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1.0 INTRODUCTION 

This summer I continued working with the Genetic Algorithm (GA) and the original optimisation 

package (created last year) in hopes of improving its performance. This binary chromosome GA 

had proven to be successful, but there still existed several limitations. Convergence reliability, the 

ability of the genetic algorithm to locate the optimal (or near optimal) solution over many runs 

was not guaranteed; the GA could become stuck at sub-optimal peaks in the fitness landscape. 

Convergence time and essentially the GA's "speed" in locating that optimal solution depended 

greatly upon the initial population. If "good" starting points existed then the solution could be 

found with relative ease. If not, then the time (the number of iterations) required in locating the 

solution would increase, and the GA ran the risk of converging prematurely into a local minimum. 

So the question that should be asked is "what does constitute a good starting point, and how can 

these points be used to ensure the success of the GA.? "Unfortunately, there is no clear-cut 

answer to this question. For many of the problems that we wish to solve, we do not know where 

to begin or even what the final outcome will be. Nevertheless, GA relies on an initial randomness 

and hopes (!) that through its evolutionary operators it can determine a solution that is both 

feasible and optimal. Obviously, something more is needed and new directions must be explored - 

a hunt for an ideal optimization package in order to ensure that the genetic algorithm satisfies the 

convergence to the global minimum with acceptable and practical rate. 

Various ideas were considered and implemented. These include different selection schemes, 

introducing *multiple populations into the GA, adjustments to the crossover operator, and the 

introduction of "parasites" into the population. A hybrid genetic algorithm was constructed that 

used a second population of "rules" in its search for the optimal solution. This led to the 

combination of a genetic algorithm and another evolutionary techniques i.e.  Evolutionary 

Programming (EP). The latter two implementations were encouraging, but something was still 

lacking. Since EP uses real parameters as its chromosomes, a real parameter GA was then 

considered and tested against well-known functions. It was this last method that proved to be far 

more successful than all previously tested methods. 
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2.0 THE HUNT BEGINS... 

2.1 The Selection Operator 

The selection operator that was used last year (and is still being maintained as the operator of 

choice), is linear ranking in nature. Organisms are ranked according to their fitness, and parents 

are then selected using the stochastic universal selection method. The user controls the selection 

pressure by entering a number between one and two, through the interface. The larger the value, 

the higher the selection pressure which in tum means that those organisms with a higher fitness 

will be selected more so than the rest. A lower selection pressure ensures that those organisms 

with a lower fitness will have an opportunity to be selected. 

An alternative is the n-toumament selection [3]. From the population of organisms, a 

sub-population of size n is randomly chosen. Then a tournament or competition among these 

organisms is held, the wirmer of which being the one that has the highest fitness; this "champion" 

becomes a parent. The organisms are then placed back into the population, and another random 

sample of size n is found. This process is repeated until the parent population has been filled. It 

is clear that as n increases, the probability of obtaining a sub-population with the more fit 

individuals increases. And as n decreases, this probability decreases. So the value assigned to n 

controls the "selection pressure" of the population, in much the same way as we assign the 

selection pressure to be some value between 1.0 and 2.0 in the linear ranking method. 

Comparisons were made as to which method yielded better results, and unfortunately no definite 

conclusion could be drawn. In many cases, both methods converged to similar solutions. The 

binary-toumament (n=2) appeared to outperform linear ranking for smaller population sizes. 

This was probably due to the fact that organisms of higher fitness were always sampled more 

frequently in a smaller population as compared to larger populations. However, binary 

tournament performance will become inferior to linear ranking as the replacement size of the 

population (at each generation) became too small. This was probably due to the fact that with a 

slowly changing (evolving) population, the same parents were chosen more frequently, hence no 

new information was introduced (via the crossover operator) into the population. Since no clear 
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distinction could be made between the two methods, n-toumament method was discarded in 

favour of the linear ranking method. This method has demonstrated satisfactory results thus far. 

2.2 Multi-Population Genetic Algorithms 

Parallel Genetic Algorithm (PGA) is another method that is more robust compared to single 

population GA. In this algorithm, many populations are evolved in parallel, through the use of 

parallel processors. These populations can exchange and share highly-fit solutions amongst 

themselves— along the same line of sharing resources and opportunities- through migration of 

highly fit organisms. This concept can be easily implemented; GA is executed on a multiplicity of 

machines, and throughout the execution, best organisms are sent periodically into a pool that 

could be exploited by the other population. Therefore, underprivileged populations with low 

fitness indices can improve their status and use the gains and "achievements" of other 

populations. The implementation of this method can create difficulties or "tensions" betveeen the 

populations such as fast evolution of one population compared to the others, or two populations 

attempt to access the pool of fit organisms at the same time. However, the whole concept is 

sound; through evolving individual populations which share resources amongst themselves, 

premature convergence of populations can be controlled (with the exception of highly improbable 

situation of convergence of different populations to the same organism). New and highly fit 

members introduced into populations by the sharing mechanism, can be the "building blocks" 

necessary in the successful evolution of the optimal solution. 

It should be noted that PGA is more CPU intensive compared to single population GA. The 

higher the number of evolving populations, the longer is the execution time of the algorithm. This 

is especially true for the computationally complicated objective functions. To avoid such 

complications, the program can be executed on parallel processors. However, the algorithm was 

executed on a single processor to investigated whether n populations of size N/n that benefit 

from the migration of fittest members will outperform a single population of size N. 
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Going one step further, each population can evolve under different conditions such as, variety of 

selection pressures, crossover, and mutation probabilities. Thus, one population could remain 

more diverse with respect to its organisms and conduct a more exploratory search of the solution 

space, while another population may exploit its organisms, converging to an optimal solution at a 

quicker rate. An environnent was created to "hold" these populations, and the GA was used to 

during this process. 

However, the following question is yet to be answered, "how does migration work? The initial 

migration technique, or circular-migration, would be as follows: at every generation the best 

organism in population i migrates to population i+1, and replaces the best organism in that 

population only if its fitness were higher than that of the best organism, otherwise it replaces the 

worst organism in that population. Thus, each population would be guaranteed the introduction 

of a highly fit organism at each generation. However, if a population changes minimally during 

the course of execution, it sends almost the same organism to its adjacent population whenever 

the migration mechanism is activated. This floods the adjacent i+/ population with almost the 

same organism which might cause convergence to one and the same organism. Therefore, a 

domino effect can occur in the sense of convergence to the same organism in all populations. This 

scenario should be avoided for the success of PGA. 

It seems that activation of migration mechanism in every generation is unrealistic. A migration 

rate would be necessary to control sharing of the "fittest organisms" amongst the populations. 

This entails the determination of an "optimal" rate, or generation intervals at which migration is 

allowed. Various rates such as 5,9,12,13 and 18 were used as the migration intervals during the 

course of this project yielding successful results for some runs, and poor results for others. In 

other words, the search for optimal rate was not conclusive. 

"Mass migration" was the next technique to be considered. In this method migration is exercised 

only from the population with higher fitness, with respect to the best organism in that 

population. We select an organism randomly from the less fit population and find four other 
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organisms with highest resemblance to it. These five organisms would be replaced by the best 

organism from the population with higher fitness and four other organisms that are dissimilar to 

it in order to maintain diversity in the population with lower fitness. But again, by sending over 

the best organism, We are at the risk of causing one of other.  populations to converge 

prematurely. What kind of information do we have about the organisms that are being migrated to 

the lower fit population? It is true that their dissimilarity maintain variety, but they will not be 

selected as parents if they are poorly fit. Therefore, the host population will not benefit from 

their presence. Furthermore, this method relies on a priori knowledge of migration rate which is a 

problem dependant parameter. This raises serious questions about the effectiveness of this 

method. A cooperative approach between the populations seems to be a viable alternative. With 

this in mind, two questions arose: 

I. When should a population receive cooperation? (or ask for help), and 

2. How much help should a population receive? 

2.3 Cooperating Populations 

Let us consider an environment composed of two populations only for which the objective 

fiinction is to be minimized. The first step is to determine which population is the better of the 

two - with respect to the fitness of the best organism in each population. Using these two 

parameters, the fitness of the best member of the better fit population is divided by the fitness of 

the best member of lower fit population. The result of this division (x) is an indication of the gap 

between the two populations. The closer it is to one, the smaller is the distance between the best 

members of the two populations. And the closer it is to zero, the greater is this distance. The 

latter case demonstrates the need of the lower fit population for help in order to improve its 

fitness. 

Help is provided on a random basis. A random number is generated between zero and one, its 

value is compared to x, and help will be offered if it is larger than x. Clearly, the probability of 

provision of help is higher for smaller values of x. It should be noted that in this scheme the 

populations are not competing, so they will converge preferably to the "same peak" at the end of 
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the run. If x is close but not equal to one, then it is quite unlikely for the population with lower 

fitness to receive any help. A record is kept of the cooperation among populations. The longer 

they go without cooperation, the greater the probability that cooperation will be activated 

between the populations. Cooperation will not be given to the same population for two 

successive generations if it manages to acquire a better organism than the one it had in the 

previous generation. If no improvement has been made, then the population will be offered help. 

Thus each generation will keep a "log" or "memory" of its past best solutions. This answers the 

question about when a population should receive help. 

Secondly, considering the population with a higher fitness it will be decided upon the criteria to 

migrate organisms to the population with lower fitness. The organisms are ranked in the order 

from the least similar to the most similar to the best organism of better fit population, with 

respect to the binary chromosomes. The value of x determines the organisms that will be migrated 

to the population with lower fitness figure. Having an x close to one indicates that there is little 

difference between the "champions" of the two populations, so the least similar members 

(compared to the best organism of the better fit population) will be migrated. As x tends to zero, 

there exists a greater distance between the two populations, and so organisms that are more 

similar to the best organism of the better fit population will be transferred over. We never 

transfer over the best organism. Now, what happens the transferred organism is sub-optimal? 

Thirdly, it should be decided upon the number of organisms that are migrated i.e. the transfer 

rate. Since time is not a luxury and there is a "deadline" that should be met by most populations 

in creating highly fit organisms. Also, populations are cooperating and it is desired that they 

converge to the same peak, the transfer rate must increase as the population ages. 

Finally, the survival of organisms in the population with lower fitness is decided by the degree of 

their similarity to the best organism of the same population. Those that resemble the best 

organism the most will be replaced with organisms from the other population. We keep the best, 

just in case it has some "good" building blocks. 
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However, one problem may arise; both populations may converge to the same sub-optimal peak. 

To avoid such an event, new organisms could be introduced into the population to replace some 

of the older organisms if no change occurs after a specified number of generations. It is very much 

like the game of Scrabble; you have your seven letters but can do nothing with them, so you 

replace some with new ones. But this might present a further problem that is the new organisms 

are created randomly but are not guaranteed to be highly fit members. Also, how often should 

new members be introduced into the population? There are no easy answers to these questions. 

Therefore, the idea of introducing new members into the population was abandoned. 

It must be noted that if three populations are constructed, cooperation occurs only between the 

best and the worst. The "one in the middle" would be left alone until it needs help or is good 

enough to offer help. Tests were conducted on a function of two real parameters. A good 

convergence was observed at the beginning. Out of ten runs (of ten different initial populations) 

the multi-population GA performed better than the single population. But then 100 runs were 

considered, and the results were not as favorable. In fact, it was observed that the 

multi-population GA outperforms single population GA in only 50 of the 100 runs which is not 

an impressive standing for the amount of extra computational effort. This can be attributed to the 

fact that the attempt to find a general cooperation scheme was not so successful. Finding a clear 

cut definition for the amount of sharing and the similarity between organisms was not an easy 

task. Ranking organisms in terms of fitness (rather than similarity) increases the risk of 

premature convergence. Taking a break from real parameter functions, the travelling salesman 

problem (TSP) was considered. 

2.4 The Travelling Salesman Problem 

The Taveling Salesman Problem (TSP) is as follows: finding the shortest path through n cities 

that are to be visited only once by a traveling salesman on his was back to the city that he started 

his journey. This problem can be used as a benchmark in the assessment of optimization 

algorithms. Unfortunately, results were not supportive of the implementation multi-population 
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GA. It seemed to be necessary for the populations to have at least one organism for every city in 

the tour, hence splitting a population in half or into thirds was not helpful. 

Better results for TSP were obtained using an adjacency representation for the chromosomes and 

using a 'heuristic/greedy crossover [2]. An adjacency representation (for five cities) is as follows: 

Chromosome: 5 1 2 3 4. 

The ith  position of the chromosome with value j, denotes a path from city i to city j. Thus the 

tour for the above representation is (assuming a start at city 1): 

1-5-4-3-2-1. 

The crossover worked as follows. A starting city i is randomly chosen. Then the i-j path in both 

parents is considered. The shorter of the two paths is given to the child. This process continues, 

always talcing the shorter of the two paths, ensuring that no cycle exists. This method proved to 

be successful. If the tour consisted of n cities, then a population of 2n organisms almost always 

found the optimal route. 

2.5 Crossover Modifications 

During the numerical trials, some modifications were made to the crossover operator: 

1. Elimination of useless crossover points. Suppose the parents are: 

000000010101001, and 

000001001010101. 

Thus selection of any of the first six crossover points does not yield any new organism. It is 

noted that the choice of crossover point "beyond" the seventh bit results in organisms different 

from parents 

2. Mates are selected based upon Hamming Distance: one parent is randomly chosen, and its 

mate is selected to be the one that is most different (opposites attract). This promotes diversity 

in the creation of children, so as to explore a greater portion of the search. 
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3. Once the population of children has been created, the children that outlive the older organisms 

must be selected. We randomly choose one child to add to the population. The next child is 

added to the population only if it is different from the latest child that was added to the 

population (the degree of difference can be quantified using the Hamming Distance concept). The 

third child differs the most from the previous two, etc. This promotes diversity and avoids the 

creation of similar children in the population. 

While these modifications improved the search for the optimal solution, it increased the run time 

considerably. This was due to the fact that the binary representation of each organism had to be 

considered and compared against every other organism in the population. Therefore, the minor 

improvement was overshadowed by the increase in the execution time of the genetic algorithm. 

So the search for a more efficient and robust GA continued, leading to the idea of parasites. 

3.0 THE HUNT CONTINUES. 

3.1 Parasites 

The main problem is that the GA might be trapped in sub-optimal solutions. So the question 

arises as to how divert GA from these traps,  i. e.  force the GA to consider alternative schema 

(building blocks). We know that as the generations pass, the population is filled up with 

organisms that are highly fit. Also, these same organisms are converging to the same peak since 

they have the same building blocks. We know fi-om the Schema Theorem of genetic algorithm [2] 

that the low-order, short, and above average fitness schema are represented in exponentially 

increasing numbers in subsequent generations. These are the building blocks that lead to GA 

solution. These blocks should be avoided if they happen to lead to a sub-optimal solution. A 

method was devised to this end. Consider a second population that contains parasites rather than 

organisms. These parasites [61 are those short, low-order schema mentioned earlier. If each 

member of the initial population contributes to the existence of a y parasite (one for each of the y 

parameters being optimised), then our parasite population is of size y*N, where N is the size of 

"regular" GA population. The parasites are of the same length as the variables they correspond 
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to, and each gene of the chromosome belongs to the set (0, 1, *), where "*" is the "don't care" 

symbol (i.e. "*" could be either one or a zero). The bits of the parasite are specified 

(probabilistically) from the organisms that create it and we ensure that these parasites are of 

low-order (i.e. very few is and Os, and many *s). 

The goal of the above is three-fold: 

1. To evolve our "regular" genetic algorithm population as it is normally done. 

2. To evolve a population of parasites/building blocks that are to be avoided. 

3. To evolve a second GA population that will be discouraged from using the building blocks 

found in the parasite population. 

The first goal is straightforward. The logic behind the second goal is to determine the fitness of 

the parasites. Again by the Schema Theorem, we know that those parasite that encourage the 

population to converge to a suboptimal solution are "represented in exponentially increasing 

numbers in subsequent generations". Thus we can assign an integer value to each parasite which 

is equal to the number of organisms in the first population that this parasite "inhabits". Since we 

wish to acknowledge or identify those that are represented in increasing quantities, the larger the 

integer value, the higher the fitness of a parasite. Having assigned fitness values to each parasite, 

we evolve this population in the normal genetic algorithm fashion. Finally, the third goal must be 

satisfied. Having identified the parasites -the building blocks- that lead the first population to a 

sub-optimal solution, we now discourage their use in the third population by decreasing the 

fitness of those organisms that contain (in their binary representation) these dangerous 

representations. It has been assumed throughout this section that the first population is 

converging to a sub-optimal solution. This may not be necessarily true if the population is 

converging to the optimal solution. If this is the case, we have lost nothing by encouraging the 

third population to look elsewhere. The algorithm is as follows: 

While termination criteria not met do 

Evolve first population for one generation. 
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Assign fitness values to parasite population. 

Evolve parasite population for one generation. 

Adjust fitness of organisms in third population. 

Evolve third population for one generation. 

End. 

The above procedure can be summarised as follows. By discovering those schema/building blocks 

that lead one population to a sub-optimal solution, we can discourage the use of these schemas 

in another population. In doing so, we encourage this population to explore other directions that 

(hopefully) lead to the optimal solution. 

Testing in many cases did indeed show that the third population was "pushed" away from the 

peak into which the first population was trapped. Unfortunately, the "push" was not far enough 

since the population did not converge to some other optimal solution. This was probably due to 

many factors. The "good" parasites that may have led to the optimal solution were identified as 

deadly, and so the third population would have no choice but to become stuck at some local 

peak. Also, not enough parasites were identified. Lastly, after successive generations the 

population of parasites would no longer contain the short and low-ordered schema as detailed in 

the Schema Theorem - an unfortunate side effect of crossover and mutation. 

Although these results were not encouraging, an idea grew from this study.. We began with 

multi-population GA schemes that led to another type that considered not only our "regular" 

GA populations, but another type of population as well - the parasites. This led to combining of 

a GA population with one of the "rules". 

3.2 Rules 

Suppose that a function is to be optimised by hand. The optimisation starts with a random initial 

"guess". Then, this guess can be adjusted in a certain fashion which might entail increasing the 

value of the first parameter, decreasing the value of the second parameter, setting the third 



parameter to zero, and leaving the fourth unchanged. The same trend in the variation of 

parameters can be continued if the initial adjustment happens to move optimisation in the right 

direction. Now assume that many adjustments can be made to the parameters in different 

directions and the results of these adjustments can be combined to obtain the best set of 

adjustments to optimise the function. This set of adjustments, or population of rules, can operate 

in conjunction with a regular genetic algorithrn population-, which is evolved according to the 

standard GA code. Its algorithm is as follows: 

Construct initial population of organisms 

Construct initial population of rules 

While termination criteria not met 

Evolve population of organisms by one generation 

Determine best of this population 

Apply every rule of rule population to the parameters of this organism 

Fitness of organism after rule applied is the fitness assigned to the rule 

Evolve population of rules by one generation 

If a rule applied to the organism created a better organism, substitute this 

organism into the organism population 

End 

Both of the different evolving populations are working towards the common goal of optimising 

the function at hand, sharing whenever one comes up with a better solution. 

A test function of two variables 

f(x,y) I 00*(x-Y) 2  +a-39 2  ([2]) 

It was very difficult for binary GA to minimise this function. However, the method described 

above was successfully applied to minimise this function. Numerous runs were conducted with 

different initial populations and each time the method was capable of converging to optimal or 

near optimal solutions. In the absence of theoretical evidence on the effectiveness of this method, 

it was applied to a wide variety of optimisation problems to assess its strengths and limitations. 
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Keeping the idea of different evolving populations in mind, the concept of Evolutionary 

Programming was examined. 

3.3 Evolutionary Programming 

Evolutionary programming (EP) is an evolutionary algorithm which includes traditional GA as its 

subset [1]. Unlike traditional GA, EP uses real-valued chromosomes (no binary encoding is 

required). In EP, a population of organisms is evolved by applying a Gaussian mutation operator 

that is quite similar to traditional GA. 

The EP involves a population of N organisms and each chromosome of each organism is mutated 

according to the following rule: 

x = xi  + (fitness(organism)) 1/2N1 (0,1) 

See [1] for the case where the fitness of an organism is zero. EP assumes that the optimisation 

task is one of minimization. 

In the initial population, we expect large fitness values for the organisms. Thus large mutations 

are encountered, and the search is quite broad (the search space is explored the as large as 

possible). However as the fitness of an organism decreases, (as it approaches the optimal 

solution) search area is narrowed down. This is exactly what the above mutation operator does; it 

uses the fitness of an organism as its guide to conduct the search. 

Subsequent to the application of this operator, the number of organisms in the populations 

becomes 

2N (i.e. combination of newly mutated organisms and old organisms). Using a tournament 

selection scheme (much like the one discussed previously), N of the best organisms are selected 

to become members of the next population, and the process continues. Connecting this 

population with the genetic algoritlun population proves to be more effective than when either 

method is being implemented in isolation from the other. This method was successful for the 

previously mentioned function and performed slightly better for four other test functions (which 
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will be mentioned later) when coinpared to the GA population paired with a population of rules. 

But its performance was not satisfactory. 

4.0 THE HUNT ENDS? 

4.1 Real-Parameter GA 

Evolutionary programming uses real-valued chromosomes. Real-valued GAs are discussed in [4] 

and have proven to be more successful than its binary chromosome counterpart. Due to its 

representation, precision is gained compared to the binary genetic algorithm. Also the absence of 

binary encoding and decoding speeds up the execution of the real valued algorithm. A sample of 

the operators and their success in various optimisation problems will be discussed in the next 

section. 

4.2 Simple Crossover 

As the title implies, this crossover method is easy to describe and understand. A crossover point 

is randomly chosen. All chromosomes at and beyond this point are swapped between the two 

parents. Unfortunately, this method does not create any new chromosomes (only rearranges 

those already generated from the initial population). So if the initial population is poor, the GA 

becomes stuck and have to rely on mutation as its only source for generating new and different 

information. 

4.3 Arithmetic Crossover 

This method is more interesting. For every chromosome of the two parents, the child's 

chromosome is constructed via: 

c--a* p 1 + (1-a)*p2  

where c, p i , and p2  are the real values that correspond to the  saine chromosome for the parents 

and the newly created child, respectively, a is a random number between zero and one. The 
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equation "a*pi +(1 -a)*p2 " is a line frompi , to p2  and the choice of a can determine any point on 

this line. 

Pi 	 -■•.---•-•-- 

P2 

Where pi, and p2  are points on the curve that intersect the line. Since we are minimising the 

objective functions, we wish to obtain a value for the child that lies near the "valley" of the curve. 

This operator eventually finds the optimal variable value between the two parents, and in doing 

so obtains the optimal solution. This is true provided that the optimal value lies between these 

two points, if it lies beyond, then this operator will have created a child that is not very useful. It 

is clear that during the infancy period of the population, our choice of a will most likely cause a 

wider or broader search around the parent's chromosomes. But as the population matures and the 

chromosomes tend to converge, the search domain narrows down considerably. 

4.4 Heuristic Crossover 

This operator uses the objective fimction of the parents. Suppose that parent two has a higher 

fitness than parent one. Then the resulting child is constructed as follows: 

c = r*(Pz — Pi )  +p2,  

where c, pi, and p2  represent the same parameters as in previous equation, and r is a random 

number between zero and one. This allows the search to concentrate around the chromosomes of 

the better parent. Depending on whether p2  —p l  is positive or negative, values to the left or right 

ofp, will be considered. Again, it is clear that as the run matures, exploration becomes more local. 

4.5 Mutation 

The mutation operator uses the maximum number of generations that the GA is allowed to 

execute, and the present generation number. The idea is that near the beginning of the run 

whenever the mutation operator is activated, we wish to explore a greater area around the present 
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chromosome. As the run approaches its end, we would rather nan-ow down our search and reduce 

the effects of a "large" mutation. This is accomplished using the following operator: 

ci= c + E (t, UB - c) if m < O. 5, or 

c - E (t, c - LB) otherwise, 

where m is a random number between zero and one, t is the present generation number, T is the 

total number of generations, UB and LB are the upper and lower bounds of the parameter. Also 

defined; - 

E(t,y)  =y  *  

where r is a random number between zero and one. The exponent 5 is chosen as "the degree of 

dependency on iteration number" [4] and is a standard value. Note that a smaller value weakens 

the dependency on the iteration (generation) number, and that a larger number strengthens this 

dependency. It is clear that if 1-t/T is close to one (i.e. we are in the early stages of the run), the 

chromosomes are expected to be perturbed greatly. And as 1-t/T tends to zero (i.e. as we 

approach the end of the mn), the chromosome will be perturbed minimally. 

4.6 The Test Functions 

Five different test functions were considered: 

1. f  = 100*(x-y 2)2  +(1-y)2, with x, y e 10,51 

2. f2  x2+y2+u2 +v2, with x, y, u, y el--30,301. This is the sphere function which is continuous 

and unimodal. 

3. h =s[x1+0.5f for i= 1,4, with x1e[-30,30]. The sphere step function which introduces several 

plateaus at which the GA may become trapped. 

4. fi  = -20 * exp(0.2 * (S (x i2f 2)-exp('1/10 * S cos(p*xd) + 20 + e, for i 1,3 with xie [-20,30]. 

Known as Ackley's function which inflicts moderate complications to the search. Because a 

strictly local optimisation algorithm that performs hill climbing would surely get trapped in a 

local optimum, a search strategy that scans a slightly bigger neighbourhood would be able to 

jump over valleys towards increasingly better optima [1]. 
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5. f5= S (A re for i=1,2,3 and Ai  = S ('au *sin(ai) + becos(p)) and Bi = S (au  sin(xj) + 

bu *cos(xj)), for j = I, 2, 3 where A= (au), B = (bu); au, bu  e [100,100]; and xi, p J. This 

function was introduced by Fletcher and Powell. It is " a typical representative of nonlinear 

parameter estimation regression problems" [1]. 

The results of the two crossover methods varied, but both of them were far superior to those 

obtained using the binary GA, or the combined GA and EP. The arithmetic crossover obtained 

the following results for the five test functions. For all functions the optimal value was zero, 

populations of size 100 was used, of which 50 were replaced every generation; 100 generations 

were executed, selection pressure was 1.31, crossover probability was 0.7, mutation probability 

was 0.01, and 100 runs were conducted. 

1. The optimal solution was found thirteen times and for 12 runs the objective function was less 

than 0.01 

2. Optimal solution found sixteen times and for 75 runs objective function was less than 

0.00005. 

3. Optimal solution found in all 100 runs. 

4. Optimal solution was found thirteen times, and for 50 runs the value of objective function was 

less than 5.0e-8  

5. Optimal solution found three times, and for 60 runs it was greater than 1.0. 

So it can be concluded that this method performed well on all but the last test function. The 

heuristic crossover yielded the following results: 

1. The optimal solution found 100 times! 

2. The value of the objective function landed between 0.00001 and 0.005 for 75 runs. 

3. Optimal solution found 94 times; 6 solutions greater than 1.0. 

4. The value of the objective function landed between 0.00001 and 0.005 for 91. 
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5. Optimal solution found twice; only twice it was greater than 1.0; and 58 between 1.0e-7  and 

0.00005. 

This method performed much better on functions one and five, unlike the arithmetic crossover. 

It is obvious that one crossover method works better on those functions that the other crossover 

method has experienced difficulties. Ideally, we would like to know beforehand which method 

works better for a given problem. Since this is not the case, combining the two methods seems 

reasonable. 

4.7 The Connbined Crossover 

Both [4,5] make reference to a successful genetic algorithm that uses many different operators. So 

combining the heuristic and arithmetic operators is a known concept. At the first generation, each 

crossover operator has an equal probability of being called upon to work its "magic" on any two 

parents. Then GA evaluates the child that is created (we ignore the effects of the mutation 

operator, as it is called with only a small probability). In all the above tests, 50% of the 

population was replaced at each generation, thus 50% remained untouched. A child is considered 

"a good one", if its fitness is better than the average of the remaining 50% of the population. 

After all, we want to create children that are better than those organisms in the population. Each 

tune  that a "good" child is created, the crossover method that created it receives a point. After the 

completion of one generation, the GA reassigns probabilities to these operators, based on the 

children that each created. If one operator did not create any children at all (neither good nor bad 

children) then it is assigned a probability of zero, and the other is assigned a value of: 

(the number of good children created)/(the total number of children created). 

However if both create children, then the both operators are assigned values of: 

(number of good children created by that operator )/(total number of good children created) 

This is because one operator might have created two children in one generation with one being 

good, while the other operator might have created five children of which only two are good. 

Considering these values one may think that the first operator is the more successful, after all 
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50% of the children it created were good. But it may have performed worse if it had been given 

the chance to create more children. This reassignment of the probabilities seems more "just". 

When it comes to select the operator, the one with the larger probability is considered. A random 

number is created, and if it is less than the probability assigned to an operator, GA will use that 

operator. Otherwise, the other operator is used. 

The results for the combined crossover method on the five test functions are as follows: 

1 . Optimal solution found 100 times. 

2. Optimal solution found 71 times; worst was less than 0.00000 1. 

3. Optimal solution found 100 times. 

4. 77 of the runs landed between 1. 0e -8 and 5.0e-7 . 

5. Optimal solution found 46 times, only 1 greater than 1.0, 86 times less than 5.0e -8  

These results surpass those obtained fi -om either of the arithmetic or heuristic operators when 

used separately. It is clear that the genetic algorithm was able to determine which operator to use 

in order to maximize its success over the different test functions. 

5.0 THE REAL GA 

5.1 The Interface 

The interface remains much the same as what was developed last year; the only difference being 

that the real-valued chromosomes are used rather than binary ones. It is menu-driven and is very 

straightforward. Several points must be considered: 

1. The population size must always be even and less than 1000 (can be changed). 

2. The number of parameters must always be less than 150 (can be changed). 

3. Population replacement refers to the number of organisms that get replaced at each generation. 

It can be set at most bne  half of the population size. 

4. Penalty depends on how important it is to keep the variables within the specified bounds. 

5. The selective pressure determines the extent to which highly successful organisms get selected 

compared to the lower fit organisms. So the higher the pressure, the more successful organisms 
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will be selected to be parents. Its value ranges from 1.0 to 2.0. Selection pressure is only 

necessary for linear ranking. 

6. The number of runs is the number of times that GA is executed with different initial 

populations. 

7. Suggested values are given for the selection pressure, crossover and mutation probabilities. 

5.2 The Reader 

The present GA program arranges the output in a different manner as compared to the routine 

that was developed last year. A special reader program was developed to post process the binary 

output. The program is called "readerc" and is a menu driven interface. The following options 

will be available upon execution of this program: 

1. Determine run values. 

2. Tabulate the optimal values found. 

3. Create own table and tabulate optimal values. 

4. Find optimal solution. 

5. Determine run values and variable values. 

6. Who beats whom? 

7. List Runs and optimal values. 

8. Determine improvement in run of population. 

9. List optimal solutions found. 

10.List starting points. 

11.Exit. 

Descriptions of the options are: 

1. Lists the best solution found at each generation for a given run. 

2. Creates a "histogram" tabulating the optimal solutions found for every run. Table is preset. 

3. Allows the user to create own table and tabulate results. 

4. Lists the optimal solution with parameters out of all the runs. 

5. Saine as 1, except lists the parameters as well. 
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6. Allows comparison between two output files as to which one was better. 

7. Lists the optimal solution and parameters that yield these solutions for every run. 

8. Allows user to see how many times the GA found a better solution in the course of a run. 

9. Lists optimal solution found in every run; no parameters. 

10. Lists the starting points, or initial best, of every run. 

5.3 Other Instructions 

Below are instructions that have been probably mentioned before but are nevertheless helpful 

reminders. In the GA program, the following is declared within the set of variable declarations: 

extern float func_0, 

The function func_O is the function to be optimised. It is used as follows: 

s 1 nobjective = func-(values), 

where values is an array containing the parameters being optimised. Note that if there are three 

parameters, then they are stored in values[1], values[2], and values[3], leaving values[0] "empty" 

The optimisation function can either be written in C or Fortran. 

Optimisation of a function written in C  

The C function (and all other necessary functions that it may need to call in order to obtain the 

objective function and fitness for any organism) can be stored in a single file, with the name of 

the fiinction being func_. It must also return a float number. For example: 

#include <math.h> 

#include <string.h> 

float ftinc-(float values[4]){ 

function body 

return (float number); } 

It is in this function that all calculation related to objective function and fitness of organisms are 

done. Suppose that all routine required to that end are saved in a single file called function.c. 

Then setting GA to optimise the function, all that is necessary is to type: 
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tango% cc ga.c function.c -Im 

tango% a.out • 

Note that the output (the best solution at each generation) is sent to a file called "o I" and can be 

read and interpreted using "reader.c". 

Optimisation of a function written in Fortran77  

Like the C function, the Fortran function must be written as a function that returns a real value, 

and must include within itself all other subroutines, functions that would be called to obtain the 

objective for each organism. It should be written as follows: 

real function fiinc(values) 

real values(0:n) 

function body 

func= ? 

return 

end 

The zero in values(0:n) allows the indexing to begin at zero. Note that parameters are still stored 

in values (1), values(2),..., and values(n), with  values (0)  being "empty". This can then be saved in 

a file called-  function.f. 

To execute the GA and the function to be minimized the following commands must be 

executed: 

tango% f77 -c -silent fiinct.f 

tango% cc -c ga.c 

tango% 177 funct.o ga.o 

tango% a.out 

Why header files? 
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Suppose a new selection operator is to be tried in the GA code. It should be copied into the 

GA program. However, it would be better if we could select the procedure directly fi-om the 

interface. Without going into the details (yet) on how to incorporate this idea into the 

interface, the easiest way is to create for each selection procedure i, a header file called 

selecti.h. The interface will then "include" this header into the GA program and allow this 

procedure to be used. The same can be done for crossover and mutation operators as well. 

All that is necessary in the header file is the operator itself (see selectl.h, crossl.h and 

cross2.h for example). Also, the function name should be the one that is used in the GA 

program (select, crossover, or mutate). It does not matter that various crossover operators 

have the saine fimction name, since only one will be included in the file. A further restriction 

is that all functions pertaining to the saine operator pass the saine parameters. 

Modifying the interface to include more operators  

All that is necessary is to add the new choice of operators to the menu found under "TYPE" 

Operator, where TYPE is either selection, crossover or mutation. Add the choice, as is done 

for the crossover operator, and increment the number of choices (so that while loop is called 

and it scans for a choice, it selects appropriately). i.e. increment the "2" found below : 

while(status != 1 I I choice < 1 II choice > 2){ 

fflush(stdin); 

printf("Invalid entry. Enter choice:"); 

status = scanf("%d",&choice);}; 

How does the program get set with the proper operators?  

Upon exiting the interface, and only if it is saved, a file called header.c is created or updated. 

The following text is printed to it: 

#include <stdio.h> 
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#include <math.h> 

#include "ga.h" 

#include "selecti.h" 

#include "mutatei.h" 

#include "crossi.h" 

i is determined by the operator selection. 

This file is then concatenated with generic5.c to create ga.c. This can be carried out through 

the startup file: 

cat headcr.c realGA.c > ga.c 

cc -c ga.c 

nn ga.c 

f77 -c -silent bessel.f 

f77 bessel.o ga.o 

rm bessel.o 

nu ga.o 

The above shows the setup for the GA to maximise the Bessel function. This is a text file. To 

transform it into an executable type: 

chmod +x startup. 

a.out then executes the GA. So it should be ensured that the proper operator selected and also 

that operator "i" is included in the header file "i". 

6.0 CONCLUSION 

I began this work  tenu  with the task of improving upon last summer's GA package. A new 

selection method has been added to the GA arsenal, even though linear ranking is still the 

selection method of choice. Alrthat followed led to the eventual declaration that the real-valued 

genetic algorithm was superior to the standard binary GA. Multi-population GAs led to the 

consideration of a mixture of  regular populations and parasites. Population of parasites led to 
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populations of rules which led to combining of GA and evolutionary programming. The real 

chromosomes of EP led to the real-valued GA. Results of five different test functions testified to 

the power of this new algorithm. And the realisation of a combined crossover method led to a 

success that surpassed all that was encountered before. 
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