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Comparison of  masses  by ineans.of equal anus balances 

•• Ch. I General theory of equal arms balances 	 . 

1. Introduction 

The equal arms balance is a balance in which the distances of the outer knife-edges to the central 
knife are made equal with the utmost accuracy. The three knife-edges are, as exactly as possible, in the 
same plane. 

The center of gravity of the beam . must be somewhat below the central knife as, otherwise, the beam 
would have no defined position of equilibrium. The positions of the knives and of the center of gravity of 
the beam are generally adjustable. The effects of the adjustment pannot be evaluated directly but only 
through the modifications they produce in the functioning 6f the balance during weighing operations. This 
is the reason why a beam (initially adjusted by the constructor) should never be touched by anyone except 
by a person of appropriate training and skill, capable of interpreting correctly the modifications of the 
balance's behaviour. As all factors influencing the quality of a balance are strongly correlated with each 
other, to bring a high sensitivity balance to a state of utmost perfection, represents a serious mechanical and 
metrological achievement. 

The pans are practically of equal weights, so that when the beam is "free", i.e., rests only on the 
central knife, the position of the beam is very close to horizontality; such is also the case when the balance 
is loaded with two nominally equal masses. 

In the category of metrological instruments designated by the general term of "comparators" (i.e., 
instruments which can evaluate differences only between nominally equal quantities), the equal anus 
balance is still today, in spite of all progresses accomplished in various domains of science and technology, 
one of the most reliable and the most sensitive. 

The reliability and the sensitivity of a balance is, however, not founded on the static properties Of the 
beam when the latter is in its equilibrium position but on the dynamic properties of small oscillations 
(about the equilibrium position). • 

• 
Historically, the balance was the first higb precision instrument devised by man; its siipremacy 

remained completely unchallenged for centuries,. until the advent of some modern Methods, e.g., those used 
in the measurement of lengths by interferometric techniques. Although balances built tWo hundred years 
ago are relatively .  crude in comparison with the modem instruments,' sortie of those manufactured by 
reputed constructors (e.g., Rueprecht) in the middle of the nineteenth century are almost equivalent to the 
modem balances. Modern techniques for constructing Icnives and planes and for checking them optically 
permit, however, an easier production (at a lower cost) of very high quality .equal arms balances. • 

The fact that a balance is used in dynamic conditions (i.e., when its beam is swinging) necessitates .a 
continuous supervision of its functioning during the comparisons. This point is treated in Chapter IV. 
Another memorandum treats in detail the question how statistical methods, based on -the theory of least 
squares, can be applied to . the results of weighings and how they lead to a reliable estimation lof the 
açcuracy of the weighings. 

2. Équation of equilibrium 

For thé theoretical study of equilibrium conditions, the beatn (Fig. I) can be reduced to those points 
which are actually neéessary  for  establishing the equations of the balance (Fig. 2). These points are: 

Pe and le': points representing the edges of the outer knives (edges upward), i.e., points on whictt act 
the forces produced by the compared masses. 



C: central knife (edge downward), point which represents the line about which the beam can pivot. C 
shoùld be (as.close as it is technically possible to realize) located midway between P' and P". Nominally 
therefore, 1 = CP' = 1" = CP". The edges of P' and P" and C should be coplanar. 

G: center of gravity of the bearn. It is located on the line passing through C and perpendicular to 
P'CP". The distance GC will be designated by r, G being below C. The mass of the beam, assumed 
concentrated in G, will be denoted by m. 

Let us assume that the beam takes the position represented in Fig. 2. The forces which act on the 
beam and which determine its actual position in space are: 

(a) downward forces exerted by the gravitational field on the masses M i , M2, and the corresponding 
upward buoyancy forces f1 , f2  due to the fact that the masses are surrounded by air. 

(b) downward force acting on the beam, which can be reduced to the gravitional force applied to G. 
No buoyancy force has to be introduced concerning the beam as this force is constant and independent of 
the position of the beam in space. 

In the theory that follows, the forces. acting .on the beam will be: 

F 1  =•M i g.... •• 
F2 = M 2g _ f2  , 

F3  = mg. 

The combined effect of the moments of F 2  and F3 counterbalances the moment of F 1 . The angle of 
deflection of r from verticality will be designated by  0 . In the sequel, conventions will be introduced 
concerning this angle; for the time being 0 will be considered as positive. 

The conditions represented in Fig. 2 lead to the following equation: 

(1) F 1  1' cos 0 = F2 1" cos  0 + (mgr) sin 0 . 

The angle 0 being small, it is permissible to introduce the approximations 

cos 0 =- 1 and sin  0 =0 radians; 

Hence 

F1 1' = F2 1" + (mgr) 0 

From this equation alone, it is not possible to determine precisely the relationship between F 1  and F 2 . 
Other equations are necessary to eliminate all those parameters which cannot be determined accurately. 
Two methods can be used for this purpose and will be analyzed successively. 

Ch. II Interchange method 

1: Fundamental law 

If, after the equation (2) had been obtained, the masses M 1  and M2 are interchanged, the beam takes 
the position indicated in Fig. 3, the angle of deflection being now n, directed in the opposite sense and 
similar but not identical to 0. The difference between 0 and n is due to the small but not completely ' 
negligible diffeience between and 1": in a rigorously symmetrical balance, the interchange of masses 
would lead to n= e. In high quality instruments, the difference between 1' and 1" may be extremely small 
but, nevertheless, these lengths can never be considered as rigorously equal. The equation that corresponds 
to Fig. 3 is: 

(3) 	F 2  1' cos ri + (Mgr) sin /i = F 1  1" cos n 

(2) 
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and, in a simplified form, 

(4) F2 1  + (mgr) n = F 1  I - . 

Thus, the equations (2) and (4) form the basic system: 

F 1  1' 	 = F2  1" 1- (mgr)  0 , 

È 2  1' + (mgr) 7? = F 1  1", 

which can be solved for (F 1  — F2 ): 

(F 1  — F2) — (mgr) 7? -= — (F i  — F2) 1" + (mgr) 0, 

(F 1  — F 2 ) (1' + 1") , = (mgr) (0 + n), 
-mgr -  F 1  — F 2  — , 	„ (9 + n). + 

The factor mgr  , is a positive quantity; it will be designated by the symbol k: 1' + 

(5) F 1  — F 2 	k  (0 +  n). 

This important relation is called the fundarrzental law of the interchange method. The analysis of its second 
term will be done in two steps; first we shall deal with the angles of deflection and, secondly, with the 
proprotionality factor k. 

2. Memurement of the angles of deflection 

Instead of measuring the angles 0 and 7? from the vertical axis CC' as origin, it is more convenient to 
adopt an arbitrary origin, for instance the axis CX located as in Fig. 4. The total angle (0 + n) is then 
equivalent to: 

(6) + 	= a' — a" 

The sign of the difference F 1  — F2  will be the sanie as that of (a' —a") if, with respect to CX, the angle a is a 
monotonic increasing function of -F 1 . The reader must always bear in mind that  a' is the angle that 
corresponds to the first Weighing i.e., that made before the exchange of masses. 

The angles 0 and n being small, various devices are used for evaluating them with sufficient accuracy 
and without too much strain on the observer. One of the most commonly used devices consists of a long 
thin pointer, fIXed 'normally to the beam. Its fine lciwer extremity oscillates in front of a short, finely 
engraved scale, or graticule..To each angle of deflection, say  a, corresponds a well defined number which is 
proportional to the angle's value and which the observer can read on the scale, with the pcissibility of 
interpolating between two consecutive marks to one or two tenths of a division. « 

To avoid misunderstandings and to maintain uniform patterns in the records of the Laboratory the 
following rules have been adopted. 

a. The left-hand pan is designated by the symbol P' and the right-hand pan by the symbol P". 

•  b. In the "first" or "direct" weighing, the mass placed in P' is termed "first" mass and the mass placed in 
P", the "second" mass. The terms "first" and "second" always rafer to the first (direct) comparison, even 
after the masses had been interchanged. 

c. The difference between two compared forces or two compared masses are always defined as follows: 

Difference between forces = First force — Second force, 
Difference between masses = First mass — Second mass. 
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Thus, in the theory given.above, 

First  mass = M 1 , 	i.e. first force = F 1 ; 
Second mass = M 2 , 	i.e. Second force = F 2 . 

The differences are equal to: 

(M 1  — M2) or (F i  — F2). 

d. That extremity of the scale which is the closest to the left-hand pan (P') is considered as the "zerO -end". 

The reading on the scale that corresponds to a' is designated by R' and is termed "first" (or "direct") 
reading; similarly, R" corresponds to a''and is termed "second" (or "reversed") reading. The differences 
(F 1  — F2) and (R' R") are therefore always of the same sign: It is implicitely assumed that the pointer 
never goes farther to the left than the zero end. 

The distance between R' and R" is designated by the symbol D. It is equal to: 
• 	(7) 

and the fundamental tawlakes the forM: 

(8) 	. 

D = — R" 

F 1  — F2  -=- KD. 

The total proportionality factor K represents now a combination of the factor k (5) and the proportionality 
factor between angles and scale readings. 

3. Determination of the proportionality' factor (K) 

The determination of K is made by means of a small known mass p generally called "sensitivity 
mass". This mass must be just large enough to reverse the relative Positions of  the pans: if it is added to P" 
in Fig. 2 it should reverse the relative positions of the pans, i.e. P lower than  P In other words, added to 
the apparently "lighter" of the two sides if should make it just a little "heavier". The force produced by p 
will be: 

(9) 	 0 = mg — 

0' being the buoyancy force. The latter is generally so small that it can be nèglectéd. To denote the readings 
obtained before the introduction of the sensitivity mass p the subscript 0  will be used: R' 0 , R"0 , D0 ; the 
readings obtained after the introduction of p will be denoted by the symbols R' R" D . 12' 	, 

In the sequence of operations leading to the elimination of K and to the expression of the difference 
F 1  — F2  in terms of observed quantities, the two following cases must be considered: 

F 1  > F2 and F < F 1 	_ 2 . 
First Case: F 1  > F2 , 

(1) Place M 1  (first mass) in P' and M 2  (second mass) in P". Determine the rest point R'0 . This is the 
"direct" comparison. 

(2) • Add, without arresting the balance, a small mass p to M2 (i.e., in P") so as to make (F 2  + 0) a little 
larger than F 1 : 

F2  + > F . Rest point: R'm  

(3) Arrest the beam and interchange the masses: now the mass on P' is (M2  + p) and is acted upon by 
the force (F 2  +.. 0). M1  is on P", force F1. This is the "revetsed" comparison, with respect to (2); rest 
point R"ji. 



The elimination of K gives: 

(10) 
Do — 	 

but, as is generally negligible, 

(11) s 	big R'0 	, 11'12 1 

(4) Without arresting the beam, remove the mass p. This constitutes the reversed comparison, with 
respect to (1); rest -  point Rn 0. 

Second case: F 1  < F2 , 

(1) Place M1 (first mass) in P' and M2 (second mass) in P". Determine the rest point R'0. This is the 
"direct" comparison. 

(2) As now F 1  < F2 , add, without arresting the balance, a small mass 1.2 to M 1  so as to malce F 1  + /I a 
little larger than F 2  This gives 

F2  — < F - 1. 

(3) Arrest the beam and interchange the masses; now the mass on P" is (M 1  + p) and is acted upon by 
the force F 1  + 0; M2  is on P', force F 2 . This is the reversed comparison with respect to (2). Rest point 
R"p . 

(4) Without arresting the beam, remove the mass p . This constitutes the "reversed" comparison with 
respect to (1); rest point R" 0 . 

• The system of equations to which these operations lead is: 

from 1 and 4: 	 F 1  — F2  = KDo; Do = W iz)  — R"0. 

from 2 and 3: 	 1 	F 1  — (F 2  ± 95) = KIDp ; Det  

The sign + should be taken when F 1  > F2 and the sign —, when F 1  < F2. 

Because of the relation (9) the sign before p in the equations (14), (15) and (16) is the same as the 
sign of 0 in equatiori (10). 	 • 

The differenceR'0  — Wu  indicates how sensitive the balance is. The sensitivity S is defined by: 

In practice, the sensitivity is referred to the mass, i.e., it is equal to 

(12) 	• 	= 	 'Rio  — 

It indicates therefore what mass should be added to one' of the pans to provoque a variation of one division 
on the scale. 	-. •  

In the course of à complete weighing, the sensitivity is determined twice: from (R'0 .-- Wm  ) and from 
(R"0  -: R"p:), The 'obtained values should be practically identical and any significant discrepancy should be 
considered as a .valid , reason for rejecting the result and for !investigating the underlying . cau.se  of the 
malfunctioning of the balance. I . 	 . . 	. 	 . 	I ' 	t 	• . 	. 	. • 
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The calculation of the  difference M 1  — M2 in terms of the observed difference F 1  — F2 requires the 
following data: 

a) the actual density a of the air, Le., at the time of the comparisons and at the location of the 
balance; 

b) the volumes V i  and V2 at the actual temperature of the objects. These volumes may be computed 
from the corresponding masses by the following formulae in which the density 8 is also a function of 
temperature: 

M = V6
•

v 

M 

Hence, 
M „ V 1 .= 	 v2 = 
8  1 

and 

Viag = 	ag 
5 1 

(13) 

M2 f2 = V2ag = 	ag 
0 2 

Introducing this into the expressions of F 1  and F2 we obtain: 

F 1  = M i g — Vi ag g(Mi  — Vi a), 

• F2  .= M 2 g — V2ag 	g(M 2  V2a), 

and, by substituting intô (10) the latter can bé given the fcirm ( 1 ) ' 

Do 
(14) r 	M i  -M2  — 1.1  	+ a (Vi  — V2), Do  — 

Or 

M2 
5 2 

Do  
=•11  Do  — Diu  

Mi 	m2 ) 
8 1 	8 2 

(15) 	M 

This equation, solved for M 1  takes the form: 

81 	+ M2 8 1 	(5 2 — a) 
1.1 •51 — a 	82 (81 — a) 

' The term 

	

MI 	M2 ) (17a) 

	

\ 8 1 	8 2 
generally referred to as "buoyancy term" is always small so that any reasonable approximation for M i  and 
M 2  will be sufficient for numerical calculations. Actually, except in some specific cases, M i  and M2 can be 
adequately approximated by the same nominal mass M * ; in practice, therefore, the buoyancy terni takes 
the form 

( 1 )For the sign before p, refer to equation (10) 



13= (17b) 

1 

and, the equation, (15) can be writteù 

	

Do 	„,,;( 1 	1 
MI — M2 	+ a Di — 	— — 

	

Do  — 	 5 1 	5 2 

The usè of M*  is alWays justified in the comparisons of standards of mass which, even in the lowest class, 
are well adjustèd to their nominal values: If, however, M i  is unknàwn then the observer  is compelled to 
assume that its nominal mass is the same as that of the standards of mass MI. If, hciy‘iever, the density S i  is 
very different from 2 , this may require that lie checks the aCcuracy with which M *, based on M2 , 
represents also  M 1 . This is illustrated below by a hypOthetical case in which, to avoid unnecessary compli-
catiOns, it will be assumed that  in: the  equations of the substitution  method all  balances are realized 
exactly, i.e., without our having to introduce the Sensitivity ruass 12 (in Other words, 12 = 0). 

A brass standarçl, very closely adjùsted to 100 g, is placed in Pi and "exactly" counterbalanced. Then 
it is removed and replaced by a block of aluminum which is adjusted until it alsô produces an "exact" 
equilibium. Calling • 

Ms  = mass of brass =  100g, 

• S 	-= - density of brass = 8.4 g/cm 3 , 	 - 

Mk = mass of Al, 	 . 
S k  = density of Al = 2.7 g/cm 3 , 

a = density of air = 0.0012 g/cm 3  

and assuming that it is permissible (as a 'first approximation) to use 'M -= 100 as the common nominal 
mass, we.have (by 15')' 

= 100 + 0.0012 x 100 ( 	 

	

2.7 	8.4 
1 	1 

= 

 

100+ 0.12 (0.37 — 0.12) 

M = 100.03 g. 
If this value instead of 100, is now introduced into (15'), for the nominal mass of M , we obtain 

Mx  = 100 + 0.0012 (100.03 
2.7 	.8.7' 

100) 

M = 100.03 + 0.000012 = 100.030012. 

The error amounts to about 0.1 ppm. An error of such magnitude is actually negligible, except in very 
high accuracy weighings (accuracy vvhich is required only on true first quality standards of mass). 

The above numerical calculations can be generalized as follows. We have 

Mx = M*4.  Mx ,  
= M*-F M s ; 

so that 

(15' .) 

_  a(M + 2\  Mx 
5 x  

m * + AmA 
S s 	) 



P = 

with 

0 -= 0.0012(  0 '0 3  0.000012 
2.7 	8.4) 

The calctilation given above represents a typical case of what is generally called "second approxima-
tion". The observer should always be ready (in all approximation procedures) to perform a second approx-
imation in order to prove that the first approximation has been sufficient. 

Nôte: in metrology the term "nominal" has a precise meaning; e.g., if. the nominal mass is equal to  100g  this 
assumes that the mass is not different from 100 g by more than the tolerance permited for the class to 
which the standard  belongs. 

Example I 

A weight made of stainless steel, the mass of which will be designated by M 1 , is cornered by the 
interchange method with brass standards of mass M2 equal to 100.01 g. The nominal value M is therefore 
100 g. The densities are = 7.8 and 6 2  = 8.4 g/cm3 , respectively; the sensitivity mass g is equal to 
0.002 g (2 milligrams). 

The sequence of four operations, given in Section 3, Ch. II is here the following. 

First (direct) comparison:  M 1  in P' and M 2  in P" 

Observed rest point: R'0  = 11.0 

Secànd (direct) comparison (with sensitivity mass g): M1 in P' and M2 +.1.x in P". 

Observed rest point: 	= 7.0 

Third (reversed) comparison (with sensitivity mass 12): M2+ g in P' and M1 in 

Observed rest point: Km  = 13.0 

Fourth (reversed) comparison (mass g renioved): M2 in P' and M1 in P".. 

Observed rest point R"0  = 9.0 

' 	- Hence 

Do  = R'0  — R"0  = 11.0 — 9.0 = +2.0 

D 	R'— R" 	7.0 — 13.0 = —6.0 12 — — 

Here 



+0 
(+ 2.0 	

=05  
2+3 6.0 	° 

Do  
1.1  Do  — Di2  

0.002 

mr 

and 

0 

Calculation of j3 term: 

The density a of the air at the time of comparisons has been determined from the temperature, the 
barometric pressure and the relative humidity. According to the tables published by the National Physical 
Laboratory* it was found equal to a = 0.0012 g/cm 3 . 

Hence 

= 0.0012 x 100.01(  1 	1 

7-8 	-8 .4  = +  0.00108g. 

= 100.01 + 0.0005 + 0.00108 = 100.010508 

• Ch. III Substitution method 
• 

• 1. Equation of the substitution method 
• 

The interchange method is generally preferred by metrologists for all calibrations of standards of 
mass because it uses the balance in a completely symmetrical manner. In more complex operations (which, 
from a metrological standpoint are somewhat less precise than the comparisons of mass standards) the 
substitution method, as compared' with the ,interchange method, may reqiiire less operations. Such is for 
instance the case in pychometry (determination of density of liquids). 

All general conventions and nomenclature being the same  as in Ch. II, the mass to be determined is 
denoted by Mx  and placed on the pan 13 % it is counterbalanced as exactly as possible by a counterweight 
placed on the pan P". It will be assumed that this operation will leave the beam in the position indicated in 
Fig. 5, i.e., that the rest point Rx  will be • in the lower part of the scale. Applying directly the approxima-
tions of Ch. I, Section 2, we can put the equilibrium equation undèr the form 

• (18) • 	Mxgli  — Vx agl' + (mrg) 0 = F0 !",  (rest point: Rx), 

where 0 is considered as positive, Vx  is the volume of Mx  and Fo  the sum of all forces which act on the pan 
P". Now, we add a small "sensitivity mass" p, the effect of which should be to produce a deflection 0' of 
the same order of magnitude as 0, but in opposite sense with respect to * CC'. The resulting equation, in 
which 0' is also considered as positive and to which corresponds a new rest point Rit , is\ 

(19) 	• (Mx  + la) gl' — Vx  agi'  = (mrg)0 4- Fo 1" ; (rest point: Ria).' 	•  • 

Hence, on substracting (18) from (19), we find 

0+0' 	 •  

If we remove from the pan P' the masses M x  and p (for this the balance must be arrested) and replace 
them by appropriate standards of mass Ms , the resulting angle of deflection n will  become similar to •the 
angle 0 of the equation (18). This will lead to 

*Notes on Applied Science No. 7. N.P.L. (1962). 

• (20) 



(mr) — a (Vx  — v +— 
' 	1: Mx — —n) = 0, 
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(21) Ms  gr —Vs  agi'  + (mgr) n =  Fo r; (rest,point Rs). 

The system of equations (18) and•(21) - Can be put under thé form 
(mr) 0 	Fo l" . ' (22) 	• . Mx — \Ix.  a + 	. 	= 	3 	- - 	1 ' 	1 '  

M 5  — V a + (mr) — 	 s s 	 1" 

which gives 

and, by (20), 

mx — ms — a(vx — Vs) + ° 	" =0. 

The ratio of the angles may be expressed as above, in terms of the ratio of rest-point readings. From 
Fig. 5 we deduce (all angles 0,0', n being positive) that 

O  —n is proportional to Rx  R5 , 
O  + 0' is proportional to R1.1 	Rx,  (R 	Rx ).  

Hence, 

x (23) 	 R — Rs Mx = Ms + 	+ a (Vx — Vs); 
Rp  Rx  

x  
(24) Mx -= Ms +11 R — 

Rs +a  Mx 	Ms  
— Rx 	Sx 	S s  

The form of this equation is the same as that of (15): it can therefore be used as it is, if the value of the 
mass Mx  can be adequately approximated. Otherwise, the equation is given a form similar to (16), i.e. 

(25) = 	 
Rx  — Rs  Sx 	

Ms 
(5x — a) 

IMx Rbi  — Rx  Sx  — a + 	Ss (Sx  — a) 

For the numerical calculation of the term 

(Mx 	Ms 
a  —S—x—  — --Ï--s  • 

the reader is referred to . the discussion and the example that follow. 

2. Application of the method to the determination of volumes and densities of liquids 

The determination of volumes is generally made with water. Water is one of the best studied liquids 
and its density S w  is given in various published tables as a function of temperature.  The  sequence of 
operations is the following. 
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a) The pycnometer filkd with water is placed on the pan P' and counterweighed until the rest 
point Rw  finds itself on the lower part of the scale. 

b) A sensitivity mass bi is added to 	lt should produce a rest point RI»  on the upper part of the 
scale. 

c) Water and 1.2 are removed and replaced by standards of mass. The rest point Rs  should be again 
in the lower part of the scale i.e., in the vicinity of Rw  . 

The resulting  équation is identical to (25) i.e., 

(26) 	Mw  
Rw — Rs 	5w 	8w (8s — a) 

1.t 	 	  
RI/  — Rw  Sw + Ms - a  

The reader should notice that: 

1 °  the parameters attached to the pycnometer (its mass and density) are completely eliminated from 
the equations as the confainer is always on the saine pan of the balance. 

2 °  the interchange method can also be used here, but it could lead to a greater number of operations 
as it would require that the mass of the pycnometer itself (i.e., the container alone) and the mass of the 
pycnometer fi lled with water be separately determined. 

Example 11 

In the calibration of a pycnometer the observed values were the following: 

Ms  -= 48.536 g; brass, S s  = 8.4 g/cm3 

= 8.0 

= 10.7 

=6.4  
t 	= 23.0 °C 

At 23 °C the density of water (according to water density tables*) is equal to 0.9975382 g/cm 3 . The 
density of the air, detennined as in example 1., was found equal to a  = 0.0012 g/cm 3 .  Thé  sensitivity 
mass bt being equal to 0.002 g. the equation (26) gives the volume V: 

Mw 	0.002  8.0 — 6.4   + • 	1 	 48.536 	(8.40_Ø.0012)  
S w 	 10.7 — 8.0 	0.997538 — 0.0012 	8.4 	(0.997538 0.0012) 

0.0011852 + 5.778095 2  . 8.3988  
— 0.9963382 0.9963382 

. 

 

0.0011895+  48.7074225 = 48.7086120 cm3. 

_ 
*Brit. J. Appl. Phys., Vol. 18 
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Ch. IV Dynamic and Physical Properties of Balances. 

1. Oscillations of the beam. 

An equal arms balance of the type called "comparator" is always used dynamically so that a rest 
point R is not the point at which the pointer really "stops" but the point which is the center of the 
pointer's oscillations. The observer records a certain number of extreme positions of the pointer, to the 
left and to the right, averages the readings on each side and deduces their tnid-point. This point represents 
the value R. As the oscillations are always slightly damped, the obServations of extreme points of 
oscillations must always start and finish on the same side, for instance: 

Left 	 Right 

4.0 
4.1 	 8.1 

MeanS: 

and therefore: 

4.10 	 8.05 

8.05 + 4.10 	6.08 
2 

mid point 

If the beam were left oséillating indefinitely, it would sooner or later éome to rest but perhaps not exaCtly 
at 6.08 because the inherent frictions would probably stop the ,beam at a point close tO but not coinciding • 
exactly with R. It may be said that the dynamic method is more aceurate than the static method for 
determining restpoints. 

. The fàct that a beam oscillates about the true . restpoint is easily conceivable from• an intuitive 
standpoint: Actually it is justified by the law of mechanics called "law.  of small oscillations". This law may 
be presented as follows. Let us consider a mechanical system in its static equilibrium position and let a be 
the corresponding value of , a certain paraineter. If ao  is disturbed by a small amount Aa ,  the sisteni 
according to the law, will oscillate.  sinusoidally about ao ., like a pendulum oscillates about the vertical axis. 
The àlways present frictions produce damPing but if the latter is weak the oscillations reinain isochronal so 
that the movement of the beam becoines slower and slower when thé  amplitude  decreases. Special care. 
must then be taken to estimate correctly the readings of the  extreme positions of the pointer. 

The general rule which should always be born in mind is that the observer must constantly keep his 
eyes on the pointer so as to be able to detect all transient irregularities of the beam's oscillations. These 
irregularities may be produced by a speck of dust, a weak air 'draft etc.; only those observations are 
recorded which are absolutely irreproachable. The damping, in particular, must be regular and weak. If an 
irregularity is noticed or, a disturbance occurs during oscillations (e.g., because of a slam of a door), the 
observations should be interrupted and then should start from the beginning. 

In extremely high quality balances (as e.g., the main balance of the International Bureau of Weights 
and Measures, which compares only kilogrammes) the oscillations can be made very small. In principle the 
graticule with which a balance is equipped by the manufacturer, indicates the order of magnitude of the 
oscillations which, in general, should be restricted to the central portion of the scale. 

A balance is always built for a certain well defined range of masses and the higher the precision the 
narrower the range. A laboratory must therefore possess a certain number of balances to cover the total 
range of masses it may have to calibrate. 

Note: an equal arms classical balance should never be treated as an "indicating" instrument: although 
there is a point on the scale which, in theory, corresponds to rigorously equal forces, this point has no 
absolute fixed position and cannot be used as reference point. 
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2. Physical Properties of the Balance. 

One single comparison between two mass standards ‘will not yield very much information about the 
overall precision of which the instrument is actually capable. To obtain a very high precision (in a 
metrological and a statistical sense), for instance as it is indicated by the calculation of standard deviations 
in certain complex intercomparisons patterns, the operator must be extremely conscious of the fact that a 
balance is a real physical instrument, placed in a real physical environment. Thus for instance, it had been 
assumed in the calculations leading to the equations that the lengths of the arms are constant: this is true 
only if the temperatures of various parts of the beam remain constant; it had also been assumed that the 
only forces which act on the beain are produced by the compared masses; when quantities as small as a 
fraction of a milligram are considered, it is obvious that very minute actions such as movements of the air, 
specks of dust, condensation of water etc., may play an appreciable role. The ultimate precision, which 
becomes apparent only at the end of statistical calculations, will be influenced by certain precautions the 
reason of which is not clearly visible beforehand. 

The mot important part of a balance is the line of contact between the central knife and the 
horizontal plane on which the lcnife rests. On a microscopic scale this contact is very far from any 
"geometrical idealization", as the pressures are enormous and produce elastic deformations, both in the 
knife and the plane. Every time a balance is arrested (which lifts the knife from the plane) the physical 
nature• of the contact is more or less m odified. This is why the sensitivity may not be identically the same 
before and after an interchange of masses. In the theory given in this Memorandum, it had been assumed 
that comparisons are accomplished with a minimum of arrests, and that the adding and the removal of the 
sensitivity,  mass may be made without arresting the beam. Some rnetrologists prefer not to follow the 
principle of the minimum of arrests but, on the contrary to arrest the beam several times in the course of a 
comparison. Their eqtiations are thus based on the notion of "average sensitivity." 

In some of the highest quality balances the contact between the knife and the plane is not broken 
when the beam is arrested; the latter is simply immobilized by means of appropriate felt pads. 
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