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USER'S GUIDE FOR THE DRL SPREAD-SPECTRUM 

SIMULATION FACILITY 

BY 

G.O. Venier 

ABSTRACT 

This 	report 	describes, 	from a 	user's 	point 	of 	view, 	the 

spread-spectrum simulation facility developed in the Directorate of Radio 

Propagation and Systems (DRL) at the Communication Research Centre. This 

facility simulates, on a VAX-11/750 digital computer, the operation of 

complete spread-spectrum systems including transmitter, HF propagation 

path, interference, and receiver, and provides all the data and signal 

generation and analysis capabilities necessary to determine the 

performance of the simulated systems. 	Both direct-sequence and 

frequency-hopping systems may be simulated. 	The simulator was made as 

flexible as possible, permitting the user to select from a number of 

subsystems to simulate a wide range of existing and proposed communication 

systems. This report provides detailed information on the simulator that 

is essential for understanding it and operating it in both interactive and 

batch modes. 
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1 INTRODUCTION 

The DRL spread-spectrum simulation facility simulates the operation 

of complete spread-spectrum systems including transmitter, HF propagation 

path, interference, and receiver, and provides all the data and signal 

generation and analysis capabilities necessary to determine the performance 

of the simulated systems. Both direct-sequence and frequency-hopping 

systems may be simulated. The simulation program was written in FORTRAN-77 

and runs on a Digital Equipment Corporation VAX-11/750 computer under the 

VMS operating system. 

Figure 1.1 indicates the communication system processes that are 

implemented in the simulator. The solid arrows show the normal flow of 

data and signals, while the dashed ones indicate alternative routes that 

may be used for testing of all or a part of the simulated system. The user 

decides which of the processes he wishes to include in the simulation and 

selects them and their parameters in an interactive process in which the 

program questions him on the desired values. Thus the user can specify the 

system at the terminal. The simulator was made as flexible as possible, 

permitting a wide selection of subsystems that should cover most actual and 

proposed systems. A batch mode of operation under control of a command 

file is offered as an alternative for long computer runs simulating complex 

systems. Because of the complexity of the simulator, a run to produce a 

single bit-error-rate value may take many hours when spread spectrum with 

high processing gain is being simulated. 

A consequence of the flexibility of the simulator is the necessity for 

the user to understand, in detail, the processes being used; many of the 

design parameters are left to him. This document is intended as an aid to 

that understanding, but it is, of course, impossible to include here all 

the theory applying to all of the processes provided. The user should be 

familiar with the theory for the techniques he selects. References are 

provided in many cases to allow further study where this familiarity is 

lacking. The algorithms used are described in some detail. If further 

detail is required, reference should be made to the source routines. These 
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include many comments to aid in understanding the code. 

2 STRUCTURE OF THE SIMULATOR 

The main routine of the simulator is called MODEM (capital letters 

will be used to refer to routine names or commands as they are to be typed 

by the user); the simulation is started by typing RUN MODEM. MODEM is only 

a controlling program which leaves the simulation tasks to a number of 

subprograms as shown in Figure 2.1. Any of the eleven main subprograms 

shown may be entered by typing its name in response to the question "Main 

level command?". In the following, the terms "command", "subprogram" and 

"subroutine" are used to refer to the boxes in the program structure 

diagrams. These boxes represent subprograms or subroutines (we have used 

"subprograms" for the highest level below the main program), but their 

names are entered by the user as commands. A menu of the eleven commands 

with brief descriptions is displayed at the beginning of the program and at 

any time the command HELP is typed in the main routine. The main 

subprograms may in turn call a number of other subroutines which are not 

shown in Figure 2.1. In general, the command structure forms a tree 

without connections between branches, but there is some sharing of utility 

routines. The software controlled by the eleven main—level commands varies 

greatly in size. The upper row in Figure 2.1 contains relatively simple 

utility routines, and the bottom row contains more complex subprograms. 

PR3CES contains, by far, the most software. 

When the main program is first entered the user is asked two questions 

before being presented with the menu of subprograms. First he is asked 

whether he wishes to perform the simulation from the terminal or in batch 

mode; then he is asked whether he wants the output to go to the terminal or 

to a file. This latter decision may be changed during the operation of the 

simulation by the use of the FORM command which is described later. A 

distinction should be made here between the simulator output and the 

questions and menus printed on the terminal by the program. These latter 

data always go to the terminal or, in batch mode, to the specified batch 

log file. The simulator output contains summaries of the parameters used, 
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either as specified by the user or as computed from the user 

specifications, and the results of any analyses performed on the simulated 

signals and data. When batch mode is used the terminal is logically 

equivalent to the batch log file, and therefore, if the terminal is 

specified as the output device the output will go to the batch log file 

along with the questions and menus. 

There are some differences in the running of the simulator between 

terminal and batch mode that have to do with the monitoring of the 

operation, and this is why the program must be informed of the mode. When 

batch mode is used the questions are answered by a command file which must 

be prepared in advance. More will be said about running in batch mode near 

the end of this document. 

2.1 Brief Description of the Subprograms 

The five subprograms in the bottom row of Figure 2.1 will be described 

in their own sections, but we will first mention their functions. 

DATEN generates both binary data for input to the simulated system, 

and complex (i.e. comprising real and imaginary components) signals as 

test inputs for parts of the system. 

MODIFY modifies existing data for convenient generation of other, 

possibly more complex, signals, and includes some other special-purpose 

functions. 

PROCES performs the actual simulation of the communication system, 

including transmitter, propagation medium, and receiver. 

ANAL is used to analyze the results of a simulation experiment with 

various display and processing routines. 
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FILE allows the saving of data at any point in the simulation process, 

and the later re-input of the saved data. The file of data saved may also 

be analyzed by off-line programs. 

The subprograms in the upper row of Figure 2.1 are utility routines 

that are intended to aid in the running of the simulation. HELP repeats 

the menu of main-level commands displayed at the beginning of the program. 

DESCRP displays a brief description of the simulation program. 

FORM allows the user to change the form of the ASCII output. 	This 

output is the information provided by the program on the parameters 

selected, and the results of any analyses. It is intended as a record of 

the simulation experiment. The user may specify the terminal or a file as 

the output device. If a file is chosen the user supplies a name and a 

brief description (maximum of 32 characters) which will be included in the 

file header. The file name will automatically be given the extension 

.DAT. In batch mode the terminal is equivalent to the batch log file which 

can be specified by the user in the VMS operating system's SUBMIT command 

used to start batch operation. 

TELL informs the user of the number of data currently in the original 

and final arrays and of the maximum allowed data array size. This latter 

quantity is the number of complex values permitted in each of the original 

and final arrays. The TELL command may be used from many of the other 

subprograms without a return to the main program. 

TIME reports the percentage of time spent in each of the routines 

since the last TIME command. 	It is intended to help the user determine 

which routines are consuming the most time. 	It may also be useful in 

predicting CPU time required for a simulation when the CPU time for other 

runs with different characteristics has already been measured. TIME should 

not be considered to be of great accuracy since it takes its time from the 

system clock rather than measuring CPU time and it includes time used for 

parameter entry. Thus for reasonably meaningful timing results, large 
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quantities of data should be processed, and the simulation should be run in 

batch mode with the parameters entered from a command file. 

STOP is used to bring the simulation program to an end in an orderly 

fashion. 

2.2 Original and Final Data Arrays 

The various processes that represent parts of the simulated system in 

PROCES operate on an array of input data and produce an array of output 

data. These arrays are referred to in the simulator as original (ORG) and 

final (FIN) data respectively. The abbreviations ORG and FIN are the form 

in which they are specified by the user when required. They will be used 

also in this report to refer to the data in these arrays, since the full 

names "original" and "final" could easily be misinterpreted as the more 

general meaning of these words. The ORG and FIN data may represent binary 

data or sampled signals. In either case they are floating-point complex 

numbers; when representing binary data their real part is either one or 

zero and their imaginary part is always zero. While this is not a very 

efficient way to store binary numbers it does have the advantage of 

simplicity (only one type of array is used), and, since only one ORG and 

one FIN array is kept at any one time, it does not increase the total 

storage required (enough space must be reserved for the generally larger 

sampled signal arrays in any case). Subprograms other than PROCES may 

generate or process either ORG or FIN data as specified by the user. 

2.3 Frequencies and Data Rates 

Frequencies are always specified as a fraction of the rate at which 

signals are sampled in the simulator. 	For example, a sine wave with a 

frequency of 0.1 would have ten samples per cycle. 	When input data is 

generated the user is asked for its rate in values per second. This number 

is kept track of and changed as necessary - for example when decimation is 
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used. 	In addition, this rate is used to convert all signal frequencies 

from the fractional sample-rate specification to the corresponding 

frequency in Hertz, which is displayed to the user in that form as well as 

in the fractional-sample-rate form. The value in Hz is not used by the 

simulation itself and is provided only for the user's convenience. 

2.4 Voltage,Power and Energy 

The floating-point number representing a sample of a waveform is 

considered to be the voltage, in volts, of the waveform at that point. 

Power is defined as the power that would exist in a one-ohm resistor at the 

point in question. Energy is defined on a time scale determined from the 

arbitrary user-defined data rate. That is, if the program had determined 

the sample rate, based on the user-specified data rate, to be f, samples 

per second then the energy in N samples at a voltage V would be 

„2,, 
y 

's 

3 DATA AND SIGNAL GENERATION (DATEN) 

The DATEN subprogram is used to generate both binary data and sampled 

complex waveforms as input for the simulation runs or as test inputs for 

parts of the simulation. All waveforms and data are represented as complex 

values; when they are real the imaginary part is simply set to zero. The 

various subroutines that can be called in DATEN are shown in Figure 3.1. 

Routine CANCEL simply permits the user to exit DATEN without generating any 

data. He may wish to do this if, for example, he has entered it by 

mistake. There are two ways of generating signals. In the first, the user 

enters them value by value to produce any desired sequence, and in the 

second he specifies a data or waveform type along with its parameters, and 

the routine generates the complete sequence for him. This second method is 

much less tedious but more limited in possible signals. It also permits 

the generation of signals with pseudo-random characteristics, such as 
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noise. 	Two routines are available for the first method, ENBIN for binary 

data, and COMPEN for complex waveforms. Routines for the second method are 

grouped into two types called NOISE and JAM. These are also used in the 

receiver (RECVR) to introduce noise and jamming. When DATEN is entered a 

menu of the available routines with a description for each is displayed. 

One of the subroutines is then selected, and after the data is generated an 

exit is made automically from DATEN to the main program. 

The user may enter the signals into either the ORG or FIN data 

arrays. Normally, any process takes data from the ORG array, and, after 

processing it, leaves the result in the FIN array. Thus, most of the time 

the signal will be input to the ORG array, but not always. As will become 

evident in Section 4 on the MODIFY subprogram, it is important to allow 

input to the FIN array. 

On entry to the DATEN subprogram the user is asked whether the data 

is to be ORG or FIN data, the number of values to be generated, and the 

data rate. There is a limit on the number of data values that may be 

generated. This number is printed out at the start of the program and when 

the TELL command is used. It is set by a parameter called SIZVEC, and can 

be changed by a source program modification followed by re-compiling and 

re-linking. 	The procedure for doing this is described in the technical 

documentation that accompanies the software in the DRL VAX-11/750. 	This 

documentation can be found in file TECN.MEM. 	This parameter affects the 

program memory requirements, and may require a higher allocation from the 

system if it is increased. 

After he enters the above values the user may select one of the 

above-mentioned routines to generate the data. Each of these routines will 

now be described in more detail. 

3.1 Binary Data Entry (ENBIN) 

ENBIN allows the user to enter binary data value by value. 	It 

prompts the user by displaying a series of dots indicating the number of 



12 

entries specified. 	The user enters a one or zero under each dot. If the 

number to be entered is more than 64, the data are entered 64 at a time, 

with each group being re-displayed by the routine to allow acceptence or 

rejection and re-entering by the user. The data are entered into the real 

parts of the selected array and the imaginary parts are set to zero. 

3.2 Complex Data Entry (COMPEN) 

Like ENBIN, COMPEN allows the user to enter values into the 

selected array, but in this case the values are floating point complex 

numbers representing an analogue waveform and they are entered four values 

at a time - four real and then four imaginary values. The routine prompts 

for the correct type and number and asks for verification of each group of 

four before continuing. Real waveforms may be entered by entering zeros 

for the imaginary parts. 

3.3 Pseudorandom Binary Data Generation (GENBIN) 

GENBIN is intended mainly as a source of data to be transmitted by 

the simulated system. It generates pseudo-random binary data by means of a 

binary feedback shift register of 31 stages, with the outputs of stages 28 

and 31 added modulo-2 and fed back to the input. These connections result 

in the generation of a maximal-length sequence (length of 2n-1, where n 

is the length of the shift register) [1]. This sequence will consist of 

2 31 -1 or over 2x109  bits before repeating. A 31-bit starting value or seed 

is required to start the generation. 	This seed determines where in the 

2 31 -1 bit period the sequence will start. 	The user decides whether to 

enter the 31-bit seed or to accept a default seed instead. This default 

seed will be the same each time it is used. 

3.4 Noise Generation (NOISE) 

Three types of noise may be generated in NOISE. 	These are 

Gaussian, CCIR, and impulse noise. 	The user is asked if he wishes to 

generate each of the types in turn, and he may choose one or more of them. 
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If he chooses more than one the resulting samples will represent the sum of 

the chosen types. At the beginning he must decide whether to enter a seed 

for the random number generator or to accept the default one. The seed is 

a double-precision integer, and it is recommended that it be large and 

odd. 	All three noise generators make use of the FORTRAN uniform random 

number, generator RAN supplied with the VMS operating system. 	This 

generator is of the multiplicative congruential type. 	According to the 

documentation this generator is "fast but prone to nonrandom sequences when 

considering triples of numbers generated by this method". This is not 

likely to cause any problem in the simulation, and speed is important. 

However, if any problems become evident the generator could easily be 

replaced by the user with a slower one having better properties. 

For each type of noise selected the user is given the opportunity 

to specify a filter to filter the noise and change its spectrum from white 

to some other desired shape. Details on filter specification are given in 

Section 8.1. 

Two methods of Gaussian noise generation  are  available. 	One 

method, referred to here as the sum method (SUM), makes use of the central 

limit theorem which states that when a number of samples of a random 

variable are summed the resulting sum is a sample from a distribution that 

approaches a Gaussian distribution as the number summed is increased [2]. 

It turns out that, when the original distribution is uniform, relatively 

few samples (generally less than ten) are needed in the sum to give a good 

approximation to the Gaussian distribution. The SUM routine simply sums 

the number of uniformly distributed samples specified by the user to 

produce each Gaussian sample and scales the result to give the 

root-mean-square (rms) value specified by the user. 

The other method of Gaussian noise generation is the inverse method 

(INV) [3]. INV maps a pair of uniformly distributed samples into a pair of 

Gaussian samples by using the inverse of the Rayleigh amplitude probability 

distribution function on one sample to generate a Rayleigh sample, and 

scaling the second to the range 0 to 211.  to generate a uniformly distributed 
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phase angle. Then a conversion from polar to Cartesian coordinates results 

in two independent Gaussian samples. The only information required from 

the user in this case is the desired rms voltage. 

CCIR noise has a distribution taken from a set of semi-empirical 

curves published by the International Telecommunication Union [4]. These 

distributions apply to the magnitude, or envelope, of the noise and are 

believed to be typical of those of noise found at HF. A parameter, Vd, 

specifies the ratio of nms voltage to the mean envelope voltage, and is 

expressed in dB. The minimum Vd of 1.05 corresponds to the Rayleigh 

distribution, and increasing values of Vd correspond to increasingly more 

impulsive distributions (higher probability of very high values). The 

value of Vd actually found depends on the bandwidth of the system in 

which it is measured, being higher for higher bandwidths. 

In the simulator, a method developed by Akima [5] is used to 

generate CCIR noise. In this method the CCIR amplitude probability 

distribution curves are approximated in a nonlinear coordinate system by 

two straight-line segments joined by an arc, and the method of inversion of 

the distribution function is used to generate the noise samples from 

uniformly-distributed samples. The user specifies the rms value of the 

noise and the value of Vd. 

Impulse noise consists of single complex impulse samples among a 

larger number of zero samples with intervals between impulse samples that 

are random with an exponential distribution and a mean rate specified by 

the user; i.e. the impulse arrival times are generated by a Poisson 

process. The maximum rate is 0.1 times the sample rate. The amplitude of 

the impulse noise may be either fixed, or random with a Rayleigh 

distribution. In either case the user specifies the rms value of the 

impulse samples (not of the complete waveform). The phase of each impulse 

sample is 

21'. If a 

the second 

always selected from a uniform distribution between 

particular interval is less than one-half the 

one sample interval from the impulse will occur 

sample interval, 

first instead of 

being coincident with it. 
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3.5 Jamming Signal Generation (JAM) 

Four types of jamming waveforms are available in JAM. These are 

Gaussian, tone, pulse, and linear frequency-sweep. As in NOISE one or more 

may be selected with results summed. Before selecting waveforms the user 

decides whether to enter a random-number seed or to use the default seed. 

The Gaussian generator is identical to that in NOISE and is included in JAM 

for the convenience of the user. 

Up to four complex tones may be generated. The user specifies the 

frequency, amplitude, and phase of each. The frequency must be in the 

range -0.5 to +0.5 in terms the sample frequency. 

Pulses may be generated at random intervals in the same manner as 

the impulses in NOISE, with a user-specified mean rate. In addition, the 

user specifies the pulse width in samples, their amplitude (fixed), and 

their carrier frequency (-0.5 to +0.5). The phase of the carrier of each 

pulse is selected from the uniform random-number generator. The mean rate 

is limited to one-third the inverse of the pulse width (width is entered 

before rate). However, any particular random interval between pulses may 

be less, than the pulse width. When this occurs, and the pulses overlap, 

they add linearly. 	But if more than three overlap, the fourth etc. 	are 

lost. This is not a significant deficiency since in reality so many 

overlaps would be an extremely unlikely event, even at the highest allowed 

rate. Filtering may be applied to the pulse jamming. 

Figure 3.2 illustrates the specification of the linear frequency 

sweep jamming. 	The user must enter the start frequency, the stop 

frequency, the off period, and the sweep period. 	The direction of the 

sweep may be either positive or negative. The smallest period allowed is 

typed by the program as computed from a minimum time-bandwidth product of 

5. 	In addition, the user specifies the initial phase and the amplitude. 

The program displays the selected parameters in Hz and seconds. 	It also 

gives the power in watts. This is the instantaneous power during the on 

portion of the waveform, not the average power over a full sweep cycle. 
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Figure 3.2 Linear Frequency Sweep Specification 
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4 DATA MODIFICATION (MODIFY) 

The MODIFY subprogram allows the user to modify data, whether it 

has been created by DATEN or is the output data from any of the processes. 

Routines included in MODIFY are shown in Figure 4.1. There is no automatic 

exit from MODIFY after calling of a routine. For this reason there is a 

RETURN command to return to the Main program. The HELP command gives a 

menu of available commands and their description, and the TELL command 

gives information about the ORG and FIN data; this is the same routine as 

used in the main level. The above routines have no effect on the data. 

The remaining ones, except for CONVRT, actually modify the data. 

CONVRT changes FIN data into ORG data to allow it to be used as 

input when entering the PROCES command level. The change is accomplished 

by simply renaming the data; no time-consuming shifting of data is 

involved. The original ORG data is lost when this routine is used, and, as 

a safety measure, the routine reminds the user that the ORG data will be 

lost and asks for verification of the CONVRT command. 

ADD adds ORG data to FIN data sample by sample. If one of the data 

sets is longer than the other, the shorter will be extended with zeros to 

the same length as the longer before the addition. 

REPEAT duplicates eicher ORG or PIN data a user-specified number of 

times with the new values added to the end of the existing sequence. The 

duplicated data may be any block from the existing sequence; the user 

specifies the index values of the first and last samples of the block. 

INSERT allows the user to insert a specified number of zeros before 

the existing ORG or FIN data. These are complex zeros; that is, for each 

zero requested, both real and imaginary components of zero will be 

generated. Insert may be used even if no data already exists in the 

specified array. 	• 
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Figure 4.1 MODIFY Subgprogram Structure 
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MULT is used to multiply any block of ORG or FIN data by a real 

constant. The constant may be zero. The user specifies the index values 

of the first and last samples of the block. 

REMOVE deletes a block of data from the end of ORG or FIN data. 

The user specifies the number of complex values to be removed. 

ABSOL takes the absolute value of a block of ORG or FIN data. The 

user specifies the index values of the first and last samples of the 

block. The real part of each sample in the block is replaced by the 

absolute value and the imaginary part is replaced by zero. As an option, 

the absolute value may be squared. This modification is intended as an aid 

in the analysis of data. 

5 ANALYSIS ROUTINES (ANAL) 

A number of subroutines are available for the analysis of output 

signals and data. These include simple display of any component of the 

digital samples, computation of histograms and other statistical values, 

comparions of input and output of signals and data, computation of 

bit-error statistics, and computation of Fourier transforms. The analysis 

command level is entered by using the ANAL main-level command. 	The 

available subroutines are shown in Figure 5.1. 	A RETURN command is 

provided since there is no automatic exit to the main program. The HELP 

command displays the menu for the ANAL commands, and TELL is the same as in 

the main program. 	Six different commands, described in detail below, are 

available to analyze the data. 	Three of the commands (COMPRB, ERRCOM, 

COMPRC), are comparison commands and require both FIN and ORG data to be in 

existence. For these utilities, the user enters the number of data to be 

compared and the ORG and FIN starting index values. Any block of 

contiguous ORG values can be compared with any block of the same number of 

contiguous FIN values. Thé other three commands (VIEW, FFT, and HISTO) 

require only one type of data, either ORG or FIN. Only one starting index 

value along with the amount of data to be analyzed is entered. 
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Figure 5.1 ANAL Subprogram Structure 
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5.1 Binary Analysis Utilities 

5.1.1 Binary Data Analysis Command (COMPRB) 

Two binary analysis utilities are available. 	COMPRB compares 

binary ORG and FIN data on a bit-by-bit basis. 	The utility was created 

primarily for the purpose of comparing original binary data before it is 

sent through the communication channel with final binary data coming out of 

the channel. It computes the bit error rate, the longest sequence of l's 

and O's, and the percentages of l's and O's. 

5.1.2 Binary Error Analysis Command (ERRCOM) 

ERRCOM analyzes bit errors on the basis of time as well as number. 

The data is broken up into windows whose length is specified by the user 

and the frequency of the periods between errors is computed for each 

window. The user can optionally have the index values of the bits in error 

output. At the end of the analysis, the total number of occurrences of 

each period for all the windows is presented. Note that the results can be 

affected quite drastically by the window size and the analysis starting 

positions that are selected. For example if all periods are greater than 

25 but the window size is 20, no periods will show up in the analysis. The 

fractional bit-error-rate is also computed. 

5.2 Complex-Component Display Command (VIEW) 

Command VIEW displays a choice of five ORG or FIN data components: 

real, imaginary, magnitude, phase in degrees, and phase in radians. In 

addition, the mean, standard deviation, and mean of the squares of the 

displayed components are otitput. If the user wishes to see only these 

statistical quantities, an option is available to suppress the component 

display. 
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5.3 Complex Comparison Command (COMPRC) 

COMPRC plays a role similar to COMPRB, except that it compares 

complex components rather than binary numbers. The standard components, 

real, imaginary, magnitude, degree phase, or radian phase can be compared. 

Instead of a bit error rate, the root-mean-square error is output, along 

with the mean, standard deviation, and mean of the squares of the ORG and 

FIN data components. Note that COMPRC provides some of the same 

information that VIEW does. 

5.4 Fast Fourier Transform Command (FFT) 

A fast Fourier transform, either forward or inverse, of either the 

ORG or FIN data can be performed by command FFT. The number of data to be 

analyzed is restricted to integer powers of two. The forward transform is 

defined as: 

n- 

YF
m 

= e?
n 

exp(-j2nnm/N) 

n=0 

while the inverse transform is defined as 

n-1 
1 

YI
m 

= 
	
exp(j2irnm/N) 

	1 

n=0 

The significant point to note here is that the inverse transform is divided 

by the number of points, N, but the forward transform is not. This assures 

that a forward transform followed by an inverse one will leave the data as 

it was. When FFT is used on the ORG or FIN data array, the transformed 

data replaces the data in that array, and the data that was there is lost. 

As a safety measure, the user is informed of the impending loss and asked 
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to confirm the command. As an example, if there were 200 ORG data samples, 

the user could transform 128 of these by specifying the power of two of the 

number of samples as 7. He could specify the start of the transformed 

block to be 40, and this would result in samples 40 to 167 being 

transformed with the 128 samples of transformed data replacing the ORG data 

(there will be only 128 samples of ORG data after the transformation). The 

FFT algorithm is a radix-two-decimation-in-time algorithm taken from 

Reference [6]. The data is scrambled before the transform and comes out in 

the correct order. To save time the exponential factors are computed ahead 

of time. 

5.5 Histogram Command (HISTO) 

Histograms of components of ORG or FIN data can be produced by 

using the command HISTO. The choice of components is the same as for 

VIEW. After specifying the number of data to be processed, the user enters 

the histogram lower limit, the histogram cell size, and the number of 

histogram cells. The number of cells includes a first cell for all values 

falling below the lower limit, and a last cell for all values falling above 

the upper limit of the next-to-last cell. Therefore the minimum number of 

cells allowed is three. After the histogram is produced in tabular form 

the user is given the option of viewing a bar-graph version. Finally, he 

is given the option of having the data replaced with the histogram cell 

values, so that these can be written to a file. When this is done, the 

program words storing the number of data and the data rate are replaced by 

ones indicating the number of histogram cells, and the cell size, 

respectively. The real part of the data vector receives the cell values. 

The first imaginary location receives the histogram lower limit, while the 

second imaginary location receives the upper limit. 	The third position 

gets the code indicating which component was processed. 	All remaining 

imaginary locations are set to zero. 
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6 DATA STORAGE FILES (FILE) 

Complex data storage files may be created by the FILE subprogram. 

These may be used to store intermediate data between runs or within a run. 

Such files can save considerable computer processing time when the same 

data is used a number of times, as, for example, when different values of 

some receiver parameter are tried with the same transmitted signals and the 

same propagation medium. Figure 6.1 indicates the two subroutines FILIN 

and FILOUT that are available, and the CANCEL command which simply allows 

an exit to the main program without any action. An automatic exit to the 

main program occurs after either FILIN or FILOUT. 

The user may send a block of ORG or FIN data to a file using the 

FILOUT command. He specifies the number of data, the index value of the 

first datum, a description of the file with up to 32 characters, and a file 

name. A file header is generated containing the creation date, the program 

version number, the number of data, the data rate, and the user-entered 

file description. 

Any file created in this way may be read back, in the same run or 

in a later one, as ORG or FIN data (regardless of where it came from) with 

the FILIN command. The user specifies the destination and the file name, 

and when the file has been read in, is informed of the number of values 

received, the sample rate, the date it was created and the file 

description. If data already exists at the destination, the user is warned 

that it will be lost and asked to verify the FILIN command. If the program 

version number in the header does not match that of the current program the 

user is warned of this fact but the input of data proceeds anyway. The 

warning is intended to alert the user to the possibility' of errors caused 

by program changes that may make the data incompatible. 
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Figure 6.1 FILE Subprogram Structure 
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7 SIMULATION OF THE COMMUNICATION SYSTEM (PROCES) 

7.1 Introduction 

The PROCES subprogram performs the actual simulation of the 

components of the communication system including transmitter, propagation 

medium, and receiver. The structure is shown in Figure 7.1. The bottom 

row of subroutines perform the actual simulation. In addition to the usual 

utility commands shown in the upper row, a command called NULL is 

included. This simply copies ORG data to FIN data, provided no FIN data 

already exists. If a subroutine has already created FIN data, NULL makes 

no change. 

Each of the six subroutines in the bottom row implements a portion of 

the communication system. 	BITSRC performs error-correction coding and 

interleaving. 	MODCOD forms integer symbols from the data bits, performs 

some symbol-to-symbol encoding such as differential encoding, adds 

direct-sequence chip symbols, and produces complex modulation samples. 

HOPPER performs frequency-hop encoding and includes some general-purpose 

operations such as signal filtering and decimation. MEDIUM simàlates the 

propagation of the complex signal through a medium. 	RECVR performs the 

receiver functions down to demodulation into integer symbols. 	BITSNK 

performs symbol expansion into bits, and post-detection processing of the 

data bits. The above order of subroutines, or processes as we will now 

call these particular ones, is the order in which the communication would 

normally occur. Each process comprises components that we will call 

sub-processes. 

Once in PROCES the user may call a number of processes in sequence. 

The FIN data from one process automatically becomes the input data for the 

next. 	To avoid loss of ORG data this input data is stored in an 

intermediate array that is used as the input to each sub-process. 	As a 

result, on entry to the PROCES subprogram, the ORG data must be copied into 

the intermediate array. 	Thus, when the PROCESS subprogram is initially 
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entered with a large number of ORG data, the program will take some time to 

duplicate the ORG data. When PROCES is exited the ORG data is the ORG data 

that existed when PROCES was entered. If PROCES is later re-entered to 

continue operating on the data with other processes, the FIN data will 

first have to be converted to ORG data by using the data modification level 

command CONVRT. An example of where this may be required is where the data 

is to be saved at some intermediate point in the simulation, say after the 

propagation medium simulation. In this case PROCES must be exited after 

MEDIUM to allow the FILE command level operation FILOUT to be performed. 

Then, CONVRT in the data modification level would be called so that the 

output data from MEDIUM would be the input for the next process when PROCES 

is re-entered. It should be remembered that the ORG data existing before 

the CONVRT operation is lost, and, if important, should be saved using 

FILE. 

It is important 	for the user to realize that 	it 	is his 

responsibility to assure that the correct sequence of processes with the 

correct parameters is chosen. For example, it makes no difference to the 

program whether the process RECVR is run before or after the process 

MODCOD, even though running RECVR before MODCOD is normally meaningless. 

The advantage to the user of this seeming weakness is that the simulator 

maintains maximum flexibility. Individual processes or parts of them can 

be tested or run through at different times. For example, MODCOD could be 

run one day and the output (FIN) data saved using FILE command FILOUT. The 

next day the old FIN data could be read in by FILE command FILIN as ORG 

data, and used in MEDIUM. Another example is the use of the RECVR process 

consecutively on different data sets (obtained from data files) to 

determine the effect of the process on data generated with different 

characteristics (say different propagation conditions). Also, some 

general-purpose devices such as a saturating amplifier, which exist in one 

process may be used at other places simply by calling the process that 

contains them after leaving the current process and before entering the 

next one (or re-entering the original one). Within a process particular 

sub-processes may be chosen by answering "no" to all other sub-processes. 
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Sub-processes inside a process are structured in a more rigid 

manner than processes; they are performed in a fixed order. However, the 

user is asked if the sub-process is to be used or not. Generally, 

sub-processes work on all of the data in a block fashion, one sub-process 

being started only when the last one has finished with all the data. Each 

block sub-process normally obtains information from the user as it needs 

it. The RECVR and MEDIUM process are the exceptions to this. Each of 

these operates in a sequential manner, with each sample being processed by 

each part of the process before the next sample is input (there may be some 

block processing, however; in this case the samples are accumulated and 

output delayed). This is not apparent to the user who still must set up a 

structure of sub-processes. 	The difference is that the sub-processes do 

not really exist. 	Rather, there is a single sequential process which 

comprises a number of operations in a loop which is followed for each 

sample. 

7.2 Error Coding and Interleaving Process (BITSRC) 

The error-coding routines have been structured to allow two levels of 

coding, an inner binary code and an outer symbol code. This would allow 

the implementation of concatenated codes. However, at this time only the 

inner coding routine has been implemented. The inner coding was to include 

both block and convolutional codes, but only a cyclic-block-coding routine 

is complete. 	The program asks the user if he wants to use any of the 

intended types, but if he chooses anything but inner block coding he will 

be warned that the chosen type has not yet been implemented, and that the 

input data has been passed to the output without change. 

7.2.1 Binary Cyclic-Block-Code Generation 

A general encoding algorithm for binary cyclic block codes is 

provided in BITSRC. The user enters the desired number of bits in a coded 

block, n, the number of information bits to be encoded in the block, k, and 
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the generator vector for the desired error correction code, or, if he 

prefers, its parity vector. (The parity vector method is not yet 

implemented, but is described here since it is partly implemented and could 

be completed with little effort.) The generator and parity vectors are 

simply the binary coefficients of the generator or parity polynomial. See 

Reference [7] for details on finding these polynomials for particular 

codes. The first coefficient of these polynomials, that of the zero-order 

term, is always one. The vector, however, is defined here to include this 

coefficient, and the user must enter it. If he enters a zero as the first 

element, the routine will reject the entry and ask that the vector be 

re-entered. Each output block will consist of the input block (information 

bits) followed by the parity bits. If the last block does not contain k 

information bits it is filled out to k bits by the addition of zeros before 

the coding is applied, and the user is so informed. 

The encoding algorithm for the generator-vector method 	is 

represented by Figure 7.2 in conjunction with the following steps which are 

performed for each block to be encoded. 

1 All registers are initially set to zero. 

2 Switch S1 is closed and S2 is set to position 1. 

3 k bits of input data are shifted into the circuit and 

simultaneously into the output stream through S2. 

4 Si  is opened and S2 is set to position 2. 

5 n-k shifts are performed. This will output n-k 

parity bits into the output stream. 

The encoding algorithm for the parity vector method is represented 

by Figure 7.3 in conjunction with the following steps which are performed 

for each block to be encoded. 

1 All registers are initially set to zero. 

2 Switch Si  is set open and S2 is closed. 

3 k information bits are shifted into the circuit and 

simultaneously into the output stream. 
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4 Si  is closed and S2 is opened. 

5 n-k shifts are performed. This will output n-k parity 

bits to the output stream. 

It should be noted that error coding will always increase the 

reported data rate by the inverse of the code rate. 

7.2.2 Interleaving 

When errors are likely to occur in bursts, interleaving of the data 

after error-correction coding can be used to reduce the error rate by 

spreading the burst of errors over many coded blocks so that each block 

will have a small enough number of errors to permit the errors to be 

corrected. Of course, in the receiver the interleaving process must be 

reversed before error-correction decoding is performed. 

A block interleaving routine is provided in the simulator. 	The 

method is to write the data into a matrix by rows, and then to read them 

out in columns. The user specifies the number of rows and columns. For 

examplu, if a ten-by-five matrix were specified (ten rows and five columns) 

then the bits would be output in the following order: 

1 , 1 1,21,31,41;2,12,...,39,49;10,20,30,40,50. 	The semicolons indicate where 

a new column was started. 	In the receiver, an identical process (but 

called de-interleaving) is performed before error-correction decoding. For 

the data to be restored to its original order, the number of rows and 

columns in the receiver de-interleaver must be interchanged from those in 

the interleaver; that is, in the above example five rows and ten columns 

would be specified in the receiver de-interleaver. If the quantity of data 

such that the last block (matrix) is not filled, the remainder is filled 

with zeros, and the user is informed of the addition. 

7.3 Modulation and Coding Process (MODCOD) 

The modulation process in the simulator is defined as the 

is 
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conversion of data symbols into sampled representations of analogue 

waveforms for transmission through the medium. These waveforms form a set 

of distinguishable signals, one for each of the possible data symbols. The 

simulation represents these waveforms by complex samples of the signal at 

zero centre or carrier frequency. The complex representation permits the 

positive and negative parts of the waveform spectrum to be independent. As 

a result, the centre frequency is arbitrary and the simulation results 

apply just as well for any carrier frequency. The modulation waveforms 

available in the simulator are various forms of frequency-and phase-shift 

keying. 

The coding referred to in this section deals with bits and symbols 

before modulation, but excludes error-correction coding. Types of coding 

provided are: coding of bits into integer symbols; conversion of symbols 

into new symbols for the purpose of minimizing the bit error rate for a 

given symbol error rate; conversion of symbols into new symbols to allow 

differential demodulation where a coherent form of modulation is used even 

though the propagation medium does not provide long-term coherence of the 

signal; coding for multiple-code-shift keying (MCSK); and addition of 

direct-sequence codes to the data symbols for spread-spectrum systems. 

The word "symbol" is used here to describe two different things: 

an integer representing an element of data, and the corresponding waveform 

used to transmit the data element. There is normally a one-to-one 

correspondence between the two. Where the meaning is not clear from the 

context, the term "data symbol" or "integer symbol" is used for the former 

and "waveform symbol" is used for the latter. 

Although coding, 	if performed in a real system, precedes 

modulation, for convenience modulation will be discussed first. 

7.3.1 Modulation 

The modulated signal is represented by samples of the analogue 
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waveform. The user-specified number of samples per symbol is an important 

parameter since it affects the processing time and memory requirements of 

the computer, and also the accuracy of the simulation. These requirements 

are conflicting, with the former demanding few samples per symbol and the 

latter demanding many. The program imposes a minimum on the number of 

samples per symbol, depending on the modulation type, which prevents a 

gross violation of the Nyquist-rate criterion, but the user should not 

depend on this to provide a good simulation. Since the symbols are of 

finite time duration, their spectrum will not be of finite extent, and the 

Nyquist-rate criterion can never be perfectly satisfied. It is up to the 

user to decide how many samples are necessary to provide the desired 

accuracy for a particular simulation. Since the samples are complex, the 

rate should be at least twice the frequency magnitude beyond which the 

energy is deemed insignificant. Since the modulation is applied to a 

carrier of zero frequency, this means that the sample rate should be at 

least equal to the signal bandwidth, where bandwidth is defined as the 

range within which almost all of the spectral energy falls. 

The number of samples per symbol must be an integer. The symbol 

boundary is assumed to fall halfway between two samples; that is, the first 

sample of each symbol is one-half sample period after the leading edge of 

the symbol and the last is one-half period before the trailing edge. 

Two basic types of modulation are available in the simulation, 

frequency-shift keying (FSK) and phase-shift keying (PSK). Two forms of 

PSI( are multiple-code-shift keying (MCSK) and differential PSK (DPSK). 

Each of these uses normal PSK modulation but codes the symbols before the 

modulation. These types of coding are described in Section 7.3.2. 

Frequency-shift keying is divided into three types, single-tone FSK which 

we refer to here as FSK, multiple-tone FSK (MFSK), and minimum-shift keying 

(MSK). 
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7.3.1.1 Phase-shift Keying 

In PSK the waveform has zero carrier frequency and a constant phase 

selected from one of a set of possible phases corresponding to the set of 

symbols to be sent. If the data has been encoded into symbols of Nb bits 

each then the 2
Nb 

phases are chosen by dividing 2n radians into 

Nb 
2 equal parts as shown in the example of Figure 7.4. 	For an integer 

symbol, 	(I=0,1,2,•.•,2Nb-1), 	the 	phase 	is 	simply 	2nI/2 N b 

radians. The magnitude is equal to the rms voltage specified by the user, 

since the samples are complex. The number of samples generated for each 

symbol is specified by the user. As a result of the zero carrier 

frequency, all samples representing one symbol are identical. 

7.3.1.2 Frequency-Shift Keying 

In single-tone FSK a symbol of Nb bits produces one tone from a 

set of M=2Nb possible tones. 	The tones are symmetrically positioned 

about zero frequency with equal spacing as shown in Figure 7.5. The user 

specifies the frequency spacing between adjacent tones. 	The tones will 

have frequencies of 

- (M/2-1/2), -(M/2-1/2-1), ... -1/2, 1/2, ... M/2-1/2-1, M/2-1/2 

times the specified separation, with the first corresponding to symbol 0, 

the second to symbol 1, etc. Each new symbol waveform begins with a 

complex sample having a magnitude equal to the user-specified rms voltage 

and a random phase selected from a uniform distribution between 0 and 2n 

radians. The remainder of the Ns  samples (N s  = numiper of samples per 

symbol) in that symbol waveform have the same magnitude as the first, but 

their phase increases by 2nf t  radians for each succeeding sample, where 

f t  is the tone frequency as a fraction of the sample frequency. The tone 

separation is usually made equal to the symbol rate, since this makes the 

symbols orthogonal (a filter matched to one will have zero response to any 

other one). A closer spacing will require less overall bandwidth but will 
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Figure 7.4 Example of PSK Modulation 
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QUENCY GIVEN BY THE HORIZON-
TAL AXIS. THE ACTUAL SPECTRUM 
FOR EACH TONE WILL HAVE 
SOME WIDTH AS A RESULT OF 
THE FINITE SYMBOL DURATION. 
ONLY ONE TONE IS PRESENT AT 
ANY TIME. 

Figure 7.5 Example of Single-Tone FSK 
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result in reduced bit-error-rate performance. 	A wider spacing will not 

result in reduced performance if the spacing is a multiple of the symbol 

rate, and in only slightly reduced performance otherwise. If symbol 

envelope shaping is applied (to be described later) the best performance 

will generally be obtained for spacings of between one and two times the 

symbol rate, depending on the type of shaping selected. The program will 

reject any spacing that puts the highest tone above half the sample rate. 

7.3.1.3 Multi-Tone Frequency-Shift Keying 

In multi-tone FSK the data symbol is divided into sub-symbols and 

each sub-symbol generates a single tone, with the tones from all 

sub-symbols added to form the output waveform. 	The arrangement of the 

tones is illustrated by the example in Figure 7.6. 	In this example the 

has specified six bits per symbol, and three tone sets or 

sub-symbols. Note that the number of sets must be a factor of the number 

of bits per symbol. The user is informed of this requirement, and is asked 

to enter a new value if he does not satisfy it. When the number of sets is 

even, they are arranged symmetrically on either side of zero frequency. 

The user must specify the separation between sets as well as the separation 

of the tones within each set. Only one value is allowed for each of these 

parameters and applies to all tone sets. Normally the frequency separation 

between sets is chosen to make the separation between the highest tone in 

one set and the lowest in the next set equal to the separation between 

tones in a set, but the user is not restricted to this value. The program 

will reject any pair of separations that causes sets to overlap or causes 

the highest one to exceed half the sample rate. 

In the example of Figure 7.6, if the input symbol were 54 (110110 

binary), then the first sub-symbol would be 3 (11), the second 1 (01), and 

the third 2 (10). The corresponding tones, one from each sub-symbol would 

be generated and added. _The generation of any one tone is identical to 

that in single-tone FSK. 

user 
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SPACING —el 
IN SUB-SYMBOL 
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FREQUENCY —ob. 

SPACING BETWEEN_01 
SUB-SYM  BOLS  
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SYMBOL ( 
VALUE — 
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4 1  = 4 	 42  = 16 

2 	3 SUB-SYMBOL —10- 0 
VALUE 

2 	3 	0 	1 3 	0 	1 2 

NOTE: EACH UPWARD ARROW 
REPRESENTS A TONE AT THE FRE-
QUENCY GIVEN BY THE HORIZON-
TAL AXIS. THE ACTUAL SPECTRUM 
FOR EACH TONE WILL HAVE 
SOME WIDTH AS A RESULT OF 
THE FINITE SYMBOL DURATION. 
ONLY ONE TONE FROM EACH SET 
IS PRESENT AT ANY TIME. 

o 
Figure 7.6 Example of Multi-tone FSK Modulation 
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7.3.1.4 Minimum-Shift Keying 

Minimum-shift keying (MSK) is a form of FSK in which the tone 

separation is very small (one-half the symbol rate) and the phase is chosen 

to be continuous across a symbol boundary. This is done to minimize the 

modulation bandwidth. Instead of a random phase being chosen at the 

beginning of each new symbol, the phase at the end of the last symbol is 

used. This is the phase at the symbol boundary, not that of the last 

sample of the the last symbol; this sample is a half sample period before 

the boundary. Only single-tone MSK has been implemented in the simulator 

at this time. 

7.3.2 Envelope Shaping and Smoothed Transitions 

After modulation has been performed the user may select some form 

of symbol waveform modification that will control the shape of the 

spectrum. With the exception of MSK, all modulation types provided have 

abrupt transitions from symbol to symbol, and this results in a spectrum 

which has "sidelobes" which decrease slowly with frequency away from the 

main lobe as shown in Figure 7.7. This is the spectrum of a single 

waveform symbol of PSK, which is simply a rectangular pulse. The spectrum 

for FSK is the same except shifted by the tone frequency. This spectrum 

plotted from a simulated symbol with 20 samples per symbol, and is 

shown out to one-half the sample frequency on each end. The part of the 

spectrum near the edges is affected by aliasing, and does not correspond 

exactly to the theoretical unsampled function spectrum. The sidelobes may 

be reduced at the cost of a slight widening of the main lobe of the 

spectrum, by either of two methods: envelope shaping, or smoothed 

transitions. 

7.3.2.1 Envelope Shaping 

was 

Envelope shaping multiplies the modulated symbol by a weighting 
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function that is maximum at the centre of the symbol and minimum at each 

end. Four weighting functions are provided. These are: Hanning, modified 

Hanning, Hamming, and sine of sine of sine. 	They are specified by the 

equations below, and are graphed in Figures 7.8 to 7.11. 	The spectra of 

symbols shaped by these functions are plotted in Figures 7.12 to 7.15. 

For Hanning shaping (shown in Figure 7.8) the weight is: 

W(t) = 	(cos[n( - 0.5)]} 2 , 	for 0 < t < T 

= 0, 	 otherwise, 

where t is time from the start of the symbol and T is the symbol duration. 

This function may also be written as follows: 

1 	1 
W(t) = - - - cos (2nt/T) 

2 	2 
for 0< t < T 

= 0, 	 otherwise. 

In modified-Hanning shaping the cosine-squared weighting is applied 

to only a part of the symbol on each end, and the middle of the symbol is 

left unweighted. A parameter m must be specified to determine the portion 

of the symbol that is weighted. The parameter m is the ratio of the entire 

symbol duration to the portion that is weighted. 	Thus the weighting 

occupies a time T/2m on each end. 	An example of the modified-Ranning 

function with m = 2 is shown in Figure 7.9. 	The weight for the general 

modified-Hanning shaping is: 

	

W(t) = 	cos2 [w(mt/T - 0.5)], 

	

= 	1, 

= 	cos2 [n(mt/T - m + 0.5)],  

for 0< t < T/2m 

for T/2m < t < (1-1/2m)T 

for (1-1/2m)T < t < T. 



1.0 

0.8 

Mal 

w 0.6 

1- 
«WM 

2 0.4 

•IM 

amal 

0.2 

0.0 0.4 	 0.6 	 0.8 	 1.0 

TIME I SYMBOL DURATION 

Figure 7.8 Hanning Shaping Function 

0.2 



1.0 

0.8 

w0.6 

t-- 
z 

2 0.4 

0.2 

0.0 

0.0 

1 

02 	04 	0.6 

TIME / SYMBOL DURATION 

1 1 
0.8 	 10 

Figure 7.9 Modified-Hanning (m=2) Shaping Function 



46 

The Hamming function, shown in Figure 7.10, is similar to the 

Hanning function but is raised slightly so that it does not go to zero at 

the ends. The weight is given by: 

W(t) = 0.54 - 0.46 cos (2nt/T), 

= 0 ,  

for 0< t < T 

otherwise. 

The sine of sine of sine function is shown in Figure 7.11. 

weight is: 

Its 

W(t) = sin {n/2 sin [n/2 sin (nt/T)]1, for 0< t < T 

= 0, 	 otherwise. 

The spectra for the above functions, shown in Figures 7.12 to 7.15, 

were generated from sampled waveforms with 20 samples per symbol. Thus, 

the half-sample-rate points are at plus and minus ten times the symbol 

rate, and the spectra near the ends are affected to some extent by 

aliasing. 

Shaping reduces the energy in the modulated symbol. The reduction 

factors are .375 for Hanning, 1-.625/m for modified Hanning, .3974 for 

Hamming, and .769 for sine of sine of sine. The energy per symbol before 

and after shaping is computed and displayed for the user. 

The best shaping function for any system will depend on the particular 

requirements of that system since there will be tradeoffs among the various 

characteristics including: energy for a given peak power, width of the 

main lobe of the spectrum, level of the near-in sidelobes, and level of the 

farther-out sidelobes. A detailed look at the information and plots 

provided above can help in the choice of a function for a particular 

situation. 
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7.3.2.2 Smoothed Transitions 

The other method of spectrum control, smoothed transitions, may be 

applied only to PSK-modulated symbols. It modifies a part of adjacent 

symbols near their boundary to provide a smooth transition from one to the 

other. Phase, or magnitude, or both may be affected. A choice among three 

types of transitions is provided. A user-specified parameter that applies 

to all three is the transition ratio, which is defined in Figure 7.16 as 

the ratio of the transition period to the total symbol period. 

transition period occurs in each symbol. 

Half of the 

The first type of transition is a transition of both the real and 

imaginary components in a sinusoidal fashion over half a period of the 

sinusoid. Let xl and x2 be the values of the real or imaginary component 

of symbols 1 and 2 respectively. Then the value of that component in the 

transition region, with the time origin taken at the symbol boundary, will 

be: 

x = (x2+ x1)/2 + (x2 -  x1)/2 sin (irt/T), 	-T/2 < t <T/2 

This transition type affects both amplitude and phase except when the 

symbols are binary, in which case only the amplitude is affected. 

The second type of transition is a linear transition of phase from 

one symbol to the next, with amplitude held constant. This has the 

advantage of maintaining the energy in the symbol, but the disadvantage of 

modifying the information-carrying part of the symbol. 

The third type of transition is one in which the phase is held 

constant, with the amplitude made to change sinusoidally through zero. 

However, if two adjacent symbols are the same there is no change. If the 

symbol amplitude is A, the amplitude in the transition region 

-T/2 < t < T/2 is given ly: 
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I A sin(nt/T) I, a=  when the symbols are different, 

when the symbols are the same. 

This method could be considered a type of shaping. The difference is that 

the shaping is not applied when it is not needed, that is, when adjacent 

symbols are the same. This increases the average energy, but the increase 

becomes less as the number of bits per symbol increases, since the 

likelihood of identical adjacent symbols becomes less. 

The detailed spectra for these transitions depend on the data that 

have been modulated. It should be possible to compute averaged spectra for 

very long pseudo-random data sequences, but that has not been done at this 

time. We can say that transitions will significantly reduce the spreading 

of the spectrum that results from the abrupt changes between symbols, but a 

quantitative analysis is left to the user. 

7.3.2.3 Effect on Aliasing 

, The reduction in spectrum spreading realized from shaping or 

transitions can help reduce the number of samples per symbol required to 

prevent serious aliasing. Since the modulation is performed before the 

shaping or transitions, it might at first appear that more samples would be 

required before the spectrum width is reduced. 	Rut this turns out to be 

unnecessary. 	Although the samples may not well represent the unshaped 

waveform, they do represent the values at the points sampled exactly. 

Since the shaping only multiplies these points, the aliasing in the 

original spectrum has no effect, and as long as there are enough samples to 

prevent aliasing in the shaped waveform, the waveform will be well 

represented. 

A, 



56 

7.3.3 Coding 

Data is originally generated in binary form (bits), but since some 

modulation schemes use more than two waveforms, there is a need to combine 

bits into higher-level symbols to provide the source for this modulation. 

These symbols are simply the integer values represented by a group of bits 

where the first bit of an N-bit symbol has value 2N-1  the second 2N-2,  

etc. Only an integer number of bits may be coded into a symbol; that is, 

the symbol alphabet must consist of a number of elements equal to a power 

of two with a maximum number of elements of 2
24 

 • When bits are formed 

into symbols the data rate reported by the program changes to show the 

number of symbols per second instead of the number of bits per second. 

The first thing the MODCOD process does is ask for the number of 

bits per modulation symbol. This is the number that specifies the number 

of modulation symbols as indicated above. There is the possibility of some 

confusion here if multiple-code-shift keying (MCSK) is selected since MCSK, 

which will be described later, may be considered both a type of code and a 

type of modulation. Therefore, one may think of the MCSK symbols as 

modulation symbols. One should not think of them as such when entering the 

desired number of bits per symbol (a message warning aboût this is 

displayed when the question is asked). The symbols referred to there are 

the modulation symbols that are the elements of MCSK symbols when they are 

used. 

Another fact worth noting here is that entering a value for the 

number of bits per modulation symbol does not cause the symbols to be 

formed. To accomplish this the user must answer "yes" to the next question 

on whether symbols are to be formed. He must also answer "yes" if he 

wishes to include any of the types of coding other than direct-sequence 

encoding. There may be occasions when the user may elect not to form 

symbols even when he enters a number greater than one for the number of 

bits per modulation symbol. One of these is when he wants only one data 

bit to be encoded in each symbol but wishes to add direct-sequence encoding 

with M-ary (with M > 2) phase modulation (when direct-sequence coding is 
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used a modulation symbol refers to an element of the direct-sequence 

modulation). While it is not clear that such a scheme has any advantages, 

it is allowed. 

7.3.3.1 Inverse Gray Encoding 

When there are more than two different modulation waveforms, they 

may not be equally distant from one another in the signal space, i.e. 

there may be a higher likelihood that noise will cause a waveform to be 

interpreted as one wrong waveform than a different wrong waveform. Under 

such circumstances it is important to insure that the most likely symbol 

errors will result in only a single bit error after symbol decoding, in 

order to minimize the bit error rate. If the waveforms are ordered so that 

adjacent ones, in terms of symbol number, have minimum distance from each 

other, then an inverse Gray encoding of the symbols will accomplish this 

goal. This is so because the original symbols (and those after decoding in 

the receiver) will have a Gray encoding relative to waveform symbols, which 

means that adjacent symbols differ in only one bit. Inverse Gray encoding 

is available in MODCOD for this purpose. 

7.3.3.2 Differential Encoding 

Differential encoding may be performed on symbols as well as bits. 

For symbols of N bits, differential encoding consists of adding, 

modulo- 2N, the present symbol with the previous encoded symbol. Since 

when encoding the first symbol there is no previous encoded one, a zero is 

arbitrarily assigned to that encoded symbol. 

7.3.3.3 Multiple-Code-Shift Encoding 

In MCSK, a number of binary-sequence codes are used to represent 

the various data symbols. PSK modulation of the code elements results in 
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the MCSK waveforms. The user specifies the length of the codes (all must 

be the same length), and for data symbols of Nb bits per symbol he must 

Nb 
enter 2 	different binary sequences, one for each data symbol. 	These 

should be chosen to be orthogonal to each other (they should have zero 

crosscorrelation, at least for zero relative delay), to minimize the 

probability of error in the receiver. If the codes are orthogonal the 

bit-error-rate performance is identical to that for orthogonal FSK, since 

both are forms of non-coherent orthogonal signaling. (When we say 

"non-coherent" we mean non-coherent from symbol to symbol; both FSK and 

MCSK signals must be coherent over a symbol duration.) 

In a special binary differential mode of MCSK, only a single code 

is entered, and the same code is used for the two possible binary symbols, 

but with a phase inversion for one of them. This is equivalent to DPSK 

with the addition of a spreading waveform (the MCSK code), and is really a 

form of spread-spectrum modulation. However, the spreading code repeats 

from symbol to symbol, and this may be unacceptable in an ECCM system. For 

this reason an alternative mode using a non-repeating code is available for 

the binary differential MCSK case. In this mode the user does not enter a 

code at all, but only a seed (or accepts a default seed) for the 31-bit 

maximal-length sequence (M-sequence) generator. For each data symbol 

(binary) a new segment of the very long M-sequence is used as the MCSK 

code, with its phase determined by the data symbol. The result is 

identical to that for DPSK with direct-sequence spread-spectrum 

modulation. However, this particular form of MCSK was designed to allow 

the use of an MCSK matched filter in the receiver rather than the 

correlation de-spreading usually used in direct-sequence systems. This has 

certain advantages as will be discussed under the receiver section. While 

the modulation could have been produced by the normal direct-sequence 

coder, a separate MCSK coder was used for consistency with the receiver 

matched-filter demodulator. 

The differential MCSK does not use the differential encoder already 

described. Differential encoding is included in the MCSK routine. 



59 

MCSK elements may be given weight greater than one for use with 

multi-phase direct-sequence modulation. But MCSK coding always uses binary 

elements to produce phase changes of zero or n radians. For example, if 

the direct-sequence modulation has four phases, the MCSK elements will be 

given weight 2 so that it will affect the phase by zero or 2 times the 

phase increment set by the direct-sequence modulation or 2n 12 = n radians. 

This weight is automatically computed by the program as one-half the number 

of phase states (determined by the number of bits per data symbol). 

MCSK encoding will change the data rate reported by the program. 

This rate is the rate of MCSK elements per second. These elements are 

referred to as symbols by the program. They should not be confused with 

MCSK symbols that comprise a number of these elements. 

7.3.3.4 Direct-sequence Encoding 

In a direct-sequence spread-spectrum system the phase-modulated 

data symbols are, in effect, multiplied by a phase-modulated pseudo-random 

symbol sequence of much higher rate to produce a new signal with a much 

higher bandwidth. In practice this is accomplished by a modulo-2N 

addition of the two sequences before phase modulation, where N is the 

number of bits per symbol (multiplication of complex waveforms results in 

addition of their phases). This spreading of the bandwidth of the 

transmitted signal provides advantages in combatting the effects of jamming 

and in reducing the probability of intercept. The processing gain against 

a jammer of limited total power is equal to the ratio of spread bandwidth 

to data bandwidth. This ratio is also equal to the factor by which the 

signal spectral power density can be reduced without increasing the error 

rate, and hence is a measure of gain against an interceptor. Information 

on direct-sequence systems may be found in References [81 and [9]. 

In the simulation, maximal-length sequences (M-sequences) generated 

by a feedback shift register are used for spreading and de- spreading. 

These have a length of 2 31 -1 before repeating. Feedback taps are at stages 



60 

31,30,28, and 16. 	In real ECCM systems such codes are rarely used because 

it is too easy to determine the full sequence from a few elements. 

Instead, modified codes that are much harder to determine will be used. 

However, whatever codes are used, they are not likely to have statistics 

significantly different from those of M-sequences, and only M-sequence 

generators have been implemented in the simulator at this time. 

The spreading symbols are formed from the M-sequence bits by 

grouping Nb bits (the number of bits per symbol) into a symbol in the 

same way that the data bits are formed into symbols. The same parameter 

Nb controls the generation of symbols for both the data and the spreading 

code, and these will therefore normally both have the same number of bits 

per symbol. However, if the user has not asked for the data to be formed 

into symbols (he must still specify Nb) it is possible that the data will 

have symbols of fewer bits than the spreading code. 

The user specifies the number of spreading symbols per data symbol, 

N. This causes Nc  spreading symbols to be added modu10-2 Nb 

separately to each data symbol to produce Nc  output symbols for each data 

symbol. The data rate is thus increased by a factor of Nc  and the new 

data rate is computed and displayed. The spread data is still in the form 

of integer data at this point; it is converted to a spread waveform when 

PSK modulation is performed later. 

7.4 Frequency-Hop Encoding Process (HOPPER) 

When frequency hopping is performed, the carrier frequency of the 

signal is changed at regular intervals. Each new frequericy is selected 

from a set of possible frequencies in a pseudo-random fashion. Frequency-

hopping systems are discussed in more detail in Reference 9. In the 

simulator, a 31-bit feedback shift register with feedback from stages 31, 

30, 28, and 24 (giving a maximal-length sequence of 231 -1 bits) is used to 

generate the pseudo-random numbers for frequency selection. The user 

specifies the number of bits, Nf, to be used for the frequency number. 
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Ne This determines the size of the frequency set as 2 '• Bits from the 

shift register are taken Nf at a time to form Nf-bit words defining the 

particular frequency number (frequencies are numbered 0 to 2
Nf

-1) from 

the set. These are multiplied by a user-specified multiplier and added to 

a user-specified offset to determine the actual frequency, in khZ, to be 

transmitted. For example, if Nf were chosen as 5, the multiplier as 10, 

and the offset as 8,000 (these last two need not be integer), then there 

would be 32 frequencies in the set, with frequencies 8000 khZ, 8010 khZ, 

..., 8310 khZ. 	If the bit sequence 01101 were generated, this would 

represent frequency number 13 or 8000 + 13x10 = 8130 khZ. 	The value of 

Nf is limited to a maximum of 28 (over 268 million frequencies). 

The user sets the hop rate by specifing the number of samples 

(complex values) per frequency word. This is limited to a maximum of 1024. 

Since the simulation is carried out entirely at baseband, the 

simulated signal is not actually hopped in frequency but the samples at a 

given frequency are grouped into a block with the first two words of the 

block (one complex word) being used to indicate the frequency of that block 

and the number of samples in the block. The propagation medium routines 

make use of the frequency words 	to determine which propagation 

characteristics to apply to the samples in that block. 	The front end of 

the receiver also looks at the frequency words to determine whether to 

accept the samples (a frequency-hop generator in the receiver determines 

receiver tuning). 

The spacing between possible frequencies (the multiplier) normally 

should not be less than the modulation bandwidth, or the hop rate if that 

is greater. 

7.5 Propagation Medium Process (MEDIUM) 

As an HF propagation medium the ionosphere is characterized by 

multipath, Doppler shifts and spreads, and fading. 	Fading is a natural 
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result of the addition of multipath components with different Doppler 

frequencies, but fading of individual components is also common as a result 

of unresolvable components in the apparently single paths. A frequent 

cause of this latter phenomenon is the presence of both ordinary and 

extraordinary rays with only slightly different paths. Also, in some 

cases, instead of discrete multipath components a time-delay spread exists, 

resulting a time smearing of the received signal. These characteristics 

are a function of frequency and this complicates the design of 

frequency-hop systems. 

The simulator attempts to model all these conditions. 	Four types of 

path are available, and these may be combined (outputs added). The types 

are: perfect transmission (output = input), no transmission (output 

amplitude = 0), multiple delays with user-specified fixed gain and Doppler, 

and multiple delays with independent Rayleigh fading for each (mean gain, 

mean Doppler, and fading rate specified by the user). In the last two 

types the initial delay and incremental delay are specified by the user. 

When the incremental delay is made much less than the time resolution 

(inverse of bandwidth) of the communication system the propagation path 

will appear spread in delay to the system rather than comprising discrete 

components. These path types will be described in more detail later. 

After answering some preliminary questions relating to general 

conditions, the user specifies a number of "paths". Each "path" may 

actually comprise multiple paths but the term is used in the simulator to 

identify a propagation mode, which is then specified over a number of 

frequency ranges. For each path, the user is asked the number of frequency 

ranges over which it will be specified. The total of these ranges always 

covers the the entire frequency range from zero to infinity; this question 

only determines how many different ranges the frequency will be divided 

into, and allows a maximum of 64 ranges. The user then specifies the 

boundaries between the ranges, and the propagation characteristics for each 

range. The first range always has a lowest frequency of zero. After 

specifying the type and parameters required for that type, the user enters 

the lowest frequency of the second range (which also defines the upper 
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boundary for the first range), and then the type and parameters for that 

range. This process is continued for the number of frequency ranges 

specified. The upper boundary of the last range is automatically taken as 

infinity. When all of the ranges have been specified for path one, the 

boundaries and the number of frequency ranges need not be the same for the 

various paths. A number of paths of the same or different type may exist 

in any frequency range. This allows not only a number of different modes 

to be simulated, but also a modification of the type; for  example, Ricean 

fading may be simulated by combining a Rayleigh and a fixed path. 

The first two path types are simple and need no further 

explanation. The last two, the fixed and Rayleigh-fading multiple-path 

types, require a more detailed description. This will be provided with the 

aid of Figure 7.17 which illustrates the algorithm used. 	A tapped delay 

line provides the multiple delays. 	It comprises an initial delay and a 

number of equal incremental delays separating the individual paths. 	Each 

of the delay taps is multiplied by a complex multiplier which is different 

for each tap. For the fixed path these multipliers have fixed amplitude 

bût may have a phase that changes at a uniform rate to simulate a Doppler 

frequency. In the fixed-path case, switch Si  is in the upper position and 

its input is unity with imaginary part equal to zero. Thus the 

multipliers, Gik, are equal to Akexp(ji0k). Ak is the user-

specified amplitude multiplier, and Ok is the angle by which the phase 

increases for each sample. This value, which is also specified by the 

user, determines the Doppler frequency of that path (the Doppler is Ok 

multiplied by the sample rate). 

In the Rayleigh fading mode, switch SI is in the lower position 

and its input is a complex Gaussian random variable whose time correlation 

is controlled by the filter. This filter, specified by the user, uses the 

general filter routine which is described in Section 8.1. The filter 

bandwidth is usually quite small to provide typical fading rates (the 
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bandwidth is approximately equal to the fading rate). 	Section 8.1 on 

filtering discusses a type of narrow low-pass filter suitable for use in 

this application. The filter should have an integrated-noise-power gain of 

unity (as defined in the section on filtering). The term "Rayleigh" refers 

to the probability distribution of the magnitude of the multipliers, Gik. 

This is the distribution of the magnitude of a complex variable whose real 

and imaginary components are independent Gaussian variables of equal 

variance. In Figure 7.17 the variance of the Gaussian generator is given 

as unity. This is the variance of the complex variable; the variance of 

each component is one-half. 

The index i is the time or sample-number index and the index k 

refers to the tap number. 	A separate generator for the Gik values is 

required for each value of k. 	Since the Gaussian generator provides 

independent samples, the same Gaussian generator is shared among the 

various Gik generators. 

In the Rayleigh mode the amplitude multiplier, specified by the 

user, determines the rms value of the tap output for unit input. 	The 

o f IGiki 

of unity if a filter with unity integrated-noise-power gain is used. The 

Doppler phase increment, also specified by the user sets the mean Doppler. 

For both fixed and Rayleigh modes, the amplitude multiplier has a minimum 

of zero and a maximum of one. 

Since the propagation-medium simulation allows more than one delay, 

Gaussian process generating the Gik will provide an rms value 

the output will contain more samples than the input. For example, if the 

input contains 100 samples and the medium has two discrete paths with 

delays of zero and 10 samples, then the simulation will produce 100 samples 

from the first path and 110 from the second (the first 10 will be zero). 

These will of course be combined, with zeros added to the end of the 

separately. The frequency word in each block of samples is examined to 

determine which set of medium characteristics is to be applied to that 
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block. Now we have extra samples for each frequency-hop block, the ones at 

the end of one block overlapping in time index with those at the beginning 

of the next block. These cannot be combined at this time since the 

receiver must treat the different frequencies differently. Therefore it is 

necessary to carry separate blocks of samples of different lengths and 

overlapping time index values. The program keeps track of the total number 

of samples and informs the user of this value. 

7.5.1 Medium Parameter Files 

To assist the user in entering medium parameters, a medium 

parameter file feature has been created. The user may enter the medium 

parameters either from the terminal or from a file. To create a file, the 

user must process the data with the parameters entered from the terminal. 

The medium parameter files are similar to the output parameter files in 

that they are in ASCII format and can be looked at either by typing them or 

editing them. The file header takes the same form as in the output files. 

The user should be careful about changing the file format when editing, 

otherwise the program may not accept the edited file. Only one ASCII 

medium parameter file can be used each time the medium process is used. In 

other words, a medium parameter file contains the parameters for all the 

paths, not just one. 

7.6 Receiver Process (RECVR) 

7.6.1 Introduction 

As mentioned earlier, the receiver process is a sequential one and the 

data is passed, one sample at a time, through the entire process. This is 

required because there is feedback in the synchronization systems; 

computations on the data at one point affect the parameters at an earlier 

point. Thus, the entire receiver must be specified before processing is 
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begun. 	This does not affect the way the user enters the specifications, 

but means that instead of having to wait, while each sub-process completes 

its computations, before he enters specifications for the next sub-process, 

he enters a much larger number of parameters, and then must wait a much 

longer time for the computations to be completed. Of course, under batch 

processing there is no difference. 

A feature present only in the receiver is the Monitor feature which 

provides a screen output of various receiver quantities updated in place at 

a rate specified by the user. Its purpose is to allow the user to keep 

track of the progress of the simulation and to determine the performance of 

various parts of the receiver as an aid in deciding whether to stop the 

simulation and change parameters. It is useful when the simulation is 

first being set up to speed up any trial-and-error tests that may be 

required. Of course, the Monitor feature may be used only in the 

interactive mode. 

Another feature unique to the receiver is the Display feature which 

permits the user to select one of a number of internal values of the 

receiver (for example AGC gain or demodulator tracking voltage), and have 

this recorded so that it can be examined when the run is finished. The run 

can also be stopped at any time and the values examined. Some statistical 

parameters, including histograms may be computed during the examination. 

The Display feature may be used in the batch mode. The Monitor, Display, 

and run control features will be described in more detail in a later 

section. 

A general block diagram for the receiver process is shown in Figure 

7.18. This is intended to indicate the general configuration. Where a 

number of functions are included in a block, those functions are indicated 

in brackets under the name of the block. Each of the blocks, will be 

described in more detail later. Any of the blocks (and even portions of a 

block) may be omitted in a run. The central line of blocks indicates the 

functions that may be applied in sequence to the signal. Below these are 

the blocks that perform the synchronization functions by controlling delays 
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of the various reference signals. 	The switching is intended to indicate 

which references may be controlled by which synchronization systems. 	In 

general, any synchronization system may be used to control the delay in a 

device of the same or lower time-delay resolution. Not shown are the 

connections indicating how acquisition systems may pass delay estimates to 

others, as, for example, when a frequency-hop acquisition is performed and 

its delay estimate used to set the initial delay for the direct-sequence 

acquisition. The upper block, the MCSK matched-filter demodulator, is an 

alternative to the normal demodulator when MCSK modulation is used. It 

allows demodulation at a number of different reference delays, and 

combining to provide a type of diversity under multipath conditions. 

The individual blocks of Figure 7.18 will now be described in more 

detail. After that the interactions between blocks will be discussed. The 

various synchronization systems involve such interactions. 

7.6.2 Front End 

The functions carried out in the receiver front end are shown in 

Figure 7.19. Any of the functions may be selected or omitted by the user. 

The first function is de-hopping of the carrier frequency. The de-hopper 

reads the frequency word from each block of input samples and compares it 

with the frequency word from the receiver frequency-hop generator, which 

indicates the frequency to which the receiver is tuned. If the two words 

are the same the samples in that block are passed, and if not they are 

rejected (set to zero). A number of different blocks may contribute to the 

output at a given instant, since, as explained in the section on the 

propagation medium, different blocks may overlap in time. The samples 

passed by the de-hopper must be recombined to provide a single sequence of 

samples uniformly spaced in time. The number of samples is therefore 

reduced by the de-hopper to essentially the number that existed before the 

propagation medium (there may be a few more as a result of the stretching 

of the signal at the end by propagation delays). 
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The frequency—hop words from the generator are delayed before 

entering the de—hopper. This is to allow synchronization with delayed 

input samples. The receiver frequency—hop generator should be started with 

the same seed used for the generator in the transmitter (HOPPER). This can 

be accomplished with the default seed or identical user—specified seeds. 

The delay may be set at the start of the run by the user, or dynamically 

controlled by one of the synchronization systems as will be described 

later. Delays are specified in number of samples. 

Following de—hopping, noise and jamming may be added. The noise and 

jamming waveforms available have been described earlier in Sections 3.4 and 

3.5 respectively. The noise and jamming parameters may be set 

independently for a number of different frequency ranges to accommodate 

frequency hopping. It is important to understand that the parameters are 

controlled by the frequency—hop words generated in the receiver rather than 

those accompanying the signal. This is because the noise and jamming 

depend on the frequency to which the receiver is tuned, and not on the 

frequency of the signal. This control is shown in Figure 7.19 by the line 

from the delayed hop words to the frequency table, which contains the 

information on parameters as a function of frequency. 

For a given signal voltage, the noise voltage required to provide a 

given value of bit—energy—to—noise—power—density ratio (Eb/No ) depends 

on the number of samples per data bit and the type of shaping used on the 

modulation symbols. An equation for calculating the required noise voltage 

is derived in Appendix A. 

A filter and decimator are included in the front end. 	These are 

general—purpose devices which can be programmed for the desired response. 

They are described in Section 8. 

A Monitor signal point is provided in the front end just after the 

de—hopper. Its output - is referred to as "average de—hopped sample voltage 

between updates". This is the mean value of the magnitude averaged over 

the user—specified interval between updates. 



72 

7.6.3 Bandwidth Reducer 

The functions of the bandwidth reducer are to remove the direct-

sequence spreading, and to provide inputs 	to the direct-sequence 

synchronization system. These are shown in Figure 7.20. The de-spreading 

takes place in the top channel. 	The input signal is multiplied by the 

complex conjugate of the delayed direct-sequence reference signal. 	This 

reference is produced in the bottom row of components by modulating the 

binary sequence from a generator, identical to the one in the transmitter, 

in a PSK modulator and delaying it by an amount intended to equal any 

delays experienced by the received signal. The user should use the same 

seed for the reference generator as he used in the generator in the 

transmitter, either by entering identical seeds, or by accepting the 

default seed in both places. The de-spread waveform is filtered and 

decimated to reduce its bandwidth to a value corresponding to the expected 

bandwidth of the de-spread communications signal. The user must choose a 

decimation rate equal to the spreading ratio (the number of spreading 

elements per data symbol). The decimation rate selected provides the 

information for the set-up of the modulation and sampling of the reference 

signal. 

Although correct de-spreading of the communications signal should 

reduce its bandwidth to the desired value, it will not reduce the bandwidth 

of interference or of signal components at different delays. Therefore, it 

is necessary to precede the decimation with filtering to prevent aliasing. 

The filter specification is left to the user. He should insure that no 

significant energy is passed at frequencies beyond half the after-

decimation sample rate. If direct-sequence acquisition and tracking are to 

be used, the filter bandwidth should be made as small as possible without 

seriously affecting the spectrum of the data symbol, and the filter 

should have reasonably linear phase. The matched filters in the 

demodulators assume that the symbol spectrum has not been distorted. As a 

minimum, all frequencies from minus the data symbol rate to plus the data 

symbol rate should be passed without significant change. A useful 

modification to the simulator would be a separation of the specifications 
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for the main signal channel (which should have a wide filter for 

anti-aliasing) and the other channels used for acquisition and tracking 

(which should have filters matched to the data symbol spectrum as explained 

in the section on direct-sequence acquisition and tracking). The use of 

the filter specification and design routines is covered in Section 8.1. 

The magnitude of the de-spread and decimated signal is provided to the 

Monitor and to the Display. It is referred to in these facilities as 

"voltage before any narrowband AGC". The square of the magnitude is fed to 

the direct-sequence synchronization system where it is used to determine if 

the tracking is in lock. It is also used in one of the two available 

tracking systems to generate an error signal, as will be discussed later. 

Two other channels, identical to the top one, are provided for use in 

a delay-lock-loop tracking system. These use early and late references in 

their de-spreading, spaced by a user-specified differential delay on either 

side of the main-channel delay. 	The letters P, E, and L in Figure 7.20 

refer to present„ early, and late respectively. 	The early and late 

references remain at fixed delays relative to the offset delay which may be 

set by the user or controlled by the synchronization system, depending on 

the receiver mode. The squared magnitudes of the signals from the early 

and late channels are subtracted to provide an error signal for use by the 

direct-sequence tracking system. 	The tracking system is described in 

Section 7.6.7.4. 	The square-root of the magnitude of this error signal 

with the sign set to that of the error signal is provided to the Monitor. 

This voltage is referred to as "direct sequence tracking voltage". 

An alternative to the delay-lock loop tracking is the Tau-dither 

system. This generates an error signal by alternately advancing and 

retarding the reference delay in the main channel and providing the 

resulting squared-magnitude voltages to the synchronization system, which 

uses them to generate an error voltage. This method has the advantage of 

requiring only one channel instead of the three of the delay-lock loop 

method, but has the disadvantages that the error signal is generated at 

only half the rate, and that the signal voltage to be used in demodulation 
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will have some loss since the reference is always slightly early or 

slightly late. 

7.6.4 Demodulator 

7.6.4.1 General 

Demodulation in the simulator is based on correlation of the received 

signal with the various expected un-degraded symbol waveforms. Integration 

is over exactly one symbol duration. The reference waveform generating the 

greatest correlation indicates which symbol has the highest likelihood of 

being the one sent. One type of demodulator, that for DPSK, does not quite 

fit the above description since it uses as a reference the delayed input 

waveform from the previous symbol interval rather than an un-degraded 

reference waveform. 

A special demodulator is available for MCSK signals. We call this a 

matched-filter demodulator because it computes the correlation at a number 

of delays, to provide an output waveform as from a filter. The samples of 

this output waveform are then combined to exploit multipath conditions as a 

kind of diversity. 

Figure 7.21 defines the correlator that is a common component of all 

the demodulators. Since the signals are complex, the complex conjugate of 

the reference is taken before the complex multiplication is performed. And 

since the signals are sampled ones, the integration takes the form of a 

summation over the Ns  samples contained in each symbol. The integration 

is always coherent in the sense that amplitude and phase are used in the 

summation. In certain cases the demodulation is referred to as non-

coherent because the phase of the resulting correlation is ignored in 

determining which symbol is most likely. This may be necessary where the 

propagation medium causes rapid phase changes in the received signal and 

these cannot be tracked. It is important to understand, however, that the 
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phase must be stable over a symbol interval for the demodulator to perform 

satisfactorily, whether it is coherent or non-coherent. 

7.6.4.2 FSK Demodulator 

The FSK demodulator will be discussed first because 

general, that is, it does not have any simplifications made 

nature of the modulation as some others do. Thus, it best 

general principles of the demodulation scheme used in the 

operations performed by the FSK demodulator are indicated 

If there are Nb bits encoded in each symbol, the integer 
Nb 

0, 1, 2, ..., 2 -1. 	The demodulator must test the input against the 

waveforms corresponding to each of these symbols. In the lower left of the 

figure the counter holds an integer representing the symbol to be tested . 

It is first reset to zero (the first symbol) and the modulator generates 

the corresponding FSK waveform which is then correlated with the incoming 

samples (S1 is in position 1). 	Since the correlator integrates exactly 

Ns  samples, it must be told when to start. 	The start is synchronized 

with the change of symbol in the counter, which is controlled by a signal 

from one of the synchronization systems. 	Synchronization is discussed in 

Section 7.6.7; in the present description correct synchronization will be 

assumed. 	The output of the correlator after Ns  samples is a single 

complex number. 	In the FSK demodulator non-coherent demodulation is 

performed; therefore, only the magnitude of this complex number is passed 

to the first register. After N s  samples, the counter is incremented and 

the process is repeated for reference symbol 1. Rut since this reference 

symbol must be correlated with the same input symbol, the input symbol is 

recirculated with SI in position 2 (there is no loss of input data in 

this process since the simulation is not in real time and the input data 

simply waits whilé the remainder of the demodulation of the symbol 

proceeds). The result of the second correlation is stored in register 2, 

and the process is repeated until all 2
Nb 

symbols have been tested. 

The decision on the output symbol is simply one of determining which 

register contains the largest value, and choosing the symbol that was used 

it is the most 

possible by the 

illustrates the 

simulator. The 

in Figure 7.22. 

symbols will be 
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as a reference in producing that value. 	The largest register value, 

divided by the number of samples per symbol, Ns , is output as the 

"demodulator tracking voltage" for the Monitor and Display. 

7.6.4.3 MFSK Demodulator 

The MFSK demodulator is identical to the FSK one except that the 

symbol is divided into sub-symbols each of which is represented by the 

transmission of one tone out of a possible 2
N, 

 - tones, where Na  is the 

number of bits encoded in each sub-symbol. The number of sub-symbol tones 

to be tested becomes the number of sub-symbols per symbol times 2
N
a. 

After correlation, the register values are grouped into groups of 2
N 

and the sub-symbols are determined from the largest value in each group; 

then the symbol is formed from the sub-symbols. To generate the 

"demodulator tracking voltage" the largest register value in each group is 

selected, and the mean of these is computed and divided by the number of 

samples per symbol, Ns . 

7.6.4.4 MSK Demodulator 

Coherent MSK demodulation has not been implemented at this time. If 

MSK demodulation is selected the noncoherent FSK demodulator is used and 

the tone spacing is automatically set to the correct MSK value according to 

the symbol length. 

7.6.4.5 PSK Demodulator 

The PSK demodulator is simpler than the FSK one because the PSK 

waveforms differ from each other only in their phase. The correlation 

between two different symbol waveforms will have unit magnitude and a phase 

that is equal to the difference between their phases. Thus, it is only 

necessary to correlate the input signal with one reference symbol 
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waveform. The decision on the received symbol is based on the phase of the 

correlation value. The process is shown in Figure 7.23. Symbol 0 is used 

to form the modulated symbol waveform, and the phase of the correlation is 

examined to determine the symbol. The symbol whose phase is closest to 

this value is taken as the received symbol. As an example, consider the 

case of a PSK modulation with two bits per symbol. The integer symbols 

will be 0, 1, 2, and 3, and the phases of the corresponding modulated 

symbols will be 0, n/2, n, and -n12. Then if the phase after correlation 

is between -n/4 and n/4 the received symbol is taken as 0; if it is between 

e14 and 3n/4, it is taken as 1; if it is between 3n14 and -3n/4 it is taken 

as 2; and if it is between -3n/4 and -n/4 it is taken as 3. The magnitude 

of the correlation, divided by the number of samples per symbol, is taken 

as the "demodulator tracking voltage". 

7.6.4.6 DPSK Demodulator 

The DPSK demodulator, shown in Figure 7.24, is similar to the PSK 

demodulator but it uses as a reference signal the previous input symbol, 

obtained by delaying the input by one 

the correlation is performed before 

order to minimize the noise in the 

symbol may be considered a matched-filtering operation on the symbol, and 

this results in only a single pair of samples to be multiplied. 	If the 

integration were performed after the multiplication, additional noise would 

be generated by the product of noise components outside the signal 

bandwidth. The uniform integration used is equivalent to a matched filter 

for a rectangular symbol. 

symbols this filter will not 

occur. 	In this case the 

If shaping has been used on the modulated 

be matched to the symbol and some loss will 

samples integrated should be weighted in 

accordance with the symbol shaping function, but such a scheme has not been 

implemented in the simulator at this time. The same effect can be acheived 

if the demodulator is preceded by a filter that, when combined with the 

integration filter (which has a sin x/x response), will give an overall 
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response matched to the shaping function spectrum. 	The filters available 

in the front end and in the bandwidth reducer can be used for this purpose. 

Since in DPSK the data symbol sent differs from the previous one by 

the symbol intended (the symbol before differential encoding), the 

correlation phase, which is the phase difference between the input and the 

reference symbols, indicates the intended symbol, and the symbol 

determination is the same as for PSK. The square root of the magnitude of 

the correlation, divided by the number of samples per symbol, is used as 

the "demodulator tracking voltage" in this case, since both inputs to the 

correlation product are received signals. 

An important difference between the PSK and DPSK demodulators is that 

in the latter the reference has suffered degradation by noise and 

interference. This results in poorer performance than for coherent PSK. 

The bit-error-rate curves [10] show a loss of about 1 dB relative to PSK 

for error rates around 10
-4 . 

7.6.4.7 MCSK Demodulator 

The MCSK demodulator, shown in Figure 7.25, is similar to the FSK 

demodulator. Instead of an FSK modulator, it uses a PSK modulator driven 

by an MCSK code generator. 	The user must specify PSK when asked the 

modulation type before he is asked about the MCSK parameters. 	The 

correlation is performed on the entire MCSK waveform comprising a number of 

PSK modulation symbols. The input shift register and the divider use the 

number of samples per MCSK symbol, Ne , rather than the number of samples 

per modulation symbol, for both length and divisor. Each of the MCSK 

waveforms is generated in turn as the correlator reference and the largest 

correlation value Is used to determine the received symbol. The largest 

value, divided by the number of samples per symbol, is also output as the 

"demodulator tracking voltage". A special version of the MCSK demodulator 

is available as an alternative. This is referred to as the "MCSK matched 
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filter demodulator", and will be described in Section 7.6.4.9. 

7.6.4.8 FEK Demodulator 

Frequency-Exchange Keying (FEK) is a special form of demodulation for 

FSK signals that permits improved performance when selective fading 

exists. It treats a binary FSK signal as a pair of on-off keyed signals 

and combines the results as diversity signals. An estimate of signal and 

noise in each of the two channels is used to adjust the combining ratio.  

The FEK demodulator is identical to the MFSK demodulator of Figure 

7.22 to the left of switch S2. 	The part to the right is replaced by the 

shown in Figure 

Figure 7.26 is shown in 

7.26. The algorithm performed by the assessors of 

Figure 7.27 in flow-diagram form. Multiple tones 

process 

can be accommodated as a number of binary sub-symbols. Each of the binary 

sub-symbbls is demodulated by a pair of assessors, one for the mark and one 

for the space (marks and spaces are used here to refer to the two symbols 

of the binary alphabet, instead of ones and zeros). These assessors are 

identical except for the sign of the output. A brief description of the 

algorithm of Figure 7.27 follows. 

An estimate of the signal-plus-noise level and of the noise level 

is updated for each new input sample. These estimates are Max and Min and 

are based on the assumption that when no signal is present in that channel 

Min will be updated, while when signal is present Max will be updated. Max 

and Min are made to decay toward Mean, the mean value of Max and Min, with 

a user-specified time constant, T2. When a new sample is above Max or 

below Min, Max or Min is updated by adding a fraction of the difference 

between the sample and Max or Min. 	This fraction is a function of a 

user-specified attack. time-constant T1. 	The output for each new input 

sample is taken as the difference between the input sample and Mean if the 

assessor is in the mark channel and the negative of this if it is in the 

space channel. 
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In the symbol decoder the outputs of the mark and space assessors 

are added and the decision for mark or space (one or zero) is based on the 

sign of the result, with positive indicating mark. If there are multiple 

tones, the sub-symbols from each pair of assessors are then used to form 

the decoded symbol by combining them as bits of a multi-bit number and 

outputting the symbol corresponding to that number. The "demodulator 

tracking voltage" is computed from the mean of the sums of the outputs of 

all the mark and space assessor pairs. 

The user must specify the attack and decay time-constants T1 and 

T2. T2 should be large enough to hold the estimate over any long 

periods between marks or spaces. On the other hand, if it is too long it 

will not be able to follow the fades. Therefore, it should correspond 

roughly to the shortest fade periods expected. T1 should be low to allow 

the assessor to follow the fading changes even when either marks or spaces 

are infrequent (Max can be updated in the mark channel only when marks are 

present and Min can be updated only when they are not). This means it 

should be a small fraction of the shortest expected fade period. However, 

if T1 is too low, noise or interference spikes will degrade the estimate. 

7.6.4.9 MCSK Matched-Filter Demodulator 

The matched-filter demodulator performs time-domain correlation by 

means of frequency-domain processing. This results in the computation of 

the entire cyclic correlation function for the number of input samples the 

user specifies, rather than at just the single delay used in the other 

demodulators. The output correlation function in the time domain is 

windowed to select only a portion of it to be used for symbol determination 

and delay tracking. 

The process is depicted in Figure 7.28. 	In this figure broad lines 

are used to represent block transfers and narrow lines are used to 

represent serial ones. In the simulator, all processes in the receiver are 

in reality serial; that is, for each new sample each of the operations in 
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the receiver is updated in turn, but some of these operations consist of 

accumulating samples until a certain number have been obtained and then 

performing a block process on them before passing the resulting samples, 

one at a time, to the next operation. Functionally, however, this 

processing may be considered to be done in blocks, with a parallel transfer 

of the output to the next operation. 

Correlation is performed by converting both the input signal and the 

MCSK symbol reference to the frequency domain by means of a fast-Fourier-

transform routine, and multiplying sample by sample. An inverse transform 

converts the result back to the time domain. The number of samples 

transformed, NFT, which must be an integer power of two, is specified by 

the user. The resulting NFT complex values, after return to the time 

domain, represent the cross-correlation function at sample points separated 

in time delay by the time between input samples. Only the first Nw  

(specified by the user) of these correlation samples are retained in the 

subsequent windowing operation. The correlation is performed once per 

MCSK symbol, but the block of samples used in each transform, NFT, must 

be larger than the number of samples per MCSK symbol, Nms  (Nms  is equal 

to the number of samples per modulation symbol times the number of elements 

- modulation symbols - in each MCSK code). The shift register at the 

upper left of Figure 7.28 forms the input samples into blocks for the 

transform. 	This process is clarified in Figure 7.29, by an example in 

which  N 	5 and NFT = 8 (these numbers are much too low to be 

realistic, but it is easier to illustrate the process with small numbers). 

The upper boxes represent the shift register in some arbitrary nth 

iteration. Samples Si to Si + 7 are in the register (note that the 

samples advance to the right in the register, and, therefore, time 

increases to the left). These 8 samples are the next to bè transformed. 

After 5 new samples have entered the register the situation is as shown in 

the lower boxes. Si+ 5 to Si i.7 are still in the register and take part 

again in the next transform. Thus the correlation functions for succeeding 

MCSK symbols involve overlapping input blocks, each larger than the MCSK 

symbol, and with the start of each block advancing by exactly one MCSK 

symbol duration. 
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Returning to Figure 7.28, we see that the reference waveform is an 

MCSK symbol and will therefore have a length of Nms  samples. Zeros are 

added to the end of this to fill it to the transform length of NFT. 

This, along with the windowing of the correlation output, prevents problems 

caused by the cyclic nature of the FFT. There are two modes of MCSK symbol 

generation, repeating and non-repeating. In the repeating mode S3 is in 

position 1 and the user-entered codes stored in the MCSK symbol 0 to MCSK 

symbol 2
N
c-1 are switched in turn by S4 to the modulator. Each 

reference waveform from the modulator is multiplied in turn by the same 

input block stored in the box preceding the FFT to produce a correlation 

function. After windowing, it is processed by the threshold-and-integrate 

box and stored in one of the registers (S2 changes in unison with S4). 

When all of the MCSK reference symbols have been tried, the values in the 

registers are used to determine the symbol and to update the tracking if it 

is used. Then, the next Nsm  input samples are entered into the shift 

register and the process repeated for the next symbol. 

If differential demodulation has been chosen, SI will be in position 

2, and the differential-process box is inserted. This process, shown in 

Figure 7.30, multiplies the correlation function of the present symbol by 

the complex conjugate of that of the previous symbol to extract the phase 

difference from which the intended symbol is derived in the subsequent 

boxes of Figure 7.28. When differential demodulation is used, only binary 

coding is allowed (one MCSK symbol and the symbol reversed in phase). 

Then, S2 and S4 are fixed and only one register is used. 

If non-repeating codes are selected the binary differential mode must 

be used. 	In this case S3 of Figure 7.28 is in position 2 and the 

direct-sequence generator is used as the symbol generator. 	Successive 

segments of the binary sequence, of length equal to that specified for the 

MCSK symbol are used to generate the reference. The same seed should be 

used for the sequence generator for both the transmitter and the receiver. 

Figure 7.31 describes the algorithm used in the threshold-and-

integrate box. 	When normal (not differential) demodulation is used, the 
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magnitude of the windowed correlation function from each reference symbol 

is integrated to give a magnitude for that symbol. A threshold based on an 

estimate of the noise is used to remove from the integration those samples 

for which the signal-to-noise ratio is estimated to be small. If none of 

the samples exceeds the threshold the largest sample is taken as the 

output, and if this occurs for all reference symbols a flag is set to 

inhibit delay tracking (performed by the symbol-tracking logic to be 

described 

reference 

is in the 

performed 

result is 

later). 	When differential demodulation is selected only one 

symbol is used in the correlation and the important information 

phase of the integrated value. Consequently, the integration 

rather than on the magnitudes. 

a complex value used by the symbol-selection logic. 

on the full complex values 

The threshold is based on the mean magnitude, 4, of the correlation of 

the input values with the first reference symbol. The mean is intended to 

be an estimate of the noise and interference level and it is multiplied by 

a user-specified multiplier, k, to determine a threshold that has a low 

probability of being exceeded by noise alone, but a high probability of 

being exceeded by the desired signal plus noise. 	If the probability 

distribution of the noise magnitude is known, e.g. 	Rayleigh, then the 

value of k for a given probability of exceeding the threshold may easily be 

computed. If the signal is present in a significant percentage of the 

delay elements in the window, it may affect the estimate of the noise, and 

should be taken into account. From experience, it has been found that a 

for all reference symbols have the same noise power (since the same noise 

is correlated) but the signal is autocorrelated in only one of the 

correlations. Some improvement would be possible if the simulator were 

changed to compute the mean over all reference symbols, or to average over 

a number of input symbols. 

The purpose of the threshold is to remove from the integration those 

samples for which the signal-to-noise ratio is low. The best performance 

would be obtained if the samples integrated were weighted in proportion to 
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the estimated signal strength in each. For large signal-to-noise ratio the 

signal-plus-noise level is a reasonable estimate of the signal level, but 

when the signal voltage is comparable to the noise level it is not. 

Therefore the threshold may be used to remove the low signal-to-noise 

samples and thus give them zero weight. When the threshold is exceeded the 

signal is, in effect, given the proper weight since, as a result of the 

differential demodulation, the signal voltage after the differential 

process is proportional to the square of the input signal voltage. 

In the normal mode of the matched-filter demodulator, the symbol 

selection logic outputs the symbol that is the same as the reference symbol 

that was used in the correlation that produced the largest integrated 

magnitude. In the differential mode the output is zero if the complex 

integrated value is in the right-half complex plane and is one if it is in 

the left-half plane. 

In the normal mode the "demodulator tracking voltage" for the Display 

and Monitor facilities is computed by dividing the largest integrated 

voltage from the correlations by the number of samples per MCSK symbol. In 

the differential mode the square root of the magnitude of the integrated 

voltage is taken and the same division is performed. 

The matched-filter tracking logic, when selected, attempts to keep the 

"centre of gravity" of the correlation sample magnitudes corresponding to 

the selected symbol in the centre of the matched-filter window. The delay 

correction computed by the tracking logic, after each symbol, is applied to 

the variable delay at the input to the matched filter. The "centre of 

gravity" relative to the centre of the window is computed as: 

N, 

Dcg  = 2:[i-(Nw+1)/211Xii/2:1Xi, 

i=l 	i=1 

lxil> k 
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where xi is the ith sample in the correlation window, and the other 

values are as defined above. It can be seen from this definition that when 

the window size is even, the centre is taken as the sample just early of 

the centre. Since the "centre of gravity" is measured from the centre of 

the window, it is a measure of the tracking error. Some smoothing is 

applied by multiplying this error by the inverse of a user-specified 

tracking time-constant, before it is used to correct the delay. If the 

track-inhibit flag is set, indicating that none of the correlation samples 

exceeded the threshold in the threshold-and-integrate box, this computation 

is inhibited, and zero tracking error is generated. The tracking logic 

also outputs a track-lock indication which is available to the Monitor and 

Display. It is also used to control changes in the synchronization systems 

(e.g. 	return to acquisition when track lock is lost). 	Whenever the 

indication changes to "unlock". The action taken when this happens depends 

on the synchronization mode. These modes will be described in detail in 

Section 7.6.7 on synchronization. In one mode the matched-filter tracking 

error is also used to control the reference delay in the frequency 

de-hopper. 

7.6.5 Automatic Gain Control (AGC) 

AGC is available in two places in the receiver as indicated in Figure 

7.18. They are referred to as wideband and narrowband AGC, but these terms 

apply to their place in the receiver; the same routine is used in both 

places with the parameters specified by the user for each independently. 

Either, both, or neither of the two AGCs may be used in a simulation run. 

The user specifies the threshold below which the gain is fixed, the 

small-signal gain below this threshold, and the attack and decay 

time-constants. 

The algorithm is described in Figure 7.32. Consider first the block 

diagram on the left. 	The magnitude of the input samples is taken, and 
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these values are averaged to provide a voltage that controls the gain in 

the signal channel. Details of the averager algorithm and of the gain 

control characteristics are provided in the dashed boxes. The first box in 

the averager algorithm provides a decay of the control signal by 

multiplying the previous value by a constant, Kd, which is related to the 

user-specified decay time-constant by the equation shown in the notes at 

the lower left of Figure 7.32. Next the input sample magnitude is tested 

to see if it is above the control signal. If it is not, no further action 

is taken for that sample. If it is, the control voltage is increased by 

the difference between the input and the control voltage, multiplied by a 

constant, Ka , which is related to the user-specified attack time-constant 

as shown in the notes. All time constants are specified in samples. 

The gain characteristic is shown in the lower dashed box of Figure 

7.32. The gain is constant up to a user-specified value of the control 

voltage, Tv , and above this value the gain is reduced at the rate shown, 

to provide a constant output level of Ka .Tv  for any fixed input signal 

level (after settling). 

7.6.6 Adaptive Excision Filter 

The function of the adaptive excision filter is to remove narrowband 

interference in a direct-sequence spread-spectrum system before the 

de-spreading operation. While the de-spreading will provide good 

discrimination against narrowband intereference, even further improvement 

can be obtained by exploiting the narrowband characteristic. The adaptive 

excision filter attempts to whiten the signal-plus-interference spectrum, 

and, since the direct-sequence signal itself is essentially white, the 

effect is to attenuate the interference, which has an impulse-like 

spectrum, while leavîng the direct-sequence signal nearly unchanged. The 

excision filter takes the form of a complex FIR filter. The coefficients 

are computed from an algorithm operating on the most recent part of the 

input signal, and are updated at regular intervals. 
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The algorithm used to compute the coefficients is based on the Wiener 

method of linear prediction. The idea is to predict the interference 

signal (a narrowband signal is amenable to prediction because of its narrow 

bandwidth) and subtract the predicted value from the input signal. The 

direct-sequence signal, having large bandwidth, is not predictable and so 

is not much affected, even though it is present in the composite signal 

from which the predictions are made. Prediction is based on an estimate of 

the autocorrelation function of the signal using the most recent samples, 

and depends on the solution of a matrix equation, but as a result of some 

special properties of the autocorrelation matrix involved, a simplified 

iterative solution known as the Levinson-Durbin algorithm is possible, and 

is used here. 	Details of the method, and references can be found in 

Appendix B. 	The results of tests, and a discussion of the operation are 

also provided there, and it is hoped that these will provide some insight, 

and aid in the selection of parameters. 

When the excision filter is selected the user must specify the number 

of coefficients in the filter (this is the number of computed coefficients; 

the actual number is one more than this since the first coefficient is 

fixed at unity), the spacing of the coefficients, the number of samples 

used in the autocorrelation function estimate, the desired signal cielay at 

the filter input and the interval between updates of the coefficients. The 

maximum number of coefficients is 128, and their maximum spacing is 32 

samples. 

The coefficient spacing applies to the spacing of samples used in the 

autocorrelation estimate as well as to the taps of the FIR filter. A co-

efficient spacing of more than one sample is required when the sample rate 

is greater than one sample per element of the direct-sequence signal in 

order to remove any dependency between the samples. Such dependency would 

provide some predictability to the direct-sequence signal and result in 

degradation of the filtered signal. Coefficient spacings greater than one 

sample will cause the excision filter to have a frequency response that is 

periodic with a period of 1/N times the sample rate, where N is the co-

efficient spacing in samples. This may cause some degration under certain 



conditions. This problem is discussed in some detail in Appendix B. 

The number of samples used in the correlation estimate must be greater 

than the number of coefficients, but not greater than 4097. The signal 

delay is intended to allow the signal to enter the filter after that same 

signal has been used to compute the coefficients. This would require a 

delay equal to the number of samples in the correlation estimate 

(computation time does not have to be included in the simulator since it 

does not work in real time). This is the maximum delay allowed. The 

interval between updates must be at least as large as the number of samples 

in the correlation estimate. 

7.6.7 Synchronization 

7.6.7.1 Introduction 

Receiver systems generally require synchronization in both time and 

carrier frequency or phase. Time synchronization is included in the 

simulator but frequency or phase synchronization is not included at this 

time. It was felt that phase synchronization was not too important since 

our main interest is in non-coherent and differentially coherent systems, 

which do not require phase synchronization. At HF the likelihood of 

medium-induced Doppler shifts large enough to cause significant frequency 

errors was considered negligible, and the frequencies generated in the 

simulation are precise and do not drift. Coherent PSK modulation is 

provided in the simulator as a reference, and when used it requires that 

the user determine the phase of the received signal, either by calculation 

or by test, and set the phase reference accordingly. As long as no large 

phase variations are produced by the medium (including unknown mean 

Doppler, even if small) this should permit satisfactory operation. Other 

modulations require onli that the frequency error be small. Any short-term 

phase variations that would degrade these signals could not be compensated 

for by a phase synchronization system in any case. On the other hand 

101 
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frequency or phase synchronization systems could be useful when airborne 

manoeuvering platforms, drifting frequency generators, or coherent 

demodulators are to be considered, and such systems may be worth adding in 

the future. 

If propagation delays were fixed, time synchronization could be 

accomplished by user-specified delays. However, some of the propagations 

conditions of interest at HF involve delay variations. In addition, it was 

felt that time synchronization was of such importance in spread-spectrum 

systems that it was well worth including these synchronization systems to 

allow experiments in this area. Consequently, the simulator was given a 

significant time-synchronization capability. 

Reference generators for frequency de-hopping and direct-sequence 

de-spreading must be brought into time synchronization with the sequences 

in the received signal by synchronization acquisition systems, and, under 

varying propagation conditions or with drifting clocks, this time alignment 

must be maintained by a tracking system. In addition, demodulation 

requires an accurate determination of the time of the start of each 

modulated symbol by a symbol synchronization system. The simulation 

provides 	frequency-hop 	and 	direct-sequence 	acquisition 	sestems, 

direct-sequence tracking systems and symbol synchronization systems. No 

frequency-hop tracking is provided since more precise tracking such as 

direct-sequence or symbol tracking is assumed to be used after 

frequency-hop acquisition and is assumed to feed back information to the 

frequency-hop system for correction. Timing for frequency-hop operation is 

usually less critical than that for the other systems and it is less 

capable of providing accurate timing information. A possible exception is 

the case of fast frequency hopping in which the hop rate is higher than the 

symbol rate, but the ratio is not expected to be very high, and symbol 

synchronization information will likely be adequate to control the 

frequency-hop reference delay. 

The time synchronization is performed at various places in the 

receiver. 	In Figure 7.18 the boxes marked "frequency-hop acquisition", 
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"direct-sequence synch.", and "symbol synch." contain time synchronization 

systems. In addition, the "MCSK matched-filter demodulator" has its own 

symbol synchronization system, which is described along with that 

demodulator in Section 7.6.4.9. 

These different synchronization systems must interact with each other 

in many cases, and a number of modes are provided in the simulation to 

reflect the way in which they do. For example, when both frequency-hop and 

direct-sequence spreading are used the initial acquisition is usually 

performed by the frequency-hop system, since it will have the coarsest time 

requirements and can search very quickly. Once acquisition has been 

accomplished the time information is passed to the direct-sequence system. 

This system requires much more accurate time information, and so must 

search over the area of uncertainty left by the frequency-hop system. This 

combination permits much faster acquisition than direct sequence alone 

because the latter is much slower as a result of its need to search in 

smaller steps. When direct-sequence acquisition is successful the tracking 

mode is entered and changes in timing are detected and corrected. The more 

accurate timing information from the direct-sequence acquisition and 

tracking may be used by the frequency-hop system to improve and update its 

timing. This information may also be used for symbol synchronization if 

the relationship between the direct sequence and symbol edge is known. If 

not, a conventional symbol synchronization system may be used independently 

of the direct-sequence synchronization. 

Nine different modes of synchronization are provided in the 

simulation, ranging from complex ones like that just described to the very 

simplest in which no automatic synchronization is used and all timing 

information is provided by the user. While this simple method would not be 

used in real systems it is a useful simulation mode because it allows the 

performance of a system to be examined independently of the effects of the 

synchronization system. These modes will be described in detail after the 

individual acquisition and tracking algorithms have been discussed. 

There are three delays that may be set in the receiver by the user to 
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compensate for various delays that may occur in the propagation path or in 

the receiver. They represent the delays set into the receiver "clocks" to 

align them with the "clock" used to time operations in the transmitter. 

These delays may be used to provide manual synchronization when no 

automatic synchronization systems are used, or to provide a starting point 

for the acquisition systems. The first is the propagation delay. This is 

not the actual delay determined by the medium, but the user's estimate of 

it. He may choose to enter a delay that he knows is not the true delay 

(for example, to use as a starting point for an acquisition search when he 

wants to test the acquisition algorithm). The second delay is the 

front-end delay, which is intended to compensate for delays in the receiver 

front-end caused by filtering at that point. The third delay is the 

bandwidth-reducer delay which is intended to compensate for delays in the 

bandwidth reducer, caused by filtering at that point. The reason for the 

separate delays is that they affect different processes. A look at Figures 

7.18, 7.19, and 7.20 will indicate which processes are affected. The 

propagation delay will affect all receiver processes since it precedes them 

all. The other delays are associated with the filters in the front end and 

bandwidth reducer, and only affect those processes that follow. The delays 

are specified in samples at the points where they apply. Therefore, the 

user need not be concerned with any decimation operations usee' in the 

receiver. The user enters these delays in response to questions near the 

end of the receiver set-up procedure. Negative delays may not be entered, 

but these delays may become negative when changed by the synchronization 

system. 

7.6.7.2 Frequency-Hop Acquisition 

The process of acquisition is one of changing the delay of the 

frequency-hop reference (the output of the receiver frequency-hop generator 

used for de-hopping) in increments smaller than the duration of a hop 

interval and testing the energy integrated from the squared magnitude of a 

given number of samples of the de-hopped signal for each such delay. When 

that energy exceeds some threshold the acquisition system decides that 
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acquisition has been successful and the search is stopped. 	In fact this 

decision of "in lock" is usually based on a more sophisticated algorithm 

than the crossing of a single threshold, but always involves the crossing 

of thresholds by integrated power. Three different lock-indication 

algorithms are available for the user to select from and each of these will 

be described in turn. But first let us explain how the search in time 

delay is carried out. 

7.6.7.2.1 Search Strategy 

A "zigzag" search has been implemented, in which the delay is changed 

in increasing sweeps in alternate directions as shown in the example of 

Figure 7.33. The strategy is based on the assumption that the starting 

delay of the search is the most likely value of the actual signal delay and 

that the probability of finding the signal diminishes as we move away from 

this value. Thus we spend more time searching where the probability of 

success is highest. With the correct choice of parameters this search can 

be made into a linear search in one direction. 

, The user specifies the delay increment, the initial turn-around 

excursion (the term excursion is used here to mean the delay change from 

the initial delay, and turn-around excursion is the excursion allowed 

before the search direction is reversed), and the maximum excursion. The 

initial delay is derived from the propagation delay entered by the user as 

mentioned earlier. At each reversal of direction the turn-around excursion 

direction) the search is restarted from the initial delay. 	Figure 7.33 

illustrates what happens when the delay reaches the turn-around excursion. 

When the delay increment causes the excursion to equal or exceed the 

turn-around value the incremented value of delay is used, but the search 

direction is reversed for the next increment. The same is true for the 

maximum excursion except for the second time the maximum is reached; the 

delay is reset to the initial delay immediately at this point without the 
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incremented value being used. 

7.6.7.2.2 Double-Integration Method 

In the double-integration method signal power is integrated for a 

relatively short interval in the first stage, and for a longer interval in 

the second stage only when the first stage threshold is crossed. The idea 

is to keep the search time small by accepting the high false-alarm rate 

resulting from the short integration interval of the first stage (assuming 

the probability of a miss must be kept small), and discarding the false 

alarms that do occur by testing in the second stage. There, the longer 

integration time will allow both a low probability of false alarm and a low 

probability of a miss, while the cost in time will not be so high since it 

is used relatively infrequently. The double-integration method can also 

serve as a single integration one if the second integration threshold is 

set low enough that it is always exceeded. 

The algorithm for this method is shown in Figure 7.34. 	The user 

specifies the first integration time, T1, the first integration threshold, 

61, the second integration time, T2, and the second integration threshold, 

62. Integration times are specified in terms of samples. The input is the 

squared magnitude of the signal taken after the wideband AGC as shown in 

Figure 7.18, but it is the square root of the sum which is compared with 

the threshold. Thus, the thresholds are specified in volts rather than as 

energy. (Actually, the units should include the square root of time, but 

since our time is defined in terms of number of samples we have chosen to 

leave out a reference to time here, and consider the sum to be over a 

number of values rather than time.) Appendix C presents equations that will 

be useful in determining integration times and thresholds for desired 

false-alarm and miss probabilities when the noise is Gaussian. 
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7.6.7.2.3 Sequential Detection Method 

In the sequential detection scheme a decision on "signal present" or 

"signal not present" is made only after enough data has been collected to 

reach a high level of confidence in the decision. This results in a 

variable time spent at each delay. A limit is put on this time to prevent 

the possibility of a very long wait. When this limit is reached without a 

decision the decision is made in favor of "signal not present". In the 

algorithm used in the simulator, and shown in Figure 7.35, the sequential 

detection is based on a count of the number of times a threshold is 

exceeded by the integrated power in a fixed integration interval. The 

count is increased by one each time the threshold is exceeded, and 

decreased by one each time it is not exceeded. When this count reaches a 

particular positive value the decision is "signal present". When it 

reaches a particular negative value the decision is "signal not present". 

A more optimal sequential detection in white Gaussian noise would continue 

to integrate samples in a single sum and compare that sum to two 

thresholds. However, the method used here has the advantage of reducing 

the effect of strong intermittent interference since a short burst, no 

matter how strong, will only affect one count, and have only a small effect 

on ,  the decision. Such interference is expected to be common in a 

frequency—hopping system as the receiver hops into bands with different 

interference levels. 

When the sequential method is selected the user specifies the 

integration time (number of samples), T1, the integration threshold, 6 1 , 

the count threshold for detection, CI, the count threshold for dismissal, 

C2, and the iteration threshold for dismissal, C3. The integration 

threshold is in volts since it is compared with the square root of the 

integration sum. Appendix C presents equations that should be helpful in 

determining the integration time and the integraton threshold. 
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7.6.7.2.4 Mean-Delay Method 

The mean delay method is intended to provide a more accurate estimate 

of the true delay by computing a weighted mean of the delay based on the 

integrated power at each delay for which a threshold is exceeded. When the 

threshold is exceeded a specified number of times in succession a detection 

is assumed but the search is not stopped. Instead, it is continued in the 

same direction until the threshold is not exceeded a specified number of 

times. Then the mean of the delay is computed with each delay weighted by 

the integrated power measured at that delay. This routine is intended to 

be used for frequency-hop acquisition when no direct-sequence acquisition 

is available to refine the delay estimate. The other two acquisition 

methods are not accurate enough to determine delay within one symbol 

duration, as is necessary for refinement by the symbol synchronization 

routine. 

The algorithm for this method is shown in state-diagram form in Figure 

7.36. 	The square root of the integration sum over a block of T1 samples 

is compared with the threshold, di, and the action taken depends on 

state that the algorithm is in. After the particular action is taken a 

sum is taken over the next  1 1 samples, the delay is incremented, and 

process is repeated. Before acquisition, the algorithm is in state L 

long as the threshold is not exceeded it remains in this state. 

threshold is exceeded state 2 is entered. In this state a count 

the number of consecutive "hits" (sums above the threshold). 

When the 

is kept of 

When NI 

such hits have occurred state 3 is entered. A "miss" occuring before the 

threshold NI is reached will cause state 1 to be re-entered and the hit 

count to be reset to zero. The intention is to prevent false alarms from 

intermittent bursts of interference, and to define the start of solid 

acquisition more precisely. Once state 3 is entered a detection is 

assured; all that remains is to determine the delay at 

occurs. State 3 is left only when a miss 

and a count is kept of the number of 

consecutive misses, lock is established (state 5) and the mean delay is 

computed from the weighted mean of the delays in states 2 and 3 (when the 

which loss of signal 

occurs. Then state 4 is entered 

consecutive misses. After N2 
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threshold was exceeded), weighted by the integrated power at each delay. 

The reference delay is then set to this mean value. If the threshold is 

exceeded in state 4 before N2 consecutive misses state 3 is re—entered 

and C2 is reset to zero. This is to reduce the probability that a fade 

will signal a false end to the acquisition. Not shown in Figure 7.36 is a 

test to end the acquisition if the threshold is exceeded for a very long 

time as a result of either sustained very strong interference or a bad 

threshold setting. A maximum of 1024 delays in states 3 and 4 are 

permitted before state 5 is entered. While this is not an ideal solution, 

it at least limits the number of integration values that must be stored. 

For the mean delay method the user, in addition to specifying the 

integration time and threshold, must specify the number of successive 

detections for acquisition, NI, and the number of successive misses for 

completion, N2. Appendix C should be helpful in determining the 

integration time and threshold. 

7.6.7.3 Direct—Sequence Acquisition 

, The algorithms for direct—sequence acquisition are the same as those 

for frequency—hop acquisition; the only difference is the input signal. 

For direct—seauence acquisition the input is the squared magnitude of the 

de—spread signal shown in Figure 7.20 as "lock detection input voltage". 

Noncoherent integration is performed in the acquisition algorithm since the 

squared magnitude of the signal is summed, and coherent integration is 

performed by the filter of Figure 7.20. Coherent integration is more 

effective than noncoherent, but it may be performed only over one data 

symbol since the phase of the next symbol, relative to the current one, is 

unknown. Thus, for acquisition, the filter should match the spectrum of 

the data symbol as wéll as possible. However, in the present simulator the 

filters in all channels of Figure 7.20 must be identical, and the filter in 

the main signal channel -should be a little wider since the demodulator that 

follows will perform a matched—filter operation. The loss in the 

acquisition channel for the wider filter recommended for the signal channel 
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should be quite small. 

When direct-sequence acquisition is in operation the search controls 

the direct-sequence reference signal delay (although it may control the 

frequency-hop delay as well if frequency-hopping is used). This is the 

"offset" delay in Figure 7.20. The delay increment should be smaller than 

the width of the autocorrelation peak of the spreading signal for high 

probability of detection. This peak will have a width of two direct-

sequence elements at the base, and of one element at the half-voltage 

point. Since a direct-sequence element corresponds to a modulation symbol, 

the element length in samples will equal the number of samples per 

modulation symbol, a value that the user has previously specified. The 

initial delay for the search will be the delay determined by the 

frequency-hop acquisition if it has been used; if it has not, it will be 

determined by the program from the user-specified propagation delay and 

front-end delay. 

7.6.7.4 Direct-Sequence Tracking 

Direct-sequence tracking is performed by a comparison of the energy in 

the correlation of the received signal and the direct-sequence reference 

for delays of the reference of slightly less than, and slightly greater 

than, that of the received sequence. Since the correlation peak has a 

triangular shape the difference between these two correlation values, which 

straddle the peak, provides both direction and magnitude information 

required for correction of the reference delay to allow it to track the 

delay of the received signal. Coherent integration for the correlation is 

performed by the filters in Figure 7.20. For best performance these 

filters should be matched to the data symbol spectrum. However, as stated 

above, the main signal channel demands a slightly wider bandwidth, and this 

may cause some degradation in the tracking performance. But the degradat-

ion should be quite small, since further noncoherent integration is 

performed in the tracking algorithm. 
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Two alternative routines are provided in the simulator to perform the 

tracking task. These are the delay-locked loop and the tau-dither loop. 

7.6.7.4.1 Delay-Locked Loop Tracking 

The input to the delay-locked loop tracking algorithm is taken from 

the output of the difference circuit of Figure 7.20, while lock status is 

determined from the squared magnitude of the main signal channel voltage. 

The two channels feeding the difference circuit generate the correlation of 

the signal with the early and late versions of the direct-sequence 

reference. The delay difference between the early and late references is 

twice the user-specified differential delay (see Figure 7.20). The 

difference of the squared magnitudes of the two channels is used to 

determine the magnitude and direction of the correction. A third 

correlator with reference delay midway between those of the other two is 

used for the de-spreading of the signal to be demodulated. When the 

tracking is accurate this delay should be the actual delay of the received 

signal. 

' The tracking algorithm is described in Figure 7.37. Both the tracking 

error signal 

user-specified number of samples, T1. If the square root of the sum of 

the lock detection voltage, SL  equals or exceeds a user-specified 

threshold S L , a new value for the direct-sequence reference delay is 

computed; if not, the delay is left unchanged and the miss counter is 

incremented and tested against a user-specified threshold, Cm  If Cm 

 consecutive misses have occurred, tracking is assumed to have failed and 

"unlock" is declared, causing acquisition to be re-entered starting from 

the last delay determined by the tracking system. 

When the lock threshold is exceeded the tracking sum, ST, is mapped 

into a new voltage, MT,' according to one of two types of mapping selected 

by the user. The first is a linear mapping (no change), and the second is 

a limiter mapping where the output, MT, is equal to the input, ST, when 

and the lock detection voltage are summed over a 
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the magnitude is less than or equal to a user-specified threshold, A, and 

limited to plus or minus A when the threshold is exceeded. 	A user- 

delay correction that is added to the old value of direct-sequence 

reference delay to determine the new delay. The units of k are samples per 

volt. Larger values of k will cause faster correction, but will allow 

greater errors from strong interference bursts, and may lead to instability 

if the correction generated is greater than twice the error. The use of 

the limiter-type mapping makes it possible to set good values of k when 

input signal levels are unknown or widely varying. A maximum change, A.k, 

of not greater than one sample interval is recommended. It should be noted 

that although the actual delay of the reference cannot change by less than 

one sample, the delay value, Dc , is computed as a floating-point number 

that is rounded to the nearest integer only when controlling the reference 

delay. Thus, a series of computed corrections, each much less than one 

sample interval, will eventually lead to a reference delay change. 

7.6.7.4.2 Tau-Dither Tracking 

, In the Tau-dither system the two correlations are performed 

sequentially in a single correlator. The reference delay is alternated 

between the early and late values, remaining at each for the specified 

integration time. The tau-dither system has the advantage of requiring 

only one correlator, but it takes twice as long to compute a correction. 

Another disadvantage is that the de-spread signal going to the demodulator 

is taken from the same correlator as is used in tracking, and is therefore 

always offset a little from the correct delay, causing a small loss in 

demodulator performance. 

The input to the Tau-dither algorithm is the squared magnitude of the 

voltage in the main signal channel, VL2  (see Figure 7.20). This is used 

for both lock detectioà and correction. The parameters specified by the 

user are the same as for the delay-locked loop. Figure 7.38 describes the 

algorithm. A flag called the early/late (E/L) flag is toggled each time a 
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sum is computed, and is used to alternate between early and late reference 

delays that are separated by twice the user-specified differential delay, 

Dd, just as they are in the delay-locked loop system. The early 

integration is performed first, and when the corresponding late value is 

computed the early sum is subtracted from it, and the delay correction 

computed as for the delay-locked loop. Only one correction is computed for 

each early/late pair of integrations. One difference from the delay- locked 

loop algorithm is that correction is not inhibited when the integration 

threshold is not exceeded. When lock is lost (Cm  consecutive misses) the 

delay is set to the point midway between the last early and late values, in 

preparation for a return to the acquisition mode, and the FIL flag is set 

to the early position in preparation for the next entry into the tracking 

mode. 

7.6.7.5 Symbol Synchronization 

A symbol-synchronization capability is included in the simulator to 

allow realistic operation under varying multipath conditions. The "normal" 

synchronization for PSK signals is fairly standard, and the routine gives 

recommended values for some of the parameters; however, it is left to the 

user to set them, giving him the option of experimenting. A modification 

to this standard system for use with FSK signals is included. 	This 

modified system, as far as is known, has not been used in any real systems, 

and is offered here as an experimental one that has not been well tested. 

Finally, a synchronization system for any modulation that uses 

amplitude-shaping of the modulated symbols is included. This makes use of 

the shaping to simplify the algorithm. 

The symbol -synchronization system, with all its modifications, is 

shown in Figure 7.39. For the normal system, ignore the input mixers and 

adder to the left of Si s  and assume the switch is in position 1. The 

timing information is éxtracted from the phase changes between symbols. 

Unfortunately, the spectrum of the unshaped PSK signal contains no power at 

the symbol rate, 1/T5 . A squaring circuit is used to move some of it 
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there from the energy at 1/2T 5 , but it is necessary to use a "prefilter" 

before this to remove some of the spectrum. The delay and difference 

circuit, in combination with the low-pass filter, forms this prefilter. 

The prefilter should provide a response with a broad peak in the frequency 

domain at one-half the symbol rate. The delay and difference circuit is a 

simple filter with a half-cycle- sine-wave frequency response between zero 

and the symbol rate (1/75 ). 	It has a maximum voltage gain of 2 at 

one-half the symbol rate. 	This response is repeated with a period 1/15 , 

the 

and it is the 

leaving only 

frequencies). 

filter to remove these repetitions 

part from zero to 1/15  (and its image at negative 

A four-pole Butterworth filter (2 sections) 

purpose of the low-pass 

with cutoff 

has 

the 

the 

frequency 0.7/1S 

recommendat  ion and 

for the benefit of 

been found to work well in this role. 	This 

computed value of the cutoff frequency are displayed 

user. 

After squaring, the energy at 1/1 5  is extracted by a narrow-

bandwidth filter. The resonant filter (resonator) from the general filter 

routines (see Section 8.1.2.2) is useful for this purpose. Each section of 

this filter has a complex-conjugate pair of poles defining the peak of the 

response, and zeros at one and minus one in the Z-plane. The user is 

advised to use a one-section resonant filter and is given the computed 

resonant frequency 1/1S. 	If the user chooses to use the resonant filter 

he is asked to specify its time constant. 	This time constant is the 

inverse of Iv times the filter bandwidth. 	There is a tradeoff in the 

symbols (timing information is only 

symbol), and will also result in less 

is a change of 

output noise. On the other hand, the 

high inertia of a long time-constant will make acquisition of track slower, 

and restrict the rate of track correction. 

The symbol timing information is given by the zero crossings of the 

resonant filter  output.  The negative-going crossings are chosen 

arbitrarily to mark the start of the symbols, but as a result of delays in 

the circuit, a compensating delay, specified by the user, must be inserted 
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to bring the crossings into coincidence with the actual start of the 

symbols. This delay, although fixed for any particular set of parameters, 

is difficult to predict accurately, and it is recommended that it be found 

by a test of the selected system without noise, and with the compensating 

delay set to zero. The Display feature can be used to record the "symbol 

synchronization voltage - final stage" (see Figure 7.39), and the negative-

going zero crossings compared with the symbol edges (these can be computed 

from the sample number and the 

has occurred). 

number of samples per symbol if no delay of 

The compensating delay delays the zero the symbol 

the symbol crossings, so the required delay will be the difference between 

edge and the nearest earlier negative-going zero crossing. 

The lower part of Figure 7.39 generates a lock indication by taking 

the envelope of the synchronization voltage and comparing it with a user-

specified threshold. The user-specified "lock indicator time constant" 

should be a few symbols in length to provide small decay between cycles of 

the narrowband signal, but less than the resonant filter time-constant so 

that it may follow amplitude changes in the signal. The threshold should 

be set so that when there is only noise there are very few false lock 

indications. The noise at the threshold detector should be Rayleigh, and 

for the normal mode its mean value is approximately equal to 0.4 times the 

input tins noise voltage divided by the 

is the time constant of the narrowband 

samples per symbol. A threshold of at 

used. It would probably be worthwhile testing the system with 

and adjusting the threshold as necessary. 

When FSK is used the different symbols have spectra centered at 

different frequencies across the modulation bandwidth. The sibulation sets 

these in a symmetrical manner about zero frequency, and there is never one 

centred at zero. Thus, the prefilter will not provide the required signal 

to the squarer. This can be rectified by shifting the received spectrum 

enough to put the lowest tone at 1/T5 . For binary FSK with separation of 

1/T5 , this requires an offset of 3/2T 5 . This will produce an amplitude 

modulation, as the tone frequency changes from symbol to symbol, that can 

square root of Ts .T r , 

filter, and Ts  is the 

least three times 

where T r 

 number of 

this should be 

noise only 
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provide the desired timing information from the narrowband filter. 	The 

complex tone generators and multipliers are included for this purpose. 

Multiple generators (up to 16) are available so that, if there are many 

tones, more than one may be shifted to 1/T5  to increase the frequency of 

responses from the prefilter. While this technique has been found to work 

it has not been analyzed in any detail, and it is left to the user to 

determine the optimum setup for a particular system. 

When the modulated symbols have had amplitude shaping applied, the 

shaping can be used to provide the necessary input to the narrowband 

filter. It is only necessary to take the magnitude of the shaped symbol 

(it does not matter whether it is PSK or FSK). The shaped-symbol mode of 

symbol synchronization provides this feature. When it is selected, Si s  

and Sib of Figure 7.39 are in position 2. A four-pole Butterworth filter 

with cutoff frequency of 1.5 1T5  is shown following the magnitude 

computer. This filter is not really necessary since it is followed by a 

narrowband filter, but it provides some filtering for the Monitor signal at 

this point. The values are only recommended ones and the user may choose 

any filter he desires. When the shaped-symbol mode is selected the noise 

level at the lock threshold detector should be Rayleigh with a mean voltage 

of about 0.34//17; times the input rms noise level. 

7.6.7.6 Synchronization Modes 

There are nine different synchronization modes available. These are 

not selected directly by the user, however; the program determines the mode 

from the answers to questions regarding the use of the various 

synchronization systems. Each of these modes will be described, and the 

interaction between the different synchronization systems involved will be 

explained. 
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7.6.7.6.1 Mode 1 - No Acquisition and no Tracking 

In this mode all reference signal delays and the start of the symbols 

are derived from the propagation, front-end, and bandwidth-reducer delays 

specified by the user near the end of the receiver set-up. The user may 

choose to enter incorrect delays there to allow him to determine the effect 

Of delay errors. 

7.6.7.6.2 Mode 2 - Symbol Synchronization Only 

The only type of synchronization used in this mode is symbol 

synchronization. If frequency hopping is used the frequency-hop delay is 

derived from the symbol synchronization system. Direct-sequence spreading 

may not be used in this mode. Since the symbol-synchronization system will 

only determine the nearest symbol edge, the initial delay set by the user 

(the combination of propagation, front-end and bandwidth-reducer delays) 

rhust be accurate to within half a symbol if the output data bits are to 

have the same time-index values as those input to the transmitter. A 

difference in index value will not be a problem if frequency hopping is not 

used, since bit comparisons can be made with different index value, but 

when frequency hopping is used a difference in index value will lead to an 

error in the timing of the frequency-hop (FH) reference. 

7.6.7.6.3 Mode 3 - Frequency-Hop Acquisition and Symbol Synchronization 

Direct-sequence spreading may not be used in this mode. Frequency-hop 

acquisition starts from the propagation delay specified by the user. After 

sucessful FH acquisition, symbol synchronization is performed, and, when 

successful, feeds corrections to the FH system to refine its delay. An 

error of more than half a symbol in FH acquisition cannot be corrected by 

the symbol-synchronization system; it will lead to a FH reference delay 

that is in error by one or possibly more symbols. For this reason it is 

recommended that the mean-delay acquisition algorithm be selected in this 
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mode. 	It provides a higher accuracy than the other methods. 	If symbol 

synchronization is lost, FH acquisition is re-entered with the previously 

used initial conditions but with the search starting from the current 

delay. An indication of "lock" to the Monitor and Display occurs only when 

the symbol synchronization system is locked. 

7.6.7.6.4 Mode 4 - Direct-Sequence (DS) Acquisition and DS Tracking - No 

Symbol Synchronization 

DS acquisition starts from the combination of the propagation and 

front-end delays specified by the user. When it is successful DS tracking 

is initiated. Symbol delay is derived from the DS system. If frequency 

hopping is used its delay is also derived from the DS system. If DS 

tracking lock is lost acquisition is re-entered with the previously used 

initial conditions but with the search starting from the current delay. 

7.6.7.6.5 Mode 5 - DS Acquisition and DS Tracking - Independent Symbol 

Synchronization 

This mode is similar to mode 4 except that the symbol delay is 

obtained from an independent symbol synchronization operation rather than 

from the DS system. If either symbol synchronization or DS tracking lock 

is lost the overall lock indication becomes "unlock". 

7.6.7.6.6 Mode 6 - FH Acquisition and DS Acquisition and DS Tracking - No 

Symbol Synchronization 

FH acquisition starts at the user-specified propagation delay. 	When 

it is successful DS acquisition starts from the delay determined by the FH 

acquisition, taking into account any front-end delay. From this point on 

mode 6 is the same as mode 4. Loss of DS lock will result in reentry into 

the DS acquisition as in mode 4. FH acquisition is not reentered. 
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7.6.7.6.7 Mode 7 — FH Acquisition and DS Acquisition and DS Tracking and 

Independent Symbol Synchronization 

This mode is the same as mode 6 except that the symbol delay is 

derived independently from the symbol synchronization system rather than 

from the DS system. Loss of either symbol synchronization lock or DS 

tracking lock Will cause an overall "unlock" indication. 

7.6.7.6.8 Mode 8 — MCSK Matched—Filter Symbol Synchronization Only 

Symbol tracking occurs within the matched filter only. Since the MCSK 

matched filter replaces the normal demodulator, normal symbol 

synchronization is not possible. If frequency hopping is used its delay is 

derived from the matched—filter timing. 	DS spreading may not be used in 

this mode. 	The initial delay must be accurate to about half the 

matched—filter window width to assure correct synchronization. 	If it is 

not, correlation "sidelobes" may bring the window toward the peak, or 

random drift may result in eventual synchronization, but this cannot be 

assured. As well, synchronization may be obtained with the wrong symbol as 

in mode 2, with the same result. 

7.6.7.6.9 Mode 9 — FH Acquisition and MCSK Matched—Filter Symbol 

Synchronization 

FI-1 acquisition starts at the user—specified propagation delay. Once 

acquisition is successful this mode becomes identical to mode 8 except that 

if symbol lock is lost  FI-1 acquisition is re—entered  with  the previously 

used initial values, but with the search starting from the current delay. 

A "lock" indication exists only when the symbol lock is on. 
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7.6.8 Monitoring and Control Facilities 

In this section we will expand on the Monitor, Display, and program 

control features mentioned in the introduction to the RECVR process. 

7.6.8.1 Monitor Feature 

When the simulation is running in the interactive mode (running from 

the terminal) the Monitor displays a number of different variables updated 

at a rate specified by the user in terms of the update interval measured in 

number of input samples. Three of these variables are displayed regardless 

of the receiver configuration; the others are selected on the basis of the 

particular receiver configuration selected. The three that are always 

displayed are: the index value of the input sample being processed, the 

number of final (FIN) values generated up to this point in the run, and the 

mean of the magnitude of the voltage at the output of the de-hopper, 

averaged over the update interval. The point from which the voltage to be 

averaged is taken is shown in Figure 7.19. If de-hopping is not performed 

the voltage is the input voltage to the front end. 

The other variables that may be displayed are shown in Table 7.1 along 

with an indication of the Figure from which the point of measurement or the 

definition can be found. If the particular variable has significance for 

the receiver configuration selected it will be displayed by the Monitor. 

When the program is operating in batch mode the Monitor is not used 

and the question relating to it (update interval) is not asked. 
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Variable 

Frequency-hop reference delay 
Direct-sequence reference delay 
Demodulator Sample delay 
Demodulator "tracking" voltage 
AGC gain 
Direct-sequence lock status 
Direct-sequence tracking voltage 
DS tracking integrated lock voltage 
Symbol synch lock status 
Symbol synch voltage - intermed. stage 
Symbol synch voltage - final stage 
Integrated symbol synch magnitude 
Frequency-hop acquisition lock status 

Units 

samples 
samples 
samples 
volts 
volts/volt 
on/off 
volts 
volts 
on/off 
volts 
volts 
volts 
on/off 

Pertinent 
Figures 

7.19 
7.20 
7.18 
7.22-7.28 
7.18,7.32 
7.20 
7.20 
7.20,7.38 
7.39 
7.39 
7.39 
7.39 
7.18 

Notes 

1 
1 
2 
3 
4 
5 
6 
7 

8 

Notes: 1 For the source of the delay control see 

Section 7.6.7.6 on synchronization modes. 

2 This is the delay applied to the symbol integration 

start time in the demodulator (either ordinary or 

MCSK matched-filter type). For the source of the delay 

control see Section 7.6.7.6 on synchronization modes. 

3 This is the integrated voltage corresponding to the 

largest symbol response in the demodulator (among the 

set of possible symbols). The term "tracking" may be 

somewhat misleading here. 

4 This may include both wideband and narrowband AGC. 

The gain is the ratio of voltage magnitudes. 

5 This is derived from VL2  of Figure 7.20 by the 

acquisition or tracking algorithms of Figures 7.34 

to 7.38, depending on type. 

6 This is meaningful for delay-locked loop tracking only. 

7 This is derived from VL2  of Figure 7.20 by the 

summing in the first block of Figures 7.37 and 7.38. 

8 This is derived from the input to the frequency-hop 

acquisition system (Figure 7.18) by the acquisition 

algorithms of Figures 7.34, 7.35, and 7.36. 
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7.6.8.2 Display Feature 

The Display feature permits the storing of a sequence of samples of 

one of the variables listed under the Monitor feature so that it can be 

examined after a run. Any of the listed variables may be designated as the 

Display variable, but only one may be selected for each run. In addition 

to the Monitor variables, two others, not available in Monitor, are 

available in Display. These are the transmission hop frequency and the 

reference hop frequency. All of these are listed in a menu when Display is 

selected. The menu indicates the narrowband and wideband AGC separately, 

and the matched—filter lock indication is distinguished from the symbol 

synchronization lock indication. 

At the end of a run, while still in RECVR, a menu for display or 

analysis of the stored samples is presented. The samples may be looked at 

directly, or a histogram produced, in much the same way as the ORG or FIN 

data may be analysed with VIEW and HISTO in the ANAL subprogram. In 

addition, the output samples (the values in the FIN data array) from the 

receiver run may be analysed in the same way. A final option in the menu 

allows a return to the processing in RECVR if the processing is not 

comPlete. If it is, there is a return to PROCES. Processing will not be 

complete if the user has specified that only a part of the data be 

processed or if he has decided to interrupt the processing. 

7.6.8.3 RECVR Run Control 

Just before the user is asked if the Display feature is wanted, he is 

asked if he wants to process all the remaining samples. If he does not, he 

is asked to specify the number of samples to be processed. In either case, 

he may choose to interrupt the processing at any time by typing a CONTROL/X 

(control key and x key held down at the same time). This, or the 

completion of processing of the specified number of values, will result in 

the suspension of the processing and the presentation of the Display 

analysis menu. The user may then examine the data as explained above. 
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When he exits the Display routine with a BYE, and all the samples have not 

been processed, he is asked if more samples are to be processed. If he 

answers "yes", the program returns to the point where the question on 

whether all the remaining samples are to be processed is asked. The 

receiver remains in the state that it was left in by the previous run, and 

the processing may continue from that point. The variable selected for 

storage under Display must be reentered, and need not be the same as on the 

previous run. All of the Display values from the previous run are lost at 

this point, but all of the output samples in the FIN data array generated 

over different runs are maintained. 

7.7 Post-Detection Operations Process (BITSNK) 

BITSNK performs the inverse of the error-correction coding and 

interleaving of BITSRC. 	In addition, it performs inverses of the 

data-symbol encoding and inverse Gray-encoding functions of MODCOD. 	Of 

course these functions must be carried out in the reverse order to the 

order used in BITSRC and MODCOD. BITSNK takes care of this, but the user 

is responsible for entering the correct parameters; they are not remembered 

from BITSRC and MODCOD. Some of the coding functions in MODCOD are not 

inverted in BITSNK. These include differential encoding and MCSK coding. 

The decoding for these is part of the demodulation process carried out in 

RECVR. The inverse functions in BITSNK will be described in the order in 

which they would be performed. 

7.7.1 Data-Symbol Decoding 

Any demodulator that uses symbols of more than one bit will have 

multi-bit symbols as its output. To allow comparison with the bit stream 

used as the data source for the transmitter, and to allow other 

bit-oriented processes to be performed when necessary, each symbol must be 

decoded or expanded into a series of bits. 	The user must specify the 

number of bits per symbol. 	The process is the inverse of the 
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bit-to-data-symbol encoding described in MODCOD. If encoding was performed 

in the transmitter, zeros may have been added to the end of the bit 

sequence to make the last symbol have the required number of bits. If this 

is the case the user may wish to remove these bits after decoding. 	The 

routine asks the user if this is desired. 	If Gray encoding is to be 

performed, the removal is delayed until that process is completed. 	(The 

question on whether Gray encoding is to be done is asked before the 

question on the removal of zeros.) 

7.7.2 Gray Encoding 

The corresponding process in MODCOD was a transformation from Gray to 

binary coding; we referred to this as inverse Gray encoding. The inverse 

process here is therefore Gray encoding, a transformation from binary to 

Gray code that restores the bits to their original values (providing there 

have been no errors). The bits are grouped into blocks of size equal to 

the already-specified number of bits per symbol for this process. 

7.7.3 De-Interleaving 

De-interleaving is identical to interleaving; the bits are read into 

an array in rows and read out in columns. To restore the data to its 

original form the user must interchange the specifications of the numbers 

of rows and columns that he used in BITSRC. 

7.7.4 Decoding of Error-Correction Codes 

As explained under Error Coding, the only type of error-correction 

coding that is available at this time is cyclic block coding, but the 

structure is in place for other types, and the program will offer the user 

corresponding choices. Warnings are given, however, that these are not 

implemented, and when chosen, they simply pass the input data to the 
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output. 

7.7.4.1 Decoding of Binary Cyclic Block Codes. 

7.7.4.1.1 Error-Trapping Decoding 

This decoding algorithm is based on the error-trapping method 

described in Reference [7]. It can correct all single and double 

errors, and all triple errors if the number of parity bits in the block is 

greater than one-third the total number of bits in the coded block. If 

this criterion is not satisfied some triple errors may not be corrected. 

Of course the above corrections are possible only if the code used has the 

required  error-correct ion capability. 

The user is asked to specify the number of bits in a coded block, n, 

The number of information bits in a block, k, the syndrome register 

feedback vector (same as the generator vector described under BITSRC), the 

number of errors to be corrected (1,2, or 3, depending on the capability of 

the code), and a block delay. This last parameter delays the starting 

point of a block to compensate for any delays that have not already been 

compensated. No automatic synchronization is provided for the error 

decoding. 

The syndrome computer is shown in Figure 7.40. The block of n bits is 

entered with the switch in the closed position and the switch is then 

opened. The outputs of the taps form the syndrome of n-k bits. The weight 

of the syndrome (the number of ones in it) is tested against the number of 

bits to be corrected. If it is greater than this number the registers are 

shifted and a new syndrome is formed. The test and shift are repeated 

until the syndrome weight is equal to or less than the number of bits to be 

corrected. At this point the block may be corrected by a modulo-two 

addition of the syndrome with a cyclic shift of the received data bits 

where the number of bits shifted is determined from the number of shifts 
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performed in the syndrome register. 	If the weight criterion is not 

satisfied after k shifts and more than one bit is to be corrected, each bit 

of the data block is inverted in turn and the above procedure repeated 

until a correction is possible or all bits have been tested by inversion. 

If the latter occurs, correction is not possible and the data bits are left 

unaltered. After each test the tested bit is re-inverted before the next 

bit is inverted. 
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filters 

Finite impulse-response (FIR) and infinite impulse-response (IIR) 

are available as general-purpose devices for use in various parts 

of the simulation. For each type the user may enter the coefficients into 

the standard configuration provided to generate the desired response, 

may let the routine compute the coefficients for particular filter 

such as Butterworth or Chebyshev from the specifications he enters in 

response to questions by the routine. 	While most applications will use 

real coefficients, the coefficients are actually complex numbers. 	This 

provides complete generality when used with the simulator's complex signal 

representation. When real coefficients are desired the imaginary parts are 

simply set to zero. 

The complex signal representation may result in some ambiguity in 

the definition of filter types. A filter with a pass band symmetrical 

about zero frequency may be considered either a band-pass or a low-pass 

filter depending on point of view. Where a low-pass design technique has 

been used the design routine will ask for a cutoff 

bandwidth of the filter when used as a band-pass filter 

frequency will be twice this cutoff frequency. 

frequency. 	The 

centered on zero 

Single-precision floating-point numbers (24-bit mantissa and 8-bit 

exponent) are used for all coefficients. This limited precision can 

to inaccuracies under certain conditions in IIR filters, and for 

reason it is recommended that the response be tested before the filter is 

used. Methods for accomplishing this will be discussed later. 

Normally, a filter is designed to have unity gain at its centre 

frequency. However, when it is used to filter a random variable that 

controls a gain factor, such as in the simulation of Rayleigh fading, it 

may be desirable to design a filter whose output power is equal to its 



linear frequency scale. 	Figure 8.2 shows the target response. The 

above can be considered a band-pass filter 

signals. 	The user specifies the number of coefficients, 

for complex 

the cutoff 

but as mentioned 

the 

the 
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input power when its input is white noise. 	In this case it has a 

centre-fequency gain that depends on its bandwidth. In the filter designs 

provided this capability is provided as an alternative. 

8.1.1 FIR Filters 

The configuration of the FIR or transversal filter is shown in 

Figure 8.1. The blocks marked Z-1 are one-sample delays. Up to 256 

complex coefficients (Ci) may be specified. The impulse response is 

given in sampled form by the series of coefficients, and the frequency 

response will be the Fourier transform of this series. 

8.1.1.1 Simple Low-Pass Design 

Two design methods are available to generate the coefficients 

automatically for the user. The first is a simple low-pass design that 

provides an exponential voltage rolloff with frequency beyond the cutoff 

frequency. This results in a linear response when plotted in dB on a 

coefficients are real, giving a symmetrical 

frequency. This filter is referred to as a 

amplitude response about 

low-pass one in the 

zero 

simulation 

frequency, and the desired attenuation 

case the cutoff frequency is defined as 

than as the 3-dB point. 

at half the sample rate. 	In this 

in Figure 8.2 rather the breakpoint 

The routine uses an inverse Fourier transform to approximate 

desired shape. 	Of course this will only be an approximation, and 

accuracy will depend on the number of coefficients and the rolloff rate. 

The greater this rate, the greater will be the number of coefficients 

needed to give a reasonable approximation. The routine warns the user if 

the values entered will give a poor approximation. As an example, Figure 
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8.3 shows the measured response for a 64-coefficient filter with cut off of 

0.1 times the sample rate and an attenuation of 70 dB at the half-sample-

rate point. The routine warned that the maximum attenuation for an 

accurate filter with this cutoff and number of coefficients was 51.2 dB. 

The ripples near the half sample rate are the result of the too-high 

attenuation. Since these may be quite acceptable in some circumstances the 

routine allows the user the choice of using the original specification or 

of changing it. 

The impulse response is adjusted to put the peak at the middle of 

the response. This gives a signal delay of one-half the number of 

coefficients. When the number is odd the delay is half of one less than 

the number of coefficients. The routine informs the user of the actual 

delay. 

8.1.1.2 Complex Band-Pass Design 

The second FIR design method used is the window method in which the 

we start with the impulse response corresponding to a perfect rectangular 

band-pass shape and modify it with a window or weighting function that 

tapers the impulse-response sidelobes away from the peak. This tapering 

allows the impulse response to be represented with a reasonable number of 

coefficients without truncating it severely. Such truncation would lead to 

large ripples in the frequency domain. The tapering results in a decrease 

in the rolloff rate. A number of weighting functions are available for the 

user to choose from. These are: rectangular, triangular, Banning, 

modified Hanning, Hamming, Kaiser, Blackman, and sine of sine of sine. It 

is recommended that the actual band-pass shape be examined by a test in the 

simulator before any operational simulation run. 

8.1.1.3 User-Specified Coefficients 

For special designs the user may compute the coefficients and enter 

them through the keyboard himself. Complex coefficients may be specified. 
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8.1.2 IIR Filters 

IIR filters can be configured from up to 8 cascaded second-order 

sections of the form shown in Figure 8.4. The transfer function of a 

section is: 

(1+C3Z -1 + C4Z-2 )C5 

-1 	-2 
1-C1Z -C2 Z 

8.1.2.1 Butterworth and Chebyshev Designs 

Design routines are available to design Butterworth and Chebyshev 

low-pass filters, with the coefficients automatically entered into the IIR 

filter. The inputs requested from the user are the bandwidth, the number 

of sections, whether the last section is a full or half section, and, in 

the case of the Chebyshev design, the pass-band ripple. In addition, the 

user may choose either unity centre-frequency gain or unity 

integrated-noise-power gain. The warning about the effect of limited 

precision in the number representation, mentioned earlier, is worth 

repeating here. 

8.1.2.2 Resonator Design 

A design routine is also provided for a simple resonator using a 

pair of complex-conjugate poles inside the unit circle at the resonant 

frequency. Zeros at 1 and -1 are also included. This gives a transfer 

function of: 

1-Z2 

1-2aZ+(a244,2)z2 

H(Z) 

H(z) 
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COEFFICIENTS C1, C2, C3, C4 AND C5 MAY BE COMPLEX 

Figure 8.4 Second - Order Section of IIR Filter 
(up to 8 Sections May Be Cascaded) 



143 

(up to 8 sections may be cascaded) for poles at a+jb and a-jb. The user 

enters the number of these sections desired, the resonant frequency, and 

the time constant of one section. This time constant will be equal to 

1/(wW), where W is the 3-db bandwidth of one section. The gain coefficient 

C5 is set to give unity gain at the resonant frequency. This is a real 

filter and therefore also has a resonant peak at minus the specified 

resonant frequency. The resonant frequency should be many bandwidths away 

from zero frequency to avoid distortion of the pass-band by the tail of the 

negative peak (folding about zero). 

8.1.2.3 Narrowband Low-Pass Filter Design 

There is a need for a very narrowband low-pass filter for the 

generation of Rayleigh fading with sufficiently low fading rates. This can 

be accomplished with a pair of poles on the real axis just inside the unit 

circle. A design routine has not yet been added to the simulator for this 

filter, but the coefficients can easily be determined from the following 

manual procedure. 

For a 6-dB cutoff frequency of fc , determine the distance of the 

poles from the unit circle as e = 2.1rf c . The coefficients may then be 

computed, for small e, from: 

CI = 2(1-e) 

C2 = (1-e) 2  

C3 = 0 

C4 = 0 

C5 = e2 

= 2e3/2 

for unity gain at zero frequency, 

for unity integrated-noise-power gain. 

Identical sections may be cascaded to increase the cutoff rate. 

This will reduce the bandwidth, and e should be adjusted to compensate. 
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Also, in the case of the unity integrated-power-gain design, the value of 

C5 will have to be adjusted to give the correct overall power gain. 

When e is less than about 0.001 the precision of the number 

representation is not sufficient to provide an accurate frequency response, 

and the peak can split into two. Considerably lower values can be used if 

they are selected so that the coefficient representation is close to the 

desired value; that is, they should be selected 

between a single-precision and a double-precision 

relative to the resolution of the single-precision 

can be varied around the desired value, and the above test carried out in 

an off-line program to find suitable values close to the desired one. The 

frequency response should then be determined by a test on the resulting 

filter to verify that it is satisfactory. A useful value of e near 0.0005, 

found this way, is 0.00048846. 

8.1.3 Testing the Frequency Response of a Filter 

The frequency response of a filter can be determined by taking the 

Fourier Transform of its impulse response. An off-line routine has been 

developed to compute the transform and plot the result of a 512-point 

complex record of the impulse response. The impulse response is generated 

by using a data file consisting of a one followed by 511 zeros generated by 

DATEN and MODIFY as input to the filter in the HOPPER process. The 

resulting output is the impulse response and is written to a file using 

FILE. An off-line routine called FILSPTL can then be used to read the 

file t  perform the transform, and plot the frequency response on a Tektronix 

4014 graphics terminal. 

so that the difference 

representation is small 

number. The value of e 
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8.2 Decimation 

When the signal bandwidth is reduced, as when direct-sequence 

de-spreading is performed, it is desirable to reduce the sample rate to 

decrease the computing load. The sample rate need only be higher than 

twice the highest frequency magnitude in the signal spectrum. In practice 

"the highest frequency magnitude" may be interpreted as the frequency 

magnitude beyond which there is no significant energy. The definition of 

"signal" must include noise and interference, since under-sampled noise 

will be aliased into the desired signal band. The simulator provides a 

decimation routine for reducing the sample rate. The user is asked if he 

wishes to use decimation at various points in the receiver after filtering 

has been performed, but he may also elect to use it at any time between 

processes by calling the HOPPER process which contains some general-purpose 

utilities such as filtering and decimation. This process may be entered 

for the purpose of filtering and decimation without performing the hopping 

function. Decimation should only be performed after filtering to avoid 

under-sampling. 

The decimation algorithm is simple. 	The user is asked for the 

desired decimation rate. 	This is the ratio of the sample rate before 

decimation to that after. 	For a decimation rate of N, only every Nth 

sample is retained with all others discarded. The first sample retained is 

number (N+1)/2 (truncated to an integer if necessary). As an example, if 

the decimation rate is specified as 10, then the samples retained are 

numbers 5,15,25, etc. 

8.3 Saturating Amplifier or Limiter 

In some cases amplifiers may be driven into saturation and become 

nonlinear. This is particularly true in the case of a power amplifier used 

to transmit multiple tones simultaneously. Such tones can add in phase at 

times to generate high peak voltages relative to the average voltage. For 

efficient use of the amplifier it is usually required to operate with high 

average power, not too far below the saturation level. In this case the 
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peaks can exceed the saturation level and be limited. 

It may also be desired to limit large interfering peaks or to control 

signal levels in the receiver and so a limiting amplifier may be used 

there. To simulate these conditions a saturating amplifier is provided in 

the simulator. It consists of an amplifier with a user-specified gain, 

which is linear up to a user-specified threshold and has a fixed output 

magnitude for all input signals above this threshold. The phase of the 

complex signal is maintained by the amplifier. The characteristics of this 

amplifier are shown graphically in Figure 8.5. 

The saturating amplifier is a general-purpose device, but has been 

included, for convenience, in the HOPPER process. If it is desired to use 

it as a limiter in the receiver it is necessary to perform in the RECVR 

process, on the first entry, only those functions that precede the limiter 

(usually at least noise and jamming addition), then enter the HOPPER 

process to do the limiting, and finally re-enter the RECVR process to 

perform the remaining functions. 

BATCH-MODE OPERATION 

If the batch mode of operation is selected a command file must be 

prepared in advance with the answers to all of the questions that the 

program will ask. This is difficult to do without first running the 

simulation from the terminal to find out what the questions are. We cannot 

easily make a list of the questions as a guide since the route taken 

through the simulation, and hence future questions, depends on the answers 

to the earlier questions. The best method of finding the questions is to 

perform the desired simulation with a reduced quantity of input data on a 

hard-copy terminal. This will record the questions along with your 

answers, and if the number of bits of input data is kept small, long waits 

during processing of the data will be avoided. A video terminal may be 

used, but in this case it will be necessary to write down the questions (or 

the chosen answers) by hand. One difference between the interactive and 



O
U

T
P

U
T

 M
A

G
N

IT
U

D
E

 <
 

SLOPE = SMALL-SIGNAL VOLTAGE GAIN, G 

OUTPUT PHASE ANGLE = INPUT PHASE ANGLE 

INPUT MAGNITUDE 

G AND V1 SPECIFIED BY USER 

LIMITS : 0 < G S.106  

O<VL<106  

Figure 8.5 Characteristics of Saturating Amplifier 



148 

batch mode that should be kept in mind is that the question on whether the 

Monitor facility is desired in the receiver is asked only in the former and 

not in the latter. 

The user is advised to make the first batch run with a reduced number 

of points since this will minimize the waste of CPU time if an error has 

occurred in the batch command file. It can also allow the performance to 

be checked with the Display facility to determine if changes need to be 

made before committing a large amount of CPU time. Even crude estimates of 

bit error rates may be obtained sometimes with few samples to determine if 

there are gross errors in the simulated system. Another reason for using 

short runs at the beginning is to obtain an estimate of the running time of 

a longer run. Such estimates should take into account that a significant 

amount of time will be used in starting the program and in stopping it, 

regardless of the size of the simulation. This is about 40 seconds of CPU 

time with the current simulator and operating system (VMS 4.2). 

When operating in the batch mode it is usually best to specify a file 

as the output device. If an output file is specified the batch log file 

will contain only the questions and menus from the program along with any 

error messages. 	If the terminal is specified as the output device the 

output will also go to the log file. 	The log file is specified in the 

SUBMIT command that starts the batch operation. 

An example of a batch command file is included in Appendix D. This is 

for the simulation of a binary DPSK system through a medium consisting of 

two Rayleigh fading paths with small delay difference, and with CCIR type 

noise of Vd equal to 4.2 dB. The command file is written for the DEC VMS 

4.2 operating system. The lines beginning with a "$" are commands. A "!" 

in a command line indicates that the text following it in quotation marks 

is a comment which is included to help in interpreting the command file. 

The lines not beginning with a "$" are the user responses to the questions 

asked by the program which begins after the RUN command. The WRITE 

commands cause the subsequent text to be copied to the output device, 

which, in the case of batch operation, is the batch log file. The SET 
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DEFAULT command tells the system which directory to run the program in. 

The parameter, Pl, which specifies the directory, should be included in the 

VMS SUBMIT command that is used to submit this command file. More will be 

said about this later. 

The RUN command starts the simulation program, MODEM, which is in 

directory VENIER.FREYSENG.MODEM. At this point the program takes control 

and begins asking the user for information. The first question relates to 

the mode of operation and is answered "BAT" to enter the batch mode. After 

this the question on output is answered "FILE" and the file heading and 

name are specified. The questions corresponding to the remaining responses 

may be viewed on the terminal by running the simulator in interactive mode, 

or they may be found in the batch log file generated when this command file 

was run in batch mode. 

This log file is included in Appendix E. The two lines of information 

written to the log file by the commands in the command file can be found at 

the beginning. These are used to identify the particular experiment. They 

are followed by an indication of the simulation program name and version 

number, written by the simulation program, along with the date on which the 

run was performed and the maximum amount of data the current version can 

handle. After this we see the questions and information such as menus 

intended to help the user answer the questions. At the end of the log file 

there is a summary of accounting information which includes the amount of 

CPU time used. 

The output of the simulation, was directed to file DPSK0123.DAT by one 

Appendix F. It contains all of the information on the specification of the 

simulated system and the output of any analyses requested. 

Appendix G lists a general-purpose command file for submitting a batch 

command file. It can be run by typing @BATCH. It asks for 

batch command file, the default directory (the directory in 

command file can be found), and the priority desired. This 

the name of the 

which the batch 

priority is the 
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priority in the batch queue, not the priority while running. It may be 1, 

2, or 3, with 3 being highest priority. 
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CALCULATION OF NOISE VOLTAGE REQUIRED FOR A GIVEN VALUE OF Eb/No  

Let Ns 	= the number of samples per modulation symbol, 

(In the case of direct-sequence or MCSK modulation 

the modulation symbol is an element of the code.) 

= the number of spreading code elements (modulation 

symbols) per data symbol, 

fd 	= the data rate in bits per second, 

Nb 	= the number of bits per data symbol, 

f s 	= the sample rate (= NsNe fd), 

Vs 	= the peak signal voltage at the receiver input, 

As 	= the energy gain factor for shaping or transitions, 

Vn 	= the rms noise voltage at the receiver input, 

Eb 	= the energy per bit of the signal in joules, 

Ec 	= the energy per modulation symbol, 

No 	= the noise power density in watts per Hz. 

A-1 

Nc 
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Then 

and 

(Al) 

(A2)  

(A3)  

(A4)  

(A5)  

EcNc 

Nb 
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EbV 2ANNc  s s s = 	 
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From (A4) we get: 

Vn As Ns Ne N0  
=   • 

V 	NbEb 

(AS) gives the ratio of noise voltage to peak signal voltage required to 

give a specified ratio of bit energy to noise power density. 

The program displays the computed values of modulation symbol energy 

and noise power density. This allows the user to determine the ratio to 

check that it is correct. However, he must first determine the bit energy 

from the Modulation symbol energy from: 
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Note: 	This paper first appeared as Communications Research 

Centre Technical Memorandum MC/7M030/84, 14 May 1984. 
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EXCISION TECHNIQUES FOR DIRECT SEQUENCE 

SPREAD SPECTRUM SYSTEMS 

1. INTRODUCTION 

The purpose of the investigation outlined in this Memorandum is to 

permit specifications to be written for an excision routine which will be 

used in the DMC Spread Spectrum Simulation Facility. It is not intended 

as an intensive study of the problem. The routine will have user-

selectable parameters which will allow further study of the excision 

technique when completed. As well as providing the general design 

information, the present investigation should provide the basis for an 

intelligent use of the routine in such a study. 

A direct-sequence spread-spectrum system provides good discrimination 

against a narrowband interfering signal. The despreading process in the 

receiver, which reduces the bandwidth of the communication signal by 

removing the spreading modulation, will cause the narrowband interference 

to be s,pread in bandwidth, and therefore only a small part of its energy 

will fall into the filter matched to the data modulation. This will be 

true whenever the bandwidth of the interference is less than the spread-

spectrum bandwidth. When the interference has a bandwidth less than or 

equal to the data bandwidth, the spread-spectrum system will provide an 

improvement approximately equal to the processing gain, that is to the 

ratio of spread bandwidth to data bandwidth. However, even greater 

improvement is possible if the narrowband nature of the interference is 

properly exploited. 

This can be accomplished by removing the narrowband interference with 

a notch filter before despreading. If the interfering signal is much less 

in bandwidth than the direct."-sequence signal, only a little of the desired 

signal is lost in the process. Some estimate of the spectrum is necessary 

to determine where to place the notch. One method of doing this is to 

perform a spectral analysis or Fourier transform of the incoming signal 
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and place a notch where the spectrum exceeds some threshold level. It is 

desired that this be done automatically and some problems will arise in 

determining the proper threshold and notch width to use. The notch of 

a digital filter can easily be set to the desired frequency by setting the 

filter coefficients. 

A solution which avoids some of these problems is to use a whitening 

filter which automatically adapts to the input signal in such a way as to 

try to whiten the output spectrum, that is, to suppress any narrow peaks 

in the spectrum. This can be accomplished by the technique of linear 

prediction which is more easily described in the time domain. 

A narrowband signal will have an autocorrelation function whose peak 

is very broad. That is, there is strong correlation between values well 

separated in time. This makes the signal predictable from its history. A 

has a narrow 

a time greater 

narrowband 

the value 

predicted for the next sample (in the future) is subtracted from the next 

sample when it arrives, then if the prediction is accurate the narrowband 

signal will be cancelled while the communication signal will be 

essentially unaffected. 

Some of the details of this technique are presented in a paper by Hsu 

and Giordano [I]. Some of the results will be summarized here for the 

Wiener algorithm. Another algorithm, the maximum-entropy or Burg 

algorithm is also described in the above paper but will not be discussed 

here. This may be the subject of a later Technical Memorandum. 
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2. PREDICTION FILTER THEORY 

The Wiener prediction filter takes the form of a finite impulse 

response (FIR) or transversal filter. The estimate of the kth sample is 

computed from N previous input samples Xk_N to Xk_i by, 

X. 	n  = 	bXic-11  

n=1 

The problem is to determine the coefficients 	of this FIR filter. 

These are determined from a least-mean-square criterion which leads to the 

set of equations [2] 

b
n
r
k-n 

= r
k ' 	

k = 1, 2, ....N 	(2) 

where {rk} are the autocorrelation coefficients of the input signal. 

These can be estimated in the standard manner from the signal, but it must 

be remembered that they are only estimates based on a limited number of 

samples. 

The equations in (2) above can be written in matrix form as: 
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(I) 

where is the NxN autocorrelation matrix, 

is the vector of filter coefficients, and 

Rv  is the vector of autocorrelation coefficients r l , r2 , 

....rN 

The autocorrelation matrix as determined from (2) will have the form 



'mum ••••n1 

Mums,  
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ro  r_i r_2 . . . 

ri ro  r_i . . . r_N+ 2 

r2 ri ro  . . . r_N+ 3 

• • 	• 
• • 	• 
• • 	• 

rN_2. • • r o  

RN = 

Foranautocorrelatiolifutictiotir- 1 	.e'rk 	ftec ..=complex 

conjugate of ri). 	The matrix RN  is therefore Hermitian (aii = 

alcii)and Toeplitz (equal values on any diagonal). 	This makes possible 

an iterative solution known as the Levinson-Durbin Algorithm which is 

described in [3]. This algorithm is reproduced below with different 

notation and a sign difference to account for the different application 

(we are computing the coefficients of the prediction filter whose output 

will be subtracted from the next input). The notation bi , i refers to 

the ith coefficient in the 

b1 , 1 is computed first from 

ri 
1'1,1 = — 

ro  

Each additional coefficient is computed in turn and previous 

coefficients are updated on each interation. 

i th  iteration. 



On the Nth iteration we compute, 

N-1 

A = rN 	/ bk,N-1 rN-k 
k=1 

N-1 
B = ro  11 (1 - I bk,k 1 2 ) 

k=1 

From these we compute the Nth coefficient, 

bN , N= A/13 

and then update all previous coefficients by, 

-b 	b* b 	= b 
n,N 	n,N-1 	N,N N-n,N-1' 

for n = 1,2 ... N-1 

After N iterations we compute N coefficients. This requires only order N2  

operations as opposed to order N3 operations required for a general matrix 

inversion. 

Wheil the coefficients fbo l have been computed they are used in a 

transversal filter indicated by (1) to predict the next value of the 

input, and this value is then subtracted from the next input sample. The 

process is illustrated in Figure 1*. 

In this configuration the filter output is subtracted from the next 

sample simply by reversing the signs of all the Ibo l and adding in the 

next sample with unit multiplier. The extra delay at the beginning takes 

care of the fact that the prediction is made for the next sample time 

after the time when the prediction is made. 
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All figures in this appendix have been given the prefix "B". However 

in the text they are referred to without the prefix. 
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3. DESIGN CONSIDERATIONS 

It should be recalled that the excision with minimum distortion to 

the desired signal is based on the assumption that the desired signal is 

uncorrelated from sample to sample. This is only true if there is a 

maximum of one sample per chip. Normally we would like to represent the 

signal with more than one sample per chip to prevent aliasing. This can 

be accommodated by computing the autocorrelation function only at delays 

separated by M samples, where M is the number of samples per chip, and 

spacing the filter taps every M samples. This means that the delays are 

made equal to M sample periods. This maintains the good representation of 

the signal at the output - that is, it does not introduce aliasing of the 

signal - but it does cause a periodic repetition of the filter frequency 

response at intervals of the inverse of the tap spacing. For example if 

there are 4 samples per chip we must choose a tap spacing of four 

samples. This will give an effective sample rate for the filter of 0.25 

times the true sample rate. Therefore an interfering signal at 0.1 times 

the sample rate will produce a notch not only at 0.1 but at 0.25 + 0.1 = 

0.35, at 0.5 + 0.1 = 0.6 or -0.4 and at 0.75 + 0.1 = 0.85 or -0.15. 

The notches at higher frequencies will cause no problem since little 

signal energy exists there (above the rate of the taps) but the one at 

-0.15 will fall on the signal spectrum and will notch out some of it. 

Thus an interferer can have the effect of two interferers. Even worse, if 

an interferer falls above the tap sample rate say at 0.3 in the above 

example, it would cause very little problem by itself, but the filter will 

generate a notch at 0.3 - 0.25 = 0.05 as well as at -0.25 + 0.05 = -0.20. 

Thus the use of the adaptive filter may actually degrade the performance 

when the interference is outside the normal signal band. To minimize this 

effect we should low-pass filter to as low a frequency as possible, 

without seriously distorting the signal, before the adaptive filter. 

The autocorrelation function can be estimated over a block of M input 

samples from 



1 
M7j 

r. = 	L
i 	

, j = 0,1....N 
713- •=1 1 	J  

Coefficients of higher delay will not be as precise since they will have 

fewer values in the sum. This can be avoided by making the upper limit of 

summation M-J, where J is the index of the highest delay coefficient 

desired. In this case coefficients for smaller values of j will not make 

use of all the in-formation available, but all summations will contain the 

same number of products. But normally N will be much less than M and this 

effect will be small. If N is not much smaller than M then a more 

efficient means of computing the autocorrelation function is to take the 

inverse Fourier Transform of the Power Spectrum. This involves two 

Fourier Transforms but if the number of coefficients to be found is a 

significant fraction of the block size the efficiency of the Fast Fourier 

Transform routine makes this the preferred method. However, care must be 

taken to avoid the cyclic nature of the autocorrelation function when 

generated in this manner. One method of accomplishing this is to add 

zeros to the end of the sample block before performing the Fourier 

Transform. The warning about the precision of the higher delay 

coefficients is even more important in this case since this method would 

only be used when the number of coefficients to be used is a significant 

fraction of the block length M. 

One question of importance in the autocorrelation estimation problem 

is the size of the block over which the estimate is performed. The larger 

the block the better will be the estimate, providing the data are 

stationary which is rarely the case. Therefore some compromise is 

required so that the filter can adapt as the conditions change but still 

make use of a large enough block to permit a good estimate. 	Another 

factor is the requirement for storage of data. 	Ideally the data to be 

filtered should be stored until the filter has been computed, then put 

through the filter. That is; there should be a storage capability of at 

least the size of the block used. If no storage is provided the filter 

will have to operate on data following the data to which it has adapted, 
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making it even more vulnerable to non-stationarity. 	In the routine for 

the Spread-Spectrum Simulation Facility the block length and the storage 

capability should be made variable - to be set by the user - so that these 

problems can be further investigated. 

It seems reasonable that the greater the number of coefficients in 

the filter, the better the filter will be able to remove the interference, 

particularly when the interferer has significant bandwidth or comprises a 

number of separate narrowband signals. Intuitive reasoning indicates that 

the notch width for a single interferer will be proportional to the 

inverse of the number of samples spanned by the filter, that is, to the 

inverse of the number of coefficients times the number of samples 

between taps. Thus to minimize the distortion to the desired signal we 

should use as many coefficients as possible. We would also expect that 

the greater the number of narrowband interferers the more coefficients we 

will need. But coefficients are expensive since the number of operations 

required in computing the coefficients is proportional to the square of 

the number of coefficients. For this reason it is important to determine 

how many coefficients are required for the desired performance. This will 

depend strongly on the characteristics of the interference and therefore a 

good estimate of the threat is important. In the Simulation routine it is 

essential that the number of coefficients be a user-selectable parameter. 

A maximum value of 64 should cover any feasible practical system. 

4. SIMULATION EXPERIMENTS 

The algorithm for computing the excision filter coefficients was 

implemented in Fortran on a VAX-11/750 computer. This routine computes 

the autocorrelation function estimate for a block of up to 512 complex 

input samples and uses this to compute from one to 16 coefficients with 

tap spacings of from one to 16 samples. All these parameters are 

user-selectable at run time. 
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Input samples are generated from the data-generation routines of the 

partially completed Spread-Spectrum Simulation Facility. The wideband 

signal representing the direct-sequence signal was simulated by various 

signals including white Gaussian noise, impulses and maximal-length 

sequences, depending on the purpose of the test. Narrowband interference 

was simulated by one or more complex sine waves or in some cases by a 

slowly swept complex sine wave. 

The resulting coefficients were output to a file from which they were 

read by a general-purpose FIR filter routine which performed the actual 

excision process on the simulated input signal, or on an impulse when the 

impulse response was desired. The output of the FIR filter routine could 

be taken as a time series or converted to the frequency domain by a Fast 

Fourier Transform routine. The output domain, number of coefficients and 

tap spacing are user-selectable parameters. The input sample block is 

fixed at 512 samples, but a number of samples equal to the impuse response 

duration are removed from the beginning of the output time series, and 

only the last 256 output samples are used in the FFT routine. This is to 

avoid the effects of the start-up transient. This transient would not be 

a problem 4n practice since the filter state would be retained from one 

input block to the next. Only the first block would generate a transient 

from the zero state. These routines were used to test the adaptive 

algorithm and to provide some understanding of how the parameters affect 

the result. 

4.1 Excision Filter Demonstration 

The first experiment was intended to demonstrate the operation of the 

excision process under the simplest conditions. The direct-sequence 

signal was simulated by white Gaussian noise and a single complex sine 

wave was added to it to simulate the interference. The Gaussian samples 

were generated by the Box and « Muller method [4]. The amplitude of the 

sine wave was five times that of the rms noise voltage and its frequency 

was 0.14 times the sample rate. (Henceforth we shall specify all 

frequencies as a number without units representing the ratio of frequency 
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to sample rate). The input signal is shown in Figure 2 and its spectrum 

in Figure 3. 	The spectrum is generated from a 512-point FFT of the input 

signal and the magnitude of the complex spectrum is plotted. 	The 

magnitude is the Fourier transform result without division by the number 

of points. For an N-point transform the sine-wave component will have an 

amplitude of N times its time-domain amplitude, while the noise will have 

an rms value of only IN times its time-domain component. Thus the 5:1 

time-domain ratio of sine amplitude to noise amplitude becomes a 113:1 

ratio in the frequency domain. It should be noted that all output spectra 

are from 256-point transforms and this will result in a /2 reduction of 

the sine wave component relative to the 512-point input spectrum. 

Eight excision filter coefficients with one-sample tap spacing were 

computed from the 512-sample input block and these coefficients were used 

to filter the same input block. The output of the FIR filter is shown in 

the time and frequency domains in Figures 4 and 5 respectively. It is 

clear that the sine-wave component has been effectively removed while the 

noise remains. A notch can be seen in the noise spectrum where the 

sine-wave component was. 

4.2 Effect of the Number of Coefficients on Notch 

Characteristics 

To investigate the characteristics of this notch and its dependence 

on the number of coefficients the following experiment was performed. A 

single impulse of unit amplitude at sample number 257 was used to simulate 

the wideband signal. This has the advantage of having zero 

autocorrelation for all non-zero delays and so does not affect the 

coefficient computation as the noise signal does. This permits the 

coefficients to be based entirely on the sine-wave component which was 

again at a frequency of 0.14 but had an amplitude of 0.1. This gives it 

an energy of about 5 times that of the impulse in the 512-sample block. 

FIR filter coefficients were computed using a 16-coefficient and a 

4-coefficient calculation. The impulse response of the resulting filters 

were generated by using the impulse signal, without the sine-wave, as 



B-11 

input. 	The frequency-domain results (the frequency response of the 

filter) are plotted in Figures 6 and 8 and the time-domain impulse 

responses are plotted in Figures 7 and 9 for the 16- and 4-coefficient 

cases respectively. 	The ripples in the frequency response are 

characteristic of finite impulse responses. It is the notch itself which 

is of main interest. We see that the notch width is much greater for the 

4-coefficient case as expected. It was speculated earlier that the notch 

width would be proportional to the inverse of the number of samples 

spanned by the filter 

and 0.25 for 16 and 4 

(in this case the number of 

coefficients respectively. 

coefficients) 

The width of 

or 0.0625 

the notch 

depends on how it is defined but if we take the point where the 

is just attenuation is 3 dB we find from Figures 6 and 8 that the width 

under one-half the inverse of the number of samples spanned. 

The impulse responses in Figures 7 and 9 show that the impulse is 

well preserved (as it must be with a unity coefficient), but that the 

filter "rings" for a time equal to the filter length after the impulse. 

Since it is a finite impulse response filter it could not have an impulse 

response outside this region. The magnitude of the "ringing" is greater 

for the shorter filter but lasts a shorter time. 	This distortion will 

cause some degradation in the signal. 	The wider the frequency-domain 

notch the more degradation there will be since the greater will be the 

loss of signal spectrum. On the other hand when the interfering signal is 

not very stable in frequency and the coefficients are not computed very 

often, the wider notch (fewer coefficients) may actually provide better 

performance since the interference may change frequency by a greater 

amount without going outside a given attenuation level. 

4.3 Autocorrelation Estimate 

Another parameter of importance is the number of samples used in the 

autocorrelation estimate. Although the wideband signal may have zero 

autocorrelation for delays greater than the tap spacing, the estimate of 

that autocorrelation will not be zero when based on a finite number of 
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samples. For a noise-like signal we would expect the estimate to decrease 

in proportion to 'Iry where N is the number of products used in the 

correlation estimate. 	The number of products possible is equal to N-k 

where k is the delay in samples for that coefficient. 	To make this 

number independent of delay we took km , the largest k required (equal to 

the number of filter coefficients), and used N-km  products for all 

delays. That is, for shorter delays we did not use some of the later 

samples in the block. 

Since it is only the wideband signal that takes part in the 

correlation estimate error, only a noise signal was used as input 

for the filter coefficient computation. Coefficients were generated for 

two different input block lengths and the resulting FIR filters were 

tested with an impulse signal. The results for 16 coefficients are shown 

in Figures 10, 11, 12 and 13. 

Figure 10 shows the frequency response for 496 correlation products 

(block of 512 samples). If the correlation were perfect the magnitude 

should be unity for all frequencies. The fluctuations shown are a result 

of the estimation errors. 	We see that the rms variations are about 10 

percent. 	In Figure 12 where only 124 correlation products were used the 

variation is about double this. 	Since variations from the all-pass 

situation will distort the wideband signal it is evident that a larger 

number of samples gives a better filter. Figures 11 and 13 show the 

time-domain versions of the outputs for 496 and 124 samples respectively. 

They verify that the latter case produces greater signal distortion. 

Figure 14 indicates the interaction between the number of correlation 

products and the number of coefficients. It is the frequency response for 

the 4-coefficient filter generated from an autocorrelation estimate using 

496 products. We see that the variations have been reduced from those of 

Figure 10. This indicates that the greater the number of coefficients, 

the greater must be the block size for a given mean squared error in the 

frequency response. The following analysis confirms this. 
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Suppose there are N products in the correlation estimate and M 

coefficients. 	If the input signal is noise-like we would expect each 

coefficient to have an rms error of about uter 	Now the frequency 

response is simply the Fourier Transform of the coefficients and if the 

coefficients are random and zero mean (as we expect for a noise-like 

input) then each element in the frequency domain will result from an 

incoherent addition of M random values, each with standard deviation 

(we will ignore for the moment the additional unity coefficient which is 

always present - see Figure 1). 	Thus the standard deviation in the 

frequency domain should be /P/AT, for the unnormalized definition 

of the Fourier Transform. 	Now the unity coefficient that we have 

ignored is a unit impulse and results in unity for each element in the 

frequency domain. 	The other M coefficients will produce a random 

fluctuation of /11/47 about 	this unit mean value. 	Thus 	the 

fractional error should be approximately 

Ef = /3717J,/r 

That is, the error is proportional to the square root of the number of 

coefficients and inversely proportional to the square root of the number 

of products in the correlation estimate. We can check this against 

Figures 10, 12 and 14. For Figure 10, M = 16, N = 496 giving an rms error 

estimate of in/le6 - 0.18. For Figure 12 it should be twice this (since 

N reduced by a factor of 4) or 0.36. Finally for Figure 14 the rms error 

should be about l4//7177= 0.09. We see that these values agree reasonably 

well with a simple "eyeball" estimate of the rms values from the above 

figures. It does not appear justified to do a more quantitative estimate 

from these figures since the number of independent samples is not 

sufficient to give an accurate estimate. 

4.4 Multiple Narrowband Signal. Interference 

The performance of the excision filter for multiple narrowband 

signals was investigated by combining four sine-wave signals with Gaussian 

noise and using this to generate the coefficients. The resulting filter 
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16 coefficients. The full 512-sample block (496 

coefficient computation. Four notches can 
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was tested for frequency response as well as for response to the above 

signal. Two cases were tried: in one the tones were spread widely across 

the sampling bandwidth while in the other they were closely spaced over a 

very small percentage of this band. 

The spectrum of the widely-separated-tone-input case is shown in 

Figure 15. The tone frequencies were -0.3, -0.1, 0.05 and 0.15. All 

tones had unit amplitude in the time domain as did the noise. The 

differences in amplitude of the different tones in Figure 15 are caused 

mainly by the sampled nature of the plotted spectrum. The plot routine 

connects points by straight lines and the peaks on the plot will depend on 

where 

noise 

part. Figure 16 shows the frequency response of the resulting filter with 

products) was used in the 

be 

frequencies. Other fluctuations in the response are 

finite-duration response and the finite estimation 

seen at the tone 

a combination of the 

time for the noise 

autocorrelation function. The spectrum of the output of this filter with 

the signal of Figure 15 as input is shown in Figure 17. It is evident 

that the 16 coefficients have been effective in suppressing the tones. 

When the number of coefficients was reduced to six the frequency 

response of the filter changed to that seen in Figure 18. The notches 

have widened and the two for the highest two tones have almost merged. 

This means much greater degradation of the wideband signal as seen in 

Figure 19 which is the spectrum of the output with the signal of Figure 15 

as input. Also, the tones are not well suppressed. In this case we have 

only 1.5 coefficients per interfering tone and since these coefficients 

represent degrees of freedom we might expect relatively poor performance. 

Since the notch width is on the order of the inverse of the number of 

coefficients, then for widely separated tones, one coefficient per tone 

would be expected to eliminate a major part of the wideband signal 

spectrum. A minimum of two coefficients per interfering tone would seem 

to be a reasonable requirement under these circumstances. 
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The spectrum of the input signal for the closely spaced case is shown 

in Figure 20. The tone frequencies are 0.07, 0.08, 0.09 and 0.10 and all 

time-domain amplitudes including the noise rms are unity. The frequency 

response for the 16-coefficient filter generated from the input of Figure 

20 is displayed in Figure 21. In this case all the notches have merged to 

give a single wider notch encompassing all of the tones. In Figure 22 we 

see the spectrum of the filter output when the input is the signal of 

Figure 20. The four tones are reduced to the level of the noise and the 

noise spectrum is not much affected. The frequency response when only 

four coefficients are used is shown in Figure 23, and the spectrum of the 

output when the input is the signal of Figure 20 is shown in Figure 24. 

We see that although the tone suppression is not quite as good as in the 

16-coefficient case, the noise spectrum is not badly distorted, even 

though there is only one coefficient per tone. The reason is that the 

coefficients produce a single notch at the frequency of the grouped tones, 

rather than producing four separate notches as in the earlier case. Thus 

fewer coefficients are required than in the widely-spaced case for the 

same performance. 

4.5 Swept Frequency Interference 

A similar situation occurs when the interference is a single tone but 

is swept slowly in frequency. This gives it a wider bandwidth, roughly 

equal to the range of frequencies swept through, providing this range is 

significantly greater than the inverse of the sweep time. The spectrum of 

such an input signal is shown in Figure 25. This signal was swept 

linearly from 0.10 to 0.13 starting at the 21st sample and ending at the 

495th sample. The signal had unit amplitude in this period and had zero 

amplitude for all other samples. Added to this was white Gaussian noise 

of rms amplitude equal to 0.2 to represent the desired wideband signal. 

The swept bandwidth of the interference was 0.03 which was much greater 

than the inverse of the time dilration which was 1/475. Thus it satisfies 

the criterion mentioned above for slow sweep, and this is verified by 

Figure 25 which indicates the rectangular spectrum of the swept signal 

over the expected range. 
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In Figure 26 we see that the frequency response of the resulting 

16-coefficient filter has a notch matching the interference spectrum in 

position and width. 	The spectrum of the output of the filter for the 

input of Figure 25 is seen in Figure 27. 	Some of the interference is 

still present but is reduced to about the level of the noise signal. The 

wideband signal spectrum is not seriously degraded for this case of 16 

coefficients. The impulse response of Figure 28 verifies this although 

some "ringing" of the filter does occur. 

When only four coefficients are used the frequency response of Figure 

29 results and the frequency-domain response to the input of Figure 25 

seen in Figure 30 shows a higher leak-through of the interference, and 

greater distortion (attenuation of the wideband signal near the 

interference) of the wideband signal spectrum. However, the impulse 

response in Figure 31 indicates only moderate distortion. Thus it appears 

that even as few as four coefficients are reasonably effective against a 

swept signal occupying three percent of the bandwidth. 

In the above the full block of input signal was used to generate the 

coefficients. When only part of the input is used we would not expect 

such good results since the interference is not stationary and the filter 

can only be adapted to the conditions existing during the coefficient 

computation. This was illustrated by using only the first half of the 

input block for the coefficient generator. The frequency response of the 

resulting 16-coefficient filter is shown in Figure 32. The notch does not 

extend to as high a frequency as it does in Figure 26 since the higher 

frequencies do not occur until the second half of the input signal. In 

the frequency-domain response to the signal shown in Figure 33 we see 

serious leak-through of the interference at the higher frequencies. The 

time-domain response to the signal as seen in Figure 34 illustrates the 

problem more clearly. The interference is well suppressed over the first 

half of the output where the coefficients were computed, but as the 

frequency increases in the second half it moves out of the notch and we 

see the build-up in amplitude as the frequency increases. This 

illustrates the advantage of using the same block of input for coefficient 
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generation and as filter input. 	This requires delay or storage of the 

signal since the first sample cannot be applied to the filter until the 

entire block has been used for the computation. While this would be a 

serious problem in an analogue system, it would be much less so in a 

digital one. However, since the excision process must be carried out in 

the wideband part of the receiver before despreading, the use of digital 

techniques may be quite expensive. 

4.6 Multi-Sample Tap Spacing 

Another question that deserves investigation is the effect of 

multi-sample tap spacing as required when there is more than one sample 

per direct-sequence chip. The first test was intended to demonstrate the 

effect described earlier in the section on Design Considerations. The 

parameters used in the examples there were tested using an impulse as the 

desired signal component and sine waves at frequencies of 0.1 and 0.3 (two 

tests, one with each frequency) for the coefficient generation. 	A tap 

spacing of four samples was used as in the example. 	In the filter 

coefficient generation 16 coefficients were computed. 	The frequency 

responses generated by an impulse input are shown in Figures 35 and 36 for 

interfering frequencies of 0.1 and 0.3 respectively. In the first case 

the notch is repeated at frequency intervals of 0.25 (inverse of the tap 

spacing) from the desired response at 0.1 as expected. The negative 

frequency values can be computed either by subtracting intervals of 0.25 

or by adding intervals of 0.25 and subtracting 1.0 when the value is above 

0.5. 

In the second case, the desired notch is above the tap sampling 

frequency of 0.25, leading to a positive frequency notch below the desired 

one at 0.05 as seen in Figure 36. The number of notches will always equal 

the tap spacing. The impulse response of the filter of Figure 36 is shown 

in Figure 37. The ringing noW extends for a longer period than for the 

single-sample tap spacing case since now the impulse response has a length 

equal to the number of taps times the tap spacing - in this case 16 x 4 = 

64. 
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4.7 Demonstration of Excision Followed by Direct 

Sequence Matched Filter 

The effect of the excision filter on an actual direct-sequence signal 

with multiple sample chips was investigated using a 31-element maximal-

length sequence (M-sequence). This sequence used eight samples per chip 

and was repeated to produce 62 elements comprising 496 samples. The unit 

amplitude sequence was added to a complex sine wave at a frequency of 0.02 

and white Gaussian noise with unit variance. In this test the noise was 

intended to represent undesired noise, and not the wideband signal. 

Figure 38 shows the spectrum of the combined signal. The M-sequence is 

barely discernible in the noise over the range of -0.1 to +0.1 and the 

narrowband interference is seen near the centre of this spectrum. Figure 

39 shows the time-domain magnitude of the output of a filter matched to 

the M-sequence (no excision filter was used). The triangular peak is the 

desired matched-filter response (the M-sequence was delayed to put the 

peak near the centre). The remainder results from the combination of 

noise and sine-wave interference (since the magnitude is plotted, the 

complex sinewave would appear as a constant level). The processing gain 

of the matched filter brings the desired peak above the noise and stronger 

interference. Note that the vertical scale starts at 100 rather than 

zero. 

The input signal of Figure 38 was then used to generate excision 

filter coefficients and the original input signal was applied to this 

filter. Eight coefficients were generated using a tap spacing of 8 

samples and 448 products in the correlation estimate (the largest number 

possible for a block of 512 with these parameters). The output spectrum 

is shown in Figure 40. The sine-wave interference has been removed but 

the noise remains since it is wideband. The output of the excision filter 

was then applied to the matched filter which has a processing gain against 

the noise. The result is seen in Figure 41 which shows the magnitude of 

the time-domain output. This output is clearly superior to that in Figure 

39. The reason is that the excision filter has provided the extra gain 

against the sine-wave interference in addition to the gain of the matched 
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filter. The well-defined triangular peak rising well above the residual 

level indicates that the excision filter has not seriously degraded the 

M-sequence signal. Some loss is evident when comparing the peak levels of 

Figures 39 and 41, but the end result is a significant improvement in 

signal-to-interference ratio. The M-sequence used is a relatively short 

one, with spreading ratio of only 31 allowing only modest processing 

gain. In more typical systems with higher spreading ratios the 

improvement should be even more marked. 

4.8 Effect of High Interference-to-Signal  Ratio  

In one of the experiments using noise to represent the wideband 

signal and a single tone to represent the interference it was found that, 

although the resulting filter suppressed the interference, it badly 

distorted the wideband signal. The frequency response of the filter had a 

large peak in it at a frequency near the notch frequency rather than being 

relatively flat as it should have been. The only difference between this 

and some similar experiments was the higher ratio of narrowband-to-

wideband signal amplitudes. In this case this ratio was 20:1. When a 

ratio of' 10:1 was used under identical conditions (512-sample block to 

generate 16 coefficients) this problem did not arise. This led to the 

conclusion that for this high ratio and for the precision of the 

computations (32-bit floating point numbers with 24-bit mantissa) the 

autocorrelation matrix was ill-conditioned. Since the autocorrelation of 

the narrowband signal has unit magnitude for all delays, this matrix would 

be singular if there were no wideband signal at all. If the wideband 

signal is small relative to the narrowband one, the matrix elements will 

all have nearly unit magnitude, with the wideband signal providing small 

perturbations about this value. Thus the determinant will be computed 

from a number of values which would add up to zero except for these 

perturbations, and the sum will be very small relative to the values 

summed. Under these conditions, large errors can occur when the precision 

of the computation is not sufficient. While the determinant is not 

calculated directly in the coefficient computation, the result is 

identical to that which a straightforward matrix inversion would give and 
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the same errors occur. 

To rule out the possibility that the poor result was caused by an 

unlucky choice of the noise signal resulting in a near-singularity, the 

experiment was repeated with another noise sample. The frequency response 

was different, but the distortion was of about the same magnitude, 

indicating that the problem was not caused by an unlucky choice. 

Two solutions to this problem come to mind. One is the use of higher 

precision in the computations; but this can be an expensive one. The 

other is to add white noise to the input signal or to the autocorrelation 

matrix when the coefficients are being computed to reduce the ratio of 

narrowband-to-wideband amplitudes. This will cause some degradation in 

performance when the interference is not very strong, but will provide an 

improvement when the interference is very strong. Thus it may be 

advisable to add the noise only when some test indicates that it would be 

useful. A determination of the ratio of the zero-delay autocorrelation 

coefficient to the mean magnitude of the other coefficients could be used 

for such a test. A value near unity for this ratio would indicate strong 

narrowband interference and the need to add noise. 

Time does not permit a more thorough and quantitative analysis of 

this problem at this time. 

5. CONCLUSIONS 

An excision filter to remove narrowband interfering signals from a 

direct-sequence spread-spectrum signal can be implemented by the use of 

linear prediction to predict the next value of the narrowband signal and 

subtract it from the original signal. The direct sequence signal is not 

subtracted because it is uncorrelated over the sample interval and is 

therefore not predictable. This requires that the effective sampling rate 

not be greater than one sample per chip. Simulation experiments have 

verified the effectiveness of this technique. The effects of changing the 

number of coefficients used in the excision filter and of the size of the 
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input signal block used for the determination of the coefficients have 

been examined. In general, the more coefficients in the filter the better 

the result, but since the computing requirement increases faster than 

linearly with the number of coefficients it is important to keep their 

number down to that necessary to counter the interference threat. 

Larger block sizes in the autocorrelation estimation also provide 

better performance providing there are sufficient coefficients, and it 

appears that a larger number of coefficients calls for a larger block 

size. 

Delay of the input signal to allow computation of the coefficients 

before the signal enters the filter will provide better performance when 

the interference is varying, as will a more rapid updating of the filter 

coefficients. 

Very large ratios of narrowband interference level to wideband signal 

(including noise) level can cause problems in the computation of the 

coefficients. This appears to be the result of an ill-conditioned 

autocorrelation matrix and the limited precision of the computations when 

the interfering signal is far above the signal and noise levels. The 

addition of white noise to the signal used for the coefficient computation 

is a possible means of overcoming this problem. The determination of more 

precise quantitative results would seem to be an area deserving of further 

investigation. 
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APPENDIX C 

ACQUISITION THRESHOLD CALCULATIONS 

In the frequency-hop and direct-sequence acquisition systems the 

squared magnitude of the received signal is integrated to determine when 

the signal has been acquired. This process is shown in Figure Cl. The 

signal and rms noise levels Vs  and Vn  are specified at the input of 

this figure. The signal may or may not be filtered as shown. If not, the 

bandwidth W, defined as a fraction of the sample rate at that point, is 

taken as unity. For the following calculations the noise is assumed to be 

Gaussian at the input to the absolute-value block, but if the filter 

bandwidth is much less than the the bandwidth of the input noise the output 

of the filter can usually be assumed to be Gaussian even if the input is 

not. The integration consists of summing N samples, taking the square 

root, and comparing the result with a threshold, d s ; acquisition (or a 

particular stage of it) is declared when 6 s  is exceeded. If this occurs 

when only noise is present we have a "false alarm"; if it fails to occur 

when the desired signal is present along with the noise we have a "miss". 

We wish to compute the threshold required to provide a specified 

probability of false alarm, and the probability of a miss for this 

threshold for any specified signal level. It will not change the result, 

if, instead of making the comparison after the square-root block, we use a 

threshold of d s2  at the output of the summation block, and this will 

simplify the computation. 

C- 1 



THRESHOLD 
+—lam 

MEAN = 

STD. DEV. = 

Vs  

V n  

FILTER 
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EQUIVALENT 
THRESHOLD 

da 
 

Figure Cl Definition of signals for Acquisition 



C-3 

Let 	N 	= number of samples summed, 

Vs  = signal voltage magnitude (root of mean power) 

at input, 

Vn  = ruts noise voltage, 

p n  = mean voltage after summer for noise-only input, 

p s  = mean voltage after summer for 

signal-plus-noise input, 

an  = standard deviation after summer for 

noise-only input, 

a s  = standard deviation after summer for 

signal-plus-noise input, 

W 	= filter bandwidth as a fraction of the sample 

rate ( 2 times low-pass bandwidth), 

S a  = acquisition threshold, 

= time-dependent input signal voltage, us 
=

Sr + j0 

= time-dependent input noise voltage, u n 

= unr 	juni ,  

= time-dependent voltage at the output 

of the squared magnitude block, 

Pf a  = probability of false alarm, 

Pm  = probability of a miss. 



1 
P 	= 	erfc 
fa 	2 

(

5 -11  a n) , 

 en 
(C3) 

C-4 

Consider first the case of noise only, which determines the 

false-alarm probability. The effect of the filter is to reduce the noise 

level by a factor of W in power; the signal is assumed to be unaffected by 

the filter. After the absolute value is taken the noise will have a 

Rayleigh distribution with a mean square of WV n2 . After summing N values 

of the squared noise we get a Gaussian distribution (for large enough N) 

with a mean of: 

pn  = NWV n2  

The filter will cause the noise to be correlated over 11W samples. Thus, 

in the sum there will be, in effect, Md independent samples, each 

consisting of the sum of 11W samples added in phase. Therefore, the 

standard deviation of the sum will be /FM times the mean square of the 

absolute value of the noise samples. That is, 

ah = IT  Vn2 	 (C2) 

The probability of false alarm, Pf a , is the probability that a sample of 

a Gaussian distribution of mean, p n , and standard deviation, a n , will 

exceed the threshold, d a . Thus, 

(cl) 

where erfc is the complementary error function. 

If "fa  is specified we can compute the required 

threshold from: 

15
a 

= U n 
 + a

n 
erfc

-1
(2 P

fa
)* 

In the case of direct-sequence acquisition, when the signal is not 

synchronized (This is the noise-only case) the noise level will be 

increased by the "sidelobes" of the direct-sequence autocorrelation 

(C4) 



1 2 

(c7) 

C-5 

function, which exist at all delays except zero. 	The variance of this 

noise can be estimated from: 

2 	 (C5) variance = V s / Nc  

where Nc  is the number of spreading-code elements per data symbol. 	The 

total noise is found by adding this variance to the variance of the noise 

at the input. 

Now consider the case of signal plus noise in order to find the 

probability of a miss. The following analysis is not entirely rigorous; 

some intuitive steps are taken, but the result agrees well with tests made 

using the simulator. 	No loss of generality is suffered by making the 

complex input signal voltage, u s , have zero imaginary part. 	Since the 

noise is random we can take Our reference so that it is always in phase 

with the signal. This will not affect the noise characteristics. 

After the square-of-absolute-value block the voltage is: 

2  
s 

+ /Tir
un

1 

= (u 	ivir u ) 2 	wu  2 
Sr 	nr 	ni 

= u 2  
sr 

+ w(u2 + u
ni
2) + 2

er
u
sr u nr 	 nr 

l u  12 	w i u  12 
r sr 	n 	+ 2/7u sr 

u nr • 

The last term will have a mean of zero and therefore the mean of u c  is: 

= uo 	lus I 2 + Wlu n 

= V2 + WV2 •  

(c6) 



( 	4 	) and a
s 
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n 

+ 2V2sV
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2 	( 2 4 	‘12 2) 
a
s 

= N/W 041 Vn + 2 s WV11)  (C9) 

(C10) 

C-6 

After N values are summed the mean value is: 

u
s = N(V2  + WV2 ). 

After the summation the output should have a Gaussian distribution 

which is symmetrical about the mean, and its variance àhould be increased 

by a factor N. We also note that the last term of (C6), although having a 

factor unr , is essentially uncorrelated with either component of lu n 1 2  

since it has a negative sign about half the time. 	Therefore, we can 

compute the variance from (C6) by ignoring the first term, which is 

constant, and treating the others as independent; that is we can sum their 

variances to obtain: 

(c8) 

The probability of a miss is the probability that a sample from a 

Gaussian distribution with mean, u s , and standard deviation, a s , will 

fall below the threshold, 6 s . Thus: 

1 
P = erfc(b-113=0 m  	• 

a
s 

(C11) 

The above applies to the probabilities for a single integration 

threshold. When more than one threshold crossing is required, as in most 

cases, the probabilities for overall acquisition can be found from the 

the individual probabilities. 



APPENDIX D 

EXAMPLE OF COMMAND FILE FOR BATCH OPERATION 



$ SET NOVERIFY 

$ ! SUPPRESS THE LISTING OF COMMAND FILES IM THE LOG FILE. 

$ ! FILE DPSK0123.COM 	1T-JAN-1936 

!  VIS  BATCH COMMAND FILE TO RUN PROGRAM MODEM.EXE AS A BATCH JOB. THE 
$ ! DEFAULT DIRECTORY MUST BE PASSED BY THE SerlIT COMMAND Ta PARAMETER P1 
$ ! DPSK WITH 2 RAYLEIGH FADING PATHS AND CCIR NOISE Vd=4.2 Eb/Nc = 18 DB 

$ ! P1 = DEFAULT DIRECTORY 

$ !***** SETU? SECTION ***** 

$ SET DEFAULT  ['Pi']  

! SET THE DEFAULT DIRECTORY. AFTER PLACING A NEAUER IN THE LOG FILE RUN THE 
$ ! PROGRAM FEEDING IT COMMANDS. 

$ WRITE SYS$OUTPUT 	" 
$ WRITE SYS$OUTPUT "BATCH JOB DPSK0123.COM  RUAING PROGRAM MODEM.EXE" 
$ WRITE SYS$OUTPUT "DPSK, 2 RAYLEIGH PATHS, CCIR NOISE Vd=4.2, Eb/Nc=13 DB" 

$ !***** RUN SECTION ***** 

$ RUA [VENIER.FREYSENG.MODEM]iIODEM-.EXE 
BAT 
FILE 
DPSK 2 RAYLEIGH CCIR4.2 Eb/Nc=13 
YES 
DPSK0123 
DATEN 
(MG 
3495 
20 
GENBIN . 
YES 



PKOCES 

MODCOD 

YES 
WÜ 
WO 
YES 
JO 
YES 
PSI(  
600 

23 
1.6330 
NO 
YES 
UA1 

MEDIUM 
TERM 
Nü 
NO 	 • • 

17837 
jü 
4 

YES 
3 
SPC 
1 .999023080,-.9990233183,0.,0.,.1138570000E-J5 
YES 
0.,0.,0.,0.,0. 
YES 
1.999023030,-.9990233133,0.,Ù.,.11570000r-05 
YES 
0.,0.,0.,0.,O. 
YES 
1 .999 02 3 0,3 0 ,-.9990233133,0.,0.,.1133570033E-a5 
YE3 
0.,0.,0.,0.,0. 



YES 
2 
0 
10 
.7071,.7071 
YES 
0.,0. 
YES 
NO 
HOP PER 
JO 
YES 
100 
NO 
AO . 
RECVR 
AO 
518995245 
NO 
YES 
1 
PSK 
6 
147 
140 
NO 

 WO 
JO 
YES 
2 
YES 
NO 
.3384 
4.2 
JO 
NO 
AO 



YES 

1 
BUT 
.12 

SIN 
ZPF 

YES 
YES 
NO 

NO 

NO 
0 

1 
- 0 

YES 
YE S  
0 

19 

6 
IIQU 

3 1400 
)5 
0.  
.1 
52 
YES 
BYE 

ETU IC -1 
ANAL 

3 4O3 



95  
4000 
YES 
RETURN 
TIME 
STOP 

$ !**** CLEANUP SECTION ***** 
• 

$ WRITE SYS$OUTPUT "CLEANING UP FILES" 
$ WRITE SYS$OUTPUT " " 
$ PURGE/LOG DPSK0123.DAT 
$ PURGE/LOG DPSK0123.LOG 
$ PRINT/NOTIFY DPSK0123.DAT 

$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$OUTPUF "FINISHED WITCH COMMAND FILE EXECUTIJN" 
$ ARITE SYS$00TPUT 

$ EXIT 

tri 



APPENDIX E 

EXAMPLE OF OUTPUT FILE FROM BATCH OPERATION 



Output file DPSK0123• 
Wideband H.F. Communication Simulation Program 
14-JAN-86. 	 Version number 7 
"DPSK 2 RAYLEIGH CCIR4.2 Eb/No=18" 

The seed used for the 31 bit data generation shift register. 
Register = 1110101101101000011110110 . 111100 

The number cf original binary values generated is 	3495 
The bit rate for this data in bits/second is 	20.00000 
The contents cf tne shift register after binary ;eneraticn are 
Register = 1010000010011100101010101001000 

Using the OODCOD process 
The modula'eion symbol size is 	1 bits resulting 
in' • 	2 possible symbol states 

Modulation symbols formed 
Ordinary symbol formation chosen 
No complex zeros are being added to the input data 
Modulation symbols being differentially encoded 
The number Of integer symbols produced is 	34 9 5 
The new data rate is 	20.00000 	symbols/second 

Modulation samples being generated. 
Phase shift keying chosen. 
The fixed initial modulation phase ls 	23.00000 	degrees 
The number cf samples per modulation symbol is 	600 
The peak envelope voltage is 	1.633000 	volts 
The energy per modulation symbol efore poàt-modulation 
processing is 0.1333345 	joules 
The energy is constant fcr all symbols 
Pulse shaping selected. 
Hanning pulse shaping chosen 	, 
The energy per modulation symbol after pulse shaping 
is a constant 0.5000042E-01 joules 
The total nweer cf complex samples after modulation is 	20970 0 0 



1 
2 

3 
4 

5 

The ne w data rate is 	12000.00 	samples/second 

Using the MEDIUM process 

Medium parameters taken from the teralinai 
The data is nct frequency hop enccded 
The random number seed is 	17837 

The medium parameters for path number 	1: 
Rayleigh fading 
IIR filtering being done  cri the gaussian factors 

The number cf recursive filter secticns is 	3 
Coefficient ne. 	real part 	imainary part 

The coefficients fer secticn number 
1.999023083 

-0.9990233133 
0.0000000000E+00 

0.0000000000E+00 

0.113856)963E-05 

The coefficients  for  section number 
6 	1.999 0 23 0 8 9  
7 	-0.9990233183 
3 	0.0000000000E+00 

.9 	0.0000000000E+00 
10 	0.1138569968E-05 

The ccefficients fcr secticn number 
11 	1.999021330  

12 	-0.9990233133 

13 	, 	0.3000000000E+a0 
14 	0.0000010001E+00 
15 	0.1183569963E-05  

1 

0.1000000000r+00 

0.0000300010E+00 

0.3000000100E+00 

0.0030300000E+00 

0.0303000030E+00 

2 

0.0000000003E+00 

0.3300000000E+00 

0.00000000)0E+00 

0.0)00000000E+00 

0.0000000000E+00 

3 
0.0000000000E+00 

0.0000300000E+00 

a.oaaaaaapooE+no 
0.0000001000E+00 

1.0aaaaaaaou+oa 

The initial delay is 	saliples cr 0.0000000E+00 seccnis 



The delay increment is 	10 samples or 0.8333334E-03 seconds 

Table of 	2 tap multipliers and doppler shifts 
Tap 	. Amplitude 	Doppler shift 	Doppler frequency 
Number Multiplier 	degrees/smmple 	hertz 

1 	0.7071000 	0.0000000E+00 	0.0000000E+00 
2 	0.7071000 	0.0000000E+00 	0.0000000E+00 

The number of medium paths was 	1 
The number of complex values after passing through the medium is 2097010 
The data rate remains 	12000.00 

Using the HOPPER process 
\ 

Decimation being done 
The decimation rate is 	100 
The total number of values after decimation is 	20970 
The new data rate is 	120.0000 	values/second 

Using the RECVR process 
The data is not frequency  hop  encoded 
The random number seed is 518995245 
The input data was modulated 
The modulation symbol size is 	1 bits resulting 
in 	2 possible symbol states 
Phase shift keying chosen. 
The fixed initial modulation phase is 	147.0000 	degrees 
The number of samples per modulation symbcl is 	6 
Direct sequence spreading has not been used on the input data 

Noise signal samples being added. 
There are 	1 noise addition frequency ranges 

The 	1 noise addition frequency range has a lowest 
frequency of 0.0000000E+C0 kilohertz. 
Complex  noise signal samples being added for this frequency range 
CCIR  noise  tc be generated 



t=1 
The CCIR ncise rms voltage is 0.3084000 	volts 
The ratio ratic cf the rms tc the mean is 	4.200000 	decibels 
The CCIR noise power spectral density is 0.7925380E-03 watts/hertz 

Front end filtering being'done 
Recursive filtering chosen. 
Butterworth recursive filter chcsen. 
The filter cutoff frequency is 0.1200000 	times the data rate 
or 	14.40000 	hertz 
The crder cf the filter is 	1 

The filter gain factor is 	1.000000 
The filter group delay is 	1.262856 	in terms of the 
sample period and 0.1052380E-01 in seconds 

The number cf recursive filter sections is 	1 
Coefficient no. 	real part 	imaginary part 

The coefficients for secticn number 	- 1 
1 	0.4327386320 	0.0000000000E+00 

2 	0.0000000000E+00 	0.0000000000E+00 

3 	1.000000000 	0.0000000000E+00 
4 	0.0000000000E+00 	0.0000000000E+00 

5 	0.2836306691 	0.0000000000E+00 

Ordinary demodulation being used 
Differential phase shift keying demodulation is being used 

Mode 1 - He acquisition and tracking picked 

The receiver propcgaticn delay is 0.0000000E+00 samples 
The receiver front end delay is 	1.000000 	samples 
The receiver bandwidth reducer delay is 0.0000000E+00 samples 
The initial sample reference delay is 	1.000000 	samples 

During the 	1 run, the receiver prccessed 	20970 input samples, 
resulting in 	3494 cutput values 



demodulator tracking voltage 
upper limit 	number cf values 	% of total 

0.0000000E+00 
0.1000000 

0.2000000 
0.3000000 
0.4000000 

0.5000000 
0.6000000 
0.7000000 
0.8000000 
0.9000000 
1.000000 
1.100000 
1.200000 
1.300000 

1.400000 
1.500000 
1.600000 

1.700000 

1.300000 
1.900000 

2.000000. 
2.100000 
2.200000 
2.300000 

2.400000 
2.500000 
2.600000 
2.700000 
2.300000 

0.00 
1.06 

3.76 
7.15 
3.56 
9.91 
11.06 
11.44 

10.15 

7.85 
6.82 

5.38 
4.63 
4.06 

3.00 
2.06 

1.15 

0.85 
0.56 
0.26 
0.21 
0.03 
O .00 
O .00 
O .00 
O .00 

O .00 

O .00 

O .00 

0 
36 

128 
243 
291 

337 
376 
389 
345 
267 
232 
183 
159 
138 
102 

70 
39 
29 
19 

9 
7 

O 

0 

0 

Samples were taken every 	6 run input sample 
The total number of samples for the run was 	3495 
Starting with the 	95 sample 	3400 samples are being looked at 

Histogram of samples of the 
Cell number 	lower limit 

	

1 	-00 

	

2 	0.0000000E+00 

	

3 	0.1000000 

	

4 	0.2000000 

	

5 	0.3000000 

	

6 	0.4000000 

	

7 	0.5000000 

	

8 	0.6000000 

	

9 	0.7000000 

	

10 	0.8000000 

	

11 	0.9000000 

	

12 	1.000000 

	

13 	1.100000 

	

14 	1.200000 

	

15 	1.300000 

	

16 	1.400000 

	

17 	1.500000 

	

18 	1.600000 

	

19 	1.700000 

	

20 	1.800000 

	

21 	1.900000 

	

22 	2.000000 

	

23 	2.100000 

	

24 	2.200000 

	

25 	2.300000 

	

26 	2.400000 

	

27 	2 .500000 

	

28 	2.600000 

	

29 	2.700000 



30 	2.800000 	2.900000 	0 	0.00 

31 	2.900000 	3.000000 	0 	0.00 

32 	3.000000 	3.100000 	0 	0.00 

33 	3.100000 	3.200000 	0 	0.00 
-?14 	 3.200000 	3.300000 	0 	0.00 

35 	3.300000 	3.400000 	0 	0.00 
36 	3.400000 	3.500000 	0 	0.00 

37 	3.500000 	3.600000 	0 	0.00 

33 	3.600000 	3.700000 	0 	0.00 

39 	3.700000 	3.800000 	0 	0.00 
40 	3.800000 	3.900000 	0 	0.00 
41 	3.900000 	4.000000 	0 	0.00 
42 	4.000000 	4.100000 	0 	0.00 
43 	4.100000 	4.200000 	0 	0.00 
44 	4.200000 	4.300000 	0 	0.00 
45 	4.300000 	4.400000 	0 	0.00 
46 	4.400000 	4.500000 	0 	0.00 
47 	4.500000 	4.600000 	0 	0.00 
48 	4.600000 	4.700000 	0 	0.00 
49 	4.700000 	4.300001 	0 	0.00 
50 	4.800000 	4.900000 	0 	0.0 0  
51 	4.900000 	5.000000 	0 	0.00 
52 	5.000000 	+00 	0 	0.00 

The histogram contains 	3400 values in 	52 cells 
The first cell contains values less than 0.0000000E+00 
The last cell contains values equal to or greater than 	5.000000 
The size cf the remaining cells is 0.1000000 

Trie  mean of the values is 0.7240425 
The standard deviation of the values is 0.3706947' 
The mean cf the squares of the values is 0.6616116 
The maximum is 2.041387 while the Alinimum is 0.2141030E-01 

Bar graph corresponding to -  the histogram 

52 



51 1 
50 
49 1 
48 
47 : 
46 
45 1 
44 
43 
/42 
41 : 
/40 
39 
3&.1  
37 
36 
35 
3 14 1 
33 1 
32 
31 
30 
29 
28 1 
27 
26 : 
25 
2/4 : 
23 
22 
21 1 
20 1 
19 1 
18 1 
17 1* 
16 1* 
15 1** 



14 1** 
13 1** 
12 1*** 
11 :*** 
10 1**** 
9 :***** 
8 1****** 
7 1****** 
6 1***** 
5 1**** 
4 :**** 

3 Pe*  
2 1* 
1 	1 

0 	20 	40 	60 	80 	100 

The vertical numbers are cell numbers, while the 
horizontal numbers are percentage 
Each * represents 2% of the tctal number of values 

In 	1 runs, a total of 	20970 input samples out 
of 	20970 possible samples was sent thrcugh the receiver 
This resulted in 	3494 final values with a data 
rate of 	20.00000 	values/second. 

Error analysis cf selected original and final binary data bits 

Number cf data bits compared - 	3400 	• 
The total number cf original data bits - 	3495 
The original data bit rate in bits/second - 	20.00000 
Original data'compariscn starting point - 	95 
The tctal number cf final data bits - 	3494 

. The final data bit rate in bits/second - 	20.00000 
Final data ccmpariscn starting point - 	95 
The number cf ccmparison windows cf size 	4000 is 1 



95 
95 

The largest period between errcrs measurable is - 	3999 

Window number 	1 with 	3400 values 
The original data window starting index - 
The final data window starting index - 

Indices for bits in errcr 
Original Original 	Final 	Window 

	

Index 	Value 	Index 	Index 

	

123 	1 	123 	29 

	

170 	1 	170 	76 

	

172 	0 	172 	78 

	

186 	1 	186 	92 

	

188 	0 	188 	94 

	

189 	0 	189 	95 

	

220 	0 	220 	126 

	

310 	1 	310 	216 

	

636 	0 	636 	542 

	

712 	1 	712 	618 

	

1333 	0 	1333 	1239 

	

1414 	0 	1414 	1320 

	

1415 	0 	1415 	1321 

	

1503 	0 	1503 	1409 

	

1656 	1 	1656 	1562 

	

1657 	0 	1657 	1563 

	

1778 	1 	1778 	1684 

	

1795 	0 	1795 	1701 

	

2374 	0 	2374 	2280 

	

2642 	1 	2642 	2543 

	

2658 	0 	2658 	2564 

	

2712 	1 	2712 	2613 

	

2867 	1 	2867 	2773 

	

2868 	1 	2863 	2714 

	

2877 	1 	2377 	2783 

	

2873 	1 	2873 	2784 

	

2379 	1 	2379 	2735 



2880 	1 	2880 	2786 
2882 	1 	2882 	2788 
2922 	0 	2922 	2828 
3230 	0 	3230 	3136 

The number cf bits in errcr in the window - 	31 
The fractional bit error rate fer the windcw - 0.009118 
The total number of periods in the window - 	30 

The pericds between errors in the window and their frequency 

	

Pericd 	Occurrence 	Percentage 

	

1 	7 	23.33 

	

2 	3 	10.00 

	

9 	1 	3.33 

	

14 	1 	3.33 

	

16 	1 	3.33 

	

17 	1 	3.33 

	

31 	1 	3.33 

	

40 	1 	3.33 

	

47 	1 	3.33 

	

54 	1 	3.33 

	

76 	1 	3.33 

	

81 	1 	3.33 

	

88 	1 	3.33 

	

90 	1 	3.33 

	

121 	1 	3.33 

	

153 	1 	3.33 

	

155 	1 	3.33 

	

268 	1 	3.33 

	

303 	1 	3.33 

	

326 	1 	3.33 

	

579 	1 	3.33 

	

621 	, 	1 	3.33 

% Clock time taken by selected routines 
Routine 	% Time  Routine 	% Time  Routine  Time 



0.00 
0.01 
0.00 
0.00 
0.00 

86.99 
3.17 
0.00 
0.03 
0.00 
0.00 

GENBIN 
JAM 
NOISE 
FILOUT 
FILIN 
REPEAT 
ADD 
MOVE 
DECIM 
DEBLCK 
DEINTL 
INSERT 

	

0.00 	INTERL 

	

0.00 	BLOCK 

	

0.00 	CONVL 

	

0.00 	OUTCOD 

	

0.00 	MODUL 

	

0.00 	MODADD 

	

0.00 	GROUP 

	

0.00 	ENCOD 

	

0.51 	CLIP 

	

0.00 	DETCOD 

	

0.00 	MULT 

	

0.00 	ABSOL 

	

9.00 	VIEW 

	

0.00 	ERRCOM 

	

0.00 	COMPRB 

	

0.00 	COMPRC 

	

9.31 	FFTCOM 

	

0.00 	MEDIUM 

	

0.01 	RECVR 

	

0.00 	FILTER 

	

0.00 	INGRP 

	

0.00 	DECONV 

	

0.00 	HISTO 
0.00 

Program stopped 



APPENDIX F 

EXAMPLE OF LOG FILE FROM BATCH OPERATION 



$ SET NOVERIFY 

BATCH JOB DPSK0123.COM  RUNNING PROGRAM MODEM.EXE 
DPSK, 2 RAYLEIGH PATHS, CCIR NOISE Vd=4.2, Eb/No=18 DB 
Wideband H.F. Communication Simulation Program 
14-JAN-86. 	Version number 7 

The maximum amount cf data is 2097152 

Is the prcgram running frcm the terminal or in batch? 
BAT - in batch 
TRM - frcm the terminal 
Mode? - 
Chcose the output device 
Terminal or batch job  log file - TRM 
Ascii  output file - FIL 
Chcice? - 
File description (up to 32 characters)? - 
"DPSK 2 RAYLEIGH CCIR4.2 Eb/No=18" 
Correct? - YES or NO? - 
Filename? 

Output file DPSK0123 	successfully created 

Command 	Function 

HELP 	- Give a menu of available main level commands 
STOP 	- Stop the program 
FORM 	- Determine the output  device 
TIME 	- Check the time that prccessing routines are taking 
FILE 	- Perform file I/O  
DATEN - Enter cr generate original or final data 
ANAL 	- Analyze  or  display data 
PROCES - Send  original data along the ccmmunicaticn link 
MODIFY - Mcdify data 
TELL 	- Type the amcunt cf original and final data 

• DESCRP 	Type a descripticn cf the prcgram 



Main level command? - 
Original or final data? 
ORG or FIN - 
Enter the number of data values - 
Enter the data rate in values/second - 

Command 	Function 

GENBIN - Generate binary data using a pseudorandom sequence 
ENBIN - Enter binary data frein the keyboard 
NOISE - Generate complex noise samples 
JAM 	- Generate complex jamming signal saimples 
COMPEN - Enter complex samples from the terminal 
CANCEL - Abort and return to the main command level 

Data entry command? - 
Is the default 31 bit shift register seed to be used? 
YES  or  NO? - 

Main level command? - 

Process 

HELP 	- 
RETURN - 
NULL 	- 
TELL 	- 
BITSRC - 
MODCOD - 
HOPPER - 
MEDIUM - 
RECUR - 
BITSNK - 

Function 

Give a menu of available processes 
Go back to the main command •level 
Nothing process 
Type the amount of criginal and final data 
Preliminary bit processing 
Generation of modulation samples 
Filtering, decimation, clipping, and  hep  encoding 
Channel propagation 
Reception of data 
Post-reception prccessing of bits 

Process? - 



The modulation symbol size in bits raised to the power 
twc determines the number of possible symbol states. 
This is not to be confused with the number of bits encoded 
in multiple code shift keying symbols. 
Modulation symbol size? - maximum cf 	24 - 

Symbols to be formed from bits? 
YES or NO? - 
Multiple code shift keying desired? 
YES or NO? - 

Inverse gray encoding to be applied? 
YES or NO? - 

Differential encoding of symbols desired? 
YES  or NO? - 

Direct sequence symbols to be added? 
YES or NO? - 

Modulation to be done? 
YES or NO? - 

The available modulation types are: 
PSK = phase shift keying 
FSK = single-tone frequency shift keying  (one  frequency set) 
MTK = multi-tone frequency shift keying (two or more one frequency sets) 
MSK = minimum shift keying 
Modulation type? - 

The number of samples per modulation symbol? 
minimum of 2 maximum cf 	600 - 
Initial modulation phase in degrees? - 



The peak envelope voltage aleng with the data rate and 
the type cf modulation chosen determines the energy per 
modulation symbol. Post modulation processing can modify 
the symbol energy. 

• Peak envelope voltage in volts? - 

Selected transitions to be applied? 
YES or NO? - 
Pulse shaping to be done? 
YES cr NO? - 

The type of shaping? 
HAN = Manning or sine squared 
MDH = Modified hanning 
HAM = Hamming 
SIN = Sine of a sine of a sine 

Process? - 

Source cf medium parameters input? 
Terminal - TERM 
Ascii file - FILE 
Choice? - 

Medium file te be created or net? 
YES or NO? - 
Is the default random number generator seed te be used? 
YES  or  NO? - 
Enter a seed? (perferably a large edd integer) - 
Is the data frequency hop-encoded? 
YES  or NO? - 



Enter the medium parameters  for  path number 	1: 

Enter the parameters  for the 	1 frequency range: 
The transmission mode? 
1 = Perfect transmission (nc delays, multipliers etc.) 
2 = Complete blockage (nothing transmitted) 
3 	Fixed transmission (fixed multipliers) 
4 = Rayleigh fading transmission (gaussian multipliers) 
- 
Rayleigh fading multipliers to be filtered? 
YES or NO? - 
The number of filter sections? - maximum of 	8 

The type of recursive filter? 
BUTE  = butterworth filter 
CHB = chebyshev filter 
RES = resonant filter 
SPC = special filter (user enters the coefficients) 
•••n• 

A row cf 5 complex coefficients is entered for each cf the 
IIR filter sections. The entered coefficients should be 
separated by commas 

Enter a rcw of 5 real coefficient components for the 

The row cf entered real coefficient components: 
1.999023 	-0.9990233 	0.0000000E+00 0.0000000E+00 

Correct? - YES or NO? - 

Enter a row of 5 imaginary coefficient components for the 

The row cf entered imaginary coefficient components: 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

Correct? - YES cr NO? - 

0.1188570E-05 

1 section 

0.0000000E+00 

1 section 

Enter a row of 5 real coefficient components for the 	2 section 



- 
The rcw cf entered real coefficient ccmponents: 

1.999023 	-0.9990233 	0.0000000E+00 0.0000000E+00 0.1188570E-05 

Ccrrect? - YES or NO? - 

Enter a row cf 5 imaginary coefficient compcnents for the 	2 secticn 
- 
The row of entered imaginary coefficient compcnents: 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

Correct? - YES  or  NO? - 

Enter a row of 5 real coefficient compcnents  for the 	3 section 

The row of entered real coefficient compcnents: 
1.999023 	-0.9990233 	0.0000000E+00 0.0000000E+00 0.1188570E-05 

Correct? - YES or NO? - 

Enter a row cf 5 imaginary coefficient compcnents for the 	3 section 
- 
The row of entered imaginary  coefficient  components: 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

Correct? - YES  or  NO? - 
The number of taps fcr this frequency range? 
maximum of 	64 taps - 
The initial delay in terms of the number of samples? 
maximum of 	1024 - 
The delay increment in ternis cf the number cf samples? 
maximum cf 	16 - 

Tap amplitude multipliers and doppler shifts are entered 
in rcws separated by commas 

Enter a rcw cf 2 real tap amplitude multipliers 
The multipliers shculd be in ratic fcrm <= 1 
- 
The rcw cf entered tap amplitude multipliers: 
0.7071000 	0.7071000 



Correct? - YES or NO? - 

Enter a row of 2 real tap doppler shifts 
The doppler shifts represent the phase change per sample interval 
Enter in degrees - 
The row cf entered tap doppler shifts: 
0.0000000E+00 0.0000000E+00 
Correct? - YES or NO? - 

More paths to be used? 
YES or NO? - 

Precess? 

Filtering tc be done? 
YES . or NO? - 

Decimation te be done? 
YES  or  No? - 

The decimaticn rate? le. 
1 = All values preserved 
3 = 2, 5, 8, 11, 14 ... values preserved 
5 = 3, 8, 13, 18, 23 ... values preserved 
10 = 5, 15, 25, 35, 45 ... values preserved 

Saturaticn amplificatien (clipping) tc be done? 
YES or NO? - 

Frequency  hop  encoding  te  be dcne? 
YES cr NO? - 

Prccess? - 
Is the default randcm number generatcr seed tc be used? 
YES er 140? - 



Enter a seed? (perferably a large cdd integer) - 
Is the data frequency hop encoded? 
YES or NO? - 

Has the data been modulated? 
YES or NO? - 

The modulation symbol size in bits raised to the power 
two determines the number of possible symbol states.. 
This is not to be confused with the number of bits encoded 
in multiple code  shift keying symbols. 
Modulation symbol size? - maximum of 	24 - 

The avaliable modulation types are: 
PSK = phase shift keying 
FSK = single-tone frequency shift keying (one frequency set) 
MTK = Multi-tene frequency shift keying (two or more one frequency sets) 
MSK = minimum shift keying 
Modulation type? - 

The number of samples per modulation'symbol? 
minimum cf 2 maximum of 	600 - 
Initial modulation phase in degrees? - 

Selected transitions to be applied? 
YES or NO? - 
Pulse shaping to be done? 
YES or NO? - 

Please wait receiver sample delay vector initialization 
taking place 

Is multiple code shift keying being used? 
YES or NO? - 



Has direct sequence spreading been used on the input data? 
YES or NO? - 

Complex noise signal samples  te  be added? 
YES or NO? - 

Enter the noise addition parameters: 

Enter the parameters for the 	1 frequency range: 
Noise tc be added for the frequency range? 
1 = No noise signal samples tc be added 
2 = Noise signal samples  te  be added 

CCIR noise to be generated? 
YES  or NO? - 

CCIR noise te  be filtered? 
YES  or  NO? - 
CCIR noise rms voltage in volts? -. 
The ratio of the rms to the mean? Enter in decibels, 
maximum of 	52.22640 	minimum cf 	1.050000 

Impulse noise to be generated? 
YES or NO? - 

Gaussian noise to be generated? 
YES or NO? - 

Complex jamming signal samples to be added? 
YES cr NO? - 

Front end filtering to be applied? 
YES or NO? - 



The avaliable filters types: 
IIR = recursive 
FIR = nonrecursive 	- 
Filter type? - 

The number of filter sections? - maximum of 	8 

The type of recursive filter? 
BUT = butterwcrth filter 
CHB = chebyshev filter 
RES = resonant filter 
SPC = special filter (user enters the coefficients) 

The filter cutoff frequency? 
Specify in terms of the data rate - 

Is the last section of single or double order 
DOU = double, SIN = single 

Type of filter gain? 
ZPF - unity gain at zero frequency 
IPG - unity integrated power gain 

Front end decimation to be applied? 
YES or NO? - 

Is a demedulator to be used? 
YES or NO? - 

Differential phase shift keying demcdulaticn te be done? 
YES or NO? - 



Independent synchronization to be used? 
YES or NO? - 

Is an excision filter tc be used? 
YES or NO? - 

Wide band autcmatic gain control tc be used? 
YES or NO? - 

Bandwidth reducer filtering to be applied? 
YES or NO? - 

Bandwidth reducer decimation to be applied? 
YES or NO? - 

Narrew band automatic gain contrcl to be used? 
YES or NO? - 

Delays in the receiver mean delays of reference 
signals, not input signals. 
Enter a propogation delay in terms cf samples - 
Enter a receiver  front end delay in terms of samples - 
Enter a receiver bandwidth reducer delay in terms of samples - 

Out cf 	20970 total samples 	0 have already been processed 
Are all the remaining input samples tc be prccessed? 
YES or  NO  - 

Is the display feature wanted fer this run? 
YES or NO? - 
Enter the receiver display quantity fcr the run 
This quantity will have samples taken of it 
1 = Nc display quantity 
2 = Direct sequence reference delay 
3 	Sample delay 
4 = Frequency hep reference delay 	 F.1 • 
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5 = Narrow band AGC gain 
6 = Wide band AGC gain 
7 = Voltage before any narrow band AGC 
8 = Matched filter lock indication 
9 	Symbol synchronization lock indication 
10 = Frequency hop acquisition lock indication 
11 = Direct sequence acquisition lock indication 
12 = Symbol synch voltage - intermediate stage 
0 = Next part of the display quantity menu 

• 
13 = Symbol synch.voltage - final stage 
14 = Integrated symbol synchronization magnitude 
15 = Transmission hop frequency 
16 = Reference  hop  frequency 
17 = Direct sequence tracking voltage 
18 = Direct sequence tracking integrated lock voltage 
19 = Demodulator tracking voltage 
- 
Up to 	65536 samples cf the display quantity can be stcred 
Hcw often are samples tc be taken of the display quantity? 
In terms of receiver input samples . - 

Enter the type cf display  for the run. 
OQU - Output of samples cf the receiver display quantity 
OFD - Output of final data ccmpcnents 
HQU - Histogram cf receiver display quantity samples 
HFD - Histcgram of final data ccmponents 
BYE - Terminate display and go  on  
- 
The number of display quantity samples tc be lccked at? 
maximum of 	3495 - 
Sample number of the first sample to be locked at? - 
The histcgram lower limit? - 
The histogram cell size? - 
The number of histogram cells? 
minimum cf 3, maximum cf 	1024 - 



Is a bar graph of the histogram  te  be produced? 
YES or NO? - 

Enter the type cf display for the run. 
OQU - Output cf samples of the rQceiver display quantity 
OFD - Output of final data components 
HQU - Histogram of receiver display quantity samples 
HFD 	Histogram cf final data components 
BYE - Terminate display and go on 
- 

Process? - 

Main level ccmmand? - 

Command 	Function 

HELP 	- Give a menu of available analysis commands 
RETURN - Return tc the main command level 
TELL 	- Type the amount of original and final data 
VIEW 	- Look at complex data components 
HISTO - Form a histogram of complex data components 
COMPRB 	Compare original and final binary data 
COMPRC 	Compare components of original and final complex data 
ERRCOM - Analyse bit errors 
FFT 	- Perform a fast fcurier transform or inverse transform on complex data 

Analysis command? - 
Number cf values to be analyzed? - 
Original data starting point? - 
Éinaldata starting point? - 
The data window size? - maximum of 	131072 - 
Indics 'of bits in : efr•r to be output? 
YES or NO? - 

; 
Analysis command? - 



Main level command? - 

Main level command? - 
Bye for now 

CLEANING UP FILES 

'4 PURGE-I-NOFILPURG, no files purged 
1, PURGE-I-NOFILPURG, no files purged 
Job DP3K0123 (queue SYS$PRINT, entry 1204) started on SYS$PRINT 

FINISHED BATCH COMMAND FILE EXECUTION 

VENIER 	job terminated at 14-JAN-1986 16:40:07.80 

Accounting information: 
Buffered I/O  count: 	70 
Direct I/O  count: 	103 
Page faults: 	78970 
Charged CPU time: 	0 04:26:58.95 

Peak working set size: 2600 
Peak page file size: 159944 
Mounted volumes: 	0 
Elapsed time: 	0 04:41:13.82 



APPENDIX G 

A GENERAL-PURPOSE COMMAND FILE FOR SUBMITTING BATCH JOBS 



! FILE BATCH.COM 	FEB-28-1984. 

! VMS FILE TO SUBMIT BATCH JOBS. THE BATCH JOB SHOULD HAVE EXTENSION .COM. AND 
! IS PASSED THE DEFAULT SUB-DIRECTORY (P2 IN BATCH.COM ). IT IS UP TO THE 
! BATCH JOB TO MAKE USE OF THE SUB-DIRECTORY NAME (P1 IN THE BATCH JOB COMMAND 
! FILE). THE LOG FILE HAS THE SAME NAME AS THE BATCH JOB BUT WITH 
! EXTENSION .LOG. PARAMETERS Pl, P2, AND P3 CAN BE DETERMINED BY BATCH OR 
! PASSED TO BATCH. 

! P1 = THE NAME OF THE BATCH JOB AND CONTROLLING COMMAND FILE. THE COMMAND 
! FILE SHOULD HAVE EXTENSION .COM. 

! P2 = THE DEFAULT SUB-DIRECTORY TO BE USED. (IE FREYSENG.MODEM) 
! P3 = PRIORITY OF THE BATCH JOB. (IE 1) 
$ 	• 
$ IF P1 .EQS. " THEN - 

INQUIRE P1 "BATCH COMMAND FILE? ASSUMED EXTENSION OF .COM" 

$ !IF WE DON'T KNOW ALREADY FIND OUT WHAT THE BATCH COMMAND FILE IS. IT 
$ !SHOULD HAVE EXTENSION .COM 

$ IF P2 .EQS. "" THEN - 
INQUIRE P2 "DEFAULT SUB-DIRECTORY FOR BATCH JOB? (SPECIFY WITHOUT [])" 

$ !IF WE DON'T KNOW ALREADY FIND OUT WHAT THE DEFAULT SUB-DIRECTORY IS. 

$ IF P3 .EQS. " THEN - 
INQUIRE P3 "PRIORITY OF BATCH JOB?" 

$ !IF WE DON'T KNOW ALREADY FIND OUT WHAT PRIORITY THE BATCH JOB IS TO RUN AT. 

$ SUBMIT/NOTIFY/NOPRINT/LOG FILE=PP2'PP1'.LOG/PRIOR= 1 P3' - 
/PARAMETER='P2' PP2'PP1T.COM 

$ !SUBMIT THE JOB WITH NAME 'Pli.COM. WHEN THE JOB STOPS NOTIFY THE USER. 
$ !DO NOT PRINT THE LOG FILE. THE LOG FILE HAS THE SAME NAME AS THE BATCH 
$ !JOB NAME ONLY WITH EXTENSION .LOG. THE PRIORIY IS GIVEN BY 'P3', WHILE 



$ !THE DEFAULT SUB-DIRECTORY PASSED TO THE BATCH JOB IS  'P2'.  

$ 
$ EXIT 
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