Communications

 Research Centre
EHF SHELF POWER MONITOR AND CONTROLLER

by

R. Addison

This work was sponsored by the Department of National Defence, Chief of Research and Development Branch. Task No. 32A

COMMUNICATIONS RESEARCH CENTRE

DEPARTMENT OF COMMUNICATIONS

CANADA

EHF SHELF POWER MONITOR AND CONTROLLER

by
R. Addison*

(Radar and Communications Technology Branch)

Chief of Research and Development Branch, Task No. 32A.

- With DREO/ED but on secondment to the Space Systems Directorate of CRC.

$$
\begin{aligned}
& \left\lvert\, \begin{array}{c}
\text { and } \\
0 \\
0
\end{array}\right.
\end{aligned}
$$

LIST OF FIGURES

Page
Fig. 1.l CRC Ground Terminal 2
Fig. 1.2 EHF Ground Terminal Block Diagram 3
Fig. 2.1 Front Panel 5
Fig. Al.l LO Detector Calibration 16
Fig. Al. 2 Pi Detector Calibration 17
Fig. Al. 3 Po Detector Calibration 18
Fig. Al. 4 Pr Detector Calibration 19
Fig. El Special Purpose Parallel I/O and Switch Driver Board Block Diagram 26
Fig. Fl Communications Board Layout 28
Fig. F2 Communications Board Schematic 29
Fig. Gl Display Board Layout 31
Fig. G2 Display Board Schematic 32
Fig. Hl Rear Panel Layout 34
Fig. H2 Rear Panel and Power Supply Schematic 35

In 1981, the Military Satellite Communications (MIISATCOM) section of Communications Research Centre (CRC) installed an Extremely-High Frequency (EHF) ground terminal to use the Lincoln Experimental Satellites LES 8 and LES 9. The antenna was put on top of the elevator shaft and covered with a radome. See Figure l.l, CRC EHF Ground Terminal. The shelf on the back of the dish was used to house the Radio Frequency (RF) equipment. The Intermediate Frequency (IF) and baseband equipment was installed in a lab three floors below.

It was desired that the shelf be configurable to various operating modes. The possible choices were: LES 8 or LES 9 satellites, receive only or transmit/receive, and dish or horn antenna on the satellite (the antennas had slightly different frequencies).

The distance between the two installations suggested remote control of the shelf hardware. Such a system was built to monitor power levels and to control the operating modes of the shelf. This enabled rapid diagnosis of problems and quick changes of configuration without leaving the lab.

This document first explains the hardware used in the monitoring and controlling system. This includes the previously existing system, the shelf computer and the display panel. See Figure l.2, EHF Ground Terminal Block Diagram for the system diagram.

Finally, the software developed for the shelf computer will be covered. The program listing is included as Appendix I, ROM Program Listing.

Fig. 1.1 CRC EHF Ground Terminal

Fig. 1.2 EHF Ground Terminal Block Di agram

The hardware consists of the shelf computer that takes the measurements and controls the microwave switches, and a command and display panel located three floors below. See Figure 1.2, EHF Ground Terminal Block Diagram.

2.1 EXISTING HARDWARE

When the shelf was designed, provision was made for remote control, but no computer was installed. Instead, the modes were selected by Dual-In-Line (DIP) switches and Light Emitting Diodes (LEDs) indicated the position of the waveguide switches. To change modes, one had to climb to the dome and change the switches.

Later, an LSI 11 computer was incorporated to control the switches and to monitor the power levels. An analog acquisition board was built, as well as a display panel. The system was controlled by a terminal that was co-located with the display panel in the lab.

The previous display panel consisted of a display board and a communications board. The display board showed five three-digit power levels, each with a LED to indicate valid (green) or invalid (flashing red) data. The communications board intercepted all data to the terminal and passed on the data that was not addressed to the display panel.

2.1.1 Problems With The Old System -

The previous system was not reliable. A redesign of the system was required to fix the following problems:

1. One of the analog signals was low enough to be affected by the noise of the analog acquisition system. This could be corrected by decreasing the noise level of the existing board or by using a different board with better characteristics.
2. The system required a VTl00 Terminal to control the operation of the shelf. This VTl00 had to be dedicated to a task which took about five minutes per day.

FRONT PANEL

Fig. 2.1 Front Panel
3. The existing communication board was unreliable and required periodic maintenance. The communication protocol was not robust and could cause the panel to enter illegal states.
4. The panel powered up displaying erroneous data.
2.1.2 Changes Implemented -

The following changes were made to fix the above mentioned problems:

1. To solve the noise problem, a new analog acquisition board was used. This board had the advantage of programmable gain, differential inputs and a more mature design. These characteristics served to reduce the noise effects to a tolerable level.
2. A keypad was added to the front panel to command the different modes of operation. See Figure 2.1, Front Panel. The LEDs used to indicate valid/invalid data on the display panel were reassigned to system status LEDs. This enabled the VTl00 to be freed for other projects.
3. The entire communication board was redesigned. The new design amounted to significant parts reduction and improved reliability. The communications protocol was also changed to increase the robustness. The protocol is further described in Appendix D, Communications Protocol.
4. A power up reset was implemented to ensure that the displays were initialized. Also a LED minus sign was added to improve the appearance of negative power levels.
5. A rear panel containing power supplies and external connectors was added to the display panel.
2.2 EHF SHELF HARDWARE

The control hardware on the shelf is comprised of the shelf computer, its parallel Input/Output (I/O) board with switch drivers, and waveguide switches. Also controlled are several coaxial switches and some power relays. To sense the power levels, there are microwave diode detectors. The calibration curves of the detectors can be found in Appendix A, Microwave Detector Calibration.
2.2.1 Shelf Computer -

The shelf computer contains four boards. They are:

1. KDIl-HA LSI $11 / 2$ Processor Board with EIS and FIS
2. MXV11-A Multifunction Board
3. ADVIl-C Analog Input Board
4. Special Purpose Parallel I/O and Switch Driver Board

With the exception of the special purpose parallel I/O Board, all the boards are standard Digital Equipment Corporation (DEC) boards and are documented in the Microcomputers and Memories Manual, and the Microcomputer Interfaces Manual, both available from DEC. The parallel I/O board is detailed in the next section.

The LSI 11/2 processor supports the standard PDP 11 instruction set. The Extended Instruction Set (EIS) gives the processor fixed point multiply and divide capability. The four basic floating point operations are provided by the Floating point Instruction set (FIS).

The MXVIl-A Multifunction board provides the minimum support required by the processor. It contains l6K words of Random Access Memory (RAM) and 4 K words of program Read Only Memory (ROM). Also on board are two serial ports, one of which is used to communicate with the display panel. The other serial port is unused.

The ADV1l-C Analog Input board can sample up to eight channels using differential inputs with 12 bit resolution. only five of the eight channels are used in this application. The important feature of this board is the programmable gain (1X, 2X, $4 X$ or 8 X) which enables the low level signals to be accurately digitized.
2.2.2 Special Purpose Parallel I/O And Switch Driver Board -

For a block diagram, see Appendix E, Special Purpose Parallel I/O and Switch Driver Board Block Diagram.

The special purpose parallel I / O and switch driver board was built in the CRC MILSATCOM lab to control the microwave switches and to display their positions. Initially, the computer control of this board was bypassed. Front panel switches provided the control. When the processor was installed, the board was designed to respond to computer control as well.

The LSI 11 Q-BUS interface of this board looks like two 16 bit parallel ports - one input (read only) and one output (read or write). The input bits are TTL levels indicating the positions of the switches, and status of the Travelling wave Tube (TWT) amplifier. The output bits are converted to appropriate levels to drive the switches and relays. For bit assignments, see Appendix B, Special Purpose Parallel I/O Bit Assignments.

There are eight latching waveguide switches which, when switching, require two amps of current. To have all eight switch at once would require a hefty power supply. In order to minimize the power requirements, only one switch is changed at a time. A sequencer is used so that within two seconds all switches can be changed. This sequencing through the switches is done automatically by circuitry on the board and is transparent to the user.

2.2.3 Communications With Panel -

Command and display information are passed by serial link between the shelf and the display panel. The shelf communicates by the console port of MXV1l multi-function board in the LSI ll. The character-serial (asynchronous) signal passes through a Gandalf LDS 120 modem, down three floors, and through another LDS 120. The signal then enters the AY-3-1015 Universal Asynchronous Receiver/Transmitter (UART) on the communication board.

The characteristics of the asynchronous serial link are: 1200 baud data rate, 8 bits, no parity, l stop bit and RS232-C signal levels. All control lines are held in the active state.

For information on panel-to-shelf communications, see Appendix C, Keypad Codes.

For detailed information on the shelf-to-panel communications, see Appendix D, Communications Protocol.

2.3 COMMAND AND DISPLAY PANEL

The command and display panel consists of five numeric displays, five status displays, an AC switch and indicator LED, and a command keypad.

Three decimal digits make up each numeric display. The displays show TWT output SWR, TWT output power, TWT input power, LO power for upconverter, and LO power for downconverter.

The status displays are green LEDs below the numeric displays. They indicate TWT AC power on, TWT ready, TWT RF switched on, all waveguide switches set, and system ready.

The command keypad functions are described in Appendix C, Keypad Codes.
2.3.1 Installation And Configuration Information -

The only configurable option is the baud rate of the communications board. The switch settings are detailed in Appendix F, Communications Board Schematics.

The RS232-C interface on the back looks like a terminal (DTE). Both Request To Send (RTS pin 4) and Data Terminal Ready (DTR pin 20) are pulled high. The interface is as detailed in section 2.2.3, Communications with Panel.

2.3.2 Front Panel Operation -

For a diagram of the front panel, see Figure 2.1, Front Panel.

Upon power up, all displays are set to zero and the status LEDs are turned off. The default mode is LES 8 , receive only, using the dish. The LO power levels are monitored and the TWT is off.

To change modes, push the appropriate mode button (any of the eight LES $8 / 9$ buttons or the local loopback) followed by the GO button. If the wrong button is pushed, press CLR KEY and start again.

If a receive only mode (green buttons) is chosen, the TWT displays will show OFF. The waveguide switches will then be set. Successful setting of the switches will cause the SWITCHES SET light to go on. If, after a minute, the light is not on then there is a problem on the shelf. After the switches are set, the SYSTEM READY light should come on to indicate that the TWT and switches are all properly configured. The shelf is now ready for operation.

If a transmit mode (pink buttons) is chosen, all displays will become active. As with receive only mode, the SWITCHES SET light indicates that the waveguide switches are properly set. The transmit mode requires the Hughes TWT amplifier which needs a five minute warm up period. After the switches are set, the TWT is turned on (AC ON light). If it was in standby (AC ON, TWT READY already lit), it will be ready right away, otherwise there is a five minute wait for the READY light. When it is ready, the RF is switched on. Now the system is properly configured and ready to operate, so the SXSTEM READY light is turned on.

When switching into a receive only mode after transmitting, the TWT is not turned completely off. Instead, it is put on standby. This is indicated by AC ON, READY lit and RF ON turned off. If it is desired to switch the TWT off from the standby mode, press the TWT OFF button. This will immediately turn off the TWT, but leave the system in the current mode.

All non-labelled keys on the keypad are inactive and ignored.
2.3.3 Communications Board -

For schematics, see Appendix F, Communications Board Schematics.

The heart of the communications board is the AY-3-1015D UART. This integrated circuit receives characters from the keypad encoder and transmits them serially to the shelf. It also receives the display information and routes the data to the display board. The baud rate is supplied by the Kll35A Dual Baud Rate Generator. The rate used is 1200 baud, but the chip is DIP switch configurable for 16 different baud rates. only one channel of the generator is required, the other is unused.

The keypad, found on the front panel, is a four by four switch matrix. This is scanned by the $74 C 922$ Keyboard Encoder which generates four bit codes for each key press. These codes are strobed into the UART using a 74 LS22l Dual Monostable Multivibrator (one-shot) to shape the strobe. The UART takes in
eight bits but the keyboard encoder only generates four. This leaves four bits to be hardwired. The least significant bit (bo) is set to zero (thus only even keycodes are generated). The next four bits (bl - b4) are connected to the keyboard encoder. The upper three bits (b5-b7) are set so that the keycodes generated start at decimal 64 (ASCII '@'). This ensures that all keycodes are printable ASCII characters.

When a break occurs, the Framing Error (FE) pin of the UART is asserted. This, combined with some gates, causes the High/Low Byte flip-flop to be reset at the end of the break. The High/Low Byte flip-flop is used to generate a strobe that latches the first byte in the High Byte latch. The flip-flop also generates a strobe for the display board that latches the entire word when the second byte is received.

The TTL signal levels to and from the UART are converted to RS232-C levels by the MCl488 Driver and by the MC1489 Receiver.

2.3.4 Display Board -

For schematics, see Appendix G, Display Board Schematics.
The display board contains the circuitry to demultiplex the display information and to display five 3-digit numbers. The information is latched on a signal from the communications board. The upper bit (bl5) of the word from the latch is ignored. The next three significant bits (bl2-bl4) are routed to the most significant digit of the display cells. The bits (b8-bll) go to the middle digit of the display. The next four bits (b4-b7) go to the least significant digit of the display. The three bits (bl-b3) are interpreted as the display cell address. Valid values are 1 to 5. The least significant bit of the low byte (bo) is routed to the status light of the display cell.

Upon receiving a strobe from the demultiplexer, a display cell will latch the digits and the status bit. The latches drive TI 311 Hexadecimal displays. The status bit will cause the LED to turn green if set, and cause it to turn off if reset.

Also on this board is a 74 LSl2l Monostable Multivibrator to provide the power-up reset. This resets the 74 LS373 Octal Latches used in the display cells.

For more information on the display cell addresses, see Appendix D, Communications Protocol.
2.3.5 Rear Panel And Power Supply -

For schematics, see Appendix H, Rear Panel and Power Supply Schematics.

On the rear panel is the DC power supply hardware and the DB25 connector for the RS232-C interface. The AC come in on a removable power cord, is fused and switched on the live wire, and then is connected to two DATEL power supply modules. The modules are the USM 5/5 (5V @ 5A) and the BPM 15/200 (+15V @ 200 mA , -15 V @ 200 mA). The DC ground is connected to the third prong of the $A C$ plug.

3 SOFTWARE

The program for the controlling computer, POWMON, is stored entirely in 4 K words of ROM on the MXVll Multifunction Board. The source was written in PDP 11 assembler language using an RT 11 operating system.

In general, the design of the software was not limited by space, capabilities or time. The MXV1l board can handle up to 8 K words of ROM. The LSI 11 is a very powerful processor and was not required to use its full capabilities. Also, the displaying of the power levels is not a time critical task. In summary, the design of the power level monitoring system was without major constraints.

A program listing can be found in Appendix I, ROM Program Listing. This listing contains many comments that will complement the software description.

3.1 PROGRAM CODING METHODS

The original version of the program POWMON was almost exclusively written in MACROs. MACROs look similar to subroutines, but cause inline code to be generated at assembly time. These constructs are assembly language analogues of the ADA generics. Unfortunately, due to the limitations of the assembler, small changes in the program often caused assembler errors (this was due to the length limit on local symbol blocks). Another problem was that the program used almost all of the available 4 K word ROM space (up to 8 K words could be used, but the ROMs required would be more expensive and harder to program).

The difficulties incurred in updating the program forced a rewriting of the code. The major change was that many of the functions previously implemented by use of MACROs were done using subroutines. This had the advantage of decreasing the memory requirement and facilitating updates. MACROs are complex assembler structures and are not easy to interpret even for advanced programmers. The conversion to subroutines improved the readability of the code.

3.2 MODE AND COMMAND SELECTION

When a key is pressed on the front panel, an ASCII keycode is transmitted to the computer. The interrupt service routine then interprets this character. If a mode key was pressed, the associated mode pointer is saved in a memory location. If the CLR KEY was pushed, then this memory location is cleared. When the GO key is pressed, a flag is set to alert the main program to change modes. The TWT OFF key causes the previous mode to be reselected, but with the TWT turned off. All other keys are ignored.

The main program detects the flag set by GO or TWT OFF and takes appropriate action. For a transmit and receive mode, the microwave switches are set and the TWT is turned on. The program waits for the TWT to be ready before proceeding with normal monitoring. A receive mode selection puts the TWT into standby if it was on. It is turned off if the TWT OFF key was pressed. The microwave switches are set and then normal monitoring takes place.

3.3 DATA ACQUISITION AND CONVERSION

For each channel, the 'MON' MACRO invokes the 'MONSUB' subroutine. Given the channel number, the subroutine 'READ' selects the correct analog-to-digital scale and then polls the ADVII Analog Input Board to get the value. Eight values are taken and averaged in subroutine 'MONSUB'.

These values are converted by direct table lookup in subroutine 'Lookup' to dBm power levels. The results are checked by 'CHECK' to ensure they are within design limits. If not, 'CHECK' turns off the TWT amplifier to protect it from damage. This is readily visible on the display as the TWT AC ON status light will go off.

The reflected power measurements are not used directly. The difference (in $d B$) between the output power and reflected power is used to calculate the SWR ratio by table lookup. This

SWR is checked to ensure it is within limits as specified by the Hughes TWT manual.

The lookup tables can be found in the end of the software listing of Appendix I, ROM Program Listing. The tables are graphically depicted in Appendix A, Microwave Detector Calibration.

3.4 DATA AND STATUS DISPLAY

After the values have been calculated, they are converted to BCD. When in receive only mode, the TWT power measurements are not displayed. The letters "OFF" are shown in the display to indicated that the TWT is off. The status bit and display address are tacked onto the word by subroutine 'ADR'. The status bits are stored in an array called 'LIGHTS', and are turned on by the MACRO 'LIGHT', off by the MACRO 'DARK'. The program continually loops through the data acquisition, conversion and display unless interrupted by a mode change command.

4 CONCLUSION

This system has been in operation in the final form since June 1983. During this time, it has performed as designed and successfully facilitated reconfiguration and trouble shooting of the EHF ground terminal.

One possible improvement would be to add a reset key to the keypad. When the program is waiting for the TWT to be ready, all mode changes are ignored. If one wants to changes the mode (maybe the wrong button was pressed), one has to wait the five minutes for the TWT to warm up. A reset key would bring the program out of this waiting loop.

Another improvement would be to enlarge the lookup tables to have finer steps in the numeric display. An alternate solution would be to use the existing tables to interpolate.

APPENDIX A
 MICROWAVE DETECTOR CALIBRATION

There are five microwave detectors on the shelf. They measure:

1. Downconverter Local Oscillator Power 12.380 GHz
2. Upconverter Local Oscillator Power
12.580 GHz
3. TWT Input Power
36.840 GHz
4. TWT Output Power
36.840 GHz
5. TWT Output Reflected Power
36.840 GHz

Though the LOs have slightly different frequencies, their calibration curves are identical. Thus, there is only one LO calibration required.

The four graphs, Figures Al.l to Al.4, depict the lookup tables used in the software. They take into account all the coupling attenuation and give direct power levels based on the Analog to Digital conversion count. This count is proportional to the voltage put out by the detectors.

LO DETECTOR CALIBRATION

 At $12.580 \mathrm{GHz}, \mathrm{A} / \mathrm{D}$ Gain $=8$

Fig. Al. $2 \mathrm{P}_{\mathrm{i}}$ Detector Calibration

At $36.840 \mathrm{GHz}, \mathrm{A} / \mathrm{D}$ Gain=2

Fig. Al. 3 Po Detector Calibration

Pr DETECTOR CALIBRATION
 At $36.840 \mathrm{GHz}, \mathrm{A} / \mathrm{D}$ Gain=8

Fig. A1.4 Pr Detector Calibration

APPENDIX B

SPECIAL PURPOSE PARALLEL I/O BIT ASSIGNMENTS

The output port assignments are:
bits 0-6 $0=$ LES $8 \quad 1=$ LES 9
bit $7 \quad 0=$ normal $1=$ loopback
bits 8-9 $0=$ dish $1=$ horn
bit $10 \quad 0=$ LES $8 \quad 1=$ LES 9
bit $11 \quad 0=$ normal $\quad 1=$ loopback
bit 12 -unassigned-
bit $13 \quad 0=W J$ AC off $\quad 1=W J A C$ on
bit $14 \quad 0=$ TWT AC off $1=T W T$ AC on
bit $15 \quad 0=T W T$ RF off $1=T W T R F$ on
To select LES 8 or LES 9 operation, all applicable bits must be set to the LES 8 or LES 9 mode and the loopback bits (b7 \& bll) must be put to normal. To select local loopback, the LES 8/LES 9 bits (b0-b6 \& blo) must be set to LES 8 and the loopback bits must be set to loopback.

Bit 13 turns on the Watkins-Johnson amplifier. Bit 14 turns on the Hughes Travelling-Wave Tube amplifier. The TWT RF (bl5) must be set in all modes that transmit.

The input port bit assignments are feedbacks from the switches for bits 0-13. Their interpretation is the same as the output port. Bit 14 indicates the TWT ready and bit 15 is unassigned.

APPENDIX C

KEYPAD CODES

Code(Decimal,ASCII)	Key		Meaning
Mode Keys			LES 8, Receive only, Dish
$\begin{array}{ll} 64, & @ \\ 66, & \text { B } \end{array}$	8 8	->	LES 8, Transmit and receive,
Dish 68, D	$8<-$		LES 8, Receive only, Horn
70, F	8	->	LES 8, Transmit and receive,
Horn $72, \mathrm{H}$	9 <-		LES 9, Receive only, Dish
74, J	9	->	LES 9, Transmit and receive,
Dish $76, \mathrm{~L}$	$9<-$		LES 9, Receive only, Horn
78, N	9	>	LES 9, Transmit and receive,
Horn $80, \mathrm{P}$	$\langle--\rangle$		Local loopback mode
-unused- $82-86$			Unallocated
Command Keys $88, x$	GO		Change mode to last pressed
key 90, Z	CLR KEY		Clear last pressed mode key
$\begin{gathered} \text {-unused- } \\ 92 \end{gathered}$	،		Unallocated
Command Key 94, ^	TWT. OFF		Turn off TWT (TWT is left in standby when not in
use)			

The code (or its ASCII representation) is the byte generated by the UART and sent to the shelf when the key is pressed. Note that no odd numbered codes are generated and that all codes are printable ASCII characters.

Mode keys must be terminated with the $G O$ key to take effect. Modes are either green (receive only mode) or pink (transmit/receive mode).

Command keys (all yellow keys) are acted upon immediately.
All unlabelled keys are inactive and ignored.

APPENDIX D COMMUNICATIONS PROTOCOL

Each display consists of three BCD digits. This means that 12 bits are required for the numeric display. If one bit is assigned to the status light, that leaves three bits to address the display. Actually, only ll bits are used for the numeric display. The most significant digit can only take on values 0 to 7.

Each display modification consists of four 8 bit bytes high byte, low byte and then two guard bytes. The messages are interpreted as follows:

High byte
bits 0-3 Middle digit (BCD encoded)
4-6 Most significant digit (3 bits only)
7 Ignored by communications board
Low byte
bit 0
Status light
1-3 Display address (1-5)
4-7 Least significant digit (BCD encoded)
Guard byte
bits 0-7 all ls
Guard byte
bits 0-7 all ls

One guard byte is necessary to allow the latch circuitry to return to initial state prior to the next update. The other byte is used to ensure an even number of bytes (for the High/Low Byte flip-flop).

Prior to sending a set of five new values, a break is sent. This causes the communications board to reset the High/Low Byte flip-flop. If the an error in the communication line caused the flip-flop to be in the wrong state (expecting a high byte when a low one is being sent), this break ensures that the flip-flop starts at the proper state.

Address	Numeric Display	Status Light
5*	Down LO Power	SYSTEM READY
1	Up Lo Power	SWITCHES SET
2	TWT Pi	TWT RF ON
3	TWT Po	TWT READY
4	TWT SWR	TWT AC ON

*Address 5 originally was address 0. When a break was transmitted, it would be interpreted as a zero word for address 0 which would clear the display cell. To circumvent this problem, that display cell was reassigned to address 5. In the software, references to address 0 are interpreted as references to address 5.

APPENDIX E

SPECIAL PURPOSE PARALIEL I/O AND SWITCH DRIVER BOARD BLOCK DIAGRAM

Fig. El Special Purpose Parallel $I / 0$ and Switch Driver Board Block Diagram

APPENDIX F
 COMMUNICATIONS BOARD SCHEMATICS

Communications Board Components

Connectors:

J4 Terminal block, 4 wide, DC power, from rear panel
J6 8 pin socket, RS232 port, to rear panel
J7 8 pin socket, keypad interface, to front panel
J8 16 pin socket, parallel data, to display board
J9 Quick release plug, power-up reset, from display board
Switches:
S2 Keypad switch matrix, found on front panel
S3 DIP switch, 4 wide, baud rate selector
Integrated Circuits:
Ul MCl488P, RS232 line driver
U2 MCl489P, RS232 line receiver
U3 74LS221, Dual monostable multivibrators
U4 74LS374, Octal latch
U5 74C922, 16 key encoder
U6 74LS74, Dual D flip-flops
U7 74LS27, Triple 3-input NOR
U8 74 LSOO, Quad 2-input NAND
U9 AY-3-1015, UART
U10 Kll35A, Dual baud rate generator
Ull MC7812CT, +12V regulator
Discrete Components:
R1-R4 lokOhm, l/4W
Cl-C8 C271K5, 270pF

+ other unlabelled resistors and capacitors on the schematics

Fig. Fl Communications Board Layout

APPENDIX G

DISPLAY BOARD SCHEMATICS

Display Board Components

Connectors:
J5 Terminal block, 2 wide, DC power, from rear panel
J8 16 pin socket, parallel data, from communications
board
J9 Quick release plug, power-up reset, to comm. board
Integrated Circuits:
Ul2 74LS374, Octal latch with tristate outputs
Ul3 7404, Hex inverters
Ul4 74LS 374 , Octal latch with tristate outputs
Ul5 74LSl38, 3 to 8 line decoder
Ul6 74 LS08, Quad 2-input AND
Ul7 SE555N, Timer
Ul8 7432, Quad 2-input OR
U19 74121, Monostable multivibrator
U20-U24 7400, Quad 2-input NAND
U25-U29 74LS373, Octal latch with clear
U30-U34 74LS373, Octal latch with clear
Display Elements:
Ll-L5 Red/Green bidirectional LEDs, indicate status
L6-L10 TIL311, Hexadecimal displays with logic
Lll-L15 TIL3ll, Hexadecimal displays with logic
Ll6-L20 TIL3ll, Hexadecimal displays with logic
L21 Bar LED DIP, 2-wide, used as minus sign
L22 Red LED, used as AC power indicator
Discrete Components:
R5 l615-391G, Resistor DIP, 390 Ohms x 15, common pin R6 1413-331G, Resistor DIP, 330 Ohms x l3, common pin + other unlabelled resistors and capacitors on the schematics

Fig. G1 Display Board Layout

Fig. G2 Display Board Schematic

APPENDIX H
 REAR PANEL AND POWER SUPPLY SCHEMATICS

Rear Panel and Power Supply Components

Connectors:

Jl AC receptacle
J2 DB25 female, for RS232 port, looks like a DTE
J3 Quick release plugs(2), to AC switch on front panel
J4 Terminal block, 4 wide, DC power, to communications
board
J5 Terminal block, 2 wide, DC power, to display board
J6 8 pin socket, for RS232 port, from communications board

Switches:
Sl Toggle switch, SPDT, for switching AC, on front panel
Fuses:
Fl 250 V @ 1A, AC power
Power Supply Modules:
MI USM-5/5, 5V @ 5A
M2 BPM-15/200, +/-15V @ 200 mA

REAR PANEL

Fig. Hl Rear Panel Layout

APPENDIX I

ROM PROGRAM LISTING

```
.TITTE POMMON - VERSION 1 REVO4 29 Jun 83
;***********************************************************************
;
    ;REV04 generated by Robin Addison
; 29 Jun }8
;CHANGES: 1. Use the AXV-11 board for
; A/D and use a lookup table
; to produce dBm.
; 2. Use modified interface
; front panel and respond to
; keypad.
; 3. Rewrite of main code to
; improve program flow.
; 4. Reformatting of code and
; comments to improve readability.
;
;************************************************************************
;
;REV03 GENERAIED BY DAVE SIM 1983-05-03
;CHANGES: IEAVE TWT AC POWER ON AFIER
; FIRST TTIME SETECIED.
; CNII/R CLEARS THIS FUNCIION
; NEXT TIME RX MODE SETECTED.
;
;***********************************************************************
;
    ;REVO2 GENERATED BY DAVE SIM 1983-04-29
    ;CHANGES: REMOVE SOME JUMPS IN FLOW
    ; ADD MORE FEEDBACK MESSAGES
;
;*************************************************************************
```

;REVOI GENERATED BY DAVE SIM 1983-04-18	
;ADDITIONS: TRAP CATCHERS	
$;$	STACK SEIUP
;	INIERRUPT SVC FOR KBD
;	TRANSIATE DEFAUITS TO IES8
$;$	DISH CROSSITNK RECEIVER

[^0]

;	DECLARATIONS	
POWER	$=\% 4$	
OFFPOW	$=377$	
NOMASK	$=0$	
SWREG	= 170000	;PATCH TO 130000 FOR TESTING
FBREG	= 170002	;PATCH TO 130000 FOR TESTING
DISP	= 177566	
TXCSR	$=177564$;Communications interface -
TXBUF	= 177566	; Tx to display panel
RXCSR	$=177560$; Rx from keypad
RXBUF	$=177562$	
ADCSR	$=170400$;Analog to digital converter
ADBUF	= 170402	
DAABUF	$=170404$	
DABELF	$=170406$	
ADGO	$=1$	
SCALE2	$=4$	
SCALE8	$=14$	
RX	$=000000$;Switch register definitions
TX	$=160000$	
TRANLA	$=004200$	
DISH	$=000000$	
HORN	$=001400$	
Les8	$=000000$	
LES9	$=002177$	
TWIBIT	$=160000$	
TWIRF	$=100000$	
IWIAC	$=040000$	
TWIRDY	$=040000$	
WJON	$=020000$	

; INITIALIZE TRAP AND INIERRUTPT AREAS
. ASECT

-	$=4$	
.WORD	. +2 , HALT	;Time out
.WORD	. +2 ,HAIT	;Reserved
.WORD	. +2 ,HAIT	; BPT
.WORD	. $+2, \mathrm{HALT}$;IOT
.WORD	1000,340	;Power fail
	$=60$;Console
.WORD	KBINTR, 340	
	$=100$; Clock
.WORD	. $+2, \mathrm{RIII}$	

MACRO DEFIINITIONS			
.MACRO	BCD	POWER, ? STEEP	; Converts the binary Power to a
	CLR	Rl	; BCD representation
	TST	POWER	
	BGE	STEP	
	NEG	POWER	
STEP:	COUNT	POWER,\#100.	;Find the hundreds
	SHFT4	Rl	
	COUNT	POWER, \#10.	;Find the tens
	SHFT4	R1	
	COUNT	POWER,\#1	;Find the ones
	MOV	Rl, POWER	
.ENDM			
. MACRO	COUNT	A, B, ? 100 P , ?ST	; Finds the number of Bs in A
LOOP:	CMP	A, B	; ie: (Rl) $=\operatorname{INT}(\mathrm{A} / \mathrm{B})$
	BLT	ST	
	INC	Rl	
	SUB	B, A	
	BR	LOOP	
ST: .ENDM			
. MACRO	DARK	X	;Macro to turn off light X
	MOV	\#X,RO	
	ASL	RO	
	CLR	LITHIS (RO)	-
	MON	X	
. ENDM			
. MACRO	IIGFT	X	;Macro to turn on light X
	MOV	\#X,RO	
	ASL		
	MOV	\#1,IIGFTS (RO)	
	MON	X	
. ENLM			
. MACRO	MON	DISN	;Macro invokes the monitoring
	MOV	\#DISN, R2	; subroutine
	CALL	MONSUB	
. ENDM			

.MACRO MDS A ;This macro is used to move information to
MOV A,R5
SWAB R5
CALL DISEND
SWAB R5
CAIL DISEND
MOV \#177,R5
CAIL DISEND
CALL DISEND
.ENDM

.MACRO OFF	DISN	iThis macro moves the word 'OFF' to the
MOV	\#OFFPOW, POWER	; display. By looking up the correct number
MOV	\#DISN,R2	; in memory.
CALJ ADR		

. ENDM
.MACRO PAUSE
$\begin{array}{ll}\text { MOV } & \text { RO,-(SP) } \\ \text { MOV } & \text { \#229.,RO }\end{array}$
CALI FWAIT
MOV (SP)+,RO
.ENDM
.MACRO SHFT4 X
ASL X
ASL X
ASL X
ASL X
. ENDM

MAIN PROGRAM			
START: RESTRT:	CIR	TWIFTG	; Begin with TWP flag off
	CLR	@\#RXCSR	; Ensure no interrupts
	CIR	CMDRDY	;Fake KBD ready bit
	CLR	CMDWRD	;Fake KBD data
	MOV	\#120000, SP	; Set up stack in RAM area
	CLR	RO	
	MIPS	RO	; Clear processor status
	TSTB	@\#RXBUF	; Clear ready bit
	MOV	\#100,@\#RXCSR	;Enable keypad interupts
MAIN:	CLR	ITGFTO	
	CLR	IIGHT1	
	CLR	LIGHT2	
	CLR	ITGHI3	
	CLR	LIGHT4	
	CLR	RFON	;TWI RF on flag
	INC	RFON	;Set it for startup monitoring
	MOV	\#1, DSBUF	;Clear display panel
	MOV	\#17,@\#DISP	
	CAIL	DOBRK	;Output break to reset display
INIT:	MDS	DSBUF	
	ADD	\#2,DSBUF	
	CMP	DSBUF,\#17	
	BLT	INIT	
	MOV	\#1, DSBUF	
;	Begin power monitoring and check for keypad input		
MONIT:	TSTB	CMDRDY	;Keypad hit?
	BMII	1\$	
	JMP	TEST	;No - monitor mode
1\$:	CLR	CMDRDY	;Yes - clear flag
	TST	CMDWRD	;Put in command lookup offset
	EMII	2\$; if CMDWRD=-1 then use previous command
	MOV	CMDWRD, TABIN	
2\$:	DARK		;Turn off all lights
	DARK	1	
	DARK	2	
	DARK	3	
	DARK	4	.
	CMP	TABIN, \#16.	
	BEQ	TXSET	
	BIT	\#2,TABIN	
	BNE	TXSET	
RXSET:	CLR	RFON	;Receive mode only
	CALT	SWISET	
	CAIT	TWIOFF	
	LIGFTI	0	;Tum on SYSTEM READY light
	JMP	RXMON	

TXSET:	MOV	\#1,RFON	;Transmit or translate mode
	CALT	SWISET	
	CALI	TWION	
	IIGHT	0	;Turn on SYSTEM READY light
	JMP	TXMON	
TEST:	TST	RFON	; Is Tx flag set?
	BEQ	RXMON	;No - Rx monit mode
	JMP	@\#TXMON	;Yes - Tx monit mode
RXMON:	CALT	DOBRK	
	CALS	BITCHK	
	OFF	2	;Display 'OFF'
	OFF	3	; in TWT display
	OFF	4	; section
	MON	1	;Read power
	MON	0	; from Lo's
	JMP	@\#MONIT	;Loop in monitor mode
TXMON:	CALT	DOBRK	
	CALT	BITCHK	
	MON	2	;Read power
	MON	3	; from TWT input
	MON	4	; and output
	MON	1	;Read power
	MON	0	; from LO'S
	JMP	@\#MONIT	;Loop in monitor mode

SUBROUIINES			
ADR - determines the address for a data word to the display			
;			
ADR:	. REPT	$\begin{aligned} & 3 \\ & \text { ASL } \quad \text { POWER } \end{aligned}$;Address to the BCD information that is ; transmitted to the display.
	. ENDR		;Move left three bits
	MOV	R2,R3	; If channel 0, send out to display
	TST	R3	; address 5 - change in wiring
	BGT	1\$	
	MOV	\#5,R3	
1\$:	ADD	R3, POWER	;Append the display address to POWER
	ASL	POWER	
	MOV	R2,R3	
	ASL	R3	
	ADD	IIGHIS (R3) , POWER	R ;Set light bit
	MDS	POWER	
	REIURN		
;			
	BITCHK - ensures the IIGHT registers reflect the status of the		
;			
;			
BITCHK:	MOV	@\#FBREG, FBBUF	
	CLR	LIGFIT	; Check AC ON
	BIT	\#WJON, FBBUF	
	BEQ	1\$	
	MOV	\#1,IIGFIT4	
1\$:	CLR	ITGHT3	;Check READY
	BIT	\#TWIRDY, FBBUF	
	BEQ	2\$	
	MOV	\#1,IIGHT3	
2\$:	CLR	IIGHT2	;Check RF ON
	BIT	\#TWIRF, FBBUF	
	BEQ	3\$	
	MOV	\#1, LIGHT2	
3\$:	REIURN		

; CHECK - ensures that the values sampled are within acceptable limits
;
CHECK: BR CHROK
CMP R2,\#4
BEQ CHKSWR
CMP R2,\#2
BNE CHKOK

CHKPI:	CMP	POWER, \#20.	;Maximum is -2.0dB
	BLE	CHKBAD	;Note Pi is negative at display
	BR	CHKOK	; but not in storage
CHKSWR:	TST	OLDPO	;If no output power, do not check SWR
	BEQ	CHKOK	
	CMP	POWER,\#150.	;Maximum is 1.50
	BGE	CHKBAD	
	BR	CHKOK	
CHKBAD:	MOV	TABIN,R1	
	MOV	IMIBL (R1), IMBUF	
	BIC	\#TWIBIT, IMBUF	
	MOV	LMBUF, @\#SWREG	
CHKOK:	REIU		

;	DOBRK - outputs break to display		
DOBRK:			
	MOV	\#200. ,R0	;Wait to ensure all characters sent
	CAL工	PWAIT	
	BIS	\#1,@\#TXCSR	;Start break
	MOV	\#80., R0	;Wait a period
	CALI	PWAIT	
	BIC	\#1,@\#TXCSR	; End break
	MOV	\#200.,R0	;Wait to ensure line up for stop bits
	CALT	PWALT	
	REIURN		

; LOOKUP - converts sample count to actual unit values via lookup tables							
;							
LOOKUP:	CMP	R2,\#1		;For channels 0-1, 5 O lookup			
	BLE	IOLOOK					
	CMP	R2,\#2					
	BEQ	PILOOK		;For channel 2, TWT Pi lookup			
	CMP	R2,\#3					
	BEQ	POLOOK		;For channel 3, TWI Po lookup			
	CMP	R2,\#4					
	BEQ	PRIOOK		;For channel 4, lookup ;For SWR calc, SWR lookup			
	JMP	SWRCAL					
LOLOOK:	.REPT	5	;Divide by 32				
		ASR R4					
	.ENDR						
	MOV	\#799. , R2					
	CMP	R4,\#65.					
	BGE	NUMRDY					
	ASL	R4					
	MOV	IOPWR(R4), R2					
	TST	R2					
	BGE	NUMRDY					
	CLR	R2					
NUMRDY:	MOV	R2,R4					
	REIURN						
PIIOOK:	.REPT	4	;Divide by 16				
		ASR R4					
	. ENDR						
	CLR	R2					
	CMP	R4,\#65.					
	BGE	NUMRD2					
	ASL	R4					
	MOV	PIFWR(R4) , R2					
	TST	R2					
	BGE	NUMRD2					
	MOV	\#799., R2					
NUMRD2:	MOV	R2,R4					
	REIURN						
POLOOK:	.REPT	5	;Divide by 32				
		ASR R4					
	.ENDR						
	MOV	\#799.,R2					
	CMP	R4,\#93.					
	BGE	NUMRD3					
	ASL	R4					
	MOV	POFWR(R4) , R2					
	TST	R2					
	BGE	NUMRD3					
	CLR	R2					
NUMRD3:	MOV	R2,R4					
	REIURN						

PRLOOK:	.REPT	$\begin{array}{ll} 4 & \\ \text { ASR } & \text { R4 } \end{array}$;Divide by 16
	. ENDR		
	MOV	\#799.,R2	
	CMP	R4,\#94.	
	BGE	NUMRD4	
	ASL	R4	
	MOV	PRPWR(R4),R2	
NUMRD4:	MOV	R2,R4	
	REIURN		
SWRCAL:	.REPT	3	;Divide by 8
		ASR R4	
	. ENDR		
	MOV	\#799., R2	
	TST	R4	
	BLT	NUMRD5	
	MOV	\#100.,R2	
	CMP	R4,\#64.	
	BGE	NUMRD5	
	ASL	R4	
	MOV	SWR(R4) , R2	
	TST	R2	
	BGE	NUMRD5	
	MOV	\#799.,R2	
NUMRD5:	MOV	R2,R4	
	REIURN		

;	TWION - turns on the TWI for Tx or translate		
;			
TWION:	MOV	TABIN,R1	
	MOV	IMIBL (RI) , IMBXF	
	MOV	IMBUF, @\#SWREG	;Set for WJ \& TWI on and RF on
TWJON:	MOV	\#WJON, IMEUF	
	MOV	\#^ C<WJON>, MASK	;Mask off everything but WJON bit
	CALI	WAITNG	
	LIGHT	4	
TREADY:	MOV	@\#FBREG, FBBUF	
	BIT	\#TWIRDY, FBEUF	
	BEQ	TREADY	
	IIGHT	3	
TRFON:	MOV	\#TWIRF, IMBUF	
	MOV	\#^C<IWIRF> , MASK	;Mask off everything but TWTRF bit
	CALU	WAITNG	
	IIGFIT	2	
	MOV	\#TWIAC+WJON, TWIFTG	
	REIURN		

; WAIING - a subroutine that waits for a switch to be set
The subroutine reads the feedback register, MASKs off don't care bits and compares it with LMBUF. It does this a maximum of 60 times with pauses in between. If after these 60 trys, the switches aren't set, the subroutine aborts the setup procedure and jumps into the monitor mode.

WAIING: CLR
1\$:
CMP
BEQ
INC PAUSE MOV @\#FBREG,FBBUF BIC MASK, FBBUF CMP FBBUF,IMBUF BNE 1\$ REIURN
TIMOUT: MOV
MOV (SP) + ,RO
MOV \#1,RFON
JMP TEST
;60 tries?
;Yes - error
;Count tries
;Wait for switches to toggle
;Read position of switches
;Clear bits in mask
;Switches set yet? ;No - try again
;Pop off return address to TWION/OFF or SWISET
;Pop off return address to RX/TXSET
;Ensure all points are monitored
;Return to monitoring but don't change lights

Interrupt routines			
KBINIR:	CLR	@\#RXCSR	;Disable interrupts
	CLR	TEMP1	
	MOVB	@\#RXBUF, TEMP1	;Fake keypad data buffer
	BIC	\#200, TEMP1	;Mask off parity bit
	BIT	\#1,TEMP1	; Ensure an even numbered key
	ENE	REITNT	
	CMP	TEMP1,\#64.	;Validate keys -
	BLT	REITNT	; between 64 and 80
	CMP	TEMP1,\#80.	
	BLE	VALKEY	
	CMP	TEMP1,\#88.	;GO
	BEQ	GOKEY	
	CMP	TEMP1,\#90.	;CLEAR KEY
	BEQ	CLRKEY	
	CMP	TEMP1,\#94.	;TWI OFF
	BEQ	TWIKEY	
	BR	REITINT	
VALKEY:	MOV	TEMP1, CMDNRD	
	SUB	\#64. , CMDWRD	
	ER	REIINT	
GOKEY:	MOVB	\#200, CMDRDY	; Fake keypad CSR ready bit
	BR	REIINT	
CIRKEY:	CLR	CMDWRD	
	BR	REITNT	
TWIKEY:	CIR	TWIFTG	;Turn off TWT with no change to switches
	MOV	\#177777, CMDWRD	
	MOVB	\#200, CMDRDY	
	BR	REITNT	
REIINT:	$\begin{aligned} & \text { MOV } \\ & \text { RTII } \end{aligned}$	\#100,@\#RXCSR	;Enable keypad interrupts

LOPWR: ;Lookup table for 10 power readings

.WORD -600.,-60.,-27., -9., 4., 18., 28., 38.
.WORD 46., 53., 60., 67., 72., 78., 83., 88.
.WORD 92., 97.,101.,105.,109.,112.,115.,118.
.WORD 122.,125.,128.,130.,133.,136.,138.,141.
. WORD 143.,146.,148.,150.,152.,154.,156.,158.
. WORD 160.,162.,164.,166.,168.,170.,171.,173.
.WORD 175.,176.,178.,179.,181.,183.,184.,186.
.WORD 187.,188.,190.,191.,192.,194.,195.,196.
.WORD 198.

PIPWR: ;Iookap table for TWT power input readings
.WORD 799.,799.,252.,195.,169.,153.,139.,133.
.WORD 127.,114.,107.,101., 97., 93., 89., 84.
.WORD 81., 78., 75., 73., 70., 67., 64., 62.
.WORD 60., 57., 54., 52., 50., 48., 46., 45.
.WORD 43., 41., 39., 38., 36., 35., 33., 32.
.WORD 30., 29., 28., 27., 25., 24., 23., 22.
.WORD 21., 19., 18., 17., 16., 15., 14., 13.
.WORD 12., 1l., 11., 10., 9., 8., 7., 6.
.WORD 0.

POPWR: ;Lookup table for TWI power output readings

.WORD	0.,168.,173.,177.,180.,184
.WORD	193.,195.,198.,201.,205.,209.,213.,216.
.WORD	219.,222.,225.,227.,230.,233.,237.,240.
.WORD	243.,246.,249.,252.,254.,257.,260.,262.
. WORD	265.,268.,270.,272.,275.,277.,279.,281
.WORD	284.,286.,288.,290.,292.,294.,296.,298.
.WORD	299.,301.,303.,305.,306.,308.,310.,312.
.WORD	313.,315.,316.,318.,319.,321.,322.,324.
.WORD	325.,327.,328.,329.,331.,332.,334.,335.
. WORD	336.,337.,339.,340.,341.,342.,344.,345.
.WORD	346.,347.,348.,349.,350.,352.,353.,354.
. WORD	355., 356., 357., 358.,359.

PRPWR: ;Lookup table for reflected power

.WORD	-999., -367.,-152., -95., -69., -53., -39., -33.
. WORD	-27., -14., -7., -1., 2., 6., 11., 15.
. WORD	18., 21., 24., 26., 29., 32., 35., 37.
. WORD	39., 42., 45., 47., 49., 51., 53., 54.
.WORD	56., 58., 60., 61., 63., 64., 66., 67.
. WORD	69., 70., 71., 72., 74., 75., 76., 77.
. WORD	78., 80., 81., 82., 83., 84., 85., 86.
.WORD	87., 88., 88., 89., 90., 91., 92., 93.
. WORD	94., 95., 97., 98., 99.,100.,101.,102.
. WORD	103.,104.,105.,105.,106.,107.,108.,108.
.WORD	109.,110.,111.,112.,112.,113.,114.,115.
. WORD	116.,116.,117.,118.,118.,119.

SWR: ;Lookup table for SWR calculations

. WORD	799.,290.,281.,272.,263.,255.,246.,237.
.WORD	228.,219.,211.,202.,193.,184.,175.,167.
.WORD	159.,152.,147.,141.,137.,133.,130.,128.
.WORD	125.,123.,120.,118.,116.,114.,114.,112.
.WORD	111.,110.,109.,108.,107.,106.,106.,105.
.WORD	105.,104.,104.,103.,103.,103.,103.,102.
.WORD	102.,102.,102.,101.,101.,101.,101.,101.
WORD	101.,100.,100.,100.,100.,100.,100

IMIBL: ;Lookup table for switch configurations based on command key

. WORD	LESS+DISH+RX
. WORD	LES8+DISH+TX
.WORD	LES8+HORN+RX
.WORD	LES8+HORN+IX
.WORD	LES9+DISH+RX
.WORD	LES9+DISH+IX
.WORD	LES9+HORN+RX
.WORD	LES9+HORN+IX
.WORD	LES8+DISH+IX+IRANLA

RAM AREA FOR VOLATIIE MEMORY LOCATIONS		
	-	77000
IITHIS:		;Status bits for lights
IIGHTO:	.WORD	; SYSTEM READY
IIGHTl:	.WORD	; SWITCHES SET
LIGHT2:	.WORD	; RF ON
IIGHT3:	.WORD	; READY
IIGHT4:	.WORD	; AC ON
DSBUF:	.WORD	;Location used when initializing
IMBUF:	. WORD	; Command word to be sent
FBBUF:	.WORD	;Feedback of switch settings
RFON:	.WORD	;Flag - TWI required or stuck on
TABIN:	.WORD	;Points to configuration
TWIFTS:	. WORD	;Flags TWI previously on
SUMPOW:	.WORD	;Sum of power readings
SUMCNT:	.WORD	; Count of power readings summed in SUMPOW
OLDPO:	.WORD	;Last Po reading - used for SWR calculations
CHANNO:	. WORD	; Channel number
TEMP1:	.WORD	;Temporary location
CMIRRDY:	.WORD	; Command ready flag
CMDWRD:	.WORD	; Command key entered
MASK:	. WORD	;Mask used by WAITNG to check bits

DOCUMENT CONTROL DATA - R \& D

(Security classification of titie, body of abstract and indexing annotation inust the entered when the overall document is classified)

1. ORIGINATING ACTIVITY

Communications Research Centre under the CRAD sponsored program of recoverable research.

2a. DOCUMENT SECURITY CLASSIFICATION UNCLASSIFIED

2b. GROUP
3. DOCUMENT TITLE

EHF Shelf Monitor and Controller
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
5. AUTHOR(S) (Last name, firsi name, middle initial)
R. Addison

| 6. DOCUMENT DATE | | |
| :--- | :--- | :--- | :--- |
| SEPTEMBER 1985 | 7a. TOTAL NO. OF PAGES | 7b. NO. DF REFS |
| 8a. PROJECT OR GRANT NO. | 9a. ORIGINATOR'S DOCUMENT NUMBERISI | |
| $32 A 53$ | | |

10. DISTRIBUTION STATEMENT

Unlimited
11. SUPPLEMENTARY NOTES
12. SPONSORING ACTIVITY

Defence Research Establishment Ottawa

13. ABSTRACT

In 1981 CRAD sponsored the development of an experimental $36 / 38 \mathrm{GHz}$ satellite communications ground terminal in order to permit further experimental work with the Lincoln experimental satelites (LES 8/9). Due to the physical separation of the RF and antenna installation from the $I F$ and baseband equipment, it was desired to have a remote control and monitor facility for the ground terminal. This subsystem is described in this report.
usis
77 -1065

KEY WORDS

EHF

MONITOR

CONTROLLER

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the organization issuing the document.

2a. DOCUMENT SECURITY CLASSIFICATION: Enter the overall security classification of the document including special warning terms whenever applicable.

2b. GROUP: Enter security reclassification group number. The three groups are defined in Appendix ' M ' of the DRB Security Regulations.
3. DOCUMENT TITLE: Enter the complete document titie in alf capital letters. Titles in all cases should be unclassified. if a sufficiently descriptive title cannot be selected without classif.cation, show title classification with the usuai one-capital-letter abbreviation in parentheses immediately following the title:
4. OESCRIPTIVE NOTES: Enter the category of document, e.g. technical report, technical note or technical letter. If appropriate, enter the type of document, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the document. Enter last name, first name. middle initial. If military, show rank. The name of the principal author is an absolute minimum requirement.
6. OOCUMENT DATE: Enter the date (month, year) of Establishment approval for publication of the document.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER DF REFERENCES: Enter the total number of references cited in the document.
8a. PROJECT OR GRANT NUMBER: If appropriate. enter the applicable research and development project or grant number under which the document was written.

8b. CONTRACT NUMBER: If appropriate, enter the applicable number under which the document was written.

9a. ORIGINATOR'S OOCUMENT NUMBER(S): Enter the official document number by which the document will be identified and controlled by the originating activity. This number must be unique to this document.

9b. OTHER OOCUMENT NUMBER(S): If the document has been assigned any other document numbers (either by the originator or by the sponsor), also enter this number(s).
10. DISTRIBUTIDN STATEMENT: Enter any limitations on further dissemination of the document, other than those.imposed by security classification, using standard statements such as:
(1) '"Qualified requesters may obtain copies of this document from their defence documentation center."
(2) "Announcement and dissemination of this document ts not authorized without prior approval from originating activity."
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document, even though it may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classitied documents be unctassified. Each paragraph of the abstract shall end with an indication of the security classification of the information in the paragraph lunless the document itself is unclassified) represented as (TS), (S), (C), (R), or (U).

The length of the abstract should be limited to 20 single-spaced standard typewritten lines: $71 / 3$ inches long.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a document and could be helpful in cataloging the document. Key words should be selectea so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context.

ADDISON, R,

- EHF shelf power menitor : 1

TK
5102.5

C673e
\#1399

DATE DUE

NATCO $\mathrm{N} \cdot 34$
industay canada industrie canada

[^0]:

