
UNL IMIT ED

Communications

Research

Centre

USER'S GUIDE FOR THE DRL

SPREAD-SPECTRUM SIMULATION
FACILITY

by

G.O. Venier

The Simulator was developed under a task sponsored by the Director of
Maritime mbat Svstems (DMCS-8) of the Department of National Defence.

CRC REPORT NO. 1403
OTTAWA, APRIL 1986

IC
Govern ment of Canada 	 Gouvernement du Canada

Department of Communications 	Ministère des Communications

Can acrâ

R

COMMUNICATIONS RESEARCH CENTRE

DEPARTMENT OF COMMUNICATIONS

CANADA

Industry Canada
Library - Queen

SEP - 4 2012

Industrie Canada
Bibliothèque Queen

USER'S GUIDE FOR THE DRL SPREAD-SPECTRUM

SIMULATION FACILITY

by

G.O. Venier

Directorate of Radio Propagation and Systems(DRL)

«gem

CRC REPORT NO. 1403

The Simulator was developed under a task sponsored by the Director of
Maritime Combat Systems (DMCS-6) of the Depa rt ment of National Defence.

April 1986
OTTAWA

.„...

,• 	,

CONTENTS

COMWAM
C C

EV% 	1987

LIUMY

ABSTRACT 	 1

1 	INTRODUCTION 	 2

2 	STRUCTURE OF THE SIMULATOR 4

2.1 	Brief Description of the Subprograms 	 6

2.2 	Original and Final Data Arrays 	 8

2.3 	Frequencies and Data Rates 	 8

2.4 	Voltage,Power and Energy 	 9

3 	DATA AND SIGNAL GENERATION (DATEN) 	 9

3.1 	Binary Data Entry (ENBIN) 	11

3.2 	Complex Data Entry (COMPEN) 	12

3.3 	Pseudorandom Binary Data Generation (GENBIN) . . 	12

3.4 	Noise Generation (NOISE) 	 12

3.5 	Jamming Signal Generation (JAM) 	 15

4 	DATA MODIFICATION (MODIFY) 	 17

5 	ANALYSIS ROUTINES (ANAL) 	 19

5.1 	Binary Analysis Utilities 	 21

5.1.1 	Binary Data Analysis Command (COMPRB) 	 21

5.1.2 	Rinary Error Analysis Command (ERRCOM) 	 21

i5.2 	Complex-Component Display Command (VIEW) . . . 	 21

5.3 	Complex Comparison Command (COMPRC) 	 22

5.4 	Fast Fourier Transform Command (FFT) 	 22

5.5 	Histogram Command (HISTO) 	 23

6 	DATA STORAGE FILES (FILE) 	 24

7 	SIMULATION OF THE COMMUNICATION SYSTEM (PROCES) 	 26

7.1 	Introduction 26

7.2 	Error Coding and Interleaving Process (BITSRC) 	 29

7.2.1 	Binary Cyclic-Block-Code Generation 	 29

7.2.2 	Interlesving 	 33

7.3 	Modulation and Coding Process (MODCOD) 	 33 .

7.3.1 	Modulation 	 34

7.3.1.1 	Phase-shift Keying 	36

7.3.1.2 	Frequency-Shift Keying 	 36

7.3.1.3 	Multi-Tone Frequency-Shift Keying 39

(iii)

7.3.1.4 	Minimum-Shift Keying 	 41

7.3.2 	Envelope Shaping and Smoothed Transitions . . 	 41

7.3.2.1 	Envelope Shaping 	 41

7.3.2.2 	Smoothed Transitions 	 53

7.3.2.3 	Effect on Aliasing 	 55

7.3.3 	Coding 	 56

7.3.3.1 	Inverse Gray Encoding 	 57

7.3.3.2 	Differential Encoding 	 57

7.3.3.3 	Multiple-Code-Shift Encoding 	 57

7.3.3.4 	Direct-sequence Encoding 	 59

7.4 	Frequency-Hop Encoding Process (HOPPER) . . . 	 60

7.5 	Propagation Medium Process (MEDIUM) 	 61

7.5.1 	Medium Parameter Files 	 66

7.6 	Receiver Process (RECVR) 	 66

7.6.1 	Introduction 	 66

7.6.2 	Front End 	 69

7.6.3 	Bandwidth Reducer 	 72

7.6.4 	Demodulator 	 75

7.6.4.1 	General 	 75

7.6.4.2 	FSK Demodulator 	 77

7.6.4.3 	MFSK Demodulator 	 79

	

7.6.4.4 	MSK Demodulator 	 79

	

7.6.4.5 	PSK Demodulator 	 79

	

7.6.4.6 	DPSK Demodulator 	 80

	

7.6.4.7 	MCSK Demodulator 	 83

7.6.4.8 	FEK Demodulator 	 85

7.6.4.9 	MCSK Matched-Filter Demodulator 	 88

7.6.5 	Automatic Gain Control (AGC) 	 97

7.6.6 	Adaptive Excision Filter 	 99

7.6.7 	Synchronization 	 101

7.6.7.1 	Introduction 	 101

7.6.7.2 	Frequency-Hop Acquisition 	 104

7.6.7.2.1 Search Strategy 	 105

7.6.7.2.2 Double-Integration Method 	 107

7.6.7.2.3 Sequential Detection Method 	 109

(iv)

7.6.7.2.4 Mean-Delay Method 	 111

7.6.7.3 	Direct-Sequence Acquisition 	 113

7.6.7.4 	Direct-Sequence Tracking 	 114

7.6.7.4.1 Delay-Locked Loop Tracking 	 115

7.6.7.4.2 Tau-Dither Tracking 	 117

7.6.7.5 	Symbol Synchronization 	 119

7.6.7.6 	Synchronization Modes 	 123

7.6.7.6.1 Mode 1 - No Acquisition and no Tracking . . . 	 124

7.6.7.6.2 Mode 2 - Symbol Synchronization Only 	 124

7.6.7.6.3 Mode 3 - Frequency-Hop Acquisition and Symbol

Synchronization 	 124

7.6.7.6.4 Mode 4 - DS Acquisition and DS Tracking - No

Symbol Synchronization 	 125

7.6.7.6.5 Mode 5 - DS Acquisition and DS Tracking -

Independent Symbol Synchronization 	 125

7.6.7.6.6 Mode 6 - FH Acquisition and DS Acquisition and DS

Tracking - No Symbol Synchronization 	 125

7.6.7.6.7 Mode 7 - FH Acquisition and DS Acquisition and DS

Tracking and Independent Symbol Synchronization 126

7.6.7.6.8 Mode 8 - MCSK Matched-Filter Symbol

Synchronization Only 	 126

7.6.7.6.9 Mode 9 - FH Acquisition and MCSK Matched-Filter

Symbol Synchronization 	 126

7.6.8 	Monitoring and Control Facilities 	 127

7.6.8.1 	Monitor Feature 	 127

7.6.8.2 	Display Feature 	 129

7.6.8.3 	RECVR Run Control 	 129

7.7 	Post-Detection Operations Process (BITSNK) . . 	 130

7.7.1 	Data-Symbol Decoding 	 130

7.7.2 	Gray Encoding 	 131

7.7.3 	De-Interleaving 	 131

7.7.4 	Decoding of Error-Correction Codes 	 131

7.7.4.1 	Decoding Of Binary Cyclic Block Codes 	 132

7.7.4.1.1 Error-Trapping Decoding 	 132

(v)

8 	MISCELLANEOUS DEVICES 	 135

8.1 	Filters 135

8.1.1 	FIR Filters 136

8.1.1.1 	Simple Low-Pass Design 	 136

8.1.1.2 	Complex Band-Pass Design 	 140

8.1.1.3 	User-Specified Coefficients 	 140

8.1.2 	IIR Filters 141

8.1.2.1 	Butterworth and Chebyshey Designs 	 141

8.1.2.2 	Resonator Design 	 141

8.1.2.3 	Narrowband Low-Pass Filter Design 	 143

8.1.3 	Testing the Frequency Response of a Filter . . 	 144

8.2 	Decimation 	 145

8.3 	Saturating Amplifier or Limiter 	 145

9 	BATCH-MODE OPERATION 	 146

10 	ACYNOWLEDGEMENTS 	 150

11 	REFERENCES 	 151

APPENDIX A 	CALCULATION OF NOISE VOLTAGE FOR A GIVEN VALUE OF

E
b
/N

o 	
A-1

APPENDIX B 	EXCISION TECHNIOUES FOR DIRECT-SEQUENCE

SPREAD-SPECTRUM SYSTEMS 	 B-1

APPENDIX C 	ACQUISITION THRESHOLD CALCULATIONS 	C-1

APPENDIX D 	EXAMPLE OF COMMAND FILE FOR BATCH OPERATION 	D-1

APPENDIX E 	EXAMPLE OF OUTPUT FILE FROM BATCH OPERATION 	E-1

APPENDIX F 	EXAMPLE OF LOG FILE FROM BATCH OPERATION 	F-1

APPENDIX G 	A GENERAL-PURPOSE COMMAND FILE FOR SUBMITTING BATCH

JOBS 	 G-2

(vi)

1

USER'S GUIDE FOR THE DRL SPREAD-SPECTRUM

SIMULATION FACILITY

BY

G.O. Venier

ABSTRACT

This 	report 	describes, 	from a 	user's 	point 	of 	view, 	the

spread-spectrum simulation facility developed in the Directorate of Radio

Propagation and Systems (DRL) at the Communication Research Centre. This

facility simulates, on a VAX-11/750 digital computer, the operation of

complete spread-spectrum systems including transmitter, HF propagation

path, interference, and receiver, and provides all the data and signal

generation and analysis capabilities necessary to determine the

performance of the simulated systems. 	Both direct-sequence and

frequency-hopping systems may be simulated. 	The simulator was made as

flexible as possible, permitting the user to select from a number of

subsystems to simulate a wide range of existing and proposed communication

systems. This report provides detailed information on the simulator that

is essential for understanding it and operating it in both interactive and

batch modes.

2

1 INTRODUCTION

The DRL spread-spectrum simulation facility simulates the operation

of complete spread-spectrum systems including transmitter, HF propagation

path, interference, and receiver, and provides all the data and signal

generation and analysis capabilities necessary to determine the performance

of the simulated systems. Both direct-sequence and frequency-hopping

systems may be simulated. The simulation program was written in FORTRAN-77

and runs on a Digital Equipment Corporation VAX-11/750 computer under the

VMS operating system.

Figure 1.1 indicates the communication system processes that are

implemented in the simulator. The solid arrows show the normal flow of

data and signals, while the dashed ones indicate alternative routes that

may be used for testing of all or a part of the simulated system. The user

decides which of the processes he wishes to include in the simulation and

selects them and their parameters in an interactive process in which the

program questions him on the desired values. Thus the user can specify the

system at the terminal. The simulator was made as flexible as possible,

permitting a wide selection of subsystems that should cover most actual and

proposed systems. A batch mode of operation under control of a command

file is offered as an alternative for long computer runs simulating complex

systems. Because of the complexity of the simulator, a run to produce a

single bit-error-rate value may take many hours when spread spectrum with

high processing gain is being simulated.

A consequence of the flexibility of the simulator is the necessity for

the user to understand, in detail, the processes being used; many of the

design parameters are left to him. This document is intended as an aid to

that understanding, but it is, of course, impossible to include here all

the theory applying to all of the processes provided. The user should be

familiar with the theory for the techniques he selects. References are

provided in many cases to allow further study where this familiarity is

lacking. The algorithms used are described in some detail. If further

detail is required, reference should be made to the source routines. These

DATA AND
SIGNAL

GENERATION

DATA AND
SIGNAL

ANALYSIS
rn••• 	•••••• 	•n••n11 nnn•• -----

-

.•'
••nn 	woe.

TRANSMITTER

SYMBOL ENCODING
ERROR-CORRECTION CODING
INTERLEAVING
MODULATION
DIRECT-SEQUENCE ENCODING
FREQUENCY HOPPING
FILTERING
NONLINEAR AMPLIFICATION

PROPAGATION
MEDIUM

FIXED PATHS

RAYLEIGH PATHS

SPREAD PATHS

RECEIVER
DEHOPPING
NOISE & INTERFERENCE
DESPREADING
FILTERING
AUTOMATIC GAIN CONTROL
DEMODULATION
ACQUISITION & TRACKING
DE-INTERLEAVING
ERROR-CORRECTION DECODING
SYMBOL DECODING

Figure 1.1 Simulation Processes

4

include many comments to aid in understanding the code.

2 STRUCTURE OF THE SIMULATOR

The main routine of the simulator is called MODEM (capital letters

will be used to refer to routine names or commands as they are to be typed

by the user); the simulation is started by typing RUN MODEM. MODEM is only

a controlling program which leaves the simulation tasks to a number of

subprograms as shown in Figure 2.1. Any of the eleven main subprograms

shown may be entered by typing its name in response to the question "Main

level command?". In the following, the terms "command", "subprogram" and

"subroutine" are used to refer to the boxes in the program structure

diagrams. These boxes represent subprograms or subroutines (we have used

"subprograms" for the highest level below the main program), but their

names are entered by the user as commands. A menu of the eleven commands

with brief descriptions is displayed at the beginning of the program and at

any time the command HELP is typed in the main routine. The main

subprograms may in turn call a number of other subroutines which are not

shown in Figure 2.1. In general, the command structure forms a tree

without connections between branches, but there is some sharing of utility

routines. The software controlled by the eleven main—level commands varies

greatly in size. The upper row in Figure 2.1 contains relatively simple

utility routines, and the bottom row contains more complex subprograms.

PR3CES contains, by far, the most software.

When the main program is first entered the user is asked two questions

before being presented with the menu of subprograms. First he is asked

whether he wishes to perform the simulation from the terminal or in batch

mode; then he is asked whether he wants the output to go to the terminal or

to a file. This latter decision may be changed during the operation of the

simulation by the use of the FORM command which is described later. A

distinction should be made here between the simulator output and the

questions and menus printed on the terminal by the program. These latter

data always go to the terminal or, in batch mode, to the specified batch

log file. The simulator output contains summaries of the parameters used,

MODEM
(MAIN ROUTINE)

5

HELP DESCRP FORM TELL TIME STOP

DATE N MODIFY PROCES ANAL FILE

Figure 2.1 Simulator Program Structure

6

either as specified by the user or as computed from the user

specifications, and the results of any analyses performed on the simulated

signals and data. When batch mode is used the terminal is logically

equivalent to the batch log file, and therefore, if the terminal is

specified as the output device the output will go to the batch log file

along with the questions and menus.

There are some differences in the running of the simulator between

terminal and batch mode that have to do with the monitoring of the

operation, and this is why the program must be informed of the mode. When

batch mode is used the questions are answered by a command file which must

be prepared in advance. More will be said about running in batch mode near

the end of this document.

2.1 Brief Description of the Subprograms

The five subprograms in the bottom row of Figure 2.1 will be described

in their own sections, but we will first mention their functions.

DATEN generates both binary data for input to the simulated system,

and complex (i.e. comprising real and imaginary components) signals as

test inputs for parts of the system.

MODIFY modifies existing data for convenient generation of other,

possibly more complex, signals, and includes some other special-purpose

functions.

PROCES performs the actual simulation of the communication system,

including transmitter, propagation medium, and receiver.

ANAL is used to analyze the results of a simulation experiment with

various display and processing routines.

7

FILE allows the saving of data at any point in the simulation process,

and the later re-input of the saved data. The file of data saved may also

be analyzed by off-line programs.

The subprograms in the upper row of Figure 2.1 are utility routines

that are intended to aid in the running of the simulation. HELP repeats

the menu of main-level commands displayed at the beginning of the program.

DESCRP displays a brief description of the simulation program.

FORM allows the user to change the form of the ASCII output. 	This

output is the information provided by the program on the parameters

selected, and the results of any analyses. It is intended as a record of

the simulation experiment. The user may specify the terminal or a file as

the output device. If a file is chosen the user supplies a name and a

brief description (maximum of 32 characters) which will be included in the

file header. The file name will automatically be given the extension

.DAT. In batch mode the terminal is equivalent to the batch log file which

can be specified by the user in the VMS operating system's SUBMIT command

used to start batch operation.

TELL informs the user of the number of data currently in the original

and final arrays and of the maximum allowed data array size. This latter

quantity is the number of complex values permitted in each of the original

and final arrays. The TELL command may be used from many of the other

subprograms without a return to the main program.

TIME reports the percentage of time spent in each of the routines

since the last TIME command. 	It is intended to help the user determine

which routines are consuming the most time. 	It may also be useful in

predicting CPU time required for a simulation when the CPU time for other

runs with different characteristics has already been measured. TIME should

not be considered to be of great accuracy since it takes its time from the

system clock rather than measuring CPU time and it includes time used for

parameter entry. Thus for reasonably meaningful timing results, large

8

quantities of data should be processed, and the simulation should be run in

batch mode with the parameters entered from a command file.

STOP is used to bring the simulation program to an end in an orderly

fashion.

2.2 Original and Final Data Arrays

The various processes that represent parts of the simulated system in

PROCES operate on an array of input data and produce an array of output

data. These arrays are referred to in the simulator as original (ORG) and

final (FIN) data respectively. The abbreviations ORG and FIN are the form

in which they are specified by the user when required. They will be used

also in this report to refer to the data in these arrays, since the full

names "original" and "final" could easily be misinterpreted as the more

general meaning of these words. The ORG and FIN data may represent binary

data or sampled signals. In either case they are floating-point complex

numbers; when representing binary data their real part is either one or

zero and their imaginary part is always zero. While this is not a very

efficient way to store binary numbers it does have the advantage of

simplicity (only one type of array is used), and, since only one ORG and

one FIN array is kept at any one time, it does not increase the total

storage required (enough space must be reserved for the generally larger

sampled signal arrays in any case). Subprograms other than PROCES may

generate or process either ORG or FIN data as specified by the user.

2.3 Frequencies and Data Rates

Frequencies are always specified as a fraction of the rate at which

signals are sampled in the simulator. 	For example, a sine wave with a

frequency of 0.1 would have ten samples per cycle. 	When input data is

generated the user is asked for its rate in values per second. This number

is kept track of and changed as necessary - for example when decimation is

9

used. 	In addition, this rate is used to convert all signal frequencies

from the fractional sample-rate specification to the corresponding

frequency in Hertz, which is displayed to the user in that form as well as

in the fractional-sample-rate form. The value in Hz is not used by the

simulation itself and is provided only for the user's convenience.

2.4 Voltage,Power and Energy

The floating-point number representing a sample of a waveform is

considered to be the voltage, in volts, of the waveform at that point.

Power is defined as the power that would exist in a one-ohm resistor at the

point in question. Energy is defined on a time scale determined from the

arbitrary user-defined data rate. That is, if the program had determined

the sample rate, based on the user-specified data rate, to be f, samples

per second then the energy in N samples at a voltage V would be

„2,,
y

's

3 DATA AND SIGNAL GENERATION (DATEN)

The DATEN subprogram is used to generate both binary data and sampled

complex waveforms as input for the simulation runs or as test inputs for

parts of the simulation. All waveforms and data are represented as complex

values; when they are real the imaginary part is simply set to zero. The

various subroutines that can be called in DATEN are shown in Figure 3.1.

Routine CANCEL simply permits the user to exit DATEN without generating any

data. He may wish to do this if, for example, he has entered it by

mistake. There are two ways of generating signals. In the first, the user

enters them value by value to produce any desired sequence, and in the

second he specifies a data or waveform type along with its parameters, and

the routine generates the complete sequence for him. This second method is

much less tedious but more limited in possible signals. It also permits

the generation of signals with pseudo-random characteristics, such as

ENBIN COMPEN JAM

DATEN

10

CANCEL

GENBIN NOISE

Figure 3.1 DATEN Subprogram Structure

1 1

noise. 	Two routines are available for the first method, ENBIN for binary

data, and COMPEN for complex waveforms. Routines for the second method are

grouped into two types called NOISE and JAM. These are also used in the

receiver (RECVR) to introduce noise and jamming. When DATEN is entered a

menu of the available routines with a description for each is displayed.

One of the subroutines is then selected, and after the data is generated an

exit is made automically from DATEN to the main program.

The user may enter the signals into either the ORG or FIN data

arrays. Normally, any process takes data from the ORG array, and, after

processing it, leaves the result in the FIN array. Thus, most of the time

the signal will be input to the ORG array, but not always. As will become

evident in Section 4 on the MODIFY subprogram, it is important to allow

input to the FIN array.

On entry to the DATEN subprogram the user is asked whether the data

is to be ORG or FIN data, the number of values to be generated, and the

data rate. There is a limit on the number of data values that may be

generated. This number is printed out at the start of the program and when

the TELL command is used. It is set by a parameter called SIZVEC, and can

be changed by a source program modification followed by re-compiling and

re-linking. 	The procedure for doing this is described in the technical

documentation that accompanies the software in the DRL VAX-11/750. 	This

documentation can be found in file TECN.MEM. 	This parameter affects the

program memory requirements, and may require a higher allocation from the

system if it is increased.

After he enters the above values the user may select one of the

above-mentioned routines to generate the data. Each of these routines will

now be described in more detail.

3.1 Binary Data Entry (ENBIN)

ENBIN allows the user to enter binary data value by value. 	It

prompts the user by displaying a series of dots indicating the number of

12

entries specified. 	The user enters a one or zero under each dot. If the

number to be entered is more than 64, the data are entered 64 at a time,

with each group being re-displayed by the routine to allow acceptence or

rejection and re-entering by the user. The data are entered into the real

parts of the selected array and the imaginary parts are set to zero.

3.2 Complex Data Entry (COMPEN)

Like ENBIN, COMPEN allows the user to enter values into the

selected array, but in this case the values are floating point complex

numbers representing an analogue waveform and they are entered four values

at a time - four real and then four imaginary values. The routine prompts

for the correct type and number and asks for verification of each group of

four before continuing. Real waveforms may be entered by entering zeros

for the imaginary parts.

3.3 Pseudorandom Binary Data Generation (GENBIN)

GENBIN is intended mainly as a source of data to be transmitted by

the simulated system. It generates pseudo-random binary data by means of a

binary feedback shift register of 31 stages, with the outputs of stages 28

and 31 added modulo-2 and fed back to the input. These connections result

in the generation of a maximal-length sequence (length of 2n-1, where n

is the length of the shift register) [1]. This sequence will consist of

2 31 -1 or over 2x109 bits before repeating. A 31-bit starting value or seed

is required to start the generation. 	This seed determines where in the

2 31 -1 bit period the sequence will start. 	The user decides whether to

enter the 31-bit seed or to accept a default seed instead. This default

seed will be the same each time it is used.

3.4 Noise Generation (NOISE)

Three types of noise may be generated in NOISE. 	These are

Gaussian, CCIR, and impulse noise. 	The user is asked if he wishes to

generate each of the types in turn, and he may choose one or more of them.

13

If he chooses more than one the resulting samples will represent the sum of

the chosen types. At the beginning he must decide whether to enter a seed

for the random number generator or to accept the default one. The seed is

a double-precision integer, and it is recommended that it be large and

odd. 	All three noise generators make use of the FORTRAN uniform random

number, generator RAN supplied with the VMS operating system. 	This

generator is of the multiplicative congruential type. 	According to the

documentation this generator is "fast but prone to nonrandom sequences when

considering triples of numbers generated by this method". This is not

likely to cause any problem in the simulation, and speed is important.

However, if any problems become evident the generator could easily be

replaced by the user with a slower one having better properties.

For each type of noise selected the user is given the opportunity

to specify a filter to filter the noise and change its spectrum from white

to some other desired shape. Details on filter specification are given in

Section 8.1.

Two methods of Gaussian noise generation are available. 	One

method, referred to here as the sum method (SUM), makes use of the central

limit theorem which states that when a number of samples of a random

variable are summed the resulting sum is a sample from a distribution that

approaches a Gaussian distribution as the number summed is increased [2].

It turns out that, when the original distribution is uniform, relatively

few samples (generally less than ten) are needed in the sum to give a good

approximation to the Gaussian distribution. The SUM routine simply sums

the number of uniformly distributed samples specified by the user to

produce each Gaussian sample and scales the result to give the

root-mean-square (rms) value specified by the user.

The other method of Gaussian noise generation is the inverse method

(INV) [3]. INV maps a pair of uniformly distributed samples into a pair of

Gaussian samples by using the inverse of the Rayleigh amplitude probability

distribution function on one sample to generate a Rayleigh sample, and

scaling the second to the range 0 to 211. to generate a uniformly distributed

and zero

14

phase angle. Then a conversion from polar to Cartesian coordinates results

in two independent Gaussian samples. The only information required from

the user in this case is the desired rms voltage.

CCIR noise has a distribution taken from a set of semi-empirical

curves published by the International Telecommunication Union [4]. These

distributions apply to the magnitude, or envelope, of the noise and are

believed to be typical of those of noise found at HF. A parameter, Vd,

specifies the ratio of nms voltage to the mean envelope voltage, and is

expressed in dB. The minimum Vd of 1.05 corresponds to the Rayleigh

distribution, and increasing values of Vd correspond to increasingly more

impulsive distributions (higher probability of very high values). The

value of Vd actually found depends on the bandwidth of the system in

which it is measured, being higher for higher bandwidths.

In the simulator, a method developed by Akima [5] is used to

generate CCIR noise. In this method the CCIR amplitude probability

distribution curves are approximated in a nonlinear coordinate system by

two straight-line segments joined by an arc, and the method of inversion of

the distribution function is used to generate the noise samples from

uniformly-distributed samples. The user specifies the rms value of the

noise and the value of Vd.

Impulse noise consists of single complex impulse samples among a

larger number of zero samples with intervals between impulse samples that

are random with an exponential distribution and a mean rate specified by

the user; i.e. the impulse arrival times are generated by a Poisson

process. The maximum rate is 0.1 times the sample rate. The amplitude of

the impulse noise may be either fixed, or random with a Rayleigh

distribution. In either case the user specifies the rms value of the

impulse samples (not of the complete waveform). The phase of each impulse

sample is

21'. If a

the second

always selected from a uniform distribution between

particular interval is less than one-half the

one sample interval from the impulse will occur

sample interval,

first instead of

being coincident with it.

15

3.5 Jamming Signal Generation (JAM)

Four types of jamming waveforms are available in JAM. These are

Gaussian, tone, pulse, and linear frequency-sweep. As in NOISE one or more

may be selected with results summed. Before selecting waveforms the user

decides whether to enter a random-number seed or to use the default seed.

The Gaussian generator is identical to that in NOISE and is included in JAM

for the convenience of the user.

Up to four complex tones may be generated. The user specifies the

frequency, amplitude, and phase of each. The frequency must be in the

range -0.5 to +0.5 in terms the sample frequency.

Pulses may be generated at random intervals in the same manner as

the impulses in NOISE, with a user-specified mean rate. In addition, the

user specifies the pulse width in samples, their amplitude (fixed), and

their carrier frequency (-0.5 to +0.5). The phase of the carrier of each

pulse is selected from the uniform random-number generator. The mean rate

is limited to one-third the inverse of the pulse width (width is entered

before rate). However, any particular random interval between pulses may

be less, than the pulse width. When this occurs, and the pulses overlap,

they add linearly. 	But if more than three overlap, the fourth etc. 	are

lost. This is not a significant deficiency since in reality so many

overlaps would be an extremely unlikely event, even at the highest allowed

rate. Filtering may be applied to the pulse jamming.

Figure 3.2 illustrates the specification of the linear frequency

sweep jamming. 	The user must enter the start frequency, the stop

frequency, the off period, and the sweep period. 	The direction of the

sweep may be either positive or negative. The smallest period allowed is

typed by the program as computed from a minimum time-bandwidth product of

5. 	In addition, the user specifies the initial phase and the amplitude.

The program displays the selected parameters in Hz and seconds. 	It also

gives the power in watts. This is the instantaneous power during the on

portion of the waveform, not the average power over a full sweep cycle.

12

F
R

E
Q

U
E

N
C

Y

fi

Is ›1
f. = START FREQUENCY

f2 = STOP FREQUENCY
To = OFF PERIOD
Ts = SWEEP PERIOD

—0.5< <+0.5

—0.5 < f2 < +0.5

To > 0

Ts >511f2 —f 1 l

To

TIME

Figure 3.2 Linear Frequency Sweep Specification

17

4 DATA MODIFICATION (MODIFY)

The MODIFY subprogram allows the user to modify data, whether it

has been created by DATEN or is the output data from any of the processes.

Routines included in MODIFY are shown in Figure 4.1. There is no automatic

exit from MODIFY after calling of a routine. For this reason there is a

RETURN command to return to the Main program. The HELP command gives a

menu of available commands and their description, and the TELL command

gives information about the ORG and FIN data; this is the same routine as

used in the main level. The above routines have no effect on the data.

The remaining ones, except for CONVRT, actually modify the data.

CONVRT changes FIN data into ORG data to allow it to be used as

input when entering the PROCES command level. The change is accomplished

by simply renaming the data; no time-consuming shifting of data is

involved. The original ORG data is lost when this routine is used, and, as

a safety measure, the routine reminds the user that the ORG data will be

lost and asks for verification of the CONVRT command.

ADD adds ORG data to FIN data sample by sample. If one of the data

sets is longer than the other, the shorter will be extended with zeros to

the same length as the longer before the addition.

REPEAT duplicates eicher ORG or PIN data a user-specified number of

times with the new values added to the end of the existing sequence. The

duplicated data may be any block from the existing sequence; the user

specifies the index values of the first and last samples of the block.

INSERT allows the user to insert a specified number of zeros before

the existing ORG or FIN data. These are complex zeros; that is, for each

zero requested, both real and imaginary components of zero will be

generated. Insert may be used even if no data already exists in the

specified array. 	•

CON VRT

ADD REPEAT

MODIFY

HELP

INSERT

TELL RETURN

MULT REMOVE ABSOL

Figure 4.1 MODIFY Subgprogram Structure

19

MULT is used to multiply any block of ORG or FIN data by a real

constant. The constant may be zero. The user specifies the index values

of the first and last samples of the block.

REMOVE deletes a block of data from the end of ORG or FIN data.

The user specifies the number of complex values to be removed.

ABSOL takes the absolute value of a block of ORG or FIN data. The

user specifies the index values of the first and last samples of the

block. The real part of each sample in the block is replaced by the

absolute value and the imaginary part is replaced by zero. As an option,

the absolute value may be squared. This modification is intended as an aid

in the analysis of data.

5 ANALYSIS ROUTINES (ANAL)

A number of subroutines are available for the analysis of output

signals and data. These include simple display of any component of the

digital samples, computation of histograms and other statistical values,

comparions of input and output of signals and data, computation of

bit-error statistics, and computation of Fourier transforms. The analysis

command level is entered by using the ANAL main-level command. 	The

available subroutines are shown in Figure 5.1. 	A RETURN command is

provided since there is no automatic exit to the main program. The HELP

command displays the menu for the ANAL commands, and TELL is the same as in

the main program. 	Six different commands, described in detail below, are

available to analyze the data. 	Three of the commands (COMPRB, ERRCOM,

COMPRC), are comparison commands and require both FIN and ORG data to be in

existence. For these utilities, the user enters the number of data to be

compared and the ORG and FIN starting index values. Any block of

contiguous ORG values can be compared with any block of the same number of

contiguous FIN values. Thé other three commands (VIEW, FFT, and HISTO)

require only one type of data, either ORG or FIN. Only one starting index

value along with the amount of data to be analyzed is entered.

ANAL

H ISTO

/
TELL

VIEW

HELP

COMPRB COMPRC

RETURN

ERRCOM FFT

Figure 5.1 ANAL Subprogram Structure

21

5.1 Binary Analysis Utilities

5.1.1 Binary Data Analysis Command (COMPRB)

Two binary analysis utilities are available. 	COMPRB compares

binary ORG and FIN data on a bit-by-bit basis. 	The utility was created

primarily for the purpose of comparing original binary data before it is

sent through the communication channel with final binary data coming out of

the channel. It computes the bit error rate, the longest sequence of l's

and O's, and the percentages of l's and O's.

5.1.2 Binary Error Analysis Command (ERRCOM)

ERRCOM analyzes bit errors on the basis of time as well as number.

The data is broken up into windows whose length is specified by the user

and the frequency of the periods between errors is computed for each

window. The user can optionally have the index values of the bits in error

output. At the end of the analysis, the total number of occurrences of

each period for all the windows is presented. Note that the results can be

affected quite drastically by the window size and the analysis starting

positions that are selected. For example if all periods are greater than

25 but the window size is 20, no periods will show up in the analysis. The

fractional bit-error-rate is also computed.

5.2 Complex-Component Display Command (VIEW)

Command VIEW displays a choice of five ORG or FIN data components:

real, imaginary, magnitude, phase in degrees, and phase in radians. In

addition, the mean, standard deviation, and mean of the squares of the

displayed components are otitput. If the user wishes to see only these

statistical quantities, an option is available to suppress the component

display.

22

5.3 Complex Comparison Command (COMPRC)

COMPRC plays a role similar to COMPRB, except that it compares

complex components rather than binary numbers. The standard components,

real, imaginary, magnitude, degree phase, or radian phase can be compared.

Instead of a bit error rate, the root-mean-square error is output, along

with the mean, standard deviation, and mean of the squares of the ORG and

FIN data components. Note that COMPRC provides some of the same

information that VIEW does.

5.4 Fast Fourier Transform Command (FFT)

A fast Fourier transform, either forward or inverse, of either the

ORG or FIN data can be performed by command FFT. The number of data to be

analyzed is restricted to integer powers of two. The forward transform is

defined as:

n-

YF
m

= e?
n

exp(-j2nnm/N)

n=0

while the inverse transform is defined as

n-1
1

YI
m

=
	
exp(j2irnm/N)

	1

n=0

The significant point to note here is that the inverse transform is divided

by the number of points, N, but the forward transform is not. This assures

that a forward transform followed by an inverse one will leave the data as

it was. When FFT is used on the ORG or FIN data array, the transformed

data replaces the data in that array, and the data that was there is lost.

As a safety measure, the user is informed of the impending loss and asked

,23

to confirm the command. As an example, if there were 200 ORG data samples,

the user could transform 128 of these by specifying the power of two of the

number of samples as 7. He could specify the start of the transformed

block to be 40, and this would result in samples 40 to 167 being

transformed with the 128 samples of transformed data replacing the ORG data

(there will be only 128 samples of ORG data after the transformation). The

FFT algorithm is a radix-two-decimation-in-time algorithm taken from

Reference [6]. The data is scrambled before the transform and comes out in

the correct order. To save time the exponential factors are computed ahead

of time.

5.5 Histogram Command (HISTO)

Histograms of components of ORG or FIN data can be produced by

using the command HISTO. The choice of components is the same as for

VIEW. After specifying the number of data to be processed, the user enters

the histogram lower limit, the histogram cell size, and the number of

histogram cells. The number of cells includes a first cell for all values

falling below the lower limit, and a last cell for all values falling above

the upper limit of the next-to-last cell. Therefore the minimum number of

cells allowed is three. After the histogram is produced in tabular form

the user is given the option of viewing a bar-graph version. Finally, he

is given the option of having the data replaced with the histogram cell

values, so that these can be written to a file. When this is done, the

program words storing the number of data and the data rate are replaced by

ones indicating the number of histogram cells, and the cell size,

respectively. The real part of the data vector receives the cell values.

The first imaginary location receives the histogram lower limit, while the

second imaginary location receives the upper limit. 	The third position

gets the code indicating which component was processed. 	All remaining

imaginary locations are set to zero.

24

6 DATA STORAGE FILES (FILE)

Complex data storage files may be created by the FILE subprogram.

These may be used to store intermediate data between runs or within a run.

Such files can save considerable computer processing time when the same

data is used a number of times, as, for example, when different values of

some receiver parameter are tried with the same transmitted signals and the

same propagation medium. Figure 6.1 indicates the two subroutines FILIN

and FILOUT that are available, and the CANCEL command which simply allows

an exit to the main program without any action. An automatic exit to the

main program occurs after either FILIN or FILOUT.

The user may send a block of ORG or FIN data to a file using the

FILOUT command. He specifies the number of data, the index value of the

first datum, a description of the file with up to 32 characters, and a file

name. A file header is generated containing the creation date, the program

version number, the number of data, the data rate, and the user-entered

file description.

Any file created in this way may be read back, in the same run or

in a later one, as ORG or FIN data (regardless of where it came from) with

the FILIN command. The user specifies the destination and the file name,

and when the file has been read in, is informed of the number of values

received, the sample rate, the date it was created and the file

description. If data already exists at the destination, the user is warned

that it will be lost and asked to verify the FILIN command. If the program

version number in the header does not match that of the current program the

user is warned of this fact but the input of data proceeds anyway. The

warning is intended to alert the user to the possibility' of errors caused

by program changes that may make the data incompatible.

FILIN FILOUT

FILE

CANCEL

25

Figure 6.1 FILE Subprogram Structure

26

7 SIMULATION OF THE COMMUNICATION SYSTEM (PROCES)

7.1 Introduction

The PROCES subprogram performs the actual simulation of the

components of the communication system including transmitter, propagation

medium, and receiver. The structure is shown in Figure 7.1. The bottom

row of subroutines perform the actual simulation. In addition to the usual

utility commands shown in the upper row, a command called NULL is

included. This simply copies ORG data to FIN data, provided no FIN data

already exists. If a subroutine has already created FIN data, NULL makes

no change.

Each of the six subroutines in the bottom row implements a portion of

the communication system. 	BITSRC performs error-correction coding and

interleaving. 	MODCOD forms integer symbols from the data bits, performs

some symbol-to-symbol encoding such as differential encoding, adds

direct-sequence chip symbols, and produces complex modulation samples.

HOPPER performs frequency-hop encoding and includes some general-purpose

operations such as signal filtering and decimation. MEDIUM simàlates the

propagation of the complex signal through a medium. 	RECVR performs the

receiver functions down to demodulation into integer symbols. 	BITSNK

performs symbol expansion into bits, and post-detection processing of the

data bits. The above order of subroutines, or processes as we will now

call these particular ones, is the order in which the communication would

normally occur. Each process comprises components that we will call

sub-processes.

Once in PROCES the user may call a number of processes in sequence.

The FIN data from one process automatically becomes the input data for the

next. 	To avoid loss of ORG data this input data is stored in an

intermediate array that is used as the input to each sub-process. 	As a

result, on entry to the PROCES subprogram, the ORG data must be copied into

the intermediate array. 	Thus, when the PROCESS subprogram is initially

MODCOD HOPPER

PROCES

HELP

BITSRC

NULL

MEDIUM

TELL

RECVR

RETURN

BITSNK

Figure 7.1 PROCES Subprogram Structure

28

entered with a large number of ORG data, the program will take some time to

duplicate the ORG data. When PROCES is exited the ORG data is the ORG data

that existed when PROCES was entered. If PROCES is later re-entered to

continue operating on the data with other processes, the FIN data will

first have to be converted to ORG data by using the data modification level

command CONVRT. An example of where this may be required is where the data

is to be saved at some intermediate point in the simulation, say after the

propagation medium simulation. In this case PROCES must be exited after

MEDIUM to allow the FILE command level operation FILOUT to be performed.

Then, CONVRT in the data modification level would be called so that the

output data from MEDIUM would be the input for the next process when PROCES

is re-entered. It should be remembered that the ORG data existing before

the CONVRT operation is lost, and, if important, should be saved using

FILE.

It is important 	for the user to realize that 	it 	is his

responsibility to assure that the correct sequence of processes with the

correct parameters is chosen. For example, it makes no difference to the

program whether the process RECVR is run before or after the process

MODCOD, even though running RECVR before MODCOD is normally meaningless.

The advantage to the user of this seeming weakness is that the simulator

maintains maximum flexibility. Individual processes or parts of them can

be tested or run through at different times. For example, MODCOD could be

run one day and the output (FIN) data saved using FILE command FILOUT. The

next day the old FIN data could be read in by FILE command FILIN as ORG

data, and used in MEDIUM. Another example is the use of the RECVR process

consecutively on different data sets (obtained from data files) to

determine the effect of the process on data generated with different

characteristics (say different propagation conditions). Also, some

general-purpose devices such as a saturating amplifier, which exist in one

process may be used at other places simply by calling the process that

contains them after leaving the current process and before entering the

next one (or re-entering the original one). Within a process particular

sub-processes may be chosen by answering "no" to all other sub-processes.

29

Sub-processes inside a process are structured in a more rigid

manner than processes; they are performed in a fixed order. However, the

user is asked if the sub-process is to be used or not. Generally,

sub-processes work on all of the data in a block fashion, one sub-process

being started only when the last one has finished with all the data. Each

block sub-process normally obtains information from the user as it needs

it. The RECVR and MEDIUM process are the exceptions to this. Each of

these operates in a sequential manner, with each sample being processed by

each part of the process before the next sample is input (there may be some

block processing, however; in this case the samples are accumulated and

output delayed). This is not apparent to the user who still must set up a

structure of sub-processes. 	The difference is that the sub-processes do

not really exist. 	Rather, there is a single sequential process which

comprises a number of operations in a loop which is followed for each

sample.

7.2 Error Coding and Interleaving Process (BITSRC)

The error-coding routines have been structured to allow two levels of

coding, an inner binary code and an outer symbol code. This would allow

the implementation of concatenated codes. However, at this time only the

inner coding routine has been implemented. The inner coding was to include

both block and convolutional codes, but only a cyclic-block-coding routine

is complete. 	The program asks the user if he wants to use any of the

intended types, but if he chooses anything but inner block coding he will

be warned that the chosen type has not yet been implemented, and that the

input data has been passed to the output without change.

7.2.1 Binary Cyclic-Block-Code Generation

A general encoding algorithm for binary cyclic block codes is

provided in BITSRC. The user enters the desired number of bits in a coded

block, n, the number of information bits to be encoded in the block, k, and

30

the generator vector for the desired error correction code, or, if he

prefers, its parity vector. (The parity vector method is not yet

implemented, but is described here since it is partly implemented and could

be completed with little effort.) The generator and parity vectors are

simply the binary coefficients of the generator or parity polynomial. See

Reference [7] for details on finding these polynomials for particular

codes. The first coefficient of these polynomials, that of the zero-order

term, is always one. The vector, however, is defined here to include this

coefficient, and the user must enter it. If he enters a zero as the first

element, the routine will reject the entry and ask that the vector be

re-entered. Each output block will consist of the input block (information

bits) followed by the parity bits. If the last block does not contain k

information bits it is filled out to k bits by the addition of zeros before

the coding is applied, and the user is so informed.

The encoding algorithm for the generator-vector method 	is

represented by Figure 7.2 in conjunction with the following steps which are

performed for each block to be encoded.

1 All registers are initially set to zero.

2 Switch S1 is closed and S2 is set to position 1.

3 k bits of input data are shifted into the circuit and

simultaneously into the output stream through S2.

4 Si is opened and S2 is set to position 2.

5 n-k shifts are performed. This will output n-k

parity bits into the output stream.

The encoding algorithm for the parity vector method is represented

by Figure 7.3 in conjunction with the following steps which are performed

for each block to be encoded.

1 All registers are initially set to zero.

2 Switch Si is set open and S2 is closed.

3 k information bits are shifted into the circuit and

simultaneously into the output stream.

1-BIT
REGISTER

INPUT
STREAM

–o1
OUTPUT
STREAM

•—o 2

1-BIT
REGISTER 1--11n1

1-BIT
REGISTER

• • •

1-BIT
REG ISTER

g i ARE BINARY COEFFICIENTS

go ALWAYS = 1

ALL ADDITIONS MODULO-2

Figure 7.2 Generator Vector Encoder for
Binary Cyclic Codes

INPUT
STREAM S2 I

1-BIT
REGISTER

1-BIT
REGISTER

OUTPUT

STREAM

1-BIT
REGISTER

1-BIT
REGISTER

hi ARE BINARY COEFFICIENTS

hp ALWAYS = 1

ALL ADDITIONS MODULO-2

Figure 7.3 Parity Vector Encoder for
Binary Cyclic Codes

33

4 Si is closed and S2 is opened.

5 n-k shifts are performed. This will output n-k parity

bits to the output stream.

It should be noted that error coding will always increase the

reported data rate by the inverse of the code rate.

7.2.2 Interleaving

When errors are likely to occur in bursts, interleaving of the data

after error-correction coding can be used to reduce the error rate by

spreading the burst of errors over many coded blocks so that each block

will have a small enough number of errors to permit the errors to be

corrected. Of course, in the receiver the interleaving process must be

reversed before error-correction decoding is performed.

A block interleaving routine is provided in the simulator. 	The

method is to write the data into a matrix by rows, and then to read them

out in columns. The user specifies the number of rows and columns. For

examplu, if a ten-by-five matrix were specified (ten rows and five columns)

then the bits would be output in the following order:

1 , 1 1,21,31,41;2,12,...,39,49;10,20,30,40,50. 	The semicolons indicate where

a new column was started. 	In the receiver, an identical process (but

called de-interleaving) is performed before error-correction decoding. For

the data to be restored to its original order, the number of rows and

columns in the receiver de-interleaver must be interchanged from those in

the interleaver; that is, in the above example five rows and ten columns

would be specified in the receiver de-interleaver. If the quantity of data

such that the last block (matrix) is not filled, the remainder is filled

with zeros, and the user is informed of the addition.

7.3 Modulation and Coding Process (MODCOD)

The modulation process in the simulator is defined as the

is

34

conversion of data symbols into sampled representations of analogue

waveforms for transmission through the medium. These waveforms form a set

of distinguishable signals, one for each of the possible data symbols. The

simulation represents these waveforms by complex samples of the signal at

zero centre or carrier frequency. The complex representation permits the

positive and negative parts of the waveform spectrum to be independent. As

a result, the centre frequency is arbitrary and the simulation results

apply just as well for any carrier frequency. The modulation waveforms

available in the simulator are various forms of frequency-and phase-shift

keying.

The coding referred to in this section deals with bits and symbols

before modulation, but excludes error-correction coding. Types of coding

provided are: coding of bits into integer symbols; conversion of symbols

into new symbols for the purpose of minimizing the bit error rate for a

given symbol error rate; conversion of symbols into new symbols to allow

differential demodulation where a coherent form of modulation is used even

though the propagation medium does not provide long-term coherence of the

signal; coding for multiple-code-shift keying (MCSK); and addition of

direct-sequence codes to the data symbols for spread-spectrum systems.

The word "symbol" is used here to describe two different things:

an integer representing an element of data, and the corresponding waveform

used to transmit the data element. There is normally a one-to-one

correspondence between the two. Where the meaning is not clear from the

context, the term "data symbol" or "integer symbol" is used for the former

and "waveform symbol" is used for the latter.

Although coding, 	if performed in a real system, precedes

modulation, for convenience modulation will be discussed first.

7.3.1 Modulation

The modulated signal is represented by samples of the analogue

35

waveform. The user-specified number of samples per symbol is an important

parameter since it affects the processing time and memory requirements of

the computer, and also the accuracy of the simulation. These requirements

are conflicting, with the former demanding few samples per symbol and the

latter demanding many. The program imposes a minimum on the number of

samples per symbol, depending on the modulation type, which prevents a

gross violation of the Nyquist-rate criterion, but the user should not

depend on this to provide a good simulation. Since the symbols are of

finite time duration, their spectrum will not be of finite extent, and the

Nyquist-rate criterion can never be perfectly satisfied. It is up to the

user to decide how many samples are necessary to provide the desired

accuracy for a particular simulation. Since the samples are complex, the

rate should be at least twice the frequency magnitude beyond which the

energy is deemed insignificant. Since the modulation is applied to a

carrier of zero frequency, this means that the sample rate should be at

least equal to the signal bandwidth, where bandwidth is defined as the

range within which almost all of the spectral energy falls.

The number of samples per symbol must be an integer. The symbol

boundary is assumed to fall halfway between two samples; that is, the first

sample of each symbol is one-half sample period after the leading edge of

the symbol and the last is one-half period before the trailing edge.

Two basic types of modulation are available in the simulation,

frequency-shift keying (FSK) and phase-shift keying (PSK). Two forms of

PSI(are multiple-code-shift keying (MCSK) and differential PSK (DPSK).

Each of these uses normal PSK modulation but codes the symbols before the

modulation. These types of coding are described in Section 7.3.2.

Frequency-shift keying is divided into three types, single-tone FSK which

we refer to here as FSK, multiple-tone FSK (MFSK), and minimum-shift keying

(MSK).

36

7.3.1.1 Phase-shift Keying

In PSK the waveform has zero carrier frequency and a constant phase

selected from one of a set of possible phases corresponding to the set of

symbols to be sent. If the data has been encoded into symbols of Nb bits

each then the 2
Nb

phases are chosen by dividing 2n radians into

Nb
2 equal parts as shown in the example of Figure 7.4. 	For an integer

symbol, 	(I=0,1,2,•.•,2Nb-1), 	the 	phase 	is 	simply 	2nI/2 N b

radians. The magnitude is equal to the rms voltage specified by the user,

since the samples are complex. The number of samples generated for each

symbol is specified by the user. As a result of the zero carrier

frequency, all samples representing one symbol are identical.

7.3.1.2 Frequency-Shift Keying

In single-tone FSK a symbol of Nb bits produces one tone from a

set of M=2Nb possible tones. 	The tones are symmetrically positioned

about zero frequency with equal spacing as shown in Figure 7.5. The user

specifies the frequency spacing between adjacent tones. 	The tones will

have frequencies of

- (M/2-1/2), -(M/2-1/2-1), ... -1/2, 1/2, ... M/2-1/2-1, M/2-1/2

times the specified separation, with the first corresponding to symbol 0,

the second to symbol 1, etc. Each new symbol waveform begins with a

complex sample having a magnitude equal to the user-specified rms voltage

and a random phase selected from a uniform distribution between 0 and 2n

radians. The remainder of the Ns samples (N s = numiper of samples per

symbol) in that symbol waveform have the same magnitude as the first, but

their phase increases by 2nf t radians for each succeeding sample, where

f t is the tone frequency as a fraction of the sample frequency. The tone

separation is usually made equal to the symbol rate, since this makes the

symbols orthogonal (a filter matched to one will have zero response to any

other one). A closer spacing will require less overall bandwidth but will

PHASE ANGLE BETWEEN
STATES = 2n/M = TrI4

0
REAL AXIS

1 IMAGINARY
AXIS

COMPLEX PLANE

Nb = NUMBER OF BITS PER SYMBOL = 3

M = NUMBER OF PHASES = 2Nb = 8

DATA SYMBOLS = 0, 1, 2, 3, 4, 5, 6, 7

37

Figure 7.4 Example of PSK Modulation

38

SYMBOL 	0 	1 	2 	3
VALUE 	A 	A 	À 	À

4

—7fd/2 —fd/2 fd/2 3f d12 	7f d12
FREQUENCY

fd = USER-SPECIFIED TONE SEPARATION

NOTE: EACH UPWARD ARROW
REPRESENTS A TONE AT THE FRE-
QUENCY GIVEN BY THE HORIZON-
TAL AXIS. THE ACTUAL SPECTRUM
FOR EACH TONE WILL HAVE
SOME WIDTH AS A RESULT OF
THE FINITE SYMBOL DURATION.
ONLY ONE TONE IS PRESENT AT
ANY TIME.

Figure 7.5 Example of Single-Tone FSK

39

result in reduced bit-error-rate performance. 	A wider spacing will not

result in reduced performance if the spacing is a multiple of the symbol

rate, and in only slightly reduced performance otherwise. If symbol

envelope shaping is applied (to be described later) the best performance

will generally be obtained for spacings of between one and two times the

symbol rate, depending on the type of shaping selected. The program will

reject any spacing that puts the highest tone above half the sample rate.

7.3.1.3 Multi-Tone Frequency-Shift Keying

In multi-tone FSK the data symbol is divided into sub-symbols and

each sub-symbol generates a single tone, with the tones from all

sub-symbols added to form the output waveform. 	The arrangement of the

tones is illustrated by the example in Figure 7.6. 	In this example the

has specified six bits per symbol, and three tone sets or

sub-symbols. Note that the number of sets must be a factor of the number

of bits per symbol. The user is informed of this requirement, and is asked

to enter a new value if he does not satisfy it. When the number of sets is

even, they are arranged symmetrically on either side of zero frequency.

The user must specify the separation between sets as well as the separation

of the tones within each set. Only one value is allowed for each of these

parameters and applies to all tone sets. Normally the frequency separation

between sets is chosen to make the separation between the highest tone in

one set and the lowest in the next set equal to the separation between

tones in a set, but the user is not restricted to this value. The program

will reject any pair of separations that causes sets to overlap or causes

the highest one to exceed half the sample rate.

In the example of Figure 7.6, if the input symbol were 54 (110110

binary), then the first sub-symbol would be 3 (11), the second 1 (01), and

the third 2 (10). The corresponding tones, one from each sub-symbol would

be generated and added. _The generation of any one tone is identical to

that in single-tone FSK.

user

(

4° = 1

SPACING —el
IN SUB-SYMBOL

0

FREQUENCY —ob.

SPACING BETWEEN_01
SUB-SYM BOLS

3RD SUB-SYMBOL

SYMBOL (
VALUE —

2ND SUB7SYMBOL 	1ST SUB-SYMBOL

4 1 = 4 	 42 = 16

2 	3 SUB-SYMBOL —10- 0
VALUE

2 	3 	0 	1 3 	0 	1 2

NOTE: EACH UPWARD ARROW
REPRESENTS A TONE AT THE FRE-
QUENCY GIVEN BY THE HORIZON-
TAL AXIS. THE ACTUAL SPECTRUM
FOR EACH TONE WILL HAVE
SOME WIDTH AS A RESULT OF
THE FINITE SYMBOL DURATION.
ONLY ONE TONE FROM EACH SET
IS PRESENT AT ANY TIME.

o
Figure 7.6 Example of Multi-tone FSK Modulation

41

7.3.1.4 Minimum-Shift Keying

Minimum-shift keying (MSK) is a form of FSK in which the tone

separation is very small (one-half the symbol rate) and the phase is chosen

to be continuous across a symbol boundary. This is done to minimize the

modulation bandwidth. Instead of a random phase being chosen at the

beginning of each new symbol, the phase at the end of the last symbol is

used. This is the phase at the symbol boundary, not that of the last

sample of the the last symbol; this sample is a half sample period before

the boundary. Only single-tone MSK has been implemented in the simulator

at this time.

7.3.2 Envelope Shaping and Smoothed Transitions

After modulation has been performed the user may select some form

of symbol waveform modification that will control the shape of the

spectrum. With the exception of MSK, all modulation types provided have

abrupt transitions from symbol to symbol, and this results in a spectrum

which has "sidelobes" which decrease slowly with frequency away from the

main lobe as shown in Figure 7.7. This is the spectrum of a single

waveform symbol of PSK, which is simply a rectangular pulse. The spectrum

for FSK is the same except shifted by the tone frequency. This spectrum

plotted from a simulated symbol with 20 samples per symbol, and is

shown out to one-half the sample frequency on each end. The part of the

spectrum near the edges is affected by aliasing, and does not correspond

exactly to the theoretical unsampled function spectrum. The sidelobes may

be reduced at the cost of a slight widening of the main lobe of the

spectrum, by either of two methods: envelope shaping, or smoothed

transitions.

7.3.2.1 Envelope Shaping

was

Envelope shaping multiplies the modulated symbol by a weighting

42

0)

o

1

P.

	

CQ 	 .C.11

(1)

1
C.71

	

cr) 	-n b

rn
rr 0

	

z 	C 1

	

5 	rn
0 Z

0
7z1

	

(-) 	X

Cfl c
cio

	

D) 	03
0
r-

1%
cr Ca
o

o 0
Z

is)
mr)

Do

RELATIVE ENERGY DENSITY (dB)
1

Cli 	 ca Z"DI o

1 	I 	I 	I 	III 	1 	1 	1 	L.L.. 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1

'.

•nn•

'...n"'

	 ...„......

-. 	 n---n

	 n..n>

."

.,à

43

function that is maximum at the centre of the symbol and minimum at each

end. Four weighting functions are provided. These are: Hanning, modified

Hanning, Hamming, and sine of sine of sine. 	They are specified by the

equations below, and are graphed in Figures 7.8 to 7.11. 	The spectra of

symbols shaped by these functions are plotted in Figures 7.12 to 7.15.

For Hanning shaping (shown in Figure 7.8) the weight is:

W(t) = 	(cos[n(- 0.5)]} 2 , 	for 0 < t < T

= 0, 	 otherwise,

where t is time from the start of the symbol and T is the symbol duration.

This function may also be written as follows:

1 	1
W(t) = - - - cos (2nt/T)

2 	2
for 0< t < T

= 0, 	 otherwise.

In modified-Hanning shaping the cosine-squared weighting is applied

to only a part of the symbol on each end, and the middle of the symbol is

left unweighted. A parameter m must be specified to determine the portion

of the symbol that is weighted. The parameter m is the ratio of the entire

symbol duration to the portion that is weighted. 	Thus the weighting

occupies a time T/2m on each end. 	An example of the modified-Ranning

function with m = 2 is shown in Figure 7.9. 	The weight for the general

modified-Hanning shaping is:

	

W(t) = 	cos2 [w(mt/T - 0.5)],

	

= 	1,

= 	cos2 [n(mt/T - m + 0.5)],

for 0< t < T/2m

for T/2m < t < (1-1/2m)T

for (1-1/2m)T < t < T.

1.0

0.8

Mal

w 0.6

1-
«WM

2 0.4

•IM

amal

0.2

0.0 0.4 	 0.6 	 0.8 	 1.0

TIME I SYMBOL DURATION

Figure 7.8 Hanning Shaping Function

0.2

1.0

0.8

w0.6

t--
z

2 0.4

0.2

0.0

0.0

1

02 	04 	0.6

TIME / SYMBOL DURATION

1 1
0.8 	 10

Figure 7.9 Modified-Hanning (m=2) Shaping Function

46

The Hamming function, shown in Figure 7.10, is similar to the

Hanning function but is raised slightly so that it does not go to zero at

the ends. The weight is given by:

W(t) = 0.54 - 0.46 cos (2nt/T),

= 0 ,

for 0< t < T

otherwise.

The sine of sine of sine function is shown in Figure 7.11.

weight is:

Its

W(t) = sin {n/2 sin [n/2 sin (nt/T)]1, for 0< t < T

= 0, 	 otherwise.

The spectra for the above functions, shown in Figures 7.12 to 7.15,

were generated from sampled waveforms with 20 samples per symbol. Thus,

the half-sample-rate points are at plus and minus ten times the symbol

rate, and the spectra near the ends are affected to some extent by

aliasing.

Shaping reduces the energy in the modulated symbol. The reduction

factors are .375 for Hanning, 1-.625/m for modified Hanning, .3974 for

Hamming, and .769 for sine of sine of sine. The energy per symbol before

and after shaping is computed and displayed for the user.

The best shaping function for any system will depend on the particular

requirements of that system since there will be tradeoffs among the various

characteristics including: energy for a given peak power, width of the

main lobe of the spectrum, level of the near-in sidelobes, and level of the

farther-out sidelobes. A detailed look at the information and plots

provided above can help in the choice of a function for a particular

situation.

uoTanund 2uTdeqs 2uTwitœll 0I.1 a1n2Td

01

NOIIVElfla 109INAS131N11

WO 	 9 .0 	 trO

1

0 •0

0 •0

Z*0

17 .0 E

=I

90 rn

9 .0

01

Nolivtina 108INAS131N11

8'0 	 90 	 V*0 	 Z*0 00

00

Z'O

tr0

9 .0 m

8'0

01-

auTs JO auTs Jo auTs TrL aln2T3

0

—10

-cL

>20

La

o

ta

30
cc
La

LLJ

> —40

cc
—50

1111 U11111111 1111

10.0

—60

—10.0 	—7.5 —5.0 	—2.5 	0 	2.5 	5.0

FREQUENCY x SYMBOL DURATION

7.5

i l\f 1 1

Figure 7.12 Spectrum of Hanning-Shaped Symbol

o

RELATIVE ENERGY DENSITY (dB)

50

1 	 I
C) 	tn
o 	o

I
à. 	I 	n 11111111

o
b

Pi
CD 	 1
nJ 	 1 	""«

1— 	
CTI _

D3 	—
cn 	MI 	_

m) 	0 	—
m C
rt 	M 	—
n

ii
e 	0 41 o

-<
O —
1-h 	x 	—
z o 0 —
a.

<0 	

H.

(1) 	 - a 0 —
x
eu
e C
r• 	13

CJI

e —
oo 	>
cn

1 	—i 	_

ra 	Z 	..' Mi 	 C7I 	 o
a. 	o 	

--j cn

o
1111

o

1 I 111) 1 jili

o

aml

o

7.5 10.0

o

—10

—2(

O

>-
0 —31
cc

Lu

> 4
V-
<

cc

—5

—6

1\ r

	

„ 	

"Ii

i,ï,
.

,,,\ 	I fl 	
—10.0 	—7 5 	—5.0 	—2.5 	0 	2.5 	5.0

FREQUENCY x SYMBOL DURATION

Figure 7.14 Spectrum of Hamming-Shaped Symbol

0

—10

t. —20

o

w —30 cc

k —40

cc

—50

—60

_
_ _
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _
_ _ _ _ 	 A

i\ri 	1 	1 	1 	1 	IIII 	i 	1H 	 1 	IHI _ in n 	—7_S 	—5_0 	—2.5 	0 	2.5 	5 0 	7 5 	11 .0

FREQUENCY x SYMBOL DURATION

Figure 7.15 Spectrum of sine-of-sine-of-sine-shaped Symbol

53

7.3.2.2 Smoothed Transitions

The other method of spectrum control, smoothed transitions, may be

applied only to PSK-modulated symbols. It modifies a part of adjacent

symbols near their boundary to provide a smooth transition from one to the

other. Phase, or magnitude, or both may be affected. A choice among three

types of transitions is provided. A user-specified parameter that applies

to all three is the transition ratio, which is defined in Figure 7.16 as

the ratio of the transition period to the total symbol period.

transition period occurs in each symbol.

Half of the

The first type of transition is a transition of both the real and

imaginary components in a sinusoidal fashion over half a period of the

sinusoid. Let xl and x2 be the values of the real or imaginary component

of symbols 1 and 2 respectively. Then the value of that component in the

transition region, with the time origin taken at the symbol boundary, will

be:

x = (x2+ x1)/2 + (x2 - x1)/2 sin (irt/T), 	-T/2 < t <T/2

This transition type affects both amplitude and phase except when the

symbols are binary, in which case only the amplitude is affected.

The second type of transition is a linear transition of phase from

one symbol to the next, with amplitude held constant. This has the

advantage of maintaining the energy in the symbol, but the disadvantage of

modifying the information-carrying part of the symbol.

The third type of transition is one in which the phase is held

constant, with the amplitude made to change sinusoidally through zero.

However, if two adjacent symbols are the same there is no change. If the

symbol amplitude is A, the amplitude in the transition region

-T/2 < t < T/2 is given ly:

I0

-V >
M Z

0 q
0 _
L

0
z

0

a

o3
0

PHASE AND/OR MAGNITUDE

54

F
i
g
u
r
e
 7
.
1
6

T
r
a
n
s
i
ti
o
n
 R
a
t
i
o
 D
e
f
i
n
i
ti

o
n

S
il
 =

 11
:1

=
 0

11
1/

11
 N

O
W

S
N

V
1:1

1

55

I A sin(nt/T) I, a= when the symbols are different,

when the symbols are the same.

This method could be considered a type of shaping. The difference is that

the shaping is not applied when it is not needed, that is, when adjacent

symbols are the same. This increases the average energy, but the increase

becomes less as the number of bits per symbol increases, since the

likelihood of identical adjacent symbols becomes less.

The detailed spectra for these transitions depend on the data that

have been modulated. It should be possible to compute averaged spectra for

very long pseudo-random data sequences, but that has not been done at this

time. We can say that transitions will significantly reduce the spreading

of the spectrum that results from the abrupt changes between symbols, but a

quantitative analysis is left to the user.

7.3.2.3 Effect on Aliasing

, The reduction in spectrum spreading realized from shaping or

transitions can help reduce the number of samples per symbol required to

prevent serious aliasing. Since the modulation is performed before the

shaping or transitions, it might at first appear that more samples would be

required before the spectrum width is reduced. 	Rut this turns out to be

unnecessary. 	Although the samples may not well represent the unshaped

waveform, they do represent the values at the points sampled exactly.

Since the shaping only multiplies these points, the aliasing in the

original spectrum has no effect, and as long as there are enough samples to

prevent aliasing in the shaped waveform, the waveform will be well

represented.

A,

56

7.3.3 Coding

Data is originally generated in binary form (bits), but since some

modulation schemes use more than two waveforms, there is a need to combine

bits into higher-level symbols to provide the source for this modulation.

These symbols are simply the integer values represented by a group of bits

where the first bit of an N-bit symbol has value 2N-1 the second 2N-2,

etc. Only an integer number of bits may be coded into a symbol; that is,

the symbol alphabet must consist of a number of elements equal to a power

of two with a maximum number of elements of 2
24

 • When bits are formed

into symbols the data rate reported by the program changes to show the

number of symbols per second instead of the number of bits per second.

The first thing the MODCOD process does is ask for the number of

bits per modulation symbol. This is the number that specifies the number

of modulation symbols as indicated above. There is the possibility of some

confusion here if multiple-code-shift keying (MCSK) is selected since MCSK,

which will be described later, may be considered both a type of code and a

type of modulation. Therefore, one may think of the MCSK symbols as

modulation symbols. One should not think of them as such when entering the

desired number of bits per symbol (a message warning aboût this is

displayed when the question is asked). The symbols referred to there are

the modulation symbols that are the elements of MCSK symbols when they are

used.

Another fact worth noting here is that entering a value for the

number of bits per modulation symbol does not cause the symbols to be

formed. To accomplish this the user must answer "yes" to the next question

on whether symbols are to be formed. He must also answer "yes" if he

wishes to include any of the types of coding other than direct-sequence

encoding. There may be occasions when the user may elect not to form

symbols even when he enters a number greater than one for the number of

bits per modulation symbol. One of these is when he wants only one data

bit to be encoded in each symbol but wishes to add direct-sequence encoding

with M-ary (with M > 2) phase modulation (when direct-sequence coding is

57

used a modulation symbol refers to an element of the direct-sequence

modulation). While it is not clear that such a scheme has any advantages,

it is allowed.

7.3.3.1 Inverse Gray Encoding

When there are more than two different modulation waveforms, they

may not be equally distant from one another in the signal space, i.e.

there may be a higher likelihood that noise will cause a waveform to be

interpreted as one wrong waveform than a different wrong waveform. Under

such circumstances it is important to insure that the most likely symbol

errors will result in only a single bit error after symbol decoding, in

order to minimize the bit error rate. If the waveforms are ordered so that

adjacent ones, in terms of symbol number, have minimum distance from each

other, then an inverse Gray encoding of the symbols will accomplish this

goal. This is so because the original symbols (and those after decoding in

the receiver) will have a Gray encoding relative to waveform symbols, which

means that adjacent symbols differ in only one bit. Inverse Gray encoding

is available in MODCOD for this purpose.

7.3.3.2 Differential Encoding

Differential encoding may be performed on symbols as well as bits.

For symbols of N bits, differential encoding consists of adding,

modulo- 2N, the present symbol with the previous encoded symbol. Since

when encoding the first symbol there is no previous encoded one, a zero is

arbitrarily assigned to that encoded symbol.

7.3.3.3 Multiple-Code-Shift Encoding

In MCSK, a number of binary-sequence codes are used to represent

the various data symbols. PSK modulation of the code elements results in

58

the MCSK waveforms. The user specifies the length of the codes (all must

be the same length), and for data symbols of Nb bits per symbol he must

Nb
enter 2 	different binary sequences, one for each data symbol. 	These

should be chosen to be orthogonal to each other (they should have zero

crosscorrelation, at least for zero relative delay), to minimize the

probability of error in the receiver. If the codes are orthogonal the

bit-error-rate performance is identical to that for orthogonal FSK, since

both are forms of non-coherent orthogonal signaling. (When we say

"non-coherent" we mean non-coherent from symbol to symbol; both FSK and

MCSK signals must be coherent over a symbol duration.)

In a special binary differential mode of MCSK, only a single code

is entered, and the same code is used for the two possible binary symbols,

but with a phase inversion for one of them. This is equivalent to DPSK

with the addition of a spreading waveform (the MCSK code), and is really a

form of spread-spectrum modulation. However, the spreading code repeats

from symbol to symbol, and this may be unacceptable in an ECCM system. For

this reason an alternative mode using a non-repeating code is available for

the binary differential MCSK case. In this mode the user does not enter a

code at all, but only a seed (or accepts a default seed) for the 31-bit

maximal-length sequence (M-sequence) generator. For each data symbol

(binary) a new segment of the very long M-sequence is used as the MCSK

code, with its phase determined by the data symbol. The result is

identical to that for DPSK with direct-sequence spread-spectrum

modulation. However, this particular form of MCSK was designed to allow

the use of an MCSK matched filter in the receiver rather than the

correlation de-spreading usually used in direct-sequence systems. This has

certain advantages as will be discussed under the receiver section. While

the modulation could have been produced by the normal direct-sequence

coder, a separate MCSK coder was used for consistency with the receiver

matched-filter demodulator.

The differential MCSK does not use the differential encoder already

described. Differential encoding is included in the MCSK routine.

59

MCSK elements may be given weight greater than one for use with

multi-phase direct-sequence modulation. But MCSK coding always uses binary

elements to produce phase changes of zero or n radians. For example, if

the direct-sequence modulation has four phases, the MCSK elements will be

given weight 2 so that it will affect the phase by zero or 2 times the

phase increment set by the direct-sequence modulation or 2n 12 = n radians.

This weight is automatically computed by the program as one-half the number

of phase states (determined by the number of bits per data symbol).

MCSK encoding will change the data rate reported by the program.

This rate is the rate of MCSK elements per second. These elements are

referred to as symbols by the program. They should not be confused with

MCSK symbols that comprise a number of these elements.

7.3.3.4 Direct-sequence Encoding

In a direct-sequence spread-spectrum system the phase-modulated

data symbols are, in effect, multiplied by a phase-modulated pseudo-random

symbol sequence of much higher rate to produce a new signal with a much

higher bandwidth. In practice this is accomplished by a modulo-2N

addition of the two sequences before phase modulation, where N is the

number of bits per symbol (multiplication of complex waveforms results in

addition of their phases). This spreading of the bandwidth of the

transmitted signal provides advantages in combatting the effects of jamming

and in reducing the probability of intercept. The processing gain against

a jammer of limited total power is equal to the ratio of spread bandwidth

to data bandwidth. This ratio is also equal to the factor by which the

signal spectral power density can be reduced without increasing the error

rate, and hence is a measure of gain against an interceptor. Information

on direct-sequence systems may be found in References [81 and [9].

In the simulation, maximal-length sequences (M-sequences) generated

by a feedback shift register are used for spreading and de- spreading.

These have a length of 2 31 -1 before repeating. Feedback taps are at stages

60

31,30,28, and 16. 	In real ECCM systems such codes are rarely used because

it is too easy to determine the full sequence from a few elements.

Instead, modified codes that are much harder to determine will be used.

However, whatever codes are used, they are not likely to have statistics

significantly different from those of M-sequences, and only M-sequence

generators have been implemented in the simulator at this time.

The spreading symbols are formed from the M-sequence bits by

grouping Nb bits (the number of bits per symbol) into a symbol in the

same way that the data bits are formed into symbols. The same parameter

Nb controls the generation of symbols for both the data and the spreading

code, and these will therefore normally both have the same number of bits

per symbol. However, if the user has not asked for the data to be formed

into symbols (he must still specify Nb) it is possible that the data will

have symbols of fewer bits than the spreading code.

The user specifies the number of spreading symbols per data symbol,

N. This causes Nc spreading symbols to be added modu10-2 Nb

separately to each data symbol to produce Nc output symbols for each data

symbol. The data rate is thus increased by a factor of Nc and the new

data rate is computed and displayed. The spread data is still in the form

of integer data at this point; it is converted to a spread waveform when

PSK modulation is performed later.

7.4 Frequency-Hop Encoding Process (HOPPER)

When frequency hopping is performed, the carrier frequency of the

signal is changed at regular intervals. Each new frequericy is selected

from a set of possible frequencies in a pseudo-random fashion. Frequency-

hopping systems are discussed in more detail in Reference 9. In the

simulator, a 31-bit feedback shift register with feedback from stages 31,

30, 28, and 24 (giving a maximal-length sequence of 231 -1 bits) is used to

generate the pseudo-random numbers for frequency selection. The user

specifies the number of bits, Nf, to be used for the frequency number.

61

Ne This determines the size of the frequency set as 2 '• Bits from the

shift register are taken Nf at a time to form Nf-bit words defining the

particular frequency number (frequencies are numbered 0 to 2
Nf

-1) from

the set. These are multiplied by a user-specified multiplier and added to

a user-specified offset to determine the actual frequency, in khZ, to be

transmitted. For example, if Nf were chosen as 5, the multiplier as 10,

and the offset as 8,000 (these last two need not be integer), then there

would be 32 frequencies in the set, with frequencies 8000 khZ, 8010 khZ,

..., 8310 khZ. 	If the bit sequence 01101 were generated, this would

represent frequency number 13 or 8000 + 13x10 = 8130 khZ. 	The value of

Nf is limited to a maximum of 28 (over 268 million frequencies).

The user sets the hop rate by specifing the number of samples

(complex values) per frequency word. This is limited to a maximum of 1024.

Since the simulation is carried out entirely at baseband, the

simulated signal is not actually hopped in frequency but the samples at a

given frequency are grouped into a block with the first two words of the

block (one complex word) being used to indicate the frequency of that block

and the number of samples in the block. The propagation medium routines

make use of the frequency words 	to determine which propagation

characteristics to apply to the samples in that block. 	The front end of

the receiver also looks at the frequency words to determine whether to

accept the samples (a frequency-hop generator in the receiver determines

receiver tuning).

The spacing between possible frequencies (the multiplier) normally

should not be less than the modulation bandwidth, or the hop rate if that

is greater.

7.5 Propagation Medium Process (MEDIUM)

As an HF propagation medium the ionosphere is characterized by

multipath, Doppler shifts and spreads, and fading. 	Fading is a natural

62

result of the addition of multipath components with different Doppler

frequencies, but fading of individual components is also common as a result

of unresolvable components in the apparently single paths. A frequent

cause of this latter phenomenon is the presence of both ordinary and

extraordinary rays with only slightly different paths. Also, in some

cases, instead of discrete multipath components a time-delay spread exists,

resulting a time smearing of the received signal. These characteristics

are a function of frequency and this complicates the design of

frequency-hop systems.

The simulator attempts to model all these conditions. 	Four types of

path are available, and these may be combined (outputs added). The types

are: perfect transmission (output = input), no transmission (output

amplitude = 0), multiple delays with user-specified fixed gain and Doppler,

and multiple delays with independent Rayleigh fading for each (mean gain,

mean Doppler, and fading rate specified by the user). In the last two

types the initial delay and incremental delay are specified by the user.

When the incremental delay is made much less than the time resolution

(inverse of bandwidth) of the communication system the propagation path

will appear spread in delay to the system rather than comprising discrete

components. These path types will be described in more detail later.

After answering some preliminary questions relating to general

conditions, the user specifies a number of "paths". Each "path" may

actually comprise multiple paths but the term is used in the simulator to

identify a propagation mode, which is then specified over a number of

frequency ranges. For each path, the user is asked the number of frequency

ranges over which it will be specified. The total of these ranges always

covers the the entire frequency range from zero to infinity; this question

only determines how many different ranges the frequency will be divided

into, and allows a maximum of 64 ranges. The user then specifies the

boundaries between the ranges, and the propagation characteristics for each

range. The first range always has a lowest frequency of zero. After

specifying the type and parameters required for that type, the user enters

the lowest frequency of the second range (which also defines the upper

user is asked if he desires

is repeated for path two,

any more

and for

paths. If he does, the above process

many paths as he as The wishes.

63

boundary for the first range), and then the type and parameters for that

range. This process is continued for the number of frequency ranges

specified. The upper boundary of the last range is automatically taken as

infinity. When all of the ranges have been specified for path one, the

boundaries and the number of frequency ranges need not be the same for the

various paths. A number of paths of the same or different type may exist

in any frequency range. This allows not only a number of different modes

to be simulated, but also a modification of the type; for example, Ricean

fading may be simulated by combining a Rayleigh and a fixed path.

The first two path types are simple and need no further

explanation. The last two, the fixed and Rayleigh-fading multiple-path

types, require a more detailed description. This will be provided with the

aid of Figure 7.17 which illustrates the algorithm used. 	A tapped delay

line provides the multiple delays. 	It comprises an initial delay and a

number of equal incremental delays separating the individual paths. 	Each

of the delay taps is multiplied by a complex multiplier which is different

for each tap. For the fixed path these multipliers have fixed amplitude

bût may have a phase that changes at a uniform rate to simulate a Doppler

frequency. In the fixed-path case, switch Si is in the upper position and

its input is unity with imaginary part equal to zero. Thus the

multipliers, Gik, are equal to Akexp(ji0k). Ak is the user-

specified amplitude multiplier, and Ok is the angle by which the phase

increases for each sample. This value, which is also specified by the

user, determines the Doppler frequency of that path (the Doppler is Ok

multiplied by the sample rate).

In the Rayleigh fading mode, switch SI is in the lower position

and its input is a complex Gaussian random variable whose time correlation

is controlled by the filter. This filter, specified by the user, uses the

general filter routine which is described in Section 8.1. The filter

bandwidth is usually quite small to provide typical fading rates (the

INCREMENTAL
DELAY

N2 SAMPLES

INPUT
SAMPLES - 1

INITIAL
DELAY

N1 SAMPLES

INCREMENTAL
DELAY

N2 SAMPLES

INCREMENTAL
DELAY

N2 SAMPLES

Gi2-Ap4y1 	 GI3 --414\in 	• • • GiN3

OUTPUT SAMPLES

Gik = COMPLEX MULTIPLIER FOR ITH SAMPLE
FROM kTH TAP. FOR EACH k, Gik IS
GENERATED AS A TIME SERIES WITH TIME IN-

DEX I. A SEPARATE G o, GENERATOR IS USED

FOR EACH TAP.

COMPLEX

GAUSSIAN
GENERATOR

MEAN = 0

0 2 = 1

Ak = USER-SPECIFIED REAL
MULTIPLIER FOR kTH TAP

tti k = PHASE CHANGE BETWEEN

SAMPLES (DOPPLER) FOR kTH TAP

(USER-SPECIFIED)

Figure 7.17 Multipath Generation

N 3 -1 DELAYS, N3 TAPS

NOTE: ALL DELAY REGISTERS ARE SET
TO ZERO AT THE BEGINNING OF
EACH NEW FREQUENCY BLOCK.

= COMPLEX
MULTIPLIER

samples from the first path, to give 110 samples. a frequency-hop

must be treated

In

at a different block each of samples system frequency

65

bandwidth is approximately equal to the fading rate). 	Section 8.1 on

filtering discusses a type of narrow low-pass filter suitable for use in

this application. The filter should have an integrated-noise-power gain of

unity (as defined in the section on filtering). The term "Rayleigh" refers

to the probability distribution of the magnitude of the multipliers, Gik.

This is the distribution of the magnitude of a complex variable whose real

and imaginary components are independent Gaussian variables of equal

variance. In Figure 7.17 the variance of the Gaussian generator is given

as unity. This is the variance of the complex variable; the variance of

each component is one-half.

The index i is the time or sample-number index and the index k

refers to the tap number. 	A separate generator for the Gik values is

required for each value of k. 	Since the Gaussian generator provides

independent samples, the same Gaussian generator is shared among the

various Gik generators.

In the Rayleigh mode the amplitude multiplier, specified by the

user, determines the rms value of the tap output for unit input. 	The

o f IGiki

of unity if a filter with unity integrated-noise-power gain is used. The

Doppler phase increment, also specified by the user sets the mean Doppler.

For both fixed and Rayleigh modes, the amplitude multiplier has a minimum

of zero and a maximum of one.

Since the propagation-medium simulation allows more than one delay,

Gaussian process generating the Gik will provide an rms value

the output will contain more samples than the input. For example, if the

input contains 100 samples and the medium has two discrete paths with

delays of zero and 10 samples, then the simulation will produce 100 samples

from the first path and 110 from the second (the first 10 will be zero).

These will of course be combined, with zeros added to the end of the

separately. The frequency word in each block of samples is examined to

determine which set of medium characteristics is to be applied to that

66

block. Now we have extra samples for each frequency-hop block, the ones at

the end of one block overlapping in time index with those at the beginning

of the next block. These cannot be combined at this time since the

receiver must treat the different frequencies differently. Therefore it is

necessary to carry separate blocks of samples of different lengths and

overlapping time index values. The program keeps track of the total number

of samples and informs the user of this value.

7.5.1 Medium Parameter Files

To assist the user in entering medium parameters, a medium

parameter file feature has been created. The user may enter the medium

parameters either from the terminal or from a file. To create a file, the

user must process the data with the parameters entered from the terminal.

The medium parameter files are similar to the output parameter files in

that they are in ASCII format and can be looked at either by typing them or

editing them. The file header takes the same form as in the output files.

The user should be careful about changing the file format when editing,

otherwise the program may not accept the edited file. Only one ASCII

medium parameter file can be used each time the medium process is used. In

other words, a medium parameter file contains the parameters for all the

paths, not just one.

7.6 Receiver Process (RECVR)

7.6.1 Introduction

As mentioned earlier, the receiver process is a sequential one and the

data is passed, one sample at a time, through the entire process. This is

required because there is feedback in the synchronization systems;

computations on the data at one point affect the parameters at an earlier

point. Thus, the entire receiver must be specified before processing is

67

begun. 	This does not affect the way the user enters the specifications,

but means that instead of having to wait, while each sub-process completes

its computations, before he enters specifications for the next sub-process,

he enters a much larger number of parameters, and then must wait a much

longer time for the computations to be completed. Of course, under batch

processing there is no difference.

A feature present only in the receiver is the Monitor feature which

provides a screen output of various receiver quantities updated in place at

a rate specified by the user. Its purpose is to allow the user to keep

track of the progress of the simulation and to determine the performance of

various parts of the receiver as an aid in deciding whether to stop the

simulation and change parameters. It is useful when the simulation is

first being set up to speed up any trial-and-error tests that may be

required. Of course, the Monitor feature may be used only in the

interactive mode.

Another feature unique to the receiver is the Display feature which

permits the user to select one of a number of internal values of the

receiver (for example AGC gain or demodulator tracking voltage), and have

this recorded so that it can be examined when the run is finished. The run

can also be stopped at any time and the values examined. Some statistical

parameters, including histograms may be computed during the examination.

The Display feature may be used in the batch mode. The Monitor, Display,

and run control features will be described in more detail in a later

section.

A general block diagram for the receiver process is shown in Figure

7.18. This is intended to indicate the general configuration. Where a

number of functions are included in a block, those functions are indicated

in brackets under the name of the block. Each of the blocks, will be

described in more detail later. Any of the blocks (and even portions of a

block) may be omitted in a run. The central line of blocks indicates the

functions that may be applied in sequence to the signal. Below these are

the blocks that perform the synchronization functions by controlling delays

FRONTFRONT END
(DEHOPPING)

(INTERFERENCE)
(FILTERING)

ADAPTIVE
EXCISION

FILTER

WIDEBAND
AGC I-11W

BANDWIDTH
REDUCER

(DESPREADING)
(FILTERING)

NARROWBAND
AGC

LOCK
STATUS

DELAY CONTROL

MCSK
MATCHED-

FILTER
DEMODULATOR

l.

INPUT-NPUT - NORMAL
DEMODULATOR

0

• DELAY

	

--I DELAY ï 	ERROR

	

CONTROL 	 AND
LOCK VOLTAGE

(MAGNITUDE)2

LOCK 	
STATUS

FREQUENCY-
HOP

ACQUISITION

T DELAY
CONTROL

DIRECT
SEQUENCE

SYNCH.

LOCK
STATUS

SYMBOL
SYNCH.

DELAY
CONTROL 	Î

f DELAY

DELAY CONTROL FROM
SYMBOL SYNCH. OR

MATCHED FILTER

DELAY
CONTROL

Figure 7.18 Receiver General Block Diagram

69

of the various reference signals. 	The switching is intended to indicate

which references may be controlled by which synchronization systems. 	In

general, any synchronization system may be used to control the delay in a

device of the same or lower time-delay resolution. Not shown are the

connections indicating how acquisition systems may pass delay estimates to

others, as, for example, when a frequency-hop acquisition is performed and

its delay estimate used to set the initial delay for the direct-sequence

acquisition. The upper block, the MCSK matched-filter demodulator, is an

alternative to the normal demodulator when MCSK modulation is used. It

allows demodulation at a number of different reference delays, and

combining to provide a type of diversity under multipath conditions.

The individual blocks of Figure 7.18 will now be described in more

detail. After that the interactions between blocks will be discussed. The

various synchronization systems involve such interactions.

7.6.2 Front End

The functions carried out in the receiver front end are shown in

Figure 7.19. Any of the functions may be selected or omitted by the user.

The first function is de-hopping of the carrier frequency. The de-hopper

reads the frequency word from each block of input samples and compares it

with the frequency word from the receiver frequency-hop generator, which

indicates the frequency to which the receiver is tuned. If the two words

are the same the samples in that block are passed, and if not they are

rejected (set to zero). A number of different blocks may contribute to the

output at a given instant, since, as explained in the section on the

propagation medium, different blocks may overlap in time. The samples

passed by the de-hopper must be recombined to provide a single sequence of

samples uniformly spaced in time. The number of samples is therefore

reduced by the de-hopper to essentially the number that existed before the

propagation medium (there may be a few more as a result of the stretching

of the signal at the end by propagation delays).

DELAY JAMMING NOISE

FILTER DECIMATOR INPUT-01 DEHOPPER

FREQUENCY• HOP
DELAY CONTROL

FREQUENCY-
HOP

GENERATOR
FREQUENCY TABLE

TO

MONITOR

MEAN
MAGNITUDE »b.- TO MONITOR

OUTPUT

Figure 7.19 Receiver Front End o

71

The frequency—hop words from the generator are delayed before

entering the de—hopper. This is to allow synchronization with delayed

input samples. The receiver frequency—hop generator should be started with

the same seed used for the generator in the transmitter (HOPPER). This can

be accomplished with the default seed or identical user—specified seeds.

The delay may be set at the start of the run by the user, or dynamically

controlled by one of the synchronization systems as will be described

later. Delays are specified in number of samples.

Following de—hopping, noise and jamming may be added. The noise and

jamming waveforms available have been described earlier in Sections 3.4 and

3.5 respectively. The noise and jamming parameters may be set

independently for a number of different frequency ranges to accommodate

frequency hopping. It is important to understand that the parameters are

controlled by the frequency—hop words generated in the receiver rather than

those accompanying the signal. This is because the noise and jamming

depend on the frequency to which the receiver is tuned, and not on the

frequency of the signal. This control is shown in Figure 7.19 by the line

from the delayed hop words to the frequency table, which contains the

information on parameters as a function of frequency.

For a given signal voltage, the noise voltage required to provide a

given value of bit—energy—to—noise—power—density ratio (Eb/No) depends

on the number of samples per data bit and the type of shaping used on the

modulation symbols. An equation for calculating the required noise voltage

is derived in Appendix A.

A filter and decimator are included in the front end. 	These are

general—purpose devices which can be programmed for the desired response.

They are described in Section 8.

A Monitor signal point is provided in the front end just after the

de—hopper. Its output - is referred to as "average de—hopped sample voltage

between updates". This is the mean value of the magnitude averaged over

the user—specified interval between updates.

72

7.6.3 Bandwidth Reducer

The functions of the bandwidth reducer are to remove the direct-

sequence spreading, and to provide inputs 	to the direct-sequence

synchronization system. These are shown in Figure 7.20. The de-spreading

takes place in the top channel. 	The input signal is multiplied by the

complex conjugate of the delayed direct-sequence reference signal. 	This

reference is produced in the bottom row of components by modulating the

binary sequence from a generator, identical to the one in the transmitter,

in a PSK modulator and delaying it by an amount intended to equal any

delays experienced by the received signal. The user should use the same

seed for the reference generator as he used in the generator in the

transmitter, either by entering identical seeds, or by accepting the

default seed in both places. The de-spread waveform is filtered and

decimated to reduce its bandwidth to a value corresponding to the expected

bandwidth of the de-spread communications signal. The user must choose a

decimation rate equal to the spreading ratio (the number of spreading

elements per data symbol). The decimation rate selected provides the

information for the set-up of the modulation and sampling of the reference

signal.

Although correct de-spreading of the communications signal should

reduce its bandwidth to the desired value, it will not reduce the bandwidth

of interference or of signal components at different delays. Therefore, it

is necessary to precede the decimation with filtering to prevent aliasing.

The filter specification is left to the user. He should insure that no

significant energy is passed at frequencies beyond half the after-

decimation sample rate. If direct-sequence acquisition and tracking are to

be used, the filter bandwidth should be made as small as possible without

seriously affecting the spectrum of the data symbol, and the filter

should have reasonably linear phase. The matched filters in the

demodulators assume that the symbol spectrum has not been distorted. As a

minimum, all frequencies from minus the data symbol rate to plus the data

symbol rate should be passed without significant change. A useful

modification to the simulator would be a separation of the specifications

ALL MULTIPLIES
ARE COMPLEX

CONJUGATE
MULTIPLIES

1
DECIMATOR MAGNITUDE LOCK DETECTION

INPUT VOLTAGE
(TO D.S. SYNCH.)

V L2

F-O-OW 1-111>i FILTER (H* -111

()2 INPUT FILTER DECIMATOR MAGNITUDE

VT2 ()2 FILTER MAGNITUDE DECIMATOR

DIRECT-

SEQUENCE

REFERENCE

GENERATOR

PSK

MODULATOR

DELAY

(OFFSET)
DELAY

(DIFFL)
DELAY

(DIFFL)

ROOT

MAGNITUDE
WITH

SIGN OF
INPUT

"DIRECT-SEQUENCE

TRACKING VOLTAGE"
(TO MONITOR)

TO MONITOR 4 	 DELAY CONTROL FROM

D.S. SYNCH.

lb- SIGNAL OUTPUT

"SAMPLE VOLTAGE BEFORE

ANY NARROW BAND AGC"

(TO MONITOR & DISPLAY)

cp D.S. TRACKING

ERROR SIGNAL
(TO D.S. SYNCH.)

Figure 7.20 Receiver Bandwidth Reducer

74

for the main signal channel (which should have a wide filter for

anti-aliasing) and the other channels used for acquisition and tracking

(which should have filters matched to the data symbol spectrum as explained

in the section on direct-sequence acquisition and tracking). The use of

the filter specification and design routines is covered in Section 8.1.

The magnitude of the de-spread and decimated signal is provided to the

Monitor and to the Display. It is referred to in these facilities as

"voltage before any narrowband AGC". The square of the magnitude is fed to

the direct-sequence synchronization system where it is used to determine if

the tracking is in lock. It is also used in one of the two available

tracking systems to generate an error signal, as will be discussed later.

Two other channels, identical to the top one, are provided for use in

a delay-lock-loop tracking system. These use early and late references in

their de-spreading, spaced by a user-specified differential delay on either

side of the main-channel delay. 	The letters P, E, and L in Figure 7.20

refer to present„ early, and late respectively. 	The early and late

references remain at fixed delays relative to the offset delay which may be

set by the user or controlled by the synchronization system, depending on

the receiver mode. The squared magnitudes of the signals from the early

and late channels are subtracted to provide an error signal for use by the

direct-sequence tracking system. 	The tracking system is described in

Section 7.6.7.4. 	The square-root of the magnitude of this error signal

with the sign set to that of the error signal is provided to the Monitor.

This voltage is referred to as "direct sequence tracking voltage".

An alternative to the delay-lock loop tracking is the Tau-dither

system. This generates an error signal by alternately advancing and

retarding the reference delay in the main channel and providing the

resulting squared-magnitude voltages to the synchronization system, which

uses them to generate an error voltage. This method has the advantage of

requiring only one channel instead of the three of the delay-lock loop

method, but has the disadvantages that the error signal is generated at

only half the rate, and that the signal voltage to be used in demodulation

75

will have some loss since the reference is always slightly early or

slightly late.

7.6.4 Demodulator

7.6.4.1 General

Demodulation in the simulator is based on correlation of the received

signal with the various expected un-degraded symbol waveforms. Integration

is over exactly one symbol duration. The reference waveform generating the

greatest correlation indicates which symbol has the highest likelihood of

being the one sent. One type of demodulator, that for DPSK, does not quite

fit the above description since it uses as a reference the delayed input

waveform from the previous symbol interval rather than an un-degraded

reference waveform.

A special demodulator is available for MCSK signals. We call this a

matched-filter demodulator because it computes the correlation at a number

of delays, to provide an output waveform as from a filter. The samples of

this output waveform are then combined to exploit multipath conditions as a

kind of diversity.

Figure 7.21 defines the correlator that is a common component of all

the demodulators. Since the signals are complex, the complex conjugate of

the reference is taken before the complex multiplication is performed. And

since the signals are sampled ones, the integration takes the form of a

summation over the Ns samples contained in each symbol. The integration

is always coherent in the sense that amplitude and phase are used in the

summation. In certain cases the demodulation is referred to as non-

coherent because the phase of the resulting correlation is ignored in

determining which symbol is most likely. This may be necessary where the

propagation medium causes rapid phase changes in the received signal and

these cannot be tracked. It is important to understand, however, that the

COMPLEX
CONJUGATE

COMPLEX
MULTIPLY

SUM OVER
N s SAMPLES

t
SYMBOL
TIMING

INPUT
SAMPLES

-00.- OUTPUT
(ONE COMPLEX NUMBER FOR

EACH N s INPUT SAMPLES)

REFERENCE
SAMPLES

Figure 7.21 Correlator for Demodulator

77

phase must be stable over a symbol interval for the demodulator to perform

satisfactorily, whether it is coherent or non-coherent.

7.6.4.2 FSK Demodulator

The FSK demodulator will be discussed first because

general, that is, it does not have any simplifications made

nature of the modulation as some others do. Thus, it best

general principles of the demodulation scheme used in the

operations performed by the FSK demodulator are indicated

If there are Nb bits encoded in each symbol, the integer
Nb

0, 1, 2, ..., 2 -1. 	The demodulator must test the input against the

waveforms corresponding to each of these symbols. In the lower left of the

figure the counter holds an integer representing the symbol to be tested .

It is first reset to zero (the first symbol) and the modulator generates

the corresponding FSK waveform which is then correlated with the incoming

samples (S1 is in position 1). 	Since the correlator integrates exactly

Ns samples, it must be told when to start. 	The start is synchronized

with the change of symbol in the counter, which is controlled by a signal

from one of the synchronization systems. 	Synchronization is discussed in

Section 7.6.7; in the present description correct synchronization will be

assumed. 	The output of the correlator after Ns samples is a single

complex number. 	In the FSK demodulator non-coherent demodulation is

performed; therefore, only the magnitude of this complex number is passed

to the first register. After N s samples, the counter is incremented and

the process is repeated for reference symbol 1. Rut since this reference

symbol must be correlated with the same input symbol, the input symbol is

recirculated with SI in position 2 (there is no loss of input data in

this process since the simulation is not in real time and the input data

simply waits whilé the remainder of the demodulation of the symbol

proceeds). The result of the second correlation is stored in register 2,

and the process is repeated until all 2
Nb

symbols have been tested.

The decision on the output symbol is simply one of determining which

register contains the largest value, and choosing the symbol that was used

it is the most

possible by the

illustrates the

simulator. The

in Figure 7.22.

symbols will be

SHIFT 	I
REGISTER

N, SAMPLES n 217

Ns = NO. OF SAMPLES PER SYMBOL
S1 IN POSITION 1 FOR FIRST N s SAMPLES

IN POSITION 2 THEREAFTER
NT = NO. OF POSSIBLE TONES

DIVIDE
BY
N s

SAMPLE CLOCK

INPUT —00-derAl-ii

SAMPLES 1 	 4

SYMBOL START

10-4111-11.-1

RESET

COR RELATOR

COUNTER

t SYMBOL TIMING

MAGNITUDE

STEP

c 4
NT

REGISTER

Li REGISTER I 	»,

•

•

•

1-111 REGISTER

DETERMINE
SYMBOL

FROM
LARGEST
REGISTER

VALUE

SELECT
LARG EST

 VALUE AND
DIVIDE BY

N s TO GIVE
TRACKING
VOLTAGE

1--»-SYMBOL

—0-DEMODULATOR
TRACKING
VOLTAGE

FSK
MODULATOR

RESET

Figure 7.22 FSK Demodulator

79

as a reference in producing that value. 	The largest register value,

divided by the number of samples per symbol, Ns , is output as the

"demodulator tracking voltage" for the Monitor and Display.

7.6.4.3 MFSK Demodulator

The MFSK demodulator is identical to the FSK one except that the

symbol is divided into sub-symbols each of which is represented by the

transmission of one tone out of a possible 2
N,

 - tones, where Na is the

number of bits encoded in each sub-symbol. The number of sub-symbol tones

to be tested becomes the number of sub-symbols per symbol times 2
N
a.

After correlation, the register values are grouped into groups of 2
N

and the sub-symbols are determined from the largest value in each group;

then the symbol is formed from the sub-symbols. To generate the

"demodulator tracking voltage" the largest register value in each group is

selected, and the mean of these is computed and divided by the number of

samples per symbol, Ns .

7.6.4.4 MSK Demodulator

Coherent MSK demodulation has not been implemented at this time. If

MSK demodulation is selected the noncoherent FSK demodulator is used and

the tone spacing is automatically set to the correct MSK value according to

the symbol length.

7.6.4.5 PSK Demodulator

The PSK demodulator is simpler than the FSK one because the PSK

waveforms differ from each other only in their phase. The correlation

between two different symbol waveforms will have unit magnitude and a phase

that is equal to the difference between their phases. Thus, it is only

necessary to correlate the input signal with one reference symbol

symbol duration. The integration for

reference. The integrat ion over a

the multiplication in th'is in case

80

waveform. The decision on the received symbol is based on the phase of the

correlation value. The process is shown in Figure 7.23. Symbol 0 is used

to form the modulated symbol waveform, and the phase of the correlation is

examined to determine the symbol. The symbol whose phase is closest to

this value is taken as the received symbol. As an example, consider the

case of a PSK modulation with two bits per symbol. The integer symbols

will be 0, 1, 2, and 3, and the phases of the corresponding modulated

symbols will be 0, n/2, n, and -n12. Then if the phase after correlation

is between -n/4 and n/4 the received symbol is taken as 0; if it is between

e14 and 3n/4, it is taken as 1; if it is between 3n14 and -3n/4 it is taken

as 2; and if it is between -3n/4 and -n/4 it is taken as 3. The magnitude

of the correlation, divided by the number of samples per symbol, is taken

as the "demodulator tracking voltage".

7.6.4.6 DPSK Demodulator

The DPSK demodulator, shown in Figure 7.24, is similar to the PSK

demodulator but it uses as a reference signal the previous input symbol,

obtained by delaying the input by one

the correlation is performed before

order to minimize the noise in the

symbol may be considered a matched-filtering operation on the symbol, and

this results in only a single pair of samples to be multiplied. 	If the

integration were performed after the multiplication, additional noise would

be generated by the product of noise components outside the signal

bandwidth. The uniform integration used is equivalent to a matched filter

for a rectangular symbol.

symbols this filter will not

occur. 	In this case the

If shaping has been used on the modulated

be matched to the symbol and some loss will

samples integrated should be weighted in

accordance with the symbol shaping function, but such a scheme has not been

implemented in the simulator at this time. The same effect can be acheived

if the demodulator is preceded by a filter that, when combined with the

integration filter (which has a sin x/x response), will give an overall

INPUT 	
SAMPLES CORRELATOR

PSK
MODULATOR

SYMBOL
START —

COMPUTE
PHASE

SELECT SYMBOL
--01" 	CLOSEST IN

PHASE

1---0n-SYMBOL

COMPUTE
MAGNITUDE &
DIVIDE BY N s

DEMODUL ATO R
TRACKING
VOLTAGE

SYMBOL
=0

Figure 7.23 FSK Demodulator
CO

Fi
g
u
r
e
 7
.
2
4
 D
P
S
K
 D
e
m
od
u
l
at

or

cl)

cn

3
-0 "a

c
m

cn 0
> <
3 m
-a e
r-
m z
(no

(I) Z
> >Q)

g — M
Z

r-
m

• cn
03
0

cn
(n

w
—40

o
0

-a
C

É

0 c
n

co

m

3
0

n.
LI

N
O

V
IN

c>1

82

E <
0 > 0
1— 0

0 12;
M 0

0

o
E

> -0
cn
m

ZCI) œm cn
m 0

m

cn

3

0

83

response matched to the shaping function spectrum. 	The filters available

in the front end and in the bandwidth reducer can be used for this purpose.

Since in DPSK the data symbol sent differs from the previous one by

the symbol intended (the symbol before differential encoding), the

correlation phase, which is the phase difference between the input and the

reference symbols, indicates the intended symbol, and the symbol

determination is the same as for PSK. The square root of the magnitude of

the correlation, divided by the number of samples per symbol, is used as

the "demodulator tracking voltage" in this case, since both inputs to the

correlation product are received signals.

An important difference between the PSK and DPSK demodulators is that

in the latter the reference has suffered degradation by noise and

interference. This results in poorer performance than for coherent PSK.

The bit-error-rate curves [10] show a loss of about 1 dB relative to PSK

for error rates around 10
-4 .

7.6.4.7 MCSK Demodulator

The MCSK demodulator, shown in Figure 7.25, is similar to the FSK

demodulator. Instead of an FSK modulator, it uses a PSK modulator driven

by an MCSK code generator. 	The user must specify PSK when asked the

modulation type before he is asked about the MCSK parameters. 	The

correlation is performed on the entire MCSK waveform comprising a number of

PSK modulation symbols. The input shift register and the divider use the

number of samples per MCSK symbol, Ne , rather than the number of samples

per modulation symbol, for both length and divisor. Each of the MCSK

waveforms is generated in turn as the correlator reference and the largest

correlation value Is used to determine the received symbol. The largest

value, divided by the number of samples per symbol, is also output as the

"demodulator tracking voltage". A special version of the MCSK demodulator

is available as an alternative. This is referred to as the "MCSK matched

SYMBOL TIMING

PSK
MODULATOR

MCSK
GENERATOR

COUNTER

,nn•

SHIFT
REGISTER

Ne SAMPLES 2r
CORRELATOR

SAMPLES 1

• MAGNITUDE of-re---.---** 	REGISTER —0-n

s21 WI
1 •

1

REGISTER 	•

•

•

•

1-11 REGISTER

•DETERMINE
LARGEST

TO
DETERMINE

SYMBOL

SELECT
LARG EST

VALUE AND
DIVIDE BY

Ne TO GIVE
TRACKING
VOLTAGE

--•.-DEMODULATOR
TRACKING
VOLTAGE

!--PwSYMBOL

STEP

RESET

RESET—el

DIVIDE
BY
Ne

N, = NO. OF SAMPLES PER MCSK SYMBOL
S1 IN POSITION 1 FOR 1 51 Ne SAMPLES

IN POSITION 2 THEREAFTER

SAMPLE CLOCK

Figure 7.25 MCSK Demodulator

85

filter demodulator", and will be described in Section 7.6.4.9.

7.6.4.8 FEK Demodulator

Frequency-Exchange Keying (FEK) is a special form of demodulation for

FSK signals that permits improved performance when selective fading

exists. It treats a binary FSK signal as a pair of on-off keyed signals

and combines the results as diversity signals. An estimate of signal and

noise in each of the two channels is used to adjust the combining ratio.

The FEK demodulator is identical to the MFSK demodulator of Figure

7.22 to the left of switch S2. 	The part to the right is replaced by the

shown in Figure

Figure 7.26 is shown in

7.26. The algorithm performed by the assessors of

Figure 7.27 in flow-diagram form. Multiple tones

process

can be accommodated as a number of binary sub-symbols. Each of the binary

sub-symbbls is demodulated by a pair of assessors, one for the mark and one

for the space (marks and spaces are used here to refer to the two symbols

of the binary alphabet, instead of ones and zeros). These assessors are

identical except for the sign of the output. A brief description of the

algorithm of Figure 7.27 follows.

An estimate of the signal-plus-noise level and of the noise level

is updated for each new input sample. These estimates are Max and Min and

are based on the assumption that when no signal is present in that channel

Min will be updated, while when signal is present Max will be updated. Max

and Min are made to decay toward Mean, the mean value of Max and Min, with

a user-specified time constant, T2. When a new sample is above Max or

below Min, Max or Min is updated by adding a fraction of the difference

between the sample and Max or Min. 	This fraction is a function of a

user-specified attack. time-constant T1. 	The output for each new input

sample is taken as the difference between the input sample and Mean if the

assessor is in the mark channel and the negative of this if it is in the

space channel.

INPUT FROM
COR RELATOR,
MAGNITUDE

OF MFSK
DEMODULATOR

1 •

2 •
3 •

•
4 •

°2 	• • •
2L.

Ysi

•
•
•

I SPACE
ASSESSOR

SUBSYMBOL L

YR11 MARK
ASSESSOR

SUBSYMBOL 1

LI SPACE
ASSESSOR

SUBSYMBOL 1

SYMBOL DECODER

DETERMINE iTH
SUBSYMBOL FROM:

VI = Ypai + Ysi.
IF Vi POSITIVE

DECLARE "MARK"
IF Vi NEGATIVE

DECLARE "SPACE':

11n100.1
MARK

ASSESSOR
SUBSYMBOL 2

YM2
----Ow FORM SYMBOL

FROM SUBSYMBOLS
SYMBOL

YS2 SPACE
ASSESSOR

SUBSYMBOL 2

COMPUTE
TRACKING
VOLTAGE

_

iC
YSL

r--101- DEMODULATOR
TRACKING
VOLTAGE

Figure 7.26 Changes to MFSK Demodulator for FEK

MAX = MAX

+k1 (X-MAX)

Yir

MAX = MEAN
+k2 (MAX-MEAN)

MIN = MEAN
+k2 (MIN-MEAN)

MIN = MIN
+k1 (X-MIN)

I 	MEAN
= (MAX + MIN)/2 I

X = INPUT SAMPLE
Y = OUTPUT SAMPLE

MAX, MIN, AND MEAN SET TO
ZERO AT BEGINNING OF A RUN
k1 = ATTACK TIME-CONSTANT

COEFFICIENT
= 1-EXP(-11T1)

WHERE Ti = ATTACK
TIME CONSTANT

k2 = DECAY TIME-CONSTANT
COEFFICIENT

= EXP(-111.2)
WHERE T2 = DECAY
TIME CONSTANT

Ti AND T2 SPECIFIED
IN NUMBER OF SYMBOLS
(MAY BE NON-INTEGER)
LIMITS: l< T2e 4000

< Tr< T2

ONE PASS IS MADE THROUGH
THIS DIAGRAM FOR EACH NEW
INPUT SAMPLE

THERE ARE SEPARATE ASSESSORS
FOR MARK AND SPACE

87

Y = X-MEAN

Figure 7.27 Flow Diagram of FER Assessor Algorithm

88

In the symbol decoder the outputs of the mark and space assessors

are added and the decision for mark or space (one or zero) is based on the

sign of the result, with positive indicating mark. If there are multiple

tones, the sub-symbols from each pair of assessors are then used to form

the decoded symbol by combining them as bits of a multi-bit number and

outputting the symbol corresponding to that number. The "demodulator

tracking voltage" is computed from the mean of the sums of the outputs of

all the mark and space assessor pairs.

The user must specify the attack and decay time-constants T1 and

T2. T2 should be large enough to hold the estimate over any long

periods between marks or spaces. On the other hand, if it is too long it

will not be able to follow the fades. Therefore, it should correspond

roughly to the shortest fade periods expected. T1 should be low to allow

the assessor to follow the fading changes even when either marks or spaces

are infrequent (Max can be updated in the mark channel only when marks are

present and Min can be updated only when they are not). This means it

should be a small fraction of the shortest expected fade period. However,

if T1 is too low, noise or interference spikes will degrade the estimate.

7.6.4.9 MCSK Matched-Filter Demodulator

The matched-filter demodulator performs time-domain correlation by

means of frequency-domain processing. This results in the computation of

the entire cyclic correlation function for the number of input samples the

user specifies, rather than at just the single delay used in the other

demodulators. The output correlation function in the time domain is

windowed to select only a portion of it to be used for symbol determination

and delay tracking.

The process is depicted in Figure 7.28. 	In this figure broad lines

are used to represent block transfers and narrow lines are used to

represent serial ones. In the simulator, all processes in the receiver are

in reality serial; that is, for each new sample each of the operations in

DELAY CONTROL
FROM M.F. TRACKING LOGIC

SHIFT REGISTER
VARIABLE 	SERIAL INPUT/BLOCK OUTPUT

DELAY ›.--e• 	AFTER Nan SAMPLES INPUT,
OUTPUT NFT, DISCARD OLDEST Nine

DIFFERENTIAL
PROCESS

STORE
NFT 	\. FFT

SAAIPLES

COMPLEX
MULTIPLY

N FT

COMPLEX
CONJUGATE

FFT

fNFT

ACCUM
Nu SAMPLES

FILL TO NFT
WITH ZEROS

2

REGISTER

Nw

0.

REGISTER
2NC

• DEMODULATOR TRACKING VOLTAGE
NORMAL MODE:

2NC
VT re MAX {Y 1 }1Nms

j = I

SELECT
FIRST

Nw
SAMPLES

INVERSE
FFT

tic = NO. OF BITS ENCODED INTO AN MCSK SYMBOL
Nms NO. OF SAMPLES PER MCSK SYMBOL (MODULATED)
NFT NO. OF SAMPLES TO BE TRANSFORMED NFT >N

POWER OF TWO
Nw = NO. OF SAMPLES IN M.F. WINDOW

-.----•••= SERIAL TRANSFER
•n13111111. = BLOCK TRANSFER

THRESHOLD
AND

INTEGRATE SYMBOL
SELECTION

AND
MATCHED

FUSER
TRACKING

LOGIC

DEMODULATOR
*- TRACKING

VOLTAGE •

SYMBOL

TRACK
'INDICATION

DELAY CONTROL
TO OTHER SYSTEMS

h—II.DELAY CONTROL
TO M.F.
INPUT _ _

DIRECT.
SEOUENCE

GENERATOR

DIFFERENTIAL MODE:

VT = WÎINIIII

McSK
SYMBOL '• •

INPUT
SAMPLES

USER-SPECIF1ED BINARY SEQUENCES

Figure 7.28 MCSK Matched-Filter Demodulator

90

the receiver is updated in turn, but some of these operations consist of

accumulating samples until a certain number have been obtained and then

performing a block process on them before passing the resulting samples,

one at a time, to the next operation. Functionally, however, this

processing may be considered to be done in blocks, with a parallel transfer

of the output to the next operation.

Correlation is performed by converting both the input signal and the

MCSK symbol reference to the frequency domain by means of a fast-Fourier-

transform routine, and multiplying sample by sample. An inverse transform

converts the result back to the time domain. The number of samples

transformed, NFT, which must be an integer power of two, is specified by

the user. The resulting NFT complex values, after return to the time

domain, represent the cross-correlation function at sample points separated

in time delay by the time between input samples. Only the first Nw

(specified by the user) of these correlation samples are retained in the

subsequent windowing operation. The correlation is performed once per

MCSK symbol, but the block of samples used in each transform, NFT, must

be larger than the number of samples per MCSK symbol, Nms (Nms is equal

to the number of samples per modulation symbol times the number of elements

- modulation symbols - in each MCSK code). The shift register at the

upper left of Figure 7.28 forms the input samples into blocks for the

transform. 	This process is clarified in Figure 7.29, by an example in

which N 	5 and NFT = 8 (these numbers are much too low to be

realistic, but it is easier to illustrate the process with small numbers).

The upper boxes represent the shift register in some arbitrary nth

iteration. Samples Si to Si + 7 are in the register (note that the

samples advance to the right in the register, and, therefore, time

increases to the left). These 8 samples are the next to bè transformed.

After 5 new samples have entered the register the situation is as shown in

the lower boxes. Si+ 5 to Si i.7 are still in the register and take part

again in the next transform. Thus the correlation functions for succeeding

MCSK symbols involve overlapping input blocks, each larger than the MCSK

symbol, and with the start of each block advancing by exactly one MCSK

symbol duration.

t

INPUT ----10.
SAMPLES Si + 7 	Si + 6 	S1 4.5 	Si + 4 	Si+3. 	542 	Si + .1 	Si

,
nth ITERATION

5i+12 	S1+11 	S1+10 	S1+9 	Si + 8 	Si4.7 	S14.6 	S1 + 5 n + lth ITERATION

« N ms = 5

NFT = 8

Figure 7.29 Data Blocking for FFT

92

Returning to Figure 7.28, we see that the reference waveform is an

MCSK symbol and will therefore have a length of Nms samples. Zeros are

added to the end of this to fill it to the transform length of NFT.

This, along with the windowing of the correlation output, prevents problems

caused by the cyclic nature of the FFT. There are two modes of MCSK symbol

generation, repeating and non-repeating. In the repeating mode S3 is in

position 1 and the user-entered codes stored in the MCSK symbol 0 to MCSK

symbol 2
N
c-1 are switched in turn by S4 to the modulator. Each

reference waveform from the modulator is multiplied in turn by the same

input block stored in the box preceding the FFT to produce a correlation

function. After windowing, it is processed by the threshold-and-integrate

box and stored in one of the registers (S2 changes in unison with S4).

When all of the MCSK reference symbols have been tried, the values in the

registers are used to determine the symbol and to update the tracking if it

is used. Then, the next Nsm input samples are entered into the shift

register and the process repeated for the next symbol.

If differential demodulation has been chosen, SI will be in position

2, and the differential-process box is inserted. This process, shown in

Figure 7.30, multiplies the correlation function of the present symbol by

the complex conjugate of that of the previous symbol to extract the phase

difference from which the intended symbol is derived in the subsequent

boxes of Figure 7.28. When differential demodulation is used, only binary

coding is allowed (one MCSK symbol and the symbol reversed in phase).

Then, S2 and S4 are fixed and only one register is used.

If non-repeating codes are selected the binary differential mode must

be used. 	In this case S3 of Figure 7.28 is in position 2 and the

direct-sequence generator is used as the symbol generator. 	Successive

segments of the binary sequence, of length equal to that specified for the

MCSK symbol are used to generate the reference. The same seed should be

used for the sequence generator for both the transmitter and the receiver.

Figure 7.31 describes the algorithm used in the threshold-and-

integrate box. 	When normal (not differential) demodulation is used, the

STORE Nw
VALUES

(ONE SYMBOL)

COMPLEX
CONJUGATE

L-0n•

COMPLEX
MULTIPLY

OUTPUT INPUT -.0.-e-ii.

Figure 7.30 Differential Process in
MCSK Matched Filter

j = 1

TRACKFLAG = 0

Nw

 lxii

w =1

Nsy = 1

Nw

j = E X i , IX i i?..XT

i=1

= MAX (Xil, i = 1, Nw
TRACKFLAG = 0

TRACKFLAG =1

NO

YES

EXIT

Figure 7.31 Threshold-and-Integrate Algorithm

ENTER

94

N w

Yi = E
i=1

SET THRESHOLD
XT = K./.L.

YES

Nw = NO. OF SAMPLES IN WINDOW
/.1.= MEAN MAGNITUDE
K = RATIO OF THRESHOLD TO MEAN
Xi = INPUT SAMPLES
Yj = INTEGRATED OUTPUT FOR

jth REFERENCE SYMBOL
Nsy = NO. OF REFERENCE SYMBOLS
TRACKFLAG zr. FLAG USED IN

TRACKING LOGIC.
TRACKING INHIBITED
WHEN = 0

j = j +1

is

The

value of k between 1.5 and 3 is usually satisfactory.

computed for only one reference

For simplicity, the

correlation outputs mean is symbol. The

95

magnitude of the windowed correlation function from each reference symbol

is integrated to give a magnitude for that symbol. A threshold based on an

estimate of the noise is used to remove from the integration those samples

for which the signal-to-noise ratio is estimated to be small. If none of

the samples exceeds the threshold the largest sample is taken as the

output, and if this occurs for all reference symbols a flag is set to

inhibit delay tracking (performed by the symbol-tracking logic to be

described

reference

is in the

performed

result is

later). 	When differential demodulation is selected only one

symbol is used in the correlation and the important information

phase of the integrated value. Consequently, the integration

rather than on the magnitudes.

a complex value used by the symbol-selection logic.

on the full complex values

The threshold is based on the mean magnitude, 4, of the correlation of

the input values with the first reference symbol. The mean is intended to

be an estimate of the noise and interference level and it is multiplied by

a user-specified multiplier, k, to determine a threshold that has a low

probability of being exceeded by noise alone, but a high probability of

being exceeded by the desired signal plus noise. 	If the probability

distribution of the noise magnitude is known, e.g. 	Rayleigh, then the

value of k for a given probability of exceeding the threshold may easily be

computed. If the signal is present in a significant percentage of the

delay elements in the window, it may affect the estimate of the noise, and

should be taken into account. From experience, it has been found that a

for all reference symbols have the same noise power (since the same noise

is correlated) but the signal is autocorrelated in only one of the

correlations. Some improvement would be possible if the simulator were

changed to compute the mean over all reference symbols, or to average over

a number of input symbols.

The purpose of the threshold is to remove from the integration those

samples for which the signal-to-noise ratio is low. The best performance

would be obtained if the samples integrated were weighted in proportion to

96

the estimated signal strength in each. For large signal-to-noise ratio the

signal-plus-noise level is a reasonable estimate of the signal level, but

when the signal voltage is comparable to the noise level it is not.

Therefore the threshold may be used to remove the low signal-to-noise

samples and thus give them zero weight. When the threshold is exceeded the

signal is, in effect, given the proper weight since, as a result of the

differential demodulation, the signal voltage after the differential

process is proportional to the square of the input signal voltage.

In the normal mode of the matched-filter demodulator, the symbol

selection logic outputs the symbol that is the same as the reference symbol

that was used in the correlation that produced the largest integrated

magnitude. In the differential mode the output is zero if the complex

integrated value is in the right-half complex plane and is one if it is in

the left-half plane.

In the normal mode the "demodulator tracking voltage" for the Display

and Monitor facilities is computed by dividing the largest integrated

voltage from the correlations by the number of samples per MCSK symbol. In

the differential mode the square root of the magnitude of the integrated

voltage is taken and the same division is performed.

The matched-filter tracking logic, when selected, attempts to keep the

"centre of gravity" of the correlation sample magnitudes corresponding to

the selected symbol in the centre of the matched-filter window. The delay

correction computed by the tracking logic, after each symbol, is applied to

the variable delay at the input to the matched filter. The "centre of

gravity" relative to the centre of the window is computed as:

N,

Dcg = 2:[i-(Nw+1)/211Xii/2:1Xi,

i=l 	i=1

lxil> k

track-inhibit

is inhibited

flag is

for a

not set,

user-specified number of

is "lock". If tracking

consecutive symbols the

the lock indication

97

where xi is the ith sample in the correlation window, and the other

values are as defined above. It can be seen from this definition that when

the window size is even, the centre is taken as the sample just early of

the centre. Since the "centre of gravity" is measured from the centre of

the window, it is a measure of the tracking error. Some smoothing is

applied by multiplying this error by the inverse of a user-specified

tracking time-constant, before it is used to correct the delay. If the

track-inhibit flag is set, indicating that none of the correlation samples

exceeded the threshold in the threshold-and-integrate box, this computation

is inhibited, and zero tracking error is generated. The tracking logic

also outputs a track-lock indication which is available to the Monitor and

Display. It is also used to control changes in the synchronization systems

(e.g. 	return to acquisition when track lock is lost). 	Whenever the

indication changes to "unlock". The action taken when this happens depends

on the synchronization mode. These modes will be described in detail in

Section 7.6.7 on synchronization. In one mode the matched-filter tracking

error is also used to control the reference delay in the frequency

de-hopper.

7.6.5 Automatic Gain Control (AGC)

AGC is available in two places in the receiver as indicated in Figure

7.18. They are referred to as wideband and narrowband AGC, but these terms

apply to their place in the receiver; the same routine is used in both

places with the parameters specified by the user for each independently.

Either, both, or neither of the two AGCs may be used in a simulation run.

The user specifies the threshold below which the gain is fixed, the

small-signal gain below this threshold, and the attack and decay

time-constants.

The algorithm is described in Figure 7.32. Consider first the block

diagram on the left. 	The magnitude of the input samples is taken, and

INPUTrel
X

MAGNITUDE
ixi ..&••"

1•n••••

AVERAGER
ALGORITHM

YES AVERAGER

CONTROL LOUTPUT, Y
UNIT

GAIN

LGAIN TO I Ks t—i
MCINIUIR 	.

GAIN CHARACTERISTIC 	!
(VOLTAGE)

PHASE OF Y
= PHASE OF X

_J

Figure 7.32 Automatic Gain Control

99

these values are averaged to provide a voltage that controls the gain in

the signal channel. Details of the averager algorithm and of the gain

control characteristics are provided in the dashed boxes. The first box in

the averager algorithm provides a decay of the control signal by

multiplying the previous value by a constant, Kd, which is related to the

user-specified decay time-constant by the equation shown in the notes at

the lower left of Figure 7.32. Next the input sample magnitude is tested

to see if it is above the control signal. If it is not, no further action

is taken for that sample. If it is, the control voltage is increased by

the difference between the input and the control voltage, multiplied by a

constant, Ka , which is related to the user-specified attack time-constant

as shown in the notes. All time constants are specified in samples.

The gain characteristic is shown in the lower dashed box of Figure

7.32. The gain is constant up to a user-specified value of the control

voltage, Tv , and above this value the gain is reduced at the rate shown,

to provide a constant output level of Ka .Tv for any fixed input signal

level (after settling).

7.6.6 Adaptive Excision Filter

The function of the adaptive excision filter is to remove narrowband

interference in a direct-sequence spread-spectrum system before the

de-spreading operation. While the de-spreading will provide good

discrimination against narrowband intereference, even further improvement

can be obtained by exploiting the narrowband characteristic. The adaptive

excision filter attempts to whiten the signal-plus-interference spectrum,

and, since the direct-sequence signal itself is essentially white, the

effect is to attenuate the interference, which has an impulse-like

spectrum, while leavîng the direct-sequence signal nearly unchanged. The

excision filter takes the form of a complex FIR filter. The coefficients

are computed from an algorithm operating on the most recent part of the

input signal, and are updated at regular intervals.

100

The algorithm used to compute the coefficients is based on the Wiener

method of linear prediction. The idea is to predict the interference

signal (a narrowband signal is amenable to prediction because of its narrow

bandwidth) and subtract the predicted value from the input signal. The

direct-sequence signal, having large bandwidth, is not predictable and so

is not much affected, even though it is present in the composite signal

from which the predictions are made. Prediction is based on an estimate of

the autocorrelation function of the signal using the most recent samples,

and depends on the solution of a matrix equation, but as a result of some

special properties of the autocorrelation matrix involved, a simplified

iterative solution known as the Levinson-Durbin algorithm is possible, and

is used here. 	Details of the method, and references can be found in

Appendix B. 	The results of tests, and a discussion of the operation are

also provided there, and it is hoped that these will provide some insight,

and aid in the selection of parameters.

When the excision filter is selected the user must specify the number

of coefficients in the filter (this is the number of computed coefficients;

the actual number is one more than this since the first coefficient is

fixed at unity), the spacing of the coefficients, the number of samples

used in the autocorrelation function estimate, the desired signal cielay at

the filter input and the interval between updates of the coefficients. The

maximum number of coefficients is 128, and their maximum spacing is 32

samples.

The coefficient spacing applies to the spacing of samples used in the

autocorrelation estimate as well as to the taps of the FIR filter. A co-

efficient spacing of more than one sample is required when the sample rate

is greater than one sample per element of the direct-sequence signal in

order to remove any dependency between the samples. Such dependency would

provide some predictability to the direct-sequence signal and result in

degradation of the filtered signal. Coefficient spacings greater than one

sample will cause the excision filter to have a frequency response that is

periodic with a period of 1/N times the sample rate, where N is the co-

efficient spacing in samples. This may cause some degration under certain

conditions. This problem is discussed in some detail in Appendix B.

The number of samples used in the correlation estimate must be greater

than the number of coefficients, but not greater than 4097. The signal

delay is intended to allow the signal to enter the filter after that same

signal has been used to compute the coefficients. This would require a

delay equal to the number of samples in the correlation estimate

(computation time does not have to be included in the simulator since it

does not work in real time). This is the maximum delay allowed. The

interval between updates must be at least as large as the number of samples

in the correlation estimate.

7.6.7 Synchronization

7.6.7.1 Introduction

Receiver systems generally require synchronization in both time and

carrier frequency or phase. Time synchronization is included in the

simulator but frequency or phase synchronization is not included at this

time. It was felt that phase synchronization was not too important since

our main interest is in non-coherent and differentially coherent systems,

which do not require phase synchronization. At HF the likelihood of

medium-induced Doppler shifts large enough to cause significant frequency

errors was considered negligible, and the frequencies generated in the

simulation are precise and do not drift. Coherent PSK modulation is

provided in the simulator as a reference, and when used it requires that

the user determine the phase of the received signal, either by calculation

or by test, and set the phase reference accordingly. As long as no large

phase variations are produced by the medium (including unknown mean

Doppler, even if small) this should permit satisfactory operation. Other

modulations require onli that the frequency error be small. Any short-term

phase variations that would degrade these signals could not be compensated

for by a phase synchronization system in any case. On the other hand

101

102

frequency or phase synchronization systems could be useful when airborne

manoeuvering platforms, drifting frequency generators, or coherent

demodulators are to be considered, and such systems may be worth adding in

the future.

If propagation delays were fixed, time synchronization could be

accomplished by user-specified delays. However, some of the propagations

conditions of interest at HF involve delay variations. In addition, it was

felt that time synchronization was of such importance in spread-spectrum

systems that it was well worth including these synchronization systems to

allow experiments in this area. Consequently, the simulator was given a

significant time-synchronization capability.

Reference generators for frequency de-hopping and direct-sequence

de-spreading must be brought into time synchronization with the sequences

in the received signal by synchronization acquisition systems, and, under

varying propagation conditions or with drifting clocks, this time alignment

must be maintained by a tracking system. In addition, demodulation

requires an accurate determination of the time of the start of each

modulated symbol by a symbol synchronization system. The simulation

provides 	frequency-hop 	and 	direct-sequence 	acquisition 	sestems,

direct-sequence tracking systems and symbol synchronization systems. No

frequency-hop tracking is provided since more precise tracking such as

direct-sequence or symbol tracking is assumed to be used after

frequency-hop acquisition and is assumed to feed back information to the

frequency-hop system for correction. Timing for frequency-hop operation is

usually less critical than that for the other systems and it is less

capable of providing accurate timing information. A possible exception is

the case of fast frequency hopping in which the hop rate is higher than the

symbol rate, but the ratio is not expected to be very high, and symbol

synchronization information will likely be adequate to control the

frequency-hop reference delay.

The time synchronization is performed at various places in the

receiver. 	In Figure 7.18 the boxes marked "frequency-hop acquisition",

103

"direct-sequence synch.", and "symbol synch." contain time synchronization

systems. In addition, the "MCSK matched-filter demodulator" has its own

symbol synchronization system, which is described along with that

demodulator in Section 7.6.4.9.

These different synchronization systems must interact with each other

in many cases, and a number of modes are provided in the simulation to

reflect the way in which they do. For example, when both frequency-hop and

direct-sequence spreading are used the initial acquisition is usually

performed by the frequency-hop system, since it will have the coarsest time

requirements and can search very quickly. Once acquisition has been

accomplished the time information is passed to the direct-sequence system.

This system requires much more accurate time information, and so must

search over the area of uncertainty left by the frequency-hop system. This

combination permits much faster acquisition than direct sequence alone

because the latter is much slower as a result of its need to search in

smaller steps. When direct-sequence acquisition is successful the tracking

mode is entered and changes in timing are detected and corrected. The more

accurate timing information from the direct-sequence acquisition and

tracking may be used by the frequency-hop system to improve and update its

timing. This information may also be used for symbol synchronization if

the relationship between the direct sequence and symbol edge is known. If

not, a conventional symbol synchronization system may be used independently

of the direct-sequence synchronization.

Nine different modes of synchronization are provided in the

simulation, ranging from complex ones like that just described to the very

simplest in which no automatic synchronization is used and all timing

information is provided by the user. While this simple method would not be

used in real systems it is a useful simulation mode because it allows the

performance of a system to be examined independently of the effects of the

synchronization system. These modes will be described in detail after the

individual acquisition and tracking algorithms have been discussed.

There are three delays that may be set in the receiver by the user to

104

compensate for various delays that may occur in the propagation path or in

the receiver. They represent the delays set into the receiver "clocks" to

align them with the "clock" used to time operations in the transmitter.

These delays may be used to provide manual synchronization when no

automatic synchronization systems are used, or to provide a starting point

for the acquisition systems. The first is the propagation delay. This is

not the actual delay determined by the medium, but the user's estimate of

it. He may choose to enter a delay that he knows is not the true delay

(for example, to use as a starting point for an acquisition search when he

wants to test the acquisition algorithm). The second delay is the

front-end delay, which is intended to compensate for delays in the receiver

front-end caused by filtering at that point. The third delay is the

bandwidth-reducer delay which is intended to compensate for delays in the

bandwidth reducer, caused by filtering at that point. The reason for the

separate delays is that they affect different processes. A look at Figures

7.18, 7.19, and 7.20 will indicate which processes are affected. The

propagation delay will affect all receiver processes since it precedes them

all. The other delays are associated with the filters in the front end and

bandwidth reducer, and only affect those processes that follow. The delays

are specified in samples at the points where they apply. Therefore, the

user need not be concerned with any decimation operations usee' in the

receiver. The user enters these delays in response to questions near the

end of the receiver set-up procedure. Negative delays may not be entered,

but these delays may become negative when changed by the synchronization

system.

7.6.7.2 Frequency-Hop Acquisition

The process of acquisition is one of changing the delay of the

frequency-hop reference (the output of the receiver frequency-hop generator

used for de-hopping) in increments smaller than the duration of a hop

interval and testing the energy integrated from the squared magnitude of a

given number of samples of the de-hopped signal for each such delay. When

that energy exceeds some threshold the acquisition system decides that

is doubled. When

is reversed, and

the maximum excursion

when it is reached

is reached the direction of search

(in the opposite a second time

105

acquisition has been successful and the search is stopped. 	In fact this

decision of "in lock" is usually based on a more sophisticated algorithm

than the crossing of a single threshold, but always involves the crossing

of thresholds by integrated power. Three different lock-indication

algorithms are available for the user to select from and each of these will

be described in turn. But first let us explain how the search in time

delay is carried out.

7.6.7.2.1 Search Strategy

A "zigzag" search has been implemented, in which the delay is changed

in increasing sweeps in alternate directions as shown in the example of

Figure 7.33. The strategy is based on the assumption that the starting

delay of the search is the most likely value of the actual signal delay and

that the probability of finding the signal diminishes as we move away from

this value. Thus we spend more time searching where the probability of

success is highest. With the correct choice of parameters this search can

be made into a linear search in one direction.

, The user specifies the delay increment, the initial turn-around

excursion (the term excursion is used here to mean the delay change from

the initial delay, and turn-around excursion is the excursion allowed

before the search direction is reversed), and the maximum excursion. The

initial delay is derived from the propagation delay entered by the user as

mentioned earlier. At each reversal of direction the turn-around excursion

direction) the search is restarted from the initial delay. 	Figure 7.33

illustrates what happens when the delay reaches the turn-around excursion.

When the delay increment causes the excursion to equal or exceed the

turn-around value the incremented value of delay is used, but the search

direction is reversed for the next increment. The same is true for the

maximum excursion except for the second time the maximum is reached; the

delay is reset to the initial delay immediately at this point without the

>-
42

EXCURSION

0

	0
0 0

0 —1-- 0 	

	

0
0° 	0 	

O

0
0 0

°°THIRD TURN-AROUND

0

EXCURSION

t

00 	0-0—,

A

I o
II

0 	I

I 0
‘ 0 0 	/

0 	•
INI TIAL TURN-AROUND 	—0 	

ii +
0

 0 SECOND TURN-AROUND
o 0 0 	EXCURSION 	0 	

0 	/
0 /

	

—0— 	

0

0 1- 	 ° MAXIMUM 	 0
0 	° EXCURSION

0 	0
AT EACH TURN-AROUND

THE TURN-AROUND
EXCURSION DOUBLES

INITIAL
DELAY

0 0
o

1... WHEN MAXIMUM EXCURSION
IS REACHED IN BOTH

DIRECTIONS SEARCH IS
RE-STARTED

TIME

Figure 7.33 Search Strategy

incremented value being used.

7.6.7.2.2 Double-Integration Method

In the double-integration method signal power is integrated for a

relatively short interval in the first stage, and for a longer interval in

the second stage only when the first stage threshold is crossed. The idea

is to keep the search time small by accepting the high false-alarm rate

resulting from the short integration interval of the first stage (assuming

the probability of a miss must be kept small), and discarding the false

alarms that do occur by testing in the second stage. There, the longer

integration time will allow both a low probability of false alarm and a low

probability of a miss, while the cost in time will not be so high since it

is used relatively infrequently. The double-integration method can also

serve as a single integration one if the second integration threshold is

set low enough that it is always exceeded.

The algorithm for this method is shown in Figure 7.34. 	The user

specifies the first integration time, T1, the first integration threshold,

61, the second integration time, T2, and the second integration threshold,

62. Integration times are specified in terms of samples. The input is the

squared magnitude of the signal taken after the wideband AGC as shown in

Figure 7.18, but it is the square root of the sum which is compared with

the threshold. Thus, the thresholds are specified in volts rather than as

energy. (Actually, the units should include the square root of time, but

since our time is defined in terms of number of samples we have chosen to

leave out a reference to time here, and consider the sum to be over a

number of values rather than time.) Appendix C presents equations that will

be useful in determining integration times and thresholds for desired

false-alarm and miss probabilities when the noise is Gaussian.

107

SET LOCK
INDICATION

T
EXIT

ENTER

108

SUM
Ti SAMPLES

NO

NO

SUM
T2 SAMPLES

INCREMENT DELAY
ACCORDING TO

SEARCH STRATEGY

t

Figure 7.34 Double Integration Lock Detection

7.6.7.2.3 Sequential Detection Method

In the sequential detection scheme a decision on "signal present" or

"signal not present" is made only after enough data has been collected to

reach a high level of confidence in the decision. This results in a

variable time spent at each delay. A limit is put on this time to prevent

the possibility of a very long wait. When this limit is reached without a

decision the decision is made in favor of "signal not present". In the

algorithm used in the simulator, and shown in Figure 7.35, the sequential

detection is based on a count of the number of times a threshold is

exceeded by the integrated power in a fixed integration interval. The

count is increased by one each time the threshold is exceeded, and

decreased by one each time it is not exceeded. When this count reaches a

particular positive value the decision is "signal present". When it

reaches a particular negative value the decision is "signal not present".

A more optimal sequential detection in white Gaussian noise would continue

to integrate samples in a single sum and compare that sum to two

thresholds. However, the method used here has the advantage of reducing

the effect of strong intermittent interference since a short burst, no

matter how strong, will only affect one count, and have only a small effect

on , the decision. Such interference is expected to be common in a

frequency—hopping system as the receiver hops into bands with different

interference levels.

When the sequential method is selected the user specifies the

integration time (number of samples), T1, the integration threshold, 6 1 ,

the count threshold for detection, CI, the count threshold for dismissal,

C2, and the iteration threshold for dismissal, C3. The integration

threshold is in volts since it is compared with the square root of the

integration sum. Appendix C presents equations that should be helpful in

determining the integration time and the integraton threshold.

109

SET LOCK
IN

1111..

ENTER

Fe-
SUM

T1 SAMPLES

COUNT
= COUNT + 1

COUNT
= COUNT -

NO 	 NO

ITERATION
= ITERATION + 1

COUNT = 0

INCREMENT
DELAY ACCORDING

TO SEARCH STRATEGY

EXIT

Figure 7.35 Sequential Detection

110

the

new

the

As

7.6.7.2.4 Mean-Delay Method

The mean delay method is intended to provide a more accurate estimate

of the true delay by computing a weighted mean of the delay based on the

integrated power at each delay for which a threshold is exceeded. When the

threshold is exceeded a specified number of times in succession a detection

is assumed but the search is not stopped. Instead, it is continued in the

same direction until the threshold is not exceeded a specified number of

times. Then the mean of the delay is computed with each delay weighted by

the integrated power measured at that delay. This routine is intended to

be used for frequency-hop acquisition when no direct-sequence acquisition

is available to refine the delay estimate. The other two acquisition

methods are not accurate enough to determine delay within one symbol

duration, as is necessary for refinement by the symbol synchronization

routine.

The algorithm for this method is shown in state-diagram form in Figure

7.36. 	The square root of the integration sum over a block of T1 samples

is compared with the threshold, di, and the action taken depends on

state that the algorithm is in. After the particular action is taken a

sum is taken over the next 1 1 samples, the delay is incremented, and

process is repeated. Before acquisition, the algorithm is in state L

long as the threshold is not exceeded it remains in this state.

threshold is exceeded state 2 is entered. In this state a count

the number of consecutive "hits" (sums above the threshold).

When the

is kept of

When NI

such hits have occurred state 3 is entered. A "miss" occuring before the

threshold NI is reached will cause state 1 to be re-entered and the hit

count to be reset to zero. The intention is to prevent false alarms from

intermittent bursts of interference, and to define the start of solid

acquisition more precisely. Once state 3 is entered a detection is

assured; all that remains is to determine the delay at

occurs. State 3 is left only when a miss

and a count is kept of the number of

consecutive misses, lock is established (state 5) and the mean delay is

computed from the weighted mean of the delays in states 2 and 3 (when the

which loss of signal

occurs. Then state 4 is entered

consecutive misses. After N2

SET C2 = 0 SET C1 = 0 INCREMENT 	LOCK ESTABLISHED
C2 FOR EACH

NEW SUM

INCREMENT
C1 FOR EACH

NEW SUM

1-§171111 <d 1 qÏ1----.11VI>d i AND Ci < FUN I" > 1 N1giFV1<61ANDC2<N2

Nli dik el > di al•. NITIFM > di derr-SUR45.di .

111.11111111111111111111.111. AND C 1 = Ni

SUM < 6 1 SUM k

SUM< 6 1
AND C2 = N2

Figure 7.36 State Diagram of Mean Delay Algorithm

113

threshold was exceeded), weighted by the integrated power at each delay.

The reference delay is then set to this mean value. If the threshold is

exceeded in state 4 before N2 consecutive misses state 3 is re—entered

and C2 is reset to zero. This is to reduce the probability that a fade

will signal a false end to the acquisition. Not shown in Figure 7.36 is a

test to end the acquisition if the threshold is exceeded for a very long

time as a result of either sustained very strong interference or a bad

threshold setting. A maximum of 1024 delays in states 3 and 4 are

permitted before state 5 is entered. While this is not an ideal solution,

it at least limits the number of integration values that must be stored.

For the mean delay method the user, in addition to specifying the

integration time and threshold, must specify the number of successive

detections for acquisition, NI, and the number of successive misses for

completion, N2. Appendix C should be helpful in determining the

integration time and threshold.

7.6.7.3 Direct—Sequence Acquisition

, The algorithms for direct—sequence acquisition are the same as those

for frequency—hop acquisition; the only difference is the input signal.

For direct—seauence acquisition the input is the squared magnitude of the

de—spread signal shown in Figure 7.20 as "lock detection input voltage".

Noncoherent integration is performed in the acquisition algorithm since the

squared magnitude of the signal is summed, and coherent integration is

performed by the filter of Figure 7.20. Coherent integration is more

effective than noncoherent, but it may be performed only over one data

symbol since the phase of the next symbol, relative to the current one, is

unknown. Thus, for acquisition, the filter should match the spectrum of

the data symbol as wéll as possible. However, in the present simulator the

filters in all channels of Figure 7.20 must be identical, and the filter in

the main signal channel -should be a little wider since the demodulator that

follows will perform a matched—filter operation. The loss in the

acquisition channel for the wider filter recommended for the signal channel

114

should be quite small.

When direct-sequence acquisition is in operation the search controls

the direct-sequence reference signal delay (although it may control the

frequency-hop delay as well if frequency-hopping is used). This is the

"offset" delay in Figure 7.20. The delay increment should be smaller than

the width of the autocorrelation peak of the spreading signal for high

probability of detection. This peak will have a width of two direct-

sequence elements at the base, and of one element at the half-voltage

point. Since a direct-sequence element corresponds to a modulation symbol,

the element length in samples will equal the number of samples per

modulation symbol, a value that the user has previously specified. The

initial delay for the search will be the delay determined by the

frequency-hop acquisition if it has been used; if it has not, it will be

determined by the program from the user-specified propagation delay and

front-end delay.

7.6.7.4 Direct-Sequence Tracking

Direct-sequence tracking is performed by a comparison of the energy in

the correlation of the received signal and the direct-sequence reference

for delays of the reference of slightly less than, and slightly greater

than, that of the received sequence. Since the correlation peak has a

triangular shape the difference between these two correlation values, which

straddle the peak, provides both direction and magnitude information

required for correction of the reference delay to allow it to track the

delay of the received signal. Coherent integration for the correlation is

performed by the filters in Figure 7.20. For best performance these

filters should be matched to the data symbol spectrum. However, as stated

above, the main signal channel demands a slightly wider bandwidth, and this

may cause some degradation in the tracking performance. But the degradat-

ion should be quite small, since further noncoherent integration is

performed in the tracking algorithm.

115

Two alternative routines are provided in the simulator to perform the

tracking task. These are the delay-locked loop and the tau-dither loop.

7.6.7.4.1 Delay-Locked Loop Tracking

The input to the delay-locked loop tracking algorithm is taken from

the output of the difference circuit of Figure 7.20, while lock status is

determined from the squared magnitude of the main signal channel voltage.

The two channels feeding the difference circuit generate the correlation of

the signal with the early and late versions of the direct-sequence

reference. The delay difference between the early and late references is

twice the user-specified differential delay (see Figure 7.20). The

difference of the squared magnitudes of the two channels is used to

determine the magnitude and direction of the correction. A third

correlator with reference delay midway between those of the other two is

used for the de-spreading of the signal to be demodulated. When the

tracking is accurate this delay should be the actual delay of the received

signal.

' The tracking algorithm is described in Figure 7.37. Both the tracking

error signal

user-specified number of samples, T1. If the square root of the sum of

the lock detection voltage, SL equals or exceeds a user-specified

threshold S L , a new value for the direct-sequence reference delay is

computed; if not, the delay is left unchanged and the miss counter is

incremented and tested against a user-specified threshold, Cm If Cm

 consecutive misses have occurred, tracking is assumed to have failed and

"unlock" is declared, causing acquisition to be re-entered starting from

the last delay determined by the tracking system.

When the lock threshold is exceeded the tracking sum, ST, is mapped

into a new voltage, MT,' according to one of two types of mapping selected

by the user. The first is a linear mapping (no change), and the second is

a limiter mapping where the output, MT, is equal to the input, ST, when

and the lock detection voltage are summed over a

YES

SET LOCK INDICATION
TO UNLOCK

INITIALIZE
FOR ACQUISITION

COMPUTE NEW DELAY

oc = pc + ILMT

SET
MISS CTR = 0

ENTER

116

SUM T1 SAMPLES
OF VL2 INTO

SUM SL

SUM T1 SAMPLES
OF V12 INTO

SUM ST

NO

MAPPING

r TYPE 1: LINEAR

MT = ST

TYPE 2: LIMITER

MT = A, ST >A

MT = ST, —A4 ST e A
MT = -A, ST <-A

INCREMENT

MISS CTR.

MAP ST MT
(TYPE 1 OR 2)

EXIT

Figure 7.37 Delay-Locked Loop Algorithm

specified multiplier, k, is used to multiply the value to provide the MT

117

the magnitude is less than or equal to a user-specified threshold, A, and

limited to plus or minus A when the threshold is exceeded. 	A user-

delay correction that is added to the old value of direct-sequence

reference delay to determine the new delay. The units of k are samples per

volt. Larger values of k will cause faster correction, but will allow

greater errors from strong interference bursts, and may lead to instability

if the correction generated is greater than twice the error. The use of

the limiter-type mapping makes it possible to set good values of k when

input signal levels are unknown or widely varying. A maximum change, A.k,

of not greater than one sample interval is recommended. It should be noted

that although the actual delay of the reference cannot change by less than

one sample, the delay value, Dc , is computed as a floating-point number

that is rounded to the nearest integer only when controlling the reference

delay. Thus, a series of computed corrections, each much less than one

sample interval, will eventually lead to a reference delay change.

7.6.7.4.2 Tau-Dither Tracking

, In the Tau-dither system the two correlations are performed

sequentially in a single correlator. The reference delay is alternated

between the early and late values, remaining at each for the specified

integration time. The tau-dither system has the advantage of requiring

only one correlator, but it takes twice as long to compute a correction.

Another disadvantage is that the de-spread signal going to the demodulator

is taken from the same correlator as is used in tracking, and is therefore

always offset a little from the correct delay, causing a small loss in

demodulator performance.

The input to the Tau-dither algorithm is the squared magnitude of the

voltage in the main signal channel, VL2 (see Figure 7.20). This is used

for both lock detectioà and correction. The parameters specified by the

user are the same as for the delay-locked loop. Figure 7.38 describes the

algorithm. A flag called the early/late (E/L) flag is toggled each time a

SUM T1 SAMPLES OF
V L2 INTO SUM 5 1_

CHANGE DELAY TO
LATE

De = De + 2 Dd

MAP Vd...-Vm
TYPE 1 OR 2

NO

SET E/L
FLAG = L

COMPUTE NEW
EARLY DELAY

De = De —2.Dd + K.Vm

SET
MISS COUNTER = 0

INCREMENT
MISS COUNTER

INITIALIZE FOR
ACQUISITION

SET DELAY
Dc = D, — Dd

y

SET LOCK INDICATION
TO UNLOCK

SET DELAY
De = De + Dd

SET E/L
FLAG = E

SAVE EARLY VOLTAGE
V0 = SL

COMPUTE DIFFERENCE
(LATE.EARLY)
Vd = SL — V.

ENTER

NOTES: Dd = DIFFERENTIAL DELAY
SPECIFIED BY USER

= 112 DELAY SEPARATION
E/L = EARLY/LATE

118

EXIT

Figure 7.38 Tau-dither Loop Algorithm

119

sum is computed, and is used to alternate between early and late reference

delays that are separated by twice the user-specified differential delay,

Dd, just as they are in the delay-locked loop system. The early

integration is performed first, and when the corresponding late value is

computed the early sum is subtracted from it, and the delay correction

computed as for the delay-locked loop. Only one correction is computed for

each early/late pair of integrations. One difference from the delay- locked

loop algorithm is that correction is not inhibited when the integration

threshold is not exceeded. When lock is lost (Cm consecutive misses) the

delay is set to the point midway between the last early and late values, in

preparation for a return to the acquisition mode, and the FIL flag is set

to the early position in preparation for the next entry into the tracking

mode.

7.6.7.5 Symbol Synchronization

A symbol-synchronization capability is included in the simulator to

allow realistic operation under varying multipath conditions. The "normal"

synchronization for PSK signals is fairly standard, and the routine gives

recommended values for some of the parameters; however, it is left to the

user to set them, giving him the option of experimenting. A modification

to this standard system for use with FSK signals is included. 	This

modified system, as far as is known, has not been used in any real systems,

and is offered here as an experimental one that has not been well tested.

Finally, a synchronization system for any modulation that uses

amplitude-shaping of the modulated symbols is included. This makes use of

the shaping to simplify the algorithm.

The symbol -synchronization system, with all its modifications, is

shown in Figure 7.39. For the normal system, ignore the input mixers and

adder to the left of Si s and assume the switch is in position 1. The

timing information is éxtracted from the phase changes between symbols.

Unfortunately, the spectrum of the unshaped PSK signal contains no power at

the symbol rate, 1/T5 . A squaring circuit is used to move some of it

•-118.-1
DELAY

Ts

Ts = NO. OF SAMPLES PER SYMBOL

"SYMBOL
SYNCHRONIZATION

1-10- VOLTAGE - INTERMEDIATE
STAG E

TO MONITOR AND
DISPLAY

NARROW-BAND
FILTER

(RESONANT 2-POLE
1-SECTION

= 111s)

INPUT

(BunRwoRTH 	(MAGNITUDE)2
L.P. FILTER

Sla 	
4-POLE, = .71T8) 	 4

	 2-
Sib

__

1
= EXP (- 	I

T1

T, = LOCK INTEGRATOR
TIME CONST.

DELAY
1 SAMPLE 	"INTEGRATED SYMBOL

SYNCHRONIZATION

MAGNITUDE"

COMPENSATING
DELAY

Ted

NEG-GOING
ZERO-CROSSING

DETECTOR

"SYMBOL
SYNCHRONIZED

VOLTAGE-

FINAL STAGE
TO MONITOR &

DISPLAY

DELAY
I 	CONTROL

MAGNITUDE

1-11.9

fr = RESONANT FREQUENCY

MAGNITUDE
L.P. FILTER

(BUTTERWORTH

4-POLE, fc =1.5/T,

(1-K1) THRESHOLD
DETECTOR

LOCK

I 	INDICATION

Figure 7.39 Symbol Synchronization

selection of this time constant.

system holding its timing over

A long time-constant will result in the

fade or of repeated longer periods of

generated when there

121

there from the energy at 1/2T 5 , but it is necessary to use a "prefilter"

before this to remove some of the spectrum. The delay and difference

circuit, in combination with the low-pass filter, forms this prefilter.

The prefilter should provide a response with a broad peak in the frequency

domain at one-half the symbol rate. The delay and difference circuit is a

simple filter with a half-cycle- sine-wave frequency response between zero

and the symbol rate (1/75). 	It has a maximum voltage gain of 2 at

one-half the symbol rate. 	This response is repeated with a period 1/15 ,

the

and it is the

leaving only

frequencies).

filter to remove these repetitions

part from zero to 1/15 (and its image at negative

A four-pole Butterworth filter (2 sections)

purpose of the low-pass

with cutoff

has

the

the

frequency 0.7/1S

recommendat ion and

for the benefit of

been found to work well in this role. 	This

computed value of the cutoff frequency are displayed

user.

After squaring, the energy at 1/1 5 is extracted by a narrow-

bandwidth filter. The resonant filter (resonator) from the general filter

routines (see Section 8.1.2.2) is useful for this purpose. Each section of

this filter has a complex-conjugate pair of poles defining the peak of the

response, and zeros at one and minus one in the Z-plane. The user is

advised to use a one-section resonant filter and is given the computed

resonant frequency 1/1S. 	If the user chooses to use the resonant filter

he is asked to specify its time constant. 	This time constant is the

inverse of Iv times the filter bandwidth. 	There is a tradeoff in the

symbols (timing information is only

symbol), and will also result in less

is a change of

output noise. On the other hand, the

high inertia of a long time-constant will make acquisition of track slower,

and restrict the rate of track correction.

The symbol timing information is given by the zero crossings of the

resonant filter output. The negative-going crossings are chosen

arbitrarily to mark the start of the symbols, but as a result of delays in

the circuit, a compensating delay, specified by the user, must be inserted

122

to bring the crossings into coincidence with the actual start of the

symbols. This delay, although fixed for any particular set of parameters,

is difficult to predict accurately, and it is recommended that it be found

by a test of the selected system without noise, and with the compensating

delay set to zero. The Display feature can be used to record the "symbol

synchronization voltage - final stage" (see Figure 7.39), and the negative-

going zero crossings compared with the symbol edges (these can be computed

from the sample number and the

has occurred).

number of samples per symbol if no delay of

The compensating delay delays the zero the symbol

the symbol crossings, so the required delay will be the difference between

edge and the nearest earlier negative-going zero crossing.

The lower part of Figure 7.39 generates a lock indication by taking

the envelope of the synchronization voltage and comparing it with a user-

specified threshold. The user-specified "lock indicator time constant"

should be a few symbols in length to provide small decay between cycles of

the narrowband signal, but less than the resonant filter time-constant so

that it may follow amplitude changes in the signal. The threshold should

be set so that when there is only noise there are very few false lock

indications. The noise at the threshold detector should be Rayleigh, and

for the normal mode its mean value is approximately equal to 0.4 times the

input tins noise voltage divided by the

is the time constant of the narrowband

samples per symbol. A threshold of at

used. It would probably be worthwhile testing the system with

and adjusting the threshold as necessary.

When FSK is used the different symbols have spectra centered at

different frequencies across the modulation bandwidth. The sibulation sets

these in a symmetrical manner about zero frequency, and there is never one

centred at zero. Thus, the prefilter will not provide the required signal

to the squarer. This can be rectified by shifting the received spectrum

enough to put the lowest tone at 1/T5 . For binary FSK with separation of

1/T5 , this requires an offset of 3/2T 5 . This will produce an amplitude

modulation, as the tone frequency changes from symbol to symbol, that can

square root of Ts .T r ,

filter, and Ts is the

least three times

where T r

 number of

this should be

noise only

123

provide the desired timing information from the narrowband filter. 	The

complex tone generators and multipliers are included for this purpose.

Multiple generators (up to 16) are available so that, if there are many

tones, more than one may be shifted to 1/T5 to increase the frequency of

responses from the prefilter. While this technique has been found to work

it has not been analyzed in any detail, and it is left to the user to

determine the optimum setup for a particular system.

When the modulated symbols have had amplitude shaping applied, the

shaping can be used to provide the necessary input to the narrowband

filter. It is only necessary to take the magnitude of the shaped symbol

(it does not matter whether it is PSK or FSK). The shaped-symbol mode of

symbol synchronization provides this feature. When it is selected, Si s

and Sib of Figure 7.39 are in position 2. A four-pole Butterworth filter

with cutoff frequency of 1.5 1T5 is shown following the magnitude

computer. This filter is not really necessary since it is followed by a

narrowband filter, but it provides some filtering for the Monitor signal at

this point. The values are only recommended ones and the user may choose

any filter he desires. When the shaped-symbol mode is selected the noise

level at the lock threshold detector should be Rayleigh with a mean voltage

of about 0.34//17; times the input rms noise level.

7.6.7.6 Synchronization Modes

There are nine different synchronization modes available. These are

not selected directly by the user, however; the program determines the mode

from the answers to questions regarding the use of the various

synchronization systems. Each of these modes will be described, and the

interaction between the different synchronization systems involved will be

explained.

124

7.6.7.6.1 Mode 1 - No Acquisition and no Tracking

In this mode all reference signal delays and the start of the symbols

are derived from the propagation, front-end, and bandwidth-reducer delays

specified by the user near the end of the receiver set-up. The user may

choose to enter incorrect delays there to allow him to determine the effect

Of delay errors.

7.6.7.6.2 Mode 2 - Symbol Synchronization Only

The only type of synchronization used in this mode is symbol

synchronization. If frequency hopping is used the frequency-hop delay is

derived from the symbol synchronization system. Direct-sequence spreading

may not be used in this mode. Since the symbol-synchronization system will

only determine the nearest symbol edge, the initial delay set by the user

(the combination of propagation, front-end and bandwidth-reducer delays)

rhust be accurate to within half a symbol if the output data bits are to

have the same time-index values as those input to the transmitter. A

difference in index value will not be a problem if frequency hopping is not

used, since bit comparisons can be made with different index value, but

when frequency hopping is used a difference in index value will lead to an

error in the timing of the frequency-hop (FH) reference.

7.6.7.6.3 Mode 3 - Frequency-Hop Acquisition and Symbol Synchronization

Direct-sequence spreading may not be used in this mode. Frequency-hop

acquisition starts from the propagation delay specified by the user. After

sucessful FH acquisition, symbol synchronization is performed, and, when

successful, feeds corrections to the FH system to refine its delay. An

error of more than half a symbol in FH acquisition cannot be corrected by

the symbol-synchronization system; it will lead to a FH reference delay

that is in error by one or possibly more symbols. For this reason it is

recommended that the mean-delay acquisition algorithm be selected in this

125

mode. 	It provides a higher accuracy than the other methods. 	If symbol

synchronization is lost, FH acquisition is re-entered with the previously

used initial conditions but with the search starting from the current

delay. An indication of "lock" to the Monitor and Display occurs only when

the symbol synchronization system is locked.

7.6.7.6.4 Mode 4 - Direct-Sequence (DS) Acquisition and DS Tracking - No

Symbol Synchronization

DS acquisition starts from the combination of the propagation and

front-end delays specified by the user. When it is successful DS tracking

is initiated. Symbol delay is derived from the DS system. If frequency

hopping is used its delay is also derived from the DS system. If DS

tracking lock is lost acquisition is re-entered with the previously used

initial conditions but with the search starting from the current delay.

7.6.7.6.5 Mode 5 - DS Acquisition and DS Tracking - Independent Symbol

Synchronization

This mode is similar to mode 4 except that the symbol delay is

obtained from an independent symbol synchronization operation rather than

from the DS system. If either symbol synchronization or DS tracking lock

is lost the overall lock indication becomes "unlock".

7.6.7.6.6 Mode 6 - FH Acquisition and DS Acquisition and DS Tracking - No

Symbol Synchronization

FH acquisition starts at the user-specified propagation delay. 	When

it is successful DS acquisition starts from the delay determined by the FH

acquisition, taking into account any front-end delay. From this point on

mode 6 is the same as mode 4. Loss of DS lock will result in reentry into

the DS acquisition as in mode 4. FH acquisition is not reentered.

126

7.6.7.6.7 Mode 7 — FH Acquisition and DS Acquisition and DS Tracking and

Independent Symbol Synchronization

This mode is the same as mode 6 except that the symbol delay is

derived independently from the symbol synchronization system rather than

from the DS system. Loss of either symbol synchronization lock or DS

tracking lock Will cause an overall "unlock" indication.

7.6.7.6.8 Mode 8 — MCSK Matched—Filter Symbol Synchronization Only

Symbol tracking occurs within the matched filter only. Since the MCSK

matched filter replaces the normal demodulator, normal symbol

synchronization is not possible. If frequency hopping is used its delay is

derived from the matched—filter timing. 	DS spreading may not be used in

this mode. 	The initial delay must be accurate to about half the

matched—filter window width to assure correct synchronization. 	If it is

not, correlation "sidelobes" may bring the window toward the peak, or

random drift may result in eventual synchronization, but this cannot be

assured. As well, synchronization may be obtained with the wrong symbol as

in mode 2, with the same result.

7.6.7.6.9 Mode 9 — FH Acquisition and MCSK Matched—Filter Symbol

Synchronization

FI-1 acquisition starts at the user—specified propagation delay. Once

acquisition is successful this mode becomes identical to mode 8 except that

if symbol lock is lost FI-1 acquisition is re—entered with the previously

used initial values, but with the search starting from the current delay.

A "lock" indication exists only when the symbol lock is on.

127

7.6.8 Monitoring and Control Facilities

In this section we will expand on the Monitor, Display, and program

control features mentioned in the introduction to the RECVR process.

7.6.8.1 Monitor Feature

When the simulation is running in the interactive mode (running from

the terminal) the Monitor displays a number of different variables updated

at a rate specified by the user in terms of the update interval measured in

number of input samples. Three of these variables are displayed regardless

of the receiver configuration; the others are selected on the basis of the

particular receiver configuration selected. The three that are always

displayed are: the index value of the input sample being processed, the

number of final (FIN) values generated up to this point in the run, and the

mean of the magnitude of the voltage at the output of the de-hopper,

averaged over the update interval. The point from which the voltage to be

averaged is taken is shown in Figure 7.19. If de-hopping is not performed

the voltage is the input voltage to the front end.

The other variables that may be displayed are shown in Table 7.1 along

with an indication of the Figure from which the point of measurement or the

definition can be found. If the particular variable has significance for

the receiver configuration selected it will be displayed by the Monitor.

When the program is operating in batch mode the Monitor is not used

and the question relating to it (update interval) is not asked.

Table 7.1

128

Variable

Frequency-hop reference delay
Direct-sequence reference delay
Demodulator Sample delay
Demodulator "tracking" voltage
AGC gain
Direct-sequence lock status
Direct-sequence tracking voltage
DS tracking integrated lock voltage
Symbol synch lock status
Symbol synch voltage - intermed. stage
Symbol synch voltage - final stage
Integrated symbol synch magnitude
Frequency-hop acquisition lock status

Units

samples
samples
samples
volts
volts/volt
on/off
volts
volts
on/off
volts
volts
volts
on/off

Pertinent
Figures

7.19
7.20
7.18
7.22-7.28
7.18,7.32
7.20
7.20
7.20,7.38
7.39
7.39
7.39
7.39
7.18

Notes

1
1
2
3
4
5
6
7

8

Notes: 1 For the source of the delay control see

Section 7.6.7.6 on synchronization modes.

2 This is the delay applied to the symbol integration

start time in the demodulator (either ordinary or

MCSK matched-filter type). For the source of the delay

control see Section 7.6.7.6 on synchronization modes.

3 This is the integrated voltage corresponding to the

largest symbol response in the demodulator (among the

set of possible symbols). The term "tracking" may be

somewhat misleading here.

4 This may include both wideband and narrowband AGC.

The gain is the ratio of voltage magnitudes.

5 This is derived from VL2 of Figure 7.20 by the

acquisition or tracking algorithms of Figures 7.34

to 7.38, depending on type.

6 This is meaningful for delay-locked loop tracking only.

7 This is derived from VL2 of Figure 7.20 by the

summing in the first block of Figures 7.37 and 7.38.

8 This is derived from the input to the frequency-hop

acquisition system (Figure 7.18) by the acquisition

algorithms of Figures 7.34, 7.35, and 7.36.

129

7.6.8.2 Display Feature

The Display feature permits the storing of a sequence of samples of

one of the variables listed under the Monitor feature so that it can be

examined after a run. Any of the listed variables may be designated as the

Display variable, but only one may be selected for each run. In addition

to the Monitor variables, two others, not available in Monitor, are

available in Display. These are the transmission hop frequency and the

reference hop frequency. All of these are listed in a menu when Display is

selected. The menu indicates the narrowband and wideband AGC separately,

and the matched—filter lock indication is distinguished from the symbol

synchronization lock indication.

At the end of a run, while still in RECVR, a menu for display or

analysis of the stored samples is presented. The samples may be looked at

directly, or a histogram produced, in much the same way as the ORG or FIN

data may be analysed with VIEW and HISTO in the ANAL subprogram. In

addition, the output samples (the values in the FIN data array) from the

receiver run may be analysed in the same way. A final option in the menu

allows a return to the processing in RECVR if the processing is not

comPlete. If it is, there is a return to PROCES. Processing will not be

complete if the user has specified that only a part of the data be

processed or if he has decided to interrupt the processing.

7.6.8.3 RECVR Run Control

Just before the user is asked if the Display feature is wanted, he is

asked if he wants to process all the remaining samples. If he does not, he

is asked to specify the number of samples to be processed. In either case,

he may choose to interrupt the processing at any time by typing a CONTROL/X

(control key and x key held down at the same time). This, or the

completion of processing of the specified number of values, will result in

the suspension of the processing and the presentation of the Display

analysis menu. The user may then examine the data as explained above.

130

When he exits the Display routine with a BYE, and all the samples have not

been processed, he is asked if more samples are to be processed. If he

answers "yes", the program returns to the point where the question on

whether all the remaining samples are to be processed is asked. The

receiver remains in the state that it was left in by the previous run, and

the processing may continue from that point. The variable selected for

storage under Display must be reentered, and need not be the same as on the

previous run. All of the Display values from the previous run are lost at

this point, but all of the output samples in the FIN data array generated

over different runs are maintained.

7.7 Post-Detection Operations Process (BITSNK)

BITSNK performs the inverse of the error-correction coding and

interleaving of BITSRC. 	In addition, it performs inverses of the

data-symbol encoding and inverse Gray-encoding functions of MODCOD. 	Of

course these functions must be carried out in the reverse order to the

order used in BITSRC and MODCOD. BITSNK takes care of this, but the user

is responsible for entering the correct parameters; they are not remembered

from BITSRC and MODCOD. Some of the coding functions in MODCOD are not

inverted in BITSNK. These include differential encoding and MCSK coding.

The decoding for these is part of the demodulation process carried out in

RECVR. The inverse functions in BITSNK will be described in the order in

which they would be performed.

7.7.1 Data-Symbol Decoding

Any demodulator that uses symbols of more than one bit will have

multi-bit symbols as its output. To allow comparison with the bit stream

used as the data source for the transmitter, and to allow other

bit-oriented processes to be performed when necessary, each symbol must be

decoded or expanded into a series of bits. 	The user must specify the

number of bits per symbol. 	The process is the inverse of the

131

bit-to-data-symbol encoding described in MODCOD. If encoding was performed

in the transmitter, zeros may have been added to the end of the bit

sequence to make the last symbol have the required number of bits. If this

is the case the user may wish to remove these bits after decoding. 	The

routine asks the user if this is desired. 	If Gray encoding is to be

performed, the removal is delayed until that process is completed. 	(The

question on whether Gray encoding is to be done is asked before the

question on the removal of zeros.)

7.7.2 Gray Encoding

The corresponding process in MODCOD was a transformation from Gray to

binary coding; we referred to this as inverse Gray encoding. The inverse

process here is therefore Gray encoding, a transformation from binary to

Gray code that restores the bits to their original values (providing there

have been no errors). The bits are grouped into blocks of size equal to

the already-specified number of bits per symbol for this process.

7.7.3 De-Interleaving

De-interleaving is identical to interleaving; the bits are read into

an array in rows and read out in columns. To restore the data to its

original form the user must interchange the specifications of the numbers

of rows and columns that he used in BITSRC.

7.7.4 Decoding of Error-Correction Codes

As explained under Error Coding, the only type of error-correction

coding that is available at this time is cyclic block coding, but the

structure is in place for other types, and the program will offer the user

corresponding choices. Warnings are given, however, that these are not

implemented, and when chosen, they simply pass the input data to the

132

output.

7.7.4.1 Decoding of Binary Cyclic Block Codes.

7.7.4.1.1 Error-Trapping Decoding

This decoding algorithm is based on the error-trapping method

described in Reference [7]. It can correct all single and double

errors, and all triple errors if the number of parity bits in the block is

greater than one-third the total number of bits in the coded block. If

this criterion is not satisfied some triple errors may not be corrected.

Of course the above corrections are possible only if the code used has the

required error-correct ion capability.

The user is asked to specify the number of bits in a coded block, n,

The number of information bits in a block, k, the syndrome register

feedback vector (same as the generator vector described under BITSRC), the

number of errors to be corrected (1,2, or 3, depending on the capability of

the code), and a block delay. This last parameter delays the starting

point of a block to compensate for any delays that have not already been

compensated. No automatic synchronization is provided for the error

decoding.

The syndrome computer is shown in Figure 7.40. The block of n bits is

entered with the switch in the closed position and the switch is then

opened. The outputs of the taps form the syndrome of n-k bits. The weight

of the syndrome (the number of ones in it) is tested against the number of

bits to be corrected. If it is greater than this number the registers are

shifted and a new syndrome is formed. The test and shift are repeated

until the syndrome weight is equal to or less than the number of bits to be

corrected. At this point the block may be corrected by a modulo-two

addition of the syndrome with a cyclic shift of the received data bits

where the number of bits shifted is determined from the number of shifts

BINARY
MULTIPLIER

91 ARE
COEFFICIENTS\

OF THE
GENERATOR
PDYNOMIAL

•

5
MODULO-2

ADDER 1-BIT \
REGISTER

• I

1-1104--1•- • •

SYNDROME
OUTPUT

Figure 7.40 Syndrome Computer

134

performed in the syndrome register. 	If the weight criterion is not

satisfied after k shifts and more than one bit is to be corrected, each bit

of the data block is inverted in turn and the above procedure repeated

until a correction is possible or all bits have been tested by inversion.

If the latter occurs, correction is not possible and the data bits are left

unaltered. After each test the tested bit is re-inverted before the next

bit is inverted.

or he

types

lead

this

8 MISCELLANEOUS DEVICES

8.1 Filters

135

filters

Finite impulse-response (FIR) and infinite impulse-response (IIR)

are available as general-purpose devices for use in various parts

of the simulation. For each type the user may enter the coefficients into

the standard configuration provided to generate the desired response,

may let the routine compute the coefficients for particular filter

such as Butterworth or Chebyshev from the specifications he enters in

response to questions by the routine. 	While most applications will use

real coefficients, the coefficients are actually complex numbers. 	This

provides complete generality when used with the simulator's complex signal

representation. When real coefficients are desired the imaginary parts are

simply set to zero.

The complex signal representation may result in some ambiguity in

the definition of filter types. A filter with a pass band symmetrical

about zero frequency may be considered either a band-pass or a low-pass

filter depending on point of view. Where a low-pass design technique has

been used the design routine will ask for a cutoff

bandwidth of the filter when used as a band-pass filter

frequency will be twice this cutoff frequency.

frequency. 	The

centered on zero

Single-precision floating-point numbers (24-bit mantissa and 8-bit

exponent) are used for all coefficients. This limited precision can

to inaccuracies under certain conditions in IIR filters, and for

reason it is recommended that the response be tested before the filter is

used. Methods for accomplishing this will be discussed later.

Normally, a filter is designed to have unity gain at its centre

frequency. However, when it is used to filter a random variable that

controls a gain factor, such as in the simulation of Rayleigh fading, it

may be desirable to design a filter whose output power is equal to its

linear frequency scale. 	Figure 8.2 shows the target response. The

above can be considered a band-pass filter

signals. 	The user specifies the number of coefficients,

for complex

the cutoff

but as mentioned

the

the

136

input power when its input is white noise. 	In this case it has a

centre-fequency gain that depends on its bandwidth. In the filter designs

provided this capability is provided as an alternative.

8.1.1 FIR Filters

The configuration of the FIR or transversal filter is shown in

Figure 8.1. The blocks marked Z-1 are one-sample delays. Up to 256

complex coefficients (Ci) may be specified. The impulse response is

given in sampled form by the series of coefficients, and the frequency

response will be the Fourier transform of this series.

8.1.1.1 Simple Low-Pass Design

Two design methods are available to generate the coefficients

automatically for the user. The first is a simple low-pass design that

provides an exponential voltage rolloff with frequency beyond the cutoff

frequency. This results in a linear response when plotted in dB on a

coefficients are real, giving a symmetrical

frequency. This filter is referred to as a

amplitude response about

low-pass one in the

zero

simulation

frequency, and the desired attenuation

case the cutoff frequency is defined as

than as the 3-dB point.

at half the sample rate. 	In this

in Figure 8.2 rather the breakpoint

The routine uses an inverse Fourier transform to approximate

desired shape. 	Of course this will only be an approximation, and

accuracy will depend on the number of coefficients and the rolloff rate.

The greater this rate, the greater will be the number of coefficients

needed to give a reasonable approximation. The routine warns the user if

the values entered will give a poor approximation. As an example, Figure

—1 	 — — — Z -1 —

—

INPUT

COMPLEX SUMMER
COEFFICIENTS C1, C2 CN

ARE COMPLEX
MAXIMUM VALUE OF N = 256

01— OUTPUT

Figure 8.1 Finite Impulse-Response Filter

0.5

FREQUENCY/ SAMPLE RATE

-0 I

Zci I
c, I

fc = CUT-OFF FREQUENCY (0 dB)

Ah = GAIN AT HALF SAMPLE RATE

Figure 8.2 Target Frequency Response of Simple FIR Lowpass Filter

0

--20

13

--40

-60

20

N
-80

-06

1

-0.4 	-0 2 	0.0 	0.2 	0.4 	0.6

FREQUENCY/SAMPLE RATE

1

Figure 8.3 Response of Simple FIR Lowpass Filter when Rolloff

Rate too high for No. of Coefficients (64 Coefficients)

140

8.3 shows the measured response for a 64-coefficient filter with cut off of

0.1 times the sample rate and an attenuation of 70 dB at the half-sample-

rate point. The routine warned that the maximum attenuation for an

accurate filter with this cutoff and number of coefficients was 51.2 dB.

The ripples near the half sample rate are the result of the too-high

attenuation. Since these may be quite acceptable in some circumstances the

routine allows the user the choice of using the original specification or

of changing it.

The impulse response is adjusted to put the peak at the middle of

the response. This gives a signal delay of one-half the number of

coefficients. When the number is odd the delay is half of one less than

the number of coefficients. The routine informs the user of the actual

delay.

8.1.1.2 Complex Band-Pass Design

The second FIR design method used is the window method in which the

we start with the impulse response corresponding to a perfect rectangular

band-pass shape and modify it with a window or weighting function that

tapers the impulse-response sidelobes away from the peak. This tapering

allows the impulse response to be represented with a reasonable number of

coefficients without truncating it severely. Such truncation would lead to

large ripples in the frequency domain. The tapering results in a decrease

in the rolloff rate. A number of weighting functions are available for the

user to choose from. These are: rectangular, triangular, Banning,

modified Hanning, Hamming, Kaiser, Blackman, and sine of sine of sine. It

is recommended that the actual band-pass shape be examined by a test in the

simulator before any operational simulation run.

8.1.1.3 User-Specified Coefficients

For special designs the user may compute the coefficients and enter

them through the keyboard himself. Complex coefficients may be specified.

141

8.1.2 IIR Filters

IIR filters can be configured from up to 8 cascaded second-order

sections of the form shown in Figure 8.4. The transfer function of a

section is:

(1+C3Z -1 + C4Z-2)C5

-1 	-2
1-C1Z -C2 Z

8.1.2.1 Butterworth and Chebyshev Designs

Design routines are available to design Butterworth and Chebyshev

low-pass filters, with the coefficients automatically entered into the IIR

filter. The inputs requested from the user are the bandwidth, the number

of sections, whether the last section is a full or half section, and, in

the case of the Chebyshev design, the pass-band ripple. In addition, the

user may choose either unity centre-frequency gain or unity

integrated-noise-power gain. The warning about the effect of limited

precision in the number representation, mentioned earlier, is worth

repeating here.

8.1.2.2 Resonator Design

A design routine is also provided for a simple resonator using a

pair of complex-conjugate poles inside the unit circle at the resonant

frequency. Zeros at 1 and -1 are also included. This gives a transfer

function of:

1-Z2

1-2aZ+(a244,2)z2

H(Z)

H(z)

INPUT

OUTPUT

142

COEFFICIENTS C1, C2, C3, C4 AND C5 MAY BE COMPLEX

Figure 8.4 Second - Order Section of IIR Filter
(up to 8 Sections May Be Cascaded)

143

(up to 8 sections may be cascaded) for poles at a+jb and a-jb. The user

enters the number of these sections desired, the resonant frequency, and

the time constant of one section. This time constant will be equal to

1/(wW), where W is the 3-db bandwidth of one section. The gain coefficient

C5 is set to give unity gain at the resonant frequency. This is a real

filter and therefore also has a resonant peak at minus the specified

resonant frequency. The resonant frequency should be many bandwidths away

from zero frequency to avoid distortion of the pass-band by the tail of the

negative peak (folding about zero).

8.1.2.3 Narrowband Low-Pass Filter Design

There is a need for a very narrowband low-pass filter for the

generation of Rayleigh fading with sufficiently low fading rates. This can

be accomplished with a pair of poles on the real axis just inside the unit

circle. A design routine has not yet been added to the simulator for this

filter, but the coefficients can easily be determined from the following

manual procedure.

For a 6-dB cutoff frequency of fc , determine the distance of the

poles from the unit circle as e = 2.1rf c . The coefficients may then be

computed, for small e, from:

CI = 2(1-e)

C2 = (1-e) 2

C3 = 0

C4 = 0

C5 = e2

= 2e3/2

for unity gain at zero frequency,

for unity integrated-noise-power gain.

Identical sections may be cascaded to increase the cutoff rate.

This will reduce the bandwidth, and e should be adjusted to compensate.

144

Also, in the case of the unity integrated-power-gain design, the value of

C5 will have to be adjusted to give the correct overall power gain.

When e is less than about 0.001 the precision of the number

representation is not sufficient to provide an accurate frequency response,

and the peak can split into two. Considerably lower values can be used if

they are selected so that the coefficient representation is close to the

desired value; that is, they should be selected

between a single-precision and a double-precision

relative to the resolution of the single-precision

can be varied around the desired value, and the above test carried out in

an off-line program to find suitable values close to the desired one. The

frequency response should then be determined by a test on the resulting

filter to verify that it is satisfactory. A useful value of e near 0.0005,

found this way, is 0.00048846.

8.1.3 Testing the Frequency Response of a Filter

The frequency response of a filter can be determined by taking the

Fourier Transform of its impulse response. An off-line routine has been

developed to compute the transform and plot the result of a 512-point

complex record of the impulse response. The impulse response is generated

by using a data file consisting of a one followed by 511 zeros generated by

DATEN and MODIFY as input to the filter in the HOPPER process. The

resulting output is the impulse response and is written to a file using

FILE. An off-line routine called FILSPTL can then be used to read the

file t perform the transform, and plot the frequency response on a Tektronix

4014 graphics terminal.

so that the difference

representation is small

number. The value of e

145

8.2 Decimation

When the signal bandwidth is reduced, as when direct-sequence

de-spreading is performed, it is desirable to reduce the sample rate to

decrease the computing load. The sample rate need only be higher than

twice the highest frequency magnitude in the signal spectrum. In practice

"the highest frequency magnitude" may be interpreted as the frequency

magnitude beyond which there is no significant energy. The definition of

"signal" must include noise and interference, since under-sampled noise

will be aliased into the desired signal band. The simulator provides a

decimation routine for reducing the sample rate. The user is asked if he

wishes to use decimation at various points in the receiver after filtering

has been performed, but he may also elect to use it at any time between

processes by calling the HOPPER process which contains some general-purpose

utilities such as filtering and decimation. This process may be entered

for the purpose of filtering and decimation without performing the hopping

function. Decimation should only be performed after filtering to avoid

under-sampling.

The decimation algorithm is simple. 	The user is asked for the

desired decimation rate. 	This is the ratio of the sample rate before

decimation to that after. 	For a decimation rate of N, only every Nth

sample is retained with all others discarded. The first sample retained is

number (N+1)/2 (truncated to an integer if necessary). As an example, if

the decimation rate is specified as 10, then the samples retained are

numbers 5,15,25, etc.

8.3 Saturating Amplifier or Limiter

In some cases amplifiers may be driven into saturation and become

nonlinear. This is particularly true in the case of a power amplifier used

to transmit multiple tones simultaneously. Such tones can add in phase at

times to generate high peak voltages relative to the average voltage. For

efficient use of the amplifier it is usually required to operate with high

average power, not too far below the saturation level. In this case the

146

peaks can exceed the saturation level and be limited.

It may also be desired to limit large interfering peaks or to control

signal levels in the receiver and so a limiting amplifier may be used

there. To simulate these conditions a saturating amplifier is provided in

the simulator. It consists of an amplifier with a user-specified gain,

which is linear up to a user-specified threshold and has a fixed output

magnitude for all input signals above this threshold. The phase of the

complex signal is maintained by the amplifier. The characteristics of this

amplifier are shown graphically in Figure 8.5.

The saturating amplifier is a general-purpose device, but has been

included, for convenience, in the HOPPER process. If it is desired to use

it as a limiter in the receiver it is necessary to perform in the RECVR

process, on the first entry, only those functions that precede the limiter

(usually at least noise and jamming addition), then enter the HOPPER

process to do the limiting, and finally re-enter the RECVR process to

perform the remaining functions.

BATCH-MODE OPERATION

If the batch mode of operation is selected a command file must be

prepared in advance with the answers to all of the questions that the

program will ask. This is difficult to do without first running the

simulation from the terminal to find out what the questions are. We cannot

easily make a list of the questions as a guide since the route taken

through the simulation, and hence future questions, depends on the answers

to the earlier questions. The best method of finding the questions is to

perform the desired simulation with a reduced quantity of input data on a

hard-copy terminal. This will record the questions along with your

answers, and if the number of bits of input data is kept small, long waits

during processing of the data will be avoided. A video terminal may be

used, but in this case it will be necessary to write down the questions (or

the chosen answers) by hand. One difference between the interactive and

O
U

T
P

U
T

 M
A

G
N

IT
U

D
E

 <

SLOPE = SMALL-SIGNAL VOLTAGE GAIN, G

OUTPUT PHASE ANGLE = INPUT PHASE ANGLE

INPUT MAGNITUDE

G AND V1 SPECIFIED BY USER

LIMITS : 0 < G S.106

O<VL<106

Figure 8.5 Characteristics of Saturating Amplifier

148

batch mode that should be kept in mind is that the question on whether the

Monitor facility is desired in the receiver is asked only in the former and

not in the latter.

The user is advised to make the first batch run with a reduced number

of points since this will minimize the waste of CPU time if an error has

occurred in the batch command file. It can also allow the performance to

be checked with the Display facility to determine if changes need to be

made before committing a large amount of CPU time. Even crude estimates of

bit error rates may be obtained sometimes with few samples to determine if

there are gross errors in the simulated system. Another reason for using

short runs at the beginning is to obtain an estimate of the running time of

a longer run. Such estimates should take into account that a significant

amount of time will be used in starting the program and in stopping it,

regardless of the size of the simulation. This is about 40 seconds of CPU

time with the current simulator and operating system (VMS 4.2).

When operating in the batch mode it is usually best to specify a file

as the output device. If an output file is specified the batch log file

will contain only the questions and menus from the program along with any

error messages. 	If the terminal is specified as the output device the

output will also go to the log file. 	The log file is specified in the

SUBMIT command that starts the batch operation.

An example of a batch command file is included in Appendix D. This is

for the simulation of a binary DPSK system through a medium consisting of

two Rayleigh fading paths with small delay difference, and with CCIR type

noise of Vd equal to 4.2 dB. The command file is written for the DEC VMS

4.2 operating system. The lines beginning with a "$" are commands. A "!"

in a command line indicates that the text following it in quotation marks

is a comment which is included to help in interpreting the command file.

The lines not beginning with a "$" are the user responses to the questions

asked by the program which begins after the RUN command. The WRITE

commands cause the subsequent text to be copied to the output device,

which, in the case of batch operation, is the batch log file. The SET

of the responses in the command file. This output reproduced in is

149

DEFAULT command tells the system which directory to run the program in.

The parameter, Pl, which specifies the directory, should be included in the

VMS SUBMIT command that is used to submit this command file. More will be

said about this later.

The RUN command starts the simulation program, MODEM, which is in

directory VENIER.FREYSENG.MODEM. At this point the program takes control

and begins asking the user for information. The first question relates to

the mode of operation and is answered "BAT" to enter the batch mode. After

this the question on output is answered "FILE" and the file heading and

name are specified. The questions corresponding to the remaining responses

may be viewed on the terminal by running the simulator in interactive mode,

or they may be found in the batch log file generated when this command file

was run in batch mode.

This log file is included in Appendix E. The two lines of information

written to the log file by the commands in the command file can be found at

the beginning. These are used to identify the particular experiment. They

are followed by an indication of the simulation program name and version

number, written by the simulation program, along with the date on which the

run was performed and the maximum amount of data the current version can

handle. After this we see the questions and information such as menus

intended to help the user answer the questions. At the end of the log file

there is a summary of accounting information which includes the amount of

CPU time used.

The output of the simulation, was directed to file DPSK0123.DAT by one

Appendix F. It contains all of the information on the specification of the

simulated system and the output of any analyses requested.

Appendix G lists a general-purpose command file for submitting a batch

command file. It can be run by typing @BATCH. It asks for

batch command file, the default directory (the directory in

command file can be found), and the priority desired. This

the name of the

which the batch

priority is the

150

priority in the batch queue, not the priority while running. It may be 1,

2, or 3, with 3 being highest priority.

10 ACKNOWLEDGEMENTS

The very difficult task of organizing the structure of this simulation

program and generating an enormous amount of code was performed by Mr.

Peter Freyseng of Datacap Ltd. The somewhat incomplete specifications

provided to him at the beginning added to the difficulty, but did not deter

him from his dedication to the development of well-structured and

well-documented software. I am grateful for that dedication and for the

results achieved.

The simulator was developed under a task sponsored by the Director of

Maritime Combat Systems (DMCS-6) of the Department of National Defence.

11 REFERENCES

[1]. Davies, N. G., "Some Properties of Linear Recursive

Sequences", Defence Research Telecommunications

Establishment Report No. 1031, December, 1959.

[2]. Davenport, Wilbur B. Jr., and William L. Root, "An

Introduction to the Theory of Random Signals and

Noise", McGraw-Hill, 1958, pp 81-84.

Box, G. E. P., and M. E. Muller, "A note on the

generation of random normal deviates", Annals of

Mathematical Statistics, Vol. 29, pp 610-611.

[4]. CCIR (International Radio Consultative Committee),

"World Distribution and Characteristics of

Atmospheric Radio Noise",CCIR Report 322,

Figure 27, International Telecommunications Union,

Geneva, Switzerland, 1964.

[5].Akima, Hiroshi, "A Method of Numerical Representation

for the Amplitude-Probability Distribution of

Atmospheric Radio Noise", Telecommunications

Research and Engineering Report 27, Institute for

Telecommunication Sciences, Office of

Telecommunications, U.S. Department of Commerce,

1972.

[6]. Brigham, E. Oran, "The Fast Fourier Transform",

Prentice-Hall, 1974.

Lin, Shu, and Daniel J. Costello, Jr., "Error Control

Coding: Fundamentals and Applications",

Prentice-Hall, 1983.

151

[3].

152

[8]. Holmes, Jack K., "Coherent Spread Spectrum Systems",

Wiley-Interscience, John Wiley & Sons, 1982.

[9]. Simon, Marvin K., Jim K. Omura, Robert A. Scholtz,

and Barry K. Levitt, "Spread Spectrum Communications",

Volumes I, II, and III, Computer Science Press, 1985.

[10]. Proakis, John G., "Digital Communications",

McGraw-Hill, 1983, Figure 4.2.20, p 176.

APPENDIX A

CALCULATION OF NOISE VOLTAGE REQUIRED FOR A GIVEN VALUE OF Eb/No

APPENDIX A

CALCULATION OF NOISE VOLTAGE REQUIRED FOR A GIVEN VALUE OF Eb/No

Let Ns 	= the number of samples per modulation symbol,

(In the case of direct-sequence or MCSK modulation

the modulation symbol is an element of the code.)

= the number of spreading code elements (modulation

symbols) per data symbol,

fd 	= the data rate in bits per second,

Nb 	= the number of bits per data symbol,

f s 	= the sample rate (= NsNe fd),

Vs 	= the peak signal voltage at the receiver input,

As 	= the energy gain factor for shaping or transitions,

Vn 	= the rms noise voltage at the receiver input,

Eb 	= the energy per bit of the signal in joules,

Ec 	= the energy per modulation symbol,

No 	= the noise power density in watts per Hz.

A-1

Nc

A-2

Then

and

(Al)

(A2)

(A3)

(A4)

(A5)

EcNc

Nb
(A6)

2 As s
E 	

V
= 	

b 	Nb fd

V 2ANN s s s c

Nb f s

, 2
vn

N =
o fs

EbV 2ANNc s s s = 	
, 2 m No 	vn

From (A4) we get:

Vn As Ns Ne N0
= •

V 	NbEb

(AS) gives the ratio of noise voltage to peak signal voltage required to

give a specified ratio of bit energy to noise power density.

The program displays the computed values of modulation symbol energy

and noise power density. This allows the user to determine the ratio to

check that it is correct. However, he must first determine the bit energy

from the Modulation symbol energy from:

APPENDIX B

EXCISION TECHNIQUES FOR DIRECT-SEQUENCE SPREAD-SPECTRUM SYSTEMS

Note: 	This paper first appeared as Communications Research

Centre Technical Memorandum MC/7M030/84, 14 May 1984.

TABLE OF CONTENTS

Page No

1. Introduction 	 B-1

2. Prediction Filter Theory 	 B-3

3. Design Considerations 	 B-6

4. Simulation Experiments 	 B-8

	

4.1 	Excision Filter Demonstration 	B-9

	

4.2 	Effect of the Number of Coefficients 	B-10

on Notch Characteristics

	

4.1 	Autocorrelation Estimate 	B-11

	

4.4 	Multiple Narrowband Signal Interference 	B-13

	

4.5 	Swept Frequency Interference 	B-15

	

4.6 	Multi-Sample Tap Spacing 	B-17

	

4.7 	Demonstration of Excision Followed 	B-18

by Direct Sequence Matched Filter

	

4.8 	Effect of High Interference- 	B-19

to-Signal Ratio

5. Conclusions 	 B-21

6. References 	 B-22

7. List of Figures 	 B-24

EXCISION TECHNIQUES FOR DIRECT SEQUENCE

SPREAD SPECTRUM SYSTEMS

1. INTRODUCTION

The purpose of the investigation outlined in this Memorandum is to

permit specifications to be written for an excision routine which will be

used in the DMC Spread Spectrum Simulation Facility. It is not intended

as an intensive study of the problem. The routine will have user-

selectable parameters which will allow further study of the excision

technique when completed. As well as providing the general design

information, the present investigation should provide the basis for an

intelligent use of the routine in such a study.

A direct-sequence spread-spectrum system provides good discrimination

against a narrowband interfering signal. The despreading process in the

receiver, which reduces the bandwidth of the communication signal by

removing the spreading modulation, will cause the narrowband interference

to be s,pread in bandwidth, and therefore only a small part of its energy

will fall into the filter matched to the data modulation. This will be

true whenever the bandwidth of the interference is less than the spread-

spectrum bandwidth. When the interference has a bandwidth less than or

equal to the data bandwidth, the spread-spectrum system will provide an

improvement approximately equal to the processing gain, that is to the

ratio of spread bandwidth to data bandwidth. However, even greater

improvement is possible if the narrowband nature of the interference is

properly exploited.

This can be accomplished by removing the narrowband interference with

a notch filter before despreading. If the interfering signal is much less

in bandwidth than the direct."-sequence signal, only a little of the desired

signal is lost in the process. Some estimate of the spectrum is necessary

to determine where to place the notch. One method of doing this is to

perform a spectral analysis or Fourier transform of the incoming signal

B-1

autocorrelation peak

than a chip duration.

interference but not

is therefore unpredictable

Thus linear prediction will predict

the desired direct-sequence signal.

and over

broadband spectrum such the direct-sequence signal as

the

If

B-2

and place a notch where the spectrum exceeds some threshold level. It is

desired that this be done automatically and some problems will arise in

determining the proper threshold and notch width to use. The notch of

a digital filter can easily be set to the desired frequency by setting the

filter coefficients.

A solution which avoids some of these problems is to use a whitening

filter which automatically adapts to the input signal in such a way as to

try to whiten the output spectrum, that is, to suppress any narrow peaks

in the spectrum. This can be accomplished by the technique of linear

prediction which is more easily described in the time domain.

A narrowband signal will have an autocorrelation function whose peak

is very broad. That is, there is strong correlation between values well

separated in time. This makes the signal predictable from its history. A

has a narrow

a time greater

narrowband

the value

predicted for the next sample (in the future) is subtracted from the next

sample when it arrives, then if the prediction is accurate the narrowband

signal will be cancelled while the communication signal will be

essentially unaffected.

Some of the details of this technique are presented in a paper by Hsu

and Giordano [I]. Some of the results will be summarized here for the

Wiener algorithm. Another algorithm, the maximum-entropy or Burg

algorithm is also described in the above paper but will not be discussed

here. This may be the subject of a later Technical Memorandum.

R•B = R (3)

2. PREDICTION FILTER THEORY

The Wiener prediction filter takes the form of a finite impulse

response (FIR) or transversal filter. The estimate of the kth sample is

computed from N previous input samples Xk_N to Xk_i by,

X. 	n = 	bXic-11

n=1

The problem is to determine the coefficients 	of this FIR filter.

These are determined from a least-mean-square criterion which leads to the

set of equations [2]

b
n
r
k-n

= r
k ' 	

k = 1, 2,N 	(2)

where {rk} are the autocorrelation coefficients of the input signal.

These can be estimated in the standard manner from the signal, but it must

be remembered that they are only estimates based on a limited number of

samples.

The equations in (2) above can be written in matrix form as:

B-3

(I)

where is the NxN autocorrelation matrix,

is the vector of filter coefficients, and

Rv is the vector of autocorrelation coefficients r l , r2 ,

....rN

The autocorrelation matrix as determined from (2) will have the form

'mum ••••n1

Mums,

B-4

ro r_i r_2 . . .

ri ro r_i . . . r_N+ 2

r2 ri ro . . . r_N+ 3

• • 	•
• • 	•
• • 	•

rN_2. • • r o

RN =

Foranautocorrelatiolifutictiotir- 1 	.e'rk 	ftec ..=complex

conjugate of ri). 	The matrix RN is therefore Hermitian (aii =

alcii)and Toeplitz (equal values on any diagonal). 	This makes possible

an iterative solution known as the Levinson-Durbin Algorithm which is

described in [3]. This algorithm is reproduced below with different

notation and a sign difference to account for the different application

(we are computing the coefficients of the prediction filter whose output

will be subtracted from the next input). The notation bi , i refers to

the ith coefficient in the

b1 , 1 is computed first from

ri
1'1,1 = —

ro

Each additional coefficient is computed in turn and previous

coefficients are updated on each interation.

i th iteration.

On the Nth iteration we compute,

N-1

A = rN 	/ bk,N-1 rN-k
k=1

N-1
B = ro 11 (1 - I bk,k 1 2)

k=1

From these we compute the Nth coefficient,

bN , N= A/13

and then update all previous coefficients by,

-b 	b* b 	= b
n,N 	n,N-1 	N,N N-n,N-1'

for n = 1,2 ... N-1

After N iterations we compute N coefficients. This requires only order N2

operations as opposed to order N3 operations required for a general matrix

inversion.

Wheil the coefficients fbo l have been computed they are used in a

transversal filter indicated by (1) to predict the next value of the

input, and this value is then subtracted from the next input sample. The

process is illustrated in Figure 1*.

In this configuration the filter output is subtracted from the next

sample simply by reversing the signs of all the Ibo l and adding in the

next sample with unit multiplier. The extra delay at the beginning takes

care of the fact that the prediction is made for the next sample time

after the time when the prediction is made.

B-5

All figures in this appendix have been given the prefix "B". However

in the text they are referred to without the prefix.

B-6

3. DESIGN CONSIDERATIONS

It should be recalled that the excision with minimum distortion to

the desired signal is based on the assumption that the desired signal is

uncorrelated from sample to sample. This is only true if there is a

maximum of one sample per chip. Normally we would like to represent the

signal with more than one sample per chip to prevent aliasing. This can

be accommodated by computing the autocorrelation function only at delays

separated by M samples, where M is the number of samples per chip, and

spacing the filter taps every M samples. This means that the delays are

made equal to M sample periods. This maintains the good representation of

the signal at the output - that is, it does not introduce aliasing of the

signal - but it does cause a periodic repetition of the filter frequency

response at intervals of the inverse of the tap spacing. For example if

there are 4 samples per chip we must choose a tap spacing of four

samples. This will give an effective sample rate for the filter of 0.25

times the true sample rate. Therefore an interfering signal at 0.1 times

the sample rate will produce a notch not only at 0.1 but at 0.25 + 0.1 =

0.35, at 0.5 + 0.1 = 0.6 or -0.4 and at 0.75 + 0.1 = 0.85 or -0.15.

The notches at higher frequencies will cause no problem since little

signal energy exists there (above the rate of the taps) but the one at

-0.15 will fall on the signal spectrum and will notch out some of it.

Thus an interferer can have the effect of two interferers. Even worse, if

an interferer falls above the tap sample rate say at 0.3 in the above

example, it would cause very little problem by itself, but the filter will

generate a notch at 0.3 - 0.25 = 0.05 as well as at -0.25 + 0.05 = -0.20.

Thus the use of the adaptive filter may actually degrade the performance

when the interference is outside the normal signal band. To minimize this

effect we should low-pass filter to as low a frequency as possible,

without seriously distorting the signal, before the adaptive filter.

The autocorrelation function can be estimated over a block of M input

samples from

1
M7j

r. = 	L
i 	

, j = 0,1....N
713- •=1 1 	J

Coefficients of higher delay will not be as precise since they will have

fewer values in the sum. This can be avoided by making the upper limit of

summation M-J, where J is the index of the highest delay coefficient

desired. In this case coefficients for smaller values of j will not make

use of all the in-formation available, but all summations will contain the

same number of products. But normally N will be much less than M and this

effect will be small. If N is not much smaller than M then a more

efficient means of computing the autocorrelation function is to take the

inverse Fourier Transform of the Power Spectrum. This involves two

Fourier Transforms but if the number of coefficients to be found is a

significant fraction of the block size the efficiency of the Fast Fourier

Transform routine makes this the preferred method. However, care must be

taken to avoid the cyclic nature of the autocorrelation function when

generated in this manner. One method of accomplishing this is to add

zeros to the end of the sample block before performing the Fourier

Transform. The warning about the precision of the higher delay

coefficients is even more important in this case since this method would

only be used when the number of coefficients to be used is a significant

fraction of the block length M.

One question of importance in the autocorrelation estimation problem

is the size of the block over which the estimate is performed. The larger

the block the better will be the estimate, providing the data are

stationary which is rarely the case. Therefore some compromise is

required so that the filter can adapt as the conditions change but still

make use of a large enough block to permit a good estimate. 	Another

factor is the requirement for storage of data. 	Ideally the data to be

filtered should be stored until the filter has been computed, then put

through the filter. That is; there should be a storage capability of at

least the size of the block used. If no storage is provided the filter

will have to operate on data following the data to which it has adapted,

B-7

B-8

making it even more vulnerable to non-stationarity. 	In the routine for

the Spread-Spectrum Simulation Facility the block length and the storage

capability should be made variable - to be set by the user - so that these

problems can be further investigated.

It seems reasonable that the greater the number of coefficients in

the filter, the better the filter will be able to remove the interference,

particularly when the interferer has significant bandwidth or comprises a

number of separate narrowband signals. Intuitive reasoning indicates that

the notch width for a single interferer will be proportional to the

inverse of the number of samples spanned by the filter, that is, to the

inverse of the number of coefficients times the number of samples

between taps. Thus to minimize the distortion to the desired signal we

should use as many coefficients as possible. We would also expect that

the greater the number of narrowband interferers the more coefficients we

will need. But coefficients are expensive since the number of operations

required in computing the coefficients is proportional to the square of

the number of coefficients. For this reason it is important to determine

how many coefficients are required for the desired performance. This will

depend strongly on the characteristics of the interference and therefore a

good estimate of the threat is important. In the Simulation routine it is

essential that the number of coefficients be a user-selectable parameter.

A maximum value of 64 should cover any feasible practical system.

4. SIMULATION EXPERIMENTS

The algorithm for computing the excision filter coefficients was

implemented in Fortran on a VAX-11/750 computer. This routine computes

the autocorrelation function estimate for a block of up to 512 complex

input samples and uses this to compute from one to 16 coefficients with

tap spacings of from one to 16 samples. All these parameters are

user-selectable at run time.

B-9

Input samples are generated from the data-generation routines of the

partially completed Spread-Spectrum Simulation Facility. The wideband

signal representing the direct-sequence signal was simulated by various

signals including white Gaussian noise, impulses and maximal-length

sequences, depending on the purpose of the test. Narrowband interference

was simulated by one or more complex sine waves or in some cases by a

slowly swept complex sine wave.

The resulting coefficients were output to a file from which they were

read by a general-purpose FIR filter routine which performed the actual

excision process on the simulated input signal, or on an impulse when the

impulse response was desired. The output of the FIR filter routine could

be taken as a time series or converted to the frequency domain by a Fast

Fourier Transform routine. The output domain, number of coefficients and

tap spacing are user-selectable parameters. The input sample block is

fixed at 512 samples, but a number of samples equal to the impuse response

duration are removed from the beginning of the output time series, and

only the last 256 output samples are used in the FFT routine. This is to

avoid the effects of the start-up transient. This transient would not be

a problem 4n practice since the filter state would be retained from one

input block to the next. Only the first block would generate a transient

from the zero state. These routines were used to test the adaptive

algorithm and to provide some understanding of how the parameters affect

the result.

4.1 Excision Filter Demonstration

The first experiment was intended to demonstrate the operation of the

excision process under the simplest conditions. The direct-sequence

signal was simulated by white Gaussian noise and a single complex sine

wave was added to it to simulate the interference. The Gaussian samples

were generated by the Box and « Muller method [4]. The amplitude of the

sine wave was five times that of the rms noise voltage and its frequency

was 0.14 times the sample rate. (Henceforth we shall specify all

frequencies as a number without units representing the ratio of frequency

B-10

to sample rate). The input signal is shown in Figure 2 and its spectrum

in Figure 3. 	The spectrum is generated from a 512-point FFT of the input

signal and the magnitude of the complex spectrum is plotted. 	The

magnitude is the Fourier transform result without division by the number

of points. For an N-point transform the sine-wave component will have an

amplitude of N times its time-domain amplitude, while the noise will have

an rms value of only IN times its time-domain component. Thus the 5:1

time-domain ratio of sine amplitude to noise amplitude becomes a 113:1

ratio in the frequency domain. It should be noted that all output spectra

are from 256-point transforms and this will result in a /2 reduction of

the sine wave component relative to the 512-point input spectrum.

Eight excision filter coefficients with one-sample tap spacing were

computed from the 512-sample input block and these coefficients were used

to filter the same input block. The output of the FIR filter is shown in

the time and frequency domains in Figures 4 and 5 respectively. It is

clear that the sine-wave component has been effectively removed while the

noise remains. A notch can be seen in the noise spectrum where the

sine-wave component was.

4.2 Effect of the Number of Coefficients on Notch

Characteristics

To investigate the characteristics of this notch and its dependence

on the number of coefficients the following experiment was performed. A

single impulse of unit amplitude at sample number 257 was used to simulate

the wideband signal. This has the advantage of having zero

autocorrelation for all non-zero delays and so does not affect the

coefficient computation as the noise signal does. This permits the

coefficients to be based entirely on the sine-wave component which was

again at a frequency of 0.14 but had an amplitude of 0.1. This gives it

an energy of about 5 times that of the impulse in the 512-sample block.

FIR filter coefficients were computed using a 16-coefficient and a

4-coefficient calculation. The impulse response of the resulting filters

were generated by using the impulse signal, without the sine-wave, as

B-11

input. 	The frequency-domain results (the frequency response of the

filter) are plotted in Figures 6 and 8 and the time-domain impulse

responses are plotted in Figures 7 and 9 for the 16- and 4-coefficient

cases respectively. 	The ripples in the frequency response are

characteristic of finite impulse responses. It is the notch itself which

is of main interest. We see that the notch width is much greater for the

4-coefficient case as expected. It was speculated earlier that the notch

width would be proportional to the inverse of the number of samples

spanned by the filter

and 0.25 for 16 and 4

(in this case the number of

coefficients respectively.

coefficients)

The width of

or 0.0625

the notch

depends on how it is defined but if we take the point where the

is just attenuation is 3 dB we find from Figures 6 and 8 that the width

under one-half the inverse of the number of samples spanned.

The impulse responses in Figures 7 and 9 show that the impulse is

well preserved (as it must be with a unity coefficient), but that the

filter "rings" for a time equal to the filter length after the impulse.

Since it is a finite impulse response filter it could not have an impulse

response outside this region. The magnitude of the "ringing" is greater

for the shorter filter but lasts a shorter time. 	This distortion will

cause some degradation in the signal. 	The wider the frequency-domain

notch the more degradation there will be since the greater will be the

loss of signal spectrum. On the other hand when the interfering signal is

not very stable in frequency and the coefficients are not computed very

often, the wider notch (fewer coefficients) may actually provide better

performance since the interference may change frequency by a greater

amount without going outside a given attenuation level.

4.3 Autocorrelation Estimate

Another parameter of importance is the number of samples used in the

autocorrelation estimate. Although the wideband signal may have zero

autocorrelation for delays greater than the tap spacing, the estimate of

that autocorrelation will not be zero when based on a finite number of

B-12

samples. For a noise-like signal we would expect the estimate to decrease

in proportion to 'Iry where N is the number of products used in the

correlation estimate. 	The number of products possible is equal to N-k

where k is the delay in samples for that coefficient. 	To make this

number independent of delay we took km , the largest k required (equal to

the number of filter coefficients), and used N-km products for all

delays. That is, for shorter delays we did not use some of the later

samples in the block.

Since it is only the wideband signal that takes part in the

correlation estimate error, only a noise signal was used as input

for the filter coefficient computation. Coefficients were generated for

two different input block lengths and the resulting FIR filters were

tested with an impulse signal. The results for 16 coefficients are shown

in Figures 10, 11, 12 and 13.

Figure 10 shows the frequency response for 496 correlation products

(block of 512 samples). If the correlation were perfect the magnitude

should be unity for all frequencies. The fluctuations shown are a result

of the estimation errors. 	We see that the rms variations are about 10

percent. 	In Figure 12 where only 124 correlation products were used the

variation is about double this. 	Since variations from the all-pass

situation will distort the wideband signal it is evident that a larger

number of samples gives a better filter. Figures 11 and 13 show the

time-domain versions of the outputs for 496 and 124 samples respectively.

They verify that the latter case produces greater signal distortion.

Figure 14 indicates the interaction between the number of correlation

products and the number of coefficients. It is the frequency response for

the 4-coefficient filter generated from an autocorrelation estimate using

496 products. We see that the variations have been reduced from those of

Figure 10. This indicates that the greater the number of coefficients,

the greater must be the block size for a given mean squared error in the

frequency response. The following analysis confirms this.

B-13

Suppose there are N products in the correlation estimate and M

coefficients. 	If the input signal is noise-like we would expect each

coefficient to have an rms error of about uter 	Now the frequency

response is simply the Fourier Transform of the coefficients and if the

coefficients are random and zero mean (as we expect for a noise-like

input) then each element in the frequency domain will result from an

incoherent addition of M random values, each with standard deviation

(we will ignore for the moment the additional unity coefficient which is

always present - see Figure 1). 	Thus the standard deviation in the

frequency domain should be /P/AT, for the unnormalized definition

of the Fourier Transform. 	Now the unity coefficient that we have

ignored is a unit impulse and results in unity for each element in the

frequency domain. 	The other M coefficients will produce a random

fluctuation of /11/47 about 	this unit mean value. 	Thus 	the

fractional error should be approximately

Ef = /3717J,/r

That is, the error is proportional to the square root of the number of

coefficients and inversely proportional to the square root of the number

of products in the correlation estimate. We can check this against

Figures 10, 12 and 14. For Figure 10, M = 16, N = 496 giving an rms error

estimate of in/le6 - 0.18. For Figure 12 it should be twice this (since

N reduced by a factor of 4) or 0.36. Finally for Figure 14 the rms error

should be about l4//7177= 0.09. We see that these values agree reasonably

well with a simple "eyeball" estimate of the rms values from the above

figures. It does not appear justified to do a more quantitative estimate

from these figures since the number of independent samples is not

sufficient to give an accurate estimate.

4.4 Multiple Narrowband Signal. Interference

The performance of the excision filter for multiple narrowband

signals was investigated by combining four sine-wave signals with Gaussian

noise and using this to generate the coefficients. The resulting filter

samples fall relative to the actual peaks. 	In addition the the

interaction of the finite duration tones will play a smaller and

16 coefficients. The full 512-sample block (496

coefficient computation. Four notches can

B-14

was tested for frequency response as well as for response to the above

signal. Two cases were tried: in one the tones were spread widely across

the sampling bandwidth while in the other they were closely spaced over a

very small percentage of this band.

The spectrum of the widely-separated-tone-input case is shown in

Figure 15. The tone frequencies were -0.3, -0.1, 0.05 and 0.15. All

tones had unit amplitude in the time domain as did the noise. The

differences in amplitude of the different tones in Figure 15 are caused

mainly by the sampled nature of the plotted spectrum. The plot routine

connects points by straight lines and the peaks on the plot will depend on

where

noise

part. Figure 16 shows the frequency response of the resulting filter with

products) was used in the

be

frequencies. Other fluctuations in the response are

finite-duration response and the finite estimation

seen at the tone

a combination of the

time for the noise

autocorrelation function. The spectrum of the output of this filter with

the signal of Figure 15 as input is shown in Figure 17. It is evident

that the 16 coefficients have been effective in suppressing the tones.

When the number of coefficients was reduced to six the frequency

response of the filter changed to that seen in Figure 18. The notches

have widened and the two for the highest two tones have almost merged.

This means much greater degradation of the wideband signal as seen in

Figure 19 which is the spectrum of the output with the signal of Figure 15

as input. Also, the tones are not well suppressed. In this case we have

only 1.5 coefficients per interfering tone and since these coefficients

represent degrees of freedom we might expect relatively poor performance.

Since the notch width is on the order of the inverse of the number of

coefficients, then for widely separated tones, one coefficient per tone

would be expected to eliminate a major part of the wideband signal

spectrum. A minimum of two coefficients per interfering tone would seem

to be a reasonable requirement under these circumstances.

B-15

The spectrum of the input signal for the closely spaced case is shown

in Figure 20. The tone frequencies are 0.07, 0.08, 0.09 and 0.10 and all

time-domain amplitudes including the noise rms are unity. The frequency

response for the 16-coefficient filter generated from the input of Figure

20 is displayed in Figure 21. In this case all the notches have merged to

give a single wider notch encompassing all of the tones. In Figure 22 we

see the spectrum of the filter output when the input is the signal of

Figure 20. The four tones are reduced to the level of the noise and the

noise spectrum is not much affected. The frequency response when only

four coefficients are used is shown in Figure 23, and the spectrum of the

output when the input is the signal of Figure 20 is shown in Figure 24.

We see that although the tone suppression is not quite as good as in the

16-coefficient case, the noise spectrum is not badly distorted, even

though there is only one coefficient per tone. The reason is that the

coefficients produce a single notch at the frequency of the grouped tones,

rather than producing four separate notches as in the earlier case. Thus

fewer coefficients are required than in the widely-spaced case for the

same performance.

4.5 Swept Frequency Interference

A similar situation occurs when the interference is a single tone but

is swept slowly in frequency. This gives it a wider bandwidth, roughly

equal to the range of frequencies swept through, providing this range is

significantly greater than the inverse of the sweep time. The spectrum of

such an input signal is shown in Figure 25. This signal was swept

linearly from 0.10 to 0.13 starting at the 21st sample and ending at the

495th sample. The signal had unit amplitude in this period and had zero

amplitude for all other samples. Added to this was white Gaussian noise

of rms amplitude equal to 0.2 to represent the desired wideband signal.

The swept bandwidth of the interference was 0.03 which was much greater

than the inverse of the time dilration which was 1/475. Thus it satisfies

the criterion mentioned above for slow sweep, and this is verified by

Figure 25 which indicates the rectangular spectrum of the swept signal

over the expected range.

B-16

In Figure 26 we see that the frequency response of the resulting

16-coefficient filter has a notch matching the interference spectrum in

position and width. 	The spectrum of the output of the filter for the

input of Figure 25 is seen in Figure 27. 	Some of the interference is

still present but is reduced to about the level of the noise signal. The

wideband signal spectrum is not seriously degraded for this case of 16

coefficients. The impulse response of Figure 28 verifies this although

some "ringing" of the filter does occur.

When only four coefficients are used the frequency response of Figure

29 results and the frequency-domain response to the input of Figure 25

seen in Figure 30 shows a higher leak-through of the interference, and

greater distortion (attenuation of the wideband signal near the

interference) of the wideband signal spectrum. However, the impulse

response in Figure 31 indicates only moderate distortion. Thus it appears

that even as few as four coefficients are reasonably effective against a

swept signal occupying three percent of the bandwidth.

In the above the full block of input signal was used to generate the

coefficients. When only part of the input is used we would not expect

such good results since the interference is not stationary and the filter

can only be adapted to the conditions existing during the coefficient

computation. This was illustrated by using only the first half of the

input block for the coefficient generator. The frequency response of the

resulting 16-coefficient filter is shown in Figure 32. The notch does not

extend to as high a frequency as it does in Figure 26 since the higher

frequencies do not occur until the second half of the input signal. In

the frequency-domain response to the signal shown in Figure 33 we see

serious leak-through of the interference at the higher frequencies. The

time-domain response to the signal as seen in Figure 34 illustrates the

problem more clearly. The interference is well suppressed over the first

half of the output where the coefficients were computed, but as the

frequency increases in the second half it moves out of the notch and we

see the build-up in amplitude as the frequency increases. This

illustrates the advantage of using the same block of input for coefficient

B-17

generation and as filter input. 	This requires delay or storage of the

signal since the first sample cannot be applied to the filter until the

entire block has been used for the computation. While this would be a

serious problem in an analogue system, it would be much less so in a

digital one. However, since the excision process must be carried out in

the wideband part of the receiver before despreading, the use of digital

techniques may be quite expensive.

4.6 Multi-Sample Tap Spacing

Another question that deserves investigation is the effect of

multi-sample tap spacing as required when there is more than one sample

per direct-sequence chip. The first test was intended to demonstrate the

effect described earlier in the section on Design Considerations. The

parameters used in the examples there were tested using an impulse as the

desired signal component and sine waves at frequencies of 0.1 and 0.3 (two

tests, one with each frequency) for the coefficient generation. 	A tap

spacing of four samples was used as in the example. 	In the filter

coefficient generation 16 coefficients were computed. 	The frequency

responses generated by an impulse input are shown in Figures 35 and 36 for

interfering frequencies of 0.1 and 0.3 respectively. In the first case

the notch is repeated at frequency intervals of 0.25 (inverse of the tap

spacing) from the desired response at 0.1 as expected. The negative

frequency values can be computed either by subtracting intervals of 0.25

or by adding intervals of 0.25 and subtracting 1.0 when the value is above

0.5.

In the second case, the desired notch is above the tap sampling

frequency of 0.25, leading to a positive frequency notch below the desired

one at 0.05 as seen in Figure 36. The number of notches will always equal

the tap spacing. The impulse response of the filter of Figure 36 is shown

in Figure 37. The ringing noW extends for a longer period than for the

single-sample tap spacing case since now the impulse response has a length

equal to the number of taps times the tap spacing - in this case 16 x 4 =

64.

B-18

4.7 Demonstration of Excision Followed by Direct

Sequence Matched Filter

The effect of the excision filter on an actual direct-sequence signal

with multiple sample chips was investigated using a 31-element maximal-

length sequence (M-sequence). This sequence used eight samples per chip

and was repeated to produce 62 elements comprising 496 samples. The unit

amplitude sequence was added to a complex sine wave at a frequency of 0.02

and white Gaussian noise with unit variance. In this test the noise was

intended to represent undesired noise, and not the wideband signal.

Figure 38 shows the spectrum of the combined signal. The M-sequence is

barely discernible in the noise over the range of -0.1 to +0.1 and the

narrowband interference is seen near the centre of this spectrum. Figure

39 shows the time-domain magnitude of the output of a filter matched to

the M-sequence (no excision filter was used). The triangular peak is the

desired matched-filter response (the M-sequence was delayed to put the

peak near the centre). The remainder results from the combination of

noise and sine-wave interference (since the magnitude is plotted, the

complex sinewave would appear as a constant level). The processing gain

of the matched filter brings the desired peak above the noise and stronger

interference. Note that the vertical scale starts at 100 rather than

zero.

The input signal of Figure 38 was then used to generate excision

filter coefficients and the original input signal was applied to this

filter. Eight coefficients were generated using a tap spacing of 8

samples and 448 products in the correlation estimate (the largest number

possible for a block of 512 with these parameters). The output spectrum

is shown in Figure 40. The sine-wave interference has been removed but

the noise remains since it is wideband. The output of the excision filter

was then applied to the matched filter which has a processing gain against

the noise. The result is seen in Figure 41 which shows the magnitude of

the time-domain output. This output is clearly superior to that in Figure

39. The reason is that the excision filter has provided the extra gain

against the sine-wave interference in addition to the gain of the matched

B-19

filter. The well-defined triangular peak rising well above the residual

level indicates that the excision filter has not seriously degraded the

M-sequence signal. Some loss is evident when comparing the peak levels of

Figures 39 and 41, but the end result is a significant improvement in

signal-to-interference ratio. The M-sequence used is a relatively short

one, with spreading ratio of only 31 allowing only modest processing

gain. In more typical systems with higher spreading ratios the

improvement should be even more marked.

4.8 Effect of High Interference-to-Signal Ratio

In one of the experiments using noise to represent the wideband

signal and a single tone to represent the interference it was found that,

although the resulting filter suppressed the interference, it badly

distorted the wideband signal. The frequency response of the filter had a

large peak in it at a frequency near the notch frequency rather than being

relatively flat as it should have been. The only difference between this

and some similar experiments was the higher ratio of narrowband-to-

wideband signal amplitudes. In this case this ratio was 20:1. When a

ratio of' 10:1 was used under identical conditions (512-sample block to

generate 16 coefficients) this problem did not arise. This led to the

conclusion that for this high ratio and for the precision of the

computations (32-bit floating point numbers with 24-bit mantissa) the

autocorrelation matrix was ill-conditioned. Since the autocorrelation of

the narrowband signal has unit magnitude for all delays, this matrix would

be singular if there were no wideband signal at all. If the wideband

signal is small relative to the narrowband one, the matrix elements will

all have nearly unit magnitude, with the wideband signal providing small

perturbations about this value. Thus the determinant will be computed

from a number of values which would add up to zero except for these

perturbations, and the sum will be very small relative to the values

summed. Under these conditions, large errors can occur when the precision

of the computation is not sufficient. While the determinant is not

calculated directly in the coefficient computation, the result is

identical to that which a straightforward matrix inversion would give and

B-20

the same errors occur.

To rule out the possibility that the poor result was caused by an

unlucky choice of the noise signal resulting in a near-singularity, the

experiment was repeated with another noise sample. The frequency response

was different, but the distortion was of about the same magnitude,

indicating that the problem was not caused by an unlucky choice.

Two solutions to this problem come to mind. One is the use of higher

precision in the computations; but this can be an expensive one. The

other is to add white noise to the input signal or to the autocorrelation

matrix when the coefficients are being computed to reduce the ratio of

narrowband-to-wideband amplitudes. This will cause some degradation in

performance when the interference is not very strong, but will provide an

improvement when the interference is very strong. Thus it may be

advisable to add the noise only when some test indicates that it would be

useful. A determination of the ratio of the zero-delay autocorrelation

coefficient to the mean magnitude of the other coefficients could be used

for such a test. A value near unity for this ratio would indicate strong

narrowband interference and the need to add noise.

Time does not permit a more thorough and quantitative analysis of

this problem at this time.

5. CONCLUSIONS

An excision filter to remove narrowband interfering signals from a

direct-sequence spread-spectrum signal can be implemented by the use of

linear prediction to predict the next value of the narrowband signal and

subtract it from the original signal. The direct sequence signal is not

subtracted because it is uncorrelated over the sample interval and is

therefore not predictable. This requires that the effective sampling rate

not be greater than one sample per chip. Simulation experiments have

verified the effectiveness of this technique. The effects of changing the

number of coefficients used in the excision filter and of the size of the

B-21

input signal block used for the determination of the coefficients have

been examined. In general, the more coefficients in the filter the better

the result, but since the computing requirement increases faster than

linearly with the number of coefficients it is important to keep their

number down to that necessary to counter the interference threat.

Larger block sizes in the autocorrelation estimation also provide

better performance providing there are sufficient coefficients, and it

appears that a larger number of coefficients calls for a larger block

size.

Delay of the input signal to allow computation of the coefficients

before the signal enters the filter will provide better performance when

the interference is varying, as will a more rapid updating of the filter

coefficients.

Very large ratios of narrowband interference level to wideband signal

(including noise) level can cause problems in the computation of the

coefficients. This appears to be the result of an ill-conditioned

autocorrelation matrix and the limited precision of the computations when

the interfering signal is far above the signal and noise levels. The

addition of white noise to the signal used for the coefficient computation

is a possible means of overcoming this problem. The determination of more

precise quantitative results would seem to be an area deserving of further

investigation.

B-22

REFERENCES

1. Hsu, Frank M., and Arthur A. Giordano, "Digital Whitening Techniques
for Improving Spread Spectrum Communications Performance in the
Presence of Narrowband Jamming and Interference", IEEE Trans. on
Comm. Vol. COM-26, No. 2, Feb 1978, pp 209-216.

2. Yule, G.U., "On a Method of Investigating Periodicities in Disturbed
Series, with Special References to Wolfer's Sunspot Numbers", Phil.
Trans. Roy. Soc., 1927, A.226, pp 267-298.

3. Kay, Steven M., and Stanley Lawrence Marple, Jr., "Spectrum Analysis
- A Modern Perspective", Proc. IEEE, Vol. 69, No. 11, Nov 1981, p
1398.

4. Schmeiser, Bruce W., "Random Variate Generation: 	A Survey",
Research Memorandom No. 80-06, School of Industrial Engineering,
Purdue University, June, 1980.

LIST OF FIGURES

Figure Bi 	FIR Excision Filter

Figure B2 	Input Signal - Noise plus Sine Wave at 0.14 x Sample
Rate. Voltage Ratio sine/noise = 5.

Figure B3 	Spectrum of Input Signal of Figure 2.

Figure B4 	Output of Filter for Input of Figure 3
- 8 Coefficients.

Figure BS 	Spectrum of Output Signal of Figure 4.

Figure B6 	Frequency Response of Filter Adapted to Sine Wave
plus Impulse - 16 Coefficients.

Figure B7 	Impulse Response of Filter of Figure 6.

Figure B8 	Frequency Response of Filter Adapted to Sine Wave
plus Impulse - 4 Coefficients.

Figure B9 	Impulse Response of Filter of Figure 8.

Figure B10 Frequency Response of Filter Adapted to Noise Only -

496 Products in Correlation Estimate, 16
Coefficients.

Figure B11 Impulse Response of Filter of Figure 10.

Figure B12 Frequency Response of Filter Adapted to Noise Only -

124 products in Correlation Estimate, 16
Coefficients.

Figure B13 Impulse Response of Filter of Figure 12.

Figure 5 14 Frequency Response of Filter Adapted to Noise Only -
496 Products in Correlation Estimate, 4 Coefficients.

B-23

B-24

Figure B15 Spectrum of Input Signal - Four Widely-Spaced Tones
plus Noise.

Figure B16 Frequency Response of Filter Adapted to Signal of Figure 15 -
16 Coefficients.

Figure B17 Spectrum of Output of Filter of Figure 16 when Signal
of Figure 15 is Input.

Figure B18 Frequency Response of Filter Adapted to Signal of Figure 15 -
6 Coefficients.

Figure B19 Spectrum of Output of Filter of Figure 18 when Signal
of Figure 15 is Input.

Figure B20 Spectrum of Input Signal - Four Closely Spaced Tones plus
Noise.

Figure B21 Frequency Response of Filter Adapted to Signal of Figure 20 -
16 Coefficients.

Figure B22 Spectrum of Output of Filter of Figure 21 when Signal
of Figure 20 is Input.

Figure B23 Frequency Response of Filter Adapted to Signal of Figure 20 -
4 Coefficients.

Figure B24 Spectrum of Output of Filter of Figure 23 when Signal
of Figure 20 is Input.

Figure B25 Spectrum of Input Signal - Swept-Frequency Interference plus
Noise Signal.

Figure B26 Frequency Response of Filter Adapted to Signal of Figure 25 -
16 Coefficients, 496 Products in Correlation Estimate.

Figure B27 Spectrum of Output of Filter of Figure 26 for Input of Figure
25.

Figure B28 Impulse Response of Filter of Figure 26.

B-25

Figure B29 Frequency Response of Filter Adapted to Signal of Figure 25 -
4 Coefficients, 496 Products in Correlation Estimate.

Figure B30 Spectrum of Output of Filter of Figure 29 for Input of Figure
25.

Figure B31 Impulse Response of Filter of Figure 29.

Figure B32 Frequency Response of Filter Adapted to Signal of Figure 25 -
16 Coefficients, 248 Products in Correlation Estimate.

Figure B33 Spectrum of Output of Filter of Figure 32 for Input of Figure
25.

Figure B34 Time-Domain Output of Filter of Figure 32 for Input of Figure
25.

Figure B35 Frequency Response of Filter Adapted to Noise plus Sine Wave
at Frequency of 0.1 - 16 Coefficients, Tap Spacing = 4.

Figure B36 Frequency Response of Filter Adapted to Noise Plus Sine Wave
at Frequency of 0.3 - 16 Coefficients, Tap Spacing = 4.

Figure B37 Impulse Response of Filter of Figure 36.

Figure B38 Spectrum of Input Signal M-Sequence + Sine wave + Noise.

Figure B39 Output of Matched Filter (no excision) for Input of Figure 38.

Figure B40 Spectrum of Output of Excision Filter Adapted to Signal of
Figure 38 - 8 Coefficients, Tap Spacing = 8.

Figure B41 Output of Excision Filter followed by Matched Filter for Input
of Figure 38.

Delay Delay Delay

Prediction Filter
(with sign reversed)

-

Input 	

-b
l

Delay

-b

Output

FIGURE Bi FIR Excision Filter

500 400

1.5

1.0

0.5

(i)

o

O. if

-0.5

-1.0

1111111 1 1
o

11 /,‘

iII

(

,

. 	 '

-1.5
r-MMMM-1-M-1.---r-liII1 111111 111111E11

lea 200 	 300

Time (Sample Intervals)

Figure B2 	Input Signal - Noise plus Sine Wave at 0.14 x Sample
Rate. Voltage Patio sine/noise = 5.

Magnitude of Voltage

B-28

S
p

e
c
t

ru
m

 o
f
I

n
p

u
t S

i
g

n
a
l

o
f F

i
g

u
r
e
 2

.

o

L_L_I I 	I I I I

o
(In

o

o

o
1 	1

4

k< •

o
iu

(
a
i

a
i

d
w

e
s
/

)

0.6

6.4

0.2

tr)
03
.0 OAS

0

-0.2

-0. 4

III 	1 	1 	II 	t 	1111111- 11 	1111 	Illf

106 	 200 	 300 	 404 	 UM

-6.8

Time (Sample Intervals)

Figure B4 Output of Filter for Input of Figure 3
- 8 Coefficients.

(
a
le

a
aI

d
w
e
s
/

)
i
ç
o
u
a
n
b
a
a
d

p

a
a
n
b
T
d

J
o

u
u
b
T
s

q
nc
h
n
o

j
o
w
n
al

o
a
d
s

ru

o
tu

.MIMI nÉfln•••

11.11••n•••n••

1•n••••nnnn••

eln

r -
um

tit

Magnitude of Voltage

B-30

.ree

›•n•n

o

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

1.50

1.25

1.90

9.75

0.50

0.25

0.00

-0.6 -0.4 -0.2 00 02 0.4 0.6

Frequency (/sample rate)

Figure B6 	Frequency Response of Filter Adapted to Sine Wave
plus Impulse - 16 Coefficients.

O
o

.1)

;13

1

•••n•11

Voltage

B-32

MO.1

*MI

î

(
s
i
e
n
ia

l
u

i

.0n11

• nn••1

nn•I

n•nn1

I-3 	0. •

p-
a

a

MM1

.nn•

• nn•4

e1.11

.11.1

M.1

.fflool

M.11

.m1

«MI

olm

La

5

CA
(1)

cr)

0

cp

0
r-t1

cr

0

-z]

r1
CD

1.50

e..111

n111

1.2$
«a.

nn11

1.00

0.75

0.50

-0.6 -0.4 -0.2 00 02 e4 e.s

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

0.25 1-

0.00

Frequency (/sample rate)

FigureB8 	Frequency Response of Filter Adapted to Sine Wave
plus Impulse - 4 Coefficients.

180 200 330

n••••11

nn1

1 	1 	1 	1 	1 	1 	1 	1 	1 	1- 	1 	1 	1 1111111E111111

1.0

0.8

0.6

cy 	0.4

tn
ra
4.)

0

0.2

0.0

—0.2

Time (Sample Intervals)

Figure B9 	Impulse Response of Filter of Figure 8.

1.3

•••I

1.2

t" 	1.1

›
w
o 1

4-)

M 0.8

0.7

n111

0.8

e1.11

.1.11

-0.6 -0.4 -0.2 00 0 2 0.4 0.6

Frequency (/sample rate)

Figure B10 	Frequency Response of Filter Adapted to Noise Only -
496 Products in Correlation Estimate, 16
Coefficients. 	 to

1.0

.

0.6

0.4

0.2

0 .0

-9.2 1 	1 	I 	I 11 	II JILl r-r-T III

4.e

0

Time (Sample Intervals)

189 280 380 489 GOO 608

Figure Bll Impulse Response of Filter of Figure 10.

0.5.0

1
0.25

A

Iv
1.es

1.00

1. 7s

.S0

2.00

1.76

•nn1

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

-0.6 -0.4 -0.2 0.0 02 04 0.6

Frequency (/sample rate)

Figure B12 Frequency Response of Filter Adapted to Noise Only -
124 products in Correlation Estimate, 16
Coefficients.

0.4

0.2

1CQ 380 480 see

1.0

«MI

0.8

0.6

•n••I

0.0

••nn

111 	(1 	lilt 11E1 1111 1111 1111

600

Time (Sample Intervals)

Figure B13 Impulse Response of Filter of Figure 12.

1.05

.1.111

1.00

0.95

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

-e.6 -0.4 -0.a 00 0.2 04 0.6

I .10

0.90

•••••

• .85 T

Frequency (/sample rate)

Figure B14 Frequency Response of Filter Adapted to Noise Only -
496 Products in Correlation Estimate, 4 	 to
Coefficients.

1/4.o

100

400

300

200

vilitewOme, -

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

0.2 -0.6 	-0.4 -0.2 	 0.0 0 4 	 06

o

Frequency (/sample rate)

Figure B15 Spectrum of Input Signal - Four Widely-Spaced Tones
plus Noise.

1,c1

....

n•,,

1.0

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

....I

-0.6 -0.4 -0.2 0 0 0.2 0.4

2.0

«el

am/

..wil

1.5

1,
0.5

0. 0

I 	'

I I i I i

Frequency (/sample rate)

Figure B16 	Frequency Response of Filter Adapted to Signal of
Figure 15 - 16 Coefficients.

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

Frequency (/sample rate)

FIGURE B17 Spectrum of Output of Filter of Figure 16
when Signal of Figure 15 is Input.

2.6

a

cr 	1.e
z

n111

o
f

V
o
lt

a
g

e

1.5

-6.6 -0.4 -0.2 0.0 02 e4

2.5

••••11

0.5

0.0

Frequency (/sample rate)

Figure 818 Frequency Response of Filter Adapted to Signal of
Figure 15 - 6 Coefficients.

M
a
g
n
i
t
u
d
e

o

r

40

Go

•
20

O

-0.6 -0.4 00 	 0.2

Frequency (/sample rate)

4 	 06

Figure B19 Spectrum of Output of Filter of Figure 18 when
Signal of Figure 15 is Input.

Wee
-0.2 0.4 	 06 -0.6 0.0 	0

5«

400

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

200

100

4lefifie"+"" g 	 1 	 1

Frequency (/sample rate)

Figure B20 Spectrum of Input Signal - Four Closely Spaced Tones
plus Noise.

.0

M
a
g
n
i
t
u
d
e

o
f
 V
o
l
t
a
g
e

0.5

-0.6 -0.4 -0.2 00 e 2 '0 4

2.0

1.5

0.0 I.

Frequency (/sample rate)

Figure B21 	Frequency Response of Filter Adapted to Signal of
Figure 20 - 16 Coefficients.

ro

Q)

C.1

Gz.

F

4-1

o

a)
4.)

c
•

Ci)
4-1

0

.1.1 CV

•a-)
 7

0 Cr1
• /-4

4-1

a be ToA jo apn ubew

re

0

E 0
z

4-)
c.) c
a) cr,
Cle•-n

cr)

F
i
g
u
r
e

B
22

B-47

Magnitude of Voltage

B-48

It 	ru
U' 	

U' 	
o 	 ‘

	

W 	 tu 	
o

1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1

— 	
•

-.

—

—,

—

—

e

o

(
e

t
a
i

d
w
e
s
/

)
i

ça
il

a
n

b
a
ld

ht

ri

C
ri C

(D

• rà
cp

I m
(I)

e. tn

(-) 0
O D
ea DI
3e% (D
1-11

• 'II

M

W
• M

0

cI

0
mr,

tt)

• -4

0
<0
Cx1

4-J

o

4
0

C.)

S.4
À.J

C
C'

Cn

.3;
C`J
et

s-a

Crt

et;

el;

• sib

ett:

tv
rl

F
i
g
u
r
e

2
3
 w
h
e
n

tu

(L)

-

Q)

4-)

0

1-1

B-49

abeq -poA O
 prilTubew

• •
Li 	I 	_e

:1111=131kan

I l

(

•

Magnitude of Voltage

B-50

P .

G
rI

U

Cf)

rr (D
(D

rr
e1

(D

(D 	 el 	1
M 	 rt 	•
O mn 	

ru

M

G G
Cfl rr

(f)
O

"""" 	0

i••n •••M 	 CII

CJ1

ri
l•-• • 	I

£
cr •

• ,n 	cp

'11
PI

A
D

to,

4

0

)-1
(t)
C C

•-s
Cr)

•&-1

0

1.5

r0 0
1-1

4-à C14

113
cr%

KC sr

• C.1

• -

)

-1-•n
C

•.-1

CLa •

14-1

O 1.1-1 C.;

4-1

• (11
r.t) 0 E
C •—)
0
04 tr) CrJ

if)

(24 i
0

C.) <NJ .8..;
C
121
• $.1
Cr7

Cr

Lt. Cs, u

cN

C)

Cr,

o

(
/
s
a
m
p
l
e

ra

te
)

o

c)

0"
a)

ria

•
•••

•

•••
G

B-51

to

—

..

	 --

, _ 	--

..

/

	

«.."...'" 	

a...

n 	

--.........

...n...............

.n

1

	 I

IIII 	Till- 	TIFT 	1111 	1111 	1111 	1111

n 	 . 	to
. 	 2 	A 	g 	 e 	. 	.

o

abeqT0A Jo apnqTubew

Magnitude of Voltage

B-52

0 M

r-• • r-r
4
C C
II 3
CD

0

• 0

rt-

0

qn
d
u
i

a
o
j

g
z

a
a
n
b
T
j

j
o

a
a
u
T
d

Lz
il
a
a
n
b
T
d

(
a
i

a
r
d
w
e
s
/

)

'71
ri

o

B-53

a be I OA

...._......=.•

,

11- 1T 	1111 	fril"-'1111 	
1111

ea
a 	 co

2 	 W 	 .41 	 •
o

1.••

o
tn

>M.

Wax.

1111

o
3

Irma

o
ea

>m,

1•••n

Wm»

In
t
e
r
v
a
ls

)

,n•n

We.

CU
r--I

(0
CI)

11•••

W•nn

ca
o • r-4

E-4
WM.

1.1.•

Irwm

MM.

Imur

I
m
p
u
l
s
e

Re

s
p
o
n
s
e

o
f
 F
i
l
t
e
r

o
f
 F
ig

u
r
e

2
6
.

CO
C*4
Pel

en

o 0 0

>el

ri

I-j .

tP1
r'.1

O• P
• M
• G
(D ri

(1) CD
C.)
rr 	rà
P. • 	1".1
O

CI)

C1)
r-r ri

0 c

• r-n
• r-t1
CD
• CD rt

n-••
a) n1

r*
n

• >
CrN

m r

• 	

e"
Q (1)

• cl

--

-
cr 0

C11
1-• • 1--n •

=

0

(
a
g

a
a
i
d
w
e
s
/

)
i
ço

u
G
n
b
a
l
d

Magnitude of Voltage

B-54

0
	

0 	
...I i 	ru 	 VI 	 g 	 iii 	 i

1111 	1111 	1 	L 	1 	I 	1111 	1111 	1111

.....

_ 	 4

_
, 	
)

.....

D 	

U

Pn

0 	

a.

0

r-r--i

B-55

_ ,

=.1•n.... 	Gi;

I.n•n

cr)

UI

abeqToA Jo apnqTubew

h
•

tu

ru

(
/
s
a
m
p
l
e

ra

te
)

C)

o
t4.4

CV

o

o

ra.n

J.J

0 •

Cs.1
o

(i)

E S.4
7 7
s-1

u4
cr1 0

(!›

Volt

o o o CD belb.

o

e
e

j.

(s
T
e
n
a
a
q
ui

a
T
d
w
e
s

)

I
m
p
u
l
s
e
 R
e
s
p
o
n
s
e
 o
f

F
i

l
t
e
r
 o
f

F
i
g
u
r
e

 aqe

B-56

VI • 	C4 	: 	ru
ui 	

u,
ese 	 :

1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	I 	1 	I 	1 	1 	1 	1

—

—

...

—

—

—

—

—

—

—

— 	 Ir..... 	 n 	

...

—

-.

-.

-.

-.

—

..

—

—

—

n

o

(U

o

o

o

o

a)

C-'

ni
• CL4

le
(
/
s
a
m
p
l
e

r
a
t
e

)

(11;

Ti l I I I 	1
1 	I 	I

ru o

B-57

abel -roA Jo apriqTubew

0

C C

ci)

0
c

'7;
'0 0

ra.

rt:1
rC 're

4-)
—4 c
•,-4
CL. •

U-1 • r-4
Q4..1

4_1

Q) (1)
tr) C E
C

4-4

'.CL

• IC G:4
0

C)
C 	(13

C) -
•)C).4

Cf
Sw • 0 u

P=1

• r-I

Ci.

B-58

ri

Magnitude of Voltage

cn
o

rr

(a
l
ea

a
r
d
w
e
s
/

)

o c'.)

(D
>11 0
r• rr
LOri
C G
rt 3
CD

0

Ui

• 0

rr

o

rr
rp
ri

0

ri
rté

NJ

o
ri

=

ri
(D

r.:

4‹.

•

•
CFI

Wm,

WM.

1•••

1.n

11.n

In
te

r
v
a
l
s

)

F
i
l
t
e
r

o
f
 F
ig

u
r
e

0 	ej
• 4.1

rts
cf)

E
A 	•,--1
tu

0

.JJ

4..; 	•

0 •

C
.-n

E
0

tn
1 •—n

CL.

• 4,

E-40

••4

cr

111

•

WM'

eo

71)

F-1

0
4-4

.10•

0 	 CV
0
U)

B-5 9

1111 	-1 	1

to

abeTiDA

1.•

WO.

1•••

1.n

,1n11.•

1.n

11.n

1 	1 	1 	1 	1 	1 	1 	1 	r

1100

O

B-60

O

Magnitude of Voltage

O

tu

1-13
n-•-

tJD

trà
t-n

Cn
1:$ 	Pi
cle 	(D
O a) e

Ç
• (D

<
m 0

II k,
aa., CD XI 	 (D
• rr

'11"C3 	 (D

o
rl 0

".<
G rD

M 0
m

0 P-
m) F-P

rr

• 11

rr •
I a• 	(D 	ni

fa,

• (

-

1•

0 • C
rrn 0

0-•• Z
O 0

(D cn

CD MI
n

G
0-3
CU 	 0

B-61

o

(1)

(1)
cla
cr; 	CL.

n•n••••11C

	•

Mel

1.n

1•••n

Imo

(
/
s
a
m
p
l
e

ra

t
e

)

	 @JP

lme

C")
1:C1

(1)

•

o

abeqToA Jo apnqTufiew

0.1

111n•

00

• 7
• IS
C C.)
O S.4

La
.4.; 	•
ro se

>

• glIS cr.
e c

~ C.)

S..4 • .4 a,
CLo cf.) cn

eq
(1)

lad C11

(1) G
C)

• • r-1

e.0)
Z •

0

0
r0
Cl)

V:)

(3
er, I

c

• -

1
• •

0) 0

•—n 14-4

el> • co

«MI

••••I

B-62

(1)

-11

LQ

Im
p
u
l
s
e
 R
e
s
p
o
n
s
e
 of

Fi
lt
e
r
 of

I—.
3
rD

ria

1n1

ID 	el

(s
I
v
Aa

aq
ui

.

Voltage

	 1

dmel

ea.

.n11

nMal

n11

••••n1

î

•••••I

o
ef,
o o

Ifn

abeqT(DA jo apnqTubew

B-63

o

S
i
g
n
a

l
M
-
S
e
q
u
e
n
c
e
+
 S
i
n
e

w
a
v
e

+

4

(
/
s
a
m
p
le

r
a
te

)

o

o
o

C.)

N

cl

)-4

o

5-4 	•
.1..) C.)

Cr)
(1)
C. 0

Z
•tr

o
F
i
g
u
r
e

B3

8

%.0

'11 0

rr
C
r1 G
0 rr

L4 0
OD 1-r1

eD
a

re*
CD
PI

(n
o
 e
x
c
i
s
i
o
n
)

f
o
r

I
n
p
u
t
 o
f

(
s
T
e
A
2
aq

ui

n-3

(D

3

î

•

Magnitude of Voltage

i 	
of 	 I 	éntl 	 g 	g 	J •

II 	tilt! 	I 	t 	I 	t 	1 	1 	ii 	t 	1 	i 	t 	i 	t 	il 	t

B-64

abeq -coA Jo apnlTubew

C.)

CD"

Ltd
(
/
s
a
m
p
l
e

ra

t
e

)

B-65

C

C.)
• IT5

 C.1 O..
c.r)

'0 «3
E-4

C

• C.,
C.7.. • -1

C
0

••-•1 14-7
ca a;

C
r..)

I

.;..) C.)

O O
•e-4

• rt.
0

E
O

C.) C 	•
C:

:ID

•

CI; I I

o

$.4

•

r-
Lo

ri

4•••

0

1-11
0
rirl

r-n G

'71
G 0
rr

tft •

'71

›er,

rtl

o
re, x

Ç)
,•11 1- •

La
o

rri

CO I—.
• rr

(1)
Il

f
o

ll
o

w
e
d

 b
y

 M
a
t

c
h

e
d

 F
i
l
t

e
r

t71
O

L
a

(a
p
i
a
I

d
u
te

s
/

)
Magnitude of Voltage

t 	«O o 	 1

—

—.

B-66

APPENDIX C

ACQUISITION THRESHOLD CALCULATIONS

APPENDIX C

ACQUISITION THRESHOLD CALCULATIONS

In the frequency-hop and direct-sequence acquisition systems the

squared magnitude of the received signal is integrated to determine when

the signal has been acquired. This process is shown in Figure Cl. The

signal and rms noise levels Vs and Vn are specified at the input of

this figure. The signal may or may not be filtered as shown. If not, the

bandwidth W, defined as a fraction of the sample rate at that point, is

taken as unity. For the following calculations the noise is assumed to be

Gaussian at the input to the absolute-value block, but if the filter

bandwidth is much less than the the bandwidth of the input noise the output

of the filter can usually be assumed to be Gaussian even if the input is

not. The integration consists of summing N samples, taking the square

root, and comparing the result with a threshold, d s ; acquisition (or a

particular stage of it) is declared when 6 s is exceeded. If this occurs

when only noise is present we have a "false alarm"; if it fails to occur

when the desired signal is present along with the noise we have a "miss".

We wish to compute the threshold required to provide a specified

probability of false alarm, and the probability of a miss for this

threshold for any specified signal level. It will not change the result,

if, instead of making the comparison after the square-root block, we use a

threshold of d s2 at the output of the summation block, and this will

simplify the computation.

C- 1

THRESHOLD
+—lam

MEAN =

STD. DEV. =

Vs

V n

FILTER
BANDWIDTH

= W x SAMPLE RATE

SQUARE OF
ABSOLUTE

VALUE
V-111P-1

EQUIVALENT
THRESHOLD

da

Figure Cl Definition of signals for Acquisition

C-3

Let 	N 	= number of samples summed,

Vs = signal voltage magnitude (root of mean power)

at input,

Vn = ruts noise voltage,

p n = mean voltage after summer for noise-only input,

p s = mean voltage after summer for

signal-plus-noise input,

an = standard deviation after summer for

noise-only input,

a s = standard deviation after summer for

signal-plus-noise input,

W 	= filter bandwidth as a fraction of the sample

rate (2 times low-pass bandwidth),

S a = acquisition threshold,

= time-dependent input signal voltage, us
=

Sr + j0

= time-dependent input noise voltage, u n

= unr 	juni ,

= time-dependent voltage at the output

of the squared magnitude block,

Pf a = probability of false alarm,

Pm = probability of a miss.

1
P 	= 	erfc
fa 	2

(

5 -11 a n) ,

 en
(C3)

C-4

Consider first the case of noise only, which determines the

false-alarm probability. The effect of the filter is to reduce the noise

level by a factor of W in power; the signal is assumed to be unaffected by

the filter. After the absolute value is taken the noise will have a

Rayleigh distribution with a mean square of WV n2 . After summing N values

of the squared noise we get a Gaussian distribution (for large enough N)

with a mean of:

pn = NWV n2

The filter will cause the noise to be correlated over 11W samples. Thus,

in the sum there will be, in effect, Md independent samples, each

consisting of the sum of 11W samples added in phase. Therefore, the

standard deviation of the sum will be /FM times the mean square of the

absolute value of the noise samples. That is,

ah = IT Vn2 	 (C2)

The probability of false alarm, Pf a , is the probability that a sample of

a Gaussian distribution of mean, p n , and standard deviation, a n , will

exceed the threshold, d a . Thus,

(cl)

where erfc is the complementary error function.

If "fa is specified we can compute the required

threshold from:

15
a

= U n
 + a

n
erfc

-1
(2 P

fa
)*

In the case of direct-sequence acquisition, when the signal is not

synchronized (This is the noise-only case) the noise level will be

increased by the "sidelobes" of the direct-sequence autocorrelation

(C4)

1 2

(c7)

C-5

function, which exist at all delays except zero. 	The variance of this

noise can be estimated from:

2 	 (C5) variance = V s / Nc

where Nc is the number of spreading-code elements per data symbol. 	The

total noise is found by adding this variance to the variance of the noise

at the input.

Now consider the case of signal plus noise in order to find the

probability of a miss. The following analysis is not entirely rigorous;

some intuitive steps are taken, but the result agrees well with tests made

using the simulator. 	No loss of generality is suffered by making the

complex input signal voltage, u s , have zero imaginary part. 	Since the

noise is random we can take Our reference so that it is always in phase

with the signal. This will not affect the noise characteristics.

After the square-of-absolute-value block the voltage is:

2
s

+ /Tir
un

1

= (u 	ivir u) 2 	wu 2
Sr 	nr 	ni

= u 2
sr

+ w(u2 + u
ni
2) + 2

er
u
sr u nr 	 nr

l u 12 	w i u 12
r sr 	n 	+ 2/7u sr

u nr •

The last term will have a mean of zero and therefore the mean of u c is:

= uo 	lus I 2 + Wlu n

= V2 + WV2 •

(c6)

(4) and a
s

-1j1404V
n

+ 2V2sV
2)
n

2 	(2 4 	‘12 2)
a
s

= N/W 041 Vn + 2 s WV11) (C9)

(C10)

C-6

After N values are summed the mean value is:

u
s = N(V2 + WV2).

After the summation the output should have a Gaussian distribution

which is symmetrical about the mean, and its variance àhould be increased

by a factor N. We also note that the last term of (C6), although having a

factor unr , is essentially uncorrelated with either component of lu n 1 2

since it has a negative sign about half the time. 	Therefore, we can

compute the variance from (C6) by ignoring the first term, which is

constant, and treating the others as independent; that is we can sum their

variances to obtain:

(c8)

The probability of a miss is the probability that a sample from a

Gaussian distribution with mean, u s , and standard deviation, a s , will

fall below the threshold, 6 s . Thus:

1
P = erfc(b-113=0 m 	•

a
s

(C11)

The above applies to the probabilities for a single integration

threshold. When more than one threshold crossing is required, as in most

cases, the probabilities for overall acquisition can be found from the

the individual probabilities.

APPENDIX D

EXAMPLE OF COMMAND FILE FOR BATCH OPERATION

$ SET NOVERIFY

$! SUPPRESS THE LISTING OF COMMAND FILES IM THE LOG FILE.

$! FILE DPSK0123.COM 	1T-JAN-1936

! VIS BATCH COMMAND FILE TO RUN PROGRAM MODEM.EXE AS A BATCH JOB. THE
$! DEFAULT DIRECTORY MUST BE PASSED BY THE SerlIT COMMAND Ta PARAMETER P1
$! DPSK WITH 2 RAYLEIGH FADING PATHS AND CCIR NOISE Vd=4.2 Eb/Nc = 18 DB

$! P1 = DEFAULT DIRECTORY

$!***** SETU? SECTION *****

$ SET DEFAULT ['Pi']

! SET THE DEFAULT DIRECTORY. AFTER PLACING A NEAUER IN THE LOG FILE RUN THE
$! PROGRAM FEEDING IT COMMANDS.

$ WRITE SYS$OUTPUT 	"
$ WRITE SYS$OUTPUT "BATCH JOB DPSK0123.COM RUAING PROGRAM MODEM.EXE"
$ WRITE SYS$OUTPUT "DPSK, 2 RAYLEIGH PATHS, CCIR NOISE Vd=4.2, Eb/Nc=13 DB"

$!***** RUN SECTION *****

$ RUA [VENIER.FREYSENG.MODEM]iIODEM-.EXE
BAT
FILE
DPSK 2 RAYLEIGH CCIR4.2 Eb/Nc=13
YES
DPSK0123
DATEN
(MG
3495
20
GENBIN .
YES

PKOCES

MODCOD

YES
WÜ
WO
YES
JO
YES
PSI(
600

23
1.6330
NO
YES
UA1

MEDIUM
TERM
Nü
NO 	 • •

17837
jü
4

YES
3
SPC
1 .999023080,-.9990233183,0.,0.,.1138570000E-J5
YES
0.,0.,0.,0.,0.
YES
1.999023030,-.9990233133,0.,Ù.,.11570000r-05
YES
0.,0.,0.,0.,O.
YES
1 .999 02 3 0,3 0 ,-.9990233133,0.,0.,.1133570033E-a5
YE3
0.,0.,0.,0.,0.

YES
2
0
10
.7071,.7071
YES
0.,0.
YES
NO
HOP PER
JO
YES
100
NO
AO .
RECVR
AO
518995245
NO
YES
1
PSK
6
147
140
NO

 WO
JO
YES
2
YES
NO
.3384
4.2
JO
NO
AO

YES

1
BUT
.12

SIN
ZPF

YES
YES
NO

NO

NO
0

1
- 0

YES
YE S
0

19

6
IIQU

3 1400
)5
0.
.1
52
YES
BYE

ETU IC -1
ANAL

3 4O3

95
4000
YES
RETURN
TIME
STOP

$!**** CLEANUP SECTION *****
•

$ WRITE SYS$OUTPUT "CLEANING UP FILES"
$ WRITE SYS$OUTPUT " "
$ PURGE/LOG DPSK0123.DAT
$ PURGE/LOG DPSK0123.LOG
$ PRINT/NOTIFY DPSK0123.DAT

$ WRITE SYS$OUTPUT " "
$ WRITE SYS$OUTPUF "FINISHED WITCH COMMAND FILE EXECUTIJN"
$ ARITE SYS$00TPUT

$ EXIT

tri

APPENDIX E

EXAMPLE OF OUTPUT FILE FROM BATCH OPERATION

Output file DPSK0123•
Wideband H.F. Communication Simulation Program
14-JAN-86. 	 Version number 7
"DPSK 2 RAYLEIGH CCIR4.2 Eb/No=18"

The seed used for the 31 bit data generation shift register.
Register = 1110101101101000011110110 . 111100

The number cf original binary values generated is 	3495
The bit rate for this data in bits/second is 	20.00000
The contents cf tne shift register after binary ;eneraticn are
Register = 1010000010011100101010101001000

Using the OODCOD process
The modula'eion symbol size is 	1 bits resulting
in' • 	2 possible symbol states

Modulation symbols formed
Ordinary symbol formation chosen
No complex zeros are being added to the input data
Modulation symbols being differentially encoded
The number Of integer symbols produced is 	34 9 5
The new data rate is 	20.00000 	symbols/second

Modulation samples being generated.
Phase shift keying chosen.
The fixed initial modulation phase ls 	23.00000 	degrees
The number cf samples per modulation symbol is 	600
The peak envelope voltage is 	1.633000 	volts
The energy per modulation symbol efore poàt-modulation
processing is 0.1333345 	joules
The energy is constant fcr all symbols
Pulse shaping selected.
Hanning pulse shaping chosen 	,
The energy per modulation symbol after pulse shaping
is a constant 0.5000042E-01 joules
The total nweer cf complex samples after modulation is 	20970 0 0

1
2

3
4

5

The ne w data rate is 	12000.00 	samples/second

Using the MEDIUM process

Medium parameters taken from the teralinai
The data is nct frequency hop enccded
The random number seed is 	17837

The medium parameters for path number 	1:
Rayleigh fading
IIR filtering being done cri the gaussian factors

The number cf recursive filter secticns is 	3
Coefficient ne. 	real part 	imainary part

The coefficients fer secticn number
1.999023083

-0.9990233133
0.0000000000E+00

0.0000000000E+00

0.113856)963E-05

The coefficients for section number
6 	1.999 0 23 0 8 9
7 	-0.9990233183
3 	0.0000000000E+00

.9 	0.0000000000E+00
10 	0.1138569968E-05

The ccefficients fcr secticn number
11 	1.999021330

12 	-0.9990233133

13 	, 	0.3000000000E+a0
14 	0.0000010001E+00
15 	0.1183569963E-05

1

0.1000000000r+00

0.0000300010E+00

0.3000000100E+00

0.0030300000E+00

0.0303000030E+00

2

0.0000000003E+00

0.3300000000E+00

0.00000000)0E+00

0.0)00000000E+00

0.0000000000E+00

3
0.0000000000E+00

0.0000300000E+00

a.oaaaaaapooE+no
0.0000001000E+00

1.0aaaaaaaou+oa

The initial delay is 	saliples cr 0.0000000E+00 seccnis

The delay increment is 	10 samples or 0.8333334E-03 seconds

Table of 	2 tap multipliers and doppler shifts
Tap 	. Amplitude 	Doppler shift 	Doppler frequency
Number Multiplier 	degrees/smmple 	hertz

1 	0.7071000 	0.0000000E+00 	0.0000000E+00
2 	0.7071000 	0.0000000E+00 	0.0000000E+00

The number of medium paths was 	1
The number of complex values after passing through the medium is 2097010
The data rate remains 	12000.00

Using the HOPPER process
\

Decimation being done
The decimation rate is 	100
The total number of values after decimation is 	20970
The new data rate is 	120.0000 	values/second

Using the RECVR process
The data is not frequency hop encoded
The random number seed is 518995245
The input data was modulated
The modulation symbol size is 	1 bits resulting
in 	2 possible symbol states
Phase shift keying chosen.
The fixed initial modulation phase is 	147.0000 	degrees
The number of samples per modulation symbcl is 	6
Direct sequence spreading has not been used on the input data

Noise signal samples being added.
There are 	1 noise addition frequency ranges

The 	1 noise addition frequency range has a lowest
frequency of 0.0000000E+C0 kilohertz.
Complex noise signal samples being added for this frequency range
CCIR noise tc be generated

t=1
The CCIR ncise rms voltage is 0.3084000 	volts
The ratio ratic cf the rms tc the mean is 	4.200000 	decibels
The CCIR noise power spectral density is 0.7925380E-03 watts/hertz

Front end filtering being'done
Recursive filtering chosen.
Butterworth recursive filter chcsen.
The filter cutoff frequency is 0.1200000 	times the data rate
or 	14.40000 	hertz
The crder cf the filter is 	1

The filter gain factor is 	1.000000
The filter group delay is 	1.262856 	in terms of the
sample period and 0.1052380E-01 in seconds

The number cf recursive filter sections is 	1
Coefficient no. 	real part 	imaginary part

The coefficients for secticn number 	- 1
1 	0.4327386320 	0.0000000000E+00

2 	0.0000000000E+00 	0.0000000000E+00

3 	1.000000000 	0.0000000000E+00
4 	0.0000000000E+00 	0.0000000000E+00

5 	0.2836306691 	0.0000000000E+00

Ordinary demodulation being used
Differential phase shift keying demodulation is being used

Mode 1 - He acquisition and tracking picked

The receiver propcgaticn delay is 0.0000000E+00 samples
The receiver front end delay is 	1.000000 	samples
The receiver bandwidth reducer delay is 0.0000000E+00 samples
The initial sample reference delay is 	1.000000 	samples

During the 	1 run, the receiver prccessed 	20970 input samples,
resulting in 	3494 cutput values

demodulator tracking voltage
upper limit 	number cf values 	% of total

0.0000000E+00
0.1000000

0.2000000
0.3000000
0.4000000

0.5000000
0.6000000
0.7000000
0.8000000
0.9000000
1.000000
1.100000
1.200000
1.300000

1.400000
1.500000
1.600000

1.700000

1.300000
1.900000

2.000000.
2.100000
2.200000
2.300000

2.400000
2.500000
2.600000
2.700000
2.300000

0.00
1.06

3.76
7.15
3.56
9.91
11.06
11.44

10.15

7.85
6.82

5.38
4.63
4.06

3.00
2.06

1.15

0.85
0.56
0.26
0.21
0.03
O .00
O .00
O .00
O .00

O .00

O .00

O .00

0
36

128
243
291

337
376
389
345
267
232
183
159
138
102

70
39
29
19

9
7

O

0

0

Samples were taken every 	6 run input sample
The total number of samples for the run was 	3495
Starting with the 	95 sample 	3400 samples are being looked at

Histogram of samples of the
Cell number 	lower limit

	

1 	-00

	

2 	0.0000000E+00

	

3 	0.1000000

	

4 	0.2000000

	

5 	0.3000000

	

6 	0.4000000

	

7 	0.5000000

	

8 	0.6000000

	

9 	0.7000000

	

10 	0.8000000

	

11 	0.9000000

	

12 	1.000000

	

13 	1.100000

	

14 	1.200000

	

15 	1.300000

	

16 	1.400000

	

17 	1.500000

	

18 	1.600000

	

19 	1.700000

	

20 	1.800000

	

21 	1.900000

	

22 	2.000000

	

23 	2.100000

	

24 	2.200000

	

25 	2.300000

	

26 	2.400000

	

27 	2 .500000

	

28 	2.600000

	

29 	2.700000

30 	2.800000 	2.900000 	0 	0.00

31 	2.900000 	3.000000 	0 	0.00

32 	3.000000 	3.100000 	0 	0.00

33 	3.100000 	3.200000 	0 	0.00
-?14 	 3.200000 	3.300000 	0 	0.00

35 	3.300000 	3.400000 	0 	0.00
36 	3.400000 	3.500000 	0 	0.00

37 	3.500000 	3.600000 	0 	0.00

33 	3.600000 	3.700000 	0 	0.00

39 	3.700000 	3.800000 	0 	0.00
40 	3.800000 	3.900000 	0 	0.00
41 	3.900000 	4.000000 	0 	0.00
42 	4.000000 	4.100000 	0 	0.00
43 	4.100000 	4.200000 	0 	0.00
44 	4.200000 	4.300000 	0 	0.00
45 	4.300000 	4.400000 	0 	0.00
46 	4.400000 	4.500000 	0 	0.00
47 	4.500000 	4.600000 	0 	0.00
48 	4.600000 	4.700000 	0 	0.00
49 	4.700000 	4.300001 	0 	0.00
50 	4.800000 	4.900000 	0 	0.0 0
51 	4.900000 	5.000000 	0 	0.00
52 	5.000000 	+00 	0 	0.00

The histogram contains 	3400 values in 	52 cells
The first cell contains values less than 0.0000000E+00
The last cell contains values equal to or greater than 	5.000000
The size cf the remaining cells is 0.1000000

Trie mean of the values is 0.7240425
The standard deviation of the values is 0.3706947'
The mean cf the squares of the values is 0.6616116
The maximum is 2.041387 while the Alinimum is 0.2141030E-01

Bar graph corresponding to - the histogram

52

51 1
50
49 1
48
47 :
46
45 1
44
43
/42
41 :
/40
39
3&.1
37
36
35
3 14 1
33 1
32
31
30
29
28 1
27
26 :
25
2/4 :
23
22
21 1
20 1
19 1
18 1
17 1*
16 1*
15 1**

14 1**
13 1**
12 1***
11 :***
10 1****
9 :*****
8 1******
7 1******
6 1*****
5 1****
4 :****

3 Pe*
2 1*
1 	1

0 	20 	40 	60 	80 	100

The vertical numbers are cell numbers, while the
horizontal numbers are percentage
Each * represents 2% of the tctal number of values

In 	1 runs, a total of 	20970 input samples out
of 	20970 possible samples was sent thrcugh the receiver
This resulted in 	3494 final values with a data
rate of 	20.00000 	values/second.

Error analysis cf selected original and final binary data bits

Number cf data bits compared - 	3400 	•
The total number cf original data bits - 	3495
The original data bit rate in bits/second - 	20.00000
Original data'compariscn starting point - 	95
The tctal number cf final data bits - 	3494

. The final data bit rate in bits/second - 	20.00000
Final data ccmpariscn starting point - 	95
The number cf ccmparison windows cf size 	4000 is 1

95
95

The largest period between errcrs measurable is - 	3999

Window number 	1 with 	3400 values
The original data window starting index -
The final data window starting index -

Indices for bits in errcr
Original Original 	Final 	Window

	

Index 	Value 	Index 	Index

	

123 	1 	123 	29

	

170 	1 	170 	76

	

172 	0 	172 	78

	

186 	1 	186 	92

	

188 	0 	188 	94

	

189 	0 	189 	95

	

220 	0 	220 	126

	

310 	1 	310 	216

	

636 	0 	636 	542

	

712 	1 	712 	618

	

1333 	0 	1333 	1239

	

1414 	0 	1414 	1320

	

1415 	0 	1415 	1321

	

1503 	0 	1503 	1409

	

1656 	1 	1656 	1562

	

1657 	0 	1657 	1563

	

1778 	1 	1778 	1684

	

1795 	0 	1795 	1701

	

2374 	0 	2374 	2280

	

2642 	1 	2642 	2543

	

2658 	0 	2658 	2564

	

2712 	1 	2712 	2613

	

2867 	1 	2867 	2773

	

2868 	1 	2863 	2714

	

2877 	1 	2377 	2783

	

2873 	1 	2873 	2784

	

2379 	1 	2379 	2735

2880 	1 	2880 	2786
2882 	1 	2882 	2788
2922 	0 	2922 	2828
3230 	0 	3230 	3136

The number cf bits in errcr in the window - 	31
The fractional bit error rate fer the windcw - 0.009118
The total number of periods in the window - 	30

The pericds between errors in the window and their frequency

	

Pericd 	Occurrence 	Percentage

	

1 	7 	23.33

	

2 	3 	10.00

	

9 	1 	3.33

	

14 	1 	3.33

	

16 	1 	3.33

	

17 	1 	3.33

	

31 	1 	3.33

	

40 	1 	3.33

	

47 	1 	3.33

	

54 	1 	3.33

	

76 	1 	3.33

	

81 	1 	3.33

	

88 	1 	3.33

	

90 	1 	3.33

	

121 	1 	3.33

	

153 	1 	3.33

	

155 	1 	3.33

	

268 	1 	3.33

	

303 	1 	3.33

	

326 	1 	3.33

	

579 	1 	3.33

	

621 	, 	1 	3.33

% Clock time taken by selected routines
Routine 	% Time Routine 	% Time Routine Time

0.00
0.01
0.00
0.00
0.00

86.99
3.17
0.00
0.03
0.00
0.00

GENBIN
JAM
NOISE
FILOUT
FILIN
REPEAT
ADD
MOVE
DECIM
DEBLCK
DEINTL
INSERT

	

0.00 	INTERL

	

0.00 	BLOCK

	

0.00 	CONVL

	

0.00 	OUTCOD

	

0.00 	MODUL

	

0.00 	MODADD

	

0.00 	GROUP

	

0.00 	ENCOD

	

0.51 	CLIP

	

0.00 	DETCOD

	

0.00 	MULT

	

0.00 	ABSOL

	

9.00 	VIEW

	

0.00 	ERRCOM

	

0.00 	COMPRB

	

0.00 	COMPRC

	

9.31 	FFTCOM

	

0.00 	MEDIUM

	

0.01 	RECVR

	

0.00 	FILTER

	

0.00 	INGRP

	

0.00 	DECONV

	

0.00 	HISTO
0.00

Program stopped

APPENDIX F

EXAMPLE OF LOG FILE FROM BATCH OPERATION

$ SET NOVERIFY

BATCH JOB DPSK0123.COM RUNNING PROGRAM MODEM.EXE
DPSK, 2 RAYLEIGH PATHS, CCIR NOISE Vd=4.2, Eb/No=18 DB
Wideband H.F. Communication Simulation Program
14-JAN-86. 	Version number 7

The maximum amount cf data is 2097152

Is the prcgram running frcm the terminal or in batch?
BAT - in batch
TRM - frcm the terminal
Mode? -
Chcose the output device
Terminal or batch job log file - TRM
Ascii output file - FIL
Chcice? -
File description (up to 32 characters)? -
"DPSK 2 RAYLEIGH CCIR4.2 Eb/No=18"
Correct? - YES or NO? -
Filename?

Output file DPSK0123 	successfully created

Command 	Function

HELP 	- Give a menu of available main level commands
STOP 	- Stop the program
FORM 	- Determine the output device
TIME 	- Check the time that prccessing routines are taking
FILE 	- Perform file I/O
DATEN - Enter cr generate original or final data
ANAL 	- Analyze or display data
PROCES - Send original data along the ccmmunicaticn link
MODIFY - Mcdify data
TELL 	- Type the amcunt cf original and final data

• DESCRP 	Type a descripticn cf the prcgram

Main level command? -
Original or final data?
ORG or FIN -
Enter the number of data values -
Enter the data rate in values/second -

Command 	Function

GENBIN - Generate binary data using a pseudorandom sequence
ENBIN - Enter binary data frein the keyboard
NOISE - Generate complex noise samples
JAM 	- Generate complex jamming signal saimples
COMPEN - Enter complex samples from the terminal
CANCEL - Abort and return to the main command level

Data entry command? -
Is the default 31 bit shift register seed to be used?
YES or NO? -

Main level command? -

Process

HELP 	-
RETURN -
NULL 	-
TELL 	-
BITSRC -
MODCOD -
HOPPER -
MEDIUM -
RECUR -
BITSNK -

Function

Give a menu of available processes
Go back to the main command •level
Nothing process
Type the amount of criginal and final data
Preliminary bit processing
Generation of modulation samples
Filtering, decimation, clipping, and hep encoding
Channel propagation
Reception of data
Post-reception prccessing of bits

Process? -

The modulation symbol size in bits raised to the power
twc determines the number of possible symbol states.
This is not to be confused with the number of bits encoded
in multiple code shift keying symbols.
Modulation symbol size? - maximum cf 	24 -

Symbols to be formed from bits?
YES or NO? -
Multiple code shift keying desired?
YES or NO? -

Inverse gray encoding to be applied?
YES or NO? -

Differential encoding of symbols desired?
YES or NO? -

Direct sequence symbols to be added?
YES or NO? -

Modulation to be done?
YES or NO? -

The available modulation types are:
PSK = phase shift keying
FSK = single-tone frequency shift keying (one frequency set)
MTK = multi-tone frequency shift keying (two or more one frequency sets)
MSK = minimum shift keying
Modulation type? -

The number of samples per modulation symbol?
minimum of 2 maximum cf 	600 -
Initial modulation phase in degrees? -

The peak envelope voltage aleng with the data rate and
the type cf modulation chosen determines the energy per
modulation symbol. Post modulation processing can modify
the symbol energy.

• Peak envelope voltage in volts? -

Selected transitions to be applied?
YES or NO? -
Pulse shaping to be done?
YES cr NO? -

The type of shaping?
HAN = Manning or sine squared
MDH = Modified hanning
HAM = Hamming
SIN = Sine of a sine of a sine

Process? -

Source cf medium parameters input?
Terminal - TERM
Ascii file - FILE
Choice? -

Medium file te be created or net?
YES or NO? -
Is the default random number generator seed te be used?
YES or NO? -
Enter a seed? (perferably a large edd integer) -
Is the data frequency hop-encoded?
YES or NO? -

Enter the medium parameters for path number 	1:

Enter the parameters for the 	1 frequency range:
The transmission mode?
1 = Perfect transmission (nc delays, multipliers etc.)
2 = Complete blockage (nothing transmitted)
3 	Fixed transmission (fixed multipliers)
4 = Rayleigh fading transmission (gaussian multipliers)
-
Rayleigh fading multipliers to be filtered?
YES or NO? -
The number of filter sections? - maximum of 	8

The type of recursive filter?
BUTE = butterworth filter
CHB = chebyshev filter
RES = resonant filter
SPC = special filter (user enters the coefficients)
•••n•

A row cf 5 complex coefficients is entered for each cf the
IIR filter sections. The entered coefficients should be
separated by commas

Enter a rcw of 5 real coefficient components for the

The row cf entered real coefficient components:
1.999023 	-0.9990233 	0.0000000E+00 0.0000000E+00

Correct? - YES or NO? -

Enter a row of 5 imaginary coefficient components for the

The row cf entered imaginary coefficient components:
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Correct? - YES cr NO? -

0.1188570E-05

1 section

0.0000000E+00

1 section

Enter a row of 5 real coefficient components for the 	2 section

-
The rcw cf entered real coefficient ccmponents:

1.999023 	-0.9990233 	0.0000000E+00 0.0000000E+00 0.1188570E-05

Ccrrect? - YES or NO? -

Enter a row cf 5 imaginary coefficient compcnents for the 	2 secticn
-
The row of entered imaginary coefficient compcnents:
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Correct? - YES or NO? -

Enter a row of 5 real coefficient compcnents for the 	3 section

The row of entered real coefficient compcnents:
1.999023 	-0.9990233 	0.0000000E+00 0.0000000E+00 0.1188570E-05

Correct? - YES or NO? -

Enter a row cf 5 imaginary coefficient compcnents for the 	3 section
-
The row of entered imaginary coefficient components:
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Correct? - YES or NO? -
The number of taps fcr this frequency range?
maximum of 	64 taps -
The initial delay in terms of the number of samples?
maximum of 	1024 -
The delay increment in ternis cf the number cf samples?
maximum cf 	16 -

Tap amplitude multipliers and doppler shifts are entered
in rcws separated by commas

Enter a rcw cf 2 real tap amplitude multipliers
The multipliers shculd be in ratic fcrm <= 1
-
The rcw cf entered tap amplitude multipliers:
0.7071000 	0.7071000

Correct? - YES or NO? -

Enter a row of 2 real tap doppler shifts
The doppler shifts represent the phase change per sample interval
Enter in degrees -
The row cf entered tap doppler shifts:
0.0000000E+00 0.0000000E+00
Correct? - YES or NO? -

More paths to be used?
YES or NO? -

Precess?

Filtering tc be done?
YES . or NO? -

Decimation te be done?
YES or No? -

The decimaticn rate? le.
1 = All values preserved
3 = 2, 5, 8, 11, 14 ... values preserved
5 = 3, 8, 13, 18, 23 ... values preserved
10 = 5, 15, 25, 35, 45 ... values preserved

Saturaticn amplificatien (clipping) tc be done?
YES or NO? -

Frequency hop encoding te be dcne?
YES cr NO? -

Prccess? -
Is the default randcm number generatcr seed tc be used?
YES er 140? -

Enter a seed? (perferably a large cdd integer) -
Is the data frequency hop encoded?
YES or NO? -

Has the data been modulated?
YES or NO? -

The modulation symbol size in bits raised to the power
two determines the number of possible symbol states..
This is not to be confused with the number of bits encoded
in multiple code shift keying symbols.
Modulation symbol size? - maximum of 	24 -

The avaliable modulation types are:
PSK = phase shift keying
FSK = single-tone frequency shift keying (one frequency set)
MTK = Multi-tene frequency shift keying (two or more one frequency sets)
MSK = minimum shift keying
Modulation type? -

The number of samples per modulation'symbol?
minimum cf 2 maximum of 	600 -
Initial modulation phase in degrees? -

Selected transitions to be applied?
YES or NO? -
Pulse shaping to be done?
YES or NO? -

Please wait receiver sample delay vector initialization
taking place

Is multiple code shift keying being used?
YES or NO? -

Has direct sequence spreading been used on the input data?
YES or NO? -

Complex noise signal samples te be added?
YES or NO? -

Enter the noise addition parameters:

Enter the parameters for the 	1 frequency range:
Noise tc be added for the frequency range?
1 = No noise signal samples tc be added
2 = Noise signal samples te be added

CCIR noise to be generated?
YES or NO? -

CCIR noise te be filtered?
YES or NO? -
CCIR noise rms voltage in volts? -.
The ratio of the rms to the mean? Enter in decibels,
maximum of 	52.22640 	minimum cf 	1.050000

Impulse noise to be generated?
YES or NO? -

Gaussian noise to be generated?
YES or NO? -

Complex jamming signal samples to be added?
YES cr NO? -

Front end filtering to be applied?
YES or NO? -

The avaliable filters types:
IIR = recursive
FIR = nonrecursive 	-
Filter type? -

The number of filter sections? - maximum of 	8

The type of recursive filter?
BUT = butterwcrth filter
CHB = chebyshev filter
RES = resonant filter
SPC = special filter (user enters the coefficients)

The filter cutoff frequency?
Specify in terms of the data rate -

Is the last section of single or double order
DOU = double, SIN = single

Type of filter gain?
ZPF - unity gain at zero frequency
IPG - unity integrated power gain

Front end decimation to be applied?
YES or NO? -

Is a demedulator to be used?
YES or NO? -

Differential phase shift keying demcdulaticn te be done?
YES or NO? -

Independent synchronization to be used?
YES or NO? -

Is an excision filter tc be used?
YES or NO? -

Wide band autcmatic gain control tc be used?
YES or NO? -

Bandwidth reducer filtering to be applied?
YES or NO? -

Bandwidth reducer decimation to be applied?
YES or NO? -

Narrew band automatic gain contrcl to be used?
YES or NO? -

Delays in the receiver mean delays of reference
signals, not input signals.
Enter a propogation delay in terms cf samples -
Enter a receiver front end delay in terms of samples -
Enter a receiver bandwidth reducer delay in terms of samples -

Out cf 	20970 total samples 	0 have already been processed
Are all the remaining input samples tc be prccessed?
YES or NO -

Is the display feature wanted fer this run?
YES or NO? -
Enter the receiver display quantity fcr the run
This quantity will have samples taken of it
1 = Nc display quantity
2 = Direct sequence reference delay
3 	Sample delay
4 = Frequency hep reference delay 	 F.1 •

.21

5 = Narrow band AGC gain
6 = Wide band AGC gain
7 = Voltage before any narrow band AGC
8 = Matched filter lock indication
9 	Symbol synchronization lock indication
10 = Frequency hop acquisition lock indication
11 = Direct sequence acquisition lock indication
12 = Symbol synch voltage - intermediate stage
0 = Next part of the display quantity menu

•
13 = Symbol synch.voltage - final stage
14 = Integrated symbol synchronization magnitude
15 = Transmission hop frequency
16 = Reference hop frequency
17 = Direct sequence tracking voltage
18 = Direct sequence tracking integrated lock voltage
19 = Demodulator tracking voltage
-
Up to 	65536 samples cf the display quantity can be stcred
Hcw often are samples tc be taken of the display quantity?
In terms of receiver input samples . -

Enter the type cf display for the run.
OQU - Output of samples cf the receiver display quantity
OFD - Output of final data ccmpcnents
HQU - Histogram cf receiver display quantity samples
HFD - Histcgram of final data ccmponents
BYE - Terminate display and go on
-
The number of display quantity samples tc be lccked at?
maximum of 	3495 -
Sample number of the first sample to be locked at? -
The histcgram lower limit? -
The histogram cell size? -
The number of histogram cells?
minimum cf 3, maximum cf 	1024 -

Is a bar graph of the histogram te be produced?
YES or NO? -

Enter the type cf display for the run.
OQU - Output cf samples of the rQceiver display quantity
OFD - Output of final data components
HQU - Histogram of receiver display quantity samples
HFD 	Histogram cf final data components
BYE - Terminate display and go on
-

Process? -

Main level ccmmand? -

Command 	Function

HELP 	- Give a menu of available analysis commands
RETURN - Return tc the main command level
TELL 	- Type the amount of original and final data
VIEW 	- Look at complex data components
HISTO - Form a histogram of complex data components
COMPRB 	Compare original and final binary data
COMPRC 	Compare components of original and final complex data
ERRCOM - Analyse bit errors
FFT 	- Perform a fast fcurier transform or inverse transform on complex data

Analysis command? -
Number cf values to be analyzed? -
Original data starting point? -
Éinaldata starting point? -
The data window size? - maximum of 	131072 -
Indics 'of bits in : efr•r to be output?
YES or NO? -

;
Analysis command? -

Main level command? -

Main level command? -
Bye for now

CLEANING UP FILES

'4 PURGE-I-NOFILPURG, no files purged
1, PURGE-I-NOFILPURG, no files purged
Job DP3K0123 (queue SYS$PRINT, entry 1204) started on SYS$PRINT

FINISHED BATCH COMMAND FILE EXECUTION

VENIER 	job terminated at 14-JAN-1986 16:40:07.80

Accounting information:
Buffered I/O count: 	70
Direct I/O count: 	103
Page faults: 	78970
Charged CPU time: 	0 04:26:58.95

Peak working set size: 2600
Peak page file size: 159944
Mounted volumes: 	0
Elapsed time: 	0 04:41:13.82

APPENDIX G

A GENERAL-PURPOSE COMMAND FILE FOR SUBMITTING BATCH JOBS

! FILE BATCH.COM 	FEB-28-1984.

! VMS FILE TO SUBMIT BATCH JOBS. THE BATCH JOB SHOULD HAVE EXTENSION .COM. AND
! IS PASSED THE DEFAULT SUB-DIRECTORY (P2 IN BATCH.COM). IT IS UP TO THE
! BATCH JOB TO MAKE USE OF THE SUB-DIRECTORY NAME (P1 IN THE BATCH JOB COMMAND
! FILE). THE LOG FILE HAS THE SAME NAME AS THE BATCH JOB BUT WITH
! EXTENSION .LOG. PARAMETERS Pl, P2, AND P3 CAN BE DETERMINED BY BATCH OR
! PASSED TO BATCH.

! P1 = THE NAME OF THE BATCH JOB AND CONTROLLING COMMAND FILE. THE COMMAND
! FILE SHOULD HAVE EXTENSION .COM.

! P2 = THE DEFAULT SUB-DIRECTORY TO BE USED. (IE FREYSENG.MODEM)
! P3 = PRIORITY OF THE BATCH JOB. (IE 1)
$ 	•
$ IF P1 .EQS. " THEN -

INQUIRE P1 "BATCH COMMAND FILE? ASSUMED EXTENSION OF .COM"

$!IF WE DON'T KNOW ALREADY FIND OUT WHAT THE BATCH COMMAND FILE IS. IT
$!SHOULD HAVE EXTENSION .COM

$ IF P2 .EQS. "" THEN -
INQUIRE P2 "DEFAULT SUB-DIRECTORY FOR BATCH JOB? (SPECIFY WITHOUT [])"

$!IF WE DON'T KNOW ALREADY FIND OUT WHAT THE DEFAULT SUB-DIRECTORY IS.

$ IF P3 .EQS. " THEN -
INQUIRE P3 "PRIORITY OF BATCH JOB?"

$!IF WE DON'T KNOW ALREADY FIND OUT WHAT PRIORITY THE BATCH JOB IS TO RUN AT.

$ SUBMIT/NOTIFY/NOPRINT/LOG FILE=PP2'PP1'.LOG/PRIOR= 1 P3' -
/PARAMETER='P2' PP2'PP1T.COM

$!SUBMIT THE JOB WITH NAME 'Pli.COM. WHEN THE JOB STOPS NOTIFY THE USER.
$!DO NOT PRINT THE LOG FILE. THE LOG FILE HAS THE SAME NAME AS THE BATCH
$!JOB NAME ONLY WITH EXTENSION .LOG. THE PRIORIY IS GIVEN BY 'P3', WHILE

$!THE DEFAULT SUB-DIRECTORY PASSED TO THE BATCH JOB IS 'P2'.

$
$ EXIT

-277-

UNCLASSFIED
Security Classification

DOCUMENT CONTROL DATA - R & D
(Security classification of title , body of abstract and indexing annotation must be entered when the overall document is classified)

1. 	ORIGINATING ACTIVITY 	 2a. DOCUMENT SECURITY CLASSIFICATION

UNCLASSIFIED-
2b. GROUP

Communications Research Centre

3. 	DOCUMENT TITLE

.USER'S GUIDE FOR THE DRL SPREAD-SPECTRUM SIMULATION FACILITY

4 , 	DESCRIPTIVE NOTES (Type of report and inclusive dates)

CRC Report 	.
5. AUTHOR(S) (Last name, first name, middle initial)

G.O. Venier

6. DOCUMENT DATE 	 7a. TOTAL NO. OF PAGES 	7b. NO. OF REFS

271 	14
Bo. PROJECT OR GRANT NO. 	 9a. ORIGINATOR'S DOCUMENT NUMBER(S)

32B76 (0117C11) 	 CRC Report 1403

8b. CONTRACT NO. 	 9b. OTHER DOCUMENT NO.(S) (Any other numbers that may be
auigned this document)

10. DISTRIBUTION STATEMENT

Le -K_Oi._ 	 dr,..e(L) 	
. 	 .

11. SUPPLEMENTARY NOTES 	 12. SPONSORING ACTIVITY

Directorate of Maritime Combat
Systems

	 f 	
13. ABSTFIACT

This report describes, 	from a user's point of view, the

spread-spectrum simulation facility developed in the Directorate of Radio

Propagation and Systems (DRL) at the Communication Research Centre. 	This

facility simulates, on a VAX-11/750 digital computer, the operation of

complete spread-spectrum systems including transmitter, HF propagation

path, interference, and receiver, and provides all the data and signal

generation and analysis capabilities necessary to determine the

performance of the simulated systems. 	Both direct-sequence and

frequency-hopping systdke may be simulated. 	The simulator was made as

flexible as possible, permitting the user to select fram a number of

subsystems to simulate a wide range of existing and proposed communication .

systems. 	This report provides detailed information on the simulator that

is essential for understanding it and operating it in both interactive . and

Worn). me.A..

I)S IS

77.055

-278-

UNCLASSTFTETI
Security Classification

KEY -WORD' S

Simulation
Spread Spectrum
Digital Computer
High Frequency
Communications
Direct Sequence
Frequency Hopping
Multipath
Excision
Non-Gaussion Noise

INSTRUCTIONS

1. ORIGINATtNG ACTIVITY: Enter the name and address of the
organization issuing the document.

2e. DOCUMENT SECURITY CLASSIFICATION: Enter the overall
security classification of the document including special warning
terms whenever applicable.

2b. GROUP: Enter security reclassification group number. The three
groups are defined in Appendix 'M'of the DRB Security Regulations.

3. DOCUMENT TITLE: Enter the complete document title in all
capital letters. Titles in all cases should be unclauified. If a
sufficiently descriptive title cannot be selected without classifi-
cation, show title classification with the usual one-capital-letter
abbreviation in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: Enter the category of document, e.g.
technical report, technical note or technical letter. If appropri-
ate, enter the type of document, e.g. interim, progress,
summary, annuel or final. Give the inclusive dates when a
specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(*) as shown on or
in the document. Enter last name, first name, middle initial.
If military, show rank. The name of the principal author is an
absolute minimum requirement.

B. DOCUMENT DATE: Enter the date (month, year) of
Establishment approval for publication of the document.

7e. TOTAL NUMBER OF PAGES: The total page count should
follovv normal pagination procedures, i.e., enter the number
of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the document.

8e. PROJECT OR GRANT NUMBER: If appropriate, enter the
applicable research and development project or grant number
under which the document was written.

8b. CONTRACT NUMBER: If appropriate, enter the applicable
number under which the document was written.

9a. ORIGINATOR'S DOCUMENT NUMBER(S): Enter the
official documet number bY which the document will be
identified and controlled by the originating activity. This
number must be unique to this document.

9b. OTHER DOCUMENT NUMBER(S): If the document has been
assigned any other document numbers (either by the originator
or by the sponsor), also enter this number(s).

10. DISTRIBUTION STATEMENT: Enter any limitations on
further diuemination of the document, other than those Imposed
by security classification, using standard statements such as:

(1) "Qualified requesters may obtain copies of this
document from their defence documentation center."

(2) "Announcement and dissemination of this document
is not authorized without prior approval from
originating activity."

11. SUPPLEMENTARY NOTES: Use for additional explanatory
notes.

12. SPONSORING ACTIVITY: Enter the name of the departmental
project office or laboratory sponsoring the research and
development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document, even though it may also appear
elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassi-
fied. Each paragraph of the abstract shall end with an
indication of the security classification of the information
in the paragraph (unless the document itself is unclassified)
represented as (TS), (S), (C), (R), or (U).

The length of the abstract should be limited to 20 single-spaced
standard typewritten lines; 71/2 inches long. 	-

14. KEY WORDS: Key words are technically meaningful terms or
short phrases that characterize a document and could be helpful
in cataloging the document. Key words should be selected so
that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code
name, geographic location, may be used as key words but will
be followed by an indication of technical context.

VENTER, G.O.
e04ig jÇç :bç Dg.„

TK
5102.5
C673e
#1403

DUE DATE

201-6503
Printed

in USA

TIÇ!IC 2)11Nreiri;111)5rF9!" CI4C

MUSTRY CANADA I INDUSTRIE CANADA

1111111MM 1111112/1111 111 111

