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Comparison of masses by mneans of equal arms balances

Ch. I General theory of equal arms balances

1. Introduction

* The equal arms balance is a balance in which the distances of the outer knife-edges to the central'
knife are made equal with the utmost accuracy The three knife-edges are, ds exactly as possrble in the
same plane .

The center of gravity of the beam must be somewhat below the cent_ral knife as, otherwi'se; the beam
would have no defined position of equilibrium. The positions of the knives and of the center of gravity of

- the beam are generally adjustable. The effects of the adjuStment cannot be evaluated directly but only

through the modifications they produce.in the functioning of the balance during weighing operations. This
is the reason why a beam (initially adjusted by the constructor) should never be touched by anyone except
by a person of appropriate training and skill, capable of interpreting correctly the modifications of the
balance’s behaviour. As all factors influencing the quality of a balance are strongly correlated with each
other, to bring a high sensitivity- balance to a state of utmost perfectron represents a serious mechamcal and

metrologrcal achievement. : o

The pans_are practicaily of equal wexghts so that when the beam is “free”, i.e., rests only on the
central knife, the position of the beam is very close to honzontahty, such is also the case when the balance

is loaded wrth two nommally equal masses.-

In the category. of metrological instruments designated by ‘the general term of ‘comparators”’ (i.e.,

‘ instruments ‘which can evaluate differences only between nominally equal quantities), the equal arms

balance is still today, in spite of all progresses accomplrshed in various domains of science and teclmology,

. one of the most relrable and the most sensitive.

The rehablhty and the sensxtlvxty of a balance i is, however not founded on the static propertles of the
beam when the latter is in its equilibrium posmon but on:the dynamrc properties’ of small osclllatxons

_ (about the equlhbnum position).

Hrstorrcally, the: balance was the first high precision mstrument devised by man; its supremacy
remained completely urichallenged for centuries, untit the advent of some modern methods, e.g., those-used .
in the measurement of lengths by interferometric' techniques. Although balances built two llundred years
ago are relatlvely crude in comparison with the modém instruments, some of those manufactured by

' reputed constructors (e.g., Rueprecht) in the middle of the nineteenth century are almost equivalent to the -
:modern balances. Modern techniques for constructing knives and planes and for checking them optrcally

permlt however an easier ploductlon (at a lower cost) of very high quahty equal arms balances

’Ihe fact that a balance is used in dynamic conditions (i.e., when its beam is swinging) necessitates'a .
continuous supervision of its functioning during the compansons ~This point is freated in Chapter IV.
Another memorandum treats in detail the question how statistical methods, based on the. theory of least
squares, can' be applied to.the results of welghmgs and how they lead to a reliable estrmatron of the

- accuracy of the werghrngs

2. Equatlon of equlhbnum
. For the theoretlcal study of equilibrium. conditions, the beam (Fig. 1) can be reduced to those points
which are actually necessary for establlslung the equations of the balance (Fig. 2). These points are:

P’ and P!": points representing the edges of the outer kmves (edges upward) i e., pornts on whlch act
the forces produced by the compared masses. » : o
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- C: central knife (edge downward), point which represents the line about which the beam can pivot. C
should be (as-close as it is technically possible to realize) located midway betweén P’ and P”'. Nominally .
therefore, 1' = CP' = 1" =-CP". The edges of P’ and P and C should be coplanar. '

G: center of gravity of the beam. It is located }m the line passing through C and perpendrcolar to
P'CP". The distarice GC will be designated by r, G berng below C The mass of the beam, assumed
concentrated in G, will be denoted by m.

Let us assume that the beam takes the position represented in Fig. 2. The forces which act on the',
beam and which detenmne its actual posmon in space are: :

() downward forces exerted by the gravrtatronal fleld on the masses My, M2, and the corresponding
upward buoyancy forces f}, f5 due to'the fact that the masses are surrounded by air.

(b) downward force actrng on the ‘beam, which can be reduced to the gravitional force applied to'G.
No buoyancy force has to be introduced concerning the beam as this force is constant and independent of.
the position of the beam in space. :

In the theory that follows the forces actrng on the beam will be .

Mrg f1,r
F2 =.M2g—f2s
Fy=mg. -~

The' combined effect of the moments of F, and F3 counterbalances the moment of Fy. The angle of
deflection of r from verticality will be designated by 6. In the sequel, conventions will. be 1ntroduced‘
concérning this angle for the time being 0 will be consldered as positive, :

The condrtrons represented in Flg 2 lead to the followrng equatron

(1) ' o Fy 1 cos 0 = Fa 1" cos 6 + (mgr) sin 6.

" The angle 0 be1ng small it is permrssrble to introduce the approxrmatrons "

cos 0 = 1 and sin 0 = 0 radians:
Hence L . |
o B 1 =B 14 (mgr) 0 :
From ‘this equatron alone it is not possible to. determine precrsely the relatronslnp between F 1 and F2 '

Other equations are necessary to eliminate all those parameters which cannot be detenmned accuratcly
Two methods can be used for this purpose and wrll be dnalyzed successively.

Ch. Il Interchange method
1. Fundamental law A

_ If, after the equation (2) had been obtained, the masses M; and M, are interchanged, the beam takes
the .position indicated. in Fig. 3, the angle of deflection being now 7, directed in the opposite sense and
similar but not identical to-6. The difference between 0- and n is due to the small but not completely:
negligible difference between 1’ and 1" in a rigorously symmetncal balance, the interchange of masses
would lead to 7 = 0..In high quality instruments, the difference between 1" and 1" may be extremely small
but, nevertheless, these lengths can never be consrdered as ngorously equal The equation that corresponds

3 F 1' cos N + '(ingr) sinn = F 1" cos 7
: 2 . 1 t
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and, in a simplified form,
4. - Fy 1"+ (mgr) ' = F 1",
Thus, the equa'tions-(Z) and (4) form the basic system: _
Fl 1' . . = Fz .1” .'|' (mgr) 0,

By U e Gng) m = By 17
whrch can be SOIVed for (F; — Fy): ' . |
- (F-Fy) 1'- - (mgr) n= - (Fi —Fy 1" + (mgn) 0,
O -FU 1), e @), )
Fr—Fz—I_ET @+ 0.

1+1

The factor e, —“—nisa posrtrve quantrty, it will be designated by the symbol k

O ' FI—F2=k(6+n)-

- This important relation is called the Jundamental law of the mterchange method. The analysrs of its second-
* term will be done in two steps ﬁrst we shall deal w1th the angles of deﬂectron and, secondly, with the

proprotlonallty factor k

2. Measurement of the angles of deﬂectlon

Instead of measuring the angles 0 and 7 from the vertrcal axis CC’ as origin, it is more convenxent to-
adopt an arbitrary origin, for instance the axis CX located as in Fig. 4. The total angle @ + 7n) is then

equrvalent to:

© = ein=d-d

The sign of the difference F 1-F, will be the same as that of (a'—a”)if, with respect to CX, the angle ais a

monotonic increasing function. of 'F. The- reader miust always bear in mind that a' is the angle that
corresponds to the first werghmg ie., that made before the exchange of masses.

The angles 6 and 7 being small; various devices are used for- evaluatmg them with sufﬁcrent accuracy

and without too much strain on the observer. One of the most commonly used devices consists of a long

thin pointer. fixed normally to the beam. Its fine lower extrelmty oscillates in front of a short, finely
: engraved scale, or graticule. To each angle of deflection, say a, corresponds a well defined number which is
_proportional to the angle’s 'value and which the observer can read on the scale, wrth the. possrblhty of

interpolating- between two consecuhve marks to one or two tenths of a division. "

To avo:d rmsunderstandmgs and to maintain uniform pattems in the records of the Laboratory the .

following rules have been adopted

a..The left hand pan 1s deslgnated by the symbol P’ and the rlght-hand pan by the symbol P

-b. In the “first” or “d:rect” wexghmg, the mass placed in P’ is termed “first” mass and the mass placed in

P", the “second” mass, The terins “first” and “second” always refer to the first (direct) companson even
after the masses had been mterchanged

c. The drfference between two compared forces or two compared masses are always deﬁned as follows

Difference between forces = First force — Second force
Difference between masses = First mass — Second mass
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Thus, in the theory given.above,
First mass = Ml, N i.e. first force = Fy;
Second mass = M,, i.e. second force = F,.

* The differences are equal to: -

(M; — M) or (Fy — F,). _

" d. That extremity of the scale which is the closest to the left-hand pan (P")is considered as the “zero-end””.

The reading on the scale that correspondsto a’ is designated by R’ and is termed “first” (or-“‘direct”)
reading; similarly, R" corresponds to a”and is termed “‘second” (or “reversed”) reading. The differences
(Fy — Fy) and (R" — R") are therefore always of the same sign; It is 1mphcrtely assumed that the pomter
never goes farther to the left than the zero end.

The distance between R’ and R” is designated by the symbol D It is equal to:
@) : D= R — R"

~ and the fundamental law taKes the form:

H

® B FI—FZ KD,

~ The total proportronahty factor K represents now a combination of the factor k (5) and the proportronallty

factor between angles and scale readings.

3. Determrnatron of the pmportronahty factor (K)

The determination of K is made by means of a small known mass u generally called sensrtrv1ty’
mass”. This mass must be just large enough to reverse the relative positions of the pans: if it is added to P”
in Frg 2 it should reverse the relative positions of the pans, i.e. P’ lower than P, In other words, added to
the apparently “hghter” of the two srdes 1t should make it JUSt a httle “heawer The force produced by u

.wﬂl be:

¢’ being the buoyancy force. The latter is generally so small that it can be néglected To denote the readings
obtained before the introduction of the sensitivity mass u the subscript o will be used: R'g, R” o Dyp; the
readings obtained after the mtroductron of u will be denoted by the symbols R’ w R"H’ D“ )

. In the sequence of operations leadmg to the ehnunatron of K and to the expression of the difference
F; — F, in terms of observed quantities, the two followmg cases must be consndered

First Case' F, > F,,

(1) . Place Ml (ﬁrst mass) in P’ and M2 (second mass) in P, Determme the rest pornt R’o.. This is the
“direct” comparrson . -

©(2) Add, wrthout arrestlng the balance a ‘small mass u to M2 (ie.;in P") $O as to make (F2 + </>) a httle '

larger than Fy:
' Fy + -¢>Fp. Rest point: 'R'“.
(3) Arrest tlie beam and mterchange the masses: now the mass on P’ is (Mg + ') and is acted upon by

the force (F2 +. ¢). Ml is on' P”, force Fy. Thxs is the “reVersed” companson wrth respect to (2) rest_ '
pomt R” M. . .
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4) Wrthout arrestmg the beam, remove the mass u. ThlS constxtutes the reversed compartson, with
respect to (1); rest point R",. :

Second casc: Fy < Fy, -
(1) Place My (first mass) in P’ and M, (second mass)in P". Determine the rest point R'o. This is the
“dlrect comparrson : : - : o ‘
(2) As now Fy < F2, add, without arrestmg the balance a small mass 4 to Ml 50 as to make Fl + Ma
little larger than F2 This gives _ o

CFy—¢< Fi- 4
(3) Arrest the beam and interchange the masses; now the mass on P is (M; + w)and is acted upon hy

the force F; + ¢; M, is on P, force F,. This is the reversed comparison with respect to (2). Rest point
Ru A . . - - L. . X o )
Y

4) Without arrestmg the beam, remove the mass (4 . Thls constitutes the ‘reversed” comparisbn with
respect to (1) rest pomt R"p. : .

The system of equatlons to which these operations lead is:

ffom 1 and_ 4. . ‘ . Fl — Fz '—: KDo, Do =‘R’0 __ Rllo.
- : 2. o . - N - p! "
from 2end 3 S NG KDy; Dy = Ry — Ry
_The elimination of K gives: D
o . . Fl_Fzzi,tp_o__..'

The sxgn + should be taken when F1 > Fj and the'sign — when Fl < Fp.

Because of the re}anon (9) the s1gn before yt in the equatrons (14), (15) and (16) is the same as the _ .
sign of ¢ in equation (10). - ‘ . ,

The differenceR'o - R'u indicates how sensitive the balance is. The serrsitivity Sis deﬁned by:

S = ‘b = F’g - ¢’l
% TIRo- Ry | IR0 = Ry’
but, as ¢ is generalty negligible,

(1) | i
- N e
in practice, thie s_eﬁsitivity is referred to the mass, i.e., it is equal to.

(12) . g = =
S g IRo- Rul

It indicates theretore tht mass should be added to one of the pans to provoque a varratron of one d1v1s10n '
on the scale. : '

In the course of 4 complete weighing, the sensitivity is determined twice: from (Ro— R’ u ) and from
{R'o— R"j;)). The obtained valucs should be practically identical and any significant discrepancy should be
considered as a valid.reason for rejecting the result and for! linvestigating the underlying causc of the

malfunctioning of the balance.

|

|
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' balance

" The term

lhe calculation of the difference M, - M, in terms of the observed difference Fl F, requires the
followmg data:

a) the actual densrty a'of the air, ie., at the trme of the comparrsons and at the location of the ‘
b) the volumes V, and V, at the actual temperature of the objects. These volumes may be computed

from the correspondmg masses by the followmg formulae in whrch the density § is also a function of
temperature :

M= Vs
v . M
\Y =5
Hence, o -
‘ Vi =My, - M
81 )
-and
f1 = Vijag = <=2 3¢ -
1 =Visg = 5a
a3
. v
£y = Voag = 22
.2 ‘ .2ag 02 28

Iutroduc‘i.ng" this into the expressions of F; and F, \_ve obtain:

It

Fy
.

Mg = Vyag = g(M; — Vya),
(M —Vza),

and, by substrtutmg into (10) the latter can be given the form @

Myg — Vjyag

D
I AR
or - . v ‘ ‘ '
( A) S MMy = Do~ Dp (;61 | 52) o !
“This equation, solv‘e‘d_ for M, takes the form:
- (16) My ep Do 8Ly, B1G2d)

Do-Dy d1-a 82(81-2)

a_Mx__ M2\ .
) B )

generally referred to as “buoyancy term” is always small so that any reasonable approximation for M; and
M, will be sufficient for numerical calculations. Actually, except in some specific cases, M; and M can be
adequately approximated by the same nominal mass M™ in practice, therefore, the buoyancy term takes
the form :

(17a) | B -

(I)For the sign before u, refer to-equation (10)




‘ ' , : 1 1\
= M* —_— T T '
(17b) ) B a. ( 8] : 82\> ’
- aud., th'eequatiOn,(l'S) canbe written _ : , u
(15 - M =My =y ——2 4 aM¥{ — — —
. . D0 ~ Dy T\ %1 82 '.

The use of M* is alWays Justlﬁed in the compansons of standards of mass which, even in the lowest class, .
are well adjustéd to their nominal values. If, however, M, is unknown then the observer is compelled to
assume that its nominal mass is the same as that of the standards of mass M, If, however, the density &4 is
very different from’ 85, this may require that he checks the accuracy with wluch M¥, based on M,,
represents also My . This is illustrated below by a hypothctlcal case in which, to avoid unnécessary compli-
cations, it will be assumed that in’ the equatlons of the substitution method all balances are realized

exactly, i,e., without our having to introduce the sensltmty mass 4 (in other words u=0).

_ A brass standard, very closely adjusted to 100 g, is placed in Py and “exactly counterbalanced. Then
it is removed and replaced by a block of alummum which is adjusted until it also. produces an “exact”
equd]blum Callmg

M,

B O

M mass of Al, ,
8y = density of ‘Al * =27 g/cm3,
' density ofair = 0.0012 g/cm3

100 g,

i

mass of brass

-density of brass = 8.4 g/cm3v,

I

la'

and .assuming “that it is penmssxble (as a ﬁrst approxunatlon) to use M 100 as the comnlou nominal
. mass, wehave(by 15) . R . .

Mx = 100 + 0.0012 % 1co (717_~ 81—4) o
M 100+012(037 012)
M- = 100.03g- o L
If this value instead of 100 is now mtroduced into (15 ) for the norrunal mass of M , We obtam

i

100 +0.0012 { 19993 _ 100 ' :
27 T sa) ,

100.03 + 0 000012' = 100. 030’017

My

M

The error amounts to about 0 1 ppm An error of such magnitude is actually negligible, except in very
~high accuracy wexghmgs (accuracy wh:ch is requxred only on true fll‘st qualxty standards of mass).-

The above numencal calculatxons can be generalized as follows We have

M +AM
M* +AMS;

M,
M

S

so that : :
" 8 =a M*+ aM, _ M*+ A M
' 6 . 6

X S




with :
Aﬁ = a AMX -'_ AMS
a ax 68 -
Here - Cap =00012{ 2% _ % Y_ 0000012
. . ) . o \ 2.7 8.4 ) ' .

The -calculation given above represents a typical case of what is generally called “second approxima-
tion”. The observer should always be ready (in all approximation procedures) to perform a second approx-
imation in order to prove that the ﬁrst appro)umzmon has been sufﬁcrent
Note: in metrology the term nommal” has a precise meamng, e.g., 1f the nominal mass is equal to 100 g this

assumes that the mass is not different from 100 g by more than the tolerance. permnted for the class to
which the standard belongs. : :

Example I.

A weight. made of stainless steel, the mass of which will be desrgnated by Ml, is compared by the
interchange method wrth brass standards of mass M, equal to 100.01 g. The nominal value M~ is therefore
100 g. The densities are 5y = 7.8 and §, = 8.4 g/cm3 respectrvely, the sensitivity mass u is equal to
0.002 g (2 milligrams). -

The sequence of four operations, given in Section 3, Ch. II is here the following.

First (dircet) comparison: M in P’ and M, in P
Observed rest pomt R = 11 0

Second (dlrect) companson (wnth sensmwty mass #) M1 inP' and Mz + u in P

Observed rest point:R' # 7 0

- Third (reversed) comparlson (wnth sensmvrty mass i): Mg + u in P and My in P".

Qbserved_ rest point: R" w= 13.0

Fourth (reversed) comparison (mass u removed): My in P’ and My inP".
Observed rest pomt R"% = 9.0
Hence

11.0-9.0
7.0 -13.0

+2.0
—6.0

|
li

Do = Ro ‘-'AR,'O
D“ = Ru - R"#

il
1l




and

~O

" and

' Do f 20 | o
e —20 = 0002 | —22 ) =%0005
H Dby o \+v20+60 ) 0005

- '~ Calculation of § term:

The density a of the air at the time of comparisons has been determin'ed from the temperature, the'

barometric pressure and the relative humidity. According to the tables pubhshed by the National Physical

Laboratory it was found equal to a = 0.0012 g/cm3
Hence

g = 00012 x100.01{—— — —L)= 1 0.00108 ¢
. \T78 T 84

My ~ = 100.01 + 0.0005 + 0.00108 = 100. 010508 B
- Ch. III Substltutron method
1. Equatlon of the substltutron method

“The mterchange meéthod is generally preferred by metrologists for all calibrations of standards of
mass because it uses the balance in a completely symmetrical manner. In more complex operations (which,
from a metrological standpoint are somewhat less precise than the compansons -of mass standards).the
substitution method, as compared. with. the interchange method, may require-less operations. Such is for
instance the case in pycnometry (determination of density of hqurds)

- All general conventions and nomenclature being the same as in Ch. II, the mass to be determined is
denoted by M, and placed on the pan P’; it is counterbalanced as exactly as possible by a counterweight
placed on the pan P". It will be assumed that this operation will leave the beam in the position indicated in
Fig. 5, i.e., that the rest point R, will be in the lower part of the scale. Applying directly the approxrma-

. tlons of Ch I, Section 2, we can put the equilibrium equation under the form

(18) - xgl V agl + (mrg)G = Fo 1" (rest point:. Rx)

where 8 is considered as positive, V, isthe volume of M, and Fg the sum of all forces which act on the pan
P”. Now, we add a small “sensltmty mass™ u, the effect of which should be to produce a deflection6’ of
the same order of magnitude as 6, but in opposite sense with respect to CC The resulting equation, in
‘which 8’ is al_so considered as posmve and to which corresponds a new rest pomt R, 1s\

(19) E (Mx+ pt)gl V agl = (mrg)G ¥ Fo 1 (rest pomt R“)

Hence on substractmg (18) from (19) we ﬁnd

. . C }.u
(20) S ©mr
S _ 9 +6" ‘ .
If we remove from the pan P the masses M, and u (for thrs the balance must be arrested) and replace

them by appropriate standards oof mass Mg, the resultmg angle of deﬂectron n wrll become similar to the
angle 6 of the equatron (18) Thrs w11] lead'to - . :

' Notes on Applied science No.7.NPL. (1962).




10
(21) . M,, gl —V, egl' + (mgr)n = Fgl"; (rest point Rg).

The system of equations (18) anﬂ-(21)‘0an be put under the form
g mr) § i
- Vyat (—1)— = F‘l’,

(22) - My
M-V, a+(@mn = -,

which gives -

My —M — a (V4 — V) (“")(0— )—0

and, by (20),

My = My = 2V = Vo) + —l-o0.

The ratlo of the angles may be expressed as above in terms of the ratio of rest-pomt readmgs From
Fig. 5 we deduce (all angles 6,6", n being positive) that

0—n is proportlonal to R R
C0+0 s proportlondl toR” - R (R# > R x).

Hence, - -
o ‘ Ry — R ‘ o
(23) . Mg = Ms+p X —Sia(Vx — Vg)
(24) : My = Mg+ p Rx — Ry ta My Mg\
. : , ——Rx (Sx ) BS

The form of this equatlon is the same as that of (15) it can therefore be used as it 1s if the vilue of the
mass My can. be adequately approximated. Otherw1se the equatlon is given a form similar to (16) ie.

Rx—Rs 8y M 5x (85— a)
- s
Ry—Rx 8x—a Bs (bx —a) .

25)  iMx =u

the reader is. referred to-the discussion and the cxample that follow.

2. Application of the methed to the determination of volumes and densities of liquids

_ The determination of volumes is generally made with water. Water is one of the best studied liquids
and its density §;, is given in various pllblls]led tables as a function of temperdture The sequence of .

. operatlons 1s the followmg




1L
. -a) The pycnometer filled with water is placed on the pan P’ and counterwerghed until the rest
‘point Ry, ﬁnds 1tse1f on the lower part of the scale :

‘b) A sensrtlvrty mass U is added to P'. It should produce a.rest point Rl-l’ on the upper part of the
scale. : .

c) Water and p are removed and replaced by standards of mass. The rest point R, should be again
- in the lower part of the scale i.e.; in the vrcmlty of R,

The resultmg equatlon is 1dentrcal to (25)i.e.,

RW'—RS (Sw . 8w (Ss—a)
26 My = . M .
2¢) WS H R TRy Bwea T Baw—a)

" The reader should notice that

1° the parameters attached to the pycnometer (1ts mass and density) are completely ehmmated from
the equations as the container i is always on the same pan of the balance. : :

2° thé interchange method can also be used here, but it could lead toa greater number of operatlons
as it would iequire that the mass of the pycnometer itself (i.e., the container alone) and the mass of the
pycnometer filled w1th water be separately determined.

. Example 1

In the calibration of a pycnometer the observed values were the following:

M, = 48 536 g, brass, § ¢ 8.4'g/‘cr_n3
R, = 80

R, = IQ.7

Ry = 64

t . =

23.0°C -

At 23°C the densrty of water (accordmg to water density tables*) is equal to 0.9975382 g/cm3. The
density of-the- air, determined as in example I., was found équal to a = 0.0012 g/cm3 The sensrtmty
mass u bemg equal to 0 002 g. the equdtlon (26) gives the volume V:

W s0-64 . 48536 (840 - 0.0012)

V= —¥ _0.002 . : :
Sw [07-80 0997538 _0.0012 ' 84 (0997538 - 0.0012)
 0.0011852 8.3988
= 70.5963382 5.7730952 09963382

.= 0.0011895 + 48.7074225 = 48.7086120 cm3.

*Brit. J. Appl. Phys., Vol. 18




Ch. IV Dynamic and Physical Properties of Balances.
1. Oscillations of the beam.

An equal arms balance of the type called “comparator” is always used dynamically so-that a rest

point R is not the point at which the pointer really “stops” but the point which is the center of the

pointer’s oscillations. The observer records a certain number of exireme positions of the: pointer, to the

_left dnd to the right, averages the readings on each side and deduces their imid-point. This point represents

the value R. As the oscillations are always slightly damped, the observations of extreme points of

. oscrllatrons must always start and ﬁnrsh on the same side, for instance:

Left - : - ~ Right
40 _ » - ,
41 R ‘ _ 8.1
42 o _ . 8.0
Means: 410 o 805
and t_herefore: .
mid point =R = ioi;t.i!)_‘ =6.08

If the beam were left oscillating indefinitely, it would sooner or later come to rest but perhaps not exactly
at 6,08 because the inherent frictions would probably stop the beam at a point close to but not coinciding -

exactly with R. It may be:said that the dynamrc method is. more accurate than the static method for
determrmng rest-points. : : ,

The fact that a beam 0sc111ates about the true rest-pomt is easily conceivable from an 1ntu1t1ve

standpoint. Actually it is justified by the law of mechanics called “law of small oscrllat_rons This law may

be presented as follows. Let us consider a mechanical system in its static equilibrium position and let a be
the correspondrng value of a certain parameter. If ag is disturbed by a small amount Ag, the system
according to the law, will oscillate sinusoidally about a,, like a pendulum oscillates about the vertical axis.

The always present frictions produce damping but if the latter is weak the oscillations remain isochronal so
that the movement of the beam becommes slower and slower when thé amplitude decreases. Special care.

must then be taken to estimate correctly the readings of the extreme positions of the pointer.

The general rule which should always be born in mind is-that the observer must constantly keep his
eyes on the pointer so as to be able to detect all transient irregularities of the beam’s oscillations. These
irregularities mdy be produced by a speck of dust, a weak air draft etc.; only those observations are
recorded which are absolutely irreproachable. The damping, in particular, must be regular and weak. If an
irregularity ‘is noticed or a disturbance occurs during oscillations (e.g., because of a slam of a door) the
observations should be rnterrupted and then should start from the beginning.

In extremely hrgh quality balances (ase.g, the main balance of the Intematronal Bureau of Werghts

and- Measures; -which compares only krlogrammes) the oscillations can be made very small. In principle the
graticule with which a balance is equipped by the manufacturer, indicates the order of magmtude of the
oscillations which, in general, should be restrrcted to the central portron of the scale

A balance is always built for a certain well defined range of masses and the lngher the precrsron the

narrower the range. A laboratory must therefore possess a certam number of balances to cover the total
range of masses it may have to calibrate. - : : »

Note an equal arms classrcal balance should never be treated as an ““indicating” instrument: although
there is a point on the scale which, in theory, corresponds to ngor0us1y equal forces, this point has no
absolute fixed posrt10n and cannot be used as reference pomt
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2. Physical Pl:operties' df the Balance.

One single comparison between two mass standards will not yield very much information about the

" overall precision of which the. instrument is actually capable. To obtain a very high precision (in a

metrological and a statistical sense), for instance as it is indicated by the calculation of standard deviations

- in certain complex intercomparisons patteriis, the operator must be extremely conscious of the fact thata

balance is a real physical instrument, placed in a real physical environment. Thus for instance, it had been

. assumned in the calculations leadmg to the equations that the lengths of the arms are constant: this is true

only if the temperatures of various parts of the beam remain constant; it had also been assumed that the

- only forces which act on the beam are produced by the compared masses; when quantities as small as a

fraction of a milligram are considered, it is obvious that very minute actions such as movements of the air,
specks ‘of dust, condensation of water etc., may play an apprec1ab1e role, The ultimate precision, which
becomes apparent only at the end of statistical calculatmns, wﬂl be mﬂuenced by certain precau‘aons the
reason of which is not clearly visible beforehand -

The most. important part of a balance is the line of contact between the central knife and the
horizohtal plane on which the knife rests. On a microscopic scale this contact is very far from any
“aeometrical idealization™, as the pressures.are enormous and produce elastic deformations, both in the
knife and.the plane Every time' a balance is arrested (which lifts the knife from the plane) the physical
nature- of the contact is more or less modified. This is why the sensitivity may not ‘be identically the same
before and after an interchange of masses. In the theory given in this Memorandum, it had been assumed

-that comparisons are accomplished with .a'minimum of arrests, and that the adding and the removal of the

sensitivity. mass 4 may be made without arresting the beam. Some metrologlsts prefer not to follow the

principle of the minimum of arrests but, on the contrary to arrest the beam several times in ‘the course of a-

companson Their equatlons are thus based on the notlon of “average sen31t1v1ty

- In some of the highest quahty balances the contact between the knife and the plane is not broken
when the beam is arrested; the latter is sunply immobilized by mieans of appropnate felt pads
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