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COHERENT SUB-APERTURE PROCESSING 
TECHNIQUES FOR SYNTHETIC APERTURE RADAR 

by 

K.H. WI and M.R. Vant 

ABSTRACT 

Coherent sub-aperture techniques for processing syn-
thetic aperture radar (SAR) signals are described. The 
techniques involve partitioning the full aperture data, in 
either the time or the frequency domain. Each partition 
or sub-aperture is then processed independently by the ap-
plication of a conventional matched filter, or the equiva-
lent. The low resolution images formed by this process 
are then coherently recombined to form a full resolution 
image. Such a processing scheme has the advantage of high 
computational efficiency and provides the capability for 
the compensation of low frequency spurious motions, even 
when the SAR is operating in a highly squinted, high 
resolution imaging situation. 

A detailed description of two coherent sub-aperture 
techniques namely, the multi-look matched filtering 
approach and the step transform, are presented. The tech-
niques are characterized and the normal computational 
requirements are evaluated. Computer simulations, which 
were performed to verify the feasibility of the processing 
schemes, are also described. 

1 . 	INTRODUCTION 

In  this report two coherent sub-aperture schemes, for compressing 
synthetic aperture radar (SAR) azimuth data are described. One scheme is 
based on matched filtering and the other on the step transform. The pro-
cessing involves breaking up an aperture data set into pieces, in either 
the spatial or the frequency domain. Each piece, or sub-aperture, which 
has a fraction of the original bandwidth, is processed individually and 
then the processed pieces are recombined coherently to restore the orig-
inal bandwidth and hence the original resolution. As opposed to the usual 
non-coherent sub-aperture procesàing, where the major purpose is to smooth 
out speckle noise at the expense of resolution, the technique described 
herein is aimed at improving the processing efficiency, within the con-
straint of having to produce high resolution imagery at high squint 
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angles. The additional requirements that low frequency spurious target 
motion must be corrected, and that the whole system performs with limited 
processor memory, are also imposed. It is also assumed in the following 
discussions that the angle of the antenna, with respect to the aircraft or 
satellite velocity vector, remains fixed, i.e., the target is not spot-
lighted. Most of the techniques can also be applied to spotlight SARs, 
but that problem is not considered here. 

In the first technique, matched filtering via fast convolution, the 
bandwidth of the recorded data is partitioned in the frequency domain. 
Each partition, or "sub-aperture", or "look", is extracted by an FIR 
filter. (The terms "look" and "sub-aperture" are used interchangeably). 

Each look is then compressed by a linear FM matched filter speci-
ally tailored to overcome the complexities associated with large squint 
angle and high resolution. In synthesizing each sub-aperture matched 
filter, a piecewise approximation of its exact phase characteristic at the 
centre of the look is used. It is assumed that there is little phase 
deviation over the entire cross-range extent of the look. 

As described later in the report, the processing requires that each 
sub-aperture data be shifted in range to correct for the effects of range 
curvature. The shifting, which must be done by means of an interpolation 
operation, requires that a certain minimum number of rows or range cells 
be in memory simultaneously. Since each sub-aperture is shorter than the 
full aperture it was extracted from, it is frequently possible to meet the 
minimum number of rows requirement with sub-aperture processing whereas 
with full aperture processing it is not. Even in situations where the 
minimum number of rows requirement is met with the full aperture, it may 
be advantageous to use sub-apertures to increase the interpolation 
efficiency. 

In situations in which target motion must be compensated, the sub-
aperture approach allows, at least in theory, for piecewise compensation 
of the target motion over the number of sub-apertures. This of course 
assumes a suitable motion spectrum for the target. 

The second technique, known as the step transform [6-9], is a 
modified form of the deramping technique, wherein small deramp references, 
whose lengths are a fraction of the full aperture, are used to extract 
sub-apertures. Upon deramping each look, the data set becomes an ensemble 
of CW signals whose frequencies correspond to the relative spatial 
locations of the targets. Then, the target spectra can be extracted using 
a filter bank, which can be realized by the discrete Fourier transform. 
The process is repeated for the other sub-apertures, and the  extracted 
spectra, from the sub-apertures that are associated with a given target, 
are added coherently to form an image of the target at full resolution. 
The major advantages of this technique include a small requirement for 
memory and a smaller signal loss than with the conventional deramping 
technique. This report extends the original concept of the step transform 
[6-9 ] and shows how such effects as range curvature and cubic phase error 
can be overcome. 
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In the following sections details of the different principles 
underlying the technique of sub-aperture processing via matched filtering 
is given. Then, the general form of the radar return, including such 
effects as range curvature and cubic phase error is formulated, followed 
by a description of the image quality degradations that result if these 
effects are left uncompensated. Next, the general form of the sub-
aperture (multi-look) matched filter is synthesized, using a piecewise 
approximation. This is followed by an analysis of the projected per-
formance of the technique, based on the computer simulation. Next, an 
overview of the various deramping techniques is given and finally, the 
computational requirements for the approaches are calculated, and their 
efficiencies compared. 

2. 	BASIC CONCEPT OP COEBRENT SUB-APERTURE PROCESSING VIA MATCNED 
FILTERING 

The principle of sub-aperture processing is based on the fact that, 
provided the frequency variation with respect to time is monotonic, and 
the amplitudes in the data change gradually, there is a one-to-one mapping 
between the time and the frequency domains. This phenomenon is known as 
the principle of stationary phase [3]. How this principle relates to SAR 
processing is explained next. Point targets paraded on a straight line 
parallel to the radar flight path will give exactly the same phase 
history, and will differ only in their respective time delays. If the 
collected target return ensemble is Fourier transformed, the frequency 
responses of ail  targets will be superimposed on the same frequency range, 
but within the return from each target there will be embedded a linear 
phase term (in addition to other inherent higher order phase terms), which 
signifies its spatial location. A look extraction process in the 
frequency domain is equivalent to simultaneous look extractions for all 
targets illuminated by the same portion of the antenna pattern. The 
portion of the spatial look thus extracted depends on the frequency-space 
relationship, which in turn is governed by the geometrical complexity of 
the imaging scenario. The relationship between frequency and space is 
greatly simplified, indeed it is one-to-one, if the principle of 
stationary , phase holds. 

In order to facilitate the illustration of the concept, we assume 
that the Doppler phase history traced by a point target is purely quadrat-
ic (i.e. linear FM) over a full aperture, of duration T. This typifies 
the side-looking, low resolution case. The form of this one-dimensional 
signal is 

..orBt 2 
J- 

rt 1 	T 
1z(t)= rectu-j e 	. 

T 

rti 
where B is the bandwidth in Hz, and rect 	is a rectangular function of 

duration T. Assuming the time-bandwidth product is sufficiently large, 
the Fourier transform of p(t) can be approximated, using the principle of 
stationary phase [3] as: 
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where F11 denotes the Fourier transform operation. The first and the last 
factors are of no importance to our formulation, and hereafter are 
dropped. 

The spectrum can be broken up into NL (even) equal looks as shown 
in Figure 1 and the signal spectrum in (2) is partitioned to give: 

(2) 

Pig. 1 - Basic principle of coherent sub-aperture processing 
for two ideal linear FM signals. 
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(7)  

The rect[ 1 can be thought of as an ideal low pass extraction 
2q+1 

filter with bandwidth B/Ny and centred at 
egy 

If the qth look spectrum is shifted to baseband by substitution 
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2NL 
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The last two exponential factors are look dependent and deterministic, so 
they must be taken out before the universal matched filter is applied. 
When this is done, 

2ITT(2q+1 4. jr(2q+1 )2B2 

U"g  (f) = 11' g  (f') e N 	2NL 	
B 	2Ny 

irr 2 

NLfe 	a 
= rect[----] e 	r 

B 

is obtained. The matched filter for U"(f') is 

wT 2 

M(f') = rect[ELII] e B  

After multiplication by the matched filter in the frequency domain, the 
compressed signal is 

Ra/ (f') = W(f t ) M(f') = 	 (8) 

After frequency shifted back to its orignal frequency position, using (4) 
for the relationship between f and f', the correlated signal becomes 

Rq (f) = rectgL. (f - «.g1.18)] 	 (9) 
22% 
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The same process can be applied to all the other looks, and then the looks 
can be summed or concatenated together to form the original bandwidth 
signal, 

NL 
— -1 
2 

, NL, 2q+1 n )] 
R(f') M l 	reCt...... ( .l. 	'''....W 	. 

B 	2NL 
NL crie.%•■ 

2 

rf'l = rectu- J. 

The compressed pulse, or the point spread function of the point target, is 
obtained by taking the inverse Fourier transform of R(f'), i.e., 

r(t) = B sinc(Bt). 	 (11) 

Alternatively, the summation can be performed in the time domain 

NL 

2 -1 
r(t) = 	F 

r 	rNL( 2q+1_)11 

NL 	 B 	2NL 

NL 	 r 2q+1 % -1 	 j2.1u -A-mft, -,- Mt 
B 	rElt ) 	er 

. I-  _ sinci--J e 
NL NL 	NL 

2 

= B sinc(Bt) • 	 (12) 

The above analysis is illustrated in Figure 1, where two point 
targets located at t=0 and t=t' and at the same slant range are assumed to 
be present. A Fourier transform over the entire time domain results in 
superimposed spectra of the two targets, since they both have the same 
phase characteristic. Moreover, there is a one-to-one correspondence 
between the time and the frequency domains, as illustrated by the mapping 
of two corresponding strips of the time signals into a single superimposed 
strip in the frequency domain. The spectrum is then partitioned into 
equal looks. Each look is individually processed. All the processed look 
spectra are then concatenated and inverse Fourier transformed to form the 
final compressed pulses. Since the system is linear, an ensemble of 
target returns can be processed simultaneously. The processing procedure 
is summarized in Figure 2, where the coherent look summation takes place 
in the time domain. 

(1 0) 
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Fig. 2 - Coherent sub-aperture processing procedure for an ideal 
linear PK signal. 

Other than the fact that the foregoing approach can ease the 
computer memory requirement in some cases, it is obvious that such a 
processing scheme would be redundant if the input signal is as simple as 
that given by (1). However, complications arise under different operating 
conditions such as: high squint angles, long integration periods, and 
spurious target motions. In order to combat these complications, with 
little loss of processing efficiency and small increase in memory 
requirements, it may be necessary to fine-tune a matched filter for each 
segment (look or sub-aperture) of the input data. The inter-relationship 
between the sub-aperture and this fine-tuning procedure will be discussed 
further in the following sections. 
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3. 	GENERAL FORM OF RECEIVED SIGNAL 

The received signal in the azimuth dimension, encompasses more com-
plications than the one-dimensional linear FM signal described in the pre-
vious section. When the antenna is squinted away from the side-looking 
position, abnormalities in phase and time of arrival of the radar return 
signal become a problem. In general, higher order phase terms (e.g. the 
cubic term) may severely degrade the compressed pulse width and the inte-
grated sidelobe ratio. If the time of arrival of the radar return signal 
and the digitization timing are not synchronized then the range compressed 
target history associated with a point target is no longer confined to a 
single row of digitized azimuth data, but instead spans several range 
cells. This phenomenon is commonly known as range migration. A thorough 
treatment of these effects can be found in [2]. 

Next, we will describe, in terms of the slant range and squint 
angle, a general form of the received signal. This formulation will pro-
vide for a better understanding of the various complications and hint at 
ways to suppress image quality degradations, while still maintaining a 
reasonable degree of computational efficiency. 

With reference to the flight geometry depicted in Figure 3, the 
distance, r(s), between the radar and a point target on the ground, for a 
flat Earth model, is 

r(s) = s2  + r: - 2srlecosnr1  

where s is the distance along the radar flight path, rF (=r(o)) is the 

e>ce  

(13) 

Fig. 3 - Airborne SRR geometry with fixed antenna squint 
angle (assuming flat Earth). 
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slant range at the centre of the aperture, and F  is the squint angle, 

measured between the slant range and the aircraft velocity vector, as 

shown in Figure 3. 

For ease of analysis, the right hand side of (13) is expanded into 

a Taylor's series, i.e, 

where ao = rF, 

- cosIF. 

sin 2 nF  

2r 2 	' 

cosnpsin 2nF 

 2r2 

sin 2np(5c08 2np -1) 
al+ = 

r 3 

and the form of the received signal can be expressed as a two-dimensional 
function, i.e., 

X 
gD (t t, a )  = 	-2 r(s)] e 

where C is the velocity of propagation, 

t' = t-m, 

is the time measured from the start of the eh pulse, and represents the 

along range dimension, 

s = mV A eq  , 

is the distance travelled by the sub-aircraft point along the sub-aircraft 
track during m interpulse periods of length A sec., and represents the 
azimuth (cross-range) dimension, v  the radar platform velocity, À 

is the transmitted carrier wavelength in metres, and Ip(t) is the 
compressed range profile. The time delay embedded in 1p signifies the 
range curvature variation over the aperture. The scattering magnitude and 
the antenna pattern are assumed to be unity. 

The àeries given in (14) converge. In most practical cases, when 
calculating the amount of range migration in only the terms up to the 
quadratic need to be included. However, when calculating the phase term, 
which must be accurate to within 0.75w at aperture edge with heavily 

(15) 
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windowed data, the cubic term sometimes has to be included (see Appendix 
A). With these modifications the general form of the received signal 
becomes 

gp(t.,$) 	Ip[t. - 2L (a0  + als + a2s 2 )] 

• 4e, 	 3 + als + a2s 2 + a3s 1 

X 

(16) 

The envelope term in (16) shows that the locus of the ridge of the 
2 

range compressed data is defined by a parabola,t'=--(a +a1s+a2s
2 ), in the 

(t',$) domain. The tilted linear locus, due to the a2s 2  term, is known as 
range curvature [9]. In squinted mode SAR, the amount of range walk can 
span several range oells, thereby prohibiting the use of one-dimensional 
processing. In practice, range walk can be avoided by acquiring data 
along the line ao+als, this simplifies the argument of *; and by 
demodulating the data in azimuth to remove the als phase term. Thus 
gT (t',$) can be rewritten as 

2 

4e, 
-5--l ao a2s 2  a383 1 

X 
g(ti r s) e 114t'- 	a2s

2] e . 	(17) 

The acquisition scheme is implemented by triggering the A/D conversion 
2 — (ao+als) sec. after an FM pulse is transmitted. As the radar plat- 

form advances in the s-dimension, the A/b triggering delay time also 
changes accordingly. In doing so, individual target data are placed on 
arectangular grid of a two-dimensional computer memory array, and thereby 
minimizes range migration in the range dimension. This is shown in Figure 
4. The recorded data look as if they were taken in the side-looking 
position (71F 90 . ). However, there is a major complication: targets 
with different true ranges, rg, and thus requiring different phase 
compensation, are mapped into the same processing cell. The processing 
scheme outlined here does not allow different compensation to be applied 
to the various targets if they lie in the same cell. Therefore, the 
region, over which the same compensation can be used, must be large enough 
to accommodate the change in true range with azimuth as we nove from one 
end of the cell to the other. 

3.1 	Spatial-to-Spectral Mapping in Azimuth 

Since the look extraction and matched filtering are performed in 
the frequency domain, it is necessary to know the form of the range 
curvature in that domain. The mapping of range curvature between space 
and frequency will not alter the overall parabolic shape of the curvature 
significantly. Based on the principle of stationary phase, it can be seen 
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that the most important term in the mapping is the quadratic phase term, 
4w 
-x-- a2s 2 . This reinforces our notion that the shape is parabolic. However, 
it is not that simple. The cubic phase term, 74 -71 a3s 3 , introduces a non-

linearity into the mapping, which slightly distorts the parabolic shape of 
the range curvature. The form of the mapping is discussed in the next 
paragraph. 

The point-to-point correspondence between the two domains is 
obtained by differentiating the phase term, 8(s), given in (17): 

11 

1 de(s) 	2 r  
f = f(s) 	— 	= - 	L2a 2s + 3a3s 2 ), 

2w ds 
(19) 
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4a2 
for a3 = 0. 

12 

or 

3a3s 2 + 2a2s + — = O. 
2 

The solution to this quadratic equation in s is 

-2a2 + /4a2
2 - 6a3Xf for a * 0; 

6a3 	 3  

(20) 

(21) 

The f-s curve given by (19) is sketched in Figure 5. 
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where T is the range sampling interval. In general, a3 is small, and dl 
can be approximated as 



, 2 
A 	2 

8a2CT 

13 

dl(f) (23) 

which is a parabola, as noted before. 

4. 	ONE-DIMENSIONAL AZIMUTH PULSE COMPRESSION WITHOUT RANGE 
CURVATURE COMPENSATION 

The exact matched filter for the SAR given by (17) is two-
dimensional Pl. Two-dimensional data processing is characterized by its 
massive data size, and its efficiency is contrained by the available 
computer memory space. Therefore it would be advantageous if one-
dimensional processing could be used instead. This can be achieved under 
either of two circumstances: 

(i) if the range and azimuth signals can be decoupled by break-
ing up the aperture into small pieces, each one exhibiting 
negligible curvature, 

or 

(ii) if the range curvature is small enough to be disregarded. 

In this section, we will assess the degradation due to uncompensated range 
curvature and in Section 5 we will consider the decoupling approach. 

The dominant deterioration caused by range curvature is the broad-
ening of the mainlobe of both the azimuth and the range compressed pulse. 
We will attempt to characterize the mainlobe broadening effects in range 
and azimuth in a simple manner, while still keeping the description 
general. Because of the non-linear and three-dimensional nature of the 
scenario, namely, range, azimuth and signal amplitude, a more precise 
characterization can only be obtained by empirical means, and then only 
for a limited set of parameters. 

4.1 	Mainlobe Broadening in the Azimuth Dimension 

A typical range compressed profile exhibiting range curvature is 
shown in Figure 6. Profiles of the uncompressed azimuth signal in the 
spatial and the frequency domains are shown in Figures 7(a) -(c). The 
envelopes of these profiles are shaped by coupling between the range and 
azimuth signals. Antenna pattern effects have been neglected. Provided 
that a Ramming (or similar) window is used during range compression and 
that the range curvature is approximately parabolic, the overall shape of 
the profiles will be insensitive to practical parameter variations. 

In this characterization, the azimuth profile passing through the 
origin (i.e. at s=0, and f=0) was found to be the major energy contributor 
(see Figure 7(a)). This centre profile was used to examine the effects of 
range curvature. A generalized parameter R was used to characterize the 
extent of the cuvature. R is the ratio of the full bandwidth, Np  cells, 
measured along the range curvature locus, to the -6dB (half amplitude) 
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bandwidth, 2n' cells, measured along the middle of the range cell, i.e., 

R = NP  . 
2n' 

The parameters R and n' are shown in Figure 8. 	Note that n' 
locates the -6dB points in range and azimuth. The offset of the range 
profile is given by d, which is measured from the centre of curvature (see 
Figure 8). The parameter d can be used to relate n' to the other 
parameters. First, d is expressed in terme of the number of range cells 
of curvature: 

1.81yRA R  S 
d = 	 (25) 

2 

where the 1.81 factor is the -6dB mainlobe width of a Ramming weighted 
pulse, expressed in terms of range resolution bins (see [4], p.55), yR 
is 

sampling frequency  ; 	where yR>1, 	 (26) 
range signal bandwidth 

14 

(24) 

YR 
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d = a2n' 2ASA2  

sin2nw 2 2 = --à- n' ASA  , 
2rp 

where ASA is the azimuth sampling interval in metres. 	The desired 
expression for n' can now be obtained by equating (25) and (27), i.e.. 

2 
0.905yesR .11.12± n' 2ASA2  

2rp 

and solving for n': 

1.81 yRrpASR  

/  AS
2sin21 A 	F 

This expression for n' can then be substituted in (24) to obtain the 
desired expression: 

%ASA sinnp 
R = 	 1 	 (30) 

2 ii1.81 yitrpASR  

The azimuth resolution, as derived in Appendix B, is given by 

18 

(27) 

n' 
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(31) 

value R will be. For 
the ends of the azimuth 

even in this situation, 

1.0 1.5 2.0 

1.4 Xrip 
P 

2NpASAsinnip 

This can be substituted in (30) to further simplify the expression for R, 
i.e.. 

R = 
0.26777-  

YRASR 
(32) 

The larger the 
small curvature (R<1), 

Np 
aperture bounded by 

2 

curvature, the larger the 
the -6dB point is beyond 

N 
i.e., 111'1 < 

,
However, 

— 2 
R remains a valid parameter for the characterization. 

Computer simulations of the amount of mainlobe broadening were per-
formed for different values of R. The results are plotted in Figure 9. 
The percent broadening of the compressed mainlobe width, measured at the 
-10dB points, was defined as 

28- 
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Fig. 9 - Empirical azimuth beam broadening. 
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WA 
W -U-j2 x 100% 
Wc  

where Wu  is the mainlobe width without range curvature compensation, and 
Wc  is the mainlobe width with range curvature compensation. Before Wu  
and Wc  were measured, the compressed mainlobes were interpolated by a 
factor of 100. An empirical equation relating WA and R, was developed 
to fit the measurements: 

WA = 3.40- 1 , for R < 2, WA < 2.7%. 	 (34) 

In the above computer simulations, a Ramming window was applied in 
the frequency domain over the uncompensated range curvature azimuth data 
set before the inverse Fourier transform was taken. Therefore, N p  is no 
longer a measure of the bandwidth associated with a single point target 
but is instead a measure of the length of the weighted aperture. 

4.2 	Mainlobe Broadening in the Range Dimension 

With significant range curvature, energy is spilled over onto the 
concave side of the range curvature thereby broadening the already com-
pressed range profile. If a Hamming window is applied in the frequency 
domain in azimuth, energy at the end of the curvature is highly atten-
uated, and the spill-over in the range dimension is small. Computer 
simulations were used to demonstrate that under normal operating con-
ditions the rate of mainlobe broadening in range is slower than that in 
azimuth. 

A parameter x, which is the number of range cell crossings at the 
end of the aperture, normalized by the -6dB range mainlobe width, was used 
as a simple and effective way of characterizing the range broadening. 
This parameter x is given by: 

number of range cell crossings  
X- 

1 .81yR 

2 r ND .%2 a2ASA- 	)- 
2 

(33) 

1.81yR 

from (31), 

0.0338X2rp x = 	  

YRP
2  

Computer simulations of the amount of range mainlobe broadening, expressed 
as a percentage, were performed for different values of x; the results are 
plotted in Figure 10. An empirical equation 

WR = 1.46x2 - 562 , for x < 2, wR < 9%, 	 (36) 

( 35) 
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was found to fit the curve. 

2 .1 
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Fig. 10 - Eepirical range beam broadening. 

5. 	A PIECENISI QUADRATIC APPROXIMATION - CORNRINT SUB-APERTURE 
PROCESSING 

In this section, a generalized coherent sub-aperture processing 
technique is described. This technique overcomes the processing problems 
caused by the non-linearities that arise when imaging at a high squint 
angle and/or to a high resolution. The reasons for favouring the sub-
aperture approach over the continuous straightening approach [11] are two-
fold: 

i) spurious low frequency motion effects, if they exist, can be 
corrected over small areas by applying different compensa-
tion, e.g. azimuth PM rates, to each sub-aperture; and 

ii) The sub-aperture technique, with its piecewise correction, 
requires much shorter row-lengths than the continuous 
straightening approach, thus the across-row operations re-
quired for the interpolation during range curvature correc-
tion can be much more easily accommodated, i.e., more rows 
can be fit in memory simultaneously. 

The major goal is to devise a sub-aperture processing scheme that 
can remove, without resorting to two-dimensional processing, the distor-
tions attributed to the non-linear effects previously described. As with 
most problems involving non -linearities, piecewise approximation was 
deemed to be the simplest approaoh. Each piece of the signal was assumed 
to be linear up to a certain degree of error tolerance. Figure 11 illus-
trates a slant range plane containing the flight path and a point target 
of interest. The fight path is broken up into several segments to signify 
different sub-apertures. Each sub-aperture is extracted by an FIR filter 
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and is then demodulated by a matched filter, especially designed for it. 
The extraction filtering and the matched filtering can be combined in the 
frequency domain and the two processes performed simultaneously. All the 
sub-apertures, except the two end ones, which may only be partly filled, 
have equal bandwidth. 

POINT TARGET 	 POINT TARGET 

Fig. 11 - A slant plane containing flight path and two point 
targets, a and b. Note the corresponding look 
designations (denoted by LA) are displaced by the same 
amount as the separation between two targets. The look 
geometries are congruent. 

In order to define the matched filters for each sub-aperture 
several other things must first be done. The look centres in the 
frequency domain must be located, and their frequency domain locations 
translated into corresponding spatial domain ones. This ties down the 
values of effective squint angle, nci, of the qth look, and slant range 
to the look centre, rq , which are required to define the matched 
filter. Next the phases, over the look and over the local section of the 
full aperture, are matched. The look phase contains terms of up to 
quadratic order, whereas the full aperture phase contains terms of up to 
cubic order. The phase matching must be done in order to maintain 
coherency over the phase jumps between the looks. Range curvature com-
pensation must also be applied; in this case, as already discussed, the 
curvature compensation is to be piecewise. Finally, the demodulation 
which removed the ails term during data acquisition must be accounted for. 
After all these operations are completed the matched filter can be 
defined. 

Referring back to Figure 11, each look can be thought as inde-
pendent, with its own look centre, slant range and squint angle. The 
locations of the look centres are based on the number of looks required, 
or equivalently, the bandwidth of the extraction filter. In the present 
scheme, the entire frequency axis is extracted even though part of the 
spectrum has no signal. 

In the frequency domain, the look centre of a sub-aperture is given 
by, 



84 

sinnp 
(40) 
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2q-1 	NL 	 NL 
fff  = — 

2NL 
Be ; - — -1 < q < — , N1, is even, 

2 	 2 

where q denotes the look index, and Be  is the bandwidth of a pre - 
designed extraction filter. Be  is a function of the number of looks, 
NL, such that BeNL=0.9fs , where fs  is the sampling frequency. A 

bandwidth of 0.1fs is reserved as guard-band near the Nyquist frequency. 

The look centre in the spatial domain can be calculated using (21): 

-2a2 + ri:i16777;  
for a3#0; 

6a3 
(38) 

Xf 	
, for a3=0. 

4a2 

Once sa  is known, the slant range rq , to the qth look centre, from 
the point  target of interest, and the squint angle nq, can be calcu-
lated. Referring back to Figure 11, we have, 

sin(180 .-11.) 	air( ng-TIP ) , 	  m  

	

rp 	 sq  

sinnp 
or, 	nq  = tan[ 	 J• s 

coanp - r  

sinnp 	sin(180 e-nq ) 
Also, 	m 	  rq 	rp 

so that rq = rF 
sinnq  

Equipped with nq  and rq, and the previously derived quadratic approxi-
mation, we can synthesize the phase of the acquired data. Within the 
qth sub-aperture, the phase is, 

41; 
(9 1 ) = - — (a + al s' + a2 

X 	ceg 

where s' is the spatial co-ordinate with its origin located at the 
sub-aperture centre, 

a 	rq, 	 (42) 

alq  = -cosnq , 	 (43) 

(37) 

(39) 

(41) 
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and (44) 

(45) 

sin2 nq  
a2q  = 

From (16), the phase of the original data is given by, 

41.  
e(s) = — — (ao  + als + a2s 2 + a3s 3 ). 

X 

The phases 8q(s') and B(s) must match very closely over the look, i.e., 

(s') = B(s), for s = sq, s' = 0, 

and 	 (46) 

L 	, go 	L 	 L 	L 
8q (s') e e(s), for s„,- —g-- %scs,01-1_, i.e., - __.1. tloe _.11....„ 

' 2NL 	' 2NL N 2NL 	2 L 

where Ls  is the full synthetic-aperture length. 	Since s'  
(s 1 ) can now be written as, 

e (s) = —.1I tam  + s ici (s—sq ) + aws—sq) 2, J.  

Because amplitude matching is unimportant, we can set the amplitude to be 
unity without piecewise approximation, and rewrite the piecewise 
synthesized phase signal over the sub-aperture as 

gq(t',$) = 	!a2 8
21 ieq(s) 

c 	e 

ifir -5-- Weal  + a lq (s-sq ) + a2q (s-sq ) 2 ] 
1 	X 	 . 

= Ildt'- 2  -a2s 2 j e 
C 

(4 8) 

Ile(t) represents the profile of the range compressed pulse over the range 
1 dimension, and the variable [t'- 2 — a2s 2 j represents the continuous range 

curvature, as a function of position in the azimuth aperture. 	As 
described in Section 3, range curvature correction is sometimes required 
to prevent range and azimuth broadening from occurring. 

If range curvature compensation is needed,  interpolation must be 
performed on the range compressed signal in the range dimension. The 
range interpolation can be done in the azimuth frequency domain, prior to 
azimuth fast convolution compression, or in the azimuth spatial domain, 
after azimuth compression. In the former approach, the range curvature 
can be fully compensated, whereas in the latter approach only a piecewise 
compensation can be done. The reason for this is as follows: once the 

(47) 
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azimuth signal is compressed, the curvature phase is transformed into 
broadening of the range compressed pulse, and the trace of the range cur-
vature is lost. The only way to correct for curvature after the azimuth 
signal is compressed (i.e. the post-compression scheme previously men-
tioned), is to use sub-apertures, each of which produces a pulse which is 
minimally distorted, but is displaced in range from the centre of the 
range cell. The displacement is equal to the amount of range curvature at 
the sub-aperture centre. Range shifting of the sub-apertures, by means of 
interpolation, can be used to remove the curvature. Such interpolation is 
equivalent to performing a piecewise correction along a single azimuth 
array in the frequency domain. This is shown in Figure 12. This piece - 
wise curvature compensation is incomplete and causes paired-echoes in the 
final image, see Sections 6 and 7 for further details. 

Fig. 12 -  Look  extraction with range curvature. (a) Signal history 
of a point target. (b) Look extraction with piecewise 
range curvature correction (only the positive frequency 
axis is shown). 

Despite these paired-echoes, post-compression interpolation is 
preferred in the present scheme. This is because there is insufficient 
computer memory to do the cross-row interpolation operations on the long 
rows needed for full aperture correction in the range, azimuth-frequency 
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domain. 	In this case, the shorter rows required for the piecewise 
correction of the sub-apertures make the post-compression, range-azimuth 
spatial co-ordinate correction technique more attractive. 

The range curvature profile Ils(t), given in (48), will also be 
approximated in a piecewise fashion, namely, 

-5'1114 
2 	2 	

001  + alq (s-sq ) + a2q (s-s ) 2 ] 
1 

gq (t4,$) = 114 .g- - a2s j e 
C 

(49)  

over the sub-aperture, where t' = 2 - a2s 2 near the look centre. 11)(t) now 
represents a coupled, slanteeprogectign of the compressed range profile 
onto the uncompressed azimuth profile. This coupling only affects the 
spectrum magnitude, leaving the phase unaffected. For ease of 
illustration,  4i(t) will be dropped, i.e., it will be assumed the curvature 
has been properly corrected. Thus, (49) becomes, 

..er a 	alq(s-sq) + s2q (s-sq ) 21 x  oq 

The phase of the original signal is 

als 	a2s
2 	

a3s
3

I 
g(s) = e 	 (51) 

4w This signal is modified by removing the phase term - — ails, during data 

acquisition, i.e. the recorded phase signal is 

4w 	4w 
j—als 	 + a2s 2 + a3s 3 ) 

-i(s) 	g(s) e 	e X • 	(52) 

It now remains to define the matched filter for this signal. 
Setting g(s)=g4(s) over the sub-aperture q, we get 

gq (s) = g(s) = g(s) 

,4w_ 

X 
gq (s) e 

4wr 
-5-_is°c1 + alq (s-sq ) + a20/(s-sq)

2, 	ills 

X 	 X e 

(53) 

gq (s) = e (50)  

where gq (s) is a quadratic piecewise approximation to 4(s) over  the 



M(f) =  

4w 
j--(aocraigsq) 
X 

e 

wX 2 ho  + j2wsgho  
4a2c/  

(56) 

4w 	 2% 	XI' 	2 
- al cisq + auere 

X cel  4a2 , (57) 

sub-aperture. Equation (5.17) can be regrouped as, 

4wr 
-5--L(aocraigsq) + (ale al)s + a2g (s-sq ) 2 ] 

.4q(s) = e 	 , (54) 

and the matched filter, m(s), can be derived from this regrouped 64(s), 
i.e., 

m(s) =  

4w 
- ale& - (aleal)s + a2 (-s-s ) 2 ] 

= e 
(55) 

The Fourier transform of m(s) is 
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2 
where ho  = f + — (al

q 
 -al). The 

X  
unity, and the small amplitude 
By completing the square of the 
be rewritten as 

amplitude of M(f) is normalized to 

variations from look to look are ignored. 
phase of the second exponent, (5.20) can 

M(f) = e 

2 r 
where h = f + — 1,41c/ - al) - 2sqa2q]. 

The q dependent phase terms ensure phase continuity at the boundaries 
between adjacent looks in the concatenated spectrum. The frequency 
dependent phase terms cancel the quadratic and linear phase factors in the 
original data. The above matched filter can be applied directly onto the 
Fourier transformed data via fast convolution. 

6. 	COMPUTER  SIMULATIONS  OF CŒOMMEWP SUB-APERTURE PROCESSING WITH 
PIECENISE CORRECTION 

In this section the digital form of the received signal from a unit 
amplitude point target, and the form of the continuously straightened 
spectrum of the signal are described; the effect of the cubic phase term 
is examined; and the results of a computer simulation of piecewise 
correction, i.e. sub-aperture processing, are presented. 

It was assumed in the simulation that a Ramming window was applied 
to the range frequency data prior to range compression, and that the slope 
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of range curvature versus azimuth position in the aperture was small at 
either end of the aperture. It was also assumed that the linear component 
of range migration was removed during the data acquisition operation. 

6.1 	Form of the Received Signal. 

The digital form of the received signal is 

4w 
-j--r(m) 

G(m,n) = R(m,n) e 

where m,n are the running indices for azimuth and range respectively, 
R(m,n) is the amplitude profile of the recorded signal, and 

2 r(m) = /(mASA) 2  + rip - 2mASArgcosnip - almASA 

2 = (mASA) 2  + rp - 2mASArpcosnp + mASAcceng. 	(58) 

where ASA  is the azimuth sampling interval in metres, and 

Ls 	Ls 
- 	< m < 	, where Ls is the synthetic-aperture length in metres. 

2ASA 	2àSA 

The last term in . (58) accounts for the cancellation, during data 
acquisition, of the linear term mASAcosT1F. R(m,n) is the compressed 
range profile, which runs along the range curvature. It is given by the 
Fourier transform of the Hamming window [4], i.e., 

R(m,n) = DI + 0.426(D2 + D3), 	 (59) 

where D1 = since—), 
YR 

Nw 	x 	 x 
D2 = e 	sinc(-- - 1) = sinc(-- - 1), 

YR 	 YR 

D3 = e 	 + 1) = 	+ 1), 

and Nw  is the range data length for compression, which is the same as 
the window length. The peak amplitude of R(m,n) has been normalized to 
unity. For large Nw, the phase terms, w/Mw, in D2 and D3 are 
negligible. The variable x is given by 

r(m) 
x = n -  N0 	, 

àSR  

where àSR  is the range sampling interval in metres, yR is the 
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over-sampling factor in range, and No  is an arbitrary offset for 
positioning the data in the middle of the two-dimensional computer 
memory. A profile of a compressed range pulse is shown in Figure 13. To 
obtain this figure, a set of typical operating parameters was used (see 
Table 1). 

PIXEL NUMBER 

Fig. 13 - Compressed range pulse with damming weighting. 

6.2 	Continuous Range Curvature COmpensation 

As previously described, one way to remedy the energy spill-over 
effect caused by range curvature is to straighten out the curvature by 
continuous correction in the range-spatial, azimuth-frequency domain. An 
azimuth gpectrum, straightened by this method is shown in Figure 14. It 
is virtually identical to what would be obtained if there were no 
curvature. The interpolator used in the straightening process was a 
modified four-point sine  function [5] given by 

sin(wx)x2 
W(x) = 	 I

„ 
 - 	f 

wx 	16 

where x = i + INTEGER(21) -LI, i 	-1, 0, 1, 2, 

• 
T. and ti = 	X

2 	
m2 + n, - r. < m < 121:, 

	

2 2 	 — 

	

8CTa2ASANT 	 2 	2 
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TABLE 1 

Processing Parameters for Computer Simulation Examples 

Parameter 
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100 km 
0.0321 m 
1.358 m 
1.617 m 
1.18 
0.75 m 
5 nS 
1.1 
30' 
2.33 

Stant Range (rip) 
Wavelength (X) 
-3dB azimuth resolution (p) 
Azimuth sampling interval  (SA) 

 Azimuth over-sampling factor (yA) 
Range sampling intervals (ASR) 
Range sampling period (T) 
Range over-sampling factor (yR) 
Squint angle (nip) 
Range curvature at the end of the full 

aperture 

N.B. For examples with squint angles (nip) equal to 15 .  and 6, ASA 
 will be changed accordingly, all other parameters are kept 

constant. 

-500 	0 	500 
SPECTRAL NUMBER 

Fig. 14 - Azimuth spectrum continuous range curvature 
compensation. 

where NT  is total number of data points used in processing. Eauation 
(62) is the digital form of (23) with f = m/NTASA . The straightened 
spectrum shown in Figure 14 was then windowed to suppress spectral leakage 
and multiplied by a matched filter. The windowed spectrum is shown in 
Figure 15, and the final compressed pulse is shown in Figure 16. 
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Fig. 15 - Specture of Figure 14 with Ramming weighting. 
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Figure 16 - Compressed pulse with continuous range curvature 
compensation, (a) overall, 
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Fig. 16 - (b) zoom in. 

6.3 	Cubic Phase Term Effect 

Aside from the range curvature problem, there may be a problem 
caused by the cubic phase term. If the cubic phase term is significant 
relative to the quadratic phase term, as in the highly squinted, high 
resolution case, a phase correction must be made in addition to the range 
curvature correction. An example of such a case is shown in Figure 17. 
In this situation there was a cubic phase error of 1102 e  at the end of the 
aperture. This cubic phase error can be eliminated by adding an 
appropriate cubic phase term in the matched filter, or by using the 
sub-aperture processing technique. 

6.4 	Sub-aperture Processing Computer Simulations 

In sub-aperture processing, the spectrum is broken up into small 
pieces or sub-apertures, which are proportionally shorter in length, and 
can have their Fm rates fine-tuned to that of the corresponding 
sub-aperture data. The form of the frequency domain matched filter is 

4n 	 2 	nX 2 
5-- (a0q-a lqsq+a2gsq) -j--v 

M(n) 	e 
X 	 4a2q,  

=  
(63) 



60 90 

where, v = n + 2NTASA Ha ig-a l ) - 2sqa2q ); 
A 

NT is the FFT length; 
àSA  is the azimuth sampling interval in metres; 
àS is the spatial location of the look centre, given by (55); 

n -; and 	
1 

àf le  • • 
àf 	 NTASA 

Equation (63) is the digital counterpart of (57). 

33 

-20 

ca 

e-40  
1- 
z 
c.D 
2 

ultummimulmmommpugummy 
-90 	.4 0 	-60 	40 

mirwimeraurumpumultui. 

-20 	0 	20 

SPECTRAL NUMBER 

Fig. 17 - Compressed pulse with cubic phase uncompensated. 

Each of the sub-apertures is filtered with its own M(n) and then 
the spectra for the sub-apertures are coherently summed by concatenating 
them together. An example of a coherently summed spectrum with eight 
looks is shown in Figure 18 where the left portion of the spectrum belongs 
to negative frequencies. Proainent gaps are evident between the adjacent 
sub-aperture spectra. As the frequency increases, the gaps go deeper. 
This is because the coupling between range and azimuth increases at the 
ends of the aperture, i.e., whers the range curvature slope is steepest. 

If a Hamming window, with the same bandwidth as that of the 
original spectrum is applied to the concatenated spectrum shown in Figure 
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19, the spectral leakage is suppressed. In addition and perhaps more 
importantly, the amplitude of the gaps in the envelope are equalized. The 
gaps modulate the envelope intensity and cause distortion in its Fourier 
transform. The equalization effect of the window makes the envelope modu-
lation almost sinusoidal. This means that "paired-echoes" will be pro-
duced in the other domain DI. Without the equalization the modulation is 
non-sinusoidal, and a more complex, harder to analyze distortion is pro-
duced. 

An output pulse from one sub-aperture is depicted in Figure 20. 
The mainlobe width is wider than that from a fully compensated full aper-
ture. This is because the sub-aperture bandwidth is proportionally 
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Fig. 20 - COmpressed pulse of one look. 

smaller than that of the full aperture. Also, there are prominent side-
lobes . This is to be expected since the window was not applied to the 
sub-aperture spectrum. Instead the window will be applied later to the 
concatenated spectrum, and the high sidelobes will be cancelled out at 
that time. 

Thus far only the effects of amplitude distortion have been con-
sidered. Phase errors near the boundaries of the adjacent looks also 
cause "paired-echo" type distortions. The phase cancellation during 
matched filtering is incomplete when a piecewise correction is used. This 
incomplete phase cancellation causes a nearly sinusoidal residual phase 
error in the frequency domain, which in turn causes paired echoes in the 
time domain. This effect is serious at high squint angles (e.g. r), 
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4ff 
where the cubic phase term ( 	a3s 3 ) becomes very large and cannot be 

ignored. A plot of the residual phase errors for our present example, is 
shown in Figure 21. 

In order to obtain the final compressed pulse, an inverse Fourier 
transform of the windowed, demodulated, concatenated spectrum is taken. 
The result is shown in Figure 22. Except for the presence of paired-
echoes, the compressed pulse shape is identical to the case with continu-
ous range curvature compensation. As has already been mentioned, these 
paired-echoes are the products of envelope and residual phase distortions. 

Simulated compressed output pulses for two cases with high squint 
angles (nip = 15 4 , 6') are shown in Figure 23 and 24. As can be seen in 
the figures, the paired-echo magnitudes increase as the radar becomes more 
highly squinted (i.e., smaller nip is used). The interrelationship be-
tween various radar parameters and the paired-echo magnitudes will be dis-
cussed in the next section. 

7. 	UWE ANALYSIS OF THE EFFECTS OF PHASE AND AMPLITUDE DISTORTIONS, 
CAUSED sr TOE PIE:CERISE APPROXIMATION 

The piecewise correction for range curvature and cubic phase intro-
duces phase and amplitude errors into the matched filtering process. In 
fact, exact matching occurs only at the look centres. Our goal here is to 
characterize, with respect to the number of sub-apertures and the other 
operating parameters, the form and magnitude of each of the distortions 
arising from these abnormalities. Because an exact description of the 
errors is extremely complicated and unnecessary, a combined deterministic 
and empirical estimation procedure will be used instead. 

In this section the form of the magnitude and phase errors in the 
frequency domain, will be examined. Then, models will be developed that 
allow prediction of both the size of the errors, and the individual and 
combined paired echo levels that result from the errors. Next, a pro-
cedure for estimating the Integrated Sidelobe Ratio degradation, caused by 
the errors, will be described, and finally, the range independence of a 
given set of piecewise corrections will be examined. 

7.1 	Spectrum Envelope Distortion 

In the following, we will describe a simplified approach for deter-
mining the gap size between adjacent looks in the frequency domain, as a 
function of look centre location, and then we will relate the gap sizes to 
the paired-echo magnitudes in the spatial domain. 

When post-compression interpolation is used, the coupling between 
range and azimuth prevents the complete correction of the curvature, and 
gaps are left in the spectrum. The height and width of the gap, associ-
ated with each sub-aperture, depend on the compressed pulse width in range 
and the local slope of the range curvature versus azimuth position curve. 
The slope of the range curvature function in the frequency domain is given 
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Fig. 23 - COmpressed pulse with piecewise range curvature 
compensation (squint np = 15 . ). 
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Fig. 24 - Compressed pulse with piecewise range curvature 
compensation (squint angle np = 6. ). 
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by the derivative of the amount of range curvature  (Li) as given in (62) 
with respect azimuth space (m), i.e., 

dL 	A2 
slope = — 

dm 4CTa2ASI2e4 

where the slope is expressed in number of range cells shifted per azimuth 
cell. The perameters 2, and m are the running indices in range and azimuth 
respectively. This slope is used to project the compressed range profile 
onto the azimuth spectrum. It is assumed that a Hamming window is used in 
range compression, and that therefore the compressed range profile is ap-
proximately the shape of the Fourier transform of the Hamming window, (see 
(59)). 

RANGE 

Fig. 25 - Range-azimuth coupling. 

The coupled range-azimuth signal for one sub-aperture is shown in 
Figure 25. It is assumed that the sub-aperture is short, that the quad-
ratic comporient of the curvature is negligible, and that the slope 

(
&Q.

) of the sub-aperture segment s so small, and so constant over the 

sub-aperture, that 8(m) in Figure 25 can be approximated as: 

d2, 	A2 
0(m) e tane(m) = — = 	 m• 	 (65) 

dm 4CTaeSks14 

With this approximation, the normalized projection of the compressed range 
profile onto the azimuth frequency axis becomes, 

W(mq ,p) = EI(Mq ,p) + 0.426[E2(mq ,p)+E3(mq/P)]. 	(66) 

El(mq,p) = sinc (pk), 
E2(mq,p) = sinc (pk-1), 
E3(mq,p) = sinc (pk+1), 

where, 
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p = 

and fel  is the location of the centre of look q. mg  denotes the centre 
 4.1. 

of the ce" look in the m (global frequency) dimension. p is a new local 
frequency dimension, whose origin is at the centre of the qth look. 

Fig. 26 - Look extraction using a low pass filter. 

As shown in Figure 26 the desired sub-aperture is extracted, by 
means of an FIR filter, from an appropriately rotated version of the 
baseband gpectrum. If the FIR filter shape is approximately rectangular, 

NF 
the spectral height at the filter edge (p = --4 is 

2 

NF 
 h = W(mq,p) = El(m„.„ 	+ 0.426 [E2(Nie , 
NF)  

2 	 '2 	2 

11F 
E3(mq, Ti  )], 

where NF  is the number of frequency cells covered by the bandwidth of 
the extraction filter. 

(67) 

For the looks extracted from the ends of the spectrum, the slope of 
the range curvature is steeper, and the area of the projected range 
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profile is narrower. As a result, the gap between adjacent sub-apertures 

is widened and deepened. In other words, the envelope distortion worsens 

towards either end of the full aperture. A typical coherently summed 

spectrum is sketched in Figure 27. As shown in the figure, the minima can 

be connected by a dotted line described by, 

h(m) = F1(m) + 0.426[F2(m) + F3(M)]. 	 (68) 

where, 

17 1 ( M )  
172 (M) 

 F3(M) 

= sinc (Km), 
= sinc  (Km-1), 
= sinc (Km+1), 

À2NF 

 eTa2ASZNÎYR • 

Fig. 17 - A typical cOherent summed spectrum. The dotted line 
connecting all the minima is described by Eq. 68. 

As mentioned previously, Narrating weighting is normally applied to the 

concatenated spectrum to suppress the spectral leakage that occurs during 

the calculation of the inverse Fourier transform. The weighting function 

has the same bandwidth as the summed spectrum. The weighted spectrum is 

sketched in Figure 28. 

Besides suppressing spectral leakage, the weighting also helps 

reduce the size of the larger gaps at the ends of the concatenated 
spectrum. The gaps are now more or less equalized over the entire 
aperture. As shown in Figure 29, the weighted gaps can be thought of as 
ripples superimposed on an ideal smooth spectrum. The amplitude of the 
ripples at a distance of a quarter of the bandwidth from the aperture 
centre is estimated to be, 
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Fig. 29 - Envelope distortion (assume sinusoidal ripples) for 
coherent multi-look spectrum. 

where h(m) is given by (29) and the 0.54 numerical factor accounts for the 
Hamming weighting. This ripple amplitude is taken to be representative of 
the ripple across the whole aperture. 
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The ripples shown in Figure 28 exhibit a periodic sinusoidal-like 
waveform. Assuming for now that the ripples are purely sinusoidal (which 
is not really true), the inverse Fourier transform, as shown in Figure 29, 
will give paired-echoes of magnitude h1/2, on either side of the mainlobe 
of height approximately equal to 0.54. 

The ratio of the magnitudes of the paired-echoes to that of the 
main peak is 

h1/2 
paired-echo magnitude = 

mean peak 	 0.54 

NT 
[1 	)1 

4yR 

4 

m 1 11-F1(m')-0.428IF2(mi)+F3(m')]I 
4 

(70) 

Unfortunately, the computer simulations did not produce 
paired-echoes of the predicted magnitude. One explanation for this 
disagreement is that the ripples on the summed spectrum are not purely 
sinusoidal. If this is the case, the first order harmonic coefficient 
should fairly closely represent the most dominant paired-echo. In the 
absence of an analytical expression for the ripple, it is Impossible to 
prove this implication. Instead, a correction factor was established, 
which, when used in the simulation, caused paired-echoes of the correct 
magnitude to be produced. It was found that if a correction factor of 
one-half was used in (70), the results were reasonable in most cases. 
With a correction factor of one-half, (70) becomes 

• for more than two looks; 

dominant paired-echo magnitude  
main peak • for two looks. 

12 
(71) 

A special provision is made for the two-look case, i.e., the correction 
factor is set to 1/3 instead of 1/2. This is required because the 
envelope ripple deviates more strongly from a sinusoidal shape in the 
two-look case than it does in the other cases. 

These results are consistent with the fact that as the ripple shape 
deviates more and more from the sinusoidal, more energy is displaced into 
the higher order harmonics, and thus the magnitude of the dominant 
harmonic decreases. 
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With changes in the operating parameters, the general shape of the 
ripples is preserved, and the relative values of Fourier coefficients do 
not change. Equation (71) provides a good estimate of the paired-echo 
magnitudes when the magnitudes are between -20dB to -35dB. For ratios 
greater than -20dB, the aforementioned linear approximation assumptions 
break down gradually, with the estimated ratio increasing more rapidly 
than the actual ratio. For ratios less than -35dB, (71) also breaks down, 
this time because the pair-echo magnitude becomes so low that it merges 
with the shoulder of the main peak. 

The location of the dominant paired-echo, which is related to the 
number of looks involved, is given by 

n= 11E Pe 	cells, 

where NL is the number of looks and p is the ratio of the overall 
extracted spectrum to the Nyquist bandwidth. In most cases, 

NPNL 	 (73) p =  
NT 

and thus 

NT  
npe  = —1.1 NL cells. 

Np 

In the above analysis and simulations, envelope distortion was 
considered to be the sole contributor to paired-echoes, and the phase was 
assumed to be perfectly matched. In the next section, the effects of 
phase errors are examined. 

7.2 	Residual Phase Error 

The residual phase error originates from a phase mismatch between 
the piecewise quadratic matched filter and the data. This error causes 
paired-echoes. 

The phase error, between the recorded data and the matched filter, 
at 9=0, is taken to be representative of the phase error ripple across the 
entire aperture. This representative phase error is obtained by 
subtracting the phase in (45) from (47), and then setting s=0, and q=1, 
i.e. 

4w à8 = 	aol 	a11s1 	e21e1
2 

- ao 1- 

Based on the correspondence between the spatial and frequency domains 
described by (21) it is possible to find an fi for every si, such that the 
phase in the frequency domain at fi equals the phase in the spatial domain 
at si. If the principle of stationary phase holds, it also follows that 
the maximum phase error in the frequency domain is equal to the maximum 
phase error in the spatial domain. Therefore the residual phase error, 

(72) 

(74) 

(75) 
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AO, given by (75), is equal to the 
first look in the frequency domain. 

It was assumed, and confirmed 
the peak residual phase errors at the 
imately equal.  

phase error at the boundary of the 

later by computer simulations, that 
end of the sub-apertures are approx- 

A sketch of the typical residual phase error in a coherently summed 
spectrum is shown in Figure 30. The residual phase error is periodic in 
pattern. Because of the overlap (18 to 21%) of the transition bands of 
the look extraction filters, the residual phase errors at the look bound-
aries cancel each other out. This cancellation reduces the peak error 
(AO ) to about 2/3 of AO, i.e. P ' 

2 

3 
8w 	 2 

m 	aol 	anal 	a21:3 1 	ao 
3X 

If the phase error is purely sinusoidal, with amplitude A0p , where A0p 
 < 0.4 radian, then the paired-echo magnitude is given by a Bessel function 

approximation [1], such that 

paired-echo due to phase  error  

main peak 	 2 

6(f) 
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iF 
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(77) 

Fig. 30 - Residual phase error and paired echoes. 



46 

As was the case with the envelope distortion, the phase error is 
not exactly sinusoidal and no simple solution can be formulated. However, 
the size of the dominant first harmonic coefficient can be obtained by 
computer simulation. When this is done, and a 20% transition band is 
assumed, the magnitude of the first harmonic turns out to be only about 
half of that given by (77), i.e., 

Pp 	
main peak 	 4 

Since the residual phase error in the frequency domain has the same period 
as that of the envelope distortion, the locations of the paired-echoes, 
caused by the phase distortion, coincide with the locations of the echoes 
produced by the envelope distortion. 

7.3 	Overall Paired-echo Magnitude 

The first order paired-echo magnitudes are given by the sum and 
difference [1] of that contributed by envelope distortion 
(70) and residual phase error (78), i.e., 

overall paired-echo  = ipm  + ppl 	 (79) 
main peak 

7.4 	Degradation of Integrated SidelObe Ratio due  to Pairedr-echoee 

. paired-echo due to phase error AO 

(78) 

For 
additional 
integrated 
main peak) 

' Pm  ± PPI .  
as 

a heavily weighted spectrum (e.g. Hamming), in the absence of 
phase errors, e.g. FM rate mismatch or motion errors, the 
sidelobe level (everything outside the first minima from the 
is composed mainly of energy contributed by the paired-echoes, 
The integrated sidelobe ratio (ISLR) can be approximated 

ISLR = 10 logi o[(pm  + pp ) 2  +  

In 10 logi 0[2(pm2 + pp 2 )]. 

7.5 	Range Independence of the Piecevise Solution 

The resultant piecewise solution can be regarded as a one-look 
matched filtering process with a distorted frequency transfer function. 
The amplitude versus frequency response is modulated with sinusiodal-like 
ripples in its passband, while the phase versus frequency response is 
composed of ripple-like residual phase errors superimposed on the usual 
linear and quadratic phase cont ributions. In both cases, 'the  distortions 
are local in nature since they arise from mismatches within a look. 

In a normal one-look azimuth matched filtering process, the filter 
is matched to the azimuth signal returned from a radar point target 
located at the centre of the processing swath. This matched filter is 
then applied to all the data in that processing swath. The quadratic or 
cubic phase mismatch between the data and the filter increases towards the 

(80) 



ic4(f) 
1 ,  
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edges of the swath. The width of a swath is determined by the maximum 

amount of phase mismatch tolerable, at the end of the processing 

aperture. This swath width is known as the depth of focus [2]. 

During the application of the azimuth multi-look, frequency domain, 

matched filter to data at different ranges across the swath, the compress-

ed frequency domain signal will suffer both local and global phase mis-

matches, as well as envelope distortion. The overall distortion in the 
frequency domain signal will be 

E(f) = A(f) e 

iSe(f) 	iSg(f) 
= [A(f) e 	e 

In the spatial domain the error will be 

iSe(f) 
e(s) = F-1 {E(f)} = F-1 1A(f)e 	1*F

-1 

where, 
A(f) is the envelope ripple as a function of frequency; 
44(f) is the local residual phase error as a function of 

frequency; and 
$g(f) is the global phase mismatch as a function of 

frequency. 

In (81), the local phase error can be combined with the envelope 

distortion and inverse Fourier transformed. The global phase can be in-

verse Fourier transformed separately. The first inverse Fourier transform 

gives rise to paired-echoes, whereas the second degrades the integrated 

sidelobe ratio. The convolution of the two inverse Fourier transforms 

describes the total effect. Thus, in evaluating the paired-echo magni-

tudes only the localdistortions need to be considered, whereas in evalu-

ating the degradation in the integrated sidelobe ratio (separate from that 
contributed by the paired-echoes), only the global phase mismatch needs to 

be considered. 

8. 	DERAMPIMG IIMNIQUES 

This section is an overview of alternate forms of pulse compression 

for a linear FM signal. Instead of matched filtering, or fast convolu-

tion, a deramping (dechirping), spectral analysis approach can be used. 

In the conventional deramping method, the quadratic phase term in the 
incoming radar return signal is cancelled by multiplication with a 
reference signal, which has a phase term that is the conjugate of the 
returned signal. The process is shown diagramatically in Figure 31. The 
deramped signal becomes a CW signal, which has a frequency, fl, directly 
proportional to the time separation, à, between the received signal and 
the reference. The CW signal is then Fourier transformed to give a 
compressed pulse as shown in Figure 31(c). The location of the pulse is 
directly proportional to the deramped CW frequency, fl. As a result, the 
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target is resolved at its location of arrival, à. Figure 32 shows a 
multi-target environment, in which three targets are resolved at their 
respective locations. 

The width and magnitude of the compressed pulse depend on the 
duration of the overlap (Te ) between the reference and the received 
signal, as shown in Figures 32(a) and (b). For targets which lie further 
away from the reference (i.e. smaller Te ), the deramped signals suffer 
more energy loss, and therefore, their pulse width and magnitude are 
degraded, as shown in Figure 32(c). In practice, there exists a threshold 
above which the amount of energy loss is intolerable. In order to stay 
within the threshold, it is necessary to overlap reference signals so as 
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Fig. 31 - Conventional derauping technique for a point target. 
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to decrease the time separation between the received signal and the 
nearest reference. Such a scheme reduces the amount of energy loss, but 
at the expense of having the data repeatedly deramped by nearby reference 
signals. This is illustrated in Figure 33. The repetitions produce 
redundant data with energy loss above the tolerable threshold. Only data 
in the vicinity of the centre of a reference ramp are kept. The redundant 
data are discarded. The valid data derived from successive references are 
concatenated to form the final image. 

far 

Pig. 32 — conventional illarmeng beeknIqué fur Oulti-targets. 
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In this section, we will overview two pulse compression techniques 
based on the aforementioned deramping approach, namely, the Spectral 
Analysis (10] and the Step Transform [6-9] Methods. Compared to the basic 
de-ramping approach both methods allow a reduction of the energy loss 
and/or an improvement in the processing efficiency. The following 
description forms a framework for the discussion, in Section 9, of the 
processing efficiency of the sub-aperture compression  techniques.  
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8.1 	Spectral Analysis Method [9,10 

The spectral analysis method attempts to reduce the energy lost, 
due to aliasing, during the deramping process. This is achieved by 
utilizing a continuous, non-overlapping deramp sawtooth reference with an 
FM rate of the same magnitude, but of opposite slope and longer duration, 
than the signal from a single point target. In addition, the phase at the 
end of one sawtooth is w and that at the beginning of the next sawtooth is 
-n, or vice versa (i.e. the phase at the boundary is circularly continuous 
and anti-symmetric). A signal ramp crossing a sawtooth boundary does not 
change its deramped CW frequency because aliasing causes the disjoint 
frequency to fold back in the spectrum and align with the unaliased 
portion. The phase is continuous at the boundary. This is illustrated in 
the frequency versus time diagram shown in Figure 34(a)-(c). It is 
therefore possible to employ a Fourier transform to extract the spectrum 

Pig. 34 - The spectral analysis method. 
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representing the point target. 

For multiple targets, superimposed target returns can be uniquely 
resolved by the deramping - Fourier transform process. Figure 35(a) shows 
a parade of equally spaced target returns in the frequency versus time 
plane. Figure 35(b) shows the corresponding deramping reference signal. 
Note that it has opposite FM slope as the target signals. Upon mixing the 
target signals with the reference, the individual FM signals are trans-
lated into CW signals, with their frequencies corresponding to their 
positions relative to the reference. The resultant deramped signal 
ensemble is depicted in Figure 35(c). 

TARGET SIGNAL RAMPS 

--n AZIMUTH 
TIME 

Fig. 35 - Deramping process via the spectral analysis method. 

Signal ramps falling within a period of the sawtooth reference are 
grouped into a parallelogram in the frequency versus time plane. The 
oblique boundaries between parallelograms prohibit Fourier transformation 
of the full aperture data set. Processing can only be performed with 
shorter Fourier transforms that prevent data from the adjacent parallelo-
gram from being drawn into the transform and getting mixed up with the 
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returns that belong there. It should be noted that the data are only 
directly accessible in the time-domain (i.e. column-wise in Figure 35(c)), 
because all the targets are superimposed. The frequency dimension 
(vertical axis) is accessible through either the DFT or filtering 
separations on the time domain data. As already mentioned, one way to 
avoid mixing up the data is to partition the parallelogram into narrow 
columns. Each column is centred in the neighbourhood where the target 
data are to be resolved. Each column of data (actually a superimposed 
one-dimensional time-domain data ensemble) is Fourier transformed along 
the time axis to resolve the target ensemble. A data column will 
inevitably cross a parallelogram boundary, thus mixing up data between the 
parallelograms. Compressed data in the vicinity of a boundary are invalid 
and must be discarded. The placement of one processing region is shown in 
Figure 36. 
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Fig. 36 - Placement of one processing region. 

Because of the antenna 'aperture modulation, target signals com-
pressed using this technique are subject to amplitude modulation. The 
amplitude modulation can be controlled by keeping the data of interest 
away from the edges of the parallelogram. 
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Targets in the remaining portions of the parallelogram can be 
similarly compressed by partitioning another processing column at the 
other end of the parallelogram as shown in Figure 37. Compressed data 
from the two processing regions within the parallelogram are concatenated 
to form a continuous image. In practice, a guard band of fractional width 
0 is included to keep the valid processed data away from the oblique 
border. As mentioned previously, this is done to control amplitude 
modulation. A typical value of 0 should be 0.3 to 0.5 depending on the 
antenna pattern. The output of an N-point DFT computed along a processing 
column spans the entire frequency space of B Hz. When weighting is 
applied to the N-point DFT, the effective DFT length aN (where a < 1) is 
chosen to be less than or equal to the -3dB width of the weighting 
function. This narrower processing column is then used to calculate the 
number of valid output points. With the aid of Figure 36, the number of 
valid points is found to be 

Mk 
G = (1-8 	) 

	samples, 
B2 

where k is the azimuth linear FM rate; 
B is the reference sawtooth bandwidth; and 
N is the DFT length, which is fixed for all the processing 

columns. 
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DATA 
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Fig. 37 - Placement of successive procesing regions to ensure 
image continuity. 
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The invalid data, discarded because of the boundary crossing problem, can 
be regained by putting another processing column near the opposite end of 
the parallelogram, as shown in Figure 37. This second processing column 
has the saine  width (N points) as the first one. Its position is deter-
mined by the frequency at which the first column is cutoff. The second 
processing column encompasses both data left over from the first 
processing column and data from the succeeding parallelogram. Part of the 
output is invalid data corresponding to the frequencies which straddle the 
oblique boundary. In order to ensure image continuity, the second 
processing column is located such that the beginning of the region of 
valid output samples in the second DFT is at the same frequency as the end 
of the corresponding region of the first DFT. This is shown as a 
horizontal dotted line in Figure 37. From simple geometry, the required 
continuous frequency coverage is achieved if the second DFT is begun at 

- G B2 aNk) B 2 B2 
N 2.  •nn • 	 ( 	 ( 1 «‘. ) ••••• 	 (83) 

N k 	 B2 

input samples after the start of the first DFT. 

Since N is not equal to the width of a parallelogram, the 
processing columns are not synchronized with the parallelogram 
boundaries. As the processing progresses, the boudnary cuts the 
processing columns at different frequencies, therefore the locations of 
the valid data regions must be updated for each processing column. 

The above analysis assumes that two processing columms are 
sufficient to resolve the entire bandwidth with the prescribed resolution, 
but that is not necesarily true. Situations may occur where the required 
processing column is so wide and 0 (guard band) is so large that more than 
two processing columns are required within a single parallelogram. An 
example of such a situation is shown in Figure 38. In the case depicted 
in the figure, none of the processing columns produce any valid data in 
the adjacent parallelogram. In general, this happens when 

G < — , i.e., 
2 

1-8 - aNk  <.1 , or 
3 2 	2 

1 	aNk 
p — - — • 

2 B2 

If a substitution involving the resolution pa , is given by 

1.4VB 
Pa n' 	r 

aNk 

where V is the velocity of the radar, is made in (84), the inequality can 
be written as 
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1_ 1.4V 

2 BPa 

Note in (85) that N is restricted to integer powers-of-two. This places 
limits on the permissible values pa  may assume. 
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Fig. 38 - Placement of processing regions for a case 
with large guard band. 

Major drawbacks of this method include: cubic phase errors and 
range curvature cannot be compensated easily, it is difficult to achieve 
full resolution efficiently, and there is a variation of signal-to-noise 
ratio over the image due to the fact that different sections of the scene 
are illuminated by different portions of the antenna pattern. 

8.2 	Step Transform 

The aim of the step transform technique is to reduce the energy 
loss encountered with high resolution deramp processing, while maintaining 
a high processing efficiency and efficient memory utilization. This is 
done by conforming the processing path to the trend of the signal ramp, 
thereby avoiding the problem of having to use multiple full length, highly 
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overlapped reference signals. This method is efficient for compressing 
linear FM signals in a minimal memory space, but it lacks on inherent cap-
ability for accommodating cubic or other non-linear phase characteristics 
of the frequency chirp. In the next section, the effect of the cubic 
phase term will be investigated, and a means for avoiding image degrada-
tions caused by cubic errors, suggested. 

In the step transform, the multiple references in the frequency 
versus time plane are replaced by a continuous sawtooth reference func-
tion, as shown in Figure 39. The sawtooth reference will overlap an in-
coming signal more evenly, regardless of its time of arrival, and thus 

SUB-APERTURE 
REFERENCE 
RAMPS 

Pig. 39 - Step transform processing using a continuous 
sawtooth reference function. 

reduce the energy loss to almost zero. Mixing an incoming ramp with the 
sawtooth reference gives a step-like waveform, in the frequency versus 
time plane, as shown in Figure 40. The horizontal part of each step is a 
CW waveform. The vertical parts of the steps are of equal size and are 
spaced evenly in time. This step-wise partitioning of the full aperture 
return signal is similar to the sub-aperture processing described in the 
previous sections. In the matched filtering case, the look extraction was 
performed by a combination of FIR and matched filter in the frequency 
domain• Hence each extracted look consists of scenes illuminated by the 
same portion of the antenna pattern. In the step transform, each look 
extraction is performed by a Hamming weighted conjugate ramp in the timm 
domain. Hence each extracted look consists of scenes illuminated by a 
different part of the antenna pattern. 
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Fig. 40 - Signal after derasped by a continuous sawtooth 
reference function. 

In the step transform, as in the basic deramping technique 
previously described, different targets will generate different Doppler 
frequencies depending on their locations relative to the sub-ramps. If 
part of the signal data for several different targets falls into the same 
sub-ramp, the extracted look will be composed of an ensemble of CW signals 
whose frequencies are directly proportional to the locations of the 
targets on the sub-ramps. The frequency produced by mixing the signal 
with the reference will also be directly related to position in the 
azimuth antenna pattern. Thus, it can be seen that different targets in 
the sub-aperture are acquired from different portions of the antenna 
pattern. This is the basic difference between the matched filter and the 
step transform approaches. The scenario for the step transform is 
illustrated in Figure 41. The image formed by the first stage of the step 
transform is of low resolution because only a small fraction of the target 
energy is contained in each sub-aperture. The remaining portions of the 
signal energy are embedded in the other sub-apertures that together make 
up the full aperture. In order to regain the original resolution, the 
sub-apertures must be added coherently. 

The case of an input signal consisting of one point target is shown 
in Figure 42. The spectrum associated with the target moves to a higher 
frequency as it climbs each step up the frequency staircase. In addition, 
there is a step increment in linear phase, which depends on the separation 
in time of the signal and the reference tooth. These two properties can 
be used to regain the original high resolution of the input signal. 
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Fig. 41 - Deramping of multiple targets. 

The frequency step in a sub-aperture (see Figure 41(b)) can be 
segregated from the superimpoied ensemble data by utilizing a DFT as a 
filter bank. The frequency stepping behaviour necessitates a two-
dimensional processing scheme indexed by spectral frequency and sub- 

(b) 
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aperture number, as illustrated in Figure 42. All the spectral energy 
associated with a single target can be recaptured by coherently summing 
the sub-apertures along a diagonal line. Each line of the diagonally 
arranged spectra associated with a point target contains a linear phase 
whose frequency is linearly dependent on its distance from the nearest 
sub-aperture on the time axis. The form of this phase terne  will be 
derived in the next section. Because of this intimate relationship 
between local frequency and time, a diagonal DFT can be used to sort out 
the fine details which are hidden in the first set of DFTs. 

Fig. 42 - Processing matrix after the first set of DIPTs. 

In performing the first DFT on each sub-aperture, windowing must be 
applied in order to suppress sidelobes and spectral leakage. It is essen-
tial to suppress these effects so that energy spill-over onto the neigh-
bouring diagonals is minimized. One major negative aspect of the window-
ing is that the spectrum is broadened. Since the first DFT is regarded as 
a filter bank, a broadened spectrum due to windowing means a wider band-
pass filter element (wider than one cell). The widened bandwidth will 
undoubtedly let in energy from the adjacent diagonals. These intruders, 
which are further away from the diagonal under consideration, contain 
higher frequency components. These higher frequency components exceed the 
sampling rate along the diagonal. If a DFT is taken along the diagonal 
data array, the intruding components will fold into the desired region. 
In order to avoid aliasing, the sampling frequency along the diagonal 
direction must be increased. In order to do this, the dimension of the 
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processing matrix, i.e., the spacing between the first DFTs must be 
decreased. Since a minimum size DFT is required for adequate resolution 
from the first processing stage, the first DFTs become overlapped when the 
spacing is decreased. The above explanation is summarized in Figure 43 
[7]. A block diagram of the step transform processing is shown in Figure 
44. 
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Fig. 43 -  Ti  me weighting and overlap to reduce time sidelobes and 
time aliasing [7]. 

8.2.1 Formulation of the Step Transform 

In this section, which follows [6], the step transform is described 
mathematically. Figure 45 shows the frequency versus time diagrm for the 
received linear FM signal, 
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Fig. 45 - Mixing a point target signal with a reference ramp. 
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g(t-uA) = e T 	 (87) 

where t = uà is the time of arrival of the received signal, B is its 
bandwidth, and T is its duration. Also shown in the diagram is a segment 
of the sawtooth reference signal used to deramp the input signal. The 
reference segment located at t = nà is given by 

eB 
-j--(t-nà) 2 

g*(t-nA) = e T 	• 	 (88) 

It has a duration of T', i.e., 

T' 	 T' - + nà < t < 	+ nà . 
2 	 2 

After performing the deramping within this duration, we have 

eB 
j.--(t-uA)

2 
 -5--(t-nA) 2 

g(t-uA)g*(t-nA) = e T 	 (89) 

Since the processing is performed in discrete form, 

T' 	 T' 
t = (nà - --) + kà, 	0<k< — -1, 

2 	 A 

where the term in parenthesis is the beginning of the reference segment, k 
is the sampling index, and à is the sampling interval. The discrete form 
of (89) is 

1 	T' 
g[(n+k-u)A - 

T' 
 j.g*(kA - -- )  

2 	 2 

T' 2 	rB-(kA-  T' 2 
- --4 -5- 	__4 

. e T 	 2 e  T 	2 

5n(u 2A2+uAT') ini(n2A2_nic,) j2wEià2 (n-u)k  -'----A
2  un 

	

T 	 T 	 T 	 T 
- e 	 e 	 e 	 e 

(90) 

This output is then Fourier transformed, with respect to k, to extract an 
image with a resolution corresponding to the bandwidth of the reference 
segment. 

The interpretation of each exponential factor in (90) is as 
follows: 

i) The first exponential  factor  is independent of the location of the 
sub-aperture reference n, and is solely a function of the location 
of the input signal u, therefore this term will not be affected by 
the first or subsequent Fourier transforms. 

63 



wB 2 j--(n à2  -nAT') 
= e T 

2wB 2 	N-1 -j---à un 
e 

k=0 

rNBA2 

T 

64 

ii) The second exponential factor is an undesirable term since it does 
not relate n to the input signal location, u. This term is deter-
ministic and must be cancelled out before the second Fourier trans-
form is taken. 

The third exponential factor is a linear phase term, which deter-
mines where the signal spectrum is located in the frequency dimen-
sion after the first DFT is taken with respect to k. The first DFT 
can be regarded as a filter bank which segregates the spectral com-
ponents in the sub-aperture. The spectral locations are determined 
by the corresponding locations relative to the sub-aperture refer-
ence. 

iv) The fourth exponential factor is a phasor whose frequency of 
rotation depends on the location u. In order to recover the 
precise target location, another Fourier transform can be applied. 

The DFT of (90) with respect to k, (ignoring the first exponential 
factor) is, 

wB 2 2 	 2wB 2 	2eBà2  
j--(n à -nAT') -j---A un 	j---- (n-u)k 

X(r,n) = e T 	 e T 	Fie T 

. _,2wIlà2 	 2wrk , 3---- (n-u)k -j---- 
L e T 	e 	N,  

k=0 

wB 2 2 	 2wB 2 	N-1 (ri A -nAT') -j---A un 
= e T 

wB 22 	 2w13 2 j--(n à -nAT') -j---A un 
= e T 	 e T 	

- -.2 

(91)  

where Ffl is a Fourier transform operator, N = T' — is the number of 
à 

points in the DFT, r is the frequency variable corresponding to the 
temporal variable k, and sinc(.) is a cyclic sinc-function defined as 
sinc(x) = sin(wx)/sin(wx/N). 

The location of the sinc-function depends on the spatial separation 
between the target and the reference ramp, (n-u)A, i.e. the target is 
located at r = r' 

NBA2 
r = 	(n-u), 

relative to the sub-aperture reference located at t = nô.  

sinc [r-lnle:(n-u)], 

(92)  
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Nyquist rate, we 
is normally done 
will be small, 
not affect our 

Assuming tht the input signal is sampled at the 
have BA=1. If the signal is oversampled (i.e. BA<1), as 
in practice, some of the Fourier coefficients in r 
containing only noise and leakages, but this will 
analysis. Hence, (92) becomes 

NA 
r' = 

Furthermore, if we set the number of sub-apertures that can be fit into a 

full aperture to also be N, i.e. T/T 1  = N, then (93) can be simplified to 

r , 	n u 

N N 

In summary, the aperture data is divided into N sub-apertures of N samples 
each, which gives a total of. N2  points for a full aperture data set. 
Equating (92) and (94) gives the value of N 

_2 

BA2 

(94) 

1 

(FM rate)A2  
(95) 

Since adjacent sub-aperture references are separated by n=N cells, 
the sub-apertures can be indexed by a new parameter t,defined as t = n/N. 
Equation (94) then becomes, 

r' = 	- 	 (96) 

Substituting (95) and (96) into (91), we have 

jw(£2-X) 	
27rut 

 
= e 	e N sincir-t42]. 

Thus, (95) ensures that the signal history associated with a point target 
lies on a line with unit slope (in the r versus it plane) and passing 
through the 2, axis at u/N, as denoted in (96). This arrangement makes the 
processing more efficient since further processing can proceed along 
successive diagonal lines with unit slope, and no interpolation is 
needed. If FFTs are to be used to perform DFTs, N must be a power-of-two 
integer. Unfortunately, this imposes a stringent restriction on the 
signal characteristic, namely the FM rate and the sampling interval, upon 
which a step transform can be accurately applied. This restriction can be 
partially relieved by overlapping the sub-aperture reference ramps as will 

(97) 
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be described in Section 8.2.2. 

To obtain the full resolution, the sub-aperture data represented by 
(91) must be added coherently over the entire aperture. The processing is 
two-dimensional (across aperture, 'X', and within aperture, 'r'). The 
coherent summation is performed via an IDFT with respect to X(=n/N) along 
the diagonal line r=X, i.e. 

. 
N/2-1 2-X) 	} 

21.qX
---- 

Y(q) = 	[X(2,,X) e 	J e 

where q is the time domain equivalent of the sub-aperture number 'X'. The 
exponential factor in parentesis cancels the first exponential term in 
(97). Before the second DFT is taken in (99a), X(r,£) should be rotated 
over r by half a cycle (i.e. N/2) in order to ensure that the negative 
axis in r precedes the positive axis in a linear continuous manner. In 
practice, this can be achieved by embedding an appropriate linear phase 
term in the reference ramp. If we substitute X(X,X) from (97) into (98), 
we get 

(98) 

,21ruX 	 42wqX 
N/2-1 	N 	 N 

Y(q) = 	i 	e 	sincUlli e 	. 
N 

2wut 2we 

= sinc 	 eN _ (99a) 

Hence after both DFTs (forward and inverse DFTs are collectively referred 
to as DFTs since they do not bear the usual connotations of the Fourier 
transforms), a target located at  tu  A is recovered as a compressed pulse 
denoted by the second sinc function in (99b) at q=u. The first 
sinc -function in (99b) is an envelope modulation function inherited from 
the rectangular window in the first DFT. 

As mentioned previously, the input data are assumed to be 
adequately sampled, therefore there is no aliasing effect in the first 
DFT. However, as described in (99a), the Nyquist criterion is violated in 
the second DFT. The width of the mainlobe of the envelope function is 2N, 
whereas the sampling rate is only N, i.e. the DFT length is only N. 

Hence, areas of the mainlobe corresponding to lu l›- are folded back into 
2 
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unambiguous region of the DFT resulting in heavy degradation of the radar 

image. The aliasing effect is shown in Figure 46. Three point targets A, 

B and C are shown. The top diagram shows that A, B and C are unambiguous-

ly resolved as if there is no aliasing problem in the second DFT. The 

bottom diagram shows the realistic case where the function is circularly 

periodic, with period q. 

I sinc[d 

slnc  [q-ui] 

A 	
sine [q-u2] 

sinc [q-u3] 

• 1 "174.n ,  
-SN 	 -iN 	 1 	t;2 el 113 	2N 	 3N 

(a) 

ONE PERIOD 

A 

	  / 
% ..:-.... . 
0 

(b) 

	

, —, 13\ 	/41.T 

•— — 

41...  

C 	
\ 
\ / C 

â 	N 	ri 
2 	 2 

Fig. 46 - Compressed image after coherent summation of sub- 

aperture images along a diagonal line in the processing 

matrix. Three point targets A, 13 and C are shown, 

(a) assuming no aliening, (b) with aliasing. 

8.2.2 Effects of Windowing and Sub-aperture Overlap on the Step Transform 

r 
In order to avoid the aliasing affect, the signal, expi-

21ru£1
in 

(99a), must be adequately sampled in '2,', and the point target response of 
the first DFT, i.e. the sinc-function in (99a) must be replaced by one 
with a negligible sidelobe level. 

To suppress the sidelobe level of the target response of the first 
DFT, windowing can be imposed on the sub-aperture data before the DFT is 
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taken. In practice, a Hamming window is used to suppress the sidelobes to 
less than -43dB. In such a case, (91) becomes 

eB 2 2 	 2wB 2 
j---(n à -nAT') -j---à un 

X(r,n) = e T 

2nBA2 

Ff[0.54-0.46cos(2e11121)] e T 	1, 
Nz 

'TB 2 2 	 211.13 2 
j--(n à -men") -j---à un 
T 	 T 	 m ImA2  

= e 	 e 	 w[r,:g.nn (n-u)],(100) 
T 

No  is now replaced by Ilz to signify the effects of windowing and over-
lapped sub-apertures, and W(r) is the Fourier transform of the Hamming 
window, which is given by 

W(r) = 0.54D(r) + 0.23[D(r-1)+D(r+1)], 
and 

eE 
D(r) = e N. 

sin(nr) 

sin(wriNt) 

To increase the sampling rate in 't', the spacing between adjacent 
sub-aperture references needs to be smaller than N. This implies that 
they have to overlap. Let g be the ratio of the number of cells overlap 
to the number of cells in a sub-aperture. The sub-aperture index 't' is 
redefined as 

t = 	 
wz(1-E) 

(101) 

where the factor el-g) represents the sub-aperture reference spacing in 
number of cells. 

If the processing efficiency for the second DFT is to be main-
tained, the locus of the envelope function of X(r,t), W(r,t), given by 
(100) needs to lie on a diagonal line parallel to r=t, as in the previous 
case, otherwise interpolation would be required. This discrete space 
arrangement can be achieved by modifying (95) to 

2 

' (1 -g )u2  

1  
(102) 

(1-E)(FM rate)à2  

Substituting (101) and (102) into (100), we have 
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X(r,t) = e 	 e 	NZ W[r-,(44,---11_-_]. 	(103) 
NE(1 -Z) 

Note that the diagonality property (r-g, for the signal position) is 
maintained in the argument of W(.1. 

We can perform coherent summation along the diagonal line r=2. via 
an IDFT with Hamming window: 

N/2-1 
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This result is analogous to the previous case without windowing and sub-
aperture overlap, as described by (99b). The sinc-functions are now 
replaced by the Fourier transform of Hamming window. The compressed pulse 
is represented by the second W-function located at q=u. The first 
W-function represents an envelope due to the Hamming window in the first 
DFT. The W-function offers a much lower sidelobe level (<-43dB) than the 
sinc-function (-13dB). Hence in most caes the W-function can be regrarded 
as sidelobe free. 

A minor penalty introduced by the W-function is that its mainlobe 
width (null-to-null) is four cells wide, whereas that of the sinc-function 
is two cells wide. The mainlobe would cause more mainlobe aliasing, if it 
were not for the overlapping of the sub-apertures. Assuming the sidelobe 
level is negligibly low, the W-function in (104a) limits u to the region 

-2 cells < < 2 cells, recalling that the Fourier transform of the 
N ( 1-Z) 

Hamming windowing has a null-to-null mainlobe width of four cells. The N-
Nr 

point Fourier transform allows 	< u < rg. Equating thee: inequalities 
2 	2 

gives a sub-aperture overlap ratio, Z = 0.75. For point targets lying 
u 	> 2, the W-function attenuation outside the region, i.e. IN g(1-Z)I 
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becomes so large (>43dB) that aliasing becomes unimportant. The above 
aliasing mechanism is illustrated in Figure 47. 

Fig. 47 - Aliasing mechanism due to the envelop function 
of the Ring  window, (a) with aliasing for C < 0.75, 
(b) minimum condition with no aliasing, C = 0.75. 

The processing efficiency can be further improved by minimizing the 
sub-aperture overlap, and hence reducing the processing of duplicate 
data. The amount of overlap can be reduced by allowing aliasing in the 
portion of the data tht will be thrown away. The alias free region is 
defined as the width of the separation between adjacent sub-aperture 

NE(1-U  references, i.e., - blie(1-) < u < 	 . Targets falling in the 
2 2 

(1-U aliased regions, namely, -2N01-U < u < -Ne (1-)  and NE 	 < u < (1-U, 
2 	 2 	— 

are recovered from the unaliased regions of adjacent diagonal DFTs. 
Figure 48 illustrates how allowing aliasing in the throwaway region can 
reduce the amount of sub-aperture overlay. In the diagram, the envelope 
modulation function (the first term in (104b)) is partitioned into five 
regions (A. to E). The unambiguous width in q is kept at  N.  Region C 
represents an unaliased region, from which valid processed data are 
derived. The other regions produce duplicate (invalid) processed data. 
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Fig. 48 - improved processing efficiency by allowing aliening 
into discarded regions. 

It is desirable to let region A to fold into region D, and region E to 
fold into region B, in order to pack all regions compactly within N 
cells. Regions B and D now contain aliased data and will be discarded. 
In this case, as shown in the diagram, the optimum value of 	is 0.6. 
Data from region C is retained as valid data. 	Thè valid data are 
amplitude corrected by multiplying by the inverse of the envelope function 

W[ 	 Ng(1-Z) 
then all valid data are concatenated to form an image. 

In cases where 0.2<g<0.6 for a selected value of Nz, the data, 
which lie on a diagonal after the first set of FFTs, are undersampled as 
just described. This can be remedied by using another set of sub-aperture 
references to interpolate the original diagonal data array. The method is 
illustrated in Figure 49. The top diagram shows the signal of a point 
target with the original sub-aperture reference. The middle diagram shows 
the signal with another sub-aperture reference. The new sub-aperture 
reference is so designed that it is delayed by half a period from the 
original sub-aperture sawtooth, and has a negative frequency offset 
corresponding to half a resolution cell. This offset reference provides 
an additional sampling process to obtain the in-between value of the 
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Fig. 49 - Tio sets cf reference  rampe for cases with 
0.2 < C < 0.6. 

original diagonal data array. Phase correction is then imposed on both 
diagonal arrays as described in (47). Because of the additional frequency 
offset in the second diagonal data array, an additional phase correction 

factor, exP1 -5111: 1 . / is required. This is done to maintain phase 
T2 

coherency between the two diagonal arrays. The data from the arrays are 
interleaved (as shown in the bottom diagram) before the second FFT of 
length 2N is taken. 
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In cases where 0 < < 0.2, one has to choose a larger value of N 
or tolerate a fair amount of degradation. 



8.2.3 Computer Simulation Results 

Figure 50 shows the result of a computer simulation for a point 
target, which had a time-bandwidth product of 384, and which was processed 1 
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Fig. SO - Compressed pulse of a point target processed with 
step transform. 

with a sub-aperture of length of 32 cells, overlapped with the other 
sub-apertures by 20 cells (62.5%). The prominent main peak has been 
normalized to OdB. Artifacts are noticeable but are mostly at least -40dB 
down from the main peak. These artifacts originate from the sidelobe 
structure of the first W-function given in (104b). 

The humps on each side of the mainlobe are due to spectral leakage 
from the incompletely filled sub-apertures at both extreme ends of the 
diagonal, i.e. the data starts and ends part way through those sub-
aperture. These partially filled sub-apertures have lower resolution than 
the rest, and the data corresponding to the target is spread widely over 
the 'r'-dimension after the first DFT is taken. This data does not get 
properly incorporated in the Fourier transform along the diagonal, but 
instead it contributes to the integrated sidelobe ratio. The shapes of 
the humps are determined by the window used in the diagonal DFT. The 

2 N (1-E) 
peaks of the humps are located at approximately 	 from either 

2 
side of the main peak, where E is the portion of sub-aperture overlap. 
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8.2.4 Effects of the Cubic Term on the Step Transform 

The foregoing description of the step transform assumes that the 
input signal is strictly linear FM. It is thelinearity (in frequency 
versus time) of a linear FM signal that allows the step transform, which 
follows the trend of the linear FM slope in a step-wise fashion, to be 
used to perform pulse compression. The introduction of cubic and higher 
order phase terms destroys the desirable linear relationship, and results 
in unequal deramped frequency step intervals, and other abnormalities, 
such as defocussing in the output of the first DFT. In this section, as 
was done for the matched filter approach, we will consider the effect of 
the cubic phase term, and seek ways to remedy the problem it causes. 

In the following analysis, we assume the form of the received signal 
to be 

el(t-uà) 2  + j2wz(t-uà) 3 
 g(t-uà) = e T  , - _44-uà < t <!+, 
2 - 2 

(105) 

where t=ut  is the time of arrival of the mid-point of the received signal, 
à is the sampling interval, B is the second-order signal bandwidth, and T 
is the second-order signal duration. The first phase factor represents 
the second-order azimuth signal (i.e., a linear FM signal). The second 
phase factor represents the third-order azimuth signal, seen at extreme 
adar squint angles [2]. The coefficient e is in cycles/sec 3 . 

A segment of the sawtooth reference, centred at t=nà, is used to 
deramp the input signal. The reference is shown in Figure (8.21), and is 
given by, 

(106)  
g*(t-nà) = e T 

It has a duration of T', i.e., 

T' 	 T' - + na < t <_ + nà. 
2 - 2 

(107) 

After multiplying the input signal by the reference function, we 
have, 

g(t-uA) g*(t-nà) 

TrB j__(t-nA) 2+j2we(t-uà) 3 
-j--(t-uà) ,2 

 = e T  (108) 

Because the processing is performed in discrete form, t must be 
replaced by 

T'  t = (nà - --4 + kA, 0 < k <  Ne- 1,  NE = T' 
2 	 à 

(109) 
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where the term in parenthesis is the beginning of the reference segment, 
and k is the sampling index within the sub-aperture. The discrete form of 
(108) is 

g[(n+k-u)A - 	q*(kp - 
2 	 2 

/r8 2 2 	 Ir13 2 2 	 21rBA2 
j--(u à +uAT') j--(n  A2  

eT 	 e  T 	 e T 

2sBA2 	 T'13 -j---- un j2Irs[(n+k-u)à -j - 	. 	(110) 
2 

The first factor in (110) is solely dependent on u and is of no 
importance to the image processing. It will therefore be dropped. With 
this change (110) becomes 

T', 	 ' g[fn+k-u)to-,-- .1 g*(kA,.-T_) 
2 	 2 

Ira 2 2 	 21113A2 2.103A2 	 T' 	13 5-----(n-u)k -j- un j2vs[(kA-uA-,--)+nAj 
= e T 	 e T 	e 	 e 	 2 

(111) 

The last exponential factor in (111) is solely due to the cubic 
phase term. The k-dependency in this factor signifies that the error 
caused by the cubic term is proportional to the duration of a 
sub-aperture. In practice, the sub-aperture length is much shorter than 
the full aperture, and the variation in the phase factor as k changes from 
one end of the practice, the sub-aperture length is much shorter than the 
full aperture, and the variation in the phase factor as k changes from one 
end of the sub-aperture to the other is very small. An expansion of this 
factor gives 

T'. 	.13 	 T' 3 	 T',2 .1 j2se[(ka-uA-,--)+nal 	j2se(kA-ua---) 	j21/[3c(kA-uti---) naj 
2 	-e 	 2 	e 	 2 

' j2irs(nA) 3 j2s[3s(kA-uA,-T-)(nA) 2 ] 
2 . (112) 

The significance of these phase terms is depicted in Figure 51, and is 
explained as follows: 

i) The first exponential factor is independent of n. It represents 
the phase deviation due to the cubic term of the input signal 
within the sub-aperture located nearest to the centre of the 
full aperture. This term is extremely small and is of the order 
of less than 0.5' for highly-squinted (e.g. 6 .  from flight 
direction), high resolution (e.g. 1 metre), and long slant range 
(e.g. 100 km) cases operating at x-band. 
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ii) The second exponential factor, which is a function of n, 
represents the additional phase error within a deramped 
sub-aperture. 	This phase error is rather small under most 
stringent circumstances, it is less than 10  for sub-apertures 
located at the ends of the full aperture. 

iii) The third exponential factor depends solely on n. Itdescribes 
the global phase error along the input data. Its magnitude may 
be rather significant and it must be cancelled before the second 
DFT is performed. 

iv) The fourth exponential factor, dependent on k, u, and n, is the 
amount of frequency offset from the normal deramped CW signal. 
This frequency offset shows up as a shift in the spectrum 
produced by the first DFT. 

In summary, the first two exponential factors describe the local 
residual phase errors within a sub-aperture. Their magnitudes are 
normally too small to affect the final result. The last two exponential 
factors describe the global residual phase error and the frequency offset 
respectively. Their effect on the final result is worth further 
consideration. 

NON-LINEAR 
FM SIGNAL 

Fig. 51 - Deramping a non-linear PM signal with oleic  phase.  All 
errors are Shown for the case in which an ideal sawtooth 
reference is applied. 
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With only the last two phase factors of the expansion included, the 
deramped signal of (8.30) can be written as 



77 

Til 	T' 
g[(n+k-u)A--- .1 g*(kA---) 

2 	2 

wB 2 2 	2wBA2 	 2wBà2 
5--(n A -nAT') 	 un j2ne(nA) 3 

e 

' 
j2113e(kA-uà--

T
-)(nA) 2 1 

2 (113) 

The image is produced from (113) by using the modified step 
transform. First a Hamming window is imposed on the sub-aperture in order 
to suppress sidelobe leakage, and a DFT is taken with respect to k; the 
result is 

wEl 	 T' 	 21113A2 
j--(n 2 à2  -nàT') j2we(nA) 3 -j6we(ute+--)(nA) 2 	un 

X(r,n) = e T 	 e 	e 	2 

N-1 	 k+0.5 
î [0.54-0.46 cos(2w-----)] 

k=0 	 Nz 

5
2wBA2 	 ...j2wrk 
-----(n-u)k j2w3ekA(nA) 2  

[e T  

T' 	 2113A2 
51t(n2à2-nAT I ) j2we(nA) 3  -j6weutoh--)(nA) 2 	un 

= e T 	 e 	e 	2 

2 
W[r-(MeLinr1) +3N eA 3n2)]. (114) 

where W(r) is the Fourier transform of the Hamming window and is given by 

(115) W(r) = 0.54D(r)-0.23(D(r-1)+D(r+1)]. 

and 

D(r) = e 
sin[wr] 

sin[ wr l 
biz 

Substituting (101), (102) and T' = NzA into (113) yields 

-j6weN(1-) 2A3uL2  jw5(t) 

X(r,t) = e 

e N Z W[r-t-3e 4(1-Z) 2A 3 t2+---11-- ], 
NZ(1-g) 

(116) 
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where 13(£) = 2e[biz(1 -Z) ] 3 L 3  + [1 -e -3eN 3 (1 -Z) 2A 3 P,2  -L. We can see that 
the location of the spectrum is off by (3eNb1 -U 222.2 ] cells from the 

normal diagonal position. If uncompensated this positional shift will 
result in amplitude tapering of the signal on both ends of the diagonal; 
moreover, the energy associated with one diagonal can curve into the 
adjacent diagonals. This intermixing of diagonals will introduce image 
blurring into the DFT of the adjacent diagonals. 

If this amount of degradation is intolerable, then the curvature 
can be corrected by interpolation along the r -dimension after the first 
DFT. 

The W-function in (116) represents a narrow bandpass filter moving 
along a locus described by r = + 3ebil(1-g) 22£2 , in the r versus It 
plane. To regain the original resolution, a coherent summation (DFT) over 
r needs to be performed along this locus. 

The first exponential factor in (116)is dependent on the location 
of the target, u, and the sub-aperture location, L. The maximum phase 
value of this term occurs at the above extreme values 

Nz(1-Z) 	blz 
	 and ILI = 	i.e. 

2 	 2 

5 3 = 0.75weN Az o-e) 3 

0.75weT 3 
	• 	 (117) 

The maximum tolerable 8max  value is 0.75w for a heavily weighted DFT 
(see (120) below). Therefore 

biz > ET 3 . 	 (118) 

Substituting the criterion in (118) into the cubic phase at the end of a 
full aperture as given in (105), gives 

°cubic Irreg.r. 

In other words, if the cubic phase at the end of thè full aperture is 
eNz/4 or less, then the first exponential factor in (116) is 
insignificant, and will be dropped henceforth. For example if biz = 32, 
the maximum tolerable cubic phase at the end of the full aperture is 1440; 
a phase error which would otherwise be intolerable if no sub-aperture 
compensation is used. 
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Before proceeding with the coherent sub-aperture summation, namely, 
a second DFT, the second and third exponential factors in (116) should be 
cancelled. When this is done the second DFT with Ramming window becomes, 

NV2-1 
,2wqt 

( 	-1.77--  
Y(q) = 	/ 	X(r,£) [0.54-0.46cos(2we+" )] e-i01we ' - ' e -Z , 

Zug-Ng/2 	 Ng 

_j2eu£ j2we  

w[ 	u  	] 	[0.54-0.46cos(2e1t21)] e NZ e 

	

Ng(1-g) 	 Ng 
along 
r=t+3e4(1-C) 2A3 2,2  

w[  u I  Keru]. 
14 ( 1-Z) 

(120) 

After both DFTs, a target located at t = uA is recovered as a com-
pressed pulse, W[q-u]. The first W-function in (120) represents an unde-
sired amplitude modulation function inherited from the Ramming weighting 
in the first DFT, and should be corrected. 

8.2.5 Range Curvature Compensation 

Range curvature can be compensated in a similar fashion to the 
matched filtering case described in Section 7.1. In the step transform, 
the range curvature compensation should take place after the first set of 
DFTs. Referring back to Figure 42, each row of data indexed in have the 
same frequency Characteristic and are acquired through the same portion of 
the antenna pattern. Thus each row of data in the processing matrix 
suffers the same amount of curvature, whereas the data in a column, which 
are each acquired from different angles, suffer different amounts of 
curvature. TO perform the interpolation a number, based on the length of 
the interpolator, of processing matrices from consecutive ranges are 
collected (see Figure 52). Interpolation is then performed across the 
matrices on a set of corresponding data (t,r), one from each processing 
matrix. 

9. 	COMPITERTIOPIRL REQUIREMENTS 

In this section, we attempt to give an assessment of the 
computational requirements for the foregoing SAR data processing 
algorithms. SAR data processing is often characterized by its voluminous 
data size, and the stringent requirement for arithmetic operations. Thus 
the design of a SAR processor should be optimized in terme of arithmetic 
complexity and control-function complexity. The predominant factors for 
consideration are the throughput rate, the pulse-compression ratio, and 
the number of looks. A desirable algorithm for SAR data processing should 
be selected by making the necessary tradeoffs between these factors. 
Because of a large number of parameters, the computational rates of 
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Fig. 52 - Range curvature compensation in step transform. 

generalized optimal processing schemes are not easily compared. 	In 
general, the matched filtering approach requires less control-function 
complexity and provides more flexibility and exactness in tailoring the 
matched filter to fit the data. On the other hand, the deramping 
technique demands less memory and can proceed in a continuous rather than 
batch fashion, and is thereby more suited to real-time processing. In the 
present assessment, we express the computational requirements in ternis of 
numbers of complex multiplications and additions (including subtractions), 
in the hope that the quantity, when considered with other factors, will 
help in the refinement of the overall processing configuration. It is 
assumed in the following that the matched filters, or the deramp 
references, and the phase-magnitude correction factors are pre-computed, 
and that the effort required to synthesize them is small compared with the 
actual processing of the data. 

Unless otherwise redefined, the symbols used in the following 
evaluations are the same as those used in their respective descriptions 
given earlier. In order to use the FFT algorithm, the variables NT , 
/41 and N need to be power-of-two integers. 

9.1 	Computational Requirements for Single Look Cases without Range 
Curvature and Cubic Phase Term Compensation 

The computational requirements for the three pulse compression 
techniques are evaluated. It is assumed that the complications due to 
range curvature and the cubic phase term are negligible. 
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a) 	Computational requirement for the matched filtering 
approach (via fast convolution)  

For complex multiplications  

-Forward FFT on a set of NT input data 
NT,  
--a-°g2NT 
2 

-Matched filtering with windowing included 

-Inverse FFT on NT matched filtered data 

-Total number of complex multiplications 

For Complex Additions  

-Forward  FFI' on NT input data 

-Inverse PFT on NT matched filter data 

-Total number of complex additions 

-Matched filter length in time domain 

-Valid output data length 

-Number of complex multiplications per 
valid output point 

-Number of complex additions per valid 

output point 

NT 

NT 
--log2NT 
2 

NT1og2NT+NT 

NT 
__10g2NT 
2 

NT 
--log2NT 
2 

NTlog2NT 

Nfir41 

log2NT+1  

1 M 
NT 

log2NT 

1-- 
NT 

b) 	Computational requirement for the step transform 

Let be the sub-aperture overlap and 1n1 be the number of 
2  sub apertures, so that Nz 	

1 
 

(1-Z)(FM rate)à2 . 



N 
--log2N 
2 

m2 

2 

NE 
-=log2Ne+Nz 
2 

-Second FFT (along diagonal) 
Np 
-21°g2NZ 2 

For cases with >0.6  
For complex multiplications  

-Deramp input signal with NE sub-apertures 
and use Ne data points for each sub- 	 N 2  
aperture  aperture 
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-First FFT for one sub-aperture 

-Do the above for Ne sets of sub-aperture 

FFTs which results in a Nelq matrix 
containing Ne complete diagonals 

-Number of multiplications to form one 
complete diagonal 

-Phase  correction and windowing on 	 Ne 

one diagonal 

-Total  number of complex multiplications 	 Nelog2Ne+2Ne 

(not including the final amplitude 
correction) 

For complex additions  

-Number of additions in the first and 
second FFTs that are required to form 
the output from one diagonal 

Nelog2Ne 

-Number of valid data produced from 	 (1- )Ne 
one FFT along the diagonal 

-Number of complex multiplications 
per valid output point 

10g2Ng+2 

-Number of complex additions per 
valid output point 

log2NE 

1 



2Nz 
---log22Nc 
2 

miNg(1+log2Nt) 

2Nglog2+5Ng 

For cases with 0.2<e<0.6  

These cases require two sets of sub-aperture references, see 
Section 8.2.2 for details. 

83 

For complex multiplications  

-Deramp input signal with 2/*/ 
sub-apertures and use blz data points 
for each sub-aperture. 

-First FFT for one sub-aperture 

2Nz 2  

Mllog2Nz 
2 

2 
-Do the above for 2NE sets of 	 lnaog2Nz 
sub-aperture FFTS which results in 	 2 
2Nt X blz matrix containing Nc 
complete diagonals 

-Number of multiplications to form 	 Nzlog2Ne2Nc 
one complete diagonal 

-Phase correction and windowing on 	 2Ng 
one diagonal 

-Second FFT (along diagonal) 

-Total number of complex multiplications 
(not including the final amplitude 
correction) 

For complex additions  

2 
-Number of additions in the first and 	 Nzlog22Nz 

second FFTs that are required to form 	 ào2Nlog2NeNz 

the output from one diagonal 

-Number of valid data produced 	 (1-e)Nz 
from one FFT along the diagonal 

-Number of complex multiplications 
per valid output point 2Nzlog2Ne5 

1-e 
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-Number of complex additions per 
valid output point 

210g2Nel 

1- 

L—log2N 
2 

LN 
--log2N+NL 
2 

c) 	Computational requirements for the spectral analysis method  

In the present treatment, we assume that the guard band, 0, and the 
DFT length, N, depend on the required resolution, and that they are suf-
ficiently large that the number of processing columns within a parallelo-
gram is not less than two (see for example, Figure 38). The number of 
processing columns required for each parallellogram can be calculated, by 
using (82), as 

L = INTEGER [ 	  +1 1  
aNk 

(1-0--7—)N 

1 = INTEGER [ 	  +1 
. 	aNk 

32 

Let N be the recorded data length before presumming, therefore 

B2 NN= BT - ,.  

For complex multiplications  

-Deramp input signal (including windowing 
to form L processing columns within a 
parallelogram) 

I • 

LN 

-FFTs for L processing columns 

-Total  number of complex multiplications 

for one parallelogram 

For complex additions  

-Number of additions in the L FFTs 

-Number of valid data given by 
one parallelogram 

LN 

2 
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-Number of complex multiplications 
per valid data output --log2N+L 

2 

—1°g2N 2 

16.5 

Number of complex additions log22048 

557 

2048 

15.1 

-Number of complex additions per 
valid data output 

9.1.1 Examples for Cases without Range Curvature and Cubic 
Phase Term Compensation 

The following examples are intended to provide some insight into 
the computational requirements of the processingalgorithms. Two cases are 
given, both have a presum factor of 8. 

Examples for typical resolution (3.5m)  

Parameters: 

-Raw data length 
-Data length after presum, NT  

-Slant range 
-Matched filter length, M 
(›Time -bandwidth product in cycles) 

a) 	Matched filtering approach  

Number of complex multiplications 
per valid data point 

16,384 
2,048 

100 km 
557 

(log22048)+1 

557 

2048 

b) 	Step transform (assumeeg (8.21) is satisfied) 

The computational requirement depends heavily oe the pm rate 
the sampling interval as given in (8.21), or equivalently, 

and 

oversasupling factor. According to the Nyquist criterion, BA<1, we  1— have 
 

TB mz  > 
1 -Z 
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and 

TB 
< 1 - 
— 	2 Nt 

where TB is the time-bandwidth product. Setting TB = 557, 	= 0.6, we 
have, 

Nt > / 557
— = 37.3, 
0.4 

we Choose Nt = 64, and 

557 
< 1 — 

(64) 2 

< 0.864. 

which gives the number of overlapped points = 27.6 m 27, is recalculated 
as 0.844. 

To calculate the computational requirement with = 0.844, we have 

-Number of complex multiplications 

per valid data point 

log264+2 

1-0.844 

52 

log264 

1-0.844 
-Number of complex additions per 

valid data point 

c) 	The spectral analysis method  

39 

Since N = 557, we choose N = 1024, this makes the resultant 
resolution proportionally finer. 

The number of processing columns is 

L = INTEGER [ 	
1 	

+ 1], where 9=0.4, 0=0.4, 

1 -0 4 	
0.4x1024 

.. 
16384 

= INTEGER [2.7], 

= 2. 
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-Number of complex multiplications 
per valid data point 

2 
—log21024+2 
2 

-Number of complex additions per 
valid data point 

2 
—log21024 
2 

12 

10 

Examples for fine resolution (1.75 m)  

Parameters: 
-Raw data length 
-Data length after presum 
-Slant range 

-Matched filter length 

a) 	Matched filtering approach  

-Number of complex multiplications 
per valid data point 

-Number of complex additions 
per valid data point 

16,384 
2,048 

100 km 

1,116 

(log22048)+1 

, 1116 

2048 

26.4 

log22048  

1116 

2048 

24.2 

b) 	Step transform (assuming (102) is satisfied)  

m2 TB 
1-Z 

/1116 
N > 

0.4 
> 52.8 

choose Nz 64 

TB < 1 - 
2 



log264+2 

1-0.719 

29 

log264 

1-0.719 

22 

< 0.728 

which gives the number of overlapped points = 2.33 = 23. 	is recal- 
culated as 0.719. 

To calculate the computational requirement with = 0.719, we have 
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-Number of complex multiplications 
per valid data point 

-Number of complex additions 

per valid data point 

c) 	Spectral analysis method  

N = 1116 
choose N = 2048 
The number of processing columns is 

L = INTEGER [ 	
1 	

+ 1], with = 0.4, 	= 0.4. 

1-0 
40.4x2048 

. 
16384 

= INTEGER [2.8] 

-2 

-Number of complex multiplications per 

valid data point 

2 —1og22048+2 
2 

13 

-Number of complex additions per 

valid data point 

2 
--log22048 
2 

11 

In practice, the matched filtering method and the step transform 
require the raw data be presummed before being processed. The presumming 
can be accomplished by using a two-stage low-pass filter with 15 coeffi-
cients each. Therefore, an additional 30 multiplications and additions 
per input data point should be added on top of the computation 
requirements. In the case of the spectral analysis method, the presuming 
process is done by selectively deramping and windowing the desired 



4NT 

NTlog2NT+NT 

For complex additions  

-4-point interpolator 

-Other computations 

3NT 

mTlog2NT 

log2NT+5 

1 M ,-- 
NT 
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processing column, thus no additional presumming is required. However, 
the output product is not as well controlled, with respect to aliased 
energy, as the cases in which a presumming filter is used. 

9.2 	Computational Requirements for Single Look Cases 
with Range Curvature Compensation 

The above computational evaluations are now extended to include 
cases with range curvature. The spectral analysis method is not included 
since it cannot accommodate range curvature. 

a) 	Computational requirements for the matched filtering  
approach (via fast convolutional) with range curvature  
compensation  

The range curvature compensation is accomplished by interpolation, 
in the range dimension, along the curvature. A four-point interpolator is 
assumed here. The procedure has been described in Section 6.2 

For complex multiplications  

-4-point interpolator 

-Other computations 

-Total number of complex multiplications NTlog2NT+5NT 

-Total number of complex additions 

-Valid output data length 

-Number of complex multiplications per 
valid data output point 

NTlog2N+3NT 

NmM  
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-Number of complex additions per 
valid data output point 

log2NT+3 

1 M 
NT 

10g2Ne6 

log2 NE+3 

1- 

b) 	Computational requirements for the step transform 
with range curvature compensation  

The range curvature compensation is accomplished by interpolation 
of the corresponding elements in the processing matrices from different 
ranges, as described in Section 8.6. A four-point interpolator is assumed 
here also. 

For cases with > 0.6  
For complex multiplications  

-Interpolation to form one complete diagonal 	4Ne 

-Other computations 	 Nelog2Ne+2Ne 

-Total number of complex multiplications 	 Ne1og2Ne+6Ne 

For complex additions  

-Interpolation to form one complete diagonal 3Ne 

-Other computations 	 Nelog2N 

-Total number of complex additions 	 NElog2NE+3Ne 

-Number of valid data given by one 	 (1-UNE 
diagonal FFT 

-Number of complex multiplications 
per valid data output point 

-Number of complex additions 
per valid data output point 



2log2NC13 

2log2Ne7 

1-Z 

For cases with 0.2 < < 0.6  

For complex multiplications  

-Interpolation to form one complete 	 8Ng 
diagonal 
-Other computations 	 2Nzlog2Ne5N 

-Total number of complex multiplications 	2Nzlog2Ne13N 
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For complex additions  

-Interpolation to form one complete diagonal 6Nz 

-Other computations 2bIlog2NeNz 

Total number of complex additions 	 2Nclog2Ne7Nz 

-Number of valid data given by one 	 (1- )Nz 

diagonal FFT 

-Number of complex multiplications 

per valid data output point 

-Number of complex additions per 

valid data output point 

9.3 	Computational Requirements for the Coherent Multi-look 
Cases with Range CUrvature and Cnbic Phase Compensations 

The computational requirements for the severe combination of range 
curvature, cubic phase, and high resolution are encompassed in the 
following. 



NT(L+1) 

2 °g2NT 

+5NT 

-L inverse FFTS with N data each LNTiog2NT 

 2 

Computational requirements for the multi-look matched  
filtering approach (via fast convolution)  

No additional computation is required for the cubic phase compensa-
tion, since the cubic phase term can be pre-calculated and embedded in the 

matched filter when it is synthesized. If sub-aperture summation is per-
formed in the time-domain, the inverse Fourier transform of each sub - 
aperture has to be the same length as the overall original data length 
(NT). This is accomplished by appending zeroes to the unoccupied por-

tion of a sub-aperture spectrum. If sub-aperture summation is performed 
in the frequency domain during compression, the sub-aperture spectra are 
concatenated (except in the transition bands) to the original bandwidth, 
before the inverse Fourier transform is taken. Thus the amount of 
computation is very much the same as that for the single look case. In 
the following analysis, post-compression sub-aperture summation in the 
time domain is assumed. 
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For complex multiplications  

-Forward FFT on a set of NT input data 

-Interpolation for all sub-apertures 
(with a 4-point interpolator) 

+Hatched filtering with extraction filter 
and windowing for L sub-apertures 

-L inverse FFTs with NT data 

2 
»4NT 

»NT 

LNTiog2NT 

 2 

-Total number of complex multiplications 

For complex additions  

-Forward FFT on a set of NT input data itlog2NT 
2 

-Interpolation for all sub-apertures 	 "3NT 

-Coherent summation of L sub-apertures 	 (L-1 )NT 
in the spatial domain 
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NT(L+1) 

2 
	log2NT 

-Total number of complex additions 

(L+1), 
--Log2NT+5 
2 

M 

NT 

i(L+1) 
r-77--14n2NeL+2  

1, 
NT 

2 

+(L+2 )N 

-Valid output data length 

-Number of complex multiplications per 

valid output point 

-Number of complex additions per 

Nfr_-M 

h) 	Computational requirements for the step transform with  
range curvature and cubic phase  

If the cubic phase term is significant compared to the quadratic 
phase term, then the data array for the second DFT will no longer lie 
along the diagonal of the array. This phenomenon has been described in 
Section 8.6. To remedy this, interpolation is used to straighten out the 
curvature of the diagonal, before the computation of the second DFT. In 
the following analysis, we- assume that all the diagonal data are 
interpolated using a four-point interpolator. 

For cases with g > 0.6  

For complex multiplications  

-Interpolation for the diagonal data 

-Other calculations (including range 	Nzlog2Ne6N 

curvature computation) 

-Total number of complex multiplications 	NO.og2Ne10Nz 

For complex additions  

-Interpolation for the diagonal data 	3/.1 



log2Nelo 
1-e 

log2NE+6 

log22q+20  

1-Z 

log22NÎ+12 

 1 

-Other calculations (including range 

curvature compensation) 

-Total number of complex additions 

bllog2NC3N 

Nzlog2Ne6N 

94 

-Number of valid data given by one 	 (1-Z)N 
diagonal FFT 

Number of complex multiplications 
per valid data output point 

Number of complex additions 
per valid data output point 

For cases with D.2«<0.6  

For complex multiplications  

-Interpolation for the diagonal data 

-Other calculation (including range 
curvature computation) 

8Ne 

Nglog22+12Nz 

-Total number of complex multiplications 	 Ntlog221420N 

For complex additions  

-Interpolation for the diagonal data 	 6Nz 

2 -Other calculations (including range 	 Nzlog22Ne6N 
curvature compensation) 

2 -Total number of complex additions 	 Nzlog22Ne12Nz 

-Number of valid data given by 	 (1-E)N 
one diagonal FFT 

-Number of complex multiplications 
per valid data output point 

-Number of complex additions per 
valid data output point 
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10. SUDDIARY 

A general theory of coherent sub-aperture processing for SAR, has 
been presented. The problems encountered in applying a one-dimensional 
matched filter on SAR azimuth data have been reviewed and characterized. 
A piecewise solution for the one-dimensional matched filter has been form-
ulated and it has been shown how this solution can be used to combat the 
processing problems without resorting to memory intensive two-dimensional 
filtering. The solution has been thoroughly tested by computer simula-
tions, and an error analysis of the effects of the phase and amplitude 
distortions, caused by the piecewise approximation, has been given. In 
addition, the basic deramping techniques have been overviewed, and the 
step transform technique discussed in detail. In particular, the step 
transform method has been extended to include compensation for phase 
errors and range curvature. Finally, the computational requirements for 
different cases and processing techniques have been evaluated. 
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APPENDIX A 

Polynomial Truncations of the Taylor Expansion  of the 
Radar Received Signal 

To illustrate that the quartic (and higher order) phase terms are 
insignificant, we go through the following numerical example. 

We assume a high squint angle, high resolution case, which 
represents the worst possible operating conditions: 

Resolution (p) 	 1.358 m, 
Wavelength (X) 	In 	 0.0321 m , 

e  Squint angle (no ) m 	 6,  
Slant range (ro ) 	 100 km.  

The half aperture length is given by 

Xro  
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smax 4psinnp 

With these parameters, the quadratic, cubic and quartic phase terms at the 
end of the full aperture are given by 

quadratic phase ne 171a 24a3r 

wiro  

8.n,2 P  

= 31.1x rad, 

4w 	3 
— a3amax 1 

cubic phase 

quartic phase 

, 2 
TA rip 

32p 3tanng 

= 12.2n rad, 

4n 	4 
ng  --a smax 
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.3 
WA rp , 	4 

 	1) , 
2 512p 	tannip 

= 0.686 11 rad. 

/n practice, the overall phase error, with a heavily weighted aperture, 
should not be more than 0.75w rad. It can be seen then, that even in this 
extreme case, the contribution due to the quartic phase term can be 
ignored. 



1.4Arp 

APPENDIX B 

Azimuth Resolution 

The azimuth resolution is mainly determined by the second order 
phase term given in (3.2). 

Let 

4w 	2 e 	a2s • 

The Doppler bandwidth (BW) is given by 

BT., 	del 
n m 

1 
-•nn • 

2w de s=NpASA 

4 
—e2NPASA , 

 X 

2sinnp 
ml--NpASAr 

Arp 

where all variables are defined in Section 3. 

The resolution, p', in the flight direction is given by 

1.4Arp 

BW 	2N ASAsin2np 

where the factor of 1.4 is due to the broadening effect of the Ramming 
window. 

The azimuth resolution in the direction perpendicular to the 
antenna pointing vector is 

p = p'sinnp 
2NpASAsinnp 
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1.4 
P'e 
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