
118+8 Communications
Research Centre
Canada

Centre de recherches
sur les communications
Canada

td°

r K.
5102.5
0673e
#2000-12

cqc
IC

An Agency et
Industry Canaaa

Ull 	-

LI I CILS n

Ii

Genetic Algorithms

by Geoff Hayes
RAAT Advanced Antenna Technology

CRC Report No. CRC-RP-2000-12

111111:211111W

Genetic Algorithms

CRC LIB ARY
2001

B I 	I OT Mid 	Industry Çana
Library - Ouen

nuJ 2 2 191?
Industrie Canada

Bibliothèque - Queen

Author: Geoff Hayes

Supervisor: Dr. Jafar Shaker

Communications Research Centre Canada

RAAT Advanced Antenna Technology

TABLE OF CONTENTS

1.0 INTRODUCTION 	 3

2.0 THE HUNT BEGINS 	 4

2.1 THE SELECTION OPERATOR 	 4

2.2 MULTI-POPULATION GENETIC ALGORITHMS 	 5

2.3 COOPERATING POPULATIONS 	 7

2.4 THE TRAVELLING SALESMAN PROBLEM 	 9

2.5 CROSSOVER MODIFICATIONS 	 10

3.0 THE HUNT CONTINUE 	 11

3.1 PARASITES 	 11

3.2 RULES 	 13

3.3 EVOLUTIONARY PROGRAMMING 	 15

4.0 THE HUNT ENDS? 	 16

4.1 REAL-PARAMETER GA 	 16

4.2 SIMPLE CROSSOVER 	 16

4.3 ARITHMETIC CROSSOVER 	 16

4.4 HEURISTIC CROSSOVER 	 16

4.5 MUTATION 	 16

4.6 THE TEST FUNCTIONS 	 18

4.7 THE COMBINED CROSSOVER 	 20

5.0 THE REAL GA 	 21

5.1 THE INTERFACE 	 21

5.2 THE READER 	 22

5.3 OTHER INSTRUCTIONS 	 23

6.0 CONCLUSION 	 26

REFERENCES 	 27

2

1.0 INTRODUCTION

This summer I continued working with the Genetic Algorithm (GA) and the original optimisation

package (created last year) in hopes of improving its performance. This binary chromosome GA

had proven to be successful, but there still existed several limitations. Convergence reliability, the

ability of the genetic algorithm to locate the optimal (or near optimal) solution over many runs

was not guaranteed; the GA could become stuck at sub-optimal peaks in the fitness landscape.

Convergence time and essentially the GA's "speed" in locating that optimal solution depended

greatly upon the initial population. If "good" starting points existed then the solution could be

found with relative ease. If not, then the time (the number of iterations) required in locating the

solution would increase, and the GA ran the risk of converging prematurely into a local minimum.

So the question that should be asked is "what does constitute a good starting point, and how can

these points be used to ensure the success of the GA.? "Unfortunately, there is no clear-cut

answer to this question. For many of the problems that we wish to solve, we do not know where

to begin or even what the final outcome will be. Nevertheless, GA relies on an initial randomness

and hopes (!) that through its evolutionary operators it can determine a solution that is both

feasible and optimal. Obviously, something more is needed and new directions must be explored -

a hunt for an ideal optimization package in order to ensure that the genetic algorithm satisfies the

convergence to the global minimum with acceptable and practical rate.

Various ideas were considered and implemented. These include different selection schemes,

introducing *multiple populations into the GA, adjustments to the crossover operator, and the

introduction of "parasites" into the population. A hybrid genetic algorithm was constructed that

used a second population of "rules" in its search for the optimal solution. This led to the

combination of a genetic algorithm and another evolutionary techniques i.e. Evolutionary

Programming (EP). The latter two implementations were encouraging, but something was still

lacking. Since EP uses real parameters as its chromosomes, a real parameter GA was then

considered and tested against well-known functions. It was this last method that proved to be far

more successful than all previously tested methods.

3

2.0 THE HUNT BEGINS...

2.1 The Selection Operator

The selection operator that was used last year (and is still being maintained as the operator of

choice), is linear ranking in nature. Organisms are ranked according to their fitness, and parents

are then selected using the stochastic universal selection method. The user controls the selection

pressure by entering a number between one and two, through the interface. The larger the value,

the higher the selection pressure which in tum means that those organisms with a higher fitness

will be selected more so than the rest. A lower selection pressure ensures that those organisms

with a lower fitness will have an opportunity to be selected.

An alternative is the n-toumament selection [3]. From the population of organisms, a

sub-population of size n is randomly chosen. Then a tournament or competition among these

organisms is held, the wirmer of which being the one that has the highest fitness; this "champion"

becomes a parent. The organisms are then placed back into the population, and another random

sample of size n is found. This process is repeated until the parent population has been filled. It

is clear that as n increases, the probability of obtaining a sub-population with the more fit

individuals increases. And as n decreases, this probability decreases. So the value assigned to n

controls the "selection pressure" of the population, in much the same way as we assign the

selection pressure to be some value between 1.0 and 2.0 in the linear ranking method.

Comparisons were made as to which method yielded better results, and unfortunately no definite

conclusion could be drawn. In many cases, both methods converged to similar solutions. The

binary-toumament (n=2) appeared to outperform linear ranking for smaller population sizes.

This was probably due to the fact that organisms of higher fitness were always sampled more

frequently in a smaller population as compared to larger populations. However, binary

tournament performance will become inferior to linear ranking as the replacement size of the

population (at each generation) became too small. This was probably due to the fact that with a

slowly changing (evolving) population, the same parents were chosen more frequently, hence no

new information was introduced (via the crossover operator) into the population. Since no clear

4

distinction could be made between the two methods, n-toumament method was discarded in

favour of the linear ranking method. This method has demonstrated satisfactory results thus far.

2.2 Multi-Population Genetic Algorithms

Parallel Genetic Algorithm (PGA) is another method that is more robust compared to single

population GA. In this algorithm, many populations are evolved in parallel, through the use of

parallel processors. These populations can exchange and share highly-fit solutions amongst

themselves— along the same line of sharing resources and opportunities- through migration of

highly fit organisms. This concept can be easily implemented; GA is executed on a multiplicity of

machines, and throughout the execution, best organisms are sent periodically into a pool that

could be exploited by the other population. Therefore, underprivileged populations with low

fitness indices can improve their status and use the gains and "achievements" of other

populations. The implementation of this method can create difficulties or "tensions" betveeen the

populations such as fast evolution of one population compared to the others, or two populations

attempt to access the pool of fit organisms at the same time. However, the whole concept is

sound; through evolving individual populations which share resources amongst themselves,

premature convergence of populations can be controlled (with the exception of highly improbable

situation of convergence of different populations to the same organism). New and highly fit

members introduced into populations by the sharing mechanism, can be the "building blocks"

necessary in the successful evolution of the optimal solution.

It should be noted that PGA is more CPU intensive compared to single population GA. The

higher the number of evolving populations, the longer is the execution time of the algorithm. This

is especially true for the computationally complicated objective functions. To avoid such

complications, the program can be executed on parallel processors. However, the algorithm was

executed on a single processor to investigated whether n populations of size N/n that benefit

from the migration of fittest members will outperform a single population of size N.

5

Going one step further, each population can evolve under different conditions such as, variety of

selection pressures, crossover, and mutation probabilities. Thus, one population could remain

more diverse with respect to its organisms and conduct a more exploratory search of the solution

space, while another population may exploit its organisms, converging to an optimal solution at a

quicker rate. An environnent was created to "hold" these populations, and the GA was used to

during this process.

However, the following question is yet to be answered, "how does migration work? The initial

migration technique, or circular-migration, would be as follows: at every generation the best

organism in population i migrates to population i+1, and replaces the best organism in that

population only if its fitness were higher than that of the best organism, otherwise it replaces the

worst organism in that population. Thus, each population would be guaranteed the introduction

of a highly fit organism at each generation. However, if a population changes minimally during

the course of execution, it sends almost the same organism to its adjacent population whenever

the migration mechanism is activated. This floods the adjacent i+/ population with almost the

same organism which might cause convergence to one and the same organism. Therefore, a

domino effect can occur in the sense of convergence to the same organism in all populations. This

scenario should be avoided for the success of PGA.

It seems that activation of migration mechanism in every generation is unrealistic. A migration

rate would be necessary to control sharing of the "fittest organisms" amongst the populations.

This entails the determination of an "optimal" rate, or generation intervals at which migration is

allowed. Various rates such as 5,9,12,13 and 18 were used as the migration intervals during the

course of this project yielding successful results for some runs, and poor results for others. In

other words, the search for optimal rate was not conclusive.

"Mass migration" was the next technique to be considered. In this method migration is exercised

only from the population with higher fitness, with respect to the best organism in that

population. We select an organism randomly from the less fit population and find four other

6

organisms with highest resemblance to it. These five organisms would be replaced by the best

organism from the population with higher fitness and four other organisms that are dissimilar to

it in order to maintain diversity in the population with lower fitness. But again, by sending over

the best organism, We are at the risk of causing one of other. populations to converge

prematurely. What kind of information do we have about the organisms that are being migrated to

the lower fit population? It is true that their dissimilarity maintain variety, but they will not be

selected as parents if they are poorly fit. Therefore, the host population will not benefit from

their presence. Furthermore, this method relies on a priori knowledge of migration rate which is a

problem dependant parameter. This raises serious questions about the effectiveness of this

method. A cooperative approach between the populations seems to be a viable alternative. With

this in mind, two questions arose:

I. When should a population receive cooperation? (or ask for help), and

2. How much help should a population receive?

2.3 Cooperating Populations

Let us consider an environment composed of two populations only for which the objective

fiinction is to be minimized. The first step is to determine which population is the better of the

two - with respect to the fitness of the best organism in each population. Using these two

parameters, the fitness of the best member of the better fit population is divided by the fitness of

the best member of lower fit population. The result of this division (x) is an indication of the gap

between the two populations. The closer it is to one, the smaller is the distance between the best

members of the two populations. And the closer it is to zero, the greater is this distance. The

latter case demonstrates the need of the lower fit population for help in order to improve its

fitness.

Help is provided on a random basis. A random number is generated between zero and one, its

value is compared to x, and help will be offered if it is larger than x. Clearly, the probability of

provision of help is higher for smaller values of x. It should be noted that in this scheme the

populations are not competing, so they will converge preferably to the "same peak" at the end of

7

the run. If x is close but not equal to one, then it is quite unlikely for the population with lower

fitness to receive any help. A record is kept of the cooperation among populations. The longer

they go without cooperation, the greater the probability that cooperation will be activated

between the populations. Cooperation will not be given to the same population for two

successive generations if it manages to acquire a better organism than the one it had in the

previous generation. If no improvement has been made, then the population will be offered help.

Thus each generation will keep a "log" or "memory" of its past best solutions. This answers the

question about when a population should receive help.

Secondly, considering the population with a higher fitness it will be decided upon the criteria to

migrate organisms to the population with lower fitness. The organisms are ranked in the order

from the least similar to the most similar to the best organism of better fit population, with

respect to the binary chromosomes. The value of x determines the organisms that will be migrated

to the population with lower fitness figure. Having an x close to one indicates that there is little

difference between the "champions" of the two populations, so the least similar members

(compared to the best organism of the better fit population) will be migrated. As x tends to zero,

there exists a greater distance between the two populations, and so organisms that are more

similar to the best organism of the better fit population will be transferred over. We never

transfer over the best organism. Now, what happens the transferred organism is sub-optimal?

Thirdly, it should be decided upon the number of organisms that are migrated i.e. the transfer

rate. Since time is not a luxury and there is a "deadline" that should be met by most populations

in creating highly fit organisms. Also, populations are cooperating and it is desired that they

converge to the same peak, the transfer rate must increase as the population ages.

Finally, the survival of organisms in the population with lower fitness is decided by the degree of

their similarity to the best organism of the same population. Those that resemble the best

organism the most will be replaced with organisms from the other population. We keep the best,

just in case it has some "good" building blocks.

8

However, one problem may arise; both populations may converge to the same sub-optimal peak.

To avoid such an event, new organisms could be introduced into the population to replace some

of the older organisms if no change occurs after a specified number of generations. It is very much

like the game of Scrabble; you have your seven letters but can do nothing with them, so you

replace some with new ones. But this might present a further problem that is the new organisms

are created randomly but are not guaranteed to be highly fit members. Also, how often should

new members be introduced into the population? There are no easy answers to these questions.

Therefore, the idea of introducing new members into the population was abandoned.

It must be noted that if three populations are constructed, cooperation occurs only between the

best and the worst. The "one in the middle" would be left alone until it needs help or is good

enough to offer help. Tests were conducted on a function of two real parameters. A good

convergence was observed at the beginning. Out of ten runs (of ten different initial populations)

the multi-population GA performed better than the single population. But then 100 runs were

considered, and the results were not as favorable. In fact, it was observed that the

multi-population GA outperforms single population GA in only 50 of the 100 runs which is not

an impressive standing for the amount of extra computational effort. This can be attributed to the

fact that the attempt to find a general cooperation scheme was not so successful. Finding a clear

cut definition for the amount of sharing and the similarity between organisms was not an easy

task. Ranking organisms in terms of fitness (rather than similarity) increases the risk of

premature convergence. Taking a break from real parameter functions, the travelling salesman

problem (TSP) was considered.

2.4 The Travelling Salesman Problem

The Taveling Salesman Problem (TSP) is as follows: finding the shortest path through n cities

that are to be visited only once by a traveling salesman on his was back to the city that he started

his journey. This problem can be used as a benchmark in the assessment of optimization

algorithms. Unfortunately, results were not supportive of the implementation multi-population

9

GA. It seemed to be necessary for the populations to have at least one organism for every city in

the tour, hence splitting a population in half or into thirds was not helpful.

Better results for TSP were obtained using an adjacency representation for the chromosomes and

using a 'heuristic/greedy crossover [2]. An adjacency representation (for five cities) is as follows:

Chromosome: 5 1 2 3 4.

The ith position of the chromosome with value j, denotes a path from city i to city j. Thus the

tour for the above representation is (assuming a start at city 1):

1-5-4-3-2-1.

The crossover worked as follows. A starting city i is randomly chosen. Then the i-j path in both

parents is considered. The shorter of the two paths is given to the child. This process continues,

always talcing the shorter of the two paths, ensuring that no cycle exists. This method proved to

be successful. If the tour consisted of n cities, then a population of 2n organisms almost always

found the optimal route.

2.5 Crossover Modifications

During the numerical trials, some modifications were made to the crossover operator:

1. Elimination of useless crossover points. Suppose the parents are:

000000010101001, and

000001001010101.

Thus selection of any of the first six crossover points does not yield any new organism. It is

noted that the choice of crossover point "beyond" the seventh bit results in organisms different

from parents

2. Mates are selected based upon Hamming Distance: one parent is randomly chosen, and its

mate is selected to be the one that is most different (opposites attract). This promotes diversity

in the creation of children, so as to explore a greater portion of the search.

10

i l

3. Once the population of children has been created, the children that outlive the older organisms

must be selected. We randomly choose one child to add to the population. The next child is

added to the population only if it is different from the latest child that was added to the

population (the degree of difference can be quantified using the Hamming Distance concept). The

third child differs the most from the previous two, etc. This promotes diversity and avoids the

creation of similar children in the population.

While these modifications improved the search for the optimal solution, it increased the run time

considerably. This was due to the fact that the binary representation of each organism had to be

considered and compared against every other organism in the population. Therefore, the minor

improvement was overshadowed by the increase in the execution time of the genetic algorithm.

So the search for a more efficient and robust GA continued, leading to the idea of parasites.

3.0 THE HUNT CONTINUES.

3.1 Parasites

The main problem is that the GA might be trapped in sub-optimal solutions. So the question

arises as to how divert GA from these traps, i. e. force the GA to consider alternative schema

(building blocks). We know that as the generations pass, the population is filled up with

organisms that are highly fit. Also, these same organisms are converging to the same peak since

they have the same building blocks. We know fi-om the Schema Theorem of genetic algorithm [2]

that the low-order, short, and above average fitness schema are represented in exponentially

increasing numbers in subsequent generations. These are the building blocks that lead to GA

solution. These blocks should be avoided if they happen to lead to a sub-optimal solution. A

method was devised to this end. Consider a second population that contains parasites rather than

organisms. These parasites [61 are those short, low-order schema mentioned earlier. If each

member of the initial population contributes to the existence of a y parasite (one for each of the y

parameters being optimised), then our parasite population is of size y*N, where N is the size of

"regular" GA population. The parasites are of the same length as the variables they correspond

11

to, and each gene of the chromosome belongs to the set (0, 1, *), where "*" is the "don't care"

symbol (i.e. "*" could be either one or a zero). The bits of the parasite are specified

(probabilistically) from the organisms that create it and we ensure that these parasites are of

low-order (i.e. very few is and Os, and many *s).

The goal of the above is three-fold:

1. To evolve our "regular" genetic algorithm population as it is normally done.

2. To evolve a population of parasites/building blocks that are to be avoided.

3. To evolve a second GA population that will be discouraged from using the building blocks

found in the parasite population.

The first goal is straightforward. The logic behind the second goal is to determine the fitness of

the parasites. Again by the Schema Theorem, we know that those parasite that encourage the

population to converge to a suboptimal solution are "represented in exponentially increasing

numbers in subsequent generations". Thus we can assign an integer value to each parasite which

is equal to the number of organisms in the first population that this parasite "inhabits". Since we

wish to acknowledge or identify those that are represented in increasing quantities, the larger the

integer value, the higher the fitness of a parasite. Having assigned fitness values to each parasite,

we evolve this population in the normal genetic algorithm fashion. Finally, the third goal must be

satisfied. Having identified the parasites -the building blocks- that lead the first population to a

sub-optimal solution, we now discourage their use in the third population by decreasing the

fitness of those organisms that contain (in their binary representation) these dangerous

representations. It has been assumed throughout this section that the first population is

converging to a sub-optimal solution. This may not be necessarily true if the population is

converging to the optimal solution. If this is the case, we have lost nothing by encouraging the

third population to look elsewhere. The algorithm is as follows:

While termination criteria not met do

Evolve first population for one generation.

12

Assign fitness values to parasite population.

Evolve parasite population for one generation.

Adjust fitness of organisms in third population.

Evolve third population for one generation.

End.

The above procedure can be summarised as follows. By discovering those schema/building blocks

that lead one population to a sub-optimal solution, we can discourage the use of these schemas

in another population. In doing so, we encourage this population to explore other directions that

(hopefully) lead to the optimal solution.

Testing in many cases did indeed show that the third population was "pushed" away from the

peak into which the first population was trapped. Unfortunately, the "push" was not far enough

since the population did not converge to some other optimal solution. This was probably due to

many factors. The "good" parasites that may have led to the optimal solution were identified as

deadly, and so the third population would have no choice but to become stuck at some local

peak. Also, not enough parasites were identified. Lastly, after successive generations the

population of parasites would no longer contain the short and low-ordered schema as detailed in

the Schema Theorem - an unfortunate side effect of crossover and mutation.

Although these results were not encouraging, an idea grew from this study.. We began with

multi-population GA schemes that led to another type that considered not only our "regular"

GA populations, but another type of population as well - the parasites. This led to combining of

a GA population with one of the "rules".

3.2 Rules

Suppose that a function is to be optimised by hand. The optimisation starts with a random initial

"guess". Then, this guess can be adjusted in a certain fashion which might entail increasing the

value of the first parameter, decreasing the value of the second parameter, setting the third

parameter to zero, and leaving the fourth unchanged. The same trend in the variation of

parameters can be continued if the initial adjustment happens to move optimisation in the right

direction. Now assume that many adjustments can be made to the parameters in different

directions and the results of these adjustments can be combined to obtain the best set of

adjustments to optimise the function. This set of adjustments, or population of rules, can operate

in conjunction with a regular genetic algorithrn population-, which is evolved according to the

standard GA code. Its algorithm is as follows:

Construct initial population of organisms

Construct initial population of rules

While termination criteria not met

Evolve population of organisms by one generation

Determine best of this population

Apply every rule of rule population to the parameters of this organism

Fitness of organism after rule applied is the fitness assigned to the rule

Evolve population of rules by one generation

If a rule applied to the organism created a better organism, substitute this

organism into the organism population

End

Both of the different evolving populations are working towards the common goal of optimising

the function at hand, sharing whenever one comes up with a better solution.

A test function of two variables

f(x,y) I 00*(x-Y) 2 +a-39 2 ([2])

It was very difficult for binary GA to minimise this function. However, the method described

above was successfully applied to minimise this function. Numerous runs were conducted with

different initial populations and each time the method was capable of converging to optimal or

near optimal solutions. In the absence of theoretical evidence on the effectiveness of this method,

it was applied to a wide variety of optimisation problems to assess its strengths and limitations.

14

Keeping the idea of different evolving populations in mind, the concept of Evolutionary

Programming was examined.

3.3 Evolutionary Programming

Evolutionary programming (EP) is an evolutionary algorithm which includes traditional GA as its

subset [1]. Unlike traditional GA, EP uses real-valued chromosomes (no binary encoding is

required). In EP, a population of organisms is evolved by applying a Gaussian mutation operator

that is quite similar to traditional GA.

The EP involves a population of N organisms and each chromosome of each organism is mutated

according to the following rule:

x = xi + (fitness(organism)) 1/2N1 (0,1)

See [1] for the case where the fitness of an organism is zero. EP assumes that the optimisation

task is one of minimization.

In the initial population, we expect large fitness values for the organisms. Thus large mutations

are encountered, and the search is quite broad (the search space is explored the as large as

possible). However as the fitness of an organism decreases, (as it approaches the optimal

solution) search area is narrowed down. This is exactly what the above mutation operator does; it

uses the fitness of an organism as its guide to conduct the search.

Subsequent to the application of this operator, the number of organisms in the populations

becomes

2N (i.e. combination of newly mutated organisms and old organisms). Using a tournament

selection scheme (much like the one discussed previously), N of the best organisms are selected

to become members of the next population, and the process continues. Connecting this

population with the genetic algoritlun population proves to be more effective than when either

method is being implemented in isolation from the other. This method was successful for the

previously mentioned function and performed slightly better for four other test functions (which

15

will be mentioned later) when coinpared to the GA population paired with a population of rules.

But its performance was not satisfactory.

4.0 THE HUNT ENDS?

4.1 Real-Parameter GA

Evolutionary programming uses real-valued chromosomes. Real-valued GAs are discussed in [4]

and have proven to be more successful than its binary chromosome counterpart. Due to its

representation, precision is gained compared to the binary genetic algorithm. Also the absence of

binary encoding and decoding speeds up the execution of the real valued algorithm. A sample of

the operators and their success in various optimisation problems will be discussed in the next

section.

4.2 Simple Crossover

As the title implies, this crossover method is easy to describe and understand. A crossover point

is randomly chosen. All chromosomes at and beyond this point are swapped between the two

parents. Unfortunately, this method does not create any new chromosomes (only rearranges

those already generated from the initial population). So if the initial population is poor, the GA

becomes stuck and have to rely on mutation as its only source for generating new and different

information.

4.3 Arithmetic Crossover

This method is more interesting. For every chromosome of the two parents, the child's

chromosome is constructed via:

c--a* p 1 + (1-a)*p2

where c, p i , and p2 are the real values that correspond to the saine chromosome for the parents

and the newly created child, respectively, a is a random number between zero and one. The

16

equation "a*pi +(1 -a)*p2 " is a line frompi , to p2 and the choice of a can determine any point on

this line.

Pi 	 -■•.---•-•--

P2

Where pi, and p2 are points on the curve that intersect the line. Since we are minimising the

objective functions, we wish to obtain a value for the child that lies near the "valley" of the curve.

This operator eventually finds the optimal variable value between the two parents, and in doing

so obtains the optimal solution. This is true provided that the optimal value lies between these

two points, if it lies beyond, then this operator will have created a child that is not very useful. It

is clear that during the infancy period of the population, our choice of a will most likely cause a

wider or broader search around the parent's chromosomes. But as the population matures and the

chromosomes tend to converge, the search domain narrows down considerably.

4.4 Heuristic Crossover

This operator uses the objective fimction of the parents. Suppose that parent two has a higher

fitness than parent one. Then the resulting child is constructed as follows:

c = r*(Pz — Pi) +p2,

where c, pi, and p2 represent the same parameters as in previous equation, and r is a random

number between zero and one. This allows the search to concentrate around the chromosomes of

the better parent. Depending on whether p2 —p l is positive or negative, values to the left or right

ofp, will be considered. Again, it is clear that as the run matures, exploration becomes more local.

4.5 Mutation

The mutation operator uses the maximum number of generations that the GA is allowed to

execute, and the present generation number. The idea is that near the beginning of the run

whenever the mutation operator is activated, we wish to explore a greater area around the present

17

chromosome. As the run approaches its end, we would rather nan-ow down our search and reduce

the effects of a "large" mutation. This is accomplished using the following operator:

ci= c + E (t, UB - c) if m < O. 5, or

c - E (t, c - LB) otherwise,

where m is a random number between zero and one, t is the present generation number, T is the

total number of generations, UB and LB are the upper and lower bounds of the parameter. Also

defined; -

E(t,y) =y *

where r is a random number between zero and one. The exponent 5 is chosen as "the degree of

dependency on iteration number" [4] and is a standard value. Note that a smaller value weakens

the dependency on the iteration (generation) number, and that a larger number strengthens this

dependency. It is clear that if 1-t/T is close to one (i.e. we are in the early stages of the run), the

chromosomes are expected to be perturbed greatly. And as 1-t/T tends to zero (i.e. as we

approach the end of the mn), the chromosome will be perturbed minimally.

4.6 The Test Functions

Five different test functions were considered:

1. f = 100*(x-y 2)2 +(1-y)2, with x, y e 10,51

2. f2 x2+y2+u2 +v2, with x, y, u, y el--30,301. This is the sphere function which is continuous

and unimodal.

3. h =s[x1+0.5f for i= 1,4, with x1e[-30,30]. The sphere step function which introduces several

plateaus at which the GA may become trapped.

4. fi = -20 * exp(0.2 * (S (x i2f 2)-exp('1/10 * S cos(p*xd) + 20 + e, for i 1,3 with xie [-20,30].

Known as Ackley's function which inflicts moderate complications to the search. Because a

strictly local optimisation algorithm that performs hill climbing would surely get trapped in a

local optimum, a search strategy that scans a slightly bigger neighbourhood would be able to

jump over valleys towards increasingly better optima [1].

18

5. f5= S (A re for i=1,2,3 and Ai = S ('au *sin(ai) + becos(p)) and Bi = S (au sin(xj) +

bu *cos(xj)), for j = I, 2, 3 where A= (au), B = (bu); au, bu e [100,100]; and xi, p J. This

function was introduced by Fletcher and Powell. It is " a typical representative of nonlinear

parameter estimation regression problems" [1].

The results of the two crossover methods varied, but both of them were far superior to those

obtained using the binary GA, or the combined GA and EP. The arithmetic crossover obtained

the following results for the five test functions. For all functions the optimal value was zero,

populations of size 100 was used, of which 50 were replaced every generation; 100 generations

were executed, selection pressure was 1.31, crossover probability was 0.7, mutation probability

was 0.01, and 100 runs were conducted.

1. The optimal solution was found thirteen times and for 12 runs the objective function was less

than 0.01

2. Optimal solution found sixteen times and for 75 runs objective function was less than

0.00005.

3. Optimal solution found in all 100 runs.

4. Optimal solution was found thirteen times, and for 50 runs the value of objective function was

less than 5.0e-8

5. Optimal solution found three times, and for 60 runs it was greater than 1.0.

So it can be concluded that this method performed well on all but the last test function. The

heuristic crossover yielded the following results:

1. The optimal solution found 100 times!

2. The value of the objective function landed between 0.00001 and 0.005 for 75 runs.

3. Optimal solution found 94 times; 6 solutions greater than 1.0.

4. The value of the objective function landed between 0.00001 and 0.005 for 91.

19

5. Optimal solution found twice; only twice it was greater than 1.0; and 58 between 1.0e-7 and

0.00005.

This method performed much better on functions one and five, unlike the arithmetic crossover.

It is obvious that one crossover method works better on those functions that the other crossover

method has experienced difficulties. Ideally, we would like to know beforehand which method

works better for a given problem. Since this is not the case, combining the two methods seems

reasonable.

4.7 The Connbined Crossover

Both [4,5] make reference to a successful genetic algorithm that uses many different operators. So

combining the heuristic and arithmetic operators is a known concept. At the first generation, each

crossover operator has an equal probability of being called upon to work its "magic" on any two

parents. Then GA evaluates the child that is created (we ignore the effects of the mutation

operator, as it is called with only a small probability). In all the above tests, 50% of the

population was replaced at each generation, thus 50% remained untouched. A child is considered

"a good one", if its fitness is better than the average of the remaining 50% of the population.

After all, we want to create children that are better than those organisms in the population. Each

tune that a "good" child is created, the crossover method that created it receives a point. After the

completion of one generation, the GA reassigns probabilities to these operators, based on the

children that each created. If one operator did not create any children at all (neither good nor bad

children) then it is assigned a probability of zero, and the other is assigned a value of:

(the number of good children created)/(the total number of children created).

However if both create children, then the both operators are assigned values of:

(number of good children created by that operator)/(total number of good children created)

This is because one operator might have created two children in one generation with one being

good, while the other operator might have created five children of which only two are good.

Considering these values one may think that the first operator is the more successful, after all
20

50% of the children it created were good. But it may have performed worse if it had been given

the chance to create more children. This reassignment of the probabilities seems more "just".

When it comes to select the operator, the one with the larger probability is considered. A random

number is created, and if it is less than the probability assigned to an operator, GA will use that

operator. Otherwise, the other operator is used.

The results for the combined crossover method on the five test functions are as follows:

1 . Optimal solution found 100 times.

2. Optimal solution found 71 times; worst was less than 0.00000 1.

3. Optimal solution found 100 times.

4. 77 of the runs landed between 1. 0e -8 and 5.0e-7 .

5. Optimal solution found 46 times, only 1 greater than 1.0, 86 times less than 5.0e -8

These results surpass those obtained fi -om either of the arithmetic or heuristic operators when

used separately. It is clear that the genetic algorithm was able to determine which operator to use

in order to maximize its success over the different test functions.

5.0 THE REAL GA

5.1 The Interface

The interface remains much the same as what was developed last year; the only difference being

that the real-valued chromosomes are used rather than binary ones. It is menu-driven and is very

straightforward. Several points must be considered:

1. The population size must always be even and less than 1000 (can be changed).

2. The number of parameters must always be less than 150 (can be changed).

3. Population replacement refers to the number of organisms that get replaced at each generation.

It can be set at most bne half of the population size.

4. Penalty depends on how important it is to keep the variables within the specified bounds.

5. The selective pressure determines the extent to which highly successful organisms get selected

compared to the lower fit organisms. So the higher the pressure, the more successful organisms

21

will be selected to be parents. Its value ranges from 1.0 to 2.0. Selection pressure is only

necessary for linear ranking.

6. The number of runs is the number of times that GA is executed with different initial

populations.

7. Suggested values are given for the selection pressure, crossover and mutation probabilities.

5.2 The Reader

The present GA program arranges the output in a different manner as compared to the routine

that was developed last year. A special reader program was developed to post process the binary

output. The program is called "readerc" and is a menu driven interface. The following options

will be available upon execution of this program:

1. Determine run values.

2. Tabulate the optimal values found.

3. Create own table and tabulate optimal values.

4. Find optimal solution.

5. Determine run values and variable values.

6. Who beats whom?

7. List Runs and optimal values.

8. Determine improvement in run of population.

9. List optimal solutions found.

10.List starting points.

11.Exit.

Descriptions of the options are:

1. Lists the best solution found at each generation for a given run.

2. Creates a "histogram" tabulating the optimal solutions found for every run. Table is preset.

3. Allows the user to create own table and tabulate results.

4. Lists the optimal solution with parameters out of all the runs.

5. Saine as 1, except lists the parameters as well.

22

6. Allows comparison between two output files as to which one was better.

7. Lists the optimal solution and parameters that yield these solutions for every run.

8. Allows user to see how many times the GA found a better solution in the course of a run.

9. Lists optimal solution found in every run; no parameters.

10. Lists the starting points, or initial best, of every run.

5.3 Other Instructions

Below are instructions that have been probably mentioned before but are nevertheless helpful

reminders. In the GA program, the following is declared within the set of variable declarations:

extern float func_0,

The function func_O is the function to be optimised. It is used as follows:

s 1 nobjective = func-(values),

where values is an array containing the parameters being optimised. Note that if there are three

parameters, then they are stored in values[1], values[2], and values[3], leaving values[0] "empty"

The optimisation function can either be written in C or Fortran.

Optimisation of a function written in C

The C function (and all other necessary functions that it may need to call in order to obtain the

objective function and fitness for any organism) can be stored in a single file, with the name of

the fiinction being func_. It must also return a float number. For example:

#include <math.h>

#include <string.h>

float ftinc-(float values[4]){

function body

return (float number); }

It is in this function that all calculation related to objective function and fitness of organisms are

done. Suppose that all routine required to that end are saved in a single file called function.c.

Then setting GA to optimise the function, all that is necessary is to type:

23

tango% cc ga.c function.c -Im

tango% a.out •

Note that the output (the best solution at each generation) is sent to a file called "o I" and can be

read and interpreted using "reader.c".

Optimisation of a function written in Fortran77

Like the C function, the Fortran function must be written as a function that returns a real value,

and must include within itself all other subroutines, functions that would be called to obtain the

objective for each organism. It should be written as follows:

real function fiinc(values)

real values(0:n)

function body

func= ?

return

end

The zero in values(0:n) allows the indexing to begin at zero. Note that parameters are still stored

in values (1), values(2),..., and values(n), with values (0) being "empty". This can then be saved in

a file called- function.f.

To execute the GA and the function to be minimized the following commands must be

executed:

tango% f77 -c -silent fiinct.f

tango% cc -c ga.c

tango% 177 funct.o ga.o

tango% a.out

Why header files?

24

Suppose a new selection operator is to be tried in the GA code. It should be copied into the

GA program. However, it would be better if we could select the procedure directly fi-om the

interface. Without going into the details (yet) on how to incorporate this idea into the

interface, the easiest way is to create for each selection procedure i, a header file called

selecti.h. The interface will then "include" this header into the GA program and allow this

procedure to be used. The same can be done for crossover and mutation operators as well.

All that is necessary in the header file is the operator itself (see selectl.h, crossl.h and

cross2.h for example). Also, the function name should be the one that is used in the GA

program (select, crossover, or mutate). It does not matter that various crossover operators

have the saine fimction name, since only one will be included in the file. A further restriction

is that all functions pertaining to the saine operator pass the saine parameters.

Modifying the interface to include more operators

All that is necessary is to add the new choice of operators to the menu found under "TYPE"

Operator, where TYPE is either selection, crossover or mutation. Add the choice, as is done

for the crossover operator, and increment the number of choices (so that while loop is called

and it scans for a choice, it selects appropriately). i.e. increment the "2" found below :

while(status != 1 I I choice < 1 II choice > 2){

fflush(stdin);

printf("Invalid entry. Enter choice:");

status = scanf("%d",&choice);};

How does the program get set with the proper operators?

Upon exiting the interface, and only if it is saved, a file called header.c is created or updated.

The following text is printed to it:

#include <stdio.h>

25

#include <math.h>

#include "ga.h"

#include "selecti.h"

#include "mutatei.h"

#include "crossi.h"

i is determined by the operator selection.

This file is then concatenated with generic5.c to create ga.c. This can be carried out through

the startup file:

cat headcr.c realGA.c > ga.c

cc -c ga.c

nn ga.c

f77 -c -silent bessel.f

f77 bessel.o ga.o

rm bessel.o

nu ga.o

The above shows the setup for the GA to maximise the Bessel function. This is a text file. To

transform it into an executable type:

chmod +x startup.

a.out then executes the GA. So it should be ensured that the proper operator selected and also

that operator "i" is included in the header file "i".

6.0 CONCLUSION

I began this work tenu with the task of improving upon last summer's GA package. A new

selection method has been added to the GA arsenal, even though linear ranking is still the

selection method of choice. Alrthat followed led to the eventual declaration that the real-valued

genetic algorithm was superior to the standard binary GA. Multi-population GAs led to the

consideration of a mixture of regular populations and parasites. Population of parasites led to

26

populations of rules which led to combining of GA and evolutionary programming. The real

chromosomes of EP led to the real-valued GA. Results of five different test functions testified to

the power of this new algorithm. And the realisation of a combined crossover method led to a

success that surpassed all that was encountered before.

REFERENCES

1. Baeck, Thomas, Evolutionary algorithms in theory and practice; evolution strategies,

evolutionary programming, genetic algorithms. Oxford University Press, 1996.

2. Goldberg, David E., Genetic algorithms in search, optimization, and machine learning, New

York, Addison-Wesley, 1989.

3. Johnson, J. Michael, and Rahmat-Samii, Yahya, 'Introduction to Genetic Algorithms', IEEE

Antennas and Propagation Magazine, Vol. 39, No.4, August 1997, pp. 7-21.

4. Michalewicz, Zbigniew, Genetic algorithms plus data structures equals evolution programs,

3rd revised and extended edition, Berlin, Springer-Verlag, 1996.

5. Sandlin, Brian S., and Terzuoli, Andrew J. 'A comparison of simple and complex genetic

algorithms in wire antenna design', Applied Computational Electromagnetics Society, Annual

Review of Progress, Monterey CA, 1997, pp. 1080-1086.

6. Sumida, Brian H., and Hamilton, William D., 'Both Wrightian and 'parasite' peak shifts enhance

genetic algorithm performance in the travelling salesman problem', Computing With Biological

Metaphors, Chapman and Hall, pp. 264-279, 1994.

27

INDUSTRY CANADA / INDUSTRIE CANADA

I I I In 1111 in II 1
208953

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

