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IMPLEMENTATION OF HIGH SPEED FFTs FOR 
RADAR SIGNAL PROCESSING 

by 

H.C. Chan 

ABSTRACT 

Discrete Fourier Transform (DFT) has found wide application 
in radar and sonar systems. With an increased emphasis 
on digital signal processing, radar systems have requirements 
for DFTs with ever increasing data rates. The Fast 
Fourier Transform (FFT) algorithm permits efficient 
computation of the DFT. In this work, both the fundamentals 
of FFT algorithms and their implementation are discussed, 
with emphasis on hardware design. Designs are presented 
for two radar signal processors employing high speed FFTs, 
i.e., (1) a high speed Doppler processor and (2) a two-
dimensional digital beam-former. 

1. INTRODUCTION 

The discrete Fourier Transform (DFT) has found wide application in 
radar and sonar systems. In the case of radar, there is a requirement for 
DFT processors capable of very high data rates. Some examples of typical 
radar applications are the following: target Doppler processing, pulse 
Doppler processing, pulse compression, matched filtering, radar imagery 
processing.and, recently, digital beam-forming. The processing speed 
requirements range from several MHz in the case of a Doppler processor to 
over a GHz for a digital beam-former. In this report, some aspects of the 
hardware implementation of the Fast Fourier Transform (FFT) are considered. 
It is intended in this report to provide some insight into the problem of 
developing: 

(a) techniques for implementing the FFT algorithm in a form suitable for 
radar signal processing, 

(h) techniques for increasing processing speed and efficiency, 

(c) techniques for reducing the hardware component count, 

(d) techniques for achievinà greater parallelism so that higher 
throughput rate can be realized. 
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1.1 A survey of existing hardware FFT processors 

It is instructive to survey the literature and determine if any 
"off-the-shelf" hardware FF T processors are able to fulfill the requirements 
outlined in the previous section. In a paper published in 1969, Bergland 
[1] tabulated the characteristics of over twenty hardware FFT processors 
which existed at that time. The comparison is based on processor architec-
ture, function and performance characteristics, system hardware features and 
cost. Most of these processors were produced by research laboratories, such 
as Bell Laboratory, Stanford Research Institute, MIT Lincoln Laboratory, for 
specific applications. A few were produced by computer manufacturers such 
as IBM, Control Data Corp. Processing speeds for these processors were 
measured in terms of the time required to compute a 1024-point complex FFT. 
The speeds range from a high of 1 ms for the MM DSP of Emerson Electric to a 
low of 600 ms for the CSS-3 of Computer Signal Processors, Inc. Typically, 
the execution time for a 1024-point complex FFT is in the tens of milli-
seconds. These times compare very favorably with those achieved by 
present-day commercial data processors. 

Over a decade has past since the publication of this survey paper. 
Many special purpose high-speed FFT processors undoubtedly have been built 
by various research laboratories and in the industry. However, their tech-
nical characteristics are not generally available. More importantly, there 
appears to be no commercially available processors which are directly appli-
cable to real-time radar signal processing functions. Commercially avail-
able  FF T processors usually take the form of an array processor. Array pro-
cessors lean towards high flexibility and tend to be software orientated. 
Examples of these processors include the Floating Point System (FPS) family 
of array processors, Star-100 array processor developed by Star Technologies 
Inc., and the TASP array processor developed by ESE. The throughput rates 
of these systems, measured in terms of millions of floating point operations 
(Mega-flops), are very impressive, ranging from 25 Mega-flops for an AP-120B 
to over 100 Mega-flops for the TASP. With respect to FFT processing, the 
execution time for a 1024-point complex  FFI  ranges from 5 msec for a FPS 
AP120B to about 800 micro-seconds for the TASP. However, the operation of 
array processors is input/output (I/0)-limited. For applications such as a 
2-D digital beamformer, where the data are available simultaneously, their 
throughput rate is limited by the data transfer rate of the I/O interface. 

Families of IC chips specially designed for FFT processing are 
available from a few device manufacturers. Examples of these IC chips are 
the AM29500 family by Advanced Micro Devices, and the Weitek family signal 
processing ICs. Recently, IBM and Sony of Japan each introduced a family of 
monolithic devices suitable for the implementation of systolic array proces-
sors[2]. These devices may be used to form the building blocks of a high 
speed FFT processor for real-time radar applications. However, the cost of 
these devices is currently very high. Consequently, it is more economical 
to develop high speed digital radar signal processors with inexpensive and 
commercially available ICs. 

It is well known that there tends to be a tradeoff between process-
ing speed and processing flexibility in the design of digital hardware. Due 



to the extremely high data rate requirements in radar applications, it is 
usually necessary to sacrifice flexibility in favour of speed and to use 
special purpose hardware. In a later section, the designs of a target 
Doppler processor and a two-dimensional digital beamformer will be 
discussed. These two examples will serve to demonstrate how one maximizes 
throughput rate and minimizes component count. 

2. THE FF T ALGORITHM 

In order to select the most suitable approach to the hardware 
implementation of an algorithm, it is essential that one thoroughly 
understands the structure of the algorithm. This understanding will enable 
the circuit designer to take advantage of'any parallelism or special 
constructs of the algorithm and match these to the capabilities of 
state-of-the-art hardware components. 

In most standard digital signal  processing texts [3]-[5], the FFT 
algorithm is explained both in terms  of the decimation-in-time (DIT) and the 
decimation-in-frequency (DIF) processes. Generally, when these descriptions 
are applied to the FF T algorithm, they are meant to refer to any procedure 
in which the DFT of an N-point sequence is.obtained by first computing the 
DFTs of two or more sub-sequences; i.e., by decimating the original sequence 
and then combining them in some fashion. The premise is that the total 
effort required for computing the smaller DFTs and combining the results is 
always less than that required for directly computing the DFT of the 
original N-point sequence. We will not proceed immediately with a proof of 
this premise, but rather, we will first discuss the basic concept underlying 
the FFT. It will then be shown that this decomposition reduces the 
computational overhead. 

2.1 Two-dimensional representation of the DFT of a one-dimensional sequence 

The DFT (DI an N-point complex sequence S:{x0,x1,x2,..,xN-1} is 
defined as: 

n=N-1 
Fk = 	xn  exp(-j2nnk/N) 

' n=0 

k=0,1,2,...,N -1 

It is clear that to evaluate Fk for all N values of k, (N-1)
2 complex 

multiplications and N(N-1) complex additions are required. A complex 
multiplication requires four real multiplications and two real additions. A 
complex addition requires two real additions. In subsequent discussions, 
unless otherwise noted, the terms multiplication and addition are understood 
to mean complex multiplication and addition, respectively. This estimate of 
the number of multiplications takes into account the fact that the 
exponential term exp(-j2nnk/N) is unity for n=k=0. Although the term FFT 
was used initially in the work of Tukey et al [6] to mean a specific 
algorithm, much progress has been made since. Consequently, the FFT 
algorithm may now be regarded as any computational procedure which reduces 
significantly the required computational effort in evaluating Eqn (1). 
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It can be shown that both the so-called DIT and DIF processes lead 
to the same interpretation of the FFT algorithm. Rabiner and Gold[3] 
developed the mathematical treatment which led to a unified approach to the 
FFT. Their approach is based on the two-dimensional representation of a 
one-dimensional sequence. The DFT sum is transformed into a double 
summation. In the following, we shall present a development which shows how 
the two-dimensional representation of the DFT can be arrived at through the 
process of decimation. It will provide the linkage between the concepts of 
DIT and DIF. Soma of the special terms such as butterfly, radix, twiddle 
factor and digit reversal will become clear as the development unfolds. 

Consider an N-point complex sequence S :{x0,x1,x2,..,xN-1}. If N 
is not a prime number, then it can be expressed as a product of at least two 
numbers L and M, i.e., 

N =LxM 	 (2) 

The N-point sequence can be expressed as the sum of a number of auxiliary 
sequences. These auxiliary sequences are constructed from the original 
sequence by retaining a subset of the samples and padding the rest with 
zeros. One particular construction is as follows: 

The0 
	1 
N-point 2  sequence is expressed 

as the sum of L auxiliary 
sequences S , S , S ,...,SL -1 , which are defined-in Eqn (3). 

e 0  
0 	: xo,x1,x2,...,xm-1,0 ,0 	 ,...., 0, 0, 0, 

1 S 	: 0, 0, 0, ..., 	xm,xm+1,...,x2m_1,0,..,0,0, 0, 0, 
	  >0 

	 ,0 

These auxiliary sequences contain M non-zero entries, and each is padded 
with (N-M) zeros. The non-zero entries in each auxiliary sequence is a 
subset of M contiguous samples taken from the original sequence. There is 
no overlapping of non-zero entries among the auxiliary sequences. Since the 
DFT is a linear operation, the DFT of the original N-point sequence is equal 
to the sum of the DFTs of the L auxiliary sequences. 

Let the DFTs of the auxiliary sequences  S ° , S 1 , S 2
,..., SL-1 , be 

Fk° , Fk 1  , 	Fk ( L-1) , respectively. Since there are only M 
non-zero entries in each auxiliary sequence, the corresponding DFTs reduce 
to those defined in Eqn (4). 
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(4) 

(5)  

M-1 
0 	 .2 wmk 
Fk = xmexp(-3-4 

m=0 	LM 

M-1 j2nk )  
= 1 xmi-mexp( -i?-21A")exp(

...  
m=0 , 	LM 

M-1 2nmk 	2n(L -1)k 
FiL-1). 	V L xm+(L_1)mexp(-j-----)exp[-j 	 

m=0 	 LM 

k = 0,1,2,3,...N-1 

From Eqn (2) we have substituted L x M for N in Eqn (1). Using 
superposition, we can express the DFT of sequence S as: 

Fk 	Fk 0 	Fk 1 	Fk 2 	... FicL -1) 

M-1 	 M-1 2nmk 	 2nmk 	2nk 
= ï 	 + 	xm+mexp(-j----)exp(-j----) 
m=0 - 	LM 	m=0 	 LM 

.2nmk 	2w(L-1)k
] + 	+ 	xm+0,-omexp( -3—)exPE -j 

m=0 	 LM 

k = 0,1,2,...,N-1 

Equation (5) can be conveniently expressed by a double summation with the 
introduction of the index 2. 

2nnik 	2nLk Fk = 	1 xœnmexp(-j----)exp(-j-----) 
L=0 m=0 	 LM 

k = 0,1,2 ..... N-1 

At this point the symmetrical properties of the DFT play an 
important role in the development of the FFT algorithm. Notice that the 
last exponential term of the double summation in Eqn (6) repeats in a cyclic 
fashion as Lk, mod. L. Consider the following sub-groups of frequency 
samples; 
IF0,FL, F2Le... 1 1+(M-1)LI; ... 
FL_I,F(L..1)+1,,F(L-1 )+2L,--.F(L-1)+(M-1)Li separately. The first 

M- 1 

L-1 M-..1 
(6) 



(8) 

(9) 

(10)  
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sequence of frequencies can be expanded as: 

L71 M71 
Fo = L 	L xm+2.14 

£=0 m=0 

L-1 M-1 2nm 
FL 	/ 	xm+54exP( -J----) 

9.=0 m0 
(7) 

L- 1 M-1 
r 42nm(M-1)] V 	

ï xm+£11exPL 	M 
F(m-1)L = 	m=0 

With the introduction of index r, these equations can be expressed as the 
following set of equations: 

L-1 M-1 
FrL = / Î xm+kmexp( 

L=0 m=0 

r = 0,1.2.,„.M-1 

Similarly, for the next set, we have: 

=xm+2,MexP(-ellex f 211 
 £=0 m=0 	 LM 

L-1 M-1 2wm2nm 	2ek 
Fl+L = ï ï xenexp(-j----)exp(-j----)exp( 

9.-0 m-0 	 LM 

L-1 *-1 
F 1  

2nm(M-1) ]exp(-j- 
L-1 111-1 

( 42wm)exe-i 1+(M-1 )L = £10 m10 xielle 	LM 

which can be expressed as a sequence with index r: 

L-1 M-1 2nm 	, 	nmr 
Fl+rL = 	1 xurnmexp

,
-j 	K ---)ex-j2 
	2n£ 
-----)exP-i----) 

L=0 m=0 	 LM 

r=0,1,2,...,M-1 

A pattern begins to emerge. We see that the DFT can - now be regarded 
as L sequences each of which contains M entries. Consequently, we can 
express the DFT of the original N-point sequence S as a two-dimensional 
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(11) 

array by introducing the index s: 

L-1 14-1 
vv 	 ,2nms, 	„2wmr, 	, 

Fk Fs+rL= L 	L xurnmexp%, -J----vexp%. 
1=0 im=0 	 LM 

s = 0,1,2,...,L -1 
r = 0,1,2,...,M-1 

Equation (11) represents the DFT of the sequence S:{x0,x 1 ,...xN_I}, for 
all values of k=0,1,2,3,...,N-1. Graphically, the frequency components of 
the DFT can be seen as being arranged into a two-dimensional array as shown 
in Table I. 

Table I: Two-dimensional representation of the DFT of a one-dimensional 
sequence. 

0 	 1 	 2 	 M-1 

0 	Fo 	 FL 	 F2L 	 • 	 eM-1)L 

1 	F1 	 F14.1 	 F1+2L 	 • 	F1+(M-1)L 

2 	F2 	 F2.4.1, 	 F2+2L 	 • 	F2+(M-1)L 

3 	F3 	 F3tL 	 F3.+2L 	 • • . 	F3+ÇM-1)L 

• . 	 . 
. 	. 	 . 	 . 	 • 	 • 

L-1 	FL-1 	F(4_1)+L 	F(L-1)+2L  	F(L-1)+(M-1)L 
t, 

2.2 Generalized FFT procedures 

We now turn our attention to the double summation in Eqn (11). 
After rearranging terms, we obtain: 

M-1 
Fs+rL = / Gmsexp( -j2wmr  

m=0 

s = 0,1,2,...,L -1 
r = 0,1,2,...,M-1 

where 

L-1 
2nme 	v 	 2wRs 

Gas  = 	 L 
LM 1=0 

(12) 
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From the basic definition of the DFT, we recognize immediately that 
summation over  2.  in the term Gms  for a fixed m, is simply the DFT of a 
decimated sequence of L samples of the original N-point sequence S. To be 
precise, the decimated sequences are obtained by taking every other M 
samples from the original N-point sequence with the index, m, indicating the 
first sample to be taken. For example, for m=0, the decimated sequence will 
be: ixo xm, x2m,...,x(L_0141, and for m=1, the decimated sequence will 
be {xi, xi+m, 	 x1+(L-1)M} and so on. It is easy to 
visualize this particular decimation process by dividing the original 
N-point sequence into L contiguous parts of M samples each and then stacking 
them on top of one another as shown in Table II. We see that the resulting 
columns are exactly the required decimated sequences. 

Table II: Two dimensional representation of a one-dimensional sequence. 

0 	 1 	 2 	 • 	 M-1 

0 	X 	 x2 . 	x(m-i) 

1 	Xj 	 xl+M 	 x2+14 	 . 	x(m-1)144 

2 	x2M 	x1+2M 	x2.4.2m • 	x(M-1)+3M 

3 	x3m 	x1i.3m 	x2+3M . 	x(M-1)+2M 
• • 

	

. 	 • 
• . 	 . 

	

. 	 • 

	

. 	 . 

L-1 	x(L..i)m 	xi +(L-1)M 	x2+(L-1)M 	 x(M-1)+(L-1)M 

It becomes apparent that the summation over index k in Eqn (12) for all m 
are precisely the DFTs of all the columns in Table II. After the DFTs of 
all columns in Table II are performed, the results will be in terms of both 
indices m and e, where s is the frequency index of the column-1)11s. 

2.2.1 Twiddle factors 

According to Eqn (12), the DFTs of all columns are to be multiplied 
by a factor exp(-27rms/N). This factor is commonly known as the twiddle 
factor. Most authors avoid writing the exponential explicitly by defining 
the parameter W given by: 

W = exp(-j2r/N) (13) 



Consequently, the twiddle factor may be written as Weas. Since the twiddle 
factor is a function of two variables, m and s, it can also be represented 
as a two-dimensional array, as shown in Table III. 

Table III: Two-dimensional representation of the twiddle factor. 

j,›Ntz 	0 	 1 	 2 	 M-1 

0 	1 	 1 	 1 	 1 
, 	  

, 	., 1 	1 	exp(-j2; 	
2n2 

) 	 expt -3 --g-v 	• 	
expu_j2n0.1411-1)] 

2
, 	2n2, 	

. 	 . 	
• 

1 	expl -1 ----) 
N 

3 	1 	 • 	 . 	 . 	
• 

• . 	 • 
• • 	 . 	 • 	 • 
•

• 
. 	 . 	 . 	 . 

L-1 	1 	exp[
2n(I, -1)1 

• . 	 2n(L -1)(M-1) ]  
-J---Tr---' 	 exp[-j 	N 

When Was is equal to unity or ±j, no real multiplications are required. We 
shall call these three values of the twiddle factor trivial twiddles. 

It should be pointed out that twiddle multiplication should not be 
confused with matrix multiplication. It is an operation where entries from 
corresponding locations of the DFT and twiddle matrices are multiplied and a 
new matrix formed from the product. Let us represent the result of the 
twiddle multiplication by a 2-dimensional array as shown in Table IV. 

Table IV: Results of the twiddle multiplication with results of the 
column-DFTs 

	

° 	1 	 2 	 M-1 

0 	G0 ,0 	G1,0 	G2 ,0 	 Gm_1 , 0 

1 	G0 , 1 	G1 , 1 	G2,1 	 CM-1,1 

2 	G02 	
G
1,2 	

G
2,2 	 G M-1,2 

• • 	 • 	 • 	 • 	 • 
• • 	 • 	 . 	 • 	 • 

L-1 	G0 ,L-1 	• 	 • 	 • 	G(M-1),(L-1) 

9 
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By referring both to Eqn (12) and Table IV, we see that the summation over m 
in Eqn (12) consists of the DFTs of all the rows in Table IV. The steps 
described above constitute the generalized FFT procedures. A variety of FFT 
algorithms can be derived by applying these decimation steps in different 
ways to the original sequence. The steps of the generalized FFT procedures 
are summarized in Table V. 

Table V: Generalized FFT procedures 

	

STEP 	I 	 OPERATIONS 

i. The starting N-point sequence is divided into L sub-sequences of M 
contiguous samples, and each sub-sequence is used as a row to form 
an L by M matrix (N = LxM). 

ii. The elements of an L-by-M twiddle matrix are formed using the 
twiddle factor defined by: 

ms 
W 	= exp(-j2nms/N) 	s=0,1,2,3,..,L-1 

m=0,1,2,..,M-1 

where the row and column indices are given respectively by s and 
m. 

iii. L-point DFTs are performed on all M columns and the result placed 
in the identical locations of the data matrix. 

iv. The elements of the matrix formed in (iii) are multiplied by the 
twiddle matrix(element by element). 

v. Finally, 147-point DFTs are performed on all L rows of the 
matrix resulting from step iv. 

2.2.2 Butterfly 

The generalized FFT procedures given in Table V can be conveniently 
represented graphically by a signal flow diagram using a special 
diagrammatic representation called the butterfly. Basically, a butterfly 
operation consists of a DFT whose inputs and outputs can be multiplied by a 
set of complex weights called twiddle factors. The signal-flow diagram of 
the generalized FFT procedures is shown in Figure la. The symbolic diagrams 
of the butterfly capable of processing r complex input samples are shown for 
the DIT and DIF processes in Figures lb and lc, respectively. These 
butterflies have r input-nodes and r output-nodes, where r is a factor of 
the length of the sequence N. The convention commonly adopted is that the 
butterfly will take time sequence data in natural order (from top to bottom) 
and produce frequency data at the output-nodes in the same order. The 
twiddle multiplier comprises one trivial and (r-1) non-trivial twiddle 
multiplications. 
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2.2.3 Radix 

The number of input or output samples processed by a butterfly is 
called the radix. We may consider the signal-flow diagram (Figure la) of 
the generalized FFT algorithm as being composed of two stages. The first 
stage comprises M radix-L butterflies, and the second stage comprises L 
radix-M butterflies. Notice that the twiddle factors may be considered as 
part of the first stage butterflies, in which case, the twiddles are used to 
post-multiply the output of the radix-L DFTs. Alternatively, the twiddle 
factors may be considered as part of the second stage butterflies. In this 
case, the twiddle factors are used to pre-multiply the input of the radix-M 
DFTs. 

2.3 Alternative decimation processes 

So far we have shown that if N is a product of two numbers, L and M, 
then by decomposing the sequence into L auxiliary sequences of M samples, 
the original DFT can be interpreted as a two dimensional array with L rows 
and M columns. Intuitively, by interchanging L and M, we should be able to 
treat the DFT of the N-point sequence as an array consisting of M rows and L 
columns. It can be shown that the two decimation processes produce results 
which are mathematically equivalent, and they correspond to the so-called 
decimation-in-frequency (DIF) and decimation-in-time (DIT) processes 
respectively. 

Historically, the so-called DIF and DIT processes represent the two 
alternative ways of decimating an N-point sequence into two sequences: (0 
DIF: representation as an (N/2)-column by 2-row matrix, and (ii) DIT: 
representation as a 2-column by (N/2)-row matrix. 

2.3.1 Decimation-in-frequency 

To carry out a decimation-in-frequency, let Lm2, from which it 
follows that MmN/2. When the first step of the generalized FFT procedures 
given in Table V is applied to the N-point sequence, we obtain the matrix 
given in Table VI. 

Table VI: Two-dimensional arrangement of time samples for the OIF process. 

\ir.N11., 	0 	 1 	 2 

_ 	

N 

0 	xo 	xl 	x2  	/ 	xN 

i 	xN 	xN 	xN 	 xN_1 

	

z 	
y + 2 

With the application of 2-point DFTs to the columns of Table VI, 
followed by twiddle multiplications and DFTs applied to the rows, we obtain 
the results shown in Table VII. 



Table VII: Two-dimensional arrangement of DFT samples for the DIF process. 

N 
0 	1 	 2 	 I - 1 

0 	Fo 	F2 	F4 	 FN-2 

1 	Fi 	F3 	F5 	 FN_].  

Since the upper and lower rows in Table VII give the even and odd samples of 
the transform, respectively, the procedure used in deriving this results is 
called the decimation-in-frequency process. 

In general, the DIF process refers to the decimation of a sequence using 
an r-row by (N/r)-column representation of the original sequence. In this 
case, the column-DFTs are of dimension r, and the twiddle multiplications 
are performed after the column-DFTs. Hence, these two operations (DFTs and 
twiddle multiplications) can be conveniently performed by radix-r 
butterflies in which the twiddles are applied after the r-point DFT. If N 
is expressible as a power of r, the row-DFTs can be further decomposed using 
the same generalized FFT procedures (i.e., r-row representation). The 
column-DFTs and the twiddle multiplications for successive decomposition 
stages can also be identified as radix-r butterflies with twiddles applied 
at the output (see Figure lc). 

2.3.2 Decimation-in-time 

If, on the other hand, we let M=2 and LN/2, we will obtain a 
(N/2)-row by 2-column matrix as shown in Table VIII. 

Table VIII: Two-dimensional arrangement of time samples for the DIT process. 

0 	 xo 	 xi 

1 	 x2 	 x3 

2 	 x4 	 x5 

• 

• 

N , - 1 	xN-2 	
x
N-1 L 

Since the input (time) sequence is decimated into even and odd sequences, 
this algorithm is called the decimation-in-time process. 

13 



14 

In general, the DIT process refers to the decimation of a sequence 
using an (N/r)-row by r-column representation of the original sequence. In 
this case, the row-DFTs are of dimension r, and the twiddle multiplications 
are performed before the row-DFTs. Hence, these two operations (twiddle 
multiplications and DFTs) can be conveniently performed by radix-r butter-
flies in which the twiddles are applied at the input of the r-point DFT. If 
N is expressible as a power of r, the column-DFTs can be further decomposed 
using the same generalized  FF T procedures (i.e., r-column representation). 
The row-DFTs and the twiddle multiplications for successive decomposition 
stages can also be identified as radix-r butterflies with twiddles applied 
at the input(see Figure lb). 

2.3.3 Digit reversal 

A comparison of Tables I and II shows that the generalized FFT pro-
cedure arranges time and frequency samples differently. In the case of an 
L-by-M representation of the N-point sequence, where the rows of the time 
sample matrix are formed by M contiguous time samples, the columns of the 
frequency sample matrix consist of L contiguous frequency samples. It fol-
lows that with time sequences fed sequentially into an FFT processor (this 
refers to in-place realization of the FFT in digital computer programs and 
hardware single pipeline FFTs) in natural order, the frequency samples do 
not come out in the same order. The determination of the order of the fre-
quency samples, given the order of the time samples, is important when using 
the FFT. It will be shown that the frequency indices for a fixed-radix FFT 
algorithm can be determined from the time indices using a rule called "digit 
reversal". Consider a time sequence {xi}, i=0,1,2,...,N-1. This sequence 
is to be processed using a fixed radix-r FFT. The index of the frequency 
sample occupying a position which corresponds to time sample xi in the 
time sequence is determined using the following set of rules: 

(i) express the index i in terms of digits of the base-r number system. 
The maximum number of digits required is determined by N. 

(ii) Reverse the order of the digit pattern. The frequency index is giv-
en by the decimal value of the resulting number. 

A simple example will suffice to clarify the procedure. Consider 
the 16-point time sequence {xi}, i=0,1,2,3,...,15, to be processed by a 
radix-4 FFT. Suppose we want to determine the index k of a frequency sample 
occupying the position which corresponds to x6 in the time sequence. First 
we express the number 6 in terms of digits of a base 4 number system. There 
are only 4 digits, 0,1,2 and 3, in a base 4 number system. The base 4 num-
ber for a decimal value of 6 is 12 (base 4). After digit ieversal, the num-
ber becomes 21 (base 4). Consequently, the index for this frequency sample 
is 21 (base 4) = 9 (decimal). 

It can easily be verified that, when the 16-point time sequence 
{xi} is processed by a radix-4 FFT, the time sequence {xi} is arranged 
in the form given by matrix A, and the resulting frequency is as given in 
matrix B of Eqn (14). 
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In terms of base 4 digits, the indices for the above matrices become: 

A = 

-3(00 x01 x02 xO; 
X10 
 x 11 x 12 x 13 

X20 
 x21 x22 x23 

X20 
 x31 x32 x33 

-F 	F 	F 	F 00 	01 	20 	30 
F
01 

F
11 

F
21 

F
31 

B = F02 F 12 
F
22 

F
32 

F
03 

F
13 

F
23 

F
33 

(15) 

If one compares the digit pattern of corresponding elements in the two 
matrices given by Eqn (15), it is seen that their order is identically 
reversed. 

When the radix r is equal to 2, the above procedure is called "bit 
reversal". The bit reversal procedure can be demonstrated by applying the 
generalized  FF  T procedure successively to the N-point sequence and noting 
the position of the time and frequency samples when they are decomposed into 
two-dimensional arrays. The bit reversal is seen as a result of the 
transposition of the time and frequency matrices at each stage of 
decomposition. The details of bit reversal may be found in [4]. 

3. REDUCING THE COMPUTATIONAL REQUIREMENTS FOR THE DFT ALGORITHM AND ITS 
PROCESSING COMPONENTS 

3.1 Reduction of computational effort 

One might wonder, what is to be gained from the development of the 
elaborate procedures in Table V for computing a generalized FFT. We are now 
in a position to show that the computational effort is reduced substantially 
by employing these procedures. Let us derive the total number of complex 
multiplications and additions required for the generalized  FF  T algorithm. 
In step (iii) of Table V, there are M L-point DFTs. Since (L-1) 2 

 multiplications and L(L-1) complex additions are required for an L-point 
DFT, M(L-1) multiplications and ML(L-1) additions are required to carrx out 
step (iii). Step (v) consists of L M-point DFTs. Consequently, L(M-1) 4  
multiplications and LM(M-1) additions are required by this computation. 
Since the twiddle factor in step (iv) is equal to unity for m=s-O, the 
effective number of multiplications is (L-1)(M-1). The number of operations 
required for these three steps is the sum of the above, yielding: 

(a) Total number of complex mûltiplications for the 
generalized FFT = M(L-1) 2  + (L-1)(M-1) + L(M-1) 2 	(16) 
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and 

(b) Total number of complex additions for the 
generalized FFT = ML(L-1) + LM(M-1) 	 (17) 

We can form the ratios of the multiplications and additions required for a 
DFT to that required for the generalized FFT algorithm. The ratio of number 
of complex multiplications is given by: 

M(L-1) 2 +  (L-1)(M-1)  + L(M- 1) 2  
Rm=  	 (18) 

(LM-1) 2  

and the ratio of number of complex additions is: 

ML(L -1) + LM(M-1) 
LM(LM-1) 

In the limit of very large L and M, these two ratios reduce to: 

Ra  (19) 

1 	1 + — 
L 

Rm  = Ra  = (20) 

From Eqn (20) it follows that the number of complex multiplications and 
additions required for the generalized FFT algorithm is only a small 
fraction of those required by direct computation when L and M are very 
large. 

3.2 Radix-r FFT and radix-r butterfly 

If L and M are not themselves prime numbers, they can each be 
decomposed into a product of two numbers, and further saving in 
computational effort can be realized. As a matter of fact, if N is a power 
of an integer r, then the DFT of an N-point sequence can be decomposed into 
a number of similar stages composed of radix-r butterflies. A fixed-radix 
FF T algorithm is one which employs butterflies of a single radix value, and 
a mixed-radix FFT algorithm is one which employs two or more radix values. 

Using the generalized FFT procedure, we can first decompose the 
N-point sequence into an r-row by (N/0-column matrix. Let us consider the 
number of multiplications required. Since there are r rows and (N/r) 
columns, we must perform (N/r) radix-r DFTs, multiply the result by the 
elements in an r-by-(N/r) twiddle matrix, and then perform r radix-(N/r) 
OFTs. If r is a prime number, it cannot be decomposed further. 
Consequently, the radix-r DFTs must be computed directly. Let Mr  be the 
number of complex multiplications required to directly compute the r-point 
DFT. We have, for the number of multiplications required for the N-point 
DFT: 



MN - 	M 
r 
 + (r-1)(-- 

r - I) 	r M(N/r) (21) 

7 

(N/r) 	Twiddle 	r (N/r)-point 
r-point 	Multiplications 	DFTs 
DFTs 

Since N is a power of r, N/r can be written as the product r x N/r 2 . This 
decomposition can be applied successively, starting with Eqn (21), giving 
the following result: 

MN = — Mr+(r-1 )( 	I)+rM N 
(F) 

= '
.11 
Mr 	(r-1)(.!  - I) 	r[-z Mr 	(r 	- I) 	rM N 

(--7) 

P- I N 
= 	Mr 	(r- I) 	— / nil 	rPM(N ) r i .0rp  

where p signifies the pth stage decomposition 

This decomposition process cannot continue indefinitely. It will stop when 
N/rP = r. From this condition, it follows that: 

p = log rN -1 	 (23) 

If one includes the initial stage of decomposition, called the Oth stage, 
it can be concluded that, if N is a power of r, there are logrN radix-r 
butterfly stages. The substitution of Eqn (23) into Eqn (22) yields: 

logrN-2 
N(r-1) 

MN  = 	M log N + rN-1)-(r-1) 	ri 	 (24) 
r 	r j=0 

Equation (24) is valid when N is a power of the prime number r. 

There are two radix values which have a special significance when 
computing butterflies, namely, 2 and 4. These two cases are significant 
because in both cases, the DFT portion of the butterfly does not require any 
multiplications. 

(22) 
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(27) 

(28) 
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3.2.1 Radix-2 butterfly and 2-point DFT 

For a 2-point sequence, the maximum radix value is 2. We have from 
Eqn (1): 

Fk = xo + xi exp(-j2nk/2) 	k=0,1 
or 

Fo = xo + xi 
Fi = xo - xi 

Consequently, a 2-point DFT, which forms part of a radix-2 butterfly, re-
quires only one complex addition and subtraction. The symbolic and schemat-
ic diagrams of a radix-2 butterfly are shown in Figure 2a and 2b, respect-
ively. 

We can now derive an expression which will give an accurate estimate 
of the number of multiplications required for computing the DFT of an N-
point sequence, using radix-2 butterflies. In Eqn (21), Mr=0 when r=2, 
since a 2-point DFT does not require any multiplications. In addition, each 
twiddle matrix always includes one element equal to -j. Thus the count for 
twiddle multiplications can be reduced by one. Eqn (21) reduces to: 

MN=  —
2 

- 2  + 2M N 
(7)  

Applying the WO fold decomposition successively, we have: 

2+2U-7  - 2 + 2M N ] 
2 

2
2 

N 	 N =. i - 2+-  - 2 2 

2 	2 	
+ 2 2  [-3. - 2 + 2M

(  N )  2 	 3 7  

= 2- + 2PM 
(—) 2 	j=1 2 P  

The decomposition terminates when p = log2N - 2, yielding: 

log2N-2 . 
N., 	. 	 v MN = —u.og2e-h, - 	L 2 
2 

j= 1  

3 
log2N - 7  N + 2 

In Eqn (28), we have made use of the fact that when p = log2N-2, the last 
term in Eqn (27) becomes zero since, as will be shown next, there are no 
multiplications required in computing a 4-point DFT. 

(25) 

MN =  
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3.2.2 Radix-4 butterfly and 4-point DFT 

A 4-point DFT does not require any multiplication. This is due to 
the fact that the required twiddle factors are either unity or ±j. If in 
Eqn (21), we substitute r=4, and using the fact that one of the twiddle 
factor is equal to -j (thus reducing the multiplication count by one), the 
result is given by: 

3 
MN = 	N - 4 + 4M(N/4) 

4 

Applying the four-fold decomposition successively, we have: 

3 
 MN = — N - 4 - 4[-
3  - N - 4 + 4m ( N/42)] 

4 	 4 2  

3 1 N  -4 + N - 4 2  + 4 2 3  N - 4 + 3  4 (N/4 ).1 
4 	4 	 43 

3 
= — Np - 	4j + 4PM 	, 

(N/4 r ) 
4 	j=1 

where p signifies the pth stage decomposition 

The decomposition terminates when p=log4N-1, in which case M 	n =  0 , 
(N/e") 

yielding: 

3log4N-1 
MN  = — N(log4N-1) - 

4 	 j=1 

313N 	4 
= — Nlog4N - 	+ — 

4 	 12 	3 

Equations (28) and (31) do not take into account the fact that 
3 

twiddle factors equal to ±exp(-4
n
—) have identical real and imaginary 

parts. This fact may be used to reduce the number of real multipliers in 
certain hardware implementations of the FFT. The symbolic diagram of a 
radix-4 butterfly is shown in Figure 3. A radix-4 butterfly is formed by 
adding a twiddle multiplication stage at the input (for DIT process) or at 
the output (for DIF process) of the DFT. The schematic diagram of the 
twiddle multiplication section of a radix-4 butterfly is similar to that of 
a radix2 butterfly. Each non-trivial twiddle multiplication requires four 
real multipliers and two real adders. The schematic diagram of the DFT 
portion of a radix-4 butterfly is shown in Figure 4. 
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FIGURE 3. SYMBOLIC DIAGRAM OF A 4--POINT DFT. 
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At this point it is useful to compare the number of multiplications 
required in computing N-point DFTs using radix-2 and radix-4 butterflies. 
This comparison is given in Table IX. 

Table IX: Required number of complex multiplications for radix-2 and radix-4 
FFTs 

radix-2 	radix-4 

	

2 	 0 	 - 

	

4 	 0 	 0 

	

8 	 2 	 - 

	

16 	 10 	 8 

	

32 	 34 	 - 

	

64 	 98 	 76 

	

128 	 258 	 - 

	

256 	 642 	 492 

	

512 	 1538 	 - 

	

1024 	 3586 	 2732 

It seems, therefore, that whenever possible, the radix-4 
configuration should be employed because the number of multiplications is 
less than for the radix-2 case. 

3.3 Butterfly pipelining for maximum throughput rate 

In most algorithms the computations take place in a sequential 
manner. The results are obtained by processing the input data with several 
cascaded stages comprising one or more signal processing components. The 
entire signal processing chain is called a 'pipeline', and the group of 
signal processing components which compute the intermediate results at each 
stage is called the pipeline segments. The definition of a pipeline segment 
is arbitrary. However, it must be carefully considered when high throughput 
rate is required. Up to this point, we have considered the radix-r 
butterfly as an integral arithmetic component(black box). This "black box" 
will perform one set of r complex multiplications and an r-point DFT. That 
is, the FFT algorithm is considered as a pipeline with radix-r butterflies 
as pipeline segments. In reality, however, a complex multiplication 
requires both real multiplications and additions. Depending on the value of 
the radix, a radix-r DFT may comprise several stages of complex 
multiplications and additions. Presumably, all the multiplications and 
additions can be performed by a single multiplier and a single adder. 
Consequently, it will take a number of processing clock cycles to obtain the 
butterfly result. In addition, time sharing of multipliers and adders 
requires temporary data storage, thereby adding overhead to the execution 
time. Hence for attaining the ultimate processing speed, a full complement 
of multipliers and adders should be used in a butterfly. 

Let us consider the radix-2 butterfly whose schematic diagram is 
shown in Figure 2b. There are three distinct stages of arithmetic 
operations. The first stage is the multiplication of input '1' by the 
cosine and sine components of the twiddle factor, forming the direct and 
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cross products of the complex multiplication. The second stage is the 
combination of the direct and cross products to get the real and imaginary 
parts of the complex multiplication. The third stage is the 2-point DFT 
which consists of one addition and one subtraction simultaneously. Input 
'0' is not multiplied, hence, it must be held constant until the complex 
multiplication of input '1' is completed. The time interval between when 
data enter into and exit from a processing segment is called the propagation 
delay. Let Tm  and Ta  be the time of execution for the multiplier and 
adder, respectively. The minimum system processing clock interval, given by 
the worst case propagation delay of any section in the pipeline, must be at 
least 're  = Tm  + 2Ta . This is due to the fact that these arithmetic 
operations take place sequentially, and new data cannot be introduced until 
the result is available at the output of the processing segment. 

To increase the throughput rate of the radix-2 butterfly, we can 
insert two cascaded stages of shift registers or latches in the signal paths 
of input '0' and a shift register at the output of each multiplier and 
adder, as shown in Figure 5. At the beginning of each clock cycle, the 
value of input '0' is shifted into the first latch, and the output of the 
first latch is shifted into the second latch. Thus valid data will be 
available after two clock cycles for the final addition stage. Meanwhile, 
new data can be entered at the beginning of each new clock cycle. A 
butterfly with these modifications is called a pipelined butterfly. The 
implication of the pipeline structure is that, no matter how many steps it 
takes to complete an arithmetic operation, there is no need to wait until 
the answer is obtained before new data are entered. Consequently, the clock 
frequency of a properly designed pipeline signal processor is determined by 
the propagation delay of the slowest signal processing component. 
Commercially available integrated circuit (IC) multipliers and adders have 
attained processing speed of one 12-bit multiply (or add) per 65nsec. The 
worst case propagation delay is approximately equal to the multiplication 
(or addition) time plus the latch set up time. For a 12 bit wordlength 
processor, a conservative estimate of the propagation delay of a pipelined 
butterfly is about 100 nsec. 

Similarly, the radix-4 butterfly can be pipelined to obtain a maximum 
throughput rate. The schematic diagram of a pipelined 4-point DFT is shown 
in Figure 6. • There are 16 real adders and 16 latches. The effective 
throughput rate is one 4-point DFT per clock cycle. The component counts of 
the 2-point, 4-point DFTs and the trivial and nontrivial twiddle 
multiplications are tabulated in Table X. (pipelined structures are assumed 
throughout). 
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Table X: Component counts of pipelined 2-point, 4-point DFTs and twiddle 
multiplications 

real 	adders 	real multipliers 	latches 

2-point DFT 	4 	 4 

4-point DFT 	16 	 16 

trivial 
twiddle 
multiplication 

nontrivial 
twiddle 
multiplication 2 	 4 	 6 

Table X will be referred to later to derive the approximate component counts 
for a number of different FFT structures. 

4. Hardware implementation of the FFT algorithm 

A useful tool in implementing the FFT algorithm is the signal flow 
diagram (see Figure 7). The signal flow diagram of a radix-r FFT algorithm 
can easily be obtained by following the generalized FFT procedures outlined 
in Table V repeatedly, so that butterflies with radix value larger than r 
are systematically decomposed into structures composed of radix-r 
butterflies only. This diagram provides a clear indication of how the DFT 
is broken into successive stages. For a sequential computing machine, such 
as a general purpose computer, the order in which the computations in each 
stage are carried out is relatively unimportant. However, if additional 
computing hardware is available, then it becomes essential to process the 
data in the proper sequence to ensure that the maximum throughput rate is 
attained. 

The basic processing unit for a radix-r FFT is the radix-r 
butterfly. The complexity of the butterfly depends on the value of the 
radix. For a radix-2 butterfly, it consists of one complex multiplier and 
two complex adders. For a radix-4 butterfly, it consists of three complex 
multipliers and eight complex adders. Since each radix-r butterfly can 
handle r-complex samples, N/r butterfly operations must be performed in each 
stage, for an N-point DFT. There is a high degree of freedom in the 
structuring of a hardware FFT processor. The data throughput rate of an FFT 
depends on the amount of parallelism we incorporate into the design which is 
usually constrained by cost considerations. Given the signal flow diagram 
of an FFT algorithm in terms of radix-r butterflies, there are three basic 
approaches to a hardware implementation of the algorithm (see Figure 7 for 
an example): 
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processing 
implementing high 

speed digital beam- 

(a) Employ N/r butterflies per stage so that each butterfly will only 
handle one set of r samples. 

(b) Employ one butterfly in each stage so that each butterfly 
will be required to handle N/r sets of r samples per stage. 

(c) Employ a single butterfly so that it must handle all 

,N 
LogrN) butterfly operations 

In these considerations, the hardware butterfly unit is assumed to be pipe-
lined. We shall call implementation (a) the parallel pipeline FFT and 
implementation (b) the single pipeline FFT. Implementation (c) is used in 
most software programs and will not be considered further. The single pipe-
line FFT is referred to as simply pipeline FFT or cascaded FFT. 

We are now in a position to examine different ways for translating 
the signal flow diagram of an FFT algorithm into hardware structures using 
commercially available IC elements. We shall use specific examples to 
illustrate the concepts discussed in the last two sections. The examples 
used are based on a 16-point FFT processor. This processor is chosen 
because: 

29 

(i) It has direct applications in radar signal 
(ii) It can serve as a basic building block for 

speed FFT processors of large dimension 
(iii) It can serve as an integral part of a high 

forming processor. 

4.1 Parallel-pipeline 16-point FFT. 

) If the parallel pipeline structure is implemented for an N-point FFT 
using radix-r butterflies, there will be N/r butterflies in each stage. As-
suming that hardware radix-r butterflies are available, the implementation 
reduces to the following two problems: 

(0 Determining the inter-connections between the outputs 
of one stage and the inputs of the next stage. 

(ii) Determining the values of the twiddle multipliers in 
each signal line of the butterflies. 

4 .1.1 Radix-2 parallel-pipeline 16-point FFT 

The signal flow diagram of a radix-2 DIT 16-point FFT is shown in 
Figure 7. Each circle in the diagram represents a radix-2 butterfly. The 
symbol besides the arrow in ëach signal path represents the twiddle factor 
for that path. Signal paths with no twiddle designation are assumed to have 
unity twiddle. 

In Figure 7, there are four stages with eight radix-2 butterflies 
each. Hence a parallel pipelined 16-point FFT consists of 32 hardware rad-
ix-2 butterflies. The inter-connections between outputs of the butterflies 
in one stage and the inputs of the butterflies in the next stage, together 
with the required twiddle values, are also indicated in Figure 7. We note 
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that the twiddle factors in the first two stage are either equal to unity or 
±j, therefore no real multiplications are required in these two stages. 
Consequently, the first two stages are composed of 2-point DFTs only. A 
composite component count for this structure can be obtained by counting, 
(i) the number of 2-point DFTs, (ii) the number of trivial and nontrivial 
twiddles, and (iii) by using the values given in Table X. There are 32 
2-point DFTs, 10 nontrivial twiddles and 22 trivial twiddles. From Table X, 
we obtain an estimate of the component count which is tabulated in Table XI: 

Table XI: Component count for a radix-2 16-point parallel pipeline FFT 

type of component 	quantity 

real adders 	 148 
real multipliers 	40 
latches 	 308(including input latches) 

4.1.2 Radix-4 parallel-pipeline 16-point FFT. 

An N-point FFT can be implemented solely with radix-4 butterflies if 
N is a power of 4. The signal flow diagram of the radix-4 sixteen-point FFT 
algorithm is shown in Figure 8. There are only two stages. The samples are 
fed to the appropriate inputs of four separate radix-4 butterflies in the 
first stage, and the outputs of the first stage radix-4 butterflies are then 
fed to the appropriate inputs of the second stage radix-4 butterflies. The 
values of the twiddle multipliers in each butterfly are as indicated in 
Figure 8. An estimate of the composite component counts for the radix-4 
parallel pipeline 16-point FFT is given in Table XII. 

Table XII: Component count for a radix-4 parallel pipeline 16-point FFT 

type of component 	quantity 

real adders 	 144 
real multipliers 	 32 

latches 	 240(including input latches) 

4.2 Single-pipeline hardware FFTs 

If maximum processing speed is not an absolute requirement, then the 
FFT algorithm can be implemented with a significant reduction in hardware. 
One such implementation is the so-called single pipeline FFT structure. In 
this structure, only one butterfly operating in time-shared mode is employed 
in each stage. When a signal processing component is used in a time-shared 
mode in a pipeline structure, the data must be introduCed and processed in 
the proper order in order to obtain maximum efficiency. Maximum efficiency 
within this context refers to the state where each adder and multiplier 
repeats its particular function for each processing cycle. This eliminates 
the condition whereby a component becomes idle while awaiting the arrival of 
the required data. 
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4.2.1 Radix-2 DIF single-pipeline lo-point FFT 

We shall use the DIF case to illustrate the radix-2 single pipeline 
16-point  FF T structure. The signal flow diagram for this particular FFT 
algorithm is shown in Figure 9. Input sample pairs 
(x0,x8),(x1,x9),...,(x7,x15) are processed in the first stage. Since there 
is only one radix-2 butterfly in each stage, a decision has to be made with 
regards to which data pair to process first. Let us assume that we process 
the data pairs in normal order, i.e., (x0,x8),(x1,x9),..,etc. One simple 
way of feeding data to the first stage butterfly is shown in Figure 10a. 
There are two shift register arrays, SRO and SR1, with eight shift registers 
each. The output of shift register array SRO is connected to input '0' of 
the first stage radix-2 butterfly. The output of SRI is concurrently 
connected to the input of SRO and input '1' of the butterfly. One sample of 
the input sequence is shifted into SRI in each clock cycle. By the end of 
the sixteenth clock cycle, the data pair will be aligned as shown in Figure 
10b. It can be seen that this is exactly the ordering required for 
processing of the data. 

Now suppose that successive groups of sixteen samples follow 
immediately, then by the end of the twenty-fourth clock cycle, the data 
alignment will be as shown in Figure 10c. This configuration of the data 
corresponds to the condition where one datum of each sample pair is from the 
first batch, and the other datum is from the second batch. It is sometimes 
desirable to utilize such a condition. One example is in the filtering of a 
long data sequence where the data are segmented into a number of 
sub-sequences of fixed length N. The FFT of overlapped sequences can be 
used to eliminate aliasing effects[6] by discarding a number of filtered 
samples. On the other hand, overlapping condition is often undesirable, if 
the FFT is used to process distinct sequences. In this case, the FFT of two 
overlapped sequences constitutes invalid data. The efficiency of the 
processor for this configuration is effectively 50 percent. 

An efficiency of 100 percent can be achieved if two separate 
sequences are available simultaneously. The schematic diagram of a data 
buffer switching network designed to enable the radix-2 butterfly to operate 
at 100% efficiency is shown in Figure 11. This network is sometimes called 
a radix-2 commutator. Its function is to direct the two separate sequences 
into the proper data buffer so that both sequences can be processed by the 
radix-2 butterfly within the time period equal to the length of the 
sequences. This network consists of two shift register arrays (SRO and 
SR1), and two 2-to- i  multiplexer (MUX SWO and SW1). The output of SRO is 
connected to input '0' of the radix-2 butterfly. The input of SRO is 
connected to the output of SWO. Consider two distinct 16-point sequences, 

{ xi }  and {Yi}* One sample from each sequence is read from memory 
simultaneously in each clock cycle. The sample from sequence {xi} is fed 
to input '0' of both SWO and SW1. The sample from sequence {yi} is fed to 
the input of shift register array SR1. The output of SRI is connected to 
input '1' of both SWO and SW1. Switching of both SWO and SW1 takes place 
every N/2(=8 for N=16) clock cycles. However, the two multiplexers do not 
select the same input at any given time. That is, if SWO selects input '0', 
then SWI selects input '1', and vice versa. 
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It will be shown that the overlapping of data is eliminated by the 
arrangement in Figure 11. At the beginning of clock cycle 0, switching 
takes place in both SWO and SWI. Multiplexer SWO select input '0' and SW1 
selects input '1'. These switch connections remain in place for 8 clock 
cycles (i.e., until the end of clock cycle 7). Since input '0' of SWO is 
connected to the signal line containing samples from sequence {xi}, this 
switch connection effectively feeds the samples from sequence {xi} and 
{yi} into shift register arrays SRO and SRI, respectively. The resulting 
data arrangement, at the end of clock cycle '7', is as shown in Figure 11b. 
At this time the two multiplexers are switched, with SWO selecting input '1' 
and SW1 selecting input '0'. This effectively connects the input of SRO to 
the output of SRI. Also input 'I' of the radix-2 butterfly is now connected 
directly to the signal line containing samples from sequence {xi}. If we 
examine the samples appearing at the inputs of the radix-2 butterfly, we 
find that, at the beginning of clock cycle '8', they are (x0,x8), followed 
by (x1,x9) in the next clock cycle, etc. This is exactly the order of data 
pairs called for by the signal flow diagram in Figure 9. Consequently, the 
radix-2 butterfly can commence processing of these data pairs starting at 
the beginning of clock cycle '8'. 

It will take 8 clock cycles to process all 8 pairs of samples 
representing sequence {xi}. Meanwhile, the contents of SR1(representing 
the first 8 samples of sequence {yi}) are shifted into SRO, one sample per 
clock cycle. At the end of clock cycle '15', the proper sample pairs for 
sequence {yi} will be contained in the two shift register array. At this 
time, both multiplexers are switched once again, effectively connecting 
inputs '0' and '1' of the radix-2 butterfly to SRO and SRI, respectively. 
The radix-2 butterfly will process the sample pairs from sequence {yi} 
beginning at clock cycle '16'. At the same time the switch connections 
allow samples from sequences {xi} and {yi} to be shifted into SRO and 
SRI, respectively. Again it will take 8 clock cycles to process all 8 pairs 
of samples from sequence {yi }. The function of the data buffer switching 
network is to take two simultaneous and distinct 16-point sequences {xi} 
and {yi} and produce two contiguous sequences of sample pairs. It can be 
seen that, with this data buffer switching network, the radix-2 butterfly in 
the first stage of a single pipeline FFT, can effectively process two 
distinct 16-point sequences in 16 clock cycles, after an initial delay of 8 
clock cycles. If one has only a single data sequence, then it must first be 
divided into two sub-sequences (one comprised of data from the first half, 
and the other comprised of data from the second half of the original 
sequence). Both sub-sequences are then fed concurrently into the first 
stage butterfly. In this case, the radix-2 commutator in the first stage 
may be eliminated. 

In order to gain a better understanding of the structure and 
operation of a single pipeline FFT processor, it is best to start with the 
generalized FFT procedures. In Figure 12 are summarized the steps of the 
generalized FFT procedures as applied to the radix-2 DIF 16-point FFT. In 
steps No.1 and 2, the samples of sequence {xi} are arranged into a 2-row 
by  8-column matrix. Two-point DFTs are performed on all 8 columns, and the 
results multiplied by the corresponding elements in the twiddle matrix. In 
a single pipeline FFT, these steps are performed by the first stage 
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butterfly. There is no problem in obtaining the proper data pair 
arrangement at the first stage, since the data are usually fetched from 
random access memory. The radix-2 butterfly will perform the 2-point DFTs 
in natural order, i.e., (x0,x8), (xl,x9),..,etc. The proper twiddle factor 
for each column DFT is read from random access memory to produce the desired 
result. In Step No.3, 8-point DFTs of the results of Step No.1 and 2 stored 
in the two rows of the data matrix are to be performed. Notice that the 
samples of the top and bottom rows come out of outputs '0' and '1' (see 
Figure 11) of the first stage butterfly, respectively. Thus the radix-2 
butterfly in the first stage is effectively supplying the radix-2 butterfly 
in the second stage with two distinct 8-point sequences concurrently. In 
the previous section, it has been shown that a radix-2 butterfly is capable 
of processing two concurrent 16-point sequences in 16 clock cycles, when 
used in conjunction with a radix-2 commutator. Consequently, we may consi-
der the radix-2 butterfly in the second stage of a 16-point, single-pipeline 
FFT as that of the first stage of an 8-point single-pipeline FFT. 

This argument may be generalized to obtain the design of an N-point 
single pipeline FFT. An N-point single-pipeline radix-2 FFT is composed of 
log2N radix-2 butterflies. In order to operate at 100% efficiency, the 
N-point sequence must be divided into two (N/2)-point concurrent sequences 
corresponding to the first and second halves of the original N-point 
sequences, respectively. A data buffer switching network, called the 
radix-2 commutator, is inserted between the butterflies. This device 
effectively converts two concurrent N-point sequences into two contiguous 
(N/2)-data pair sequences. The length of the shift register arrays and the 
switching period of the commutator is equal to half of the length of the 
sequence at the input of the commutator. For example, at the output of the 
first radix-2 butterfly of a 16-point, single-pipeline, radix-2 FFT, the 
length of the data sequence is 8. Consequently, the switching period and 
the length of the shift register arrays of the commutator in the second 
stage are 4. Since the radix-2 commutator effectively converts two N-point 
concurrent sequences into two contiguous data pair sequences of length N/2, 
the switching period and the length of the shift register arrays of the 
commutator in each stage is half that of the preceding stage. The twiddle 
multipliers in each stage will vary according to the signal flow diagram; 
however, they will follow a definite pattern. Hence, they can be stored in 
a shift register array and entered into the multiplier in each clock cycle. 
The complete schematic diagram of the radix-2 DIF, single pipeline, 16-point 
FFT processor is shown in Figure 13. Except for the order of the twiddle 
multiplications and the switching frequency of the MUX, the structure of the 
single-pipeline, radix-2 DIT and DIF FFT processors is identical. 

We can obtain an estimate of the hardware requirement for a 
single-pipeline, radix-2 16-point FFT processor. Since there are log2(16)=4 
stages, only four radix-2 butterflies are required. In thé last stage, all 
twiddle multipliers are unity, therefore, no multipliers are required. In 
the third stage, although all twiddle values are trivial (1 and ±j), there 
is a requirement for the selection of one of the three values. Consequent-
ly, it is simpler to employ a multiplier. Consequently, three radix-2 
butterflies and one 2-point DFT are required. We shall assume that the 
shift register arrays are implemented with individual latches. The number 
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of latches in the commutator can be obtained from an inspection of Figure 
13. In most instances, input data are read from random access memory. 
Consequently, no commutator is required at the input stage. However, input 
latches are required at the input to hold the value constant over one clock 
cycle. An estimate of the components required for a single-pipeline, 
radix-2 16-point FFI' are given in Table XIII. 

Table XIII: Composite component counts of the single pipeline, radix-2 
16-point FFT 

Type of component 	 quantity 

real adders 	 22 
real multipliers 	 12 
latches 	 78 
2-to- i  Multiplexers 	 12 

The values given in Table XIII take into account the fact that each 
sample has a real and an imaginary part. The memory and multiplexers 
required for storing and switching the variable twiddle factors are not 
included. 

4.2.2 Radix-4 single-pipeline 16-point FFT 

The 16-point FFT can also be implemented as a single-pipeline radix-4 
structure, since the number 16 can be expressed as a power of 4. As 
indicated in Figure 8 when a DFT is performed on {xi}, the set of samples, 
(x0,x4,x8,x12), must appear concurrently at the input of the radix-4 
butterfly of the first stage, followed by the set (x1,x5,x8,x 13 ), etc. For 
a single 16-point sequence, the above data arrangement can be obtained by 
inserting a data buffer between the input and the radix-4 butterfly, as 
shown in Figure 14. The input is connected to input terminals '0', '1', '2' 
and '3' of the radix-4 butterfly via shift register arrays of lengths 12, 8, 
4 and 0, respectively. Since samples xo, x 4  and x8 are separated from 
sample x12 by 12, 8, and 4 clock cycles respectively, These shift register 
arrays provide the proper time delays for each of the input terminals of the 
radix-4 butterfly. Assuming that sequence {xi} is introduced to the 
network starting at clock cycle '0', the data arrangement at the end of 
clock cycle '11' is shown in Figure 14a. It can be seen that the data are 
aligned as required in Figure 8. Consequently, At the beginning of clock 
cycle '12', the radix-4 butterfly can start processing the samples appearing 
at its inputs. After four clock cycles, all samples from sequence {xi} 
will be processed. The data arrangement at this time, i.e., at the end of 
clock cycle '16', is shown in Figure 14b. Notice that three - of the four 
samples appearing at the inputs of the butterfly have been processed 
before. This constitutes a 75 7.  overlap in the data between two contiguous 
16-point sequences. This overlapping is undesirable since the effective 
efficiency of the processor is only 25 7.  

It can be shown that 100 7.  efficiency can be realized if four distinct 
sequences are available concurrently, and if proper input buffering is 
employed. Consider four distinct 16-point sequences, {xi}, {yil,lzil 
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and {wi}, i=0,1,2,..,15. The schematic diagram of a data buffer switching 
network is shown in Figure 15. This network consists of four 4-to- i  
multiplexers and three pairs of shift register arrays of lengths 12, 8 and 
4, respectively. We shall call this network a radix-4 commutator, because 
it enables a radix-4 butterfly to process four separate 16-point sequences 
in 16 clock cycles. 

There are four inputs to the commutator which in Figure 15 are 
numbered 0, 1, 2 and 3 from top to bottom. The input data distribution is 
the following: (0 data from sequence {xi} are fed to input '0' of all 
four MUXs directly, (ii) Data from sequence {yi} are fed to a four-stage 
shift register array (SRO) with the array's output connected to input '1' of 
all four MUXs, (iii) Data sequence fzi l is fed to an eight-stage shift 
register array (SR1) whose output is connected to input '2' of all four 
MUXs, and (iv) Data sequence {wi} is fed to a twelve-stage shift register 
array (SR2) with the array's output connected to input '3' of all four MUXs. 

The output data distribution is the following: (i) the output of MUX 
SWO is connected to a 12-stage shift register array(SR3) whose output is 
connected to input '0' of the radix-4 butterfly, (ii) the output of SW1 is 
connected to an 8-stage shift register array (SR4) with the array's output 
connected to input '1' of the butterfly, (iii) the output of SW2 is 
connected to a 4-stage shift register array (SR5) with the array's output 
connected to input '2' of the butterfly, and (iv) the output of SW3 is 
connected directly to input '3' of the butterfly. 

A description is now given of the operation of a radix-4 commutator 
during the first stage of a single-pipeline radix-4 FFT. Let us assume that 
data are introduced to the commutator from all four data sequences beginning 
at clock cycle No.O. The MUXs in the commutator operates with a switching 
period equal to 1/4 of the length of the data sequence. In this case, N=16, 
therefore, the MUXs will switch once every four clock cycles. The switch 
connections for the four MUXs are tabulated in Table XIV over a period of 20 
clock cycles., 

Table XIV: Switching connections for the MUX8 as a function of clock cycles. 

MUX 	 clock cycle 

0,1,2,3 4,5,6,7 8,9,10,11 	12,13,14,15 	16,17,18,19 

SWO 	0 	1 	2 	 3 	 0 

SW1 	3 	0 	1 	 2 	 3 

SW2 	2 	3 	0 	 1 	 2 

SW3 	1 	2 	3 - 	0 	 1 

At clock cycle '0', all the shift register array are cleared. MUXs 
SWO, SW1, SW2 and SW3 select inputs '0', '3', '2' and '1', respectively. 
These connections remain unchanged until the end of clock cycle '3'. During 
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the first four clock cycles, the first 4 samples of sequences 
{yi}, {zi}, and {wi} are loaded into shift register arrays SR3, SRO, 
SRI and SR2, respectively. At the beginning of clock cycle '4', MUXs SWO, 
SW1, SW2 and SW3 are switched to inputs '1', '0', '3', and '2', 
respectively. This results in the following connections: (i) the input of 
SR3 is connected to the output of SR2, (ii) the input of SR4 is connected to 
the output of SRI, (iii) the input of SR5 is connected to the output of SRO, 
and (iv) input '3' of the butterfly is connected directly to data line 
{xi}. Following the switching sequence given in Table XIV, one can easily 
verify that the data arrangement at the end of clock cycle '11' is as shown 
in Figure 14. It can be seen that the samples are now permuted in the 
manner as required by the signal flow diagram (Figure 8). Therefore, the 
radix-4 butterfly will start by processing the data from sequence {xi}. 
All the data for sequence {xi} will be processed after four clock cycles. 
After four clock cycles, the samples of sequence {yi} will appear at the 
input of the butterfly with the required permutation. Thus the function of 
a radix-4 commutator is to convert 4 concurrent N-point sequences into four 
contiguous sequences of length N/4. Each entry in the resulting sequence 
consist of four samples. This conversion is illustrated in Figure 16. 

The structure and operation of a single pipeline radix-4 FFT can now 
be described. In Figure 17, the steps of the generalized FFT procedure, as 
applied to the radix-4 16-point FFT, are summarized. Steps 1 and 2 are 
performed by the first stage radix-4 butterfly. Since the data are 
processed in natural order (i.e., column (x0,x 4 ,x8,x12) is processed first, 
followed by (xi,x5,x9,x13), etc.), each output of the radix-4 butterfly will 
produce the required row-data in step 3. These row-data are distinct 
sequences of length N'=N/4. In the previous section, it was shown that, by 
employing a radix-4 commutator, a radix-4 butterfly is capable of processing 
four concurrent N-point sequences in N clock cycles. It follows that the 
processing outlined in Figure 17 can be performed using similar sections of 
radix-4 butterflies and commutators. The length of the shift register 
arrays and the switching period of the commutator are one quarter as long as 
the corresponding element in the preceding section. The complete schematic 
diagram of a single pipeline radix-4 16-point FFT is shown in Figure 18. 

Let us now derive an estimate of the hardware requirements for the 
processor given in Figure 18. There are two radix-4 DFTs with 16 real 
adders and 16 latches for pipeline operation. The twiddle multipliers may 
be attached to the first- or second-stage radix-4 DFT to form a radix-4 
butterfly. In any case, there will be one trivial twiddle and three 
non-trivial twiddles. The number of multiplexers and latches in the 
commutator may be obtained by inspection of Figure 18. Assuming that input 
data are read from random access memory in the proper order, the commutator 
at the input stage can be eliminated. The component count for a radix-4 
single pipeline 16-point FFT is given in Table XV: 



INPUT: FOUR CONCURRENT SEQUENCES 

X15  x14 x13 x12 x 11 x10 x9 x8  x7  x6  x5  x4  x3  x2  x1  xo  

Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO 

z 15  z14  z13  z12  z11  z10  zg  z8  z7  z6  z5  z4  z3  z2  z1  zo  

w15 w14 w13 w12 w11 w10 w9 w8 "17 w6 w5 w4 w3 w2 w1 w0 
OUTPUT:  1 FOUR CONTIGUOUS SETS OF DECIMATED 

SEQUENCES. 
W3  w2  w1  wo  z3  z2  z1  zo  y3  y2  y1  yo  x3  x2  x1  xo  

W7  w6  w5  w4  z7  z6  z5  z4  y7  y6  y5  y4  X7  X6  X5  X4  

w11 w10 "49 w8  z11  z10  zg  z8 Y11 Y10 y9 Y8 x11 x10 x9 x8 

W15  w14 w13 w12 z  15 z14 z  13 z  12 Y15 Y14 Y13 Y12 x15 x14 x13 x12 

FIGURE 16. REQUIRED DATA PERMUATATION FOR A 
RAD1X-4 COMMUTATOR. 
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STEP  1: FORM 4X4 2-D ARRAY WITH ROW INDEX g (=0,1,2,3) 
AND COLUMN INDEX m(=0,1,2,3) 

FORM ALSO THE CORRESPONDING TWIDDLE MATRIX 

TWIDDLE= Wris 
 W=exp(—j5/8) 

› l\rn 	0 	1 	2 	3  

0 	x0 	X 1 	x2 	x3  

1 	x4 	x5 	x6 	x7 

2 	x8 	x9 	x 10 x 11  
X 12 X 13 X 14 X 7 5 

0 	1 	2 	3  

0 	W°  W°  W°  ê  

1 	W°  W 1  W2  W3  

2 	VP W2  W4  W6  

3 	W°  W3  W6  W9  

STEP  2: PERFORM 4-POINT DFT ON ALL COLUMNS 

m 	0 	1 	2 	3  

0 	Goo G10 G20 G30  

1 	G01 G11 G21 G31  

2 	G02 G12 G22 G32  

3 	GO3 G13 G23 G33 

MULTIPLY RESULTS WITH CORRESPONDING 
ELEMENTS OF TWIDDLE MATRIX 

STEP  3: 

M  0 
	1 	2 	3 

0 Goo le Gioe °20 W° 630 w°  

1 	GO1 W0G11 W1  G21W2 C'31 W3  

2 	GO2 W0  Gi2w2 G22 4/4 G32 W6  

3  GO3w°  Gi3w3 G23w6 G33w9 

	

•_- 	0 	1 	2 	.3 

	

0 	F 	F- 0 	4 	F12  

	

1 	F 	F- 1 	.5 	F13  

	

2 	F2 	F6 	F10 F14  
3FFF 3 	7 	11 	F15  

STEP  4:  PERFORM 4-POINT DFT ON 
ALL ROWS 

FIGURE 17. GENERALIZED FFT PROCEDURES APPLIED TO 
THE RADIX-4 SIXTEEN-POINT CASE. 
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Table XV: Composite component counts of the single pipeline radix-4 16-point 
FFT. 

Type of component 	quantity 

real adders 	 38 
real multipliers 	 12 
latches 	 86(including input latches) 
4-to- i  multiplexers 	8 

In the last two sections, several pipeline FFT structures were 
illustrated based on a 16-point FFT example. The composite component counts 
for the various structures are compared in Table XVI for N=16. 

Table XVI: Comparison of component counts for various 16-point pipeline FFT 
structures 

Component 	Parallel-pipeline 	 Single-pipeline 
radix-2 	radix-4 	radix-2 	radix-4 

real 
adders 	148 	 144 	 22 	 38 

real 
multipliers 	40 	 32 	 12 	 12 

latches 	308 	 240 	 78 	 86 

2-to- i  
MUXs 	 12 

4 -to -1 
MUXs 

If the length of the data sequence is moderately large, the component counts 
for the parallel pipeline structure become prohibitively large. As an 
example, the component counts for various pipeline structures for a 64-point 
FFT are summarized in Table XVII. 
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Table XVII: Composite component counts for various pipeline structure of the 
64-point FFT 

Component 	Parallel-pipeline 	Single-pipeline 

radix-2 	radix-4 	radix-2 	radix-4 

real 
adders 	964 	 920 	 34 	 60 

real 
multipliers 392 	 304 	 20 	 24 

latches 	2116 	1560 	 202 	 220 

2-to- i 
MUXs 	 20 

4-to- i 
MUXs 	 16 

It is reasonable to conclude that, using discrete IC elements, the only 
practical hardware FFT structure is the single pipeline structure for long 
(longer than 64) data sequences. It is, therefore, useful to derive a 
generalized single pipeline FFT structure so that FFTs of long data 
sequences can be processed with varying degree of parallelism. 

4.3 Radix-r single-pipeline FFT 

Assume in the following discussion that N can be expressed as a power 
of r. The DFT of an N-point sequence can be efficiently computed using a 
number of identical sections of processing hardware composed of a radix-r 
commutator and a radix-r butterfly. The radix-r commutator consists of two 
sets of shift register arrays with a set of r-to-1 multiplexers sandwiched 
in between.  The  schematic diagram of a radix-r pipeline section is shown in 
Figure 19. Input '1', where i=0,1,2,..,r-1, of the commutator is connected 
to input terminal 'i of all the MUXs through a (iN/r)-stage shift register 
array. The output of the ith MUX is connected to the ith input of the 
radix-r butterfly through a [(r-i-ON/r1-stage shift register array. The 
function of a radix-r commutator is to decimate the input sequence into r 
sub-sequences of length N/r and present them simultaneously at the output of 
the commutator. The length of the data sequences reduces by a factor of 1/r 
and the number of sub-sequences increases by a factor of r, thereby, 
rendering the total number of samples unchanged at each stage. 
Consequently, the switching period of the MUXs is given by N/rk, 
k=1,2,3 ..... logrN. The switch connections of the MUXs follow a cyclic, 
pattern, with the ith MUX always one position behind that of the (i-1)th 
MUX. 

The twiddle factors for the radix-r butterfly in each stage of the 
pipeline are variable and the values must be brought in from memory. The 
switching period for the twiddle factors in each pipeline section is a 
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function of the type of decimation process being used. In general, it 
increases at a rate of r times per section. The direction of increase of 
the switching period for the twiddle factors depends on whether the DIT or 
the DIF process is used. For the DIF process, the shortest switching period 
is at the input stage, in which one set of twiddle is switched in every 
clock cycle. For the DIT process, the shortest switching period is at the 
last stage. The twiddle values can be obtained from the appropriate signal 
flow diagram of the FFT algorithm being implemented. 

It can be easily shown that the single pipeline FFT structure 
corresponding to specific values for r, N and the appropriate choice of 
decimation process can be derived from the generalized structure given in 
Figure 19. For example if one substitute r=2, then the length of the shift 
register arrays at the first stage is N/2 and the r-to-1 MUXs become 2-to- i 
MUXs. It can be seen that Figure 19 reduces to Figure 13 which represents 
the radix-2 single pipeline FFT. The radix-r single pipeline FFT is useful 
in the design of high speed FFT processors of long data sequences. We can 
construct the pipeline sections with butterflies of moderately large radix 
such as 8 or 16. The component counts for these butterflies, although very 
large, are not prohibitive. Consider, for example, a single pipeline 
4096-point FFT. This processor can be implemented with 3 stages of pipeline 
sections composed of a radix-16 commutator and a radix-16 butterfly. A 
radix-16 butterfly is implemented by adding a twiddle multiplication stage 
to a parallel pipeline 16-point FFI  such as the one described in Section 
4.1. Assume that the pipeline section can handle one set of 16 complex 
samples in 100 nsec., then it will only take 0.1x4096/16 = 25.6 microsec. 
to compute the 4096-point FFT. 

5. DESIGN FOR A DOPPLER PROCESSOR AND A 2-DIMENSIONAL DIGITAL BEAMFORMER 
BASED ON A HIGH-SPEED 16-POINT  FF T IMPLEMENTATION. 

In this section is described a high-speed  FF T processor of relatively 
small dimensions. Two applications in radar signal processing are used as 
examples of possible area of utilization for the processor; these are, (i) 
Doppler Processing and (ii) two-dimensional digital beamforming. 

5.1 Doppler processing and digital beamforming 

(a) Doppler processing 

In modern surveillance radar systems, high performance is attained by 
exhaustively processing the radar signals for all of their available 
information content. Target velocity, which can be derived from the Doppler 
shift exhibited by a radar signal, is an important parameter which is used 
for target identification. It can provide a valuable input for determining 
the level of threat posed by the target. It can also provide the tracker 
supplementary tracking information as well as enhancing the detectability of 
moving targets. 
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As is well known, a coherent radar transmits a train of coherent 
pulses in a fixed direction in space. Radar returns or echoes are received 
and sampled as depicted in Figure 20a. Since the range of the target being 
illuminated is not known before hand, one usually samples all of the radar's 
range cells. The radial extent of a radar range cell is given by: 

AR = cT/2 
where 

c = speed of light 
T = radar pulse width 

Consider the returns from an object within a particular range cell R. If 
the object is stationary, then the echo will be similar to that shown in 
Figure 20b. On the other hand, if the object is moving with a velocity v, 
there will be a change in the phase angle of the returned signal from one 
pulse to another. Detection of this shift is dependent on coherent 
quadrature demodulation. The sampled waveform from a moving target will be 
similar to that shown in Figure 20c. This change in phase angle is 
reflected as a Doppler frequency shift given by: 

fp = 2v/À 
where 

v = velocity of target 
À = radar wavelength 

fp = Target Doppler frequency 

The DFT of a finite time sequence may be considered as a bank of 
correlators correlating the time sequence with a set of sampled complex 
sinusoidal waveforms (replica signals). The frequencies of these sinusoids 
are evenly spaced across the Doppler frequency band, which, in this case, is 
equal to the radar pulse repetition frequency(PRF)[71. If the target 
possesses a velocity which matches one of the replica signals, the output of 
that frequency cell in the correlator bank will be much higher than those of 
the others. Thus the DFT of a returned radar pulse train from a fixed 
direction and range effectively channels the signal energy components into 
separate frequency cells according to their Doppler frequencies. For 
example, the ground return will be channeled into the zero Doppler frequency 
cell, while the signal component due to a fast moving target is channeled 
into one or more of the higher Doppler frequency cells. 

There are several advantages in performing Doppler processing. The 
first is that strong returns from ground clutter will appear in low Doppler 
frequency cells. In order to declare the presence of a target, a detection 
threshold is normally set according to the past information obtained from 
that particular range cell. Without Doppler processing, the return from 
stationary ground clutter and moving targets are indistinguishable. Since 
ground clutter usually has a large magnitude, it is necessary to set the 
threshold at a level sufficient/y high so as to keep the false alarm rate 
low. High threshold levels tend to reduce the detection probability of weak 
targets. With Doppler processing, however, the signal component due to a 
moving target will appear in a different Doppler frequency cell than that of 
the ground clutter. The ambient signal level in these high Doppler cells, 

(32) 

(33)  
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i.e., the signal level in the absence of target returns, will have a much 
lower magnitude because they usually consist of receiver noise only. 
Receiver noise is wide-band and will be distributed equally in all Doppler 
frequency cells by the DFT. Consequently, the threshold level for Doppler 
frequency cells other than that of the zero-Doppler one can be set 
significantly lower, thereby, enhancing the detectability of moving targets 
while, at the same time, maintaining a low false alarm rate. 

The second advantage of Doppler processing is that it provides an 
estimate of the target velocity. This estimate is useful in a threat 
analysis of potential targets as well as in defence resource management. 
Finally, Doppler processing provides additional tracking information to the 
tracker. Due to the wide range of possible target speeds, there will not be 
a one-to-one correspondence between target velocity and target Doppler 
frequency. This is analogous to the aliasing effects commonly referred to 
in digital signal processing. Nevertheless, this ambiguity can be resolved 
by employing multiple PRFs [8] in the radar system. 

Consider a surveillance radar system employing a phased array antenna 
such as the one described by Mabey [9]. The main beam of this phased array 
can be stepped electronically and maintained in one direction indefinitely. 
The surveillance area of this antenna is ±40 degrees in azimuth and ±30 
degrees in elevation. The 3 dB azimuthal and elevation beamwidths of this 
antenna are 4 and 6 degrees respectively. Assume that a surveillance cell 
is defined by the beamwidths in both azimuth and elevation. The 
surveillance area is divided into 126 cells in azimuth and elevation. In 
order to successfully incorporate Doppler processing in this system, the 
processor has to be matched to the radar system parameters. Some of the 
relevant parameters are listed below: 

Radar PRF= 1 kHz to 10 kHz 
Pulse width = 100 nsec to 400 nsec 
Maximum range = 40 km 
Dynamic range = 60 dB 

The 126 surveillance cells are to be kept under continuous observation 
within constraints imposed by radar dwell time. Assuming that the refresh 
rate is one'scan per second, the dwell time per surveillance cell per scan 
would be 1/126 = 7.94 msec. For a typical PRF of 2 kHz, approximately 16 
pulses may be transmitted in each direction before the beam is moved to 
another surveillance cell. If the radar pulse width is taken to be 400 
nsec, the number of range cells within the maximum range is approximately 
500. Thus a reasonable set of specifications for a Doppler processor for 
this radar may be determined: 

Maximum length of pulse train = 16 pulses 
Minimum length of pulse train = 4 pulses 
Processing rate = 512 sixteen point FFTs in 2 msec. 
wordlength = 12 bit 
Data window = Hamming window 
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Data windows (amplitude weighting of input data) are necessary to 
suppress the Doppler sidelobes. The DFT of a finite time sequence may be 
considered as the Fourier Transform of the product of an infinite time 
sequence with a rectangular pulse function. It is well known [10] that the 
Fourier transform of the product of two functions is equal to the 
convolution of the Fourier transforms of the individual functions. Since 
the Fourier transform of a rectangular pulse is a sinc(sinx/x) function 
whose first sidelobe has a magnitude only -13.6 dB below that of the 
mainlobe, the response of a Doppler cell to a strong signal with a Doppler 
frequency matched to that of a neighbouring Doppler cell would be 
substantial. This phenomenon is sometimes referred to as leakage in digital 
signal processing terminology. This may produce ambiguity in the estimate 
of the target velocity. Ground clutter whose magnitude may be orders of 
magnitude higher than that of a target signal will cause interference in 
neighbouring Doppler cells, thereby, degrading detection performance for 
moving targets. The data windows commonly employed have significantly lower 
values at the beginning and the end of the time sequence. Thus the data 
window effectively imposes a much smoother transition than the rectangular 
window function. The smooth transition results in much lower sidelobes in 
the DFT of the modified time sequence. The price one pays for applying 
amplitude weighting is that the width of the DFT main lobe becomes broader 
than in the case of a rectangular window. However, this is more than 
compensated for by the resulting low Doppler sidelobes of the Doppler 
processor. An example of a data window is the Hamming window which has a 
-42 dB first sidelobe. 

A typical block diagram for a radar signal processing system 
employing a Doppler Processor is shown in Figure 21. For the following 
discussion, we shall call the samples of the radar returns from all the 
range cells in a fixed direction a sweep. The coherent video signal is 
sampled and stored in a memory bank which is capable of storing up to two 
sets of 16 sweeps of radar returns containing 512 range samples. Once the 
desired number of sweeps has been obtained, a signal is sent to the Doppler 
processor to initiate the parallel readout of successive sets of N(where N 
is the length of the pulse train) samples from each of the 512 range cells. 
The N samples are than multiplied by a set of amplitude weights before being 
fed to a 16-point FFT processor. The 16 Doppler frequency outputs are fed 
to separate Constant False Alarm Rate (CFAR) [11] processors. In each CFAR 
unit, the magnitude of the output in each Doppler cell is compared against a 
threshold level for detection. In addition, this output is used to update 
the threshold setting for that particular Doppler cell. While one set of 
data are being processed, new data corresponding to the next look direction 
are written into the other memory bank. 

The processing speed requirements for the Doppler Processor are 
easily fulfilled and can be realized with any one of the designs described 
in Section 4. However, as will be seen in the next section, the 16-point 
FFT is also employed in the two-dimensional digital beamformer example and 
the processing speed demands here are much higher. The philosophy being 
followed here is one which considers it to be cost effective to develop a 
common processor structure which can be used in both of these applications. 
Consequently, the specifications of the basic high-speed 16-point FFT unit 
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will be determined by the requirements of the 2-dimensional digital 
beamformer. 

(b) Digital beamformer in a sampled aperture radar system 

Modern surveillance and tracking radars face many threats to their 
security. Anti-radiation missiles (ARM) seek out the direction of a radar 
emission and home in on the radar. Fire control radars must be capable of 
tracking targets in many directions within a short time span. Consequently, 
the amount of time a tracking radar can allocate to the tracking of each 
target is restricted. It is, therefore, envisaged that future radars would 
have the capability of surveying and tracking many directions 
simultaneously. This leads to the concept of sampled aperture radar 
(SAMPAR) [12]. 

In simple terms, a SAMPAR employs a phased array antenna as sensors 
and relies on digital signal processing to synthesize the information from 
various directions. Consider the scenario in which a bistatic radar is 
illuminating its surrounding hemisphere with a train of coherent pulses 
through an omni-directional antenna. The returns from all directions are 
received by a planar phased array. Each sensor on the phased array aperture 
has an independent coherent receiver. The receivers convert the signal from 
each sensor down to complex baseband and sample at a suitable rate, thereby, 
preserving the amplitude and phase relationships among signals from 
different sensors. Once the data are in the digital domain, they can be 
used to compute the response of the receiving antenna in many directions. 
This digital beamforming process requires a very high speed digital 
processor. 

A feasibility study of such a SAMPAR system has been initiated by 
Litva [12]. An experimental SAMPAR system is to be built based on a square 
array aperture with 8 rows and 8 columns of receiving elements. Initially 
the sampled data would have a total bandwidth of 64 x BW, where BW is the 
bandwidth of the receiver channels. If each receiver has a bandwidth of 2 
MHz, the Éotal signal bandwidth will be 128 MHz. In order to reduce the 
data rate to a more manageable level, the data will be integrated in some 
fashion before being fed to a digital beamformer. Preliminary 
specifications require that a complete 2-dimensional beamforming frame to be 
completed in 4 micro-seconds. 

The 2-dimensional beamforming operation can be accomplished using a 
2-dimensional FFT processor. The system block diagram of an experimental 
digital beamformer is shown in Figure 22. The input data are represented as 
an 8 by 8 matrix as depicted in Figure 23a. The data matrix is augmented 
with 8 rows and 8 columns of zeros to form a 16 by 16 matrix as depicted in 
Figure 23b. The data in the augmented matrix are fed in parallel, one 
column at a time, to a 16-point FFT processor. The transformed results are 
stored in memory as a matrix (see Figure 23c). After all columns have been 
processed, the results are then read out row-wise and fed to another 
16-point  FF]  which provides the required 2-Dimensional digital beamforming. 
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The augmentation of the original 8 by 8 matrix with zeros is a 
simple way of providing interpolation of the resulting antenna pattern. It 
effectively provides 16 x 16 = 256 beams in space. Since there are 8 
nonzero columns, the first FFT processor in Figure 22 needs only perform 
eight 16-point FFTs. A 16-point FFT, in general, has 16 non-zero outputs. 
Thus the second stage FFI' would have to perform sixteen 16-point FFTs, 
although each of them still consists of eight non-zero samples. Presumably, 
all the 16-point FFTs can be performed by a single 16-point FFI  processor. 
However, this processor must be able to perform twenty four 16-point FFTs in 
4 microseconds (or one per 166.7 nsec). Adding all the overhead in data 
handling, it represents a very high processing speed requirement. 

5.2 Implementation of a 2-D digital beamformer and a target Doppler 
discriminator 

After some thought it was decided that the implementation of the 
system in Figure 22 using inexpensive commercially-available ICs would best 
be carried out using the parallel pipeline structure described in Section 
4.1.1. The schematic diagram of a 2-dimensional digital beamformer 
employing two separate 16-point FFTs and a row-column transposition network 
is shown in Figure 24. The data arrangement as indicated in Figure 22 
requires a 16 by 16 row-column transposition network. This network requires 
less hardware than a direct implementation using individually addressable 
latches. However, the component count is still rather high. Depending on 
the system data wordlength, the actual IC chip count for this system may be 
several thousand. Large component counts mean high power consumption which, 
in turn, present problems with regards to heat dissipation and maintenance. 

5.2.1 Modified 2-Dimensional digital beamformer 

In an effort to reduce the component count, one must examine the 
data structure carefully and exploit any peculiar characteristics of the 
architecture which can be taken advantage of to realize savings in 
computational effort. Two points come to mind, these are: 

(i) The input to both 16-point FFTs has only eight nonzero samples. 

(ii)The processing speed requirements for the Doppler Processor is 
rather moderate. It follows therefore that in both cases, it is 
feasible to employed an 8-point FFT in multiplexed mode to 
implement the required 16-point FFT. 

(a) modified parallel pipeline 16-point FFT 

Let us consider the 16-point DIF FFT algorithm whose operations are 
summarized in Figure 12. The input data to be transformed are arranged in 
an 8-column by 2-row matrix. Since for our 2-Dimensional digital 
beamformer, samples x8,x9,...,x15 are always zero, the eight 2-point column 
DFTs may be eliminated. Since two separate 16-point FFTs are required to 
implement a 2-D FF, the maximum processing rate for the beamformer is set 
by the second FFT unit; i.e., to meet our requirements it must be capable of 
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performing sixteen 16-point FFTs per 4 micro-seconds, or one 16-point FFT 
per 250 nsec. In section 4, it was determined that a conservative estimate 
of the throughput rate for a parallel pipeline FFT structure is about 100 
nsec per FFT. Thus a single 8-point parallel pipeline FF  T which is 
multiplexed to carry out two 8-point FFTs should be capable of completing a 
16-point  FF  T within 250 nsec. 

The schematic diagram of a modified parallel pipeline 16-point FFT 
is shown in Figure 25. This processor takes advantage of the fact that the 
input has only eight non-zero samples and utilizes an 8-point FFT. The 
operation of this unit is as follows. Input samples x0,x1,x2,x3,x 4 ,x 5 ,x 6 , 
x7 are fed to the input of the 8-point FFT in natural order from top to 
bottom. The input samples are held constant by a set of latches for two 
consecutive clock cycles. During the first clock cycle, the MUXs are 
switched to position '0', connecting the input directly to the 8-point FFT 
module. The result of this 8-point FFT will provide the even frequency 
outputs (corresponding to the 8-point FFT of the top row in Figure 12). 
Concurrently, the eight samples are fed to a set of twiddle multipliers 
which provides the bottom row data in Figure 12. In the second clock cycle, 
the twiddle multiplication results are ready. The MUXs are switched to 
position '1', effectively connecting the bottom row of data in Figure 12 to 
the input of the 8-point FFT. The result of this 8-point FFT provides the 
odd frequency samples. It should be understood that latches would be 
inserted in the signal paths to insure proper pipeline operations. Thus the 
16-point FFT is obtained in two clock cycles, with even and odd frequency 
samples appearing at the output of the 8-point FITT processor in alternate 
clock cycles. 

The composite component counts for the modified parallel pipeline 
16-point FFT can be estimated. It consists of one eight point parallel 
pipeline FFT, a twiddle multiplying stage and a bank of 2-to- i  
multiplexers. The 8-point FFT has 12 2-point DFTs, 6 trivial and 2 
nontrivial twiddles. The twiddle multiplying stage consists of two trivial 
and six nontrivial twiddles. The bank of MUXs has sixteen (for both real 
and imaginary parts) 2-to- i  MUXs, yielding the component count given in 
Table XVIII: 

Table XVIII: Component counts of the modified 16-point parallel pipeline FFT 

component 	 quantity 

real adders 	 64 
real multipliers 	32 
latches 	 128 
2-to- i  MUXs 	 16 

(b) An 8 x 16 row-column transposition network 

Savings to component counts may be realized once again in the design 
of the matrix transposition network by taking advantage of the fact that the 
input to the second 16-point FFT also has only eight nonzero samples. The 
schematic diagram of such a network is shown in Figure 26. Since in a 
modified parallel pipeline 16-point FFT the even and odd outputs of 
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the FFT appears in alternate clock cycles, this modified matrix 
transposition network also has eight complex inputs and outputs. We shall 
number them from top to bottom with indices 0 through 7. The data from the 
first FFT processor is fed to a bank of 8-to- i  MUXs through shift register 
arrays of various lengths. The length of the shift register array in data 
line 'i' is given by 2i. For example, there is no shift registers between 
output '0' of the first FFT and input '0' of all the MUXs (2x0=0). The 
number of shift registers in the shift register array between output '7' of 
the first FFT and the MUXs is 14(2x7=14). The output of each shift register 
array is connected to the corresponding input of all the MUXs. For 
examples, the output of the shift register array in signalling 1 1' is 
connected to input terminal '1' of all 8 MUXs. The output of the ith MUX is 
connected to the ith input of the second FFT unit through a 2 (7-i) stage 
shift register array. The MUXs are switched once every two clock cycles in 
a cyclic pattern, with the output switch position of the ith MUX being 
always one behind that of the (i-1)th MUX. In Table XIX are tabulated the 
switch positions for the MUXs through 20 clock cycles. 

Table XIX: Switch positions of the MUXs in the 8x16 row-column 
transposition network over 16 clock cycles 

MUX 	 Input Selected by MUX in Clock Cycle No. 
No. 	0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 18,19 

0 	0 	1 	2 	3 	4 	5 	6 	7 	0 	1 
1 	7 	0 	1 	2 	3 	4 	5 	6 	7 	0 
2 	6 	7 	0 	1 	2 	3 	4 	5 	6 	7 
3 	5 	6 	7 	0 	1 	2 	3 	4 	5 	6 
4 	4 	5 	6 	7 	0 	1 	2 	3 	4 	5 
5 	3 	4 	5 	6 	7 	0 	1 	2 	3 	4 
6 	2 	3 	4 	5 	6 	7 	0 	1 	2 	3 
7 	1 	2 	3 	4 	5 	6 	7 	0 	1 	2 

The operation of this matrix transposition network can now be 
described. The required data arrangement is shown in Figure 27. At the 
beginning of clock cycle '0', the even frequency samples of the first column 
FFT appears at the input of the matrix transposition network. At this 
timeMUX '0' is at switch position '0' and in general MUX '1' is at switch 
position '8-i'. After Ug0 clock cycles, the data will be arranged as shown 
in Figure 26. The MUXs are switched by one position in a cyclic fashion 
between positions 0 and 7. After another two clock cycles, the data will be 
arranged as shown in Figure 28a. Following the switching pattern tabulated 
in Table XIX, it can easily be verified that at the end of clock cycle '15', 
the data will be arranged as shown in Figure 28b which is consistent with 
the transposed data matrix in Figure 27. 

5.2.2 Doppler Processor employing the modified parallel-pipeline 16-point 
FFT 

The modified parallel pipeline 16-point  FF  T can also be used to form 
a Doppler processor with the addition of a multiplexing network. The 
schematic diagram of this processor is shown in Figure 29. The first stage 
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of this Doppler processor using the modified 16-point FFT unit consist of 
(i) amplitude weights and (ii) adders. Since the input data to the Doppler 
processor may contain all nonzero values, the adder stage is required to 
perform the two-point OFTs of the columns as indicated in Figure 12. The 
input samples are held constant for two clock cycles. In the first clock 
cycle, the adders perform the difference terms of the 2-point DFTs and pass 
the results onto the twiddle multipliers. In the second clock cycles, the 
adders perform the sum terms of the 2-point DFTs, and the results are fed to 
the 8-point DFT module through a bank of 2-to- i  MUXs. Since the twiddle 
multiplications involve both multiplication and addition, the results may be 
made available to the 8-point FFT module after the DFT of the sum terms is 
completed. This may require inserting  son  e latches in the signal path to 
provide the pipeline operation. The results are multiplexed so that even 
and odd frequency samples appear at the output of the 8-point FFT module in 
alternate clock cycles. 

Prototypes of the designs of the Doppler Processor and the Digital 
Beamformer have been implemented By Interactive Circuits and Systems (ICS) 
[13-15] for the CRC. These prototypes are shown in Figures 30 and 31, res-
pectively. The FFT units in these two processors employ the modified paral-
lel pipeline design described in Section 5.2. These FFTs are capable of 
performing one 16-point FFT in 250 nano-seconds. Integer arithmetic is em-
ployed, and the data wordlength is 12-bits. 

6. HIGH SPEED FFT PROCESSORS FOR OTHER RADAR APPLICATIONS 

6.1 Digital pulse compression and radar image processing 

In the previous section, the designs of two digital signal process-
ors employing a high speed 16-point FFT were discussed. In both the Doppler 
processor and the experimental 2-D digital beamformer, an FFT of small di-
mension (16) is required. These two designs employ integer arithmetic. Be-
cause the dimension of these FFTs are small the wordlength required to ob-
tain small quantization errors and large dynamic range are relatively moder-
ate. However, there are other radar applications which require high speed 
FFT processors of large dimensions. In this section, we shall discuss some 
of the important applications and explore means of achieving high throughput 
rates for FF T structures designed for these applications. 

(a) Pulse compression matched filter 

In modern radars, the transmit pulse is often encoded to provide the 
radar with high range resolution and while, at the same time, maintaining a 
high average value for the signal level. These radars are called pulse com-
pression radars [16]. Frequency modulation (FM) is commonly used for imple-
menting pulse compression. The returned signal is processed by a correlator 
which measures the degree of similarity between the received waveform and 
the stored replica of an expected waveform. Consequently, this correlator 
is given the name matched filter. The bandwidth of the FM pulse is in the 
order of some tens of MHz. In the past matched filters were usually imple-
mented using surface acoustic wave (SAW) devices which offer the advantage 
of compactness and reasonably good filter characteristics. 
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FIGURE 29. SCHEMATIC DIAGRAM OF A 16—BIN DOPPLER PROCESSOR. 



Figure 30 	Prototype of the Doppler Processor 



Figure 31 Prototype of the 2—D digital Beamformer 
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For high performance radars, the capability of employing waveforms 
optimized for particular operational environments is an important feature. 
Consequently, digital matched filters become very attractive because the 
filter characteristics can be readily changed. In order to represent the 
received waveform adequately in the digital domain, it is usually sampled at 
a rate equal to the signal bandwidth. The entire sampled sequence is 
divided into sub-sequences of a suitable length, which is usually determined 
by the time-bandwidth product. A single-pipeline radix-2 FFT of dimension 
equal to twice the length of the sub-sequences is used to obtain the DFT of 
two contiguous subsequences at a time. The result of each FFT is then 
multiplied by the matched filter transfer function. The resulting sequences 
are then processed using an inverse Fast Fourier transform (IFFT) to give 
the matched filter output. Except for the order in which the twiddles are 
applied, the IFFT and the FF T have identical structures. Since the length 
of the FFT is twice the length of the data sub-sequence, half of the output 
sequence may be discarded to avoid aliasing effects. Subsequent FFTs use 
data which overlap the preceding data by one subsequence. This process 
continues until all returned samples are processed. All these operations 
must be performed within a pulse repetition interval. 

Digital matched filters employing pipeline FFT structure [17] have 
been implemented successfully for signal bandwidth of 10 to 20 MHz. Recent 
advances in solid-state technology have increased the feasibility of 
performing matched filtering digitally on signals with even greater 
bandwidths. Real-time matched filtering of wide-band waveforms requires 
high speed FFT processor of large dimensions. 

(h) Synthetic Aperture Radar image processing 

Synthetic Aperture Radar (SAR) [18]-[21] is a technique which 
permits an antenna with relatively small aperture size to obtain high 
resolution radar images both in the azimuthal and range dimensions. A SAR 
employs pulse compression in range to achieve high range resolution and 
coherent integration of returns from fixed ranges at different times to 
achieve high azimuthal resolution. The signal processing in a SAR system 
may be thought of as a two-dimensional cross-correlation of a set of radar 
echo data with the response function of a point target. Real-time image 
processing of SAR data is often done with optical systems because of the 
extremely high data rate. With ever increasing speeds of digital hardware, 
near real-time digital SAR processing appears to be feasible in the near 
future. Digital SAR processors provide some unique advantages over other 
signal processing systems. For example, the signal processing system may be 
required to identify signatures of maneuvering targets [21]. A digital SAR 
processor could provide more accurate phase correction of the data, thereby, 
allowing a more accurate focusing of the synthetic aperture than possible 
with an optical processing system. 

Digital SAR processing relies heavily on the FFT algorithm. There 
are a few algorithms [22],[23] which provide more efficient computation of 
two-dimensional correlations than conventional FFTs. However, the hardware 
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realization of these algorithms is still FFT-like. Consequently, 
considerations for hardware implementation of FFTs should apply equally well 
to these algorithms. 

6.2 Component count reduction versus throughput reduction 

Two important considerations in the implementation of hardware 
processors are the component count and the processor throughput. Although 
it is difficult to obtain an accurate IC chip count of a processor until the 
actual digital circuit design is chosen, it is possible to get a first order 
estimate of the chip count from the composite component count and by taking 
into account certain structural assumptions with regards to each signal 
processing component. As an example, let us consider the following two 
cases: (i) a 2-D digital beamformer employing a fully parallel-pipelined 
16-point FFT with a 16x16 matrix transposition network, and (ii) one 
employing the modified parallel-pipeline 16-point  FF T and a 8x16 matrix 
transpositon network. The following assumptions are made with respect to 
the various composite signal processing components: 

(0 real addition is implemented with 4-bit adders 
(ii) the latches and shift registers incorporate 

8-bits per chip 
(iii) multipliers have 12 bits per chip 
(iv) 2-to-i MUXs have 4 bits per chip 

4-to-i MUX8 have 2 bits per chip 
8-to-i MUXs have 1 bit per chip 
16-to-i MUXs have 1 bit per chip(larger chip) 

(v) data wordlength = 12 bits 

The approximate IC chip counts are obtained by multiplying the 
composite component counts by the estimated number of IC chips required to 
implement each component and then summing. For example, since 4 bit adders 
are used, each composite adder will consists of 3 ICs. Similarly, since 
8-bit latches are used, each shift register has 1.5 ICs. The corresponding 
IC chip counts for the two cases are given in Table XX. 
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Table XX: Comparison of IC chip counts for the two implementations of a 
2-D digital beamformer. 

IC chip 
Fully parallel pipelined 	Modified parallel 
16-point FFT + 16x16 	pipeline 16-point FFT 
matrix transposition 	+ 8x16 matrix trans- 
network 	 position network 

4-bit adders 	864 	 384 

multipliers 	 64 	 64 

latches 	 1440 	 720 

2-to- i MUX 	 - 	 96 

8-to- i MUX 	 - 	 192 

16-to-i MUX 	 384 

Total 2752 	 1456 

As can be seen, a reduction of approximately 507. in the IC chip 
count may be realized by employing the modified design. Other 
considerations which influence the choice of designs are the physical size 
of the IC chip and power consumption. For example, a 16-to-i MUX comes in 
a 24 pin package, while an 8-to-1 MUX comes in a 16 pin package. The 
throughput rate of the modified parallel pipeline structure is about half 
that of the fully parallel pipelined structure. This is expected because, 
in a parallel pipeline structure, each component is operating at 100 7. 
efficiency. Consequently, the throughput will decrease as the amount of 
hardware is reduced. 

Based on the comparison carried out above, it becomes apparent 
that, if the processing components in a system is operating at 100% 
efficiency, the only way in which throughput can be increased is by 
increasing the amount of hardware. Indeed, for a given algorithm, there 
are only three basic ways to increase the execution speed: 

(a) Employ signal processing components (adders, multipliers, etc.) 
with low intrinsic propagation delays. 

(b) Exploit the multiple-stage nature of the algorithm and structure 
the processor in a pipeline configuration. 

(c) Exploit the inherent parallelism in the algorithm and implement 
parallel branches in the processor. 
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A number of studies have been carried out with the purpose of exam-
ining alternative algorithms for efficient DFT computation. The Winograd 
Fourier Transform algorithm (WFTA) [241 decreases the number of multiplica-

tions relative to the conventional FFT at the expense of increased number of 
additions. The relative efficiency of hardware implementations of the DFT 

based on different algorithms cannot be determined easily based solely on a 
comparison of the number of arithmetic operations. Morris [25] carried out 
a comparative study of FFT and the WFTA in terms of execution time and stor-
age requirements. He concluded that the WFTA offers neither time nor space 
advantages over the FFT. However, the comparison is based on the criteria 

of their relative execution time and their memory requirements amongst a 
class of general purpose computers. Certain operations which are necessary 
in a general purpose computer may be eliminated in a hardware implementa-
tion. For example, the data shuffling operation may be done by simply rear-
ranging connecting wires in a parallel- pipeline structure. In a technical 
report, Hicks [26] compared the arithmetic requirements for the prime factor 
algorithm (PFA) [27], the WFTA, the SWIFT algorithm [28], the DFT and vari-
ous FFT algorithms. He found that the WFTA was the most efficient algorithm 
in terms of the required number of real multiplications. The next most 
efficient algorithm was the PFA. The decision for selecting a particular 
algorithm from the available alternatives should be based on the following, 
i.e., one should: 

(a) Analyze each algorithm and identify all parallel branches and pipeline 
stages. 

(b) Select a design for each algorithm which offers identical throughput 
rate. 

(c) Define a composite performance criterion based on: 
(i) the hardware component count, 

(ii) type of components, 
(iii) circuit topology(simplicity, regularity, etc.) 
(iv) complexity of control 
(v) overall cost and power consumption. 

(d) Select the structure which offers the best performance characteristics. 

6.3 Parallel pipeline FFTs of larger dimensions. 

Theoretically, one could exploit the parallel pipeline structure to 
its utmost and realize throughput rates many orders of magnitude higher than 
the basic system clock frequency. However, there are some fundamental prob-
lems which place a practical limit on the size of the FFT which can be imp-
lemented in the parallel pipeline structure, using commercially available 
discrete digital ICs. 

The first problem is the.dynamic range requirements of the process-
or. Consider a radix-2 FFT employing integer arithmetics, the result at 
each stage is obtained by adding two numbers. Consequently the data word 
size grows at a rate of one bit per stage. In order to maintain the hard-
ware word length, the result at the output of the butterfly must be down- 
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shifted by one bit. In addition, the twiddle multiplication also introduce 
round-off errors or truncation errors. These errors will accumulate in suc-
cessive stages. Hence for large-dimension FFTs, floating point arithmetic 
is often required. If integer arithmetic is employed, the data-word lengths 
for the registers tend to be large, and also complicated adaptive scaling 
techniques need to be used. The whole area of quantization and truncation 
errors has been treated extensively in the literature [291-131]. It has 
been shown that the quantization effect is significantly lower in a floating 
point processor than in a fixed point processor. 

The second problem is the large number of ICs required as the number 
of parallel branches increases. Examining Table XX, it is seen that a large 
number of the required ICs consist of latches. Even if none other than one 
of the branches in a signal processing pipeline involve processing, latches 
are required in all parallel branches to ensure synchronized operation. 
Consequently, the number of latches increases rapidly as the number of 
parallel branches increases. It is obvious that it would be impractical to 
implement a fully parallel pipelined FFT using discrete digital ICs when the 
order of the FFT exceeds the value 64. 

The 
accommodate 
erate size, 
each stage. 
512x12=6144 
stages, for  

third problem is the magnitude of the physical space required to 
all the wired interconnections. Let us consider an FFT of mod-
say 256. There are 256 complex (or 512 real) signal lines at 
Assuming a wordlength of 12 bits, there would be a total of 
wires distributed between the input, the output and intermediate 
a fully parallel pipelined structure. 

The first two problems can be alleviated somewhat by developing a 
class of new signal processing ICs. This class of signal processing ICs 
should have the following characteristics: 

(i) Latches would be provided at either the input or the output of a 
signal processing component such as adders and multipliers. 

(ii) All components (adder and multipliers) would be parallel devices in 
that each device would handle an entire data word. Preferably, they 
should be able to handle complex arithmetic. 

(iii) An IC chip containing a shift register array would be programmable 
so as to provide variable delays to the signal measured in terms of 
clock cycles. This would permit a single IC to provide the neces-
sary amount of delay in a branch of a pipeline section regardless of 
its complexity. 

(iv) The basic clock rate of these devices would be high, but the total 
propagation delay through these devices might be many clock cycles. 

There is no ideal solution to the third problem because in order to 
process all the data in parallel, the data words must be available concur-
rently to the processors. Furthermore, once all the multiple stage charact-
eristic and the parallelism of the algorithm have been exploited, the only 
means of increasing throughput rate is to reduce the propagation delay in 
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the devices. This might require defining a pipeline section at the logical 
gate level [32]. In other words, a signal processing component such as a 
floating point multiplier may consist of many pipeline sections. It may 
take many clock cycles for the device to obtain one set of results. However 
the throughput rate is only dependent on the propagation delay of a single 
logical gate. In order to achieve ICs with these characteristics, one would 
have to look to'Very Large Scale Integration (VLSI) technology. For 
example, if a radix-16 butterfly and a 16x16 matrix transposition network 
can be fabricated as monolithic devices, then it may be feasible to design 
parallel pipeline FFTs of larger dimensions. 
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