</i>	interpret codes and regulations pertaining to <i>SIS</i> and their <i>components</i>
C-13.03.03L	demonstrate knowledge of procedures used to maintain <i>SIS</i> and their <i>components</i>	describe procedures used to maintain SIS and their <i>components</i>
		describe <i>maintenance requirements</i>
		identify tools and equipment used to maintain SIS and their components , and describe their applications and procedures for use
		describe procedures used to configure SIS and their <i>components</i>
		identify types of programming languages used to configure SIS
		describe SIL levels
		describe <i>voting structures</i>
		describe procedures used to back up and document SIS programming, configuration and parameters
		describe importance of documentation when making changes and performing routine maintenance and testing

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches *purpose and operation of SIS and their components* include: LOPA, SIL, SIF *maintenance requirements* include: partial close times, valve close times, partial stroke testing *programming languages* include: FBD, SFC, ladder logic, Boolean, ST *voting structures* include: 1 out of 1, 1 out of 1D, 1 out of 2, 1 out of 2D, 2 out of 2, 2 out of 3

C-13.04 Diagnoses SIS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	(ILLS
	Performance Criteria	Evidence of Attainment
C-13.04.01P	select and use diagnostic tools and equipment, documentation and procedures	diagnostic tools and equipment, documentation and procedures are selected and used
C-13.04.02P	verify operation and configuration of SIS are within specified parameters	operation and configuration of SIS are verified to be within specified parameters by using test equipment and procedures
C-13.04.03P	check SIS operations	SIS operations are checked to identify network and communication problems
C-13.04.04P	perform function checks of <i>components</i> for <i>factors</i>	function checks of <i>components</i> are performed for <i>factors</i>
C-13.04.05P	perform self-diagnostics, observe alarm indicators and interpret results	self-diagnostics are performed, alarm indicators are observed, and results are interpreted
C-13.04.06P	analyze process information	process information is analyzed
C-13.04.07P	identify probable root cause and location of faults	probable root cause and location of faults are identified
C-13.04.08P	determine steps required to address deficiencies	steps required to address deficiencies based on results of root cause are determined

RANGE OF VARIABLES

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches *factors* include: response times, operation of power supplies, set points *process information* includes: trends, operator logs

	KNO	DWLEDGE
	Learning Outcomes	Learning Objectives
C-13.04.01L	demonstrate knowledge of SIS , their components , characteristics and applications	define terminology associated with SIS and their <i>components</i>
		interpret information pertaining to SIS found on drawings and specifications
		identify types of SIS and their components , and describe their characteristics and applications

		describe purpose and operation of SIS and their components
		identify hazards and describe safe work practices pertaining to <i>SIS</i>
C-13.04.02L	demonstrate knowledge of regulatory requirements pertaining to <i>SIS</i> and their <i>components</i>	interpret codes and regulations pertaining to SIS and their components
C-13.04.03L	demonstrate knowledge of procedures used to diagnose <i>SIS</i> and their <i>components</i>	describe procedures used to diagnose SIS and their <i>components</i>
		identify diagnostic tools and equipment used to diagnose SIS and describe their applications and procedures for use
		describe SIL levels
		describe voting structures

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches

purpose and operation of SIS and their components include: LOPA, SIL, SIF *voting structures* include: 1 out of 1, 1 out of 1D, 1 out of 2, 1 out of 2D, 2 out of 2, 2 out of 3

C-13.05 Repairs SIS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SI	KILLS
	Performance Criteria	Evidence of Attainment
C-13.05.01P	select and use repair tools, equipment and software	repair tools, equipment and software are selected and used according to industry standards and practices
C-13.05.02P	replace defective SIS components	defective SIS components are replaced according to job procedures, documentation and manufacturers' recommendations
C-13.05.03P	restore program and configuration from backup	program and configuration are restored from backup
C-13.05.04P	select SIS replacement parts	SIS replacement parts are selected according to existing <i>component</i> specifications and SIF documentation
C-13.05.05P	perform function checks of repaired/replaced <i>components</i> for <i>factors</i>	function checks of repaired/replaced components are performed for factors

C-13.05.07P	identify impact to processes for <i>component</i> to be repaired when working on <i>SIS</i>	and standards impact to processes for <i>component</i> to be repaired is identified when working on <i>SIS</i>
C-13.05.06P	back up and document programming, configuration and parameters for future data recovery	configuration and parameters are backed up and documented for future data recovery according to site specifications

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches *factors* include: response times, operation of power supplies, set points

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
C-13.05.01L	demonstrate knowledge of SIS , their components , characteristics and applications	define terminology associated with S/S and their <i>components</i>
		interpret codes and regulations pertaining to SIS and their components
		interpret information pertaining to SIS found on drawings and specifications
		identify types of SIS and their components , and describe their characteristics and applications
		describe purpose and operation of SIS and their components
		identify hazards and describe safe work practices pertaining to SIS
C-13.05.02L	demonstrate knowledge of regulatory requirements pertaining to SIS and their components	interpret codes and regulations pertaining to SIS and their components
C-13.05.03L	demonstrate knowledge of procedures used to repair SIS and their components	describe procedures used to repair SIS and their components
		identify tools, equipment and software used to repair SIS and describe their applications and procedures for use
		describe procedures used to configure SIS and their components
		identify types of programming languages used to configure SIS
		describe SIL levels
		describe voting structures

describe procedures used to back up and document SIS programming, configuration and parameters
describe importance of documentation when performing repairs

SIS include: alarming, emergency stop monitoring, safety sensors and devices *components* include: valves, transmitters, controllers, switches *purpose and operation of SIS and their components* include: LOPA, SIL, SIF *programming languages* include: FBD, SFC, ladder logic, Boolean, ST *voting structures* include: 1 out of 1, 1 out of 1D, 1 out of 2, 1 out of 2D, 2 out of 2, 2 out of 3

MAJOR WORK ACTIVITY D

Installs and services hydraulic, pneumatic and electrical systems

TASK D-14 Installs and services control devices for hydraulic systems

TASK DESCRIPTOR

Instrumentation and control technicians install, diagnose, maintain and repair control devices for hydraulic systems. Hydraulic equipment is used to supply energy and to control equipment and processes through the use of liquids. Hydraulic equipment is used for higher pressure applications.

D-14.01 Installs control devices for hydraulic systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS				
	Performance Criteria	Evidence of Attainment			
D-14.01.01P	select and use tools and <i>components</i>	tools and <i>components</i> are selected and used according to manufacturers' specifications, process requirements and data sheets			
D-14.01.02P	determine location of <i>components</i>	location of <i>components</i> is determined according to industry standards, codes and practices, and manufacturers' specifications			
D-14.01.03P	mount <i>components</i>	<i>components</i> are mounted according to industry practices, manufacturers' specifications, engineered designs and codes			
D-14.01.04P	verify operation of hydraulic equipment and <i>components</i>	operation of hydraulic equipment and <i>components</i> are verified according to industry standards, codes and practices, and manufacturers' specifications			
D-14.01.05P	update <i>documentation</i>	<i>documentation</i> is updated to reflect changes carried out as required			

components include: hoses, piping, fittings, pumps, motors, actuators, valves, accumulators, control devices (solenoids, switches, gauges, actuators, transmitters, regulators) *documentation* includes: schematics, drawings, specifications, data sheets

	KNOV	VLEDGE
	Learning Outcomes	Learning Objectives
D-14.01.01L	demonstrate knowledge of hydraulic systems, their <i>components</i> and operation	define terminology associated with hydraulic systems and their <i>components</i>
		identify hazards and describe safe work practices pertaining to hydraulic systems and their components
		identify hydraulic system <i>components</i> and describe their applications and operation
		describe hydraulic theories and equipment operation
		identify types of tubing and piping systems and describe their applications
		identify types of tube and pipe fittings and accessories and describe their characteristics and applications
		identify types of valves used in tubing and piping systems and describe their applications and operation
D-14.01.02L	demonstrate knowledge of regulatory requirements pertaining to hydraulic systems and their <i>components</i>	interpret codes and regulations pertaining to hydraulic systems and their <i>components</i>
D-14.01.03L	demonstrate knowledge of <i>documentation</i> relating to hydraulic equipment and systems, their use and interpretation	interpret information pertaining to hydraulic systems found on documentation
		identify fluid related symbols and abbreviations found on <i>documentation</i>
D-14.01.04L	demonstrate knowledge of hydraulic related calculations	perform hydraulic calculations
D-14.01.05L	demonstrate knowledge of principles and applications of fluids as it relates to hydraulic systems	define terminology associated with fluids
		identify types of fluids and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to fluids
		explain principles and theories of fluids
		describe units of measure as they relate to fluids

		identify fluid-related formulas and describe their applications
D-14.01.06L	demonstrate knowledge of procedures used to install hydraulic <i>components</i>	identify tools and equipment used to install hydraulic <i>components</i> and describe their applications and procedures for use
		describe procedures used to install hydraulic <i>components</i>
		describe procedures used to cut, thread and ream rigid pipe
		describe procedures used to make hose, tubing and piping connections
		describe procedures used to perform a pressure test
		describe tube bending techniques

components include: hoses, piping, fittings, pumps, motors, actuators, valves, accumulators, control devices (solenoids, switches, gauges, actuators, transmitters, regulators)

hazards include: energy state awareness (accumulators, suspended loads), condition of hoses, piping and tubing (pressure, temperature)

types of tubing and piping systems include: rigid, flexible, ferrous, non-ferrous

types of tube and pipe fittings include: adapters, unions, elbows, tees, couplings

types of valves used in tubing and piping systems include: isolation, throttling, regulating, directional control

documentation includes: schematics, drawings, specifications, data sheets *types of fluids* include: synthetic, conventional

principles and theories of fluids include: Pascal's law, Bernoulli's principle

D-14.02 Diagnoses control devices for hydraulic systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
D-14.02.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to manufacturers' specifications, process requirements and data sheets		
D-14.02.02P	identify probable root cause and location of faults	probable root cause and location of faults are identified using diagnostic tools and testing procedures		

D-14.02.03P	determine steps required to repair faults and address deficiencies	steps required to repair faults and address deficiencies are determined based on probable root cause
D-14.02.04P	verify documentation and historical data	documentation and historical data are verified to assist in root cause analysis

tools and equipment include: temperature sensors, pressure gauges, multimeters, flowmeters

	KNOV	VLEDGE
	Learning Outcomes	Learning Objectives
D-14.02.01L	demonstrate knowledge of hydraulic systems, their <i>components</i> and operation	define terminology associated with hydraulic systems and their <i>components</i>
		identify hazards and describe safe work practices pertaining to hydraulic systems and their components
		identify hydraulic system <i>components</i> and describe their applications and operation
		describe hydraulic theories and equipment operation
		identify types of tubing and piping systems and describe their applications
		identify types of tube and pipe fittings and accessories and describe their characteristics and applications
		identify types of valves used in tubing and piping systems and describe their applications and operation
D-14.02.02L	demonstrate knowledge of regulatory requirements pertaining to hydraulic systems and their <i>components</i>	interpret codes and regulations pertaining to hydraulic systems and their <i>components</i>
D-14.02.03L	demonstrate knowledge of <i>documentation</i> relating to hydraulic equipment and systems, their use and interpretation	interpret information pertaining to hydraulic systems found on documentation
		identify fluid related symbols and abbreviations found on <i>documentation</i>
D-14.02.04L	demonstrate knowledge of hydraulic related calculations	perform hydraulic calculations
D-14.02.05L	demonstrate knowledge of principles and applications of fluids as it relates to hydraulic systems	define terminology associated with fluids
		identify types of fluids and describe their characteristics and applications

		identify hazards and describe safe work practices pertaining to fluids
		explain principles and theories of fluids
		describe units of measure as they relate to fluids
		identify fluid-related formulas and describe their applications
D-14.02.06L	demonstrate knowledge of procedures used to diagnose <i>components</i> for hydraulic systems	identify types of tools and equipment used to diagnose components for hydraulic systems and describe their applications and procedures for use
		describe procedures used to diagnose components for hydraulic systems

components include: hoses, piping, fittings, pumps, motors, actuators, valves, accumulators, control devices (solenoids, switches, gauges, actuators, transmitters, regulators)

hazards include: energy state awareness (accumulators, suspended loads), condition of hoses, piping and tubing (pressure, temperature)

types of tubing and piping systems include: rigid, flexible, ferrous, non-ferrous,

types of tube and pipe fittings include: adapters, unions, elbows, tees, couplings

types of valves used in tubing and piping systems include: isolation, throttling, regulating, directional control

documentation includes: schematics, drawings, specifications, data sheets *types of fluids* include: synthetic, conventional

principles and theories of fluids include: Pascal's law, Bernoulli's principle

tools and equipment include: temperature sensors, pressure gauges, multimeters, flowmeters

D-14.03 Performs maintenance and repairs on control devices for hydraulic systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
D-14.03.01P	select and use tools and <i>test equipment</i>	tools and test equipment are selected and used to maintain and repair according to manufacturers' specifications, process requirements and data sheets		
D-14.03.02P	replace <i>components</i> and <i>materials</i>	<i>components</i> and <i>materials</i> are replaced according to manufacturers' specifications, process requirements and data sheets		

D-14.03.03P	repair faulty <i>components</i>	faulty <i>components</i> are repaired according to manufacturers' specifications, process requirements and data sheets
D-14.03.04P	calibrate and adjust <i>components</i> (control devices)	<i>components</i> (control devices) are calibrated and adjusted according to manufacturers' specifications and maintenance schedules
D-14.03.05P	test and verify <i>components</i>	<i>components</i> are tested and verified according to manufacturers' specifications, process requirements and data sheets
D-14.03.06P	verify system operation	system operation is verified before returning to service
D-14.03.07P	update <i>documentation</i>	<i>documentation</i> is updated to reflect changes carried out as required

test equipment includes: infrared thermometers, pressure gauges, multimeters, flowmeters *components* include: hoses, piping, fittings, pumps, motors, actuators, valves, accumulators, control devices (solenoids, switches, gauges, actuators, transmitters, regulators) *materials* include: filters, fluids

documentation includes: schematics, drawings, specifications, data sheets

	KNO	DWLEDGE
	Learning Outcomes	Learning Objectives
D-14.03.01L	demonstrate knowledge of hydraulic systems, their <i>components</i> and operation	define terminology associated with hydraulic systems and their <i>components</i>
		identify hazards and describe safe work practices pertaining to hydraulic systems and their components
		identify hydraulic system <i>components</i> and describe their applications and operation
		describe hydraulic theories and equipment operation
		identify types of tubing and piping systems and describe their applications
		identify types of tube and pipe fittings and accessories and describe their characteristics and applications
		identify types of valves used in tubing and piping systems and describe their applications and operation

D-14.03.02L	demonstrate knowledge of regulatory requirements pertaining to hydraulic systems and their <i>components</i>	interpret codes and regulations pertaining to hydraulic systems and their <i>components</i>
D-14.03.03L	demonstrate knowledge of <i>documentation</i> relating to hydraulic equipment and systems, their use and interpretation	interpret information pertaining to hydraulic systems found on <i>documentation</i>
		identify fluid-related symbols and abbreviations found on <i>documentation</i>
D-14.03.04L	demonstrate knowledge of hydraulic related calculations	perform hydraulic calculations
D-14.03.05L	demonstrate knowledge of principles and applications of fluids as it relates to hydraulic systems	define terminology associated with fluids
		identify types of fluids and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to fluids
		explain principles and theories of fluids
		describe units of measure as they relate to fluids
		identify fluid-related formulas and describe their applications
D-14.03.06L	demonstrate knowledge of procedures used to repair and <i>maintain hydraulic</i> systems and components	identify tools and <i>test equipment</i> relating to maintenance and repair of hydraulic systems and describe their applications and procedures for use
		describe procedures used to <i>maintain hydraulic systems and components</i>
		describe procedures used to repair hydraulic systems and their <i>components</i>
		describe cleanliness and filtering standards required for hydraulic systems
·		

components include: hoses, piping, fittings, pumps, motors, actuators, valves, accumulators, control devices (solenoids, switches, gauges, actuators, transmitters, regulators)

hazards include: energy state awareness (accumulators, suspended loads), condition of hoses, piping and tubing (pressure, temperature)

types of tubing and piping systems include: rigid, flexible, ferrous, non-ferrous

types of tube and pipe fittings include: adapters, unions, elbows, tees, couplings

types of valves used in tubing and piping systems include: isolation, throttling, regulating, directional control

documentation includes: schematics, drawings, specifications, data sheets *types of fluids* include: synthetic, conventional

principles and theories of fluids include: Pascal's law, Bernoulli's principle

maintain hydraulic systems and components include: check hoses, piping and tubing; check fluids (condition and level); check/change filters; determine operating parameters; adjust system pressure, temperature and flow

test equipment includes: infrared thermometers, pressure gauges, multimeters, flowmeters

TASK D-15 Installs and services pneumatic equipment

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair pneumatic equipment. Pneumatic equipment is used to supply energy and to control equipment and processes through the use of compressed air, nitrogen and process gases.

D-15.01 Installs pneumatic equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	YT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
D-15.01.01P	determine system requirements	<i>system requirements</i> are determined according to site specifications, industry standards, codes and practices		
D-15.01.02P	select system <i>components</i> and tools	system <i>components</i> and tools are selected according to site specifications, industry standards, codes and practices		
D-15.01.03P	determine location of <i>pneumatic</i> equipment	location of pneumatic equipment is determined according to site specifications, industry standards, codes and practices		

D-15.01.04P	connect system <i>components</i>	system <i>components</i> are connected according to site specifications, industry practices, manufacturers' specifications, engineered designs and codes
D-15.01.05P	calibrate pneumatic <i>control devices</i>	pneumatic <i>control devices</i> are calibrated according to industry standards and practices
D-15.01.06P	verify operation of <i>pneumatic equipment</i>	operation of pneumatic equipment is verified according to site specifications and standards
D-15.01.07P	update <i>documentation</i>	<i>documentation</i> is updated to reflect changes carried out as required

system requirements include: pressure, volume, capacity

components include: regulators, separators, tubing, actuators, solenoids, pumps, positioners, accumulators, compressors, tanks, coolers, filters, dryers, automated oilers *pneumatic equipment* includes: transmitters, converters, positioners, controllers, relays

control devices include: pressure switches, regulators, gauges, transmitters

documentation includes: schematics, manufacturers' manuals, drawings, specifications, data sheets

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
D-15.01.01L	demonstrate knowledge of pneumatic equipment, systems, their components and operation	define terminology associated with pneumatic equipment, systems and their components
		identify hazards and describe safe work practices pertaining to pneumatic equipment, systems and their components
		identify types of <i>pneumatic equipment</i> , <i>systems</i> and their <i>components</i> and describe their applications and operation
		describe <i>methods of air treatment</i> in pneumatic systems
		identify <i>classifications and types of compressors</i> , their specifications and applications
		identify types of tubing and piping systems and describe their applications
		identify types of tube and pipe fittings and accessories, and describe their characteristics and applications
		identify types of valves used in tubing and piping systems , and describe their applications and operation

D-15.01.02L	demonstrate knowledge of regulatory requirements pertaining to pneumatic equipment, systems and their components	interpret codes and regulations pertaining to pneumatic equipment, systems and their components
D-15.01.03L	demonstrate knowledge of documentation relating to pneumatic equipment and systems , their use and interpretation	interpret information pertaining to pneumatic equipment and systems found on documentation
		interpret <i>documentation</i> to determine operation of <i>pneumatic systems</i>
D-15.01.04L	demonstrate knowledge of <i>pneumatic-</i> related calculations	perform <i>pneumatic-related calculations</i>
D-15.01.05L	demonstrate knowledge of principles and applications of fluids as it relates to pneumatic systems	define terminology associated with fluids
		identify types of fluids and describe their characteristics and applications
		identify hazards and describe safe work practices pertaining to fluids
		explain principles and theories of fluid
		describe units of measure as they relate to fluids
		identify fluid-related formulas and describe their applications
		describe compressed gas qualities
		describe venting practices relating to combustible and inert gases
D-15.01.06L	demonstrate knowledge of procedures used to install <i>pneumatic equipment,</i> <i>systems</i> , and their <i>components</i>	identify tools and equipment used to install pneumatic equipment, systems and their components and describe their applications and procedures for use
		describe procedures used to install pneumatic equipment, systems and their components
		describe installation of tubing
		describe tube bending techniques
		describe procedures used to cut, thread and ream rigid pipe
		describe procedures used to make hose, tubing and piping connections
		describe procedures used to perform a pressure test

D-15.01.07L	demonstrate knowledge of procedures used to calibrate <i>control devices</i> for <i>pneumatic systems</i>	identify tools, equipment and software used to calibrate <i>control devices</i> for <i>pneumatic systems</i> , and describe their applications and procedures for use
		describe procedures used to calibrate control devices for pneumatic systems

pneumatic equipment includes: transmitters, converters, positioners, controllers, relays

pneumatic systems include: instrument air, instrument gas, service/utility air

components include: regulators, separators, tubing, actuators, solenoids, pumps, positioners, accumulators, compressors, tanks, coolers, filters, dryers, automated oilers

hazards include: energy state awareness (accumulators, suspended loads), temperature, pressure, flammability/venting

methods of air treatment include: filters, dryers, after-coolers, de-icers, receivers

classifications and types of compressors include: dynamic/centrifugal, positive displacement types of tubing and piping systems include: rigid, flexible, ferrous, non-ferrous

types of tube and pipe fittings include: adapters, unions, elbows, tees, couplings

types of valves used in tubing and piping systems include: isolation, throttling, regulating, directional control

documentation includes: schematics, manufacturers' manuals, drawings, specifications, data sheets *pneumatic-related calculations* include: unit conversion, volume (ideal gas law)

types of fluids include: compressed air, nitrogen, process gases

principles and theories of fluids include: Pascal's law, Boyle's law, Charles' law, combined gas law, Bernoulli's principle

compressed gas qualities include: dew point, presence of particulates, oil contamination *control devices* include: pressure switches, regulators, gauges, transmitters

D-15.02 Diagnoses pneumatic equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
D-15.02.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to manufacturers' specifications, process requirements and data sheets		
D-15.02.02P	identify probable root cause and location of faults	probable root cause and location of faults are identified using diagnostic tools and testing procedures		

D-15.02.03P	determine steps required to repair faults and address deficiencies	steps required to repair faults and address deficiencies are determined based on probable root cause
D-15.02.04P	verify documentation and historical data	documentation and historical data are verified to assist in determining probable root cause

tools and equipment include: temperature sensors, pressure gauges, multimeters, leak detection solution

	KNOW	/LEDGE	
	Learning Outcomes	Learning Objectives	
D-15.02.01L	demonstrate knowledge of pneumatic equipment, systems , their components and operation	define terminology associated with pneumatic equipment, systems , and their components	
		identify <i>hazards</i> and describe safe work practices pertaining to <i>pneumatic</i> <i>equipment, systems</i> and their <i>components</i>	
		identify types of <i>pneumatic equipment</i> , <i>systems</i> and their <i>components</i> and describe their applications and operation	
		describe <i>methods of air treatment</i> in pneumatic systems	
		identify <i>classifications and types of compressors</i> , their specifications and applications	
		identify types of tubing and piping systems and describe their applications	
		identify types of tube and pipe fittings and accessories and describe their characteristics and applications	
		identify types of valves used in tubing and piping systems and describe their applications and operation	
		describe venting practices relating to combustible and inert gases	
D-15.02.02L	demonstrate knowledge of regulatory requirements pertaining to pneumatic equipment, systems and their components	interpret codes and regulations pertaining to pneumatic equipment, systems and their components	
D-15.02.03L	demonstrate knowledge of documentation relating to <i>pneumatic equipment</i> and <i>systems</i> , their use and interpretation	interpret information pertaining to pneumatic equipment and systems found on documentation	
		interpret <i>documentation</i> to determine operation of <i>pneumatic systems</i>	

D-15.02.04L	demonstrate knowledge of <i>pneumatic-</i> related calculations	perform <i>pneumatic-related calculations</i>
D-15.02.05L	demonstrate knowledge of procedures used to diagnose <i>pneumatic equipment</i>	identify types of <i>tools and equipment</i> used for diagnosing <i>pneumatic</i> <i>equipment</i> and describe their applications and procedures for use
		describe procedures used to diagnose pneumatic equipment

pneumatic equipment includes: transmitters, converters, positioners, controllers, relays

pneumatic systems include: instrument air, instrument gas, service/utility air

components include: separators, tubing, actuators, pumps, positioners, accumulators, compressors, tanks, coolers, filters, dryers, automated oilers, gauges, control devices (safety valves, switches, solenoids, regulators)

hazards include: energy state awareness (accumulators, suspended loads), temperature, pressure, flammability/venting

methods of air treatment include: filters, dryers, after-coolers, de-icers, receivers

classifications and types of compressors include: dynamic/centrifugal, positive displacement types of tubing and piping systems include: rigid, flexible, ferrous, non-ferrous

types of tube and pipe fittings include: adapters, unions, elbows, tees, couplings

types of valves used in tubing and piping systems include: isolation, throttling, regulating, directional control

documentation includes: schematics, manufacturers' manuals, drawings, specifications, data sheets *pneumatic-related calculations* include: unit conversion, volume (ideal gas law)

tools and equipment include: temperature sensors, pressure gauges, multimeters, leak detection solution

D-15.03 Performs maintenance and repairs on pneumatic equipment

NI	-	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
ye	s	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS				
	Performance Criteria	Evidence of Attainment			
D-15.03.01P	select and use tools and <i>test equipment</i>	tools and <i>test equipment</i> are selected and used to maintain and repair according to manufacturers' specifications, process requirements and data sheets			
D-15.03.02P	replace <i>components</i> and <i>materials</i>	<i>components</i> and <i>materials</i> are replaced according to manufacturers' specifications, process requirements and data sheets			

D-15.03.03P	repair faulty <i>components</i>	faulty <i>components</i> are repaired according to manufacturers' specifications, process requirements and data sheets
D-15.03.04P	calibrate and adjust <i>components</i> (control devices)	<i>components</i> (control devices) are calibrated and adjusted according to manufacturers' specifications and maintenance schedules
D-15.03.05P	test and verify <i>components</i> (control devices)	<i>components</i> (control devices) are tested and verified according to manufacturers' specifications, process requirements and data sheets
D-15.03.06P	verify system operation	system operation is verified before returning to service
D-15.03.07P	update <i>documentation</i>	<i>documentation</i> is updated to reflect changes carried out as required

test equipment includes: infrared thermometers, pressure gauges, dew point testers, ultrasonic leak detectors

components include: separators, tubing, actuators, pumps, positioners, accumulators, compressors, tanks, coolers, filters, dryers, automated oilers, gauges, control devices (safety valves, switches, solenoids, regulators)

materials include: filters, desiccant, deliquescent

documentation includes: schematics, manufacturers' manuals, drawings, specifications, data sheets

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
D-15.03.01L	demonstrate knowledge of pneumatic equipment, systems, their components and operation	define terminology associated with pneumatic equipment, systems and their components
		identify <i>hazards</i> and describe safe work practices pertaining to <i>pneumatic</i> <i>equipment, systems</i> and their <i>components</i>
		identify types of pneumatic equipment , systems and their components and describe their applications and operation
		describe <i>methods of air treatment</i> in pneumatic systems
		identify <i>classifications and types of compressors</i> , their specifications and applications
		identify <i>types of tubing and piping systems</i> and describe their applications
		identify types of tube and pipe fittings and accessories and describe their characteristics and applications

		identify types of valves used in tubing and piping systems and describe their applications and operation
		describe venting practices relating to combustible and inert gases
D-15.03.02L	demonstrate knowledge of regulatory requirements pertaining to pneumatic equipment, systems and their components	interpret codes and regulations pertaining to pneumatic equipment, systems and their components
D-15.03.03L	demonstrate knowledge of documentation relating to <i>pneumatic equipment</i> and <i>systems</i> , their use and interpretation	interpret information pertaining to pneumatic equipment and systems found on documentation
		interpret <i>documentation</i> to determine operation of <i>pneumatic systems</i>
D-15.03.04L	demonstrate knowledge of <i>pneumatic-</i> related calculations	perform <i>pneumatic-related calculations</i>
D-15.03.05L	demonstrate knowledge of procedures used to maintain and repair <i>pneumatic</i> <i>equipment, systems</i> and <i>components</i>	identify tools and <i>test equipment</i> relating to maintenance and repair of pneumatic <i>systems</i> , and describe their applications and procedures for use
		describe procedures used to maintain and repair <i>pneumatic equipment, systems</i> and their <i>components</i>
		describe procedures used to cut, thread and ream rigid pipe
		describe installation of tubing
		describe tube bending techniques
		describe procedures used to perform a pressure test
D-15.03.06L	demonstrate knowledge of procedures used to calibrate <i>components</i> (control devices) for <i>pneumatic systems</i>	identify tools, equipment and software used to calibrate <i>components</i> (control devices) for <i>pneumatic systems</i> and describe their applications and procedures for use
		describe procedures used to calibrate components (control devices)

pneumatic equipment includes: transmitters, converters, positioners, controllers, relays *pneumatic systems* include: instrument air, instrument gas, service/utility air

components include: separators, tubing, actuators, pumps, positioners, accumulators, compressors, tanks, coolers, filters, dryers, automated oilers, gauges, control devices (safety valves, switches, solenoids, regulators)

hazards include: energy state awareness (accumulators, suspended loads), temperature, pressure, flammability/venting

methods of air treatment include: filters, dryers, after-coolers, de-icers, receivers

classifications and types of compressors include: dynamic/centrifugal, positive displacement

types of tubing and piping systems include: rigid, flexible, ferrous, non-ferrous

types of tube and pipe fittings include: adapters, unions, elbows, tees, couplings

types of valves used in tubing and piping systems include: isolation, throttling, regulating, directional control

documentation includes: schematics, manufacturers' manuals, drawings, specifications, data sheets *pneumatic-related calculations* include: unit conversion, volume (ideal gas law)

test equipment includes: infrared thermometers, pressure gauges, dew point testers, ultrasonic leak detectors

TASK D-16 Installs and services electrical and electronic equipment

TASK DESCRIPTOR

Instrumentation and control technicians install, diagnose, maintain and repair electrical and electronic equipment. Electrical and electronic equipment is used to supply energy and to control equipment and processes through the use of electricity. Instrumentation and control technicians work on electrical and electronic equipment directly related to process control and often in conjunction with electricians on electrical power sources.

D-16.01 Installs electrical and electronic equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
D-16.01.01P	determine system requirements	system requirements are determined according to industry standards, codes, practices and engineered designs		
D-16.01.02P	select <i>electrical</i> and <i>electronic</i> <i>components</i>	<i>electrical</i> and <i>electronic components</i> are selected according to <i>hazards</i> , industry standards, codes, practices and engineered designs		

D-16.01.04Pconnect electrical and electronic componentselectrical and electronic are connected according practices, engineered designsD-16.01.05Pverify operation of electrical and electronic componentsoperation of electrical and components is verified a industry standards, codes engineered designsD-16.01.05Pverify operation of electrical and electronic componentsoperation of electrical and components is verified a industry standards, codes engineered designsD-16.01.06Pback up settingssettings are backed up for reference or data recover			
componentsare connected according practices, engineered des manufacturers' specificatD-16.01.05Pverify operation of electrical and electronic componentsoperation of electrical and components is verified a industry standards, codes engineered designsD-16.01.06Pback up settingssettings are backed up for reference or data recover	D-16.01.03P	determine location of system equipment	location of system equipment is determined according to industry standards, codes, practices and engineered designs
electronic components components is verified a industry standards, codes engineered designs D-16.01.06P back up settings settings are backed up for reference or data recover	D-16.01.04P		<i>electrical</i> and <i>electronic components</i> are connected according to industry practices, engineered designs, manufacturers' specifications and codes
reference or data recover	D-16.01.05P		operation of <i>electrical</i> and <i>electronic</i> <i>components</i> is verified according to industry standards, codes, practices and engineered designs
D-16.01.07P update <i>documentation documentation</i> is update	D-16.01.06P	back up settings	settings are backed up for future reference or data recovery
	D-16.01.07P	update <i>documentation</i>	<i>documentation</i> is updated to reflect changes carried out as required

system requirements include: voltage, current, resistance, power

electrical components include: power supplies (alternating current/direct current [AC/DC], uninterruptible power supplies [UPS]), batteries, fuses, resistors, capacitors, inductors, control devices (push buttons, switches [limit, proximity, centrifugal, thermal], photo sensors, relays), intrinsic barriers and current limiting

electronic components include: diodes, transistors, op amps, thyristors, rectifiers, circuit boards *hazards* include: energy state awareness, static electricity discharge, area classification (environment, hazardous locations), voltage levels

documentation includes: drawings, specifications

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
D-16.01.01L	demonstrate knowledge of <i>electrical components</i> , their characteristics and applications	define terminology associated with <i>electrical components</i> , and describe their characteristics and applications			
		identify <i>hazards</i> and describe safe work practices pertaining to <i>electrical components</i>			
		identify system requirements and describe their relationship to process control systems			
		identify tools and equipment relating to <i>electrical components</i> and describe their applications and procedures for use			
		identify types of <i>conductors and</i> <i>raceways</i> and describe their characteristics and applications			
		interpret information pertaining to electrical components found on documentation			

D-16.01.04L	demonstrate knowledge of regulatory requirements pertaining to electrical and electronic equipment, and their <i>components</i>	interpret <i>codes</i> pertaining to electrical and electronic equipment, and their <i>components</i>
		perform <i>calculations pertaining to</i> electronics
		identify semiconductor materials used in electronics and describe their characteristics and applications
		identify types of logic gates and describe their applications
		describe procedures used to perform conversions between number systems
		identify <i>number systems used in</i> <i>electronics</i> and describe their applications
D-16.01.03L	demonstrate knowledge of <i>electronic components</i> , their characteristics and applications	explain conventional current flow vs. electron flow theory in electronics
		perform calculations pertaining to single-phase and basic three-phase electrical concepts
		identify types of <i>transformers</i> used in control circuitry, and describe their characteristics and applications
		perform calculations used to determine electrical-related values
		identify instruments used for measuring electricity and describe their applications and procedures for use
		explain effects of resistance/ inductance/capacitance (RLC) on AC and DC circuits
		identify types of devices used in AC <i>generation</i> and describe their characteristics and applications
		explain <i>AC generation</i>
		identify units of measure and symbols relating to AC and DC electricity
		identify forms of energy that produce electricity and describe their associated principles
		explain atomic structure of matter
D-16.01.02L	demonstrate knowledge of electrical fundamentals	explain <i>electrical theories and formulas</i> and describe their applications
		identify types of power supplies and describe their characteristics and operating principles

D-16.01.05L	demonstrate knowledge of circuits, their characteristics and operation	identify types of circuits , and describe their characteristics and operation
		identify <i>elements of an electric circuit</i> and describe the procedures used to analyze them
		perform calculations to determine circuit- related values
		explain voltage drop and power loss and its impact on a circuit
		perform calculations to determine voltage drop and power loss
		identify units of measure used to describe conductor size
		identify types of insulators and describe their characteristics and applications
		explain procedures used to determine conductor resistance and its effect on a circuit
		identify types of <i>components</i> (control devices) and describe their characteristics and operation
		identify types of DC circuits and describe their characteristics and applications
		identify types of AC circuits and describe their characteristics and applications
		identify <i>methods of circuit protection</i> and describe their characteristics and applications
D-16.01.06L	demonstrate knowledge of procedures used to install electrical and electronic equipment and their <i>components</i>	describe procedures used to install electrical and electronic equipment and their <i>components</i>
		identify types of tools and equipment used to install electrical and electronic equipment and their <i>components</i> , and describe their procedures for use
		describe procedures used to install conductors and raceways
		describe procedures used to ground, bond and shield <i>conductors and</i> <i>raceways</i>
		describe procedures used to ground, bond and shield electrical and electronic equipment and their <i>components</i>

describe <i>methods used to terminate</i> conductors
describe procedures used to select and install power supplies

electrical components include: power supplies (AC/DC, UPS), batteries, fuses, resistors, capacitors, inductors, control devices (push buttons, switches [limit, proximity, centrifugal, thermal], photo sensors, relays), intrinsic barriers and current limiting

hazards include: energy state awareness, static electricity discharge, area classification (environment, hazardous locations), voltage levels

system requirements include: voltage, current, resistance, power

conductors and raceways include: power/distribution, signal/control, communication/data, connectors, supports, cable tray (power, instrument), conduit (rigid, polyvinyl chloride [PVC], flexible), electrical metallic tubing

documentation includes: drawings, specifications

electrical theories and formulas include: Ohm's Law, Kirchhoff's Law, Faraday's Law

forms of energy that produce electricity include: chemical action, piezoelectric effect, magnetism, heat, light and solar, friction, electromagnetism, electromagnetic induction

AC generation includes: single-phase, three-phase

electrical-related values include: voltage, resistance, current, power

transformers include: control (current, voltage), single-phase, three-phase

electronic components include: diodes, transistors, op amps, thyristors, rectifiers, circuit boards *number systems used in electronics* include: binary, decimal, hexadecimal, octal, binary-coded decimal (BCD)

calculations pertaining to electronics include: power, current, voltage, frequency (timing), logic *codes* include: CEC

types of circuits include: series, parallel, complex

elements of an electric circuit include: closed circuit, open circuit, short circuit, load, source, control *types of AC circuits* include: resistance/capacitance (RC), resistance/inductance (RL), RLC

methods of circuit protection include: fuses, circuit breakers

methods used to terminate conductors include: terminal blocks, conical springs (twist-on wire connectors, wire nuts), crimp lugs, solder joints

D-16.02 Diagnoses electrical and electronic equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV
			SKILLS									
			Per	formand	e Criter	ia			Eviden	ce of At	tainmen	t
D-16.0)2.01P	sele	select and use <i>tools and equipment</i>					<i>tools and equipment</i> are selected and used according to manufacturers' specifications, process requirements and data sheets				
D-16.0	D-16.02.02P perform visual and physical inspection to detect <i>issues</i>			on to	visual and physical inspection is performed to detect <i>issues</i>							
D-16.0	6.02.03P perform battery load test				battery load test is performed to indicate conditions of battery performance							
D-16.0)2.04P		identify probable root cause and location of faults			ation	probable are iden testing p and theo	tified usi procedure	ng diagr	nostic too		
detern specif		determine steps required to repair faults				steps red determin specifica data she	ned acco ations, pr	rding to	manufac	cturers'		
D-16.02.06P review <i>documentation</i> and historical data				II data	docume reviewed root cau	d to assis			ita is probable			

RANGE OF VARIABLES

tools and equipment include: multimeters, oscilloscopes, diagnostic software, clamp-on ammeters *issues* include: abnormal noises, heat, odours

documentation includes: drawings, specifications, data sheets

	KNOWLEDGE			
	Learning Outcomes	Learning Objectives		
D-16.02.01L	demonstrate knowledge of <i>electrical</i> <i>components</i> and describe their characteristics and associated applications	define terminology associated with electrical components and describe their characteristics and associated applications		
		identify <i>hazards</i> and describe safe work practices pertaining to <i>electrical components</i>		
		identify system requirements and describe their relationship to process control system		

		identify tools and equipment relating to <i>electrical components</i> and describe their applications and procedures for use
		interpret information pertaining to electrical components found on documentation
		identify types of power supplies and describe their characteristics and operating principles
D-16.02.02L	demonstrate knowledge of electrical fundamentals	explain <i>electrical theories and formulas</i> and describe their applications
		identify forms of energy that produce electricity and describe their associated principles
		identify units of measure and symbols relating to AC and DC electricity
		explain effects of RLC on AC and DC circuits
		identify instruments used for measuring electricity and describe their applications and procedures for use
		identify types of <i>transformers</i> used in control circuitry and describe their characteristics and applications
		perform calculations pertaining to single- phase and basic three-phase electrical concepts
D-16.02.03L	demonstrate knowledge of <i>electronic components</i> , their characteristics and applications	explain conventional current flow vs. electron flow theory in electronics
		identify <i>number systems used in</i> <i>electronics</i> and describe their applications
		describe procedures used to perform conversions between number systems
		identify types of logic gates and describe their applications
		perform calculations pertaining to electronics
D-16.02.04L	demonstrate knowledge of regulatory requirements pertaining to electrical and electronic equipment, and their <i>components</i>	interpret <i>codes</i> pertaining to electrical and electronic equipment, and their <i>components</i>
D-16.02.05L	demonstrate knowledge of circuits, their characteristics and operation	identify <i>types of circuits</i> , and describe their characteristics and operation
		identify <i>elements of an electric circuit</i> and describe procedures used to analyze them

		perform calculations to determine circuit related values
		perform calculations to determine voltage drop and power loss
		identify units of measure used to describe conductor size
		identify types of insulators and describe their characteristics and applications
		identify types of <i>components</i> and describe their characteristics, operation and applications
		identify types of DC circuits and describe their characteristics and applications
		identify types of AC circuits and describe their characteristics and applications
		identify <i>methods of circuit protection</i> and describe their characteristics and applications
D-16.02.06L	demonstrate knowledge of procedures used to diagnose electrical and electronic equipment and their <i>components</i>	describe procedures used to diagnose electrical and electronic equipment, and their <i>components</i>
		identify types of tools and equipment used to diagnose electrical and electronic equipment and their components
		describe procedures used to diagnose electronic circuitry

electrical components include: power supplies (AC/DC, UPS), batteries, fuses, resistors, capacitors, inductors, control devices (push buttons, switches [limit, proximity, centrifugal, thermal], photo sensors, relays), intrinsic barriers and current limiting

hazards include: energy state awareness, static electricity discharge, area classification (environment, hazardous locations), voltage levels

system requirements include: voltage, current, resistance, power

documentation includes: drawings, specifications, data sheets

electrical theories and formulas include: Ohm's Law, Kirchhoff's Law, Faraday's Law

forms of energy that produce electricity include: chemical action, piezoelectric effect, magnetism, heat, light and solar, friction, electromagnetism, electromagnetic induction

transformers include: control (current, voltage), single-phase, three-phase

electronic components include: diodes, transistors, op amps, thyristors, rectifiers, circuit boards

number systems used in electronics include: binary, decimal, hexadecimal, octal, BCD

calculations pertaining to electronics include: power, current, voltage, frequency (timing), logic *codes* include: CEC

types of circuits include: series, parallel, complex

elements of an electric circuit include: closed circuit, open circuit, short circuit, load, source, control *types of AC circuits* include: RC, RL, RLC

methods of circuit protection include: fuses, circuit breakers

tools and equipment include: multimeters, oscilloscopes, diagnostic software, clamp-on ammeters

D-16.03 Performs maintenance and repairs for electrical and electronic equipment

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
D-16.03.01P	select and use <i>tools and equipment</i>	tools and equipment are selected and used according to manufacturers' specifications, process requirements and data sheets
D-16.03.02P	inspect <i>electrical</i> and <i>electronic</i> <i>components</i>	<i>electrical</i> and <i>electronic components</i> are inspected for conditions according to specifications and maintenance schedules
D-16.03.03P	verify system operating parameters and specifications	system operating parameters and specifications are verified according to electrical formulas and theories
D-16.03.04P	perform <i>battery maintenance activities</i>	<i>battery maintenance activities</i> are performed according to specifications and maintenance schedules
D-16.03.05P	select replacement electrical and electronic components	replacement <i>electrical</i> and <i>electronic</i> <i>components</i> are selected according to manufacturers' specifications, process requirements and data sheets

D-16.03.06P	remove and replace faulty <i>electrical</i> and electronic components	faulty <i>electrical</i> and <i>electronic</i> <i>components</i> are removed and replaced according to manufacturers' specifications, process requirements and data sheets
D-16.03.07P	verify operation and calibration	operation and calibration is verified before returning to service
D-16.03.08P	update <i>documentation</i>	<i>documentation</i> is updated to reflect changes carried out as required

tools and equipment include: multimeters, oscilloscopes, clamp-on ammeters

electrical components include: power supplies (AC/DC, UPS), batteries, fuses, resistors, capacitors, inductors, control devices (push buttons, switches [limit, proximity, centrifugal, thermal], photo sensors, relays), intrinsic barriers and current limiting

electronic components include: diodes, transistors, op amps, thyristors, rectifiers, circuit boards *operating parameters* include: voltage, current

battery maintenance activities include: checking voltage, checking fluid level and specific gravity, cleaning terminal corrosion

documentation includes: drawings, specifications, data sheets

	KNC)WLEDGE
	Learning Outcomes	Learning Objectives
D-16.03.01L	demonstrate knowledge of <i>electrical</i> <i>components</i> and describe their characteristics and associated applications	define terminology associated with electrical components and describe their characteristics and associated applications
		identify <i>hazards</i> and describe safe work practices pertaining to <i>electrical</i> <i>components</i>
		identify system requirements and describe their relationship to process control system
		identify tools and equipment relating to electrical components and describe their applications and procedures for use
		interpret information pertaining to electrical components found on documentation
		identify types of power supplies and describe their characteristics and operating principles
D-16.03.02L	demonstrate knowledge of electrical fundamentals	explain <i>electrical theories and formulas</i> and describe their applications
		identify forms of energy that produce electricity and describe their associated principles

		identify units of measure and symbols relating to AC and DC electricity
		identify types of devices used in AC generation and describe their characteristics and applications
		explain effects of RLC on AC and DC circuits
		identify instruments used for measuring electricity and describe their applications and procedures for use
		identify types of <i>transformers</i> used in control circuitry and describe their characteristics and applications
		perform calculations pertaining to single- phase and basic three-phase electrical concepts
D-16.03.03L	demonstrate knowledge of <i>electronic components</i> , their characteristics and applications	explain conventional current flow vs. electron flow theory in electronics
		identify <i>number systems used in</i> <i>electronics</i> and describe their applications
		describe procedures used to perform conversions between number systems
		identify types of logic gates and describe their applications
		perform calculations pertaining to electronics
D-16.03.04L	demonstrate knowledge of regulatory requirements pertaining to electrical and electronic equipment, and their <i>components</i>	interpret <i>codes</i> pertaining to electrical and electronic equipment, and their <i>components</i>
D-16.03.05L	demonstrate knowledge of circuits, their characteristics and operation	identify types of circuits , and describe their characteristics and operation
		identify <i>elements of an electric circuit</i> and describe procedures used to analyze them
		perform calculations to determine circuit related values
		perform calculations to determine voltage drop and power loss
		identify units of measure used to describe conductor size
		identify types of insulators and describe their characteristics and applications
		identify types of DC circuits and describe their characteristics and applications

		identify types of AC circuits and describe their characteristics and applications
		identify <i>methods of circuit protection</i> and describe their characteristics and applications
D-16.03.06L	demonstrate knowledge of procedures used to maintain and repair <i>electrical</i> and <i>electronic components</i>	describe procedures used to maintain and repair <i>electrical</i> and <i>electronic</i> <i>components</i>
		identify types of tools and equipment used to maintain and repair electrical and electronic components
		describe procedures used to maintain and repair electronic circuitry

electrical components include: power supplies (AC/DC, UPS), batteries, fuses, resistors, capacitors, inductors, control devices (push buttons, switches [limit, proximity, centrifugal, thermal], photo sensors, relays), intrinsic barriers and current limiting

hazards include: energy state awareness, static electricity discharge, area classification (environment, hazardous locations), voltage levels

system requirements include: voltage, current, resistance, power

documentation includes: drawings, specifications, data sheets

electrical theories and formulas include: Ohm's Law, Kirchhoff's Law, Faraday's Law

forms of energy that produce electricity include: chemical action, piezoelectric effect, magnetism, heat, light and solar, friction, electromagnetism, electromagnetic induction

AC generation includes: single-phase, three-phase

transformers include: control (current, voltage), single-phase, three-phase

electronic components include: diodes, transistors, op amps, thyristors, rectifiers, circuit boards *number systems used in electronics* include: binary, decimal, hexadecimal, octal, BCD

calculations pertaining to electronics include: power, current, voltage, frequency (timing), logic *codes* include: CEC

types of circuits include: series, parallel, complex

elements of an electric circuit include: closed circuit, open circuit, short circuit, load, source, control *types of AC circuits* include: RC, RL, RLC

methods of circuit protection include: fuses, circuit breakers

tools and equipment include: multimeters, oscilloscopes, clamp-on ammeters

MAJOR WORK ACTIVITY E

Installs, configures and services final control elements

TASK E-17 Installs and services valves

TASK DESCRIPTOR

Instrumentation and control technicians must install and maintain valves correctly to ensure system efficiency, optimum production and safety of operations and equipment. Valves, in conjunction with actuators and positioners, manipulate the process medium. Maintenance of valves includes routine and preventative maintenance. Diagnosis includes troubleshooting and locating faults such as leaks and wear.

E-17.01 Installs valves

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	S	SKILLS
	Performance Criteria	Evidence of Attainment
E-17.01.01P	select type of valve	<i>type of valve</i> is selected according to application, engineered designs and manufacturers' specifications
E-17.01.02P	select and use tools and equipment	tools and equipment are selected and used according to application requirements, torque specifications and size of valves
E-17.01.03P	select and install gasket material and mounting hardware	gasket material and mounting hardware are selected and installed according to application
E-17.01.04P	mount valve	valve is mounted using <i>methods</i> according to industry practices, engineered designs, manufacturers' specifications and codes
E-17.01.05P	orientate valve	valve is orientated according to manufacturers' specifications in order to prevent premature valve failure, and ensure proper function and ease of access

E-17.01.06P	verify operation of valve	operation of valve is verified to be within specified parameters by using test equipment and calibration procedures
E-17.01.07P	verify operation and calibration after installation	operation and calibration is verified after installation

types of valve includes: sliding stem (globe, gate valve, pinch), rotary (butterfly, e-disc, ball, v-ball) *methods* include: bolting, welding, flanging, threading

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
E-17.01.01L	demonstrate knowledge of valves, their components, characteristics and applications	define terminology associated with valves and their <i>components</i>
		identify <i>hazards</i> and describe safe work practices pertaining to valves
		interpret information pertaining to valves found on drawings, specifications, nameplates and data sheets
		identify types of valves and their components , and describe their characteristics and applications
		identify types of final control elements and describe their components, applications and operation
		identify types of final control element accessories and describe their purpose and operation
		identify types of energy systems used to operate final control elements and describe their characteristics and applications
		identify types of valve packing and describe their applications
		describe principles of friction, and coefficient of friction, associated with fluids in motion
E-17.01.02L	demonstrate knowledge of regulatory requirements pertaining to valves and their <i>components</i>	interpret codes and regulations pertaining to valves and their <i>components</i>
E-17.01.03L	demonstrate knowledge of procedures used to install valves	identify tools and equipment used to install valves and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to select, size and install valves

describe <i>methods</i> used to mount valves
explain importance of isolating valve from process
describe procedures used for testing valves
describe possible <i>faults of valves</i>
identify types of test equipment relating to installation of valves
describe procedures used to calibrate valves

components include: cages, plugs, seats, stems, packing, bonnet, body

characteristics include: quick opening, linear, equal percentage, on/off

applications include: metallurgy, seal/shut off requirements

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation/lock-out/tag-out

types of valves include: sliding stem (globe, gate valve, pinch), rotary (butterfly, e-disc, ball, v-ball) *types of final control elements* include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, variable speed drives (VSD)

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand-wheel *types of energy systems* include: hydraulic, pneumatic, electric, manual operation

types of valve packing include: graphite, rings, rope, Polytetrafluoroethylene (PTFE)

methods include: bolting, welding, flanging, threading

procedures used for testing valves include: stroking to ensure proper operation, performing valve signature test, performing leak test

faults of valves include: leaks, valve passing, damaged parts

E-17.02 Maintains valves

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-17.02.01P	inspect valves	valves are inspected for <i>faults</i> according to specifications and maintenance schedule				
E-17.02.02P	lubricate valve stems, bushings and bearings	valve stems, bushings and bearings are lubricated according to manufacturers' specifications				
E-17.02.03P	verify valve assembly strokes smoothly throughout travel	valve assembly strokes smoothly throughout travel				

E-17.02.04P	adjust open and close positions of valves	open and close positions of valves are adjusted
E-17.02.05P	document <i>information</i>	<i>information</i> is recorded for future reference

faults include: packing leaks, worn and damaged parts, stem wear, leaks, valve passing *information* includes: valve stroke, wear, overall condition, maintenance record

	KNOV	WLEDGE		
	Learning Outcomes	Learning Objectives		
E-17.02.01L	demonstrate knowledge of valves, their components, characteristics and applications	define terminology associated with valves and their <i>components</i>		
		identify <i>hazards</i> and describe safe work practices pertaining to valves		
		interpret information pertaining to valves found on drawings, specifications, nameplates and data sheets		
		identify types of valves and their components , and describe their characteristics and applications		
		identify types of final control elements and describe their components, applications and operation		
		identify types of final control element accessories and describe their purpose and operation		
		identify types of energy systems used to operate final control elements and describe their characteristics and applications		
		identify types of valve packing and describe their applications		
		describe principles of friction, and coefficient of friction, associated with fluids in motion		
E-17.02.02L	demonstrate knowledge of regulatory requirements pertaining to valves and their <i>components</i>	interpret codes and regulations pertaining to valves and their <i>components</i>		
E-17.02.03L	demonstrate knowledge of procedures used to maintain valves	identify tools and equipment used to maintain valves and describe their applications and procedures for use		
		describe procedures used to maintain valves		
		describe procedures used to inspect valves		

describe methods used to isolate valves for maintenance
describe procedures used to clean and lubricate valves
describe possible <i>faults</i> of valves
describe importance of documenting <i>information</i>

components include: cages, plugs, seats, stems, packing, bonnet, body *characteristics* include: quick opening, linear, equal percentage, on/off

applications include: metallurgy, seal/shut off requirements

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation/lock-out/tag-out *types of valves* include: sliding stem (globe, gate valve, pinch), rotary (butterfly, e-disc, ball, v- ball)

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand wheels *types of energy systems* include: hydraulic, pneumatic, electric, manual operation

types of valve packing include: graphite, rings, rope, PTFE

faults include: packing leaks, worn and damaged parts, stem wear, leaks, valve passing *information* includes: valve stroke, wear, overall condition, maintenance record

E-17.03 Diagnoses valves

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-17.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to industry standards and practices				
E-17.03.02P	interpret valve signature from diagnostic software	valve signature is interpreted from diagnostic software to assess <i>conditions</i>				
E-17.03.03P	determine probable root cause and location of faults and identify required repairs	probable root cause and location of faults are determined and required repairs are identified				
E-17.03.04P	inspect valve trim for conditions	valve trim is inspected for <i>conditions</i>				

diagnostic tools and equipment include: valve diagnostic software, dial gauges, pressure gauges *conditions* include: seat load, sticking valves, galling, cavitation, flashing

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
E-17.03.01L	demonstrate knowledge of valves, their components, characteristics and applications	define terminology associated with valves and their <i>components</i>					
		identify <i>hazards</i> and describe safe work practices pertaining to valves					
		interpret information pertaining to valves found on drawings, specifications, nameplates and data sheets					
		identify <i>types of valves</i> and their <i>components</i> , and describe their <i>characteristics</i> and <i>applications</i>					
		identify types of final control elements and describe their components, applications and operation					
		identify types of final control element accessories and describe their purpose and operation					
		identify types of energy systems used to operate final control elements and describe their characteristics and applications					
		identify types of valve packing and describe their applications					
		describe principles of friction, and coefficient of friction, associated with fluids in motion					
E-17.03.02L	demonstrate knowledge of regulatory requirements pertaining to valves and their <i>components</i>	interpret codes and regulations pertaining to valves and their <i>components</i>					
E-17.03.03L	demonstrate knowledge of procedures used to diagnose valves	identify <i>diagnostic tools and equipment</i> used to diagnose valves and describe their applications and procedures for use					
		describe procedures used to diagnose valves					
		describe possible <i>faults</i> of valves					
E-17.03.04L	demonstrate knowledge of valve trim conditions	identify valve trim conditions					

components include: cages, plugs, seats, stems, packing, bonnet, body *characteristics* include: quick opening, linear, equal percentage, on/off *applications* include: metallurgy, seal/shut off requirements

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation/lock-out/tag-out *types of valves* include: sliding stem (globe, gate valve, pinch), rotary (butterfly, e-disc, ball, v- ball) *types of final control elements* include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand wheels *types of energy systems* include: hydraulic, pneumatic, electric, manual operation

types of valve packing include: graphite, rings, rope, PTFE

diagnostic tools and equipment include: valve diagnostic software, dial gauges, pressure gauges *faults* include: packing leaks, worn and damaged parts, stem wear, leaks, valve passing *conditions* include: seat load, sticking valves, galling, cavitation, flashing

E-17.04 Repairs valves

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
E-17.04.01P	select and use <i>tools and equipment</i>	tools and equipment are selected and used according to industry standards and practices					
E-17.04.02P	disassemble valve	valve is disassembled according to job procedures and manufacturers' recommendations					
E-17.04.03P	select <i>replacement parts</i>	<i>replacement parts</i> are selected according to valve specifications and process applications					
E-17.04.04P	repair <i>components</i>	<i>components</i> are repaired according to manufacturers' recommendations					
E-17.04.05P	reassemble valve	valve is reassembled according to job procedures and manufacturers' recommendations					

RANGE OF VARIABLES

tools and equipment include: packing pullers, seat pullers, torque wrench *replacement parts* include: cage, plug, seat, packing *components* include: cages, plugs, seats, stems, packing, bonnet, body

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
E-17.04.01L	demonstrate knowledge of valves, their <i>components</i> , <i>characteristics</i> and <i>applications</i>	define terminology associated with valves and their <i>components</i>					
		identify <i>hazards</i> and describe safe work practices pertaining to valves					
		interpret information pertaining to valves found on drawings, specifications and nameplates					
		identify <i>types of valves</i> and their <i>components</i> , and describe their <i>characteristics</i> and <i>applications</i>					
		identify types of final control elements and describe their components, applications and operation					
		identify types of final control element accessories and describe their purpose and operation					
		identify types of energy systems used to operate final control elements and describe their characteristics and applications					
		identify types of valve packing and describe their applications					
		describe principles of friction, and coefficient of friction, associated with fluids in motion					
E-17.04.02L	demonstrate knowledge of regulatory requirements pertaining to valves and their <i>components</i>	interpret codes and regulations pertaining to valves and their <i>components</i>					
E-17.04.03L	demonstrate knowledge of procedures used to repair valves	identify tools and equipment used to repair valves and describe their applications and procedures for use					
		describe procedures used to disassemble and reassemble valves					
		describe procedures used to repair valves					
		describe possible <i>faults</i> of valves					

components include: cages, plugs, seats, stems, packing, bonnet, body characteristics include: quick opening, linear, equal percentage, on/off applications include: metallurgy, seal/shut off requirements hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation/lock-out/tag-out types of valves include: sliding stem (globe, gate valve, pinch), rotary (butterfly, e-disc, ball, v- ball) types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand wheels types of energy systems include: hydraulic, pneumatic, electric, manual operation types of valve packing include: graphite, rings, rope, PTFE

tools and equipment include: packing pullers, seat pullers, torque wrench *faults* include: packing leaks, worn and damaged parts, stem wear, leaks, valve passing

TASK E-18 Installs and services actuators

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair actuators to ensure the proper operation of valves and other final control elements. Actuators adjust the position of valves and other final control elements.

E-18.01 Installs actuators

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-18.01.01P	select actuator	actuator is selected according to valve or final control element type, application and manufacturers' specifications				
E-18.01.02P	select and use tools and equipment	tools and equipment are selected and used according to application requirements and size of actuator				
E-18.01.03P	select, orientate and mount actuator	actuator is selected, orientated and mounted according to industry practices engineered designs, manufacturers' specifications and codes				

E-18.01.04P	connect and terminate actuator	actuator is connected and terminated using <i>methods</i> according to industry practices, engineered designs, manufacturers' specifications and codes
E-18.01.05P	benchset actuator	actuator is benchset to overcome static process pressure and ensure seat load
E-18.01.06P	verify that actuator is within specified parameters	actuator is verified to be within specified parameters by using test equipment and calibration procedures

methods include: wiring, tubing, bolting

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
E-18.01.01L	demonstrate knowledge of actuators, their <i>components</i> , characteristics, <i>actions</i> and <i>applications</i>	define terminology associated with actuators and their <i>components</i>					
		identify <i>hazards</i> and describe safe work practices pertaining to actuators and their <i>components</i>					
		interpret information pertaining to actuators found on drawings, specifications and nameplates					
		identify types of actuators and their components , and describe their characteristics, actions and applications					
		identify considerations and requirements for selecting final control elements, their <i>components</i> and accessories					
		identify types of energy systems used to operate final control elements and describe their characteristics and applications					
		describe principles of friction, and coefficient of friction, associated with fluids in motion					
E-18.01.02L	demonstrate knowledge of regulatory requirements pertaining to actuators and their <i>components</i>	interpret codes and regulations pertaining to actuators and their <i>components</i>					
E-18.01.03L	demonstrate knowledge of procedures used to install actuators and their <i>components</i>	identify tools and equipment used to install actuators and their components , and describe their applications and procedures for use					
		describe procedures used to select, size and install actuators					

		describe possible <i>faults</i> of actuators
E-18.01.04L	demonstrate knowledge of procedures used to calibrate actuators	describe procedures used to calibrate actuators

components include: diaphragms, plates, couplings, springs, bushings, o-rings, circuit boards, motors *actions* include: spring return, double-acting, rotary, direct, reverse

applications include: fail-open, fail-close, fail-last

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out *types of actuators* include: pneumatic, hydraulic, electric, mechanical

types of energy systems include: hydraulic, pneumatic, electric, manual operation

faults include: leaking diaphragms, broken springs, damaged or worn o-rings

E-18.02 Maintains actuators

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-18.02.01P	inspect actuator	actuator is inspected for <i>conditions</i> according to specifications and maintenance schedule				
E-18.02.02P	lubricate actuator stems, bushings and bearings	actuator stems, bushings and bearings are lubricated according to manufacturers' specifications				
E-18.02.03P	verify that assembly strokes smoothly throughout travel	assembly strokes smoothly throughout travel				
E-18.02.04P	document <i>information</i>	information is documented				

RANGE OF VARIABLES

conditions include: damaged diaphragms and o-ring seals, scored shafts, water in instrument air *information* includes: valve stroke, wear, overall condition, maintenance record

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
E-18.02.01L	demonstrate knowledge of actuators, their <i>components</i> , characteristics, <i>actions</i> and <i>applications</i>	define terminology associated with actuators and their <i>components</i>			
		identify <i>hazards</i> and describe safe work practices pertaining to actuators and their <i>components</i>			

		interpret information pertaining to actuators found on drawings, specifications and nameplates
		identify types of actuators and their components , and describe their characteristics, actions and applications
		identify types of final control elements and describe their components, applications and operation
		identify <i>types of final control element</i> <i>accessories</i> and describe their purpose and operation
		identify considerations and requirements for selecting final control elements, their <i>components</i> and accessories
		identify types of energy systems used to operate final control elements and describe their characteristics and applications
		describe principles of friction, and coefficient of friction, associated with fluids in motion
		describe environmental conditions
E-18.02.02L	demonstrate knowledge of regulatory requirements pertaining to actuators and their <i>components</i>	interpret codes and regulations pertaining to actuators and their <i>components</i>
E-18.02.03L	demonstrate knowledge of procedures used to maintain actuators	identify tools and equipment used to maintain actuators and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to maintain actuators
		describe possible <i>faults</i> of actuators
		describe procedures used to lubricate actuators
		describe importance of documenting information

components include: diaphragms, plates, couplings, springs, bushings, o-rings, circuit boards, motors *actions* include: spring return, double-acting, rotary, direct, reverse

applications include: fail-open, fail-close, fail-last

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out *types of actuators* include: pneumatic, hydraulic, electric, mechanical

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand wheels *types of energy systems* include: hydraulic, pneumatic, electric, manual operation

environmental conditions include: ambient temperature, location, contamination

faults include: leaking diaphragms, broken springs, damaged or worn o-rings

information includes: valve stroke, wear, overall condition, maintenance record

E-18.03 Diagnoses actuators

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-18.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to industry standards and practices				
E-18.03.02P	interpret actuator travel	actuator travel is interpreted to assess <i>faults</i>				
E-18.03.03P	determine probable root cause and location of <i>faults</i> and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified				

RANGE OF VARIABLES

diagnostic tools and equipment include: diagnostic software, dial gauges, pressure gauges *faults* include: faulty springs, limits, leaking diaphragms, damaged o-rings

	KNOWLEDGE			
	Learning Outcomes	Learning Objectives		
E-18.03.01L	demonstrate knowledge of actuators, their <i>components</i> , characteristics, <i>actions</i> and <i>applications</i>	define terminology associated with actuators and their <i>components</i>		
		identify <i>hazards</i> and describe safe work practices pertaining to actuators and their <i>components</i>		

		interpret information pertaining to actuators found on drawings, specifications and nameplates
		identify <i>types of actuators</i> and their <i>components</i> , and describe their characteristics, <i>actions</i> and <i>applications</i>
		identify <i>types of final control elements</i> and describe their components, applications and operation
		identify <i>types of final control element</i> <i>accessories</i> and describe their purpose and operation
		identify considerations and requirements for selecting final control elements, their <i>components</i> and accessories
		identify <i>types of energy systems</i> used to operate final control elements and describe their characteristics and applications
		describe principles of friction, and coefficient of friction, associated with fluids in motion
		describe environmental conditions
E-18.03.02L	demonstrate knowledge of regulatory requirements pertaining to actuators and their <i>components</i>	interpret codes and regulations pertaining to actuators and their <i>components</i>
E-18.03.03L	demonstrate knowledge of procedures used to diagnose actuators	identify <i>diagnostic tools and equipment</i> used to diagnose actuators and describe their applications and procedures for use
		describe procedures used to diagnose actuators
		explain actuator travel
		describe possible <i>faults</i> of actuators

components include: diaphragms, plates, couplings, springs, bushings, o-rings, circuit boards, motors *actions* include: spring return, double-acting, rotary, direct, reverse

applications include: fail-open, fail-close, fail-last

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out *types of actuators* include: pneumatic, hydraulic, electric, mechanical

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand wheels *types of energy systems* include: hydraulic, pneumatic, electric, manual operation

environmental conditions include: ambient temperature, location, contamination

diagnostic tools and equipment include: diagnostic software, dial gauges, pressure gauges *faults* include: faulty springs, limits, leaking diaphragms, damaged o-rings

E-18.04 Repairs actuators

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	

	SKILLS						
	Performance Criteria	Evidence of Attainment					
E-18.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices					
E-18.04.02P	disassemble actuator	actuator is disassembled according to job procedures and manufacturers' specifications					
E-18.04.03P	select replacement <i>components</i>	replacement <i>components</i> are selected according to manufacturers' specifications and process applications					
E-18.04.04P	lubricate actuators	actuators are lubricated according to manufacturers' specifications					
E-18.04.05P	reassemble actuator with replacement components	actuator is reassembled with replacement <i>components</i> according to job procedures and manufacturers' specifications					
E-18.04.06P	verify operation and calibration before returning to service	operation and calibration are verified before returning to service					

RANGE OF VARIABLES

tools and equipment include: spring compressors, seal pullers *components* include: diaphragms, plates, couplings, springs, bushings, o-rings, circuit boards, motors

NU NV

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
E-18.04.01L	demonstrate knowledge of actuators, their <i>components</i> , characteristics, <i>actions</i> and <i>applications</i>	define terminology associated with actuators and their <i>components</i>					
		identify <i>hazards</i> and describe safe work practices pertaining to actuators and their <i>components</i>					
		interpret information pertaining to actuators found on drawings, specifications and nameplates					
		identify <i>types of actuators</i> and their <i>components</i> , and describe their characteristics, <i>actions</i> and <i>applications</i>					
		identify types of final control elements and describe their components, applications and operation					
		identify types of final control element accessories and describe their purpose and operation					
		identify considerations and requirements for selecting final control elements, their <i>components</i> and accessories					
		identify <i>types of energy systems</i> used to operate final control elements and describe their characteristics and applications					
		describe environmental conditions					
E-18.04.02L	demonstrate knowledge of regulatory requirements pertaining to actuators and their <i>components</i>	interpret codes and regulations pertaining to actuators and their <i>components</i>					
E-18.04.03L	demonstrate knowledge of procedures used to repair actuators	identify tools and equipment used to repair actuators and describe their applications and procedures for use					
		describe procedures used to disassemble and reassemble actuators					
		describe procedures used to repair actuators					
		describe procedures used to lubricate actuators					
E-18.04.04L	demonstrate knowledge of procedures used to calibrate actuators	describe procedures used to calibrate actuators					

components include: diaphragms, plates, couplings, springs, bushings, o-rings, circuit boards, motors *actions* include: spring return, double-acting, rotary, direct, reverse

applications include: fail-open, fail-close, fail-last

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out *types of actuators* include: pneumatic, hydraulic, electric, mechanical

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), positioners (electric, pneumatic, smart), air supply regulators, switches, hand wheels *types of energy systems* include: hydraulic, pneumatic, electric, manual operation

environmental conditions include: ambient temperature, location, contamination

tools and equipment include: spring compressors, seal pullers

TASK E-19 Installs and services positioners

TASK DESCRIPTOR

Instrumentation and control technicians install, maintain, diagnose and repair positioners. Positioners are used for the precise positioning of final control elements. They must be properly installed, calibrated and maintained to ensure system efficiency and reliability.

E-19.01 Installs positioners

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-19.01.01P	select positioner	positioner is selected according to application and manufacturers' specifications				
E-19.01.02P	select positioner <i>action</i>	positioner <i>action</i> is selected according to process and engineered designs				
E-19.01.03P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices				
E-19.01.04P	select mounting hardware	mounting hardware is selected according to application				

E-19.01.05P	orientate and mount positioner to actuator	positioner is orientated and mounted according to access and egress requirements, industry practices, engineered designs, manufacturers' specifications and codes
E-19.01.06P	connect and terminate positioner	positioner is connected and terminated using methods according to industry practices, engineered designs, manufacturers' specifications and codes
E-19.01.07P	configure and calibrate positioner	positioner is configured and calibrated according to specifications
E-19.01.08P	check positioner to verify operation is within specified parameters	positioner is verified to be within specified parameters by using test equipment and <i>calibration procedures</i>
E-19.01.09P	document information	information is documented

action includes: fail-close, fail-open, direct, reverse

tools and equipment include: hand-held configurators, loop calibrators, pressure calibrators, hand tools *methods* include: wiring, tubing, bolting

calibration procedures include: connecting calibration instruments, interpreting calibration results, evaluating causes and effects of calibration errors

information includes: valve stroke, wear, overall condition, range of operation

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
E-19.01.01L	demonstrate knowledge of positioners, their <i>components</i> , <i>auxiliaries</i> , <i>actions</i> , <i>applications</i> and parameters	define terminology associated with positioners and their <i>components</i>					
		identify <i>hazards</i> and describe safe work practices pertaining to positioners and their <i>components</i>					
		interpret information pertaining to positioner devices found on drawings, specifications and nameplates					
		identify types of positioners , their components and auxiliaries , and describe their actions , applications and parameters					
		describe relation of positioners to actuator type and application					
		identify <i>types of final control elements</i> and describe their components, applications and operation					
		identify types of final control element accessories and describe their purpose and operation					

		identify <i>types of energy systems</i> used to operate final control elements and describe their characteristics and applications
		identify considerations and requirements for selecting final control elements, their components and accessories
E-19.01.02L	demonstrate knowledge of regulatory requirements pertaining to positioners and their <i>components</i>	interpret codes and regulations pertaining to positioners and their <i>components</i>
E-19.01.03L	demonstrate knowledge of procedures used to install positioners, their <i>components</i> and <i>auxiliaries</i>	identify <i>tools and equipment</i> used to install positioners, their <i>components</i> and <i>auxiliaries</i> , and describe their applications and procedures for use
		describe procedures used to select and install positioners and their <i>components</i>
		describe procedures used to configure positioners
		describe importance of documenting information
E-19.01.04L	demonstrate knowledge of procedures used to calibrate positioners	describe <i>calibration procedures</i>

components include: levers, nozzles, flappers, diaphragms, feedback devices, current-to-pneumatic (I/P) transducers and bellows, magnets/pick-ups

auxiliaries include: position switches, boosters, locks, speed controls

actions include: fail-close, fail-open, direct, reverse

applications include: sliding stem/rotary, piston/diaphragm

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out

types of positioners include: rotary, pneumatic, electronic, digital, electro-hydraulic, electromechanical, smart

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), air supply regulators, switches, hand wheels

types of energy systems include: hydraulic, pneumatic, electric, manual operation

tools and equipment include: hand-held configurators, loop calibrators, pressure calibrators, hand tools *procedures used to configure positioners* include: setting stroke, setting pressures, matching to actuator

calibration procedures include: connecting calibration instruments, interpreting calibration results, evaluating causes and effects of calibration errors

E-19.02 Maintains positioners

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU	
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV	
							SKIL	LS					
_			Per	formand	e Criter	ia			Evidend	ce of Att	ainmen	t	
E-19.0	2.01P	insp	inspect positioner for <i>problems</i>						positioner is inspected for problems according to specifications and maintenance schedule				
E-19.0	2.02P	clea	in positic	oner <i>con</i>	nponent	Ś		positioner <i>components</i> are cleaned according to manufacturers' specifications					
E-19.0	2.03P		verify that assembly strokes smoothly and does not oscillate throughout travel						, , ,				
E-19.0	2.04P	calibrate and tune positioner						positioner is calibrated and tuned according to valve specifications and process application					
E-19.0	2.05P	doc	document information						<i>tion</i> is d	ocumen	ted		

RANGE OF VARIABLES

problems include: air leaks, feedback faults

components include: levers, nozzles, flappers, diaphragms, feedback devices, I/P transducers and bellows, magnets/pick-ups

information includes: valve stroke, wear, overall condition, range of operation

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
E-19.02.01L	demonstrate knowledge of positioners, their <i>components</i> , <i>auxiliaries</i> , <i>actions</i> , <i>applications</i> and parameters	define terminology associated with positioners and their <i>components</i>					
		identify <i>hazards</i> and describe safe work practices pertaining to positioners and their <i>components</i>					
		interpret information pertaining to positioners found on drawings, specifications and nameplates					
		identify types of positioners , their components and auxiliaries , and describe their actions , applications and parameters					
		describe relation of positioners to actuator type and application					
		identify types of final control elements and describe their components, applications and operation					

		identify <i>types of final control element</i> <i>accessories</i> and describe their purpose and operation
		identify <i>types of energy systems</i> used to operate final control elements, and describe their characteristics and applications
		identify considerations and requirements for selecting final control elements, their components and accessories
E-19.02.02L	demonstrate knowledge of regulatory requirements pertaining to positioners and their <i>components</i>	interpret codes and regulations pertaining to positioners and their <i>components</i>
E-19.02.03L	demonstrate knowledge of procedures used to maintain positioners, their <i>components</i> and <i>auxiliaries</i>	identify tools and equipment used to maintain positioners, their <i>components</i> and <i>auxiliaries</i> , and describe their applications and procedures for use
		describe procedures used to inspect positioners
		describe procedures used to clean positioners
		describe importance of documenting information
E-19.02.04L	demonstrate knowledge of procedures used to calibrate and tune positioners	describe procedures used to calibrate and tune positioners

components include: levers, nozzles, flappers, diaphragms, feedback devices, I/P transducers and bellows, magnets/pick-ups

auxiliaries include: position switches, boosters, locks, speed controls

actions include: fail-close, fail-open

applications include: sliding stem/rotary, piston/diaphragm

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out

types of positioners include: rotary, pneumatic, electronic, digital, electro-hydraulic, electromechanical, smart

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), air supply regulators, switches, hand wheels

types of energy systems include: hydraulic, pneumatic, electric, manual operation

information includes: valve stroke, wear, overall condition, range of operation

E-19.03 Diagnoses positioners

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-19.03.01P	select and use <i>diagnostic tools and</i> equipment	<i>diagnostic tools and equipment</i> are selected and used according to industry standards and practices				
E-19.03.02P	verify positioner operation and configuration	positioner operation and configuration are verified to assess <i>faults</i>				
E-19.03.03P	determine probable root cause and location of <i>faults</i> and identify required repairs	probable root cause and location of <i>faults</i> are determined and required repairs are identified				

RANGE OF VARIABLES

diagnostic tools and equipment include: smart communicators, hand-held configurators, diagnostic software, dial gauges, pressure gauges, pressure calibrators, current calibrators *faults* include: plugged nozzles, defective I/P transducer

	KNOV	VLEDGE
	Learning Outcomes	Learning Objectives
E-19.03.01L	demonstrate knowledge of positioners, their <i>components</i> , <i>auxiliaries, actions</i> , <i>applications</i> and parameters	define terminology associated with positioners and their <i>components</i>
		identify <i>hazards</i> and describe safe work practices pertaining to positioners and their <i>components</i>
		interpret <i>information</i> pertaining to positioner devices found on drawings, specifications and nameplates
		identify types of positioners , their components and auxiliaries , and describe their actions , applications and parameters
		describe relation of positioners to actuator type and application
		identify types of final control elements and describe their components, applications and operation
		identify <i>types of final control element</i> <i>accessories</i> and describe their purpose and operation

		identify types of energy systems used to operate final control elements and describe their characteristics and applications
		identify considerations and requirements for selecting final control elements, their components and accessories
		describe relation of positioners to actuator type and application
		identify use of diagnostic information found in smart positioners for troubleshooting
		identify use of raw data found in smart positioners for device setup
E-19.03.02L	demonstrate knowledge of regulatory requirements pertaining to positioners and their <i>components</i>	interpret codes and regulations pertaining to positioners and their <i>components</i>
E-19.03.03L	demonstrate knowledge of procedures used to diagnose positioners, their <i>components</i> and <i>auxiliaries</i>	identify <i>diagnostic tools and equipment</i> used to diagnose positioners, their <i>components</i> and <i>auxiliaries</i> , and describe their applications and procedures for use
		describe procedures used to diagnose positioners
		describe possible <i>faults</i> of positioners

components include: levers, nozzles, flappers, diaphragms, feedback devices, I/P transducers and bellows, magnets/pick-ups

auxiliaries include: position switches, boosters, locks, speed controls

actions include: fail-close, fail-open, direct, reverse

applications include: sliding stem/rotary, piston/diaphragm

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out

information includes: valve stroke, wear, overall condition, range of operation

types of positioners include: rotary, pneumatic, electronic, digital, electro-hydraulic, electromechanical, smart

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), air supply regulators, switches, hand wheels

types of energy systems include: hydraulic, pneumatic, electric, manual operation

diagnostic tools and equipment include: smart communicators, hand-held configurators, diagnostic software, dial gauges, pressure gauges, pressure calibrators, current calibrators

faults include: plugged nozzles, defective I/P transducer

E-19.04 Repairs positioners

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
E-19.04.01P	select and use <i>tools and equipment</i>	tools and equipment are selected and used according to industry standards and practices					
E-19.04.02P	disassemble positioner	positioner is disassembled according to job procedures and manufacturers' specifications					
E-19.04.03P	select replacement <i>components</i>	replacement <i>components</i> are selected according to positioner specifications and applications					
E-19.04.04P	reassemble positioner with replacement components	positioner is reassembled with replacement <i>components</i> according to job procedures and manufacturers' recommendations					

RANGE OF VARIABLES

tools and equipment include: smart communicators, hand-held configurators, diagnostic software, dial gauges, pressure gauges, pressure calibrators, loop calibrators

components include: levers, nozzles, flappers, diaphragms, feedback devices, I/P transducers and bellows, magnets/pick-ups

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
E-19.04.01L	demonstrate knowledge of positioners, their <i>components</i> and <i>auxiliaries</i> , and describe their <i>actions</i> , <i>applications</i> and parameters	define terminology associated with positioners and their <i>components</i>				
		identify <i>hazards</i> and describe safe work practices pertaining to positioners and their <i>components</i>				
		interpret information pertaining to positioner devices found on drawings, specifications and nameplates				
		identify types of positioners , their components and auxiliaries , and describe their actions , applications and parameters				
		describe relation of positioners to actuator type and application				

		identify <i>types of final control elements</i> and describe their components, <i>applications</i> and operation
		identify <i>types of final control element</i> <i>accessories</i> and describe their purpose and operation
		identify <i>types of energy systems</i> used to operate final control elements and describe their characteristics and applications
		identify considerations and requirements for selecting final control elements, their components and accessories
		describe relation of positioners to actuator type and application
E-19.04.02L	demonstrate knowledge of regulatory requirements pertaining to positioners and their <i>components</i>	interpret codes and regulations pertaining to positioners and their <i>components</i>
E-19.04.03L	demonstrate knowledge of procedures used to repair positioners, their <i>components</i> and <i>auxiliaries</i>	identify <i>tools and equipment</i> used to repair positioners, their <i>components</i> and <i>auxiliaries</i> , and describe their applications and procedures for use
		describe procedures used to disassemble and reassemble positioners
		describe procedures used to repair positioners

components include: levers, nozzles, flappers, diaphragms, feedback devices, I/P transducers and bellows, magnets/pick-ups

auxiliaries include: position switches, boosters, locks, speed controls

actions include: fail-close, fail-open, direct, reverse

applications include: sliding stem/rotary, piston/diaphragm

hazards include: energy state awareness (pressure, voltage, mechanical, temperature), stored

types of positioners include: rotary, pneumatic, electronic, digital, electro-hydraulic, electromechanical, smart

types of final control elements include: valves, dampers/louvres, adjustable positive displacement pumps, motors, process regulators, VSD

types of final control element accessories include: actuators (hydraulic, pneumatic, electric), boosters (volume, pressure), air supply regulator, switches, hand wheels

types of energy systems include: hydraulic, pneumatic, electric, manual operation

tools and equipment include: smart communicators, hand-held configurators, diagnostic software, dial gauges, pressure gauges, pressure calibrators, loop calibrators

mechanical energy (spring compression, compressed air), chemical, isolation, lock-out/tag-out

TASK E-20 Configures and services variable speed drives (VSD)

TASK DESCRIPTOR

Instrumentation and control technicians configure, maintain, diagnose and repair VSD to ensure system efficiency and reliability. VSD are used for the precise control of drives. For the purpose of this standard, VSD include variable frequency drives (VFD).

E-20.01 Configures VSD

	NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
Ī	yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
_	Performance Criteria	Evidence of Attainment
E-20.01.01P	select and use <i>tools and equipment</i>	tools and equipment are selected and used according to industry standards and practices
E-20.01.02P	calibrate VSD	VSD are calibrated according to manufacturers' instructions, application and data sheets
E-20.01.03P	set initial parameters and settings of VSD	initial parameters and settings of VSD are set according to engineered designs, manufacturers' instructions, application and data sheets
E-20.01.04P	back up and document configuration and calibration settings for future data recovery	configuration and calibration settings are backed up and documented for future data recovery
E-20.01.05P	test and verify operation of VSD is within specified parameters	operation of VSD is within specified parameters by using operational and maintenance procedures

RANGE OF VARIABLES

tools and equipment include: software, configurators, frequency generator, oscilloscope, tachometer, multimeter, thermal imaging camera

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
E-20.01.01L	demonstrate knowledge of VSD and their components, characteristics, operating principles, parameters and applications	define terminology associated with VSD and their components			
		identify <i>hazards</i> and describe safe work practices pertaining to VSD			

		interpret information pertaining to VSD found on documentation
		identify power degradation considerations with VSD
		identify types of VSD and their components, and describe their characteristics and operating principles
		describe VSD configurations, interfaces, parameters and applications
		identify types of motors used with VSD and describe their characteristics and operating principles
		describe diagnostic features of VSD
E-20.01.02L	demonstrate knowledge of regulatory requirements pertaining to VSD and their components	interpret codes and regulations pertaining to VSD and their components
E-20.01.03L	demonstrate knowledge of procedures used to configure VSD and their components	identify tools and equipment used to configure VSD and their components, and describe their applications and procedures for use
		describe procedures used to configure VSD and their components
		describe importance of documenting configuration information
E-20.01.04L	demonstrate knowledge of procedures used to calibrate VSD and their components	identify tools and equipment used to calibrate VSD and their components, and describe their applications and procedures for use
		describe procedures used to calibrate VSD and their components
		describe importance of documenting calibration information

operating principles include: tuning parameter identification, signal isolation DCS/VFD

parameters and applications include: power requirements, amperage, limitations, input and output devices

hazards include: energy state awareness, capacitors, electrostatic discharge

documentation includes: drawings, specifications, nameplates

power degradation considerations include: power quality/harmonics, filters, cable routing, motor compatibility

types of VSD include: AC drives, DC drives, VFDs, turbines

types of motors include: DC control (servo, stepping), AC single-phase, AC three-phase, inverter rated *diagnostic features* include: fault codes, error codes, indicator lights

tools and equipment include: software, configurators, frequency generator, oscilloscope, tachometer, multimeter, thermal imaging camera

E-20.02

Maintains VSD

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
E-20.02.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices					
E-20.02.02P	inspect VSD for <i>abnormal conditions</i>	VSD are inspected for abnormal conditions according to manufacturers' specifications					
E-20.02.03P	verify inputs and outputs	inputs and outputs are verified					
E-20.02.04P	upgrade software and firmware	software and firmware are upgraded to avoid obsolescence and to resolve existing or previous software and firmware deficiencies					
E-20.02.05P	follow recommended maintenance practices and schedules	recommended maintenance practices and schedules are followed according to manufacturers' specifications					
E-20.02.06P	back up and document configuration settings for future data recovery	configuration settings are backed up and documented for future data recovery					

RANGE OF VARIABLES

tools and equipment include: multimeters, software, configurators, loop calibrators, frequency generator, oscilloscope, tachometer, thermal imaging camera

abnormal conditions include: contamination, loose connections, excessive heat

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
E-20.02.01L	demonstrate knowledge of VSD and their components, characteristics, operating principles, parameters and applications	define terminology associated with VSD and their components				
		identify hazards and describe safe work practices pertaining to VSD and their components				
		interpret information pertaining to VSD found on <i>documentation</i>				
		identify power degradation considerations with VSD				
		identify types of VSD and their components, and describe their characteristics and operating principles				

		describe VSD configurations, interfaces, parameters and applications
		identify types of motors used with VSD and describe their characteristics and operating principles
		describe <i>diagnostic features</i> of VSD
E-20.02.02L	demonstrate knowledge of regulatory requirements pertaining to VSD and their components	interpret codes and regulations pertaining to VSD and their components
E-20.02.03L	demonstrate knowledge of procedures used to maintain VSD and their components	identify tools and equipment used to maintain VSD and their components, and describe their applications and procedures for use
		describe procedures used to inspect VSD for <i>abnormal conditions</i>
		describe procedures used to upgrade software and firmware
		describe importance of documenting configuration settings

operating principles include: tuning parameter identification, signal isolation DCS/VFD

parameters and applications include: power requirements, amperage, limitations, input and output devices

 $\ensuremath{\textit{hazards}}$ include: energy state awareness, capacitors, electrostatic discharge

documentation includes: drawings, specifications, nameplates

power degradation considerations include: power quality/harmonics, filters, cable routing, motor compatibility

types of VSD include: AC drives, DC drives, VFDs, turbines

types of motors include: DC control (servo, stepping), AC single-phase, AC three-phase, inverter rated *diagnostic features* include: fault codes, error codes, indicator lights

tools and equipment include: multimeters, software, configurators, loop calibrators, frequency generator, oscilloscope, tachometer, thermal imaging camera

abnormal conditions include: contamination, loose connections, excessive heat

E-20.03 Diagnoses VSD

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
E-20.03.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices				
E-20.03.02P	interpret VSD fault codes and indicator lights	VSD fault codes and indicator lights are interpreted to identify <i>conditions</i>				
E-20.03.03P	determine probable root cause and location of faults and identify required repairs	probable root cause and location of faults are determined and required repairs are identified				

RANGE OF VARIABLES

tools and equipment include: tachometers, megohmmeters, computers, multimeters, configurators, frequency generator, oscilloscope, thermal imaging camera *conditions* include: overcurrent, under-voltage, ground faults

	KNOW	/LEDGE		
	Learning Outcomes	Learning Objectives		
E-20.03.01L	demonstrate knowledge of VSD and their components, characteristics, operating principles, parameters and applications	define terminology associated with VSD and their components		
		identify hazards and describe safe work practices pertaining to VSD		
		interpret information pertaining to VSD found on <i>documentation</i>		
		identify power degradation considerations with VSD		
		identify types of VSD and their components, and describe their characteristics and operating principles		
		describe VSD configurations, interfaces, parameters and applications		
		identify types of motors used with VSD and describe their characteristics and operating principles		
		describe diagnostic features of VSD		
E-20.03.02L	demonstrate knowledge of regulatory requirements pertaining to VSD and their components	interpret codes and regulations pertaining to VSD and their components		

E-20.03.03L	demonstrate knowledge of procedures used to diagnose VSD and their components	identify tools and equipment used to diagnose VSD and their components, and describe their applications and procedures for use
		describe procedures used to diagnose VSD and their components
		interpret VSD diagnostic features
		describe possible <i>conditions</i> of VSD

operating principles include: tuning parameter identification, signal isolation DCS/VFD

parameters and applications include: power requirements, amperage, limitations, input and output devices

hazards include: energy state awareness, capacitors, electrostatic discharge, arc flash *documentation* includes: drawings, specifications, nameplates

power degradation considerations include: power quality/harmonics, filters, cable routing, motor compatibility

types of VSD include: AC drives, DC drives, VFDs, turbines

types of motors include: DC control (servo, stepping), AC single-phase, AC three-phase, inverter rated *diagnostic features* include: fault codes, error codes, indicator lights

tools and equipment include: tachometers, megohmmeters, computers, multimeters, configurators, frequency generator, oscilloscope, thermal imaging camera

conditions include: overcurrent, under-voltage, ground faults

E-20.04 Repairs VSD

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
E-20.04.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to industry standards and practices		
E-20.04.02P	select replacement components	replacement components are selected according to applications and manufacturers' specifications		
E-20.04.03P	replace defective components	defective components are replaced according to job procedures and manufacturers' recommendations		

E-20.04.04P	test and adjust operating parameters	operating parameters are tested and adjusted according to application requirements
E-20.04.05P	verify operation before returning to service	operation is verified before returning to service

tools and equipment include: software, configurators, frequency generator, oscilloscope, tachometer, multimeter, thermal imaging camera

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
E-20.04.01L	demonstrate knowledge of VSD and their components, characteristics, operating principles , parameters and applications	define terminology associated with VSD and their components			
		identify <i>hazards</i> and describe safe work practices pertaining to VSD			
		interpret information pertaining to VSD found on <i>documentation</i>			
		identify power degradation considerations with VSD			
		identify types of VSD and their components, and describe their characteristics and operating principles			
		describe VSD configurations, interfaces, parameters and applications			
		identify types of motors used with VSD and describe their characteristics and operating principles			
		describe <i>diagnostic features</i> of VSD			
E-20.04.02L	demonstrate knowledge of regulatory requirements pertaining to VSD and their components	interpret codes and regulations pertaining to VSD and their components			
E-20.04.03L	demonstrate knowledge of procedures used to repair VSD and their components	identify tools and equipment used to repair VSD and their components, and describe their applications and procedures for use			
		describe procedures used to test and adjust operating parameters of VSD			

operating principles include: tuning parameter identification, signal isolation DCS/VFD *parameters and applications* include: power requirements, amperage, limitations, input and output devices

hazards include: energy state awareness, capacitors, electrostatic discharge

documentation includes: drawings, specifications, nameplates

power degradation considerations include: power quality/harmonics, filters, cable routing, motor compatibility

types of VSD include: AC drives, DC drives, VFDs, turbines

types of motors include: DC control (servo, stepping), AC single-phase, AC three-phase, inverter rated *diagnostic features* include: fault codes, error codes, indicator lights

tools and equipment include: software, configurators, frequency generator, oscilloscope, tachometer, multimeter, thermal imaging camera

MAJOR WORK ACTIVITY F

Installs and services communication systems and devices

TASK F-21 Installs and services control network systems

TASK DESCRIPTOR

Instrumentation and control technicians install, configure, diagnose, maintain and repair control network systems and their components. Control network systems transfer process information in a digital format.

F-21.01 Performs installation and configuration on control network systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
F-21.01.01P	select control network system components	control network system components are selected according to application and environment		
F-21.01.02P	mount control network system components	<i>control network system components</i> are mounted according to industry practices, engineered designs, manufacturers' specifications and codes		
F-21.01.03P	terminate and label connections	connections are terminated and labelled using connectors, tools and supplies according to <i>communications media</i> and network equipment being used		
F-21.01.04P	connect network equipment	network equipment is connected using <i>communications media</i> according to industry practices, engineered designs, manufacturers' specifications and codes		
F-21.01.05P	verify operation of system	operation of system is verified to be within specified parameters by testing signal strength of each loop and throughout, and checking error counters		

F-21.01.06P	configure network equipment	network equipment is configured using software and hardware to meet system design criteria
F-21.01.07P	back up and document configuration settings	configuration settings are backed up and documented for future reference or data recovery

control network system components include: switches, repeaters, hubs, routers, antennas, converters, transducers, multiplexers, modems, cables (fibre optic, coaxial, twisted pair, armoured, non-armoured), filters, cards, software, firmware, links (radio, cellular, satellite), power supplies

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, radio frequency [RF], IR), wired (coaxial, shielded twisted pair [STP], unshielded twisted pairs [UTP])

system design criteria include: setting device addresses, port parameters

	KNC	WLEDGE
_	Learning Outcomes	Learning Objectives
F-21.01.01L	demonstrate knowledge of control network systems, their <i>components</i> , characteristics and operation	identify types of <i>communications media</i> and describe their characteristics and applications
		identify types of <i>communication</i> <i>topologies</i> and describe their characteristics and applications
		identify types of <i>communication</i> <i>protocols</i> and describe their characteristics, applications and limitations
		identify control network system components , and describe their characteristics and operation
		define terminology associated with communications media, communication topologies, communication protocols and control network system components
		identify hazards and describe safe work practices pertaining to <i>communications</i> <i>media, communication topologies,</i> <i>communication protocols</i> and <i>control</i> <i>network system components</i>
		interpret information pertaining to communications media, communication topologies, communication protocols and control network system components found on drawings and specifications

		describe procedures used to minimize electromagnetic interference (EMI) and attenuation
		describe wiring installation requirements
		describe procedures to configure communication protocols
		identify tools and equipment used to install, upgrade and configure <i>control</i> <i>network system components</i> , and describe their applications and procedures for use
F-21.01.03L	demonstrate knowledge of procedures used to install and configure control network systems	describe procedures used to select control network system components and communication protocols
		identify types of <i>communication</i> <i>standards</i> and describe their characteristics, applications and limitations
F-21.01.02L	demonstrate knowledge of regulatory requirements pertaining to communications media, communication topologies, communication protocols and control network system components	interpret standards, codes and regulations pertaining to communications media, communication topologies, communication protocols and control network system components
		describe importance of documenting configuration settings and changes
		describe potential causes of interference
		identify types of programming languages and describe their characteristics, applications and limitations

control network system components include: switches, repeaters, hubs, routers, antennas, converters, transducers, multiplexers, modems, cables (fibre optic, coaxial, twisted pair, armoured, non-armoured), filters, cards, software, firmware, links (radio, cellular, satellite), power supplies

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, radio frequency [RF], IR), wired (coaxial, shielded twisted pair [STP], unshielded twisted pairs [UTP])

communication topologies include: ring, bus, star, tree, mesh, hybrid

communication protocols include: Fieldbus, Profibus, Modbus, Transport Control Protocol/Internet Protocol (TCP/IP), Highway Addressable Remote Transducer (HART), DeviceNet/ControlNet, BACnet, open systems interconnection (OSI)

interference includes: overlapping channels, Wi-Fi, electromagnetic interference

standards, codes and regulations include: CEC, ISA, IEEE, CSA, CRTC

communication standards include: RS232, RS422, RS423, RS485, Ethernet, Universal Serial Bus (USB), North American Electric Reliability Corporation (NERC)

wiring installation requirements include: connections (crimping, terminal blocks, soldering, protection, connectors), shielding, grounding, sizing, routing of runs, stripping, labelling/colour-coding

procedures used to minimize EMI and attenuation include: grounding, shielding, electromagnetic compatibility (EMC)

F-21.02 Diagnoses control network systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS		
	Performance Criteria	Evidence of Attainment		
F-21.02.01P	perform visual inspection of network equipment	visual inspection of network equipment is performed to detect signs of <i>faults</i>		
F-21.02.02P	perform physical inspection of cabling and connections	 physical inspection of cabling and connections is performed by cleaning and reseating connections 		
F-21.02.03P	observe indicator and status lights	indicator and status lights are observed to identify normal and abnormal operation		
F-21.02.04P	test system components for <i>faults</i>	system components are tested for <i>faults</i> using <i>diagnostic tools and equipment</i>		
F-21.02.05P	review configuration to ensure no corruption exists	configuration is reviewed using software and documentation to ensure no corruption exists		
F-21.02.06P	determine steps required to address deficiencies	steps required to address deficiencies are determined based on probable root cause		
F-21.02.07P	review documentation and historical data	documentation and historical data is reviewed to assist in determining probable root cause		

faults include: physical damage, faulty connections, faulty lights, error codes *diagnostic tools and equipment* include: analyzers, multimeters, laptop, breakout boxes

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
F-21.02.01L	demonstrate knowledge of control network systems, their <i>components</i> , characteristics and operation	identify types of <i>communications media</i> and describe their characteristics and applications
		identify types of <i>communication</i> <i>topologies</i> and describe their characteristics and applications
		identify types of <i>communication</i> <i>protocols</i> and describe their characteristics, applications and limitations
		identify <i>control network system</i> <i>components</i> , and describe their characteristics and operation
		define terminology associated with communications media, communication topologies, communication protocols and control network system components
		identify hazards and describe safe work practices pertaining to <i>communications</i> <i>media, communication topologies,</i> <i>communication protocols</i> and <i>control</i> <i>network system components</i>
		interpret information pertaining to communications media, communication topologies, communication protocols and control network system components found on drawings and specifications
		identify types of programming languages and describe their characteristics, applications and limitations
		describe potential causes of interference
		describe importance of documenting configuration settings and changes
F-21.02.02L	demonstrate knowledge of regulatory requirements pertaining to communications media, communication topologies, communication protocols and control network system components	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to <i>communications media,</i> <i>communication topologies,</i> <i>communication protocols</i> and <i>control</i> <i>network system components</i>

		identify types of <i>communication</i> <i>standards</i> and describe their characteristics, applications and limitations
F-21.02.03L	demonstrate knowledge of procedures used to diagnose control network systems	identify <i>diagnostic tools and equipment</i> used to diagnose control network systems, and describe their applications and procedures for use
		describe procedures used to diagnose control network system components and communication protocols
		describe possible <i>faults</i> of network equipment

control network system components include: switches, repeaters, hubs, routers, antennas, converters, transducers, multiplexers, modems, cables (fibre optic, coaxial, twisted pair, armoured, non-armoured), filters, cards, software, firmware, links (radio, cellular, satellite), power supplies

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, RF, IR), wired (coaxial, STP, UTP)

communication topologies include: ring, bus, star, tree, mesh, hybrid

communication protocols include: Fieldbus, Profibus, Modbus, TCP/IP, HART, DeviceNet/ControlNet, BACnet, OSI

interference includes: overlapping channels, Wi-Fi, electromagnetic interference

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

communication standards include: RS232, RS422, RS423, RS485, Ethernet, USB, NERC

diagnostic tools and equipment include: analyzers, multimeters, laptop, breakout boxes

faults include: physical damage, faulty connections, faulty lights, error codes

F-21.03 Performs maintenance and repairs on control network systems

Ν	L	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
ye	es	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS						
	Performance Criteria	Evidence of Attainment					
F-21.03.01P	use software to check error logs, signal strength and counter-reading	software is used to check error logs, signal strength and counter readings to identify eventual issues through data analysis of patterns					
F-21.03.02P	clean network equipment and <i>connectors</i>	network equipment and <i>connectors</i> are cleaned according to manufacturers' specifications					
F-21.03.03P	repair or replace <i>control network</i> system components	control network system components are repaired or replaced according to results of root cause diagnostics					

F-21.03.04P	verify operation before returning to service	operation is verified before returning to service
F-21.03.05P	back up and document configuration settings	configuration settings are backed up and documented for future data recovery

connectors include: USB, FireWire, serial, RJ45, RJ11, M12, M10, Bayonet Neill Concelman (BNC), cannon plugs, fibre optics

control network system components include: switches, repeaters, hubs, routers, antennas, converters, transducers, multiplexers, modems, cables (fibre optic, coaxial, twisted pair, armoured, non-armoured), filters, cards, software, firmware, links (radio, cellular, satellite), power supplies

	KNOV	/LEDGE
	Learning Outcomes	Learning Objectives
F-21.03.01L	demonstrate knowledge of control network systems and their <i>components</i> , their characteristics and operation	identify types of communications media and describe their characteristics and applications
		identify types of <i>communication</i> <i>topologies</i> and describe their characteristics and applications
		identify types of <i>communication</i> <i>protocols</i> and describe their characteristics, applications and limitations
		identify <i>control network system</i> <i>components</i> , and describe their characteristics and operation
		define terminology associated with communications media, communication topologies, communication protocols and control network system components
		identify hazards and describe safe work practices pertaining to <i>communications</i> <i>media, communication topologies,</i> <i>communication protocols</i> and <i>control</i> <i>network system components</i>
		interpret information pertaining to communication media, communication topologies, communication protocols and control network system components found on drawings and specifications
		identify types of programming languages and describe their characteristics, applications and limitations
		describe potential causes of interference

		describe importance of documenting configuration settings and changes		
F-21.03.02L	demonstrate knowledge of regulatory requirements pertaining to <i>communications media,</i> <i>communication topologies,</i> <i>communication protocols</i> and <i>control</i> <i>network system components</i>	interpret standards, codes and regulations pertaining to communications media, communication topologies, communication protocols and control network system components		
		identify types of <i>communication</i> <i>standards</i> and describe their characteristics, applications and limitations		
F-21.03.03L	demonstrate knowledge of procedures used to maintain and repair control network systems and their <i>components</i>	identify <i>diagnostic tools and equipment</i> used to maintain and repair control network systems and their <i>components</i> , and describe their applications and procedures for use		
		describe procedures used to maintain and repair control network systems and their <i>components</i>		

control network system components include: switches, repeaters, hubs, routers, antennas, converters, transducers, multiplexers, modems, cables (fibre optic, coaxial, twisted pair, armoured, non-armoured), filters, cards, software, firmware, links (radio, cellular, satellite), power supplies

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, RF, IR), wired (coaxial, STP, UTP)

communication topologies include: ring, bus, star, tree, mesh, hybrid

communication protocols include: Fieldbus, Profibus, Modbus, TCP/IP, HART, DeviceNet/ControlNet, BACnet, OSI

interference includes: overlapping channels, Wi-Fi, electromagnetic interference

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

communication standards include: RS232, RS422, RS423, RS485, Ethernet, USB, NERC

diagnostic tools and equipment include: analyzers, multimeters, laptop

TASK F-22 Installs and services signal converters

TASK DESCRIPTOR

Instrumentation and control technicians install, configure, calibrate, diagnose, maintain, repair and replace signal converters. Analogue-to-analogue signals are covered in the task related to signal transducers. Communication systems use signal converters to convert one signal to another that will be understood by the process control system. This could include converting analogue-to-digital signals or digital-to-analogue signals.

F-22.01 Performs installation and configuration of signal converters

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

		SKILLS
	Performance Criteria	Evidence of Attainment
F-22.01.01P	select signal converters	signal converters are selected according to required functionality and environment
F-22.01.02P	select wiring	wiring is selected according to industry standards, codes and practices
F-22.01.03P	mount signal converters	signal converters are mounted according to industry practices, engineered designs, manufacturers' specifications and codes
F-22.01.04P	terminate wiring	wiring is terminated according to industry practices, engineered designs, manufacturers' specifications and codes
F-22.01.05P	configure signal converters	signal converters are configured according to manufacturers' specifications, process requirements and data sheets
F-22.01.06P	calibrate signal converters	signal converters are calibrated to required specifications using <i>calibration</i> <i>instruments</i> according to manufacturers' specifications, process requirements and data sheets
F-22.01.07P	back up and document settings	settings are backed up and documented for future reference or data recovery

RANGE OF VARIABLES

calibration instruments include: hand-held configurators, laptop

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
F-22.01.01L	demonstrate knowledge of signal converters, their characteristics and applications	define terminology associated with signal converters						
		identify types of signal converters and describe their characteristics and applications						
		identify hazards and describe safe work practices pertaining to installation and configuration of signal converters						
		interpret information pertaining to signal converters found on drawings and specifications						
		describe potential causes of interference						
F-22.01.02L	demonstrate knowledge of regulatory requirements pertaining to signal converters	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to signal converters						
F-22.01.03L	demonstrate knowledge of procedures used to install and configure signal converters	identify tools and equipment used to install and configure signal converters and describe their applications and procedures for use						
		describe procedures used to select, install and configure signal converters						
		describe wiring installation requirements						
F-22.01.04L	demonstrate knowledge of procedures used to calibrate signal converters	describe procedures and parameters to calibrate signal converters						
		perform <i>conversions and calculations</i> for signal converters						

types of signal converters include: digital-to-analogue (D/A), analogue-to-digital (A/D) *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC *wiring installation requirements* include: connections (crimping, terminal blocks, soldering, protection, connectors), shielding, grounding, sizing, routing of runs, stripping, labelling/colour-coding *parameters* include: zero, span, range, accuracy, trim adjustments *conversions and calculations* include: A/D, D/A

F-22.02 Diagnoses signal converters

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
F-22.02.01P	perform inspection of signal converters	inspection of signal converters is performed to detect problems						
F-22.02.02P	check function of signal converters	function of signal converters is checked to isolate <i>problems</i>						
F-22.02.03P	check calibration and configuration of signal converters	calibration and configuration of signal converters are checked using <i>diagnostic tools and equipment</i>						
F-22.02.04P	determine steps required to address deficiencies	steps required to address deficiencies are determined based on probable root cause						
F-22.02.05P	review documentation and historical data	documentation and historical data are reviewed to assist in determining probable root cause						

RANGE OF VARIABLES

problems include: inadequate power, physical damage, faulty connections, contamination, corrosion *diagnostic tools and equipment* include: multimeters, hand-held configurators, laptop

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
F-22.02.01L	demonstrate knowledge of signal converters, their characteristics and applications	define terminology associated with signal converters						
		identify types of signal converters and describe their characteristics and applications						
		identify hazards and describe safe work practices pertaining to diagnosis of signal converters						
		interpret information pertaining to signal converters found on drawings and specifications						
		describe potential causes of interference						
F-22.02.02L	demonstrate knowledge of regulatory requirements pertaining to signal converters	interpret <i>standards, codes and regulations</i> pertaining to signal converters						

F-22.02.03L	demonstrate knowledge of procedures used to diagnose signal converters	identify <i>diagnostic tools and equipment</i> used to diagnose signal converters, and describe their applications and procedures for use
		describe procedures used to inspect and diagnose signal converters
		describe possible problems of signal converters
		perform <i>conversions and calculations</i> for signal converters

types of signal converters include: D/A, A/D

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC *diagnostic tools and equipment* include: multimeters, hand-held configurators, laptop *problems* include: inadequate power, physical damage, faulty connections, contamination, corrosion *conversions and calculations* include: A/D, D/A

F-22.03	Performs maintenance	and repa	irs on signa	I converters

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
F-22.03.01P	perform inspection of signal converters	inspection of signal converters is performed to detect problems						
F-22.03.02P	perform function check of signal converters	function check of signal converters is performed to confirm proper operation						
F-22.03.03P	perform scheduled maintenance activities	scheduled maintenance activities are performed according to maintenance specifications and procedures						
F-22.03.04P	repair or replace signal converters	signal converters are repaired or replaced according to results of root cause analysis						
F-22.03.05P	verify operation and calibration	operation and calibration are verified before returning to service						
F-22.03.06P	back up and document settings	settings are backed up and documented for future data recovery						

RANGE OF VARIABLES

problems include: inadequate power, physical damage, faulty connections, contamination, corrosion

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
F-22.03.01L	demonstrate knowledge of signal converters, their characteristics and applications	define terminology associated with signal converters						
		identify types of signal converters and describe their characteristics and applications						
		identify hazards and describe safe work practices pertaining to diagnosis of signal converters						
		interpret information pertaining to signal converters found on drawings and specifications						
		describe potential causes of interference						
		describe importance of documenting settings and changes						
F-22.03.02L	demonstrate knowledge of regulatory requirements pertaining to signal converters	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to signal converters						
F-22.03.03L	demonstrate knowledge of procedures used to maintain, repair and replace signal converters	identify tools and equipment and software used to maintain and repair signal converters and describe their applications and procedures for use						
		describe procedures used to inspect signal converters						
		describe procedures used to maintain, repair and replace signal converters						
		describe possible problems of signal converters						
F-22.03.04L	demonstrate knowledge of procedures used to calibrate signal converters	describe procedures used to calibrate signal converters						
		perform <i>conversions and calculations</i> for signal converters						

types of signal converters include: D/A, A/D *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC *problems* include: inadequate power, physical damage, faulty connections, contamination, corrosion *conversions and calculations* include: A/D, D/A

TASK F-23 Installs and services gateways, bridges and media

converters

TASK DESCRIPTOR

Instrumentation and control technicians install, configure, maintain, diagnose and repair gateways, bridges and media converters. Gateways, bridges and media converters convert process information between media types, devices and systems.

F-23.01 Performs installation and configuration of gateways, bridges and media converters

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
F-23.01.01P	select gateways, bridges and media converters	gateways, bridges and media converters are selected according to application requirements and <i>communication</i> <i>protocols</i>						
F-23.01.02P	mount gateways, bridges and media converters	gateways, bridges and media converters are mounted according to industry practices, engineered designs, and manufacturers' specifications and codes						
F-23.01.03P	select cabling	cabling is selected according to application requirements, industry standards, codes and regulations						
F-23.01.04P	connect gateways, bridges and media converters	gateways, bridges and media converters are connected according to industry practices, engineered designs, manufacturers' specifications and codes						
F-23.01.05P	select and use tools, equipment and software	tools, equipment and software are selected and used according to manufacturers' specifications						
F-23.01.06P	set protocols, addressing, port parameters and I/O configurations	protocols, addressing, port parameters and I/O are set according to engineered designs, documentation and manufacturers' specifications						
F-23.01.07P	back up and document configuration settings	configuration settings are backed up and documented for future reference or data recovery						

communication protocols include: Fieldbus, Profibus, Modbus, TCP/IP, HART, DeviceNet/ControlNet, BACnet, OSI

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
F-23.01.01L	demonstrate knowledge of gateways, bridges and media converters, their characteristics, applications and <i>limitations</i>	define terminology associated with gateways, bridges and media converters					
		identify types of gateways, bridges and media converters, and describe their characteristics, applications and <i>limitations</i>					
		identify <i>communications media</i> and describe their characteristics and applications					
		interpret information pertaining to gateways, bridges and media converters found on drawings and specifications					
		identify types of network, <i>communication protocols</i> and addressing structures					
		identify data structures and system formats					
F-23.01.02L	demonstrate knowledge of regulatory requirements pertaining to gateways, bridges and media converters	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to gateways, bridges and media converters					
F-23.01.03L	demonstrate knowledge of procedures used to install and configure gateways, bridges and media converters	identify tools and equipment used to install and configure gateways, bridges and media converters, and describe their applications and procedures for use					
		describe procedures used to select, install and configure gateways, bridges and media converters					
		identify types of cables used in installation of gateways, bridges and media converters					
		describe procedures used to set protocols, addressing and port parameters					

limitations include: memory size, transmission speed, distance

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, RF, IR), wired (coaxial, STP, UTP), Ethernet I/O

communication protocols include: Fieldbus, Profibus, Modbus, TCP/IP, HART, DeviceNet/ControlNet, BACnet, OSI

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

F-23.02 Diagnoses gateways, bridges and media converters

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
F-23.02.01P	perform visual inspection of gateways, bridges and media converters	visual inspection of gateways, bridges and media converters is performed to detect signs of <i>faults</i>
F-23.02.02P	perform physical inspection of cabling and connections	physical inspection of cabling and connections to gateways, bridges and media converters is performed using <i>methods</i>
F-23.02.03P	test system components for <i>faults</i>	system components are tested for <i>faults</i> using <i>diagnostic tools and equipment</i>
F-23.02.04P	verify configuration	configuration is verified using software and documentation to ensure no corruption exists
F-23.02.05P	determine steps required to address faults	steps required to address <i>faults</i> are determined based on probable root cause
F-23.02.06P	review documentation and historical data	documentation and historical data is verified to assist in determining probable root cause

RANGE OF VARIABLES

faults include: physical damage, faulty connections, fault lights, error codes, response time of data transfer

methods include: cleaning, reseating connections

diagnostic tools and equipment include: protocol analyzers, software, multimeters, hand-held communicators, laptop

	KNOV	VLEDGE
	Learning Outcomes	Learning Objectives
F-23.02.01L	demonstrate knowledge of gateways, bridges and media converters, their characteristics, applications and <i>limitations</i>	define terminology associated with gateways, bridges and media converters
		identify types of gateways, bridges and media converters, and describe their characteristics, applications and <i>limitations</i>
		identify communications media and describe their characteristics and applications
		interpret information pertaining to gateways, bridges and media converters found on drawings and specifications
		identify types of network, <i>communication protocols</i> and addressing structures
		identify data structures and system formats
F-23.02.02L	demonstrate knowledge of regulatory requirements pertaining to gateways, bridges and media converters	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to gateways, bridges and media converters
F-23.02.03L	demonstrate knowledge of procedures used to diagnose gateways, bridges and media converters	identify <i>diagnostic tools and equipment</i> used to diagnose gateways, bridges and media converters, and describe their applications and procedures for use
		describe procedures used to inspect gateways, bridges and media converters and their cabling and connections
		describe possible <i>faults</i> of gateways, bridges and media converters

limitations include: memory size, transmission speed, distance

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, RF, IR), wired (coaxial, STP, UTP), Ethernet I/O

communication protocols include: Fieldbus, Profibus, Modbus, TCP/IP, HART, DeviceNet/ControlNet, BACnet, OSI

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

diagnostic tools and equipment include: protocol analyzers, software, multimeters, hand-held communicators, laptop

faults include: physical damage, faulty connections, fault lights, error codes, response time of data transfer

F-23.03

Performs maintenance and repairs on gateways, bridges and media converters

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
no	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	Sk	(ILLS				
	Performance Criteria	Evidence of Attainment				
F-23.03.01P	perform inspection of gateways, bridges and media converters	inspection of gateways, bridges and media converters is performed to detect <i>faults</i>				
F-23.03.02P	check error logs, tables and registers	software is used to check error logs, tables and registers to identify issues through data analysis of patterns				
F-23.03.03P	observe indicator lights	indicator lights are observed to ensure proper operation				
F-23.03.04P	clean gateways, bridges, media converters and connectors (fibre optics)	gateways, bridges, media converters and connectors (fibre optics) are cleaned according to manufacturers' specifications				
F-23.03.05P	review maintenance documentation and historical data	maintenance documentation and historical data are reviewed to assist in determining probable root cause				
F-23.03.06P	replace <i>components</i>	components are replaced according to manufacturers' specifications				
F-23.03.07P	restore and verify configuration	configuration is restored and verified				
F-23.03.08P	verify operation	operation is verified before returning to service				
F-23.03.09P	back up and document configuration settings	configuration settings are backed up and documented for future data recovery				

RANGE OF VARIABLES

faults include: heat build-up, humidity, contamination *components* include: modules, circuit boards

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
F-23.03.01L	demonstrate knowledge of gateways, bridges and media converters, their characteristics, applications and <i>limitations</i>	define terminology associated with gateways, bridges and media converters				
		identify types of gateways, bridges and media converters, and describe their characteristics, applications and <i>limitations</i>				

		identify <i>communications media</i> and describe their characteristics and applications
		interpret information pertaining to gateways, bridges and media converters found on drawings and specifications
		identify types of network, <i>communication protocols</i> and addressing structures
		identify data structures and system formats
		describe importance of documenting settings
F-23.03.02L	demonstrate knowledge of regulatory requirements pertaining to gateways, bridges and media converters	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to gateways, bridges and media converters
F-23.03.03L	demonstrate knowledge of procedures used to maintain, repair and replace gateways, bridges and media converters and their <i>components</i>	identify tools and equipment and software used to maintain, repair and replace gateways, bridges and media converters, and describe their applications and procedures for use
		describe procedures used to maintain, repair and replace gateways, bridges and media converters, their cabling, connections and <i>components</i>
		describe possible <i>faults</i> of gateways, bridges and media converters
		describe procedures used to clean gateways, bridges, media converters and connectors (fibre optics)

limitations include: memory size, transmission speed, distance

communications media include: fibre optics (multimode/single mode transmission), wireless (satellite, cellular, Bluetooth, RF, IR), wired (coaxial, STP, UTP), ethernet I/O

communication protocols include: Fieldbus, Profibus, Modbus, TCP/IP, HART, DeviceNet/ControlNet, BACnet, OSI

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC

components include: modules, circuit boards

faults include: heat build-up, humidity, contamination

MAJOR WORK ACTIVITY G

Installs and services control systems and process control

TASK G-24 Establishes and optimizes process control strategies

TASK DESCRIPTOR

Instrumentation and control technicians determine and optimize process control strategies. Process control strategies are employed and selected to maintain and control the performance of the process.

G-24.01 Determines process control strategy

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SI	KILLS
	Performance Criteria	Evidence of Attainment
G-24.01.01P	determine control, process parameters and manipulated variables	control, process parameters and manipulated variables are determined according to process requirements
G-24.01.02P	determine applicable <i>control strategy</i>	applicable <i>control strategy</i> is determined according to process requirements and engineered designs
G-24.01.03P	develop loop diagram as basis for implementation	loop diagram is developed as basis for implementation according to engineering practices
G-24.01.04P	determine <i>controller action</i>	<i>controller action</i> is determined according to process requirements
G-24.01.05P	determine <i>controller functions</i>	controller functions are determined according to process requirements

RANGE OF VARIABLES

control strategy includes: feedback, feedforward, feedforward indexed, cascade, gap, duplex, selective, ratio, multivariable, floating, relation

controller action is: direct, reverse

controller functions include: modulating (proportional-integral [PI], PID, proportional [P]), on/off

	KNOW	LEDGE
	Learning Outcomes	Learning Objectives
G-24.01.01L	demonstrate knowledge of process control and its limitations, <i>purpose and</i> <i>applications</i>	define terminology associated with process control
		identify hazards and describe safe work practices pertaining to process control
		interpret <i>information</i> pertaining to basic process control
		explain process control and its limitations, <i>purpose and applications</i>
		identify <i>methods of basic process control</i> and describe their applications
		identify <i>methods of advanced process control</i> and describe their applications
		identify controller functions and describe their applications and operation
		explain process dynamics and their impact on process control
		explain process loop interactions and their impact on process control
		explain control theory, actions and operational modes
G-24.01.02L	demonstrate knowledge of regulatory requirements pertaining to process control	interpret codes and regulations pertaining to process control
G-24.01.03L	demonstrate knowledge of procedures used to determine process <i>control</i> <i>strategies</i>	identify types of <i>control strategies</i> and describe their purpose and applications
		explain control strategies, controller action and controller functions
		describe methods of tuning using proportional-integral-derivative (PID) equations

purpose and applications include: control variable, manipulated variable, manual/local control, automatic/remote control, open loop, closed loop

information includes: ISA symbols, SAMA symbols, P&ID, loop diagrams, instrument index, schematic diagrams, wiring diagrams, control narratives (functional description)

methods of basic process control include: feedback, manual/auto selection

methods of advanced process control include: ratio, feedforward, adaptive, cascade, split ranging, relation, gap action, model predictive control, multiple input single output (MISO)/multiple input multiple output (MIMO)

controller functions include: modulating (proportional-integral [PI], PID, proportional [P]), on/off *process loop interactions* include: boiler control systems (sympathetic loop interactions)

control strategies include: feedback, feedforward, feedforward indexed, cascade, gap, duplex, selective, ratio, multivariable, floating, relation

controller action is: direct, reverse

G-24.02 Optimizes process control

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
G-24.02.01P	identify process loop for optimization	process loop for optimization is identified
G-24.02.02P	evaluate strategy's ability to control process	strategy's ability to control process is evaluated
G-24.02.03P	initiate a change in process	a change in process is initiated to observe how process control reacts to change
G-24.02.04P	gather process data	process data is gathered to evaluate process stability and reactions
G-24.02.05P	analyze data and observations	data and observations are analyzed to determine effectiveness of strategy
G-24.02.06P	recognize control and process limitations	control and process limitations are recognized
G-24.02.07P	tune process control loop	process control loop is tuned according to analysis of data and observations
G-24.02.08P	use software to optimize tuning parameters	software is used to optimize tuning parameters
G-24.02.09P	identify and set <i>alarming requirements</i>	<i>alarming requirements</i> are identified and set

RANGE OF VARIABLES

alarming requirements include: process alarms, SIS safety alarms, high/low limits, alarming priority levels

	KNOW	LEDGE
	Learning Outcomes	Learning Objectives
G-24.02.01L	demonstrate knowledge of process control and its limitations, <i>purpose and applications</i>	define terminology associated with process control
		identify hazards and describe safe work practices pertaining to process control
		interpret <i>information</i> pertaining to basic process control
		explain process control and its limitations, <i>purpose and applications</i>
		identify <i>methods of basic process control</i> and describe their applications
		identify <i>methods of advanced process control</i> and describe their applications
		identify <i>controller functions</i> and describe their applications and operation
		explain process dynamics and their impact on process control
		explain process loop interactions and their impact on process control
		explain control theory, actions and operational modes
G-24.02.02L	demonstrate knowledge of regulatory requirements pertaining to process control	interpret codes and regulations pertaining to process control
G-24.02.03L	demonstrate knowledge of procedures used to optimize process control systems	identify tools, equipment and software used to optimize process control systems, and describe their applications and procedures for use
		describe procedures used to optimize process control systems
		describe procedures used to tune control loops
		describe procedures used to identify and set <i>alarming requirements</i>

purpose and applications include: control variable, manipulated variable, manual control, automatic control, open loop, closed loop

information includes: ISA symbols, SAMA symbols, P&ID, loop diagrams, instrument index, schematic diagrams, wiring diagrams, control narratives (functional description)

methods of basic process control include: feedback, manual/auto selection

methods of advanced process control include: ratio, feedforward, adaptive, cascade, split ranging, relation, gap action, model predictive control, MISO/ MIMO

controller functions include: modulating (PI, PID, P), on/off

process loop interactions include: boiler control systems (sympathetic loop interactions)

procedures used to tune control loops include: closed loop methods, open loop methods

alarming requirements include: process alarms, SIS safety alarms, high/low limits, alarming priority levels

TASK G-25 Installs and services stand-alone controllers (SAC)

TASK DESCRIPTOR

Instrumentation and control technicians install and service SAC. SAC such as electronic and pneumatic controllers employ control strategies. They control a specific process variable typically for single loop applications rather than multiple processes or large control schemes. They may be configured to receive remote set points. They are not required to be connected to other plant networks.

G-25.01 Installs SAC

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS				
	Performance Criteria	Evidence of Attainment			
G-25.01.01P	select controller	controller is selected according to application, process requirements, control strategy and signal requirements			
G-25.01.02P	determine mounting requirements and locations	mounting requirements and locations are determined according to codes, environmental conditions and area classifications			

G-25.01.03P	select and use tools and equipment	tools and equipment are selected and used according to installation requirements and manufacturers' specifications
G-25.01.04P	connect wiring and tubing to controller	wiring and tubing are connected to controller according to industry practices, engineered designs, manufacturers' specification and codes

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
G-25.01.01L	demonstrate knowledge of SAC, their limitations, purpose and applications	define terminology associated with SAC					
		identify <i>types of SAC</i> , and describe their limitations, purpose and applications					
		describe SAC functions and modes					
		identify hazards and describe safe work practices pertaining to SAC					
		interpret <i>information</i> pertaining to SAC found on drawings and specifications					
		describe operating theory and parameters of SAC					
G-25.01.02L	demonstrate knowledge of procedures used to install SAC	identify tools and equipment used to install SAC, and describe their applications and procedures for use					
		describe procedures used to install SAC					
		explain SAC installation requirements					
		describe methods used to connect SAC					

types of SAC include: analogue, electronic, pneumatic, microprocessor (single loop, cascade loop) *SAC functions and modes* include: direct/reverse action, auto/manual, PID, on/off, local/remote *information* includes: ISA symbols, SAMA symbols, P&ID, loop diagrams, instrument index, schematic diagrams, wiring diagrams, control narratives (functional description) *installation requirements* include: ambient conditions, area classification

G-25.02 Configures SAC

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS					
	Performance Criteria	Evidence of Attainment				
G-25.02.01P	select and use <i>tools, equipment</i> and software for configuration and adjustments	tools, equipment and software for configuration and adjustments are selected and used according to manufacturers' specifications				
G-25.02.02P	develop controller configuration	controller configuration is developed according to process control strategy				
G-25.02.03P	implement configuration	configuration is implemented				
G-25.02.04P	calibrate inputs/outputs (electronic or pneumatic)	inputs/outputs (electronic or pneumatic) are calibrated according to manufacturers' specifications and process requirements				
G-25.02.05P	tune and verify controller	controller is tuned and verified to determine if controller configuration controls process according to operational requirements				
G-25.02.06P	back up and document configurations, adjustments, settings, diagrams and tuning parameters for future data recovery	configurations, adjustments, settings, diagrams and tuning parameters are backed up and documented for future data recovery				

RANGE OF VARIABLES

tools and equipment include: hand-held programmers, pneumatic and electrical test equipment

	KNO	KNOWLEDGE						
	Learning Outcomes	Learning Objectives						
G-25.02.01L	demonstrate knowledge of SAC, their limitations, purpose and applications	define terminology associated with SAC						
		identify <i>types of SAC</i> , and describe their limitations, purpose and applications						
		describe SAC functions and modes						
		identify hazards and describe safe work practices pertaining to SAC						
		interpret information pertaining to SAC						
G-25.02.02L	demonstrate knowledge of procedures used to configure SAC	identify <i>tools, equipment</i> and software used to configure SAC, and describe their applications and procedures for use						
		describe procedures and techniques used to configure and tune SAC						

		describe importance of backing up and documenting program and configuration before and after service
G-25.02.03L	demonstrate knowledge of procedures used to calibrate SAC	identify tools, equipment and software used to calibrate SAC, and describe their applications and procedures for use
		describe procedures and techniques used to calibrate SAC

types of SAC include: analogue, electronic, pneumatic, microprocessor (single loop, cascade loop) *SAC functions and modes* include: direct/reverse action, auto/manual, PID, on/off, local/remote *information* includes: ISA symbols, SAMA symbols, P&ID, loop diagrams, instrument index, schematic diagrams, wiring diagrams, control narratives (functional description)

tools and equipment include: hand-held programmers, pneumatic and electrical test equipment

G-25.03 Performs maintenance, diagnostics and repairs on SAC

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
ye	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
G-25.03.01P	select and use <i>tools and equipment</i>	<i>tools and equipment</i> are selected and used according to manufacturers' specifications
G-25.03.02P	perform routine <i>maintenance</i>	routine <i>maintenance</i> is performed according to schedule
G-25.03.03P	diagnose error codes and status lights	error codes and status lights are diagnosed to identify problems
G-25.03.04P	identify probable root cause of faults	probable root cause is identified by investigating symptoms and conditions to determine location of faults
G-25.03.05P	determine steps required to address faults	steps required to address faults are determined based on probable root cause
G-25.03.06P	repair and replace <i>electronic</i> components	<i>electronic components</i> are repaired and replaced according to job procedures and manufacturers' recommendations
G-25.03.07P	repair and replace <i>pneumatic</i> components	<i>pneumatic components</i> are repaired and replaced according to job procedures and manufacturers' recommendations
G-25.03.08P	perform controller alignment	controller is aligned according to manufacturers' recommendations

G-25.03.09P	restore program and configuration from backup and return controller to service	program and configuration is restored from backup and controller is returned to service
G-25.03.10P	verify SAC tuning, programming and configuration	SAC tuning, programming and configuration is verified
G-25.03.11P	back up and document SAC program, settings and configuration	SAC program, settings and configuration are backed up and documented for future data recovery

tools and equipment include: multimeters, software, calibration equipment

maintenance includes: replacing filters, restrictors and backup batteries, checking indicating lights, verifying environmental conditions (temperature, cleanliness)

electronic components include: I/O modules, power supplies, digital displays

pneumatic components include: flappers, nozzles, relays

	KNO	WLEDGE
	Learning Outcomes	Learning Objectives
G-25.03.01L	demonstrate knowledge of SAC, their limitations, purpose and applications	define terminology associated with SAC
		identify types of SAC , and describe their limitations, purpose and applications
		describe SAC functions and modes
		identify hazards and describe safe work practices pertaining to SAC
		interpret <i>information</i> pertaining to SAC found on drawings and specifications
		describe operating theory and parameters of SAC
G-25.03.02L	demonstrate knowledge of procedures used to maintain, diagnose, repair and replace SAC and their components	identify <i>tools and equipment</i> used to maintain, diagnose, repair and replace SAC and their components, and describe their applications and procedures for use
		describe procedures used to maintain, diagnose, repair and replace SAC and their components
		describe importance of backing up and documenting program and configuration before and after service

types of SAC include: analogue, electronic, pneumatic, microprocessor (single loop, cascade loop) *SAC functions and modes* include: direct/reverse action, auto/manual, PID, on/off, local/remote *information* includes: ISA symbols, SAMA symbols, P&ID, loop diagrams, instrument index, schematic diagrams, wiring diagrams, control narratives (functional description) *tools and equipment* include: multimeters, software, calibration equipment

TASK G-26 Installs and services programmable logic controllers (PLC)

TASK DESCRIPTOR

Instrumentation and control technicians install and service PLC. PLC employ control strategies and usercreated programs to control multiple loops and systems. These can be used individually or networked with other control systems to operate equipment and facilities efficiently and safely.

G-26.01 Installs PLC

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

		SKILLS
_	Performance Criteria	Evidence of Attainment
G-26.01.01P	select and use tools and equipment	tools and equipment are selected and used according to manufacturers' specifications
G-26.01.02P	determine PLC to be installed	PLC to be installed is determined according to codes, engineered designs, application and control strategy
G-26.01.03P	confirm installation details of PLC	installation details of PLC are confirmed
G-26.01.04P	mount racks and <i>components</i>	racks and <i>components</i> are mounted according to industry practices, engineered designs and manufacturers' specifications
G-26.01.05P	connect wiring and network to PLC	wiring and network are connected to PLC according to industry practices, engineered drawings, manufacturers' specifications and codes
G-26.01.06P	address environmental conditions	environmental conditions are addressed

components include: cards (I/O, processor, network, memory), racks, power supplies, battery backup *environmental conditions* include: ambient conditions, contamination, hazardous locations

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
G-26.01.01L	demonstrate knowledge of PLC, their <i>components</i> , operation, architecture and capabilities	define terminology associated with PLC and their components					
		identify <i>hazards</i> and describe safe work practices pertaining to PLC					
		interpret information pertaining to PLC found on drawings and specifications					
		identify types of PLC, their <i>components</i> and describe their operation, architecture and capabilities					
		explain digital, discrete and analogue signals					
		explain importance of compatibility with other process control systems					
		explain licensing and service contract requirements pertaining to PLC					
		identify communication systems used by PLC					
G-26.01.02L	demonstrate knowledge of regulatory requirements pertaining to PLC	interpret standards, codes and regulations pertaining to PLC					
G-26.01.03L	demonstrate knowledge of procedures used to install PLC and their <i>components</i>	identify tools and equipment used to install PLC and their <i>components</i> , and describe their applications and procedures for use					
		describe procedures used to select and install PLC and their <i>components</i>					
		explain grounding/bonding methods					
		describe environmental conditions to address when installing PLC					

RANGE OF VARIABLES

components include: cards (I/O, processor, network, memory), racks, power supplies, battery backup *hazards* include: online vs. offline applications, forces, jumpers, interlocks *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC, NERC *environmental conditions* include: ambient conditions, contamination, hazardous locations

G-26.02 Configures PLC

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SI	(ILLS
	Performance Criteria	Evidence of Attainment
G-26.02.01P	select and use tools, equipment and software	tools, equipment and software are selected and used according to manufacturers' specifications and engineered designs
G-26.02.02P	update firmware	firmware is updated according to manufacturers' recommendations
G-26.02.03P	upload and download PLC programs	PLC programs are uploaded and downloaded
G-26.02.04P	validate PLC configuration	PLC configuration is validated according to card and rack layout
G-26.02.05P	program PLC including comments	PLC including comments is programmed according to process control strategy
G-26.02.06P	configure external communication with other systems and devices	external communication is configured with other systems and devices
G-26.02.07P	verify tuning, configuration and programming	tuning, configuration and programming are verified to determine if PLC controls process according to operational requirements
G-26.02.08P	back up and document programming, configuration, settings and parameters	programming, configuration, settings and parameters are backed up and documented for future data recovery

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
G-26.02.01L	demonstrate knowledge of PLC, their <i>components</i> , operation, architecture and capabilities	define terminology associated with PLC and their components
		identify <i>hazards</i> and describe safe work practices pertaining to PLC
		interpret information pertaining to PLC found on drawings and specifications
		identify types of PLC, their <i>components</i> and describe their operation, architecture and capabilities
		explain digital, discrete and analogue signals
		explain importance of compatibility with other process control systems

		explain licensing and service contract requirements pertaining to PLC
		identify communication systems used by PLC
G-26.02.02L	demonstrate knowledge of programming languages used to program PLC	identify programming languages used to program PLC
		describe PLC ladder logic programs that use timers and counters
		describe PLC ladder logic programs that use math instructions and PID control
		describe PLC function block, sequential logic and ST programs
		describe PLC programs that use subroutines
		describe PLC mixed language programs
		describe PLC integration with various Fieldbus devices
		identify types of data
		describe software and hardware limitations
G-26.02.03L	demonstrate knowledge of procedures used to configure PLC and their <i>components</i>	identify tools, equipment and software used to configure PLC and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to configure PLC and their <i>components</i>
		describe configuration parameters
		explain cause and effects of forcing and bypassing I/Os
		describe importance of backing up and documenting program and configuration before and after service
		describe alarm management and history management concepts for a PLC

components include: cards (I/O, processor, network, memory), racks, power supplies, battery backup *hazards* include: online vs. offline applications, forces, jumpers, interlocks

programming languages include: ladder diagram (LD), FBD, ST, instruction list (IL), SFC, Boolean logic diagrams

types of data include: binary, integer, floating point

G-26.03 Performs maintenance, diagnostics and repairs on PLC

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU	
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV	
				ILLS									
			Per	formand	ce Criter	ria			Eviden	ce of At	tainmen	t	
G-26.0)3.01P	sele	ect and u	se tools	s and eq	luipmen	t	tools an used acc specifica	cording t				
G-26.0)3.02P	perf	form rout	ine mai	ntenanc	e		routine r accordin			performe	d	
G-26.0)3.03P	diag ligh	gnose er ts	ror code	s, logs a	nd statu	S	error codes, logs and status lights are diagnosed to identify problems					
G-26.0)3.04P	ider	ntify prob	able roo	ot cause	of faults		probable root cause is identified by investigating symptoms and conditions to determine location of faults					
G-26.0)3.05P	perf	form dia	gnostic	proced	ures		diagnostic procedures are performed					
G-26.0)3.06P	dete	ermine s	teps req	uired to	address	faults	steps required to address faults are determined based on probable root cause					
G-26.0)3.07P	repl	ace con	nponent	'S			<i>compor</i> job proc recomm	edures a	nd man			
G-26.0)3.08P	rest bac	ore prog kup	ram and	l configu	ration fro	om	program and configuration are restored from backup					
G-26.0)3.09P	veri	fy PLC p	rogramr	ning and	l configu	ration	PLC pro verified	grammir	ng and c	onfigurat	ion are	
G-26.0)3.10P		k up and figuratio		ent PLC	program	and	PLC pro backed u data rec	up and d				

RANGE OF VARIABLES

tools and equipment include: software, multimeters, hand-held programmers, computer *maintenance* includes: replacing backup batteries, observing indicator lights, verifying environmental conditions (temperature, cleanliness)

diagnostic procedures include: forcing I/O, setting traps (first out logic) and counters

components include: cards (I/O, processor, network, memory), racks, power supplies, battery backup

	KNOW	/LEDGE
	Learning Outcomes	Learning Objectives
G-26.03.01L	demonstrate knowledge of PLC, their <i>components</i> , operation, architecture and capabilities	define terminology associated with PLC and their <i>components</i>
		identify <i>hazards</i> and describe safe work practices pertaining to PLC
		interpret information pertaining to PLC found on drawings and specifications
		identify types of PLC and their <i>components</i> , and describe their operation, architecture and capabilities
		explain digital, discrete and analogue signals
		explain importance of compatibility with other process control systems
		explain licensing and service contract requirements pertaining to PLC
		identify communication systems used by PLC
		identify <i>types of data</i>
G-26.03.02L	demonstrate knowledge of <i>programming</i> <i>languages</i> used to program PLC	interpret PLC programming languages
G-26.03.03L	demonstrate knowledge of procedures used to maintain, diagnose and repair and replace PLC and their <i>components</i>	identify tools, equipment and software used to maintain, diagnose, repair and replace PLC and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to maintain, diagnose, repair and replace PLC and their <i>components</i>
		describe obsolescence issues
		describe hot standby and redundancy applications
		describe importance of backing up and documenting PLC program and configuration before and after service

components include: cards (I/O, processor, network, memory), racks, power supplies, battery backup *hazards* include: online vs. offline applications, forces, jumpers, interlocks *types of data* include: binary, integer, floating point *programming languages* include: LD, FBD, ST, SFC, Boolean logic diagrams

TASK G-27 Installs and services distributed control systems (DCS)

TASK DESCRIPTOR

Instrumentation and control technicians install and service DCS. DCS employ control strategies and usercreated programs to control multiple loops and systems. They usually incorporate their own operator interface functionality or graphical user station. These can be used individually or networked with other control systems to operate equipment and facilities efficiently and safely.

G-27.01 Installs DCS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	(ILLS
	Performance Criteria	Evidence of Attainment
G-27.01.01P	select and use tools and equipment	tools and equipment are selected and used according to manufacturers' specifications
G-27.01.02P	assist in determining DCS to be installed	DCS to be installed is determined according to codes, <i>engineered designs</i> , application, control strategy and company requirements
G-27.01.03P	confirm installation details of DCS components	installation details of DCS <i>components</i> are confirmed according to manufacturers' specifications and <i>engineered designs</i>
G-27.01.04P	select and install DCS <i>components</i>	DCS <i>components</i> are selected and installed according to system requirements
G-27.01.05P	connect wiring and network to DCS	wiring and network are connected to DCS according to industry practices, engineered designs, manufacturers' specifications and codes
G-27.01.06P	address environmental conditions	environmental conditions are addressed

RANGE OF VARIABLES

engineered designs include: loop drawings, logic diagrams, P&ID, control narratives, SAMA *components* include: cabinets, operator stations, servers (memory, historian, security), clients, cards (I/O, network, processor), power supplies, memory, UPS, annunciators *environmental conditions* include: ambient conditions, contamination, hazardous locations

	KNOWLEDGE		
	Learning Outcomes	Learning Objectives	
G-27.01.01L	demonstrate knowledge of DCS, their <i>components</i> , operation, architecture and capabilities	define terminology associated with DCS and their <i>components</i>	
		identify hazards and describe safe work practices pertaining to DCS	
		interpret information pertaining to DCS found on drawings and specifications	
		identify DCS <i>components</i> , buses and systems, and describe their purpose and operation	
		explain digital, discrete and analogue signals	
		describe different software programs of a DCS	
		describe data flow, scan cycle and databases of a DCS	
		describe security and access privileges for a DCS	
		describe redundancy as it applies to DCS	
		explain importance of compatibility with other process control systems	
		explain licensing and service contract requirements pertaining to DCS	
		describe tag descriptors and addressing	
G-27.01.02L	demonstrate knowledge of regulatory requirements pertaining to DCS and their <i>components</i>	interpret standards, codes and <i>regulations</i> pertaining to DCS and their <i>components</i>	
G-27.01.03L	demonstrate knowledge of procedures used to install DCS and their <i>components</i>	identify tools and equipment used to install DCS and their <i>components</i> , and describe their applications and procedures for use	
		describe procedures used to select and install DCS and their <i>components</i>	
		describe environmental conditions to address when installing DCS	
		describe methods used to install cabling and grounding/bonding	

components include: cabinets, operator stations, servers (memory, historian, security), clients, cards (I/O, network, processor), power supplies, memory, UPS, annunciators *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC, NERC *environmental conditions* include: ambient conditions, contamination, hazardous locations

G-27.02 Configures DCS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS			
	Performance Criteria	Evidence of Attainment		
G-27.02.01P	select and use tools, equipment and software for configuration	tools, equipment and software are selected and used for configuration according to manufacturers' specifications and engineered designs		
G-27.02.02P	update operating software	operating software is updated		
G-27.02.03P	validate DCS configuration	DCS configuration is validated according to rack and cabinet layout		
G-27.02.04P	program DCS, including comments and displays	DCS, including comments and displays, is programmed according to process control strategy and company standards		
G-27.02.05P	configure external communication with other systems and devices	external communication is configured with other systems and devices		
G-27.02.06P	verify tuning, configuration and programming	tuning, configuration and programming are verified to determine if DCS controls process according to operational requirements		
G-27.02.07P	back up and document configuration, settings and parameters	configuration, settings and parameters are backed up and documented for future data recovery		

	KNOWLEDGE				
	Learning Outcomes	Learning Objectives			
G-27.02.01L demonstrate knowledge of DCS, their components, operation, architecture and capabilities		define terminology associated with DCS and their <i>components</i>			
		identify hazards and describe safe work practices pertaining to DCS			
		interpret information pertaining to DCS found on drawings and specifications			
		identify DCS <i>components</i> , buses and systems and describe their purpose and operation			
		explain digital, discrete and analogue signals			
		describe different software programs of a DCS			
		describe data flow, scan cycle and databases of a DCS			

		describe security and access privileges for a DCS
		describe redundancy as it applies to DCS
		explain importance of compatibility with other process control systems
		explain licensing and service contract requirements pertaining to DCS
		describe tag descriptors and addressing
G-27.02.02L	demonstrate knowledge of programming <i>languages</i> used to program DCS	identify programming languages used to program DCS
		describe DCS function block, sequential logic and ST programs
		describe DCS programs that use subroutines
		describe DCS mixed language programs
		describe DCS integration with various Fieldbus devices
		identify types of data
		describe software and hardware limitations
G-27.02.03L	demonstrate knowledge of procedures used to configure and program DCS and their <i>components</i>	identify tools, equipment and software used to configure and program DCS and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to configure and program DCS and their <i>components</i>
		describe software and hardware limitations
		describe configuration parameters
		describe programming consistency issues
		describe safety considerations as they apply to a DCS when making changes online, forcing, disabling and bypassing I/O
		describe procedures used to back up DCS and their <i>components</i>
		describe importance of backing up and documenting program and configuration
		before and after service
		before and after service describe alarm management and history

components include: cabinets, operator stations, servers (memory, historian, security), cards (I/O, network, processor), power supplies, memory, UPS, annunciators *programming languages* include: FBD, ST, IL, SFC, Boolean logic diagrams *types of data* include: binary, integer, floating point, analogue

G-27.03 Performs maintenance, diagnostics and repairs on DCS

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS				
	Performance Criteria	Evidence of Attainment				
G-27.03.01P	select and use tools, equipment and software	tools, equipment and software are selected and used according to manufacturers' specifications and engineered designs				
G-27.03.02P	perform <i>maintenance</i>	<i>maintenance</i> is performed according to schedule				
G-27.03.03P	check power supply for proper voltage level	power supply is checked for proper voltage level				
G-27.03.04P	use diagnostic menu to identify <i>problems</i>	diagnostic menu is used to identify problems				
G-27.03.05P	identify probable root cause of faults	probable root cause is identified by investigating symptoms and conditions to determine location of faults				
G-27.03.06P	determine steps required to address problems	steps required to address problems are determined based on probable root cause				
G-27.03.07P	replace <i>components</i>	<i>components</i> are replaced according to job procedures and manufacturers' specifications				
G-27.03.08P	restore DCS program and configuration from backup	DCS program and configuration are restored from backup				
G-27.03.09P	verify DCS configuration	DCS configuration is verified				
G-27.03.10P	back up and document DCS program and servers	DCS program and servers are backed up and documented for future data recovery				

RANGE OF VARIABLES

maintenance includes: replacing backup batteries, checking indicator lights, verifying environmental conditions (temperature, cleanliness), testing UPS

problems include: network, hardware and communication faults

components include: cabinets, operator stations, servers (memory, historian, security), cards (I/O, network, processor), power supplies, memory, UPS, annunciators

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
G-27.03.01L	demonstrate knowledge of DCS, their <i>components</i> , operation, architecture and capabilities	define terminology associated with DCS and their <i>components</i>						
		identify hazards and describe safe work practices pertaining to DCS						
		interpret information pertaining to DCS found on drawings and specifications						
		identify DCS <i>components</i> , buses and systems and describe their purpose and operation						
		explain digital, discrete and analogue signals						
		describe different software programs of a DCS						
		describe data flow, scan cycle and databases of a DCS						
		describe security and access privileges for a DCS						
		describe redundancy as it applies to DCS						
		explain importance of compatibility with other process control systems						
		explain licensing and service contract requirements pertaining to DCS						
		describe tag descriptors and addressing						
G-27.03.02L	demonstrate knowledge of procedures used to maintain, diagnose, repair and replace DCS and their <i>components</i>	identify tools, equipment and software used to maintain, diagnose, repair and replace DCS and their components , and describe their applications and procedures for use						
		describe procedures used to maintain, diagnose, repair and replace DCS and their <i>components</i>						
		describe effects of maintenance actions or errors						
_		describe cause and effects of forcing, disabling and bypassing I/O						
		describe importance of backing up and documenting program and configuration before and after service						

components include: cabinets, operator stations, servers (memory, historian, security), cards (I/O, network, processor), power supplies, memory, UPS, annunciators

TASK G-28 Installs and services human machine interface (HMI)

TASK DESCRIPTOR

Instrumentation and control technicians install and service HMI. HMI interfaces with the controlling devices such as PLC, DCS and SCADA systems in order to allow monitoring and controlling of the process through graphical displays or text. HMI often has the ability to provide trending, alarm summaries and historical data collection.

G-28.01 Installs HMI

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

		SKILLS
	Performance Criteria	Evidence of Attainment
G-28.01.01P	select and use tools and equipment	tools and equipment are selected and used according to manufacturers' specifications
G-28.01.02P	determine HMI	HMI is determined according to codes, engineered designs, application, control strategy and company requirements
G-28.01.03P	confirm installation details of HMI	installation details of HMI are confirmed
G-28.01.04P	address environmental conditions	environmental conditions are addressed
G-28.01.05P	mount HMI <i>components</i>	HMI <i>components</i> are mounted according to industry practices, engineered designs, manufacturers' specifications and codes
G-28.01.06P	connect cabling and network to HMI	cabling and network are connected to HMI according to industry practices, engineered designs, manufacturers' recommendations, site requirements and codes

environmental conditions include: ambient conditions, contamination, ergonomics, hazardous locations *components* include: hardware (computer, monitor, keyboard, mouse, printers, scanners, recorder/data loggers, annunciator), software (engineering/design, operation/application)

	KNOW	/LEDGE			
	Learning Outcomes	Learning Objectives			
G-28.01.01L	demonstrate knowledge of HMI and their <i>components</i> , purpose, operation, design and capabilities	define terminology associated with HMI and their <i>components</i>			
		identify hazards and describe safe work practices pertaining to HMI			
		interpret information pertaining to HMI found on drawings and specifications			
		describe how HMI are incorporated in PLC, DCS and SCADA systems			
		identify types of HMI and their <i>components</i> , and describe their purpose, operation, design and capabilities			
		identify types of <i>HMI operator displays</i> and their purpose			
		explain digital, discrete and analogue signals			
		identify types of HMI programs and associated software			
		describe security and access privileges for HMI			
		explain importance of compatibility with other process control systems			
		describe communication systems used with HMI			
		explain licensing and service contract requirements pertaining to HMI			
G-28.01.02L	demonstrate knowledge of regulatory requirements pertaining to HMI and their <i>components</i>	identify <i>standards, codes and</i> <i>regulations</i> pertaining to HMI and their <i>components</i>			
G-28.01.03L	demonstrate knowledge of procedures used to install HMI and their <i>components</i>	identify tools and equipment used to install HMI and their <i>components</i> , and describe their applications and procedures for use			
		describe procedures used to select and install HMI and their <i>components</i>			

describe methods used to install cabling and network to HMI
describe environmental conditions to address when installing HMI

components include: hardware (computer, monitor, keyboard, mouse, printers, scanners, recorder/data loggers, annunciator), software (engineering/design, operation/application)

HMI operator displays include: overview, group, detail, graphic, alarm summary, annunciator, trend, text *software* includes: word processors, spreadsheets, databases, trending

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC, NERC

environmental conditions include: ambient conditions, contamination, ergonomics, hazardous locations

G-28.02 Configures HMI

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
G-28.02.01P	select and use tools, equipment and software for configuration	tools, equipment and software are selected and used for configuration according to manufacturers' specifications and company practices
G-28.02.02P	update software and firmware	software and firmware are updated according to manufacturers' specifications
G-28.02.03P	validate HMI configuration, including depiction of process control strategy	HMI configuration, including depiction of process control strategy, is validated
G-28.02.04P	configure external communication with other systems and devices	external communication is configured with other systems and devices
G-28.02.05P	verify that HMI configuration and programming interface with and control process variables	HMI configuration and programming interfaces with and controls process variables according to operational requirements and industry standards
G-28.02.06P	back up and document HMI configuration, settings and parameters	HMI configuration, settings and parameters are backed up and documented for future data recovery

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
G-28.02.01L	demonstrate knowledge of HMI, their <i>components</i> , purpose, operation, design and capabilities	define terminology associated with HMI and their <i>components</i>						
		identify hazards and describe safe work practices pertaining to HMI						
		interpret information pertaining to HMI found on drawings and specifications						
		describe how HMI are incorporated in PLC, DCS and SCADA systems						
		identify HMI and their <i>components</i> , and describe their purpose, operation, design and capabilities						
		identify types of <i>HMI operator displays</i> and their purpose						
		explain digital, discrete and analogue signals						
		identify types of HMI programs and associated software						
		describe security and access privileges for HMI						
		explain importance of compatibility with other process control systems						
		describe communication systems used with HMI						
		explain licensing and service contract requirements pertaining to HMI						
G-28.02.02L	demonstrate knowledge of procedures used to configure and program HMI and their <i>components</i>	identify tools, equipment and software used to configure and program HMI and their <i>components</i> , and describe their applications and procedures for use						
		describe procedures used to configure and program HMI and their <i>components</i>						
		describe software and firmware limitation						
		describe configuration parameters						
		describe alarm management and history management concepts for an HMI						
		describe programming consistency issue						
		describe importance of backing up and documenting program and configuration before and after service						
		describe tag descriptors and addressing						

components include: hardware (computer, monitor, keyboard, mouse, printers, scanners, recorder/data loggers, annunciator), software (engineering/design, operation/application)

HMI operator displays include: overview, group, detail, graphic, alarm summary, annunciator, trend, text *software* includes: word processors, spreadsheets, databases, trending

G-28.03 Performs maintenance, diagnostics and repairs on HMI

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SK	ILLS
	Performance Criteria	Evidence of Attainment
G-28.03.01P	select and use tools, equipment and software	tools, equipment and software are selected and used according to manufacturers' specifications and company practices
G-28.03.02P	perform <i>maintenance</i>	<i>maintenance</i> is performed according to schedule
G-28.03.03P	review error messages and logs to isolate <i>faults</i>	error messages and logs are reviewed to isolate <i>faults</i>
G-28.03.04P	perform <i>diagnostic procedures</i>	diagnostic procedures are performed
G-28.03.05P	check power supply for proper voltage	power supply is checked for proper voltage
G-28.03.06P	identify probable root cause of <i>faults</i>	probable root cause is identified by investigating symptoms and conditions to determine location of <i>faults</i>
G-28.03.07P	determine steps required to address faults	steps required to address <i>faults</i> are determined based on probable root cause
G-28.03.08P	replace <i>components</i>	<i>components</i> are replaced according to job procedures and manufacturers' recommendations
G-28.03.09P	restore HMI program and configuration from backup	HMI program and configuration from backup are restored
G-28.03.10P	verify and test HMI configuration	HMI configuration is verified and tested
G-28.03.11P	back up and document HMI program and configuration	HMI program and configuration are backed up and documented for future data recovery

maintenance includes: replacing backup batteries, addressing environmental conditions *faults* include: network, communication

diagnostic procedures include: manipulating process variables, verifying communication status, verifying graphic updates, verifying database integrity

components include: communication modules, power supplies

	KNOWLEDGE						
	Learning Outcomes	Learning Objectives					
G-28.03.01L	demonstrate knowledge of HMI, their <i>components</i> , purpose, operation, design and capabilities	define terminology associated with HMI and their <i>components</i>					
		identify hazards and describe safe work practices pertaining to HMI					
		interpret information pertaining to HMI found on drawings and specifications					
		describe how HMI are incorporated in PLC, DCS and SCADA systems					
		identify HMI and their <i>components</i> , and describe their purpose, operation, design and capabilities					
		identify types of <i>HMI operator displays</i> and their purpose					
		explain digital, discrete and analogue signals					
		identify types of HMI programs and associated <i>software</i>					
		describe security and access privileges for HMI					
		explain importance of compatibility with other process control systems					
		describe communication systems used with HMI					
		explain licensing and service contract requirements pertaining to HMI					
		describe tag descriptors and addressing					
G-28.03.02L	demonstrate knowledge of procedures used to maintain, diagnose, repair and replace HMI and their <i>components</i>	identify tools, equipment and software used to maintain, diagnose, repair and replace HMI and their <i>components</i> , and describe their applications and procedures for use					
		describe procedures used to maintain, diagnose, repair and replace HMI and their <i>components</i>					

describe effects of maintenance actions or errors
describe importance of backing up and documenting program and configuration before and after service

components include: communication modules, power supplies

HMI operator displays include: overview, group, detail, graphic, alarm summary, annunciator, trend, text *software* includes: word processors, spreadsheets, databases, trending

TASK G-29 Installs and services supervisory control and data acquisition (SCADA) systems

TASK DESCRIPTOR

Instrumentation and control technicians install and service SCADA systems. SCADA systems are data transmission and acquisition systems for remote control and monitoring of equipment and facilities. They can be used for control applications such as remote shut-down and start-up of equipment. They may have the added ability to store, measure, trend and manipulate data for reporting purposes.

G-29.01 Installs SCADA systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
G-29.01.01P	select SCADA equipment	SCADA equipment is selected according to codes, engineered designs, application, control strategy and site specifications						
G-29.01.02P	select and use tools and equipment	tools and equipment are selected and used according to manufacturers' specifications						
G-29.01.03P	mount SCADA <i>components</i>	SCADA <i>components</i> are mounted according to industry practices, engineered designs, manufacturers' specifications and codes						
G-29.01.04P	terminate wiring and network to SCADA equipment	wiring and network are terminated to SCADA equipment according to industry practices, engineered designs, manufacturers' specifications and codes						

G-29.01.05P	mount and test wireless transmission	wireless transmission is mounted and tested according to industry practices, engineered designs, manufacturers' specifications and codes
G-29.01.06P	avoid interference with other systems and processes	interference with other systems and processes are avoided by <i>methods</i>

components include: hardware (master terminal unit [MTU], remote terminal unit [RTU], PLC, HMI, multiple variable computing devices), software, communication systems, power supplies *methods* include: selecting proper channel and wavelength, using proper cable routing, using signal isolators

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
G-29.01.01L	demonstrate knowledge of SCADA systems, their <i>components</i> and operation	define terminology associated with SCADA systems and their <i>components</i>						
		identify hazards and describe safe work practices pertaining to SCADA systems						
		interpret information pertaining to SCADA systems found on drawings and specifications						
		identify SCADA system <i>components</i> and describe their purpose and operation						
		identify types of SCADA protocols and configurations and describe their features and limitations						
		describe SCADA theory						
		identify <i>connection methods</i> for SCADA systems						
		identify potential causes of interference						
		describe grounding/bonding methods						
G-29.01.02L	demonstrate knowledge of regulatory requirements pertaining to SCADA systems and their <i>components</i>	interpret standards, codes and regulations pertaining to SCADA systems and their components						
G-29.01.03L	demonstrate knowledge of procedures used to install SCADA systems and <i>components</i>	identify tools and equipment used to install SCADA systems and their <i>components</i> , and describe their applications and procedures for use						
		describe procedures used to select and install SCADA systems and their <i>components</i>						

components include: hardware (MTU, RTU, PLC, HMI, multiple variable computing devices), software, communication systems, power supplies

SCADA theory includes: remote processes, system interactions

connection methods include: hardwired, wireless

standards, codes and regulations include: CEC, IEEE, ISA, CSA, CRTC, NERC

G-29.02 Configures SCADA systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	ΥT	NU
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV

	SKILLS							
	Performance Criteria	Evidence of Attainment						
G-29.02.01P	select and use tools, equipment and software	tools, equipment and software to configure SCADA system are selected and used according to manufacturers' specifications						
G-29.02.02P	configure and validate SCADA system, including comments and tagging	SCADA system, including comments and tagging, is configured according to application and company standards						
G-29.02.03P	update software and firmware	software and firmware are updated						
G-29.02.04P	upload and download SCADA system configurations/database	SCADA system configurations/database are uploaded and downloaded						
G-29.02.05P	configure external communication with other systems and devices	external communication is configured with other systems and devices						
G-29.02.06P	determine if SCADA system monitors and controls process	SCADA system monitors and controls process according to operational requirements						
G-29.02.07P	back up and document programming, configuration, settings and parameters	programming, configuration, settings and parameters are backed up and documented for future data recovery						

	KNOWLEDGE					
	Learning Outcomes	Learning Objectives				
G-29.02.01L	demonstrate knowledge of SCADA systems, their <i>components</i> and operation	define terminology associated with SCADA systems and their <i>components</i>				
		identify hazards and describe safe work practices pertaining to SCADA systems				
		interpret information pertaining to SCADA systems found on drawings and specifications				

		identify SCADA system <i>components</i> and describe their purpose and operation
		identify types of SCADA protocols and configurations and describe their features and limitations
		describe SCADA theory
		identify <i>connection methods</i> for SCADA systems
		identify potential causes of interference
G-29.02.02L	demonstrate knowledge of regulatory requirements pertaining to SCADA systems and their <i>components</i>	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to SCADA systems and their <i>components</i>
G-29.02.03L	demonstrate knowledge of procedures used to configure SCADA systems and <i>components</i>	identify tools, equipment, and software used to configure SCADA systems and their <i>components</i> , and describe their applications and procedures for use
		describe procedures used to configure SCADA systems and their <i>components</i>
		describe procedures to program a SCADA system
		describe configuration methods
		describe communication protocols
		describe time synchronization and time- stamping
		describe procedures used to configure, upgrade and restore SCADA systems and their <i>components</i>
		describe importance of backing up and documenting program and configuration before and after service

components include: hardware (MTU, RTU, PLC, HMI, multiple variable computing devices), software, communication systems (cellular, satellite, radio), interconnected media *SCADA theory* includes: remote processes, system interactions *connection methods* include: hardwired, wireless *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC, NERC *configuration methods* include: addressing, networking

communication protocols include: Modbus, TCP/IP, Fieldbus, Devicenet, Master/Slave

G-29.03

Performs maintenance, diagnostics and repairs on SCADA systems

NL	NS	PE	NB	QC	ON	MB	SK	AB	BC	NT	YT	NU	
yes	yes	NV	yes	ND	yes	yes	yes	yes	yes	NV	NV	NV	
					SKII	LLS							
			Per	formand	ce Criter	ia			Eviden	ce of At	tainmen	t	
G-29.0)3.01P		ect and u ware	se tools	, equipm	ent and		tools, eq selected manufac	and use	ed accor	ding to	e	
G-29.0)3.02P	mor	nitor netv	vork sca	n times			network	scan tim	nes are r	nonitore	b	
G-29.0)3.03P		ow manu edule	facturers	s' maint e	enance		manufac followed		nainten	ance sch	nedule is	
G-29.0)3.04P	revi light	ew error ts	messag	les, logs	and stat	tus	 error messages, logs and status lights reviewed to isolate problems 					
G-29.0)3.05P	perf	orm dia	gnostic	proced	ures		diagnostic procedures are performed					
G-29.0)3.06P	check power source for proper voltage					ge	power source is checked for proper voltage					
G-29.0)3.07P		rpret self cators	-diagno	stic and	alarm		self-diagnostic and alarm indicators are interpreted					
G-29.0)3.08P	test	wireless	signal s	strength			wireless signal strength is tested to ensure that it is operational					
G-29.0)3.09P	verify maintenance documentation and historical data						maintenance documentation and hist data are verified to assist in determin probable root cause					
G-29.0)3.10P	determine steps required to address faults						steps ree determir				are ot cause	
G-29.0)3.11P	replace <i>components</i>						<i>compor</i> job proce recomm	edures a	and man			
G-29.0)3.12P		ore and h backup		CADA co	onfigurat	ion	SCADA configuration is restored from backup and verified				from	
G-29.0)3.13P		k up and figuratio				,	SCADA docume					

RANGE OF VARIABLES

maintenance includes: replacing backup batteries, cleaning solar panels, checking indicator lights, verifying environmental conditions (ambient conditions, cleanliness)

diagnostic procedures include: forcing I/O, setting traps (first outs) and counters *components* include: servers, power supplies, cards (I/O, network, processor), operator stations

	KNOWLEDGE							
	Learning Outcomes	Learning Objectives						
G-29.03.01L	demonstrate knowledge of SCADA systems, their <i>components</i> and operation	define terminology associated with SCADA systems						
		identify hazards and describe safe work practices pertaining to SCADA systems						
		interpret information pertaining to SCADA systems found on drawings and specifications						
		identify SCADA system <i>components</i> and describe their purpose and operation						
		identify types of SCADA protocols and configurations and describe their features and limitations						
		describe SCADA theory						
		identify <i>connection methods</i> for SCADA systems						
		identify potential causes of interference						
G-29.03.02L	demonstrate knowledge of regulatory requirements pertaining to SCADA systems and their <i>components</i>	interpret <i>standards, codes and</i> <i>regulations</i> pertaining to SCADA systems and their <i>components</i>						
G-29.03.03L	demonstrate knowledge of procedures used to maintain, diagnose, repair and replace SCADA systems and <i>components</i>	identify tools, equipment, and software used to maintain, diagnose, repair and replace SCADA systems, and describe their applications and procedures for use						
		describe procedures used to maintain, diagnose, repair and replace SCADA systems and their <i>components</i>						
		describe procedures used to manipulate process to allow for servicing						
		describe procedures and importance of backing up and documenting SCADA configuration before and after service						

components include: servers, power supplies, cards (I/O, network, processor), operator stations *SCADA theory* includes: remote processes, system interactions *connection methods* include: hardwired, wireless *standards, codes and regulations* include: CEC, IEEE, ISA, CSA, CRTC, NERC

APPENDIX A ACRONYMS

AC/DC	alternating current/direct current
A/D	analogue-to-digital
AHJ	authorities having jurisdiction
API	American Petroleum Institute
BCD	binary coded decimal
BMS	burner management system
BNC	Bayonet Neill Concelman
CAD	computer-assisted design
CCTV	closed-circuit television
CEC	Canadian Electrical Code
CEMS	continuous emissions monitoring system
CRTC	Canadian Radio and Telecommunications Council
CSA	Canadian Standards Association
D/A	digital-to-analogue
DCS	distributed control system
DP	differential pressure
EMC	electromagnetic compatibility
EMI	electromagnetic interference
FBD	function block diagram
FLRA	field level risk assessment
H ₂ S	hydrogen sulfide
HART	Highway Addressable Remote Transducer
HMI	Human Machine Interface
IEEE	Institute of Electrical and Electronic Engineering
IL	instruction list
I/O	input/output
I/P	current-to-pneumatic
IR	infrared
ISA	International Society of Automation
JSHA	job safety hazard assessment
LD	ladder diagram
LOPA	layers of protection analysis
LVDT	linear variable displacement transformer
MCC	motor control centre
MIMO	multiple input multiple output
MISO	multiple input single output

MOC	Management of Change
MTU	master terminal unit
NERC	North American Electric Reliability Corporation
OH&S	Occupational Health and Safety
ORP	oxidation reduction potential
OSI	open systems interconnection
PI	proportional-integral
PID	proportional-integral-derivative
P&ID	process and instrumentation diagram
PD	positive displacement
P&C	process and control
PLC	programmable logic controller
PPE	personal protective equipment
psi	pounds per square inch
PTFE	polytetrafluoroethylene
PVC	polyvinyl chloride
RC	resistance/capacitance
RFID	radio frequency identification
RL	resistance/inductance
RLC	resistance/inductance/capacitance
RTD	resistive thermal device
RTU	remote terminal unit
SAC	stand-alone controller
SAMA	Scientific Apparatus Makers Association
SCADA	supervisory control and data acquisition
SCBA	self-contained breathing apparatus
SFC	sequential function chart
SIL	safety integrity level
SIF	safety instrumented functions
SIS	safety instrumented system
ST	structured text
STP	shielded twisted pair
SWP	safe work practices
TAPPI	Technical Association for the Pulp and Paper Industry
TCP/IP	transport control protocol/internet protocol
TDG	transportation of dangerous goods
UPS	uninterruptible power supply
USB	Universal Serial Bus
UTP	unshielded twisted pair
UV	ultraviolet
UV/IR	ultraviolet/infrared

VFD	variable frequency drive
VSD	variable speed drive
WHMIS	Workplace Hazardous Materials Information System
WLL	working load limit

APPENDIX B TOOLS AND EQUIPMENT / OUTILS ET ÉQUIPEMENT

Hand Tools / Outils à mains

calipers (assorted) desoldering tool diagonal cutters drill bits easy-outs (extractors) feeler gauges flaring tools flashlight fuse puller gasket cutter gauge pointer puller grease gun hammers (assorted) hand files (assorted) hexalobular wrench (Torx) hex keys (Imperial/Metric) I/C integrated-circuit extractor knives knock-out punches level magnet measuring tape micrometers (assorted) mirrors nut drivers (assorted) o-ring picks packing puller pipe threader pliers (assorted) pry bar punches (assorted) ratchets reamers rubber mallet saws (assorted) screwdrivers (assorted) screw starters scribers sockets (Imperial/Metric) square steel rule strap wrenches tap and die set torch torque wrenches

pieds à coulisse (divers) outil à dessouder pinces à coupe transversale mèches extracteurs de vis jauges d'épaisseur évaseur lampe de poche extracteur de fusible coupe-joints extracteur d'aiguille d'indicateur pistolet-graisseur marteaux (divers) jeu de limes à main clé à empreinte à six lobes (Torx) clés hexagonales (impériales et métriques) extracteur de circuit intégré couteaux poincons emporte-pièce niveau aimant ruban à mesurer jeu de micromètres miroirs jeu de tournevis à douille pics à joints toriques extracteur de garniture filière à tuyaux pinces de diverses grosseurs levier jeu de poinçons rochets alésoirs maillet en caoutchouc scies tournevis pose-vis pointe à tracer douilles (impériales et métriques) équerre règle en acier clés à courroie ensemble à fileter chalumeau clés dynamométrique

tube benders tube cutters tweezers wire brushes wire crimpers wire cutters wire strippers wrenches (assorted)

Power Tools / Outils mécaniques

air compressor band saw cut-off saw drill press grinders hammer drill heat gun high pressure grease gun hydraulic press hydraulic knock-out punch impact wrench jig saw pipe threader pneumatic tools portable electric drill portable generator powder actuated tools pressure and vacuum pumps reciprocating saw sandblaster soldering iron wire labeler

- cintreuses de conduites coupe-tubes brucelles brosses métalliques outils de sertissage pour fils métalliques coupe-fils dénudeurs de fils clés
- compresseur d'air scie à ruban scie à tronçonner perceuse à colonne meuleuses marteau perforateur pistolet thermique pistolet-graisseur à haute pression presse hydraulique poincon emporte-pièce hydraulique clé à chocs scie sauteuse filière à tuyaux outils pneumatiques perceuse électrique portative génératrice portative outils à charge explosive pompes à pression et à vide scie alternative décapeuse au jet de sable fer à souder étiqueteuse pour fils et câbles

Electronic Tools and Test Equipment / Outils électroniques et équipement d'essai

- amp probe analogue multimeter analyzers barometer breakout box bridaes calibrated oven capacitance simulators computer current tracer dead weight tester decade resistance box dew point testers (assorted) digital logic probe digital multimeter dry block calibrator frequency counter frequency generator grounding mats handheld programmer (configurators) hydrometer
- pince ampèremétrique multimètre analogique analyseur baromètre contrôleur d'interface ponts four étalonné simulateurs de capacitance ordinateur détecteur de courant appareil d'essai à contre-poids boîte de résistance à décades analyseur du point de rosée sonde logique numérique multimètre numérique four d'étalonnage compteur de fréquence dénérateur de fréquence tapis de mise à la terre programmateur manuel hydromètre

infrared cameras infrared thermometers lab scales laser strength meter light microscopes logic clip loop calibrator/simulator manometer and standards microwave leakage meter millivoltmeter calibrator mobile phones/two-way radio null balance strain indicator oscilloscope pH simulator/buffers pneumatic test stand portable sound level meter pressure pump proximeter power supply pressure calibrator protocol analyzers radiation meters regulators RPM tester/tachometer signal generators signature analyzer sling psychrometer stroboscope temperature bath temperature calibrator test gases test gauges thermometer transistor checker voltage tester

caméras infrarouges thermomètres infrarouges balances de laboratoire appareil de mesure de force laser microscopes optiques vérificateur d'états logiques étalonneur de boucle, simulateur de boucle manomètre et étalon appareil de mesure de fuites de micro-ondes étalonneur de millivoltmètre téléphones portatifs et radios bidirectionnels indicateur de tension à équilibrage oscilloscope simulateur et tampon de pH banc d'essai pneumatique sonomètre portatif pompe à pression proximètre bloc d'alimentation calibrateur de pression analyseurs de protocoles radiamètres régulateurs tachymètre générateurs de signaux analyseur de signature psychromètre fronde stroboscope bain thermostatique étalonneur de température gaz d'étalonnage manomètres d'essai thermomètre transistormètre testeur de tension

Access, Work Holding Equipment and Lifting and Hoisting Equipment / Équipement d'accès, organes de serrage et équipement de levage et de hissage

elevated/aerial work platforms

C-clamps chain fall come-along crane (overhead, portable) forklift hoist basket ladders personal lifting winch portable cart prefabricated scaffold slings vises (assorted) plateformes de travail élévatrices / nacelles élévatrices serre-joint en C palan à chaîne palan à levier pont roulant chariot élévateur à fourche panier de treuil échelles treuil de levage personnel chariot portatif échafaudage préfabriqué élingues étaux (divers)

Personal Protective Equipment (PPE) and Safety Equipment / Équipement de protection individuelle (EPI) et de sécurité

apron cap lamps chemical shower coveralls (regular, disposable and fireproof)

ear protection (muffs and plugs) eve wash bottle face shield fall arrest/restraint harness fire extinguishers first aid kit flame retardant clothing gloves goggles hard hat low-voltage gloves masks (assorted) personal dosimeter personal monitor (gas) radiation survey meter radiometer respirators rubber boots rubber suits safety boots safety glasses safety lanyards safetv lines self-contained breathing apparatus supplied air hood winter gear

tablier lampes de chapeau douche de sécurité combinaison de travail (normale, jetable et ianifuae) protecteurs d'oreilles (cache-oreilles et bouchons) pulvérisateur pour les yeux écran facial harnais antichute extincteurs trousse de premiers soins vêtements ignifuges gants lunettes de protection casque de sécurité gants de protection basse tension masques (divers) dosimètre individuel moniteur individuel (gaz) radiamètre radiomètre respirateurs bottes en caoutchouc combinaisons en caoutchouc bottes de sécurité lunettes de sécurité cordons de sécurité lianes de sécurité appareil respiratoire autonome cagoule à adduction d'air vêtements d'hiver adaptés

APPENDIX C GLOSSARY / GLOSSAIRE

actuator	controlled hardware device used to implement change in a process	actionneur	dispositif commandé utilisé pour effectuer un changement dans un processus
adapter	device used to make electrical or mechanical connections between items not originally intended for use together	adaptateur	dispositif utilisé pour réaliser des connexions électriques ou mécaniques avec des éléments qui ne sont pas initialement conçus pour être utilisés ensemble
amplifier	device that enables an input signal to control power from a source independent of the signal and thus be capable of delivering an output that bears some relationship to, and is generally greater than, the input signal	amplificateur	dispositif permettant à un signal d'entrée de commander la puissance venant d'une source indépendante de ce signal et ainsi de produire un signal de sortie qui présente quelque rapport avec le signal d'entrée et est généralement supérieur à ce dernier
analogue signal	any variable signal continuous in both time and amplitude rather than of a pulsed or discrete nature	signal analogique	signal variable continu, tant au niveau du temps que de l'amplitude, par opposition à un signal impulsionnel ou discret
bellows	elastic element that is a convoluted unit that expands and contracts axially with changes in pressure	soufflet	élément élastique qui est une unité enroulée qui s'élargit et se contracte de façon longitudinale en fonction des changements de pression
benchset	preload or the amount of pressure forcing valves closed with no process affecting it	mise au banc d'essai	charge d'étalonnage ou quantité de pression sous laquelle les soupapes se ferment sans incidence du processus
calibrate	to determine and adjust, by measurement or comparison with a standard, the correct value of each scale reading on a meter or other device	étalonner	déterminer ou ajuster, par mesure ou par comparaison avec un étalon, l'exactitude de chaque valeur d'échelle d'un compteur ou d'un autre dispositif
cascade control	type of controller set-up in which the output of one controller acts as the set point or controlling signal of another controller	régulation en cascade	type de régulation dans laquelle la sortie d'un des contrôleurs sert de valeur de consigne ou de signal de réglage d'un autre contrôleur

commission	process of testing and ensuring that installed equipment is operating as per engineered design	mise en service	activités de mise à l'essai pour s'assurer que le matériel installé fonctionne conformément aux dessins techniques
configure	to set up a program or computer system for a particular application	configurer	régler un programme ou un système informatique en vue d'une application particulière
control variable	measured variables that can be controlled by the control system, such as flow, level, pressure and temperature	variable de contrôle	variables mesurées qui peuvent être commandées par le système de commande, comme le débit, le niveau, la pression et la température
diagnose	activities to determine the cause and source of faults and defects	diagnostiquer	activités visant à déterminer la cause et la source des pannes et des défaillances
distributed control system (DCS)	system of dividing plant or process control into several areas of responsibility, each managed by its own controller (processor), with the whole system interconnected to form a single entity usually by communication buses of various kinds	système numérique de contrôle-commande (SNCC)	système de division de la régulation industrielle ou de processus en plusieurs domaines de responsabilité, chacun étant géré par son propre régulateur (processeur), tout le système étant interconnecté de façon à former une seule entité, habituellement au moyen de divers types de bus de communication
fibre optic	transmission system utilizing very thin glass fibres through which light is transmitted; information is transferred by modulating the transmitted light	fibre optique	moyen de transmission faisant appel à des fibres de verre très minces par lesquelles la lumière est transmise; l'information est transmise en modulant la lumière
Fieldbus	digital, two-way, multi-drop communication link among intelligent measurement and control devices; it serves as a Local Area Network (LAN) for advanced process control and remote input/output for factory automation applications	Fieldbus	lien de communication numérique à deux voies à branchements multiples entre des dispositifs de commande et de mesure intelligents; ils jouent le rôle de réseau local pour les systèmes de commande de processus évolués et les entrées et sorties à distance pour les applications d'automatisation des usines
firmware	software or data that has been written onto read-only memory chips; firmware is a combination of software and hardware	micrologiciel	logiciels ou données transcrits sur les puces de mémoire morte seulement; le micrologiciel est une combinaison de logiciel et de matériel
fluid	any substance that flows, such as liquid, gas or magma	fluide	toute substance qui coule, dont les liquides, les gaz ou le magma

flume	open channel device used to measure flow	canal jaugeur	dispositif qui mesure le débit dans les canalisations à écoulement libre
frequency	number of cycles completed by a periodic quantity in a unit of time	fréquence	nombre de cycles identiques d'une grandeur périodique dans une unité de temps
Highway Addressable Remote Transducer (HART)	provides digital communication to microprocessor-based (smart) analogue process control instruments	protocole de communication HART (Highway Addressable Remote Transducer)	protocole qui transmet les communications numériques aux instruments de commande de processus analogiques, pilotés par un microprocesseur (intelligents)
Human Machine Interface (HMI)	graphical display and control interface between a process and a human operator	interface homme-machine (IHM)	affichage graphique et une interface de commande entre un processus et un opérateur
input/output (I/O)	all equipment and activity that transfers information into or out of a computer or device	entrée-sortie	tout le matériel et les activités qui transfèrent l'information à l'intérieur ou à l'extérieur d'un ordinateur ou d'un dispositif
install	activities performed which include mounting and connecting	installer	activités qui comprennent le montage et le raccordement
instrumentation	collection of instruments or their application for the purpose of monitoring, measuring and/or controlling of processes	instrumentation	ensemble d'appareils ou leur application aux fins de contrôle, de mesure ou de commande des processus
interface	place at which mediums meet and interact with each other	interface	endroit où les supports se rencontrent et interagissent ensemble
International Society of Automation (ISA)	governing body that develops and maintains defined standards for both scientific and technical areas of process control and automation	International Society of Automation (ISA)	organe directeur qui développe et tient à jour des normes définies à la fois pour les domaines scientifiques et techniques de commande de processus et d'automatisation
maintain	routine preventative activities performed to ensure reliability and to detect potential faults	faire l'entretien	activité préventive effectuée régulièrement pour assurer la fiabilité et pour détecter les pannes éventuelles
Modbus	serial communications protocol originally published by Modicon; allows for communication between many devices connected to the same network	Modbus	protocole de communication en série publié initialement par Modicon; ce protocole permet à plusieurs dispositifs connectés au même réseau de communiquer ensemble
module	assembly of interconnected components that constitutes an identifiable device, instrument or piece of equipment	module	ensemble d'éléments interconnectés qui constitue un dispositif, un appareil de mesure ou un équipement distinct

network	interconnection of devices sharing communications protocols	réseau	interconnexion de dispositifs qui partagent des protocoles de communication
optimize	series of activities performed to make the process and its control function closer to or better than specifications	optimiser	série d'activités effectuées pour que le processus et ses fonctions de commande soient égaux ou supérieurs aux spécifications
port	signal input (access) or output (egress) point	port	point d'entrée ou de sortie de signaux
power supply	device that produces one or more voltages for the operation of electronic and logic devices	bloc d'alimentation	dispositif qui produit une ou plusieurs tensions continues en vue du fonctionnement des dispositifs électroniques et logiques
probable root cause	non-mathematical, logical process to determine the cause of the potential fault/failure	cause fondamentale probable	processus logique non mathématique qui vise à déterminer la cause d'une défaillance ou d'un défaut potentiel
process	physical or chemical change of matter or conversion of energy	processus	changement physique ou chimique d'une matière ou conversion d'énergie
Profibus	communication protocol	Profibus	protocole de communication
program	list of instructions that a computer will execute to perform a certain task	programme	liste d'instructions que doit exécuter un ordinateur pour effectuer une tâche donnée
Programmable Logic Controller (PLC)	control device, normally used in industrial control applications that employs the hardware architecture of a computer and programming language	automate programmable industriel (API)	dispositif de commande utilisé normalement dans les applications de régulation industrielle et faisant appel à l'architecture matérielle d'un ordinateur et à un langage de programmation
Proportional Integral Derivative (PID)	proportional gain, integral action time and derivative action time; adjustable parameters that are used in tuning a modulating controller to provide stable control for a process loop; these can be used individually or in conjunction with each other	proportionnel, intégral et dérivé (PID)	gain proportionnel, temps de dosage d'intégration et temps de dosage de dérivation; paramètres ajustables qui sont utilisés pour ajuster un régulateur modulant pour offrir un contrôle stable d'une boucle de processus; ils peuvent être utilisés seuls ou ensemble
range	region between the limits within which a quantity is measured, received or transmitted; expressed by stating the lower and upper range values	plage	plage entre deux limites dans lesquelles une grandeur est mesurée, reçue ou émise; s'exprime par l'étendue entre la limite inférieure et supérieure

ratio	quotient of one quantity divided by another	rapport	quotient d'une quantité divisée par une autre
remote	device allowing the set point to be altered by a signal from a physical location away from the controller	commande à distance	dispositif permettant de changer la valeur de consigne au moyen d'un signal produit en un point éloigné du contrôleur
repair	activities performed to correct faults; include cleaning, replacing, rebuilding	réparer	activités effectuées pour corriger les défaillances; comprennent le nettoyage, le remplacement et la remise en état
Safety Instrumented Function (SIF)	built in operation of a machine (a safety loop) that takes the unit to a safe outcome if predetermined conditions are not complied with	fonctions instrumentées de sécurité	opération intégrée d'une machine (une boucle de sécurité) qui permet à l'unité d'obtenir un résultat sûr si les conditions prédéterminées ne sont pas respectées
Safety Instrumented System (SIS)	equipment and networks dedicated to safety monitoring and protection of processes and equipment	système instrumentés de sécurité (SIS)	matériel et réseaux conçus pour le contrôle de sécurité et la protection des processus et du matériel
Safety Integrity Level (SIL)	relative level of risk reduction provided by a safety function, or to specify a target level (1-4) of risk reduction	niveau d'intégrité de sûreté	réduction relative du niveau de risque grâce à une fonction de sûreté, ou pour préciser un niveau cible (1-4) de réduction du risque
signal	form of energy that quantitatively represents a variable	signal	forme d'énergie qui représente de façon quantitative une variable
strain gauge	device that uses the change of electrical resistance of a wire under strain to measure applied force	jauge de déformation	dispositif qui détermine la variation de résistance électrique d'un fil subissant une contrainte, pour mesurer la force appliquée
Supervisory Control and Data Acquistion (SCADA)	data transmission and acquisition system for remote control and monitoring of equipment and facilities	système de télésurveillance et d'acquisition de données (SCADA)	système d'acquisition et de diffusion de données pour la commande et le contrôle à distance de l'équipement et des installations
temperature bath	volume of a substance held at constant temperature, so that an object placed in thermal contact with it is maintained at the same temperature	bain thermostatique	volume d'une substance maintenue à une température constante, de sorte qu'un objet mis en contact thermique avec cette substance soit maintenu à la même température
terminal	peripheral device used by the operator to communicate with the computer or a wire connection	borne	périphérique utilisé par l'opérateur pour communiquer avec l'ordinateur ou une liaison par fil

thermocouple	element that consists of two contacting dissimilar metals converting thermal energy into electrical energy	thermocouple	élément qui comporte deux métaux dissemblables en contact transformant l'énergie thermique en énergie électrique
transducer	device that receives energy in one form and converts to same or another form	transducteur	dispositif qui reçoit de l'énergie sous une forme et la transforme en la même forme ou en une autre
transmitter	device equipped with a transducer which responds to a measured variable by means of a sensing element, and converts it to a standardized transmission signal that is proportional to the measured variable	transmetteur	dispositif équipé d'un transducteur qui réagit à une variable mesurée au moyen d'un capteur et qui la convertit en un signal de transmission normalisé proportionnel à la variable mesurée
tuning	adjustment of parameters to optimize a particular process	ajustement	réglage des paramètres pour optimiser un processus particulier
Uninterruptible Power Supply (UPS)	electrical system intended to maintain power to critical equipment in the event of a power failure	alimentation sans interruption (ASI)	système électrique conçu pour assurer l'alimentation de l'équipement d'importance vitale en cas de panne de courant
Variable Frequency Drive (VFD) and Variable Speed Drive (VSD)	electronic equipment that allows an electric motor to be run at varying speeds	entraînement à fréquence variable et entraînement à vitesse variable	équipement électronique qui permet à un moteur électrique de fonctionner à des vitesses variables
weir	engineered obstruction placed in an open channel used to provide flow measurement	déversoir	obstacle placé dans une canalisation à écoulement libre utilisé pour obtenir une mesure du débit
wireless	means to transmit and receive data using electromagnetic waves	sans fil	moyen de transmettre et de recevoir des données par le truchement d'ondes électromagnétiques
Workplace Hazardous Materials Information System (WHMIS)	comprehensive plan for providing information on the safe use of hazardous materials used in workplaces; also known as WHMIS 2015, which aligns with the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)	Système d'information sur les matières dangereuses utilisées au travail (SIMDUT)	plan global pour fournir de l'information sur l'utilisation sécuritaire de matières dangereuses en milieu de travail; aussi connu comme le SIMDUT 2015, qui s'harmonise au Système général harmonisé de classification et d'étiquetage des produits chimiques (SGH)