
made 	 Gouvernement du Canada

mmunications 	Ministère des Communications

IC
IFIPP g

TK
5102.5

C673e

#1422 Canada'

Communications

Research

Centre

REAL-TIME IMPLEMENTATION OF THE CHA

ALGORITHM USING AN ARRAY PROCESSOR

by

Eloi Bossé

This work was sponsored by Department of National Defence,

Research and Development Branch under Project No. 011LA13.

CRC REPORT NO. 1422
OTTAWA, FEBRUARY 1988

COMMUNICATIONS RESEARCH CENTRE

DEPARTMENT OF COMMUNICATIONS

CANADA

REAL-T1ME IMPLEMENTATION OF THE CHA ALGORITHM

USING AN ARRAY PROCESSOR

by

Eloi Bossé

(Radar and Communications Technology Branch)

ada

Library - Queen

SEP 4 2011

lndustrie
Canada

Bibliothèque

CRC REPORT NO. 1422 	 February 1988
OTTAWA

This work was sponsored by the Department of National Defence,

Research and Development Branch under Project No.0111..A13.

/

/ /6\/\\09,\9;\f,)\,vf

U \ i-
4(\Q c

5

6

TABLE OF CONTENTS

1 	INTRODUCTION

2 	CHA ALGORITHM 	2

2.1 	The One-Way Propagation Model:(Cooperative Beacon) 	2

2.1.1 	Simulation of the Amplitude and Phase Distribution 	3

2.1.2 	Cross-Correlation of Experimental with Simulated Data 	4

2.1.3 	Identification of the True Target Track 	4

3 	REAL-TIME IMPLEMENTATION USING AN ARRAY PROCESSOR . 	5

3.1 	Array Processor Architecture 	5

3.1.1 	The FPS AP-120B Array Processor 	6

3.1.2 	The General-Purpose Programmable I/O Processor (GPIOP) 	7

3.2 	Array Processor Programming 	7

3.3 	CHA Real-Time Software 	9

3.3.1 	Vector Translation of the Original CHA Program . 	9
3.3.1.1 	Host Development Software 	10
3.3.1.2 	AP-120B CHA Software 	11
3.3.1.3 	GPIOP CHA Software 	11
3.4 	Considerations to Reduce Calculations 	• 	11

4 	EVALUATION OF THE REAL TIME PERFORMANCE OF THE CHA
PROCESSOR 	13

4.1 	Number of Basic Operations in the CHA Algorithm • 	14
4.2 	Processing Speed of AP-1208 Basic CHA Operations • 	15
4.3 	AP-120B CHA Digital Processing Noise 	15
4.4 	Results of the CHA Timing Study 	16
4.4.1 	CHA Processing Time with Experimental Data 	. . • 	17
4.4.2 	CHA Processing Time with Simulated Data 	17
4.4.3 	Acquisition Time for GPIOP/Consumer Interface No. 1 	18
4.5 	Discussion on the Timing Study 	19
4.6 	CHA Processing using Block Queuing Technique . • 	20

CONCLUSION 	

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX A

Page

1

21

21

22

28

ABSTRACT

Presented in this report, is a study of the imple-

mentation of the CRA algorithm on the AP-120B array proces-

sor. The study had two main objectives: (1) to investi -

gate the AP-120B's real-time capabilities and (2) to deter-

mine the digital noise generated by the AP-120B due to

round-off errors. The execution time that was sought for

the array processor was 20 msec per data sample. It was

found that a processing time of 13 msec could be achieved

if no communications were required between the AP-120B and

its host computer. This value quickly grew to 85 msec if

interaction with the host computer was called for. To

lessen interaction with the host, a GPIOP (General-purpose

Programmable Input Output processor) was used to interact
between the AP and external devices. Also, it was found
that the digital noise generated by the AP-120B was

negligible when compared to typical radar signal noise.

1 INTRODUCTION

The Correlation Height Analysis (CHA) technique has been developed
to improve the performance of tracking radars against sea-skimming

missile targets. It receives video data from the radar and uses signal
processing to extract the target altitude. The CHA algorithm consists of

370 lines of Fortran code and requires a processing time of 6 sec per data
point, when implemented on a PDP-11/34 computer. Real-time operation of

the CHA algorithm requires that this processing time be reduced to 20 msec
or less.

A number of studies and analyses have been carried on the imple-
mentation of the CHA algorithm as a real-time processor. Canadian Marconi
[1] has studied a number of possible techniques, including: the Intel

8087 numeric processor in combination with the 8086 16-bit microproces -
sor, a technique using memory based precomputed values, and a fixed-point

implementation on array processors model AP-400 (Analogics) and FPS-100

(Floating Point Systems). The AMD 29500 signal processor family and
other bit slice approaches have been considered at C.R.0 for implementing
the CHA. The 29500 family represents an evolving set of LSI devices for
high performance signal processors. Real-time speed requirements were met
but it was necessary to include MST devices to ensure that a complete and

coherent system solution was provided. In the latter case, time, effort
and development cost were judged to be too great.

This document reports the results of the real-time implementation of
the CHA algorithm on a Floating Point System AP-120B array processor. A
brief description is given of the physical phenomena under investigation
and the mathematical algorithm used to model them. This is followed by a

description of the AP-1208 and a description of a GPIOP interacting with

1

2

the AP-120B and an external device. An evaluation of the implemented CHA

processing time is then presented.

2 CHA ALGORITHM

Accurate tracking of low-elevation targets is difficult when a tar-

get is within about a beamwidth of the horizon. Difficulty is caused by a
portion of the electromagnetic (E-M) energy which is reflected from the
surface of the sea or land and received by the tracking radar. This

results in multipath interference between the direct and indirect E-M
waves.

The multipath interference can be from either specular reflections
or diffuse reflections. Specular reflection refers to the "coherent" part
of the reflected signal where the phase varies with the position of the
radar or the target. Diffuse reflection refers to the "incoherent" part

of the reflected signal which varies randomly. These reflections modify
both the amplitude and phase of the radar signals used for aligning the
aperture of the radar with the incoming E-M. They cause the tracking
radar to indicate an erroneous target position. The reflected signal
appears as a target in the image position as in Fig. 1.

The CRA is a high resolution algorithm which takes advantage of the
specular multipath information contained in the composite signal detected
by the radar. Two main problems affect the composite signal: surface
clutter or backscatter, and multipath or forward scatter of target energy.

Litva and Rook [2] developed the CHA algorithm at CRC based on a
simplified transmission model. This model was appropriate for their
experimental arrangement which used a cooperative beacon as the target in
conjunction with a transponder that gave range information.

The advantage of this approach is the elimination of the necessity
to search over numerous range cells for the target, leaving multipath as
the only problem. This is the model considered in this report. When a

radar is used in lieu of a beacon, a more complicated model must be

developed [3].

2.1 The One-Way Propagation Model: (Cooperative Beacon)

The CHA technique models the interference pattern which is a func-
tion of the angular separation between the two primary signals arriving at

the receiver. These signals are: a) the direct signal, b) the coherent

component of the indirect signal.

The 	height 	of 	the 	target 	(HR) 	(Fig. 	2) 	is derived by
cross-correlating theoretical data, which are simulated over a height

window at equidistant increments (HGHTV), with the measured data. The

correlator finds correlation maxima at heights of closest agreement

between the measured and simulated data (VPKC vector) identifying a family

of possible target tracks (Hn , H2 n, HR, HRn). Only one

of these target tracks is true (HR). Its identification is carried out

3

by means of a perturbation technique which relies on the fact that changes

to the radar's transmitted frequency result in the perturbation of all

target tracks except the true track.

The CHA algorithm is divided up into three major part :

- simulation of the amplitude and phase distribution across the

antenna aperture for various postulated values of target height,

- cross-correlation of experimental data with simulated data,

- identification of the true target track.

2.1.1 Simulation of the Amplitude and Phase Distribution

The CHA algorithm uses a model of the electromagnetic field set up

over a vertical array. As shown in Fig. 1, consider a scurce and the

image of the source below the reflecting surface illuminating an 8-element

vertical array. The signal at element n consists of the sum of two sig-

nals: the direct signal and the coherent part of the indirect signal. The
CHA equation (details in [2]) models the interference pattern, which

depends upon the location of the target. It has the following structure

when normalized to a particular reference element:

T(n,rng,Hi) = l+pSD EXPW(2n/k)nd(sin9i-sined)-(1)+27tAr/X))1

where

T(n,rng,Hi): 	Theoretical amplitude and phase for a given range (mg),

given height (Hi) at a particular element n
pEXP{-jp}: 	Complex reflection coefficient
S: 	Specular scattering coefficient
D: 	Divergence factor
(27End/k)sined: Phase shift due to element spacing d

Ar: 	Curved-earth path-length difference between direct and in-

direct signal.
Od: 	Elevation of the direct signal (+ye if above antenna

boregight)
ei: 	Elevation of the indirect signal (-ve if below)

The evaluation of the equation 1 is the most time consuming part of

the CHA algorithm and involves three steps:

- derivation of the point of reflection on a curved surface,

- determination of the path length difference and angle-of-

arrival for the direct and indirect signals,

- calculation of divergence factor and reflection coefficient as

modified by a rough surface.

The mathematical formulae accompanying all these steps are fully

described in the Litva and Rook report [2]. At each incremental height,

equation 1 must be calculated for each horn element giving a set of 8

complex values.

(1)

(2)

(3)

Il
2 (4)

4

2.1.2 Cross-Correlation of Experimental with Simulated Data:

The general expression for the complex correlation coefficient de-

noted by C may bc written as

N-

M(n,rng) T*(n,rng,Hi)
2. C(rng,Hi) =

-N-1 	a(rng)cr(rng,Hi)
2

where

N-1
—2—

a(rng) = [M(n,rng) M*(n,rng)]

zkza.
2

a(rng,Hi) = [T(n,rng,Hi) T*(n,rng,Hi)
-N-1

2

N: 	Number of elements
TO: Theoretical values
MO): Measured values

For each set of experimental data obtained by the CHA, the correla-
tion analysis is repeated NC times, where NC equals the number of postu-

lated target heights. The sampled target heights (HI,H2,...,HR,...

HNC) are arranged at equal intervals across a height window defined by
either the radar's total low angle region or by prior information

(fig.2). The CHA performs the correlation and peaks are observed at

heights of closest agreement between the measured and simulated data.

Multiple peaks are observed because of the periodicity of radar's

interference pattern. The tracks are simply specified by the peaks.

2.1.3 Identification of the True Target Track:

If the radar frequency and/or antenna height were perturbed in a
known manner, deviations exhibiting similar characteristics would appear
on all tracks except on the true track [2]. Simulated results and

mathematical development are presented in [2] to illustrate that radar

frequency and/or antenna-height perturbation technique can be used for

identifying the true track.

5

3 REAL-TIME IMPLEMENTATION USING AN ARRAY PROCESSOR

This section describes the implementation of the CHA algorithm on
an FPs AP-120B array processor with a DEC LSI-11/73 MICRO PDP as the host
computer. General considerations on array processor architecture and
programming will be presented first, followed by a description of the
AP-120B/GPIOP real-time CHA software. Finally, some considerations to
reduce the number of floating point operations are discussed.

3.1 Array Processor Architecture

Array processors have been developed which have overcome the limita-
tions of the Von Neumann architecture, which stores data and program in-
structions in the same memory. These machines are normally used to
augment the processing speed capability for a variety of batch scientific
processing jobs or to provide a more dedicated capability for real-time
data processing and analysis.

The fundamental and dominant operation involved in digital signal
processing systems is the following multiply-add operation:

AiXi

The most important requirements for signal processor implementation of
the above calculation are accuracy and speed. The accuracy determines
dynamic range and signal-to-distortion ratio. The speed directly affects
the amount of signal processing, and consequently the real-time capabil-
ity. There are two major approaches to high-speed computation: the utili-
zation of fast components and the utilization of parallel architecture.

Peripheral array processors use parallelism and pipelining to at-
tain high data processing speeds. They are most powerful and effective in
performing multiplication and addition operations, but leave much to be
desired when performing general-purpose operations such as tests, bit,
byte and string manipulation as well as a variety of data-dependent tasks.

The architecture of peripheral array processors supports the con-
current execution of arithmetic and memory access operations. This type
of parallelism is applicable to all computational operations, not just to
the elementary steps of multiplication and addition. This implies that
the system should be able to simultaneously fetch both the instruction to
be executed, and the data to be multiplied and added in every cycle.
Paths for the movement of all of these data must be provided and the cir-
cuitry for address computation, loop counting and other operations must be
supported in parallel.

In general, one can pr:ogram sequential general-purpose computers
without detailed knowledge of their architecture. However without detail-
ed diagrams of the machine architecture, it is impossible to program per-

6

pheral array processors. It is necessary to know which operations share

which buses because operations sharing the same bus cannot be executed in

parallel, thus creating major programming difficulties. This is the
reason for describing the FPS AP-120B peripheral array processor and the
General-purpose Programmable Input/Output Processor (GPIOP) used to imple-
ment the CHA algorithm in real time.

3.1.1 The FPS AP-120B Array Processor:

The AP-120B [4-7] is a high-speed (167 us cycle time) peripheral
floating point arithmetic array processor (AP) which is intended to work

in parallel with a host computer. Its use in applications such as CHA
can significantly improve the throughput of a computer-based system. The
AP-120B internal organization is particularly well suited to performing
the large numbers of iterative multiplications and additions required in

CHA processing. The architecture permits each logical unit of the machine
to operate independently and at maximum speed.

The highly-parallel structure of the AP allows overhead of array
indexing, loop counting and data fetching from memory to be performed
simultaneously with arithmetic operations on the data. Since multiplica-
tion and addition require two different operands, it is desirable that
both operations be performed in parallel. For this reason, the AP-120B
has two distinct data pad memories (DPX,DPY) as well as dual arithmetic
logic units: a floating point adder (FADD) and a floating point multiplier
(FMUL). The size difference between data words and instruction words com-
bined with the requirement for parallel access to them force the AP-120B
to have several kinds of memory for storing program instruction (PS),
fast-access table memory for precomputed constants (TM), and main data
memory for mass storage (MD). These main system elements are intercon-
nected by multiple buses which also operate independently. A general
block diagram of the AP-120B functional units appears in Fig.3.

Because of the microcode nature of array processor programs, in-
struction words are typically wider than data words. Each instruction
word has 64 bits so that many different operations may be performed con-
currently during each cycle. It is divided into five general areas: pro-
gram control, address control, arithmetic memory and I/O. In order to
achieve high-speed capability, each instruction of a microcoded program
should use as many fields as possible. Consequently, to attain maximum
speed, all adders and multipliers should compute a useful output during

each machine cycle keeping the following elements activited:

- FMUL, the floating point multiplier, a three-stage pipeline;

- FADD, the floating point adder, a two-stage pipeline;

- MD, the main memory, a three-stage pipeline, with a call possible
every two cycles, if 'even' and 'odd' mémory addresses are called
alternately;

- TN, a writeable table memory in a two-stage pipeline;
- DPX, a 32 word scratch-pad memory;

7

- DPY, a 32 word scratch-pad memory;
- SP, the S-pad, a memory address calculator.

3.1.2 The General-Purpose Programmable I/O Processor (GPIOP):

The AP-120B is dedicated to perform intensive calculations while the

host computer usually handles all programming input, file manipulation and
I/O operations. However, for CHA real-time applications greater speed can
be obtained from AP-120 3 , if I/0 access is handled directly via a

dedicated I/O handler (GPIOP) [8-10].

The GPIOP consists of two major elements, a control processor
(CPROC) and a data processor (Fig.4). CPROC is a microcode processor pro-
grammed to control data transfers between the AP and an external device
(e.g. radar acquisition system [11]). The data processor consists of two

separate elements, the format processor (FPROC) and the FIFO memory.
FPROC is dedicated to data format conversion and data transfer. The FIFO
memory holds the I/O data, as it passes through the GPIOP, to synchron-
ize the speed of the external device with the speed of the AP.

3.2 Array Processor Programming

As mentioned previously, optimal coding of an algorithm on an array
processor is substantially more difficult than on a sequential machine.
The programmer must understand and control the many parallel data paths
and take into account the relative delays between each operation in order
to achieve efficient pipelining. On a sequential machine one instruction
means one operation while with array architecture one instruction means
multiple concurrent operations. The array architecture performs multi-
plications and additions in every cycle while concurrently performing all
the necessary data access and address calculations required to feed the

arithmetic units.

A fundamental operation in a sequential machine, for indicating
that a set of operations is to be translated to vector form, is the LOOP.
The LOOP determines the number of vector elements to process for all oper-

ations. A sequential execution of a LOOP begins by fetching inputs, com-

puting results and then storing them, and a test is performed to recognize
the loop end. On a parallel and pipeline processor it is drastically dif-
ferent. Fig. 5 depicts the flow of tasks when the LOOP is executed on a

pipeline machine. The strategy is to look ahead far enough to provide all
data at the required time and to ensure that each of the computing ele-
ments has a minimum idle time. It means that while multiplications and
additions are performed on a set of data, all necessary data access and

address calculations are concurrently performed on the next set of data
and so on depending on the pipeline level.

A number of items affect the rate at which a given task runs on the
array processor (AP). Significant factors are:

8

- the cycle rate of the main data memory,
- the placement of vectors in the main data memory,

- the host system overhead,
- the timing of data transfer between the host and the AP,

- the AP execution time of the routine.

Prior to the execution of a routine by the AP, the host system must

load the routine into the AP program source memory (if it has not been

previously loaded) and must load the parameters into the S-pad registers.

This time interval, called the host overhead, varies from system to system
depending on the complexity of the host operating system. Host overhead
is typically 100 to 1000 microseconds. The time required for program

initiation, communication between the two processors, and data transfer

can be the same or greater than the array processor execution time.

The most effective method of minimizing the effects of host overhead
is to reduce the number of calls to the AP from the HOST. Clearly, a pro-

gram that runs many short tasks in the AP or spends most of its time

transferring data to and from the AP is not well designed. Consequently,
it is highly desirable to organize array processor application codes such
that they minimize requests for CPU service and system resources by chain-
ing together multiple Al' calls in order that they may be sent to the
array processor program memory in one data transfer. The result will be

to lessen, but not to eliminate, the program initiation time penalty.

Another item which affects the real-time use of an array processor

is the I/O process. Performing I/O access directly rather than indirectly
through the host is more efficient for the AP. Because large amounts of

data enter and leave the AP, direct memory access (DMA) is the preferred

method of transfer. The data format conversion is also an important

aspect of the I/O process. Conversion of the data from one floating

point format to another must be fast because it can have an impact on the
effective transfer rate.

Simultaneous transfer and processing of data can also be helpful to

reduce the overhead for applications such as the CHA. The AP and GPIOP

are built so that their parallel operation allows the programmer to write
tasks which process and transfer data simultaneously. The advantage is
that it can speed up program run time without loss of synchronization.

When real-time processing is considered, the pre-loading of con-

stants and tables to prime the task to be performed is important. Also the

microcode instructions necessary to execute the task must be loaded in

the appropriate memory, preferably in contiguous memory locations, to

eliminate overlays. In the same way, the AP is most efficiently used when

a sequence of operations is performed on one or more sets of data which

reside in an internal data memory. This reduces data transfer overhead

and retains maximum numerical precision.

Finally, after consideration of all of these items, the AP through-

9

put rate for the CHA algorithm will be maximized by careful and efficient

programming of all available parallel functional units (multiplier, adder,

GPIOP, memory fetches, and display of results) •

3.3 CHA Real-Time Software

The original CHA algorithm was coded in Fortran IV on a PDP-11/34.

It was converted to array processor syntax to achieve real-time opera-

don. The difficulties involved in conversion of the CHA program were due

to microprogramming, which is necessary for efficient operation of the

AP. Because of the parallelism and the many data paths in the array

processor, it was difficult for a higher-level language to make full use

of the capabilities that the architecture can support. Consequently, using

sophisticated programming tools sacrifices execution efficiency, the

primary motivation for using an array processor. Microprogramming a task

on an AP is obviously more difficult than machine language programming on

sequential machines. Speed and simplicity are two conflicting parameters;

increasing speed means using a low level of programming language, while

increasing simplicity requires use of a high level programming language.

3.3.1 Vector Translation of the Original CHA Program

The CHA program which solves the mathematical equations of section 2

takes up approximately 370 lines of Fortran code divided up into 10 sub-

routines namely:

- FINDP - Determination of peaks of the correlation function.
- CORMH - Determination of the corresponding correlated heights.
- THEOC - Determination of simulated complex phase and amplitude

distribution across aperture for a given range.
- CURVE - Determination of reflection coefficient for a curved

earth geometry.
- REFCO - Determination of reflection coefficient taking into

account the surface roughness factor.
- RLCOR - Determination of cross-correlation coefficients.
- HGHTF - Determination of the true track
- SQUEZ - Subroutine to squeeze heights.
- SETHV - Determination of height vector.
- SUBAR - Determination of the antenna horn configuration.

The first logical step was to identify the subroutines that could

best be done in the AP. It was found that all of the CHA algorithm could

be efficiently programmed on an array processor. The first six subrou-

tines have a vector struçture suitable to be executed on an array proces-

sor. The first five routines calculate the theoretical values to be cor-

related with measured data to obtain the target height. The RLCOR routine

determines the correlation coefficient. The last four routines perform

track initiation and formatiôn.

The fundamental method in Fortran for indicating that a set of

10

operations is to be performed across whole arrays of data is the DO loop.
Since the DO statement determines the number of vector elements to process
for all operations in the loop, it is this construct on which vector
translations are based. Within a DO loop, the occurence of any of the
following will interfere with vector translation:

- a subroutine CALL;
- an I/O statement;
- branches to other parts of the program;
- nonlinear indexing of an array;
- recursive program segments (feedback of

input to the next).
results from one pass as

In the CHA program, no I/O statements are used within any of the DO
loops. The restructuring needed to make array optimization possible, con-
sisted of putting all the subroutines into a loop or putting a loop into
the subroutines. Branches were eliminated and recursive relations, which
occur only once in the CURVE subroutine, were microprogrammed to simpli-
fy vector translation.

Programming the CHA algorithm on a complete HOST-AP-GPIOP system
(Fig.4) is a multilevel task. The system used in this study contained 4
processors, each of which is a programmable device:

- HOST (DEC MICRO-PDP-11/73),
- AP-120B Array Processor,
- GPIOP (I/O handler): CPROC and FPROC processors.

Each processor functions independently although the CPROC controls
the FPROC, the AP controls the CPROC and finally the HOST controls the AP
in a master-slave mode. The AP-120B performs all intensive CHA calcula-
tions while the host displays the results: the range versus the target
height. The GPIOP receives commands from the AP, and transmits data be-
tween AP-120B Main Data Memory and the external device which is the radar
system [11].

3.3.1.1 Host Development Software

The HOST is the source of all software needed to program the CHA ap-
plication on the AP-120B/GPIOP. The programmer has to be familiar with
firmware software options supplied by FPS in order to obtain the perfor-
mance expected for the particular application. The software packages
[12-20] supplied by FPS help the user in

- writing programs;
- downloading programs in AP and GPIOP memories;
- running programs;
- and diagnosing hardware faults.

The Host CHA software flowchart is given in appendix A.

1 1

3.3.1.2 AP-120B CHA Software

The AP-120B CHA program relies heavily on routines contained in a

mathematical library of microcode subroutines available from the manufac-

turer [12]. These microcode units can be linked with user developed rou-

tines to implement the CHA algorithm with a reasonable software develop-

ment effort. The tracking process is not very suitable for execution on

the AP since many logical decisions and non-vector arithmetic operations

have to be performed sequentially. Those user developed routines are

carefully designed to describe the complete tracking process. The flow-

chart describing all the CHA processing inside the AP-120B is presented in

Appendix A. The AP program requires approximately 3K of AP program mem-

ory. It can reside entirely in the AP program memory and can be invoked

by using only one CALL statement.

3.3.1.3 GPIOP CHA Software

The GPIOP contains 2 programmable processors. Each processor uses a

programming language designed specifically to fulfil the functions of that

processor. The assemblers for these languages run entirely on the host

processor. The GPIOP can be programmed using either its own assemby lan-

guage (GPAL) or a higher level interpreted language (IOCAL). GPAL pro-

vides a full set of instruction memory for the CPROC. IOCAL is an inter-

pretive language using higher level instructions than GPAL microcode

instructions. This eliminates much of the complexity involved in micro-

code programming. The IOCAL instructions permit the GPIOP to function as
a channel processor dedicated to perform I/Os for a specific device (e.g.
radar system).

The user can take any of the two approaches to program the GPIOP.

However, the use of IOCAL requires a significant amount of overhead, both
in processing time (5 to 10 usec) and CPROC memory space. Therefore, pro-
gramming the CPROC directly in GPAL is more appropriate for the CHA

application in which the speed of I/O is critical. The flowchart for the

CPROC program is presented in Appendix A. CPROC program is closely

related to hardware.

The programs that operate within the GPIOP-FPROC are available in a

format conversion library supplied by the manufacturer. The GPIOP format

library has a subroutine called SP11AP [10] running on the FPROC which

converts a PDP11 floating point number to an AP floating point number .

Only that subroutine is needed for the FPROC software. Note that the

FPROC cycle time is three times faster than the CPROC cycle. Its cycle

time of 55.6 ns meets the requirement for faster data format conversion,
hence transfer rate is not affected.

3.4 Considerations to Reduce Calculations:
-

The CHA linear array consists of N equally-spaced elements separated
by a distance d. The reference element is assigned the index n=5. The

5

12

other elements are assigned indices depending on the following distribu-
tion relative to the reference element:

D(n) = (27cd/X)(Ref-n) 	for n=1,8 	(Ref=5)

Considering the distribution D(n), all calculations involving this
distribution could be reduced substantially. Around the reference
element, Ref=5, the following is observed:

D(5) = 0.0

D(6) = -D(4)

D(7) = -D(3)

D(8) = -D(2)

This result is important for the real-time processing since it can save a
lot of calculations in the subroutine THEOC, which is the most time con-
suming step of the CHA algorithm (see Table 4.1). Rearranging equation
(1) to determine the simulated phase and amplitude distribution across the
aperture for a given range at a given height gives the following equation:

T(n,rng,Hi) = exp{j(Ad*D(n))1 + ZR*exp{j(OCD(n))1 for n=1,8 	(10)

where ZR: Complex reflection coefficient as modified by a surface rough-
ness factor.

Half of the calculations can be saved when evaluating exp{j(0d*D(n))1 and
explj(ei*D(n))/ because

exp{i(Gd*D(5))1 = 11,01 	 (11)

expWed*D(6))1 = exp{-j(ed*D(4))1 	(12)

exp{j(ed*D(7))1 = expl-j(ed*D(3))1 	(13)

explj(ed*D(8))1 = exp{-j(ed*D(2))1 	(14)

(similarly with e i)

With this new set of equations (11-14) we can evaluate (10) at n=5 the
reference element giving:

T(5,rng,Hi) = ZR + 1.0 	 (15)

(6)

(7)

(8)

(9)

The final step to get the complete set of 8 complex amplitude and
phase values across the aperture is the normalization process described by

(21)

(22)

13

the following equation:

T(n,rng,Hi) = T(n,rng,Hi)/T(5,rng,Hi) 	(16)

Several multiplications can be eliminated by use of the following
equations. Assume that

fA2(n), B2(n)} = explj(Ad*D(n)} 	 (17

fAl(n), B1(n)1 = explj(9i*D(n)} 	 (18)

1C1,D11 = ZR 	 (19)

1C2,D21 = 1/T(5,rng,Hi) 	 (20)

then for n 	5

T(n,rng,Hi) = IC1A1(n)C2-D1B1(n)C2+A2(n)C2-C1B1(u)D2-
D1D2A1(n)-B2(n)D21 + j{C1B1(n)C2+I1A1(n)
C2+B2(n)C2+C1Al(n)D2-D1D2B1(n)+A2 , 1)D2}

for n 	5

T(n,rng,Hi) = 1C1A1(n)C2+D1B1(n)C2+A2(n)C2+C1B1(n)2-
D1D2A1(n)+B2(n)D21 + j{ -C1B1(n)C2+ 1A1(n)C2-
B2(n)C2+ClAl(n)D2+d1D2B1(n)+A2(n)D4

for n = 5

T(5,rng,Hi) = {1,0} 	 (23)

It is obvious that half of the multiplication operations are
eliminated in the most time consuming steps of the CHA processing.

4 EVALUATION OF THE REAL TIME PERFORMANCE OF THE CHA PROCESSOR

This section presents the results of a study concerning the

processing speed of the AP-120B when running th a CHA algorithm. A
complete breakdown of the number of basic operations contained in the CHA

will be presented in order to identify the most time consuming steps.
Then, a brief discussion'oncerning the arithmetic zccuracy and speed of

these operations on the Aj'-120B is also included. Fiaally, the results of
the timing study are presented.

SUBROUTINE
NAME

MEMORY
REFERENCE

GROUP
looping
indexing

3::ENDED
ARTHMETIC

GROUP
load,store

O

A SIN COS EXP

FLOATING POINT GROUP

FINDP
CORMH
THEOC
CURVE
REFC0
RLCOR

8
5

88
81
18

1

74
88

453
150
59

377

86
95

706
293
125
577

2
15
22
19
79

100
28
24

118

16
12
5

TOTAL 1201 201 138 2721 36 18 17 1882 2 3

17 17

14

4.1 Number of Basic Operations in the CHA Algorithm

An assembly listing of all subroutines was obtained to determine a
complete breakdown of the number of CHA basic operations. The results are
tabulated in table 4.1 and talpLe 4.2.

TABLE 4.1

NUMBER OF BASIC OPERATIONS TO CALCULATE THE CORRELATION FUNCTION

(f c' one height sample)

TABLE 4.2

NUMBER OF BASIC OPERATIONS TO IDENTIFY AND FOLLOW THE TRUE TRACE

MEMORY 	EXTENDED 	FLOATING POINT GROUP 	T
REFERENCE 	ARITHMETIC 	0 	MULTIPLI-

SUBROUTINE 	GROUP 	GROUP 	 T 	CATIVE
NAME 	looping 	load,store 	+/- 	A 	FACTOR

indexing 	 L
	 - 	

70 	14 	- 	2 	. 	2 	88 	1
HGHTF 	130 	24 	7 	- 	2 	163 	NPEAKS

41 	6 	3 	- 	- 	50 NPEAKS**2

SETHV 	45 	11 	3 	2 	- 	61 	1
31 	3 	2 	- 	- 	36 	NC

	_
SQUEZ 	7 	6 	- 	- 	- 	13 	1

55 	- 	1 	- 	1 	57 	NPEAKS

SUBAR 	11 	6 	1 	- 	2 	20 	1

0 	EXPONENT 	9 10 	MANTISSA 	37

15

4.2 Processing Speed of AP-120B Basic CHA Operations

Table 4.3 presents all the basic floating point operations used to
program the CHA algorithm on an AP-120B.

TABLE 4.3
AP-1208 FLOATING-POINT PROCESSING SPEED

1
OPERATION 	TIME/LOOP (usec) 	SETUP TIME (usec)

ADD/SUB 	1.0 	2.67

MUL 	1.0 	2.67

DIV 	1.67 	4.17

EXP 	2.33 	4.17

SQRT 	1.83 	4.17

SIN 	1.33 	7.00
COS 	1.33 	7.00

The execution time is given for a 167 nsec memory access. 	Note
that the execution time is specified on a per loop basis. Thus, if we add
two 1000 element vectors, the execution time with a 167 nsec memory is
1000 * 1.0 = 1000 usec, plus an additional 2.67 usec of setup time needed
to initially fill the AP pipeline. Therefore, the execution time using a
167 nsec memory is 1002.67 usec.

4.3 AP-120B CHA Digital Processing Noise

This section presents a brief discussion on the arithmetic error due
to internal floating-point format [6] of the AP-120B when processing the
CHA algorithm and a comparison is made with typical radar receiver noise.

AP-120B FLOATING-POINT FORMAT

EXPONENT E 0 -E9
MANTISSA M0-M27

10 bits
28 bits

two's complement fraction
binary exponent biased by 512

The value of a floating point number in this format is defined as

(MANTISSA) * 2
-512

16

The positive dynamic range of this format is from:

3.7 * 10
-155

to 6.7 * 10
153

The negative dynamic range is

-1.8 * 10
-155

to -6.77 * 10
153

The 28-bit fraction, combined with the convergent rounding algorithm used
in the floating point adder and multiplier, gives a maximum relative error
of

7.5 * 10
-9

(2
-27

)

per arithmetic operation. This is a precision of 8.1 decimal digits. As
a comparison, unrounded IBM 360 format gives only 6.0 decimal digits of
arithmetic accuracy. 	Referring to Table 4.1, when calculating the corre-
lation function we have approximately 2000 basic operations per pass re-
sulting in an arithmetic error of

1.5 * 10
-5

This is a precision of 4.8 decimal digits.

A study has been carried out to examine the design alternatives for
a radar front-end to be used for the CHA [21]. Using typical parameters
a receiver power budget was worked out and the S/N ratio found was 17 dB
which represents a precision of 1.7 digits. Considering all radar signal
noise sources, the digital noise introduced by AP-120B, when processing
the CHA, becomes negligible.

4.4 Results of the CHA Timing Study

The system consists of a DEC MICRO-PDP 11/73 with an attached FPS
AP-120B array processor. The original host system was a PDP-11/34. Some
results in this study are based on the original system. It was necessary
to upgrade the PDP-11/34 to a MICRO-PDP because a better reliability and
a physical size reduction were required for sea trials. The major dis-
advantage in the migration from the UNIBUS system (PDP-11) to the Q-BUS
(MICRO-PDP) is the reduced speed. A special converter (QNIVERTER [221),
permitting a Q-BUS computer system to access a UNIBUS compatible device
such as the AP-120B, was used. There is a timing difference between the
two buses. The time sharing of the 16 data lines with the 18 address
lines on the Q-BUS slows down the Q-BUS as compared to the UNIBUS which
has separate data and address lines. The reduction of 16 lines from the
UNIBUS to Q-BUS and the delay for the QNIVERTER to match the two buses
reduce the data transfer speed performance by 28%.

TIME/FILE
(sec)

10 30 50

TIME/SAMPLE
(msec)

86.6 52 17.33

FULL DISPLAY I HALF DISPLAY I NO DISPLAY

17

4.4.1 CHA Processing Time with Experimental Data

The objective of this section is to compare the CHA processing time
on the AP-120B with the processing obtained with a sequential program on

the PDP-11/34. The time required to process and display a complete file
of 577 records by the PDP-11/34 was over 1 hour (6.25 sec/sample). The
same file processed and displayed with PDP-11/34 and AP-120B took

approximately 50 sec (86.6 msec/sample).

In order to separate the host time used to display the results, and

the AP processing time, the experiment was repeated once with only half of
the results displayed, and once with no display at all, as shown in the

following table.

TABLE 4.4

CHA PROCESSING TIME WITH EXPERIMENTAL DATA
(PDP -11/34/AP -120B)

The trial with experimental data was an interim step to measure the
full capability of the AP-120B to process CHA. The process of retrieving
the disk resident data, normalizing and adding calibration coefficients
reduced the data transfer rate. It took 195 sec to retrieve and prepare
17507 records for CHA processing, which corresponds to an overhead of
11.2 msec/CHA sample. Thus, to measure the optimal processing speed of
the Host/AP-120B system, simulated data was used.

4.4.2 CHA Processing Time with Simulated Data

A target was simulated by moving from 11 km to 1 km and taking sam-

ples at each one meter height interval. This represents 10000 samples to
be processed. The height of the target was fixed at 20 m. Also the num-
ber of simulated heights was kept constant at 100. An attempt was made to
obtain a breakdown of the total processing time as follows:

- host overhead;
- display (graphic);
- AP-120B CHA processing time.

The results are presented in Table 4.5

TABLE 4.5a

RESULTS OF THE AP-120B CHA TIMING STUDY

(NC:number of heights=100)
(Host:DEC MICRO-PDP 11/73)

DISPLAY 	LOOP 	LOOP 	WAIT ON 	GET DATA WAIT ON 	TIME
DENSITY 	INSIDE 	INSIDE 	AP RUNNING 	(APGET) DATA 	msec/loop

HOST 	AP-120B 	(APWR) 	(APWD)

FULL 	10000 	1 	YES 	 YES 	YES 	87.5

1/2 	5000 	2 	YES 	YES 	YES 	43.7
1/4 	2500 	4 	YES 	YES 	YES 	21.9
1/10 	1000 	10 	YES 	YES 	YES 	14.0
NO 	10000 	1 	YES 	YES 	YES 	16.1
NO 	1 	10000 	YES 	YES 	YES 	12.6
NO 	10000 	1 	YES 	YES 	NO 	15.5

NO 	10000 	1 	YES 	NO 	NO 	14.3

NO 	10000 	1 	NO 	YES 	NO 	13.1

FULL 	10000 	1 	YES 	YES 	NO 	87.5
FULL 	10000 	1 	NO 	YES 	NO 	87.5
NO 	10000 	NO 	NO 	YES 	YES 	1.9
NO 	10000 	NO 	NO 	YES 	NO 	1.3

TABLE 4.5b

RESULTS OF THE AP-120B (DIA TIMING STUDY

(NC:number of heights was dynamically adjusted)
(Host.DEC MICRO-PDP 11/73)

DISPLAY 	LOOP 	LOOP 	WAIT ON 	GET DATA 	WAIT ON 	TIME
DENSITY 	INSIDE 	INSIDE 	AP RUNNING 	(APGET) 	DATA 	msec/loop

HOST 	AP-120B 	(APWR) 	(APWD)

FULL 	1000 	1 	YES 	YES 	YES 	85.0
1/2 	500 	2 	YES 	YES 	. 	YES 	42.0
1/4 	250 	4 	YES 	 YES 	YES 	21.0

1/10 	100 	100 	YES 	YES 	YES 	2.4

NO 	10000 	1 	YES 	 YES 	YES 	7.0
NO 	1 	10000 	YES 	YES 	YES 	1.8

4.4.3 Acquisition Time for GPIOP/Consumer Interface No.1

According to table 4.6, the data acquisition and transfer time, from
the radar system to the AP-120B, via GPIOP is 2.8 msec/block data. The
host supervisory software overhead would be .7 msec. The data block size

18

NLOOP 	j 	NUMBER OF TRANSFERS f 	TIME (msec)

1

10,000
10,000 2.8
10,000 	2.1

19

is 72 PDP-11 FPN real words. The acquisition time and the format conver-

sion time of the AP-120B/GPIOP/Consumer interface no.1 is 34 Kwords/sec.

TABLE 4.6

ACQUISITION TIME FOR GPIOP/CONSUMER INTERFACE NO.1

(Host:DEC MICRO-PDP 11/73)

4.5 Discussion on the Timing Study

Tables 4.4, 4.5a and 4.5h display various aspects of the CHA timing

study, which consist of:

- Host time to display the CHA results graphically;
- Host supervisory software overhead:
* remove CHA results from AP memory,
* synchronize HOST and AP.

- AP-120B CHA processing time with
* experimental data (real noisy data) and
* simulated data (noise free).

Tables 4.4 and 4,5b present results obtained with both experimental
data and simulated data in order to compare the processing time when CHA

is used in a real environment. The total number of processed heights is

not known precisely. The first pass through the CHA filter consists of

approximately 100 postulated heights, each at a 1 metre interval. In

subsequent passes the number of correlated heights is reduced to around 20

to 30 and declines to 10 heights when the track is fully established. As

expected, experimental and simulated data require the same CHA processing

time. The experimental data were stored on a disk and it took 17.33

msec/CHA sample as compare to 7 msec when the data are simulated inside

the AP eliminating the - 10 msec disk overhead, which is included in Table
4.4 (see previous section).

In the simulation case (Table 4.5a) the number of postulated heights

is kept constant at 100 heights for all passes through the CHA. When the

CHA starts, it scans a 100 metre window with the spacing between the

heights in the scanned wileow dynamically varied using the average accumu-

lated deviation between possible tracks in preceding passes. Thus, the

12.6 msec given in Table 4.5a corresponds to the time for the AP-120B to

process the CHA filter on 8 complex values at 100 different heights.

The bottleneck limitation of the system is the display of the re-

20

sults on the HP-2648 graphic display terminal. It consumes around 70 msec
per range sample which is too slow when compared to the complete CHA pro-
cessing time (around 13 msec). Viewing the results decimated by 4 or even
10 could be a short term solution to this problem giving a processing time
capacity up to 14 msec (Table 4.5a).

Another time factor depicted clearly in Table 4.5a is that of the
host supervisory software to move the CHA results (Range, Target height)
from the AP main data memory to the host memory and to synchronize their
operation. Two wait commands, APWR and APWD are available to obtain syn-
chronization. APWD (wait on data) causes the host program to wait until a
data transfer between the host and the AP has been completed. APWR (wait
on running) causes the host to wait until the AP has finished running the
CHA.

The AI' host interface is capable of transferring data to and from
the host while it is processing data. APWR and APWD can be omitted be-
cause in the CHA application, it is certain that the data being transfer-
red and the data being processed are not the same. The measured host
overhead of (16.1-12.6)msec = 3.5 msec can be reduced to .5 msec by using
this technique. However it should be used with caution because it has the
potential to cause errors in computations.

4.6 CHA Processing Using Block Queuing Technique

The AP-120B is capable of processing 100 CHA heights in 12.6 msec
without interaction with the host. The required time increases to 16.1
msec when the CHA data is transferred to the host memory but not display-
ed. This section proposes an approach to distribute the CHA processing
over a complete CHA tracking run.

As mentioned in section 4.4, during the initialization process the
correlation function is calculated over 100 postulated heights. The num-
ber of heights declines progressively to 10 when the track is established,
hence the data rate is reduced by a factor of 10. If a system is designed
using 100 heights per pass it will be an over-designed system. It would
be more efficient to reserve a portion of the AP-120B main data memory in
order to accumulate the incoming CHA data blocks when the AP-120B is un-
able to process them on a real time basis during track initialization.
When the track is established the number of postulated heights is reduced
and the AP can regain the real-time rate. This is referred to as block
queuing mode, where the processing load is distributed over a complete run
leaving the AP with an evenly distributed workload. This technique can be
implemented in software by using a block level FIFO with a CHA block
status flag on each data block. The first block in would be the first
processed block out of the AP-120B (FBIFBO). A CHA processing time ap-
proaching 7 msec is possible by using the FBIFBO technique and reducing
the display density during the initialization process.

21

5 CONCLUSION

In this report, an array processor approach has been considered to
implement the CHA algorithm as a real-time process. A review of the CT-IA
low-angle tracking technique was given and an implementation on an array
processor has been proposed. The corresponding processing time study was
also presented.

A brief description of the FPS AP-120B array processor was provided
and its real-time processing of the CHA algorithm was investigated.

The displaying of results slows the processing speed. When graphic
interactions take place a processing time of 86.6 msec can be achieved,
compared with 16.1 msec when the output is not displayed. A processing
time of 12.6 msec is possible when all the results reside in the AP-120B.
(calculated over 100 heights)

To reduce interactions between AP and the host, the GPIOP, which is
a programmable I/O processor that acquires the CHA block data at 34
Kwords/sec, was considered. A block queuing technique, which would allow
a CHA processing time of 7 msec, is proposed.

Future work will be required to modify the real-time one-way beacon
model described in this report, such that a two-way propagation CHA algo-
rithm including meteorological data and more sophisticated tracking pro-
cesses can be implemented.

For the CHA computing system, the general points presented in this
report will still be very useful. In the present state-of-the-art, the
CHA computing system can be upgraded using self-contained array processor
boards (20 MFLOPS). This will satisfy the CHA's requirement for high
speed throughput. These boards have almost the same general architecture
[23] as the AP-120B (12 MFLOPS) and offer increased speed and reduced
physical size. The purchase of a new graphics system must be considered
seriously. Efforts should be concentrated on a system that can reside on
the host main bus, so that it can be accessed at memory speed. This will
provide a graphics output system that is concurrent with CHA processing.

6 ACKNOWLEDGEMENTS

This work was undertaken by the Communications Research Centre under
the Department of National Defence Project 011LA13. The author wishes to
thank Dr. J. Litva and Kr. B.J. Rook for their helpful discussions.

REFERENCES

[1] Marconi Company, " Final Report On Low Angle Tracking ",
DSS Contract 2ST81-00113, Ottawa, February 1982.

[21 Rook, B.J., Litva, J., " An Improved CHA Algorithm For Tracking
Low Angle Targets ", CRC Report No. 1356, January 1982

[3] Chan, H.C, Litva, J., " Performance of the Cl-IA Algorithm on the UK
Low Angle Target Data ", CRC Report No. 1406, October 1986.

[4] FPS Technical Publication Staff, " Processor Handbook

Publication No. 860-7284-004C, March 1982.

[5] FPS Technical Publication Staff, " Maintenance Manual ",
Publication No. 860-727-000C, January 1978.

[6] FPS Technical Publication Staff, " AP Programmer's Reference
Manual ", Vol.1,2, Publication No. 860-7319-00IB, June 1981.

[7] FPS Technical Publication Staff, " AP-120B/190L/180V, Software
User's Guide ", Publication No. 860-7448-00IB, April 1982.

[8] FPS Technical Publication Staff, " GPIOP Hardware Reference
Manual ", Publication No. 860-7425-0008, October 1 9 82.

[9] FPS Technical Publication Staff, " GPIOP Software User's
Guide ", Publication No. 860-7497-001B, April 1982.

[10] FPS Technical Publication Staff, " GPIOP Reference Manual ",
Publication No. 860-7430-002C, January 1983.

[11] Bosse, E., Caseault, J., Fines, N.R , " A Description of the
ELAT Radar Distributed Computing System ", CRC Report No 1425,
1987.

[12] FPS Technical Publication Staff, " APMATH38 Volumes 1 to 4 ",
Publication No. FPS-860-7288-008C, July 1982.

[13] FPS Technical Publication Staff, " APAL Reference Manual ",
Publication No. FPS-860-7412-003B, April 1982.

[14] FPS Technical Publication Staff, " APLOAD Reference Manual ",
Publication No. FPS-860-7410-003B, April 1982.

[15] FPS Technical Publication Staff, " APLINK Reference Manual ",
Publication No. FPS-860-7420-001B, March 1982.

[16] FPS Technical Publication Staff, " APSIM/APDBUG Reference
Manual ", Publication No. FPS-860-7364-005A, April 1982.

22

[17] FPS Technical Publication Staff, " Vector Function Chainer
Reference Manual ", Publication b. FPS-860-7351-005B,
April 1982.

[18] FPS Technical Publication Staff, " Al' Test And Verification
Reference Manual ", Publication jo. FPS-860-7284-004C,
March 1982.

[19] FPS Technical Publication Staff, " GPIOP Diagnostic Software "
Publication No. FPS-860-7395-001, Novembre 1981.

[20] FPS Technical Publication Staff, " APEX Reference Manual ",
Publication No. FPS-860-7371-004, March 1982.

[21] Norris, Wong et al., " CRC Radar Front-End Study ", Final Tech-
nical Report, Contract No UK-83-)331/1, STL LTD, London, 1984.

[22] ABLE Computer, " QNIVERTER User'3 Guide ", April 1981.

[23] MERCURY Computer Systems, " ZIP Jser's Manual", Publication
No. 3232-P-U, 1986.

23

24

Cn
-J
LL1

CC
<X

< CC
CC {11

C.)
L11
CC

• CD
BEACON

SOURCE

..-4

... ..., / /

, ''' / / /

e -
e

 ,
/ / /

, // ,

, / '
› -

	

 , -- , 	/ e...
.. 	. 	/ 	/
- . 	/ 	/

. 	 . 	, 	/
.. 	

. 	e
/ 	 / 	/

n 	 / / 	 / 	/ n 	 ,
/ 	.14,,

'n e 	 -....- 	...n-/ L_ _

ecl

GROUND PLANE

5

RF
PERTURBATION
DISCRIMINATOR

CORRELATOR

L

H R

H I
Fi rt

 H.2n

tiR

HRn

CORRELATION MAXIMA
(NPEAKS HEIGHTS)

VPKC VEC TOR IH :Nc

SAMPLE COMPLETE

LOW ANGLE REG 0

HR 	(NC HEIGHTS)
HGHTV VECTOR

C.JF 'USE RETURNS

". IMAGE

Fig. 1 - Low-Angle Multipath Phenomena

LOW A:'iGLE TRACKING

REAL

TARGET HEIGHT

HR

SIMULATED
HGHTV 	

TARGET HEIGHTS

REAL

WORLD

SIMULATIC N

eel

Fig. 2 - CHA Technique

25

;',NC 	 •

- 5A-.% 	•
- 	•cm-ce.
- 44Emoc, ,

• — F- 4 	 •
~ - 	 y 	 • _

• --a'

:ma 	- 	n.4cy
_
- 	 - 	-

P S
«RITE

cErx

TABLE

MEMORy

—TTP7

ret

REA°
INDEX

DATA

PAD X

DPX

PROGRAM

SOURCE

MEMORY

FA
FM
DPBS

MI M2

STAGE I

STAGE 2

STAGE 3

.-10ST
COMPUTER

; /0 j omA

INTERFACE

FUT

, Pes

PANEL

INBS

PNLEIS

PNLBS

DMA

DPBS

FA
FM
Dyes DMA

DPBS
SPFN
PNLBS

FA
Fm
DPBS

v/RITE
INDEX DPA

SPAD

UNIT

DATA

PAD Y

;MD!

M I

MAIN

MEMORY

MD

SPFN OPY 	READ
NDEX

FM
Tm

DPx, Dpy

FA

MD

DPX,DPY

FM

TPA

DPX, DPY

FA

MD

DPX, DPY
vALUE

FLOATING

POINT

ADDER

FLOATING
POINT

MULTIPLIER

AI 	42

STAGE I

STAGE 2

OP 10P

OPBS 	DATA PAD ADDRESS

SPFN

DPBS 	
MEMORY ADDRESS

SPFN

EXTERNAL

DE v;CE

OPA
fr.

MA

1 TABLE MEMORY

ADDRESS

I pRoGRAM SOURCE

ADDRESS

Fig. 3 - AP-120B Functional Block Diagram

TUA

DPBS

SPFN

TmA

PNLBS

PSA

HOST AP - 1208 GPIOP

PROGRAM MEMORY

1 APPLICATION

PROGRAM

MAIN DATA MEMORY

DATA

MEMORY

MAIN FORTRAN

CODE

AP CODE

GP1OP CODE

1,, F4C1C CODE

AP UT IL ITIES

(APE

GP n OP UTTIIIES

-rr--- r--\1 II

IN
T

E
R

F
A

C
E

Fig. 4 - CHA Processor Architecture

CONSUMER

INTERFACE

I/O CONTROL (I4)v2

FLAGS (I)
fir

I/O BUS (38) 	/

MEMORY

ADDRESS (20)

MDI BUS (38)

MD BUS (38)
FIFO

MEMORY

e
4 al

CONTROL

REGISTER

FIFO I/O

CONTROL (4)

C
O

N
T

R
O

L.

/S

T
A

T
U

S

oe

o.

0
cc
r-

CPROC
INTERRUPTS (4)

r- - -

I/O REGISTER I

PROGRAM

SOURCE
MEMORY

STATUS (8)

FPROC
PROGRAM

FPROC

DEVICE DATA (38)

\I 	

J 0
0 e"
IT FR

1.0
Z
00
0 cc 	>CONTROL (20)

I/O CONTROL (4)
•

FETCH I
INPUT 0

T,

I FETCH
INPUT 1

T

FETCH
INPUT 2

T N-1

To COMPLETED

COMPLETED

STORE RESULT
N-1 AND EXIT

COMPUTE i
RESULT 0

I 	

COMPUTE i
RESULT 1 	

I STORE RESULT
0 AND REPEAT

I 	

.

.

COMPUTE
RESULT N-2

COMPUTE I 	STORE RESULT
RESULT N-1

N-2 AND REPEAT

27

FETCH
INPUT N-1 1

1 STORE RESULT

1 AND REPEAT

Te4_2 COMPLETED

1%...sah '
TN-1 COMPLETED

Pig. 5 — Flow of Tasks on a Pipeline Machine

APPENDIX A

* HOST CHA PROGRAM FLOWCHART

* AP-120B CHA PROGRAM FLOWCHART

* GPIOP PROGRAM FLOWCHART

28

INITIALIZE THE AP
CALL APINIT

CLEAR ALL GP1OP FLAGS

I LOAD AND EXECUTE THE GP1OP CPROC
PROGRAM TO INPUT THE CHA DATA

to t

RETURN TO FIRST I- ,
-

-

DISPLAY THE RESULTS

to next r u n

settled

i 	-
SET THE STARTING ADDRESS FOR

THE CHA PROCESSING
ADDRESS=START
	 _1

HOST CHA PROGRAM FLOWCHART

(HOST PROGRAM)

1

I INITIALIZE GRAPHICS AND DISPLAY
THE GRID FOR THE HP- 2648 TERMINAL

1

ENTER:
- HEIGHT WINDOW

- RECEIVING ANTENNA HEIG1IT
- EARTH CURVATURE COEFFICIENT

- SEA WAVE HEIGHT
- WAVELENGTHS (two frequencies)
- EARTH RADIUS AND DIAMETER
- COMPLEX DIELETRIC CONSTANT

- CORRELATION THRESHOLD

COMPUTE THE PRIMING CONSTANTS \
FOR THE CHA

PUT THE PRIMING CONSTANTS INTO
THE AP MAIN DATA MEMORY !VII),

CA1.L APPUT

LOAD THE FORMAT ROUTINE SPIIAP
INTO GPIOP FPROC TO CONVERT

PDP11 FPN TO AP-120B FPN

1 SET AN EMERGENCY KEYBOARD INTERRUPT I

1 CALL THE AI' - 120B ClIA ROUTINE j

GET RESULTS FROM THE AP:
- RANGE. TARGET HEIGHT. sTATus FLAG

CALCULATE THE REAL PART OF TI1E CO?dPLEX
CORRELATION COEFFICIENT

ROUTINES VCOR,VSQRT.VDIV

EXCLUDE VALUES BELOW
THE CORRELATION THRESHOLD

ROUTINE VICL1P

CALCULATION OF DIVERGENCE FACTOR AND
REFLECTION COEFFICIENT AS MODIFIED

BY A ROUGH SURFACE
ROUTINES:VSINNSMULNSRF,VCRI

VDIV,CVEXP,CVMUL

CALCULATE D2PI•ELVD AND D2PI•ELVI
FOR THE FIRST FOUR HORNS

ROUTINES: VELV,CVEXP

CALCULATE TIIE THEORETICAL VALUES AT
HORN NO.5 FOR THE COMPLETE HEIGHT

WINDOW AND INVERSE
ROUTINES: VSADD,VMOV,CVRCIP

CALCULATE THE THEORETICAL NORMALIZED VALUES
FOR EACH HORN
ROUTINE: VTIIE0

DETERMINATION OF THE PATH LENGTH DIFFERENCE
AND ANGLE - OF - ARRIVAL FOR THE DIRECT AND

INDIRECT SIGNALS
ROUTINES:V2R,VADD,VDIV.VSQRT AP- 120B CHA PROGRAM FLOWCHART

(START CHA

SAVE THE INPUT PARAMETERS

î
CREATE AN ARRAY

OF INCREASING HEIGHTS
ROUTINE: SETHV

ENTER THE CHA DATA BLOCK
ROUTINE: INDATA

CALCULATION OF VARIABLES
USED IN CHA

ROUTINE: VSTUP

1
GET THE FREQUENCY FLAG AND

ADJUST THE ADDRESS OF THE CHA
BLOCK DATA ACCORDING TO IT

NORMALIZE THE MEASURED CHA DATA
TO VALUE OF HORN NO.5 FROM THE TOP

ROUTINE: CVNRM

IDERIVATION OF THE POINT OF REFLECTION

n ON A CURVED SURFACE
ROUTINF.r VR,SVDIV.VRI

FIND THE CORRELATED HEIGHTS AND
THEIR NUMBER (NPEAKS)

ROUTINE: PC

SAVE NPEAKS

FIRST PASS
?

INITIALIZATION OF TRACKS
ROUTINE:FPASS

TRACK LOST
? {- CLEAR THE TARGET DEVIATION

VECTOR
ROUTINE:VCLR

UPDATE THE FOLLOWING FLAGS:
SETLD=0
FPASS=0
DELAY=0
LOST=-0

1 DETERMINATION OF ABSOLUTE TRACK
DEVIATIONS

ROUTINE: TDEV

SAVE RESULTS

[SAVE THE NUMBER OF TRACKS
MAX

TRACK SETLD
?

DETERMINE THE TARGET HEIGHT
ROUTINE: VSTL

IF fRACK SETTLED SET SETLID=1

SAVE RESULTS:
RANGE AND TARGET HEIGHT

TRACK ASSOCIATION
ROUTINE: VSLC

SET
MINIMUM HEIGHT
MAXIMUM HEIGHT

EXTENSION

SET:
MINIMUM HEIGHT=PREVIOUS HEIGHT
MAXIMUM HEIGHT=PREVIOIT

[DELAY=DELAY+I

SET:
MINIMUM HEIGHT
MAXIMUM HEIGHT

PLACE GPIOP IN A KNOWN STATE
- PUT THE CONSUMER INTERFACE IN AN IDLE
STATE BY CLEARING/SETT1NG APPROPRIATE

BITS IN THE DEVICE CONTROL REGISTER
- CLEAR CONTROL REGISTER

- PISARM INTERRUPT 0
cr-r rrrnr IN A "I A NSPAhLi% MG
- INIIIALLLE 1Iz iii&J I 	— r e

ARAI INIERRUPT 0 BY SETTING TIIE

ENABLE INTERRUPT 0

1
[RESET ADDRESS COUNTER OF EXTERNAL RAM

(CPROC PROGRAM)

1

WAIT FOR INTERRUPT 0
GO TO INTERRUPT ROUTINE

SET DEVICE CONTROI, REGISTER
WITH APPROPRIATE BITS
TO READ EXTERNAL RAM

E à

DECODE OLD/NEW STATUS WORD

SEND A MESSAGE TO SYSTEM CONTROLLER
INDICATING DATA VALID = OLD
CS0=1 CSI=0 CS2=0 CFLAG=1

GPIOP SPINS UNTIL CHA DATA BLOCK
IS COMPLETELY ENTERED IN THE

EXTERNAL RAM

(RETURN)

" n MEMORY
i , ti./.11.tLE

1
FLAG 2

DECREMENT TIMER

AP READY TO
RECEIVE ?

FLAG 1

DECREMENT

T I AI E R-r)

GPIOP PROGRAM FLOWCHART

SEND A MESSAGE TO sysTEre CONTROLLER
INDICATING THE AP MD IS NOT AVAILABLE

IN A 'LIME LIMIT 01 200ms

CS0-0 CSI 0 CS2 1 MAI() - 1

Eit I .1 . R

SEND A MESSAGE TO SYSTEM CONTROLLER
THAT THE AP TAKES MORE THAN 200 ms

TO ANSWER
CS0=0 CSI-0 CS2-I CFLAG=I

CZD

I RESET FIFO READ/WRITE POINTERS1
FILL THE FIFO

I ENTER TWO 16 — BIT WORDS INTO FIFO I

IL

I CONVERT TWO 16—BIT WORDS TO AP 38 — BIT FPN

INITIALIZE A DMA TRANSFER BETWEEN
GPIOP AND AP MD MEMORY

DECREMENT WORD COUNT

ORD COUN

SET FPROC MODE TO PROCESS THE
FORMAT ROUTINE SPI1AP
STARTING AT ADDRESS 0

LOAD EXTERNAL RAM ADDRESS = 6

SET BLOCK DATA READY FLAG
INDICATING TO AP THAT A NEW DATA BLOCK

IS READY TO BE PROCESSED BY THE AP

@ETURID

INTERRUPT ROUTINE

READ BLOCK TYPE

PUSH CONTROL REGISTER INTO ACCUMULATOR
SET ITROC TRANSPARENT MODE

RESET FIFO READ/WRITE POINTERS

[ENTER THE BLOCK TYPE WORD

'PREVIOUS \
TRANSFER

COMPLETED/
, 	?

SEND A MESSAGE TO SYSTEM CONTROLI LE
INDICATING "I HAT THE GPIOP HAS NO1
COMPLETED THE PREVIOUS TRANSFER

CS0=0 CSIu0 CS2=0 CI-LAG-=I

(RETURN

SET THE BLOCK TYPE MATCH LINE DCII

i TO BLOCK THE WRITE SIGNAL COMING

}ROM THE DISTRIBUTION NETWORK

RESTORE THE CONTROL REGISTER
AS BEFORE

SE - I AN IN1ERNAI FLAG INDICATING
10 THE GPIOP 1 HAl A NO MATCH

SITUATION HAS OCCURED

(RE 1U :N)

RESI01-<1 i)1CK :It! 	ONI EWE

• :.\«)

SPIN UNTIL OLU/N-EW STATUS WORD I
RAS BEEN LATCHED

f READ OLD/NEW STATUS WORD

OPEN THE BLOCK TYPE MATCH GATE I

RESET THE EXTERNAL RAM ADDRESS .)

r---FORE. THE OLD/NEW STATUS WOR

f 	
D I

iNTO A GPIOP REGISTER

(-RELEASE THE BUS

COMPARE THE BLOCK TYPE WITH
A STORED PATTERN

DOCUMENT CONTROL DATA

(Security ciassif ication of title, body of sosTract and •nclixtnç anty,tction must be entered when the overall document is class n fiech
_

• 	ORIGINATOR 	(the name and address of the organization prep/Jr:rig the document. 	2. 	SECURITY CLASSIFICATION

Organizations 	for whom 	the document 	was 	prepared, e.g. Establishment sponsoring 	(overall 	security classification 	of 	the 	document.

a 	contractor's 	report, 	or 	tasking 	agency, 	are 	entered 	in 	section 	B.) 	 including 	special 	warning 	terms 	if 	applicable)

Communications Research Centre
3701 Carling Ave., P.O. Box 11490, Station H 	UNCLASSIFIED
Ottawa, Ontario, K211. 8S2

.. 	

TITLE 	(the complete document title as 	indicated on the title page. 	Its classification should be 	indicated by 	the appropriate

abbreviation 	(S,C,R 	or 	IJ) 	in 	parentheSes 	after 	the 	title.)

REAL-TIME IMPLEMENTATION OF THE CHA ALGORITHM USING AN ARRAY PROCESSOR

.. 	

AUTHORS 	(Last name, 	first name , middle 	initiai. 	If 	military, 	show 	rank, e.g. 	Doe, 	Maj. 	John 	E.)

BOSSE, E

.. 	

DATE OF PUBLICATION 	(month and year of publication of 	6a. NO. OF PAGES 	(total 	6b. NO. OF REFS 	(total cited in

document) 	 containing 	information. 	Include 	document)

July 	1 987 	 Annexes. Appendices, etc.)

.... 	 '16

	

2 ,

DESCRIPTIVE NOTES (the category of the document, e.g. 	technical 	report, technical note or 	memorandum. 	If appropriate, enter 	the 	type 	of

report, e.g. 	interim, 	progress, 	summary, annual 	or 	final. 	Give 	the 	inclusive 	dates 	when a 	specific 	reporting 	period 	is 	covered.)

CRC Report 	1422
... 	

SPONSORING ACTIVITY 	(the name of the de .srtment project office or laboratory sponsoring the research and development. Include the

agdresSi
Defence Research Establishment Ottawa
Department of National Defence
Ottawa, Ontario, KlA OZ4

.1....PROjECT OR GRANT NO. 	(if appropriate, the applicable research 	9b. 	CONTRACT 	NO. 	(if appropriate, the applicable number 	under

and development project or grant number under which the document 	which the document was written)

was written. 	Please 	specify whether 	project or 	grant)

011LA13
n 	

) è. ORIGINATOR'S DOCUMENT NUIVIBER 	(the official document 	1 Ob. OTHER DOCUMENT NOS. 	lAny other numbers which may

number 	by which 	the 	document 	is 	identified by 	the 	originating 	 be 	assigned 	this 	document 	either 	by 	the 	originator 	or 	by 	the

activity. 	This number 	must be 	unique to this document) 	 sponsor)

CRC Report 1422
.... 	

'• DOCUMENT AVAILABILITY 	(any limitations on 	further 	dissemination of 	the 	document, 	other 	than those 	imposed by 	security 	class' f 'cation)

(X) 	Unlimited 	distribution

I 	1 	Distribution 	limited 	to 	def ence 	departments 	and 	defence 	contractors; 	further 	distribution 	only 	as approved

I 	1 	Distribution 	limited 	to 	def ence 	departments 	and 	Canadian 	defence 	contractors; 	further 	distribution 	only 	as 	approved

(1 	Distribution 	limited to 	government 	departments and agencies: 	further 	distribution 	only as 	approved

() 	Distribution 	limited to 	def ence 	departments; 	further 	distribution 	only as approved

() 	Other 	(please 	specify):

.....

2 . DOCUMENT ANNOUNCEMENT 	(any limitation to the bibliographic announcement of this document. This will normally correspond to

the Document Availabilty (1 1). However , where further distribution (beyond the audience specif led in 11) is possible, a wider

announcement audience may be selected.)

37
UNLLAbbiritll

SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DCDO3 	9/0' 9'

Presented in this report, is a study of the implementation of the

CHA algorithm on the AP-120B array processor. The study had two main objectives:

(1) to investigate the AP-120B's real-time capabilities and (2) to determine

the digital noise generated by the AP-120B due to round-off errors. The execution
time that was sought for the array processor was 20 msec per data sample. Tt
was found that a processing time of 13 msec could be achieved if no communications

were required between the AP-120B and its host computer. This value quickly grew

to 85 msec if interaction with the host computer was called for. To lessen

interaction with the host, a GPIOP (General-purpose Programmable Input Output
processor) was used to interact between the AP and external devices. Also, it
was found that the digital noise generated by the AP-120B was negligible when
compared to typical radar signal noise.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningf ul terms or short phrases that characterize a document and could be

helpf ul in cataloguing the document They should be selected so that no security classification is required. Identif iers, such as equipment

model designation, trade name, military project code name , geographic location may also be included. If Possible, keywords thould be select e"

from a published thesaurus. e.g. Thesaurus of Engineering and Scientif ic Terms (TEST) and that thesaurus identif ied. If it ts not possible 10

select indexing terms which are Unclassif ied, the classification of each should be indicated as with the title.)

CHA Algorithm
Array Processor
Real-Time

38
UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

1 3. ABSTRACT (a brief and factual summary of the document It may also appear elsewhere in the body of the document itself. It is nighlY

desirable that the abstract of classified documents be unclassif ied. Each paragraph of the abstract shall begin with an indication of me

security classification of the information in the paragraph (unless the document itself is unclassif led) represented as (S). (C), (R), or (U).

It is not necessary to include here abstracts in both of ficial languages unless the text is bilingual).

UNCLASSIFIED

SECuRITY CLASSiFicATioN or FoRm

BOSSÉ, ELOI
--Real-time implementation of the CHA
algorithm using an array processor

TIC
5102.5
C673e
#1422

DUE DATE

201-6503
Printed

in USA

CRC LORARY/81111.10THEOUE CRC

TK5102é5,c673. 11 422 c. b

111111 1i1iIi
209102

