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ABSTRACT 

A theory of the displaced phase center antenna system 
for space based radar applications is presented. The match-
ing condition required to compensate for the motion of the 
satellite platform so that clutter cancellation can be 
achieved is first derived. Analytical expressions for the 
signal and clutter covariance matrices are given. With the 
aid of a simplified model, numerical values of an improve-
ment factor are obtained. These results illustrate the 
dependence of the level of clutter rejection on radar para-
meters such as: grazing angle, pulse train duration, pulse 
repetition rate and antenna aperture size. 

1.0 	INTRODUCTION 

With the rapid progress in satellite technology an increasing number 
of sensors are launched into space for various observation purposes. For 
microwave sensors, the synthetic aperture radar SEASAT, for observation of 
the oceans, was launched in 1978 and this was followed by the shuttle 
imaging radars SIR-A in 1981 and SIR-B in 1984 (Refs 1-3). 

The defence of the Canadian territorial integrity requires a sur-
veillance system which can cover the vast land masses and its surrounding 
oceans. A space based radar (SBR) could be a key element in a system 
designed to fulfill the needs of Canada in safeguarding its sovereignty by 
ensuring that intrusion into even the remotest corner of the nation could 
be detected, thereby allowing rapid tactical decisions to be made. 

Before space based radars can be deployed as part of an integrated 
surveillance system a number of outstanding technical and technological 
issues must first be resolved. One key problem is the ability of the SBR 
to extract target signals from the interference of unwanted electro-
magnetic energy reflected from the earth's surface. 

In Refs. 4 and 5, the target detection capability of a base line 
real aperture, pulse-doppler, space based radar was examined. These and a 

recent detailed study of the spectral characteristics of clutter from dif-
ferent types of terrain as seen by a spaced-based radar, [6] demonstrate 
quantitatively that space based radar :lutter  return can be several orders 
of magnitude stronger than that of a typical target signal of interest. 
Consequently, an SBR system must possess an efficient clutter rejection 
scheme which can adapt to the high degree of variability of the clutter 
spectrum as a function of radar geometry and terrain. 

Although the SBR clutter spectrum is dependent on many factors, its 
variability is mainly due to the motion of the radar platform relative to 
that of the earth's surface «illuminated by the radar. For airborne radars 
a clutter rejection method known as the displaced phase center antenna 
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technique has been shown to be effective in a monopulse implementation 
[7]. In principle, this technique seeks to compensate for the platform 
motion, thereby reducing the target masking effect produced by the 
background clutter. This is done by controlling the timing of the emitted 
pulses so that the clutter returns to different receiving phase centers at 
different sampling times emulate the clutter returns seen by a virtual 
stationary receiver. A proposal to apply such a technique to space based 
radars has been outlined by workers of the Lincoln Laboratory [8,9]. 

In this report we present a theory of the displaced phase center 
antenna technique as applied to a space based radar. Our attention will 
be focussed on a two phase center system, although some discussion on 
higher order phase center systems will also be given. The objective of 
this theoretical investigation is to derive an optimum processor which 
maximizes the signal to clutter ratio. In parallel, analytical results 
required for quantitative evaluation of the performance of the displaced 
phase center antenna system will also be obtained. A theory of applica-
tion of the displaced phase center antenna technique for an airborne mov-
ing target indicator has been discussed by Hofstetter et al [10]. Al-
though the general approach adopted in our analysis is similar to that of 
Ref. [10] the constraints imposed by the radar operation on a space plat-
form require a different system configuration which leads to significant-
ly different results. 

To make the analysis mathematically tractable a number of simplifi-
cations have been made. The effects of some of these simplifications are 
secondary and therefore can be ignored. Others are subjects for investi-
gation to be carried out in our on-going studies. 

Section 2 describes the propagation of electromagnetic pulses emit-
ted by a space based radar in orbital motion and backscattered by a target 
on the earth's surface. The matching condition is derived from the time 
delays between the transmission and reception of the individual pulses by 
the different phase centers. Section 3 is devoted to the analytical des-
cription of the signal and clutter return vector. The clutter covariance 
matrix which characterizes the radar background interference is also 
derived. In section 4, we describe an optimum processor for the displaced 
phase center antenna system and define an improvement factor to evaluate 
the performance of the overall scheme. Key parameters such as the radar 
beam grazing angle, pulse repetition rate and number of pulses in a burst 
are varied and numerical results are presented. The conclusions of this 
report, which is the first of several on the subject of displaced phase 
center antenna for space based radars, are found in section 5. 

2.0 GEOMETRICAL CONFIGURATION AND SIGNALLING FOR A DISPLACED 

PHASE CENTER ANTENNA SYSTEM 

The spectrum of the clutter return of a space based radar is highly 
sensitive to the orbital motion of the radar platform and the radar point-
ing direction [4-6]. In this section we establish the viewing geometry of 
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the radar and the signalling sequence of the displaced phase center 
antenna. 	To simplify our analysis we will restrict ourselves to 
the consideration of circular orbits. 	For the surveillance of an 
extensive area with a minimum number of satellites, circular orbits are 
preferred [11]. In addition, we will neglect the rotation of the earth. 
In Ref. 6 it has been shown that the earth's rotation has only a small 
effect on the clutter spectrum. The basic displaced phase center system 
being considered is assumed to have two phase centers. In Appendix I 
higher order displaced phase center antenna system will be discussed. 

2.1 	A Basic Displaced Phase Center Antenna System  

The basic displaced phase center antenna system we consider is 
assumed to utilize a phased array antenna controlled electronically to 
form a single transmitter with phase center at T and two separate 
identical receivers with phase centers at RI and R2 respectively (Fig. 
1). It may be recalled that the phase center of a radiating source is the 
center of curvature of the spherical wavefront in the far field zone of 
the emitting source. Choosing a geocentered coordinate system Oxyz such 

Fig. 1 - Positions of the transmission and reception phase centers T, 
RI and R2 in a geocentric coordinate system. 

that the circular orbit is in the yOz plane, we can express the 
coordinates of the phase centers as in Table 1. The symbols used in Table 
1 have the following meanings: 

re : radius of the earth 

: radius of the satellite orbit 



where Wr 

6 	: angular position of T from Oz 
66 : angular separation of R i  and R2 from T 
S 	: an arbitrary point on the earth's surface 
es  : polar angle of S (Fig. 2) 

(Ps  : azimuth angle of S (Fig. 2) 

r' : distance of the phase centers R i , R2 to the center of the 
earth. 

Table 1 - Coordinates of Phase Centers and an 
Arbitrary Point on the Earth's Surface 

Spherical Coordinates 	' 	Cartesian Coordinates 

T 	(r, 	6, 	0) 	(x = 0, 	y = r sine, 	z = r cos6) 

Ri 	
( 	r 	, 	e.-6e, 	o) 

cos 66 

= 	(r', 	6-66, 	0) 	(x = 0, 	y = r'sin( 6-66), 	z = r'cos( 6-66)) 

R2 	
( 	r 	 , 	 6+66, 	0) 

cos 66 

. 	(r', 	6+66, 	0) 	(x = 0, 	y = r'sin( 6+66), 	z = r'cos( 6+66)) 

S 	(re , 	6s , 	cps ) 	(x = re sin6s 	cos  4, 	y = re sin 6s sin (Js  

z = re cos 6s ) 

Let the angular velocity of the satellite be denoted by w and we 
choose the time t=0 to be the instant that T is on the z axis. Assume 
that a pulse is transmitted from T at t=ti. At t=t2 the pulse is supposed 
to have reached S and at t=t3 the pulse reflected from S arrives at RI. 
With the assumption that the earth is stationary, ST(ti), the distance 
between S and T at t=t i  is given by 

[ST(t 1 )] 2  = (r esines cos4%) 2  + (r esines sin4Ps -rsin0 .0 2 

 + (re coses -rcos61) 2  

4 

( 

The distance between S and R I  at t=t3 is given by 
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› 

Fig. 2 - Geometrical configuration of the relative positions of the 
satellite orbit and a point scatterer on the surface of the 
earth. 



( 3)  

( 4)  

6 

[SR1(t3)] = (r esines cosg)s ) 2  + (r e sines sing)s -r'sin6_) 2  

+ (re  cos es -r cos 6_) 
2 

where 

= 0 3-6 e = ei + w(t3-t 1 ) - 66 

= 6 1  + 	- 66 

A i  is the time required for the pulse transmitted at t i  to reach R i  after 
reflection at S. SR1(t3) can now be expanded in terms of ST(t i ). 	Since 

[SR1(t3)] 2 = (r esines cos4)s ) 2 + Kresines sin(Ps  - rsin61) 

+ (rsine i  - r'sin6_)] 2 

 +[(re coses-r cosei) + (rcosei - r'cose-)] 2 
 

SR1(t3) 	ST(t 1 ) + 
(r

e 
 sines  sing s) -rsine i )(rsinerr'sin6_) =  

ST (t i ) 

(rsine i-r'sine_) 2 	(rcose 1-r i cos6_) 2  

2[ST(ti)] 	2[ST(t 1 )] 

( re  cos es -rcos 6 1 ) (rcos Orr' cos e_ )  2  

[ST(t 1 )] 

In the last expression of Eq. (3), terms of second order and higher in 
SR 1 (t3) - ST(t1)) / ST(t i ) have been ignored. For small values of wL i  

And  60 eq. (4 	can be further simplified with the aid of the 
approximations: 

rsine i  - r'sine_ = -r(A i w-6e)cos6 1 

 rcos61 - r'cose_ = r(Aiw-68)sinei  

such that after dropping second and higher order terms in wA i  and 66, 

SR1(t3) 	ST(t i ) - 
r
e 
 sines sing)s  • r(A i w-66)cose i  =  

[ST(t 1 )] 

r e coses  • r(àiw-6e)sin6 1 

 [ST(t1 ) 1  

( 2) 

( 5)  

( 6)  

( 7) 
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( 8)  

( 9)  

[(i(ti)x) • »is ] 	(à. 	de 
c   J1 

ST(tI) 	2ST(t 1 ) 
cA 1  = 2ST(t i ) {1 (12) 

By definition, the time delay AI is given by 

Ai = (t3 - t i ) = (t3 - t2) + (t2 - t i ) 

SR1(t3) 	ST(t1)  

where c is the speed of light. From Eqs. (7) and (8) it follows 

cLi = 2ST(t1) + ( L
i w- de)

r re  {-sin es sin(Ps  cos 6 i+cos es  sin el} 
[ST(t 1 )] 

If v is the speed of the satellite and d the distance of separation 
of the phase centers T and Ri i.e. v =  ru;, d = rde, Eq. (9) can be 

alternatively written as 

cAi = 2ST(t i ) + 
(vài-d) 

 {-r e sin es sin (Ps  cos ei + re cos %sin El i  } 	(10) 
[ST(t 

A more compact form of Eq. (9) is 

-( 
cAi = 2ST(t 1 ) +  (A

1w56) 	
[(T(t 1 ) x S) •  i:1  

[ST(ti )I  

where 	and e(t 1 ) are position vectors and i is the unit vector along the 

x-axis. 

Eq. (11) can be solved to give the time delay A I : 

(11) 

where second order terms and higher in (w/c)[(i(t i )xe) ei1/ST(t1)  have 
been dropped. 



(15) 

(i(t , )  X 	• ; 

= f(ti) + [ g> •i ( t i ) — f 2 ( t 1 ) ] 
w6 

(16) 
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Similarly, the time delay A2 for a pulse transmitted at t1 to reach 

R2 after a reflction at S is given by 

[i(ti)x)] •irw 
cA2 = 2ST(t1) 1 1 + 	 L 	+ 	

66 
	II  

[ST(t1)] 	2ST(t1) 

If a second pulse is now transmitted, the time delays taken for the 

pulse to return to the receivers after a reflection at S will be different 

due to the motion of the satellite. Consider a pulse transmitted at 

t=t'. The time delay A' it takes the pulse to reach RI via a reflection 
1 	1 

at S is given by an expression analogous to Eq. (12) 

cL' = 2ST(t') 	1 + 	 + 
 

[T(ti 	
— 

) x Sj  i r w 	66 	1 1 (14) 1 	1 	l 
1 	1 	ST(t) 	

c 
2ST(t') 

1 	1 

Let t' = tl + 6 and denote 6
1 
+ w6 by 6. The distance ST(t'

1
) can be 

1 	 1  

related to ST(t1) by the following equation 

ST(t) = [ST(t1)] 	1 + 1,2 
[ST(t1)1 

After some straightforward algebraic manipulations and with the aid of the 

assumption that rw6 « ST(ti), we obtain that 

(13) 

wd [ i(t1) x 	• is  

ST(t') 	ST(t 1) 

where 

f(t) 	(-T(t) x 
	• ; 

ST(t) 

On substituting Eqs. (15) and (16) into Eq. (14) we get 

cA' = 2[ST(t1)] 1 1 + f(t1) [ w6 + 	— 	66 

1 	 ST(t1) 	c 	2ST(t1) 
I 

(17) 

(18) 

If the time separation 6 between the two pulses transmitted at t = t1 and 

t = tl respectively are suitably chosen so that 
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( 19) 
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then the two phase centers RI and R2 will form a virtual stationary 

receiver as the time delays of the two distinct pulses (relative to the 

two phase centers) are equal. In other words, the two pulses are timed 

appropriately so as to eliminate the motion of the platform. 

From Eqs. (13), (18) the time delay matching condition in Eq. (19) 

requires that 

àe 	w6 
	 j 	(20) 

2ST(ti) 	ST(t1) 

60 
1 + f(ti) 	w  + 	 ] - 1 + f(t1) [ w  - 

c c 	2ST(ti) 

Eq. (20) is satisfied if 

w6 = 66 	 (21) 

Equation (21) is the two phase center matching condition we wish to 

derive. This condition requires that, in order for the two pulses to be 

matched, the time separation 6 between them should be equal to half the 

time the satellite platform takes to cover the angular separation (266) of 

the two phase centers on receive. It is important to note that provided 

the distance traversed by the satellite in the time interval 6 is small 

compared to ST(ti), i.e. 

rw6 << ST(t1) 	 (22) 

the matching condition in eq. (21) is valid regardless of the position of 

S and the time ti. 

In the derivation of Eq. (20), the first order approximation has 

been used in the expansions in Eqs. (4), (5) and (6). However, the effect 

of retaining second order terms in !SR1(t3) - ST(t1)1 / ST(ti), wdà l  and 66 

on the matching condition has been examined. The m thematics involved is 

straightforward but rather tedious. 	Instead of presenting the detailed 

results we give here only an error bound for a typical case. 	For an 
L-and radar on a satellite platform in a circular earth orbit of altitude 
10 km the mismatch c(6' - Az) is less than 10-  m for values of 6 up to a 

1 
millisecond. 

To understand the significance of 

consider the transmission of a pulse 
intervals. The pulse tains  received at 

the point S can be depicted as in Fig. 3. 
that, within the duration of the transmission of the pulse train, the 
distance between S and T increases with time. It is evident that, as the 
delay times AI and A2 are functions of the satellite motion, the received 
pulse trains are no longer equally spaced in time. In Fig. 3, we also 

the matching condition, we may 
train with equal interpulse 

RI and R2 due to reflections at 
For this illustration we assume 



A2 (1) 1 	1 	1 	I 	1 	1 	1 1-ig- i3  -01 

d 0 
à2 (2) 1-0  

TRANSMITTED PULSE TRAIN 

( HI !  

o  

PULSE TRAIN RECEIVED BY R1 

14 	 Ai (1) 	 

0 	
[it 	 A1(2)  

I 	1 	I 	I 	1 	Il 31. 

PULSE TRAIN RECEIVED BY R2 

Fig. 3 - Time sequence of the transmitted and received pulse trains 
under the matching condition. 



N-1 
u(t) = ï rect 

n=0 

[t - n6] 

T
P - 

(24) 
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assume that the matching condition Eq. (21) is satisfied. By shifting the 
time origin for the pulse train received by R2 relative to that of R i  by 

6, which equals to an integral multiple of the interpulse period of the 

transmitted pulse train, it can be seen that subsequences of the two 
received pulse trains can be synchronized. Consequently, as long as the 
reflecting property of S remains constant over the duration of the 

incident pulse train, there exists subsequences of the received pulse 

trains which will match exactly. 	In this consideration, an unambiguous 
range condition is assumed. 	If multiple time around interference is 
present, matching will be obtained after the establishment of the steady 
state. On the other hand, if S is replaced by a moving target, the 

matching process will break down. 

As an example, Eq. (21) can be satisfied by choosing 6 to be the 
pulse repetition interval so that the time delay of the first pulse in the 
pulse train received by R2 is equal to the time delay of the second pulse 
of the pulse train received by R i . However, the proper choie of 6 needs 

to be considered in conjunction with the appropriate pulse repetition 
frequency for the detection of the types of targets in a given 
application. This question will be discussed further in later sections. 

3.0 TARGET AND CLUTTER RETURNS  

In the previous section we have obtained the matching condition for 
the two phase centers R i  and R2 to form a virtual stationary system with 
respect to two consecutive pulses reflected from an arbitrary point on the 
surface of the earth illuminated by the radar. More fundamentally, we 
have demonstrated that when the matching condition is met there exists 
subsequences of the received pulse trains at R i  and R2 which can be 
matched , very closely by implementing a simple relative time shift equal to 
6. In this section we will describe analytically the radar signal 
back-scattered from a moving target and the total clutter return from the 
earth background as seen by the two receivers. These results will form 
the basis for the performance evaluation of the displaced phase center 
antenna system. 

The transmitted signal S(t) is taken to be in the following complex 
form: 

S(t) = u(t) exp [jwc t] 	 (23) 

where u(t) is a train of N rectangular pulses each of length Tp such 
that 



1 	I x I <I 

0 	otherwise 
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and rect (x) = (25) 

In Eq. (23) we  is the radar carrier frequency. 	It is clear from Eq. 
(24) that the pulse repetition frequency is given by 1/ 5. The pulse train 
arriving at the receivers RI and R2 will be denoted by ri(t), (i = 
1,2). When only a point target is present ri(t) can be written as 

r1(t) = gip u(t-Ai(t)) exp [jwe (t - Ai(t) (26) 

where p is the complex reflectivity of the point target and ài (t) is the 
time delay between the transmitter T and receiver Ri  via a reflection at 
the point target. 	The factor gi includes the antenna gain and 
propagation loss factors. 

3.1 	The Target Signal  

Consider a point target A with a velocity  VA,  located at time t=0 
at a point whose spherical coordinates are (rA, 0A, (PA) • 	The co- 
ordinates of the phase centers T, RI and R2 at time t=0 are summarized in 
Table 2. 

Table 2 - Cartesian Coordinates of Phase Centers at Time t=0 

Phase Center 	Cartesian Coordinates 

T 	x = 0, y = r sine° , z = r coseso 

RI 	x = 0, 	y = r'sin( 130-66), 	z = r i cos(60-66) 

R2 	x = 0, 	y = r'sin(60+60), 	z = ricos(00+66) 

A pulse emitted at ti is intercepted by the target at t2. 	Since 
both the satellite and the target are moving we will denote the distance 

between i(ti) and "At2) by AT(t2, ti). Then 

1 [AT(t 2 ,t 1 )1 2  = (xA+vAxt2) 2  + 1(yA+vAyt2) - rsin(00+wt1)1
2 

 

+ 1(zA+vAz t2) - rcos(00+wt1)12 



(32) 

(33) 

where 
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= [TA] 2  + 2TÀ••v+At2 + 2wti[f(0) x À•.(0)1 •  j 	(27) 

TA = À•(0) - T•(0) 	Eto  

and VA  = (vAx, vAy, vAz) 

By applying the binomial expansion to Eq. (27) and dropping second and 

higher order terms we obtain 

R  • eA  t, 	.t,[(f(0) 	A0), • n i  
AT(t,, t 1 ) 	R0 [1  ,  0  

R
2 	R2 

Assuming that the reflected signal is received by Ri at Ti then it can 

be found that 

R0 { 1 
	e 	4> • ,A 	 de) 	" 

RIA(T I , T2) = Ro ll + 	° 	" t2 + 
(wt _ 	

[T(0)xI(0)) • in (29) 
2  Ro 	R2 

o  

and 

R0 { 1 
	R • VA 	( wt - 66) ± 

R2A(T2, t2) = R0 11 + _Q 	t2 + 	 [1(0)xZ(0)) • ill (30) 
2  Ro 	R2 o  

From Eqs. (28), (29) and (30) the time delay Li defined by 

Ai (Ti ) = Ti  - t1 	 (31) 

can be solved and the result is 

Ai(t) = 	- 2 g1).. - t) 	+ Ro •  VA)  + (-1)i g 6e  
cRo 	cRo 	cRo  

with 

g = [i(0) x Â(0)] 

(28) 
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It is useful to note that Eq. (32) gives the time delay as a function of 

the pulse arrival time t. 	In the derivation of Ai(t) it is required 

that IvAl « c and rwii« Ro . Hence the target signal 

N71 
rect

t -  Li(t) - n6 ]  exp [jwc(t-i (t))] ri(t) = giP L 
n=0 

can be determined. 

3.2 	The Clutter Return  

In order to determine the clutter return from the collection of 
scatterers on the earth's surface we assume that they are continuously 
distributed. In addition to the fixed coordinate system Oxyz, it is 
convenient to introduce a rotating coordinate system Oxy'z' (Fig. 4) with 
the z'-axis oriented along  UT. The coordinates of an arbitrary point C on 
the surface of the earth in the two coordinate systems are simply related 
by the matrix equation 

(r : 	= 	10 	cOse -s (1)ine 
i ri 

 ; 

[i ; 

	 (35) 

Let (0, It!) be the polar and azimuth angles of C in the Oxy'z' frame, 

(Fig. 5). An elemental area 6A situated at the point C such that 

6A = r• de& sine& 6(1)& 	 (36) 

can be written as 

6A =  E.. R6R (5( 	 (37) 

where R is the radar range to the point C. Thus the clutter return from 
the elemental area 6A to the receiver Ri is given by 

N-1 	(c) 
- k6  r 	] 

6ci(t) = gi(R,Y,(P)P(R, 	
Ai (t) Lt - 4D / rect  

k=0 	T
P  

( 
x exp b 	

c)
wc (t - Ai (0) j • 6A 

(34) 

(38) 
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Fig. 4 - Geometrical configuration of the coordinate systems XYZ 
and X'Y'Z' 



Fig. 5 — Orientation of a typical scatterer C on the surface of the 
earth relative to the boresight TD of the antenna. 

16 



(39) 

(40) 
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In Eq. (38) p(RoP) is the complex reflectivity per unit area, and 

g (R y V) is the product of the gain functions of the transmitter, the 
c 

receiver as well as the propagation loss factor. 

c) 
For the time delay à.

( 
 (0 it can be written down in analogy to 

ài (0 in Eq. 32: 

A (c), 	2R 
Lai 	= 	+ 2(t - 	+ (-1) i 66.gc  

c cR 	cR 

with 

gc = [( i (0 ) x 'C (0 ) ) • 

The total clutter return is then found by integrating Eq. (38) 

c1(t) = 	if RdRdV gi(R,Y,E)P(R,¢) 

N-1 	(c) 
x 	rect II

(t) - kd 
 j 	(c) exp ljt.1 (t-Ai (0)] 	(41) 

k=0 	Tp 

3.3 	Matched Filtering  

In order to maximize the signal to noise ratio at the output of the 
receivers the received signal is passed through a matched filter [12]. 
Following Hofstetter et al [101 we use a filter matched to a signal return 
corresponding to a single pulse. Because of the very high Doppler shift 
induced by the satellite motion an angular frequency shift wp is 
included so that the impulse response function of the matched filter 
fm(t) is given by: 

fm(t) = rect [ 	] exp [ -j(%+(tt)t ] 	 (42) 
T

P  

The choice of the frequency shift wilp is determined by the Doppler 
frequency of the satellite as observed from a point where the transmitting 
antenna beam axis intersects the surface of the earth. 

The matched filter output yi(t) corresponding to the signal 
ri(t) in Eq. (26) is the convolution of Eq. (42) and Eq. (26), and the 
result is 



{
b } 
a 

	

a-f- 	± Lr2 	f3—cti 

	

2 	2 	I  2 I  
(47) 
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Yi(t) = fan ri(n) rect 	exp[-j(wc+wb)(n-t)] 
T

P  

N71 , 	r n  - Ai(n) - n6 
= giP L j dn rect L  	rect • 

n=0 	
Tr) 

x exp [ jwc (t-Ai (n))]  exp [-jub(n-t)] 	(43) 

To perform the integration in Eq. (43) we replace the time delay 
A i (n) in the argument of the rectangular function by the approximate 

expression Ai(n) = 
2R

This is legitimate because of the n independent 
2R 

terms ignored are negligible in comparison to 	and the coefficient of 

the linear term in n is much smaller than uni7.ty. However, in the sensi-
tive phase term the full expression of Ai (n) is kept intact. Hence 

	

N-1 	2R 

	

yi(t) = gip 1 	f an rect [ n 	e°  -  n6 ] rect [227-E-] 

	

n=0 	TP 	 TP  • 

exp [j(wc+(t)t] exp[-j(tec di (11) + un) 	(44) 

Consider the integral i(a,e) defined by 

i(a,e) =  f dn f(n) rect P1=2] rect P27-1] 	(45) 

where a,e are positive real constants. It can be readily shown that the 
following result holds: 

i(Œ,)  = rect L eg=-2] f bdn f(n) 	 (46) 
2ip 	a  

where 



+ 	T - t 	- n6 p] 
2wc 	P 	c  sin[wc (G 

(48) 

(49)  

(50)  

2R, 
rect r 	+  n6 - t 

2T P  

] exp 
wp 
 + n6 77,7)(t 	+ 
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Making use of Eq. (46) the matched filter output of the receivers can be 
written as 

Yi(t) = gip exp wcFi exP [i(wc÷t1b)t. 

N-1 	2R 

x 	rect 
r_ca + n6 - t 

n=0 	
2T

P  

] exp 	wc(G + 	)(t+n6 + 
2wc  

2 R0) ] 

wc (G + 

2wc  

The symbols G and Fi are defined as follows: 

1 	4. 	4 
G = 	(wg +  VA  Ro ) 

cRo  

2R e66 
F i  = 	(1-G) 	(_1)i 

cRo  

Let us assume that = 6/2 so that the transmitter is operating at the To  

maximum duty cycle of 0.5 to optimize the radio frequency energy within 
the transmitted pulse train while still allowing the proper functioning of 
the matched filter. 

In Eq. (48), for any given value of t, the term 

Sin [ wc  (G + 1104 1.5 - It - 	- n6I}] 

24ic 

wc(G 	) 
2wc 

(51) 



(53) 

(54) 
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makes a non-zero contribution to the matched filtered signal  y(t) only 
when the inequality 

1 I _2_1 - t + n6 1<  T (52) 
 c 

holds. In other words, the value of n must be such that the conditions 

2R - n6 - T < 	- t < - n6 + T 

are fulfilled. From Fig. 6, it can be seen that if 

2R 
- Tp 	t 	< (N-1)6 + Tp 

there is one and only one value of n which satisfies the conditions of 
Eq.(53). Let us denote this value of n by n' then Eq. (48) becomes 

yi (t) = gi P exp [-jwcFi] exp [j(wc  + (A)t } 

x exp [ -jwc (G + le-D4 (t + n'6 + 
2wc  

It - 	- n'611] sin [ wc(G + 	1 Tp - 
2wc  

w 	+ c (G   

If yi(t) is sampled at the pulse repetition frequency at the range R', 
it then follows 

+ m 16) = giP exp[-jwcFi] exp [j(wc+wD )( 2  — + m'6)] 

x exp [-jwc (G + 212-)g (R'+Ro) + (m'+n')6)] 
2w c 

(55) 
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(56) 

r 

1 

t = —kci 

x sin [wc (0 + 212-) IT, - 	( R'-R0 ) + ( m'-n')(511] 
2wc 	c 

wi (G  
2wc  

where m' is an integer and 0 < 	< N-1. Hence the signal vector at the 
range R' is given by Eq. (56 ) and the constraints which n' must satisfy 
are 

n'd - T < 	( R I -R0 ) 	M I 6 < n'd + T 

k = N-1 	 k=3 k=z2 k=1 k=0 

(57) 

2(R —R'  ) 	k , d  

Fig. 6 - Time sequence of a train of N pulses 

We turn our attention now to the matched filtered clutter returns. 
Let  z1 (t) be the filtered clutter return of the receiver at  R.  From 
Eq. (43) we can write 

z i (t) =f dn ci(n) rect U211]  exp[-j(wc+wp)(n-t)] 
Tp  

Using Eq. (41) we can express zi(t) as 

zi(t) = (1-1)ffRdRd4 gi(R,7,(PD P(R,(P) 

N-1 
x exp[j(wc+wp)t] 	f dn rect [ n-t  1 

k=0 	
TP 

x rect 
- k6  ] 

T
P  

exp [ -j(ûài (c) (n) + 4)n) ] ( 58) 

The integration over the variable n can be carried out as before. 	With 
the aid of Eqs. (45-47) the integral Ic  defined by 



x exp [ -  j  (wc4 c) (n) 	wpri) (59) 

I c  = exp[j( wc+wp)  t]  f dn rect [ 	] 
Tp  
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x rect 
- Ai 

(c) 
[ n 	(n) -  kô 1 

can be evaluated. In fact, since from Eq. (39) 

wcq (c)( n ) 	wDn 

r2R 2wg c 	• 	s e , 
• wc 	- 	+ 	n + (-1) 	+ wpn 

cR 	cR 	 cR 

f2R 
~ wc U---( 1 - 	(_1)i g,  le 	2wc w  

gD n 
cR 	 cR 	cR 

(60) 

where 
cR 

gD 	gc 	)D-17370-e ' 

I c  = exp [j ( wc+wp)t ] f dn rect 
[ n - 4c)(n)  - 1c6 

Tp  

(61) 

x rect [211] exp[-j 
we 	[2R (1... wg c)  4. (.4) i gd.6._ } 	2wgp n 	] 

c 	cR 	 cR 	cR T
P  

2R 
+ k6-t 

= rect 
[c  ] exp [j ( wc+wp)t ] exp [-j wc tD(R, Y, 4)wt] 

2T
P  

x exp [-jwc  g (1-w[2,(R,Y,4) -20(R,Y,(P)]) 

+ (-1) 1  2,(R,y,4))66 + k£D(R,Y,(P) (06 1] 

x sin [wc 2,D(R,y,6)ce Itp  - 	t 	- k6 1 1]  (62) 

w 	(R, Y, 	)te 
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(63)  

(64) 

(65) 

In Eq. (62) 

= gc / cR 

and 	LD(R,y,cp) =gD / cR 

Substituting the result of Eq. (62) into Eq. (58) we obtain 

zi(t) = (.Et) If RdRdcp,  gi(R,y,(P) 

N71 	[(2R/ c ) + k6 - t 
x L rect 	 exp[j(wc+wD - wc RD()t]] 

k=0 	2TP 

r2R 	r 
x exp [-jw 	0.-wLX-£D ]) + (-1)i R6 0  + laDwd} 

2R 
x sin[we Rpw 1 Tp 	I 	- k6 I 1] 

wc£Dw 

For brevity we have suppressed the arguments of the functions k(R,y,cp) 

and 2. (R1
'
4) in Eq. (63) and no confusion should arise from this ab- 

breviation. 	The sampled clutter return at the range R' can be written 
down at once from Eq. (65) to give 

(2R' 	(r 	rr 
zi 	+ k'6) 	u!Lj jj RdR (14) gi(R,yop)p(Rop) 



N-1 
(R-R') + (k-k')(5 

x 	rect [  c 	
2R' 

exp[j(wc+wip+wc £D0(---d-k'd)] 

k=0 	2TP 

x exp {J W{_ (1-42.-20]) + (-1)i£.56 + 1(204] 

2 
sin[wc Rpw ITp  - ! — (R'-R) + (k' - k) d I 1] 

wc £Dw  

Let us pause a moment now to examine the integral in Eq. (66) over 
the range R. Evidently the range of values of R must be such that R 
should be no less than the satellite altitude and no greater than the 

distance from the satellite to the horizon. However, much stronger 
constraints arise from the fact that k and k' should both satisfy the 
inequalities 0 < k, k' < N-1, and the non-vanishing conditions of the 
rectangular function in Eq. (66). For a given value of R' and k', the 
maximum and minimum values of R as k varies are given by: 

cT 
Rm = R' + 

ck'6  + --2 
2 	2' 

(67) 

ck' 
Rtn  = R' + —6 - (N-1)6 - - C  To  

2 	2 

The total range of values of R is hence — N6 as one would expect. 
2 

As before, the conditions that the range of values of R over which 
the rectangular function in Eq. (66) is non-zero are 

2 
— (R-R') + 	I < Tip 

Analogous to the case of the signal vector, for given values of R' and k' 
and a value of R in the range specified by Eq. (67) only one value of k 

can satisfy Eq. (68). Let us denote this particular value of k by 	then 
Eq. (66) can be rewritten as 

24 

(6 6) 

(68) 
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(69) 

(
2R' 

1 	+ k'6) = 	fRM dR j
2r d.4) R gi (R,y,rp) p (R,4)) z. 

r 	Rm 

weLDw)  (2R' .1_ k , 6 )] 
x exp 	j( wc  + cup  - 

r2R 
x exp [-jwc t-- (1-w[1-212]) + (-1)

i
2,68 + 	204] 

x sin[wc £Dw 1T p  - 	(R'-R) + (k' - -F) 6 1 1] 

w£Dwc 

3.4 	The Clutter Covariance Matrices  

In studying the effectiveness of the displaced phase center antenna 
technique in clutter suppression a statistical approach is necessary. 
Common to a broad range of problems in which an electromagnetic field 
interacts with matter, two sources of fluctuations are encountered. In 
the first place, there are the fundamental quantum mechanical fluctuations 
of a wave source with a finite spectral width [ 13, 14, 15 ] . Secondly, 
under field conditions, physical information of rough surfaces illuminated 
by the electromagnetic wave, as a rule, allows only a probablistic 
discription of its reflecting properties [16, 17 ] . 

The statistical method commonly used to determine the linear 
relations between a sequence of observations is the correlation function. 
To account for the fluctuations of the reflecting properties of the radar 
background, the covariance matrix [18 ]  is a particularly convenient tool 
in relating the clutter returns zi(t) of the two receivers discussed in 
Section 3.3. 

kk' 
At a given range R' the clutter covariance matrix C ii' 

is defined in 

terms of the clutter returns zi(t) by the relation 

kk' 

	

2R' 	2R' 
= 	+ 1(6) z* 	+ k't5)> Cii, 	

c 	c 

where the angular brackets indicate the average over an ensemble of 
reflecting surfaces. In Eq. (70) the only physical quantity affected by 
the averaging is the Aflection coefficient of the earth's surface. 
Assuming the surface to be representable by a continuous distribution of 
uncorrelated scatterers it can be proved (Appendix 2) that 

(70) 
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<p(R,(P) P* (R',40 )> = 	( da(R ' 4) ) 6(R—R') 6 (4)— (P')/R 	(71) 
re 	dA 

where da/dA is the differential cross section, or the cross section per 
unit area of the reflecting surface usually denoted by a °  in radar 
literature. 

From Eqs. (69), (71) the clutter covariance matrix can be simplified 
to 

ckk' =
J  dR f27  dcp' g. 	t , (R y V) gi(R*,Y,(P)R e(R,(p) 

r 	
0 	c 	c 

x exp [jw0  1(1+w9.) 	+ k6) + w176 + (-1) 1-9.661] 

x exp [—j w0  [(1+a) 	+ 1( 1 6) + w1.2.1  + (-1)i' kuq] 

x sin [teR,Dw0  {Tp  — 	
2 (R'—R) + (k—V)6 II] 

x sin [ wlowe l Tp 	
2 	—R) + (k"-7)6 111/(wIpw c ) 2  (72) 

In the above equation the integration over R is taken over the intersec-
tion of the intervals RI and R2 arising from Eq. (67), i.e. 

r 1 	R' + 	k6 — 	(N-1)6 — -2- Tp 	R < R' + 	k6 + 	Tp 	(73) 
2 	2 	2 — 2 	2 

+ 	k' 6 — 2- (N-1)6 — r 2  : R' 	 Tp< R < R' + 	k'd + 	T 	(74) 
2 	2 	 2 	2 P  

If we denote by km  and km the minimum and the maximum values of k and 
k' so that 

km  = min (k,k') , km = max (k,k') 	 (75) 

then the range of integration over R is: 



(77) 

(78) 

(79) 

(80) 
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r 1  n r 2  : R' + 	[km 6 - (N-1)6 - T p ] < R < R' + 	[km6+Tp ] 	(76) 
2 	 2 

In analogy to the condition of Eq. (66), the integers 7 and IF.' must 

also satisfy the inequalities 

(R-R') + (1Z - k)6 	< Tp 

and 

(R-R , ) + ( P-k , )6 	< Tp 

IC 

It follows immediately that 

- k =1P - k' 

and hence 

ckk' 	G5L) f 	dR  121T 
dir g (R,Y,(Ing! (R,T,V) R e(r,cP') 

r rin r2 	0 	c 	c 

x exp [jwc  {(k-k')(1+2w 14 ) 6  +  

2 
i
r 	2 

x sin 	ulD we ltp  - 	-c- (R'-R) + (k-V)(5 II] / ( wItpwc ) 2  

kk' 
The matrix element C 	ca

n be written explicitly as a sum of contribu- 

tions from a set of ambiguous range lines. In fact, the expression is 

kk' 
C 	= 	/ 	

(
J
r 	dR f 	$1(1) gi(R,Y,(PD gi(R,Y,(P)R 

V=k-km 	a(Z) 

(N -1) - ( (14  -k) $(V) 	27T 



x a ° (R,IDexP Liwc {(k-k')(1 -2w 6 .9, )(5  - [(-1)i-(-1)i']£661] 

x sin 2  [wc g.pw I Tp 	(R-R') + (k2E)6 I 1] 

wc eDw) 2  

and the limits of the integration over the range R are 

Œ(V)  = R' + (k-V)  , c6  2- - 

c

Tp 	 (82) 

c6 	c 
8(7) = R' + 	+ 	 (83) 

P 

kk' 
Thus, with Eq. (81), the matrix element C

ii' 
can be determined. Depending 

on the value of the range R' the matrix element C
kk' 

is a sum of integrals 

over a number of ambiguous range lines each of width  CTp  in the direc-

tion of R. 

Since by definition, the clutter covariance matrix is hermitian the 
diagonal matrix elements given by Eq. (81) are real as required. 

To see the effect of the matching condition (Eq. (21)) on the co-
variance matrix we can first remove the physically non-essential term 

kk' 
exp[jwc (k-k')6] in Cii , due to the constant phase advancement of the 

individual pulses in the transmitted pulse train by means of a constant 
phase transformation. Instead of the matrix C we can consider the matrix 

r given by 

«C-  = PCP-1 	 (84) 

where P is a non singular matrix whose elements P
kk' 

(i,i' = 1,2: k,k' = 

0,1,2, ....,N-1) are defined by the equation 

kk' 
P. ' 	= ii'

6kk exp [-j
c
k (5] 
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(81) 

(85) 



( S ) I s* i 2 
 -* I  

w* w 
(86) 
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The matrices C and U are equivalent with identical eigenvalues. But under 
k- 

the matching condition the matrix elements 	
k 	1

(k=0,1, 	N-1) and 

their hermitian conjugates are real. The reality of these set of non dia-
gonal matrix elements is due to the motion compensation of the displaced 
phase centers which has in effect matched the phase factors occurring in 
these nondiagonal matrix elements. 

4.0 PERFORMANCE EVALUATION OF DISPLACED PHASE CENTER ANTENNA SYSTEMS 

In Section 3 we have derived analytical expressions for the pulse 
trains reflected by the moving point target as well as by an area on the 

kk' 
surface of the earth illuminated by the radar. The covariance matrix C 

which provides a description of the statistical properties of the clutter 
returns has also been presented. Based on this theoretical framework a 
performance evaluation can now be carried out. The principal objective of 
this section is to study the characteristics of an ideal displaced phase 
center antenna system and to delineate the key parameters which determine 
its clutter rejection performance. No attempt will be made here to deter-
mine the system parameters of a displaced phase center antenna system for 
a space based radar required to satisfy a specific set of design goals. 
Such an investigation will be the theme of a forthcoming report. 

As we are primarily interested in the performance of the displaced 
phase center antenna system in the presence of strong clutter we will 
assume in our present discussion that the radar interference is completely 
dominated by the radar energy backscattered from the earth's surface. 
Thus, the effect of system noise is considered to be negligible. 

For the extraction of target signals from the interference of back-

ground clutter, the radar data collected by the two receivers are proces-
sed by a linear signal processor. The signal processor being considered is 
one which maximizes the signal to clutter ratio. The output of the pro-
cessor is then compared with a preselected threshold to decide whether a 

target has been detected. 

Since the optimum linear signal processor is discussed in many texts 

[19, 20] we can directly apply the standard results to the displaced phase 
center antenna system. 

Let Tv = (wik ) be the weighting vector which defines the linear 
signal processor under discussion. 	At the output of the processor the 
signal to clutter ratio is given by 



to be 

[ 	] - 1 (88) 

(90)  

(91)  
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In Eq. (86), s = (sik) is the signal vector defined by 

sik  = 	pkk' 	2R' 
yi(- + 1( 1,5 ) 

k' 

with the aid of the results given in Eqs. (56) and (85). The signal to 

clutter ratio attains a maximum value if the weighting vector w is chosen 

(87) 

and hence 

_ S ) 	1 4' = s* [ 	]- s 	 (89) 
c max 

To measure the clutter suppression capability of the displaced phase 
center antenna system, different figures of merit can be used. Kelly and 
Tsandoulas [8] have compared the clutter rejection performance of the 
fully displaced phase center antenna array with that of a single antenna 
element. Hofstetter et al [10] used instead an improvement factor based 
on the signal to clutter ratio with reference to that of a single pulse. 
For the detection of specific target types, a figure of merit based on the 
minimum detectable velocity [4-6] is probably more useful. For the more 
generic discussion presented here the improvement factor used in Ref. [10] 
provides a simple and useful quantity for a qualitative performance as-
sessment. The improvement factor F to be used is defined as the ratio of 
the quantity in Eq. (89) to the average single pulse signal to clutter 
ratio at the input of the linear processor. Since the average signal to 
clutter ratio per pulse at the input of the processor is 

,1 
	«ek 

c 	2N i k ik ik 	2N i k 

the improvement factor F can be expressed as 

(— ) 
c max 	c p 

-kk 
=fs*[Z] 	/s* 	s 

ik 	ik 

-1 
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If we denote the signal matrix by S.  such that 

kk' 
= 	( 	) 

— kk' 
and 	S 	= s 	s* 

ik i'k' 

then the improvement factor can be simplified to 

- 
r F . 1 s* L c, 	el  trace/trace  -g 

4.1 	Numerical Results for the Improvement Factor  

The main task involved in a numerical analysis of the improvement 
factor is in the computation of the clutter covariance matrix. From Eq. 
(81) it is evident that, with increasing the number of pulses in the 
transmitted pulse train, the number of integrals to be evaluated and hence 
the computational effort increases rapidly. To facilitate the numerical 
study a number of simplifying assumptions which do not affect the perform-
ance characteristics of the displaced phase center antenna system in any 
fundamental way, have been introduced. 

It is assumed that the antennas of the transmitters and receivers 
are identical in dimensions and gains. This is only a mathematical sim-
plification which ignores the loss of efficiency resulting from not using 
the full antenna array on signal transmission. 	Since the separation of 
the phase centers is, in practice, much smaller than the radar range, the 
angular differences of any point on the ground to the antennas are small 
and negligible. In addition, we assume that the antenna aperture func-
tions are Gaussian. Explicitly, we take the functions gi(R,Y,4) to be 
given by, 

gi(R, Y ,(P) = gl(R,Y,(P) 

2 Aant 	e -11S2 

(92) 

(93) 

(94) 

(95) 
(4n) X 	R2  

where Si (see Fig. 5) is the angle between 

tion vector of the point (R,(PD. A ant  is 

antenna beam width. 

the antenna axis and the posi-

the antenna area and 11— i is the 
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In Eq. (81), the differential backscattering cross section of clut-
ter a °  is, of course, a function of the terrain type and the angle of 
incidence. In our computations, however, these variations are ignored 
i.e. a° is treated as a constant. Under this assumption the improvement 
factor F will then be independent of the clutter differential cross sec-
tion a°. It is generally true that the target cross-section does not 
affect the values of F. 

In calculating the signal vector and the signal covariance matrix we 
also assume that the point target is located on the boresight of the tran-
smitting antenna and that it is flying along a trajectory close to the 
surface of the earth. 

The set of parameters common to all the computations presented in 
this report are summarized in Table 3. 

Table 3 Parameters and Relations used in the 
Numerical Analysts 

re  : radius of the earth 6.37 x 10
6m 

r : radius of the satellite orbit 7.37 x 10 6m 

we  : angular frequency of the radar 9.42 x 10 9  rad/s 

w : angular velocity of the satellite 9.97 x 10-4  rad/s 

6 : interpulse period 1.0 x 10-4  (unless indicated otherwise) 

Tp 	pulse width tip = 6/2 

rA : radius of antenna 5m (unless indicated otherwise) 

N : total number of pulses in the pulse train 8'(unless indicated 
otherwise) 

wp : Doppler frequency shift in the matched filter 

= 2wwerr esineil  sin415/cRD 

eL,,m: polar and azimuth angle of D (Fig. 5) 

RD : distance TD (Fig. 5). 

In Fig. 7 the variations of the improvement factor is shown as a 

function of the radial velocity of the target vA • RD i.e. the projection 

of the target velocity  VA  along the unit vector RD. As the magnitude of 

the relative velocity of the target increases so does the improvement 
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factor F. Due to the sampling process involved, F is a periodic function 

in VA  • R. The fundamental period is equal to - times the pulse repeti- 
2 

tion frequency. Thus in terms of the Doppler frequency, F has a periodi- 

city equal to the pulse repetition frequency. On the other hand, F has 

no inversion symmetry about vA  • RD  = 0. In Ref. [9] it has been shown 

the clutter Doppler spectrum as observed from a space based radar is, in 

general, asymmetric. 

In Fig. 7, the results for the improvement factor are also plotted 
for different grazing angles. It is seen that the clutter cancellation is 
significantly more effective at higher grazing angles. This property of 
the displaced phase center antenna system could be of practical import-
ance. In the absence of any clutter rejection technique, the coverage of 

a real aperture space based radar is severely limited by the phenomenon of 

the "nadir hole" [11 ]. This blind spot of the radar is the result of the 

reduction of the target relative radial speed as it moves to a region cor-

responding to a steeper grazing angle and the resulting increase in the 

intensity of the clutter return. 

The effect of changing the pulse repetition frequency on the im-

provement factor is shown in Fig. 8. The factor F increases with the re-

duction in the pulse repetition frequency. However, if the clutter spec-

trum is undersampled degradation due to aliasing can arise. For the dis-

placed phase center antenna system, lowering the pulse repetition frequen-

cy would require a larger separation of the phase centers to conserve the 

matching condition in Eq. (21). 

When the number of pulses in the transmitted pulse train is increas-

ed there is better clutter cancellation. As can be seen from Fig. 9 the 

improvement factor F increases as the value for the pulse number N in-

creases. In addition, the oscillations in the magnitude of F become shal-

lower and hence a more uniform clutter cancellation across the target vel-

ocity range. 

The last parameter we have examined is the antenna size. 	The 

improvement factor F has no explicit dependence on the dimension of the 
antenna. However, through its dependence on the antenna beam width 

F increases with antenna dimension. In Fig. 10 the results for circular 
antennas of different radii are plotted. 

5.0 CONCLUSIONS 

In this report we have presented a theory of the displaced phase 
center antenna system for space based radar applications. A matching con-
dition relating the geometrical configuration of the phase centers, the 
radar pulse repetition rate and the angular velocity of the space platform 
is derived in order to minimize the effect of platform motion on clutter. 
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After having established a general expression for both the signal 
and clutter covariance matrices an optimal signal processor which maxi-
mizes the signal to clutter ratio is defined. Numerical results based on 
a simplified displaced phase center antenna model are given in terms of an 
improvement factor which highlights the variations of the clutter cancel-
lation capability of the system with changes in the radar grazing angle, 
pulse train duration, pulse repetition rate, and the antenna dimension. 

In the theoretical derivation, the clutter model assumed is one 
where the backscattered radar energy can be completely determined in terms 
of the average differential cross section. The effect of scatterer motion 
on the displaced phase center antenna system is a subject of our current 
investigation which will also include a study of the modelling of the 
antenna mismatching. 

Although the numerical results in this report are primarily aimed at 
highlighting the functional relations of the key radar parameters and the 
level of clutter cancellation, it can already be seen that the displaced 
phase antenna concept could provide a powerful technique in enhancing 
space based radar performance in the presence of strong clutter. In a re-
port under preparation, the target detection capability of a displaced 
phase center space based radar system is studied in a more realistic clut-
ter environment and design specifications. 
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ANNEX A 

Matching Condition for Higher Order Displaced Phase Center 

Antenna System 

In the preceding discussion we have restricted our attention to the 

simplest displaced phase center antenna system; namely a system with only 

two phase centers. There is, however, no fundamental reason why higher 

order systems, that is systems with more than two phase centers, cannot be 

used. In this appendix the matching condition for the higher order dis-

placed phase center antenna is considered. 

To simplify the geometry we assume that the displaced phase center 

antenna system has an odd number of phase centers which are uniformly 

distributed as shown in Fig. 11. 	The phase centers Rv  are labelled by 

the index V and y = 0, ±1, ±2, 	±i. The distance of the phase centre 

Rv  measured from the geometric center of the full array is d v. 	As 

before, a geocentric coordinate system with its yz plane coinciding with 

the orbital plane of the satellite platform is chosen, so that r v, e v  

are the radial distance and the polar angle of the center R v  respect-

ively. The phase center of the transmitting antenna T is colocated with 

the phase center Ro . 

Y 
Fig. 11 - Positions of the phase centers for receive antennas. 

Let a pulse be transmitted by T at a time t = 17 1 . The pulse is as 

sumed to arrive at a point S(re , es , (Ps ) on the surface of the 

earth at t =  12. After reflection at S, the pulse is received by R v  at 

t = t v . 	Denoting the difference in polar angles ev-e0  by 66 v , 
which is a small angle typically of the order 10-2  mrad, we can write, 

r = ro  [ cos (56 v  j 
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and 
O(t) = 60(t) + 66 v 

= e0(E1) 	ee(t 	+ 66 v 

The distance between S and R(t) is given by 

[SR(c)1 2  = (r e sines cos (Ps ) 2 + (r esines sincPs  - r vsine v(t v)) 2  

+ (re coses  - r vcos e v (t v )) 2 

From the vectorial relation 

(A.2)  

(A.3)  

SR v(t v) = STRI) + 1. ( -E- 1)R v(t v) 	 (A.4) 

Eq. (A.3) can be rewritten as 

[SR v(t v) ] 2  = (r esines cos cPs ) 2  + [(r esin es sin$s  - r osin 	) 

+ (r osineo(ti) - r vsine v(t v ) )1 2  

+ [(r e cos es  - r o cos eo ci-0) + (r ocos 60 (TO - r vcose v(t v)) 

= (r e sines coscPs ) 

+ (r e cos 	- r o cos eo (ri) ) 2  

+ 2(r esines sin4)s  - r 0sine0 ( «F1))(r 0sine0 (E- 1) - r osin 60 (t v)) 

i2 

— 

2  + (r e sines sincPs  - r osin eo (t i) )2  
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+ 2(r e cos es  - r ocos e (ri))(r ocos e0 (-t-i) - r vcos e v(t v)) 

+ [r 0sine0 (1-1) - r vsinev(t v ) ] 2  

+ [r o cos eo (ri) - r vcos e v(t v ) 2 	 (A.5) 

and hence 

SR v (t)=[ ST(ri) 	2(r sines  sin s  4) -r o  sineo  (-t- 1))(r o sineo a- 1)-r vsinev (t v )) v   

{ST(E1) ] 2  

+ 2 (re cos es -ro cos eo ("Ei) ) (r o cos eo cco - r v (cos e v(t v )) 

[sT(FO] 2  

+ [r osineo (t 	- r vsinev(t v) ] 2  + [r o cos eo (Ti) - r vcos en(t  )J2 

[STa-i) ] 2  
(A.6)  

(A.7)  

(A.8)  

(A.9)  

(A.10)  

Let 	D, 	r osin 00 ( 1 ) - r vsine v(t v) 

and 	DV, = r ocoseo (Ti) - r vcosev(t v) 

With the aid of Eqs. (A.1) and (A.2) we get 

- r o cos eo (E- i) [(e.(t 	+ 66 v ) 

and 	DV) 	r osin 60 (1-1) [W(t1) + 60 v] 

T (t )Rv(t v) 	/8T(T1) .  we can neglect the higher order terms in Since 
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the binomial expansion of Eq. (A.6) such that 

SRv(t)=ST(E1) 	
2(resines sin(Ps -r osineo (E1))  Irocos60 ("Ei) [w(t v-i-1)+,à6 v ]} 

v  

ST ( 1) 

+ (r e coses-r o coseo cE1)) Ir osineo (Fi) {w(t -1)  + de v il 
ST(t1) 

[ W(t -1) 	(5 ev] 2  

2ST(1-1) 
(A.11) 

Dropping the quadratic term in [w(t .2E1) + (56 v ] which is negligible, we 
obtain 

r er o [w(tv-i- 1) + 6e v ]  _ SRv(tv) = ST(t1) 	 sin es sin(Ps cos eo (Ti) 
ST (t1)  

+ cosessineo  ( F1)] 	 (A. 1 2 ) 

Denoting the time delay t v  - -1":71 by àv , we have the following equation 
for Lv : 

c(t v ti) = càv  = SR(t) + ST(E1) 

r er o [wà v  
= 2ST(t1) 	+ 66 v]  r Leos es sin 60 (TI) 

ST(E1) 

- sine5 sincP5 cose0 (i-1)] 	(A.13) 

Alternatively, the above equation can be expressed as 
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[wAv+ 6 ev] 
cLv = 2ST(t1) + 	 {[T(t1) x .).] • is  

ST(ti) 
(A.14) 

From Eq. (A.14) an expliçit expression can be derived for cAv . Ignoring 
errors of the order (w/c) 2  and smaller we arrive at the following result 

c A v  = 2ST(E 1 ) f 1 	i(f(F1) x -S›. ) • I ] 	66 v 	)1 

ST(71) 2ST(ri) 
(A.15) 

For a pulse transmitted at t = 1E1 an analogous expression for the time de-

lay L' 	t' 	can be written down at once 

1 

cLb = 2ST(t -ii 1 1 + 	
x 	• f]  ( w 	"V 	) 

ST(71) 2ST(P) 1 

(A.16) 

Let y be an arbitrary phase center index (y=0, ±1, 	±i). 

In order to relate A4 to Av  we have to express ST(-t- i), Ta- i) x  S in terms 

of quantities at t = ti. Although a certain amount of algebraic manipu- 

lation is involved, the approach is similar to that used earlier. Hence, 

we will only summarize the main results. 

Let 6 be the interpulse interval so that 

121 	m1 6  

where ml is a positive integer and 

6oCe- 1) " 60a- 1) 	w(T1 	-"C1) 

- 6 (F1 ) + wdm i  

(A.17) 

(A.18) 



+ ml 6w 	] 66 

2ST(F1) 	2ST(E1) 	ST •• 1) 
1+f(F1) ( w  +  dev 	) 	l+f(E1) [ cce  + (A.23) 
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We assume that tudmi «  I then the following expressions can be derived: 

STÇE1) = ST(t1) 	1 + m l 6w  WkEl) x e) •11  

rsT(7 1 ),2 

and 	(i(1-1) x 	• f = (R1) x e) • f 	(cf) 	e) mi6L0 

(A.19) 

(A.20) 

Retaining only up to linear terms in mi(Sw and 66 v , Eqs. (A.19) and 

(A.20) lead to the result 

cA )  = 2ST(1-1) 	1 + fcE 1 ) [ w  4. 66 v 	ml 6w 	] 

c 	2ST(f. 1) 	ST(«Ei) 

where 

ui(t) x e) • f  
f(t) = 

ST(t) 

(A.21) 

(A.22) 

In order to equate the time delays Av  and 	the following condition must 

be valid 

which is equivalent to the matching condition 

m1 6 w = 66v - 66p 	 (A.24) 

Once again, the matching condition is independent of the position of S and 

the time i71. 

If A6 is the angular separation of two adjacent phase centers then 



66 v  - de = (v-p) Ae 

and Eq. (A.24) becomes 

m1w6  = (v-11) i,(3/2 (A.26) 

(A.25) 
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This condition states that the time lags for the phase centers R v  and 

Rp  can be matched if there exists an integer ml satisfying Eq. (A.26). 

It is evident that if wd is itself an integral multiple of M3 then the 

time lags between any pair of phase centers can be matched. Apart from 

considerations related to the level of complexity in implementation, the 

total number of receive phase centers one can use is only restricted by 

the condition that wdmi « 1 such that the approximations invoked in de-

riving the matching condition will not break down. 



<aik> = 

<aika ua> = 0 
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ikm

> =
ikik

6
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(B.2) 

(B.3) 

(B.4) 

APPENDIX B 

Statistical Properties of Uniformly Distributed Clutter 

Elements on a Given Surface Used in 3.4 

We first consider a collection of discrete point scatterers distri-

buted in a prescribed manner on a given surface. The total clutter return 

corresponding to a transmitted waveform s(t) 
ejwct 

is given by 
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c(t) = 	
aik G(i,k) , 
	 st-Tik) exp[jwc (t - Tik) 

k 	rîk 

(B.1) 

where the indices (i,k) identify the point scatterer located at 

(xi,yk), rik is its distance from the radar, G(i,k) is the two way 

antenna gain in the direction of (xi,yk), and Tik is the time delay 

and ai  k is the complex reflection coefficient of the scatterer. 

The statistical properties we assume for the reflection coefficient 

of the discrete point scatters are: 

In Eq. (B.4), aik is the backscatter cross section of the scatterer 

located at (xi,yk). 

If instead of a collection of discrete point ecatterers we consider 

a model of continuously distributed scatterers we may introduce a quantity 

e ik  associated with an area Ax Ay located at (xi, yk) such that 



ii th  

(B.7) 

(B.8) 

(B.9) 

<eik> = 

<eikeLm> = 

e.k 	(si£ 6km <e•  e* 
ik 	AxAy .ùx ikr 

and 
skm 	6(yk-ym) 

Ly 

(B.11) 

aik = a(Ri , k) (B12) 
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(B.5)  eik àx àY = aik 

Now Eq. ( 3 .1) can be rewritten and 

c(t) = 	î Ax 	
G(i,k) 

Ay sik 	2  	s(t—Tik) exp [jwc (t—rik)] 

I  k 	rik 
(B.6)  

In the limit that the number of scatterers approaches infinity and Ax, Ly 

approach to zero we have 

6(xi—x£) 	 ( 3 .10) 
6. o 

1 

Ax 

For an elemental area M on a spherical surface as we have in our problem 

we can write 

Since 6A = ( !Le- ) RdR4 	, then 

eik 	e(Ri,(1)k) 	 (B.13) 



implies 

B* > = 
	c(Ri ,4) 	sRi Rk 

ik Lm 
Ri 6Ri 6  tc 	) RR 6R2, 

6 4)k. ell 

64)m  

(B.16) 

p(11,4)) = e(R'4, ) (B.19) 

and hence it follows 
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is related to aik by 

aik = 8ik ( 	) Ri 6Ri  6cpk (B.14) 

The correlation function 

<aik atm> = o(R14k) 6R1 ,R1 60k,41,en 	 (B.15) 

In the limit that 6R 	0, 64) 	0 the Kronecker delta functions again 

go over to Dirac delta functions in a manner similar to the case of plane 

geometry (Eqs. (B.10) and (B.11)). 

1 
<eikelm> = (.E__)  r) — 6 (Ri-Ri)  6 (q*k- 	

do
cPm) — 

re  R 	dA 

or 

(B.17) 

<801, 	8*(R' , e' )> 	(3:-) 1- 6( R-Ri )6( 	) a°( R, 4)) 	(B.18) 
re  R 

do 
In Eqs. (B.17) and (B.18) — = a° is the differential cross section or the dA 
cross section per unit area of the surface at the point (R,4)). 	On com- 

paring Eq. (38) with Eq. (B.6) we can write 
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which is identical to Eq. (71). 

<p(R,(P) P*(R',  4)')> = 
re R 	dA 

do(R 1 ) 
(B.20) 
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