
Communications
Research
Centre

UNLtNITED

IC

IMPLEMENTATION OF HIGH SPEED

FFTs FOR RADAR

SIGNAL PROCESSING

by

H.C. Chan

This work was sponsoreg.12YabeDePertMent of National [Mama,
Research and Development Branch under Sub Program 33C.

CAUTION
The use of this information is permitted subject to recognition

of proprietary and patent rights.

TK
5102.5
C673e
#1394

CRC REPORT NO. 1394
OTTAWA, AUGUST 1985

I as Government of Canada Gouvernement du Canada
'9` Department of Communications Ministère des Communications

CanadIa.

Industry Canada
Library - Queen

f.‘,°uu.; 2 9 2012

Industrie Canada

n_jBibliothèque - Quee

COMMUNIUTIMS
c c

etKV\121986

Ott CI'

*AM

COMMUNICATIONS RESEARCH CENTRE

DEPARTMENT OF COMMUNICATIONS

CANADA

IMLEMENTATION OF HIGH SPEED FF'Ts FOR RADAR SIGNAL PROCESSING

by

H.C. Chan

(Radar and Communications Technology Branch)

August 1985
OTTAWA

CRC REPORT NO. 1394

This work was sponsored by the Department of National Defence,

Research and Development Branch under Sub Program 33C.

CAUTION
The use of this information is permitted subject to recognition

of proprietary and patent rights.

ii i

TABLE OF CONTENTS 	 PAGE

LIST OF FIGURES 	 iii

LIST OF TABLES 	 iv
ABSTRACT 	 1

1. INTRODUCTION 	 1

1.1 A survey of existing hardware FFT processors 	 2

2. THE FFT ALGORITHM 	 3

2.1 Two-dimensional representation of the DFT of a one-
dimensional sequence 	 3

2.2 Generalized FFT procedures 	 7
2.2.1 Twiddle factor 	 8
2.2.2 Butterfly 	 10
2.2.3 Radix 	 12

2.3 Alternative decimation processes 	 12
2.3.1 Decimation-in-frequency 	 12
2.3.2 Decimation-in-time 	 13
2.3.3 Digit reversal 	 14

3. REDUCING THE COMPUTATIONAL REQUIREMENTS FOR DFT ALGORITHM AND ITS
PROCESSING COMPONENTS 	 15

3.1 Reduction of computational effort 	 15
3.2 Radix-r butterfly and radix-r FFT 	 16

3.2.1 Radix-2 butterfly and 2-point DFT 	 18
3.2.2 Radix-4 butterfly and 4-point DFT 	 20

3.3 Pipelining of the butterfly for maximum throughput 	 23

4. HARDWARE IMPLEMENTATION OF THE FFT ALGORITHM 	 27

4.1 Parallel-pipeline FFT 	 29
4.1.1 Radix-2 parallel-pipeline 16-point FFT 	 29
4.1.2 Radix-4 parallel-pipeline 16-point FFT 	 30

4.2 Single-pipeline FFTs 	 30
4.2.1 Radix-2 single-pipeline 16-point FFT 	 32
4.2.2 Radix-4 single-pipeline 16-point FFT 	 40

4.3 Radix-r single pipeline FFT 	 49

5. DESIGN FOR A DOPPLER PROCESSOR DISCRIMINATOR AND A 2-DIMENSIONAL DIGITAL
BEAMFORMER BASED ON A HIGH SPEED 16-POINT FFT IMPLEMENTATION •... 51

5.1 Doppler processing and digital beamform

C R C

ea 13 1986

51

LIBRARY - BIDLIOTHÈQUE

iv

5.2 Implementation of a 2-Dimensional digital beamformer and a Target
Doppler processor 	 61
5.2.1 A modified 2-dimensional digital beamformer 	 61

a. modified parallel-pipeline 16-point FFT 61
b. An 8x16 row-column transposition network 	 63

5.2.2 Target Doppler Processor employing the modified
parallel-pipeline 16-point FFT 	 64

6. HIGH SPEED FFT PROCESSORS FOR OTHER RADAR APPLICATIONS 	 68

6.1 Digital pulse compression and radar image processing 	 68
6.2 Component count reduction versus throughput reduction 	 73
6.3 Parallel-pipeline FFTs of larger dimension 	 75

7. ACKNOWLEDGEMENT 	 77

8. REFERENCES 	 78

LIST OF FIGURES 	 PAGE

Figure 1 Signal flow diagram of the generalized FFT procedures 	11
Figure 2 Symbolic diagram of a radix-2 butterfly and schematic

diagram of a 2-point DFT 	 19
Figure 3' Symbolic diagram of a radix-4 butterfly 	 21
Figure 4 Schematic diagram of a 4-point DFT 	 22
Figure 5 Schematic diagram of a pipelined radix-2 butterfly 	 25
Figure 6 Schematic diagram of a pipelined 4-point DFT 	 26
Figure 7 Signal flow diagram of the radix-2 DIT 16-point FFT 	 28
Figure 8 Signal flow diagram of the radix-4 16-point FFT 	 31
Figure 9 Signal flow diagram of the radix-2 DIF 16-point FFT 	 33
Figure 10 Data buffering scheme for a radix-2 butterfly 	 34
Figure 11 Schematic diagram of a radix-2 commutator 	 35
Figure 12 Summary of steps of the generalized FFT procedures as

applied to the radix-2 DIF 16-point case 	 37
Figure 13 Schematic diagram of a radix-2 DIF single-pipeline FFT 	 39
Figure 14 Data buffering scheme for a radix-4 butterfly 	 41
Figure 15 Schematic diagram of a radix-4 commutator 	 42
Figure 16 Illustration of the input-output data arrangement for a

radix-4 commutator 	 45
Figure 17 Summary of steps of the generalized FFT procedures as

applied to the radix-4 16-point case 	 46
Figure 18 Schematic diagram of a radix-4 single-pipeline 16-point

FFT 	 47
Figure 19 Schematic diagram of a radix-r single-pipeline FFT 	 50
Figure 20 Digital representation of radar signals 	 52
Figure 21 Block diagram of a radar signal processing system

employing a target Doppler discriminator 	 55
Figure 22 System block diagram of an 8x8 SAMPAR system 	 58
Figure 23 Data permutation in a 2-dimensional beamformer 	 59
Figure 24 Schematic diagram of a 16x16 2-Dimensional digital

beamformer 	 60
Figure 25 Schematic diagram of a modified parallel-pipeline

16-point FFT processor 	 62
Figure 26 Schematic diagram of a 8x16 row-column transposition

network 	 65
Figure 27 Required data arrangement for the 8x16 row-column

transposition network 	 66
Figure 28 Operation of the 8x16 row-column transposition network

at various clock cycles 	 67
Figure 29 Schematic diagram of a Target Doppler discriminator

employing a modified parallel-pipeline 16-point FFT 	 69
Figure 30 Prototype of the Doppler Processor 	 70
Figure 31 Prototype of the 2-D digital Beamformer 	 71

v I

LIST OF TABLES 	 PAGE

Table 	I. Two-dimensional representation of the DFT of a
one-dimensional sequence 	 7

Table 	II. Two-dimensional representation of a one-
dimensional sequence 	 8

Table III. Two-dimensional representation of the twiddle
factor 	 9

Table 	IV. Result of column-DFTs and twiddle multiplication 	 9
Table 	V. Steps of the generalized FFT procedures 	 10
Table 	VI. Data arrangement of a time sequence using the

decimation-in-frequency procedure 	 12
Table VII. Data arrangement of the DFT of a time sequence

using the decimation-in-frequency procedure 	 13
Table VIII. Data arrangement of a time sequence using the

decimation-in-time procedure 	 13
Table IX. Required number of complex multiplications for

an N-point radix-2 and radix-4 FFTs 	 23
Table X. Component counts of pipelined 2-point and 4-

point DFTs and twiddle multiplier 	 27
Table XI. Component count for a radix-2 parallel-pipeline

16-point FFT 	 30
Table XII. Component count for a radix-4 parallel-pipeline

16-point FF T 	 30
Table XIII. Component count for a radix-2 single-pipeline

16-point FF T 	 40
Table XIV. Switch connections as a function of clock cycles

for the 1.11% in a radix-4 commutator 	 43
Table 	XV. Component count for a radix-4 single-pipeline

16-point FF T 	 48
Table XVI. Comparison of component counts for various

16-point pipeline FFI' structures 	 48
Table XVII. Comparison of component counts for various

64-point pipeline FFI' structures 	 49
Table XVIII. Component count of a modified parallel-pipeline

16-point FFI' 	 63
Table XIX Switch connections of the MUXs in the 8x16

row-column transposition network through 20 clock
cycles 	 64

Table 	XX. Comparison of IC chip counts between two
implementations of the 2-D digital beamformer 	 74

1

IMPLEMENTATION OF HIGH SPEED FFTs FOR
RADAR SIGNAL PROCESSING

by

H.C. Chan

ABSTRACT

Discrete Fourier Transform (DFT) has found wide application
in radar and sonar systems. With an increased emphasis
on digital signal processing, radar systems have requirements
for DFTs with ever increasing data rates. The Fast
Fourier Transform (FFT) algorithm permits efficient
computation of the DFT. In this work, both the fundamentals
of FFT algorithms and their implementation are discussed,
with emphasis on hardware design. Designs are presented
for two radar signal processors employing high speed FFTs,
i.e., (1) a high speed Doppler processor and (2) a two-
dimensional digital beam-former.

1. INTRODUCTION

The discrete Fourier Transform (DFT) has found wide application in
radar and sonar systems. In the case of radar, there is a requirement for
DFT processors capable of very high data rates. Some examples of typical
radar applications are the following: target Doppler processing, pulse
Doppler processing, pulse compression, matched filtering, radar imagery
processing.and, recently, digital beam-forming. The processing speed
requirements range from several MHz in the case of a Doppler processor to
over a GHz for a digital beam-former. In this report, some aspects of the
hardware implementation of the Fast Fourier Transform (FFT) are considered.
It is intended in this report to provide some insight into the problem of
developing:

(a) techniques for implementing the FFT algorithm in a form suitable for
radar signal processing,

(h) techniques for increasing processing speed and efficiency,

(c) techniques for reducing the hardware component count,

(d) techniques for achievinà greater parallelism so that higher
throughput rate can be realized.

2

1.1 A survey of existing hardware FFT processors

It is instructive to survey the literature and determine if any
"off-the-shelf" hardware FF T processors are able to fulfill the requirements
outlined in the previous section. In a paper published in 1969, Bergland
[1] tabulated the characteristics of over twenty hardware FFT processors
which existed at that time. The comparison is based on processor architec-
ture, function and performance characteristics, system hardware features and
cost. Most of these processors were produced by research laboratories, such
as Bell Laboratory, Stanford Research Institute, MIT Lincoln Laboratory, for
specific applications. A few were produced by computer manufacturers such
as IBM, Control Data Corp. Processing speeds for these processors were
measured in terms of the time required to compute a 1024-point complex FFT.
The speeds range from a high of 1 ms for the MM DSP of Emerson Electric to a
low of 600 ms for the CSS-3 of Computer Signal Processors, Inc. Typically,
the execution time for a 1024-point complex FFT is in the tens of milli-
seconds. These times compare very favorably with those achieved by
present-day commercial data processors.

Over a decade has past since the publication of this survey paper.
Many special purpose high-speed FFT processors undoubtedly have been built
by various research laboratories and in the industry. However, their tech-
nical characteristics are not generally available. More importantly, there
appears to be no commercially available processors which are directly appli-
cable to real-time radar signal processing functions. Commercially avail-
able FF T processors usually take the form of an array processor. Array pro-
cessors lean towards high flexibility and tend to be software orientated.
Examples of these processors include the Floating Point System (FPS) family
of array processors, Star-100 array processor developed by Star Technologies
Inc., and the TASP array processor developed by ESE. The throughput rates
of these systems, measured in terms of millions of floating point operations
(Mega-flops), are very impressive, ranging from 25 Mega-flops for an AP-120B
to over 100 Mega-flops for the TASP. With respect to FFT processing, the
execution time for a 1024-point complex FFI ranges from 5 msec for a FPS
AP120B to about 800 micro-seconds for the TASP. However, the operation of
array processors is input/output (I/0)-limited. For applications such as a
2-D digital beamformer, where the data are available simultaneously, their
throughput rate is limited by the data transfer rate of the I/O interface.

Families of IC chips specially designed for FFT processing are
available from a few device manufacturers. Examples of these IC chips are
the AM29500 family by Advanced Micro Devices, and the Weitek family signal
processing ICs. Recently, IBM and Sony of Japan each introduced a family of
monolithic devices suitable for the implementation of systolic array proces-
sors[2]. These devices may be used to form the building blocks of a high
speed FFT processor for real-time radar applications. However, the cost of
these devices is currently very high. Consequently, it is more economical
to develop high speed digital radar signal processors with inexpensive and
commercially available ICs.

It is well known that there tends to be a tradeoff between process-
ing speed and processing flexibility in the design of digital hardware. Due

to the extremely high data rate requirements in radar applications, it is
usually necessary to sacrifice flexibility in favour of speed and to use
special purpose hardware. In a later section, the designs of a target
Doppler processor and a two-dimensional digital beamformer will be
discussed. These two examples will serve to demonstrate how one maximizes
throughput rate and minimizes component count.

2. THE FF T ALGORITHM

In order to select the most suitable approach to the hardware
implementation of an algorithm, it is essential that one thoroughly
understands the structure of the algorithm. This understanding will enable
the circuit designer to take advantage of'any parallelism or special
constructs of the algorithm and match these to the capabilities of
state-of-the-art hardware components.

In most standard digital signal processing texts [3]-[5], the FFT
algorithm is explained both in terms of the decimation-in-time (DIT) and the
decimation-in-frequency (DIF) processes. Generally, when these descriptions
are applied to the FF T algorithm, they are meant to refer to any procedure
in which the DFT of an N-point sequence is.obtained by first computing the
DFTs of two or more sub-sequences; i.e., by decimating the original sequence
and then combining them in some fashion. The premise is that the total
effort required for computing the smaller DFTs and combining the results is
always less than that required for directly computing the DFT of the
original N-point sequence. We will not proceed immediately with a proof of
this premise, but rather, we will first discuss the basic concept underlying
the FFT. It will then be shown that this decomposition reduces the
computational overhead.

2.1 Two-dimensional representation of the DFT of a one-dimensional sequence

The DFT (DI an N-point complex sequence S:{x0,x1,x2,..,xN-1} is
defined as:

n=N-1
Fk = 	xn exp(-j2nnk/N)

' n=0

k=0,1,2,...,N -1

It is clear that to evaluate Fk for all N values of k, (N-1)
2 complex

multiplications and N(N-1) complex additions are required. A complex
multiplication requires four real multiplications and two real additions. A
complex addition requires two real additions. In subsequent discussions,
unless otherwise noted, the terms multiplication and addition are understood
to mean complex multiplication and addition, respectively. This estimate of
the number of multiplications takes into account the fact that the
exponential term exp(-j2nnk/N) is unity for n=k=0. Although the term FFT
was used initially in the work of Tukey et al [6] to mean a specific
algorithm, much progress has been made since. Consequently, the FFT
algorithm may now be regarded as any computational procedure which reduces
significantly the required computational effort in evaluating Eqn (1).

3

(1)

'000 ,0 >0 >0

M Entries 	 M Entries

•

5L 1: 0, 0, 0, ...,0

M Entries

(3)

,••••, x(L-1)M , x(L-1)M+1 , •••xN-1

4

It can be shown that both the so-called DIT and DIF processes lead
to the same interpretation of the FFT algorithm. Rabiner and Gold[3]
developed the mathematical treatment which led to a unified approach to the
FFT. Their approach is based on the two-dimensional representation of a
one-dimensional sequence. The DFT sum is transformed into a double
summation. In the following, we shall present a development which shows how
the two-dimensional representation of the DFT can be arrived at through the
process of decimation. It will provide the linkage between the concepts of
DIT and DIF. Soma of the special terms such as butterfly, radix, twiddle
factor and digit reversal will become clear as the development unfolds.

Consider an N-point complex sequence S :{x0,x1,x2,..,xN-1}. If N
is not a prime number, then it can be expressed as a product of at least two
numbers L and M, i.e.,

N =LxM 	 (2)

The N-point sequence can be expressed as the sum of a number of auxiliary
sequences. These auxiliary sequences are constructed from the original
sequence by retaining a subset of the samples and padding the rest with
zeros. One particular construction is as follows:

The0
	1
N-point 2 sequence is expressed

as the sum of L auxiliary
sequences S , S , S ,...,SL -1 , which are defined-in Eqn (3).

e 0
0 	: xo,x1,x2,...,xm-1,0 ,0 	 ,...., 0, 0, 0,

1 S 	: 0, 0, 0, ..., 	xm,xm+1,...,x2m_1,0,..,0,0, 0, 0,
	 >0

	 ,0

These auxiliary sequences contain M non-zero entries, and each is padded
with (N-M) zeros. The non-zero entries in each auxiliary sequence is a
subset of M contiguous samples taken from the original sequence. There is
no overlapping of non-zero entries among the auxiliary sequences. Since the
DFT is a linear operation, the DFT of the original N-point sequence is equal
to the sum of the DFTs of the L auxiliary sequences.

Let the DFTs of the auxiliary sequences S ° , S 1 , S 2
,..., SL-1 , be

Fk° , Fk 1 , 	Fk (L-1) , respectively. Since there are only M
non-zero entries in each auxiliary sequence, the corresponding DFTs reduce
to those defined in Eqn (4).

5

(4)

(5)

M-1
0 	 .2 wmk
Fk = xmexp(-3-4

m=0 	LM

M-1 j2nk)
= 1 xmi-mexp(-i?-21A")exp(

...
m=0 , 	LM

M-1 2nmk 	2n(L -1)k
FiL-1). 	V L xm+(L_1)mexp(-j-----)exp[-j 	

m=0 	 LM

k = 0,1,2,3,...N-1

From Eqn (2) we have substituted L x M for N in Eqn (1). Using
superposition, we can express the DFT of sequence S as:

Fk 	Fk 0 	Fk 1 	Fk 2 	... FicL -1)

M-1 	 M-1 2nmk 	 2nmk 	2nk
= ï 	 + 	xm+mexp(-j----)exp(-j----)
m=0 - 	LM 	m=0 	 LM

.2nmk 	2w(L-1)k
] + 	+ 	xm+0,-omexp(-3—)exPE -j

m=0 	 LM

k = 0,1,2,...,N-1

Equation (5) can be conveniently expressed by a double summation with the
introduction of the index 2.

2nnik 	2nLk Fk = 	1 xœnmexp(-j----)exp(-j-----)
L=0 m=0 	 LM

k = 0,1,2 N-1

At this point the symmetrical properties of the DFT play an
important role in the development of the FFT algorithm. Notice that the
last exponential term of the double summation in Eqn (6) repeats in a cyclic
fashion as Lk, mod. L. Consider the following sub-groups of frequency
samples;
IF0,FL, F2Le... 1 1+(M-1)LI; ...
FL_I,F(L..1)+1,,F(L-1)+2L,--.F(L-1)+(M-1)Li separately. The first

M- 1

L-1 M-..1
(6)

(8)

(9)

(10)

6

sequence of frequencies can be expanded as:

L71 M71
Fo = L 	L xm+2.14

£=0 m=0

L-1 M-1 2nm
FL 	/ 	xm+54exP(-J----)

9.=0 m0
(7)

L- 1 M-1
r 42nm(M-1)] V 	

ï xm+£11exPL 	M
F(m-1)L = 	m=0

With the introduction of index r, these equations can be expressed as the
following set of equations:

L-1 M-1
FrL = / Î xm+kmexp(

L=0 m=0

r = 0,1.2.,„.M-1

Similarly, for the next set, we have:

=xm+2,MexP(-ellex f 211
 £=0 m=0 	 LM

L-1 M-1 2wm2nm 	2ek
Fl+L = ï ï xenexp(-j----)exp(-j----)exp(

9.-0 m-0 	 LM

L-1 *-1
F 1

2nm(M-1)]exp(-j-
L-1 111-1

(42wm)exe-i 1+(M-1)L = £10 m10 xielle 	LM

which can be expressed as a sequence with index r:

L-1 M-1 2nm 	, 	nmr
Fl+rL = 	1 xurnmexp

,
-j 	K ---)ex-j2
	2n£
-----)exP-i----)

L=0 m=0 	 LM

r=0,1,2,...,M-1

A pattern begins to emerge. We see that the DFT can - now be regarded
as L sequences each of which contains M entries. Consequently, we can
express the DFT of the original N-point sequence S as a two-dimensional

7

(11)

array by introducing the index s:

L-1 14-1
vv 	 ,2nms, 	„2wmr, 	,

Fk Fs+rL= L 	L xurnmexp%, -J----vexp%.
1=0 im=0 	 LM

s = 0,1,2,...,L -1
r = 0,1,2,...,M-1

Equation (11) represents the DFT of the sequence S:{x0,x 1 ,...xN_I}, for
all values of k=0,1,2,3,...,N-1. Graphically, the frequency components of
the DFT can be seen as being arranged into a two-dimensional array as shown
in Table I.

Table I: Two-dimensional representation of the DFT of a one-dimensional
sequence.

0 	 1 	 2 	 M-1

0 	Fo 	 FL 	 F2L 	 • 	 eM-1)L

1 	F1 	 F14.1 	 F1+2L 	 • 	F1+(M-1)L

2 	F2 	 F2.4.1, 	 F2+2L 	 • 	F2+(M-1)L

3 	F3 	 F3tL 	 F3.+2L 	 • • . 	F3+ÇM-1)L

• . 	 .
. 	. 	 . 	 . 	 • 	 •

L-1 	FL-1 	F(4_1)+L 	F(L-1)+2L 	F(L-1)+(M-1)L
t,

2.2 Generalized FFT procedures

We now turn our attention to the double summation in Eqn (11).
After rearranging terms, we obtain:

M-1
Fs+rL = / Gmsexp(-j2wmr

m=0

s = 0,1,2,...,L -1
r = 0,1,2,...,M-1

where

L-1
2nme 	v 	 2wRs

Gas = 	 L
LM 1=0

(12)

8

From the basic definition of the DFT, we recognize immediately that
summation over 2. in the term Gms for a fixed m, is simply the DFT of a
decimated sequence of L samples of the original N-point sequence S. To be
precise, the decimated sequences are obtained by taking every other M
samples from the original N-point sequence with the index, m, indicating the
first sample to be taken. For example, for m=0, the decimated sequence will
be: ixo xm, x2m,...,x(L_0141, and for m=1, the decimated sequence will
be {xi, xi+m, 	 x1+(L-1)M} and so on. It is easy to
visualize this particular decimation process by dividing the original
N-point sequence into L contiguous parts of M samples each and then stacking
them on top of one another as shown in Table II. We see that the resulting
columns are exactly the required decimated sequences.

Table II: Two dimensional representation of a one-dimensional sequence.

0 	 1 	 2 	 • 	 M-1

0 	X 	 x2 . 	x(m-i)

1 	Xj 	 xl+M 	 x2+14 	 . 	x(m-1)144

2 	x2M 	x1+2M 	x2.4.2m • 	x(M-1)+3M

3 	x3m 	x1i.3m 	x2+3M . 	x(M-1)+2M
• •

	

. 	 •
• . 	 .

	

. 	 •

	

. 	 .

L-1 	x(L..i)m 	xi +(L-1)M 	x2+(L-1)M 	 x(M-1)+(L-1)M

It becomes apparent that the summation over index k in Eqn (12) for all m
are precisely the DFTs of all the columns in Table II. After the DFTs of
all columns in Table II are performed, the results will be in terms of both
indices m and e, where s is the frequency index of the column-1)11s.

2.2.1 Twiddle factors

According to Eqn (12), the DFTs of all columns are to be multiplied
by a factor exp(-27rms/N). This factor is commonly known as the twiddle
factor. Most authors avoid writing the exponential explicitly by defining
the parameter W given by:

W = exp(-j2r/N) (13)

Consequently, the twiddle factor may be written as Weas. Since the twiddle
factor is a function of two variables, m and s, it can also be represented
as a two-dimensional array, as shown in Table III.

Table III: Two-dimensional representation of the twiddle factor.

j,›Ntz 	0 	 1 	 2 	 M-1

0 	1 	 1 	 1 	 1
, 	

, 	., 1 	1 	exp(-j2; 	
2n2

) 	 expt -3 --g-v 	• 	
expu_j2n0.1411-1)]

2
, 	2n2, 	

. 	 . 	
•

1 	expl -1 ----)
N

3 	1 	 • 	 . 	 . 	
•

• . 	 •
• • 	 . 	 • 	 •
•

•
. 	 . 	 . 	 .

L-1 	1 	exp[
2n(I, -1)1

• . 	 2n(L -1)(M-1)]
-J---Tr---' 	 exp[-j 	N

When Was is equal to unity or ±j, no real multiplications are required. We
shall call these three values of the twiddle factor trivial twiddles.

It should be pointed out that twiddle multiplication should not be
confused with matrix multiplication. It is an operation where entries from
corresponding locations of the DFT and twiddle matrices are multiplied and a
new matrix formed from the product. Let us represent the result of the
twiddle multiplication by a 2-dimensional array as shown in Table IV.

Table IV: Results of the twiddle multiplication with results of the
column-DFTs

	

° 	1 	 2 	 M-1

0 	G0 ,0 	G1,0 	G2 ,0 	 Gm_1 , 0

1 	G0 , 1 	G1 , 1 	G2,1 	 CM-1,1

2 	G02 	
G
1,2 	

G
2,2 	 G M-1,2

• • 	 • 	 • 	 • 	 •
• • 	 • 	 . 	 • 	 •

L-1 	G0 ,L-1 	• 	 • 	 • 	G(M-1),(L-1)

9

1 0

By referring both to Eqn (12) and Table IV, we see that the summation over m
in Eqn (12) consists of the DFTs of all the rows in Table IV. The steps
described above constitute the generalized FFT procedures. A variety of FFT
algorithms can be derived by applying these decimation steps in different
ways to the original sequence. The steps of the generalized FFT procedures
are summarized in Table V.

Table V: Generalized FFT procedures

	

STEP 	I 	 OPERATIONS

i. The starting N-point sequence is divided into L sub-sequences of M
contiguous samples, and each sub-sequence is used as a row to form
an L by M matrix (N = LxM).

ii. The elements of an L-by-M twiddle matrix are formed using the
twiddle factor defined by:

ms
W 	= exp(-j2nms/N) 	s=0,1,2,3,..,L-1

m=0,1,2,..,M-1

where the row and column indices are given respectively by s and
m.

iii. L-point DFTs are performed on all M columns and the result placed
in the identical locations of the data matrix.

iv. The elements of the matrix formed in (iii) are multiplied by the
twiddle matrix(element by element).

v. Finally, 147-point DFTs are performed on all L rows of the
matrix resulting from step iv.

2.2.2 Butterfly

The generalized FFT procedures given in Table V can be conveniently
represented graphically by a signal flow diagram using a special
diagrammatic representation called the butterfly. Basically, a butterfly
operation consists of a DFT whose inputs and outputs can be multiplied by a
set of complex weights called twiddle factors. The signal-flow diagram of
the generalized FFT procedures is shown in Figure la. The symbolic diagrams
of the butterfly capable of processing r complex input samples are shown for
the DIT and DIF processes in Figures lb and lc, respectively. These
butterflies have r input-nodes and r output-nodes, where r is a factor of
the length of the sequence N. The convention commonly adopted is that the
butterfly will take time sequence data in natural order (from top to bottom)
and produce frequency data at the output-nodes in the same order. The
twiddle multiplier comprises one trivial and (r-1) non-trivial twiddle
multiplications.

X0 TWIDDLES

2
1 	M-POINT 1 	FL

2

	

0 	Fo

F2L 	

x2
x 1 0

x. DFT
No. 0

0- - Fi

F0
F1
F2

Twiddle Factors N, tr-1

F0
F1
F2

-

/if
Twiddle Factors 	° r-1 xr- 1

xO
X

X2

X- I

1

1

xo —0 	 0
xm —1 	L-POINT 1
x 2m--- 2 	Drr

No. 0
x(L-1)M—L-1 	 L-1

,

	

' - O 	 0
L-POINT 7

	

X —2 	DFI 1+2M
No. 1

L- 1 	 L- 1
x

1-'-(L- 1)M-1>

	

„ xm-1 10 	 0

	

1 	L-POINT 1

	

x (m-)+2m 2 	DFT 	2

No. (M-1)
x(m-1)+(L-1) L-1 	 L-1

0
M-POINT

DFT
No. 1

0
M-POINT

DFT
No. (L-1)

M-1

14- 1 	F
(
4-1)L

0 F1
, 	 F 1 +L
2 	F1+2L

M- 1 	Fi+0,4_01.

0 	1
1 	F 	1)+L
2

M-1 1- F

(b) RADIX-r DIT BUTTERFLY.

M -1

M-1

xr- 1

FIGURE 1. (a) SIGNAL FLOW DIAGRAM OF THE
GENERAUZED FFT PROCEDURES.

(c) RADIX-r DIF BUTTERFLY.

12

2.2.3 Radix

The number of input or output samples processed by a butterfly is
called the radix. We may consider the signal-flow diagram (Figure la) of
the generalized FFT algorithm as being composed of two stages. The first
stage comprises M radix-L butterflies, and the second stage comprises L
radix-M butterflies. Notice that the twiddle factors may be considered as
part of the first stage butterflies, in which case, the twiddles are used to
post-multiply the output of the radix-L DFTs. Alternatively, the twiddle
factors may be considered as part of the second stage butterflies. In this
case, the twiddle factors are used to pre-multiply the input of the radix-M
DFTs.

2.3 Alternative decimation processes

So far we have shown that if N is a product of two numbers, L and M,
then by decomposing the sequence into L auxiliary sequences of M samples,
the original DFT can be interpreted as a two dimensional array with L rows
and M columns. Intuitively, by interchanging L and M, we should be able to
treat the DFT of the N-point sequence as an array consisting of M rows and L
columns. It can be shown that the two decimation processes produce results
which are mathematically equivalent, and they correspond to the so-called
decimation-in-frequency (DIF) and decimation-in-time (DIT) processes
respectively.

Historically, the so-called DIF and DIT processes represent the two
alternative ways of decimating an N-point sequence into two sequences: (0
DIF: representation as an (N/2)-column by 2-row matrix, and (ii) DIT:
representation as a 2-column by (N/2)-row matrix.

2.3.1 Decimation-in-frequency

To carry out a decimation-in-frequency, let Lm2, from which it
follows that MmN/2. When the first step of the generalized FFT procedures
given in Table V is applied to the N-point sequence, we obtain the matrix
given in Table VI.

Table VI: Two-dimensional arrangement of time samples for the OIF process.

\ir.N11., 	0 	 1 	 2

_ 	

N

0 	xo 	xl 	x2 	/ 	xN

i 	xN 	xN 	xN 	 xN_1

	

z 	
y + 2

With the application of 2-point DFTs to the columns of Table VI,
followed by twiddle multiplications and DFTs applied to the rows, we obtain
the results shown in Table VII.

Table VII: Two-dimensional arrangement of DFT samples for the DIF process.

N
0 	1 	 2 	 I - 1

0 	Fo 	F2 	F4 	 FN-2

1 	Fi 	F3 	F5 	 FN_].

Since the upper and lower rows in Table VII give the even and odd samples of
the transform, respectively, the procedure used in deriving this results is
called the decimation-in-frequency process.

In general, the DIF process refers to the decimation of a sequence using
an r-row by (N/r)-column representation of the original sequence. In this
case, the column-DFTs are of dimension r, and the twiddle multiplications
are performed after the column-DFTs. Hence, these two operations (DFTs and
twiddle multiplications) can be conveniently performed by radix-r
butterflies in which the twiddles are applied after the r-point DFT. If N
is expressible as a power of r, the row-DFTs can be further decomposed using
the same generalized FFT procedures (i.e., r-row representation). The
column-DFTs and the twiddle multiplications for successive decomposition
stages can also be identified as radix-r butterflies with twiddles applied
at the output (see Figure lc).

2.3.2 Decimation-in-time

If, on the other hand, we let M=2 and LN/2, we will obtain a
(N/2)-row by 2-column matrix as shown in Table VIII.

Table VIII: Two-dimensional arrangement of time samples for the DIT process.

0 	 xo 	 xi

1 	 x2 	 x3

2 	 x4 	 x5

•

•

N , - 1 	xN-2 	
x
N-1 L

Since the input (time) sequence is decimated into even and odd sequences,
this algorithm is called the decimation-in-time process.

13

14

In general, the DIT process refers to the decimation of a sequence
using an (N/r)-row by r-column representation of the original sequence. In
this case, the row-DFTs are of dimension r, and the twiddle multiplications
are performed before the row-DFTs. Hence, these two operations (twiddle
multiplications and DFTs) can be conveniently performed by radix-r butter-
flies in which the twiddles are applied at the input of the r-point DFT. If
N is expressible as a power of r, the column-DFTs can be further decomposed
using the same generalized FF T procedures (i.e., r-column representation).
The row-DFTs and the twiddle multiplications for successive decomposition
stages can also be identified as radix-r butterflies with twiddles applied
at the input(see Figure lb).

2.3.3 Digit reversal

A comparison of Tables I and II shows that the generalized FFT pro-
cedure arranges time and frequency samples differently. In the case of an
L-by-M representation of the N-point sequence, where the rows of the time
sample matrix are formed by M contiguous time samples, the columns of the
frequency sample matrix consist of L contiguous frequency samples. It fol-
lows that with time sequences fed sequentially into an FFT processor (this
refers to in-place realization of the FFT in digital computer programs and
hardware single pipeline FFTs) in natural order, the frequency samples do
not come out in the same order. The determination of the order of the fre-
quency samples, given the order of the time samples, is important when using
the FFT. It will be shown that the frequency indices for a fixed-radix FFT
algorithm can be determined from the time indices using a rule called "digit
reversal". Consider a time sequence {xi}, i=0,1,2,...,N-1. This sequence
is to be processed using a fixed radix-r FFT. The index of the frequency
sample occupying a position which corresponds to time sample xi in the
time sequence is determined using the following set of rules:

(i) express the index i in terms of digits of the base-r number system.
The maximum number of digits required is determined by N.

(ii) Reverse the order of the digit pattern. The frequency index is giv-
en by the decimal value of the resulting number.

A simple example will suffice to clarify the procedure. Consider
the 16-point time sequence {xi}, i=0,1,2,3,...,15, to be processed by a
radix-4 FFT. Suppose we want to determine the index k of a frequency sample
occupying the position which corresponds to x6 in the time sequence. First
we express the number 6 in terms of digits of a base 4 number system. There
are only 4 digits, 0,1,2 and 3, in a base 4 number system. The base 4 num-
ber for a decimal value of 6 is 12 (base 4). After digit ieversal, the num-
ber becomes 21 (base 4). Consequently, the index for this frequency sample
is 21 (base 4) = 9 (decimal).

It can easily be verified that, when the 16-point time sequence
{xi} is processed by a radix-4 FFT, the time sequence {xi} is arranged
in the form given by matrix A, and the resulting frequency is as given in
matrix B of Eqn (14).

15

	

O 	x 1 	x2 x3 	
F
O 	

F
4 	

F
8 	

F
12

-
x

	

x4 	x5 	x6 x7 	
F
1 	

F5 	
F
9 	

F
13

	

A = x8 	
x9 	

x10 x11 	
B = F2 	

F
6 	

F 10
F14

X12 X13 X14
X
15 	

F3 	
F
7 	

F 11
F
15

In terms of base 4 digits, the indices for the above matrices become:

A =

-3(00 x01 x02 xO;
X10
 x 11 x 12 x 13

X20
 x21 x22 x23

X20
 x31 x32 x33

-F 	F 	F 	F 00 	01 	20 	30
F
01

F
11

F
21

F
31

B = F02 F 12
F
22

F
32

F
03

F
13

F
23

F
33

(15)

If one compares the digit pattern of corresponding elements in the two
matrices given by Eqn (15), it is seen that their order is identically
reversed.

When the radix r is equal to 2, the above procedure is called "bit
reversal". The bit reversal procedure can be demonstrated by applying the
generalized FF T procedure successively to the N-point sequence and noting
the position of the time and frequency samples when they are decomposed into
two-dimensional arrays. The bit reversal is seen as a result of the
transposition of the time and frequency matrices at each stage of
decomposition. The details of bit reversal may be found in [4].

3. REDUCING THE COMPUTATIONAL REQUIREMENTS FOR THE DFT ALGORITHM AND ITS
PROCESSING COMPONENTS

3.1 Reduction of computational effort

One might wonder, what is to be gained from the development of the
elaborate procedures in Table V for computing a generalized FFT. We are now
in a position to show that the computational effort is reduced substantially
by employing these procedures. Let us derive the total number of complex
multiplications and additions required for the generalized FF T algorithm.
In step (iii) of Table V, there are M L-point DFTs. Since (L-1) 2

 multiplications and L(L-1) complex additions are required for an L-point
DFT, M(L-1) multiplications and ML(L-1) additions are required to carrx out
step (iii). Step (v) consists of L M-point DFTs. Consequently, L(M-1) 4
multiplications and LM(M-1) additions are required by this computation.
Since the twiddle factor in step (iv) is equal to unity for m=s-O, the
effective number of multiplications is (L-1)(M-1). The number of operations
required for these three steps is the sum of the above, yielding:

(a) Total number of complex mûltiplications for the
generalized FFT = M(L-1) 2 + (L-1)(M-1) + L(M-1) 2 	(16)

16

and

(b) Total number of complex additions for the
generalized FFT = ML(L-1) + LM(M-1) 	 (17)

We can form the ratios of the multiplications and additions required for a
DFT to that required for the generalized FFT algorithm. The ratio of number
of complex multiplications is given by:

M(L-1) 2 + (L-1)(M-1) + L(M- 1) 2
Rm= 	 (18)

(LM-1) 2

and the ratio of number of complex additions is:

ML(L -1) + LM(M-1)
LM(LM-1)

In the limit of very large L and M, these two ratios reduce to:

Ra (19)

1 	1 + —
L

Rm = Ra = (20)

From Eqn (20) it follows that the number of complex multiplications and
additions required for the generalized FFT algorithm is only a small
fraction of those required by direct computation when L and M are very
large.

3.2 Radix-r FFT and radix-r butterfly

If L and M are not themselves prime numbers, they can each be
decomposed into a product of two numbers, and further saving in
computational effort can be realized. As a matter of fact, if N is a power
of an integer r, then the DFT of an N-point sequence can be decomposed into
a number of similar stages composed of radix-r butterflies. A fixed-radix
FF T algorithm is one which employs butterflies of a single radix value, and
a mixed-radix FFT algorithm is one which employs two or more radix values.

Using the generalized FFT procedure, we can first decompose the
N-point sequence into an r-row by (N/0-column matrix. Let us consider the
number of multiplications required. Since there are r rows and (N/r)
columns, we must perform (N/r) radix-r DFTs, multiply the result by the
elements in an r-by-(N/r) twiddle matrix, and then perform r radix-(N/r)
OFTs. If r is a prime number, it cannot be decomposed further.
Consequently, the radix-r DFTs must be computed directly. Let Mr be the
number of complex multiplications required to directly compute the r-point
DFT. We have, for the number of multiplications required for the N-point
DFT:

MN - 	M
r
 + (r-1)(--

r - I) 	r M(N/r) (21)

7

(N/r) 	Twiddle 	r (N/r)-point
r-point 	Multiplications 	DFTs
DFTs

Since N is a power of r, N/r can be written as the product r x N/r 2 . This
decomposition can be applied successively, starting with Eqn (21), giving
the following result:

MN = — Mr+(r-1)(I)+rM N
(F)

= '
.11
Mr 	(r-1)(.! - I) 	r[-z Mr 	(r 	- I) 	rM N

(--7)

P- I N
= 	Mr 	(r- I) 	— / nil 	rPM(N) r i .0rp

where p signifies the pth stage decomposition

This decomposition process cannot continue indefinitely. It will stop when
N/rP = r. From this condition, it follows that:

p = log rN -1 	 (23)

If one includes the initial stage of decomposition, called the Oth stage,
it can be concluded that, if N is a power of r, there are logrN radix-r
butterfly stages. The substitution of Eqn (23) into Eqn (22) yields:

logrN-2
N(r-1)

MN = 	M log N + rN-1)-(r-1) 	ri 	 (24)
r 	r j=0

Equation (24) is valid when N is a power of the prime number r.

There are two radix values which have a special significance when
computing butterflies, namely, 2 and 4. These two cases are significant
because in both cases, the DFT portion of the butterfly does not require any
multiplications.

(22)

(26)

(27)

(28)

18

3.2.1 Radix-2 butterfly and 2-point DFT

For a 2-point sequence, the maximum radix value is 2. We have from
Eqn (1):

Fk = xo + xi exp(-j2nk/2) 	k=0,1
or

Fo = xo + xi
Fi = xo - xi

Consequently, a 2-point DFT, which forms part of a radix-2 butterfly, re-
quires only one complex addition and subtraction. The symbolic and schemat-
ic diagrams of a radix-2 butterfly are shown in Figure 2a and 2b, respect-
ively.

We can now derive an expression which will give an accurate estimate
of the number of multiplications required for computing the DFT of an N-
point sequence, using radix-2 butterflies. In Eqn (21), Mr=0 when r=2,
since a 2-point DFT does not require any multiplications. In addition, each
twiddle matrix always includes one element equal to -j. Thus the count for
twiddle multiplications can be reduced by one. Eqn (21) reduces to:

MN= —
2

- 2 + 2M N
(7)

Applying the WO fold decomposition successively, we have:

2+2U-7 - 2 + 2M N]
2

2
2

N 	 N =. i - 2+- - 2 2

2 	2 	
+ 2 2 [-3. - 2 + 2M

(N) 2 	 3 7

= 2- + 2PM
(—) 2 	j=1 2 P

The decomposition terminates when p = log2N - 2, yielding:

log2N-2 .
N., 	. 	 v MN = —u.og2e-h, - 	L 2
2

j= 1

3
log2N - 7 N + 2

In Eqn (28), we have made use of the fact that when p = log2N-2, the last
term in Eqn (27) becomes zero since, as will be shown next, there are no
multiplications required in computing a 4-point DFT.

(25)

MN =

19

x0 + x / e X0

x l e x 1

Real

Input '1'
1

Imaginary

2—POINT
DFT STAGE

TWIDDLE
MULTIPLICAPON

STAGE
Real

Output '0'

Imaginary

FIGURE 2. (a) RAD1X-2 DIT BUTTERFLY.

Real

Input '0'
xo

Imaginary

sine

Real
Output '1'

Imaginary

FIGURE 2. (b) SCHEMATIC DIAGRAM OF THE R4DIX-2 DIT BUTTERFLY.

(29)

(30)

(31)

20

3.2.2 Radix-4 butterfly and 4-point DFT

A 4-point DFT does not require any multiplication. This is due to
the fact that the required twiddle factors are either unity or ±j. If in
Eqn (21), we substitute r=4, and using the fact that one of the twiddle
factor is equal to -j (thus reducing the multiplication count by one), the
result is given by:

3
MN = 	N - 4 + 4M(N/4)

4

Applying the four-fold decomposition successively, we have:

3
 MN = — N - 4 - 4[-
3 - N - 4 + 4m (N/42)]

4 	 4 2

3 1 N -4 + N - 4 2 + 4 2 3 N - 4 + 3 4 (N/4).1
4 	4 	 43

3
= — Np - 	4j + 4PM 	,

(N/4 r)
4 	j=1

where p signifies the pth stage decomposition

The decomposition terminates when p=log4N-1, in which case M 	n = 0 ,
(N/e")

yielding:

3log4N-1
MN = — N(log4N-1) -

4 	 j=1

313N 	4
= — Nlog4N - 	+ —

4 	 12 	3

Equations (28) and (31) do not take into account the fact that
3

twiddle factors equal to ±exp(-4
n
—) have identical real and imaginary

parts. This fact may be used to reduce the number of real multipliers in
certain hardware implementations of the FFT. The symbolic diagram of a
radix-4 butterfly is shown in Figure 3. A radix-4 butterfly is formed by
adding a twiddle multiplication stage at the input (for DIT process) or at
the output (for DIF process) of the DFT. The schematic diagram of the
twiddle multiplication section of a radix-4 butterfly is similar to that of
a radix2 butterfly. Each non-trivial twiddle multiplication requires four
real multipliers and two real adders. The schematic diagram of the DFT
portion of a radix-4 butterfly is shown in Figure 4.

21

FIGURE 3. SYMBOLIC DIAGRAM OF A 4--POINT DFT.

22

es4 _ •-•
LL.

0 	*— o
t

L fr 	 t•-)
L.. 	 lL

-c a_

Lj

(D

LJi

cD

LLJ

(f)

c(
(D

I, 0 ' -0
>C

At this point it is useful to compare the number of multiplications
required in computing N-point DFTs using radix-2 and radix-4 butterflies.
This comparison is given in Table IX.

Table IX: Required number of complex multiplications for radix-2 and radix-4
FFTs

radix-2 	radix-4

	

2 	 0 	 -

	

4 	 0 	 0

	

8 	 2 	 -

	

16 	 10 	 8

	

32 	 34 	 -

	

64 	 98 	 76

	

128 	 258 	 -

	

256 	 642 	 492

	

512 	 1538 	 -

	

1024 	 3586 	 2732

It seems, therefore, that whenever possible, the radix-4
configuration should be employed because the number of multiplications is
less than for the radix-2 case.

3.3 Butterfly pipelining for maximum throughput rate

In most algorithms the computations take place in a sequential
manner. The results are obtained by processing the input data with several
cascaded stages comprising one or more signal processing components. The
entire signal processing chain is called a 'pipeline', and the group of
signal processing components which compute the intermediate results at each
stage is called the pipeline segments. The definition of a pipeline segment
is arbitrary. However, it must be carefully considered when high throughput
rate is required. Up to this point, we have considered the radix-r
butterfly as an integral arithmetic component(black box). This "black box"
will perform one set of r complex multiplications and an r-point DFT. That
is, the FFT algorithm is considered as a pipeline with radix-r butterflies
as pipeline segments. In reality, however, a complex multiplication
requires both real multiplications and additions. Depending on the value of
the radix, a radix-r DFT may comprise several stages of complex
multiplications and additions. Presumably, all the multiplications and
additions can be performed by a single multiplier and a single adder.
Consequently, it will take a number of processing clock cycles to obtain the
butterfly result. In addition, time sharing of multipliers and adders
requires temporary data storage, thereby adding overhead to the execution
time. Hence for attaining the ultimate processing speed, a full complement
of multipliers and adders should be used in a butterfly.

Let us consider the radix-2 butterfly whose schematic diagram is
shown in Figure 2b. There are three distinct stages of arithmetic
operations. The first stage is the multiplication of input '1' by the
cosine and sine components of the twiddle factor, forming the direct and

23

24

cross products of the complex multiplication. The second stage is the
combination of the direct and cross products to get the real and imaginary
parts of the complex multiplication. The third stage is the 2-point DFT
which consists of one addition and one subtraction simultaneously. Input
'0' is not multiplied, hence, it must be held constant until the complex
multiplication of input '1' is completed. The time interval between when
data enter into and exit from a processing segment is called the propagation
delay. Let Tm and Ta be the time of execution for the multiplier and
adder, respectively. The minimum system processing clock interval, given by
the worst case propagation delay of any section in the pipeline, must be at
least 're = Tm + 2Ta . This is due to the fact that these arithmetic
operations take place sequentially, and new data cannot be introduced until
the result is available at the output of the processing segment.

To increase the throughput rate of the radix-2 butterfly, we can
insert two cascaded stages of shift registers or latches in the signal paths
of input '0' and a shift register at the output of each multiplier and
adder, as shown in Figure 5. At the beginning of each clock cycle, the
value of input '0' is shifted into the first latch, and the output of the
first latch is shifted into the second latch. Thus valid data will be
available after two clock cycles for the final addition stage. Meanwhile,
new data can be entered at the beginning of each new clock cycle. A
butterfly with these modifications is called a pipelined butterfly. The
implication of the pipeline structure is that, no matter how many steps it
takes to complete an arithmetic operation, there is no need to wait until
the answer is obtained before new data are entered. Consequently, the clock
frequency of a properly designed pipeline signal processor is determined by
the propagation delay of the slowest signal processing component.
Commercially available integrated circuit (IC) multipliers and adders have
attained processing speed of one 12-bit multiply (or add) per 65nsec. The
worst case propagation delay is approximately equal to the multiplication
(or addition) time plus the latch set up time. For a 12 bit wordlength
processor, a conservative estimate of the propagation delay of a pipelined
butterfly is about 100 nsec.

Similarly, the radix-4 butterfly can be pipelined to obtain a maximum
throughput rate. The schematic diagram of a pipelined 4-point DFT is shown
in Figure 6. • There are 16 real adders and 16 latches. The effective
throughput rate is one 4-point DFT per clock cycle. The component counts of
the 2-point, 4-point DFTs and the trivial and nontrivial twiddle
multiplications are tabulated in Table X. (pipelined structures are assumed
throughout).

Real Real

OUTPUT '1'
F 1

Imaginary INPUT '1'

1

Twiddle Multiplying Stage

Real

INPUT '0' x o

Imaginary

cose

2—POINT DP- STAGE

Real

OUTPUT 'O'
F0
Imaginary

Shift Registers

—sine

cose

sine

Imaginary

FIGURE 5. SCHEMATIC DIAGRAM OF A P1PELINED RADIX-2 BUTTERFLY.

SHIFT REGISTERS SHIFT REGISTERS

FIGURE 6. SCHEMATIC DIAGRAM OF A PIPELINED 4-POINT Df- I.

4

Table X: Component counts of pipelined 2-point, 4-point DFTs and twiddle
multiplications

real 	adders 	real multipliers 	latches

2-point DFT 	4 	 4

4-point DFT 	16 	 16

trivial
twiddle
multiplication

nontrivial
twiddle
multiplication 2 	 4 	 6

Table X will be referred to later to derive the approximate component counts
for a number of different FFT structures.

4. Hardware implementation of the FFT algorithm

A useful tool in implementing the FFT algorithm is the signal flow
diagram (see Figure 7). The signal flow diagram of a radix-r FFT algorithm
can easily be obtained by following the generalized FFT procedures outlined
in Table V repeatedly, so that butterflies with radix value larger than r
are systematically decomposed into structures composed of radix-r
butterflies only. This diagram provides a clear indication of how the DFT
is broken into successive stages. For a sequential computing machine, such
as a general purpose computer, the order in which the computations in each
stage are carried out is relatively unimportant. However, if additional
computing hardware is available, then it becomes essential to process the
data in the proper sequence to ensure that the maximum throughput rate is
attained.

The basic processing unit for a radix-r FFT is the radix-r
butterfly. The complexity of the butterfly depends on the value of the
radix. For a radix-2 butterfly, it consists of one complex multiplier and
two complex adders. For a radix-4 butterfly, it consists of three complex
multipliers and eight complex adders. Since each radix-r butterfly can
handle r-complex samples, N/r butterfly operations must be performed in each
stage, for an N-point DFT. There is a high degree of freedom in the
structuring of a hardware FFT processor. The data throughput rate of an FFT
depends on the amount of parallelism we incorporate into the design which is
usually constrained by cost considerations. Given the signal flow diagram
of an FFT algorithm in terms of radix-r butterflies, there are three basic
approaches to a hardware implementation of the algorithm (see Figure 7 for
an example):

27

W -= exp(—j11/8) Signal Paths With No Twiddle Indicator Are Assumed W 0= 1 To Have

X0

x i

X2

X3

X4

X5

X6

X 7

X8

X9

X 10

x 11
X 12
X 13

x 14
X 15

Fo

F8

F4

F12
F2

Flo

F6

F14
F1

F9

F5

F1 3

F3

F1 1

F7

F15

16-POINT FIT. FIGURE 7. SIGNAL FLOW DIAGRAM OF THE RADIX-2 DIT

processing
implementing high

speed digital beam-

(a) Employ N/r butterflies per stage so that each butterfly will only
handle one set of r samples.

(b) Employ one butterfly in each stage so that each butterfly
will be required to handle N/r sets of r samples per stage.

(c) Employ a single butterfly so that it must handle all

,N
LogrN) butterfly operations

In these considerations, the hardware butterfly unit is assumed to be pipe-
lined. We shall call implementation (a) the parallel pipeline FFT and
implementation (b) the single pipeline FFT. Implementation (c) is used in
most software programs and will not be considered further. The single pipe-
line FFT is referred to as simply pipeline FFT or cascaded FFT.

We are now in a position to examine different ways for translating
the signal flow diagram of an FFT algorithm into hardware structures using
commercially available IC elements. We shall use specific examples to
illustrate the concepts discussed in the last two sections. The examples
used are based on a 16-point FFT processor. This processor is chosen
because:

29

(i) It has direct applications in radar signal
(ii) It can serve as a basic building block for

speed FFT processors of large dimension
(iii) It can serve as an integral part of a high

forming processor.

4.1 Parallel-pipeline 16-point FFT.

) If the parallel pipeline structure is implemented for an N-point FFT
using radix-r butterflies, there will be N/r butterflies in each stage. As-
suming that hardware radix-r butterflies are available, the implementation
reduces to the following two problems:

(0 Determining the inter-connections between the outputs
of one stage and the inputs of the next stage.

(ii) Determining the values of the twiddle multipliers in
each signal line of the butterflies.

4 .1.1 Radix-2 parallel-pipeline 16-point FFT

The signal flow diagram of a radix-2 DIT 16-point FFT is shown in
Figure 7. Each circle in the diagram represents a radix-2 butterfly. The
symbol besides the arrow in ëach signal path represents the twiddle factor
for that path. Signal paths with no twiddle designation are assumed to have
unity twiddle.

In Figure 7, there are four stages with eight radix-2 butterflies
each. Hence a parallel pipelined 16-point FFT consists of 32 hardware rad-
ix-2 butterflies. The inter-connections between outputs of the butterflies
in one stage and the inputs of the butterflies in the next stage, together
with the required twiddle values, are also indicated in Figure 7. We note

30

that the twiddle factors in the first two stage are either equal to unity or
±j, therefore no real multiplications are required in these two stages.
Consequently, the first two stages are composed of 2-point DFTs only. A
composite component count for this structure can be obtained by counting,
(i) the number of 2-point DFTs, (ii) the number of trivial and nontrivial
twiddles, and (iii) by using the values given in Table X. There are 32
2-point DFTs, 10 nontrivial twiddles and 22 trivial twiddles. From Table X,
we obtain an estimate of the component count which is tabulated in Table XI:

Table XI: Component count for a radix-2 16-point parallel pipeline FFT

type of component 	quantity

real adders 	 148
real multipliers 	40
latches 	 308(including input latches)

4.1.2 Radix-4 parallel-pipeline 16-point FFT.

An N-point FFT can be implemented solely with radix-4 butterflies if
N is a power of 4. The signal flow diagram of the radix-4 sixteen-point FFT
algorithm is shown in Figure 8. There are only two stages. The samples are
fed to the appropriate inputs of four separate radix-4 butterflies in the
first stage, and the outputs of the first stage radix-4 butterflies are then
fed to the appropriate inputs of the second stage radix-4 butterflies. The
values of the twiddle multipliers in each butterfly are as indicated in
Figure 8. An estimate of the composite component counts for the radix-4
parallel pipeline 16-point FFT is given in Table XII.

Table XII: Component count for a radix-4 parallel pipeline 16-point FFT

type of component 	quantity

real adders 	 144
real multipliers 	 32

latches 	 240(including input latches)

4.2 Single-pipeline hardware FFTs

If maximum processing speed is not an absolute requirement, then the
FFT algorithm can be implemented with a significant reduction in hardware.
One such implementation is the so-called single pipeline FFT structure. In
this structure, only one butterfly operating in time-shared mode is employed
in each stage. When a signal processing component is used in a time-shared
mode in a pipeline structure, the data must be introduCed and processed in
the proper order in order to obtain maximum efficiency. Maximum efficiency
within this context refers to the state where each adder and multiplier
repeats its particular function for each processing cycle. This eliminates
the condition whereby a component becomes idle while awaiting the arrival of
the required data.

X0

X l

X2
X3
X4
X5

xs
X 7

X8

X 9

X 10

x 11
X 12
x 13
X 14

x 15

W=exp(—j71/8) Signal Paths With No Twiddle Indicator Are Assumed To Have Wc)=1

FIGURE 8. SIGNAL FLOW DIAGRAM OF THE RADIX-4 SIXTEEN POINT FFT.

32

4.2.1 Radix-2 DIF single-pipeline lo-point FFT

We shall use the DIF case to illustrate the radix-2 single pipeline
16-point FF T structure. The signal flow diagram for this particular FFT
algorithm is shown in Figure 9. Input sample pairs
(x0,x8),(x1,x9),...,(x7,x15) are processed in the first stage. Since there
is only one radix-2 butterfly in each stage, a decision has to be made with
regards to which data pair to process first. Let us assume that we process
the data pairs in normal order, i.e., (x0,x8),(x1,x9),..,etc. One simple
way of feeding data to the first stage butterfly is shown in Figure 10a.
There are two shift register arrays, SRO and SR1, with eight shift registers
each. The output of shift register array SRO is connected to input '0' of
the first stage radix-2 butterfly. The output of SRI is concurrently
connected to the input of SRO and input '1' of the butterfly. One sample of
the input sequence is shifted into SRI in each clock cycle. By the end of
the sixteenth clock cycle, the data pair will be aligned as shown in Figure
10b. It can be seen that this is exactly the ordering required for
processing of the data.

Now suppose that successive groups of sixteen samples follow
immediately, then by the end of the twenty-fourth clock cycle, the data
alignment will be as shown in Figure 10c. This configuration of the data
corresponds to the condition where one datum of each sample pair is from the
first batch, and the other datum is from the second batch. It is sometimes
desirable to utilize such a condition. One example is in the filtering of a
long data sequence where the data are segmented into a number of
sub-sequences of fixed length N. The FFT of overlapped sequences can be
used to eliminate aliasing effects[6] by discarding a number of filtered
samples. On the other hand, overlapping condition is often undesirable, if
the FFT is used to process distinct sequences. In this case, the FFT of two
overlapped sequences constitutes invalid data. The efficiency of the
processor for this configuration is effectively 50 percent.

An efficiency of 100 percent can be achieved if two separate
sequences are available simultaneously. The schematic diagram of a data
buffer switching network designed to enable the radix-2 butterfly to operate
at 100% efficiency is shown in Figure 11. This network is sometimes called
a radix-2 commutator. Its function is to direct the two separate sequences
into the proper data buffer so that both sequences can be processed by the
radix-2 butterfly within the time period equal to the length of the
sequences. This network consists of two shift register arrays (SRO and
SR1), and two 2-to- i multiplexer (MUX SWO and SW1). The output of SRO is
connected to input '0' of the radix-2 butterfly. The input of SRO is
connected to the output of SWO. Consider two distinct 16-point sequences,

{ xi } and {Yi}* One sample from each sequence is read from memory
simultaneously in each clock cycle. The sample from sequence {xi} is fed
to input '0' of both SWO and SW1. The sample from sequence {yi} is fed to
the input of shift register array SR1. The output of SRI is connected to
input '1' of both SWO and SW1. Switching of both SWO and SW1 takes place
every N/2(=8 for N=16) clock cycles. However, the two multiplexers do not
select the same input at any given time. That is, if SWO selects input '0',
then SWI selects input '1', and vice versa.

X0
x 1
X
2

X
3

X
4

X
5

X
6

X
7

X8

X
9

X 10

x 11
X 12

x 13
X 14

X 15

FO
Fa
F4
F12
F2
F10

F6
F14
F1
F9
F5
F13
F3
F11
F7
F15

W = exp(—j1/8) Signal Paths With No Twiddle Indicator Are Assumed To Hove e=1

F7GURE 9. SIGNAL FLOW DIAGRAM OF THE RAD1X-2 DIF 16-POINT FFT.

34

SHIFT REGISTER ARRAYS

SRO
RADIX-2

BUTTERFLY

"H•

Xo x6 x5 x 1

x 1 I- x10 x 13 x 14 x8 x9
X .

•19 	0.

1

TO 2ND
STAGE

K 15 X 14 X 13 K 12 X 11 X 10 X 9 X 8 	

	

X23 X22 X21 X20 X 19 X 18 X 17 X 16 	

SR1

(a) INPUT NETWORK FOR A R4DIX-2 PIPELINE
16—POINT FFT WITH SERIAL INPUT.

SRO

SR1

(b) DATA ARRANGEMENT AT THE BEGINNING OF
CLOCK CYCLE #16.

SRO

SR1

TO 2ND
STAGE

(c) DATA ARRANGEMENT AT THE BEGINNING OF
CLOCK CYCLE #24.

FIGURE 10.

TO 2ND
STAGE

Y2 Y1 Ï5-1-Y4 1Y3
SR1

Y6

e
xi swo SRO

x2 I xt xo

SW1

x3 4

„
0 	

RAD1X-2
BUTTERFLY

(a) SWITCH POSONS REMAIN FROM CLOCK CYCLE #0 TO 17; DATA
ARRANGEMENT AT THE BEGINNING OF CLOCK CYCLE #8.

0
Y16 1

RAD1X-2
BUTTERFLY

x. SWO
0 	• ,% o Y Y6 Y2 iY

SRO

Y4 Yj Y5

SW 1

1-Y1,3 P121Y11
SR 1

(b) SWITCH POSMONS REMAIN FROM CLOCK CYCLE #8 TO #15; DATA
ARRANGEMENT AT THE BEGINNING OF CLOCK CYCLE #16.

SRO

ix2,3r22r21i x2-07,91x781x 171x161

X. SWO

2 SW1
0

2
Y. Y2.3 Zan 19 Y18 17 Y16 -1-49eCrr 	

SR 1 RADIX-2
BU7TERFLY

TO
 2

N
D

 S
TA

GE

TO
 2

N
D

 ST
AG

E
TO

 2
ND

 S
TA

GE

(c) SWITCH POSITIONS REPAÀIN FROM CLOCK CYCLE #16 TO # 23; DATA
ARRANGEMENT AT THE BEGINNING OF CLOCK CYCLE #24.

FIGURE 11.

35

36

It will be shown that the overlapping of data is eliminated by the
arrangement in Figure 11. At the beginning of clock cycle 0, switching
takes place in both SWO and SWI. Multiplexer SWO select input '0' and SW1
selects input '1'. These switch connections remain in place for 8 clock
cycles (i.e., until the end of clock cycle 7). Since input '0' of SWO is
connected to the signal line containing samples from sequence {xi}, this
switch connection effectively feeds the samples from sequence {xi} and
{yi} into shift register arrays SRO and SRI, respectively. The resulting
data arrangement, at the end of clock cycle '7', is as shown in Figure 11b.
At this time the two multiplexers are switched, with SWO selecting input '1'
and SW1 selecting input '0'. This effectively connects the input of SRO to
the output of SRI. Also input 'I' of the radix-2 butterfly is now connected
directly to the signal line containing samples from sequence {xi}. If we
examine the samples appearing at the inputs of the radix-2 butterfly, we
find that, at the beginning of clock cycle '8', they are (x0,x8), followed
by (x1,x9) in the next clock cycle, etc. This is exactly the order of data
pairs called for by the signal flow diagram in Figure 9. Consequently, the
radix-2 butterfly can commence processing of these data pairs starting at
the beginning of clock cycle '8'.

It will take 8 clock cycles to process all 8 pairs of samples
representing sequence {xi}. Meanwhile, the contents of SR1(representing
the first 8 samples of sequence {yi}) are shifted into SRO, one sample per
clock cycle. At the end of clock cycle '15', the proper sample pairs for
sequence {yi} will be contained in the two shift register array. At this
time, both multiplexers are switched once again, effectively connecting
inputs '0' and '1' of the radix-2 butterfly to SRO and SRI, respectively.
The radix-2 butterfly will process the sample pairs from sequence {yi}
beginning at clock cycle '16'. At the same time the switch connections
allow samples from sequences {xi} and {yi} to be shifted into SRO and
SRI, respectively. Again it will take 8 clock cycles to process all 8 pairs
of samples from sequence {yi }. The function of the data buffer switching
network is to take two simultaneous and distinct 16-point sequences {xi}
and {yi} and produce two contiguous sequences of sample pairs. It can be
seen that, with this data buffer switching network, the radix-2 butterfly in
the first stage of a single pipeline FFT, can effectively process two
distinct 16-point sequences in 16 clock cycles, after an initial delay of 8
clock cycles. If one has only a single data sequence, then it must first be
divided into two sub-sequences (one comprised of data from the first half,
and the other comprised of data from the second half of the original
sequence). Both sub-sequences are then fed concurrently into the first
stage butterfly. In this case, the radix-2 commutator in the first stage
may be eliminated.

In order to gain a better understanding of the structure and
operation of a single pipeline FFT processor, it is best to start with the
generalized FFT procedures. In Figure 12 are summarized the steps of the
generalized FFT procedures as applied to the radix-2 DIF 16-point FFT. In
steps No.1 and 2, the samples of sequence {xi} are arranged into a 2-row
by 8-column matrix. Two-point DFTs are performed on all 8 columns, and the
results multiplied by the corresponding elements in the twiddle matrix. In
a single pipeline FFT, these steps are performed by the first stage

6
1

'7
X75

O L712131415
rio

1 1 F7 I ' V5 V7 V9 V11

STEP 4: PERFORM 8-POINT DFT
ON ALL ROWS

F F 12 /4

F

6 7 6 7

F13 F15 I /5

ONE DIMENSIONAL 16-POINT COMPLEX SEQUENCE

37

x1
X5 x9 ixiol 21x13 fri 1

STEP 1: ARRANGE DATA AS A 2-ROW BY 8-COLUMN MATRIX WITH
ROW INDEX i(=0,1) AND COLUMN INDEX m(=0,1,..,7)

FORM TWIDDLE MATRIX W ee WITH ROW INDEX s(=0,1)
AND COLUMN INDEX m(=0,1,2,..,7)

fri 	1 	2 	3 	45 	67
0 	1 	1 	1 	1 	, 	1 	1 	1 	- 	1

1 	1 	w 	w2 w3 w4 w5 w6 w7

i

STEP 2: PERFORM 2-POINT DFT ON ALL COLUMNS

' ..n 0 	12 	3 	4- 5 	6

c.., 	le) 	-4- 	lo
0 	e >p, e- >e-- e- e- e- x,-

+4+444+4
e-- x 	e e >e) e ,çe

1 	e r 1,'-)-)1 - z--- 	'Iî-' 	›I'el)i.L. 	t 1 e2
- 	e 	>(-- >%51 Xe) X.." e >10 >e•

W = exp(-jf1/8)

STEP 3: MULTIPLY RESULTS BY CORRESPONDING ELEMENTS
OF THE TWIDDLE MATRIX

O 	' 	2 	 7
o 	c.i 	le) 	NI- 	Ln

o 	e 	e)r-- 	e- 	e- 	e-
-I- 	+ 	-f- 	4 	+ 	-I- 	4 	-I-

›ei 	X 	ei 	e") 	"e 	>e) 	e

x co 	o 	 c.i 	en 	* 	to

	

>êt 	x"- 	e- 	x.-- 	e- 	x- 	e-
1 	1 	I 	I 	I 	I 	I 	1 o

>e 	e" 	>E'4 e 	-› 	>tin 	43 	e.

Note : If Time Sequence Is Decomposed Into Rows Of Contiguous Samples,Then
'Then The Frequency Data Will Be Decomposed Into Columns Of
Contiguous Samples.

FIGURE 12. GENERALIZED FFT PROCEDURES APPLIED TO THE
RADIX-2 DIE 16-POINT FFT CASE.

38

butterfly. There is no problem in obtaining the proper data pair
arrangement at the first stage, since the data are usually fetched from
random access memory. The radix-2 butterfly will perform the 2-point DFTs
in natural order, i.e., (x0,x8), (xl,x9),..,etc. The proper twiddle factor
for each column DFT is read from random access memory to produce the desired
result. In Step No.3, 8-point DFTs of the results of Step No.1 and 2 stored
in the two rows of the data matrix are to be performed. Notice that the
samples of the top and bottom rows come out of outputs '0' and '1' (see
Figure 11) of the first stage butterfly, respectively. Thus the radix-2
butterfly in the first stage is effectively supplying the radix-2 butterfly
in the second stage with two distinct 8-point sequences concurrently. In
the previous section, it has been shown that a radix-2 butterfly is capable
of processing two concurrent 16-point sequences in 16 clock cycles, when
used in conjunction with a radix-2 commutator. Consequently, we may consi-
der the radix-2 butterfly in the second stage of a 16-point, single-pipeline
FFT as that of the first stage of an 8-point single-pipeline FFT.

This argument may be generalized to obtain the design of an N-point
single pipeline FFT. An N-point single-pipeline radix-2 FFT is composed of
log2N radix-2 butterflies. In order to operate at 100% efficiency, the
N-point sequence must be divided into two (N/2)-point concurrent sequences
corresponding to the first and second halves of the original N-point
sequences, respectively. A data buffer switching network, called the
radix-2 commutator, is inserted between the butterflies. This device
effectively converts two concurrent N-point sequences into two contiguous
(N/2)-data pair sequences. The length of the shift register arrays and the
switching period of the commutator is equal to half of the length of the
sequence at the input of the commutator. For example, at the output of the
first radix-2 butterfly of a 16-point, single-pipeline, radix-2 FFT, the
length of the data sequence is 8. Consequently, the switching period and
the length of the shift register arrays of the commutator in the second
stage are 4. Since the radix-2 commutator effectively converts two N-point
concurrent sequences into two contiguous data pair sequences of length N/2,
the switching period and the length of the shift register arrays of the
commutator in each stage is half that of the preceding stage. The twiddle
multipliers in each stage will vary according to the signal flow diagram;
however, they will follow a definite pattern. Hence, they can be stored in
a shift register array and entered into the multiplier in each clock cycle.
The complete schematic diagram of the radix-2 DIF, single pipeline, 16-point
FFT processor is shown in Figure 13. Except for the order of the twiddle
multiplications and the switching frequency of the MUX, the structure of the
single-pipeline, radix-2 DIT and DIF FFT processors is identical.

We can obtain an estimate of the hardware requirement for a
single-pipeline, radix-2 16-point FFT processor. Since there are log2(16)=4
stages, only four radix-2 butterflies are required. In thé last stage, all
twiddle multipliers are unity, therefore, no multipliers are required. In
the third stage, although all twiddle values are trivial (1 and ±j), there
is a requirement for the selection of one of the three values. Consequent-
ly, it is simpler to employ a multiplier. Consequently, three radix-2
butterflies and one 2-point DFT are required. We shall assume that the
shift register arrays are implemented with individual latches. The number

SWITCH!NG
PERIOD

=1 CLOCK CYCLE

A°

OUTPUT

B

SWITCHING
PERIOD

=2 CLOCK CYCLES

2-T0-1
MUX

SWITCHING
PERIOD

=8 CLOCK CYCLES

I / 6 (inVil

iy3

1 CLOCK CYCLE

SW TCHING
PERIOD

=4 CLOCK CYCLES
If6M0

414 	2

2 CLOCK CYCLES

SHIFT REGISTER
ARRAY

RADIX -2
BU7TERFLY

4 CLOCK CYCLES

FIGURE 13. SCHEMATIC DIAGRAM OF A SINGLE PIPELINE RADIX-2 01F 16-POINT FFT.

40

of latches in the commutator can be obtained from an inspection of Figure
13. In most instances, input data are read from random access memory.
Consequently, no commutator is required at the input stage. However, input
latches are required at the input to hold the value constant over one clock
cycle. An estimate of the components required for a single-pipeline,
radix-2 16-point FFI' are given in Table XIII.

Table XIII: Composite component counts of the single pipeline, radix-2
16-point FFT

Type of component 	 quantity

real adders 	 22
real multipliers 	 12
latches 	 78
2-to- i Multiplexers 	 12

The values given in Table XIII take into account the fact that each
sample has a real and an imaginary part. The memory and multiplexers
required for storing and switching the variable twiddle factors are not
included.

4.2.2 Radix-4 single-pipeline 16-point FFT

The 16-point FFT can also be implemented as a single-pipeline radix-4
structure, since the number 16 can be expressed as a power of 4. As
indicated in Figure 8 when a DFT is performed on {xi}, the set of samples,
(x0,x4,x8,x12), must appear concurrently at the input of the radix-4
butterfly of the first stage, followed by the set (x1,x5,x8,x 13), etc. For
a single 16-point sequence, the above data arrangement can be obtained by
inserting a data buffer between the input and the radix-4 butterfly, as
shown in Figure 14. The input is connected to input terminals '0', '1', '2'
and '3' of the radix-4 butterfly via shift register arrays of lengths 12, 8,
4 and 0, respectively. Since samples xo, x 4 and x8 are separated from
sample x12 by 12, 8, and 4 clock cycles respectively, These shift register
arrays provide the proper time delays for each of the input terminals of the
radix-4 butterfly. Assuming that sequence {xi} is introduced to the
network starting at clock cycle '0', the data arrangement at the end of
clock cycle '11' is shown in Figure 14a. It can be seen that the data are
aligned as required in Figure 8. Consequently, At the beginning of clock
cycle '12', the radix-4 butterfly can start processing the samples appearing
at its inputs. After four clock cycles, all samples from sequence {xi}
will be processed. The data arrangement at this time, i.e., at the end of
clock cycle '16', is shown in Figure 14b. Notice that three - of the four
samples appearing at the inputs of the butterfly have been processed
before. This constitutes a 75 7. overlap in the data between two contiguous
16-point sequences. This overlapping is undesirable since the effective
efficiency of the processor is only 25 7.

It can be shown that 100 7. efficiency can be realized if four distinct
sequences are available concurrently, and if proper input buffering is
employed. Consider four distinct 16-point sequences, {xi}, {yil,lzil

x11 x10 x9 	x8 	X7X6 	x5 	x4 	x3 	x2 	xl 	x0
X .

X15 x14 x13 x12 xil x10 x9 	x8 	x7 	x6 	x5 	x4

x15 x14 x13 x12 x11 x10 x9 	x8

X .

SHIFT REGISTER ARRAYS

RADIX-4
BUTTERFLY

(o) DATA ARRANGEMENT OF THE RADIX-4 INPUT NE1WORK AT
THE END OF CLOCK CYCLE No. 11.

RADIX--4
BUTTERFLY

(b) DATA ARRANGEMENT OF THE RADIX-4 INPUT NETWORK AT
THE END OF CLOCK CYCLE No. 15.

41

Li

ct)

LL.1
(.5

(i)

FIGURE 14.

X.

X. 0

SR4

Y6 	Y4)(1 x6)(5 1x4

SR5

11 x10F9
SR1

Z11 ZV Z9 JZ8 JZ7 z6 z.5 z4 o

SR2

wll 	w9 »8 »1 w6 11.5 »4 iv.3 112 wl lb

SHIFT REGISTER ARRAYS

w.

SR3

1

SRO

—00

o 1

3

—0

'3°; °
--0 3

02

03

Izo Y3 Y2 Y1 Y0 x3 xo •■•■•■

SWO

SW1

X8

4.4

re-1 	tj
E-4 	(,)

(.9

0 2 ›,..d1

SW2

3 I SW3
4—T0-1 MUXs

FIGURE 15. DATA SWITCHING NE7WORK FOR THE FIRST STAGE OF A SINGLE
PIPELINE RADIX-4 16—POINT FFT.

and {wi}, i=0,1,2,..,15. The schematic diagram of a data buffer switching
network is shown in Figure 15. This network consists of four 4-to- i
multiplexers and three pairs of shift register arrays of lengths 12, 8 and
4, respectively. We shall call this network a radix-4 commutator, because
it enables a radix-4 butterfly to process four separate 16-point sequences
in 16 clock cycles.

There are four inputs to the commutator which in Figure 15 are
numbered 0, 1, 2 and 3 from top to bottom. The input data distribution is
the following: (0 data from sequence {xi} are fed to input '0' of all
four MUXs directly, (ii) Data from sequence {yi} are fed to a four-stage
shift register array (SRO) with the array's output connected to input '1' of
all four MUXs, (iii) Data sequence fzi l is fed to an eight-stage shift
register array (SR1) whose output is connected to input '2' of all four
MUXs, and (iv) Data sequence {wi} is fed to a twelve-stage shift register
array (SR2) with the array's output connected to input '3' of all four MUXs.

The output data distribution is the following: (i) the output of MUX
SWO is connected to a 12-stage shift register array(SR3) whose output is
connected to input '0' of the radix-4 butterfly, (ii) the output of SW1 is
connected to an 8-stage shift register array (SR4) with the array's output
connected to input '1' of the butterfly, (iii) the output of SW2 is
connected to a 4-stage shift register array (SR5) with the array's output
connected to input '2' of the butterfly, and (iv) the output of SW3 is
connected directly to input '3' of the butterfly.

A description is now given of the operation of a radix-4 commutator
during the first stage of a single-pipeline radix-4 FFT. Let us assume that
data are introduced to the commutator from all four data sequences beginning
at clock cycle No.O. The MUXs in the commutator operates with a switching
period equal to 1/4 of the length of the data sequence. In this case, N=16,
therefore, the MUXs will switch once every four clock cycles. The switch
connections for the four MUXs are tabulated in Table XIV over a period of 20
clock cycles.,

Table XIV: Switching connections for the MUX8 as a function of clock cycles.

MUX 	 clock cycle

0,1,2,3 4,5,6,7 8,9,10,11 	12,13,14,15 	16,17,18,19

SWO 	0 	1 	2 	 3 	 0

SW1 	3 	0 	1 	 2 	 3

SW2 	2 	3 	0 	 1 	 2

SW3 	1 	2 	3 - 	0 	 1

At clock cycle '0', all the shift register array are cleared. MUXs
SWO, SW1, SW2 and SW3 select inputs '0', '3', '2' and '1', respectively.
These connections remain unchanged until the end of clock cycle '3'. During

43

44

the first four clock cycles, the first 4 samples of sequences
{yi}, {zi}, and {wi} are loaded into shift register arrays SR3, SRO,
SRI and SR2, respectively. At the beginning of clock cycle '4', MUXs SWO,
SW1, SW2 and SW3 are switched to inputs '1', '0', '3', and '2',
respectively. This results in the following connections: (i) the input of
SR3 is connected to the output of SR2, (ii) the input of SR4 is connected to
the output of SRI, (iii) the input of SR5 is connected to the output of SRO,
and (iv) input '3' of the butterfly is connected directly to data line
{xi}. Following the switching sequence given in Table XIV, one can easily
verify that the data arrangement at the end of clock cycle '11' is as shown
in Figure 14. It can be seen that the samples are now permuted in the
manner as required by the signal flow diagram (Figure 8). Therefore, the
radix-4 butterfly will start by processing the data from sequence {xi}.
All the data for sequence {xi} will be processed after four clock cycles.
After four clock cycles, the samples of sequence {yi} will appear at the
input of the butterfly with the required permutation. Thus the function of
a radix-4 commutator is to convert 4 concurrent N-point sequences into four
contiguous sequences of length N/4. Each entry in the resulting sequence
consist of four samples. This conversion is illustrated in Figure 16.

The structure and operation of a single pipeline radix-4 FFT can now
be described. In Figure 17, the steps of the generalized FFT procedure, as
applied to the radix-4 16-point FFT, are summarized. Steps 1 and 2 are
performed by the first stage radix-4 butterfly. Since the data are
processed in natural order (i.e., column (x0,x 4 ,x8,x12) is processed first,
followed by (xi,x5,x9,x13), etc.), each output of the radix-4 butterfly will
produce the required row-data in step 3. These row-data are distinct
sequences of length N'=N/4. In the previous section, it was shown that, by
employing a radix-4 commutator, a radix-4 butterfly is capable of processing
four concurrent N-point sequences in N clock cycles. It follows that the
processing outlined in Figure 17 can be performed using similar sections of
radix-4 butterflies and commutators. The length of the shift register
arrays and the switching period of the commutator are one quarter as long as
the corresponding element in the preceding section. The complete schematic
diagram of a single pipeline radix-4 16-point FFT is shown in Figure 18.

Let us now derive an estimate of the hardware requirements for the
processor given in Figure 18. There are two radix-4 DFTs with 16 real
adders and 16 latches for pipeline operation. The twiddle multipliers may
be attached to the first- or second-stage radix-4 DFT to form a radix-4
butterfly. In any case, there will be one trivial twiddle and three
non-trivial twiddles. The number of multiplexers and latches in the
commutator may be obtained by inspection of Figure 18. Assuming that input
data are read from random access memory in the proper order, the commutator
at the input stage can be eliminated. The component count for a radix-4
single pipeline 16-point FFT is given in Table XV:

INPUT: FOUR CONCURRENT SEQUENCES

X15 x14 x13 x12 x 11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 xo

Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

z 15 z14 z13 z12 z11 z10 zg z8 z7 z6 z5 z4 z3 z2 z1 zo

w15 w14 w13 w12 w11 w10 w9 w8 "17 w6 w5 w4 w3 w2 w1 w0
OUTPUT: 1 FOUR CONTIGUOUS SETS OF DECIMATED

SEQUENCES.
W3 w2 w1 wo z3 z2 z1 zo y3 y2 y1 yo x3 x2 x1 xo

W7 w6 w5 w4 z7 z6 z5 z4 y7 y6 y5 y4 X7 X6 X5 X4

w11 w10 "49 w8 z11 z10 zg z8 Y11 Y10 y9 Y8 x11 x10 x9 x8

W15 w14 w13 w12 z 15 z14 z 13 z 12 Y15 Y14 Y13 Y12 x15 x14 x13 x12

FIGURE 16. REQUIRED DATA PERMUATATION FOR A
RAD1X-4 COMMUTATOR.

ONE DIMENSIONAL 16-POINT COA4PLEX SEQUENCE

xxxxxxxxxxx x x x x x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

46

STEP 1: FORM 4X4 2-D ARRAY WITH ROW INDEX g (=0,1,2,3)
AND COLUMN INDEX m(=0,1,2,3)

FORM ALSO THE CORRESPONDING TWIDDLE MATRIX

TWIDDLE= Wris
 W=exp(—j5/8)

› l\rn 	0 	1 	2 	3

0 	x0 	X 1 	x2 	x3

1 	x4 	x5 	x6 	x7

2 	x8 	x9 	x 10 x 11
X 12 X 13 X 14 X 7 5

0 	1 	2 	3

0 	W° W° W° ê

1 	W° W 1 W2 W3

2 	VP W2 W4 W6

3 	W° W3 W6 W9

STEP 2: PERFORM 4-POINT DFT ON ALL COLUMNS

m 	0 	1 	2 	3

0 	Goo G10 G20 G30

1 	G01 G11 G21 G31

2 	G02 G12 G22 G32

3 	GO3 G13 G23 G33

MULTIPLY RESULTS WITH CORRESPONDING
ELEMENTS OF TWIDDLE MATRIX

STEP 3:

M 0
	1 	2 	3

0 Goo le Gioe °20 W° 630 w°

1 	GO1 W0G11 W1 G21W2 C'31 W3

2 	GO2 W0 Gi2w2 G22 4/4 G32 W6

3 GO3w° Gi3w3 G23w6 G33w9

	

•_- 	0 	1 	2 	.3

	

0 	F 	F- 0 	4 	F12

	

1 	F 	F- 1 	.5 	F13

	

2 	F2 	F6 	F10 F14
3FFF 3 	7 	11 	F15

STEP 4: PERFORM 4-POINT DFT ON
ALL ROWS

FIGURE 17. GENERALIZED FFT PROCEDURES APPLIED TO
THE RADIX-4 SIXTEEN-POINT CASE.

SHIFT
REGISTER

ARRAYS

SHIFT
REGIW 	ti? 	RADIX —4
ARRAYS 	BUTTERFLY

4—T0-1
MUX3 RADIX-4

BUTTERFLY

4—TO— 1
MUXs

VARIABLE TWIDDLE
SW TCHING PERIOD
= 1 CLOCK CYCLE

TWIDDLE = 1.

2
3
	• 0

• • 1
	•74:y 	

	• 	0
• • 1

• —•

2

• 1 ' 0 	0 	• 2

3

	• 0

	• 1
•—•2e2s.„/" 	• 1

• • 0

• • 1
2 2

dr—• 3

	• 0
	- •

X .

0—

o

1_1
SWITCHING PERIOD
= 4 CLOCK CYCLES

FIGURE 18. SCHEMATIC DIAGRAM OF A SINGLE PIPELINE RADIX-4 SIXTEEN-POINT FFT.

••nn • 8

48

Table XV: Composite component counts of the single pipeline radix-4 16-point
FFT.

Type of component 	quantity

real adders 	 38
real multipliers 	 12
latches 	 86(including input latches)
4-to- i multiplexers 	8

In the last two sections, several pipeline FFT structures were
illustrated based on a 16-point FFT example. The composite component counts
for the various structures are compared in Table XVI for N=16.

Table XVI: Comparison of component counts for various 16-point pipeline FFT
structures

Component 	Parallel-pipeline 	 Single-pipeline
radix-2 	radix-4 	radix-2 	radix-4

real
adders 	148 	 144 	 22 	 38

real
multipliers 	40 	 32 	 12 	 12

latches 	308 	 240 	 78 	 86

2-to- i
MUXs 	 12

4 -to -1
MUXs

If the length of the data sequence is moderately large, the component counts
for the parallel pipeline structure become prohibitively large. As an
example, the component counts for various pipeline structures for a 64-point
FFT are summarized in Table XVII.

49

Table XVII: Composite component counts for various pipeline structure of the
64-point FFT

Component 	Parallel-pipeline 	Single-pipeline

radix-2 	radix-4 	radix-2 	radix-4

real
adders 	964 	 920 	 34 	 60

real
multipliers 392 	 304 	 20 	 24

latches 	2116 	1560 	 202 	 220

2-to- i
MUXs 	 20

4-to- i
MUXs 	 16

It is reasonable to conclude that, using discrete IC elements, the only
practical hardware FFT structure is the single pipeline structure for long
(longer than 64) data sequences. It is, therefore, useful to derive a
generalized single pipeline FFT structure so that FFTs of long data
sequences can be processed with varying degree of parallelism.

4.3 Radix-r single-pipeline FFT

Assume in the following discussion that N can be expressed as a power
of r. The DFT of an N-point sequence can be efficiently computed using a
number of identical sections of processing hardware composed of a radix-r
commutator and a radix-r butterfly. The radix-r commutator consists of two
sets of shift register arrays with a set of r-to-1 multiplexers sandwiched
in between. The schematic diagram of a radix-r pipeline section is shown in
Figure 19. Input '1', where i=0,1,2,..,r-1, of the commutator is connected
to input terminal 'i of all the MUXs through a (iN/r)-stage shift register
array. The output of the ith MUX is connected to the ith input of the
radix-r butterfly through a [(r-i-ON/r1-stage shift register array. The
function of a radix-r commutator is to decimate the input sequence into r
sub-sequences of length N/r and present them simultaneously at the output of
the commutator. The length of the data sequences reduces by a factor of 1/r
and the number of sub-sequences increases by a factor of r, thereby,
rendering the total number of samples unchanged at each stage.
Consequently, the switching period of the MUXs is given by N/rk,
k=1,2,3 logrN. The switch connections of the MUXs follow a cyclic,
pattern, with the ith MUX always one position behind that of the (i-1)th
MUX.

The twiddle factors for the radix-r butterfly in each stage of the
pipeline are variable and the values must be brought in from memory. The
switching period for the twiddle factors in each pipeline section is a

1
—N' STAGES

N' STAGES
e-f

I I t

o =-N' STAGES

FR
OM

 (
k-

1)
s t
 ST

AG
E

o

1

?I I

or-1

TO
 (

k+
1)

s t
 ST

AG
E

"12
et

r-t

	c
—13

—le 2

N') STAGES

r-2 , (— N) STAGES

>-

2 	 e

021
1—

>.<
I

i

- N') STAGES

r-i-1
N') STAGES

2:»oir--1

—oo
—et
r0

1

1
nnn• n

r-1 	r-1 72 o

r-s

r- TO-I
MUXs

III
III

Note: N' = Length Of The Data Sequences
At the Input Of The kth I'
Section

i 1 	i
= N/r k-1 , Where N Is The ' '

Length Of The Transform
14

'

r-1
N') STAGES

SWITCHING PERIOD = N/r k

FIGURE 19. THE kTH SECTION OF A RADIX—r SINGLE PIPELINE EU.

51

function of the type of decimation process being used. In general, it
increases at a rate of r times per section. The direction of increase of
the switching period for the twiddle factors depends on whether the DIT or
the DIF process is used. For the DIF process, the shortest switching period
is at the input stage, in which one set of twiddle is switched in every
clock cycle. For the DIT process, the shortest switching period is at the
last stage. The twiddle values can be obtained from the appropriate signal
flow diagram of the FFT algorithm being implemented.

It can be easily shown that the single pipeline FFT structure
corresponding to specific values for r, N and the appropriate choice of
decimation process can be derived from the generalized structure given in
Figure 19. For example if one substitute r=2, then the length of the shift
register arrays at the first stage is N/2 and the r-to-1 MUXs become 2-to- i
MUXs. It can be seen that Figure 19 reduces to Figure 13 which represents
the radix-2 single pipeline FFT. The radix-r single pipeline FFT is useful
in the design of high speed FFT processors of long data sequences. We can
construct the pipeline sections with butterflies of moderately large radix
such as 8 or 16. The component counts for these butterflies, although very
large, are not prohibitive. Consider, for example, a single pipeline
4096-point FFT. This processor can be implemented with 3 stages of pipeline
sections composed of a radix-16 commutator and a radix-16 butterfly. A
radix-16 butterfly is implemented by adding a twiddle multiplication stage
to a parallel pipeline 16-point FFI such as the one described in Section
4.1. Assume that the pipeline section can handle one set of 16 complex
samples in 100 nsec., then it will only take 0.1x4096/16 = 25.6 microsec.
to compute the 4096-point FFT.

5. DESIGN FOR A DOPPLER PROCESSOR AND A 2-DIMENSIONAL DIGITAL BEAMFORMER
BASED ON A HIGH-SPEED 16-POINT FF T IMPLEMENTATION.

In this section is described a high-speed FF T processor of relatively
small dimensions. Two applications in radar signal processing are used as
examples of possible area of utilization for the processor; these are, (i)
Doppler Processing and (ii) two-dimensional digital beamforming.

5.1 Doppler processing and digital beamforming

(a) Doppler processing

In modern surveillance radar systems, high performance is attained by
exhaustively processing the radar signals for all of their available
information content. Target velocity, which can be derived from the Doppler
shift exhibited by a radar signal, is an important parameter which is used
for target identification. It can provide a valuable input for determining
the level of threat posed by the target. It can also provide the tracker
supplementary tracking information as well as enhancing the detectability of
moving targets.

52

AM
PL

ITU
DE

(I
o

r
4)

I—CHAIVNEL

Pulse Number

6 7 8 9 10 11 12 13 14 15

0—CHANNEL

IDEALIZED RETURNED RADAR PULSE TRAIN FROM A
STATIONARY OBJECT.

TRANSMIT PULSE

No.1 	i No.2 	i No.3 	INo.4 	i No.!

r 	TIME
(RANGE)

(a) RETURNED SIGNAL OF A RADAR PULSE TRAIN.

(b) IDEALJZED RETURNED RADAR PUSLE TRAIN FROM A
MOVING OBJECT.

FIGURE 20.

53

As is well known, a coherent radar transmits a train of coherent
pulses in a fixed direction in space. Radar returns or echoes are received
and sampled as depicted in Figure 20a. Since the range of the target being
illuminated is not known before hand, one usually samples all of the radar's
range cells. The radial extent of a radar range cell is given by:

AR = cT/2
where

c = speed of light
T = radar pulse width

Consider the returns from an object within a particular range cell R. If
the object is stationary, then the echo will be similar to that shown in
Figure 20b. On the other hand, if the object is moving with a velocity v,
there will be a change in the phase angle of the returned signal from one
pulse to another. Detection of this shift is dependent on coherent
quadrature demodulation. The sampled waveform from a moving target will be
similar to that shown in Figure 20c. This change in phase angle is
reflected as a Doppler frequency shift given by:

fp = 2v/À
where

v = velocity of target
À = radar wavelength

fp = Target Doppler frequency

The DFT of a finite time sequence may be considered as a bank of
correlators correlating the time sequence with a set of sampled complex
sinusoidal waveforms (replica signals). The frequencies of these sinusoids
are evenly spaced across the Doppler frequency band, which, in this case, is
equal to the radar pulse repetition frequency(PRF)[71. If the target
possesses a velocity which matches one of the replica signals, the output of
that frequency cell in the correlator bank will be much higher than those of
the others. Thus the DFT of a returned radar pulse train from a fixed
direction and range effectively channels the signal energy components into
separate frequency cells according to their Doppler frequencies. For
example, the ground return will be channeled into the zero Doppler frequency
cell, while the signal component due to a fast moving target is channeled
into one or more of the higher Doppler frequency cells.

There are several advantages in performing Doppler processing. The
first is that strong returns from ground clutter will appear in low Doppler
frequency cells. In order to declare the presence of a target, a detection
threshold is normally set according to the past information obtained from
that particular range cell. Without Doppler processing, the return from
stationary ground clutter and moving targets are indistinguishable. Since
ground clutter usually has a large magnitude, it is necessary to set the
threshold at a level sufficient/y high so as to keep the false alarm rate
low. High threshold levels tend to reduce the detection probability of weak
targets. With Doppler processing, however, the signal component due to a
moving target will appear in a different Doppler frequency cell than that of
the ground clutter. The ambient signal level in these high Doppler cells,

(32)

(33)

54

i.e., the signal level in the absence of target returns, will have a much
lower magnitude because they usually consist of receiver noise only.
Receiver noise is wide-band and will be distributed equally in all Doppler
frequency cells by the DFT. Consequently, the threshold level for Doppler
frequency cells other than that of the zero-Doppler one can be set
significantly lower, thereby, enhancing the detectability of moving targets
while, at the same time, maintaining a low false alarm rate.

The second advantage of Doppler processing is that it provides an
estimate of the target velocity. This estimate is useful in a threat
analysis of potential targets as well as in defence resource management.
Finally, Doppler processing provides additional tracking information to the
tracker. Due to the wide range of possible target speeds, there will not be
a one-to-one correspondence between target velocity and target Doppler
frequency. This is analogous to the aliasing effects commonly referred to
in digital signal processing. Nevertheless, this ambiguity can be resolved
by employing multiple PRFs [8] in the radar system.

Consider a surveillance radar system employing a phased array antenna
such as the one described by Mabey [9]. The main beam of this phased array
can be stepped electronically and maintained in one direction indefinitely.
The surveillance area of this antenna is ±40 degrees in azimuth and ±30
degrees in elevation. The 3 dB azimuthal and elevation beamwidths of this
antenna are 4 and 6 degrees respectively. Assume that a surveillance cell
is defined by the beamwidths in both azimuth and elevation. The
surveillance area is divided into 126 cells in azimuth and elevation. In
order to successfully incorporate Doppler processing in this system, the
processor has to be matched to the radar system parameters. Some of the
relevant parameters are listed below:

Radar PRF= 1 kHz to 10 kHz
Pulse width = 100 nsec to 400 nsec
Maximum range = 40 km
Dynamic range = 60 dB

The 126 surveillance cells are to be kept under continuous observation
within constraints imposed by radar dwell time. Assuming that the refresh
rate is one'scan per second, the dwell time per surveillance cell per scan
would be 1/126 = 7.94 msec. For a typical PRF of 2 kHz, approximately 16
pulses may be transmitted in each direction before the beam is moved to
another surveillance cell. If the radar pulse width is taken to be 400
nsec, the number of range cells within the maximum range is approximately
500. Thus a reasonable set of specifications for a Doppler processor for
this radar may be determined:

Maximum length of pulse train = 16 pulses
Minimum length of pulse train = 4 pulses
Processing rate = 512 sixteen point FFTs in 2 msec.
wordlength = 12 bit
Data window = Hamming window

RANGE R= 1

DOPPLER
FREQUENCY
CHANNELS R =512

L u (D
r. z

Q— (5
CL-1

CFAR
PROCESSORS

16
-P

OI
NT

 FF
T

F

o

o
o

0

o

Fis

THRESHOLD
DEVICE

f DISPLAY)

18eQ SAMPLES FROM PULSE NO. 1
IdesQ SAMPLES FROM PULSE NO. 2
l&Q SAMPLES FROM PULSE NO. 3

i
I

1 	 i
I 	 1
I 	 I
1 	 1
1 	 i

lecQ SAMPLES FORM PULSE NO.16

DOPPLER PROCESSOR

SAMPLED
COHERENT

RADAR
VIDEO

FIGURE 21. BLOCK DIAGRAM OF A RADAR SIGNAL PROCESSING SYSTEM
EMPLOYING A DOPPLER PROCESSOR.

56

Data windows (amplitude weighting of input data) are necessary to
suppress the Doppler sidelobes. The DFT of a finite time sequence may be
considered as the Fourier Transform of the product of an infinite time
sequence with a rectangular pulse function. It is well known [10] that the
Fourier transform of the product of two functions is equal to the
convolution of the Fourier transforms of the individual functions. Since
the Fourier transform of a rectangular pulse is a sinc(sinx/x) function
whose first sidelobe has a magnitude only -13.6 dB below that of the
mainlobe, the response of a Doppler cell to a strong signal with a Doppler
frequency matched to that of a neighbouring Doppler cell would be
substantial. This phenomenon is sometimes referred to as leakage in digital
signal processing terminology. This may produce ambiguity in the estimate
of the target velocity. Ground clutter whose magnitude may be orders of
magnitude higher than that of a target signal will cause interference in
neighbouring Doppler cells, thereby, degrading detection performance for
moving targets. The data windows commonly employed have significantly lower
values at the beginning and the end of the time sequence. Thus the data
window effectively imposes a much smoother transition than the rectangular
window function. The smooth transition results in much lower sidelobes in
the DFT of the modified time sequence. The price one pays for applying
amplitude weighting is that the width of the DFT main lobe becomes broader
than in the case of a rectangular window. However, this is more than
compensated for by the resulting low Doppler sidelobes of the Doppler
processor. An example of a data window is the Hamming window which has a
-42 dB first sidelobe.

A typical block diagram for a radar signal processing system
employing a Doppler Processor is shown in Figure 21. For the following
discussion, we shall call the samples of the radar returns from all the
range cells in a fixed direction a sweep. The coherent video signal is
sampled and stored in a memory bank which is capable of storing up to two
sets of 16 sweeps of radar returns containing 512 range samples. Once the
desired number of sweeps has been obtained, a signal is sent to the Doppler
processor to initiate the parallel readout of successive sets of N(where N
is the length of the pulse train) samples from each of the 512 range cells.
The N samples are than multiplied by a set of amplitude weights before being
fed to a 16-point FFT processor. The 16 Doppler frequency outputs are fed
to separate Constant False Alarm Rate (CFAR) [11] processors. In each CFAR
unit, the magnitude of the output in each Doppler cell is compared against a
threshold level for detection. In addition, this output is used to update
the threshold setting for that particular Doppler cell. While one set of
data are being processed, new data corresponding to the next look direction
are written into the other memory bank.

The processing speed requirements for the Doppler Processor are
easily fulfilled and can be realized with any one of the designs described
in Section 4. However, as will be seen in the next section, the 16-point
FFT is also employed in the two-dimensional digital beamformer example and
the processing speed demands here are much higher. The philosophy being
followed here is one which considers it to be cost effective to develop a
common processor structure which can be used in both of these applications.
Consequently, the specifications of the basic high-speed 16-point FFT unit

57

will be determined by the requirements of the 2-dimensional digital
beamformer.

(b) Digital beamformer in a sampled aperture radar system

Modern surveillance and tracking radars face many threats to their
security. Anti-radiation missiles (ARM) seek out the direction of a radar
emission and home in on the radar. Fire control radars must be capable of
tracking targets in many directions within a short time span. Consequently,
the amount of time a tracking radar can allocate to the tracking of each
target is restricted. It is, therefore, envisaged that future radars would
have the capability of surveying and tracking many directions
simultaneously. This leads to the concept of sampled aperture radar
(SAMPAR) [12].

In simple terms, a SAMPAR employs a phased array antenna as sensors
and relies on digital signal processing to synthesize the information from
various directions. Consider the scenario in which a bistatic radar is
illuminating its surrounding hemisphere with a train of coherent pulses
through an omni-directional antenna. The returns from all directions are
received by a planar phased array. Each sensor on the phased array aperture
has an independent coherent receiver. The receivers convert the signal from
each sensor down to complex baseband and sample at a suitable rate, thereby,
preserving the amplitude and phase relationships among signals from
different sensors. Once the data are in the digital domain, they can be
used to compute the response of the receiving antenna in many directions.
This digital beamforming process requires a very high speed digital
processor.

A feasibility study of such a SAMPAR system has been initiated by
Litva [12]. An experimental SAMPAR system is to be built based on a square
array aperture with 8 rows and 8 columns of receiving elements. Initially
the sampled data would have a total bandwidth of 64 x BW, where BW is the
bandwidth of the receiver channels. If each receiver has a bandwidth of 2
MHz, the Éotal signal bandwidth will be 128 MHz. In order to reduce the
data rate to a more manageable level, the data will be integrated in some
fashion before being fed to a digital beamformer. Preliminary
specifications require that a complete 2-dimensional beamforming frame to be
completed in 4 micro-seconds.

The 2-dimensional beamforming operation can be accomplished using a
2-dimensional FFT processor. The system block diagram of an experimental
digital beamformer is shown in Figure 22. The input data are represented as
an 8 by 8 matrix as depicted in Figure 23a. The data matrix is augmented
with 8 rows and 8 columns of zeros to form a 16 by 16 matrix as depicted in
Figure 23b. The data in the augmented matrix are fed in parallel, one
column at a time, to a 16-point FFT processor. The transformed results are
stored in memory as a matrix (see Figure 23c). After all columns have been
processed, the results are then read out row-wise and fed to another
16-point FF] which provides the required 2-Dimensional digital beamforming.

TO
SIGNAL

PROCESSOR 16
- P

O
IN

T F
FT

-zc

8 X 8
ARRAY

ANTENNA

COHERENT
RECEIVERS

0
1
2
3
4
5 	0
6
7 0 C3 k) Q-

k z
90 "cC
10 ee 1'—

11
12
13
14
15

16
-P

O
IN

T
 FF

7"

FIGURE 22. SYSTEM BLOCK DIAGRAM OF AN EXPERIMENTAL DIGITAL BEAMFORMER.

X 07 Xce X05 X04 X 03 X 02 X 01 X 00
X 17 X 16 X 15 X 14 X 13 X 12 X 11 X 10
X27 X26 X 25 X 24 X23 X 22 X21 X20
X37 x 36 xxxx32 x 31 x 	FROM 35 34 33 	30 ANTENNA X 47 X 46 X 45 X 44 X 43 X 42 X 41 X 40
X 57 X56 X55 X54 X53 X52 X51 X50
X 67 X66 X 65 X 64 X 63 X 62 X 61 X 60
X 77 X 76 X 75 X74 X73 X72 X 71 X70

(a)

BEAM FORMING OUTPUT

4Itilill 	II

16-POINT FFT

cr, 	Ch 	 Cm ••••• C)

1

2

3

4

5

6

7

8

9 6
-P

OI
N

T
 FF

T

1

14

15

0 0 0 0 0 0 0 Oxxxxxxxx 07 06 05 04 03 02 01 00
0 0 0 0 0 0 0 Oxxxxxxxx 17 16 15 14 13 12 11 10
00000 0 0 Oxxxxxxxx 27 26 25 24 23 22 21 20
0 0 0 0 OÔO Oxxxxxxxx 37 36 35 34 33 32 31 30
0 0 0 0 0 0 0 0 x

47
x46 x45 x44 xe x42 x41 x40

0 00 0 0 0 0 0 x57 x56 x55 x54 x53 m52 x51 150

 0 00 0 0 0 0 0 x67 x66 x65 x64 x63 x62 x61 x60

 0 0 0 0 0 0 0 Oxxxxxxxx 77 76 75 74 73 72 71 70
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

000000000111M000 -0, 7 -0, 6 -0, 5 -0, 4 -a 3 -0, 2 - a 1 -a 0
00000000 et 	a 	a. 1, 7 -7, 6 -1, 5 -7, 4 -7, 3 -1, 2 -1, 1 -1, 0
0 0 0 0 0 0 0 0 yk 7 p2,6 2,5 9Z4 92.3 2.2 92.1 20

O 0 0 0 0 0 0 0 9.3. 7 g3, 65 93,4 93, 3 93, 2 93, 1 93, 0

g 	 94, 7 94, 6 94, 5 94,4 94, 3 g4, 2 94, 1 94, 0
O 0 0 00 0 0 0 95. 7 95. 6 95. 5 96. 4 95. 3 95. 2 95. 95. 0

 00000000 a 	a a g 	gg

° 	 g7, 7 g7, 6 97, 5 97,4 97,3 gl 2 g7, 1 97, 0
00000000 ago 	go 	ciao;

-8, 7 -8, 6 -8, 5 -8, 4 -8, 3 -8, 2 -8, 1 -8, 0
O 0 0 0 0 0 0 0 96. 7 96. 6 96. 5 96. 4 56. 3 96. 2 96. 1 96. 0

O 0000000ga 	qg 	g
- 10,7 - 10,6 - 10,5 -10,4 - 10,3 -10,2 - 10,1 -10,0

00000000 gg 	 g 99
1t7 - 11,6 11,5 - 11,4 - 11,3 11,2 - 11,1 11,0

00000000 gal 	a 	a 	a 	or 	g
-12,7 -1Z 6 -12,5 -12,4 - 1Z3 - 12,2 - 1Z 1 - 12,0

O 0 0 0 0 0 0 0 913.7 9146 913.5 	4 90.3 g 142 	g

0 0 0 0 0 0 0 0 914,7 g14,6 g14,5 p14,4 914,3 g14,2 g14,1 914,0
00000000 Go, 	q 	of

- 15,7 - 15,6 - 15,5 - 15,4 - 15,3 - 15,2 - 15,1 -15,0

(h) 	 (c)

FIGURE 23. DATA FLOW OF THE 2-D BEAMFORMER.

01 	4

01- -.,,r -i-s-ricÉ§IF

14 o

15

SHIFT REGISTER ARRAYS

IC

SWITCHING PERIOD
1 CLOCK CYCLE

--
— — 1-(1 5=0 S TA 	— 0

o e 14

o O 15

BE
A M

FO
RM

IN
G

 OU
TP

U
T

OH

o o

o 2

o 3 °

o

1
6
-P

O
IN

T
 F

FT

o

o

a
o

I 	°

1 6—TO— 1 MUXs

DA
T

A
 FR

OM
 AN

T

16
-P

OI
N
T

 F
FT

FIGURE 24. SCHEMATIC DIAGRAM OF A 16 X 16 TWO—D BEAMFORMER.

61

The augmentation of the original 8 by 8 matrix with zeros is a
simple way of providing interpolation of the resulting antenna pattern. It
effectively provides 16 x 16 = 256 beams in space. Since there are 8
nonzero columns, the first FFT processor in Figure 22 needs only perform
eight 16-point FFTs. A 16-point FFT, in general, has 16 non-zero outputs.
Thus the second stage FFI' would have to perform sixteen 16-point FFTs,
although each of them still consists of eight non-zero samples. Presumably,
all the 16-point FFTs can be performed by a single 16-point FFI processor.
However, this processor must be able to perform twenty four 16-point FFTs in
4 microseconds (or one per 166.7 nsec). Adding all the overhead in data
handling, it represents a very high processing speed requirement.

5.2 Implementation of a 2-D digital beamformer and a target Doppler
discriminator

After some thought it was decided that the implementation of the
system in Figure 22 using inexpensive commercially-available ICs would best
be carried out using the parallel pipeline structure described in Section
4.1.1. The schematic diagram of a 2-dimensional digital beamformer
employing two separate 16-point FFTs and a row-column transposition network
is shown in Figure 24. The data arrangement as indicated in Figure 22
requires a 16 by 16 row-column transposition network. This network requires
less hardware than a direct implementation using individually addressable
latches. However, the component count is still rather high. Depending on
the system data wordlength, the actual IC chip count for this system may be
several thousand. Large component counts mean high power consumption which,
in turn, present problems with regards to heat dissipation and maintenance.

5.2.1 Modified 2-Dimensional digital beamformer

In an effort to reduce the component count, one must examine the
data structure carefully and exploit any peculiar characteristics of the
architecture which can be taken advantage of to realize savings in
computational effort. Two points come to mind, these are:

(i) The input to both 16-point FFTs has only eight nonzero samples.

(ii)The processing speed requirements for the Doppler Processor is
rather moderate. It follows therefore that in both cases, it is
feasible to employed an 8-point FFT in multiplexed mode to
implement the required 16-point FFT.

(a) modified parallel pipeline 16-point FFT

Let us consider the 16-point DIF FFT algorithm whose operations are
summarized in Figure 12. The input data to be transformed are arranged in
an 8-column by 2-row matrix. Since for our 2-Dimensional digital
beamformer, samples x8,x9,...,x15 are always zero, the eight 2-point column
DFTs may be eliminated. Since two separate 16-point FFTs are required to
implement a 2-D FF, the maximum processing rate for the beamformer is set
by the second FFT unit; i.e., to meet our requirements it must be capable of

62

CC

Ilzr (r)
(/)

(")k

LLC(.1

X2 0
5,4

8
-P

OI
N
T

 F
FT

7,6 ..3

X4 o
9,8

1 1, 10 5

X6 0

15,14 F- 0

le-exp(-
j1 8)

e 1

0

e 1

0

0,9

4 0

es 1

0
4ess.„,„e_i

es 1

MUXS

Cg •;:C

Q
-zc
Z

13,12 1-0 LLI

X7

HELD CONSTANT
FOR TWO

CLOCK CYCLES

X0 o

0
xl G

0

1

/,0

3,2

FIGURE 25. SCHEMATIC DIAGRAM OF THE MODIFIED 16-POINT
FFT FOR DATA SEQUENCES HAVING ONLY 8
NON-ZERO SAMPLES.

6 3

performing sixteen 16-point FFTs per 4 micro-seconds, or one 16-point FFT
per 250 nsec. In section 4, it was determined that a conservative estimate
of the throughput rate for a parallel pipeline FFT structure is about 100
nsec per FFT. Thus a single 8-point parallel pipeline FF T which is
multiplexed to carry out two 8-point FFTs should be capable of completing a
16-point FF T within 250 nsec.

The schematic diagram of a modified parallel pipeline 16-point FFT
is shown in Figure 25. This processor takes advantage of the fact that the
input has only eight non-zero samples and utilizes an 8-point FFT. The
operation of this unit is as follows. Input samples x0,x1,x2,x3,x 4 ,x 5 ,x 6 ,
x7 are fed to the input of the 8-point FFT in natural order from top to
bottom. The input samples are held constant by a set of latches for two
consecutive clock cycles. During the first clock cycle, the MUXs are
switched to position '0', connecting the input directly to the 8-point FFT
module. The result of this 8-point FFT will provide the even frequency
outputs (corresponding to the 8-point FFT of the top row in Figure 12).
Concurrently, the eight samples are fed to a set of twiddle multipliers
which provides the bottom row data in Figure 12. In the second clock cycle,
the twiddle multiplication results are ready. The MUXs are switched to
position '1', effectively connecting the bottom row of data in Figure 12 to
the input of the 8-point FFT. The result of this 8-point FFT provides the
odd frequency samples. It should be understood that latches would be
inserted in the signal paths to insure proper pipeline operations. Thus the
16-point FFT is obtained in two clock cycles, with even and odd frequency
samples appearing at the output of the 8-point FITT processor in alternate
clock cycles.

The composite component counts for the modified parallel pipeline
16-point FFT can be estimated. It consists of one eight point parallel
pipeline FFT, a twiddle multiplying stage and a bank of 2-to- i
multiplexers. The 8-point FFT has 12 2-point DFTs, 6 trivial and 2
nontrivial twiddles. The twiddle multiplying stage consists of two trivial
and six nontrivial twiddles. The bank of MUXs has sixteen (for both real
and imaginary parts) 2-to- i MUXs, yielding the component count given in
Table XVIII:

Table XVIII: Component counts of the modified 16-point parallel pipeline FFT

component 	 quantity

real adders 	 64
real multipliers 	32
latches 	 128
2-to- i MUXs 	 16

(b) An 8 x 16 row-column transposition network

Savings to component counts may be realized once again in the design
of the matrix transposition network by taking advantage of the fact that the
input to the second 16-point FFT also has only eight nonzero samples. The
schematic diagram of such a network is shown in Figure 26. Since in a
modified parallel pipeline 16-point FFT the even and odd outputs of

64

the FFT appears in alternate clock cycles, this modified matrix
transposition network also has eight complex inputs and outputs. We shall
number them from top to bottom with indices 0 through 7. The data from the
first FFT processor is fed to a bank of 8-to- i MUXs through shift register
arrays of various lengths. The length of the shift register array in data
line 'i' is given by 2i. For example, there is no shift registers between
output '0' of the first FFT and input '0' of all the MUXs (2x0=0). The
number of shift registers in the shift register array between output '7' of
the first FFT and the MUXs is 14(2x7=14). The output of each shift register
array is connected to the corresponding input of all the MUXs. For
examples, the output of the shift register array in signalling 1 1' is
connected to input terminal '1' of all 8 MUXs. The output of the ith MUX is
connected to the ith input of the second FFT unit through a 2 (7-i) stage
shift register array. The MUXs are switched once every two clock cycles in
a cyclic pattern, with the output switch position of the ith MUX being
always one behind that of the (i-1)th MUX. In Table XIX are tabulated the
switch positions for the MUXs through 20 clock cycles.

Table XIX: Switch positions of the MUXs in the 8x16 row-column
transposition network over 16 clock cycles

MUX 	 Input Selected by MUX in Clock Cycle No.
No. 	0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 18,19

0 	0 	1 	2 	3 	4 	5 	6 	7 	0 	1
1 	7 	0 	1 	2 	3 	4 	5 	6 	7 	0
2 	6 	7 	0 	1 	2 	3 	4 	5 	6 	7
3 	5 	6 	7 	0 	1 	2 	3 	4 	5 	6
4 	4 	5 	6 	7 	0 	1 	2 	3 	4 	5
5 	3 	4 	5 	6 	7 	0 	1 	2 	3 	4
6 	2 	3 	4 	5 	6 	7 	0 	1 	2 	3
7 	1 	2 	3 	4 	5 	6 	7 	0 	1 	2

The operation of this matrix transposition network can now be
described. The required data arrangement is shown in Figure 27. At the
beginning of clock cycle '0', the even frequency samples of the first column
FFT appears at the input of the matrix transposition network. At this
timeMUX '0' is at switch position '0' and in general MUX '1' is at switch
position '8-i'. After Ug0 clock cycles, the data will be arranged as shown
in Figure 26. The MUXs are switched by one position in a cyclic fashion
between positions 0 and 7. After another two clock cycles, the data will be
arranged as shown in Figure 28a. Following the switching pattern tabulated
in Table XIX, it can easily be verified that at the end of clock cycle '15',
the data will be arranged as shown in Figure 28b which is consistent with
the transposed data matrix in Figure 27.

5.2.2 Doppler Processor employing the modified parallel-pipeline 16-point
FFT

The modified parallel pipeline 16-point FF T can also be used to form
a Doppler processor with the addition of a multiplexing network. The
schematic diagram of this processor is shown in Figure 29. The first stage

7

8—T0-1 MUXs
SWITCHING PERIOD=2 CLOCK CYCLES.

941
050100 1 0 1 0

0 I 0 I 0 I 0
961

•--
7
o O 0 981 O O 0 o O O O o O •0 -1

TO INPUT OF THE MODIFIED
16—POINT FFT IN SECOND STAGE

FROM OUTPUT OF THE MODIRED
16—POINT FF7 IN RRST STAGE

gio goo 0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0

0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	0

1

10001»
MINIM

/00 n •n
IMM 	 ln

0 	0 	0 	0 	0 	0 	0 	0 	0 	0

0 	0 	0 	0 	0 	0 	0 	0

O

M•=1
/WM 7M1 n ••n 1•10n

MI MR

11111=
001 M•

/Mn 10010•00101

% b 0 	0 	0 	0 	0 	0 	0 1 0 	0 	0 	0 	0 gEi
7.—

* HD(NUMBER USED FOR THE F7RST SUBSCRIPT
INDICATING THE FREQUENCY NUMBER

g01 ---

IMM10100

o O o O O O o O
9 c 	Al

J

7

O O O O

921

11111 n «01: / O O O O O o O o o O C1
0 0-

o O O

FIGURE 26. SCHEMATIC DIAGRAM OF AN 8 BY 16 MATRIX TRANSPOSITION NETVVORK.

g3, 7

g5, 7

g7, 7

g9, 7

gZ 7

g4, 7

g6, 7

g8, 7

g3, 6

g5, 6

g7, 6

g9, 6

g2, 6

94, 6

g6, 6

g8, 6

g3, 5

95,5

g 7, 5

g9, 5

gZ 5

g4, 5

g6 5

g8, 5

g3, 4

g5, 4

97,4

g9, 4

g2, 4

g4, 4

g6, 4

g8, 4

93,3

g5, 3

97,3
g9,3

g2, 3

94,3

g 6, 3

g8, 3

g3, 2

g5, 2

p7,2

99,2

g2, 2

94,2

g6, 2

g8, 2

g3, 1

95, 1

97, 1

g9, 1

gZ 1

94, 1

g 6, 1

g8, 1

g8, 0

g8, 1

g8, 2

g83

g8, 4

98,5

g8, 6

g8, 7

9 7,0

g7, 1

g7, 2

9 7,3

g7, 4

97,5

9 7, 6

9 7,7

g6, 0

g6, 2

g6, 3

g6, 4

g6, 5

g6, 6

g 6, 7

g5, 0

g5, 1

95,2

g5, 3

95,4

g5, 5

95,6

g5, 7

p4,0

94, 1

94,2

94,3

94,4

g4, 5

g4, 6

g4, 7

66

g1, 7 ga 7 g 1, 6 g06 g 1, 5 g05 g l, 4 g04 gl, 3 gO, 3 g 1, 2 g02 g1, 1 ga 1 gl, 0 g00

g3, 0 2,0

5,0 p4,0

g 7, 0 p6,0

g9, 0 g 8, 0

g 11, 7g10 7 g 11, 6 g10, 6g11 5

g 13, 7 g12 7 g 13, 6 g lZ 6 g 13, 5

g 15, 7 g 14, 7 9 15,6 g 14, 6 g 15, 5

g10,5 11,4 p 10,4

p12,5 g 13, 4 g 12, 4

g 14, 5 g15,4 p14,4

9 11,3 g 103

9 13,3 g123

9 15,3 9 14,3

911,2 g10,2

p13,2 g12,2

g 15, 2 g 14, 2

g11, 1 g 10,1 g11, 0 g 1a 0

g 13, 1 g12, 1 g13, 0 g12, 0

g 15, 1 g 14, 1 g15 0 p14, 0

(a) DATA OUTPUT FROM THE MODIFIED PARALLEL PIPELINE 16-POINT
FFT, ONE COLUMN PER CLOCK CYCLE.

g15, 0 p14,0 g13, 0 g12,0

g15, 1 g14, / g13, 1 g12, 1 g11,

p15,2 14,2 g 13, 2 p12,2 g11

p15,3 p14,3 g13, 3 g12, 3 g11,

g 15, 4 g 14, 4 g 13,4 g 12, 4

g15, 5 p14,5 g13, 5 g125 g11,

p15,6 9 14, 6 13,6 p12,6 g11,

p15, 7 g 14, 7 g 13,. 7 g 12, 7 g 11,

0 g10, 0 99, 0

1 9 10, 1 99, 1

2 g10, 2 g9, 2

3 g10 3 99,3

4 g 10, 4 99,4

5 p10,5 99,5

6 9 10, 6 g9, 6

7 g10, 7 g9, 7

p3,0 g2, 0 g1, 0

p3,1 2,1 g1, 1

g3, 2 g2,2 p1,2

93,3 g 2,3 g 1 , 3

g3, 4 2,4 1,4

93,5 2,5 g1, 5

g

3.6 p2,6 g 1, 6

93, 7 g27 p1,7

ga 0

ga 1

p0,2

gO, 3

gO, 4

gO, 5

ga 6

gO, 7

(b) DATA OUTPUT FROM THE 8 X 16 TRANSPOSITION NETWORK,
ONE COLUMN PER CLOCK CYCLE.

FIGURE 27.

67

8—TO— I MUXs
SWITCHING PERIOD=2 CLOCK CYCLES

• 4E X NUMBER USED FOR THE FIRST SUBSCRIPT
'NDICATING THE FREQUENCY NUMBER

E 902 g20 910 0 0 0 o 0 0 0 0 0 0 =EFFE1 0 °

1111111111_, plena= 7
111111!=
Imum====
IIIIIIIE 1/1•
11111 11M
111111.1
Iv 	- MIME

SI 1 921 90 1 0 0 0 0 0 0 0 0 0 0 11 1

942 	 1%11 941 1%o 0 0 0 0 0 0 0 0 0 0
2

9 0 0 0 0 0 0 0 0 010 71 1'61F70 3

98 o 0 0 0 0 0 98 1 0 10 10 1 0 '91 4

9 O 0 0 o 9gi 940 0 0 0 0 0 0 go 5

9C2 0 0 gic gro g01 0 0 0 0 0 0 0 0 6

L_F-a

9E11% 9E0 0 0 0 0 0 0 0 0 0 0 'F1
7

(a) DATA ARRANGEMENT AND SWITCH POSITIONS AT THE END OF CLOCK CYCLE #3.

• HEX NUMBER USED FOR THE FIRST SUBSCRIPT
INDICATING THE FREQUENCY NUBMER

8—TO—I MUXs
SWITCHING PERIOD=2 CLOCK CYCLES

907
=EEE3 0 70 0

am pot
mama OWE

Poe
Ip

927
9511 941 921 971 96 1 11 '31 91 81 'Al 1

947
91219021-4 96219721942 932 972 982 92 2 °

967 o
u 92 gl3 953 976 111111!

mama Pm
973 966 465 914 975 964

3

o 987 974 — g14 954 944 934 g24 4 °
7

947

C7
6 `'

gA61g615 945 1 99419ml% gB2 9A3 5 es

906 9c5 9c4 it12 sb, gEs ge2 gC1 16

E
7 .--PF6 9F519F5 9E019E0 9E6 gF4 9E4 gE2 gEJ 9E3 9F2 gF1 gEl

(b) DATA ARRANGEMENT AND SWITCH POSITIONS AT THE END OF CLOCK CYCLE #15.

Figure 28 	Operation of the 8x16 row—column
transposition network at various clock
cycles

68

of this Doppler processor using the modified 16-point FFT unit consist of
(i) amplitude weights and (ii) adders. Since the input data to the Doppler
processor may contain all nonzero values, the adder stage is required to
perform the two-point OFTs of the columns as indicated in Figure 12. The
input samples are held constant for two clock cycles. In the first clock
cycle, the adders perform the difference terms of the 2-point DFTs and pass
the results onto the twiddle multipliers. In the second clock cycles, the
adders perform the sum terms of the 2-point DFTs, and the results are fed to
the 8-point DFT module through a bank of 2-to- i MUXs. Since the twiddle
multiplications involve both multiplication and addition, the results may be
made available to the 8-point FFT module after the DFT of the sum terms is
completed. This may require inserting son e latches in the signal path to
provide the pipeline operation. The results are multiplexed so that even
and odd frequency samples appear at the output of the 8-point FFT module in
alternate clock cycles.

Prototypes of the designs of the Doppler Processor and the Digital
Beamformer have been implemented By Interactive Circuits and Systems (ICS)
[13-15] for the CRC. These prototypes are shown in Figures 30 and 31, res-
pectively. The FFT units in these two processors employ the modified paral-
lel pipeline design described in Section 5.2. These FFTs are capable of
performing one 16-point FFT in 250 nano-seconds. Integer arithmetic is em-
ployed, and the data wordlength is 12-bits.

6. HIGH SPEED FFT PROCESSORS FOR OTHER RADAR APPLICATIONS

6.1 Digital pulse compression and radar image processing

In the previous section, the designs of two digital signal process-
ors employing a high speed 16-point FFT were discussed. In both the Doppler
processor and the experimental 2-D digital beamformer, an FFT of small di-
mension (16) is required. These two designs employ integer arithmetic. Be-
cause the dimension of these FFTs are small the wordlength required to ob-
tain small quantization errors and large dynamic range are relatively moder-
ate. However, there are other radar applications which require high speed
FFT processors of large dimensions. In this section, we shall discuss some
of the important applications and explore means of achieving high throughput
rates for FF T structures designed for these applications.

(a) Pulse compression matched filter

In modern radars, the transmit pulse is often encoded to provide the
radar with high range resolution and while, at the same time, maintaining a
high average value for the signal level. These radars are called pulse com-
pression radars [16]. Frequency modulation (FM) is commonly used for imple-
menting pulse compression. The returned signal is processed by a correlator
which measures the degree of similarity between the received waveform and
the stored replica of an expected waveform. Consequently, this correlator
is given the name matched filter. The bandwidth of the FM pulse is in the
order of some tens of MHz. In the past matched filters were usually imple-
mented using surface acoustic wave (SAW) devices which offer the advantage
of compactness and reasonably good filter characteristics.

X0

X8
x i
X9
X2

 xi0
X3
x ii

xa

X5
X13
)(6
X14
X7

x 15

8
-P

O
IN

T
 F

FT

.. C11

.2

e 1

2

o

• 1

. 1

0

1

2

3

4

. 1 5

el
6 6

SUM AND DIFFERENCE
ALTERNATE EACH

CLOCK CYCLE
;211. mUXs

W=e—J -ir
AMPLITUDE WEIGHTS

. 1 7

Fo
o ri

F2
1 ° F3

° F4

0 F6

 0F7

0 0F8

1 °F9

° F10

) F12
1 of-13

1 .F15

 MUXs

FIGURE 29. SCHEMATIC DIAGRAM OF A 16—BIN DOPPLER PROCESSOR.

Figure 30 	Prototype of the Doppler Processor

Figure 31 Prototype of the 2—D digital Beamformer

72

For high performance radars, the capability of employing waveforms
optimized for particular operational environments is an important feature.
Consequently, digital matched filters become very attractive because the
filter characteristics can be readily changed. In order to represent the
received waveform adequately in the digital domain, it is usually sampled at
a rate equal to the signal bandwidth. The entire sampled sequence is
divided into sub-sequences of a suitable length, which is usually determined
by the time-bandwidth product. A single-pipeline radix-2 FFT of dimension
equal to twice the length of the sub-sequences is used to obtain the DFT of
two contiguous subsequences at a time. The result of each FFT is then
multiplied by the matched filter transfer function. The resulting sequences
are then processed using an inverse Fast Fourier transform (IFFT) to give
the matched filter output. Except for the order in which the twiddles are
applied, the IFFT and the FF T have identical structures. Since the length
of the FFT is twice the length of the data sub-sequence, half of the output
sequence may be discarded to avoid aliasing effects. Subsequent FFTs use
data which overlap the preceding data by one subsequence. This process
continues until all returned samples are processed. All these operations
must be performed within a pulse repetition interval.

Digital matched filters employing pipeline FFT structure [17] have
been implemented successfully for signal bandwidth of 10 to 20 MHz. Recent
advances in solid-state technology have increased the feasibility of
performing matched filtering digitally on signals with even greater
bandwidths. Real-time matched filtering of wide-band waveforms requires
high speed FFT processor of large dimensions.

(h) Synthetic Aperture Radar image processing

Synthetic Aperture Radar (SAR) [18]-[21] is a technique which
permits an antenna with relatively small aperture size to obtain high
resolution radar images both in the azimuthal and range dimensions. A SAR
employs pulse compression in range to achieve high range resolution and
coherent integration of returns from fixed ranges at different times to
achieve high azimuthal resolution. The signal processing in a SAR system
may be thought of as a two-dimensional cross-correlation of a set of radar
echo data with the response function of a point target. Real-time image
processing of SAR data is often done with optical systems because of the
extremely high data rate. With ever increasing speeds of digital hardware,
near real-time digital SAR processing appears to be feasible in the near
future. Digital SAR processors provide some unique advantages over other
signal processing systems. For example, the signal processing system may be
required to identify signatures of maneuvering targets [21]. A digital SAR
processor could provide more accurate phase correction of the data, thereby,
allowing a more accurate focusing of the synthetic aperture than possible
with an optical processing system.

Digital SAR processing relies heavily on the FFT algorithm. There
are a few algorithms [22],[23] which provide more efficient computation of
two-dimensional correlations than conventional FFTs. However, the hardware

73

realization of these algorithms is still FFT-like. Consequently,
considerations for hardware implementation of FFTs should apply equally well
to these algorithms.

6.2 Component count reduction versus throughput reduction

Two important considerations in the implementation of hardware
processors are the component count and the processor throughput. Although
it is difficult to obtain an accurate IC chip count of a processor until the
actual digital circuit design is chosen, it is possible to get a first order
estimate of the chip count from the composite component count and by taking
into account certain structural assumptions with regards to each signal
processing component. As an example, let us consider the following two
cases: (i) a 2-D digital beamformer employing a fully parallel-pipelined
16-point FFT with a 16x16 matrix transposition network, and (ii) one
employing the modified parallel-pipeline 16-point FF T and a 8x16 matrix
transpositon network. The following assumptions are made with respect to
the various composite signal processing components:

(0 real addition is implemented with 4-bit adders
(ii) the latches and shift registers incorporate

8-bits per chip
(iii) multipliers have 12 bits per chip
(iv) 2-to-i MUXs have 4 bits per chip

4-to-i MUX8 have 2 bits per chip
8-to-i MUXs have 1 bit per chip
16-to-i MUXs have 1 bit per chip(larger chip)

(v) data wordlength = 12 bits

The approximate IC chip counts are obtained by multiplying the
composite component counts by the estimated number of IC chips required to
implement each component and then summing. For example, since 4 bit adders
are used, each composite adder will consists of 3 ICs. Similarly, since
8-bit latches are used, each shift register has 1.5 ICs. The corresponding
IC chip counts for the two cases are given in Table XX.

74

Table XX: Comparison of IC chip counts for the two implementations of a
2-D digital beamformer.

IC chip
Fully parallel pipelined 	Modified parallel
16-point FFT + 16x16 	pipeline 16-point FFT
matrix transposition 	+ 8x16 matrix trans-
network 	 position network

4-bit adders 	864 	 384

multipliers 	 64 	 64

latches 	 1440 	 720

2-to- i MUX 	 - 	 96

8-to- i MUX 	 - 	 192

16-to-i MUX 	 384

Total 2752 	 1456

As can be seen, a reduction of approximately 507. in the IC chip
count may be realized by employing the modified design. Other
considerations which influence the choice of designs are the physical size
of the IC chip and power consumption. For example, a 16-to-i MUX comes in
a 24 pin package, while an 8-to-1 MUX comes in a 16 pin package. The
throughput rate of the modified parallel pipeline structure is about half
that of the fully parallel pipelined structure. This is expected because,
in a parallel pipeline structure, each component is operating at 100 7.
efficiency. Consequently, the throughput will decrease as the amount of
hardware is reduced.

Based on the comparison carried out above, it becomes apparent
that, if the processing components in a system is operating at 100%
efficiency, the only way in which throughput can be increased is by
increasing the amount of hardware. Indeed, for a given algorithm, there
are only three basic ways to increase the execution speed:

(a) Employ signal processing components (adders, multipliers, etc.)
with low intrinsic propagation delays.

(b) Exploit the multiple-stage nature of the algorithm and structure
the processor in a pipeline configuration.

(c) Exploit the inherent parallelism in the algorithm and implement
parallel branches in the processor.

75

A number of studies have been carried out with the purpose of exam-
ining alternative algorithms for efficient DFT computation. The Winograd
Fourier Transform algorithm (WFTA) [241 decreases the number of multiplica-

tions relative to the conventional FFT at the expense of increased number of
additions. The relative efficiency of hardware implementations of the DFT

based on different algorithms cannot be determined easily based solely on a
comparison of the number of arithmetic operations. Morris [25] carried out
a comparative study of FFT and the WFTA in terms of execution time and stor-
age requirements. He concluded that the WFTA offers neither time nor space
advantages over the FFT. However, the comparison is based on the criteria

of their relative execution time and their memory requirements amongst a
class of general purpose computers. Certain operations which are necessary
in a general purpose computer may be eliminated in a hardware implementa-
tion. For example, the data shuffling operation may be done by simply rear-
ranging connecting wires in a parallel- pipeline structure. In a technical
report, Hicks [26] compared the arithmetic requirements for the prime factor
algorithm (PFA) [27], the WFTA, the SWIFT algorithm [28], the DFT and vari-
ous FFT algorithms. He found that the WFTA was the most efficient algorithm
in terms of the required number of real multiplications. The next most
efficient algorithm was the PFA. The decision for selecting a particular
algorithm from the available alternatives should be based on the following,
i.e., one should:

(a) Analyze each algorithm and identify all parallel branches and pipeline
stages.

(b) Select a design for each algorithm which offers identical throughput
rate.

(c) Define a composite performance criterion based on:
(i) the hardware component count,

(ii) type of components,
(iii) circuit topology(simplicity, regularity, etc.)
(iv) complexity of control
(v) overall cost and power consumption.

(d) Select the structure which offers the best performance characteristics.

6.3 Parallel pipeline FFTs of larger dimensions.

Theoretically, one could exploit the parallel pipeline structure to
its utmost and realize throughput rates many orders of magnitude higher than
the basic system clock frequency. However, there are some fundamental prob-
lems which place a practical limit on the size of the FFT which can be imp-
lemented in the parallel pipeline structure, using commercially available
discrete digital ICs.

The first problem is the.dynamic range requirements of the process-
or. Consider a radix-2 FFT employing integer arithmetics, the result at
each stage is obtained by adding two numbers. Consequently the data word
size grows at a rate of one bit per stage. In order to maintain the hard-
ware word length, the result at the output of the butterfly must be down-

76

shifted by one bit. In addition, the twiddle multiplication also introduce
round-off errors or truncation errors. These errors will accumulate in suc-
cessive stages. Hence for large-dimension FFTs, floating point arithmetic
is often required. If integer arithmetic is employed, the data-word lengths
for the registers tend to be large, and also complicated adaptive scaling
techniques need to be used. The whole area of quantization and truncation
errors has been treated extensively in the literature [291-131]. It has
been shown that the quantization effect is significantly lower in a floating
point processor than in a fixed point processor.

The second problem is the large number of ICs required as the number
of parallel branches increases. Examining Table XX, it is seen that a large
number of the required ICs consist of latches. Even if none other than one
of the branches in a signal processing pipeline involve processing, latches
are required in all parallel branches to ensure synchronized operation.
Consequently, the number of latches increases rapidly as the number of
parallel branches increases. It is obvious that it would be impractical to
implement a fully parallel pipelined FFT using discrete digital ICs when the
order of the FFT exceeds the value 64.

The
accommodate
erate size,
each stage.
512x12=6144
stages, for

third problem is the magnitude of the physical space required to
all the wired interconnections. Let us consider an FFT of mod-
say 256. There are 256 complex (or 512 real) signal lines at
Assuming a wordlength of 12 bits, there would be a total of
wires distributed between the input, the output and intermediate
a fully parallel pipelined structure.

The first two problems can be alleviated somewhat by developing a
class of new signal processing ICs. This class of signal processing ICs
should have the following characteristics:

(i) Latches would be provided at either the input or the output of a
signal processing component such as adders and multipliers.

(ii) All components (adder and multipliers) would be parallel devices in
that each device would handle an entire data word. Preferably, they
should be able to handle complex arithmetic.

(iii) An IC chip containing a shift register array would be programmable
so as to provide variable delays to the signal measured in terms of
clock cycles. This would permit a single IC to provide the neces-
sary amount of delay in a branch of a pipeline section regardless of
its complexity.

(iv) The basic clock rate of these devices would be high, but the total
propagation delay through these devices might be many clock cycles.

There is no ideal solution to the third problem because in order to
process all the data in parallel, the data words must be available concur-
rently to the processors. Furthermore, once all the multiple stage charact-
eristic and the parallelism of the algorithm have been exploited, the only
means of increasing throughput rate is to reduce the propagation delay in

77

the devices. This might require defining a pipeline section at the logical
gate level [32]. In other words, a signal processing component such as a
floating point multiplier may consist of many pipeline sections. It may
take many clock cycles for the device to obtain one set of results. However
the throughput rate is only dependent on the propagation delay of a single
logical gate. In order to achieve ICs with these characteristics, one would
have to look to'Very Large Scale Integration (VLSI) technology. For
example, if a radix-16 butterfly and a 16x16 matrix transposition network
can be fabricated as monolithic devices, then it may be feasible to design
parallel pipeline FFTs of larger dimensions.

ACKNOWLEDGEMENTS

Helpful discussions and the reviewing of the manuscript by Dr. John
Litva are gratefully acknowledged. This work is supported by the Department
of National Defence, Ottawa, Canada under Research and Development Sub
Program 33C.

78

REFERENCES

[1] G.D. Bergland, 'Fast Fourier Transform Hardware Implementations-A
Survey', IEEE Trans. on Audio and Electroacoustics, Vol. AU-17, No. 2,
June 1969, pp.109-119.

[2] H.T. Kung and C.E. Leiserson, 'Systolic Arrays(for VLSI) 1 , Sparse
Matrix Symp. SIAM, 1978, pp.256-282.

[3] L.R. Rabiner and B. Gold, 'Theory and Application of Digital Signal
Processing', Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[4] A.V. Oppenheim and R.W. Schafer, 'Digital Signal Processing',
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[5] E.O. Brigham, 'The Fast Fourier Transform', Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1974.

[6] J.W. Cooley, P. Lewis and P.D. Welch, 'The Fast Fourier Transform
Algorithm and Its Applications', IBM Corp., Research Paper RC-1743
February 9, 1967.

[7] M.I. Skolnik, 'Introduction to Radar Systems', McGraw-Hill, New York,
New York, 1962.

[8] A.W. Rihaczek, 'Modern Radar: Principles and Design Tradeoffs' Part I
of a short Course Presented by MARK Resources Inc., January 1981.

[9] D.J. Mabey, 'An Outline of the DOC/DND Adaptive Radar Research
Program', Communications Research Centre Memo, October 1977.

[10]J.B. Thomas, 'An Introduction to Statistical Communication Theory',
John Wiley & sons, Inc., New York, New York, 1969.

[11] F.E. Nathanson, 'Radar Design Principles', McGraw-Hill Book Company,
New York, New York, 1969.

[12]J. Litva, 'Introduction to Sampled Aperture Radar Technology',
International Electrical and Electronics Conference, Proc. Vol. 1,
September 26-28, 1984, pp.140-143.

[13]R. Couvillon, P. Menard and D. Roy,"Development Of A One-Dimensional
FFT Sub-System For Application In Target Doppler Discrimination", Final
Report, Interactive Circuits and Systems, January, 1985.

[14]R. Couvillon, P. Menard and D. Roy,"Development Of A Radar Beamformer
Demonstration Unit Using The FFT-212 Processor", Final Report,
Interactive Circuits and Systems, January, 1984.

[15]C.E. Cook and M. Bernfeld, 'Radar Signals-An Introduction to Theory and
Applications', Academic Press, Inc., New York, 1967.

79

[16] W. Steenaart and N.U. Chowdary, "Real time Radar Signal Processors,
Department of Electrical Engineering, University of Ottawa, March 1984.

[17]L.W. Martinson and R.J. Smith, 'Digital Matched Filtering with Pipe-
lined Floating Point Fast Fourier Transforms(FFTs)', IEEE Trans. on
Acoustics, Speech and Signal Processing, Vol. ASSP-23, No. 2, April
1975, pp.222-234.

[18]W.M. erown and L.J. Porcello, 'An Introduction to Synthetic-Aperture
Radar', IEEE Spectrum, September 1969, pp.52-62.

[19]L.J. Cutrona, E.N. Leith, L.J. Porcello and W.E. Vivian, 'On the appli-
cation of Coherent Optical Processing Techniques to Synthetic-Aperture
Radar', Proc. IEEE, Vol 54, No.8, August, 1966, pp.1026-1032.

[20]C.W. Sherwin, J.P. Ruina and R.D. Rawcliffe, 'Some Early Developments
in Synthetic Aperture Radar Systems', IRE Trans. on Military Electron-
ics, Vol. MIL-6, April 1962, pp.111-115.

[21] K. Wu and M. Vant, 'Digital SAR Processor Based on the Coherent Sub-
Aperture Addition Technique', International Radar Conference, Paris,
1984, pp.425-429.

[22] B. Arambepola, 'Fast Computation of Multidimensional Discrete Fourier
Transforms', Proc. of IEE, Vol. 127, Pt. F, No. 1, February 1980.

[23]T.K. Truong, I.S. Reed, R.G. Lipes and C. Wu, 'On the Application of a
Fast Polynomial Transform and the Chinese Remainder Theorem to Compute
a Two-dimensional Convolution', IEEE Trans. on Acoustics, Speech and
Signal Processing, Vol. ASSP-29, No. 1, February 1981, pp.91-97.

[24] S. Winograd, 'On Computing the Discrete Fourier Transform', Proc. Nat.
Acad. Sci(U.S.), Vol. 73, April 1976, pp.1005-1006.

[25] L.R. Morris, 'A Comparative Study of Time Efficient FFT and WFTA Pro-
grams for General Purpose Computers', IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. ASSP-26, No. 2, April 1978, pp.141-150.

[26] R.C. Hicks,'Comparison of Arithmetic Requirements for the PFA, WFTA,
SWIFT, MFFT, FFT and DFT algorithms', U.S. Army Missile Command Tech-
nical Report RE-83-6, November 1982.

[27] D.P. Kolba and T.W. Parks, 'A Prime Factor FFT Algorithm Using High-
Speed Convolution', IEEE Trans. Acoustics, Speech and Signal Process-
ing, Vol. ASSP-29, August 1981, pp.806-816.

[28]W.W. Smith, 'SWIFT' IEEE Circuits-Syst. Symposium Workshop on Signal
Processing, Houston, Texas, April 1980.

[29] P.D. Welch, 'A Fixed-Point Fast Fourier Transform Error Analysis', IEEE
Trans. on Audio Electroacoustics, Vol. AU-17, June 1969, pp.153-157.

80

[30] C.J. Weinstein, 'Roundoff Noise in Floating Point Fast Fourier
Transform Computation', IEEE Trans. Audio Electroacoustics, Vol.
AU-17, September 1969, pp.209-215.

[31] C.J. Weinstein and A.V. Oppenheim, 'A Comparison of Roundoff Noise in
Floating point and Fixed point Digital Filter Realizations', Proc.
IEEE, Vol. 57, June 1969, pp.1181-1183.

[32] "Trams Final Report", Computing Devices Company, Report A031/FR,
Ottawa, 23 August 1983

81

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. 	ORIGINATING ACTIVITY 	 2a. DOCUMENT SECURITY CLASSIFICATION

Defence Research Establishment Ottawa 	 TINCLASSTrTED

.

Department of National Defence 	
2b GROUP

Otta 	..L.-Li-L, ' 	K1A Ertik 3. DOCUMENT TITLE

IMPLEMENTATION OF HIGH SPEED FFTs FOR RADAR SIGNAL PROCESSING

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Report 	
5. AUTHOR(S) 	(Last name, first name, middle initial)

CHAN, Hing C

6A DefeE Y5 eTE 	 7a. TOTAL NO. OF PAGES 	7b. NO. OF REFS

u
	

80 	 32 	
8a. PROJECT OR GRANT NO. 	 90 . ORIGINATOR'S DOCUMENT NUMBER(S)

33C 	 CRC Report No. 1394

8b. CONTRACT NO.

	

	 9b. OTHER DOCUMENT NO.(S) (Any other numbers that may be

assigned this document)

10. DISTRIBUTION STATEMENT

Unlimited

11. SUPPLEMENTARY NOTES 	 12. SPONSORING ACTIVITY

DREO

13. ABSTRACT

Discrete 	Fourier 	Transform 	(DFT) 	has 	found 	wide 	application 	in
radar 	and 	sonar 	systems. 	With 	an 	increased 	emphasis 	on 	digital 	signal
processing, 	radar systems have requirements for DFTs with ever increasing
data 	rates. 	The Fast Fourier Transform 	(FFT) 	algorithm permits efficient
computation of the DFT. 	In this work, both the fundamentals of FFT algo-
rithms 	and their implementation 	are discussed, 	with 	emphasis 	on 	hardware
design. 	Designs 	are presented for two 	radar signal 	processors 	employing
high 	speed 	FFTs, 	i.e., 	(1) 	a 	high 	speed 	Doppler processor and 	(2) 	a 	two-
dimensional 	digital 	beam-former.

DSIS

714;65

UNCLASSIFIED

Security Classification

82

KEY WORDS

Radar - FFT - Hardware

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the
organization issuing the document.

2a. DOCUMENT SECURITY CLASSIFICATION: Enter the overall
security classification of the document including special warning
terms whenever applicable.

2b. GROUP: Enter security reclassification group number. The three
groups are defined in Appendix 'M'of the DRB Security Regulations.

3. DOCUMENT TITLE: Enter the complete document title in all
capital letters. Titles in all cases should be unclassified. If a
sufficiently descriptive title cannot be selected without classifi-
cation, show title classification with the usual one-capital-letter
abbreviation in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: Enter the category of document, e.g.
technical report, technical note or technical letter. If appropri-
ate, enter the type of document, e.g. interim, progress,
summary, annual or final. Give the inclusive dates when a
specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shovvn on or
in the document. Enter last name, first name, middle initial.
If military, show rank. The name of the principal author is an
absolute minimum requirement.

6. DOCUMENT DATE: Enter the date (month, year) of
Establishment approval for publication of the document.

7a. TOTAL NUMBER OF PAGES: The total page count should
follovv normal pagination procedures, i.e., enter the number
of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the document.

8e. PROJECT OR GRANT NUMBER: If appropriate, enter the
applicable research and development project or grant number
under vvhich the document was vvritten.

8b. CONTRACT NUMBER: If appropriate, enter the applicable
number under which the document vvas vvritten.

9a. ORIGINATOR'S DOCUMENT NUMBERISI: Enter the
official document number by which the document vvill be
identified and controlled by the originating activity. This
number must be unique to this document.

9b. OTHER DOCUMENT NUMBERISI: If the document has been
assigned any other document numbers (either by the originator
or by the sponsor), also enter this number(s).

10. DISTRIBUTION STATEMENT: Enter any limitations on
further dissemination of the document, other than those imposed
by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this
document from their defence documentation center."

(2) "Announcement and dissemination of this document
is not authorized without prior approval from
originating activity."

11. SUPPLEMENTARY NOTES: Use for additional explanatory
notes.

12. SPONSORING ACTIVITY: Enter the name of the departmental
project office or laboratory sponsoring the research and
development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document, even though it may also appear
elsevvhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassi-
fied. Each paragraph of the abstract shall end with an
indication of the security classification of the information
in the paragraph (unless the document itself is unclassified)
represented as ITS), (S), (C), (R), or (U).

The length of the abstract should be limiter(to 20 single-spaced
standard typewritten lines; 71/2 inches long.

14. KEY WORDS: Key words are technically meaningful terms or
short phrases that characterize a document and could be heipfui
in cataloging the document. Key words shoulq be selected so
that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code
name, geographic location, may be used as key words but vvill
be follovved by an indication of technical context.

**CFI 2 4 1987

CHAN, H.C.
--Implqmçpta4e g hie speed...

TK
5102.5
C673e
#1394

DATE DUE

'CO N-

CRC LIBRARY/BOKIOTHEGUE CRC
TK5102.5 C673e 111394 c. b

INDUSTRY CANADA INDUSTRIE CANADA

111 In 11 11101 209087

