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ARSTRACT 

This report demonstrates a method for the synthesis of modal 

damping factors and other modal data for a spacecraft in orbit, 

based on input information at the component/substructure level. 

Also, it illustrates the use of the method and the level of accuracy 

obtained, in a case study of the Hermes spacecraft. 

The synthesis procedure is demonstrated for a spacecraft 

configuration consisting of a central rigid body, solar array sub-

structures, a momentum wheel and a liquid mercury damping device. 

The synthesized spacecraft modal data is ohtained by eigenprohlem 

analysis of a system model that is constructed from suhmodels of the 

components. 	The system modes are the natural (unconstrained) modes 

with damping and gyroscopic stiffness accounted for. 	Numerical 

experiments show that the procedure is not sensitive to errors in or 

to omission of damping factors of the higher order substructure 

modes that are not generally available from test data. 	Damping 

factors for the nutational mode are confirmed by an independent 

analysis based on the Method of Averaging. 

In the application of the procedure with Hermes data, the 

synthesized modal damping factors for the structural modes are found 

to differ relative to values measured in-orbit by factors ranging 

from zero to five. 	The liquid mercury damper is found to be 



relatively unimportant, although it could have contributed to 

damping of the nutational mode if the fluid were excited at 

resonance. 	Some of the shortcomings in correlation hetween 

synthesized and measured damping factors are believed to be due to 

inadequacies in the law chosen to model the damping of the solar 

array, and others to unidentifiable sources of damping such as 

friction between substructure joints. 
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1.0 	INTRODUCTION  

It is generally recognized that improvement is needed in 

methods for forecasting the damping characteristics of spacecraft 

structures. 	The need for improvement stems from the current trend 

towards spacecraft that are so large and flexible that conventional 

laboratory measurement of structural properties of the completely-

assembled spacecraft is impossible due to gravitational loads. 

A method of synthesizing damping that is straightforward in 

principle is: 	(i) establish a mathematical model that includes 

damping for each substructure and main component, hy ground test 

and or analysis; (ii) mathematically assemble the sub-models into an 

overall structural model of the spacecraft; (iii) derive modal 

damping factors, modal frequencies and mode shapes from the overall 

model by eigenproblem analysis. The method is, of course, an 

extension of standard practice for calculating modal frequencies and 

mode shapes for situations where damping can he ignored. 	With 

damping included in the procedure, a number of practical 

difficulties are encountered. 	Tractable models of damping of the 

subparts are difficult to establish and are often unreliable. 	This 

is particularly true for material damping in members, for components 

with unrestrained fluids, and for connections between structures. 

Also,differences between gravitational, thermal and vacuum conditions in orbit 

and on the ground add complication and uncertainty to the process. 

Inadvertant omission of damping sources is a potential problem as well. 
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Truncation of modes and off-diagonal damping matrix terms can also 

contrihute errors, the extent being dependent on how the 

substructure data is handled and how the eigenproblem is solved. 

There are few documented case studies where damping factors 

synthesized by this type of method are compared to measured results, 

and hence the degree to which this type of method is successful, and 

the limitations, are not yet very well established. 	References 1-4 

and associated cited works are among the recent contributions to 

damping synth.esis. 

In Reference 3, a method of the above-described type was 

applied using ground test data and compared with some of the flight 

results from the Hermes satellite*. 	Data on damping that was 

derived from ground test of a large flexible solar array sub-

structure was first used to calculate damping factors for the 

satellite in its orbit state; then the calculated damping factors 

were compared with corresponding values that were measured 

in-orbit. 	Calculations were done with both viscous and hysteretic 

damping laws. .In many cases, the in-orbit measured values were 

higher than the calculated ones by a factor of 2 or 3. 	While the 

agreement is representative of current practice, it is not very 

good. Possible reasons for the differences are: 	(i) the influence 

of additional unmodelled damping sources such as fuel motions, a 

heat pipe, a liquid mercury damper and dissipation in joints 

connecting the substructures; (ii) the damping models (viscous or 

*)\lso known as the Communications Technology Satellite (CTS). 
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hysteretic) of the array being in error; (iii) inaccuracies intro-

duced into the mathematics as a result of modal truncations and 

diagonalization of damping coefficient matrices; (iv) a difference 

in  array condition between the ground test and in-orbit state that 

changes the damping mechanisms (for example altering the state of 

joint tension, material stress). 	Due to time and funding limita- 

tions, this lack of agreement was not analyzed to any extent at the 

time (1976). 	Between 1976 and the end of the mission in 1980, a 

great deal more flight data was acquired from Hermes. 	The data 

confirmed the original measurements reported in Reference 3 and 

established that the damping values were essentially constant with 

time. In addition, measurements for several more flexible modes were 

made 5-7 • 	Damping information on the nutational mode, with momentum 

wheel spinning 8  and despun 9 , was also obtained. 

The purpose of this report is twofold. 	First, to demonstrate a 

synthesis procedure for spacecraft damping factors that uses a 

rigorous eigenvalue analysis involving damped modes (as opposed to 

procedures that use undamped modes), via application to the Hermes 

satellite configuration (a gyroscopic system with distributed and 

discrete dampers). 	Second, to use this synthesis method in 

conjunction with the Hermes  substructure  level and spacecraft level 

flight data, with a view to determining how well the method performs 

and to improving the understanding of the damping mechanisms of 

Hermes. 



More specifically, in Chapter 2 a model for a satellite 

structure consisting of central rigid body, 2 flexible solar arrays, 

a momentum wheel and a liquid mercury damper is first developed in 

the form corresponding to Reference 10 and 11. The mathematical 

formulation used is described in Reference 10, and is similar in 

principle to that of References 2 and 3, but it eliminates 

uncertainties associated with diagonalization of damping matrices. 

Modal analysis for an array as a fixed-hase-mounted substructure is 

also given in Chapter 2. 	In the third chapter, flight-derived 

measurements of Hermes are updated and summarized. 	Calculations 

with various parameter sets are then presented, with a view to 

investigating the role of the liquid mercury damper, the sources of 

damping of the nutational mode, and the extent to which damping 

factors of the solar array substructure can he related to damping 

factors of the overall satellite. 	In Appendix A, functional 

relationships between component damping factors and the damping 

factor of the nutational mode are derived using the Method of 

Averaging and are used to confirm software and predictions 

associated with the eigenvalue analysis. 
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2.0 MODEL FOR SPACECRAFT MODAL INFORMATION BASED ON SUB-MODELS OF 

SYSTEM SUBSTRUCTURES AND COMPONENTS  

In this chapter, the mathematical model of the substructures, 

components, and overall spacecraft of the Hermes type is outlined. 

Reference 11 gives a detailed derivation in the discretized form 

(before transformation to modal variables) for the model of the 

spacecraft, minus the liquid mercury damper. 	The reader is referred 

to References 10 and 11 for supplementary explanation of the methods 

and details. 

2.1 	Spacecraft Configuration and Kinematics  

The satellite consists of a central rigid body, two flexible 

solar arrays, a liquid mercury damper and a momentum wheel, 

configured as shown in Figure 1. 	The reference frame (Oxyz) is 

attached to the central rigid  body,  with 0 at the nominal system 

mass center (without deformation) of the total configuration. 	The 

arrays rotate about the Oy axis together and nominally track the 

sun. 	The central body nominally tracks the earth. 	The angle 

between the arrays and the central body is denoted by y, and its 

rate is maintained constant at one revolution per day hy a drive and 

track mechanism.  (Oc'  1, 2, 3) is an orthogonal orbiting reference 

frame with origin fixed at the instantaneous mass center O c , 1 

aligned along the tangent to the trajectory in the direction of 

motion, 2 parallel to the orbit normal and 3 pointing inward along 



1ROLLI 
TRAJECTORY 

0  

C.) 
x 2 

Y h 

w 1  , OUT-OF-PLANE 

u • IN-PLANE 1 .  

[PITCH] 

NUTATION 
DAMPER 

0 1+ 
EARTH 

(a) 

IYAWI  

z D 

CD 
i d2  

CD 	„ 

, 	1 

CD 
D 

(c) (b) 

6 

FIGURE 1 Schematic for the Hermes class of space-
craft: 	(a) overall configuration; (b) 
array coordinates detailing in-plane (ui), 
out-of-plane (wi) and twist (a i ); (c) 
offset and coordinates of nutation damper. 
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the local vertical towards the center of the earth. 	The frame is 

thus rotating about the Oz axis at the negative of the orbit rate 

Satellite attitude motion is defined by Eulerian  rotations  

(roll), 6 (pitch), ip (yaw) of body-fixed frame (0, x, y, z) with 

respect to the orbit frame ( O c , 1, 2, 3). 

The central body rotates relative to inertial space with rates 

(w l , w 2 , w 3 ), which in turn are related to pitch, roll and yaw 

rates, to linear order, by 

W I  ' 	wo ; 

W 2  = 	o 

• 	 • 

+ w o(1) 

2.2 	Mutation Damping  

2.2. 	The Liquid Mercury Damper  

The nutation damper considered herein is a cylindrically-shaped 

tube partially filled with mercury and aligned parallel to the 

pre-deployment spin axis, as is depicted schematically in Figure 1. 

The modelling is not straightforward and further, it is difficult to 

verify by ground test because of Earth gravity effects. 	Roth 

geometric parameters (size, orientation and offset with respect to 

(la) 

(1h) 

(lc) 
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center of mass) and dynamic parameters (mass, natural frequency, 

energy dissipation rate, spin rate, gravitational field) play a role 

in determining the damper's performance. 	Several techniques have 

been suggested to obtain simple models that are amenable for use in 

satellite simulations. 	Reference 12 treats the fluid as a rigid 

slug of finite dimension. 	Reference 13 provides a classic inviscid 

potential flow representation governed by the Laplace equation. 

References 14 and 15 allude to linear analytic solutions for laminar 

flow, expressible as a complex series of Bessel functions. 	A 

simplified . approach adopted in Reference 14 involves a Poiseuille 

flow. 	Results exist as well for turbulent flow. +16 	Another 

simplification that is often used successfully is to employ 

'energy-sink' analysis wherein it is assumed that the moments 

exerted by the damper on the spacecraft are negligible hut not vice 

versa. 17 	Analytic prediction's alone, however, often do not 

reliably establish damper performance. 17  

2.2.2 	The Hermes Spin Phase  

The Hermes liquid mercury damper was designed for the specific 

purpose of damping out the nutation associated with the spin phase, 

hefore deployment of the arrays and spi n-up  of the momentum wheel. 

Principles governing operation of this type of damper are discussed 

in general terms in References 18 through 20, but unfortunately the 

exact models used are not fully presented. 	Reference is made to 

internal Hughes documents, none of which are available in the open 

literature. 	Rased on availahle literature, the following picture of 

the damping process emerges. 



SPIN  
AXIS  

9 

SIDE 
VIEW 

MERCURY 

SPACECRAFT 
CENTRE OF MASS 

PLAN 
VIEW 

d = NUTATION DAMPER RADIAL OFFSET 

FIGURE 2 Partially—filled liquid mercury damper 
offset relative to overall spacecraft centre 
of mass. 

Centrifugal forces due to spin cause the fluid to distrihute 

along one side of the tube (Figure 2). 	The damper is considered 

'tuned' in the sense that natural frequency associated with standing 

surface waves is made to equal the nominal nutational frequency by 

appropriate choice of tube length. 	This produces a maximum damping 

effect for small nutations. 	Energy is dissipated through fluid 

viscosity. 	The mecha.nism is somewhat different at large nutation 

angles, where both momentum transfer and friction are involved as 

the fluid becomes a series of separate packets continuously 

colliding, hreaking up, and reforming again. Design parameters are 

listed in Table 1. 



1.3545 x 10 4  kg. m -3  

0.016 	poise 

20% 

1.23 x 10 -2  m 	 (0.485") 

0.356 	m 	 (14.0") 

0.114 	kg 	 (0.25 lb) 

0.386 	kg 	 (0.85 lb) 

0.838 	m 	 (33") 

Mercury Density 

Mercury Viscosity 

Cavity Fill Fraction 

Internal Tube Diameter 

Cavity Length 

Mass of Mercury in Tube 

Mass of Tube + Mercury 

Radial Offset from Centre 
of Mass, d 

10 

Table 1 

Design Parameters for the Hermes Liquid Mercury Nutation Damper 

The damper design, of the type used for Hermes was apparently 

tested at Hughes by suspension as a pendulum horizontally mounted 

with bifilar supports. 
18-21 	The difficulties encountered are: 	it 

is necessary to scale in differences between a one-g test environ-

ment and the in-orbit centrifugally generated field of = 3 g 

(spin-stabilized phase); plus surface tension precludes maintenance 

of an invariant Reynolds number. 	The net design predictions, based 

on preflight theory and experiment, are given in Figure 3. 

Displayed is the time constant corresponding to a decrease in amplitude 

by a factor of l/e as a function of spacecraft inertia ratio, 

K* = I 	. /I 
spin 	transverse' 

occurs at K1 = 1.35 corresponding to a nominal nutation rate of 

about 0.40 Hz at 60 rpm spin. 	Little variation occurs in level of 

performance at spin rates between 54 rpm and 66 rpm over inertia 

ratios ranging from 1.2 to 1.5.19 

*for triaxial satellite K1 = Izz//Ixx Iyy 

The damper is tuned so that maximum damping 
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FIGURE 3 	Design information on the Hermes damper as 
calculated before launch. Optimum performance 
is achieved at a 20% fill fraction for a 54 rpm 
spin rate. 

Following separation of the satellite from the launch vehicle, 

K = 1.39, the spin-rate was 1.03 Hz, the nutation rate was 0.41 Hz 

and a 0.5 0  nutation damped out in 120 seconds; this data yielded a 

damping ratio of 0.007. 22  Immediately following apogee motor burn, 

K = 1.42, the spin rate was 1.00 Hz, the nutation rate was 0.44 Hz, 
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and a 0.4° nutation damped out in 350 seconds; this data yielded a 

damping ratio of 0.001. 	These two operating states are noted in 

Figure 3 where it is seen that significantly larger damping times 

are predicted. 	Thus one concludes that the forecast performance of 

Figure 3 and associated pre-launch calculations are based on a 

conservative model. 

2.2.3 	The Hermes 3-Axis Stabilized Configuration  

While not originally designed to provide damping for the 

spacecraft in the 3-axis stabilized phase with arrays fully 

deployed, the damper is not caged and therefore it still has an 

effect. 	The damper is excited by roll/yaw nutation, pitch axis 

librations, and by symmetric and antisymmetric array vibrations 

(note the geometry in Figure 2). 	The nominal tuned frequency of the 

damper, at 0.40 Hz, is close to the frequency of an in-orbit 

mode(the fundamental out-of-plane antisymmetric vibration at about 

0.44Hz 5-7 ) and therefore the potential for resonance exists. 

For this phase, the spacecraft motion consists of a combination 

of a slow rotation about pitch (once in 24 hours), a small low 

frequency nutation ( 0.2° at 2.77 x 10 -3  Hz), and flexing of the 

various structural modes (at 0.15 Hz and higher). 	Relation of the 

damper's operation in this dynamical environment to earth-based test 

or spin phase operation is not possible. 	The fluid might he spread 

out uniformly in the tube as in Figure 2 due to the centrifugal 

force of the slow rotation. 	Alternately, it is possible that 
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surface tension effects cause the mercury to form a single or 

several slugs. 

Due to the uncertainties and complexities associated with the 

fluid behaviour, the sole reasonable approach for Hermes (and the 

one adopted herein) is to model the damper as a single degree of 

freedom translational mass-spring-dashpot device located as in 

Figure 1. 	The mass (m n ) is the actual mass of the mercury and is 

assumed to be a slug in equilibrium at (-d l , -d 2 ) in (Oxyz), and the 

dashpot and spring parameters (cd and k n ) are selectable to 

match desired damper energy dissipation and resonance characteris-

tics. 	Although the cn and k n  cannot be obtained with certainty 

for Hermes, by varying these parameters the range of possible 

influence of the damper on the spacecraft can he 

established. 	This approach was used in modelling a similar damper 

on SYNCOM 17  where the effective spring was due to centrifugal 

force. 	In fact, such a representation is common in the literature 

. 23 -2 5 	With the nutation damper fixed in space, the kinetic, 

potential and dissipation functions are, respectively: 

.
2 2 M X 	• 	ik x 2 	• 	lc x 2 

D D 	' 	D D 	' 	D D 	• 

The stiffness and damping constant can be further expressed in terms 

of damper frequency and damping ratio by: 

(2a) 

k 	= m st 2 
n 	D D C D  = ZM D 2 D a D 	 (2h) 
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2.3 Momentum Wheel  

The momentum wheel is assumed to spin at constant speed, 

relative to the central body, and to be aligned so that its angular 

momentum vector h o  points in the negative Oy direction. 

2.4 	Solar Arrays  

Each solar array substructure is described in the overall 

system model hy specifying its fixed-base (constrained) modal data, 

namely modal frequencies (Q's), mode shapes (0's) and modal damping 

factors (os). 	The substructure model adopted here is described in 

section 2.4.1. 

As is the usual case for such  substructures, the modal data is 

ohtained from a combination of analysis and test. 	Recause damping 

is small for the solar arrays, the determination of modal 

frequencies and shapes (Q's and O's) can he discussed separately 

from determination of damping factors (os). 	The former are 

discussed in 2.4.2, and the latter in 2.4.3. 

2.4.1 Substructure Model  

Each array consists of a boom, a blanket, pallets, and 

ancillary equipment as depicted in Figure 4. 	A coordinate system 

(0 i ,x i ,y i ,z i ) is attached to each array which itself is attached to 

the central body as depicted in Figure 1, in such a manner that 

there are offset distances R 2  and R 3  between the attachment point 



BOOM AND ACTUATOR ARRAY TENSIONING SPRING 

ORSION CONTROL DEVICE 

INBOARD PALLET/ 
ELEVATOR ARMS 

SPACECRAFT 

TIP 
PALLET 

IN-PLANE 

-1..- 

TWIST 

OUT-OF-PLANE 

BLANKET 

(3a) 

(3b)  

(3c) 
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FIGURE 4 	Essential elements of the Hermes solar array model. 

and the center of mass of the overall spacecraft configuration. 	The 

deformation at a field point in an array can he visualized as being 

the sum of an out-of-plane (w i ), an in-plane (u i ) and a twist ( ai ) 

component. 	The deformations are discretized in the spirit of the 

Rayleigh-Ritz method as follows for the north (1) array: 

111 (x 1,Y1,z1,t) = IfT (Y1)  U1 (t)  

w 1 (x1,Y1,zi,t) = 1)T ( Y1) W1(t); 

x a .1.( 	,Y1 	
A
T (Yi ) & (+ ). 
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U l (t), W I (t) and Ti l (t) are column matrices of time dependent 

coordinate variables. 	Similarly coordinates U 2 (t), W 2 (t), and 

a2 (t) can be defined for the south (2) array. 	Y, (1), and A are 

column matrices of shape factors and are chosen identical for each 

array. The solar array parameters can be defined in terms of 

stiffness, mass, and damping matrices corresponding to their 

coordinates. 	If the hase of the array is fixed, the kinetic, 

potential and dissipation functions are, repectively, for the north 

array: 

.T 	• 	• T 	• 	.T 	. 
lu l  M j U 1  + 	W 1 M 1 W 1  + 

Ui K U 1  + 1W T K w  W + la 1 G _ a 1 U  
a 

.1- 	• 	.1- 	• 	.T 	. 
-111 1  C u U l  + 1W I C w W 1  + 

a 

In the overall spacecraft model, each array is described in 

terms of fixed-base (constrained) modal data, namely, modal 

frequencies, shapes and damping factors. 	The 1Y, (1), and A are such 

that the out-of-plane, in-plane, and twist motions are uncoupled, 

consequently 	the array dynamics is simplified and M, K, C matrices 

are then diagonal, and related to the basis modal data by: 

(4a) 

(4b) 

(4c) 



a  = 	 U2) 

= i(wl - w2); a 

17 

m U k = f (Q 11 ) 1.< (Q U ) k dm; 	M W k = J ( w ) 	(Q W ) k 

= f(Qi4 )TK  (Q;) k  dm; 

= m 	2 . 	K  = m Ç2 . 	G_ = 1_ 2 2 . 

	

UU' 	W 	WW' 	a 	
uot 

a 

Cu 	= 2M st c • C 	= 2M st a 	; C- = 2J-st-a- . U U U ' W 	WWWa 	a a a 

J- 
a k (5a) 

(5h) 

(5c) 

This representation presupposes that damping of the solar array 

can be modelled by equivalent linear viscous modal damping terms. 

The effect of presupposing a hysteretic damping model of the type 

described in References 3 and 26 is also assessed qualitatively by 

scaling damping factors according to the appropriate frequency 

ratios, in connection with analysis of some of the Hermes flight 

data (Chapter 3). 

Because the arrays and overall configuration are symmetric, it 

is convenient to transform the pairs of coordinate variables for 

north and south arrays to 'symmetric' and lantisymmetric' coordinate 

variables, by: 

U s = i( U 1  - U 2 ); 	U 

w s  = i(14 1 	w2 ); 	w 

(7's = 1( 4 I 	"7' 2) ; 	'7"a = 	& j 	E'2). 

(6a) 

(6b) 

(6c) 
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2.4.2 	Constrained Modal Frequencies and Shapes  

The constrained modal frequencies and mode shapes were obtained 

before launch for Hermes as follows. 	An analytical structural model 

was derived for the array in the fixed-hase configuration in ground 

test (i.e. with gravitational forces included), in terms of physical 

coordinates and analytical stiffness and mass matrices. 	From the 

model, mode shapes and modal frequencies for the one-g state were 

obtained by solving the undamped eigenvalue problem. 	Experimentally 

measured modal frequencies and modal damping factors were also 

determined in ground tests. 	Then the analytical model and ground 

test results were brought into agreement by appropriate adjustments 

to the analytical mode1. 6 	In turn, this model was then used to 

calculate in-orbit modal frequencies and shapes by setting g equal 

to zero. 	Results derived in this manner are documented in 

References 27-29. 

For the present report, the model and computer program of 

References 27, 28 were used. 	Geometric offset parameters ao and e0 

were set equal to zero, so that the modes uncoupled into three sets: 

namely, out-of-plane, in-plane and twist. 	As well, the computer 

program was extended to calculate the modal coefficients and 

integrals needed in Chapter 2.5. 	Tables 2 and 3 give the parameters 

and data as used in the calculations. 
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TABLE 2 

Parameter Summary for a Single Solar Array of Hermes 

PARAMETER 	 VALUE 	 UNITS 

a o 	 0 	 m 

e0 	 0 	 m 

2, 1 	 7.23 	 m 

9,2 	 6.50 	 m 

b 	 1.311 	 m 

bl 	 0.655 	 m 

PI 	 0.2925 	 kg.m-I  

P2 	 1.060 	 kg.m -L  

M 1 	 4.42 	 kg 

m 2 	 3.40 	 kg 

px 	 0.556 	 kg.m 2  

I 

	

	 0.026 	 kg.m 2 
 PY 

I 	 0.556 	 kg.m 2  pz 

k 2 	 1220. 	 N.m RAD -1  

k . 	 N.m RAD -1  

fa 	 35.59 	 N 

fo 	 1.33 	 N 

El 	 868. 	 N.m )  

JG 	 1.07 	 N.m 2 .RAD - 

9 	 9.81 - )  m.s 
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TABLE 3 

Modal Frequencies and Related Integral Coefficients of the Fixed Base 
(Constrained) Hermes Array 

1 	 2 	 3 	 4 	 5 

Out-of-plane  

(MV)kk'kg 	
2.3353 	6.171x10-2 	3.228x10-3 	1.625x10-3 	1.587x10-4  

(KW)kk'N'm-1 	
2.0349 	6.229x10-1 	1.167x10-1 	3.975x10- 	8.429)(10-1  

D3 k =f(1)kdm,kg 	 4.9955 	2.349x10-1 	3.625x10-2 	2.747x10-2 	6.947x10-3  

6.419x10-2 	 2.363x10-2  B3 k=fyk Okelm,kg.m 	30.463 	 3.823x10-2 	4.192x10-2 

S-2
k' 	

Hz 	 0.1486 	0.5056 	 0.9570 	 2.489 	 11.60 

In-Plane  

(MU)kk'kg 	
1.9124 	7.852x10-4 	1.517x10-4  

(K U ) kk' 	N.M.«-1 	
7.9256 	3.310x10-1 	2.2237 

D
lk 

= fYkdm ' kg 	4.5468 	1.822x10-2 	3.996x10-3  

B lk = fy
lAdm,kg.m 	27.439 	3.009x10-2 	3.177x10-3 

nk' Hz 	 0.3240 	3.268 	 19.27 

Twist  

3.233x10
-4 

(j-ci) kk' kg.m2 	
0.6371 	7.817x10-3 

(G-a) kk , 	N.m/RAD 	0.5192 	7.502x10-2 	1.092x10
-2 

p4k  = 	fAkdm,kg 	9.8383 	3.543x10-1 	4.255x10
-2 

ITk 
= fxAkdm,kg.m 2 	1.373 	-6.149x10

-3 	7.051x10
-3 

Stk, Hz 	 0.1437 	0.4931 	 0.9247 

By comparing the relative values (e.g. M 11 , M 22  etc.) for the 

mass-related coefficients (M's, B's and D's), it is seen that the 

fundamental mode of each category is dominant, thus ensuring that 

truncation to the first few modes is valid. 30  

2.4.3 	Constrained Modal Damping Factors From Ground Test  

Unlike modal frequencies and shapes, substructural modal 

damping factors cannot be obtained with confidence from analysis 
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TABLE 4 

Modal Damping Factors For The Fixed-Base (Constrained) 

HERMES Array As Determined Using Ground Test And 

Adjusted By Analysis to g = 0 (Reference 3) 

MODE 	 FREQUENCY 	 DAMPING RATIO 

Out—of—plane  

1 	 0.16 	 0.003* — 0.006** 
+ 

2 	 0.51 	 0.008 	— 0.012 

In—plane  

1 	 0.32 	 0.014 — 0.020 

Twist  

1 	 0.15 	 0.090 — 0.160 

	

0.50 	 0.013 — 0.022 

based on 'hysteretic' damping law 
based on 'viscous' damping law 
constructed using Table 1 of Reference 3 

only, 	They cannot be measured directly in ground tests either, 

because of the earth's gravitation effect on the structure. 

Table 4 presents array damping factors that were obtained in 

Reference 3 from a combination of one-g test data and one-g to 

zero-g conversion analysis. 	Although the values are not promoted as 

being completely trustworthy, they were the only ones available for 

this type of solar array (further conclusions regarding their 

validity are obtained later in this report). 

* * 
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2.5 	Spacecraft Model in Terms of niscrete Coordinate Variables  

With the preceding definition of variables and parameters, 

governing equations for the mathematical model of the overall 

satellite configuration can he derived using the methods of 

References 10 and 11. 	Resulting equations follow. 

" + I 	(.0 	+ h 0 w 3 - 2sinyS T U
a 

- 2cosyS 3 W
a 

- m n d 2Xn  13 3 

• — 	 T— 
33 w 3 + I 	(:) 	- 	h 0  w 1  - 2cosyS

T  U
a 

+ 2sin1S
3
W
a 

= L 3  13 	1  

122(L2 + 2S T U 	- 2STLAi s  - 2I Ts  + m n d l  (*): n  - d 2 1 1 ) - L 2  . 
5  S 

• •• 	 • 
M
U
U
a 

+ C
U
U
a 

+ K
U
U
a 

- (sinyw 	+ cosyw 3 )S 1  = 0 	; 

• 

	

•• 	 • 
MW+CW+ KW 	- (cosyw l  - sinyw 3 )S 3  =0. 

	

W a 	'W a 	W a  

(M U - ' 1)11 s 	Cèi s 	Kes 	S5(:32  

• • 
(M 	- p 3 )W 	+CW +KW - S 6 w 2 	= n 

. s 	Us 	Us  

•• • 
J- a + C-a + G-Œ - T

w
2 as 	s 	a s 

m 0 
 x

0  + c; 	+ k n x n  + m 	(d12  (:) 	- d 2 (:) 1 ) 	= 	O. n   

=0 	 ; 

=0  

(7a) 

(7h) 

(7c) 

(8a) 

(8b) 

(9a) 

(9b) 

(10) 

(11) 
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In the above equations, coefficients are given by: 

M u= fTY
T dm; MW  = fe0

T dm; J- = fAA
Tdm; 	 (12a) a 

2 	 2 2 
KU  = 	' S2M• 	KW  = StM• 

	

W' 	G- = 	' St 	J- • 	 (12b) 
U U 	 W 	a 	a  CL 

B 1  = fyTdm; 	B3 = fy0dm; 	 (12c) 

D i  = 'Ulm; 	D3 = fOdm ; 	 (12d) 

S I  = B 1  + R 2 D 1 ; 	S3 = B3 + R 2 D3; 	 (12e) 

S5 = -cosyR3D 1 ; 	S6 = -sinyR3D3; 	 (12f) 

AI = D I DI/m s ; 	A3 = D3D3 T /m s  ; 	 (12g) 

I T  = fx 2 Adm. 	 (12h) 

A complete definition of symbols is given in the Nomenclature. 

Also, the equations are linearized about the following equilibrium 

state: 	wl = 0; 	w2 = w0; w3 = 0; 	y = wot. Additional 

simplifications are adopted as outlined on pages 5, 6, and 15 of 

Reference 11. 

Equation (7) is essentially Euler's equation for the total 

spacecraft, extended to include flexible effects. The three 

equations express the principle that 'rate of change of angular 

momentum equals torque' about the roll (L 1 ), pitch (L2) and yaw (L3) 

axes, respectively. 
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Equations (8a) and (8b) are the second order vibrational 

equations which define the time history of the antisymmetric 

in-plane and antisymmetric out-of-plane deformations, respectively. 

Equations (9a) and (9b) similarly define the symmetric in-plane and 

out-of-plane deformations. 	Equation (10) defines the symmetric 

twist deformations. 

Equation (11) is the second-order equation which defines the 

time history of the damper oscillation. 	Equations (7) through (11) 

constitute complete system equations of motion. 	In absence of a 

nutational damper, symmetries inherent in the configuration serve 

to uncouple dynamics of pitch from roll/yaw. 	As well, it is seen 

that symmetric array oscillations interact with pitch only and vice 

versa. 	A similar relationship exists between roll/yaw degrees of 

freedom and anti symmetri c bending vibrations. When offset from vehicle 

center of mass, the damper is coupled directly with pitch and roll 

but not yaw or array displacements. 

2.6 	Transformation To The Damped Natural Modes Formulation  

Equations (7-11) are converted to modal variables following the 

formulation outlined in Reference 10. 	In this method, the equations 

are transformed to a first order set through introduction of a state 

vector made up of generalized displacement and generalized 

velocity. 	The system matrices are rendered either symmetric, or 

skew symmetric, by choosing a suitable constraint between 
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generalized velocity and displacement. 	Algebraic manipulation is 

used to avoid use of complex numbers when generating response from 

the resulting eigenvalue problem and its adjoint. 	Once system 

eigenvalues and eigenvectors are known, response depends on the 

solution of coupled, real-valued, scalar, first order equations. 

With nutation damping included, 	roll/yaw and pitch are, in 

general, coupled. 	If d 1  is nonzero and d 2  is zero, the damper 

couples to pitch but not roll/yaw; if d i , is zero and d 2  is nonzero, 

the damper couples to roll/yaw, but not to pitch. 	To reduce 

confusion and to aid in isolating the effect of the damper, this 

study is confined to these two bounding cases. 

2.6.1 	Roll/Yaw and Antisymmetric Deformation Including the Damper 

The state vector describing the motion is: 

{z} =4, 	. 3 	U., 	 ; n  uTa  W X} 	• 	 (13) 

Using the methods of Chapter 2 of Reference 10, Equations (7a), 

(7b), (8a), (8b), and (11) (with d l  = 0) can he written in the 

following first order form 

[A] 1 '4' 	[n][z} ' { F] 	; 
where: 

IF1 = IL I 	L3 	0000001 T 	; 

(14a) 

(14b)  



0 0 

0 0 

0 0 

O 

O 

O 
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r-
III I 13 	

T -2syS i  

1 j 3 	133 	-2cYS I
T  

-2sÏS 1 	-2cyS I 	2M u  

-2cyS 3 	2s1S 3 	0 

[A]= 	-m D d2 	0 	 0 

•■•■•  

m D d2 	0 	0 	0 

T 
2sYS3 	0 	0 	0 	0 

0 	 0 	0 	0 	0 

2M
W 	

0 	0 	0 	0 

00 	0 	0 m D 

O 	o 2K U 	o 	0 

0 	 0 	0 	2K w 	0 

0 	 0 	0 	0 	k l) 

; 	 (14c) 

• (14d) 

0 	 h o 	 0 	 0 	 0 	0 	0 	0 _ 

-h o 	0 	 0 	 0 	 0 	0 	0 	0 

0 	 0 	 2C 	 0 	 0 	2K 	0 	0 
- 1J 	 U 

0 	 0 	 0 0 2C
W 	

0 	0 	2K
W  

[13]= 	0 	 0 	 0 	 0 	 CD  

0 	 0 -2K 	 0 	 0 	0 
U 

0 	 0 	 0 -2K W 	0 	0 	0 	0 

0 	 0 	 0 	 0 	-1(0 	0 	0 	0 

0 	0 

0 



(xk[A] 	[B]) fxkl = { 0 }  (15a) 

T 	T T Izl = [ zle 7-2] 

fz i l T  

u T 	1, 1 T.it TIT 
s 	s 	s) 

where 

z2 I T  

( 1  6a  ) 

( 1  6h ) 

( 1 6 c ) 

f n  

= fxD  

'T 	IT,T 
W 	; s 	s 	s 
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Equations (13,14) are in the format of Equations (39), Chapter 3, of 

Reference 10. 	The associated eigenvalue problem and its adjoint, 

which lead to the natural frequencies and damped modes, are: 

( , k[A ] 

[B]T) 
 Pk} = (15b) 

Software was developed to solve the eigenvalue problem based on 

the above equations, and to calculate the natural modes, frequen-

cies, and damping factors. 	Figure 5 depicts the input, output and 

flow of calculations. 

2.6.2 	Pitch and Symmetric Deformation Including the Damper  

Similarly, for pitch, one can adopt state vector: 

Then Equations (7c), (9a), (9b), (10) and (11) (with d 2  =0) 

can be arranged into the form: 

1 22 c:3 2 	f C I T  fl 	= L 2 	; 	 (17a) 

[R] IZ/ + IBI 	+ (:) 2  ICI = fOl 	; ( 17h) 

where, 



SOFTWARE FOR 

DAMPED NATURAL MODES 

EIGENVALUE FORMULATION 

(Roll/Yaw Dynamics) 

Pk [A] 	[ 13 ]) 

Equation (15) 

1 

1 

3 

INPUT PARAMETERS 

d i 	= 0, R2, hp, y, 

I33 	m D , 	(3 1) 

(Table 5) 

INPUT MODAL DATA BASED 

ON CONSTRAINED MODE 

EXPANSIONS 

[see Section 2.4, Table 3, 

and Equations (12)] 

OUTPUT 

r  k' Re(X k  ) 
	Im(X k

) 
' 	- 	 ' 

= 1, 	, 10 

Roll/Yaw Mode (Nutation) 

Damper Mode 

In-Plane 

Out-of -Plane 

Antisymmetric Modes 

Antisymmetric Modes 

n -Plane 
- 

( 11 11)kk ,  (KU)kk• (CU)kk ,  

k = 1,2,3 
Out-of-Plane  

(MW ) kk. (KW ) kk ,  (CW) kk ,  

( 11 3)k ,  (D3 ) k ,  (S3 ) k ,  

k = 1,2,3,4;5 

+Note, modal damping coefficients are 
related to damping ratios by Equations (Sc) 

FIGURE 5 	Damped Natural Modes solution for roll,yaw dynamics. 



•nnn 

[R] = 

D 	
0 - 0 	k 	0 	0 

0 	0 K U 	
0 	0 

0 	0 	0 	K W 	0 

C- 	0 	0 	0 	G- 
a 	 a 

0 	0 	0 	0 	0 

(17d) 

C u 	0 

0 	C w  

0 	0 

0 	0 

-K u 	
0 

0 	-K 	0 

0 	0 	-G- 
a 

rc D 

-k D 

0 
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m d 	0 	0 	0 	0 	0 	0 	0 _ 

0 	(Mu-tu.) 	0 	0 	0 	0 	0 	0 

0 	 0 	(M w -A3 ) 	0 	0 	0 	0 	0 

0 	 0 	0 	3- 	0 	0 	0 	0 
a 

0 	 0 	0 	0 	k D 	0 	0 	0 	
; 

0 	 0 	0 	0 	0 	Kli 	0 	0 

0 	 0 	0 	0 	0 	0 	K W 	0 

0 	 0 	0 	0 	0 	0 	0 	G- 
a 

(17c) 	- 
11.n 

[B]= 

m D d i 

IC} = 

2S 6 

 -2S6  
-2I T  

(1 7e) 
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The above format is analogous to Equations (5) Chapter 2, of 

Reference 10. The corresponding eigenvalue problem of the 

homogeneous systems is: 

(À k [A] + [B]) IXk l = 	 (18a) 

where, in this case, 

[A] = [R] - ICI ICI /T ,T,-22. 	 (18b) 

Software was developed to solve the above eigenvalue problem, 

and to calculate natural modes, frequencies, and damping factors 

(Figure 6). 

2.7 Sample Calculations 

For the nominal input parameters of Hermes (Tables 1-5), the 

software of section 2.6 yields the modal values given in Table 6. 

As discussed earlier, the nature of coupling in the system is such 

that symmetric results can be arrived at with the pitch program 

whereas antisymmetric modes are associated with roll/yaw. The 

frequencies essentially agree with those published in Reference 7 

and other works and thus validates the software. No numerical or 

computational problems were experienced with the method. 

Of significance in Table 6 is the fact that both frequency and 

damping ratio associated with the unconstrained,fundamental, out-

of-plane, and antisymmetric mode of vibration in orbit are 



INPUT PARAMETERS 

d i , d2 = 0, R3, hp, y, 

1 22, 	s  M  D» n p , o p  

(Table 5) 

SOFTWARE FOR 

DAMPED NATURAL MODES 

EIGENVALUE FORMULATION 

(Pitch Dynamics) 

( xk [A ] 	 [s ] ) lxk l-101 
Equations (18) 

OUTPUT 

,

k

, Re(X
k
), 

= 1, 	, 12 

Im(X
k ) 

1 Damper Mode 

3 In-Plane Symmetric Modes 

5 Out-of-Plane Symmetric Modes 

3 Twist Symmetric Modes 

INPUT MODAL DATA BASED 

ON CONSTRAINED MODE 

EXPANSIONS 

see Section 2.4, Table 3, 

and Equations (12)] 

In-Plane 

(MU)kk, (Ku) kk,  

(pi)k, (85)k, k = 1,2,3 

Out-of-Plane 

(MW ) kk ,  ( KW) kk , ( CW) kk , 

 (03)k, (86)k,  k= 1,2,3,4,5 

Twist  

(J ci ) kk , (G ei ) kk , (C-ci ) kk , 

 k = 1,2,3 

F-0= 

+Note, modal damping coefficients are related to damping ratios by Equations(5c) 

FIGURE 6 	Damped Natural Modes solution for pitch dynamics. 



32 

TABLE 5 

NOMINAL INPUT PARAMETERS FOR SPACECRAFT HERMES +  

PARAMETER 	 VALUE 	 UNITS 

m s 	
317.5 	 kg 

II I 	 1130 	 kg.m 2  

1 9 9 	 1017 	 kg.m 2  

133 	 1168 	 kg.m 2  

It3 	 0 	 kg.m 2  

h o 	 20 	 N.m.s. 

ï 	 0 	 RAD 

R i 	 0 	 m 

R9 	 0.76 	 m 

R3 	 0 	 M 

m
D 	

0.1145 	 kg 

	

D 	
0.40 	 Hz 

G 	 0.004 	 -- 
D 

	

d i 	 -0.79 	 m 

	

-0.29 	 m 

+ pertinent modal input characteristics for a single constrained array are as in 
Tables 3 and 4 
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TABLE 6 

Unconstrained Modal Frequency and Damping Ratio Computed for Spacecraft Hermes 
Using Damped Natural Modes Theory 

, 
Mode 	Frequency 	Damping 

Mode Description 	 Number, k 	w , Hz 	Ratio, 	c ** 
k 	 k 

(a)Pitch Dynamics 

Out-of-plane, symmetric 	 1 	 0.149 	0.0061 
Out-of-plane, symmetric 	 2 	 0.506 	0.0060 
Out-of-plane, symmetric 	 3 	 0.957 	0.0060 
Out-of-plane, symmetric 	 4 	 2.489 	0.0060 
Out-of-plane, symmetric 	 5* 	 11.600 	0.0060 

In-plane, symmetric 	 1 	 0.324 	0.0153 
In-plane, symmetric 	 2 	 3.268 	0.0150 
In-plane, symmetric 	 3* 	 19.270 	0.0150 

Twist, symmetric 	 1 	 0.144 	0.0909 
Twist, symmetric 	 2 	 0.493 	0.0909 
Twist, symmetric 	 3* 	 0.925 	0.0909 

Damper 	 - 	 0.400 	0.0040 

(b)Roll/Yaw Dynamics 

Nutation 	 - 	 0.00277 	4x10-8  

Damper 	 - 	 0.400 	0.0043 

Out-of-plane, Antisymmetric 	1 	 0.444 	0.0173 
Cut-of-plane, Antisymmetric 	2 	 0.509 	0.0066 
Out-of-plane, Antisymmetric 	3 	 0.970 	0.0063 
Cut-of-plane, Antisymmetric 	4 	 2.542 	0.0060 
Out-of-plane, Antisymmetric 	5* 	 12.165 	0.0060 

In-plane, Antisymmetric 	 1 	 0.851 	0.0393 
In-plane, Antisymmetric 	 2 	 3.319 	0.0155 
In-plane, Antisymmetric 	 3* 	 19.300 	0.0150 

Modes are not accurate, due to limitations of the Rayleigh-Ritz method used. 
Based on input damping ratios of 0.006 out-of-plane, 0.015 in-plane and 
0.090 in twist for the constrained array substructure (Tbble 411) and a 
nominal value of 0.004 for the damper. 

* * 
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noticeably larger than those input values provided for the 

corresponding fundamental mode of the constrained array itself. 

This observation is important since it implies that one can expect, 

in certain cases, to measure both higher frequencies and higher 

damping ratios for structural modes of a spacecraft system in orbit 

as opposed to values measured at ground level for an individual 

constrained substructure. By way of explanation notice, for 

example, that array frequencies for the symmetric spacecraft lie 

quite near those for a single array under zero gravity, as shown in 

Table 3. 	Such an occurrence is anticipated for the symmetric case 

since vibrational momenta of the two arrays are equal in magnitude 

but opposite in direction, consequently satellite librations are 

not excited and the arrays behave essentially as constrained 

elements. The opposite is true during antisymmetric oscillation 

when the combined effect of vibration of the arrays is to force 

rotation of the central body. In this case the unconstrained 

system modal frequency can be significantly higher than that of the 

constrained substructure. 

A simplified system consisting of roll motion together with a 

one mode approximation to antisymmetric out-of-plane array vibra-

tion is sufficient to demonstrate the nature of thé interaction and 

is described in Appendix B. Effect of coupling is seen to be 

embodied in coefficient 5 [Equation (B.3f)] which is a function of 

spacecraft roll inertia, array generalized mass, and the 

coefficient associated with integral of the constrained mode 
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shape. From Equation (B.3), unconstrained in-orbit frequency and 

damping ratio are w =  c2, ç  = 8c where, based on Hermes parameters, 

= 3 (fundamental array mode). That is, frequency and damping 

ratio for the fundamental antisymmetric and unconstrained 

out-of-plane modes are larger by a factor of three times that for 

the constrained array. The same degree of increase is not apparent 

for higher modes which can be attributed to their much smaller 

modal integral coefficients (S k ) as evident from Table 3 and 

Equations 12. 	Similarly, it can be established that, unless offset 

R3 is significant, in-plane/out-of - plane unconstrained symmetric 

modes are effectively uncoupled from pitch since S 5  = S6 = 0, 

implying 8 = 	1. 	Coupling with twist exists but would not be 

considered strong since, for this case, 8 = 1.04. 

This relationship between constrained and unconstrained 

3i  modal properties is not a new concept. 	
32 The purpose here, 

howe'ver, is to emphasize the significance of this relationship when 

measuring damping ratios for space structures in-orbit. 

Note, a degree of uncertainty is always present regarding 

actual shape of a given mode which, in turn, renders frequency less 

determinate. 	Equation (B.3f) enables one to estimate sensitivity 

of frequency to modal integral coefficient (S) as shown in Appendix 

see equation (B.7) and Table B-1. A difference of 10% in S 

results in an 80% change in frequency! 

B; 
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3.0 COMPARISON OF COMPUTED MODAL INFORMATION WITH FLIGHT-DERIVED  

RESULTS 

3.1 	Review and Update of Data Measured In-Orbit  

This section summarizes and updates in-orbit measurements made 

of the dynamic properties of HERMES in the 3-axis stabilized state 

with a view to later comparison with calculated results. 

The measurements of natural frequency and damping factor for 

the vibrational modes have been reported in References 3,5 and 7. 

The measurements are derived from residual oscillations associated 

with array deployment and slewing, and from specially-implemented 

excitation by the thrusters (SPEX). 	Damping factors have been 

deduced from the decay envelope of free vibration (log decrement 

method) and from the sharpness given by the Fourier transform of 

the vibrational data. 	In preparing this report, both published and 

unpublished data were reviewed. 	Table 7 summarizes the results*. 

For most modes reported, the accelerometer data from which the 

results are deduced is of excellent quality, and the confidence 

level in the measurements is rated high. 	For the second 

* Table 7 is consistent with published results except for the 

following: 	a mode at 0.46 Hz was reported to be a second 

antisymmetric in-plane mode in Ref.7 , whereas herein it is 

identified as the second symmetric twist. 
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TABLE 7 

Modal Frequency and Damping Ratio as Measured In-Orbit on Hermes 7  

Mode 	y 	Description of Mode 	 w 

	

Number 	RAD 	 k 	 k 
(Hz) 

	

Nutation 	 Roll/Yaw 	 0.00293 	0.00015 

1 	0 	Out-of-Plane, 	Symmetric 	 0.150 	0.030-0.038 

1 	0 	Out-of-Plane, 	Antisymmetric 	0.440 	0.015-0.022 

2 	0 	Out-of-Plane, 	Antisymmetric 	0.500 	0.007-0.008 

1 	0 	In-Plane, 	Symmetric 	 0.300 	0.030-0.039 

1 	0 	In-Plane, 	Antisymmetric 	 0.820 	0.012-0.016 

1 	n/2 	In-Plane, 	Antisymmetric 	 0.980 

2 	0 	In-Plane, 	Antisymmetric 	 0.890 

1 	0 	Twist, 	Symmetric 	 0.130 	0.080-0.090 

2 	0 	Twist, 	Symmetric 	 0.460 

J 

out-of-plane antisymmetric mode, the accelerometer data is of lower 

quality and the confidence level is rated medium. 

Late in the mission, an in-orbit dynamics test was carried out 

to establish the characteristics of nutation in the 3-axis 

stabilized mode 8 . 	A nutation cone of one degree was initiated, the 

thrusters were inhtbited, and the satellite was allowed to nutate 

without disturbance for 12 hours. 	Data from the tests are 

reproduced in Figure 7. 	The nutation period and damping factor 

were measured to be 341 seconds and 1.5 x 10-4, respectively. 
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NUTATION 
HALF ANGLE 0.9 

(DEGREES) X 

X 	 x  
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1.1 

DAY 296 - 297, 1979 

X DATA FROM NESA-B 

- - - 	= 1.50x10 -4  

••nn .„ x 	y  

0.8 
GMT(HOURS) 

12 	 18 	 0 	 6 	 12 
1 	I 	I 	1 	U 	I 	i 	I 	I 	i 	lui  

1 	 1 	 1 	1 
100 	 200 	 300 

NUMBER OF CYCLES 

FIGURE 7 	Measured orbital data reflecting nutational 
decay of Hermes with arrays fully deployed. 

3.2 	Measured Versus Calculated Frequencies  

Comparison of the flight-measured and software-calculated 

frequencies of Tables 7 and 6 respectively shows that the numbers 

essentially agree. 	Thus the software operates correctly in this 

regard. 

Also,  the  synthesized modal frequencies are consistent with 

those of the previously-reported work that uses modeling with no 

damping (i.e., Refs. 5 and 7). 	This is as expected, since damping 

is small. 

It was also found in numerous computer runs, that the 

calculated frequencies were insensitive to changes in those damping 

factors that are typical of flight values (e.g. 0.05). 
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3.3 	Influence of the Liquid Mercury Damper on system Damping  

An objective in this section is to establish the 

degree to which damping factors measured in flight can be 

attributed to the damper. 	To isolate the effect of the 

damper, all other sources of damping are set equal to zero. 

Of the four damper input parameters(mD, GD, s2D, and d), 

only mD and d are confidently known. 	The approach in this 

section is to vary S2D and GD in the computer program over 

a wide range in order to ascertain the theoretical limits of 

the damper's effect on spacecraft damping factors, and then to 

compare the calculated numbers with in-flight measurements. 

Tables 8(a) and 8(h) summarize computer runs of the 

roll/yaw and pitch dynamics, respectively. 	The spacecraft's 

frequencies (w's) do not change noticeably with changes in 

input damper parameters, and thus are not included in the 

Tables (i.e. assuming GD is not too much greater than 0.100, 

they remain essentially as given in Table 6). 

From Table 8(a), it is seen that, when the damper is 

not near resonance (Q ip = 0.00277 Hz), the damping factor of 

the nutational mode (N) is of order 10 -12 , which is 

negligible compared to the flight-measured level of 

1.5 x 10 -4 . 	The variation in 	N  with o p is shown in 



Table 8(a) 

Influence of Liquid Mercury Damper on Roll/Yaw Damping Characteristics 

INPUT DAMPER PARAMETERS 	 OUTPUT MODAL DAMPING 

NUTATION 	 IN-PLANE 	 OUT-OF-PLANE 	 DAMPER 
m 	ft 	 a 	d2 	 ç 

D 	D 	 D 	 N 	 CI 	‘2 	Cl 	Ci 	 2 	Ç3 	 D 

	

(kg) 	(Hz) 	 (m) 

	

0.1145 	0.00277 	10-5 	-0.29 	5x10-6 

	

0.1145 	0.00277 	10-4 	-0.29 	5x10- 5 	
6x10-6 

	

0.1145 	0.00277 	10-3 	-0.29 	5x10-4 	
6x10-5 

	

0.1145 	0.00277 	2x10
-3 	 6x10-4 

-0.29 	9x10-4 

	

0.1145 	0.00277 	5x10-3 	 1 x10 3 
-0.29 	5x10-4 3x10-3 

	

0.1145 	0.00277 	10-2 	-0.29 	2x10-4 	 1 x10_2 

	

0.1145 	0.00277 	10-1 	-0.29 	2x10-5 1X10 2  

	

0.1145 	0.00277 	9x10-1 	-0.29 	2x10-6 	 9x10-1 

	

0.1145 	0.0015 	0.006 	-0.29 	5x10-13 	 6x10-3 

	

0.1145 	0.0035 	0.006 	-0.29 	2x10-7 
6x10-3 

	

0.1145 	0.1500 	0.006 	-0.29 	3x10-13 	 6x10-3 

	

0.1145 	0.0200 	0.005 	-0.29 	1x10-1° 	 5x10  

	

0.1145 	0.4000 	 -13  0.100 	-0.29 	3x10 	 8x10-  5  
24:11g:: 	

1 x10-1  

	

0.1145 	0.4500 	0.100 	-0.29 	2x10-13 	 -1 

	

2 x10-4 	 1X10  

	

0.1145 	0.4500 	0.500 	-0.29 	1x10-12 	 3x10 5 	2 x10- 6 
64e 1  

	

0.1145 	0.5200 	0.500 	-0.29 	3x10-13 	 2 x10-  5 	240-6 	 6x10-1  

	

0.4540 	0.4500 	0.100 	-0.29 	8x10-13 	 6 >10-4 	2x10 5 	4 x10- 6 	1x10 

	

0.4540 	0.4500 	0.100 	-1.00 	9x10-12 	1x10-6  

	

-5 
	 8x10 3 	2 x10-4 	4x10-  5 	1x10 1  

	

0.4540 	0.4500 	0.100 	-2.00 	4x10 	lx10 

	

-11 	 3x10 2 	1 x10- 3 	4x10- 4 	1x10 1  

Note: 	(1) d l  = 0; coN  = 0.00277 Hz; 
(2) input damping factors for the array substructure mo4es are zero; 
(3) blank entries signify values of order less than 10-°. 
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TABLE 8(h) 

Influence of Liquid Mercury Damper on Pitch Damping Characteristics 

INPUT DAMPER PARAMETERS 	 OUTPUT MODAL DAMPING 

St 	a 	d 1  
D 	 D 	D 	 DAMPER 	 TWIST 

(kg) 	(Hz) 	 (m) 	D 	 çl. 	 2 	 Ç3 

0.1145 	0.15 	0.001 	-0.79 	0.0010 	2x10 -6 	ii »  

0.1145 	0.15 	0.010 	-0.79 	0.0100 	2x10 -5 	1x10 -9 	3x10 -9  

0.1145 	0.15 	0.100 	-0.79 	0.1000 	2x10-5 	1x10 -7 	3x10 -8  

0.1145 	0.324 	0.010 	-0.79 	0.0100 	2x10 -9 	6x10 -8 	7x10 -9  

0.1145 	0.400 	0.001 	-0.79 	0.0010 	7x10 -1° 	2x10 -8 	110 - 

0.1145 	0.400 	0.010 	-0.79 	0.0100 	7x10 -9 	2x10-7 	1x10 -8  

0.1145 	0.400 	0.100 	-0.79 	0.1001 	7x10 -8 	2x10-6 	lx10 -7  

0.4540 	0.400 	0.100 	-0.79 	0.1003 	3x10 -7 	7x10 -6 	410-7  

0.4540 	0.400 	0.100 	-1.00 	0.1004 	4x10 -7 	1x10 -5 	7x10 -7  

0.4540 	0.400 	0.100 	-2.00 	0.1018 	2x10-6 	5x10-5 	3x10-6  

Note: 	(1) d 2  = 0; 
(2) input damping factors for the array substructure modes are zero; 

(3) output modal damping associated with in-plane, out-of-plane modes 

is of order less than l0 - ' in all cases. 

Figure 8 for the damper in resonance with satellite nutations; 

the maximum value is seen to be about 9 x 10 -4 . 	Table 8 (a) 

also indicates that g , 001) changes linearly with mp and 

probably quadratically with center of mass offset d 2 . 	In 

Appendix A, approximate formulas are derived by the Method of 

Averaging (equivalent to the Energy Sink Method) which provide 

a functional relationship between 	N and the various damper 

parameters [see Equations (A.22), (A.23)]. 	As shown in Figure 

8, such an approach yields excellent agreement with the 
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••••.. NATURAL MODES SOLUTION 

- METHOD OF AVERAGING 

'g 10 5" 

M M M-4 10
-3 

M 

'°gio 	D 

FIGURE 8 	Nutational damping of Hermes for the case of a resonant damper. 

Natural Modes calculations over the range 0.001 < up ‘0.100 and 

thus confirms operation of the software. 	Also, according to 

Harris and Crede, 33  existence of a peak in distribution of the 

damping interaction effect can be expected in a system for 

which damping forces are comparable in magnitude to the 

effective stiffness forces . 	Hence, from Figure 8, it is 

concluded that the more exact Natural Modes approach is 

necessary in order to represent such a phenomenon. 	Away from 

resonance, the methods agree reasonably well as'is shown in 

Appendix A where, at pp = 0.020 Hz and 10  = 0.005, 

becomes 3x 10 -II  and 10x 10' 11  when computed by Method of 

Averaging and the Natural Modes theory, respectively. 
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Table 8(a) reveals that when the damper frequency is 

near the nutation frequency, resulting 	's of the 

antisymmetric vibrational modes are negligible [0( <10 -6 )]. 

Even when the damper is tuned near the first antisymmetric 

mode (0.444 Hz), the calculated damping factor is no higher 

than 10 -4 
(at the designed-for damper mass of 0.1145 kg and 

offset d 2  = -0.29m), which is still significantly less than 

the flight-measured 0.015 - 0.022. 

Table 8(b) illustrates the influence of the damper on 

modes associated with pitch dynamics. 	Even with the damper 

tuned to be near resonance with the first twist mode, a 

maximum damping ratio of only 10 -5  is found for the 

fundamental twist mode over the range 0.001 < alp 

significantly less than the flight-measured value of 0.08 - 

0.09. 	In-plane, out-of-plane modes are not affected as 

directly. 	For example, when  the damper is tuned to the 

fundamental in-plane frequency, the maximum damping effect is 

again experienced by the first twist mode but to a much lesser 

degree than in the previous case. 	If the damper operates at 

the original design frequency (0.40 Hz), then it is the second 

mode in twist (0.49 Hz) which shows the largest damping 

(2 , TWIST --2 10 -6  at GD = 0.100). 	As expected, an increase 

in mD also augments- the degree of damping interaction. 

However, the system is even more sensitive to offset of the 

< 0.100, 
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damper from spacecraft center of mass. 	Note that in-plane, 

out-of-plane modal damping remains effectively uncoupled from 

the damper in all instances. 

In summary, it can be concluded that: 	(a) the liquid 

mercury damper could have contributed the damping of the 

nutational mode, but to do so the fluid would have had to be 

excited to resonance by the nutations; (h) the damper did not 

contribute significantly to the damping factors of either the 

symmetric or antisymmetric vibrational modes; (c) the Method 

of Averaging validates operation of the Natural Modes software 

both at resonance and away from resonance. 	In addition, it 

identifies an analytic relation between the nutation damping 

and physical parameters of the spacecraft which has 

applicability over a significant range of frequencies (sz p ) 

and damping 	(aD) of the damper subsystem. 

3.4 Contribution of the Array Substructure to System Damping  

The objective in this section is to establish the 

degree to which damping factors measured in flight can be 

attributed to damping sources in the arrays. 

The array damping effect is isolated by setting ap 

of the damper equal to zero. Computer runs made using input 

damping values from the ground-based substructure test results 

of Table 4, and variations, are tabulated in Tables 9(a),9(b). 



Table 9(a) 

Contribution of Array Substructure to Damping of System Roll/Yaw Modes 

maw smenunim 	INPUT DAMPING 	 alIPUT MODAL DAMPING 

IN-PLANE 	 OUT-OF-PLANE 	 NUTAT ION 	 IN-PLANE 	 OUT-OF-PLANE 	 DAMPER 

a l 	02 	03 	0 6 	02 	03 	ç 	çi 	 ‘2 	 ç8 	çj. 	 S2 	 C3 	C 
N 	 D 

0.001 	0.001 	0.001 	 5x10' 	2.640-3 	1x10 3 	1 4.0-3 	 -7 	-9 1.10-6 	 -7 1x10 
 

lx10
- 	

6x10
-5 0.100 	0.100 	0.100 	 5.10-8 	2.7 x10- 1 	1.04 40-1 	1.01.10" 	1.10-4

-3 	
9 x10 6 	lx10 	1.10 

	

0.001 	0.001 	0.001 	6x10  9 	2 x10- 6 	7 40-  " 	440- i 3 	2.9x10 3 	1.140-3 	1.1x10-3 	4x10_6 

	

0.100 	0.100 	0.100 	6.10-7 	1 40- 4 	7 x10- 8 440-  IL 	3.140-* 	1.04 x10-L 	1.05x10-i  4x10 

0.100 	0.100 	0.100 	0.100 	0.100 	0.100 	6x10  7 	2.7 x10-1 	1.04 40- i 	3.0x10-6 	1.1x10  1 	1.04x10-1 	1.06x10-1  4x10 

0.020 	0.020 	0.020 	 1 x10_8 	5.240_2 	2.140_2 	2 x10_2 240-5 	2x10-6 1.10-5 	2x10-8 
0.020 	0.020 	0.020 	0.006 	0.006 	0.006 	5x10-8 	5.2x10- 2 	2.1X10-2 	2x10- 2 	1.7x10- 2 	6.6X10-3 	6.6X10-3 	2x10-5  

0.020 	 0.006 	0.010 	 54.0-9 	5.2 x10- 2 640_6 4 x10  4 
	

1.7 x10-2 
3.10-4 	2.10 

0.020 	1.0 	1.0 	0.006 	0.010 	1.0 	
- 4 

- 	 6  2 	
1.10-2 -8 5.10 	5.3 40-2 	1 	 1 	1.9 x10 	1 x1012 	1 	2.10-5  

0.020 	0.020 	0.020 	 6.10-9 	5.2x10 2 	2.1 4.0F 2 	2 x10-2 	2 x10 5 	2 x10_ 6  - 2 	 - 
1.0 	 3.10-7  4.10-6 

- lx10 9 	

212:x111000:J 	

110

5 x10-3  
1 	 6x10 ' 	340-8 	8x10  5 	 2.1r 

.- 4 	 -9 	 _L2 

	

1.0 	 110-12 	4x10 	 1 	
7 

1. 0 	1. 0 	1.0 	 3.10-7 	1 	 0.98* 	
140- 5  4 40 

1 	8x10 	4 x10_ 6 	2.10-8 	
210_7 

* (w2)Ip = 0.58 Hz for this case. 

Note: (1) mp  = 0.1145 kg; GD = 0; d 1  = 0; d2 = -D.29 m; 
(2) blank entries are zero. 



Table 9(h) 

Contribution of Array Substructure to Damping of System Pitch Modes 

INPUT PARAMETERS 	 OUTPUT MODAL DAMPING 

DAMPER 	 ARRAY SUBSTRUCTURE 
 	DAMPER 	 TWIST 	 IN-PLANE 	 OUT-OF-PLANE 

G 	 TWIST 	 IN-PLANE 	 OUT-OF-PLANE 
D 	 C 

(Hz) 	0 1 	02 	03 	al 	02 	03 	01 	02 	03 	D 	CI 	C2 	C3 	CI 	C2 	C3 	CI 	C2 	 C3 

0.15 	0.100 	0.100 	0.100 	 2x10-5 	0.1004 	0.1001 0.1001 
0.15 	 0.100 	0.100 	0.100 	 0.1017 	0.1001 	0.1000 
0.15 	 0.001 	0.001 	0.001 	 0.1017 	0.1001 	0.1001 

0.15 	0.100 	0.100 	0.100 	0.100 	0.100 	0.100 	0.100 	0.100 	0.100 	2x10-5 	0.1004 	0.1001 0.1001 0.1017 	0.1001 	0.1001 	0.1017 	0.1001 	0.1001 

0.15 	0.100 	0.100 	0.100 	0.015 	0.015 	0.015 	0.006 	0.006 	0.006 	2x10-5 	0.1004 	0.1001 0.1001 0.0153 	0.0150 	0.0150 	0.0061 	0.0060 	0.0060 

0.40 	0.100 	0.100 	0.100 	0.015 	0.015 	0.015 	0.006 	0.006 	0.006 	2x10-6 	0.1004 	0.1001 0.1001 0.0153 	0.0150 	0.0150 	0.0061 	0.0060 	0.0060 

0.15 	0.15 	 0.02 	 0.006 	0.010 	 2 x10
- s 	

0.1506 	9x10 7  2x10 7  0.0204 	1 x10 7 	4x10
-9 	

0.0061 	0.0100 	9 x 10_8 

0.15 	0.15 	1.0 	1.0 	0.02 	1.0 	1.0 	0.006 	0.010 	1.0 	2x10
-s 	

0.1506 	1 	1 	0.0204 	1 	 1 	0.0061 	0.0100 	1 

Note: (1) rap = 0.1145 kg; aD=0; d l  = - 0.79 m; d2 = 0; 

(2) blank entries signify zero or values of order less than 10-16 . 
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That effect which input array damping levels have on 

unconstrained system roll/yaw modal damping is demonstrated in 

Table 9(a) by varying the a k  between 0.001 and 0.100. 

Should the array substructure have damping for the in-plane 

directions only, a nutation damping of e N  = 5 x 10 -1°  to 5 x 

10 -8  results (i.e. 	N  is proportional to 	ai 

On the other hand, an initial damping associated with array 

out-of-plane motions only is seen to have an effect an order 

of magnitude greater which, however, is still not 

significant when compared with the measured level of e N  = 

1.5 x  10+. The overall effect on e N  is no greater when 

in-plane, out-of-plane inputs are combined. Using input array 

damping ratios consistent with typical ground-based 

measurements still results in an insignificant effect on the 

-8 
nutation, that is e N  = 5  X  lo 	• 

Table 9(a) also provides information about the 

relationship between damping ratio for unconstrained 

antisymmetric modes (e i ) and the input damping associated 

,IN-PLANE ) * 

with the constrained arrays (oi). Presence of a non-zero 

out - of-plane damping input gives rise to non-zero damping 

ratios for unconstrained in-plane modes and vice versa (i.e. 

4  if  ak,IP = 0.10 or ok,00 p = 0.10, then Ç1,00P = 1 x 10 -  

or çl,IP = 1 x 10 -4 ). Also, as expected, a change in damper 

frequency (S2D) affects  only the unconstrained damper mode 

(CD)  and not vibrational or nutation damping ratio. Of 
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interest, as well, is the influence which critical damping in 

one of the constrained substructure modes might have. For 

example, with a a = 1.0 for the fundamental constrained 

in-plane mode, unconstrained in-plane damping ratios for the 

second and third modes of 0.006 and 0.0003 occur. An input of 

critically damped higher modes, however, does not result in 

significant output damping ratios. Note that, in general, it 

is the fundamental modes which undergo the greatest change 

( e•g• if ak,IP = ak,OOP 

ç i,00 p = 0.031). This is consistent with the nature of the 

dynamic interaction occurring for this system as discussed in 

section 2.7 and is analogous to changes recorded in the 

frequencies (see tables 3, 6, 7 and Appendix B). Also, it is 

implied by such behaviour that the ç's of spacecraft modes 

measured in-orbit are not sensitive to the input a's of those 

higher order, and in most instances, unmeasured modes. 

Table 9(h) provides data for modal damping of the 

symmetric modes. In all cases but one, damper frequency is 

set close to that of the fundamental twist mode in order to 

generate the maximum possible (resonant) effect. Input 

damping ratios for each class of array substructure modes 

(twist, in-plane, and out-of-plane) are first  set separately 

to 0.100 and later are simultaneously set to this same level. 

Greatest effect is observed to be for the fundamental 

= 0.100 then ç i,I p = 0.027, 

unconstrained modes l,TWIST ( 	 = 0.1004, 	1,11,, = -ç  1,00P = 

0.1017). No significant coupling in damping occurs between 
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the different types of oscillation. Such findings are in line 

with the analysis outlined in section 2.7 and referred to 

above. Further, neither a shift in damper frequency nor the 

presence of a critically damped array input mode produces 

measurable changes of levels in the damping factors of the 

unconstrained symmetric modes. 

3.5 Calculations Including Both the Liquid Mercury Damper and  

Array Damping in the Model  

Computer runs made using nonzero input combinations 

for damper and array subsystem damping demonstrated that the 

effect of these two damping sources on unconstrained damping 

factor can be added in a linear fashion. 

3.6 	Measured Versus Calculated Unconstrained In-Orbit Damping  

Factors  

The measured in-flight damping factors are compared to 

corresponding ones synthesized from the ground-test-derived 

substructures test results (Table 4) in Table 10 (Table 10 

summarizes information from Tables 6 and 7). 	Based on a 

viscous damping model, agreement for first and second 

antisymmetric out-of-plane modes is reasonable (i.e. 0.017 

versus 0.015 - 0.022 for r,1,00P  and 0.0066 versus 0.007- 

0.008 for 	2,00P)• 	Good agreement exists as well for the 

fundamental symmetric twist (0.0907 versus 0.080-0.090). The 
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TABLE 10 

Measured Versus Calculated Damping Factors 

Calculated* ç ; 	o 	from 	Calculated* 	ç ; 	a 
k 	k 	 k 	k 	 Flight 

Mode Description 	 Ground-Based Data + 	derived from in orbit 	Measured 
symmetric modes ++  

Viscous 	Hysteretic 	Viscous 	Hysteretic 	c (Table 3) 
k 

Nutation 	 4x10-8 	 2x10-5 	 240-7 	 lx10-5 	1.5x10-4  

1st Symmetric, Out-of-Plane 	 0.0061 	 0.0061 	 0.0305 	 0.0305 	0.030-0.038 

1st Symmetric, 	In-Plane 	 0.0153 	 0.0163 	 0.0305 	 0.0325 	0.030-0.039 

1st Symmetric, Twist 	 0.0909 	 0.0977 	 0.0806 	 0.0868 	0.080-0.090 

1st Antisymmetric, Out-of-Plane 	 0.0173 	 0.0059 	 0.0872 	 0.0297 	0.015-0.022 

2nd Antisymmetrid, Out-of-Plane 	 0.0066 	 0.0067 	 0.0328 	 0.0335 	0.007-0.008 

1st Antisymmetric, 	In-Plane 	 0.0393 	 0.0153 	 0.0788 	 0.0308 	0.012-0.016 

* Damping from Array Substructure Only, op = 0. 
+ 0.015 in-plane, 0.006 out-of-plane and 0.090 in twist. 
++ 0.030 in-plane, 0.030 out-of-plane and 0.080 in twist. 

nutation, the first out-of-plane symmetric (0.006 versus 0.030 

- 0.038), as well as first in-plane symmetric (0.015 versus 

0.030 - 0.039) and antisymmetric (0.039 versus 0.012-0.016) 

modes, however, do not correlate well. 	Comparisons made using 

a hysteretic damping model are also given in Table 10, but 

there is a lack of good correlation with this method also. 	It 

should be borne in mind, however, that the lack of agreement 

is not necessarily due to shortcomings of the calculation 

process; for example, the input u's have a high possibility of 

error due to the procedure used to convert from a one-g ground 

measurement to a zero-g in-orbit state.3 
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The question that naturally arises next is, l is there any 

set of input a's which leads to calculated C's that are 

consistent with flight data'. The input constrained modes are 

very similar to the flight-measured symmetric unconstrained 

modes (the spacecraft central body is heavy relative to the 

arrays and is essentially a fixed-base in orbit - see section 

2.7), and thus it is logical to try, as the input a's, the 

corresponding flight-measured symmetric C's. The runs 

corresponding to this concept are listed in Table 10 as well, 

for both a viscous and a hysteretic model. As would be 

expected, the c's for the symmetric modes match the flight 

data well. However no consistency exists when comparing 

nutational or antisymmetric modes. 

One notes in Table 10 that the calculated CN 

is significantly lower than the measured c N • In Appendix A 

an approximate formula, derived by the Method of Averaging 

[Equation (A.15)], yields estimates of c N  which agree 

favourably with the more exact calculations of Table 10. Two 

conclusions may be drawn; either the array is not the source 

of damping causing the c bi , or the modelling of array damping 

('hysteretic' or 'viscous') is basically in error. 

3.7 Discussion and Overall Impressions 

In the material presented in sections 3.3-3.6, it is 

evident that several of the computed c's do not correlate with 



52 

measured ç's to a completely satisfactory degree. The 

following impressions emerge as to possible reasons for the 

differences between computed and measured data: 

(a) The liquid mercury damper, is not a main contributor to 

damping of vibrational modes. It can be expected that 

like calculations (not done) would also rule out the 

heatpipe. However, these devices could have contributed 

to the measured nutation damping, if they were excited at 

a resonant state. 

(b) The argument that 'the mechanisms that caused the array 

damping measured in ground test are different than those 

occuring in orbit' would help explain discrepancies 

experienced in using ground-test-derived constrained mode 

input data, but this leaves unexplained discrepancies 

which persist when using constrained mode input data as 

derived from in-flight unconstrained symmetric modes. 

Consequently, this argument alone does not explain the 

lack of correlation. 

(c) Two candidate explanations could explain the lack of 

agreement: 

(i) The models put forth for array damping, namely 

viscous, or hysteretic, are inadequate. 	A different 

model could improve correlations (for example, if one 
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proposed that damping forces are proportional to 

then correlations would be better in some cases). 

(ii) There is a source(s) of damping which is unmodelled, 

such as friction in joints between solar array and 

body. 

(d) The hydrazine fuel in the tanks is not believed to be the 

source alluded to in c(ii) above, firstly because the 

system was pressurized and did not allow sloshing or 

appreciable motion, and secondly there was no noticeable 

change in (.;'s over the time period that the fuel depleted 

from its original 40 lb. to less than 10 lb. 

4.0 CONCLUSIONS  

This report demonstrates a method for calculation of 

system damping factors that is based on solving the 'general' 

eigenvalue problem for the motion equations, given component 

data as the base input information. 	The method is seen to be 

systematic and have no computational instabilities or 

procedural problems. 	Numerical experiments show that the 

method is not sensitive to errors in or omission of damping 

factors of the higher order modes of the substructure (which 

are generally not available from test data). 	The procedure 

herein avoids potential mathematical errors resulting from 
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non-rigorous diagonalization of damping matrices that is 

involved in similar synthesis methods based on undamped modal 

theory. 

The application to the Hermes data demonstrates the level 

of performance of the method. 	The synthesized modal damping 

factors differ relative to measured data by factors ranging 

from zero to five. 	All synthesized modal frequencies agree 

with flight measured data, and thus are consistent with 

previously reported works based on models with no damping. 

The damping source for th è structural modes is structural 

damping of the solar array. 	The liquid mercury damper likely 

contributed to damping of the nutational mode. 

Although the level of quantitative correlation between 

measured and sythesized damping factors is similar to that of 

the few earlier published works,'it is somewhat disappointing. 

The shortcomings in correlation are believed to be due to 

inadequacies in the law chosen to model damping of the solar 

arrays, or possibly to omission of a major unidentified source 

of damping (such as friction between the substructures). 

The method can be used for synthesizing damping for future 

spacecraft, provided that the potential shortcomings in 

accuracy are recognized and allowed for. It is believed that 

the method has the potential of being refined to a more 

reliable and accurate process, through development of 
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tractable component models together with a wider variety of 

closely-controlled substructure-to-structure synthesis and 

laboratory exercises. 
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APPENDIX A 

FORMULAS FOR DAMPING OF SPACECRAFT 

NUTATIONAL MODE AS DERIVED BY THE 

METHOD OF AVERAGING 

In this Appendix, certain subsets of Equations (7) through 

(1l) are solved by the Method of Averaging. The background of 

this technique is discussed more fully in Reference 35 and works 

cited therein, and will not be described extensively here. The 

procedure leads to formulas which relate explicitly the damping 

factor of the nutational mode (N) with parameters of the array 

substructure or the nutation damper. 

CONTRIBUTION FROM THE ARRAY SUBSYSTEM 

Consider the special case where the nutation damper is 

absent. 	In order to demonstrate the main effect without 

unnecessary analytic complication, further specialize the model 

to include only one shape factor for out-of-plane vibration 

(e.g. the fundamental mode) and no in-plane motion. 	Note as well 

that no essential mechanisms are lost if y is chosen equal to 

zero and I 	is taken equal to 1 33 . 	Equations (7) and (8b) then 

assume the form: 	- 
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(A.1a) 

(A.1b) 

(A.2) 

•• 
I w i  + h 0 w 3  - 2SW = 0; 

I (:33 — howt 	 = 0; 

•• 
MW + CW + KW - Sw l  = 0. 

In the above equations, all quantities are scalars. w i , w3 

can be transformed to two new variables, A and B, as follows: 

col (t) = A(t)cosp N t + 	B(t)sinp N t ; 

w 3 (t) = A(t)sinp Nt - 	B(t)cosp Nt 

where, 

p 	= h o /I • 	 (A.3c) 

Differentiating Equations (A.3) and substituting into (A.1) 

results in: 

.A cos p N t + à sin pe = (2S/1)W; 	 (A.4a) 

• 
A sin p N t - B cos p N t = 0 . 	 (A.4b) 

Appropriate multiplication by cospNt, sinpNt together with 

additions and subtractions permits Equation(A.4) to be rearranged 

into the form: 

(A. 5a) 

(A. 5b) 

= (s/1)W cos p N t ; 

à = (2S/1)W sin p Nt . 
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Applying Equations (A.3a), (A.5) to Equation (A.2) leads to the 

following vibration equation expressed in terms of the 

transformed nutation parameters: 

U + 2  p 1 	W  + p 21 W = F o  (-A sin p N t + B cos p N t) ; 	(A.6) 

where, 

2 	 2S2 
p i  = K/[M(1 - —H 

MI 

2S 2  
2ç 1 p 1  = Crly (1- ---)1; 

MI 

2S 2  
F o  = h o S/[MI (1- ----)]. 

MI 

(A. 7a) 

 (A.7b) 

(A.7c) 

Equations (A.5) and (A.6) are exact equivalents of Equations 

(A.1) and (A.2) with variables (w l , w 2 ) replaced by variables (A, 

B). 	Equations (A.5) and (A.6) are in 	a form amenable to 

solution by the formal method averaging. 

By way of physical explanation, the equations indicate that 

there are two frequencies associated with the dynamics, p N  and 

p l . 	p N  is the nutational frequency of an equivalent rigid 

satellite, p i  and 	are the well known first approximations to 

the unconstrained first out-of-plane modal frequency and damping 

factor. 	For Hermes p N  is much smaller than p l . 	During steady 

state nutation at frequency pN (after transients of frequency 

p i  have damped down.), A and B are approximately constant for 

'long' periods of time so that the unconstrained deformation, W, 

is excited by the nutation at frequency pN as per Equation (A.6). 



[- -A sin (p
N
t - (1) ) + B cos (p

N
t -

N
)] ; 	(A.8) 

F o  
W(t) = 

2 
P 1 D 
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Following procedures of the formal Method of Averaging, 

Equation (A.6) is first solved with A, B set equal to their 

averaged (essentially constant) values A, g in order to obtain an 

'averaged' steady state value for W: 

with, 

D = 1[ 1-  (PM/P1) 2 1 2 	[ 2 	(P N /P1)] 2 0 

sin (p N  = 2(p N /p i ) 	j,/D 	; 

cos(P N  = [1- (p N /p 1 ) 2 ]/D 	. 

(A.9a) 

(A. 9b) 

 (A.9c) 

Response W(t) of Equation (A.8) is next to be substituted 

into Equation (A.5a) and this equation, in turn, is averaged over 

one period of nutation, thus resulting in a differential equation 

for long-term average behaviour of the nutation parameters A, B: 

dÂ/dt = a 11 A - a 21 B 

dB/dt = a 21 A + a tI B 	. 

where: 

a t , = - (p N /p 1 ) 2  (SF 0 /ID) sin(ls; 

a 21  = 	N'' )2 
 (SF 0 /ID) cos(p N  . 

(A.1 0a) 

(A. 10b) 

(A.1 1a) 

(A. 11b) 
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The latter coefficients can be rewritten using Equations (A.7c) 

and (A.9): 

1 3 	2S2 	r 	 11 	; 	(A.12a) a 11 = -  2 N 	--7 	
pi 

) ( 	

1 

--J 	
( 	

j L  MI 	(1_2s 2 /MI) 2D -   

2 	 2  2,2 1 	p N 	 1 
r
p
N 

 
= if( —7) 	

p l 	 PI 	
—

i71.7 	
[
(1-252/MI

J1  
D -   

Solution of Equations (A.10) take the form: 

a 2i  

A(t) = e
a it t - 	 - 

(A 0  cos a 21 t - B o  sin a 21 t) ; (A. 13a)  

a 	t - 	 - 
B(t) = e 11  (A0 sin a 2I t + B o  cos a 21 t) ; 	 (A.13b) 

_ 
where A o , B o  represent initial averaged values. Equation (A.13) 

can be substituted into (A.3) to obtain the expression for w l (t): 

wi(t) = e
alit

[ -À 0  cos(p N - a 21 ) t  +O  sin(p N - a 21 )t] . (A.14) 

A similar relation can be obtained for w 3 (t). 

Equations (A.8), (A.14) constitute a 'first' approximation 

solution to the system dynamics [Equations (A.1), (A.2)] and can 

be expected to be valid provided the right hand sides of Equation 

(A.5) are 'small'. 	This is the case when pN <( p i , as can be 

seen from Equations (A.5), (A.10) and (A.12a). 



	

3 	2S 2 	1 PN 	( 
	) 

	

( 7)-17 ) 	717) ( 1-2s2/mi 
(A.15) 

= (131/P N )  4! ; (A.16) 
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From Equation (A.14) it is deduced that the effective 

damping ratio of the nutation mode is related to a il  through the 

relation; 

a ll  = 	(p N  - a2 1 ) 

When p N .4. p l , D is approximately unity, (pN 	a21) equals wN  and 

hence, 

Clearly, an identical relation can be derived for either the 

in-plane or any other well-separated modal frequency in which 

case p l , M, S and 	would be replaced by their appropriate 

values. 	The resulting 	N  is then the sum of the contributions 

as calculated from (A.15), for each mode. 

Equation (A.15) is calculated with the initial assumption 

that the damping law for the array is 'viscous'. 	If a 

'hysteretic' damping relationship were to be assumed at the 

out-set, then effectively the damping term of Equation (A.6) 

would be made inversely proportional to pN• 	Carrying this 

through the algebra yields a final result: 

where, q denotes the damping coefficient based on a hysteretic 

damping model and C M  is representative of a viscous damping 

effect as per equation (A.15). 
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For the Hermes parameters; 2S 2 /MI = 0.888; p N  = 0.00277 

Hz. 	For the out-of-plane mode, p l  = 0.45 Hz so that the 

resultant damping factors are: 

CN = 9.29 x 10 -7  

* = 1.51 x 10 -4  

For in-plane deformation, with p l  = 	0.85; 

= (1.39 x 10 -7 ) U1,IP 

= (4.23 x 10 -5 )  c 1 .  

(A.17a) 

(A.1 7b) 

(A.18a) 

(A.18b) 

A 	C1,00P 	of the order 0.020 then results in a 

maximum , n  , ( N  of about 3 x 10_ 6  and 2 x 10 -8 , respectively. 

CONTRIBUTION FROM THE LIQUID MERCURY DAMPER  

To demonstrate this effect, consider the case where the 

arrays are rigid and offset d i  = O. 	Then Equations (7a), (7h) 

and (11) become: 
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I/ I  + h 0 w 3  - md 9 XD 	= 0 ; 	 (A.19a)  

11 3  - h o w, 	 = 0 ; 	 (A.19b) 

m DD + c DD + k D x D - [ri 0 s:1 2 (7.) 1  = 0 . 	 (A.20) 

The above are analogous to Equations (A.1), (A.2) when the 

correspondence is made between 2S, M, C, K and m o d 2 , m D /2, 

CD/2, 4/2 respectively. 

In order to assess a maximum possible effect, consider the 

case where the nutation damper is excited at resonance. 	Then,for 

Equation (A.12): 

p N  = p i ; D = 2c 1 ; 	= 	[21 /2; [2S 2 /MI ] 	1 ; 

hence, 

2 

a 	- 	(" d2 ) 	 131'1 ); 	a91 
(;[) 

Consequently, 

2 
rilE02 ( 1  

D 

(A.21) 

(A.22) 

For Hermes, m p  = 0.1145 kg; d2 = 0.287 m; I= 1145 kg.m 2  

(nominal). 	Based on an estimate of 0.005 for y); Equation 

(A.22) yields the result: 



kN) 
P r‘l 	PD 

( 

• 
(A.23 ) 
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1\1  = 	4.1 x  1O 	( versus 4.6 x 10 -4  from the Natural Modes Theory ) . 

Away from resonance, values are much smaller (typically 

10 -12 ) since for this case it can be shown: 
2 	3 m n d_ 	PN 

u 	z ) (--) 
PD 

With pp = 0.020 Hz and ? p  = 0.005, Equation (23) gives a ti  = 3 x 10-11. 



I x - 2Sy 	= 0; 

+ cji + ky -  S 	= 0; 

(B.1a) 

(B. lb)  
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APPENDIX B 

SIMPLIFIED MODEL FOR UNCONSTRAINED DAMPING AND FREQUENCY 

This Appendix derives simple first-order formulas for 

the unconstrained antisymmetric natural frequency and 

damping factor in terms of the constrained model parameters 

of the solar arrays. 	Also the sensitivity of the formulas 

to mode shape is illustrated. 

Consider Equations (7a) and (8b). 	Specialize them for 

the case where the array is represented by one constrained 

mode, the liquid mercury damper and momentum wheel are 

absent, and y equals zero. 	The resultant equations are: 

•• 	 • • 

where, 

= 	 y  = Wa; 
I 	= 	I LI ; 	 S 	= 	(S 3 ) 1 ; 

M 	= 	( M) 11 ; 	 C 	= 	(C)  
W 11 

k 	= 	(Kw) ii . 

(B. 1c) 



0 2 	= k/m; 

c/m = 2aSt ; 

(B. 3a)  

(B.3b) 

= 	cf; (B. 3d)  

2 
2S 

= 1/ 0  ---) 
m1 

= 	2S 2 /m1 . 

= 1/ (1-K) ; (B.3f) 

(B. 3g)  

13
2 
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Substituting (B.1a) into (B.1b) results in the following: 

(m - 2S 2 /1)Y + c; 	+ ky 	= 0. 	 (B.2) 

Recognizing that, 

Equation (B.2) can be put in the form: 

+ 	+ w 2 Y 	= 	0; 	 (B.3c) 

where 	the effective unconstrained damping ratio 

associated with vibration in orbit, is given by: 

•• 
Y 

and w, the effective unconstrained frequency of vibration 

in-orbit, is given by: 

= 	3çt. 

In the above, e and K are given by: 

(B.3e) 
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For the Hermes fundamental out-of-plane mode (Tables 2-5), 

= 	1130 kg.m 2 ; 

= 	2.33 kg; 

= 	2.03 N.m -I ; 

st 	= 	0.934 rad.s -I  (=0.15 Hz); 

(8 3 ) 1 	= 	30.4 kg.m; 

(D 3 ) 1 	= 	4.99 kg; 

R2 	= 	0.762 m. 

For this set of parameters: 

= R 2 D 3  + 

= 	0.888; 

3
2 

= 	8.96; 

= 	3.00.  

B3 = 34.2 kg.m; 

Consequently, 

a 	= 	0.006 	yields 	 = 	0.018; 

iL = 	0.15 Hz 	yields 	6) 	= 	0.45 Hz. 

Data in Table 3 implies relatively small values of S for 

modes other than the fundamental. 	Hence, according to Equation 

(B.3f), p = 1 so that virtually no change occurs in the 

unconstrained c, 	of the higher modes. 



(B.4b) 

(B.4c) 

(_./(0 = 	1 	+ 
1-K 	100 

(B.6) 
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Sensitivity to Substructure Mode Shape  

Of interest is amount of error introduced in 

predicting unconstrained frequencies and damping in-orbit as 

a result of error in modal properties. 	Setting, 

13
2 	= 1/a; 

then, from (B.3f): 

PS 	= Ki[Sa 3 / 2 ]; 

âUS = uK/fS,( 3 / 2 ). 

(B.4a) 

Consider a percentage change f in S corresponding to a 

change AS. 	That is, 

	

AS = (f/100)S. 	 (B.5) 

Corresponding change over the initial unconstrained damping 

ratio c r  is: 

An identical relation holds for frequency: 

= 1 	(---) 

	

1-K 	100 
(B.7) 



For the Hermes array, 
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100(1-K) 
= 	0.08. 

The sensitivity of unconstrained damping and frequency to 
substructure modal integral coefficient (S) is illustrated in the 
following table: 

	

S 	= 	34 	kg.m 

S 	= 	0 

	

0% 	 + 	1% 	+ 	10% 

	

0.006 	(a) 	 0.018( 0 ) 	0.019 	0.032 

w, 	Hz 	 0.15 	(Q) 	0.450(w 0 ) 	0.486 	0.810 

4;, 	40) 	 NA 	 0% 	 8% 	80% 

Note the dramatic effect associated with changes in the mode 
shape coefficients. 	A 10% change in value of S can cause 
80% error in predicted damping ratio and frequency! 
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