Communications Research Centre

APPLICATION OF GEOLOCATION TECHNIQUES USING SATELLITES IN GEOSTATIONARY ORBIT (U)

by

Mario Caron

(Communications Technologies Research Branch)

CRC REPORT NO. 1435

June 1991 Ottawa

The work described in this document was sponsored by the Department of National Defence under Tech. Base Activity 1410-102

TK 5102.5 C673e #1435 1 9

Gouvernement du Canada Ministère des Communications

Canadä'

COMMUNICATIONS RESEARCH CENTRE

DEPARTMENT OF COMMUNICATIONS CANADA

APPLICATION OF GEOLOCATION TECHNIQUES USING SATELLITES IN GEOSTATIONARY ORBIT (U)

by

Mario Caron

(Communications Technologies Research Branch)

Industry Canada Library - Queen SEP - 4 2012 Industrie Canada Bibliothèque - Queen

CRC REPORT NO. 1435

June 1991 Ottawa

The work described in this document was sponsored by the Department of National Defence under Tech. Base Activities 1410-102

CONTROL RESEARCH CENTRE

DEPARTMENT OF COMMUNICATIONS
CANADA

APPLICATION OF GEOLOGATION TECHNOLOGIS USING

٧d

Controunications Technologies Research Stranch)

1001 eaut, awanc

CHC REPORT NO. 1485

51023e 51023e 51023e 51425 DD 11205216 DD 11205216

ABSTRACT

This report looks at techniques to perform the localization of SARSAT 406 MHz distress beacons using geostationary satellites. After reviewing the characteristics of the distress beacon transmitters, the main specifications of the GOES satellites are described as they can be assumed as typical geostationary satellites for this application. A brief review of the geolocation techniques is presented and an in-depth analysis is conducted on the time difference of arrival technique. The analysis covers the impact of the Earth's flatness, channel impairments and satellite geometry. The delay estimator performance is expressed as a function of signal-to-noise ratio and circular error probability. The overall system performance is directly related to the performance of the delay estimator.

Results of both theoretical analysis and computer simulations show that the accuracy of the position derived from the time difference of arrival technique is limited by (1) the low SNR of the distress beacons when relayed via geostationary satellites and, (2) by the low transmission rate (and thus bandwidth) of the beacon signal creating "broad" autocorrelation peaks and making the delay estimation process difficult. In the worst case C/No of 30 dB-Hz and with three satellites spaced at 30°, we can say with a 90% confidence level that the circular error probability is between 3.3 and 4.9 km for a beacon in Canada. This is equivalent to an error not exceeding between 8 and 11.8 km for 95% of the time which is comparable to the current SARSAT polar orbit system based on a maximum error of 5 km for 90% of the time.

RÉSUMÉ

Ce rapport examine les techniques permettant d'effectuer la localisation de radiobalises de détresse SARSAT à 406 MHz en utilisant des satellites géostationnaires. Après une revue des caractéristiques des émetteurs des radiobalises de détresse, les spécifications principales des satellites GOES sont décrites puisqu'ils peuvent être considéré comme des satellites géostationnaires typiques pour cette application. Une brève revue des techniques de géolocation est présentée et une analyse en profondeur de la technique des différences de temps est effectuée. L'analyse couvre l'impact de l'applatissement de la Terre, les détériorations du canal et la géométrie des satellites. La performance de l'estimateur de délai est exprimée en fonction du rapport signal-à-bruit et de la probabilité d'erreur circulaire. La performance du système global est directement reliée à la performance de l'estimateur de délai.

Les résultats de l'analyse théorique et des simulations sur ordinateur démontrent que la précision de la position déduite à partir de la technique des différences de temps est limitée par (1) le faible rapport signal-à-bruit des radiobalises de détresse lorsque retransmises par satellites géostationnaires et, (2) par le faible débit de transmission (et ainsi de largeur de bande) du signal de la radiobalise créant de "larges" crêtes d'autocorrelation et rendant le processus d'estimation du délai difficile. Dans le pire cas d'un rapport C/No de 30 dB-Hz et avec trois satellites espacés de 30°, nous pouvons affirmer avec un degré de confiance de 90 % que la probabilité d'erreur circulaire est entre 3.3 et 4.9 km pour une radiobalise au Canada. Ceci est équivalent à une erreur ne dépassant pas entre 8 et 11.8 km pour 95 % du temps qui est comparable au système actuel basé sur une erreur maximale de 5 km pour 90 % du temps.

1

EXECUTIVE SUMMARY

The current Geostationary Operational Environmental Satellites (GOES's) are equipped with a special repeater allowing 406 MHz SARSAT distress signals to be relayed to the Mission Control Centres (MCC's). When a distress beacon is activated and is within the field of view of the satellite, this special repeater allows for an instantaneous distress alerting. This is particularly important for distress events occurring around the equator where the sole use of the SARSAT/COSPAS low earth orbit satellites can result in up to one hour delay before the distress event is reported. Geostationary satellites have a continuous coverage of this area and thus can improve significantly the overall response time of the system. The SARSAT/COSPAS system currently relies on the Doppler frequency shift on the beacon signal to determine the beacon position. Geostationary satellites being quasi-motion free relative to the Earth, there is very little Doppler frequency shift that can be used to locate the distress beacons and an alternative technique must be used. This report investigates such alternative techniques.

With geostationary satellites, it is found that only the time difference of arrival technique can be promising. At least three satellites are required for an unambiguous positioning. The analysis shows that the Earth's flatness and the channel (ionosphere and troposphere) delay has little impact on the overall position accuracy of the system. Indeed, it is shown that the accuracy is more limited by the low signal-to-noise ratio of the beacon signal once relayed via a geostationary satellite and of its low bandwidth (or data rate) which creates relatively broad autocorrelation peaks and make the estimation of very precise delay difficult. The theoretical analysis and the computer simulations show that an accuracy comparable to the current SARSAT polar orbit system can be expected i.e. an error less than 5 km in 90 % of the time.

The position estimator can be based on a personal computer equipped with special digital boards to perform the signal processing. The implementation proposed in this report assumed that the position estimation processor is an add-on to the current GOES processor. Implementation should however be deferred until sufficient GOES or other host satellites become available. More advanced techniques to perform the delay estimation could be investigated in the mean time.

ACKNOWLEDGMENTS

I am grateful to DREO for funding this project and in particular to R.J. Keightley from the EHF Satcom division. Thanks also to E.J. Hayes for his support and general guidance, L. Perrier and C. Pike for the information on the current GOES processor and system, Dan Hindson and Norman Second for the many technical discussions, Dave Andean for his technical guidance in Section 6.2 regarding the satellite positioning techniques and C. Loo for taking the time to carefully review this report.

TABLE OF CONTENTS

ABSTRACT/RÉSUMÉ	. ii
EXECUTIVE SUMMARY	. iv
ACKNOWLEDGMENTS	. v
TABLE OF CONTENTS	vi
1.0 INTRODUCTION	1-1
2.0 406 MHZ EMERGENCY BEACON CHARACTERISTICS	2-1
3.0 GOES REPEATER CHARACTERISTICS	3-1
4.0 GEOLOCATION TECHNIQUES	4-1
4.1 ONE-SATELLITE SYSTEMS	
4.2 TWO-SATELLITE SYSTEMS	4-2
4.3 MORE THAN TWO-SATELLITE SYSTEMS	4-3
5.0 TIME DIFFERENCE OF ARRIVAL BASIC PRINCIPLE	5-1
6.0 TDOA PERTURBATIONS	6-1
6.1 NON-SPHERICAL EARTH	6-1
6.2 GEOSTATIONARY SATELLITE MOTION	6-4
6.2.1 Impact on Position Accuracy	6-4
6.2.2 Satellite Position Tracking	6-8
6.3 CHANNEL DELAYS	6-11
6.3.1 The Ionosphere Delay	6-11
6.3.2 The Troposphere Delay	6-18

7.0 ESTIMATION OF THE TIME DIFFERENCE OF ARRIVAL 7	'-]
7.1 MAXIMUM TIME DIFFERENCE OF ARRIVAL 7	'-1
7.2 DELAY ESTIMATION7	'- (
8.0 OVERALL BEACON POSITIONING ACCURACY 8	;- <u>1</u>
9.0 CIRCULAR ERROR PROBABILITY9	ı <u>-</u>]
10.0 RECEIVER STRUCTURE 10)- <u>1</u>
11.0 CONCLUSION	-]
12.0 REFERENCES	- 1
13.0 BIBLIOGRAPHY 13	- 1
APPENDIX A: COMPUTER PROGRAM TO COMPUTE THE	
POSITION LINE GENERATED BY A GIVEN	
DIFFERENTIAL RANGE AND TWO GIVEN	
SATELLITES A-	1
APPENDIX B : COMPUTER PROGRAM TO COMPUTE THE	
SHORTEST DISTANCE BETWEEN TWO POINTS	
ON THE EARTH B-1	1
APPENDIX C: PROGRAM TO COMPUTE THE ACCURACY OF	
THE DELAY ESTIMATOR C-1	l
APPENDIX D : COMPUTER PROGRAM TO SIMULATE THE	
DELAY ESTIMATION PROCESSOR D-1	l

			1
			1
			4

1.0 INTRODUCTION

The work reported here has been funded by the EHF Satcom division of the Defence Research Establishment of Ottawa (DREO). Their interest in the application of geolocation techniques using geostationary satellites is twofold. First it provides a tool to locate sources of interference so that, for instance, the satellite antenna/nulling system can generate a null on the interference source. Second, it is a tool to assess the probability that covert terminals can be detected and located, or the success of the electronic counter-countermeasure (ECCM) technique(s) used by the terminal. In general, these signal sources are random, bursty, and have poor signal-tonoise ratios.

The 406 MHz emergency beacons transponded through the Geostationary Operational Environmental Satellite (GOES) satellites have characteristics similar to the signal sources of interest. It is the purpose of this report to investigate the feasibility of developing a system to extract location information from 406 MHz distress signals that have been transmitted by repeaters on GOES or other similar geostationary satellites. Because geostationary satellites offer continuous coverage, they have been considered in various systems for radio position determination applications [1-11]. The major benefit for the search and rescue (SAR) system lies in the possibility of improving the response time of the current system by using geostationary satellites. Indeed, the use of geostationary satellites provides a quasi-instantaneous position reporting for beacons in their field of view while some distress alerts in the current COSPAS-SARSAT system may take up to two hours to be detected and located. This is partly due to the ambiguity of the Doppler positioning technique which requires a second satellite pass to resolve and partly due to the satellite orbit which makes the satellite revisit time relatively long for terminals close to the equator. The use of a geostationary satellite would therefore be particularly useful to remove these latter delays where the geostationary satellite visibility is continuous.

Sections 2.0 and 3.0 of this report review briefly the characteristics of 406 MHz emergency beacons and GOES repeaters respectively. Section 4.0 describes a number of basic geolocation techniques and discusses their applicability to this project. Section 5.0 gives the basic principle of the time difference of arrival (TDOA) technique while Section 6.0 introduces the perturbations to the TDOA principle. Section 7.0 deals exclusively with the design of the time difference estimator. Section 8.0 combines the effects of all perturbations and derives an expression for the overall positioning accuracy of a proposed distress beacon receiver. Section 9.0 describes the circular error probability of the system and Section 10.0 summarizes the receiver structure. Section 11.0 concludes this report.

			1
			To the state of th
			E CONTRACTOR CONTRACTO
			1
			:
			İ
			- 1

2.0 406 MHZ EMERGENCY BEACON CHARACTERISTICS

The detailed specifications of the 406 MHz emergency beacon transmitters are given in [12] and this section briefly highlights some of the key signal characteristics.

The beacon transmits a digitally phase modulated carrier burst. The format of the burst is determined by the message type i.e. short (standard) or long (optional). Figure 2.0-1 along with Table 2.0-1 shows the signal format. Basically, the burst duration is either 440 ms (short) or 520 ms (long) and it is repeated every T seconds where T is a random period uniformly distributed between 47.5 and 52.5 seconds. The signal comprises a 160 ms carrier preamble and a 24-bit synchronization word. The protected data field is 61 bits long and the error correcting code is a BCH (127,106) code shortened to (82,61). The following 6 bits are reserved for national use or emergency codes while the last 32 bits are the long message (optional) data. The optional message content is not strictly defined but it is recommended in [12] to maritime users to include the course, speed and time of activation while other users are recommended to include the beacon position derived from an auxiliary radio location system incorporated into the beacon. Of course this study is limited to those beacons which are not equipped with such auxiliary location systems.

The phase modulation is such that a residual carrier is present to ease the signal detection and demodulation. The initial frequency accuracy is ± 2 kHz and the frequency offset does not exceed 5 kHz after 5 years. The power output is nominally 5 watts with an antenna gain between -3 dBi and 4 dBi over 90 % of the hemispherical pattern.

Figure 2.0-1 General 406 MHz Message Format

Parameter	Value
RF Signal	
Carrier frequency (initial)	406.025 ± 0.002 MHz
Carrier frequency (prior to	406.025 ± 0.005 MHz
end of useful life)	
Frequency stability	
Short term (100 ms)	2 x 10 ⁻⁹
Medium term	
Mean slope	1 x 10 ⁻⁹ /min
Residual noise	3 x 10 ⁻⁹
Power output	$5 \text{ W} \pm 2 \text{ dB}$ into 50 ohm
	load with VSWR < 1.25:1
Spurious emissions	50 dB below 5 W in 5 MHz
	bandwidth; carrier harmonics 30 dB
	below 5 W
Data encoding	Bi-phase L
Modulation	Phase modulation
	1.1 ± 0.1 radians peak
Modulation rise and fall times	must be between 50 μs and 250 μs
Digital Message	
Repetition rate	Random. Uniform Distribution
	Between 47.5 and 52.5 s
Transmission Time	$440 \text{ ms} \pm 1\% \text{ or } 520 \text{ ms} \pm 1\%$
CW preamble	160 ms ± 1 %
Digital message	$280 \text{ ms} \pm 1\% \text{ or } 360 \text{ ms} \pm 1\%$
Bit rate	400 bps ± 1 %
Bit synchronization	15 "ones"
Frame synchronization	000101111
Continuous emission: failure mode	Transmission shall not exceed 45 s

Table 2.0-1 406 MHz Beacon Signal Characteristics

		•
		:
		•
		- 3 8 8

3.0 GOES REPEATER CHARACTERISTICS

The latest Geostationary Operational Environmental Satellite (GOES H) is equipped with a frequency translating repeater which receives signals over a 100 kHz band centered at 406.05 MHz and re-transmits the translated and inverted band at a center frequency of 1698.65 MHz. The 406 MHz repeater on the current GOES H satellite shares circuitry with another GOES subsystem, the Data Collection Platform (DCP) repeater. Both subsystems have different operating bands but a common AGC regulates the total output power of the combined DCP and 406 MHz repeater. Note that the GOES satellites subsequent to GOES H will not have this common AGC and the translation frequency band will be slightly different.

The satellite antenna receives right hand circularly polarized signals and transmits linearly polarized signals. The antenna pattern is hemispheric in both receive and transmit. The repeater gain variation over $406.05 \text{ MHz} \pm 40 \text{ kHz}$ does not exceed 2 dB peak-to-peak.

The minimum satellite G/T is -22 dB/K and the EIRP is +30 dBm shared by 406 MHz distress signals when no transmission occurs on the DCP repeater. During DCP transmission, the 406 MHz beacons available EIRP drops by approximately 6 dB based on experimental results.

Link budgets for a 5° elevation angle and 8 simultaneous distress signals given in [14] for a GOES satellite at either 75° W or 135° W show that the minimum expected C/No is in the order of 30 dB-Hz.

The GOES satellites are maintained in their nominal orbital position within approximately $\pm 0.1^{\circ}$ in both the East-West and North-South axis.

Note that the current GOES satellite has a CW pilot that can be used for frequency tracking. In addition, time is disseminated at 468.8 MHz. This time code generated by atomic clocks is repeated every 30 seconds. Its accuracy is not currently known but commercial receivers offered by Kinemetrics/Truetime in California give an accuracy of 0.5 ms.

		:

		1
		:

4.0 GEOLOCATION TECHNIOUES

Geolocation refers to the determination of the location of a vehicle, object or person on earth. The location of signal sources is usually based on techniques which rely on one or a combination of frequency, time and spatial information. It is difficult to describe various geolocation techniques that can be based on a combination of this information. The approach taken here is to identify how the information can be used when a limited number of satellites is available. This is realistic and limits the study to practical cases. This section describes techniques applicable to one, two and more than two satellite systems in a general sense. The time difference of arrival technique is discussed in detail in the following sections.

4.1 ONE-SATELLITE SYSTEMS

In general, the geolocation systems based on a single satellite require special circuits to be built into the spacecraft. These circuits are, for instance, an interferometer, a steering antenna with an energy detector scanning the Earth as in [15] or a special antenna mounted on a spacecraft with a specific 3-dimensional motion as in [16,17]. Clearly these special circuits are not available on GOES satellites.

A technique that does not require special circuits is based on the residual velocity of the nearly geostationary satellites. Indeed geostationary satellites are never fully stationary because of the orbit perturbations such as the changes with time of the gravitational pull of the moon and to a lesser extent of the sun [18]. The geostationary satellites are usually maintained in their nominal positions with the East-West and North-South station keeping controls.

The slow geostationary satellite motion creates a small Doppler frequency shift. To have an idea of the order of magnitude of this Doppler shift, Slabinsky [18] gives an example with a $\pm 0.25^{\circ}$ East-West and $\pm 0.1^{\circ}$ North-South maximum position error and a satellite eccentricity ϵ for a station located at 40° North latitude and 50° West of the satellite meridian. The worst case satellite to ground station radial velocity is given by $(0.56+3100\epsilon)$ m/s. The amplitude of range variation at the ground station is 11.8 km/day about a mean value which changes less than 2.8 km/day. Although the GOES satellite eccentricity is not known, typical values for geostationary satellites are between 4.7×10^{-5} and 3.6×10^{-4} . With an eccentricity of 3.6×10^{-4} , it gives a maximum residual velocity of 1.68 m/s which corresponds to a maximum Doppler frequency shift of 2.27 Hz for a carrier at 406 MHz. This is obviously too small to be used in a positioning system as it would require very good short term oscillator stability on-board the

spacecraft and/or complex circuits on the ground station to measure accurately a fraction of this Doppler frequency shift.

In a similar way, the variation of time delay with time could be monitored to derive the source location. Although the knowledge of the time delay variation with time does not give us an unambiguous source position, it delineates an area to search. Based on the example above, the range variation is bounded to 11.8 km/day or 492 m/hour. This corresponds to a time delay variation of 1.6 μ s/hour. Given that this is a maximum rate of change which may be difficult to measure over such a long period of time and given that the goal of this system is to provide an "instantaneous" response, this information of the time delay variation is of little use.

4.2 TWO-SATELLITE SYSTEMS

The use of two satellites provides spatial diversity that can be exploited in a number of ways. First, the two satellite system can be seen as a phased array antenna with two elements and interferometer direction finding (DF) techniques can in principle be used. An interferometer relies on the phase or time difference of arrival between two or more antennas. It provides an unambiguous position location provided that the spacing between the two antennas is less than half a wavelength. When the distance exceeds half a wavelength, some techniques usually involving additional antennas must be used to resolve the ambiguity. Because the wavelength at 406 MHz is 0.73 m and the two satellites will likely be many degrees apart to have a maximum coverage area, this technique is not applicable.

An alternate approach would be to measure the time of arrival of the signals from each satellite. This technique has become very popular over the last few years. Several positioning systems based on this principle are currently available or under study [1-11, 19-22]. Although the type of signals and required equipment vary from one system to the other, they are all used to determine the position of the source based on the absolute time of arrival of the signal from two or more satellites or on the time difference of arrival between these signals.

In a two-way system where the source transmits only after being polled by the master station, the time delay is easily obtained from the time the signal left the master station and the time the reply is received. Signals received from two or more satellites are then used to estimate the source location. In a one-way system where the system can transmit at any time, there is no common time base and the position must be determined from the time difference between three or more satellites i.e. given the propagation delay differences between three or more satellites, it is

possible to determine where the source is located. For the location of the 406 MHz distress signals, only the one way technique is applicable and with only two satellites, the propagation delay difference from two satellites is insufficient to provide an unambiguous position location even if the satellite positions are known exactly. A minimum of three satellites is required for the one-way technique.

4.3 MORE THAN TWO-SATELLITE SYSTEMS

Basically, the techniques applicable to the two-satellite systems can also be extended to three or more satellites systems. As mentioned before if three satellites are used, then the beacon location can be determined using the time difference of arrival of the signals between each satellite and an estimate of the beacon altitude. The use of a fourth satellite makes the estimate of the altitude unnecessary. For the interferometer technique, the use of more satellites reduces the number of ambiguities but it is unlikely that it will be able to provide a good position location with practical satellite spacing.

		10 mm
		:

5.0 TIME DIFFERENCE OF ARRIVAL BASIC PRINCIPLE

The differential time of arrival technique was described briefly in the previous section. It is worthwhile to review its theory of operation in more detail. Figure 5.0-1 illustrates the scenario. When the beacon is activated, a 440 or 520 ms burst message is transmitted every 50 seconds nominally. The signal is received by two or more satellites, up-converted in frequency to the vicinity of 1.7 GHz and then relayed to a master station. The master station logs at which time the signal from each satellite was received and performs some processing (to be discussed below) to derive the beacon location. Because the beacon can be activated at any time, it is not possible to estimate the full time delay between the transmission from the beacon and the reception at the master station i.e. $T_1 + T_1'$ or $T_2 + T_2'$. This lead us in the previous section to consider the differential techniques. Referring to Figure 5.0-1 and assuming that the master station range to each satellite is known, then it is possible to get an estimate of the time difference of arrival given by : $\Delta T = T_2 - T_1$. This time delay corresponds to a differential range $\Delta R = R_2 - R_1$. Given this differential range and the satellite locations, it is possible to determine a line of position on the earth where the beacon transmitter could be located. To illustrate this, let us consider a perfectly spherical earth with satellites located above the equator in geostationary orbits at longitudes λ_{0i} where i=1 or 2. Considering the geometry shown in Figure 5.0-2, where the ground station is assumed to be located at latitude ϕ and longitude λ , the range to the satellite #i is given by :

$$R_i = R_e \frac{\sin \beta_i}{\sin \gamma_i} \quad \text{meters, } i=1,2$$
 (5.0-1a)

where R_e = equivalent radius of the earth = 6,370,997 meters

$$\beta_{i} = \cos^{-1} \left[\cos \varphi \cos(\lambda - \lambda_{0i}) \right]$$
 (5.0-1b)

$$\gamma_{i} = \tan^{-1} \left(\frac{\sin \beta_{i}}{R_{s}/R_{e} - \cos \beta_{i}} \right)$$
 (5.0-1c)

 R_S = satellite orbit radius = 42,157,197 meters

Figure 5.0-1 Overall Block Diagram of Distress Beacon Position Location System

Figure 5.0-2 Basic Geometry for the Computation of Satellite Ranges on a Spherical Earth (from [23])

Note that latitude is positive north and longitude is positive east in all of the above equations and in the remainder of this report. If we define $\Delta \lambda = \lambda - \lambda_{0i}$ and re-arrange, we obtain:

$$R_i = \sqrt{R_s^2 - 2R_sR_e \cos\varphi \cos(\Delta\lambda_i) + R_e^2}$$
 (5.0-2)

and

$$\Delta R_{ij} = R_j - R_i$$

A computer program based on existing software for satellite spherical geometry calculation has been developed to implement these equations. By trial and error, it finds the station longitude that generates a given differential range $\Delta R \pm \delta$ for given satellite locations (λ_{01} and λ_{02}). Figure 5.0-3 illustrates graphically the results for $\lambda_{01} = 135^{\circ}\text{W}$, $\lambda_{02} = 75^{\circ}\text{W}$, $\Delta R = 200$ km and $\delta = 1$ meter.

To resolve the positioning ambiguity obtained from two satellites, a third satellite must be used to generate at least another positioning line. The intersection of two such lines gives the beacon transmitter location. Figure 5.0-4 illustrates this process for a transmitter located at Ottawa (45.35°N, 75.9°W) and three satellites located respectively at 75°W, 105°W and 135°W. The differential ranges were:

$$\Delta R_{12} = 622,078.35 \text{ m}$$

 $\Delta R_{23} = 1,724,172.32 \text{ m}$
 $\Delta R_{13} = 2,346,250.67 \text{ m}$

Accordingly the accuracy to which we can locate the terminal is limited by the computation accuracy for this ideal case. In the following sections, we introduce some perturbations to this model which will add some errors to the estimated differential ranges. It is interesting to note that in absence of errors we should always have:

$$\Delta R_{12} + \Delta R_{23} - \Delta R_{13} = 0$$

This simple relationship could be used in an operational system as a measure of the quality of the estimate.

 $F_{igure\ 5.0-3}$ Position Line Generated with Satellites at 75°W and 135°W and a Differential Range of 200 km.

Figure 5.0-4 Position Lines For Three Satellites (75°W, 105°W and 135°W). The Station is at the Intersection of the Lines i.e. in Ottawa.

6.0 TDOA PERTURBATIONS

6.1 NON-SPHERICAL EARTH

In Section 5.0 we assumed a spherical earth. In practice, the earth is better represented as an oblate spheroid¹ with equatorial radius **a**, eccentricity **e** and semi-major axis **b** (see Figure 6.1-1). The semi-major axis **a** and the semi-minor axis **b** are related by:

$$\mathbf{b} = \mathbf{a}\sqrt{\left(1 - \mathbf{e}^2\right)} \tag{6.1-1}$$

When using such an earth model, it is important to make the distinction between **geocentric** and **geodetic** latitudes. Figure 6.1-1 shows the point P with geocentric latitude θ and geodetic latitude ϕ . The local height above the surface of the earth is given by the length of the normal to the oblate spheroid. The geodetic (ϕ) and geocentric (θ) latitudes are related by the following:

$$\tan \theta = (1 - e^2) \tan \phi \tag{6.1-2}$$

To find the point on the earth which generated a given differential range from two given satellites, an approach different than the one in the previous section must be used. Indeed, it is easier to work in what is called the earth centered earth fixed (ECEF) (x,y,z) coordinate system than with spherical coordinates. In the ECEF coordinate system, the origin is at the earth center of mass, the x-axis goes through the Greenwich meridian at the equator, the z-axis is the polar axis and the y-axis completes the right-hand coordinate system.

Using the notation of Figure 6.1-1 and assuming that the beacon transmitter is located on the earth (i.e. it is not on a flying aircraft), then the point P corresponds to geodetic latitude φ , and longitude λ . The ECEF coordinates of the point P are given by :

$$X = (r+h)\cos(\varphi)\cos(\lambda) \qquad (6.1-3a)$$

$$Y = (r+h)\cos(\phi)\sin(\lambda) \qquad (6.1-3b)$$

$$Z = [(1-e^2)r + h] \sin(\varphi)$$
 (6.1-3c)

An ellipsoid is an exact Earth model but the use of an oblate spheroid model simplifies significantly the geometry and introduces insignificant errors.

 ϕ : geodetic latitude of point P

 λ : geodetic longitude of both P and P₁

h: altitude normal to reference oblate spheroid

a: oblate spheroid equatorial radius = 6,378,137 m based on World Geodetic System 1984 (WGS-84) [43]

e: eccentricity of reference oblate spheroid e = 0.0818191908426214957 (WGS-84)

b: oblate spheroid polar radius = $a \sqrt{1 - e^2}$

 $\boldsymbol{\theta}$: geocentric latitude of point P

 ψ : geocentric latitude of point P_1

Figure 6.1-1 Oblate Spheroid Earth Model (figure from [24])

where

$$r = \frac{a}{\sqrt{\left(1 - e^2 \sin^2 \phi\right)}} \tag{6.1-3d}$$

h = 0 for the beacon transmitter

Given the sub-satellite geocentric latitude and longitude (θ_0, λ_0) , the satellite ECEF coordinates (X_0, Y_0, Z_0) can be found using equations (6.1-2) and (6.1-3), where the altitude above the earth (h) can be approximated to the difference between the satellite orbit radius and the earth semi-major axis a. Because the sub-satellite latitude is small, this approximation has little impact on the overall result. The range from point P to the satellite is then given by:

$$R = \sqrt{(X_0 - X)^2 + (Y_0 - Y)^2 + (Z_0 - Z)^2}$$
(6.1-4)

So by trial and error, the point on the earth in terms of latitude and longitude which generates a given differential range for two given satellites can be found using equations (6.1-3) and (6.1-4). A similar approach was taken in [7] to find the user's location based on differential ranging from three satellites and using spherical geometry.

A computer program to perform this computation is given in Appendix A with an example of its output. The accuracy of the solution given by this program is limited to approximately 10^{-7} degrees $(3.6 \times 10^{-4} \text{ seconds})$ or by the accuracy imposed by the user in terms of allowed differential range error.

6.2 GEOSTATIONARY SATELLITE MOTION

6.2.1 Impact on Position Accuracy

In practice the geostationary satellites are never perfectly stationary with respect to the rotating earth as discussed in Section 4.1. Even if a satellite could be placed on a synchronous orbit with zero eccentricity, zero inclination and zero longitude drift rate, the satellite motion would soon depart from this geostationary condition because of the orbit perturbations [18]. For instance, the gravitational pull of the sun and moon can change the orbit inclination by 0.005° /day, and the earth's oblateness can give a longitude acceleration of 0.0016° /day². In general, the satellites are kept to their nominal position within a given north-south and east-west station keeping errors. As mentioned in Section 3.0, the GOES satellites are maintained at their nominal position to within $\pm 0.1^{\circ}$. This specification does not however take into account the range variation of the satellite. In practice, the satellite motion prediction and analysis is a very complex task. Slabinsky in [18] analyzed a simplified scenario where some perturbations of the sun and moon were neglected. He basically came out with two useful graphs to estimate the variation of the satellite range as a function of orbit eccentricity and inclination. Figures 6.2.1-1 and 6.2.1-2 report these graphs. They give the range variation for a satellite to ground station longitude difference ($L_{\rm m}$ - $L_{\rm e}$) and ground station latitude. The worst case range variation is given by:

$$\delta R_{\text{max}} = |A_i| + A_e$$

where A_i is the range variation due to the orbit inclination and A_e is the one due to the orbit eccentricity. Assuming a worst case inclination of 0.1^o and an eccentricity of 3.6×10^{-4} for the GOES satellite as in Section 4.1, the maximum range variation can be found to be given by:

$$(A_i)_{max} = 111.3 * 0.1 = 11.13 \text{ km}$$

$$(A_e)_{max} = 43.58 * 0.36 = 15.69 \text{ km}$$

Having determined the maximum range error when considering the satellites to be perfectly stationary, let us look at the impact on the beacon transmitter location. There are two ways this can be examined. First, a change in the satellite position from the nominal one will result in another position line. So, it is possible to visualize graphically the impact of the satellite motion. However, this will be of little use because the scale used for the map is so large that two position

LONGITUDE DIFFERENCE $|L_m-L_e|$ BETWEEN SATELLITE AND STATION (DEG)

Figure 6.2.1-1 Amplitudes for inclination part of variations, nA_i for range-rate and A_i for range.

(Notes: For south latitudes, take negative of quantity for corresponding north latitude. For other inclinations i, multiply quantity from graph by i degrees.)

(from [18])

Figure 6.2.1-2 Amplitude for eccentricity part of variations, nA_e for range-rate and A_e for range-(Notes: For other eccentricities e, multiply quantity from graph by 1000e). (from [18])

lines a few kilometers away will be very close to each other. A better approach is to compute the distance between the two lines.

The distance between any two points on the earth has been modeled by several investigators. Ludvik [25] gives two Fortran computer programs to compute the geodetic distance between two points for two techniques i.e. Bowring's inverse algorithm and Vincenty's direct algorithm. Both techniques are accurate, but Vincenty's is slightly better. These programs have been adapted to a Macintosh personal computer (see Appendix B) and have been tested using the known true distance between a set of points as described in [26].

With satellites located at 135°W and 75°W, two position lines were generated which corresponded to 200 km and 215 km range difference. The shortest distance between two points on the same parallel and lying on these position lines was computed. Table 6.2.1-1 shows the results for a few points. These results clearly show that the range difference directly impacts on the accuracy of the position location and that the positioning accuracy is on the same order as the range difference for a satellite spacing of 60° and a range difference of 200 km (a detailed analysis of the position dilution of precision (PDOP) factor is presented in Section 8.0). It is clear from the above results that the satellite positions must be monitored at all time.

Latitude (degrees)	Longitude (degrees)		Distance (km)	
	0 km range error	15 km range error		
22.96	103.2756348	103.1462402	13.27	
45.92	102.6359253	102.4584656	13.77	
72.16	99.3142700	98.8860779	14.65	

Table 6.2.1-1 Distance Between Position Fixes Generated Using Satellites at 135°W and 75°W with Range Errors of 0 km and 15 km over a Nominal Range Difference of 200 km.

6.2.2 Satellite Position Tracking

In the previous section, it was shown that the geostationary satellite motion could induce a significant amount of errors on the position location of the beacon and it was concluded that the satellite positions must be monitored. There are several ways to track the geostationary satellite motion. The satellite provider usually keeps track on a monthly basis (if not more frequently) of the satellite position and fires the thrusters to maintain the satellite on its orbit every now and then (corrections are typically required every 10-15 days for a station keeping of 0.1° in both axis). Although constant communications could be maintained with the satellite provider, it is worthwhile to look at other techniques which could be used.

First of all, we have available the equipment to perform differential ranging and it is intuitively attractive to look at techniques to use this resource to locate the satellites. If reference beacons with exactly known locations are used, then the measured differential range could be used to determine the satellite positions. There are various techniques that can be used to do so.

A straightforward technique is to revert to the process discussed in the previous sections i.e. use known reference beacon locations to find the position of the satellites. Six reference stations are required because we use two satellites at a time and six equations are required to solve for the six unknown variables i.e. the (x,y,z) coordinates of the two satellites.

If we denote the satellite coordinates by (X_i, Y_i, Z_i) , i=1,2 and the six reference station coordinates by (x_i, y_i, z_i) i=1,...,6, then we have :

$$\Delta R_i = \sqrt{(X_2 - x_i)^2 + (Y_2 - y_i)^2 + (Z_2 - z_i)^2} - \sqrt{(X_1 - x_i)^2 + (Y_1 - y_i)^2 + (Z_1 - z_i)^2}$$
 (6.2.2-1)

for i=1,...,6 where ΔR_i is the measured differential range. This set of nonlinear equations can be solved by using a Taylor series expansion and by considering only the first order terms. If we define:

$$F_{i} = \Delta R_{i} - \sqrt{(X_{2} - x_{i})^{2} + (Y_{2} - y_{i})^{2} + (Z_{2} - z_{i})^{2}} + \sqrt{(X_{1} - x_{i})^{2} + (Y_{1} - y_{i})^{2} + (Z_{1} - z_{i})^{2}}$$
(6.2.2.1)

then in matrix notation, we have to solve the following set of equations:

$$\begin{bmatrix} \frac{\partial F_{1}^{0}}{\partial X_{1}} & \frac{\partial F_{1}^{0}}{\partial Y_{1}} & \frac{\partial F_{1}^{0}}{\partial Z_{1}} & \frac{\partial F_{1}^{0}}{\partial X_{2}} & \frac{\partial F_{1}^{0}}{\partial Y_{2}} & \frac{\partial F_{1}^{0}}{\partial Z_{2}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_{6}^{0}}{\partial X_{1}} & \frac{\partial F_{6}^{0}}{\partial Y_{1}} & \frac{\partial F_{6}^{0}}{\partial Z_{1}} & \frac{\partial F_{6}^{0}}{\partial X_{2}} & \frac{\partial F_{6}^{0}}{\partial Y_{2}} & \frac{\partial F_{6}^{0}}{\partial Z_{2}} \end{bmatrix} \begin{bmatrix} dX_{1} \\ dY_{1} \\ dZ_{1} \\ dX_{2} \\ dY_{2} \\ dZ_{2} \end{bmatrix} = \begin{bmatrix} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \end{bmatrix}$$

$$(6.2.2-3)$$

where $\partial F_i{}^0/\partial U_j$ is $\partial F_i/\partial U_j$ evaluated at $(X_k{}^0,Y_k{}^0,Z_k{}^0)$, k=1,2 which is an initial good estimate of the satellite position (e.g. their nominal positions). Solving this equation gives (dX_k,dY_k,dZ_k) k=1,2 which can be used to form the next best estimate i.e.:

$$X_k^1 = X_k^0 + dX_k$$

$$Y_k^1 = Y_k^0 + dY_k$$

$$Z_k^1 = Z_k^0 + dZ_k$$

$$k=1,2$$

The process can then be repeated with each new estimate. Because the solution is convergent, the iterations can be stopped when the dX's, dY's and dZ's are less than ε . Based on the computer results of several examples, it has been noticed that only a few repeats are required (e.g. typically 3-5).

When random differential range measurement errors are introduced, the set of equations can still provide a solution but the solution only represents the satellite positions with the erroneous differential ranges. The amount of errors in the satellite position is a function of the differential range error and the geometry made by the satellites and the reference stations. The latter is referred to as the position dilution of precision (PDOP) factor which will be developed later on for the beacons. Briefly, it is the factor that must multiply the range error to obtain the user Position error. This factor is completely determined by the geometry of the system.

The analytical equations for determining the PDOP as a function of the satellite and reference station locations have not been derived. However, it is easy to understand conceptually that the PDOP factor will be very large due to the fact that the satellites view the reference stations lying in a very small cone with very little spatial discrimination. Accordingly, even if the reference

stations are selected to give the best PDOP, computer simulations of a few cases have showed that the PDOP is between 10-80. So a differential range measurement of 100 meters (about the minimum in the differential mode) would result in a satellite position error of approximately 1-8 km! Clearly this is not satisfactory and other techniques must be considered.

One possible alternate technique is to use an absolute range measurement instead of a differential one. This requires the reference stations and a master station to be time synchronized which is difficult to achieve but this problem was left aside temporarily. Unfortunately, again it has been found that the large PDOP was the main detrimental element which kept the accuracy above 1 km for a 100 meters range error. Other techniques were also investigated but none provided any better solution than the 1000 meters error on the satellite positions. Such an error is intolerable and we must rely on the satellite provider to make available the satellite position information with enough accuracy.

The satellite provider is equipped with sophisticated tools such as frequent bearing and range measurements, orbit models, Kalman filters, etc. to keep track of the satellite position. For our application, it would be ideal to receive continuously from the satellite (e.g on a beacon signal) its current estimated position. Because the satellite provider has all the tools to compute and predict the satellite position with very high accuracy, it will require a minimum effort on their part to make this information available to all users. As a minimum, the availability of the ephemeris data can be useful for our application but it would still require a significant amount of processing to come out with good predicted satellite positions.

The accuracy to which one can estimate the satellite position depends strongly on how often measurements are made and how sophisticated is the orbit model. In [7] and [21] the satellite position is assumed to be predicted to within 20 m in all axis. Although it is not explicitly explained how this number is derived, we will assume in the following that this accuracy can be achieved.

6.3 CHANNEL DELAYS

The terminal measures the time delay between the signals received from different satellites and to find the range difference, this time delay is divided by the wave velocity in the channel. The wave velocity in the atmosphere is often approximated to 2.9979x10⁸ m/s but in practice it is not constant with time. There are two layers of the atmosphere which contribute to this velocity variation. They are the ionosphere and the troposphere.

6.3.1 The Ionosphere Delay

The range error assuming a wave velocity c for the ionosphere is given by [41]:

$$\Delta R = \frac{40.3}{f^2} \text{ TEC}$$
 (6.3.1-1)

where TEC is the total electron content along the path in electrons/m², and f is the frequency of interest in Herrz

Alternately equation (6.3.1-2) can be rewritten as:

$$\Delta R = \frac{40.3}{f^2} f(\theta) TEC_v$$
 (6.3.1-2)

Where TEC_V is the vertical total electron content and :

$$f(\theta) = sec[sin^{-1} \{0.94792 cos(\theta)\}]$$
 (6.3.1-3)

and θ is the elevation angle. The factor $f(\theta)$ varies between 1 at zenith and 3.1 at 0^{o} elevation angle.

The true range is always less than the one measured assuming a velocity $c = 2.9979 \times 10^8$ m/s and accordingly ΔR is always positive. The TEC is a function of many variables including short and long term changes in solar ionizing flux, magnetic activity, season, time of day, user location and viewing angle. The TEC varies typically between 10^{16} and 10^{19} el/m². Figure 6.3.1-1 shows the time delay introduced by the ionosphere for various values of TEC. At 406 MHz, the range error is between 2.44 m and 2.44 km. However it is mentioned

Figure 6.3.1-1 Ionospheric Time Delay Versus Frequency for Various Values of Electron Content (from [27])

in [28] that a typical TEC value is $2x10^{17}$ el/m² corresponding to a delay of 49 m. In addition, the TEC exceeds $5x10^{17}$ el/m² approximately 10 % of the time and it rarely exceeds 10^{18} el/m² which clearly limits the delay to 244 m for all practical cases in the mid to upper latitude regions.

The TEC spatial variation is relatively smooth. Thus if the two satellites are close to each other, the beacon signal for each satellite can be assumed to go through the same ionospheric region with relatively constant TEC. Because we are interested in the time difference of arrival, the ionospheric delay would then cancel out. Table 6.3.1-1 from [29] shows the amount of ionospheric delay that does not cancel out as a function of the station separation when the stations are looking at the same GPS satellite. Our application is slightly different but these results can be used to estimate the amount of delay cancellation using the differential technique.

Using the relationships given in equations (6.3.1-2) and (6.3.1-3), we see that the residual delay after differential timing is given by:

$$r = \frac{TEC_{v2}f(\theta_2)}{TEC_{v1}f(\theta_1)} = \frac{g(d)TEC_{v1}f(\theta_2)}{TEC_{v1}f(\theta_1)} = g(d)\frac{f(\theta_2)}{f(\theta_1)}$$

where g(d) is a factor depending on the distance (d) between the two stations. Whether g(d) is a linear function of distance or not, we can postulate that if the distance between the two signals passing through the ionosphere remains constant, then g(d) is constant and the residual delay relative to the GPS case is increased by the ratio of $f(\theta_2)/f(\theta_1)$. For instance, let us consider a simple case where the beacon is located on the equator exactly between the two satellites spaced by α degrees, then their elevation angles are given by:

$$\theta_{i} = \tan^{-1} \left[\frac{\cos(\alpha/2) - \frac{R_{e}}{R_{s}}}{\sin(\alpha/2)} \right]$$

$$i=1,2$$

where R_e and R_s are defined in Section 5.0.

When the beacon is moved along the equator, it can be shown that the difference between the elevation angles will increase up to a maximum when one of the satellite is at the horizon. For a 300 spacing between satellites, this maximum is approximately 390. When the beacon is moved along the 45th parallel, this maximum is reduced to approximately 20°. So, for location techniques of interest to Canada and for a given distance between the signals passing through the ionosphere,

Station Separation		Residual Delay (%)
(nmi)	(km)	
0	0	0
1	1.852	2
10	18.52	8
50	92.60	17
100	185.2	24
500	926.0	52
1000	1852.0	71
2000	3704.0	91

Table 6.3.1-1 Differential Ionospheric Delay Reduction (from [29])

Distance Between Signals Over the Ionosphere		Residual Delay	
(nmi)	(km)		
0	0	0	
1	1.852	4.4	
10	18.52	17.2	
50	92.60	37.4	
100	185.2	52.8	
500	926.0	100.0	
1000	1852.0	100.0	
2000	3704.0	100.0	

Table 6.3.1-2 Minimum Differential Ionospheric Delay Reduction for the Time Difference of Arrival Location Technique Assuming a 30° Satellite Spacing and for Canada

the residual delay given in Table 6.3.1-1 should be increased by a factor of $f(20^{\circ})=2.2$ and up to a maximum residual delay of 100% meaning total uncorrelation. Table 6.3.1-2 shows the modified values.

The distance between the two signal paths passing through the ionosphere is a function of the elevation angle and satellite spacing. This distance is minimum for a beacon located on the equator. Referring to Figure 6.3.1-2 which represents the simple case when the beacon is located midway between the two satellites and on the equator, we find that the distance d is given by:

$$d = 2 \beta (R_e + R_{iono})$$

$$\beta = 2\tan^{-1} \left[\frac{\tan\left(\frac{a+b}{2}\right)\cos\left(\frac{A+B}{2}\right)}{\cos\left(\frac{A-B}{2}\right)} \right]$$

$$b = \sin^{-1} \left(\frac{\sin a}{\sin A} \right)$$

$$a = R_{iono}/R_e$$

$$B = 90^{\circ}$$

where R_{iono} is the ionosphere mean altitude above the earth (assumed to be 350 km), R_e is the earth radius and A,B are the angles opposite to sides a and b respectively defined in Figure 6.3.1-2. Note that the above trigonometric functions must be performed in radians. With a satellite spacing of 30° we get A=72.375°, a=0.05494, b=0.057617, d=217.24 km. Table 6.3.1-2 shows that between 52 and 100 % of the delay is not cancelled for a distance of 217 km. This represents the best case for Canada where the distance increases with the latitudes, and it is clear that a model to estimate the ionospheric delay is required.

It is possible to estimate the TEC or to eliminate it in equation (6.3.1-1) using a second signal frequency. Indeed, when we apply equation (6.3.1-1) to two signals with different frequencies, we have:

Figure 6.3.1-2 Model for the Discussion of the Ionospheric Delay Spatial Correlation

$$\Delta t_2 = \frac{40.3}{\text{cf}_2^2} \text{ TEC}$$

$$\Delta t_1 = \frac{40.3}{\text{cf}_1^2} \text{ TEC}$$

$$\delta t = \Delta t_2 - \Delta t_1$$
(6.3.1-4)

where Δt_1 is the time delay at frequency f_1 and δt is the time delay between the two signal frequencies transmitted by a single receiver at the same time and measured at a receiver. Rearranging the above equations we find that:

$$\Delta t_1 = \frac{f_2^2}{f_1^2 - f_2^2} \, \delta t \tag{6.3.1-5}$$

Knowing the time delay introduced by the ionosphere (Δt_1) , we can find the range error ΔR introduced by the ionosphere and make the appropriate correction. A second frequency is however not available in the search and rescue system.

When only a single frequency signal is available, one is required to predict, as much as Possible, the range error based on ionospheric conditions. A great deal of effort has been deployed to find such models for the Global Positioning System (GPS) operating at 1.5 GHz. Klobuchar [30] mentioned the use of a relatively simple model where approximately 50 % of the error introduced by the ionosphere can be corrected. With a state of the art model, up to 70 to 80 % can be compensated. Given that the time delay varies approximately with 1/f² for f>100 MHz, it is possible to use the GPS single frequency correction technique discussed in [30]. This technique however requires the use of some coefficients transmitted by the GPS satellites. These coefficients which required updating about every ten days are used to model the amplitude of the TEC variation. It would therefore be possible to read these coefficients from the GPS signal and apply the correction factor determined by the technique discussed in [30].

From the above discussion, it is clear that the best approach is to rely on the GPS technique and to scale the results by a factor of $(1575.42/406)^2=15.057$. Although this approach means that a GPS receiver must be available, it is considered significantly simpler than trying to re-derive the parameters in the broadcast channel. The GPS system can provide an ionospheric rms range error of 4.5-10 m [31] which translates at 406 MHz to a maximum rms range error of $\sigma_{iono}=150$ m. Note again that in the absence of an ionospheric model, we could expect an error of 244 m for

most of the time. These errors will be used in Section 9.0 to derive the overall positioning accuracy.

6.3.2 The Troposphere Delay

The troposphere range error is caused by two effects: angular bending of the waves which increases the path length with reference to free space and a decrease in propagation velocity. Both effects result from a change in the refraction index as a function of altitude in the troposphere and are essentially independent of frequency up to 30 GHz. The range correction factor is fully described in [32] and after some simplifications we obtained:

$$\Delta R = f(\theta) * \Delta R(h) \tag{6.3.2-1}$$

where $\Delta R(h)$ is given by:

for $0 < h \le 1 \text{ km}$

$$\Delta R(h) = (2464.4042 - 324.8h - 22.39578h^2)$$
 mm (6.3.2-1a)

for $1 < h \le 9 \text{ km}$

$$\Delta R(h) = \left[2283.7805 \exp\left(\frac{1-h}{8.1561}\right) - 124.3926 \right] \text{ mm}$$
 (6.3.2-1b)

for $9 \text{ km} < h \leq h_{\text{sat}}$

$$\Delta R(h) = [2656.26 \exp(-0.1424h)] \text{ mm}$$
 (6.3.2-1c)

and $f(\theta)$ is given by:

$$f(\theta) = \frac{1}{\sin \theta + \frac{0.00143}{\tan \theta + 0.0455}} \approx \frac{1}{\sin \theta}$$
 (6.3.2-2)

where h is the altitude of the transmitter (in kilometers) above the sea level, θ is the elevation angle to the satellite and h_{Sat} is the satellite altitude. Because the altitude above the sea level does not

exceed approximately 4 km in Canada, only equations (6.3.2-1a) and (6.3.2-1b) are of interest here. In general, h is not known a priori, however, if required it can be estimated using an electronic data base. The position is then estimated using h=0, the altitude for that estimated position is found from the data base and calculations are then repeated with a new h. In the following, we assume h=0 and neglect the error introduced which is about 1 m for the worst case in Canada.

For the tropospheric range error, a residual error of less than 4 m can be expected for 95% of the time [31] with the above model and exact h. A bias of 1 m can be assumed for the tropospheric model when h is assumed zero for Canada. Looking at the above equation, it can be found that an error as large as 78 meters (θ =0 and h=0) can be expected if the troposphere model is not implemented.

		i

7.0 ESTIMATION OF THE TIME DIFFERENCE OF ARRIVAL

Up to now, we have looked at all the external perturbations of time difference of arrival estimates. It is time to look at the accuracy of the time of arrival estimation itself. The problem consists of determining the delay between a single signal relayed via two satellites to a control ground station. The content of the two received signals is identical but the phase and amplitude may be different. In addition, there may be other signals present with signal characteristics close to the ones of interest. In the following, we first determine the maximum time difference that can be expected. Then, we discuss the problem of time difference estimation relayed via two satellites.

It is assumed that the control ground station receiver for each satellite link is as illustrated in Figure 7.0-1 where the frequency down-converter is locked to the satellite beacon and therefore the frequency offset between two or more satellites can be assumed to be zero. The signal at the input of the delay estimator is assumed centred on a 5 kHz IF which corresponds to the minimum intermediate frequency as required by the long term frequency stability of the beacon transmitter.

7.1 MAXIMUM TIME DIFFERENCE OF ARRIVAL

The maximum time difference of arrival is a function of the satellite spacing. In order to get an idea of the magnitude of the maximum delay, we use the spherical geometry introduced in Section 5.0. The maximum delay between a signal received via two satellites occurs for a station when one of the satellites is seen with the minimum operating elevation angle. The elevation angle when the earth is assumed a sphere is given by:

$$\theta = \tan^{-1} \left[\frac{\cos \beta - R_o / R_s}{\sin \beta} \right]$$
 (7.1-1)

where all variables have been defined in Section 5.0 under equations (5.0-1a), (5.0-1b) and (5.0-1c). Using the following trigonometric identity:

$$\sin\left(\tan^{-1}x\right) = \frac{x}{\sqrt{1+x^2}} \tag{7.1-2}$$

Figure 7.0-1 Basic Satellite Receiver Configuration

and applied to equation (5.0-1a) gives for the range to each satellite:

$$R_i = R_e \sqrt{\left(\frac{R_s}{R_e}\right)^2 - 2\frac{R_s}{R_e}\cos\beta_i + 1}$$
 $i = 1,2$ (7.1-3)

where $cos(\beta_i) = cos(\phi) cos(\lambda - \lambda_i)$

 λ_i is the longitude of satellite #i

 (ϕ, λ_i) are the coordinates of the beacon transmitter.

The differential range is then given by:

$$\Delta R = R_1 - R_2 \tag{7.1-4}$$

where the satellite #1 is assumed to be seen by the beacon transmitter with an elevation angle $\theta_1 = \theta_{min}$. For a given θ_{min} we can solve equation (7.1-1) to obtain the corresponding β . For $\theta_1 = \theta_{min} = 5^{\circ}$ we get $\beta_1 = 76.33855^{\circ}$ which when applied to equations (7.1-3) and (7.1-4) gives :

$$R_1 = 6.4544 R_e$$

$$\Delta R = R_e \left[6.4544 - \sqrt{\left(\frac{R_s}{R_e}\right)^2 - 2\frac{R_s}{R_e}\cos\beta_2 + 1} \right]$$
 (7.1-5)

This last equation is maximized when $cos(\beta_2)$ is maximized. Using equation (5.0-1b) applied to both satellites, we have :

$$cos(\beta_1) = cos(\phi) cos(\lambda - \lambda_1)$$
 from which $cos(\phi) = \frac{cos(\beta_1)}{cos(\lambda - \lambda_1)}$

and

$$\begin{split} \cos(\beta_2) &= \cos(\varphi) \cos(\lambda - \lambda_2) = \frac{\cos(\beta_1)}{\cos(\lambda - \lambda_1)} \cos(\lambda - \lambda_2) \\ &= \frac{\cos(\beta_1)}{\cos(\lambda - \lambda_1)} \left\{ \cos \lambda \cos \lambda_2 + \sin \lambda \sin \lambda_2 \right\} \\ &= \frac{\cos(\beta_1)}{\cos(\lambda - \lambda_1)} \left\{ \left[\cos^2 \lambda_1 + \sin^2 \lambda_1 \right] \left(\cos \lambda \cos \lambda_2 + \sin \lambda \sin \lambda_2 \right) \right\} \end{split}$$

using basic trigonometric identities. After some manipulations we get:

$$\cos \beta_2 = (\cos \beta_1) [\cos(\lambda_1 - \lambda_2) - \tan(\lambda - \lambda_1) \sin(\lambda_1 - \lambda_2)]$$
 (7.1-6)

The above equation is maximized when $|(\lambda - \lambda_1)|$ is maximized and :

$$(\lambda_1 - \lambda_2 < 0 \text{ and } \lambda - \lambda_1 > 0) \text{ or } (\lambda_1 - \lambda_2 > 0 \text{ and } \lambda - \lambda_1 < 0)$$

With
$$cos(\beta_1) = cos(\phi) cos(\lambda - \lambda_1)$$

the maximization of $|(\lambda - \lambda_1)|$ is equivalent to the minimization of $\cos(\lambda - \lambda_1)$ for a given β_1 . This is achieved when $\cos(\varphi)$ is maximum i.e. at $\varphi=0$ when the beacon is located on the equator. In this case, $(\lambda - \lambda_1)_{max} = \beta_1$ and equation (7.1-6) becomes:

$$(\cos \beta_2)_{\max} = (\cos \beta_1) \left[\cos(\lambda_1 - \lambda_2) + \tan \beta_1 \sin(\lambda_1 - \lambda_2) \right]$$
 (7.1-7)

Substituting equation (7.1-7) into equation (7.1-5), we can find the maximum range difference as a function of the satellite spacing $|\lambda_1-\lambda_2|$. Table 7.1-1 shows the maximum time difference of arrival as a function of satellite spacing. Because Canada spans approximately 140° in longitude, it is fair to assume that the spacing between two adjacent satellites will not exceed 70° which corresponds to a maximum delay of about 18 ms.

Satellite Spacing (degrees)	Max. Delay (ms)	
5	1.84	
10	3.65	
15	5.41	
20	7.11	
25	8.74	
30	10.28	
35	11.71	
40	13.02	
45	14.20	
50	15.22	
55	16.09	
60	16.79	
65	17.31	
70	17.64	
75	17.79	

Table 7.1-1 Maximum Delay as a Function of Satellite Spacing When the Minimum Operating Elevation Angle is Set at 5°.

7.2 DELAY ESTIMATION

There are basically two tasks that must be performed in the time difference of arrival processor. First, we have to detect that a beacon signal is present and second we have to estimate the delay between the three received signals. The detection problem has been addressed in a previous project where a detector based on a spectral estimator has been designed and has been shown to perform very well in an operational scenario (see [33]). Although we could address the problem in a general sense i.e. treat the problem as a detection and estimation problem, it is in general, less difficult to design an optimum processor for either detection or estimation than to design the combined one. The loss of optimality is in general low for such an approach. So in the following it is assumed that the detection process has been performed and we have been given an indication that a signal has been detected. In addition, we will further assume that three detectors are available to process the signal received from each satellite in parallel. The latter assumption allows us to assume that we know which signal is received first, second and third so that the problem is simplified to an estimation of the delay between signals and this eliminates the uncertainty present when both delay and advance can occurred.

It is important in designing a processor to consider what is known. Although in the ideal situation we would like to have a processor which needs to know very little about the signal itself (this is required for the DND's applications where the interfering signal is not known a priori), the complexity of the processor is generally proportional to the amount of unknowns. For the case of distress beacons localization:

- a) we know that the signal starts with a 160 ms un-modulated carrier followed by a known and constant 24 bit pattern;
- b) we know the signal period and the statistical law that governs the repetition period;
- c) we know that in an operational scenario there could be other signals interfering with the one of interest:
- d) we have a "rough" estimate of the frequency of the carrier as derived from the detection processor;
- e) based on the knowledge of the frequency, we could refine the estimate of the carrier frequency to 1) bring the signal to baseband and reduce the noise bandwidth thus

improving the processor input SNR, and 2) to demodulate the signal to recover the modulation bits;

- f) we know that the delay is less than 18 ms;
- g) finally, we know which signal is in advance relative to the other one.

The first five characteristics have been exploited in the GOES processor [33] to perform distress detection. Thus if a processor equivalent to the GOES one is assumed available, we have some means to recover the information bits in addition to the characteristics of f) and g).

From the parameter estimation theory, the optimum delay estimator in the Maximum Likelihood (ML) sense for signals embedded in additive white Gaussian noise (AWGN) is given by \widehat{T} which satisfies the following [44]:

$$\left[\frac{2}{N_o}\int_0^{\tau_b} \left\{r_i(t) - s(t,T)\right\} \frac{\partial s(t,T)}{\partial T} dt\right]_{T=\widehat{T}} = 0$$
 (7.2-1)

where $r_i(t)$ is the received signal for satellite #i, s(t,T) is the noise free signal with delay T, T_b is the observation period and N_0 is the noise power spectral density. Although this equation does not give too much insight on how to implement the estimator, after some manipulations and approximations, it can be shown that this is equivalent to choosing \widehat{T} such that the correlation between $r_i(t)$ and $s(t,\widehat{T})$ is maximum.

When applied to the system of interest, the correlation must be performed between the two noisy received signals assuming that we do not know the information in the beacon signal. Figure 7.2-1 shows how such a processor can be implemented digitally. It is clear that the estimator accuracy is limited by the number N of correlators used to cover the 18 ms uncertainty over a certain range of SNR and by noise thereafter. Because the signal SNR of interest is low

Figure 7.2-1 Block Diagram of Optimum Estimator

(e.g. as low as -10 dB for and input filter bandwidth of 10 kHz), our estimate accuracy will likely be limited by noise.

The above processor is difficult to analyze because we have the product of two noisy terms at the output of the correlator. This problem is similar to the design of an optimum differential demodulator where the approximation used to result in manageable noise statistics consists of assuming that the SNR is large enough to make the product of the noise terms to be negligible relative to the other terms [37]. When making this assumption, the correlator outputs are assumed to contain twice as much noise as in the case of one noisy signal.

The signal-to-noise ratio (SNR) at the input of the correlator is given by :

$$(SNR)_{in} = \frac{C}{NoB_{in}}$$

Where B_{in} is the input noise bandwidth. The variance of the noise being the noise power, we have:

$$\sigma_i^2 = N_0 B_{in} = \frac{1}{(SNR)_{in}}$$

Where C=1 has been assumed. The correlator can be seen as a filter which reduces the noise bandwidth by the product $B_{in}T_b$ where T_b is the correlation period. At the output of the correlator, we have a variance equal to :

$$(\sigma_1)^2 = \frac{{\sigma_i}^2}{(B_{in}T_b)} = \frac{1}{(C/N_0)T_b}$$

and when the doubling effect is taken into account, the correlator outputs have a variance given by:

$$\sigma^2 = \frac{2}{(C/N_0)T_h}$$

Which is independent of the delay. Defining R_i as the autocorrelation level for a delay of it and assuming for now that both signals are aligned (i.e. they have no delay), the density function of the correlator outputs (ℓ_i 's) is given by:

$$f(\mathcal{l}_i) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left\{ \frac{-(\mathcal{l}_i - R_i)^2}{2\sigma^2} \right\}$$

The probability that ℓ_i is greater than ℓ_j for all $j \neq i$ is equivalent to the probability that $z_{ij} = \ell_i - \ell_j$ is greater than zero for all $j \neq i$. Both ℓ_i and ℓ_j being Gaussian, z_{ij} is Gaussian with mean $(R_i - R_j)$ and variance $\sigma^2\{1 - R_{|i-j|}\}$. So the probability that z_{ij} is greater than zero is given by:

$$Z_{ij} = \text{Prob}(z_{ij} > 0) = Q \left\{ \frac{-(R_i - R_j)}{\sigma \sqrt{1 - R_{|i-j|}}} \right\}$$
 (7.2-2)

where
$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-y^2/2} dy$$

In the above equations it was assumed that the signals were aligned i.e. there was no delay. When the delay is non-zero, say kT, the autocorrelation level indices in equation (7.2-2) are replaced by their absolute difference relative to k i.e.:

$$Z_{ij/k} \equiv \text{Prob}(z_{ij} > 0 / \text{delay is } k\tau) = Z_{|k-i||k-j|}$$
 (7.2-3)

The probability of the estimate being within mT is then approximated by :

Prob(error
$$\leq m\tau$$
) $\approx \sum_{i=k-m}^{k+m} \prod_{\substack{j=0 \ j\neq i}}^{N-1} \text{Prob}(z_{ij}>0/\text{delay is }k\tau)$ (7.2-4)

A computer program to solve equations (7.2-2) and (7.2-4) has been developed (see Appendix C). The autocorrelation level used for the integration was given by a typical beacon identification code and some variation may be obtained for different codes. These differences are however expected to be small because we are only interested in the area close to the main peak i.e. when the two signals are aligned and in this area most beacon identification codes exhibit the same autocorrelation pattern.

Figure 7.2-2 shows the results for the case when the spacing between each correlator is either 12 μs or 24 μs . The figure shows the probability that the estimator will give no error in the estimated delay or an error of one correlator spacing (τ) assuming that the real delay is a multiple of τ . From the figure, it is clear that an accuracy better than 12 μs is unlikely for the minimum C/No of 30 dB-Hz. We can also conclude from the observation of the two sets of curves that sampling faster i.e. taking the correlator spacing smaller than 12 μs will not bring additional confidence in the estimate.

These results have been verified through a Monte Carlo simulation of the estimator (computer program given in Appendix D). For the simulation, it has been assumed that the signal was down-converted to baseband, filtered with a 800 Hz lowpass filter, and sampled at 41.6 kHz ($\tau = 24~\mu s$) or 83.2 kHz ($\tau = 12~\mu s$). Then the correlation over 458 ms was computed and the maximum output was selected as representing the estimated delay. Results are shown in Figures 7.2-3 and 7.2-4 for $\tau = 24~\mu s$ and $\tau = 12~\mu s$ respectively along with the theoretical results. In general the theory and the simulation results agree quite well for C/No in excess of 30 dB-Hz.

Up to now, we considered the case when the delay was a multiple of the correlator spacing. This assumption made the estimate error a multiple of the correlator spacing. In practice the delay could lie anywhere within the correlator spacing such that the previous results indicating No Error should be interpreted as $\pm \tau$ and those indicated as being in error by τ should in fact be $\pm 2\tau$ with uniform statistical distribution. In this case, the variance of the estimate is given by:

$$(\sigma_t)^2 = \frac{\tau^2}{3}$$

Also, the confidence level is indicated in Figure 7.2-2 for τ =24 or 12 μ s. For τ =12 μ s, we have σ_t =6.9 μ s with a confidence level of approximately 90 % at a C/No of 30 dB-Hz.

Because the expected delay is bounded by 18 ms, the number of correlation for computation is therefore $\frac{18 \text{ ms}}{24 \text{ }\mu\text{s}} = 750$. The correlator spacing of 12 μ s defines the minimum sampling rate of 83.2 kHz. The correlation over the 750 lags can be performed efficiently using the Fast Fourier Transform (FFT) technique described in [34,35] and implemented in a Fortran program in [36]. This technique has been used to generate the computer simulation results presented above.

Figure 7.2-2 Probability that the Delay Estimate is Within the Indicated Bounds for Various C/No's and Correlator Spacing of 12 μ s and 24 μ s.

Figure 7.2-3 Simulated and Theoretical Probability that the Delay Estimate is Within the Indicated Bounds for Various C/No's and a Correlator Spacing of 24 μ s.

Figure 7.2-4 Simulated and Theoretical Probability that the Delay Estimate is Within the Indicated Bounds for Various C/No's and a Correlator Spacing of 12 μ s.

8.0 OVERALL BEACON POSITIONING ACCURACY

Up to now, we discussed the various components of the subsystems which corrupt the signal and/or degrade the accuracy of the positioning technique. In this section, we derive an overall figure that combines all these effects to yield an overall positioning accuracy. There are basically two parameters that define the position accuracy which can be expected from the system: the equivalent range estimate error and the position dilution of precision (PDOP) factor. The former has been discussed in details in the previous sections for each subsystem and it can be assumed that the errors add on a root sum square(rss). Accordingly, the variance of the range error is given by:

$$\sigma_{\rm r}^2 = c^{2*}\sigma_{\rm t}^2 + \sigma_{\rm iono}^2 + \sigma_{\rm tropo}^2 + \sigma_{\rm sat}^2$$
 m² (8.0-1)

where σ_t = standard deviation of time delay estimate in seconds

σiono = ionospheric delay standard deviation in meters

 σ_{tropo} = tropospheric delay standard deviation in meters

 σ_{sat} = satellite position error standard deviation in meters. It is assumed that the standard deviation of the satellite position on each axis is the same i.e. σ_{sat} .

 $c = \text{speed of light} = 2.9979 \times 10^8 \text{ m/s}$

The PDOP for a single position line obtained from two satellites is derived indirectly in [38] and [39] and is given by:

PDOP =
$$\frac{1}{4 \sin^2(\theta/2) - (\cos \phi_2 - \cos \phi_1)^2}$$
 (8.0-2)

where θ and ϕ_i 's are defined as shown in Figure 8.0-1. If the coordinates of the two satellites are given by (x_i, y_i, z_i) , i=1,2 and the particular point of interest on the earth is defined by (x, y, z), then we have

$$co_8 \theta = \frac{(x_1 - x)(x_2 - x) + (y_1 - y)(y_2 - y) + (z_1 - z)(z_2 - z)}{R_1 R_2}$$
(8.0-3)

$$c_{0}$$
 $\phi_i = \frac{x(x_i - x) + y(y_i - y) + z(z_i - z)}{R_e R_i}$

Figure 8.0-1 PDOP Geometry

where R_i is the range to satellite #i and R_e is the range from the point on the earth to its centre and they are defined as:

$$R_{i} = \sqrt{(x-x_{i})^{2} + (y-y_{i})^{2} + (z-z_{i})^{2}}$$

$$R_{e} = \sqrt{x^{2} + y^{2} + z^{2}}$$
(8.0-4)

The line position accuracy is then defined as:

$$\sigma = (PDOP) \sigma_r \tag{8.0-5}$$

For the time difference of arrival positioning technique, the intersection of two such positioning lines derived from three satellites defines the beacon location. It can be shown that the best accuracy is achieved when the two lines cross at square angle (see Figure 8.0-2(b)). In this case, it is fair to assume that the position error on each line adds on a root sum square i.e. the accuracy of the position is the rss of the accuracy of the line derived from, let us say, satellites 1 and 2 and the accuracy of the line derived from satellites 1 and 3 i.e.:

$$\sigma = \sqrt{(PDOP_{1,2} \sigma_{1,2})^2 + (PDOP_{1,3} \sigma_{1,3})^2}$$
 m (8.0-6)

Where $\sigma_{i,j}$ is the standard deviation of the range error as defined in equation (8.0-1) for satellites #i and #j. Because the error made on the range estimate is independent of the satellites, it is fair to assume that $\sigma_{1,2} = \sigma_{1,3} = \sigma_{2,3} = \sigma_r$ and then we have:

$$\sigma = \sigma_r \sqrt{(PDOP_{1,2})^2 + (PDOP_{1,3})^2}$$
 (8.0-7)

or equivalently

$$\sigma = \sigma_r PDOP_{eq}$$

$$w_{\text{here}} \text{ PDOP}_{\text{eq}} = \sqrt{(\text{PDOP}_{1,2})^2 + (\text{PDOP}_{1,3})^2}$$

Figure 8.0-2 (a) Bad PDOP, (b) Good PDOP.

Figures 8.0-3 to 8.0-5 show the PDOP for various combinations of two of the three satellites located at 75°W, 105°W and 135°W and for various latitudes. A spherical earth has been assumed to generate these figures. The figures show that the PDOP is minimum around the mid longitude between the two satellites and is symmetric around this point. They also show that the PDOP is slightly better for low latitudes than high latitudes. For high latitudes, the PDOP tends to be more constant than at low latitudes where it increases rapidly as it goes away form the mid longitude point. This is expected as the point lies in the same plane as the geostationary satellite orbit plane. Note the change of scale for Figure 8.0-5 where it is shown that a 60° satellite spacing results in a PDOP of approximately 1.

Figures 8.0-6 to 8.0-8 show the total PDOP when two position lines are combined according to equation (8.0-7). As in the other figures, a minimum is noticed and the curves are symmetric around this point. The same observations as in the previous figures can be made here. In general, it shows that the PDOP for Canada if these three satellites are used is between 1.9 and 2.8 for the best case and between 2.5 and 3.2 for the worst case.

Figure 8.0-3 PDOP for Satellites at 75°W and 105°W.

Figure 8.0-4 PDOP for Satellites at 105°W and 135°W.

Figure 8.0-5 PDOP for Satellites at 75°W and 135°W.

Figure 8.0-6 Resulting Equivalent PDOP for the Combination of the Position Lines from Satellites at 75°W and 135°W and Satellites at 75°W and 105°W

Figure 8.0-7 Resulting Equivalent PDOP for the Combination of the Position Lines from Satellites at 75°W and 105°W and Satellites at 105°W and 135°W

Figure 8.0-8 Resulting Equivalent PDOP for the Combination of the Position Lines from Satellites at 75°W and 135°W and Satellites at 105°W and 135°W

2.0 CIRCULAR ERROR PROBABILITY (CEP)

The accuracy of a positioning technique must always be given with its given degree of confidence. This requires in general the knowledge of the statistical distribution of the position errors which can be obtained only if the statistical distribution of each component of the total position error is known as well as their correlation factor. In practice, these distributions are not known and although one could attempt to develop such a statistical model, experimental data and straightforward approximations are usually preferred.

In [40] numerous methods to express the accuracy of positioning systems are discussed. The circular error probability (CEP) defines the radius of the circle centered on the true position which contains 50 % of the points. It assumes that there are no bias errors present although in practice such bias inevitably do exist due to equipment. The CEP is a two-dimensional measure and is appropriate for the specification of the error in the system of interest.

In Section 8.0 we defined in equation (8.0-7) the equivalent position error to be given by :

$$\sigma = \sigma_r \sqrt{(PDOP_{1,2})^2 + (PDOP_{1,3})^2} = \sigma_r PDOP_{eq}$$
 (9.0-1)

which is equivalent to the distance rms (drms) error discussed in [40]. It is important to emphasize the assumptions made to obtain this equation. First, it is assumed that the error sources on each differential range are uncorrelated and have a zero mean with equal standard deviation (σ_r). Second, it is assumed that a good PDOP is obtained for the location such that the two position lines cross at 90 degrees. Based on these assumptions, it is mentioned in [40] that the CEP is related to the above σ (or drms) by :

$$CEP = \sqrt{\ln(2)} \sigma \tag{9.0-2}$$

 A_S mentioned in [40], twice the drms represents the 95 % degree of confidence which is giv_{en} by twice equation (9.0-1) i.e. 2σ .

In Section 8.0, the analysis did not consider the downlink (at 1.5 GHz) effects on the differential range error. In practice, the downlink effects could be estimated using a loopback signal at the master station. However, the ionospheric effects being approximately 15 times less important at L-band than 406 MHz, it will have a small contribution to the total position error and thus can simply be taken into account or neglected.

In order to get an idea of the proposed system performance, let us look at some examples. Let us assume that the satellites are located nominally at 75°W, 105° W and 135° W and that we know their exact positions within 20 meter on each axis. From the end of Section 6.3.1, we find that the ionospheric rms error is 150 m in the uplink. Dividing this number by 15 for the downlink at 1.5 GHz, we get a rms error of 10 m on the downlink. The standard deviation of the differential range error (σ_r) is then given by :

$$\sigma_{iono} = \sqrt{\left(\sigma_{iono}^{up}\right)^2 + \left(\sigma_{iono}^{down}\right)^2}$$

$$= \sqrt{150^2 + 10^2} = 150.33 \text{ m} \quad \text{(see Section 6.3.1)}$$

$$\sigma_{sat} = 20 \text{ m}$$

$$\sigma_{t} = \frac{12 \text{ } \mu \text{s}}{\sqrt{3}} = 6.9 \text{ } \mu \text{s (with $\approx 90\%$ confidence level at C/No=30 dB-Hz)}$$

 $\sigma_{tropo} = 0$ (negligible relative to other sources of errors)

$$\sigma_{r}^{2} = c^{2*}\sigma_{t}^{2} + \sigma_{iono}^{2} + \sigma_{tropo}^{2} + \sigma_{sat}^{2} \quad m^{2}$$

$$\sigma_{r} = \sqrt{[(2.9979 \times 10^{8})(6.9 \times 10^{-6})]^{2} + (150.33)^{2} + (20)^{2}}$$

$$\sigma_r = 2.1 \text{ km}$$

In Section 8.0 it has been seen that the (PDOP)_{eq} was between 1.9 and 2.8 with these satellites and with a good choice of combination of satellites. The drms error and CEP are then bounded to:

$$\sigma_r \text{ (PDOP)}_{eq_{min}} < \sigma < \sigma_r \text{ (PDOP)}_{eq_{max}}$$

$$\boxed{4 \text{ km} < \sigma < 5.9 \text{ km}}$$

$$3.3 \text{ km} < \text{CEP} < 4.9 \text{ km}$$

provided there are no biases in the system.

It is interesting to note that the performance is dictated by the performance of the time difference of arrival estimator. In the above example, ignoring the errors introduced by the troposphere and the ionosphere would have little impact on the overall accuracy of the beacon Position. This fact may be used to simplify the receiver design in an operational system.

10.0 RECEIVER STRUCTURE

Due to the low likelihood that three satellites will be available for use in a 406 MHz distress beacon positioning system, very little effort has been spent on the hardware design of the proposed receiver. The intent of this section is to give the reader an idea of the hardware and software required to develop the proposed distress beacon location system.

Figure 10.0-1 shows a block diagram of the receiver. The satellite receiver front ends are similar to the ones being used in the current GOES processor. It includes a low noise amplifier, a frequency down-converter to bring the signal to an intermediate frequency of 5 kHz and a satellite beacon tracker for frequency correction. Note also, it is assumed that the satellite beacon carries the satellite instantaneous position. This information is assumed to be derived by the receiver front end and it will represent a modification to the front end processor in use in the GOES project. The three satellite signals are then sampled at a rate of 83.2 kHz. Several data acquisition systems are available on the market and can be adapted to any personal computers (Macintosh and IBM compatibles). All the shaded area represents the digital processing under the control of a master Controller. The detection, frequency estimation and down-conversion to baseband is already performed in the current GOES processor at a sample rate of 20.8 kHz. Accordingly, the same processing algorithms can be used here if they are preceded with a decimation by four (4). The delay estimation refers to the implementation of the correlation computation between each pair of signals. Results are sent to the master controller which interfaces to the user and monitors/controls the operation of each subsystem (e.g. if a signal is detected then freeze the memory, perform the frequency estimation and so on to come out with a position estimate). The GPS receiver is used to get the ionospheric model parameters if required.

The digital processing could be done within a personal computer (IBM 386 or compatible or Macintosh IIfx) equipped with at least one array processor as well as a data acquisition system. The required number of array processors is related to the available time between events. The computer simulation which was generating the signal and noise samples in addition to computing the correlation was taking approximately 2 minutes per signal pair on a Macintosh IIcx computer equipped with a co-processor. Given that array processors provide 40-50 times more computing power than a general purpose computer, it is estimated that no more than 15-20 seconds will be required to process an event i.e. a signal detection event. This assumes that data can be transferred fast enough between each processing subsystems. A more complete software design needs to be done to ascertain these values

Figure 10.0-1 Block Diagram of Receiver and Estimator

11.0 CONCLUSION

This report presented a technique to locate distress beacons using geostationary satellites. In looking at the various techniques in general, it was found that a minimum of two satellites is required and that the small Doppler frequency shift of the geostationary satellites could in principle be used to resolve ambiguities. In the studied system, this information has not been used because it was believed that it would require sophisticated on-board oscillators that are unlikely going to be available on a transponder type satellite.

The time difference of arrival technique based on three satellites has been fully studied. The effect of the Earth oblateness and the ionosphere and troposphere delays have been modeled. A time difference estimator has been designed and analyzed. Theoretical performance of the estimator supported by computer simulation results demonstrated that the position error and confidence level are similar to the current system. Specifically, it can achieve a CEP between 3.3 and 4.9 km for beacons in Canada and a satellite spacing of 30° under the worst case C/No of 30 dB-Hz obtained when 8 distress beacons are simultaneously activated. The estimator draws a lot from the current GOES processor in order to minimize the amount of effort required to supplement the current distress alerting feature with distress positioning. The resources required to implement the digital processing part of the receiver are estimated to approximately 2 person-year and \$75,000 for the hardware and software.

It is obvious that the report did not address all of the techniques in great details and additional analyses should be done. In particular, a better analysis on the use of the geostationary satellite Doppler frequency shift to supplement the time difference of arrival technique with only two satellites must be done. The impact of oscillator instabilities on the overall accuracy must be analyzed and traded off with other system parameters. In addition, the time difference estimator design should be reviewed to include the consideration of correlation in the frequency domain instead of the time domain. Some papers have recently pointed out that correlation in the frequency domain is more robust against noise than in the time domain [42].

		a.

12.0 REFERENCES

- [1] Rosso R., LOCSTAR: Un Service de Radiorepérage par Satellite pour l'Europe, Paper Presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-10 March 1989.
- [2] Johannsen K.G., Radio Position Determination by Satellite, Space Communication and Broadcasting, Vol. 6, No.3, pp. 203-221, July 1988
- [3] Johannsen K.G., Radio Position Determination by Satellite, 38th IEEE Vehicular Technology Conference, pp. 647-652, 15-17 June 1988
- [4] Briskman R.D., GEOSTAR Initial RDSS System, AIAA 12th International Communication Satellite Systems Conference, pp. 587-591, March 13-17, 1988.
- [5] Ott L.E., STARFIX Commercial Satellite Positioning, IEEE 1988 Position Location and Navigation Symposium Record (PLANS 88).
- [6] Troisi S., Détermination des Coordonnées d'une Station Mobile par la Méthode des Différences de Temps, Navigation, No. 142, Avril 1988.
- [7] Ha T.T., Robertson R.C., Geostationary Satellite Navigation Systems, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No. 2, pp. 247-253, March 1987
- [8] Hernandez D., The Locstar Radio-Determination Satellite System, Alta Frequenza, Vol. LVI, No.10, Dec. 1987.
- [9] Pearson B.S., LOCSTAR: Europe's Commercial Radiodetermination Satellite Service, Satellite Communications and Broadcasting, 1987.
- [10] Dennis A. R., STARFIX, IEEE 1986 Position Location and Navigation Symposium Record, Nov. 4-7, pp. 251-255, 1986

- [11] Dennis A.R., STARFIX A New High Precision Satellite Positioning System, Proc. International Symposium on Marine Positioning: "Positioning the Future", INSMAP 86, US, Geological Survey, Reston, VA, Oct. 14-17, 1986.
- [12] Specification for COSPAS-SARSAT 406 MHz Distress Beacons, COSPAS/SARSAT Steering Committee Document C/S T.001, Issue 2, Revision 0, November 1988
- [13] Dumont P., Bonnery M., Marguinaud A., Receiver-Processor for Detection of 406 MHz SARSAT Distress Messages, AIAA 12th International Communication Satellite Systems Conference, pp. 350-358, March 13-17, 1988
- [14] Keightley R.J., Simulation of the Canadian GOES Signal Processor, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No.3, pp. 361-370, May 1987
- [15] Schaefer G.J., Apparatus and Method for Determining the Position of a Radiant Energy Source, US Patent 4,276,553, June 30,1981.
- [16] Donaldson P., Navigation by Gyration, Space, Vol. 4, No.6, Nov./Dec. 1988.
- [17] Niemeyer P.H., STARFIND: Single Satellite Geolocation, Satellite Communications and Broadcasting, 1987.
- [18] Slabinsky V.J., Variation in Range, Range-Rate, Propagation Time Delay, and Doppler Shift for Nearly Geostationary Satellite, in Communications Satellite Technology, edited by P.L. Bargellini, Alpine Press Inc., USA, 1974.
- [19] Kinal G. V., Prospects for Integration of Satellite Communications, Navigation and Monitoring, Paper Presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-10 March 1989.
- [20] Hershey W.R. et al, Ranging and Processing Satellite, IEEE 1988 Position Location and Navigation Symposium (PLANS 88) Record.
- [21] Bukhart R.M., Harris R.R., Geolocation Through Satellite Propagation Delay Difference, 1987 IEEE Aerospace Applications conference Digest, Vail, CO, USA, 8-13 Feb. 1987.

- [22] Application of Satellite Communication and Position Fixing Techniques to Land Mobile Systems, General Electric Corp. R&D, New York, NTIS PB-267-019, April 1977.
- [23] Chouinard G., Satellite Beam Optimization for the Broadcasting Satellite Service, IEEE Trans. on Broadcasting, vol. BC-27, no.1, March 1981.
- [24] Nautiyal Atul, Algorithm to Generate Geodetic Coordinates from Earth-Centered Earth-Fixed Coordinates, Journal of Guidance, Control, and Dynamics, vol. 11, no. 3, May-June 1988.
- [25] Ludvik Pfeifer, The Use of Bowring's Algorithms for Hydrography and Navigation, Institute of Navigation, Conference Proceedings of the 39th Annual Meeting, June 1983.
- [26] Holmstrom J.S., A New Approach to the theory of Geodesics on an Ellipsoid, Navigation: Journal of the Institute of Navigation, Vol. 23, No. 3, Fall 1976.
- [27] Ionospheric Effects Upon Earth-Space Propagation, CCIR Report 263-5, 1982.
- [28] Saint-Etienne J., Erreurs de Mesure, Paper presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-8 March 1989.
- [29] Brown A., Extended Differential GPS, Navigation: Journal of the Institute of Navigation, Vol.36, No.3, Fall 1989.
- [30] Klobuchar J.A., Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users, IEEE Trans. on Aerospace and Electronic Systems, vol. AES-23, no. 3, May 1987.
- [31] FLock W.L., Slobin S.D., Smith E.K., Propagation Effects on Radio Range and Noise in Earth-Space Telecommunications, Radio Science, vol. 17, no. 6, Nov.-Dec. 1982.
- [32] NAVSTAR Global Positioning System (GPS) System Characteristics Preliminary Draft,
 North Atlantic Treaty Organization (NATO), Military Agency for Standardization (MAS),
 Standardization Agreement, STANAG 4294, Draft Issue J, 20 April 1989.
- [33] Keightley R.J., Simulation of the Canadian GOES Signal Processor, IEEE Trans. on Aerospace and Electronic Systems, Vol.AES-23, No. 3, May 1987.

- [34] Oppenheim A.V., Schafer R.W., <u>Digital Signal Processing</u>, Prentice Hall Inc., New Jersey, USA, 1975, pp.556-562
- [35] Rabiner L.R., Gold B., <u>Theory and Application of Digital Signal Processing</u>, Prentice Hall Inc., New Jersey, USA, 1975, Section 6.18.
- [36] Programs for Digital Signal Processing, IEEE Press, 1979, Section 2.2.
- [37] Proakis J.G., Digital Communications, MacGraw-Hill Inc., Toronto, 1983, pp. 171-178
- [38] Chesnut P.C., Emitter Location Accuracy Using TDOA and Differential Doppler, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-18, No.2, March 1982.
- [39] Burkhart R.M., Harris R.R., Geolocation Through Satellite Propagation Delay Differences, 1987 IEEE Aerospace Applications Conference Digest, Vail, CO,USA, 8-13 Feb. 1987.
- [40] Method of Expressing Navigation Accuracies, Nato Standardization Agreement, STANAG 4278 (edition 3), January 1989.
- [41] Flock W. L., Propagation Effects on Satellite Systems at Frequencies Below 10 GHz, NASA Reference Publication #1108, 1983.
- [42] Gardner W.A., Spectral Correlation of Modulated Signals: Part I I- Digital Modulation, IEEE Trans. on Communications, vol. COM-35, No. 6, June 1987.
- [43] Department of Defense World Geodetic System 1984 Its Definition and Relationships with Local Geodetic Systems, Defense Mapping Agency, Washington, DC, USA, Report # DMA TR 8350.2, September 30, 1987.
- [44] Van Trees H.L., <u>Detection, Estimation and Modulation Theory Part I</u>, Wiley, 1968, chap.⁴

13.0 BIBLIOGRAPHY

An extensive literature search has been conducted at the beginning of the contract. The papers are listed below under five headings:

- A. GEOLOCATION TECHNIQUES AND SYSTEMS
- B. COSPAS-SARSAT SYSTEM AND 406 MHZ BEACONS
- C. DISTRESS SIGNAL PROCESSOR
- D. PROPAGATION EFFECTS
- E. POSITION ACCURACY AND OTHER TOPICS

The papers under each heading are given in chronological order starting with the most recent.

A. GEOLOCATION TECHNIQUES AND SYSTEMS

- [A.1] Portas G., Les Systèmes de Localisation ARGOS et SARSAT, Paper Presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-10 March 1989.
- [A.2] Rosso R., LOCSTAR: Un Service de Radiorepérage par Satellite pour l'Europe,
 Paper Presented during CNES Course "Location and Navigation Satellite Systems",
 Toulouse (France), 6-10 March 1989.
- [A.3] Gal C., Comparaison des Systèmes de Localisation, Paper Presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-10 March 1989.

- [A.4] Kinal G. V., Prospects for Integration of Satellite Communications, Navigation and Monitoring, Paper Presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-10 March 1989.
- [A.5] Donaldson P., Navigation by Gyration, Space, Vol. 4, No.6, Nov./Dec. 1988.
- [A.6] Johannsen K.G., Satellite Mobile Communication and Radio Positioning System Planning Aspects, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-24, No.4, pp.387-396, July 1988
- [A.7] Johannsen K.G., *Radio Position Determination by Satellite*, Space Communication and Broadcasting, Vol. 6, No.3, pp. 203-221, July 1988
- [A.8] Johannsen K.G., Radio Position Determination by Satellite, 38th IEEE Vehicular Technology Conference, pp. 647-652, 15-17 June 1988
- [A.9] Briskman R.D., *GEOSTAR Initial RDSS System*, AIAA 12th International Communication Satellite Systems Conference, pp. 587-591, March 13-17, 1988.
- [A.10] Ott L.E., STARFIX Commercial Satellite Positioning, IEEE 1988 Position Location and Navigation Symposium Record (PLANS 88).
- [A.11] Brown A.K., Lavrakas J.W., An Overview of Space-Based Radionavigation Systems, IEEE EASCON 1988, pp. 161-171
- [A.12] Shensa M.J., Geolocation via Satellite A Methodology and Error Analysis, DSIS Technical Report 1224, May 1988, Doc. No. AD-A197 955.
- [A.13] Hershey W.R. et al, Ranging and Processing Satellite, IEEE 1988 Position Location and Navigation Symposium (PLANS 88) Record.
- [A.14] Troisi S., Détermination des Coordonnées d'une Station Mobile par la Méthode des Différences de Temps, Navigation, No. 142, Avril 1988.

- [A.15] Ha T.T., Robertson R.C., Geostationary Satellite Navigation Systems, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No. 2, pp. 247-253, March 1987
- [A.16] Hernandez D., The Locstar Radio Determination Satellite System, Alta Frequenza, Vol. LVI, No.10, Dec. 1987.
- [A.17] Pearson B.S., LOCSTAR: Europe's Commercial Radiodetermination Satellite Service, Satellite Communications and Broadcasting, 1987.
- [A.18] Niemeyer P.H., STARFIND: Single Satellite Geolocation, Satellite Communications and Broadcasting, 1987.
- [A.19] Bukhart R.M., Harris R.R., Geolocation Through Satellite Propagation Delay Difference, 1987 IEEE Aerospace Applications conference Digest, Vail, CO, USA, 8-13 Feb. 1987.
- [A.20] Dennis A. R., STARFIX, IEEE 1986 Position Location and Navigation Symposium Record, pp. 251-255, Nov. 4-7, 1986
- [A.21] Dennis A.R., STARFIX A New High Precision Satellite Positioning System,
 Proc. International Symposium on Marine Positioning: "Positioning the Future",
 INSMAP 86, US, Geological Survey, Reston, VA, Oct. 14-17, 1986.
- [A.22] Wright T.M.B., The Doppler Compass: Satellites as source of Course-Keeping Data, NAV 86: World Wide Navigation into the 21st Century, 1986 Conf. of the Royal Inst. of Navigation, Brighton, England, 30 Sept.-2 Oct. 1986.
- [A.23] Schaefer G.J., Apparatus and Method for Determining the Position of a Radiant Energy Source, US Patent 4,276,553, June 30,1981.
- [A.24] Lecacheux A., Harvey C.C., Boischot A., Source Localization and Polarization Determination in Low Frequency Satellite Radio Astronomy, Annales des Télécommunications, Tome 34, No.3-4, Mars-Avril 1979.

- [A.25] Sewards A., Winter A.E., Mamen R., Satellites for Position Determination, Canadian Aeronautics and Space Journal, Vol. 24, No.5, pp. 266-273, Sept./Oct. 1978.
- [A.26] Application of Satellite Communication and Position Fixing Techniques to Land Mobile Systems, General Electric Corp. R&D, New York, NTIS PB-267-019, April 1977.

B. COSPAS-SARSAT SYSTEM AND 406 MHZ BEACONS

- [B.1] Specification for COSPAS-SARSAT 406 MHz Distress Beacons, COSPAS/SARSAT Steering Committee Document C/S T.001, Issue 2, Revision 0, November 1988
- [B.2] COSPAS-SARSAT 406 MHz Distress Beacons Type Approval Standard, COSPAS/SARSAT Steering Committee Document C/S T.007, November 1987
- [B.3] Kennewell J.A., Davies G.D., Low Cost Exploration of the SARSAT-COSPAS System, Third National Space Engineering Symposium 1987, Canberra, 30 June-2 July, 1987.
- [B.4] Zurabov Y.G., Bogdanov V.A., Status of the COSPAS-SARSAT Project and its Possible Operation in Conjunction with INMARSAT System, IEEE PLANS 80 Position Location and Navigation Symposium Record, pp. 459-467, Dec. 8-11, 1980.

C. DISTRESS SIGNAL PROCESSOR

- [C.1] Dumont P., Bonnery M. Marguinaud A., Receiver-Processor for Detection of 406

 MHz SARSAT Distress Messages, AIAA 12th International Communication Satellite
 Systems Conference, pp. 350-358, March 13-17, 1988
- [C.2] Keightley R.J., Simulation of the Canadian GOES Signal Processor, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No.3, pp. 361-370, May 1987

- [C.3] Keightley R.J., Threshold Testing of The Canadian GOES Experimental Processor, IEEE Pacific Rim Conference of Communications, Computers and Signal Processing, Jan. 4-5, 1987.
- [C.4] El-Naga S., Carter C.R., Identification Techniques for SARSAT Signals, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No.2, pp. 199-214, March 1987
- [C.5] Chung T., Carter C. R., Processing of Real ELT Signals for SARSAT, Can. Elect. Eng. Journal, Vol. 12, No.1, pp. 33-44, 1987
- [C.6] Keightley R.J., King J.V., The Canadian GOES Experiment: the First Six Months, CRC Space Systems Tech. Memorandum SS#9/87, Nov. 1987.

D. PROPAGATION EFFECTS

- [D.1] Lanyi G.E., Roth T., A Comparison of Mapped and Measured Total Ionospheric Electron Content Using Global Positioning System and Beacon Satellite Services, Radio Science, Vol. 23, No. 4,pp. 483-492, July/Aug. 1988.
- [D.2] Klobuchar J. A., Ionospheric Time-Delay Algorithm for Single Frequency GPS Users, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No.3, pp. 325-331, May 1987.
- [D.3] Feess W. A., Stephens S.G., Evaluation of GPS Ionospheric Time-Delay Model, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No.3, pp. 332-338, May 1987.
- [D.4] Lyon G.F., Fulford J.A., Forsyth P.A., Ionospheric Effects on Space Application Systems, Canadian Aeronautics and Space Journal, Vol. 29, No.4, pp.315-326, Dec. 1983.
- [D.5] Soicher H., Ionospheric and Plasmaspheric effects in Satellite Navigation Systems, IEEE Trans. on Antennas and Propagation, Vol.AP-25, No.5, Sept. 1977.

- [D.6] Klobuchar J.A., *Ionospheric Time Delay Corrections for Advanced Satellite Ranging Systems*, AGARD Conf. Proc. No. 209 on Propagation Limitations of Navigation and Positioning Systems, 1976.
- [D.7] Parkinson B.W., Lassister E.M., Cretcher C.K., *Ionospheric Effects in NAVSTAR GPS*, AGARD Conf. Proc. No. 209 on Propagation Limitations of Navigation and Positioning Systems, 1976

E. POSITION ACCURACY AND OTHER TOPICS

- [E.1] Saint-Etienne J., Erreurs de Mesure, Paper Presented during CNES Course "Location and Navigation Satellite Systems", Toulouse (France), 6-10 March 1989.
- [E.2] Krause L. O., A Direct Solution to GPS-Type Navigation Equations, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-23, No.2, March 1987
- [E.3] Edwards A.F., Hope D.R., Apparent Motion of a Geostationary Satellite, Third National Space Engineering Symposium 1987, Canberra, ACT, Australia, pp. 225-232, 30 June-2 July 1987.
- [E.4] Snively L.O., Osborne W.P., Analysis of the GEOSTAR Position Determination System, AIAA 11th International Communication Satellite Systems Conference, pp. 50-58, March 1986.
- [E.5] Richards R.T., Snively L.O., GEOSTAR Positioning Analysis, 1986 Position Location and Navigation Symposium Record, pp. 13-19, Nov. 4-7, 1986
- [E.6] Zarrouati O., A Simple Analytic Method for the Evaluation of the Performance of a Radiolocation System, ACTA Astronautica, Vol.15, No.1, pp. 35-44, 1987.
- [E.7] Nauck J., SERES: A Search and Rescue Satellite System in Addition to INMARSAT, Earth-Oriented Applications of Space Technology, Vol.3, Nos.3/4, pp. 197-202, 1983.

- [E.8] Nauck J., "SERES" A Polar Orbiting Maritime Search and Rescue Satellite System as a Possible Extension of INMARSAT, Third Int. Conf. on Satellite Communications and Navigation, London, UK, 7-9 June 1983.
- [E.9] Bommas G., Kesenheimer H., Frotsch B.H., The Implementation of a Satellite EPIRB Within the German SAR-Program, Third Int. Conf. on Satellite Communications and Navigation, London, UK, 7-9 June 1983.
- [E.10] Braff R., Shively C.A., Zelster M.J., Radionavigation System Integrity and Reliability, Proc. of the IEEE, Vol. 71, No.10, pp. 1214-1223, Oct. 1983.
- [E.11] Goebel W., Landauer G., Messerschmid E., Maritime Distress Radio Call Systems Employing Space-Borne Technology, ACTA Astronautica, Vol.9, No.1, pp. 35-44, 1982.
- [E.12] Slabinsky V.J., Variation in Range, Range-Rate, Propagation Time Delay, and Doppler Shift for Nearly Geostationary Satellite, in Communications Satellite Technology, edited by P.L. Bargellini, Alpine Press Inc., USA, 1974.

APPENDIX A COMPUTER PROGRAM TO COMPUTE THE POSITION LINE GENERATED BY A GIVEN DIFFERENTIAL RANGE FOR TWO GIVEN SATELLITES

LISTING OF PROGRAM 'DIFF RANGE XYZ.F'

```
Program to compute the line of constant range
        difference given two satellites on geostationary orbits.
5
     С
 6
 7
     С
        Requires the following files :
 8
     С
                 RANDELT.F: to compute the ground station longitude
                              given its latitude and its diff. range to two
 9
     С
10
     С
                              given satellites
     С
                  'WGS CONVERSION.F' : to convert from WGS-84
11
                                        (lat., long.) coordinates to (x,y,z)
     С
12
                  'Diff Range XYZ.make' : to compile and link the program
13
     С
     С
14
     С
15
     С
16
        It is strongly recommended to use the option -extended
     С
17
        during the compilation to get the maximum accuracy.
18
     С
19
    С
        NOTE: This program works fine assuming the beacon is in Canada
    С
                and the satellites are over Canada and do not cross the
20
     С
21
                180 degrees meridian
22
     С
23
     С
     С
24
                                      M. CARON
     С
25
                                      DEC. 1989
26
     С
                                      Revised Sept. 1990
27
     С
28
 29
      С
 30
              PROGRAM DIF RANGEXYZ
 31
              IMPLICIT DOUBLE PRECISION (A-H, L, O-Z)
 32
              DIMENSION SATX(2), SATY(2), SATZ(2)
 33
              CHARACTER FILEN*80, ANS*1
 34
     C this common block passes the semi-major axis and squared eccentricity
C to the WGS COMMERCEON TO
 35
 36
      C to the WGS CONVERSION.F routines
 37
 38
              COMMON /DISTDATA/ AE, ECC2
 39
      С
 40
      C Semi-major axis and squared eccentricity according to WGS-84
 41
      C npt : number of points on the line crossing the North hemisphere
 42
 43
              AE = 6378137.D+00
 44
              ECC2 = 6.694379990D-3
 45
              npt=100
 46
       С
 47
              WRITE (6,1)
 48
         1
              FORMAT (/,/,/,T16,51('*'),/,T16,'*',49X,'*',/,T16,
  49
            & '* POSITION ESTIMATION BASED ON DIFFERENTIAL RANGE *',
 50
            &/,T16,'*',49X,'*',/,T16,51('*'),/,/,T5,
  51
            & 'NOTE: Longitudes must be within [-180,180] (+ve=East)',/
  52
                         Latitude must be within [-90,90] (+ve = North)'
            &,T5,'
  53
            & ,/,/,/)
  54
  55
       C INPUT VARIABLES
  56
        5
  57
             WRITE (6,10)
  58
             FORMAT (/,T3,'Satellite lat., long. #1 and #2'
```

LISTING OF PROGRAM 'DIFF RANGE XYZ.F' CONTINUED

```
59
                    ,/,T3,'Satellite #1 must be west of satellite #2')
     60
                 READ (5,*) SLAT1, SLON1, SLAT2, SLON2
     61
                 IF ((DABS(SLON1) .GT.180.D+00).OR.(DABS(SLON2).GT.180.D+00)) THEN
     WRITE (6,*) '?? Longitudes must be within +/- 180 deg. ??'
     62
    63
                       GOTO 5
    64
                  END IF
    65
                  IF ((DABS(SLAT1).GT.90.D+00).OR.(DABS(SLAT2).GT.90.D+00)) THEN
    66
                       WRITE(6,*) ' ?? Latitudes must be within +/- 90 deg. ??'
    67
                       GOTO 5
    68
                END IF
    69
    70
           20
                WRITE (6,30)
    71
           30
                FORMAT (T3, 'Range difference (#2 minus #1) in meters')
    72
                READ (5,*) RDELTA
    73
                  IF (RDELTA.EQ.O.D+00) THEN
    74
                      WRITE (6, *) '?? CANNOT BE ZERO ??'
   75
                      GOTO 20
   76
                 END IF
   77
         C
   78
          40
               WRITE (6,50)
   79
          50
               FORMAT (T3, 'Range difference accuracy in meters')
   80
               READ (5, *) ACC
   81
               IF (ACC.LE.O.D+00) THEN
   82
                      WRITE (6,*) '?? MUST BE GREATER THAN ZERO ??'
   83
                      GOTO 40
   84
               END IF
   85
        С
   86
         51
               WRITE (6,52)
   87
               FORMAT (T3, 'File name where to dump data')
   88
               READ (5,*) FILEN
   89
               OPEN (UNIT=98, FILE=FILEN, STATUS='UNKNOWN')
   90
               REWIND (98)
  91
  92
           compute the satellite altitude above the earth
  93
           approximate to geo. orbit minus earth semi-major axis
        C
  94
       С
  95
                HSAT = 42157197.D+00-AE
  96
       С
  97
          convert satellite lat, long. coordinates to (x,y,z)
       С
  98
  99
               CALL XYZ (SLAT1, SLON1, HSAT, SATX(1), SATY(1), SATZ(1))
 100
               CALL XYZ (SLAT2, SLON2, HSAT, SATX(2), SATY(2), SATZ(2))
101
       С
 102
103
             WRITE (6,60)
             FORMAT (/,/,T3,' # ',5X,'LATITUDE',5X,'LONGITUDE',/)
        60
104
105
          knowing that the beacon is on the north hemisphere
106
          scan the north hemisphere in 'npt' latitude steps
107
108
               flatinc = 82.d+00/float(npt-1)
109
110
               WRITE (98,*) NPT
111
              DO 100 I=0, npt-1
      C
112
         set the initial guess for the longitude to the west most point
      С
113
         The subroutine RANDELT will look for the point 10 degrees around the
      С
114
      С
115
         initial guess
         xlat is the ground station latitude
      С
116
```

LISTING OF PROGRAM 'DIFF RANGE XYZ.F' CONTINUED

```
117
             XLON = -170.D+00
              XLAT = DFLOAT(I)*flatinc
118
119
      C
         find the longitude of the station that generates the range difference
120
      С
121
         of interest for the latitude given by xlat
122
              CALL RANDELT (RDELTA, 1, 2, SATX, SATY, SATZ, XLAT,
123
124
            & ACC, XLON, GLON, IER)
125
         if IER = 2 then the subroutine could not reach the required accuracy
126
127
          with step size as small as 1.d-10 degree
128
         if IER=3 that means that the routine failed to find a solution
129
           (this should not happen unless there is erronous entries)
130
         if IER=0 means no error occured
131
         If the accuracy has not been reached, then set IC = 1
132
133
             IF (IER.LT.3 .AND. IER.NE.0) THEN
134
                  WRITE (6,*) 'IER=', IER
135
                  IC=1
136
             ELSE
137
                  IC=0
138
             END IF
139
             IF(IER.EQ.3) GOTO 100
140
       С
141
       С
         compute the longitude in deg. min. sec.
142
       С
143
             XLON = GLON
 144
             XDEG=DFLOAT (IDINT (DABS (XLON)))
 145
             XMIN = DFLOAT (IDINT ((DABS (XLON) -XDEG) *60.))
 146
              XSEC = (DABS(XLON) - XDEG - XMIN/60.)*3600.
 147
              WRITE (6,70) (I+1), XLAT, XLON, XDEG, XMIN, XSEC, ic
 148
        70
             FORMAT (T3, I5, 5X, F8.2, 5X, F15.7, 3X, F5.0, 'DEG.
 149
                  F3.0, 'min. ', F8.4, 'sec.', 2x, i2)
 150
       С
 151
              WRITE (98,75) XLAT, XLON
 152
         75
               format(f, 2x, f)
 153
        С
 154
         100 CONTINUE
 155
 156
              WRITE (98,62) SLAT1, SLON1, SLAT2, SLON2, RDELTA, ACC
 157
         62
              FORMAT (/,T3,'DIFF RANGE XYZ',/,T3,
                 'Sat. geocentric lat., long. #1, #2 : ',2(F7.2,',',F8.2),/,
 158
                 T3, Range differences (meters): ',F15.3,/,T3,
 159
 160
                    'Accuracy Required (meters) : ',F15.7,/)
 161
 162
           write an end of file to the file and close it
 163
 164
                ENDFILE (98)
 165
              CLOSE (98)
 166
              WRITE (6,200)
  167
         200 FORMAT (T3, 'Another run ? (Y or N)')
  168
              READ (5,*) ANS
  169
              IF (ANS.NE.'Y' .AND. ANS.NE.'Y') STOP 'Tourlou!'
  170
              GOTO 5
  171
              END
```

LISTING OF PROGRAM RANDELT.F

```
1 2
         C
     3
         С
                SUBROUTINE TO COMPUTE THE LONGITUDE OF THE GROUND
            STATION LOCATED AT LATITUDE XLAT WHICH GIVES A DIFFERENTIAL
     5
            RANGE OF RIJ BETWEEN THE TWO (I AND J) SATELLITES LOCATED AT
     6
            SATX(I), SATY(I), SATZ(I) AND SATX(J), SATY(J), SATZ(J).
    7
    8
         C
                 RIJ : range difference in meters = Range to
    9
        С
                       sat.#j - range to sat#i
   10
        C
                 I,J : satellite numbers
   11
        С
                SATX, SATY, SATZ: (x,y,z) coordinates of the two satellites
   12
        С
                XLAT : latitude in degrees (+ve North, -ve = South)
   13
        C
                ACC : required range difference accuracy in meters
   14
        С
                XLON: initial guess on longitude in degrees
   15
        C
                      ( +ve=East, -ve=West)
   16
        С
                      It is suggested to use XLON = -170. if a good guess
   17
        C
                      is not known
   18
        C
                GLON: the longitude of the point which generated the
  19
        С
                      required differential range with accuracy ACC
  20
        С
                      at latitude XLAT
  21
        С
                IER : is an error code
  22
       С
                     set to 0 when no errors,
  23
       C
                          to 1 when there is (are) error(s) in the arguments
  24
                          to 2 when the accuracy could not be reached with
  25
       C
                              step size as small as 1.d-10 degree.
  26
       C
                          to 3 when no solutions could be found.
  27
       C
  28
       С
          NOTE: All real variables are double precision
  29
       C
  30
       С
                                             M. CARON
 31
       C
                                             MAY 1989
 32
       C
 33
 34
 35
              SUBROUTINE RANDELT (RIJ, I, J, SATX, SATY, SATZ, XLAT,
 36
                                  ACC, XLON, GLON, IER)
 37
      C
 38
              IMPLICIT DOUBLE PRECISION (A-H, O-Z)
 39
               DIMENSION SATX(1), SATY(1), SATZ(1), SLAT(2), SLON(2)
 40
 41
         The following function computes the straight line distance
      С
 42
         between two points given by (sx, sy, sz) and (x, y, z)
 43
44
             DISTANC (SX, SY, SZ, X, Y, Z) = DSQRT ( (SX-X)**2+(SY-Y)**2+(SZ-Z)**2)
45
      C
46
     C
47
         check for argument errors
48
49
             IER = 0
             IF(RIJ.EQ.0.D+00 .OR. DABS(XLAT).GT.90.D+00 .OR.
50
          & DABS (XLON) .GT.180.D+00 .OR. ACC.LE.0.D+00) THEN
51
52
                  IER = 1
53
                  RETURN
54
             END IF
     C
55
56
           DELTA = RIJ
     C
57
       MAKE SURE THE SAT. #IS IS WEST TO THE SECOND SAT.
58
        the following test works only when the line joining the
```

LISTING OF PROGRAM RANDELT.F (CONTINUED)

```
59
        two satellites does not cross the 180 deg. meridian line
        First convert the satellite (x,y,z) coordinates to geodetic
60
61
        lat., long coordinates
62
63
             CALL GEODETIC (SATX(I), SATY(I), SATZ(I), SLAT(1), SLON(1), HT)
64
             CALL GEODETIC (SATX(J), SATY(J), SATZ(J), SLAT(2), SLON(2), HT)
65
66
     c set IS to the west most satellite
67
68
              IS = I
             IFF =J
69
70
              IF (SLON(1).GT.180.D+00) SLON(1) = SLON(1) - 360.D+00
71
              IF (SLON(2).GT.180.D+00) SLON(2) = SLON(2) - 360.D+00
72
              IF (SLON(1).GT.SLON(2)) THEN
73
                  IS=J
74
                  IFF=I
75
              END IF
76
      C
77
      C
              WRITE (6,*) 'is, iff, i, j =', IS, IFF, I, J
78
79
      C if satellites have been interchanged then change the sign
80
      C of the difference
81
      С
82
              IF (IS.NE.I) DELTA = -DELTA
83
      С
84
         set the step size to 1 degree initially
 85
      С
         DLON is set to 10 degrees west of the initial guess longitude
 86
      С
 87
            DSTEP = 1.D+00
 88
            DLON=XLON - 10.D+00
 89
      С
 90
       50
            CONTINUE
 91
      С
 92
             GLON=DLON
 93
      С
 94
      C COMPUTE THE RANGES
 95
      C First compute the (x,y,z) coordinates of the location given
 96
      C by XLAT and DLON
 97
      C The XYZ routine works with longitudes defined between
 98
      C 0 to 360 degrees
 99
      C
100
              TLON = DLON
101
              IF (DLON.LT.O.D+00) TLON=DLON+360.D+00
102
              CALL XYZ (XLAT, TLON, 0.D+00, X, Y, Z)
103
      С
104
              RI=DISTANC (SATX(IFF), SATY(IFF), SATZ(IFF), X, Y, Z)
105
              RJ=DISTANC (SATX(IS), SATY(IS), SATZ(IS), X, Y, Z)
106
       С
107
             DIF2 = RJ - RI
108
       C
109
       С
              write (6,*) 'dif2, rj, ri = ',DIF2,RJ,RI
110
       С
              PAUSE
111
       С
112
       C because satellite #IFF is east of satellite #IS and
113
         we take R(is) - R(iff) and the longitude is scanned
 114
         from west to east, the differential range will
 115
       C be negative and will gradually increase with the
 116
       C increase of longitude
```

LISTING OF PROGRAM RANDELT.F (CONTINUED)

```
117
    118
                 IF (DIF2.GE.O.D+00 .AND. DELTA.GT.O.D+00) THEN
    119
           C
    150
             If differential range greater than the required one
    121
             then we passed the point. Come back on the previous point,
    155
          С
              decrease the step
    153
          C
              size and increase the longitude by the new step size
    124
             otherwise check if less than the required one
    152
          C
             if less then increase the longitude.
    156
    127
                      IF (DIF2.GT. (DELTA+ACC)) THEN
    158
   159
                           DLON=DLON-DSTEP
                           DSTEP=DSTEP/2,D+00
   130
   131
                           IF (DSTEP.LT.1.D-10) THEN
   135
                                IER=2
                                RETURN
   133
                           END IF
   134
                           DLON = DLON + DSTEP
   135
   136
                     ELSE IF (DIF2.GE. (DELTA-ACC)) THEN
   137
                           RETURN
   138
                     ELSE
   139
                          DLON=DLON+DSTEP
  140
                     END IF
         C
  141
  142
               ELSE IF (DIF2.LT.O.D+00 .AND. DELTA.GT.O.D+00) THEN
         C
  143
         {\tt C} if outside the allowed accuracy then increase the longitude
  144
         C to converge toward positive DIF2
  145
  146
                      IF (DIF2.LT. (DELTA-ACC)) THEN
  147
  148
                            DLON = DLON + DSTEP
  149
                     ELSE
  150
                            RETURN
 151
                     END IF
        C
 152
              ELSE IF (DIF2.GE.O.D+00 .AND. DELTA.LT.O.D+00) THEN
 153
        C
 154
        ^{	extsf{C}} if outside the allowed accuracy, then we passed the point
 155
           Come back on the previous point, decrease the step size and
 156
       C
           increase the longitude by the new step size
 157
 158
 159
                    IF (DIF2.GT. (DELTA+ACC)) THEN
 160
                        DLON=DLON-DSTEP
                        DSTEP=DSTEP/2.D+00
 161
                        IF (DSTEP.LT.1.D-10) THEN
165
J 63
                             IER=2
164
                             RETURN
165
                        END IF
J66
                        DLON = DLON + DSTEP
167
                   ELSE
168
                          RETURN
169
                   END IF
      С
170
             ELSE IF (DIF2.LT.0.D+00 .AND. DELTA.LT.0.D+00) THEN
171
      C
172
         if outside the allowed accuracy and the differential range is
      С
173
         less than the required one, then increase the longitude
174
         if the differential range is greater than the required one
```

LISTING OF PROGRAM RANDELT.F (CONTINUED)

```
then we passed the point. Come back on the previous point,
175
176
         decrease the step size and increase the longitude by the new
      С
      С
177
         step size
178
179
                  IF (DIF2.LT. (DELTA-ACC)) THEN
180
                       DLON=DLON+DSTEP
181
                  ELSE IF (DIF2.GT. (DELTA+ACC)) THEN
182
                       DLON=DLON-DSTEP
183
                       DSTEP=DSTEP/2.D+00
184
                       IF (DSTEP.LT.1.D-10) THEN
185
                            IER=2
186
                            RETURN
187
                       END IF
188
                       DLON = DLON + DSTEP
189
                   ELSE
190
                         RETURN
191
                   END IF
192
             END IF
193
194
       C if longitude is greater than 180 degrees then we failed to
 195
       C find a solution
196
 197
               IF (DLON.LE.180.0D+00) GOTO 50
 198
             IER = 3
 199
             RETURN
 200
             END
```

LISTING OF FILE 'WGS CONVERSION.F'

```
]
     2
          С
     3
                 subroutine xyz(lat,long,ht,x,y,z)
     4
         C
     5
         С
                  This subroutine converts WGS84 lat, long, height
     6
         С
                  above ref. elipsoid to EFEC x y z co-ord.
     7
         С
                  Based on Olsen, Journal of Guidance, Control.
     8
         C
                   & Dynamics, Mar/Apr 1988, pp 188-190.
     9
         C
   10
         C
                 lat, long : geodetic latitude and longitude of point in
   11
         C
                             WGS-84 latitudes must be within +/- 90 degrees
   12
         C
                             positive North longitudes must be within \tilde{0} to
   13
         C
                             360 degrees east
   14
         C
                            : height above the reference ellipsoid in meters
                 ht
   15
        C
                            : coordinates of the point in meters from center
                 x,y,z
   16
        C
                              of the Earth
   17
        C
   18
        С
                 written by D. Hindson Oct 1989
   19
   20
        С
           Modified by M. Caron Dec. 1989
   21
  22324
                 implicit double precision (a-z)
                  COMMON /DISTDATA/ ae,e2
        C
  25
  26
                dtor=datan(1.D0)/45.D0
  27
                latr=lat*dtor
  28
                longr=long*dtor
       C
  29
                re=ae/dsqrt(1.D0-e2*(dsin(latr))**2.D0)
  30
                x=(re+ht)*dcos(latr)*dcos(longr)
  31
                y=(re+ht)*dcos(latr)*dsin(longr)
  32
                z=((1.D0-e2)*re+ht)*dsin(latr)
  33
                return
  34
 35
                end
 36
               subroutine geodetic(x,y,z,ylt,xln,ht)
 37
       C
 38
               This subroutine converts from x y z ECEF co-ords to WGS84
       C
 39
      C
               geodetic position.
 40
               Algorithm from Olsen Jornal of Guidance, Control,
      C
 41
                 and Dynamics, Mar/Apr 1988 pp188-190.
      C
 42
      C
 43
               written by D. Hindson Oct 1989
      С
 44
 45
               implicit double precision (a-z)
 46
                COMMON /DISTDATA/ ae, e2
47
      C
48
      C WGS84 constants
49
50
      c equatorial radius
51
52
53
     C
              ae=6378137.D0
54556
     C
     c elipsicity squared
     C
     C
               e2=.006694379990D0
57
     C
58
             al=ae*e2
```

LISTING OF FILE 'WGS CONVERSION.F' (CONTINUED)

```
a2=e2/2.D0
59
60
             a3=a2/2.D0
              a4=a1**2.D0/2.D0
61
62
              a5=a1/2.D0
63
              a6=1.D0-e2
             xln=datan2(y,x)
64
65
              w2=x**2.D0+y**2.D0
              w=dsqrt(w2)
66
67
              r2=w2+z**2.D0
68
              r=dsqrt(r2)
              s22=z**2.D0/r2
69
70
              d1=a1/r
              d2=d1+1.D0
71
72
              c=a5*s22*(d2+s22*(a3-d1))
73
              ht=r-ae+c
74
              s2=z/r
75
              c2=w/r
76
              s1=d1*s2*c2*(d2-s22*(2.D0*d1-a2))
 77
              c1=1.D0-(a4/r2)*s22*(1.D0-s22)
 78
              s=s1*c2+c1*s2
79
              ylt=dasin(s)
 80
              ss=s**2.D0
 81
              rr=1.D0-e2*ss
 82
              re=ae/dsqrt(rr)
 83
              rf=a6*re
 84
              c=dsqrt(1.D0-ss)
 85
              wl=(re+ht)*c
 86
               z1=(rf+ht)*s
 87
               dw=w-w1
               dz=z-z1
 88
 89
               d1=-s*dw+c*dz
 90
               dh=c*dw+s*dz
 91
              ylt=ylt+d1/(rf/rr+ht)
 92
              ht=ht+dh
 93
                dtor = datan(1.0d+0)/45.d+00
 94
                ylt = ylt / dtor
 95
                xln = xln / dtor
 96
               return
 97
               end
```

LISTING OF SCRIPT FILE TO COMPILE AND LINK

1	# File: 'Diff Range XYZ.make'
2 3	# Target: 'Diff Pange XY7'
3	# Sources: 'DIFF RANGE XYZ.F' randelt.f 'WGS84 CONVERSION.F'
4 5	# Created: Friday, February 2, 1990 10:27:15 AM
5	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	'DIFF RANGE XYZ.F.o' f 'Diff Range XYZ.make' 'DIFF RANGE XYZ.F'
7	FORTRAN -3 -mc68881 -opt=3 -extended 'DIFF RANGE XYZ.F'
8 9	randelt.f.o f 'Diff Range XYZ.make' randelt.f
	FORTRAN -3 -mc68881 -opt=3 -extended randelt.f
10	'WGS84 CONVERSION.F.o' f 'Diff Range XYZ.make' 'WGS84 CONVERSION.F'
11	FORTRAN -3 -mc68881 -opt=3 -extended 'WGS84 CONVERSION.F'
12	1
13	SOURCES = 'DIFF RANGE XYZ.F' randelt.f 'WGS84 CONVERSION.F'
14	OBJECTS = 'DIFF RANGE XYZ.F.o' randelt.f.o 'WGS84 CONVERSION.F.o'
15	
16	'Diff Range XYZ' ff 'Diff Range XYZ.make' {OBJECTS}
17	Link -ad 4 -w -t APPL -c '????' δ
18	{OBJECTS} ∂
19	"{Libraries}"Runtime.o ∂
20	"(Libraries)"Interface.o d
21	"{FLibraries}"FORTRANIB.0 d
22	"{FLibraries}"IntrinsicLib.od
53	-o 'Diff Range XYZ'

RUN EXAMPLE

NOTE: Longitudes must be within [-180,180] (+ve=East) Latitude must be within [-90,90] (+ve = North)

Satellite lat., long. #1 and #2
Satellite #1 must be west of satellite #2
0,-135,0,-75
Range difference (#2 minus #1) in meters
215000
Range difference accuracy in meters
1
File name where to dump data
demo.dat

LATITUDE LONGITUDE

```
0.00
1
               -103.3149719
                                          18. min. 53.8989 sec.
                               103. DEG.
2
      0.83
               -103.3147736
                                          18. min. 53.1848 sec.
                               103. DEG.
3
      1.66
               -103.3141479
                                          18. min. 50.9326 sec.
                               103. DEG.
4
      2.48
                                                                 0
               -103.3131256
                                          18. min. 47.2522 sec.
                               103. DEG.
5
      3.31
                               103. DEG. 18. min. 42.0886 sec.
               -103.3116913
6
      4.14
               -103.3098297
                                          18. min. 35.3870 sec.
                                                                  0
                               103. DEG.
7
      4.97
                                                                 0
               -103.3075714
                               103. DEG.
                                          18. min. 27.2571 sec.
8
      5.80
                                           18. min. 17.5891 sec.
                                                                 0
               -103.3048859
                               103. DEG.
9
                                           18. min. 6.3831 sec.
       6.63
                -103.3017731
                               103. DEG.
10
       7.45
                                103. DEG. 17. min. 53.6938 sec. 0
                -103.2982483
11
       8.28
                                            17. min. 39.4116 sec.
                -103.2942810
                                103. DEG.
12
       9.11
                -103.2899017
                                            17. min. 23.6462 sec. 0
                                103. DEG.
13
       9.94
                                            17. min. 6.2878 sec.
                -103.2850800
                                103. DEG.
14
       10.77
                                            16. min. 47.2815 sec.
                 -103.2798004
                                103. DEG.
15
                                            16. min. 26.7371 sec.
       11.60
                 -103.2740936
                                 103. DEG.
16
       12.42
                                             16. min. 4.5447 sec.
                 -103.2679291
                                 103. DEG.
17
       13.25
                                             15. min. 40.6494 sec.
                 -103.2612915
                                 103. DEG.
18
                                             15. min. 15.1062 sec.
       14.08
                                                                   0
                 -103.2541962
                                 103. DEG.
19
       14.91
                                             14. min. 47.8601 sec.
                                                                    0
                 -103.2466278
                                 103. DEG.
20
                                             14. min. 18.8562 sec.
       15.74
                 -103.2385712
                                 103. DEG.
21
                                             13. min. 48.0945 sec.
                                                                    0
       16.57
                 -103.2300262
                                 103. DEG.
                                             13. min. 15.5200 sec.
22
       17.39
                 -103.2209778
                                 103. DEG.
                                             12. min. 41.0779 sec.
23
       18.22
                 -103.2114105
                                 103. DEG.
                                             12. min. 4.7681 sec.
       19.05
                                                                   0
24
                 -103.2013245
                                 103. DEG.
                                             11. min. 26.5356 sec.
       19.88
25
                 -103.1907043
                                 103. DEG.
```

```
26
           20.71
                      -103.1795197
                                      103. DEG.
                                                  10. min. 46.2708 sec. 0
    27
           21.54
                      -103.1677856
                                      103. DEG.
                                                  10. min. 4.0283 sec.
    28
           22,36
                     -103.1554718
                                     103. DEG.
                                                  9. min. 19.6985 sec.
    29
           23.19
                     -103.1425781
                                     103. DEG.
                                                  8. min. 33.2812 sec.
    30
                                                                       0
           24.02
                     -103.1290588
                                     103. DEG.
                                                  7. min. 44.6118 sec.
    31
                                                                       0
           24.85
                     -103.1149292
                                     103. DEG.
                                                 6. min. 53.7451 sec. 0
    32
           25.68
                     -103.1001434
                                                 6. min. 0.5164 sec. 0
   33
                                     103. DEG.
           26.51
                     -103.0846863
                                     103. DEG.
   34
                                                 5. min. 4.8706 sec.
          27.33
                                                 4. min. 6.8628 sec.
                     -103.0685730
                                     103. DEG.
   35
          28.16
   36
                     -103.0517273
                                     103. DEG.
                                                 3. min. 6.2183 sec.
                                                                      0
          28.99
                     -103.0341644
                                     103. DEG.
                                                 2. min. 2.9919 sec.
   37
                                                                      0
          29.82
                     -103.0158539
                                    103. DEG.
                                                 0. min. 57.0740 sec.
   38
          30.65
                    -102.9967499
                                                59. min. 48.2996 sec. 0
                                    102. DEG.
   39
          31.47
                    -102.9768524
                                    102. DEG.
                                                58. min. 36.6687 sec.
   40
          32.30
                    -102.9561157
                                                57. min. 22.0166 sec. 0
                                    102. DEG.
   41
          33,13
                    -102.9344940
                                    102. DEG.
                                               56. min. 4.1785 sec. 0
   42
          33.96
                    -102,9119873
                                    102. DEG.
                                               54. min. 43.1543 sec.
   43
         34.79
                                    102. DEG.
                                               53. min. 18.6694 sec.
                    -102.8885193
  44
         35.62
                                               51. min. 50.7239 sec.
  45
                    -102.8640900
                                    102. DEG.
         36.44
                                   102. DEG.
                                               50. min. 19.1528 sec.
                    -102.8386536
                                                                      0
  46
         37.27
                                                                     0
                   -102.8121338
                                   102. DEG.
                                               48. min. 43.6816 sec.
  47
         38.10
                   -102.7845154
                                   102. DEG.
                                               47. min. 4.2554 sec.
  48
         38.93
                   -102,7557526
                                   102. DEG.
                                               45. min. 20.7092 sec.
                                                                     0
  49
         39.76
                                   102. DEG.
                                               43. min. 32.7686 sec.
                   -102.7257690
                                                                     0
  50
         40.59
                                   102. DEG.
                                               41. min. 40.2686 sec.
 51
                   -102.6945190
         41.41
                                   102. DEG.
                                               39. min. 43.0444 sec.
                                                                     0
                   -102.6619568
 52
        42.24
                                              37. min. 40.7666 sec.
                                   102. DEG.
                                                                     0
 53
                   -102.6279907
        43.07
                                              35. min. 33.2153 sec.
 54
                                   102. DEG.
                                                                     0
                   -102.5925598
        43.90
                                              33. min. 20.1709 sec.
                   -102.5556030
                                  102. DEG.
                                                                    0
 55
        44.73
                                              31. min. 1.3037 sec. 0
                                  102. DEG.
 56
                  -102.5170288
        45.56
                                              28. min. 36.2842 sec. 0
                  -102.4767456
                                  102. DEG.
 57
        46,38
                                              26. min. 4.8926 sec.
                                  102. DEG.
                  -102.4346924
 58
                                              23. min. 26.5796 sec.
        47.21
                  -102.3907166
                                  102. DEG.
 59
       48,04
                                             20. min. 41.1255 sec.
                                                                    0
                                  102. DEG.
                  -102.3447571
 60
       48.87
                                             17. min. 47.9810 sec.
                                  102. DEG.
                  -102.2966614
 61
       49,70
                                             14. min. 46.8164 sec.
                                  102. DEG.
                  -102.2463379
 62
       50.53
                                             11. min. 36.9727 sec.
                                                                   0
                                  102. DEG.
                  -102.1936035
63
                                              8. min. 18.1201 sec.
       51,35
                                 102. DEG.
                  -102.1383667
64
       52.18
                                             4. min. 49.4897 sec.
                                 102. DEG.
65
                 -102.0804138
                                             1. min. 10.4224 sec.
       53.01
                                 102. DEG.
66
                 -102.0195618
       53.84
                                             57. min. 20.3687 sec.
                                 101. DEG.
                 -101.9556580
67
       54.67
                                             53. min. 18.5596 sec.
                                                                   0
                                 101. DEG.
68
                 -101.8884888
                                            49. min. 4.0063 sec.
       55,49
                 -101.8177795
                                 101. DEG.
69
                                            44. min. 35.9399 sec.
      56.32
70
                                 101. DEG.
                 -101.7433167
                                            39. min. 53.2617 sec.
      57,15
                                 101. DEG.
                 -101.6647949
                                            34. min. 54.8730 sec.
                                                                  0
      57,98
                                 101. DEG.
                 -101.5819092
                                            29. min. 39.4556 sec.
      58.81
                                101. DEG.
                 -101.4942932
                                            24. min. 5.6909 sec.
      59,64
                                101. DEG.
                -101.4015808
                                            18. min. 12.0410 sec. 0
      60,46
                                101. DEG.
                -101.3033447
                                            11. min. 56.8579 sec. 0
      61.29
                                101. DEG.
                -101.1991272
                                            5. min. 18.1641 sec. 0
      62.12
                                101. DEG.
                -101.0883789
                                           58. min. 13.7622 sec.
                                100. DEG.
      62,95
                -100.9704895
                                           50. min. 41.2354 sec.
                                                                 0
     63.78
                                100. DEG.
                -100.8447876
                                           42, min. 37.9468 sec.
                               100. DEG.
     64.61
                -100.7105408
```

71

78

79

```
65.43
                 -100.5668335
                                100. DEG.
                                            34. min. 0.6006 sec. 0
80
        66.26
                 -100.4127197
                                100. DEG. 24. min. 45.7910 sec. 0
81
        67.09
                 -100.2470703
                                100. DEG. 14, min. 49.4531 sec. 0
82
                 -100.0685425
        67.92
                                100. DEG.
                                            4. min. 6.7529 sec. 0
83
        68.75
                  -99.8756409
                                99. DEG. 52. min. 32.3071 sec.
 84
                                           39. min. 59.8535 sec.
        69.58
 85
                  -99.6666260
                                99. DEG.
 86
        70.40
                  -99.4394226
                                99. DEG. 26. min. 21.9214 sec.
        71.23
 87
                  -99.1916504
                                 99. DEG. 11. min. 29.9414 sec.
        72.06
                                98. DEG. 55. min. 13.2568 sec. 0
 88
                  -98.9203491
                                          37. min. 19.8926 sec.
 89
        72.89
                  -98.6221924
                                 98. DEG.
                                                                 0
 90
        73.72
                  -98.2929688
                                 98. DEG. 17. min. 34.6875 sec.
 91
        74.55
                  -97.9277344
                                 97. DEG.
                                           55. min. 39.8437 sec.
 92
        75.37
                                 97. DEG. 31. min. 12.5098 sec. 0
                  -97.5201416
 93
        76.20
                  -97.0626221
                                 97. DEG.
                                           3. min. 45.4395 sec.
 94
        77.03
                                          32. min. 43.4766 sec. 0
                  -96.5454102
                                 96. DEG.
 95
        77.86
                  -95.9561157
                                 95. DEG. 57. min. 22.0166 sec. 0
 96
        78.69
                                 95. DEG. 16. min. 43.0518 sec. 0
                  -95.2786255
 97
        79.52
                  -94,4915771
                                 94. DEG. 29. min. 29.6777 sec.
                                                                 0
 98
        80.34
                  -93.5660400
                                 93. DEG. 33. min. 57.7441 sec.
 99
        81.17
                  -92.4617920
                                 92. DEG. 27. min. 42.4512 sec.
 100
         82.00
                                 91. DEG. 7. min. 17.6953 sec. 0
                   -91.1215820
Another run? (Y or N)
```

STOP Tourlou!

100 -103.314971923828125000 0.000000000000000000 -103.314773559570312500 0.828282828282828283 -103.314147949218750000 1.656565656565656566 -103.313125610351562500 2.484848484848484848 -103.311691284179687500 3.313131313131313131 -103.309829711914062500 4.141414141414141414 -103.307571411132812500 4.9696969696969696 -103.304885864257812500 5.797979797979797980 -103.301773071289062500 6.626262626262626262 -103.298248291015625000 7.454545454545454546 -103.294281005859375000 8.282828282828282828 -103.289901733398437500 9.11111111111111111 -103.285079956054687500 9.9393939393939393 -103.279800415039062500 10.767676767676767680 -103.274093627929687500 11.595959595959595960 -103.267929077148437500 12.4242424242424240 -103.261291503906250000 13.252525252525252530 -103.254196166992187500 14.080808080808080810 -103.246627807617187500 14.909090909090909090 -103.238571166992187500 15.737373737373737370 -103.230026245117187500 16.565656565656565660 -103.220977783203125000 17.393939393939393940 -103.211410522460937500 18.222222222222222 -103.201324462890625000 19.050505050505050500 -103.190704345703125000 19.878787878787878790 -103.179519653320312500 20.707070707070707070 -103.167785644531250000 21.53535353535353535 -103.155471801757812500 22.363636363636363640 -103.142578125000000000 23.1919191919191920 -103.129058837890625000 24.020202020202020200 -103.114929199218750000 24.848484848484848480 -103.100143432617187500 25.676767676767676770 -103.084686279296875000 26.505050505050505050 -103.068572998046875000 27.333333333333333333 -103.051727294921875000 28.161616161616161620 -103.034164428710937500 28.9898989898989900 -103.015853881835937500 29.8181818181818180 -102.996749877929687500 30.646464646464646460 -102.976852416992187500 31.474747474747474750 -102.956115722656250000 32.30303030303030303030 -102.934494018554687500 33.131313131313131310 -102.911987304687500000 33.9595959595959600 -102.888519287109375000 34.78787878787878787880 -102.864089965820312500 35.616161616161616160 -102.838653564453125000 36.444444444444444 -102.812133789062500000 37.2727272727272730 -102.784515380859375000 38.101010101010101010 -102.755752563476562500 38.9292929292929290 -102.725769042968750000 39.757575757575757580 -102.694519042968750000 40.585858585858585860 -102.661956787109375000 41.4141414141414140 -102.627990722656250000 42.242424242424242420 -102.592559814453125000 43.070707070707070710

43.898989898989898990 -102.555603027343750000 -102.517028808593750000 44.727272727272727270 -102.476745605468750000 45.55555555555555560 -102.434692382812500000 46.383838383838383840 47.212121212121212120 -102.390716552734375000 48.04040404040404040 -102.344757080078125000 48.868686868686868680 -102.296661376953125000 49.6969696969696960 -102.246337890625000000 50.525252525252525260 -102.193603515625000000 51.353535353535353540 -102.138366699218750000 52.181818181818181820 -102.080413818359375000 53.010101010101010100 -102.019561767578125000 53.838383838383838380 -101.955657958984375000 54.6666666666666666 -101.888488769531250000 55.494949494949494940 -101.817779541015625000 56.3232323232323240 -101.743316650390625000 57.151515151515151520 -101.664794921875000000 57.9797979797979800 -101.581909179687500000 58.808080808080808080 -101.494293212890625000 59.636363636363636360 -101.401580810546875000 60.4646464646464640 -101.303344726562500000 61.2929292929292920 -101.199127197265625000 62.12121212121212120 -101.08837890625000000 62.9494949494949500 -100.970489501953125000 63.7777777777777780 -100.844787597656250000 64.606060606060606060 -100.710540771484375000 65.434343434343434340 -100.566833496093750000 66.262626262626262620 -100.412719726562500000 67.090909090909090900 -100.247070312500000000 67.919191919191919200 -100.068542480468750000 68.747474747474747480 -99.875640869140625000 69.575757575757575760 -99.666625976562500000 70.404040404040404040 -99,439422607421875000 71.232323232323232320 -99.191650390625000000 -98.920349121093750000 72.060606060606060600 72.8888888888888888 -98.622192382812500000 73.7171717171717160 -98.292968750000000000 74.5454545454545460 -97.927734375000000000 75.3737373737373740 -97.520141601562500000 76.202020202020202020 -97.062622070312500000 77.03030303030303030 -96.545410156250000000 77.858585858585858580 -95.956115722656250000 78.68686868686868686 -95.278625488281250000 79.5151515151515160 -94.491577148437500000 80.343434343434343440 -93.566040039062500000 81.171717171717171720 -92.461791992187500000 82.000000000000000000 -91.121582031250000000

DIFF RANGE XYZ

Sat. geocentric lat., long. #1, #2: 0.00, -135.00 0.00, -75.00

Range differences (meters): 215000.000 Accuracy Required (meters): 1.0000000

APPENDIX B COMPUTER PROGRAM TO COMPUTE THE SHORTEST DISTANCE BETWEEN TWO POINTS ON THE EARTH

LISTING OF PROGRAM DISVINCENTY.F

```
program disvincenty
1
2
     С
3
             This program calculates geodetic distance using Vincenty's Inverse
     С
4
             algorithm. Based on paper presented at 39th annual meeting of ION
     С
 5
     С
             by L. Pfeifer pp515-524.
 6
     С
 7
             written by D. Hindson
      С
 8
      С
             May 1 1990
 9
10
11
             implicit double precision (a-z)
12
             integer ans,fdeg,fmin,bdeg,bmin
13
             character*1 msym,ssym
14
              msym=char(39)
15
              ssym=char(34)
16
              pi=4.d0*datan(1.d0)
17
              dtor=pi/180.d0
18
              write(6,*)'Do you want to use WGS84 reference ellipsoid (y=1)'
19
              read(5,*) ans
20
              if (ans.eq.1) then
21
      С
22
              WGS84 parameters
      С
23
      C
24
25
                      a=6378137.d0
26
                      finv=298.257223563d0
27
              else
28
                      write(6,*)'Enter ellipsoid semi-major axis (m)'
29
                      read(5,*) a
30
                      write(6,*)'Enter 1/flattening of ellipsoid'
31
                      read(5,*) finv
32
              endif
33
       С
34
       С
              Input section
 35
              write(6,*)'Do you want to enter lat. longs. in degrees (1) or d m s (2)'
 36
       300
 37
              read(5,*) ans
 38
              if (ans.eq.1) then
 39
                      write(6,*)'Input start latitude (deg. N +ve)'
 40
                      read(5,*) lats
 41
                      write(6,*)'Input start longitude (deg. E +ve)'
 42
                      read(5,*) longs
 43
                      write(6,*)'Input finish latitude (deg. N +ve)'
 44
                      read(5,*) latf
 45
                      write(6,*)'Input finish longitude (deg. E +ve)'
 46
                      read(5,*) longf
 47
               else
 48
                      write(6,*)'Input start latitude (deg. min. sec. N +ve)'
 49
                      read(5,*) lats,min,sec
 50
                      if (lats.lt.0.d0) then
 51
                              lats=lats-min/60.d0-sec/3600.d0
 52
                       else
 53
                              lats=lats+min/60.d0+sec/3600.d0
 54
                       endif
```

LISTING OF PROGRAM DISVINCENTY.F (CONTINUED)

```
55
                            write(6,*)'Input start longitude (deg. min. sec. E +ve)'
       56
                            read(5,*) longs,min.sec
       57
                            if (longs.lt.0.d0) then
      58
                                    longs=longs-min/60.d0-sec/3600.d0
      59
                            else
      60
                                   longs=longs+min/60.d0+sec/3600.d0
      61
                           endif
      62
                           write(6,*)'Input finish latitude (deg. min. sec. N +ve)'
      63
                           read(5,*) latf,min,sec
      64
                           if (latf.lt.0.d0) then
      65
                                   latf=latf-min/60.d0-sec/3600.d0
      66
                           else
      67
                                  latf=latf+min/60.d0+sec/3600.d0
     68
                           endif
     69
                           write(6,*)'Input finish longitude (deg. min. sec. E +ve)'
     70
                          read(5,*) longf,min,sec
     71
                          if (longf.lt.0.d0) then
     72
                                  longf=longf-min/60.d0-sec/3600.d0
     73
                          else
    74
                                  longf=longf+min/60.d0+sec/3600.d0
    75
                          endif
    76
                  endif
    77
          С
    78
          C
                  convert lat long to radians
    79
          C
                  note: algorithm uses W +ve thud -ve sign on long
    80
          C
    81
                  lats=lats*dtor
    82
                 longs=-longs*dtor
    83
                 latf=latf*dtor
    84
                 longf=-longf*dtor
   85
         C
   86
                 call subroutine dis to calc distance and azimuths
         C
   87
   88
                 call dis(a,finv,lats,longs,latf,longf,faz,baz,dist)
   89
                 call d dms(faz,fdeg,fmin,fsec)
   90
                 call d_dms(baz,bdeg,bmin,bsec)
   91
                write(6,*)'
   92
                write(6,*)' Distance between points = ',dist,' m'
   93
                write(6,*)'
  94
                write(6,*)' Forward azimuth
                                                   = ',faz,' degrees'
  95
                write(6,110),fdeg,fmin,msym,fsec,ssym
  96
                write(6,*)'
  97
                                                 = ',baz,' degrees'
                write(6,*)' Back azimuth
  98
                write(6,110),bdeg,bmin,msym,bsec,ssym
  99
               format(26x,'= ',4x,i3,1x,i2,a1,f7.3,a1)
        110
100
               write(6,*)'
101
               write(6,*)' '
105
               write(6,*)' Do you want to run again? (y=1)'
103
               read(5,*) ans
104
105
               if (ans.eq.1) goto 300
               stop
106
               end
107
108
```

LISTING OF PROGRAM DISVINCENTY.F (CONTINUED)

```
109
              subroutine dis(a,finv,glat1,glon1,glat2,glon2,faz,baz,s)
110
              Implicit double precision (a-z)
111
              integer i,ans
112
              tol = 0.3d-11
113
               twopi=6.283185307179586d0
114
               r=-1.d0/finv+1.d0
115
116
               tu1=dtan(glat1)*r
               tu2=dtan(glat2)*r
117
118
               cu1=1.d0/dsqrt(tu1*tu1+1.d0)
               sul=cul*tul
119
               cu2=1.d0/dsqrt(tu2*tu2+1.d0)
120
               s=cu2*cu1
121
               baz=s*tu2
122
123
               faz=baz*tu1
124
               x=glon2-glon1
               i=0
 125
 126
        100
               i=i+1
 127
               if(i.gt.1000) then
                      write(6,*)' 1000 itterations performed continue? (y=1)'
 128
 129
                      read(5,*) ans
 130
                      if (ans.ne.1) return
 131
               endif
 132
               sx=dsin(x)
 133
               cx=dcos(x)
 134
                tu1=cu2*sx
 135
                tu2=-su1*cu2*cx+baz
 136
                sy=dsqrt(tu1*tu1+tu2*tu2)
 137
                cv=s*cx+faz
 138
                y=datan2(sy,cy)
 139
                sa=s*sx/sv
 140
                c2a=-sa*sa+1.d0
 141
                cz=faz+faz
 142
                if(c2a.gt.0.d0) cz=-cz/c2a+cv
  143
                e=cz*cz*2.d0-1.d0
  144
                c = ((-3.d0*c2a+4.d0)/finv+4.d0)*c2a/finv/16.d0
  145
                d=x
  146
                x=((e*cy*c+cz)*sy*c+y)*sa
  147
                x=(1.d0-c)*x/finv+glon2-glon1
  148
                if(dabs(d-x).gt.tol*y) goto 100
  149
                faz=datan2(-tu1,tu2)
  150
                if(faz.lt.0.d0) faz=faz+twopi
  151
                 baz=datan2(cu1*sx,su1*cu2-baz*cx)
  152
                 if(baz.lt.0.d0) baz=baz+twopi
  153
                 x=dsqrt((1.d0/r/r-1.d0)*c2a+1.d0)+1.d0
  154
                 x = (x - 2.d0)/x
  155
                 c=1.d0-x
  156
                 c=(x*x/4.d0+1.d0)/c
  157
                 d=(0.375d0*x*x-1.d0)*x
  158
                 x=e*cy
  159
                 s=1.d0-e-e
                 s=((((sy*sy*4.d0-3.d0)*s*cz*d/6.d0-x)*d/4.d0+cz)*sy*d+y)*c*a*r
  160
                 return
  161
                 end
  162
```

LISTING OF PROGRAM DISVINCENTY.F (CONTINUED)

163 164 165 c 166 c	subroutine d_dms(angle,deg,min,sec)
167 168 169 170 171 172 173 174 175 176 177	routine convert angle in radians to decimal degrees and degrees min sec implicit double precision (a-z) integer deg,min pi=4.d0*datan(1.d0) angle=angle*180.d0/pi deg=int(angle) min=int((angle-dfloat(deg))*60.d0) sec=(angle-dfloat(deg)-dfloat(min)/60.d0)*3600.d0 return end

SCRIPT FILE TO COMPILE AND LINK

```
# File:
                   Disvincenty.make
1
      # Target: Disvincenty
 2
      # Sources: disvincenty.f
 3
      # Created: Tuesday, October 2, 1990 4:15:27 PM
 5
 6
      OBJECTS = disvincenty.f.o
 7
 8
 9
10
11
      Disvincenty ff Disvincenty.make {OBJECTS}
12
               Link -f -srt -ad 4 -ss 1000000 -w -t APPL -c '????' d
13
                       {OBJECTS} ∂
                       "{Libraries}"Runtime.o \(\partial\)
"{Libraries}"Interface.o \(\partial\)
14
15
                       "{FLibraries}"FORTRANlib.o \partial
"{FLibraries}"IntrinsicLibFPU.o \partial
16
17
                       "{FLibraries}"FSANELibFPU.o d
18
19
                       -o Disvincenty
       disvincenty.f.o f Disvincenty.make disvincenty.f
20
                FORTRAN -mc68020 -mc68881 -opt=3 -extended disvincenty.f
21
```

RUN EXAMPLE

```
1
       Do you want to use WGS84 reference ellipsoid (y=1)
  2
  3
       Do you want to enter lat. longs. in degrees (1) or d m s (2)
  5
       Input start latitude (deg. N +ve)
  6
  7
       Input start longitude (deg. E +ve)
  8
  9
      Input finish latitude (deg. N+ve)
 10
11
      Input finish longitude (deg. E +ve)
12
      -75
13
14
                                   711748.631389547865
       Distance between points =
                                                            m
15
16
                                 264.252737733617996
                                                          degrees
       Forward azimuth
17
                                 264 15' 9.856"
18
19
                                 77.8267293949662975
                                                          degrees
      Back azimuth
20
                                 77 49' 36.226"
21
22
23
      Do you want to run again? (y=1)
24
25
26
     STOP
27
```

		.4

APPENDIX C PROGRAM TO COMPUTE THE ACCURACY OF THE DELAY ESTIMATOR

```
1
2
     C
 3
     C PROGRAM TO COMPUTE THE PROBABILITY THAT A GIVEN ACCURACY
     C IS REACHED IN THE DELAY ESTIMATOR PROCESSOR
 4
 5
     Č
 6
                               M. Caron
 7
     C
                              AUGUST 1990
     Ċ
 8
 9
       Note: It is suggested to use the "-extended" option when
10
     C
            compiling to obtain better accuracy on the calculation
     č
11
12
     C
             RunMacII Accuracy4.f -extended -opt=3
     č
13
     C
14
           Only the first 512 correlation lags are assumed to be
     č
15
           of interest.
     C
16
17
18
     C Load trap code for Macintosh system routines
19
     !!m inlines.f
20
        PROGRAM ACCURACY4
21
        real*8 CORREL(0:512)
22
        DOUBLE PRECISION SUM, PROD, FCN, U, sigma, AA, Q
23
        EXTERNAL FCN,Q
24
        CHARACTER*80 FILEN,outf*80
25
     C
26
           do i=0,512
27
                  correl(I)=0.
28
           end do
29
     С
30
        WRITE(6,10)
      10 FORMAT (/,/,T10,'DELAY ESTIMATION ACCURACY',,T10,
31
32
        &
                     33
     C
      50 WRITE (6,60)
34
      60 FORMAT (T3, FILE NAME WHERE TO GET THE',
35
36
            'AUTOCORRELATION LEVELS')
         OPEN (UNIT=10,FILE=*,STATUS='OLD',readonly)
37
38
            inquire(unit=10,name=filen)
39
            write(6,*) filen
40
     C
41
            call f drawoutpwindow
42
     C
      C read autocorrelation levels over the first NCOR lags
43
44
45
          READ (10,20) NCOR
46
      20
          FORMAT(i)
47
          IF(NCOR.GT.513) THEN
48
              WRITE(6,25) NCOR
               FORMAT(T3, ?? NCOR GREATER THAN THE MAXIMUM LIMIT.,
49
      25
50
                     'NCOR=', I6, '??')
         &
51
              STOP
52
          END IF
         READ (10,28)(IA,CORREL(I),I=0,NCOR-1)
53
54
      28 FORMAT (i,f)
```

Listing of Program Accuracy4.f (Continued)

```
55
             CLOSE(10)
    56
          C
    57
          80
               WRITE (6,85)
    58
          85
               FORMAT (T3,'C/NO IN DB-HZ')
    59
              READ (5,*) CNO
    60
          C
    61
          120 WRITE (6,130)
    62
          130 FORMAT(T3, Enter the estimate error in number of correlators')
    63
              READ(5,*) MDEL
    64
              IF(MDEL.LT.0 .OR. MDEL.GT.NCOR) GOTO 120
    65
         С
    66
         182
                CONTINUE
   67
         C
   68
              SUM = 0.0D + 00
   69
                 \lim = MIN(ncor, 512)/10
   70
   71
         c compute variance
   72
   73
                 SIGMASQ= 10.d+00**(-CNO/10.d+00)*2.d+00/0.44d+00
   74
                 write (6,*) 'sigmasq=',sigmasq
   75
        С
   76
        c assume that the response is symmetric around the real delay
   77
        c so do from 1 to mdel and multiply the prob. by 2 for the
   78
        c two side effect
   79
  80
            DO 300 KMI=1,MIN(MDEL,NCOR-1)
  81
                 PROD=1.0D+00
  82
        C
  83
                 DO 200 KMJ=0,MIN(NCOR-1,511)
  84
                    IF(KMJ.EQ.KMI) GOTO 200
  85
                              SIGMA = DSQRT(SIGMASQ*(1.D+00-CORREL(IABS(KMI-KMJ))))
  86
                             U=-(CORREL(KMI)-CORREL(KMJ))/SIGMA
  87
                             AA=Q(U)
  88
                          PROD=PROD*AA
  89
  90
       X
                             WRITE (6,185) U,Q(U),PROD
  91
       X185
                             FORMAT(X,F,X,F,X,F)
  92
       C
  93
        200
                  CONTINUE
  94
                       write (6,205) KMI,PROD*100.
                       FORMAT (T3, 'Prob. that lag #', I2,' is the highest is ',f10.4,' %')
  95
       205
  96
                SUM=SUM+PROD
  97
                WRITE (6,210) 200.D+00*SUM
                  FORMAT(T3, 'Cumulative Probability =',f10.4,' %',/)
 98
        210
 99
100
       c if probability that the output KMI samples away from the true output
101
       c is less than 10**(-5), then the prob that the output KMI+n samples
102
       c away from the true output is negligible (n>0)
103
104
                  IF(PROD.LT.1.D-5) LEAVE
105
      C
106
       300
            CONTINUE
107
      X
             PAUSE
108
         KMI=0
```

Listing of Program Accuracy4.f (Continued)

```
PROD=1.0D+00
109
          DO 400 KMJ=1,MIN(NCOR-1,512)
110
                    SIGMA = DSQRT(SIGMASQ*(1.D+00-CORREL(IABS(KMI-KMJ))))
111
                    U=-(CORREL(KMI)-CORREL(KMJ))/SIGMA
112
                    AA=O(U)
113
                    PROD=PROD*AA
114
                    WRITE (6,185) U,Q(U),PROD
115
       400 CONTINUE
116
             write (6,205) KMI,PROD*100.
117
          SUM=2.D+00*SUM+PROD
118
          WRITE(6,210) SUM*100.d+00
119
120
       C
             WRITE (6,*) '1 FOR MORE '
121
122
             READ(5,*) I
             IF(I.EQ.1) GOTO 80
123
          STOP
124
          END
125
       C
126
127
       c function to compute the Q-function
128
       c program derived from the TI-58 pocket calculator
129
130
       c internal program
131
       С
132
       С
                           M. Caron June 1990
133
       С
 134
       С
 135
              double precision function O(x)
 136
              implicit double precision (a-h,o-z)
 137
       С
              data a1,a2,a3,a4,a5,a6 /0.2316419,1.330274429,1.821255978,
 138
          & 1.781477937.0.356563782,0.31938153/
 139
 140
              DATA PI/3.14159265358979324/
 141
        С
 142
              y=x
 143
              minus = 0
              if(y.le.0.d+00) then
 144
 145
                     minus = 1
 146
                     y=dabs(v)
 147
              end if
 148
        С
 149
              deno = a1*y + 1
              b = a2/deno^{**}4 - a3/deno^{**}3 + a4/deno^{**}2 - a5/deno + a6
 150
 151
               b = b/deno/dsqrt(2.*pi)*DSQRT(exp(-(y**2)))
 152
               if(minus.eq.0) then
 153
                     Q=b
 154
               else
 155
                     Q=1.d+00-b
 156
               end if
 157
               return
 158
               end
```

Run Example of Program Accuracy4.f

2 3 4 5	DELAY ESTIMATION ACCURACY
4567890112131456789012234567890123456789012234567	DELAY ESTIMATION ACCURACY ===================================
28 29 30	1 FOR MORE 2
31 32	STOP

APPENDIX D COMPUTER PROGRAM TO SIMULATE THE DELAY ESTIMATION PROCESSOR

Listing of Program 'Delay Estimator.f'

```
C
 2
     C Program to simulate the estimation of the delay between C an EPIRB signal relayed via two satellites. It is based partly
 3
 4
 5
     C on software developed by R.J Keightley on the GOES project and
     C the correlation program is based on the one in: "Programs for
 6
 7
       Digital Signal Processing", IEEE Press, 1979, chapter 2.2.
     C
 8
     0000000
 9
            This version use a lowpass baseband signal sampled at multiple
10
       of 1.6 kHz
11
12
13
                                        M. Caron Sept 1990
14
15
16
17
            PROGRAM DELEST
      C
18
      C Define parameters that are system dependent
19
20
      C NBIT: number of beacon message bits
21
      C FSMPL: sampling frequency in Hz
22
      C DRATE: beacon data rate in bps
23
      C DELMX: maximum delay to be simulated in seconds
24
      C CARRIER: pure carrier duration preceding the beacon message (seconds)
      C LAGMX: maximum number of lag interested in
25
26
      C IMULMX: maximum multiplication factor for the sampling frequency
27
             PARAMETER (NBIT=112,FSMPL=1.6E+3,DRATE=400.0,DELMX=18.E-3,
28
29
                 CARRIER=0.16,LAGMX=2049,IMULMX=52)
      C
30
      C Define parameter related to the above ones
31
32
      C NDIM: number of samples defining the signal (including max. delay)
      C FSMUL: sampling frequency multiplied by the maximum factor IMULMX
33
 34
      C The following are based on the basic sampling frequency
      C NCARR: number of samples of pure carrier
 35
      C NSMPL: number of samples per beacon message bit
 36
      C NSIG: number of samples to define the total beacon burst C
 37
 38
             PARAMETER (FSMUL=FSMPL*IMULMX,NCARR=CARRIER*FSMPL+0.1,
      Č
 39
                NSMPL=(FSMPL/DRATE/2.+0.1), NSIG = NSMPL*NBIT*2+NCARR,
 40
           &
      Č
 41
          &
                NDIM=NSIG*IMULMX+(DELMX*FSMUL+0.1)+1)
 42
             PARAMETER (FSMUL=83.2E+3,NCARR=256,NSMPL=2,NSIG = 704,
 43
 44
          & NDIM=38106)
 45
 46
       C SIGNAL1() and SIGNAL2() contain the samples of the signal from satellite
 47
       C #1 and #2 respectively.
 48
       C CROSS(i) is the cross-correlation values at lag (i-1) corresponding
 49
              to a delay of (i-1)/fsmpl (seconds)
       C FRAME() is the array containing the beacon message bits
 50
 51
              DIMENSION SIGNAL1(NDIM), SIGNAL2(NDIM), CROSS(LAGMX)
 52
 53
              INTEGER FRAME(NBIT)
              CHARACTER FILEN*80,ANS*1
 54
```

```
55
                 INTEGER*4 SEED1, SEED2
    56
                 REAL*4 XMEAN, SIGMA1, SIGMA2, R1, R2, Q1, Q2
    57
          C
    58
                DATA XMEAN (0.0)
    59
          C
    60
          C SEED1 and SEED2 are the two seeds for the random number generator
    61
    62
                SEED1 = 4
    63
                SEED2 = 3141592
    64
         C
    65
         C validate some of the parameter values that couldn't be inter-related
    66
         C in the above PARAMETER statements
    67
         C compute the maximum number of lags of interest (LAGSHOW)
    68
         C Compute the number of lags to be computed (power of two)
   69
   70
                A = DELMX*FSMUL
   71
                LAGSHOW = IFIX(A)
   72
                IF(FLOAT(LAGSHOW).NE.A) LAGSHOW = LAGSHOW+1
   73
                I=ALOG(A)/ALOG(2.)
   74
               IF(FLOAT(2**I).NE.A) I = I + 1
   75
               LAG = 2**I + 1
   76
               IF(LAG,GT,LAGMX) STOP 'DELMX IS TOO LARGE FOR LAGMX. ABORT'
   77
         C
   78
        C compute the size of the FFT to be used
   79
        C compute the number of noise samples required
   80
        C compute the total number of samples required to represent the signal
   81
        C
   82
               NSIZE = 2**(I+1)
  83
        C
  84
               NOISE = IFIX(A)
  85
               IF(FLOAT(NOISE).NE.A) NOISE = NOISE + 1
  86
        C
  87
               NTOT = NSIG*IMULMX + NOISE
  88
              IF(NTOT.GT.NDIM) STOP 'NTOT IS GREATER THAN NDIM. PROG. ABORTED'
  89
  90
        C INPUT VARIABLES
  91
        C
  92
        1
              WRITE (6,2)
              FORMAT (/,/,/,T20,35('*'),/,T20,'*',33X,'*',/,T20,
  93
  94
               '* DISTRESS SIGNAL DELAY ESTIMATOR *',/,T20,
          &
  95
          & '*',33X,'*',/,T20,35('*'),/,/,T3,
& 'C/No of signal #1 and #2 (dB-Hz)')
  96
  97
              READ (5,*) CNO1, CNO2
 98
       C
              WRITE (6,*) 'Sampling rate multiplication factor ( > 0; < ',IMULMX,')'
 99
        10
100
              READ(5,*) IMUL
101
             IF(IMUL.LE.0) GOTO 10
102
       C
103
             WRITE (6,22) DELMX*1.E+3
       20
             FORMAT (T3, 'Delay to be simulated (milliseconds) (must be ',
104
       22
105
          & 'less than ',F8.2,' ms )')
106
       C
107
             READ (5,*) DELAY
108
             DELAY=ABS(DELAY)*1.E-3
```

```
IF(DELAY.GT.DELMX) GOTO 20
109
       C
110
111
       c get the file names and open the files to store the result
       c summary and the compiled list of errors
112
113
114
              write (6,*) 'File name where to store summary results'
              OPEN (10,FILE=*'File name for summary',STATUS='UNKNOWN')
115
116
              INQUIRE (10,NAME=FILEN)
117
              WRITE (6,*) FILEN
              REWIND (10)
118
119
       С
120
              write (6,*) 'File name where to store error'
121
              open (20,file=*'File name for error',status='unknown')
122
              rewind (20)
123
              inquire (20,name=filen)
124
              write(6,*) filen
125
126
       c refresh the output window
127
 128
              call f_DrawOutpWindow
 129
 130
        25
              write (6,*) 'How many runs do you want?'
 131
              read (5,*) NRUNS
 132
              if(nruns.le.0) goto 25
 133
        С
              write (6,*) 'Do you want to enter the random number generator seeds (Y or N)'
 134
 135
              read (5,*) ANS
 136
              if(ans.eq.'y' .or. ans.eq.'Y') then
 137
                     WRITE (6,*) 'ENTER SEED1, SEED2'
 138
                     READ (5,*) SEED1,SEED2
 139
               END IF
        C
 140
 141
         28
               WRITE (6,30)
 142
         30
               FORMAT (/,/,T3,'...computing',/,/)
 143
        С
 144
        C compute the new sampling frequency FS
 145
        C Compute the standard deviation of the noise to generate the
 146
        C the appropriate C/No's
 147
        C Compute the number of samples of delay
 148
        C Compute the number of signal samples
        C Compute the total number of samples including noise
 149
 150
        C Compute the number of samples per bit
        C generate the signals. No phase advance for the first signal (ADV=0)
  151
  152
  153
               FS=FSMPL*FLOAT(IMUL)
  154
               CALL SDEV (FSMPL,CNO1,SIGMA1)
  155
               CALL SDEV (FSMPL, CNO2, SIGMA2)
  156
         C
  157
               NDELAY = IFIX((DELAY)*FS+0.1)
  158
               NSIGNAL = NSIG*IMUL
  159
               A = DELMX*FS
  160
               NOISE = IFIX(A)
               IF(FLOAT(NOISE).NE.A) NOISE = NOISE + 1
  161
  162
               NTOT = NSIGNAL + NOISE
```

```
163
                 IF(NTOT.GT.NDIM) STOP 'NTOT IS GREATER THAN NDIM. PROG. ABORTED'
    164
                 NSAM = IFIX(FS/DRATE/2.0+0.1)
    165
           C
    166
                 ibegin = jsecnds(0)
    167
                 do 1000 ir=1.nruns
    168
                 ADV = 0.
    169
    170
                 CALL ELTLowpass (NSIGNAL, NBIT, NSAM, FS, SIGMA1, SEED1,
    171
             &
                           ADV,FRAME,SIGNAL1)
   172
   173
          C
          C add noise at the end of the first signal because it is
   174
   175
          C assumed that signal#1 is in advance to signal #2
   176
   177
                CALL GAUSSRN (XMEAN, SIGMA1, SEED1, R1.01)
   178
                IBEEN = 0
   179
                DO I=NSIGNAL+1.NTOT
   180
                      SIGNAL1(I) = R1
   181
                      IF(IBEEN.EQ.1) THEN
   182
                             SIGNAL1(I)=Q1
   183
                            CALL GAUSSRN (XMEAN, SIGMA1, SEED1, R1, O1)
  184
                            IBEEN = 0
  185
                      ELSE
  186
                            IBEEN = 1
  187
                      END IF
  188
               END DO
  189
  190
         C
  191
         C DEFINE SIGNAL NUMBER 2
  192
        C Compute required phase advance in terms of fraction of sample
  193
        C add noise preceding the signal by the amount of delay
  194
        C
 195
              ADV = DELAY*FS - FLOAT(NDELAY)
 196
              write (6,*) 'Phase advance in samples = ',ADV
        X
 197
              CALL GAUSSRN (XMEAN, SIGMA2, SEED2, R2, O2)
 198
              IBEEN = 0
 199
              DO I=1.NDELAY
 200
                     SIGNAL2(I) = R2
 201
                    IF(IBECN.EQ.1) THEN
 202
                           SIGNAL2(I)=Q2
 203
                          CALL GAUSSRN (XMEAN, SIGMA2, SEED2, R2.O2)
 204
                          IBEEN = 0
 205
                    ELSE
206
                          IBEEN = 1
207
                    END IF
805
             END DO
209
       C
510
       C add the signal itself
211
515
             N = NDELAY + 1
213
             CALL ELTLowpass (NSIGNAL, NBIT, NSAM, FS, SIGMA2, SEED2.
214
                      ADV, FRAME, SIGNAL2(N))
215
         &
516
```

```
C C Fill up rest of vector with noise samples
217
218
219
220
              N = N + NSIGNAL
              DO I=N.NTOT
221
222
                    SIGNAL2(I) = R2
223
                    IF(IBEEN.EQ.1) THEN
224
                           SIGNAL2(I)=02
                           CALL GAUSSRN (XMEAN, SIGMA2, SEED2, R2, Q2)
225
226
                           IBEEN = 0
227
                    ELSE
228
                           IBEEN = 1
229
                    END IF
230
              END DO
231
       C
       C signals are now both defined
232
233
       C
234
       Х
              write (6,*) 'Save the signal on a file (Y/N)'
235
       Х
              READ (5,*) ANS
236
       C
237
       X
              IF(ANS.EQ.'Y' .OR. ANS.EQ.'y') THEN
                     write (6,*) 'from what to what (maximum=',ntot,')'
238
       Х
239
       X
                     read(5,*) in is
240
       Х
                     in=max(in,1)
241
       X
                     is=min(ntot.is)
242
       X
                     is=max(is.in)
243
       X
                     WRITE (6,*)' FILE NAME where to save data'
244
       X
                     OPEN (98,FILE=*,STATUS='UNKNOWN')
245
       X
                     inquire (98,name=filen)
246
       X
                     write (6,*) FILEN
247
       Х
                     REWIND (98)
                     WRITE (98, (18, A1, F15.7, A1, F15.7)')(I, CHAR(9), SIGNAL1(I)
248
       Х
 249
                                  ,CHAR(9),SIGNAL2(I),I=in,is)
           &
       Х
 250
                     ENDFILE(98)
       Х
 251
                     CLOSE (98)
       X
 252
              END IF
       X
 253
        C
 254
        C compute cross-correlation
 255
        C FFT size = NSIZE
 256
              CALL CORRELATE (SIGNAL1, SIGNAL2, NTOT, LAG, CROSS, NSIZE,
 257
          &
 258
                     IER)
        C
 259
              IF (IER.NE.0) THEN
 260
                     WRITE (6,*) 'ERROR CODE FROM CORRELATE = ',IER
 261
 262
                     STOP 'PROGRAM ABORTED'
 263
              END IF
 264
        C
              write (6,*) 'set 1 to store correlation levels'
 265
        Х
 266
        X
               read (5,*) i
 267
               if(i.eq.1) then
        X
                     write (6,*) 'file name where to store correlation levels'
 268
        X
 269
                     open (2,file=*,status='unknown')
        Х
 270
                     inquire (2,name=filen)
        Х
```

```
271
             X
                            write (6,*) filen
     272
             Х
                            rewind (2)
     273
             Х
                            write (2,170) (j,cross(J),j=1,nsize/2+1)
     274
             x170
                            format (i,x,f)
     275
             X
                           endfile(2)
     276
            X
                           close(2)
     277
            X
                    end if
            C C find the maximum correlation level over all the lags
     278
     279
    280
    281
                   CMX = 0.
    282
                   J=0
    283
                   DO I=1,LAGSHOW
    284
                          IF(CROSS(I).GT.CMX) THEN
    285
                                 CMX = CROSS(I)
    286
                                 J = I-1
    287
                          END IF
    288
                  END DO
    289
   290
           C
   291
                  estdel = (FLOAT(J)/FS)*1.E+3
   292
                  esterr = (estdel/1000.-delay)*1.0e+6
   293
                  if(ir.eq.1) then
   294
                         write (20,189)
   295
                         format(' C(Ndelay) Maximum_Correlation Lag_Number Delay Error')
           189
   296
                         WRITE (10,190) CNO1, CNO2, DELAY*1.E+3, NDELAY.
   297
             &
                         CMX, J, estdel, esterr, seed 1, seed 2
  865
                         WRITE (6,190) CNO1, CNO2, DELAY*1.E+3, NDELAY.
  وو2
             &
                       CMX.J.estdel.esterr,seed1,seed2
  300
  301
          190
                        FORMAT (//,/,T3,'C/No \text{ of signal } #1, #2 = ',F8.2,2X,F8.2.
  302
                 '(dB-Hz)',/,T3,'Simulated Delay =',F10.2,' (ms) = ',I5.
             &
  303
             &
                     (samples)', T3,
  304
                  'Maximum Cross-Correlation = ',F15.4,' and',J.T9.
            &
  305
            &
                'occured at samples #',15,
  306
                  corresponding to a delay of ',F15.7,' ms',/,
            &
 307
                        t3. Delay error = ',F9.3,'\mus Next seeds (1 and 2) = 'i,x,i,/)
            &
 308
 309
                else
 310
                       WRITE (10,195) CMX, J, estdel, esterr, SEED1, SEED2
 311
                       FORMAT (t3, 'Maximum Cross-Correlation = '.F15.4.
         195
 312
           &
                       ' and',/,T9,
 313
                        'occured at samples #',15,
           &
 314
                              ' corresponding to a delay of ',F15.7,' ms',/.
           &
 315
                       t3. Delay error = ',F9.3, '\mus Next seeds (1 and 2) = 'i,x.i./
           &
 316
317
                      WRITE (6.196) ir, CMX, J, estdel, esterr, SEED1, SEED2
318
                      FORMAT (t3, 'Run no.: ',15,/,t3, 'Maximum Cross-Correlation = ',F15.4.
        196
319
           &
                      ' and',/,T9,
320
                       'occured at samples #',15,
          &
321
                             'corresponding to a delay of ',F15.7,' ms' /.
          &
322
                      t3, Delay error = ',F9.3, '\mus Next seeds (1 and 2) = 'i,x.i./)
          &
323
              end if
324
              write (20,200) cross(ndelay), CMX, J, estdel, esterr
```

```
200
              format(2(2x,f),2x,i,2(2x,f))
325
326
              itime=jsecnds(ibegin)
              if(itime.gt.3600) then
327
                     do k=10,20,10
328
329
                            inquire (unit=k,name=filen)
330
                            close (unit=k,status='keep')
331
                            open (unit=k,file=filen,status='old',access='append')
332
                     end do
333
                     ibegin=jsecnds(0)
              end if
334
335
       C
       1000
336
              continue
337
338
              endfile(20)
339
              close(20)
340
       C
341
              ENDFILE(10)
342
              CLOSE(10)
343
              STOP 'TOURLOU!'
344
              END
345
       C Program to compute the cross-correlation between two signals
346
347
       C Based on: "Programs for Digital Signal Processing",
348
349
                IEEE Press, 1979, chapter 2.2.
350
        C(X(),Y()): arrays of N samples to be correlated
351
352
         CROSS(i): arrays of LAG values giving the correlation
        C
353
                 of X() and Y() at lag (i-1)
          NSIZE is the FFT size and is related to the required
354
355
              number of lags using LAG=NSIZE/2+1
        000000000
          IER is the error code = \tilde{0} indicates no errors
356
357
                                    = 1 means NSIZE is greater than the
                                      maximum size allowed by the program
358
                                    = 2 means the dimension i.e. LAG of CROSS is not
359
 360
                                      large enough for the requested NSIZE
 361
 362
 363
                                                 M. Caron Jan 1990
 364
 365
        C
 366
               SUBROUTINE CORRELATE (X,Y,N,LAG,CROSS,NSIZE,IER)
 367
        C
 368
 369
               PARAMETER (MXSIZ=4096)
 370
               DIMENSION X(N), Y(N), CROSS(LAG)
 371
               COMPLEX XX(MXSIZ),XMN,XI,YI,Z(MXSIZ/2+1)
 372
 373
        C Check for errors
 374
 375
               IER = 0
 376
               IF(NSIZE.GT.MXSIZ) THEN
 377
                      IER=1
 378
                      RETURN
```

```
379
                 ELSE IF (LAG.LT.NSIZE/2+1) THEN
    380
                        IER=2
    381
                        RETURN
    382
                 END IF
    383
           C
    384
           C define variables
    385
           C LSHFT = overlap factor per section
    386
          C MHLF1 = maximum shift of interest in samples
    387
          C NSECT = number of sections of NSIZE samples with overlap of NSIZE/2
   388
          C NRD = number of samples to reaf each time
   389
          C IW+1 = index of next sample to be read
   390
          C NRDY = number of samples to be read on Y()
   391
          C NRDX = number of samples to be read on X()
   392
          C
   393
                LSHFT = NSIZE/2
   394
                MHLF1 = LSHFT+1
   395
                NSECT = FLOAT(N+LSHFT-1)/FLOAT(LSHFT)
   396
                NRD = LSHFT
   397
                IW = 0
   398
                NRDY = NSIZE
  399
                NRDX = LSHFT
  400
  401
         C initialize the temporary cross-correlation array
  402
  403
               DO I=1,MHLF1
  404
                      Z(I) = CMPLX(0.,0.)
  405
               END DO
  406
         C
  407
        Х
               WRITE (6,*) 'NSECT = ',NSECT
  408
               NSECT1 = NSECT - 1
  409
        C
  410
        C compute the number of sections between each prompt to the user to
  411
        C let him know the current status
 412
        C
 413
               ND = (FLOAT(NSECT)/10.+0.5)
        х
 414
        C
        C Compute the FFT of each section of X and Y. Use the odd/even technique
 415
 416
        C to compute both over a single FFT for each section
        C Accumulate in the frequency domain and then inverse FFT to obtain the
 417
 418
        C correlation
 419
       C
 420
              DO 190 K=1,NSECT
 421
 422
       C PRINT K FROM TIME TO TIME TO MONITOR PROGRESS
423
424
       C
                    IF((K/ND)*ND .EQ.K) WRITE (6,*) 'K=',K
425
       х
426
       C
       C IF THE LAST SECTION, THEN CHECK IF THE NUMBER OF SAMPLES REMAINING
427
       C IS EEQUAL TO NSIZE. IF NOT, FILL IN WITH ZEROS.
428
429
                   IF(K.GE.NSECT1) THEN
430
                          NRDY = N - (K-1)*LSHFT
431
                          IF(K.EQ.NSECT) NRDX = NRDY
432
```

```
433
                        IF(NRDY.NE.NSIZE) THEN
434
                               NRDY1 = NRDY+1
                               DO 100 I=NRDY1.NSIZE
435
       100
436
                               XX(I) = CMPLX(0.,0.)
437
                        END IF
438
                  END IF
439
      C read NRDY data starting at sample #IW+1
440
441
442
                  DO 120 I=1,NRDY
443
                        J=(I+IW)
444
      120
                         XX(I) = CMPLX(X(J),Y(J))
445
      C
446
                   NRDX1 = NRDX+1
447
                   DO 170 I=NRDX1,NSIZE
448
       170
                   XX(I) = CMPLX(0.,AIMAG(XX(I)))
449
      C
450
      C correlate X and Y and accumulate CONJG(X)*Y
451
452
453
                   CALL FFT (XX,NSIZE,0)
454
      C
455
456
                   DO 180 I=2,LSHFT
457
                         J=NSIZE+2-I
458
                         XI=(XX(I)+CONJG(XX(J)))/2.
459
                         YI=(XX(J)-CONJG(XX(I)))/2.
460
                         YI = CMPLX(AIMAG(YI),REAL(YI))
461
                         Z(I) = Z(I) + CONJG(XI)*YI
       180
462
                   CONTINUE
463
       C
464
                   XI = XX(1)
465
                   Z(1)=Z(1)+CMPLX(REAL(XI)*AIMAG(XI),0.)
466
                   XI = XX(MHLF1)
467
                   Z(MHLF1)=Z(MHLF1)+CMPLX(REAL(XI)*AIMAG(XI),0.)
                   IW = IW + LSHFT
468
       190
             CONTINUE
469
470
       C COMPUTE INVERSE DFT FOR CORRELATION
471
472
473
             DO 200 I=2,LSHFT
474
                   J=NSIZE+2-I
475
                   XX(I)=Z(I)
                   XX(J) = CONJG(Z(I))
476
477
       200
             CONTINUE
 478
 479
             XX(1) = Z(1)
 480
             XX(MHLF1) = Z(MHLF1)
       C
 481
 482
 483
             CALL FFT(XX,NSIZE,1)
 484
 485
 486
       C normalize the results
```

```
487
          C
    488
                FN = FLOAT(N)
   489
                DO I=1,MHLF1
   490
                       CROSS(I) = REAL(XX(I))/FN
   491
                END DO
   492
                RETURN
   493
                END
   494
          C-----
   495
         C Program to compute the DFT AND IDFT
   496
         C
         C Based on :"Programs for Digital Signal Processing",
   497
   498
         C
                 IEEE Press, 1979, chapter 2.2.
   499
         Č
   500
         Ċ
           INV = 0 ==> DFT, INV=1 --> IDFT
  501
         00000
  502
            X(): COMPLEX ARRAY OF N NUMBERS
  503
  504
                                              M. Caron Jan 1990
  505
  506
         C-
  507
  508
               SUBROUTINE FFT (X,N,INV)
  509
               COMPLEX X(N),U,W,T
  510
               DATA PI/3.14159265358979324/
  511
        C
  512
              M=IFIX(ALOG(FLOAT(N))/ALOG(2.)+0.1)
  513
              NV2 = N/2
 514
              NM1 = N-1
 515
              J=1
 516
              DO 40 I=1,NM1
 517
                    IF(I.LT.J) THEN
 518
                           T=X(J)
 519
                           X(J)=X(I)
 520
                          X(I)=T
 521
                    END IF
 522
        10
                    K=NV2
 523
        20
                    IF(K.LT.J) THEN
 524
                          J=J-K
 525
                          K=K/2
526
                          GOTO 20
527
                    END IF
528
        30
                    J=J+K
529
       40
             CONTINUE
530
             DO 70 L=1.M
531
                   LE=2**L
532
                   LE1 = LE/2
533
                   U = CMPLX(1.,0.)
534
                   W = CMPLX(COS(PI/FLOAT(LE1)), -SIN(PI/FLOAT(LE1)))
535
                   IF(INV.NE.0) W=CONJG(W)
536
                   DO 60 J=1,LE1
537
                    DO 50 I=J,N,LE
538
                     IP=I+LE1
539
                     T=X(IP)*U
540
                     X(IP)=X(I)-T
```

541		X(I)=X(I)+T
542	50	CONTINUE
543		U=U*W
544	60	CONTINUE
545	70	CONTINUE
546		IF(INV.EQ.0) RETURN
547		DO 80 I=1,N
548	80	X(I) = X(I)/CMPLX(FLOAT(N),0.)
549		RETURN
550		END

Listing of Subroutine 'EltLowpass.f'

```
1
              SUBROUTINE ELTLowpass (NSIG, NBIT, NSMPL, FSMPL, SIGMAI, SEED,
   2
                                   ADV, FRAME, SIGNAL)
   3
       С
   4
       С
             This program generates the samples of a simulated ELT/EPIRB
   5
   6
       С
            A sampling rate of FSMPL Hz is used.
   7
       С
   8
       С
   9
       С
            The received signal is of the form:
  10
       С
  11
       С
                  y(i)=A \sin ((2*pi*fc*delt) + phi(i))
  12
       С
  13
       С
            where:
      Č
  14
  15
      С
            Α
                   = signal amplitude
  16
      С
            fc
                   = nominal carrier frequency
  17
      С
            delt
                   = 1/sample frequency
  18
      С
            phi(i) = phase change as a result of the modulation
  19
      С
                   = + 1.1,-1.1 radians for a data "1"
 20
      С
                   = - 1.1,+1.1 radians for a data "0"
 21
      С
            * note that Manchester Coding is used
 22
      С
 23
      С
            NSIG is the number of samples to define the signal
 24
      Ċ
                    NSIG=(signal duration*FSMPL)
 25
      С
           NBIT : number of message bits in the burst
 26
      С
           NSMPL : number of samples per message bit
 27
      С
           FSMPL : sampling frequency in Hz
 28
     С
           SIGMAI : standard deviation of the noise
 29
     С
            SEED : the random number generator to be used
 30
     С
           ADV : phase advance in terms of fraction of a sample
 31
     С
           FRAME : array of NBIT integers returning the message bits
 32
     С
           SIGNAL: array of at least NSIG real numbers defining the
 33
     sampled
 34
     С
                    signal
 35
     С
36
     С
37
     С
           Progammer R.J. Keightley
38
     С
39
     С
40
     С
41
     С
                           Modified by M. Caron
                                                    Jan 1990
42
     Č
43
     С
44
          INTEGER FRAME (NBIT), MESSAGE (112)
45
          REAL SIGNAL(1), INC
46
          REAL*4 R,Q,SIGMA,XMEAN
47
          INTEGER*4 SEED
48
          DATA XMEAN /0.0/
          DATA PI/3.14159265358979324/
49
          DATA MESSAGE /1,1,1,1,1,1,1,1,1,1,1
50
51
         & ,1,1,1,1,0,0,0,1,0,1,1
         & ,1,1,0,1,1,0,1,0,1,1,1
52
         & ,1,0,0,1,1,1,0,0,0,0,1
53
            ,1,1,0,0,0,0,0,1,0,0,1
54
```

Listing of Subroutine 'EltLowpass.f' (Continued)

```
,1,1,0,0,1,0,1,0,0,0,0
56
             ,0,1,0,0,0,1,0,0,0,1,0
          &
57
          &
            ,1,0,0,0,0,0,1,0,0,0,1
58
          & ,1,1,0,0,1,0,1,1,0,0,0
59
          & ,0,1,1,1,0,0,0,0,0,1,0
60
              ,1,0 /
61
    C
62
          PIBY4=PI/4.
          TWOP I=2.0*PI
63
64
     C
          A frame of ELT signal will be simulated. First, read from
65
     C
     file
66
        FRAME.DAT the precomputed data bits and store them in array
67
68
     FRAME.
69
     С
70
     С
          OPEN (UNIT=99, FILE='FRAME.DAT', STATUS='OLD')
71
          READ(99, \star) (FRAME(I), I=1, NBIT)
     С
72
           CLOSE (UNIT=99, STATUS='KEEP')
     С
73
           do i=1,nbit
74
                 frame(i) = message(I)
75
           end do
        SUM and NO are used to compute the generated standard deviation and to compare it with the
76
77
     С
78
        and to compare it with the requested one at the end
79
     С
80
           SIGMA = SIGMAI
81
           SUM = 0.
     Х
82
           NO = 0
     Х
83
     х
           SUM2=0.
84
     C
85
     C ISMPL+1: next sample index for array SIGNAL
86
     C OMEGA = 2*pi*frequency
87
     C compute the phase increment per sample
88
     C compute the number of samples for the pure carrier
     C compute random phase shift between 0 and 2pi(constant for the burst)
89
90
     C set first phase value (PARAM) such that the first sample starts
91
92
93
     C with ADV*INC plus random phase shift
94
     C
95
           ISMPL=0
96
           NCARR=IFIX(160.E-3*FSMPL+0.1)
 97
     С
           R=0.
 98
           Q=TWOP I
     С
 99
     С
           CALL UNIFORM (R,Q,SEED,Q)
100
     С
           PARAM= O
           Now, generate 160 ms (+ or - 1%) (or 160.E-3 * FSMPL = NC^{AR^{R}} imple intervals.
101
102
     С
103
     С
104
     С
         sample intervals.
105
     С
106
           PARAM = AMOD (PARAM, TWOPI)
107
           SS = sin(param+piby4)
108
           DO ICARR=1, NCARR, 2
```

Listing of Subroutine 'EltLowpass.f' (Continued)

```
109
                ISMPL=ISMPL+1
  110
                CALL GAUSSRN (XMEAN, SIGMA, SEED, R,Q)
  111
                SIGNAL(ISMPL) = SS+R
  112
                ISMPL=ISMPL+1
  113
                SIGNAL(ISMPL) = SS+Q
  114
        x
                SUM2 = SUM2 + R**2 + Q**2
  115
        x
                SUM = SUM + R + Q
  116
        x
                NO = NO + 2
  117
             END DO
  118
             ISMPL = NCARR
  119
        С
  120
        С
           IC is a correction factor required because the random number
  121
           generator produces two random numbers per call
  122
       С
           IC=0 if NSMPL is even IC=1 otherwise
  123
       С
  124
             IC = 1
  125
             IF((NSMPL/2)*2.EQ.NSMPL) IC = 0
 126
       С
 127
       C
             There will be a nominal (FSMPL/800) = NSMPL samples per phase
 128
       C of the Manchester symbol where the data rate is 400 bps
 129
       С
 130
       С
             Now modulate the carrier with the frame data bits
 131
       С
 132
            SS=PARAM+PIBY4
 133
            DO IBIT=1, NBIT
 134
               IF (FRAME (IBIT).EQ.1) THEN
 135
       С
 136
       C when bit is 1, modulation is +1.1, -1.1 radians
 137
 138
                      DO JSMPL=1, NSMPL, 2
 139
                             ISMPL=ISMPL+1
 140
                             CALL GAUSSRN (XMEAN, SIGMA, SEED, R, Q)
 141
                             SIGNAL(ISMPL) = SIN(1.1 + SS) + R
142
                             ISMPL=ISMPL+1
143
                             SIGNAL (ISMPL) = SIN (SS+1.1) +Q
144
                             SUM2 = SUM2 + R**2 + Q**2
     X
145
                            SUM = SUM + R + Q
      X
146
                            NO = NO + 2
147
                     END DO
148
      С
149
                     ISMPL = ISMPL - IC
150
                     DO JSMPL=1, NSMPL, 2
151
                            ISMPL=ISMPL+1
152
                            CALL GAUSSRN (XMEAN, SIGMA, SEED, R, Q)
153
                            SIGNAL(ISMPL)=SIN(SS-1.1)+R
154
                            ISMPL=ISMPL+1
                            SIGNAL(ISMPL) = SIN(SS-1.1)+Q
155
                            SUM2 = SUM2 + R**2 + Q**2 \cdot
156
     x
157
                            SUM = SUM + R + Q
     Х
                           NO = NO + 2
158
     х
159
                     END DO
160
                     ISMPL = ISMPL - IC
161
             ELSE
162
```

С

Listing of Subroutine 'EltLowpass.f' (Continued)

```
C when the bit is a zero, the modulation is -1.1, +1.1 radians
163
164
165
                       DO JSMPL=1, NSMPL, 2
166
                               ISMPL=ISMPL+1
167
                               CALL GAUSSRN (XMEAN, SIGMA, SEED, R, Q)
168
                               SIGNAL(ISMPL) = SIN(SS-1.1) + R
169
                               ISMPL=ISMPL+1
170
                               SIGNAL(ISMPL) = SIN(SS-1.1) + Q
                               SUM2 = SUM2 + R**2 + Q**2
171
      х
172
                               SUM = SUM + R + Q
      x
173
      х
                               NO = NO + 2
174
                       END DO
175
                       ISMPL = ISMPL - IC
176
      C
177
                       DO JSMPL=1, NSMPL, 2
178
                               ISMPL=ISMPL+1
179
                               CALL GAUSSRN (XMEAN, SIGMA, SEED, R, Q)
180
                               SIGNAL(ISMPL) = SIN(SS+1.1) + R
181
                               ISMPL=ISMPL+1
182
                               SIGNAL(ISMPL) = SIN(SS+1.1) + Q
183
                               SUM2 = SUM2 + R**2 + O**2
      х
184
       х
                               SUM = SUM + R + O
185
                               NO = NO + 2
       х
                        END DO
186
187
                        ISMPL = ISMPL - IC
               ENDIF
188
             END DO
189
          compute the standard deviation produced by the random number generator and write the above
190
191
       C
          generator and write the absolute error relative to the
192
       requested one
193
194
       C
             SMEAN = SUM/FLOAT(NO)
195
       Х
             STDEV=SQRT(SUM2/FLOAT(NO) - SMEAN**2)
196
       X
             WRITE (6,100) SMEAN, SIGMA, STDEV, ABS (SIGMA-STDEV) / SIGMA*100.
FORMAT (/, T3. 'FROM FITTEL')
197
       C
                   FORMAT(/, T3, 'FROM ELTSIG', /, T5, 'Mean = ', F15.7, /, T5, Required standard Days
198
       x 100
199
                F15.7,/,T5,'Standard Deviation = ',
'Absolute error (%) - ' = ',

T5.7,/,T^{5}'
                  'Required standard Deviation = ',
       х
200
             &
             WRITE (10,100) SMEAN, SIGMA, STDEV, ABS (SIGMA-STDEV)/SIGMA*100,
201
       х
202
       х
203
       С
204
             RETURN
205
             END
 206
```

Listing of File 'Random Number.f'

```
2
   3
           Subroutine to generate a random number between
      C A and B with uniform distribution.
   5
   6
           ISEED is the seed to be used at input and is
   7
                 the next seed for the next call at output
   8
      С
           RAND is the random number
   9
      С
  10
      С
           It is suggested to use an initial seed of 4 for
  11
      C the first call.
  12
     С
  13
      С
         Ref. "Mathematical Methods for Digital Computers Vol II',
  14
     С
                John Wiley and Sons, Inc., 1967, Chap.12
 15
     С
 16
     С
                              M. Caron
 17
     С
                              Jan 1990
 18
     C
 19
        -----
 20
     С
 21
          SUBROUTINE UNIFORM (A, B, ISEED, RAND)
 22
          REAL*4 A, B, RAND
 23
          INTEGER*4 ISEED
 24
     С
 25
    С
         ISEED = ISEED * 65539
 26
     С
         RAND = FLOAT(IABS(ISEED))/(2.0**31)
 27
     С
 28
    C use fortran routine to generate the number
 29
 30
         RAND = RAN(ISEED)
 31
         RAND = RAND*(B-A) + A
32
         RETURN
33
         END
34 C-----
35
    С
36
    С
         Subroutine to generate a pair of random numbers with
37
       Gaussian distribution with mean XMEAN and standard
    С
38
    С
       deviation DEV.
39
    С
         ISEED : is the seed to be used and the new one is
40
    С
41
    С
               returned
42
         DEV : is the standard deviation
    С
43
    С
         XMEAN : mean
         R : is the first random number
44
    С
              : is the second random number
45
    С
46
    С
         It is suggested to used ISEED=4 for the first call
47
    С
48
    С
         Ref. "Mathematical Methods for Digital Computers Vol II',
49
    С
              John Wiley and Sons, Inc., 1967, Chap.12
50
    С
51
   С
52
    С
53
    С
                                     M. Caron
54
```

С

Listing of File 'Random Number.f' (Continued)

```
Jan 1990
55
    С
56
    С
57
58
         SUBROUTINE GAUSSRN (XMEAN, DEV, ISEED, R, Q)
59
60
   С
         INTEGER*4 ISEED
61
         REAL*4 DEV, XMEAN, R, Q
62
63
         DATA TWOPI/6.28318530717959/
64
         PI = 3.14159265358979324 TWOPI = 2.0*PI
65 C
66 C
67
         CALL UNIFORM (0.,1., ISEED, R)
    С
68
          CALL UNIFORM (0.,1., ISEED, Q)
   С
69
   С
70 C use Fortran routine to generate the uniformly
71
    C distributed numbers
72
73
         R=ran(iseed)
74
         Q=ran(iseed)
75
          S = SQRT(-2.0*ALOG(R))
         TWOPIQ = TWOPI*Q
76
77
         R = S*COS(TWOPIQ) * DEV + XMEAN
        Q = S*SIN(TWOPIQ) * DEV + XMEAN
78
         RETURN
79
80
         END
```

Listing of File 'SDEV.f'

```
1
            SUBROUTINE SDEV (FSMPL, CNO, SIGMA)
   2
       C
   3
       С
            This subroutine determines SIGMA, the standard deviation of
   4
       the
   5
       С
         noise that when added to the ELT signal yields a signal of the
   6
          specified C/No.
   7
       С
   8
       С
            FSMPL is the sampling frequency.
   9
      С
           CNO is the required C/No in dB-Hz
  10
      С
  11
            REAL SIGMA, SIGMSSQ, CNO, FSMPL
  12
      C
 13
      C
            Calculate the noise variance (SIGMASQ) and standard
 14
      C
         deviation (SIGMA). Sigmasq is the power of the noise in
 15
      receiver
 16
      C
         bandwidth.
 17
      C
 18
      С
            Let power spectrum, PS, the power in the DFT frequency bin,
 19
      С
         be given by
 20
      C
 21
      С
           PS(k)
                  = 1/N**2 |X(k)|**2
 22
      С
 23
      С
           sigmasq = 1/N sum |x(i)|**2, where sum is over N points
 24
      С
                  = 1/N**2 sum |X(k)|**2, where sum is over N points
 25
      С
                  = sum PS(k), where sum is over N points
 26
      С
 27
     C
           For white gaussian noise
 28
     C
 29
     C
           No/2 = power/bandwidth
 30
     C
                = sum PS(k)/(N*fres), where the sum is over N points and
 31
     fres
32
     C
                  is the frequency resolution of the DFT = fsmpl/N
33
                = 1/N**2 * 1/fsmpl * sum |X(k)|**2, where sum is over N
     С
34
     points
35
     C
                = sigmasq/fsmpl
36
     C
37
     С
           C = signal energy
38
     С
            = 1/N * sum |y(i)|**2 (time domain)
39
     С
            = .5 (sinusoidal signal)
40
     C
41
     С
          C/No = fsmpl/(4*sigmasq)
42
     С
43
          sigmasq = fsmpl/(4*(alog((C/No)/10.))
     С
44
     С
45
    С
        BASED ON SOFTWARE DEVELPED BY KEIGHTLEY
46
    С
47
    С
48
                          M. CARON JAN 1990
    С
49
    С
50
    C
51
          SIGMASQ=FSMPL/(10.**(CNO/10.)*4.)
52
          SIGMA=SQRT(SIGMASQ)
53
          RETURN
54
          END
```

Listing of Script File to Compile and Link

```
1
         File:
                       'Delay Estimator.make'
                       'Delay Estimator.f' ELTLowpass.F 'random number.f'
2
         Target:
3
         Sources:
 4
     SDEV.F
 5
       Created:
                       Friday, September 14, 1990 8:24:27 AM
 6
     OBJECTS = 'Delay Estimator.f.o' ELTLowpass.F.o 'random number.f.o' SDEV.F.o
 7
 8
 9
10
11
12
13
     'Delay Estimator' ff 'Delay Estimator.make' {OBJECTS}
           Link -f -srt -ad 4 -ss 1000000 -w -t APPL -c '????' d
14
15
                 {OBJECTS} ∂
16
                 "{Libraries}"Runtime.o ∂
17
                 "{Libraries}"Interface.o d
                 "{FLibraries}"FORTRANlib.o \partial
18
19
                 "{FLibraries}"IntrinsicLibFPU.o \partial
20
                 "{FLibraries}"FSANELibFPU.o \partial
     'Delay Estimator'
'Delay Estimator.f.o' f 'Delay Estimator.make' 'Delay Estimator.f'
FORTRAN -mc68020 -mc69991
21
22
            FORTRAN -mc68020 -mc68881 -opt=3 'Delay Estimator.f'
23
24
     ELTLowpass.F.o f 'Delay Estimator.make' ELTLowpass.F
            FORTRAN -mc68020 -mc68881 -opt=3 ELTLowpass.F
25
     'random number.f.o' f 'Delay Estimator.make' 'random number.f'
FORTRAN -mo69020
26
     FORTRAN -mc68020 -mc68881 -opt=3 'random number.f'
SDEV.F.o f 'Delay Estimator.make' SDEV.F
27
28
            FORTRAN -mc68020 -mc68881 -opt=3 SDEV.F
29
30
```

Run Example

```
2
  4
  5
  6
  7
                 * DISTRESS SIGNAL DELAY ESTIMATOR *
  8
  9
                 ***********
 10
 11
 12
       C/No of signal #1 and #2 (dB-Hz)
 13
       30.30
 14
       Sampling rate multiplication factor (> 0; <
                                                  52)
 15
 16
       Delay to be simulated (milliseconds) (must be less than 18.00 ms)
 17
 18
      File name to store summary results
 19
      example.dat
 20
 21
      File name where to store error
22
      error.dat
23
24
      How many runs do you want?
25
26
      Do you want to enter the random number generator seeds (Y or N)
27
28
29
30
      ...computing
31
32
33
34
35
36
                                     30.00 (dB-Hz)
      C/No of signal #1, \#2 = 30.00
37
      Simulated Delay = 5.00 (ms) = 208 (samples)
38
                                      0.4816 and
      Maximum Cross-Correlation =
         occured at samples # 208 corresponding to a delay of
                                                            5.0000000 ms
39
      Delay error = 0.000\mus Next seeds (1 and 2) = 1548668310 1015696458
40
41
42
43
     STOP TOURLOU!
44
```

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM (highest classification of Title, Abstract, Keywords)

DOCUMENT (Security classification of title, body of abstract and indexing	CONTROL appotation must	DATA	he everall decument is described
ORIGINATOR (the name and address of the organization preparing the document. Organizations for whom the document was prepared, e.g. Establishment sponsoring a contractor's report, or tasking agency, are entered in Section 8)		SECURITY CLASSIFICATION (overall security classification of the documer including special terms if applicable)	
Communications Research Centre Ottawa, Ontario K2H 8S2		UNCLASSIFIED	
TITLE (the complete document title as indicated on the title abbreviation (S,C,R or U) in parentheses after the title) Application of Conference Techniques Using Setallities in Conference Conference (Setallities in Conference			dicated by the appropriate
Application of Geolocation Techniques Using Satellites in Ge	ostationary Orbit	(U)	
AUTHORS (Last name, first name, Middle initial) Caron, Mario			
 DATE OF PUBLICATION (month and year of publication of document) 	6a. NO. OF Pa containing info Annexes, App	rmation. Include	6b. NO. OF REFS. (total cited in document)
June 1991	132	•	44
 DESCRIPTIVE NOTES (the category of the document, e.g. the type of report, e.g. interim, progress, summary, annual ocovered.) Technical Report 	technical report, to or final. Give the in	echnical note or me clusive dates when	emorandum. If appropriate, enter a specific reporting period is
 SPONSORING ACTIVITY (the name of the department projection include the address.) Defence Research Establishment Ottawa (DREO) 3701 Carling Ave Ottawa, Ontario K1A 0Z4 			
PROJECT OR GRANT NO. (if appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant) 1410-102		Γ NO. (if appropriat document was writte	e, the applicable number under n)
Oa. ORIGINATOR'S DOCUMENT NUMBER (the official document number by which the document is identified by the originating activity. This number must be unique to this document)			ny other numbers which may be ner by the originator or the
CRC Technical Report 1435 CRC Report Number 1435			
DOCUMENT AVAILABILITY (any limitations on further disse classification) (x) Unlimited distribution () Distribution limited to defence departments and defence () Distribution limited to defence departments and Canadia () Distribution limited to government departments and ager () Distribution limited to defence departments; further distrif () Other (please specify)	e contractors; furth an defence contrac ncies; further distril bution only as app	er distribution only a stors; further distribution only as appro pution only as appro roved	as approved ution only as approved oved
 DOCUMENT ANNOUNCEMENT (any limitation to the bibliogra to the Document Availability (11). However, where further dist announcement audience may be selected.) 	aphic announceme tribution (beyond ti	ent of this document he audience specifi	. This will normally correspond ed in 11) is possible, a wider

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

UNCLASSIFIED SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is billingual).

This report looks at techniques to perform the localization of SARSAT 406 MHz distress beacons using geostationary satellites. After reviewing the characteristics of the distress beacon transmitters, the main specifications of the GOES satellites are described as they can be assumed as typical geostationary satellites for this application. A brief review of the geolocation techniques is presented and an in-depth analysis is conducted on the time difference of arrival technique. The analysis covers the impact of the Earth's flatteness, channel impairments and satellite geometry. The delay estimator performance is expressed as a function of signal-to-noise ratio and circular error probability. The overall system performance is directly related to the performance of the delay estimator.

Results of both theoretical analysis and computer simulations show that the accuracy of the position derived from the time difference of arrival technique is limited by (1) the low SNR of the distress beacons when relayed via geostationary satellites and, (2) by the low transmission rate (and thus bandwidth) of the beacon signal creating "broad" autocorrelation peaks and making the delay estimation process difficult. In the worst case C/No of 30 dB-Hz and with three satellites spaced at 30°, we can say with a 90% confidence level that the circular error probability is between 3.3 and 4.9 km for a beacon in Canada. This is equivalent to an error not exceeding between 8 and 11.8 km for 95% of the time which is comparable to the current system based on a maximum error of 5 km for 90% of the time.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Geolocation
Position location
Geostationary satellite
SARSAT/COSPAS
Satellite Search and Rescue
Time difference of arrival
GOES satellite

TK 5102.5 C673e #1435 Caron, Mario
Application of
geolocation techniques
using satellites in...

DATE DUE				
OCT 1 3 1992 OCT 1 1 1994				

CRC LIBRARY/BIBLIOTHEQUE CRC
TES 102 5 C673e 11435 c, b
INDUSTRY CANADA / INDUSTRIE CANADA

