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AN IMPROVED CHA ALGORITHM FOR TRACKING LOW-ANGLE TARGETS(U) 

by 

B.J. Rook and J. Litva 

ABSTRACT 

An improved Correlation Height Analysis (CHA )'  algorithm is 
described and further supporting evidence for its effectiveness is 
provided. The underlying principles are the same as the original 
CHA algorithm, namely; (a) modelling the behavior of tracking 
radars in the lovv-angle region; (b) comparing results of the model 
vvith measured data in a correlation process,-  and (c) selecting the 
true track from the family of tracks provided by the correlator. 
The improvements to be discussed are concerned mainly vvith 
increasing the efficiency and robustness of the algorithm. The 
most significant is the procedure for effecting item (c). In 
addition, a description is given of the software implementation 
of the algorithm together with the sampled-aperture radar 
facility used to record data for testing the algorithm. CHA 
low-angle tracking is demonstrated using experimental data 
recorded with this facility.(U) 

1. INTRODUCTION 

In recent years, a considerable amount of research has been devoted to 
finding a solution to the problem of tracking targets in the low-angle region, 
in particular, when these targets are tracked over the surface of the sea. 
In this region, the performance of conventional tracking radars is seriously 
degraded owing to the reflection of radar signals by the surface of the water. 
The main thrust of the research in this area has been directed towards finding 
methods for eliminating or nt least reducing the degrading effect of the 
reflected or indirect signal so as to improve the tracking accuracy of the 
radar. 

Litval has described a technique whereby advantage is taken of the 
information due to multipath contained in the composite signal detected by 
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the radar. This technique, which is known as the Correlation Height Analysis 
(CHA) technique, uses a model to simulate the multipath propagation in this 
region. The height of the target is derived by cross-correlating theoretical 
data obtained from the model with measured data. It should be noted that the 
technique identifies a family of target tracks all of which are initially 
equally lkiely. 

In this report, the formulation of an improved CHA algorithm is 
described. In addition, recent results are presented to demonstrate the 
capability of this algorithm with experimental data. 

2. ASSUMPTIONS 

In the following mathematical development leading to the derivation of 
the correlation function, simple ray theory is used to describe the interfer-
ence between two waves following a direct and an indirect path. In this 
description, it is assumed that there is only one reflecting surface and that 
this surface is perpendicular to the vertical at the point of reflection. If, 
in practice, it is found that the presence of surface tilts so degrades the 
performance of the algorithm, it is further assumed that these effects can be 
made to be negligible by assorted techniques such as, range averaging of the 
radar signal and modelling the tilts using data from sensors placed aboard 
the ship. 

3. PLANE-EARTH GEOMETRY 

In the development of formulae to describe accurately the signal 
detected by the radar in the low-angle region we first consider the plane-
earth geometry which is shown in Figure 1. Here, we have a radar antenna at 
height z1 above a horizontal plane and a target at height z2  above the same 
plane. The composite signal detected by the radar, assuming the antenna to 
be isotropic, is the sum of Ed  the direct signal due to a plane-wave along 
the direct path and Ei  the indirect signal due to a plane-wave reflected 
from the surface of the earth. 

Z2 

PLANE 
 I EARTH 

Figure 1. Low-angle Geometry (Plane Earth) 
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For the moment, we shall asume that the presence of the plane-earth can 
be represented by the plane-wave reflection coefficient r which is a function 
of the grazing angle 1P 2 , and is, in general, a complex quantity represented 2 

 by 

- .14) rEpe 	, 	0<p<1. 	 (1) 

The quantity p gives the reduction in the amplitude of the signal on reflec-
tion and (I) gives its phase retardation. In the following sub-section, the 
composite signal observed at z /  due to the presence of the direct and indirect 
signals is formulated and discussed. 

3.1 FORMULATION OF THE COMPOSITE SIGNAL OBSERVED AT z 1  

In formulating the composite signal at z l , let the direct signal Ed 
 be given by 

j (wt-kr
d

) 
E  =E e 
d 	o 

where 

E
o 

= the amplitude 

w = the angular frequency 

r
d 

= the length of the direct path, and 

2u 
k = — is the wave number, X being the free-space wavelength. X 

Similarly, let the indirect signal Ei  be given as 

j(wt-kr-4)) 
EE pc 
1 	o 

where r i  is the length of the indirect path. The composite signal observed 
at z1 is simply the sum of Ed  and Ei , thus 

j(wt-krd )  
i d E +E.  =E e 	 [1 + p e 

di 	o 

Equation (4) defines an interference pattern in space whose shape is 
given by the quantity inside the square brackets. The factor outside the 
brackets gives the signal that would be observed if only the direct ray were 
present. This interference pattern is of considerable importance in that its 
detailed shape depends upon the location of the target. Insofar as modelling 
the multipath propagation in the low-angle region (interference region) is 
concerned, our only interest is in the amplitude and phase of the indirect 
signal relative to the direct signal, consequently, the factor outside the 

(4) 
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4 OM. 
square brackets may be discarded. Therefore, eqn. (4) may be rewritten 
giving 

-j{cP+k
(
r-r

d
)} 

E =l+pe 	 (5) 

Thus, eqn. (5) describes, in complex form, the interference pattern at z 1  due 
to the superposition of two signals which have related amplitude and phase 
characteristics. 

From the geometry of Figure 1, the lengths of the direct and indirect 
paths may be determined to be 

rd = [1.2 	(z
2
-z)2]1/2 

and 

ri  = [r2 	
' (z

1 
+z2 

\2]1/2 

therefore, the path-length difference Ar = ri-rd may be determined by expand-
ing each path length by the binomial theorem and subtracting, to wit 

	

2z
1
z
2  [ 
	z 2+z 2  1 2 Ar 	r 	
1 

2r 2  

This expression is unwieldly, but fortunately in the low-angle region, that 
is, where tP i  and 1P2 are small, the expression may be simplified to the more 
usual form of 

2z
1
z
2 Ar -z 

with r = rd' the slant or measured radar range to the target. Therefore, we 
may rewrite eqn. (5), giving 

E = 1 + p e
-j(4)+kAr) 

Thus, eqns. (9) and (10) map out the phase and amplitude of an inter-
ference pattern observed at z 1  as a function of r and z2. Alternatively, if 
r and z2 are considered to be constant, eqns. (9) and (10) map out the phase 
and amplitude of an interference pattern as a function of z l . From this it 
follows that if a number of elements were vertically disposed above the 
horizontal plane at the receiving end, we may, at least conceptually, sample 
simultaneously the phase and amplitude at the element positions for given 
values of r and z2' Thus, we have introduced the concept of the sampled 
aperture, whereby we sample the composite signal at discrete intervals on a 
finite straight line in space at some instant of time where, at this instant, 
r and z2 are considered to be constant. The concept of the sampled aperture 
and its application to solving the low-angle tracking problem is of consider-
able importance, and will be discussed in much greater detail later in this 
report. 

(8) 

(10) 
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Suffice it to say that in order to describe the relative phase and 
amplitude distribution across this aperture, eqn. (10) must be evaluated. 
However, this equation cannot be evaluated until a complete knowledge of the 
behavior of p and 4) is known. In addition, since a sampled aperture is being 
considered, the distribution of phase across this aperture for varying angles-
of-arrival of the direct and indirect signals must also be known. 

3.2 DETERMINATION OF THE ANGLES-OF-ARRIVAL OF THE DIRECT AND INDIRECT SIGNALS 

To fully describe the resultant phase and amplitude distribution across 
the sampled aperture for a given r and z2, we must be able to calculate the 
angles-of-arrival of the direct and indirect signals relative to the boresight 
of the aperture. After carrying out these calculations, we then find that we 
are able to derive the quantities p and 4) which, in turn, leads to an evalua-
tion of eqn. (10). 

In deriving formulae to determine the angles-of-arrival of the direct 
signal Od  and the indirect signal O i  relative to the boresight of the aperture 
it is necessary to establish a convention for signs for the angles shown in 
Figure 1. The angles i 	and Op  (the pointing angle) are measured positive 
upwards from the horizontal line, whereas the angles Od and el are measured 
positive upwards from the aperture boresight. In the construction of Figure 
1, both 0d and 0 i are shown to be numerically negative. It follows that 

tan 1  1) = 
- 

z 2
z 
 1  (11) 

and 

z
1
+z

2  tan1)
2 

- 

In the low-angle region, where 1) 1  and 1) 2  are small, eqn. (11) and eqn. (12) 
reduce to 

-z z2 1  
1P 1 = 

and 

z
1
+z

2  
1P2 = 	 (14) 

whereupon the angles-of-arrival of the direct signal 0,1  and the indirect 
signal O f  relative to the aptrture boresight, may be even as 

O = -0 
d 	1P1 p 

and 

0
i 

= -(1)
2
+0

p
) 	. 

From the preceding we note that in the process of deriving Od  and O f  we have 
also obtained the grazing angle 4) 2 •  

(12) 

(13) 



sin(*2 ) -lje c  - cos2(* 2 ) 

sin(i1 2) + lje c  - cos 2 (41 2 ) 
F E p e-i4)11 
H 	H 

(18) 

3.3 DETERMINATION OF THE PLANE-EARTH REFLECTION COEFFICIENT 

The plane-earth reflection coefficient, which is in general a complex 
quantity, is given by eqn. (1). The evaluation of this equation is based 
primarily on a knowledge of the grazing angle 11) 2  and the electrical properties 
of the reflecting surface. For a smooth plane surface, the complex reflection 
coefficient may be given for either vertically or horizontally polarized waves 3  
as 

-jcPv 	cc sin(iP 2 ) - ljec-cos z (11) 2 ) 
F 	p e 	 (17) 
V 	V EcSill(4) 2 ) +1/Ec—COS 2 (4) 2 ) 

and 

where the subscripts V and H denote vertical and horizontal polarization 
respectively. 

The term c c in eqns. (17)-(18) is known as the complex dielectric constant of 

the surface and is given as 

. 	a E  
C 	E 

0 	
WE

0 

where 	c/co 
= the ratio of the dielectric constant of the surface to that of 

free space 

a = the conductivity of the surface in mho/m 

e 	8.84 x 10
-12 Farads/m is the dielectric constant of free space. 

Alternatively, eqn. (19) may be expressed in terms of the wavelength X as 

(19) 

(19a) cc  = 
	-j 60Xa 

o 

provided  X  is expressed in metres. 

The values of c/co and a to be used in eqn. (19) and (19a) are determined by 
the characteristics of the surface that is under consideration. Values for 
e/e0  and a over sea-water and fresh-water surfaces are given in Table 1. The 
electrical properties of these two surfaces were chosen since they represent 
the extremes of the range of water surfaces that are likely to be encountered 
in practice. 
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(20)  

(21)  

TABLE 1 

Electrical Properties of Water 

U 

Surface 	 mho/m 	deo  

Sea-water 	 4.3 	 80 

Fresh-water 	 10-2 	 80 

If we note that in the low-angle region 1P2 is small and that for either 
sea-water or fresh-water le c  >> 1, then eqn. (17) and (18) may be simplified 
to 

- 1  - 
V 	V 

1P2 	÷ 1  

and 

-j(1)11 	2 -1é7 
P
H 

1- p
H 

e • 
11) 	+ 

2 	c 

Figure 2 shows plots of the magnitude of the reflection coefficient p 

against grazing angle 11) 2  for vertically and horizontally polarized waves over 
a perfectly smooth sea-surface. Figure 3 gives plots of the phase of the 
reflection coefficient for vertically and horizontally polarized waves. These 
results were calculated with eqns. (17)-(18) using a wavelength X = 0.032m 

(X-band). 

4. CURVED- EARTH GEOMETRY 

As the value of r increases, the foregoing mathematical expressions 
become increasingly inaccurate because of the curvature of the earth. In 
order to correct for this curvature, we must now consider the curved-earth 
geometry given in Figure 4. Insofar as the low-angle region (interference 
region) is concerned, the diagram of Figure 4 is grossly exagerated, 
however, it has been presented . in  this manner in order to clearly define 
the quantities of interest. 

Since we are dealing with a curved-earth rather than a plane-earth 
geometry a new quantity, namely, the divergence factor must be introduced. 
The divergence factor, denoted D, gives a measure of the defocussing that 
occurs when an electromegnetic wave is reflected from a curved surface. How- 

11111111111311 
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Figure 4. Low-angle Geometry (Curved Earth) 

ever, before this and other related quantities may be determined, 
the distance 

from either terminal point to the reflecting point must 
first be calculated. 

4.1 DERIVATION OF THE POINT OF REFLECTION ON A CURVED SURFACE 

When dealing with a plane-earth geometry we found that 
the parameters 

that had the greatest impact when deriving interference 
patterns (see eqn. 

(10)) were the path-length difference Ar and the 
grazing angle tP2 • This is 

also true for a curved-earth geometry, but first we must determine the 

position of the reflecting point, or how r is broken into 
the length r1 and 

r2  once r1 and r2 have been determined, corrected 
values for Ar and tP2 may 

be calculated. 

If we are given the values of z l , z 2  and r, it is possible to find r1 

 by solving the cubic equation 4  

f(r) = 2r 3-3r 2r + [r 2  - 2Ae
(z 1

+z
2 )]

r
1 
+ 2A

e
z
1
r = 0, 	 (22) 

1 	1 

where A
e 

is the effective earth's radius, normally taken to be 8.5 x 10
6m. 

This cubic equation has the -formal solution: 

r . p cos 
(1)+n) 

r = 	 — 
1 	2 	 3 

where 
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and 

'd 

2 	 r 
p = 	liA (z

1 
 +z

2 
 ) + 

 (.)2 

 e  

[2A.e (z 2-z i )r] 
= cos 3 

Unfortunately, the formal solution to this equation is not very 
practical for implementation on a digital computer, particularly when one 
considers that there is an inverse cosine to be evaluated. A more practical 
method for its solution is described in the following sub-section. 

4.2 NEWTON'S METHOD FOR SOLVING THE CUBIC EQUATION 

An efficient method for solving the cubic equation with a digital 
computer is by using Newton T s 5  method. When written in its recursive form, 
Newton's method takes the form 

f[(ri ) ] 

(r1 ) n+1 = (r1 ) n 

The parentheses surrounding r1  are to distinguish the subscript of r from 
the index n of the recursion formula. 

Initially, (ri) n=1 is assigned a value which is near the desired root 
of the cubic equation. This value is determined by noting from the plane-
earth geometry of Figure 1 that 

	1 
(r

1
)
n=1 	z +z 1 2 

Equation (24) is then computed in an iterative manner until l(ri) -(r 1 ) n+11 < 1.0m. In practice, three iterations of eqn. (24) are requirea Yor  
this inequality to be satisfied. 

4.3 DETERMINATION OF THE PATH-LENGTH DIFFERENCE 

Once the position of the reflecting point has been determined, we may 
then compute all other quantities of interest relative to the plane which is 
tangent to the surface of the earth ar rl . 

1 
To begin, we calculate new values of z1 and z2, namely zi and z2. 

Referring to Figure 4, it is convenient to define parameters £1 and 2.2 which 
give distances from the tangent plane to the earth's surface. For small 
angles they are 

(23) 

(24) 

TZ 

(25) 
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(26)  

(27)  

(28)  

(29) 

(30) 

(32) 

(33) 

1111111111111111& 
1 

Z
1 	

z
1 
- z 1 

and 

Z
2 	 2 

- z2 . 

In the low-angle region where 1P 1  and 11) 2  are small, the distance along the 
tangent plane from the respective terminal points to the reflection point may 
be taken to be r1 and r2. In a straight forward manner e  it can be shown that 

r  2 
l t2  

1,2 	2Ae 

from which the new heights z' and z
2 
may be determined thus, 

1 

-= z zi 	
1 

- 
 2Ae 

and 

r 2 
2 1 zz - 

2 	2 	2A 

Be referring to Figures (1) and (4) and using eqn. (9), the corrected path-
length difference can be written as 

2z
1
z
2  n" = 	• 

4.4 DETERMINATION OF 0
d 

and e 

The calculation of the angles-of-arrival for the direct and indirect 
signals, Od  and o i  r espectively, are carried out in a manner similar to that 
for the plane-earth case, with the exception of now having to consider n, 
which is the angle between the horizontal plane and a plane parallel to the 
tangent plane. 

It follows from an inspection of Figure 4 that 

r 1 n = — 
A
e 

Furthermore, 
z - 
2 z l 

lp 1 

and 

r 2 
1 

(31) 
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z i +z' 
1 2  

11) 2 

whereupon the angles-of-arrival of the direct and the indirect signals relative 
to the aperture boresight are 

6 = 
1 
-0 

 p 
- n 

d   

and 

i 
= -(4)

2 
+ 0

p 
+ n). 	 (36) 

4.5 THE DIVERGENCE FACTOR 

When a bundle of parallel rays is incident on the convex side of a 
curved surface, the rays diverge after reflection because each has a slightly 
different angle of incidence. Because of this divergence, the reflected 
signal is defocussed and the power density is reduced. The divergence factor 
can be derived solely from geometrical considerations 7  and is given here in a 
form which incorporates the usual approximations which are applicable in the 
low-angle region, namely 

1  
(37) 

1/ 	2r
1
r
2  1 + A

e
rut)

2 

5. SURFACE ROUGHNESS FACTOR 

The discussion thus far has been based on the assumption that the 
surface was smooth in the neighborhood of the specular reflecting point. We 
now consider the modifications brought about by the introduction of a rough 
surface. 

In general, when parallel rays are reflected by a rough surface, they 
undergo changes in path length and amplitude because of the deviations from 
a smooth reflecting surface. These changes result in a portion of the 
reflected signal becoming diffuse. Where previously it was totally coherent 
it now consists of two components: (1) a diffuse component and (2) a coherent 
component with reduced magnitude. 

The reduction to the magnitude of the coherent component brought about 
by reflections from a rough surface is related to the angle of incidence or 
grazing angle and the radar wavelength. It is best expressed in terms of 
the RMS specular scattering coefficient S which is given by 8  

(34)  

(35)  

S = exp { _2  
27ra11sin4)2 

X 



e•Pa+gfalaate.  

alla11111» 
where a

H 
is the rms surface-height variation (assumed normally distributed). 

For small values of 11) 2 , it is customary to replace sin11)2 by 11)2 and plot 
S as a function of the 'apparent roughness factor' ae2 /X. A plot of S 
against ale2/X expressed in milliradians is shown in Figure 5. 

Beard 9  has recorded data that shows good agreement with results 
predicted by eqn. (38) for values of ae2/X < 100 milliradians. However, 
beyond 100 milliradians, his results, which  are  shown in Figure 6*, indicates 
that S decreases more slowly than predicted by theory. 

Thus, based on the results of Beard, the specular scattering coefficient 
given by eqn. (38) is used to determine the magnitude of the coherent 
component of the reflected signal for values of a/14) 2 Pt < 100 milliradians. 
Beyond this value the approximate expression 

S 	exp/-[0.165(aH
II)
2
/À) 2  + 7.42 aHII)

2
/À + 0.0468 ]}  

is used. A plot of S against a11II) 2
/X, using eqns. (38) and (39), is shown in 

Figure 7. 

* Beard uses the symbols C/Dr , h and Ji for the parameters identified by S, abi and tP2 respectively in this 

report. 
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5.1 RELATIONSHIP BETWEEN SEA-STATE AND aH  

The parameter used for quantifying the roughness of an ocean surface is 
called 'sea-state'. It is related to the rms surface height variation aH  
through the 'significant wave height' H. In Nathanson l°  the significant wave 
height is defined as the average of the highest third of the waves in a wave 
group and is shown to be related to aH  by the following: 

Thus, if we have an estimate of the sea-state we can, by using eqn. (40) and 
Figure 7, derive the magnitude of the coherent component of the reflected 
Signal for varying radar-target geometries. In Table 2 is given a list of 
sea-state numbers (SS) with corresponding values of significant wave 
height (H). 

TABLE 2 

Relationship Between Sea-state and Significant Wave Height 

Description of Sea 	 Sea-State (SS) Number 	 H Metres 

Calm 	 0 	 0.0 

Smooth 	 1 	 0.1 

Slight 	 2 	 0.4 

Moderate 	 3 	 0.8 

Rough 	 4 	 1.6 

Very Rough 	 5 	 3.0 

High 	 6 	 4.9 

6. DERIVATION OF THE SIGNAL AT z 1  FOR A CURVED ROUGH SURFACE 

In the discussion in Sections 4 and 5 a number of new parameters were 

introduced to describe a curved-earth geometry and reflection from a rough 
surface. These quantities are as follows: 

(1) Ar 	2z'z'ir - curved-earth path-length difference. 
1 2 

(2) D - divergence factor, to describe defocussing by a curved 
surface. 

(3) S - specular scattering coefficient, to quantify the coherency of 
the signal reflected by a rough surface. 

- .14) (4) Spe 	- reflection coefficient, as modified by a rough surface. 

By direct substitution into eqn. (10) using the items listed above it 
follows that: 

IIIIIIIMMIIIII 
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E = 1 + pDS e-jœ 	 (41) 

where 

a = (I)+kAr. 	 (42) 

Equation (41) describes the interference pattern at z 1  resulting from the 
superposition of the direct signal and the coherent component of the 
reflected signal. In its description it includes the effects of a curved-
earth geometry and reflections from a rough sea-surface. 

Figure 8 gives a plot of the amplitude and phase of the interference 
pattern (E) as a function of z 2  for z 1=4.8m, SS=0 and r=7000m. It should be 
noted that the interference pattern is periodic in z2 with a period of about 
26.7m. Another interference pattern is given in Figure 9 - this time plotted 
versus range for the fixed conditions z1=4.8m, z 2=10m and SS=0. Both Figures 
8 and 9 were derived using eqn. (41). Rough-sea results would be similar to 
these except for a reduced amplitude and a reduction in the phase deviation 
due to the effect of the factor S in eqn. (41). 

7. THE SAMPLED APERTURE 

The sampled aperture concept, as implied by its name, entails sampling 
the amplitude and phase of a complex wavefront at N discrete points along a 
finite straight line in space (antenna aperture). Using two-dimensional 
Fourier processing it is possible to develop N independent beams and track 
up to N targets. The far ranging capabilities of sampled-aperture techniques 

1 	ï 
AMPLITUDE 

	

-... 	n 	 
1 	l  

PHASE 

 	f  	I 
- 

n 

	

I 	 I 	 I 	 1 I 	 I I 	 I 	 I 	 i 

0 	10 	20 	30 	40 	50 	60 
TARGET HEIGHT (METRES) 

Figure 8. Interference Pattern Phase and Amplitude for a Smooth Sea; z1 = 4.8m, r = 7000.0m. 
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Figure 9. Interference Pattern Phase and Amplitude for a Smooth Sea; z1 --= 4.8m,  z2  = 10.0m. 

form a compelling reason for applying this technology to low-angle tracking. 
Although a full description of possible applications is beyond the scope of 
this report, expressions will be developed for limited applications. An 
example of the latter is the use of a sampled-aperture radar to simulate a 

standard fire-control radar, a use which might be considered to occupy the 
lowest rung of possible applications. 

Consider the linear array shown in Figure 10 consisting of N equally-

spaced elements separated by d. It is convenient to consider arrays consis-
ting of odd numbers of elements; with an odd number, the centre of the array 
coincides with an antenna element which is labelled n=0. With this arrange-
ment, there are (N-l)/2 equal elements on either side of the centre of 
reference element. If a signal arrives at angle 6 relative to the array 
boresight, then the electric field distribution along the array is 

E(n) = e
j(wt+knd5in6) 

where the amplitude is assumed to be unity. 

Consider now that the boresight of the array is parallel to the 
horizontal plane in Figure 4 (i.e., 6,E0), recalling that the uppermost 
element is n = (N-l)/2, and that the direct and indirect signals arrive at 
angles Od and 6i respectively, then the amplitude and phase distribution of 
the composite signal across the array is 

jkndsin6
d 	

jkndsin6 
E(n) = Ed (n)+Ei (n) = [e 	 + e 	i j 

e
wt 

, 

T.  

(43)  

(44)  
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Figure 10. Sampled Aperture Geometry 

where both signal amplitudes are set equal to one and the phase-path 
difference between the direct and indirect signals at the reference element 
is assumed equal to zero. As before, only that portion of eqn. (44) within 
the square brackets is of interest to us, therefore, we retain this portion 
and discard the remainder, giving 

jkndsined 	
jkndsine 

E(n) = e 	 +e  

We now wish to incorporate into eqn. (45) the parameters, p, D, S and a 
which, for a given r and z2 , are derived soley for a value of z 1  which 
corresponds to the reference element (n=0). For all other n, tfie computed 
values of p, D, S and a may be regarded as being approximately equal to those 
computed for n=0 since the separation of the elements of the array is small 
compared to r1  in Figure (4). When eqn. (45) is rewritten to incorporate the 
above parameters and to reflect its dependence on n, r, and z 2 , it takes the 
form 

jkndsine
d 	

-j[a(o,r,z 2)-kndsine i ] 
E(n,r,z 2 ) 	e 	 + A(o,r,z 2

)e 

where for convenience 

A(o,r,z 2 ) = p(o,r,z 2 )•D(o,r,z2 )-S(o,r,z2 ). 	 (47) 

(45) 

(46)  

•-•  -4  
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(48) 

and 

When 

19 

Alternatively, eqn. (46) may be expressed in polar form with amplitude and 
Phase of the resultant given respectively by 

IE(n,r,z 2 )I 	1 + 2A(o,r,z 2 )cos[knd(sin6 d-sin6 i) + a(o,r,z 2 )] 

+ A2 (o,r,z2 ) 

sin(kndsin6d)-A(o,r,z2)sin[a(o,r,z2)-kndsinei] 	(49) 
(1)(n,r,z

2 	tan cos(kndsined
)+A(o,r,z

2
)cos[a(o,r,z 2 ) -kndsin6

i
] 

n=0, 

r/2 
IE(o,r,z 2)1 = 1 + 2A(o,r,z 2 )cos[a(o,r,z 2)] + A2 (o,r,z 2 ) 	 (50) 

and 

-A(o,r,z 2
)sin[a(o,r ' z 2 )] 

(P(o,r
'
z
2
) = tan

-1 
1 + A(o,r,z 2 )cos[a(o,r,z 2 )] ' 

It follows from eqns. (48)-(51) that the amplitude and phase distribution 
across the aperture after normalization by the amplitude and phase at the 

reference element is 

(51) 

E(n,r,z 2 ) 

E(o,r,z 2 ) F(n,r,z,) - (52) 

It will be noted in eqn. (52) that when n=0, F(n,r,z2) reduces to unity and 
the corresponding phase is zero. This equation is important because it gives 
the resultant normalized phase and amplitude distribution of a composite 
wavefront whose components consist of the direct and indirect signals 
arriving from a low-angle target located at (r,z 2 ). 

In the development of formulae to describe the relative phase and 
amplitude observed at z1 due to two signals (see eqn. (4)), it was only 
necessary to consider the quantity which described the interference pattern. 
Thus, the remaining factor was discarded for ease of manipulation and clarity 
in subsequent mathematical development. In any event, if this factor had 
been included throughout the development, it would have finally disappeared 
at this point due to the normalization procedure described by eqn. (52). In 
addition, this procedure effectively reduces the dependency of F(n,r,z 2 ) on 
range and target cross-section. 

The choice of the reference element in the aperture is completely 
arbitrary subject to the constraint of there being an equal number of 



T(n,r) - 
W(n,r)  
W(o,r) 

(54) 
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elements on either side of the reference. One can, for example, divide the 
array into smaller segments consisting of odd numbers of elements. This 
allows sampling the wavefront for different values of zl, where z 1  is the 
height of the centre element of the array segment. It will be shown in 
Section 8 that this flexibility can be used as a basis for a technique for 
resolving target height ambiguities which result when low-angle data are 
processed by the CHA filter. 

Although the sampled-aperture technique has been discussed for a 
specific application, i.e., the low-angle tracking problem, one is at 
liberty to process the data in a variety of ways. For example, beamforming 
studies could be carried out using the discrete Fourier transform ll , White's 12  
double null technique or adaptive array processing 13 . It is thought that the 
possibilities for processing sampled-aperture data are virtually boundless 
and probably only limited by one's imagination. 

8. COMPLEX CORRELATION COEFFICIENT 

When tracking a low-angle target with a sampled-aperture radar, the 
target range and antenna height can be considered to be known parameters. 
The unknown is z 2  and it is our intent to solve for z 2  by cross-correlating 
experimental data with simulated data. 

Let us define the measured value of the signal at element n to be 
W(n,r). Its normalized value T(n,r) is then given by 

T(n,r) = h(n,r)-c(o,r) 	, 	 (53) 1411LE/ 
W(o,r) 

where 114(n,r)1 and cp(n,r) are the values of amplitude and phase measured at 
element n. When expressed in complex notation, eqn. (53) becomes 

For a given value of r, simulated data may be calculated for various values 
of z 2 from eqn. (52). Expressed in complex notation, eqn. (52) becomes 

F(n,r,z 2 ) 
E(n,r,z 2 ) 

E(o,r,z 2 ) 

j4(n,r,z 2 )-(1)(o,r,z 2 )1 
(55) 

The technique used in solving for z2 consists of deriving cross-
correlation coefficients for the measured amplitude and phase distribution 
across the array aperture, for a particular r, with simulated data calculated 
for closely spaced values of z 9 . Peaks in the cross-correlation coefficient 
are used to define possible values for the target height z2. Typically, z2 
is sampled at lm intervals for a total of about 100 samples. After the 
measured and simulated data are correlated the number of possible target 
heights may be reduced to 10. 

UM. 
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(56) 

(57)  

Using the general expression given in Litva l  the complex correlation 
coefficient, denoted by C, may be written in terms of r and z2 as 

(N-1)/2 
C(r,z 2 ) = 	E 	T(n,r)F*(n,r,z2 )/a(r)-a(r,z 2 ), 

-(N-1)/2 

where 

(N-1)/2 	
1/2 

 
a(r) = E 	T(n,r)T*(n,r) 

-(N-1)/2 

and 

(N-1)/2 	
1/2 

 
a(r,z 2 ) = 
	E 	F(n,r,z 2

)F*(n,r,z 2
). 	 (58) 

and * denotes the complex conjugate. It should be noted that the complex 
correlation coefficient given by eqn. (56) is calculated over all N spatially 
sampled points, where N is the total number of antenna elements or a subset 
of that number in the case where the array is segmented into sub-arrays. 

In the following sub-section, examples of the complex correlation 
coefficient, using simulated data, are presented and examined. 

8.1 DISCUSSION OF SIMULATED RESULTS 

The results to be presented in this section were derived using 
simulated data for a sampled aperture consisting of seven elements with an 

inter-element spacing d of 0.128m (4A). The boresight of the aperture is 

assumed to be parallel to the horizontal plane (i.e., 0 0 E0) with z2=10m, 
r=7000m and SS=0. At this stage of the development of the CHA algorithm 
only the real part of the complex correlation coefficient is considered. 

Further studies involving the imaginary part will be carried out at a later 
date. 

Figure 11 gives the real part of the complex correlation coefficient, 
as a function of z 2 . This result was derived using all seven 

elements of the sampled aperture, whereby N=7 and z 1=4.8m, where, it will 
be recalled, z1 gives the height of the reference element. 

It is noted that R[C(r,z2)] repeats periodically with increasing z 2 , 
which is consistent with the behavior of the interference pattern given in 
Figure 8. In addition, the maxima of the correlation peaks gradually 
decrease with increasing values of the index K, where K identifies the 
correlation peaks. The true peak is given by K=0 and the false or alias 
peaks by K>0. In Figure 11, one can see the difficulty in distinguishing 
the true peak from the adjacent peaks simply on the basis of its size. 



22 

K=  1 K= 2 K= 0 K= 3 

0.0 
I I—I 

90 70 80 

10  

cm .6 

< 
w À 

n••••., 

0 	10 	20 	30 	40 	50 	60 
Z2 (METRES) 

Figure 11. Synthetic Cross-correlation coefficient; z1 = 4.8m, z2 = 10.0m, N = 7, Op =  0.0mr, r = 7000.0m. 

In general, the size of the correlation peaks does not form a particu-
larly good criterion for selecting the true peak. The rate of decrease of 
the maxima for increasing K relies heavily on the ratio of the aperture 
length to the scale length of the interference pattern. This point is 
brought out in Figure 12, where only the uppermost three elements (N=3) are 
used in deriving the complex correlation coefficient. For this result z1 = 
5.056m. One sees that the fall-off in the maxima of the peaks is much more 
gradual and it has become more difficult to distinguish the peak having the 
largest value. 

Whereas, selection of the true peak on the basis of its maximum value 
is unreliable, the magnitudes of the peaks can be used as a criterion to 
reduce the number of alias tracks. A reference level can be set and peaks 
can be excluded on the basis of their maxima falling below the reference 
level. As an example of this, Figure 13 shows four target tracks, the true 
track identified by K=0 and three alias tracks identified by K=1, K=2, and 
K=3; these tracks were selected on the basis of the maxima of their correla-
tion peaks exceeding 0.8. All remaining alias tracks have maxima that fall 
short of 0.8 and are rejected on that basis. . 

It is noted that the alias tracks converge to the true track, i.e., 
z 9 =10m, at r=0m. This behavior illustrates the decrease in the scale length 
or the interference pattern for decreasing range. It follows that if r is 
decreased in Figure 11, then the peaks will crowd together. 

These results corroborate some of the basic elements of the Cl-IA  
technique, namely0 (1) a family of target tracks are generated when simulated 
and measured data are cross-correlated; (2) one of the tracks is the true 
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target track and the remainder are false or alias tracks. Although the true 

target track cannot be selected unambiguously on the basis of the magnitudes 

of the correlation peaks, the majority of the alias tracks can be rejected by 
ranking the correlation peaks according to size. 
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Figure 12 Synthetic Cross-correlation coefficient; z1 = 5.056m, z2 = 10.0m, N = 3, Op = 0.0mr, r = 7000.0m. 
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9. IDENTIFICATION OF THE TRUE TARGET TRACK 

It has been shown that a family of target tracks can be derived by 
correlating measured data with theoretical data. The issue that now needs to 

be addressed is that of identifying the true target track. 

In Ref. 1, Litva showed by means of analysis that if the radar frequency 
and/or antenna height were perturbed in a known manner, deviations, exhibiting 
similar characteristics, would appear on all the tracks except for the true 

track. He did not support his results with experimental data but gave an 
expression which relates the magnitude of the deviations as a function of 

frequency and/or height perturbutions; namely 

Af 	
Az

1 	DJ 	Az1 
K 

= (K-KT 	
+ 	+ — • 

f 	z
1 	

âz
1 	

J 

where (K-KT), which takes on both positive and negative values, identifies 

the order of the track relative to the true track of number KT, and 

AH - 2z 1
J ' 

Af = the relative change in the radar frequency, 

(59) 

Az
1 DJ —• 	- a quantity which only becomes significant for very low 

Dz 1 
J target heights, and 

J = a curved earth correction factor. 

From Appendix A of Ref. 1, an expression for J in terns of z 	z 2 
and Ae 

is 

given as 

2 r 2  
1 ] 

J = El 2Ae
z 1 [1 2: 	z 2] 	• 

It follows from eqn. (59) that the sign of AHK reverses when going from an 
alias track with (K-KT ) > 0 to one with (K-KT) < 0. 

Equation (59) can be simplified by: (1) restricting our discussion to 
small values of r, where the flat-earth approximation can be used so that 
JD--='land DJ/Dz i •Dzia << Azi/zi and (2) keeping f constant, whereby Af/f=0. 
With these approximations, 

(60) 



OMB 
(K-KT)X 	àz i  

AH
K 2z 	 • — • r. 	 (61) 

1 	1 

If the approximations leading to eqn. (61) are valid, it follows that for a 
given relative change in the antenna height Azi/zi and constant r, the 
magnitude of the deviations on the Kth track is a linear function of K. 
From both eqn. (59) and its approximation, eqn. (61), it follows that for 
K=K 	1E0 T' 	K 	• 

Earlier in our discussion we saw that the use of a sampled-aperture 
radar provided a built-in capability for perturbing the effective antenna 
height. This is accomplished by varying N or dividing the array into 
subarrays. Therefore, the means for demonstrating track resolution is at 
hand. 

9.1 DISCUSSION OF SIMULATED RESULTS 

In this section, simulated results are presented to illustrate the 
antenna-height perturbation technique for identifying the true track. The 
sampled-aperture and sea-state parameters listed in Section 8.1 also apply 
to the results presented here. 

Figure 14 gives R[C(r,z 2 )] for two antenna heights with r=7000m. These 
two heights were achieved by partitioning the array into two sub-arrays with 
the uppermost five elements used for one array and the lowermost five elements 
for the other. This gave effective antenna heights of 4.  = 4.928m and 4 = 
4 .672m, where the superscripts U and L denote uppermost and lowermost 
respectively. With the exception of the peak, K=0, all the peaks undergo a 

displacement when the antenna heights are witched and the magnitude of this 
displacement increases as K increases. A similar result is obtained if only 
the three uppermost (N=3) and three lowermost elements are used. These 
results are given in Figure 15 where in this case z i  and z i  were 5.056 and 

If now the results are given in terms of range, where target height is 
used in place of the correlation coefficient for the dependent variable, we 
have the results shown in Figures 16 and 17. These correspond to the cases 
N=5 and N=3, respectively. Except for the magnitudes of the deviations, 
these two results are similar. Deviations appear on all tracks except for 
the true track (K=0); their magnitudes increase with increasing K and 
decrease with decreasing r. 
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4 .544m respectively. 

The magnitudes of the displacements in Figure 15 are considerably 
larger than those in Figure 14 because; (1) the relative effective-height 
variation is about twice as large; and (2) the effect of J in eqn. (59). 
The approximations leading to eqn. (61) are not accurate in describing 
these results because z 1  and z 2  are both small. Therefore, the curved earth 
correction parameter J must be retained. For an accurate description of the 
Magnitude of the deviations in Figures 14 and 15 one must return to eqn. (59). 
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Figure 14. Synthetic Cross-correlation Coefficients; z = 4.928m, z = 4.672m, N = 5, 0 p = 0.0mr, 

r = 7000.0m. 
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Figure 16. Synthetic CHA Target Tracks.• z
u 	

• 4.928m zi" = 4.672m, N = 5, 0 = 0.0mr, KT  = O. 
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Figure 17. Synthetic CHA Tracks,. z = 5.056m, z = 4.544m, N = 3, 0 = 0.0mr •  KT = O. 
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As a demonstration of the effect of J in eqn. (59) and the errors 
incurred in setting J=1 in eqn. (61), let us consider a particular example. 
Before doing so, it should be pointed out that one would expect J to depart 
from unity under conditions of increasing r and decreasing z 2  simply because 
the earth's curvature becomes more apparent. In our example z1=4.2m and 
z 2=10m. When r=7500m, J and aJ/z i  are 0.805 and 1.376 x 10-2  m-1  respec-
ively. For these values the magnitude of KT/zi-Azi/j is only about one-
tenth that of Az 1/z 1 in eqn. (59) and therefore justifiably considered to be 
negligible. The error in 	resulting from the approximation J=1 is about 
20%. As r decreases, the ratio of Az i/zi to BJ/Dzi • zi/J increases and J 
approaches more closely to unit. Therefore, the approximations made in eqn. 
(61) become more exact. For example, when r is reduced to 3500m, J becomes 
0.95 and the error incurred in setting J=1 is reduced to 5% and the error in 
neglecting âJPz i •Az i /J becomes even less than at r=7500m. 

In comparing Figures 16 and 17 one sees that the ease of selecting the 
true track is enhanced as Azi/zi is increased. When the CHA low-angle filter 
is used with a radar for tracking low-angle targets, it is necessary that 
Azi/zi or Af/f be chosen sufficiently large so that the track deviations are 
detectable above the noise. For high noise environments, it may be necessary 
to implement matched filtering by correlating the noisy track deviations with 
a replica of the expected deviations. 

10. EXPERIMENTAL ARRANGEMENTS 

The experimental data to be presented in this section are not only 
intended to demonstrate the CHA technique, but also to highlight some 
particular aspects, such as the track identification technique described in 
the previous section. 

For this purpose a series of experiments were conducted over an area of 
the Ottawa River shown in Figure 18 using an experimental sampled-aperture 
array. The array consisted of seven elements, the beamwidths of which were 
approximately 28 ° , with an inter-element spacing of d=0.128m (4X). The beam 
maxima of all the elements were aligned in the boresight direction of the 
array. Each element was connected to its own receiver, the local oscillator 
signal was provided by a common oscillator. In this way the phase relation-
ship between the signals at the antenna terminals were preserved in the I ana 
Q signals appearing at the outputs of the receivers. Range information was 
provided by a Furuno radar which together with the sampled-aperture array 
formed the experimental radar facility. 

A boat equipped with a mast which has a CW source attached to it, was 
used to simulate low-angle targets. The source, which emitted a vertically 
polarized signal at 9.375 GHz, was adjustable in height over a range from 5 
to 10m above the surface of the water. An Alpine transponder located on the 
same mast was used in conjunction with the Furuno radar to provide accurate 
radar range information. 

The experimental radar facility, which is housed in a trailer, was 
located at the point shown in Figure 18. The boresight of the aperture was 
pointed down the range towards Breckenridge. The facility was under 
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Figure 18. Site of Low-angle Measurements 

computer control whereby the radar range together with phase and amplitude 
(I,Q) information were sampled, digitized and recorded on magnetic tape for 

processing at a later date. Further information on the experimental arrange-
ments and the characteristics of the sampled-aperture facility including its 
detection sensitivity in the low-angle region," will be discussed in a report 
to be published later. 

A series of experiments were conducted whereby data were recorded for 
various constant target heights over a radar range from approximately 8000m 
to 500m. From the results of these experiments, three have been selected as 
being representative of the complete series and are presented in the follow-
ing sub-section. However, before proceeding to this section, a list of the 
Parameters which were common throughout these experiments are as follows: 

z 1 = 48m 

SS = 1 

6 = -12.0 milliradians 

29 
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It was intended that the axis of the array to be coincident with the vertical 

(i.e.,  O0), however, it was found that 6n  was decremented by 12.0 milli-p 
radians relative to the horizontal line.  this  decrement was due to a 
combination of the trailer not being level and the sloping terrain over which 
the experiments were conducted. 

10.1 DISCUSSION OF EXPERIMENTAL RESULTS 

Figures 19 and 20 give the amplitudes recorded at two of the array's 
elements for a target height of 7.39m. They have not yet been normalized by 
the amplitude recorded at a reference element. These results illustrate 
classical interference patterns - in this case, those appropriate to antenna 
heights 5.18m and 4.42m respectively. 

It is noted that the period of the interference pattern decreases with 
decreasing range in accordance with the theoretical results described 
previously. 

Comparing Figures 19 and 20 one observes a strong dependence of the 
position of the peaks and troughs of the interference patterns on antenna 
height. This demonstrates the high sensitivity obtained by using the 
sampled-aperture technique for deriving target heights by spatial sampling 
of the interference patterns. 
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Figure 19. Measured Signal Amplitude on Element 1; z 1  = 5.18m, z2  = 7.39m, 0 p r--- -0.012 radians, 

= 0.032m. 
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Figure 20. Measured Signal Amplitude on Element 7; z 1  = 4.42m, z2  = 7.39m, Op = -0.012 radians, 

X = 0.032m. 

The first CHA result to be presented is given in Figure 21. It was 
derived using the same data set from which the examples in Figures 19 and 20 
were taken. The measurements, which were taken at increments of approximately 
2m in range, were averaged over 50 data points prior to processing in the CHA 
filter. The data has been subjected to some correction for longer term drift 
and instabilities in the sampled-aperture array. In other words, it has been 
corrected for measurement errors that would normally be accounted for by 
careful and frequent calibration of the radar system. The procedure used for 
correcting the data will be described in more detail in a subsequent report. 
The track deviations were obtained by switching, during the course of the CHA 
Processing, from the uppermost three to the lowermost three elements. The 
co rresponding reference element heights were  z  = 5.06m and zL

1 
 = 4.54m. 

It should be noted that the results are, in general, similar to the 
simulated results presented earlier. Although there are deviations on the 
true track, they are clearly smaller than those appearing on the alias 
trac ks, therefore, the true track is easily identified. The deviations 
aPpearing on the true track are probably due to inaccuracies in calibration 
and noise. Additional CHA results are given in Figures 22 and 23 for target 
heights of 5 and 10m. They are similar to Figure 21 and equally consistent 
with simulated results. 

In the model which was used for deriving simulated data, the fact that 
the data were recorded over fresh-water rather than sea-water was taken into 
account by using appropriate values of e/e

o 
and a from Table 1 for computing 
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the reflection coefficient. Furthermore, the array elements were assumed to 
be isotropic point receivers. This is a reasonable assumption since, in the 
low-angle region, the angles-of-arrival of the direct and indirect signals 
are small compared with the beamwidth of the elements used in the experimental 
facility. 

RANGE (M) 

Figure 21. CHA Tracks Obtained From Measured Data; z = 5.06m, z i  = 4.54m, z2  = 7.39m, N = 3, 

0 p= -0.012 Radians, A = 0.032m, K 7- = O.  
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Figure 22. CHA Tracks Obtained From Measured Data; z = 5.06m, z = 4.54m,  z2  = 5.0m, N = 3, 

p = -0.012 Radians, A = 0.032m, KT  -= O. 
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Figure 23. CHA Tracks Obtained From Measured Data; z = 5.06m,  4 = 4.54m, z2  = 10.0m, N = 3, 

Op  = -0.012 Radians, X = 0.032m, KT  = 0. 

11. ALGORITHMIC PROCEDURE FOR TRACK IDENTIFICATION AND DEVELOPMENT 

In the previous section it was demonstrated that one could pick out the 
true target track visually, simply by noting which track had the smallest 
deviations. We wish now to describe an algorithmic procedure in which 
identification and subsequent tracking of the target may be carried out 
automatically in a digital computer. 

There are two points to note regarding this procedure, namely; (1) we 
must have some knowledge of the magnitude of the deviations to be expected 
at the range of the target and (2) we must always maintain a good profile 
of the correlation coefficient over the vector comprised of values of 2 2 •  

Implementation of track identification starts with the first measure-
ments of the target range and of the amplitude and phase distribution across 
the array. At the onset an estimate of the deviations on the first alias 
track, i.e., (K-KT )=1, is derived by using eqn. (61), which is 

Lz
1 

A HK 	
— • ---- 	 (62) z 1 2z1  

The choice of the initial group of elements or subarray is unimportant, 
therefore we shall start with the uppermost group. Also, since we have 
little a priori knowledge at this point of an optimum increment size for z 2 , 
we start with a value of lm. Beginning at z2=1m, the complex correlation 
coefficient is calculated for each incremental value of z 2 until z 2=100m. 
The values of z 2 (correlated heights) which correspond to peaks in the real 
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part of the complex correlation coefficient with values that exceed 0.95 are 

noted and recorded. A new increment size, z/Nc is derived from the average 

separation in the correlated heights (z
AV ' ) using 

z
AV 

ZINC  20 

New height vectors for z 2 , corresponding to a new range, are derived in 

preparation for the next step in the data processing. These values are 

computed in the vector range from the lowest correlated height decremented by 
zAV/4 to the highest incremented by zAV/4. 

In the next iteration, where the lowermost group of elements are used, 

both zAv  and ZINC  are updated through multiplying these values by the ratio 

of the present range value to that of the initial range value. The purpose 

of this update is to take into account the decreasing period of the correla-

tion coefficient in z2 with decreasing range. In addition, lAHK I is also 
updated by multiplying it by the same ratio. 

The correlation coefficient is then determined in the manner described 

previously; the height vectors for which the correlation is a maximum 
(correlated heights) are noted and compared with the previous ones in order 

to establish tracks and their respective accumulated track deviations. The 

previous correlated heights are then replaced with the present ones. 

A test is then carried out so that tracks with deviations greater than 

PAHKI can be discarded, thereby further reducing the range of height vectors 
in the following iteration. In addition, the values of the accumulated 
deviations are tested to see if one can be considered to be a true minimum. 
It is only considered to be so if its value is smaller, by at least InK I, 
than any of the other accumulated track deviations. The process descriSed 
above is repeated until the true track has been identified. 

Once the true target height, and thus the true target track has been 
identified, a range of height vectors ±zAv/4 centred on the true target 
height are then computed. The purpose cl this is to exclude the false tracks 
during the tracking process. 

In the following iteration, the total number of elements (N=7) 
contained in the aperture are then used in determining the correlation 

coefficient. This has the advantage of improving the signal-to-noise ratio 

in the correlation process by a factor which is equal to the square root of 
the ratio of the number of elements currently being used to that used 
initially, thereby improving the accuracy of the estimate of the target 
height. It should be mentioned that once the target track has been 
identified, the procedure of perturbing the antenna height is of little 
further use. 

In the subsequent iterations of the algorithm, that is, during the 
process of tracking the target, zAv and ZINC are continually updated. In 
addition, a true estimate of the target height is determined by computing 
a 2-point running average of the previous estimate  of the target height and 
the present estimate. 

(63) 
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In the event that the track is lost due to low signal-to-noise ratios, 

the tracking process continues for 3 iterations based on the last known 
estimate of the target height. If, after this period, the target track is not 
found, then the range of height vectors is expanded to ±4zAv , centered on the 
last known estimate, and the procedure of perturbing the antenna height is 
reintroduced so that the true target track can be re-identified. 

11.1 RESULTS 

The final stage of CHA processing consists of track selection. A 
demonstration of track-selection is given in Figures 24 to 26 using the same 
data that was used in Figures 21 to 23. It should be noted that in each 
instance the algorithm has identified the correct target track and has 
successfully developed the track over the entire range for which data was 
available. Bearing in mind that the nominal target heights were respectively 
7.39, 5.0 and 10.0 metres, it is readily seen that the tracking accuracy of 
the algorithm is very high indeed. 

12. SUMMARY AND CONCLUSIONS 

In this report is given a review of the CHA low-angle tracking 
technique. In so doing, more analytical results are presented, thereby more 

clearly demonstrating the basis for the algorithm and documenting the various 

stages of processing. One stage of the processing that receives considerable 

attention, because of recent developments, is the track-selection algorithm. 
This algorithm is based on a perturbation technique, where either the antenna 
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Figure 24. CHA Target Track Obtained From Measured Data; z2  7.39m (Using the Same Data as in Figure 21). 
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Figure 25. CHA Target Track Obtained From Measured Data; z2  = 5.0m 
(Using the Same Data as in Figure 22). 
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Figure 26. CHA Target Track Obtained From Measured Data; z2  = 10.0m 
(Using the Same Data as in Figure 23). 
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height or RF frequency is purposely varied. It is shown that a change in 
antenna height of the order of 11% was sufficient to permit successful 
operation of this algorithm. Basically, this antenna-height variation is 

sufficiently large to produce deviations on the false tracks which are 

larger than the deviations on the true track caused by errors in calibration 

and noise. 

A considerable amount of the discussion is centred on the characteris-

tics of the interference pattern at the radar resulting from the direct and 

indirect rays from the target. This subject was chosen as a topic of 

discussion so as to set the stage for an introduction to sampled-aperture 

technology, in particular, the use of a sampled aperture array for recording 

data which can subsequently be used for testing and developing the CHA 
algorithm. The alprithm as described here is recast somewhat from that 
described by Litva l  so as to be compatible with data recorded with an 
experimental sampled-aperture radar facility. This report contains a 

thorough description of the analytical processes inherent to the revised 
algorithm and its software implementation. 

Finally, the algorithm is tested with experimental data recorded over 
the Ottawa River during the summer of 1980. It is shown that with good 
calibration of the sampled-aperture facility, the CHA algorithm is capable 
of tracking low-altitude targets for ranges between 7000 and 500m. In 
addition, rms tracking accuracies of 2.0m or 0.5 milliradians are demonstrated 
with target altitudes at least as low as 5.0m. 
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