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ABSTRACT  

Presented in this report, is a study of the imple-

mentation of the CRA algorithm on the AP-120B array proces-

sor. The study had two main objectives: (1) to investi -

gate the AP-120B's real-time capabilities and (2) to deter-

mine the digital noise generated by the AP-120B due to 

round-off errors. The execution time that was sought for 

the array processor was 20 msec per data sample. It was 

found that a processing time of 13 msec could be achieved 

if no communications were required between the AP-120B and 

its host computer. This value quickly grew to 85 msec if 

interaction with the host computer was called for. To 

lessen interaction with the host, a GPIOP (General-purpose 

Programmable Input Output processor) was used to interact 
between the AP and external devices. Also, it was found 
that the digital noise generated by the AP-120B was 

negligible when compared to typical radar signal noise. 

1 INTRODUCTION 

The Correlation Height Analysis (CHA) technique has been developed 
to improve the performance of tracking radars against sea-skimming 

missile targets. It receives video data from the radar and uses signal 
processing to extract the target altitude. The CHA algorithm consists of 

370 lines of Fortran code and requires a processing time of 6 sec per data 
point, when implemented on a PDP-11/34 computer. Real-time operation of 

the CHA algorithm requires that this processing time be reduced to 20 msec 
or less. 

A number of studies and analyses have been carried on the imple-
mentation of the CHA algorithm as a real-time processor. Canadian Marconi 
[1] has studied a number of possible techniques, including: the Intel 

8087 numeric processor in combination with the 8086 16-bit microproces -
sor, a technique using memory based precomputed values, and a fixed-point 

implementation on array processors model AP-400 (Analogics) and FPS-100 

(Floating Point Systems). The AMD 29500 signal processor family and 
other bit slice approaches have been considered at C.R.0 for implementing 
the CHA. The 29500 family represents an evolving set of LSI devices for 
high performance signal processors. Real-time speed requirements were met 
but it was necessary to include MST devices to ensure that a complete and 

coherent system solution was provided. In the latter case, time, effort 
and development cost were judged to be too great. 

This document reports the results of the real-time implementation of 
the CHA algorithm on a Floating Point System AP-120B array processor. A 
brief description is given of the physical phenomena under investigation 
and the mathematical algorithm used to model them. This is followed by a 

description of the AP-1208 and a description of a GPIOP interacting with 
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the AP-120B and an external device. An evaluation of the implemented CHA 

processing time is then presented. 

2 CHA ALGORITHM 

Accurate tracking of low-elevation targets is difficult when a tar-

get is within about a beamwidth of the horizon. Difficulty is caused by a 
portion of the electromagnetic (E-M) energy which is reflected from the 
surface of the sea or land and received by the tracking radar. This 

results in multipath interference between the direct and indirect E-M 
waves. 

The multipath interference can be from either specular reflections 
or diffuse reflections. Specular reflection refers to the "coherent" part 
of the reflected signal where the phase varies with the position of the 
radar or the target. Diffuse reflection refers to the "incoherent" part 

of the reflected signal which varies randomly. These reflections modify 
both the amplitude and phase of the radar signals used for aligning the 
aperture of the radar with the incoming E-M. They cause the tracking 
radar to indicate an erroneous target position. The reflected signal 
appears as a target in the image position as in Fig. 1. 

The CRA is a high resolution algorithm which takes advantage of the 
specular multipath information contained in the composite signal detected 
by the radar. Two main problems affect the composite signal: surface 
clutter or backscatter, and multipath or forward scatter of target energy. 

Litva and Rook [2] developed the CHA algorithm at CRC based on a 
simplified transmission model. This model was appropriate for their 
experimental arrangement which used a cooperative beacon as the target in 
conjunction with a transponder that gave range information. 

The advantage of this approach is the elimination of the necessity 
to search over numerous range cells for the target, leaving multipath as 
the only problem. This is the model considered in this report. When a 

radar is used in lieu of a beacon, a more complicated model must be 

developed [3]. 

2.1 The One-Way Propagation Model: (Cooperative Beacon)  

The CHA technique models the interference pattern which is a func-
tion of the angular separation between the two primary signals arriving at 

the receiver. These signals are: a) the direct signal, b) the coherent 

component of the indirect signal. 

The 	height 	of 	the 	target 	(HR) 	(Fig. 	2) 	is derived by 
cross-correlating theoretical data, which are simulated over a height 

window at equidistant increments (HGHTV), with the measured data. The 

correlator finds correlation maxima at heights of closest agreement 

between the measured and simulated data (VPKC vector) identifying a family 

of possible target tracks (Hn , H2 n, HR, HRn). Only one 

of these target tracks is true (HR). Its identification is carried out 
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by means of a perturbation technique which relies on the fact that changes 

to the radar's transmitted frequency result in the perturbation of all 

target tracks except the true track. 

The CHA algorithm is divided up into three major part : 

- simulation of the amplitude and phase distribution across the 

antenna aperture for various postulated values of target height, 

- cross-correlation of experimental data with simulated data, 

- identification of the true target track. 

2.1.1 Simulation of the Amplitude and Phase Distribution  

The CHA algorithm uses a model of the electromagnetic field set up 

over a vertical array. As shown in Fig. 1, consider a scurce and the 

image of the source below the reflecting surface illuminating an 8-element 

vertical array. The signal at element n consists of the sum of two sig-

nals: the direct signal and the coherent part of the indirect signal. The 
CHA equation (details in [2]) models the interference pattern, which 

depends upon the location of the target. It has the following structure 

when normalized to a particular reference element: 

T(n,rng,Hi) = l+pSD EXPW(2n/k)nd(sin9i-sined)-(1)+27tAr/X))1 

where 

T(n,rng,Hi): 	Theoretical amplitude and phase for a given range (mg), 

given height (Hi) at a particular element n 
pEXP{-jp}: 	Complex reflection coefficient 
S: 	Specular scattering coefficient 
D: 	Divergence factor 
(27End/k)sined: Phase shift due to element spacing d 

Ar: 	Curved-earth path-length difference between direct and in- 

direct signal. 
Od: 	Elevation of the direct signal (+ye if above antenna 

boregight) 
ei: 	Elevation of the indirect signal (-ve if below) 

The evaluation of the equation 1 is the most time consuming part of 

the CHA algorithm and involves three steps: 

- derivation of the point of reflection on a curved surface, 

- determination of the path length difference and angle-of-

arrival for the direct and indirect signals, 

- calculation of divergence factor and reflection coefficient as 

modified by a rough surface. 

The mathematical formulae accompanying all these steps are fully 

described in the Litva and Rook report [2]. At each incremental height, 

equation 1 must be calculated for each horn element giving a set of 8 

complex values. 

(1) 



(2) 

(3) 
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2 (4) 
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2.1.2 Cross-Correlation of Experimental with Simulated Data: 

The general expression for the complex correlation coefficient de-

noted by C may bc written as 

N- 

M(n,rng) T*(n,rng,Hi) 
2. C(rng,Hi) = 

-N-1 	a(rng)cr(rng,Hi) 
2 

where 

N-1 
—2—  

a(rng) = [ 	M(n,rng) M*(n,rng) ] 

zkza. 
2 

a(rng,Hi) = [ 	T(n,rng,Hi) T*(n,rng,Hi) 
-N-1 

2 

N: 	Number of elements 
TO: Theoretical values 
MO): Measured values 

For each set of experimental data obtained by the CHA, the correla-
tion analysis is repeated NC times, where NC equals the number of postu-

lated target heights. The sampled target heights (HI,H2,...,HR,... 

HNC) are arranged at equal intervals across a height window defined by 
either the radar's total low angle region or by prior information 

(fig.2). The CHA performs the correlation and peaks are observed at 

heights of closest agreement between the measured and simulated data. 

Multiple peaks are observed because of the periodicity of radar's 

interference pattern. The tracks are simply specified by the peaks. 

2.1.3 Identification of the True Target Track: 

If the radar frequency and/or antenna height were perturbed in a 
known manner, deviations exhibiting similar characteristics would appear 
on all tracks except on the true track [2]. Simulated results and 

mathematical development are presented in [2] to illustrate that radar 

frequency and/or antenna-height perturbation technique can be used for 

identifying the true track. 
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3 REAL-TIME IMPLEMENTATION USING AN ARRAY PROCESSOR 

This section describes the implementation of the CHA algorithm on 
an FPs AP-120B array processor with a DEC LSI-11/73 MICRO PDP as the host 
computer. General considerations on array processor architecture and 
programming will be presented first, followed by a description of the 
AP-120B/GPIOP real-time CHA software. Finally, some considerations to 
reduce the number of floating point operations are discussed. 

3.1 Array Processor Architecture  

Array processors have been developed which have overcome the limita-
tions of the Von Neumann architecture, which stores data and program in-
structions in the same memory. These machines are normally used to 
augment the processing speed capability for a variety of batch scientific 
processing jobs or to provide a more dedicated capability for real-time 
data processing and analysis. 

The fundamental and dominant operation involved in digital signal 
processing systems is the following multiply-add operation: 

AiXi 

The most important requirements for signal processor implementation of 
the above calculation are accuracy and speed. The accuracy determines 
dynamic range and signal-to-distortion ratio. The speed directly affects 
the amount of signal processing, and consequently the real-time capabil-
ity. There are two major approaches to high-speed computation: the utili-
zation of fast components and the utilization of parallel architecture. 

Peripheral array processors use parallelism and pipelining to at-
tain high data processing speeds. They are most powerful and effective in 
performing multiplication and addition operations, but leave much to be 
desired when performing general-purpose operations such as tests, bit, 
byte and string manipulation as well as a variety of data-dependent tasks. 

The architecture of peripheral array processors supports the con-
current execution of arithmetic and memory access operations. This type 
of parallelism is applicable to all computational operations, not just to 
the elementary steps of multiplication and addition. This implies that 
the system should be able to simultaneously fetch both the instruction to 
be executed, and the data to be multiplied and added in every cycle. 
Paths for the movement of all of these data must be provided and the cir-
cuitry for address computation, loop counting and other operations must be 
supported in parallel. 

In general, one can pr:ogram sequential general-purpose computers 
without detailed knowledge of their architecture. However without detail-
ed diagrams of the machine architecture, it is impossible to program  per- 
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pheral array processors. It is necessary to know which operations share 

which buses because operations sharing the same bus cannot be executed in 

parallel, thus creating major programming difficulties. This is the 
reason for describing the FPS AP-120B peripheral array processor and the 
General-purpose Programmable Input/Output Processor (GPIOP) used to imple-
ment the CHA algorithm in real time. 

3.1.1 The FPS AP-120B Array Processor:  

The AP-120B [4-7] is a high-speed (167  us cycle time) peripheral 
floating point arithmetic array processor (AP) which is intended to work 

in parallel with a host computer. Its use in applications such as CHA 
can significantly improve the throughput of a computer-based system. The 
AP-120B internal organization is particularly well suited to performing 
the large numbers of iterative multiplications and additions required in 

CHA processing. The architecture permits each logical unit of the machine 
to operate independently and at maximum speed. 

The highly-parallel structure of the AP allows overhead of array 
indexing, loop counting and data fetching from memory to be performed 
simultaneously with arithmetic operations on the data. Since multiplica-
tion and addition require two different operands, it is desirable that 
both operations be performed in parallel. For this reason, the AP-120B 
has two distinct data pad memories (DPX,DPY) as well as dual arithmetic 
logic units: a floating point adder (FADD) and a floating point multiplier 
(FMUL). The size difference between data words and instruction words com-
bined with the requirement for parallel access to them force the AP-120B 
to have several kinds of memory for storing program instruction (PS), 
fast-access table memory for precomputed constants (TM), and main data 
memory for mass storage (MD). These main system elements are intercon-
nected by multiple buses which also operate independently. A general 
block diagram of the AP-120B functional units appears in Fig.3. 

Because of the microcode nature of array processor programs, in-
struction words are typically wider than data words. Each instruction 
word has 64 bits so that many different operations may be performed con-
currently during each cycle. It is divided into five general areas: pro-
gram control, address control, arithmetic memory and I/O. In order to 
achieve high-speed capability, each instruction of a microcoded program 
should use as many fields as possible. Consequently, to attain maximum 
speed, all adders and multipliers should compute a useful output during 

each machine cycle keeping the following elements activited: 

- FMUL, the floating point multiplier, a three-stage pipeline; 

- FADD, the floating point adder, a two-stage pipeline; 

- MD, the main memory, a three-stage pipeline, with a call possible 
every two cycles, if 'even' and 'odd' mémory addresses are called 
alternately; 

- TN, a writeable table memory in a two-stage pipeline; 
- DPX, a 32 word scratch-pad memory; 
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- DPY, a 32 word scratch-pad memory; 
- SP, the S-pad, a memory address calculator. 

3.1.2 The General-Purpose Programmable I/O  Processor (GPIOP):  

The AP-120B is dedicated to perform intensive calculations while the 

host computer usually handles all programming input, file manipulation and 
I/O  operations. However, for CHA real-time applications greater speed can 
be obtained from AP-120 3 , if I/0 access is handled directly via a 

dedicated I/O  handler (GPIOP) [8-10]. 

The GPIOP consists of two major elements, a control processor 
(CPROC) and a data processor (Fig.4). CPROC is a microcode processor pro-
grammed to control data transfers between the AP and an external device 
(e.g. radar acquisition system [11]). The data processor consists of two 

separate elements, the format processor (FPROC) and the FIFO memory. 
FPROC is dedicated to data format conversion and data transfer. The FIFO 
memory holds the I/O  data, as it passes through the GPIOP, to synchron-
ize the speed of the external device with the speed of the AP. 

3.2 Array Processor Programming  

As mentioned previously, optimal coding of an algorithm on an array 
processor is substantially more difficult than on a sequential machine. 
The programmer must understand and control the many parallel data paths 
and take into account the relative delays between each operation in order 
to achieve efficient pipelining. On a sequential machine one instruction 
means one operation while with array architecture one instruction means 
multiple concurrent operations. The array architecture performs multi-
plications and additions in every cycle while concurrently performing all 
the necessary data access and address calculations required to feed the 

arithmetic units. 

A fundamental operation in a sequential machine, for indicating 
that a set of operations is to be translated to vector form, is the LOOP. 
The LOOP determines the number of vector elements to process for all oper-

ations. A sequential execution of a LOOP begins by fetching inputs, com-

puting results and then storing them, and a test is performed to recognize 
the loop end. On a parallel and pipeline processor it is drastically dif-
ferent. Fig. 5 depicts the flow of tasks when the LOOP is executed on a 

pipeline machine. The strategy is to look ahead far enough to provide all 
data at the required time and to ensure that each of the computing ele-
ments has a minimum idle time. It means that while multiplications and 
additions are performed on a set of data, all necessary data access and 

address calculations are concurrently performed on the next set of data 
and so on depending on the pipeline level. 

A number of items affect the rate at which a given task runs on the 
array processor (AP). Significant factors are: 
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- the cycle rate of the main data memory, 
- the placement of vectors in the main data memory, 

- the host system overhead, 
- the timing of data transfer between the host and the AP, 

- the AP execution time of the routine. 

Prior to the execution of a routine by the AP, the host system must 

load the routine into the AP program source memory (if it has not been 

previously loaded) and must load the parameters into the S-pad registers. 

This time interval, called the host overhead, varies from system to system 
depending on the complexity of the host operating system. Host overhead 
is typically 100 to 1000 microseconds. The time required for program 

initiation, communication between the two processors, and data transfer 

can be the same or greater than the array processor execution time. 

The most effective method of minimizing the effects of host overhead 
is to reduce the number of calls to the AP from the HOST. Clearly, a pro-

gram that runs many short tasks in the AP or spends most of its time 

transferring data to and from the AP is not well designed. Consequently, 
it is highly desirable to organize array processor application codes such 
that they minimize requests for CPU service and system resources by chain-
ing together multiple Al'  calls in order that they may be sent to the 
array processor program memory in one data transfer. The result will be 

to lessen, but not to eliminate, the program initiation time penalty. 

Another item which affects the real-time use of an array processor 

is the I/O  process. Performing I/O  access directly rather than indirectly 
through the host is more efficient for the AP. Because large amounts of 

data enter and leave the AP, direct memory access (DMA) is the preferred 

method of transfer. The data format conversion is also an important 

aspect of the I/O  process. Conversion of the data from one floating 

point format to another must be fast because it can have an impact on the 
effective transfer rate. 

Simultaneous transfer and processing of data can also be helpful to 

reduce the overhead for applications such as the CHA. The AP and GPIOP 

are built so that their parallel operation allows the programmer to write 
tasks which process and transfer data simultaneously. The advantage is 
that it can speed up program run time without loss of synchronization. 

When real-time processing is considered, the pre-loading of con-

stants and tables to prime the task to be performed is important. Also the 

microcode instructions necessary to execute the task must be loaded in 

the appropriate memory, preferably in contiguous memory locations, to 

eliminate overlays. In the same way, the AP is most efficiently used when 

a sequence of operations is performed on one or more sets of data which 

reside in an internal data memory. This reduces data transfer overhead 

and retains maximum numerical precision. 

Finally, after consideration of all of these items, the AP through- 
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put rate for the CHA algorithm will be maximized by careful and efficient 

programming of all available parallel functional units (multiplier, adder, 

GPIOP, memory fetches, and display of results) • 

3.3 CHA Real-Time Software  

The original CHA algorithm was coded in Fortran IV on a PDP-11/34. 

It was converted to array processor syntax to achieve real-time  opera-

don. The difficulties involved in conversion of the CHA program were due 

to microprogramming, which is necessary for efficient operation of the 

AP. Because of the parallelism and the many data paths in the array 

processor, it was difficult for a higher-level language to make full use 

of the capabilities that the architecture can support. Consequently, using 

sophisticated programming tools sacrifices execution efficiency, the 

primary motivation for using an array processor. Microprogramming a task 

on an AP is obviously more difficult than machine language programming on 

sequential machines. Speed and simplicity are two conflicting parameters; 

increasing speed means using a low level of programming language, while 

increasing simplicity requires use of a high level programming language. 

3.3.1 Vector Translation of the Original CHA Program  

The CHA program which solves the mathematical equations of section 2 

takes up approximately 370 lines of Fortran code divided up into 10 sub-

routines namely: 

- FINDP - Determination of peaks of the correlation function. 
- CORMH - Determination of the corresponding correlated heights. 
- THEOC - Determination of simulated complex phase and amplitude 

distribution across aperture for a given range. 
- CURVE - Determination of reflection coefficient for a curved 

earth geometry. 
- REFCO - Determination of reflection coefficient taking into 

account the surface roughness factor. 
- RLCOR - Determination of cross-correlation coefficients. 
- HGHTF - Determination of the true track 
- SQUEZ - Subroutine to squeeze heights. 
- SETHV - Determination of height vector. 
- SUBAR - Determination of the antenna horn configuration. 

The first logical step was to identify the subroutines that could 

best be done in the AP. It was found that all of the CHA algorithm could 

be efficiently programmed on an array processor. The first six subrou-

tines have a vector struçture suitable to be executed on an array proces-

sor. The first five routines calculate the theoretical values to be cor-

related with measured data to obtain the target height. The RLCOR routine 

determines the correlation coefficient. The last four routines perform 

track initiation and formatiôn. 

The fundamental method in Fortran for indicating that a set of 
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operations is to be performed across whole arrays of data is the DO loop. 
Since the DO statement determines the number of vector elements to process 
for all operations in the loop, it is this construct on which vector 
translations are based. Within a DO loop, the occurence of any of the 
following will interfere with vector translation: 

- a subroutine CALL; 
- an I/O  statement; 
- branches to other parts of the program; 
- nonlinear indexing of an array; 
- recursive program segments (feedback of 

input to the next). 
results from one pass as 

In the CHA program, no I/O  statements are used within any of the DO 
loops. The restructuring needed to make array optimization possible, con-
sisted of putting all the subroutines into a loop or putting a loop into 
the subroutines. Branches were eliminated and recursive relations, which 
occur only once in the CURVE subroutine, were microprogrammed to simpli-
fy vector translation. 

Programming the CHA algorithm on a complete HOST-AP-GPIOP system 
(Fig.4) is a multilevel task. The system used in this study contained 4 
processors, each of which is a programmable device: 

- HOST (DEC MICRO-PDP-11/73), 
- AP-120B Array Processor, 
- GPIOP (I/O  handler): CPROC and FPROC processors. 

Each processor functions independently although the CPROC controls 
the FPROC, the AP controls the CPROC and finally the HOST controls the AP 
in a master-slave mode. The AP-120B performs all intensive CHA calcula-
tions while the host displays the results: the range versus the target 
height. The GPIOP receives commands from the AP, and transmits data be-
tween AP-120B Main Data Memory and the external device which is the radar 
system [11]. 

3.3.1.1 Host Development Software  

The HOST is the source of all software needed to program the CHA ap-
plication on the AP-120B/GPIOP. The programmer has  to be familiar with 
firmware software options supplied by FPS in order to obtain the perfor-
mance expected for the particular application. The software packages 
[12-20] supplied by FPS help the user in 

- writing programs; 
- downloading programs in AP and GPIOP memories; 
- running programs; 
- and diagnosing hardware faults. 

The Host CHA software flowchart is given in appendix A. 
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3.3.1.2 AP-120B CHA Software  

The AP-120B CHA program relies heavily on routines contained in a 

mathematical library of microcode subroutines available from the manufac-

turer [12]. These microcode units can be linked with user developed rou-

tines to implement the CHA algorithm with a reasonable software develop-

ment effort. The tracking process is not very suitable for execution on 

the AP since many logical decisions and non-vector arithmetic operations 

have to be performed sequentially. Those user developed routines are 

carefully designed to describe the complete tracking process. The flow-

chart describing all the CHA processing inside the AP-120B is presented in 

Appendix A. The AP program requires approximately 3K of AP program mem-

ory. It can reside entirely in the AP program memory and can be invoked 

by using only one CALL statement. 

3.3.1.3 GPIOP CHA Software  

The GPIOP contains 2 programmable processors. Each processor uses a 

programming language designed specifically to fulfil the functions of that 

processor. The assemblers for these languages run entirely on the host 

processor. The GPIOP can be programmed using either its own assemby lan-

guage (GPAL) or a higher level interpreted language (IOCAL). GPAL pro-

vides a full set of instruction memory for the CPROC. IOCAL is an inter-

pretive language using higher level instructions than GPAL microcode 

instructions. This eliminates much of the complexity involved in micro-

code programming. The IOCAL instructions permit the GPIOP to function as 
a channel processor dedicated to perform I/Os for a specific device (e.g. 
radar system). 

The user can take any of the two approaches to program the GPIOP. 

However, the use of IOCAL requires a significant amount of overhead, both 
in processing time (5 to 10 usec) and CPROC memory space. Therefore, pro-
gramming the CPROC directly in GPAL is more appropriate for the CHA 

application in which the speed of I/O  is critical. The flowchart for the 

CPROC program is presented in Appendix A. CPROC program is closely 

related to hardware. 

The programs that operate within the GPIOP-FPROC are available in a 

format conversion library supplied by the manufacturer. The GPIOP format 

library has a subroutine called SP11AP [10] running on the FPROC which 

converts a PDP11 floating point number to an AP floating point number . 

Only that subroutine is needed for the FPROC software. Note that the 

FPROC cycle time is three times faster than the CPROC cycle. Its cycle 

time of 55.6 ns meets the requirement for faster data format conversion, 
hence transfer rate is not affected. 

3.4 Considerations to Reduce Calculations: 
- 

The CHA linear array consists of N equally-spaced elements separated 
by a distance d. The reference element is assigned the index n=5. The 
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other elements are assigned indices depending on the following distribu-
tion relative to the reference element: 

D(n) = (27cd/X)(Ref-n) 	for n=1,8 	(Ref=5) 

Considering the distribution D(n), all calculations involving this 
distribution could be reduced substantially. Around the reference 
element, Ref=5, the following is observed: 

D(5) = 0.0 

D(6) = -D(4) 

D(7) = -D(3) 

D(8) = -D(2) 

This result is important for the real-time processing since it can save a 
lot of calculations in the subroutine THEOC, which is the most time con-
suming step of the CHA algorithm (see Table 4.1). Rearranging equation 
(1) to determine the simulated phase and amplitude distribution across the 
aperture for a given range at a given height gives the following equation: 

T(n,rng,Hi) = exp{j(Ad*D(n))1 + ZR*exp{j(OCD(n))1 for n=1,8 	(10) 

where ZR: Complex reflection coefficient as modified by a surface rough-
ness factor. 

Half of the calculations can be saved when evaluating exp{j(0d*D(n))1 and 
explj(ei*D(n))/ because 

exp{i(Gd*D(5))1 = 11,01 	 (11) 

expWed*D(6))1 = exp{-j(ed*D(4))1 	(12) 

exp{j(ed*D(7))1 = expl-j(ed*D(3))1 	(13) 

explj(ed*D(8))1 = exp{-j(ed*D(2))1 	(14) 

(similarly with e i ) 

With this new set of equations (11-14) we can evaluate (10) at n=5 the 
reference element giving: 

T(5,rng,Hi) = ZR + 1.0 	 (15) 

(6) 

(7) 

(8) 

(9) 

The final step to get the complete set of 8 complex amplitude and 
phase values across the aperture is the normalization process described by 



(21) 
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the following equation: 

T(n,rng,Hi) = T(n,rng,Hi)/T(5,rng,Hi) 	(16) 

Several multiplications can be eliminated by use of the following 
equations. Assume that 

fA2(n), B2(n)} = explj(Ad*D(n)} 	 (17 

fAl(n), B1(n)1 = explj(9i*D(n)} 	 (18) 

1C1,D11 = ZR 	 (19) 

1C2,D21 = 1/T(5,rng,Hi) 	 (20) 

then for n 	5 

T(n,rng,Hi) = IC1A1(n)C2-D1B1(n)C2+A2(n)C2-C1B1(u)D2- 
D1D2A1(n)-B2(n)D21 + j{C1B1(n)C2+I1A1(n) 
C2+B2(n)C2+C1Al(n)D2-D1D2B1(n)+A2 , 1)D2} 

for n 	5 

T(n,rng,Hi) = 1C1A1(n)C2+D1B1(n)C2+A2(n)C2+C1B1(n )2- 
D1D2A1(n)+B2(n)D21 +  j{ -C1B1(n)C2+ 1A1(n)C2- 
B2(n)C2+ClAl(n)D2+d1D2B1(n)+A2(n)D4 

for n = 5 

T(5,rng,Hi) = {1,0} 	 (23) 

It is obvious that half of the multiplication operations are 
eliminated in the most time consuming steps of the CHA processing. 

4 EVALUATION OF THE REAL TIME PERFORMANCE OF THE CHA PROCESSOR 

This section presents the results of a study concerning the 

processing speed of the AP-120B when running  th  a CHA algorithm. A 
complete breakdown of the number of basic operations contained in the CHA 

will be presented in order to identify the most time consuming steps. 
Then, a brief discussion'oncerning the arithmetic zccuracy and speed of 

these operations on the Aj'-120B is also included. Fiaally, the results of 
the timing study are presented. 



SUBROUTINE 
NAME 

MEMORY 
REFERENCE 

GROUP 
looping 
indexing 

3::ENDED 
ARTHMETIC 

GROUP 
load,store 

O 

A SIN COS EXP 

FLOATING POINT GROUP 

FINDP 
CORMH 
THEOC 
CURVE 
REFC0 
RLCOR 

8 
5 

88 
81 
18 

1 

74 
88 

453 
150 
59 

377 

86 
95 

706 
293 
125 
577 

2 
15 
22 
19 
79 

100 
28 
24 

118 

16 
12 
5 

TOTAL 1201 201 138 2721 36 18 17 1882 2 3 

17 17 
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4.1 Number of Basic Operations in the CHA Algorithm 

An assembly listing of all subroutines was obtained to determine a 
complete breakdown of the number of CHA basic operations. The results are 
tabulated in table 4.1 and talpLe 4.2. 

TABLE 4.1 

NUMBER OF BASIC OPERATIONS TO CALCULATE THE CORRELATION FUNCTION 

(f c' one height sample) 

TABLE 4.2 

NUMBER OF BASIC OPERATIONS TO IDENTIFY AND FOLLOW THE TRUE TRACE 

MEMORY 	EXTENDED 	FLOATING POINT GROUP 	T 
REFERENCE 	ARITHMETIC  	0 	MULTIPLI- 

SUBROUTINE 	GROUP 	GROUP 	 T 	CATIVE 
NAME 	looping 	load,store 	+/- 	A 	FACTOR 

indexing 	 L 
	 - 	 

70 	14 	- 	2 	. 	2 	88 	1 
HGHTF 	130 	24 	7 	- 	2 	163 	NPEAKS 

41 	6 	3 	- 	- 	50 NPEAKS**2 

SETHV 	45 	11 	3 	2 	- 	61 	1 
31 	3 	2 	- 	- 	36 	NC 

	_ 
SQUEZ 	7 	6 	- 	- 	- 	13 	1 

55 	- 	1 	- 	1 	57 	NPEAKS 

SUBAR 	11 	6 	1 	- 	2 	20 	1 
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4.2 Processing Speed of AP-120B Basic CHA Operations  

Table 4.3 presents all the basic floating point operations used to 
program the CHA algorithm on an AP-120B. 

TABLE 4.3 
AP-1208  FLOATING-POINT PROCESSING SPEED 

1 
OPERATION 	TIME/LOOP (usec) 	SETUP TIME (usec) 

ADD/SUB 	1.0 	2.67 

MUL 	1.0 	2.67 

DIV 	1.67 	4.17 

EXP 	2.33 	4.17 

SQRT 	1.83 	4.17 

SIN 	1.33 	7.00 
COS 	1.33 	7.00 

The execution time is given for a 167 nsec memory access. 	Note 
that the execution time is specified on a per loop basis. Thus, if we add 
two 1000 element vectors, the execution time with a 167 nsec memory is 
1000 * 1.0 = 1000 usec, plus an additional 2.67 usec of setup time needed 
to initially fill the AP pipeline. Therefore, the execution time using a 
167 nsec memory is 1002.67 usec. 

4.3 AP-120B CHA Digital Processing Noise  

This section presents a brief discussion on the arithmetic error due 
to internal floating-point format [6] of the AP-120B when processing the 
CHA algorithm and a comparison is made with typical radar receiver noise. 

AP-120B FLOATING-POINT FORMAT 

EXPONENT E 0 -E9 
MANTISSA  M0-M27  

10 bits 
28 bits 

two's complement fraction 
binary exponent biased by 512 

The value of a floating point number in this format is defined as 

(MANTISSA) * 2
-512 
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The positive dynamic range of this format is from: 

3.7 * 10
-155 

to 6.7 * 10
153 

The negative dynamic range is 

-1.8 * 10
-155 

to -6.77 * 10
153 

The 28-bit fraction, combined with the convergent rounding algorithm used 
in the floating point adder and multiplier, gives a maximum relative error 
of 

7.5 * 10
-9 

(2
-27

) 

per arithmetic operation. This is a precision of 8.1 decimal digits. As 
a comparison, unrounded IBM 360 format gives only 6.0 decimal digits of 
arithmetic accuracy. 	Referring to Table 4.1, when calculating the corre- 
lation function we have approximately 2000 basic operations per pass re-
sulting in an arithmetic error of 

1.5 * 10
-5 

This is a precision of 4.8 decimal digits. 

A study has been carried out to examine the design alternatives for 
a radar front-end to be used for the CHA [21]. Using typical parameters 
a receiver power budget was worked out and the S/N ratio found was 17 dB 
which represents a precision of 1.7 digits. Considering all radar signal 
noise sources, the digital noise introduced by AP-120B, when processing 
the CHA, becomes negligible. 

4.4 Results of the CHA Timing Study  

The system consists of a DEC MICRO-PDP 11/73 with an attached FPS 
AP-120B array processor. The original host system was a PDP-11/34. Some 
results in this study are based on the original system. It was necessary 
to upgrade the PDP-11/34 to a MICRO-PDP because a better reliability and 
a physical size reduction were required for sea trials. The major dis- 
advantage in the migration from the UNIBUS system (PDP-11) to the Q-BUS 
(MICRO-PDP) is the reduced speed. A special converter (QNIVERTER [221), 
permitting a Q-BUS computer system to access a UNIBUS compatible device 
such as the AP-120B, was used. There is a timing difference between the 
two buses. The time sharing of the 16 data lines with the 18 address 
lines on the Q-BUS slows down the Q-BUS as compared to the UNIBUS which 
has separate data and address lines. The reduction of 16 lines from the 
UNIBUS to Q-BUS and the delay for the QNIVERTER to match the two buses 
reduce the data transfer speed performance by 28%. 
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4.4.1 CHA Processing Time with Experimental Data  

The objective of this section is to compare the CHA processing time 
on the AP-120B with the processing obtained with a sequential program on 

the PDP-11/34. The time required to process and display a complete file 
of 577 records by the PDP-11/34 was over 1 hour (6.25 sec/sample). The 
same file processed and displayed with PDP-11/34 and AP-120B took 

approximately 50 sec (86.6 msec/sample). 

In order to separate the host time used to display the results, and 

the AP processing time, the experiment was repeated once with only half of 
the results displayed, and once with no display at all, as shown in the 

following table. 

TABLE 4.4 

CHA PROCESSING TIME WITH EXPERIMENTAL DATA 
(PDP -11/34/AP -120B) 

The trial with experimental data was an interim step to measure the 
full capability of the AP-120B to process CHA. The process of retrieving 
the disk resident data, normalizing and adding calibration coefficients 
reduced the data transfer rate. It took 195 sec to retrieve and prepare 
17507 records for CHA processing, which corresponds to an overhead of 
11.2 msec/CHA sample. Thus, to measure the optimal processing speed of 
the Host/AP-120B system, simulated data was used. 

4.4.2 CHA Processing Time with Simulated Data  

A target was simulated by moving from 11 km to 1 km and taking sam-

ples at each one meter height interval. This represents 10000 samples to 
be processed. The height of the target was fixed at 20 m. Also the num-
ber of simulated heights was kept constant at 100. An attempt was made to 
obtain a breakdown of the total processing time as follows: 

- host overhead; 
- display (graphic); 
- AP-120B CHA processing time. 

The results are presented in Table 4.5 



TABLE 4.5a 

RESULTS OF THE AP-120B CHA TIMING STUDY 

(NC:number of heights=100) 
(Host:DEC MICRO-PDP 11/73) 

DISPLAY 	LOOP 	LOOP 	WAIT ON 	GET DATA WAIT ON 	TIME 
DENSITY 	INSIDE 	INSIDE 	AP RUNNING 	(APGET) DATA 	msec/loop 

HOST 	AP-120B 	(APWR) 	(APWD) 

FULL 	10000 	1 	YES 	 YES 	YES 	87.5 

1/2 	5000 	2 	YES 	YES 	YES 	43.7 
1/4 	2500 	4 	YES 	YES 	YES 	21.9 
1/10 	1000 	10 	YES 	YES 	YES 	14.0 
NO 	10000 	1 	YES 	YES 	YES 	16.1 
NO 	1 	10000 	YES 	YES 	YES 	12.6 
NO 	10000 	1 	YES 	YES 	NO 	15.5 

NO 	10000 	1 	YES 	NO 	NO 	14.3 

NO 	10000 	1 	NO 	YES 	NO 	13.1 

FULL 	10000 	1 	YES 	YES 	NO 	87.5 
FULL 	10000 	1 	NO 	YES 	NO 	87.5 
NO 	10000 	NO 	NO 	YES 	YES 	1.9 
NO 	10000 	NO 	NO 	YES 	NO 	1.3 

TABLE 4.5b 

RESULTS OF THE AP-120B  (DIA  TIMING STUDY 

(NC:number of heights was dynamically adjusted) 
(Host.DEC MICRO-PDP 11/73) 

DISPLAY 	LOOP 	LOOP 	WAIT ON 	GET DATA 	WAIT ON 	TIME 
DENSITY 	INSIDE 	INSIDE 	AP RUNNING 	(APGET) 	DATA 	msec/loop 

HOST 	AP-120B 	(APWR) 	(APWD) 

FULL 	1000 	1 	YES 	YES 	YES 	85.0 
1/2 	500 	2 	YES 	YES 	. 	YES 	42.0 
1/4 	250 	4 	YES 	 YES 	YES 	21.0 

1/10 	100 	100 	YES 	YES 	YES 	2.4 

NO 	10000 	1 	YES 	 YES 	YES 	7.0 
NO 	1 	10000 	YES 	YES 	YES 	1.8 

4.4.3 Acquisition Time for GPIOP/Consumer Interface No.1 

According to table 4.6, the data acquisition and transfer time, from 
the radar system to the AP-120B, via GPIOP is 2.8 msec/block data. The 
host supervisory software overhead would be .7 msec. The data block size 
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NLOOP 	j 	NUMBER OF TRANSFERS  f 	TIME (msec) 

1 

10,000 
10,000 2.8 
10,000 	2.1 
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is 72 PDP-11 FPN real words. The acquisition time and the format conver-

sion time of the AP-120B/GPIOP/Consumer interface no.1 is 34 Kwords/sec. 

TABLE 4.6 

ACQUISITION TIME FOR GPIOP/CONSUMER INTERFACE NO.1 

(Host:DEC MICRO-PDP 11/73) 

4.5 Discussion on the Timing Study  

Tables 4.4, 4.5a and 4.5h display various aspects of the CHA timing 

study, which consist of: 

- Host time to display the CHA results graphically; 
- Host supervisory software overhead: 
* remove CHA results from AP memory, 
* synchronize HOST and AP. 

- AP-120B CHA processing time with 
* experimental data (real noisy data) and 
* simulated data (noise free). 

Tables 4.4 and 4,5b present results obtained with both experimental 
data and simulated data in order to compare the processing time when CHA 

is used in a real environment. The total number of processed heights is 

not known precisely. The first pass through the CHA filter consists of 

approximately 100 postulated heights, each at a 1 metre interval. In 

subsequent passes the number of correlated heights is reduced to around 20 

to 30 and declines to 10 heights when the track is fully established. As 

expected, experimental and simulated data require the same CHA processing 

time. The experimental data were stored on a disk and it took 17.33 

msec/CHA sample as compare to 7 msec when the data are simulated inside 

the AP eliminating the - 10 msec disk overhead, which is included in Table 
4.4 (see previous section). 

In the simulation case (Table 4.5a) the number of postulated heights 

is kept constant at 100 heights for all passes through the CHA. When the 

CHA starts, it scans a 100 metre window with the spacing between the 

heights in the scanned wileow dynamically varied using the average accumu-

lated deviation between possible tracks in preceding passes. Thus, the 

12.6 msec given in Table 4.5a corresponds to the time for the AP-120B to 

process the CHA filter on 8 complex values at 100 different heights. 

The bottleneck limitation of the system is the display of the re- 
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sults on the HP-2648 graphic display terminal. It consumes around 70 msec 
per range sample which is too slow when compared to the complete CHA pro-
cessing time (around 13 msec). Viewing the results decimated by 4 or even 
10 could be a short term solution to this problem giving a processing time 
capacity up to 14 msec (Table 4.5a). 

Another time factor depicted clearly in Table 4.5a is that of the 
host supervisory software to move the CHA results (Range, Target height) 
from the AP main data memory to the host memory and to synchronize their 
operation. Two wait commands, APWR and APWD are available to obtain syn-
chronization. APWD (wait on data) causes the host program to wait until a 
data transfer between the host and the AP has been completed. APWR (wait 
on running) causes the host to wait until the AP has finished running the 
CHA. 

The AI'  host interface is capable of transferring data to and from 
the host while it is processing data. APWR and APWD can be omitted be-
cause in the CHA application, it is certain that the data being transfer-
red and the data being processed are not the same. The measured host 
overhead of (16.1-12.6)msec = 3.5 msec can be reduced to .5 msec by using 
this technique. However it should be used with caution because it has the 
potential to cause errors in computations. 

4.6 CHA Processing Using Block Queuing Technique  

The AP-120B is capable of processing 100 CHA heights in 12.6 msec 
without interaction with the host. The required time increases to 16.1 
msec when the CHA data is transferred to the host memory but not display-
ed. This section proposes an approach to distribute the CHA processing 
over a complete CHA tracking run. 

As mentioned in section 4.4, during the initialization process the 
correlation function is calculated over 100 postulated heights. The num-
ber of heights declines progressively to 10 when the track is established, 
hence the data rate is reduced by a factor of 10. If a system is designed 
using 100 heights per pass it will be an over-designed system. It would 
be more efficient to reserve a portion of the AP-120B main data memory in 
order to accumulate the incoming CHA data blocks when the AP-120B is un-
able to process them on a real time basis during track initialization. 
When the track is established the number of postulated heights is reduced 
and the AP can regain the real-time rate. This is referred to as block 
queuing mode, where the processing load is distributed over a complete run 
leaving the AP with an evenly distributed workload. This technique can be 
implemented in software by using a block level FIFO with a CHA block 
status flag on each data block. The first block in would be the first 
processed block out of the AP-120B (FBIFBO). A CHA processing time ap-
proaching 7 msec is possible by using the FBIFBO technique and reducing 
the display density during the initialization process. 
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5 CONCLUSION 

In this report, an array processor approach has been considered to 
implement the CHA algorithm as a real-time process. A review of the CT-IA  
low-angle tracking technique was given and an implementation on an array 
processor has been proposed. The corresponding processing time study was 
also presented. 

A brief description of the FPS AP-120B array processor was provided 
and its real-time processing of the CHA algorithm was investigated. 

The displaying of results slows the processing speed. When graphic 
interactions take place a processing time of 86.6 msec can be achieved, 
compared with 16.1 msec when the output is not displayed. A processing 
time of 12.6 msec is possible when all the results reside in the AP-120B. 
(calculated over 100 heights) 

To reduce interactions between AP and the host, the GPIOP, which is 
a programmable I/O  processor that acquires the CHA block data at 34 
Kwords/sec, was considered. A block queuing technique, which would allow 
a CHA processing time of 7 msec, is proposed. 

Future work will be required to modify the real-time one-way beacon 
model described in this report, such that a two-way propagation CHA algo-
rithm including meteorological data and more sophisticated tracking pro-
cesses can be implemented. 

For the CHA computing system, the general points presented in this 
report will still be very useful. In the present state-of-the-art, the 
CHA computing system can be upgraded using self-contained array processor 
boards (20 MFLOPS). This will satisfy the CHA's requirement for high 
speed throughput. These boards have almost the same general architecture 
[23] as the AP-120B (12 MFLOPS) and offer increased speed and reduced 
physical size. The purchase of a new graphics system must be considered 
seriously. Efforts should be concentrated on a system that can reside on 
the host main bus, so that it can be accessed at memory speed. This will 
provide a graphics output system that is concurrent with CHA processing. 
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Fig. 4 - CHA  Processor Architecture 
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