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• • • • • 
• Abstract • • • • 
11, • • ' e • • • • • • 
• A time domain general purpose electromagnetic (EM) solver is developed using the Finite- • 
• Volume Time-Domain method (FVTD). The general formulation of the EM simulator is • 
• based on the mathematical formulation of a generalised coordinate system that is capable • 
• of modelling a broad range of EM problems defined via rectangular and/or non rectangular • 
• geometries in any given simulation environment. In addition, new models for lossy media, • 
• lumped elements, and lumped sources are derived and developed in order to improve and 
• 
• complement the original formulation of the FVTD. The performance of the developed 
• 
• FVTD engine is then evaluated and compared to other time domain methods (where 
• 
• possible) for a number of benchmark EM problems involving various types of geometries. 
• 
• The strengths and weaknesses of the developed EM simulator are further identified through 
• 
• its application to several practical EM problems. It is concluded that the current FVM based 
• 
• EM solver is capable of modelling and solving reasonably complex EM problems but 
• 
11, 	 requires further improvements and revisions for more geometrically complex structures. 
• 
• 
• 
• Keywords: finite-volume time-domain, Maxwell's equations, Lax-Wendroff scheme, flux 
• 
• splitting, upwind scheme, generalised coordinate systems, lumped elements 
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• 
• Chapter I • 
• 
• 
• Introduction • • 
0 
0 
O 

• 
0 

• 1.1 Computational Electromagnetics (CEM): Past and Present 

"Keep in mind that most of the problems that can be solved formally (analytically) • 
• have already been solved!" (Paris and Hurd, 1969)*  When this statement was made, a little 
O 
• more than one hundred years had passed since the reading of Maxwell's now-famous work 
• 
• entitled, "A Dynamical Theory of Electromagnetic Field," to the British Royal Society in 
• 
• 1864 [2] and the publication of his treaties in which he "founded the science of • 
• electromagnetics [3]." His theories were initially met with skepticism, and an additional 

• 15 years (a decade after Maxwell's death) were needed before they were accepted 

• following the ground-breaking experiments by Heinrich Hertz. 
O • 

The Paris and Hurd statement portrays a state of frustration that existed in the 1960s in 

• the electromagnetics (EM) community. Practical problems were becoming ever more 

• 
• complex in nature and structure, and no amount of innovation and experience in classical 

0 * See [1] page 166. • 
• 
• 1 • • 



• 

	

2 	• 
O  

	

methods (namely the separation of variables and integral equations) was adequate in 	• • 
finding the solutions to these problems [4]. Even partial resolution of such problems • 

	

would have restored the faith of the masses and would have restored the science of EM to 	• 
• 

	

its past glory. EM was at a new cusp when pioneers with new and revolutionary ideas were 	• 
• 

desperately and urgently needed. *  
• 
• 

	

In the 1960s, a new tool was slowly moving from warehouse-sized gove rnment 	• 
• 

	

laboratories (where it was originally conceived and constructed) into the scientific 	• 
O  

	

community; computers were becoming increasingly more advanced, more affordable, and 	• 
• 

	

easier to operate. Although the operation and utilization of computers were still very 	• 
• 

	

tedious and time consuming, many researchers foresaw the potential and the future 	• 
• 

applications of this new technology and began developing applications for it. The EM 
• 

	

community was no exception. The publication of the now classic papers of K. S. Yee [5] 	• 

	

and R. F. Harrington [6] in the mid-1960s launched a new era of "computerated solution of 	• 
O  

EM problems" [7 page 1]. 	 • 

• 

	

The response of the electromagnetic community to the use of computers to solve EM 	• 
O  

	

problems was initially lukewarm at best. This lack of enthusiasm was partly due to the 	• 
• 

	

limited computational power available to researchers in the early 1970s. In the 1980s, the 	• 
• 

advent of Personal Computers (PC) and work-stations alleviated past fears of • 

	

computational costs, and interest in numerical methods for solving EM problems soared.t 	• 

	

The field of Computational Electromagnetics (CEM) began to grow at an exponential rate. 	• • 
* This might sound very melodramatic, but not all engineers are cold, calculating individuals! 	 • 
t This was despite the efforts of those who advocated the use of massive and expensive super- 	 ffr 

computers in order to monopolize the newly emerging field and to keep other scholars at bay. 	 • • • • • 
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0 • 
• In the 1990s, computational costs fell much lower than had been predicted. The 

0 
•

supercomputers of a decade earlier were now obsolete and were being replaced by Iow- 

a 
• cost, massively parallel systems, such as Beowulf Linux clusters. The future of CEM had 

• 
• 

never seemed brighter. 

• • 
• 1.2 Numerical Methods and CEM 

• • 
• methods. Experiments are often expensive, time consuming, difficult to design, hard to 

• control, and lack flexibility [4]. On the other hand, there is practically a mountain of 

• solutions to classical EM problems. However, many assumptions that accompany these 

• solutions reduce their applicability to practical cases. It is very laborious, and often 

• impossible, to analytically solve field problems involving mixed boundary conditions, 

• 
• non-homogeneous regions, and/or involving complex geometries. Although many 

researchers have either developed new and innovative analytical methods or have extended 

• classical ones to obtain solutions to more realistic problems [4], increasingly, many new 

• 
• practical problems simply defy such efforts! 

• • 
• Traditionally, the analytical expressions defining a problem were manipulated into 

• 
• forms that required minimal computational effort in order to avoid repetitive and tedious 

• 
• hand calculations [6]. Computers operate under a different philosophy. They are capable 

• 
• of performing very basic algebraic operations with remarkable speed and accuracy. Thus, 

• in numerical methods (as opposed to the analytical methods), field equations must be 

• 
• simplified for computers to comprehend! The general expressions of a problem are 

• 
• approximated by simpler algebraic equations. The new expressions are not the exact 

0 
• 

Until the 1940s, EM field problems were solved using experimental or analytical 
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solution to the proposed problem; however, errors are manageable, and the desired level of 0 
accuracy dictates the complexity of the numerical algorithm. The obtained solutions from 	9 

• 
these methods are often sufficiently accurate for most engineering applications [4, 8]. 	• 

• 
• 

1.3 A Critical Look at CEM 	 • • 
• Prior to the introduction of the science of CEM, the EM community consisted of only • 
• a handful of brilliant members. A good EM scientist or engineer possessed either a vast 

knowledge of mathematics and analytical methods in EM or many hours of experience in • 
• laboratories; often a combination of both was required. These stringent requirements often 

intimidated potential recruits to the EM community, and subsequently, only the best minds 	• 

and most devoted enrolled in this field. EM research became the domain of a few scientists 	• 
• 

with an extraordinary capacity to comprehend complex mathematical and EM concepts 	• 
• 

that eluded almost all novices. *  The science of EM was labelled difficult, incomprehensi- 	• • 
ble, and inaccessible by many engineers, a reputation and stigma that remain intact to 

present day. 	 • 
• 
• 

	

The debut of PCs and the subsequent fall of computational costs were the major 	• 
0 

factors contributing to the introduction and growth of the CEM commercial industry in the 	• 
late 1980s and early 1990s. A prolific surge of interest in this area, which was originally 	• 

O  
ignited by the military and scientific applications of a decade earlier, was now one of the 	• 
major driving forces of research in the CEM community. The main attraction of the new 	• 

• 
generation of CEM software packages was their relative ease of use. Although the user 	• 

• 
still required basic knowledge of the operation of the software package and some 	• 

• 
* Unfortunately, this fact is often accentuated by scholars and teachers of the science of EM! 	 • 
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• 
• knowledge of EM theory pertaining to the problems at hand, the user required little 

• knowledge of the analytic solution of the resultant expressions and/or the inner working of • • 
the CEM software package. This clearly favoured novices to the EM community and made • 

• EM-based design and analysis more accessible to the engineering community. 

• phenomenon in EM field problems. Historically, most new tools have promoted a lax 

• 
• attitude among some users, and such tools have been misused as a substitute for basic 

• * 
• knowledge. However, if the tools were used as originally intended, they would facilitate 

• 
111 	 education and precipitate research activities. Critics also cite the wide-spread utilization of 

• 
• CEM in the scientific and engineering community as the cause of the erosion of the quality 

0 
• of conducted and published research in the area. However, one must consider that the 

• 
• nature of CEM research often dictates an emphasis on the verification and accuracy of the 

• numerical method rather than on a particular physical phenomenon. Yet, in some cases, 

• 
the ease of data generation using CEM tools and a preoccupation with numerical methods • 

• often cause researchers to lose sight of the real goal (studying the physical phenomenon); 

• 
• thus, they report poorly analysed and ill-considered results. The onus is on the individual 

• 
researcher to not lose sight of the research goals. 

• 
• 
• Proponents for the advancement of CEM point to the wide-spread use of CEM 
• 
• packages in education and industry. CEM packages often provide a visual representation 

• * For example, the use of calculators for multiplication tables, etc. 

• 
• • 

J. • • 
1.3.1 Arguments For and Against CEM Use 

• 
• Opponents of CEM often criticize researchers and students alike for relying heavily 

• 
on numerical methods rather than on learning, understanding, and analysing the true 

• 
0 	on numerical methods rather than on learning, understanding, and analysing the true 

• 
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of complex concepts (such as wave propagation and reflection on various surfaces) that 	• • 
students and engineers find easier to grasp and study. After all, a picture is worth a • 
thousand words! 	 • 

• 

	

Industry, and the soaring demand for wireless products in particular, have been calling 	• 
for more versatile and reliable products that have a minimal effect on the surrounding 	• 

• 
environment and equipment. CEM packages have revolutionized many areas, such as 

• 
antenna design, health risk assessment, and Electromagnetic Compatibility (EMC), to 	• 
name a few [8]. In most cases, the application of CEM along with other numerical 	• 
techniques (for example Genetic Algorithms [9]) have led to the solution of problems and/ 	• 

• 
or to the design of products that would have been impossible a few decades ago [4, 8]. 	• 

1.4 About This Thesis 	 • • 9 
As discussed earlier, in the past 30-plus years, CEM has firmly established itself as the 

• 
third tool (along with experimental observations and mathematical analysis) for solving 	• • 
EM problems. Although the contribution of numerical techniques to the modelling and 	• 

• 
solving of many problems involving non-homogenous and/or complex structures has been 	• 

• 
invaluable, it appears that the efforts of the CEM community are disjointed and 	• 

• 
fragmented. Scientific journals in the area of CEM are filled with countless variations of a 	• 

0 
few numerical methods, where each is designed and developed to solve a specific type of 

• 
problem or structure. In addition, most of these techniques require the user to have an 	• 
advanced knowledge of the proposed method of solution. Overall, it seems that the CEM 	• 

• 
community has lost sight of the original goals of developing CEM packages; these goals 

were the generality and simplicity of CEM tools. 	 • 
• 
• 
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• 
• 1.4.1 Research Objectives 
9 

The purpose of this research is to investigate a versatile numerical method that is 

• 
• capable of providing accurate solutions to general EM field problems without placing 

• 
• restrictions on the composition or geometric configuration of the simulation space. The 

• 
• first step on the road to obtaining an accurate solution is to precisely model the significant 

• 
• features of the simulation space. That is, all bends, curves, and material boundaries (and 

• 
6 	 boundary conditions) associated with the problem must be meticulously defined (and 

• 
• enforced). To achieve this task, the numerical technique that is implemented must be 

highly flexible in order to accurately model problems involving objects of both rectangular 

• and non-rectangular geometries in various simulation environments. A class of time • 
• 
• domain CEM techniques, namely the Finite Volume Method (FVM), possesses the afore- 

• mentioned properties and is the subject of the investigation of this thesis. Based on the • 
• performance of a finite volume-based EM simulator, several conclusions and recommen- • 

dations are made towards the development of a general purpose EM simulation tool. • 
• 
• 1.4.2 Scope of Research 
• 
• As part of this thesis, a time-domain general purpose EM solver was developed using 

the FVM. The general formulation of the EM simulator is based on the mathematical 

• 
• formulation of a generalised coordinate system that is capable of modelling a broad range 

0 
• of EM problems defined via rectangular and/or non rectangular geometries in any given 

• simulation environment. In addition, new models for lossy media, lumped elements, and 

• 
• lumped sources were derived and developed in order to improve and complement the 

• 
• original formulation of the FVM. The performance of the FVM was then evaluated and 

0 
• compared to other time domain CEM methods (where possible) for a number of 

• 
0 • 
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• 

benchmark EM problems involving various types of geometries. This process was • 
necessary to validate the developed EM engine, as well as to identify the strengths and 	• • 
weaknesses of the developed CEM method. Furthermore, the pre-processing (defining the 	• 

• 
problem) associated with an EM simulation was considered. The developed EM simulator 	• 

• 
was evaluated for its simplicity and ease of use for the purposes of modelling and solving 	• 

• 
EM problems. 	 • 

• 
• 

Since much of theory of the generalized coordinate system formulation of the FVM is 
• 

scattered across a broad area of the available literature (dating back almost three decades), 	• 
• 

a conscious effort was made to collect and present the general theory of the FVM in a 	• 
• 

comprehensive and methodical manner. It is hoped that this presentation will instill the 	• 
• 

interested reader with a thorough understanding of the FVM and will facilitate any future 	111 

modifications and extension of the technique. However, a formal and rigorous 	• 
9 

mathematical examination of numerical algorithms leading to a discussion of concepts, 	• 
• 

such as stability and convergence, is avoided since the numerical analysis of the original 	0 
• 

(rectangular) formulation of the FVM has been included in may excellent references, such 	• 
• 

as [10, 11].  Furthermore, while very little research has been conducted in the area of the 	• 
• 

numerical properties of a generalised coordinate system or the newly developed source 	• 
• 

term formulation of the FVM, this type of analysis is also beyond the scope of this thesis. 	• 
0 

Although the numerical properties of the FVM have not been fully explored, in most 	0 
• 

cases, a comparison of the numerical results with analytical or experimental data has 	• 0 
confirmed the accuracy of the method. The main focus of this thesis is thus the 	• • 
engineering applications of CEM tools and the development of general purpose EM 	• 

• 
simulation tools for accurately modelling and solving complex EM field problems. 

• 
• 
• 
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• 1.4.3 Organization 
• 
• Since the main objective of this thesis is the development, investigation, and 

• application of numerical techniques for solving general purpose EM problems, it is 
• 
• important to outline the fundamental concepts of numerical solutions used in CEM. Such • 
• a summary is included in Chapter 2. This chapter also contains a review of some of the 

•
• 

more popular time domain techniques currently used in CEM. These methods are briefly • 
• explained and are compared for their capabilities and versatility in modelling • 
• geometrically complex EM problems. The governing equations, namely Maxwell's • 
411 	equations, and their formulation in general coordinate systems are discussed in • 
• Chapter 3. This chapter also includes a generalised solution of Maxwell's equations via 

• the flux vector splitting technique. Chapter 4 is truly the heart of this thesis where the • 
• finite volume time domain scheme is assembled one section at a time. This chapter begins • 
• by deriving a fully windward Lax-Wendroff algorithm and is followed by an explanation • 
• and the derivation of numerical fluxes used in the FVTD method and the boundary • 
• conditions associated with it. In addition to the validation of the newly derived FVTD • 
• method, Chapter 5 also includes test cases for the general coordinate system formulation • 
11, 	and the evaluation of characteristic absorbing boundary conditions. The development of • 
• the formulation for the inclusion of lumped elements in general coordinate systems is one • 
• of the main contributions of this thesis; the theory and procedure, as well as the validation • 
• of the outlined theory, is given in Chapter 6. Finally, the strengths and weaknesses of the • 
• Lax-Wendroff version of the FVTD method are highlighted in Chapter 7 using several • 
• 
• case studies. Chapter 8 summarizes the research conducted in this thesis and provides 

• 
• recommendations for future research. 

• 
• 





• • • • 
• • • • • 
• Chapter 2 • • • 
•

A Review of Fundamental Concepts 
• and Various Techniques in CEM • • • • 
• 
• 
• 

The mathematical study of an EM problem begins by forrnulating it via Maxwell's 

equations. Fundamentally, the solution of the EM formulation of any problem may be • 
• defined as a "quantitative relationship between a cause (forcing function or input) and its 

• effect (the response or output)" [13].  This relationship, generally represented as a transfer • 
• function, is often referred to as a field propagator in the context of EM problems. Thus, 
• 
• the science of electromagnetics, and by default, CEM, is simply the study of field 
• 
• propagators [13]. Since an EM problem, and hence, the field propagators, can be 
• 
• formulated using various types of solution techniques, the classification of these 
• 
• techniques is the first step in selecting a method of solution. In this chapter, various types 
• 
• of field propagators are outlined and briefly discussed, and the rational for selecting a 
• 
• differential equation class of field propagators is given. Next, the basic principles of the 

• 
• finite difference method, which is utilized for numerically solving the differential equation 

• 
• form of field propagators, are outlined. Finally, some of the more popular differential 

• 
equation-based numerical methods are briefly reviewed. • 

• 
• 11 • • 
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2.1 Formulation of Field Propagators in Electromagnetics 	 • 
• 
• 

	

The first step in solving an EM problem is selecting the form of the field propagator. 	• 
• 

The four classes of field propagators are as follows: (1) the Integral Equation (1E) model, 	• 
• 

derived from Green's function for an infinite medium; (2) the Differential Equation (DE) 	• 
• 

model, which is based on Maxvvell's curl equations; (3) the modal expansion method, 	• 
• 

which models fields as a sum of all possible modes; and (4) optical description, which 	• 
• 

uses high frequency asymptotic techniques, such as the geometrical theory of diffraction 	• 
• [13]. • 
• 
• Due to the nature and solution requirements of the EM problems considered in this • 
• thesis, the modal expansion and optical description methods are not suitable. The optical • 
• description model assumes that the objects in the problem space are electrically large (that • 
• is, the dimensions of the object are large compared to the wavelength) [14], an assumption • 

that does not hold for most of the problems to be studied later in the thesis. The modal 	• 
• 

expansion model, although a mathematically complete solution [15], is not practical as a 	• 
• 

full wave solver of Maxwell's equations. Thus, only the full wave solution of field 	• 
• 

propagators, namely integral and differential equation models, are considered. 	 • 
• 
• 
• 2.1.1 Integral Equation (IE) Model 	 • • 

	

For EM problems, the JE  model is developed by first selecting an appropriate Green's 	• 
function for the problem.The original formulation of the problem is manipulated and 	• 

• 
simplified into the integral operator of an unknown source or field distribution [13], hence 	• 

• 
the term 1E model. The unknown of the 1E model is often solved using the Method of 	• 

• 
Moments (MOM) [6]. The computational domain of 1E methods is limited 'to the source 	• 

• 
• 
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• 
• region of interest which for scattering problems is typically the surface of the scatterer. 1E- 
• based methods have been successfully used to solve many scattering and radiation • 
• 
• problems. However, for electrically large structures (larger than ten wavelengths), the 

system of linear equations, and its resulting matrix, become too large to store and solve 

• [16]. In addition, the 1E formulation is often not suited for modelling highly • 
• inhomogeneous and layered media [13, 16]. Even if such problems are formulated using • 

JE  methods, the computational resources required for solving them are greater than they • 
•

would be using a differential equation model. 

•
• 
0 2.1.2 Differential Equation (DE) Model 
• 
• In contrast to the global operators (Green's functions) of JE  models, the differential • 
• operators of Maxwell's curl equations are local operators. Thus, inhomogeneous and • 
• layered media are easier and more computationally efficient to model. In order to solve the 

• field propagator, either the differential or the integral form of Maxwell's equations is 
• 
• approximated by a Taylor's series from which the differential operators are replaced by 
• 
• finite differences (finite sums are substituted for integral operators) [13]. Despite the fact 
• 
• that DE models require a large computational space for electrically large problems (i.e. the 
• 
• problem may contain many unknowns), in general, they are more efficient and more 
• 
• practical than are 1E models [17]. Therefore, the DE form of a field propagator is 
• 
• considered in this thesis. 
• 
• 
• 2.1.3 Solution Domain: Frequency Versus Time Domain • 
• 

A DE-based field propagator can be formulated and solved either in the time or • 
• 
• frequency domain. The Frequency Domain (FD) formulation assumes an harmonic time 

• 
• 
• 
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variation, eiwt  , and the generic operator, L(o)) , is a function of a single frequency, co . On 	• 
• 

the other hand, the Time Domain (TD) formulation regards time as an independent 	• 
• 

variable; thus, its generic operator is given by L(t) [13 ]. The choice of the solution 	• 
• 

domain is often determined by the specific application and the required details of the final 	• 
• 

solution. For example, in antenna and radar cross-section analysis, where the solution to a 	• 
• • 

single or a narrow band of frequencies is desired, an 141) method is sufficient. However, in 	• 
• 

Electromagnetic Immunity (EMI) and EMC problems, where the transient response to a 	• 
• 

wide band pulse (a sharp Gaussian or a step pulse) is of interest, only a TD solution is 	• 
• 

acceptable. Generally, an FD solution of EM problems is suitable for studying the steady- 	• 
• 

state response to an excitation of a given frequency, whereas a TD solution provides 	• 
• 

transient and broad-band responses. 	 • 

An added advantage of using TD methods is that the response of the structure at a 
O  

specific frequency can be easily obtained via Fourier Transform; that is, only one TD 	• 
• 

simulation is required for a wide band of frequencies. *  In contrast, 1-1) methods require 	• 
• 

separate runs for each frequency of interest.t Also, TD methods provide a transient 	• 

response that can be used as a powerful visualization tool that can supply designers with 	• 
• 

additional information that otherwise would not be available. In light of these 	• 
• 

advantages, in this thesis, the DE model of field propagators is solved in time domain. 	 9 
• 
• 
• 
• 
• 
• * Provided that the original excitation pulse has components in the desired frequency. • 

.1.  However, most FD methods demand a fraction of the computation time required by TD methods. 	 • 
• 

The visualization of EM problems has long been used as an educational, promotional, and even 	 • 
entertainment tool! 	 • 

• 
• 
• 
• 
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• 
• . 	aQ(x, t)  + DE(Q, x, t)  + aF(Q, x, t)  ± aG(Q, x, t)  . S(Q, x, t) . 	(2.2) 

	

I • 	. 	at 	axl 	ax2 	ax3  • 
• This system of first order PDEst can be written as: 
• 
• 
• aQ + [A]P- + [B]e-- + [C] e_ . s 	 (2.3) • at 	axl 	ax2 	ax3  • 
• where [A], [B] , and [C] are N x N matrices, which are commonly known as flux 
• 
• Jacobian matrices; they are computed via [21 ] : 
• 
• 
• aEi 	aFi 	aGi  

J 	an. J 	an. 	J 	an. 	 (2.4) 
•

A i • = —, B, – — , and Ci  – 	. 
J 	 J 	 J • • • 

• * In the case of Maxwell's equations, N =  6.  
• 
• I-  The order of a PDE is defined by the highest order of the derivative in the equation [101 

• 
• 
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• 
• 
• 2.1.4 Definition of Hyperbolic Systems of PDEs 
• 
• Maxwell's curl equations are represented by a system of Partial Differential Equations 
• 
• (PDEs) which contain an independent variable,  t , or time, and a position variable (vector), 
• 
• x(x , x , x l 23 ) , defined in the (x  l, x2, x3 ) general coordinate system. In this thesis, a system 

• 
• of PDEs in a general coordinate system is written in the form [18]: • 
• aQ, aE aF aG • +—+ 	s, 	 (2.1) 

ut  axl ax2  ax3  • • where Q, E, F,  G,  and S are N-component vectors. In general, Q is the unknown vector, 

• E,  F,  and G are often referred to as flux vectors, and S is the source (forcing function) • 
• term [19]. In a linear system of PDEs, the flux vectors are functions of the independent • 
• variables (x,  t ),  whereas in this case, the system of PDEs is quasi-linear; that is, the flux • 
• vectors are functions of both the dependent and independent variables [10], i.e. 
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The flux matrices play an important role in the classification of PDEs and determine if 

the system is of elliptic, parabolic, or hyperbolic type [22]. This can be achieved by 

evaluating the eigenvalues of the flux matrices. For example, in a quasi-linear first order 

system of PDEs with two independent variables, t and x ,  

au 	au + [A] 	=  k,  where u = [11 an d [A] = [0 	, 
—c 

the eigenvalues,  X, of the flux matrix  [A] are easily cornputed by solving the following 

expression [23]: 

detl[A] —X[I]j =  o,  
x2 c2 = 

 O. 

A system of PDEs is hyperbolic if all eigenvalues are real; the system of equations is 

identified as elliptic or parabolic if the eigenvalues are complex or zero. A mixed system 

will have both real and complex eigenvalues [24]. 

Elliptic equations are often associated with potential problems (such as Poisson's 

equation); they have no time dependence and, thus, only require boundary values to 

determine the solution of a steady-state or an equilibrium problem [20]. Parabolic 

equations represent mechanisms, such as diffusion, convection, and dissipation; they 

require both Initial Conditions (ICs) and Boundary Conditions
* 
 (BCs). The propagation of 

waves is gove rned by hyperbolic equations that also require both ICs and BCs. Hyperbolic 

equations may be linear or nonlinear and may or may not contain dissipation mechanisms. 

A mixed system is known to exhibit both hyperbolic and parabolic properties [25]. 

* Boundary  conditions are defined as the behaviour of the solution (vector) at the surfaces of 
discontinuity in the media. These surfaces usually mark abrupt changes in the medium's properties 
and often correspond to the interface between different material media. 

(2.5) 

(2.6) 
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•
• 

In this thesis, a class of hyperbolic PDEs, i.e. Maxwell's equations, is considered and 

• numerical methods based on method of characteristics are constructed. The mathematical • 
• formulation and derivation of the method of characteristics, along with other pertinent • 
• details, are discussed in the next chapter. • 
• 
• 
• 2.2 Theory of Differential Equation-Based Numerical Techniques 
• 
fa' 	 Thus far, the hyperbolic differential form of field propagators (i.e. Maxwell's curl • 
• equations) has been selected to be solved in time domain. Long before the age of digital • 
• computers, researchers believed that numerical methods might offer an alternative method • 
• of aniving at the solution of a complex system of PDEs [8]. The basic function of any • 
• numerical method is to transform a system of PDEs (that govern a physical phenomenon) • 
• into an algebraic system of equations that are easily solved with the aid of computers. This 

• process of approximating PDEs (and some of the BCs) introduces errors in the final 
• 
• solution; hence, computational techniques can only provide an approximate solution to the • 
• governing equations [18]. What is required is that these approximate solutions converge to 
• 
• the exact solution (and they generally do for sufficiently small time and space 
• 
• discretisations) [10]. This section examines some of the theories and concepts associated 
• 
• with numerical methods and briefly reviews some of the more popular numerical 
• 
• techniques used in solving systems of PDEs. 
• 
• 
• 2.2.1 Background and Terminology • 
• 

The computational solution of a system of PDEs is obtained through a two stage • 
• 

process (see Figure 2.1). The first step, commonly known as discretisation, involves the • 
• 

transformation of the governing PDEs, BCs, and ICs into a discrete system of algebraic • • 
O 
O  • 
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Figure 2.2. A discrete grid 
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equations [24]. The second step (solver) is solving the system of algebraic equations. The 

majority of errors associated with numerical solutions is introduced at the discretisation 

step; whereas, in most cases, the solver introduces little or no errors [24]. Thus, it is 

important to consider and understand the discretisation process. The discretisation process 

is performed on both space and time variables; both types of discretisation are considered 

next. 

Figure 2.1. Computational solution procedure [24] 

In the discretisation process, a continuous 

function, Kt, x), is replaced by a discrete 

function, u(nAt, iAx) or u7, where the value 

of the discrete function is only known on the 

i-th grid (mesh) point and at the n-th time 

x 	step [25]. Similarly, differential operators are 

replaced by algebraic expressions that 

represent the differentiated term of the PDEs in terms of discrete function values at 

discrete spatial nodes (or cells when dealing with 2D or 3D problems) and time steps. 

For example, in the following first order differential equation: 

Approx. 
Solution 
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(2.7) 

(2.8) 

au au 
at  + c—ax  = 

the definition of a derivative at a given point, x = iAx [27], 

art u(nt, iAx + Ax) — u(nAt, iAx) 	 + u • , — u • 
lim 

dX àx ---> 0 	 Ax 	 A x  —> 0 Ax 

is substituted in the PDE of (2.7) without the limit procedures giving: 

n + 1 
Ui 	U • 	14: 1 — ui  
	+ c 	 

	

 
A 	

= . 	 (2.9) 

	

t 	Ax 

This completes the discretisation step. The above algebraic equation is then solved for the 

future time step of the discrete function. Therefore, the following update equation is 

derived where the future discrete value of the discrete function is calculated in terms of the 

present value of the discrete function at various grid points [28]; that is, 

n 	n\ 
n + 1 	n 	12i +  1 — U i 

U t• 	= U / • c 	(At) . 	 (2.10) 
Ax 

i 

Hence, for given ICs, ii(0, x) = 	u(i)  for 0 i I,  and time independent BCs, 

ii(0)  u 	a and ri(X)  U  =  b,  the time-marching formulation of (2.10) provides 

solutions to all grid points at any time step. 

In the above example, one of the simplest finite difference algorithms was utilized to 

solve a first order PDE. It takes little imagination to realize that a large number of schemes 

can be devised to represent the differential terms using countless combinations of discrete 

function values evaluated at various spatial nodes and time steps. In general, time 

derivatives are estimated by the finite difference method, whereas eitherfinite difference, 

finite element, or finite volante methods can be used to discretise the spatial derivatives. 

These spatial discretisation methods are briefly discussed in Section 2.3. 



• 
• 

	

20 	• 
• 
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2.2.1.2 Time Discretisation 
• 

	

In general, time derivatives are estimated by finite differences where the estimating 	• 
• 
• expression of the time derivatives is evaluated in terms of a current,  u' ,  and next, ti

n + 1 
, • 

• time-step. An algorithm is said to be explicit if only one spatial term is evaluated at the • 
• future time step, say u7 +  1;  that is, there is only one unknown per equation per grid point. • 

An implicit algorithm has several spatial terms evaluated at the future time step, and thus, 
• 
• 
• 

	

has more than one unknown per equation per grid point. The solution matrix formed by 	• 
• 

	

the discretisation of a system of PDEs using an explicit algorithm is a diagonal matrix; it is 	• 
• 

	

often solved using direct methods (solving for the unknown variables) and requires 	• 
• 

	

minimal computational effort in the equation solver stage for each time step. The solution 	• 
• 

	

matrix formed by the application of an implicit method is not diagonal and often requires 	• 
• 

the application of (sometimes computationally expensive) iterative methods for matrix 
• 

inversion. 	 • 
• 
• 

	

In general, explicit methods have more stringent stability and convergence criteria 	• 
• 

	

than have the implicit methods. That is, the size of the time step required for an explicit 	• 
• 

	

method may be several orders of magnitude smaller than its counterpa rt  for an implicit 	• 
• 

	

method. This discrepancy in the size of the time step between the two types of algorithms 	• 
• 
• can sometimes balance the computational time requirements of the two types of schemes. • 
• On one hand, implicit methods are memory and computation-time intensive but require • 
• fewer time steps, whereas, explicit methods are computationally efficient, but require • 
• 

	

many thousands of time steps! Often, explicit schemes are preferred over implicit schemes 	• 
• ' 

due to their low memory requirement and ease of implementation. 	 • 
• 
• 
• 
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2.2.2 Numerical Versus Exact Solutions 

One of the most frequently asked questions by those new to (or skeptical of) CEM is, 

"How do we know that the computational solution coincides with the exact solution?" The 

answer to this question is rather complex and consists of two parts. First, it is often 

difficult to establish that the numerical solution converges to the exact solution using 

direct methods; however, it is possible to establish convergence using other properties of 

numerical methods (such as consistency and stability) [21]. The second issue involves the 

introduction of numerical errors as a result of the method of discretisation applied to the 

PDEs. These issues have been the subject of numerous papers in the field of CEM, 

including [10, 18, 21, 29, 31], and will be briefly considered here. 

2.2.2.1 Convergence 

If a system of PDEs is approximated by a set of algebraic equations, the solution of 

the algebraic equations is convergent if it approaches the exact solution of the PDEs when 

infinitely fine time and space grids are used (i.e.  A t —*0 and Ax 0 ) [21]. With the 

exception of a few simple algorithms [30], a rigorous proof of convergence is very difficult 

(and in most cases, impossible) to develop. Thus, convergence is often proved via an 

indirect route; one such method is to use the Lax equivalence theorem [31] along with the 

stability and consistency properties of an algorithm. A consistent system of algebraic 

equations (resulting from the discretisation of PDEs) yields the original PDEs if the limit 

of grid spacing approaches zero [29]. A similar system is said to be stable if the 

cumulative effect of truncation enors (resulting from the discretisation process) and 

round-off errors (produced in the computation stage) does not amplify without bound as 

the time-stepping is performed [31]. The important Lax equivalence theorem links these 
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two concepts and states [32 page 45]: 	 • 
• 
• 

"Given a properly posed linear initial value problem and finite 	• 
difference approximation  to it that satisfies the consistency • • 
condition, stability is the necessary and sufficient  condition for 	 • 

• convergence". • 
Certainly, consistency is necessary for achieving convergence. After all, the • 

• discretised equations must resemble what they are approximating! However, some • 
• schemes are, by nature, numerically unstable, and they diverge rapidly. Hence, a stability • 
• criterion is required to root out unstable algorithms. Three of the most common methods • 
• of stability analysis are: the matrix method, the Von Neumann method, and Fourier series • 
• analysis [11]. A detailed stability analysis of many algorithms has been performed and • 
• compiled in many text books, such as [10, 18, 21, 29, 33], and hence, will not be discussed • 
• here. • 
• 

	

Many implicit methods are unconditionally stable; i.e. for a given spatial grid size, 	• 
• 

there is no restriction on the size of the time step; only accuracy limits the step size. In 	• 
• 

contrast, all explicit methods are conditionally stable, which means that for a given grid 	• 
• 

spacing, the size of the time step must satisfy a specific ratio, often know as the stability 	• 
• 

condition [31]. One of the most famous stability conditions for finite difference methods is 	• 
• 

referred to as the CFL condition (named after R. Courant, K. O. Friedrichs, and H. Lewy, 	• 
• 

the authors of the landmark paper published in 1928). However, the CFL condition derived 	• 
• 

for a given scheme often does not include BCs, and a separate stability analysis is required 	• 
• 

for the BCs. 	 • 
• 
• 
• 
• 
• 
• 
• 
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• Finally, although the Lax equivalence theorem appears only to include finite 

• 
difference methods, it has been shown that this theorem also applies to any discretisation 

•
• 
• 

procedure that is equivalent to finite difference methods, such as finite element and finite • 
• volume methods [10]. However, one must exercise caution when applying the Lax • • 

equivalence theorem to problems that include BCs; it has been shown that the addition of • 
• BCs may result in a non-convergent algorithm that satisfies the Lax equivalence theorem • 
• [24]. Thus, the theorem should only be used as an elimination tool for non-convergent • 
• schemes rather than as an absolute proof of convergence. • 
• 
• 
• 2.2.2.2 Errors Due to Dissipation and Dispersion • • 
• Heretofore, the solutions of the PDEs of interest have been assumed to be "smooth" 

• 
• and continuous for most physical problems; often, this is not the case. Most situations 

• 
• feature some type of discontinuity, in either the simulated space or in the initial or 

• 
• boundary conditions, which results in highly discontinuous solution profiles. The effects 

• of discontinuities are most pronounced in the numerical solution of hyperbolic systems • 
• where they propagate through the entire computational domain and cause inaccurate (and • • 
• sometimes non-convergent) solutions [10]. Hence, most numerical methods are designed 

• 
• to manage discontinuities. 

• 
• Most finite difference methods exhibit either numerical dispersion (phase change) or 

• numerical dissipation (damping) or both. The Fourier series expansion method is often 

• used to analyse and derive expressions of numerical amplification factors (damping) or • • 
• phase errors per time step [10].  An in depth review of dispersion and dissipation is 

• beyond the scope of the current discussion and can be found in [10, 31]. Ideally, both • 
• 
• 
• 
• 
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dissipation and dispersion must be minimal, but practically, in the majority of cases, one is 	• 
• 

minimized at the expense of the other. To date, no algorithm has been found to be the . 	• 
"best" method in a general sense. 	 • 

• 2.2.2.3 Truncation, Modelling, and Round-Off Errors • 
• 

	

Previously, it was established that the discretisation process that converts PDEs into 	• 
discrete algebraic equations introduces errors in the numerical solution. These errors, 	• 

• 
which arise from approximating a partial derivative with a truncated Taylor series, are 	• 

• 
referred to as truncation errors [4]. Theoretically, a function (or differential) can be 	• 

• 
exactly represented via an infinite Taylor series expansion; however, due to the limitation 

• 
of computation resources, a Taylor expansion has to be truncated after a few terms. 	• 

• 
Truncation errors are inversely related to both the number of series terms and to the grid 	• 

• 
size. Thus, truncation en-ors may be reduced by using a higher order of approximation (i.e. 	• • 
more Taylor series terms) or by using finer space and time discretisation [4]. Appendix A 	• 

• 
includes a more detailed discussion of this topic. 	 • 

• 
• 

	

Along with truncation errors, modelling errors are the most significant class of errors 	• 
in numerical methods. These errors may either be due to the improper modelling of a 	• 

• 
physical phenomenon (such as the conductivity or the dispersive property of a material 	• 

• [34]) or to the inaccurate modelling of the size or shape of an object due to inaccurate 	• 
• 

meshing and/or the improper application of BCs. The former can be remedied by using 	• 
• 

more rigorous models for the phenomenon of interest, while the latter determines the 	• , 
• 

complexity of the formulation of the discretisation process [35]. As was indicated earlier, 	• 
• 

it is apparent that the density of the grid (coarse vs. fine grids) plays an important role in 
• 
• 
• 
• 
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the accuracy of the numerical solution. The coarseness of the grid determines the number 

Of sampling points per wavelength and thus the accuracy of the numerical solution; for 

example, to obtain an accurate solution using the finite difference time domain method, a 

minimum of ten cells per wavelength of the largest frequency of interest is required [8]. In 

addition, the shape of the computational cells may also significantly affect the accuracy of 

the numerical solution. A conformal grid ensures the accurate representation of curved 

surfaces and the proper enforcement of BCs [26]; it also avoids a stair-stepping 

representation of a curved surface by rectangular cells. It has been shown that when 

representing curved surfaces, a coarse but conformal grid yields more accurate results than 

does a finer mesh that stair-steps a curved surface [37]. A more accurate modelling of 

curved surfaces and the enforcement of BCs are the primary pufposes of using algorithms 

that are based on curvilinear coordinate systems. The characteristics and some of the 

advantages of these schemes are explored in subsequent chapters. 

Unlike truncation and modelling errors, round-off errors appear at the computation 

stage where, due to limited computational resources, finite precision arithmetic is 

performed. These errors can be reduced (at the expense of memory and computation 

speed) by using higher order precision for the storage of (and the arithmetic operation on) 

a variable. For example, a single precision (32 bit) float number that can accurately 

represent nine significant figures can be replaced by a double-precision (64 bit) float 

number that can support operations with up to 17 significant figures of accuracy [36]. 

Round-off errors are often of little conce rn  since in most applications, truncation and 

modelling errors are significantly larger than are round-off errors. 
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• 
• 2.3 A Review of Differential Equation-Based Numerical Techniques 	 • • 
• Although time discretisation is typically achieved via the finite difference method, • 
• either the finite difference, finite element, or finite volume method may be used to estimate • 
• the spatial derivatives of a system of PDEs. A brief review of these methods follows. • • • 2.3.1 The Finite Difference Method 	 • 
• 

In the past few decades, the Finite Difference Method (FDM) has become one of the 	• 
most preferred methods of solving PDEs. It owes its popularity to its simplicity as well as 	• 

• 
to its generic format. Although one of the earliest applications of this method dates back to 	• 

• 
Euler in 1768 [22], it was formally developed by A. Thom in 1920 [38]. As in the case of 	• 

• 
the discretisation process, the 141.)M subdivides the solution domain into a domain 	• 
consisting of discrete mesh points both in space and time. Then, using the properties of the 	• 
Taylor series expansion around a given point, the FDM approximates a differential operator 	• 

• 
by an algebraic expression. The details of this process, some of its properties, and some of 	• 

• 
the issues that arise from the application of the Taylor series expansion are discussed in • 

• Appendix A. Suffice it to say that this simple idea has given rise to many popular CEM • 
• methods; two of these methods are considered next. • 
• 
• 2.3.1.1 The Finite-Difference Time-Domain Method 	 • 
• 

Yee's version of the finite difference method is simply known as the Finite-Difference 	• 
• 

Time-Domain (FDTD) method [5] in CEM and is arguably the simplest and the most 	• 
• 

popular time domain method of solving Maxwell's curl equations. Although numerous 	• 
features (and enhancements) have been added to its formulation since its conception in 	• 

• 
1966, surprisingly, the originally proposed time and space discretisation has endured over 	• 

• • 
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the years. The original FDTD algorithm discretises the governing equations via a centre 

difference approximation that is second order accurate in both space and time [42]. The 

FDTD scheme is mapped on a staggered grid system, where in most formulations, the 

electric field components are placed on the grid lines, while the magnetic field components 

are located on the "half cell" points*  [43] (see Figure 2.3). The electric (E) and magnetic 

(H) field components throughout the computation domain are updated (computed) in space 

and time via fully explicit expressions [44]. 

Figure 2.3. Yee's staggered grid and updating scheme for a 1D electromagnetic field 
(Top) and its corresponding 3D computational molecules (Bottom) [45] 

* In most physical problems, objects (such as good conductors) are defined in terms of their electrical 
boundary conditions; placing the electric field components on the grid lines will allow the boundary 
conditions to be readily identified and imposed. 
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The details of the formulation of the 1-DTD method and its applications are beyond the 	• 0 
scope of this section. The reader is encouraged to consult references [42, 44-46] for a • 

	

comprehensive review of the formulation, implementation, and numerous applications of, 	• 
• 

	

the FDTD method. However, it is important to note some of the properties, advantages, and 	• 
• 

disadvantages of thetillTD method as they relate to the thesis topic. 	 • 
• 

	

One of the most noted advantages of the FDTD technique is the simplicity and elegance 	• 
• 

	

in which it models and solves Maxwell's equations using minimal computational resources 	• 
• 

	

(as compared to other numerical methods solving a similar class of problems). However, 	• 
• 

	

the main disadvantage of FDTD is its reliance on orthogonal grids. Traditionally, FDTD 	• 
• 

	

has approximated curved surfaces and geometrically complex objects using stair-stepped 	• 
• 

rectangular meshes, which, in the majority of cases, degrade the accuracy of the results' 

• [8, 42, 46]. One of the first attempts at formulating the FDTD method for generalized 

	

Nonorthogonal coordinates (N-FDTD) was made by Holland in 1983 [47]. Others followed 	• 
• 

	

his work by proposing to model curved surfaces either through globally deformed meshes 	• 
• 

	

[48, 49] or through locally deformed grids (Contour-Path FDTD, CP-FDTD) [50, 51]. 	• 
• 

	

Another class of proposed methods is the Discrete Surface Integral method (DSI-FDTD) 	• 
• 

	

which utilizes a fully conformal but unstructured grid [52, 53]. With the possible exception 	• 
• of the DSI-FDTD, most of the aforementioned conformal FDTD methods, in addition to • 
• being computationally inefficient, require extensive preprocessing of the mesh [53], and • 
• often have restrictions placed on the type of material they are capable of modelling (either • 

dielectrics or perfectly conducting surfaces, but not both) [54]. 
• 
• 
• 
• 
• 
• 
• 
• 
O  



29 

dielectric 
cell E Cell 

Figure 2.4. Object definition and location of field components in Yee's FDTD grid (Left) 
and computational cells in an irregular dual lattice (Right) [53] 

As in Yee's original FDTD grid, all of the aforementioned schemes are based on 

staggered grids of E and H fields in space and time. This indicates that all of the field 

components are located on the edges of the computational cell, and thus, the exact location 

of the boundaries of modelled objects are "fuzzy" at best! Figure 2.4 depicts the location 

of the material boundaries in both standard and conformal FDTD methods where 

permeability and permittivity cells are interlaced [44]. In general, objects are defined in 

terms of the location of their tangential E field components; therefore, only Perfect Electric 

Conductors (PECs) are accurately modelled. *  All other material boundaries are diamond 

(saw-tooth) shaped, and for any given cell, the object's properties (such as permeability, 

permittivity, and conductivity) are computed as a weighted average (in the best case 

scenario) [46]. It appears that a more stringent method of defining material boundaries 

could be achieved through the use of a single grid that collects all E and H field 

components at the centre of the computational cell. 

* This is not exactly correct! Since all field components are staggered, an unequal number of E and H 
field components fall within the PEC object. 
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2.3.1.2 The Transmission-Line Matrix Method 

Introduced by Johns and Beurle [56, 57] in 1971, the Transmission-Line Matrix (TLM) 

method takes advantage of the equivalence between Maxwell's equations and the equations 

for voltages and currents on a mesh of continuous two-wire transmission lines [55]. Unlike 

most other numerical methods, the TLM method discretises computational space using a 

physical discretion scheme rather than a mathematical approach. That is, the TLM 

technique models field equations often using an orthogonal grid of transmission lines with 

possibly some lumped elements [58]. The E and H fields are represented in terms of 

voltage pulses where the TLM algorithm simulates the propagation of these fields in terms 

of the evolution of voltage pulses along the aforementioned network of transmission lines 

in all directions [59]. The boundary conditions at the computational cells' interfaces are 

represented in terms of scattering and transfer events of voltage pulses at all transmission 

line boundaries [58]. The voltage variables are computed via a second order accurate (in 

both space and time) explicit algorithm. Finally, the solution to the original field problem 

is obtained by a mapping from the voltage variables to the field components. The details of 

this process and the theory of the TLM method and its various formulations have been 

extensively studied; some excellent references on this topic include [55-60]. 

It has been shown that TLM models of EM field problems are equivalent to 1-1)Ms [61]. 

In particular, Johns was successful in deriving Yee's original tillTD field update equations 

using a TLM model [62], while other efforts have been made to derive TLM formulations 

from time-domain finite-element algorithms [63]. Similar to Yee's original formulation, 

the standard TLM method utilizes orthogonal meshes in the space discretisation which 

forces the modelling of curved surfaces via stair-stepping [60]. Recently, there has been 
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some progress in the area of conformal TLM formulation; several researchers have taken 

advantage of the latest advances of nonorthogonal FDTD algorithms to derive similar TLM 

models [64], while others have derived TLM algorithms on conformal arbitrary grids using 

a finite element template [63]. However, the research in this field is ongoing and appears 

to be lagging behind similar work in the area of conformal FDTD. 

Figure 2.5. Schematic of SCN-TLM [58] (Left) and its corresponding 3D computational 
molecule [65] (Right) 

Among the various formulations of TLM models, one of the most popular techniques 

for spatial discretisation is the Symmetrical Condensed Node TLM (SCN-TLM)*  model 

[60] (see Figure 2.5). The clear advantage of using an SCN-TLM discretisation over Yee's 

version of FDTD is that (in SCN-TLM method) all of the E and H field components are 

located at the same point in space (at the centre of the cell), and all are solved in the same 

physical time [65 ]. 1-  Another positive consequence of utilizing an SCN-TLM model is the 

clear location of boundary conditions. Unlike Yee's FDTD model, in SCN-TLM models, 

* R must be noted that unlike the traditional TLM algorithms, the newer TLM models, such as SCN-
TLM, do not have a direct analogue with a physically-realizable circuit. The circuit analogy is a 
convenient manner of understanding TLM models but is not sufficient for the development of new 
schemes. 

I-  Recall that FDTD uses a staggered grid in space and time. 
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all field components are placed at the centre of the computational cells, while the 	• 
• 

boundaries of these cells are located along their interfaces at known locations [59]. Since 	• 
• 

only tangential field components exist at cell boundaries, the continuity of these 	• 
• 

components can be enforced effortlessly, thus defining clear boundaries for objects with 	• • 
different properties [60]. 	 • 

• 
0 
• 2.3.2 The Time-Domain Finite rElement Method 	 • 

As mentioned in previous sections, the main disadvantage of the standard FDTD aiid• 
• 

TLM metliods is their reliance on orthogonal grids for spatial discretisation. Therefore, it 	• 
• 

is natural to look beyond the conventional methods of discretisation and consider other 	0 
0 

alternatives. One such alternative is to discretise the problem space using elements (or 	• 

sub-domains), hence the term Finite-Element Method (FEM) [4]. In contrast to finite 	• 
• 

difference schemes where the fields are represented in terms of discrete functions at each 	• 
• 

mesh point, FEMs model fields within each element using an interpolating polynomial of 	• 
• 

the respective field values at the element's nodes [60]. This general formulation allows the 	• 
• 

use of arbitrary conformal elements (of various shapes, sizes, configurations, and order of 	• 
• 

approximation) which are required to accurately model complex geometries and spatially 	• 
• 

varying resolutions [66]. The details of various FEMs and their formulations are clearly 	• 
• 

beyond the scope of this brief review; references [4, 66] provide additional information for 	• 
• 

interested readers. 	 • 
• 
• 

Traditionally, FEMs have been formulated in the frequency domain, where a matrix 	• 
• 

inversion is required for each frequency point of the solution [66]. Although a frequency 	• 
• 

domain formulation of FEMs is convenient, it is not necessary. Both Lynch and Paulsen 	• 
• 
• 
• 
• 
0 
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[67] and Gedney and Navsaiiwala [68] have shown that Time-Domain FEM (TD-FEM) 

can be derived to solve a vector wave form of Maxwell's equations using either explicit 

(in case of the former) or implicit (in case of the latter) algorithms. There have been many 

adaptations of the TD-FEM, in order to take advantage of the conformal grids utilized in 

FEMs. While some, such as the point-matched TD-PEM, use a fully unstructured 

conformal mesh [69], others have derived a hybrid FDTD-TD-FEM engine [70]. The 

latter was developed in order to reduce the computational load in the areas of the problem 

space where a uniform orthogonal (FDTD) grid is sufficient [70]. The hybrid methods 

often exhibit late time instability [71]; they are also very sensitive to the type of mesh used 

to provide a transition between FDTD and TD-FEM regions [72]. Research in both areas 

is ongoing. The main focus of research involving Point-Matched TD-PEM (PM-TD-FEM) 

is the formulation of ABCs and material boundary conditions [73-75] (Ironically, the use 

of dual irregular lattices seems to have eliminated some of the advantages of using an 

FEM formulation.). Despite the clear advantages of using TD-FEM, due to their complex 

formulation and the significant effort required for mesh preparation (as compared to the 

FDTD and TLM methods), these methods have received little attention and are thus 

lacking in maturity and diversity of applications. 

Figure 2.6. Various conformal mesh configurations: (Left) structured mesh (Centre) 
unstructured mesh [18] (Right) and hybrid mesh [71] 
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2.3.3 The Finite-Volume Time-Domain Method 

The Finite-Volume Time-Domain (FVTD) method*  was originally developed by the 

Computational Fluid Dynamics (CID) community. In this method, the governing PDEs 

(i.e. Maxwell's curl equations) are cast in conservative form [18]. All E and H field 

components are collected at the centre of the computational cell, while the tangential field 

components are projected on the respective cell walls [35]. A "jump" condition is used to 

enforce the continuity of tangential field components at cell interfaces [17]. Finally, a 

Lax-Wendroff windward explicit scheme is used to solve field values at cell centres [19]. 

The FVTD method is often formulated using a local curvilinear coordinate system that 

allows for conformal meshing. Due to the aforementioned properties, the FVTD method 

was selected as the method of choice for investigating EM problems containing complex 

geometries. The remainder of this thesis will focus on the formulation, enhancements, and 

several applications of the FVTD technique. 

2.4 Summary and Conclusions 

This chapter attempted to define and specify the scope of the CEM problems that will 

be considered in this thesis; that is, Maxwell's curl equations (a set of hyperbolic PDEs 

which form the field propagator) are solved in the time domain using the method of 

characteristics. The solution to this problem is provided via numerical methods. The 

theory of differential equations based on numerical techniques, as well as some 

fundamental concepts, such as discretisation, convergence, and sources of errors were also 

* It must be noted that a conformal version of the FDTD method, based on the integral form of 
Maxwell's equations and the volume integral of a DSI-FDTD type dual lattice, is also referred to as 
an FVTD method [49].  These two methods are fundamentally different and must not be confused 
with each other. 
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briefly reviewed. A review of some of the more popular differential equation-based 

numerical methods, such as various types of FDTD, TLM, TD-FEM, and FVTD, was 

completed where each technique was evaluated for its ability to model complex and 

curved geometries. A summary of this survey is given in Table 2.1. It was concluded that 

currently, both TD-FEM and FVTD methods are the most promising methods; however, 

(as will be explained in future chapters) the matmity of research involving the FVTD 

method was the deciding factor in selecting FVTD as the method for solving the type of 

EM problems that are considered in this thesis. 

Table 2.1. Classification of various differential equation-based numerical methods 

Algorithm 	Mesh Type' 	Grid Typeb 	Object Boundaries' 

Yee's FDTD 	 orthogonal 	staggered 	stair-stepped 	fuzzy 

N-FDTD 	 semi-conformal 	staggered 	exact 	averaged 

CP-FDTD 	 semi-conformal 	staggered 	exact 	averaged 

DSI-FDTD 	 conformal 	staggered 	exact 	averaged 

Standard TLM 	 orthogonal 	staggered 	stair-stepped 	fuzzy 

SCN-TLM 	 orthogonal 	centred 	stair-stepped 	exact 

Conformal SCN-TLM 	semi-conformal 	centred 	exact 	averaged 

Lynch's TD-FEM 	conformal 	centred 	exact 	exact 

Gedney's TD-1-ihM 	conformal 	centred 	exact 	exact 

PM-TD-FEM 	 conformal 	staggered 	exact 	averaged 

Hybrid TD-FEM 	semi-conformal 	staggered 	exact 	averaged 

FVTD 	 conformal 	centred 	exact 	exact 

a. Defines the general shape of computational ce Is; orthogonal (cuboid), semi-conformal (mostly 
cuboid with some irregular shaped cells), and conformal (all irregular shaped cells). 

b. Indicates the type of mesh with respect to the location of the electric and magnetic field components. 
c. Indicates both the type of approximation of the physical boundary (stair-stepped or exact) and the 

quality of the method of enforcing tangential components on cell interfaces;fuzzy (very poor enforce-
ment), averaged (weak enforcement or averaging of neighbouring cell properties), and exact enforce-
ment of the boundaries. 
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• Chapter 3 
• 

• Formulation and Solution of Governing Equations 

• • • • • • • • 
• The initial formulation of an EM field problem often affects the efficiency of the • 
• solution method and can further affect the accuracy of the obtained solution. In the FVTD 
• method, the conservative form of Maxwell's equations is formulated in a general • 
• (curvilinear) coordinate system. The equations are then often solved on a conformal grid • 
• using the method of characteristics. This chapter aims to explain this process. • 
• 3.1 Basic Formulation of Governing Equations 

• • • 
• 3.1.1 Conservative Form of PDEs • 
• If Q(x, t) represents the density of a substance, and its flux is denoted by F(Q) , then 0 
• the conservation law states that the time rate of change of the total amount of the • 
• substance contained in a fixed domain, G,  is equal to the flux of that substance across the 

• boundary of G (assuming that F has continuous first partial derivatives within G) [29]; • 
• that is, • 0 37 • • 
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—d Q(x,t)dx = —f F(Q) • ndS, 	 (3.1) dt G 	 DG 	 • 	0 
• 

where n and dS are the outward normal *  to G and the surface element of the boundary, • 
• G ,  respectively. Following the application of the divergence theorem, then evaluating the 

• resultant volume integral, and after some mathematical manipulations (assuming that • 
G —> O), the conservation law is given in differential form as: 

O  
aQ + aF(Q)  . 0  . 	 • (3.2) at 	ax 	 • 

• 

	

In most practical applications, the above formulation is quasi-linear in nature and will take 	• 
• 

	

the form of (2.1). This form is required for the FVTD formulation (and the solution) of 	• 
0 

Maxwell's governing equations. 	 0 
• 
• 

3.1.2 The Generalised-Vector Form of Maxwell's Equations 	 • • 
Consider the differential form of Maxwell's equations: • 

VxE = —a./3 

	

(3.3) 	0 ut  • 
aD 	 0 

Vx5i -  = 	+ J 	 (3.4) 	• at 
• 

V • D = p, 	 (3.5) 
• 

B = 0, 	 (3.6) 	0 
0 and the constitutive relations given by: • 
• 

B = 	, 	 (3.7) 	0 
0 

D = c E, 	 (3.8) • 
J = crE , 	 (3.9) 	0 

• 

	

where E is the electric field intensity in V/m, D is the electric flux density in C/m 2 	, 	• • * The right-hand-side of (3.1) measures flux outflow, hence the negative sign. • • 
• 
• 



B 
B Y  
Bz 

DY  
D 

, É = 

39 

His the magnetic field intensity in A/ m , B is the magnetic flux density in Wb/m2 , J is 

the electric current density in A /m2  , and p is the electric charge density in C/m 3  [15]. *  

Also, the constitutive parameters of the medium are: it , the permeability (H/m),  E, the 

permittivity (F/m), and a , the conductivity (1/S2m ). In general, some assumptions are 

required to simplify the discussions surrounding the solution of Maxwell's equations in a 

given solution space. In this thesis, the solution space is assumed to be isotropic (the 

material's properties are independent of direction) and linear (D is a linear function of E). 

Following the substitution of the constitutive relations (3.7) to (3.9) in (3.3) and (3.4) 

(and after some algebraic manipulations where the field components are rearranged in 

terms of the differential variables), Maxwell's equatioris are written using generalised 

vectors in a Cartesian frame as: 

a-0 +aÉ 	 _ 
at 	 s, (3.10) 

where the solution vector, , flux vectors,  E, E,  , and the source term, , are given by: 

,G=  ,s  = 

0 

—D z /e 

Dr  /c 

0 

Bz/11 
 —B _ Y _ 

Dz /e 
 0 

—Bz/R 
0 

B/11  

—D /E 
Y 

Dx/e 

0 
B /ILL 

Y 

—B r/p. 
0 

0 
0 
0 

—aDx/e 

—pDy/e 

_TaDz/e 

. 	(3.11) , F = 

Upon closer examination of the above expressions, and after compating them with 

Faraday 's induction law, (3.3), and the generalised Ampere's circuit law, (3.4), the 

conservative form of Maxwell's equations can be formulated in terms of vector products 

* Note that coulomb, C = As and weber, Wb = Vs. 
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of electric and magnetic fields; that is, 

• 
(B) 	 (3.12) ax xE )  4_ ( ay X 	.}. ( az xE ) 	 • 

• x x 50 L—a x 50 	x 	L—crE)' x 	y 	y 	z • 
where subscripts denote partial derivatives of the argument with respect to the subscript's 	• 

0 
variable, and a,  ay , az  are unit vectors of the Cartesian coordinate system. This indicates 	• 

• 
that the flux vectors,  E, P, and G , contain electric and magnetic field components that are 	0 • 
tangential to the respective constant x y-, or z - surfaces [16]. These flux vectors are an 

9 
integral part of most FVTD algorithms since they are often used to represent physical 	9 

• 
phenomena (such as dielectric objects in the computation space or conducting objects' • 
boundary conditions) through the enforcement of the appropriate boundary conditions of 	• 

O  
tangential components at a given surface. 	 • 

O 
In conclusion, a brief clarification of the terminology used thus far seems in order; the 	• 

above formulation of the governing equations, (3.10), is frequently (but erroneously) 	• • 
referred to as the conservative form of Maxwell's equations [16, 26]. However, with the 	• 

• 
exception of the electric charge-current density conservation law, 

O 
• ap (3.13) 	• at • 

Maxwell's equations do not describe explicitly a conservative law [76]. Thus, a strong 1 	• 
conservative formulation of the governing equations is not essential. The only real benefit 	• 

• 
of a conservative type of formulation is its convenient and manageable format that 	0 

0 
represents all field components as either vectors or flux vectors. Consequently, it is more 	• 

• 
appropriate to refer to equation (3.10) as the generalised vector form of Maxwell's 	• 

• 
equations [77]. 	 • 

0 
* Note that in the Cartesian coordinate system, unitary and unit vectors are identical. 

• 
• 
• 
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3.2 Maxwell's Equations in General Coordinate Systems 

• Traditionally, the curved surfaces of geometrically complex objects are represented 
O 
• (approximated) by an orthogonal grid of stair-stepped lines that often degrade the accuracy 
O  
• of the results. This has prompted many researchers to use methods that are capable of 

• utilizing a body-fitted coordinate representation of geometrically complex objects, thereby 
0 
• increasing the accuracy of the representation of curved surfaces, as well as reducing the 

• ambiguity of the location of material boundaries often encountered in simulations using 

non-conformal grids [25]. The main motivation for the research and development of the • 
• FVTD method is its versatility for modelling complex geometries via conformal (body-
* 
• fitted) grids. Thus, it is important to review the theory of coordinate systems and explore • 
• some of the issues that are associated with it. 
• 
9 
• 3.2.1 Conformal Grids: Background 

•
• 

Following the review of FDMs in Chapter 2, it is evident that they were originally • 
designed for (and work best on) uniform orthogonal grids. Although it is possible to design • 

• (derive) schemes that are not restricted to uniform orthogonal meshes (such as N-FDTD, 
• CP-FDTD, TD-FEM, etc.), the additional complexity of the formulation of such algorithms 
0 
• often compels CEM code developers to make certain assumptions that may erode the 

• generality of applications, the accuracy of results, or both (see Section 2.3.1). A better 9 
• alternative is presented by the CFD community via the use of localized coordinate systems. 

• In this method, the problem space is meshed uSing a non-uniform conformal (often  non-
e  
• orthogonal) grid, called a physical space, where the coordinate of each mesh point is 
• 
• specified by its Cartesian coordinates, (x, y, z).  The physical mesh and the corresponding • • 
• • 
• 
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governing equations are then transformed into a uniform rectangular grid, g, 	, 

generally referred to as the computational space [23], where the system of discretised 

PDEs is formulated and solved via a finite volume algorithm. Finally, the obtained solution 

in the computational space is transformed back into its corresponding locations and values 

in the physical space (see Figure 3.1). 

Figure 3.1. Conformal coordinate systems and the FVTD method [25] 

There are several advantages to using body-fitted grids. The most obvious is the proper 

representation of the physical space and accurately enforcing and satisfying the (objects') 

boundary conditions [78]. Other advantages, to name a few, include: facilitating the 

formulation of governing equations that are better suited for windward characteristic-based 

algorithms (which have a more favourable stability property than do central differences 

schemes) and facilitating the application of simpler and more effective ABCs [79]. The 

advantages of using a general coordinate system formulation of the governing equations 

will be discussed in due course. 

3.2.2 Theory of Coordinate Transformation 

The theory of coordinate transformation is studied in a branch of mathematics known 

as differential geometry that uses differential and integral calculus to study geometric 



• 
• • • 
•

properties of point sets (i.e. curves, surfaces, etc.) [80]. Although the present discussion 

• requires only a basic knowledge of the general theory of coordinate systems, an overview 

of this theory is given in Appendix B in the interest of completeness. However, since it is • 
• necessary to develop a method of transforming Maxwell's equations in any type of 

•
physical grid into ones with a computational grid, the following is a summary of the 

0 
• coordinate transformation method as discussed in [23]. 

A general (curvilinear) coordinate system, defined in Appendix B, is denoted by: 

• = 
• 11  = 
• = 

•  = t(t), * (3.14) 

O where x, y, and z represent the Cartesian coordinate system. Based on the chain rule of 

9 	 partial differentiation and the results of (B.39), the following linear relations between the • • differentials of the rectangular coordinate system and the differentials of the general • 
coordinates are given as: 0 

• 
0 an 	a 	an  dii  = 	n —dx + — dy + —az dz g. 	 ax 	ay  ' 0 • a ç 	a 	sa 

ax 	Dy 	az 0 	 (3.15) 
9 	 a a g ail ai  an K K 	DÇ 
• hw 	 d — , are denoted by .,,, ax ' ay ' az ' ax ' ay' az ' ax' ay' 	az 0 
• .), , z , 11 x , 11 )„ T1 z , çx , 	, and çz  respectively. Thus (3.15) is written in matrix form as: 
e • * In this document, t = t. Although this appears to be trivial, it should be included in the 

transformation process to preserve the generality of the derivations. However, in the current 
• discussion, it does not affect the final expressions and may be dropped in the interest of simplicity. 
0 
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tr 
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(3.16) 

9 
d  [d yl-' 
dz 

• • • 
O 

• 
• • 
0 • 
• 
O 

• • • • 
dx 	 • 4 	 • 

(3.17) 	• dy 	 yc dri 
zn  zç_  dL  • 

Further examination of (3.16) and (3.17) results in: 

Similarly, the following is also true: 

-1 
XE  xn  Xt 

= yy.tl yç 
zn  zç_ 

11 x y  11, (3.18) 
O 

A simple matrix inversion operation is performed on the right hand side of (3.18). Thus, the 

mathematical expressions of the partial derivatives of the general coordinate system are 

obtained. 

= J(yriz - yz.n ) 

ti( X 	XlriZ 

j(XTIY XV11) 

x J()v - yzç) 

Jcz0 
li z  = f(x 0% -. xe )  

= J(yen  - yrrz) 

XTIZ 	XZ11) 

= j(XVTI Xri 

where the Jacobian of transformation, J, is defined by: 

(3.19) 

• 

• 



= 	 = a (X y, z) 
 

Next, the generalised vector form of a set of PDEs is considered, 

• • 
• 
• 

= 1/ (3.20) 1 11 z 

' • 
1 0 

O 

• 
• 
• 
6  • • 
• 
0 • • • 
• • • • 
• • 
• 
0 

• 
6 • 

	

a 	a --FÇ xari  

	

a 	a 	a 
—+( 

	

ya 	Yart 
a za 	zari  (3.22) 
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Ot+Ex+ -Èy+ -6z = 

where E 	, and .6-  are flux vectors, St is the source term, and 	is the solution vector. 

The spatial derivatives of the above vector equation are evaluated by the chain rule as: 

_ aa ai a Ka _ 
&e -&-Frl + Fck — 

a 	aa Dia Ka _ 
Fy. k + à7/a7-1 + â-. -YaZ 

_ aa Dia Ka _ 

and is substituted in (3.21); that is: 

XE? %Eli+ 	 za+11z611+ çz 'a =  S .  (3.23) 

After dividing both sides of the above equation by the Jacobian of the transformation, it is 

reformulated in vector form. *  

(9) t  CxE  + 	+ 	 + 	+ 	+(çÉ+(y.r+Çza) 

Jr, 	 Jr, 	fc 

+ (I) +(') Ti 	 J, 

The last three bracketed terms of the above equation vanish following the substitution of 

the expressions derived in (3.19). Therefore, the vector form of (3.21) on Cartesian 

dv d 	du * Recall that  u—

)i. 

= 

(3.21) 

(3.24) 



3.2.3 Transformed Maxwell's Equations 

The vector form of Maxwell's equations is transformed into a curvilinear coordinate 

• 
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coordinates is transformed into one cast on a general coordinate system; it is written as: 

Q t + Euf Fi + G ç  = S 	 (3.25) 	• 0 
where 

Q= - 	 (3.26) 	• 

E = -1 g., «É + 	+ 	 (3.27) 	• 
• 

F = -1 (1i xÉ + F + ri ze) 	 (3.28) 	• 
• • 

G 

 = 

= .1 (( + 	 (3.29) 	• 
jx 	yz 

• 
• S   • 
• 

It must be noted that the above flux and field vectors are not transformed in the traditional 

	

sense; rather, they are formulated (and calculated) in terms of vector fields in the Cartesian 	• 
coordinate system. However, if one desires to obtain field components in the transformed 0 
coordinate system in terms of their counter-parts in Cartesian coordinates, Section B.4 of 

Appendix B derives such a procedure. 

• 
• 
• 
• 

system via (3.25); that is: • 
6 

(3.31) • 
• 
• 
0 

Qt  + 	+ = S 

where the solution vector and the source term are given by: 
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respectively, and the flux vectors are written as: • 

• 
• 
• • • 

e 
0 • • 

1 E=  1 , F=  . 	(3.33) 
1 G =  

• • • • 
• • 
• 
• • 
• 
0 

• • 

In [24], it is shown that coordinate transformation does not change the type or the 

properties of a system of PDEs. Since Maxwell's equations form a quasi-linear hyperbolic 

system of PDEs [26], (3.31) can be rewritten in the form of (2.3), 

(3.34) Qt + [A]Q+ WW II + [CiQ = [K]Q 

where the flux matrices in the transformed coordinate system are defined as: 

Dz  D 

D x  Dz  

D D.  

B Bz 
1A ,  

B B 

	

z  	x  

B B x   

111  

Dz  Dy  
--E 1 y 11 z--E  

D Dz  

	

-----E 	z 	x 

D D 

	

y 	x 
11x -11 Y 

B B 

	

y 	z 
- 11z 

1-1 

	

B z 	B x  
— 11x – —11z' 11  

	

B x 	By 
11x 

	

_111-1Y 	_ 

D D ez y  

D D 

	

Xr 	Zr 

D D 

	

E ' 	s Y 

B B Y 	Z r  
11  

	

z 	y  

B B 

	

z r 	x r  

	

'Dx 	‘zz 

B B 

_ 	Y  

• • • 
0 - 7  - LB x  By  Bz  Dx  Dy  Dz.] , = 7 j  [0 0 0  _0. 	 , 

T c 	Si 	1 

	

Dx  Di, 	Dz 	(3.32)  
•

E 	E 	E 

• • 
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•nn 

[A] = 

[C] = 

00  
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
[K] = 

0 0 0 — 0 0 Je 
–a 

0 0 0 0 — 0 Je 
–cy 

0 0 0 0 0 — 
Je 
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11  Z 11 Y 00 	 - 000  0 - 
JE JE 

0 0 00 — .7- 	:1-  
x O  o o — , o Je JE 

0 	 0 0 0 Ira J1.1 

– 	0 	0 0 0 

o 0 0 0 J -t  

JE Je 

z 0 0 0 - 0 -- 
JE 	Je 
11 	.1  1 x  

0 0 0 	— 0 Je Je 

z 	Y  0 
Jp, 

x –0 	0 0 0 Tit 	.171 
11 	11 x  —Y- – 

 

00  

, (3.35) 

0 00  

0 0 	z 
JE Je 

0 0 0 	0 –çx  
JE 

O  o o — - 	0 
JE Je 

0 	 0 0 Jit 	JILL 

0 --I 0 

Jt 
--I 0 0 Jit 

. (3.36) 

In the transformed Maxwell's equations, the transformed flux vectors, E,  F,  and G,  

contain electric and magnetic field components that are tangential to the 	11-, and - 

constant surfaces of the new coordinate system. Thus, an alternative generalised vector 

form of Maxwell's equations in the curvilinear coordinate system is written as: 

. (DB) t 	E 	 x E 	 = 	OE  
x 50 4–a x ) 4–a x - 	 ) 1 	'11 

(3.37) 

The above flux vectors (the second, third, and fourth ternis of the left-hand-side) are 
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determined via the expressions of the vector transformation in Section B.4 of Appendix B. a 
• For example, in the case of E,  

• 

0 • E = l - [aF E (3.38) 
-ax 5(  

• 
the vector product of a unitary vector of the general coordinate system,  a ,  and either the 

• electric or magnetic field are evaluated in terms of Cartesian coordinate field components 

as shown in (B.47); that is: 

• 
a a a 	 a a a 

•
x y z 	 x y z 

• E = 	x y z , a x 5f 	 (3.39) 
• D D D B B B 

•

• 	 E E 	 1-1  1.1  

x y z 	 x y z - - - • 
Similar expressions can be derived for transformed flux vectors, F and G.  0 
3.3 Solution of Governing Equations 10 

• In the previous section, the governing equations of an EM field problem were written 

as coupled quasi-linear hyperbolic systems of PDEs cast in generalised vector form on a 
• 
• curvilinear frame. Generally, this class of PDEs lends itself to be solved via characteristic- 

• 
• based methods. The theory of the method of characteristics and its solution of the vector 
• 
• form of Maxwell's equations are discussed next. 

•
(19 

3.3.1 Generalised Solution: Theory and Background 

• A quasi-linear PDE in conservative form, say: 

• 
aQ aF aQ 	aQ = 0 , 	 (3.40) • + = + [A.1— 	* at ax 	at 	ax • 



• 
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is said to be hyperbolic if the eigenvalue of the flux matrix,  X,  is real. An initial value 

problem is defined as the solution of (3.40), i.e. Q(x, t) , given an initial condition [82], 

Q(x, 0) = Q0(x) 	 (3.41) • 
A geometric solution to the above initial value problem can be obtained via the method of 

	

characteristics. One of the consequences of (3.40) is that its solution, Q,  is constant along 	0 
0 

trajectories (characteristics lines) x = x(t) in the x -t plane (see Figure 3.2). The waves 

described by the conservation form of Maxwell's equations propagate along these • 
characteristic lines with speed [83]: 

0 6 dx — 	 (3.42) dt 

• where X is an eigenvalue of the flux matrix,  [A]  . This geometric solution of (3.40) is based 

on the original assumption of the integral form of the conservation law, (3.1), where 

Q(x, t) is assumed to be continuous within the solution domain. Often, these solutions are 

continuous everywhere in the domain except across a given boundary where they are 

discontinuous [84]. A special relation must be satisfied at these boundaries; the derivation 

• of this relation is considered next. 

* It has been shown that for continuous functions, it makes no difference whether the flux matrix [A] 
is inside or outside of the derivative term [22]; that is 

( [A ]Q), = [AlQx • 

However, from a numerical point of view, the right and left hand sides of the above equation yield 
dissimilar discretised expressions, unless it is assumed that 

([A]),Q = O. 

If a solution to an initial value problem, Q(x, t) , is continuous everywhere in the 

solution space but is discontinuous across a boundary specified by x = x(t) , then one 

half of the conservation law (over an interval at time t) is written as [83]: 



Figure 3.2. Characteristic lines of a PDE (Left) and characteristic lines in the presence of 
a discontinuity (Right) [83] 

After substituting for Qt  from the conservation law of (3.2), replacing the expression of 

speed of propagation along the characteristic line from (3.42), and evaluating the integral 

terms, (3.44) becomes: 

x = k 

•	 

51 
0 
0 
• d  fb  Q(x t)dx = drQ(x t)dx + —d  fb  Q(x, t)dx . 	 (3.43) 
• dt a 	 dt a 	dt k 

• it is split into two regions where Q is continuous. The above expression is then solved 

using the values of Q immediately to the left and right of the discontinuity, denoted by QL  

• and QR  respectively (see Figure 3.2); that is: 

• 

	

Q(x, t)dx = f l  :Qtdx + Q41–ixt  + fk Qtdx – 	 (3.44) 

0 
• 4 	t4  

•

• 
• 

• 
a 0 
• 

Q(x, t)dx = – F (QL ) + F(Q(a)) + XQL  – F(Q(b)) + F (QR ) – XQ R . 	(3.45) 

* 
• 
0 
• d 	t)dx = F(Q(a)) – F(Q(b)) 	 (3.46) 
0 • 
• Equating the right-hand-side of (3.45) and (3.46), and after some algebraic manipulations: 

x QR - QL) = F QR - F QL) • 	 (3.47) 
• 
• 
• 
• 
• 

However, the conservation law requires that: 
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This relation is often called the Rankine-Hugoniot jump condition or simply the jump 

condition; it is denoted by the jump operator,II  II  [83]; that is: 	 • 

AIIQII 	

• 
• 

= iiFil 	 (3.48) 	• 
• 

	

Thus far, a class of generalised solutions to an initial value problem is found via 	0 
• 

geometric solutions and the Rankine-Hugoniot jump condition (in regions that may 

	

contain non-differentiable and even discontinuous functions). However, generalised 	0 

	

solutions often provide more than one solution for any given initial data with only one 	111 
O  

	

having physical significance (i.e. the solution is unique). In order to eliminate non- 	• 
• 

physical solutions, thereby achieving a unique solution, Lax [83] proposed that at 

	

discontinuities, an entropy condition must also be satisfied in addition to a jump 	0 
O 

condition. The entropy condition ensures that the characteristics continue to follow in the 

direction of the increasing dependent variable after intersecting with the discontinuity 

• [83]. The entropy condition is written as an inequality: • 

0, 
X(QL)> X(k) > X(QR) 	 (3.49) • 

	

For systems of N-PDEs, the entropy condition is generalised for cases of both increasing 	6 
and decreasing characteristic speeds on either side of the discontinuity; hence [85], 	• 

0 
(3.50) 

0 

	

(3.51) 	• 

where i = 1 	N A k-shock is defined as a discontinuity that satisfies both the jump 	0 
0 

	

relation and the entropy condition. In [83], Lax has shown that for linearly degenerate k- 	6 

	

shocks (see [83] for definition), the speed of propagation at the discontinuity is given by the 	0 

eigenvalue of the flux matrix at the discontinuity; that is: 
0 

4 

• 



53 

• X(k) = X i(Q). 	 (3.52) 

• Hence, the modified Rankine-Hugoniot jump condition is rewritten as: 

0 

xi llQII i  = IIFIl i . 	 (3.53) • 
where it defines the relationships between the flux variables on both sides of the • 

4 	 discontinuity surface (i.e.  FL  and FR ) and the solution variables at the cells neighbouring 
• 
• the discontinuity (i.e. QL  and QR ) in terms of the eigenvalues of the flux matrix, [A  il.  

• 3.3.2 Diagonalization and Flux Vector Splitting 

• Thus far, it has been shown that every initial value problem of (3.40) has a unique 
• 

generalised solution for t?_. 0 via either the characteristic lines or the modified Rankine- 
* 
• Hugoniot jump condition at the discontinuities [83]. However, in the majority of cases, 

there exists more than one dependent variable in each equation of the governing system of 
• 
• PDEs (i.e. the system is coupled) [20].  Thus, the first step in obtaining the solution is to 

• uncouple the system of equations. 
a • 
• Consjder the solution of the following quasi-linear hyperbolic coupled system of 

• PDEs in two independent variables, t and x: 

Qt + F x  = Qt +[A]Qx  =  0,  where Q = [q] and [A]  = 
q2 	 [-C 0 

0 -1 	(3.54)  0 

This coupled system of PDEs, i.e. 

•
(q 1 ) — c(q2) 

• (q2) t —  c(ql)x=  13   
• 	 (3.55) 

can be uncoupled and solved for a given characteristic variable, say  e = [Co i  e2  ; that is 9 
0 
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(3.56) 

where c and -c are the eigenvalues of the flux matrix [A] and 0 = [T]-1  Q [86]. In this 

- case, matrix [T] and its corresponding inverse, [T] 1  , are non-singular matrices which 

(el)t - c(ei)x = ° 
= o 

form the similarity transformation: *  

[T]-1 [A][T] = [A] = diag(X i) = [X1 0 1, 
0 X2  

where 

[n  = 
1 [ 	

L 
1 11 	1,„ 	 -- c „- 	c c , and [A] 
1 -1 	i -I 	c -c 	 0 c 

(3.57) 

(3.58) 

In general, a coupled system of N- PDEs 

written in the conservative form of (3.40) 

can be transformed to an uncoupled 

system [87], 

(ei)t ±x i(c'dx = ° 
i = 1, 2, ..., N, 	(3.59) 

where  [T] 1 Q = 0 = [e l  02  
— 

— and [T] 1  [A][T] = [A] = diag(? i). Thus, a coupled system of PDEs is converted 

(diagonalized) into a set of scalar PDEs and is represented in terms of the characteristic 

variable, O, and the corresponding eigenvalues of the flux matrix, [A] . For each equation 

of the uncoupled system of PDEs, (3.59), the generalised solution of an initial value 

* A matrix, [A] , is similar to a matrix, [B], if there exists a non-singular matrix, [T], such that 

[B] = [T][A][T]-1  

and matrix [B] is referred to as the similarity transformation of [A] [29 page 78]. 

Figure 3.3. Characteristic line solutions 
of a system of PDEs 
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problem is given along characteristics lines with slopes given by their respective 

• 
• eigenvalues [87]. 

•
Next, consider a diagonal matrix of eigenvalues of [A] , 

• 
• [A] = [A+] + [A- ] 	 (3.60) 
• where [A+ ] and [A- ] have diagonal elements, Xi  and X; , respectively. The above 
• 
• --1 expression is pre- and post-multiplied by similarity matrices, [T] and [T] , respectively. 

- 	 - 	1.-- [T][A][T] 1  = [T]aA 41+ [A ])[T] 	 (3.61) 
- Then it is expanded and simplified to (noting that [A] = [T] [A] [T] 1  ): 

0 

• [A] = [T][A+][T]-1  + [T][A-][T]-1  
• [A] = 	+ [A - ] (3.62) 

where the initial flux matrix, [A ] , is now represented in terms of two matrices, one with 
• 
• non-negative eigenvalues,  [A],  and one that has only non-positive eigenvalues,  [K],  • 

[87]. Following the substitution of the above in the original quasi-linear system of PDEs, 
• 
411 
• aQ • aaQt  + 	+ 	= 0 ax 	 (3.63) 

• the split flux matrices are taken inside the derivative term; that is: 

• aQ aF+  aF-+ — +— O. 	 (3.64) 
• at aX a 

•
The above expression indicates that the flux vector can be split into two sub-vectors (thus 

116 	the termflux vector splitting [86]) each corresponding to positive, in the case of F4 ,  and • 
• negative, for Y,  eigenvalues of [A] . The main advantage of using a flux-vector splitting 

• 
representation of the governing equations is its ability to formulate the problem via 

• 
directional signal propagation. This means that the original initial value problem is 

0 
6 
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represented as a sum of simpler problems where the direction of wave propagation is 	• 
• 

known and specified by the sign of the eigenvalues [89], thus allowing the use of 	• 
• 

directional-biased numerical procedures. The properties of directional biased numerical 	0 

solution techniques of PDEs and their advantage over more traditional central differencing 	a 
methods are discussed in the next chapter. 

O 
• 

• 3.3.3 Riemann Problems and Governing Equations 

The superposition principle states that for a given set of ("complex") linear differential 
(10 

equations with "complex" initial or boundary conditions, the solution to this set of • 
equations can be obtained via the sum of solutions of sets of "easier" linear differential • 
equations [20]. Accordingly, the solution to the initial value problem of (3.40) can also be 

obtained by solving a succession of simpler initial value problems with 	 • 
• 

Q(x  < 0,  0) = QL  and Q(x > 0, 0) = QR ; 	 (3.65) 0 
these simpler initial value problems are called Riemann problems [90]. 	 • 

It has been shown that the solution to a multi-dimensional spatial problem can be 

constructed via solving a succession of ID Riemann problems [90]. Hence, an initial value 	• 
0 

problem of a quasi-linear system of PDEs can be solved via successive Riemann problems 
• 

formulated using the flux-vector splitting method. In the case of the generalised vector 

form of Maxwell's equations, 	 0 
0 

Qt + ([A]Q)+ UBW) 11 + (fClQ) =  0, 	(3.66) 	0 

the system of PDEs is represented as three one-dimensional systems: 	 • 
• 

Qt+ ([11 1Q) = 0, 	 0 • 0, 	 • ' 
t  + ([C1Q) = O. (3.67) 	• 

• 
• 

6 
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•0 
0 where Q is the transformed solution vector given by (3.32). These equations are then 

solved in sequence using one of many available numerical techniques. 
• 
0 
• The eigenvalues of the original flux matrices of (3.67), i.e. [A],[13], and [C] given in 

• 
• (3.35) and (3.36), are found via the solution of the characteristic equation for each of the 

0 
• coefficient matrices (each being a polynomial of degree six). The resulting eigenvalues 

• 
• are: 

•
• 	• 

[AO = diag [-oc   	 /A! 	 
1110 	

0 	for a = 	 (3.68) 
-Y 

▪  

z .1.4.--ts • • • [A ] = diag [    0 	0 	for p 	„n 2 	(3.69)  

• J ,FLE J 1.,17tE 	J 	 ' I y 9  z 

0 
• 

 

[At] = diag 	 0 	0 	for y = y 	 r 2 r 2 . (3.70)  

Lip,E Liits Lilts Le..re ▪ 'Dz 

• Although the eigenvalues of each flux matrix contain multiplicities, they correspond to 
9 
• linearly independent (unique to a multiplicative constant) eigenvectors in each time-space • 
• plane. These eigenvectors are then used to compute similarity matrices required for 
• 
• diagonalization: *  

9 
UT 0-1  Q) t  + [ T 0-1  UT 0[A 4 ][T 0-1  + [T ][A- ][T 0-1  Q) = 0, 

• ([Tifi Q) t  + [rnfl arn ][An+ ][Tifi  + [Tn ][A.;1 ][T1 1 -1 Q)1  =  0, 

• ([T0-1 Q) 1 + [T0-1 ([Tc][At][T]-1  + [TO [A- ] [Tc]-I Qk = 0. (3.71) 

• After some algebraic manipulations, and after using the flux splitting procedure of the 

• 
• previous section, the following flux-split Riemann problems emerge as: 

• 
• * In the interest of brevity, the details of the computation of the eigenvalues of (3.68)-(3.70), the 

eigenvectors, and similar matrices of (3.71) are not included but are found in [77, 90]. 
• 



Q t + ([A +]Q) =  O,  Q t + ([111Q) = 

Q t + gelQ) -ri = 0 , Q t + ( LB ]Q)ri -= 

Q t  + UC÷ } Q)c = 0, Q t  + ([CiQ) = 0 , 

where the flux split coefficient matrices are given by: 

[A I  = 

2JujirE 2Jajrue 2Jajr.tE 

ex +  

2Joc,Fte 2Joh-tE 2JaJFE 
2 	2 

2Ja,„/FLrE 2Ja 1,171,6 2./cc 

	

-(ey  ez )  	 
2JaAirtjE 2Ja jArCE 2./adit-E 

	

xy 	
2 	2 

z ) 	yz  

2Ja,FtE 2JocirtE 2Joc,ATE 

	

Lz  	

 

-( 2» - ) 
2Jcc,fiTE 2Jcc,/iti 2Jot 

o 

21 11  2Ja 1,CATE 2Ja,,FIE 2./cTFE 

•

n 	 ex+  
2JJL - 	2 .11-1  2JcLAJ 	2Joc,Kii 2Joc1„6:CE 

y 	 X 	 0 	X Z 	YZ  	 

2 fit 	2,41 	 2Joc 1,1U 2Jujit-E 2Jou iFtE_ 

24 	2Jji 	2Ja 1,1.7E 2JoceCE 2Jot 1,./7E 

	 -gx2  z2 )  	 
0 

	

2 .11-t 	2Ja 1,17tE 2Jot„ATE 2JajilFE 

—Y- 	 0 	
24 	 2Joc 	2Jcc,FIE .  

0 	Z  

0 
2JE 	 2JE 

2JE 	2JE 

0 

2JE 

2JE 	2JE 

0 

2JE 	2JE 

2JE 	2JE 

0 

0 

0 
. 	(3.74) 

(3.72) 

(3.73) 
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• 
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0 • 
• • 
• 
• • • • • • • • • 
• 
• • 
0 

• 
• • • 

• 
• • 
• 
• 
• • 
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The expression of the other flux split matrices is obtained by: (1) replacing with II (in 

the case of [B+ ] and [13]) or (in the case of [C+] and [C] ) for partial derivatives; and 

(2) replacing variable a with [3 (in the case of [Bk ]  and [In) or y (in the case of [C+] 

• and [Cc ] ). • • 
• • 3.4 Summary 

• 
• In this chapter, the governing equations of an EM field problem were expressed in 

• terms of Maxwell's equations in vector form on a curvilinear frame using a general 

• coordinate system transformation. It was shown that the solution to this multi-dimensional 

• system of PDEs can be obtained through solving a succession of flux-split one- 
s 
• dimensional Riemanri problems. The generalised solution to each equation of this set of • 
• scalar PDEs is given via the method of characteristics along with the modified Rankine- 
* 
• Hugoniot jump condition. Since the direction of wave propagation in each one- 

• dimensional time-space flux-split Riemann problem is dictated by its corresponding 
• 
• eigenvalue, directional biased numerical techniques can be used to solve each Riemann 

• problem. The next chapter is devoted to these types of Riemann solvers. 

O 

• 

• • 
o • 
9 * 

• 

• 
O 

6 
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• • • • • 
• 
• 
• Chapter 4 • 
• • The Finite-Volume Time-Domain Method • 0 
0 

9 
0 

• 
• 

The traditional FVTD method is based on the subdomain method, a subclass of the 

method of weighted residuals [24]. In the subdomain method, the computational space is 

• 
divided into discrete domains where the conservation law is enforced via the governing • 

0 
equations. In the original FVTD method, the integral form of the governing equations is • 
discretised; thus, the update equations require the computation of cell volumes and cell • 

• surface areas (where fluxes flow) [24]. In contrast, the FVTD method (in the context of 

this document) operates on the semi-discrete di fferential form of Maxwell's equations in • 
the time domain. The three-dimensional Maxwell's equations are cast on a general • 

111 
curvilinear coordinate system and are expressed in the form of a system of PDEs given in 

9 
• (3.31) to (3.36). The field and flux vectors in the general coordinate system are expressed 

• 
• in terms of their Cartesian counterparts via a coordinate transformation and its respective 

• Jacobian,  J,  of transformation, (3.26) to (3.30). Since the Jacobian of transformation is • associated with the volume of a discretised cell, V, (where V = 1/J), this method is 

O • 61 • 
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(erroneously) known as the finite volume method [17]. 

In Chapter 3, it was proposed that the solution to the aforementioned system of PDEs 

can be obtained by incorporating solutions of one-dimensional flux-split Riemann 

problems. This class of Riemann problems is well suited to be solved using directional 

biased numerical techniques, such as the family of windward (upwind) schemes. In this 

chapter, one such characteristic-based windward Riemann solver (known as the Lax-

VVendroff (LW) upwind scheme) is considered, and the appropriate expressions for 

solving three-dimensional Maxwell's equations are derived. 

4.1 Characteristic-Based Windward Riemann Solvers 

The flux-vector splitting procedure, which was originally developed by Steger and 

Warming for the conservation form of inviscid gas dynamic equations [87], is easily 

adaptable for solving the time domain Maxwell's equations. The direction of wave 

propagation in a flux split Riemann problem is given by the sign of the eigenvalues of the 

flux matrix where positive eigenvalues are associated with forward (right) travelling waves 

and negative eigenvalues represent backward (left) travelling waves [26]. The solution to 

these types of Riemann problems is best obtained by windward schemes. 

In the windward class of algorithms, the unknown variable is computed using only 

variables downwind to the direction of the signal (wave) propagation. This is in direct 

contrast to traditional central differencing schemes where a symmetric computational 

molecule is used (see Figure 4.1). Some of the advantages of using windward schemes 

over traditional central differencing schemes include: (1) superior dispersion and stability 

properties, (2) a simpler and more accurate representation of fixed exte rnal boundaries, 
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and (3) a more accurate representation of discontinuities [92]. The only disadvantage of 

using windward schemes is that the propagating waves must remain upwind with respect 

to the computational stencil. This can be easily achieved in most EM field problems since 

the original wave is split into two sets of components (via a flux splitting procedure where 

one set is travelling forward and the other set is travelling backward). By using forward 

differencing on the backward travelling waves, and by performing backward differencing 

on the forward travelling signals, the scheme remains upwind and stable regardless of the 

direction of the signals' propagation within the simulation space (see Appendix A for the 

definition and notation of differencing operators). 

tj 

2At 

At 

ti 

2At 

At 

àx 	2Ax 0 	Ax 	2Ax 

ti 

2At - 

At - 

0 3Ax 3Ax 

Figure 4.1. Various stencils for spatial differencing: (left) central differencing, (centre) 
forward differencing, and (right) backward differencing 

The aforementioned flux split Riemann problems can be transformed into discrete 

algebraic equations through one of several explicit windward finite difference 

discretisation procedures, such as fractional-step algorithms, single-step or the multi-

stage Runge-Kutta family of procedures, and LW upwind schemes [91]. All of these 

explicit schemes are (at least) second-order accurate in space and time. In this thesis, the 

explicit LW upwind scheme was the method of choice for discretising and solving 
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Riemann problems. This method was chosen primarily due to it ease of formulation and its 

proven track record in the field of CEM [93, 94]. 

In the following sections, two second-order accurate upwind schemes are derived. 

First, a symmetric (MacCormack's) windward algorithm [95] is considered, and some of 

its disadvantages are discussed. These discussions will pave the road for the derivation of 

a fully windward scheme (i.e. the LW scheme) [92]. Although the presence of source 

terms or losses (the S vector in (3.31)) in the governing equations has been mentioned in 

most FVTD related work [16, 26], the formulation of these terms has not been explicitly 

discussed. Only recently has an attempt been made to formulate non-homogenous Euler 

equations using the LW technique [96-98]. Unfortunately, all of the previous LW 

formulations of source terms are simplistic in their approach; that is, the source term is 

simply added to an already available LW update expression. In the following discussions, 

the source term is included at the beginning of the formulation of the LW algorithm; 

hence, the non-homogenous PDEs are rigorously treated and their solution is derived. 

4.1.1 MacCormak's Scheme 

Consider the non-homogenous one-dimensional flux split Riemann problem: 

= S, 	 (4.1) 

where F.-  and S are linear functions of the solution vector, Q; see (2.4); hence, 

= [A]Q, and S = [10Q .* 	 (4.2) 

A second order accurate time-derivative (using forward differencing), 

* From this point on, the square bracket, [  1,  of the matrices and the superscript " -" of the split flux 
vectors and matrices are dropped in the interest of conciseness. 
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0 • 
• z  Q7 ,1 -Q t:  àt  

• (Qt); = 	A t (Q ) 1! 2 	tt 	 (4.3) 
0 
• and space-derivative (using a centred differencing stencil), 
• 
• 

Ii 	 II  • 
• 

	

(Qx) j
t 
 = 	2Ax 

- - 	 (4.4) 
• 
• Taylor series expansion is utilized to approximate equation (4.1); i.e. 
• • Q7 ,1 -Q7 	 7  A 	 p •  • 	 A t 	u/t 	2Ax 

	 = Ka; 	(4.5) 2 ‘tt  

• Next, the Riemann problem of (4.1) is differentiated with respect to time and space; that is: 

O  
• Qtt+Fxt = st, 	 (4.6) 
• 
• Q/x Fxx = Sx 	 (4.7) 
• 
• The definitions of flux and the source term in (4.2) are substituted in the above equations, 

• 
• and after some algebraic manipulations, Qtt  is determined as: 

0 • 
• Qtr = A 2Qxx + KQt —AKQ x , 	 (4.8) 

• which is then substituted in (4.5), 0 
9 
• n+1  Q7  At 2  n A t 	/ At 	 1 — F1.1  /I 	1+1 	/-- 
• 2 A (Qxx ) 	K(Q t) /  i + AK(Q x ) i + 	= O. (4.9) 
•

A t 	 2Ax 
• The time derivative of (4.9) is approximated by a first order accurate forward differencing 
• 
• scheme, whereas the spatial derivatives are estimated using a second order accurate centred • 
• differencing formula; thus: 
• 

• • • 
O 
0 • 
• 
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• 

• 
• 
• 
• 

	

(4.10) 	• 
• 
• 
• 
• 
• 
• 
• 
• 

	

(4.11) 	• 

• 
• 
• 

• 
• 
• 
• 
• 

• 
• 

• 
• 
• 
• 
• 

	

(4.14) 	• 
• 
• 

e ÷ 1  - e  AtA 2(Q7+ 2Q7 e--1\  + F7+ 1 -  F7-1\  
Ax 2 At 	2 	 2Ax 

+ —2
AK 	

2Ax 	2 	At 
At [Q7 + — Q7_ ij  AtK[Q7 +1  - e 

Grouping all of the error terms and solving for Q7 + 1  yield: 

Q7 ,1 	n At2   A 2 n 	n 	n 	At e 2  (Qi  + 1  2Qi  
2Ax  

At2 	 At 	+1 
I e I )  + 7K(Q7 4-  Q7)  = 0 . 

From the relation F = A Q and the addition of a zero term, Q7 - , to (4.11), it becomes: 

At2 F t; 1  _ 	I (2I - AtK)Q7 +1  =  
A x2  ‘ + 

At 	n - — A 	 Q? t A (Q 1.1 - Q l 	' + Q.1  - e). Ax 	i+i 	/-1 	2Ax 	i+i 	/-i 	/ 	/ 
(4.12) 

The next stage of the development of the scheme requires the reorganization of (4.12) 

into easily recognizable patterns; i.e. 

(2-  AtK)Q7 + 1  = (2 + AtK)Q7 -(2 + AtK) ÎAFI:x  A (Q7 — e _ 1) 
At A {(2 + Ate  n 	At n 	n (2 	± AtK) Q 	(F. -F n At n 	n 
Ax 	, 

Qi+ 	Ax (Fi+ I Fi ) 	 . - 	. 
2 2 	Ax 	- ,)  

(4.13) 

Now the predictor term can be defined as (see Appendix A for definition of backward 

difference operator,  V):  

Q11+ = (2 +2A t.K) Q/ii,._tc(p ìi 	1)  

= (2 + 2AtK) Qiii__ÀAt v  

I \ 

KQ7 = O. 



n +1 

n +1 

i+1 

Figure 4.2. Numerical stencil for 
MacCormak's scheme 
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Then equation (4.13) is rewritten in terms of the predictor: 

At 	i! 	At 	+1 _n1.1+ 1 \  (2—  AtK)e +1  = (2 + AtK)Q7—(2+ AtK) _A( Q 
2Ax 	 ) 

_ A( 
Ax  n ut+i 

(4.15) 

where it is reorganized once more in order to outline yet another familiar pattern, i.e.  

(2 — AtK)Q7 ÷1  = 

(2 + AtK`  1(2 AtK)e + (2  + 
2 	

2AtK)Q7 — .3,A1A (Q7 _ Q7_ )1 _ 2t7t, (F7: il - +1). L  
(4.16) 

After using the definition of the predictor, the corrector is given by: 

(2 — AtK)Q + 1 =  (2  + Ate 
2 ) .P — à110Q11 + +1 1_ At Ape/ 

Ax  
(4.17) 

This scheme is referred to as MacComak's scheme; the complete update of the field 

components consists of the evaluation of both the predictor and corrector terms: 

n +1 (2 + AtK\  
Qi 	2  

AtK)e + Qt; +1 } wiz + 1 _ (2 + AtK){  ( 2  	(A tlA(F - )7 +1  
AtK 	2 	 A.x) 2— AtK • 

(4.18) 

It must be noted that the above formulation of 

MacCormak's scheme is only stable for negative 

eigenvalues of [A]  (backward travelling waves). 

However, this scheme is only a quasi-upwind 

algorithm; although, the predictor is based on a 

one-sided (upwind) stencil, the corrector still 

requires points to both the left and right side of 



• 
68 • 

• 
• the wave front (i.e. the update point), thus rendering the overall technique essentially a • 

	

centred-difference scheme (see Figure 4.2). Since in most applications a fully one-sided 	• 
• 

scheme is desired, the LW algorithm is considered next. 	 • 
• 
• 
• 4.1.2 Derivation of a Fully Backward Lax-Wendroff Scheme 	 • 
• 

	

Consider a generic one-sided update equation for the flux split Riemann problem, 	• 
• Qi  + [A ]a, =  S,  which is supported by fields at (i, i – 1, i – 2) , 
• 
9 Q pit + 

	

aie + ai- 	 + ai- 2e- 2 	 (4.19) 	• 
• 

	

where a ai  _  1'  and a i  _ 2  are coefficients which contain both spatial and time steps, Ax 	• 
• 

	

and  At, as well as matrices, [K] and [AI .* The second order accurate Taylor series 	• 
• 

expansion of Q7 + 1 , Q 1 , and Q7_ 2  ; that is: 	 • 
• 
• 

n 

 

+1 	At2 
Qi 	+ At(Q,).n  + —(Q )1.1  + 0(At3 ) , 	(4.20) 	• 

	

, 	2 	tt • 
0 

Ax2 • «1_ 1  = 	Ax(Q x )'; + 	(Q)?+ 0(Ax 3 ) , 	(4.21) • 
• 

n 4Ax2 	 • 
2 = Qi; –2Ax(Q x ) i  + 2  (Qxx )ni  + 0(Ax 3 ) , 	(4.22) 	• 

• 
is substituted in (4.19), 	 • 

• 
• 

A  2 	 • n 
Qtit  At(Q t) i 	(Qtr); + 0(At3 ) 	 • 	 • 

A  2 	 • 
= a ie + a i  _ 	– Ax(Q x )`; + L-1"; (Qxx )': + 0(Ax3  )1 	 • 

a i  _ 2{e – 2Ax(Q x); + 4Ax2 2  (Qxx ):! + 0(Ax 3  )1 	
• 
• 

	

(4.23) 	• 
• 

* Once more, the square brackets and the superscripts are dropped for brevity. 	 • 
• 
• 
• 
• 
0 
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• 
• 
• and after the expansion of the above expression, 

• 
• A 2 

+ At(Qt )'; — 	(Qtt)'; + 0(At3 ) 	(a  i+ ai _ 1 + ai _ 2)Q7 • • 
• 3,,c2 
• - Ax(a i _ 1 +2ai _ 2)(Q) + 	4ai  _ 2) (Q1)1  + 

• (4.24) 
• Next, the expressions for Qtt  and Qt  from (4.8) and (4.1) are substituted in (4.24); that is: • 
• 
• Qtt  = A 2Q1x  + KQ t  — AKQ x  

•
• = A 2Qxx + K(KQ— AQ x ) — AKQ x  
• = A 2  (Q) + K2Q7 — 2AK(Q x); • (4.25) 
• 
• Hence, it becomes: 

• 2 
•

e Atin  \ I!  At 1 ,4 2 (Qxx) /ii + 
A 
-2 

‘ t 'i 	2 	Q. -2AK(Q x) 1:1+ O(t3 ) = 
• 2 • n Ax  (ai + ai  _ 1 + ai  _ 2)Q1/ — Ax(a i  _ 1  + 2ai _ 2)(Qx ) i  + 2  (ai  _ 1 + 4ai _ 2)(Qxx )': + 0(Ax 3 ) 

• (4.26) 
• 
• which is rewritten as: 
• 
• • 

(Qt) 1; — AtKA(Q x)? +11  
1 	At 2 	2 	) + 0(At2) = • AtK2 Q7+  AtA  2 i Qxx , 

• 
• ai + ai  _ 1 + ai _ 2 	 3 Ax2  
• At 
	 Q? 

Ax 
 (a. +2a• 	2At . 	a. 	n 0(Ax ) 

At 	2)(Q ) + 	(a 

	

x 	- 1 + 4 - 2)(Q ) xx 	At • 
• (4.27) 
• 
• Next, (4.28) is reorganized and is compared to the original Riemann problem, 

• 
• Qt + AQx —KQ =  O .  It it apparent that the right-hand-side of (4.28), which approximates 

• 
• the original Riemann problem, is second order accurate both in space and time (assuming 

• 
that At = 0(Ax)). • • • • • 



• 
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• 
• 
• 

(Q 1 )7 + A (Q x )ni - 	= 	 0 
{a i + ai _ i + ai _ 2  1 	 • 

	

t  n Ax 	 A tK2 ei  (Q ) 	_ + 2ai  _ 2 ) - AtKA}(Qx)1; 	 n • 

	

At 	At 2 • 
• { At A 2 Ax2 

2At
(a. + 4a. ) (Q ) n. 0(At 2 ) -1-

0(Ax3)  • 

	

2 	-1 	t- 2 	xx 	 At 

	

(4.28) 	• 
• 

	

The unknown coefficients of (4.19) can now be determined by equating the 	• 
• 

coefficients of the like terms on the left- and right-hand-side of (4.28); hence, the 	• 
following system of equations is obtained: 	 • 

• 
• 

	

ai  + ai _  +a_2 1 AtK2 = K, 	 • 
At 	At 2 

Ax 	 • —At (a + 2ai  _ 2 ) - AtKA = A, • 
At 2 Ax

2 
 —2 A 	(a. 1+ 4ai _2) = 0. 	 • 2A t 	 (4.29) 	• 

• 
A change of notation, defined by: 	 • 

• 
• p = —

At 
A

,  a = pA , and f3= AtK , 	 (4.30) 	• x • 
is followed by further algebraic manipulation resulting in: 	 • 

• 
• 

4.  02  • 
• 

	

ai _ 1 +2a1 _ 2  = 	a13, • • 

	

ai  _ 1 + 4ai  _ 2  = 0C2, 	 • (4.31) • 
where the unknowns in this system are the coefficients of (4.19); that is; 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 



a • 1(a2 
- af3 - a). 

2 (4.32) 

a(1 + E3) nn 
2 

a,(1 -113),,n (1 +f3)20 	!-Q/.1 
2 vi -r 	2 	1  2 I  

2 ra(1 + 	- 	I L 2 	
- 

-1 Q7 
+ 7' 

-Q7_2)]} 

(4.35) 

a. = -1 (1:12 
± 13

2 - 3a5 -3a+ 213 + 2), 
2 

ai  _ 1  = 	+ 2af3 - a2, 
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As a result, the update equation of the Riemann problem of (4.19) is given by: 

2Q7+ 1 = (a2 p 3af3 + 213 - 3a + 2)e + (44 + 4a - 2a 2)Q7_ (a2  - a - af3)e_ 2 . 

(4.33) 

It is reorganized into: 

«1+1 
2 

+ 
2 

+ 
2a(1 +13) nn 	2a2 

 ,n 	a(1 + f3)
Q

,
! + 

a(1 + f3)
Q 

 n 
2 2 	1 + 	2 	 2 	. 

-1 	 - 

a(1 + f3) n 
2 Qi 

_ °co + ro n?  
2 '` 

2 
1rj( .1  
2 1-2  (4.34) 

and then is put into recognizable patterns, such as: 

	

Qfl+I 	(1(1 13) fro 2n? + n t: 2\  
= 	2 

2 

	

• 	{[CC(1 2+ 13)Q7 C; (Q7 Q7-1) 1 

[(1 +2 0) 2Q,,,  a(12+ 0) (Q7 Q,;  

After substituting a = pA and after further simplification: 

Q  tit + 1 p(1 + 	n 	n 	n 
2 

- 2 

+ (1 	4- I3) [( 1  +)Q7  - PAW': - Q11_1)1 + 91 . 2 	 2 (4.36) 



• 
• 
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• 

The predictor is then defined by: • 
• 

Q
fl  • +1  = (1 + 13) Q7 -P A (Q7 - 1 ) = (1 + P)Q7-PVF7 (4.37) • 

• and the corrector becomes: • 
• 
• 

Q ," + 	p(1 2+ 13)Av2 Q7  p2A { Qiii +1 Q7 	( 1 +2  	 + 
2 	(4.38) 	• 

• 
• 
• 

eigenvalues of [A] ) is given by: 	 • 
• 
• 
• 
• 
• 

Q.  1-  1  = 1 	
At 	+ (Q? + (I + AtK i)Q7 +1) - 2 	 2-K-V(F)7+1- (/ + AtK) 2AAt v2(F+)7. 	• 

(4.39) 
• 

4.1.3 Derivation of a Fully Forward Lax-Wendroff Scheme 	 • • • The derivation of a forward differencing version of the LW scheme begins by 
• 

considering the flux split Riemann problem: 	 • 
• 
• 

Qt  +  F  = Qt + [A: ]Q x = [K]Q 	 (4.40) 	• 
• 

and its generic solution: 	 • 
• 
O 

	

Qfl +l = b iQ7 + b i  1Q7+ 	 (4.41) 	• 
• 

	

where b1,bi+1 , and bi+  2  are unknown. The second order accurate Taylor's expansion of 	• 
O 

the terms Q7 +1 , Q7 , , and Q7  + 2  is given by: 	 • 
O 
• 

	

A  #2 	 • Q7 + 1  = Q7 + At (Q).  +  ----(Q)  + 0 (At3  ) , 	 (4.42) 	• 
• 

* Once more, the square brackets and the superscripts are dropped for brevity. 	 • 
• 

Hence, a fully backward version of the LW scheme (which is stable only for positive 

Q7 +1  = (I + AtIC 	- ItixV(F+)'; 
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• 
• 
• Ax2 
• Q7+1 = Q7 +  Ax(Qx) i; 	 °(Ax3) 	 (4.43) 
• 
• 4Ax2  • Q7+ 2  = 	+ 2Ax(Q x): + 2  (Qxx )'; + 0 (Ax 3 ). 	(4.44) 
• 

	

1 • 	Thus, (4.41) becomes: • 
• 
• • Q7 4.  A  t(Qt yil A2t2 (Quyit o(At3 )  

• A  2 
• = h ie+ b 	+ Ax(Q x)': + 1—(Q xx )'; + 0(Ax3  )1 • 
• 
• b +2{Q7 + 2Ax(Qx)'; 4. 4 A2x2 (Qxx);:i ± 0 (Ax3 ) 

• (4.45) • 
• and after substituting terms from (4.8) and (4.1) for Qtt  and Qt : 

• 
• (Qt )'; — AtKA (Q + {-kt  + - - i2 }Q 1; + .322,  A 2(Qxx) 1; 0(At2) = • 
• 
• bi +b i+ 1+bi+2  „ Ax 	 n 0(Ax 3

)  	+ 	(b +1  , + 2b 1+.c.  ,.,)(Q ) 1.1  + Ax 2 
 (b i +1 + 4b + 2)(Qxx) + 	. • At 	 A t  1 	 X 	2A t 	 At • (4.46) • 

• Again, the truncation errors of (4.46) imply that the approximation of the Riemann problem • 
• of (4.40) is second order accurate in both space and time. • 
• After equating the coefficients of the like terms of (4.46) and using the notation of • 
• (4.30), the following system of equations is obtained: • 
• 
• 2 

= 1 + f3 + 1!* 
• 
• • 
• bi+  + 4bi+2  = a

2 
(4.47) 

• 
• where its solution is given by: 

• 
• 
• 
• 
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• 
• 

bi 	4. 52 + _ OE „ p+3a+ 43+2), 	 • 
• 
• bi÷i  = a2 -2a-24, • 
• b 	1i+2  = -i (ct2  — (43— a). 	 • (4.48) • 

The above coefficients are substituted back into the initial update equation of (4.41); that is, 	• 
• 
• 

2Q7 +1  = (a2 + [3. 2  + 3af3 + 2f3+ + 2)Q7 + (2a2  — 4aI3 — 4a)Q7_ + (a 2  — a — af3)Q7_ 2 	• 

	

(4.49) 	• 
• 

which is reorganized into: 	 • 
• 
• 

Q7+1 	a(1 2+ [3) Q7 	a2 Q7 4.  a(1 2+13) Q7 	a(1 2+ [3) Q7  + (1 +213) 2 Q7 	• • 
2 

2a(1 + p)  n 	2a
2 
 n 	a(1 + 	n 	a(1 + E3)  n 	 • 

2 	Qi+ 1 	2 Qi+ 1 	2 	Qi+ 1 	2 	Qi+1 	 • 
• 

a(1 +13),y/ 	a2
fin 	 • 

2 	+ 2 + 	 • 

	

(4.50) 	
• 

and then is put into recognizable patterns, 	 • 
• 
• 

p(1 + 5) A(Qni+2 _ 
• 2Qi

n 
 + + Q7) 	

5 
2 	 • 

Q7+ PA(Q7+1 —  Q7)1} 	 • 2 	 • 
Qr 	 • 

+ (1 + [3)  + P)Q7 - pA(e +  - Q7)1 + 	 • 2 	 (4.51) 	• 
• Thus, the predictor is defined as: 	 • 
• 
• 

Q. + 1  = (1 + 3)Q7 -pA (Q7 + 1-Q7)= (1+ 13)Q7—PAF7 	(4.52) 
• 

and the corrector becomes: • 
• 
• 

Q7  + 	p( 1 +13) A 2 Q7  p2A  { Q7++ 11 Q;i + + (1 +2 13) Qiii +1 + Q7 	(4.53)  
2 	 2 	

• 
• 
• 
• 
• 
• 
• 



i+1 i+2 

• 
• 
• 
• 
• Hence, a fully forward differencing version of the LW scheme (which is stable only for • 
• negative eigenvalues of [A] ) is given by: • 
• 
• =(1+AtKi)Qi --A(F )i , • Ax 
• 
• 

• 
• 
• 
• n+1 	 n+1 • 

•

• 
• n+1 - 	 Y 	71 -A 	 n+1 • • • • _ • • • • • • • 4.1.4 Derivation of a Fully Windward Lax-Wendroff Scheme • 
• 
• In the previous sections, two versions of the LW upwind algorithm were derived, each 

one suited for solving complementary flux split Riemann problems (see Figure 4.3). In • 

•
• 

contrast to Section 3.3.3, where the principle of superposition was utilized to split 

• 
Riemann problems, the principle of superposition is now applied to devise a fully • 

• 
windward LW algorithm via combining the update equations of fully backward-forward • 

• 
LW schemes given by (4.39) and (4.54), respectively. These new update equations, which • 

• 
are capable of solving Riemann problems containing both negative and positive • 

• eigenvalues, are given by: • 

75 

• 1-1..A. 	 (4.54) 
+1 	1 	/1+ 	At 	_ n+1 

Q; = -(Q? + (1 + AtK i)Qi  ) - 
2AxA(F 

 )i +  (1+  2 	
At 2 i  F- )7 .  

2Ax 

i-2 1 - 1 

Figure 4.3. Numerical stencils for a Lax-Wendroff scheme: (Left) fully backward LW 
and (right) fully forward LW computational molecules 
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Q7 +1  . (I + AtK i)e- A-Alx V(F+)7 - 	)7, 

n 	 n+1 	At 	n+1 	 At 2 + n Q7 +1  = 2-(Q i  + (I + AtK i)Qi  )- 2—AxV(F  )i - (/ + AtKi)2AxV  (F )i 

At 	_ n ±1 	 At 2  -'i  - 	)i + (/ + AtK i ) 2-7.x A (F )i  2Ax (4.55) 

4.2 Determination of Fluxes in the LW Scheme 

In addition to the flux-vector splitting procedure (see Section 3.3.2), the flux-

difference splitting technique [99] has also utilized for solving Euler equations via flux 

split Riemann solvers [24]. Both methods allow for shock waves to be captured at 

discontinuities using the modified Rankine-Hugoniot jump condition [100]. The main 

difference between these two methods is their approach to resolving fields at 

discontinuities. It has been shown that in the case of an inviscid flow simulation of CFD 

problems, the eigenvalues of the governing equations are functions of the dependent 

variables; thus, the generated flux-vector split expressions at best only approximate 

Riemann problems [26]. This class of problems is more accurately solved using the flux-

difference splitting (with limiter) technique [101, 102]. However, in the case of CEM, the 

eigenvalues of the governing equations are independent of the EM fields; hence, the flux 

split Riemann problems more accurately model Maxwell's equations [26]. In addition, the 

discontinuities in a CEM problem are due to a change in material properties (with jump 

conditions located at cell interfaces), whereas in CFD, the discontinuities are often due to 

shocks encountered in supersonic flow, which are much more severe than in the case of a 

CEM simulation [89]. The difference in solution of time-dependent Maxwell's equations, 

formulated using either flux-difference splitting and flux-vector splitting schemes, has 
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been reported as insignificant [77]. Therefore, in this document, the flux-vector splitting 

procedure is preferred over the slightly more accurate but more complex and 

computationally less efficient flux-difference splitting technique. 

4.2.1 Numerical Fluxes 

The LW formulation given in (4.55) requires the calculation of split fluxes (and their 

respective coefficient matrices) at every point. It is more computationally efficient if these 

split fluxes are lumped together and then represented using a single variable. Previously, 

flux vectors were defined in terms of tangential field components on constant coordinate 

surfaces (see Section 3.1.2). In addition, these tangential components represent (and 

enforce) boundary conditions on computational cell surfaces. Since a cell-centred FVTD 

algorithm (where the field components are located in the centre of the computational cell) 

is of interest, the flux vectors have to be computed on the cell walls that are located at the 

half-grid points (i.e. i+  1/2). On any given cell wall, a numerical flux, hFi , 1  /2  , is 

defined as the sum of total influx. Hence, the following numerical fluxes can be defined as 

(see Figure 4.4): 

it+ 1/2 = (F+) i+ (e )  +1 , 

1 i- 1/2  = (F+)j---1+ (ni, 

h .r +3/2 = (F÷ )i + 1 + 

3/2  = (F+)i- 2 + (r)i- 1 • 

The flux split difference terms of the 

windward LW algorithm can be written in 

terms of the numerical fluxes defined in 

(4.56). In the case of the predictor 

F 
'1+1 

i+1 

1+1/2 

Figure 4.4. Numerical flux configuration 
in a windward scheme [22] 

(4.56) 

1-1/2 



• 
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equation, the first order flux split difference terms are first expanded and then are 	• 
• 

reorganized into: 	 • 
• 
• 

V(F+ )7 + A(F -)7 (F+)7 - (F+)7- + (F-)7+ - (F - )7 , 	• 
• = [(F4- )7 + 	+ 1 11  - [(F+)7 1 + (F- )7]. 	(4.57) 	• 
• 

Subsequently, the above equation is compared to the expression of numerical fluxes given 	• 
• 

in (4.56). Thus, the first order flux split difference terms are given by: 

• 
• 

= (h+ 1/2)n — (h. 1/2) n  • 	 (4.58) 	• 
• 

Similarly, the second order flux split difference terms of the corrector are written as: 	 • 
• 
• 

2 + n 	2 _ n 
V (F )i - A (F )1 = 	 • 

• 
= (F4  )7 - (F+)7 - 1 - (F+  _ 1 + (F+  - 2 —  (F+2+(ii- )7+1+ (F-  ) 11 + - (n7, 

• nn = [(F+)7 +(p-)7+1]-[(F+)7_1+(r)71+[(F+)7_2-(F+)7_1]-t- (Y )1 + i + (F- )+ 2] 	• 
• 

= (11 ç + 1/2) n  — (he"; 1/2) n  + RF-F ) tiz— 2  — ( F4-)7— 	[— (e)7+1+(r)7+2}. 	(4.59) 	• 
• 

Using the definition of flux splitting, the split flux components can be rearranged to: 	 • 
• 
• (F+  ) 11 --  i  = 	1  - (F)7 	and -(F.  )7 +  i = -F7 + i  + (F)7 +  1. 	(4.60) 
• 

After substituting (4.60) in (4.59), the expression for the second order flux split difference 	• 
• 

terms of the corrector becomes: 	 • 
• 
• 

- A2  (F n  )i = 	 • 
• 

= (hç eF 1/2) n  — ( 11  1/2)n  ± [(F 4)7— 2  + 	- F7_1- [(F÷)7+1 + (r)71-21 + F7 4. 1 	• 
• 

(h+ 1/2) n  — VI P  - / 2)n  + (11'  3/2)n  — F7- 1 - (h+ 3 2)n  + + 1 	(4.61) 	• 
• 

Thus, a fully upwind version of the LW algorithms can be written it terms of the numerical 	• 
• 

fluxes as: 	 • 
• 
• 
• 



xk l1Q11 = 11E11, (4.64) 

Q. + I  = (I + AtK i)Q7- 2,Et  ..[(h+ 1/2 )n  (hç.  1/2)n]  
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Q fl + l n 	 n+1 = 
2
-(Qi  + (I + AtK i)Q i  ) 

\I 	F 	" — 	AtK i ) 	 rri 
ii-3/2j  

At r F 	n + 1 	F 	n +11 

—2AXL(hi+ 1/2) — 

fly 	\n 	F 	\n 	 \n (h_ 1/2) 	V`
7.

i+1/21 	V`i+312) F7_ 1 + É ÷ 1 ]. 

(4.62) 

4.2.2 Evaluation of Numerical Fluxes 

The next step in developing the LW version of the FVTD algorithm is computing 

numerical fluxes located at cell boundaries (interfaces). However, in order to accurately 

model cell boundaries, the calculation of numerical fluxes at discontinuous regions (i.e. 

cell interfaces) must satisfy Maxwell's equations; that is, the variation of material 

properties (such as permittivity and permeability) on either side of the boundaries must be 

considered while allowing for the continuity of tangential electric and magnetic field 

components. In other words, the numerical fluxes have the same property as flux vectors 

but are located at (i + 1/2, j, k); hence they are defined as: *  

	

i[ax 	1/2  
h i+ 1/2, j, k = 	 • 

	

X 	+ 1/2i  k 
(4.63) 

In Section 3.3.1, the unique solution to an initial value problem posed on a 

discontinuous region is given by the modified Rankine-Hugoniot jump relation, 

where X k is the speed of propagation at the discontinuity given by the eigenvalues of the 

* Although the current discussion revolves around the derivation of a 1D-FVTD algorithm, in the 
interest of completeness, 3D field components are operated on in order to facilitate future derivations. 

t From this point onward, the superscript of the numerical flux vectors corresponds with the flux 
vectors that they are representing. For the definition and notation of flux vectors, see (3.27)-(3.29). 
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(4.65) 	• 
• 
• 
• 
• 
• 
• 
• 
• 
• • • • • • • • • • • • • • • • 

flux matrix, [A] (E = [A]Q), and the jump operator, II II, is defined by the difference 

between the right and left quantities adjacent to the discontinuous surface (see 

Section 3.3.1). Therefore, at a constant surface, 	the jump condition for Maxwell's 

equations can be written by substituting (3.26) and (3.38) in (4.64); 

Figure 4.5. Visual representation of a jump condition at the interface between two cells 
[17] 

The flux matrix,  [A]  , has at least three distinct eigenvalues given by (3.68) which indicate 

three distinct cases of jump conditions. These three cases can be represented in terms of the 

field and flux components of the cells using the jump operator (see Figure 4.5); that is: 

(A) forward travelling waves (X > 0 ) 

LI) i + 1 — 	k  

B 1  -B 
 

• • • • • • • (4.66) 	• 
• 
• 
• 
• 
• 
• 

X i+1,j,k 

—ao 

ao(Ei+i —ER ) 

(. 91-  -HR
) 

j,k 



B L - B . 11 	= 
k[ L  

D 

aX  E 

— ctx (EL 
 — E i ) 

[—ctx (5( L  — f 
(4.67) 

D 

(B) backward travelling waves (X < 0) 
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(C) waves (surface currents) at the interface (X = 0 )* 

= 
ap x (E

R 
 - E

L
) 

= 0 , 
[—ax 5[1)1, k  

cixE 
(4.68) 

where DL , B L , DR , B R 
are flux components and EL, 5 L , ER, 5-i-R 

are field components 

on the cell boundaries located at i +  1/2.  Since the tangential components of both the 

electric and magnetic field components are continuous across the boundary between two 

media (in absence of a current sheet at the boundary), (4.68) can be re-written as: 

	

cix ER ctx EL  — 	d!x x Ei , 1/2 
. , 	(4.69) 

[—a 	] = x 51R 	—a 	.9-1-L 	
[--crx ..71 i+ , 1j  114  , k j, k 

where (4.69) represents the numerical flux terms defined in (4.62). These numerical fluxes 

must be represented (evaluated) in terms of field components located at the centre of the 

cells as well as the cells' properties. The derivation of these expressions is considered next. 

The second rows of equations (4.66) and (4.67) are modified using the characteristic 

admittance (Y = 1.12n, = 

ER )i,  k = 	(5 +1 — -/ L 	k 

k ( EL  — E i)j,  k = ax (5-IL  — 	k 
(4.70) 

* Only valid for the case of no thin resistive sheet at the cells' interface. 
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• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

j, k 

ao(a0Ei+1) 

Yi+i+Yi 
ao(ax 5[ +  i) 

 Zi+i +Zi  

clX(ct x Ei) 

Yi + Yi 
czx (aX 51 - 

 Zi+i +Zi  

(4.74) 

j, k j, k j, k L Z11  +Z + + Z i  
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First, the vector product of a unitary vector, a, and both of the above equations are 

obtained. Then a x ER 
is substituted from (4.69), and the system of equations of (4.70) is 

solved for  a  x E +  1/2 terms. 

	

( Yi  + 1  + 	k (a X Ei+  1/2) f, k  = 

	

= Y i+ 	k (ct x E) i+i, k 	k (aXE) i,  k  c/X(aX (51 + — 	k ) 
(4.71) 

The definition of characteristic impedance (Z = e?n, =lArtre ) is used to modify the first 

rows of equations (4.66) and (4.67): 

= 	( E • — E
R 1 

Z k (51-L — 	k 	X (EL  — Ei) k 

Using a similar procedure as before, the above system of equations is solved for 

aX 5f i , /2 terms. 

(Z + + Zi ) k (aX Si , 1/2) i, k  = 

= Z i + 1, j,k(aX 	+ 1,  k  Z i, k (aX 	k  — 	x ( E i +1  — 	k) (4.73)  

Then, equations (4.71) and (4.73) are substituted in (4.63) where an expression for the 

numerical flux at the cell boundaries is given as: 

1[ a0 E  LE 	 _ _ 
i 4. 1/2, j, k 

Yi+i (ao E) 	Y i (axEi) 

(Yi+ + Yi) 	 Y i +1 + Y i 
Zi+i (aoSi+i ) 	Z i(ax 

(4.72) 



j, k 

j, k 
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The above expression is then evaluated in terms of Cartesian field components; that is: *  

h. + 1/2, j,k 	r 
i[ct x E 

—ct E  x 9 -ctx H i + 1/2, j k 

- Y i +  

Y i+1 +Yi 

Yi + 1g,Ex — 	+1  

Yi +1 + Yi 

Yi +igxEy  

Yi+i+Yi 
Z i  + i ( zH y  -  

Zi+i  +Zi  
Z.  +igxH z - zH x) i  + 

Zi+i +Zi  

Zi +1 ( .),Hx - .,Hy ) i + 1 
 Zi+i+zi 

igyEz - 

Yi+1+Yi 
Y igzEx - 

Yi+i+Yi 
Y igxEy  - 

Yi+1+Yi 
ZigzH y - 	z )i 

 Zi+i +Zi  

Zigx1 z - 	x) i  
Zi+i +Zi  

ZigyH 	y ) i  
Zi+i +Zi  

j,k 

XZHZ ) i + 1  

Yi+1 +Yi 

— gx2  + z2)Hy  + yz H z ) i +1 
 Yi+1+Yi 

x  + 	(ex  + 3,2 )H z ) i + 1  
Yi+i+Yi 

+ z2)E x + XYEY  + xzEz)i +1  
Zi+i +Zi  

gxzE x  + AE y - (
2

+  3,2)E z ) i +1  
Zi ± I  + Z  

(UE x  + yz E y  - +  )E)  + 
Zi+i +Zi  

	

z2 )H.  x + X Y HY  + 	z)i 
Yi+1+Yi 

x - 	z2)H y  + yz H z ) i  

Yi+i+Yi 
(UH x  +  YYZHY-  gx2  + 

▪ 

 z ) i  

Yi+1+Yi 

z2)Ex + XYEY  +  
Zi+i +Zi  

x  + 	gx2  + 

▪ 

 z ) i  
Zi+1 +Zi  

	

gxzE x  + YEZEY  - gx2  + 	z ) i 

 Zi+1 +Zi  

(4.75) 

J j, k 

Next, the impedance, Z4  k'  and admittance, Y4  j, k , of each cell are defined as: 

* One must note that the Jacobian of transformation has been dropped for brevity. Thus, each field 
component, say  H,,  in fact represents Hx/J , etc. 



and 	 (6 . ) 	k  , (4.76) 

x (x2 	.z2 )By 	ABz-) 	 x 	z2 )B y  

i + 1 	 J 

(eê )i + 1 + ( Eé) i 

) j, k 

(4.79) 
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where 	k  is the speed of wave propagation within a cell centred at (i, j, k) . The speed 

of propagation within a cell in the general coordinate system is given by the magnitude of 

the eigenvalues of the flux matrix. Therefore, for numerical fluxes which represent an E 

flux vector, the eigenvalues of [A] are given by (3.68); thus 

j, kl 	j, k = 

[ Ak2 y2 z2) 

ji,j,k 
(4.77) 

Finally, expressions for each component of the numerical flux, located on -constant 

surfaces, are obtained by expanding and simplifying (4.75) and are given below. In the 

following expressions, 1 m denotes the m th component of the nurnerical flux vector at 

the specified cell boundary. Thus, flux vectors at (i + 1/2, j, k) are given by: 

hE 	 + igyr)  z z D  + 1 + MY D  z z D  
i + 2- , j, k 

1 	
(e) 	 ) j, k 

rf 	+ z2 )B x  + XYB Y  xz B 	+(( + z2 )B x - 	y  - 	3 
Jt  

)i +1  
(e -é) i 	+(c) 

j, k 

(4.78) 

- D . +ê. D -D)) + 	x 	z)  + 	 x 	x zz hE. 	-{ 	1  
t+ 2-,j,k 

2 	 j, k 



(14i + + 

) j, k 

(4.83) 
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+ igxD y 	i 1+ igxE)  y 	)  
h

E 
i + -1 , j, k 

3 	 ) j, k 2  

1zBx 	y 	)- zj x 	+ 	+ y2 )Bzj\ 
i + 1  

(e )  i +1 + (e) 

) j, k 

(4.80) 

(2 i 1 gz B y  — 	z ) +1 + E Az B y  — 	z ) i) 
hE 

1 	1= 	  

i + 
2
-, j, k 

4 	 (g)i+ + (g)i 	 j, k 

f 
 (E, +)D,z2 )D  x  +  XY DY  + zj 	(gy2 	 z1 

) i+1 	 i 

) j, k 

(4.81) 

hE 1 	_Ci+igxBz 
i + 2-, j, k 5  

z Bx ) i , 1  + MxBz - z Bx )i) 
-é) i 	+ ( IC)i j, k 

XYDX —( + z2 )Dy +ADzj x  + + z2)Dy — AD zj \  

i + 1  

(1 ) i + 1 + (g)i 

) j, k 

(4.82) 

"é _gy B x — xBy ) i +1 + 
hE. 	—( 	

i+ 1 
 1+ -,j,k 	 (g) 	+ (g) 2 	6 

z•Dx  ADy  (E x2  y2)Dz\ 	( 	x — yrZi  y  + 	+ y2)D 

ii+1 

Likewise, numerical flux components located at (i — 1/2, j, k) are computed via: 

j, k 
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hE. 	igyD z - 	C-  - 	z - _1) 
1- 2-, j, k 

1 	
(Eé.). 	 j, k 

( [-- (ey  + ez )I 3 + 	y  +  xz   z.\ 

	

)i 	 1-1  

	

+ 	_ 1  

J j, k 

(4.84) 

t--
2, j, k 

2 	

D 	D 1.+ -e. (E. D -E D ). 7Z X ,X 	 - 1 • 	X 	Z' hE. 	=( 	 - (Ec) i  + (Ec)i_ 	) j,k 

[XYBX 	z2 ) 13  y  A z B 	x 	z2 )13  y  - Y E ZBZ  

iLL )i ji l  

) j, k 

(4.85) 

h
E. 1 	_rg D 	D  )•+•-igxD 	Dx )•_ , ) 

	

xy 	yxi 	 •y 	y 	i 

t--
2

, j, k 
3 	

(Eé) i  (Eè) i _ 

AB y - ( x2  + 3,2 )B z\  rxz Bx - .3, z By 	y2)B z1 
Ii 	 )i-1  

+  (c)_  

) j, k 

(4.86) 

h ' 

	 By  -E B ).+ 	,(Ez  B y 	B. ) 
-y 	 - 	 - 	 -Y  z- - .t) 

1- 2-, j, k 
4 	

0-121+ (11-1- -é)i- 1 

([ 	 x 	 +( 	z2)1) x  

)i -1  

(ILA2)i + (14i- 1 

j, k 

(4.87) 

j, k 

j, k 
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f [,,,,Dx _(,.,2+,z2)Dy +,),,zDz)+r- xy Dx  + 	+)D  —  yz Dz)  
£ 

)i 	 )i - 1 

1 

j, k 

(4.88) 

E. 1 	 Bx x B 1.+ -1  (E B x  — B y • , -y 	-• 	 1 ) . - h 1 
k  2 . 

	

6 

2 	2 	\ 	 2 	2 
[ xz px  yz p y 	D  z  rxz D  x  — 	+ ( x  + 

)i- 

+ (g) 1 _ 

j, k 

) j, k 

(4.89) 

Similarly, numerical flux components at (i + 3/2, j, k) are calculated by: 

( i + 2(yDz 	zDy)i + 2  +  + 1 (yDz 	+1) 
h

E 
3 
2 

j, ici .+
1 	 ( 6- )i + 2 + ( e )i+ 1 	 j, k 

4..z2).Bx_f_xyBy_f_xzBzj 	
+ 

[1. y2 p z2 Bx  

i +2 
 

+ 
(e)i+2+ 

j, k 

(4.90) 

hE 
3 . -ei-1-2gzpx - ,Dz)i+ 2 + 	1RZDX 	+  

+ 
2
-, j, k 

2 	 ( eà" )i + 2 + 	+ 1 	 j, k 

( 	 2 	2 	 2 	2 
XYBX 	+ z )B y + yz B 	rx),B x + +)B  y —AB z  

!-L i+ 2  

()i+2  + 	+ 1 

)j, k 

(4.91) 
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hE  3 	=r+ 2(xDy - 	i + 2 +  i +1gxpy -  
i + 

2
-, j, k 

3  

+ 	— k 	
2\  p 	 B 	B + g2

+
2
)B

\ • 
x tvx  ‘,),1

i + 2 

+H z  x yzy 	x y z 

1i+1  

i +2 + 	i + 1 

) j, k 

(4.92) 

hE + 1)i + -
2

, j, k 
4 	 +2 + (g)i+1 	 j, k 

(i 	2 	2 	 2 	2 

	

- y 	z ).1_ + 	 zj 
 i + 2 	 )i+ 1 

(P)i +2 ± (g)i + 1 

) j, k 

(4.93) 

j, k 

hE  3 
i+-

2
,j,k1

5 

i + 2 gx  B  z 	Bx + 2 + 	(.x B  z - 	+1) 
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2 	2 2 	2 	 \ — (r x + oz )D y  + yzD z\ 	rx),D x + ( x + z )D y - AD z  
i +2 	 i + 1  

(g)i + 2 + (I4i+ 1 

) j, k 

(4.94) 

i +2(yB  x 	y)i +2 +  +1(yB  x 	y) i +1) hE 
+ j, 

6 
k 	 (g)i + 2 + (g. )i + 1 	 j, k 2  

( 	x + ADy—  (x2 .372 )D z 	 x 	y  gx.2 	z  

i + 2 	 i+1  
(g.) i  + 

) j, k 

(4.95) 

Finally, the components of the numerical flux of cell boundary (i — 3/2, j, k) are given by: 
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Ii 
E 

3 
i- 2

-, j,k1
1 

D ). 	2( D 	D ). (  1-1 	D y z 	Z Y 1 - 1 	 y z  

()i- 1 + ()i 	

)

- 2 	 j, k 

([-- 	z2 )Bx + 	+  .xz Bz1 	± r(ey  +  
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+(6)j_2  

) j, k 

(4.96) 
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) j, k 

(4.97) 
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(4.99) 
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( 	 ADy+(  2 +.),2)Dzsl  
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(11c)i- + 

J j, k 

(4.101) 

An identical procedure can be used to derive expressions for computing numerical 

fluxes on the i  - and Ç  - constant surfaces. These equations are similar to the ones 

previously discussed with the following two exceptions: (1) all symbols denoting partial 

derivatives are replaced by or Ç ,  respectively, and (2)  j, j and k subscripts must be 

interchanged. 

4.3 Summary of 3D-FVTD Algorithm 

In Section 4.1, a fully windward LW algorithm for solving inhomogeneous Riemann 

problems of mixed eigenvalues was derived on a uniform rectangular grid; see (4.54). 

Since the computational space g, is also a rectangular grid (see Section 3.2.1), the 

aforementioned Riemann solver can easily be applied to transformed Riemann problems 

where the flux and field components are the transformed vectors of the governing 

equations given by (3.26) to (3.30). Also, in order to better (and more efficiently) serve 



\  At  r  1, F 
j,10 	"j 

\ At r  G 
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-1/2 + "k-3/2 Gk-1 + nk+ l/2 	 k+3/2 + Gk+ lii,j 

-1/2 + hj- 3/2 -Fi-i +hi+ 1/2 - h j+ 3/2  + F11 i, k 
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CEM applications, the fully windward LW scheme of (4.54) has been further developed in 

terms of numerical fluxes and is given by equation (4.62); the general coordinate system 

components of the numerical fluxes are computed in terms of Cartesian coordinate field 

components which are defined in Section 4.2.2. 

Since the original system of PDEs formulated by the generalised vector form of 

Maxwell's equations was split into three 1D Riemann problems of mixed eigenvalues (see 

Section 3.3.3), superposition can unite all three solutions under one update equation. 

Thus, the expressions for the predictor corrector of the 3D-FVTD algorithm are given by: 

	

n +1 At E 	E 
At[Kj i,  k)Q 1L1,  k Ae hi + 1/2 - 	 1/2 -1  j, k 

	

At r , F 	F 	l n 	G 	7  G 

	

j + 1/2 - aj - 1/24, k 	Lib
ri.

k +1/2 - dk-1/2 1 i, j 

n it +1 
j,k 

1 	n 	 n+i 	At  E 	E 	,i+1  

	

= -[Q. 	+ (1 + At[K]i  )Q. k  ] 
24 	

1/2  —h i _ 1/2 1i,k  
2 	k 	 k   
At  F 	F 	n +1 	At G 	LG 	11+1 

2ATI  1 11  + 1/2 - "j-1/2]i,k 	2A[hk +1/2 - "k-1/2 ] i, j 

At E - (1 + At[K]i, j, k ) 	1/2  + h i  _ 3/2  -Ei  LE 
4-  "1+1/2 -'1+3/2+ Ei+11  j,k 

- (1 + At[K] i, 

 - (1 + At[K]i,  

(4.102) 

where the numerical flux terms are computed by equations (4.87) to (4.101) (and their 

similar counterparts on constant - and - surfaces), the vector fluxes terms calculated at 

the centre of each cell are given by (4.103) to (4.104), and the source or loss term is in the 

form of (4.104). *  

* The significance of this term will become apparent in the next section. 
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(4.104) 
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4.3.1 Stability of the Fully Windward LW Scheme 

The stability analysis for the fully upwind LW algorithm can be performed by the 

standard von Neumann (Fourier) method [101 Therefore, the stability criterion for the 

3D-FVTD scheme of (4.102) is given by [ 16]: 

2 
(4.105) At < 

X max m2 + 	 + AÇ 2, 
1 
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where Xinax  is the maximum sum of eigenvalues in all directions and is computed by: • • X max 7-2 
max(i(X) i, j,k1+1(2n,n ) i, j,k1+1(2%.) 	ki) • 	 (4.106) • 

However, the above stability analysis has only been successfully performed on the update 

•
equations of a homogeneous Riemann solver (i.e. [K] = 0) [92].  A definitive von 

•
Neumann stability analysis of most algorithms used for solving Maxwell's equations with 

• a source term has yet to be completed [104]. In most algorithms, the Fourier stability 

• analysis of the update equations with a source term results in very complex mathematical 

• expressions that often defy concrete conclusions. Thus, the stability of non-homogenous 

Riemann solvers has often been verified empirically via the numerical simulation of actual 

problems. In the majority of cases, minor changes to the algorithm are required in order to 

achieve stability using the original CFL condition [46]. In the case of the FVTD method, a 

• similar approach was followed. o  
• Using the CFL condition as the stability criterion, first the predictor and then the • 

predictor-corrector update equations of the newly derived FVTD algorithm of (4.102) 

•
were tested for numerical stabilityt via the simulation of wave propagation in a perfect 

• dielectric ([K] =  O).  Both test cases were numerically stable as predicted by their • 
• stability analysis [10]. Next, the predictor of (4.102) was tested for lossy media ( [K] 0); 

the scheme became numerically unstable after a few time steps. Borrowing a page from 

the treatment of source terms in the FDTD method [45], a semi-implicit technique was • 
used in order to achieve a stable update equation; that is, the field components associated 

•
• 

* The author has first hand experience in the futility of performing a von Neumann stability analysis on 
• the proposed windward LW algorithm of (4.55). 

• t Numerical stability is gauged by monitoring the total amount of energy in the computational space. 
In stable systems, the total amount of energy in the system (due to an initial condition) must not 
increase over time (steps). 
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with the source term of the predictor,  ([K]Q"),  were averaged over the previous,  n,  and 

present, n + 1 , time step, respectively; i.e. 

(Qn  + + Q n\ 

2 
[K]Q" = [10 .6Q(n, n + 1) = [K] (4.107) 

This technique is loosely referred to as time averaging. The time-averaged predictor 

was tested and remained numerically stable for several thousand time steps. Next, the 

stability of the complete LW scheme was tested using the time-averaged predictor and 

various combinations of time-averaged correctors. Various configurations and their 

respective stability test results are given in Table 4.1. The lightly shaded rows indicate the 

progression and selection of different combinations of schemes that led to a stable 

algorithm (the last row). 

Table 4.1. Numerical stability test results of various schemes proposed for the fully 
upwind LW algorithm with a source term 

Predictor 	 Corrector 	 Stabilitya  

Field Terms (KQ n  ) 	 Field Terms (KQ" I-  1  ) 	 Flux Terms (K[E, h ]"  ) 	 Pred. 	Both 

No Averaging 	No Averaging 	No Averaging 	No 	No 

0Q(n, n + 1) 	 Corrector equation was not used. 	Yes 	-- 

eQ(n, n + 1) 	 Q(n, n + 1) 	 No Averaging 	Yes 	No 

0Q(n, n + 1) 	0Q(n, n + 1) 	No Averaging 	Yes 	No 

0Q(n, n + 1) 	OQ(n + 1, n + 1) 	No Averaging 	Yes 	No 

0Q(n, n + 1) 	0Q(n, n + 1) 	e(E, h)(n, n + 1) 	Yes 	Slow 

-0Q(n, n + 1) 	0Q(n, n + 1) 	0(E, h)(n, n + 1) 	Yes 	No 

.0Q(n, n + 1) 	eQ(n + 1, n + 1) 	0(E, h)(n, n + 1) 	Yes 	Slow 

_  L. 

a. "No" indicates that the algorithm is numerically unstable, "Slow" means that the scheme is initially 
stable but becomes unstable after 50 or more time steps, and "Yes" denotes a stable algorithm. 
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• 

• 
At)(1. At[K] i,  lc) 

2 	) 
n + 1 

k 

• • 
• 

Thus, the final format of the FVTD scheme (a fully windward LW algorithm) for solving 

3D Maxwell's equations is given by: 
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• UAri 	2 	 nj-1/2 n j-3/2 	j-1 	k 
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G 	G n + 1 

- 2 	) [hk -Ilk- 1/2] j • 
10 n + 1 Aij(At[ini,  k) rhkG_ 3/2 _ trhkG.+3/2 +Gk+1 1  • UA 	2  ) 

n n (  Atj( I ± At[Kl i,  i,  k) [ 1.. kG _ 
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n (4.108) • • 
4 
n 



nx(E2 —E 1 ) = 0, 

n x (51-2 — 5( 1 ) = J 
(4.109) 

96 

4.4 Numerical Fluxes and Boundary Conditions 

Thus far, the discussion has focused on computing solutions of EM fields within a 

homogenous, infinitely large space containing materials that do not require special 

treatment. Obviously, this assumption is not realistic since the simulation space must be 

abruptly terminated by either physical BCs (such as a ground plane) or artificial/absorbing 

BCs (i.e. ABCs). *  In either case, these boundary conditions are located at the outer walls 

of the first and/or the last cell of the computational mesh. Therefore, the numerical fluxes 

located at these walls require special treatment and are computed with expressions derived 

using their specific properties. In this section, five of the most common BCs are discussed, 

and their respective numerical flux expressions are derived. 

4.4.1 Perfect Electric Conductor BCs 

It can be shown from Maxwell's equations that "at the interface  between any two 

media, the tangential components of the electric and magnetic fields are continuous 

[1 page 71];"  that is: 

where n is the unit vector normal to the surface of the boundary and Js. is the surface 

current. Since all fields at any interior point of a Perfect Electric Conductor (PEC) 

( cr2  = ) are zero, then the tangential electric field on the surface of the conductor is zero, 

while the tangential magnetic field is finite and is given by the conduction current term, i.e. 

* Since the use of an infinitely large mesh would require an infinite amount of memory! 



0 Et , = 0, 

= J t i 	J.  (4.110) 
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! 0 	 When modelling PEC objects, i.e. PEC BCs, the numerical fluxes located on the 

• boundaries must be computed according to the conditions specified in (4.109) to (4.110). 
• 
• For example, if a PEC object is placed to the left of (i - 1/2, j, k) (see Figure 4.6), all the 
I. 

fields and numerical fluxes within the PEC region, as well as the numerical flux 

0 
• components associated with tangential electric field components on the PEC boundary, 

• must be set to zero; that is: 

0 
0 • Qi-1,j,k = E 	

L 
i-1,j,k = ni-3/2,j,k = [0 0  000  #:; 7'  

E (4.111) 
• 
O L E 	 L E 	 L E 
• ni-1/2, j,k 1 1 = ni-1/2, j,k 1 2 = ni-1/2, j,k 1 3 =  0. 	(4.112) 
• 
O

In contrast, the numerical fluxes associated with tangential magnetic field components are 

0 
0 	 non-trivial and must be computed. Since all fields are vanishing within a PEC material, one 

0 
O

can represent this phenomenon via a zero speed of propagation of these waves within the 

• * PEC media; thus, setting "ô i  _ 1  =  0, the expressions of numerical fluxes given in (4.87) 0 

•
• 	 to (4.89) become: 

• 
• 2 2 
0 hE  
O i- 

i j ki =CzBY  - )'B z)  + 
ki 	) i, j,k +[.- (

3, 	z )Dx + .;‘),1=)y  + 	
(4.113) 

., zD zj 
Eit _ 	 2" 4 	 i, j, k 

0 i 
(.2 p 2.i n  • 1 =(yB  [.x .,-Dx +  yz p  y — \ sDx + ‘Dyll 

• h E 

i - 1  i k 	11 	) i, j,k + 	 ei.té. 	 (4.115) 
le) 	 2' ' 	6 	 i, j, k 

* Note that this hypothesis cannot be applied to points within a PEC material. 

• 
• 
• , E 	1 (.;cB  z - z Bx) 	Rxv i 	 ) 1)y 	31V3ez) 	 / A 11AN 

• 
• 

• 



a) Perfect Electric Conductor (PEC) 

n x E = 0 

R 

• ABC 

d) Periodic Boundary 
links field components at 
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b) Perfect Magnetic Conductor (PMC) 

n x.91 = 

c) Absorbing Boundary Condition (ABC) 

E L  = 0 

= 0 

Figure 4.6. Boundary conditions required for the FVTD algorithm 



(4.116) 

Although the concept of PMC materials is purely mathematical and has no physical 

significance, its mathematical properties are often exploited to simplify physical 

problems. Hence, it is important to derive expressions for enforcing PMC BCs. As in the 

case of PECs, a PMC BC is placed to the left of (i — 1/2, j, k) (see Figure 4.6). All the 

fields and numerical fluxes within the PMC region, as well as the numerical flux 

components associated with tangential magnetic field components on the PMC boundary, 

E = M s• 

• 	 99 

•

• 

4.4.2 Perfect Magnetic Conductor BCs 

• Two variables that occupy identical positions in two equations of the same 

• mathematical form are known as dual quantities. Naturally, the solution of these two 

• equations, each describing the behaviour of a different variable, is the same. Thus, the 

• oplution of one variable can be derived from the solution of the other variable by a 

• systematic interchange of the variables. This concept is commonly known as the duality 

• theorem. However, it must be remembered that duality is a mathematical concept which 

•0 
• only serves to provide purely mathematical solutions that may not be physically realisable. 

• 
• • 
• 
• • • • 
• 94, = 0, 
6 
0 

0 

• 
• 
0 • 0 • • • • 

Since Maxwell's equations can be modified to describe the behaviour of dual 

variables, the duality theorem is applicable. Thus, a Perfect Magnetic Conductor (PMC), 

an evil twin to PEC, is born as a result of the unholy union of Maxwell's equations and the 

duality theorem. Similar to PECs, all field components within a PMC material are zero; in 

contrast to PECs, tangential magnetic field components vanish on the surface of a PMC, 

while its tangential magnetic field components are finite and are given in terms of the 

magnetic conduction current, Ms  ; i.e. 
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(4.118) 	• 
Once again, numerical fluxes associated with the tangential electric field components are 

computed by assuming a zero speed of propagation of the wave within the PMC material. 

Hence, the expressions of numerical fluxes given in (4.84) to (4.86) become: 
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4.4.3 Absorbing Boundary Conditions 

One of the fundamental dilemmas of CEM is the scarcity of computational resources. 

The finite size of computer memory and the constant demand for faster computation time 

are the reasons for economizing the computation resources required for an EM simulation. 

This issue becomes very apparent in the case of "open-space" problems where the 

simulation space is surrounded by free-space in one (or more) direction(s). Since the 

numerical modelling of an infinitely large space is impossible, the problem space must be 

truncated using BCs that emulate the properties of an infinite space and that reflect very 

little of the incoming waves; this means that the proposed boundary must absorb the entire 

energy of the incoming EM wave over a wide frequency range without changing the 

• 
• • 
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physics being modelled within the mesh. These BCs are called Absorbing Boundary 

Conditions (ABC). 

' 0 	 Most ABCs are either: (1) derived from the differential form of the governing 

O equations or (2) employ material absorbers [42]. The development of differential-
* 
• equation-based ABCs is nearly as old as TD-numerical methods, and research in this area 
0 
• is ongoing [105-108]. Most of these ABCs are designed to absorb best outgoing waves 

• normal to the ABC; thus waves propagating on angles of incidence other than normal to 
0 
• the ABC are partially reflected back into the simulation space causing inaccurate results 

• [42]. Material-based ABCs have also been devised based on the same assumption until 

•
• 

recently when Berenger, in a landmark paper in 1994 [109], used a "split-field" 
0 
• formulation of Maxwell's equations resulting in an artificial absorbing material which 
• 
• absorbs incoming waves over a wide band of frequencies for all angles of incidence. Since • 
• Berenger's Perfectly Matched Layer (PML) technique has proven to be more effective 

• than most other ABCs and provides superior performance with a significant accuracy, 

• 
• differential-based ABCs have been partially side-lined in favour of PML ABCs. A large 

9 
• amount of research effort has been devoted to PMC-ABCs as is evident by the number of 

0 
• research papers published in the area [109-112]. 
4 

Traditionally, the FVTD method has relied on differential-based ABCs since • 
O characteristic-based procedures provide a natural framework for this type of ABCs. Due to • 

the fact that the incoming and outgoing components of waves are separated via the flux- 
* 

vector splitting procedure, the ABC can easily be enforced by setting the incoming fluxes 0 • (defined as the waves reflected into the computational space from the ABC) to zero. 
• 
• Hence, if the ABC is defined at (i — 1/2, j, k) (i.e. the computation space is truncated to 
• 
0 
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the left of the ABC as shown in Figure 4.6), in the expression of numerical fluxes, 

hi 1 /2 . k  of (4.56), the incoming waves are vanishing, i.e. (e),_, 	0 (see Figure 
-  

4.4). This implies that all the field and flux components within the ABC region must be set 

to zero; that is: 
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It must be noted that in order to match the material properties at the boundary conditions, 

the ABC region is assumed to have the same material properties as the neighbouring cells 

of the absorbing boundary. 

Although the aforementioned ABCs for the FVTD technique can only effectively 

absorb the normal components of the incident wave due to the flexibility of the mesh 

generation process, it is possible to align one of the computational (transformed) 

j,k 
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coordinates with the direction of wave propagation  (E x 50 thus ensuring that the 

incident field is perpendicular to the absorbing boundary [26]. *  The PML-ABC technique 

has yet to be derived for the LW windward version of the FVTD scheme; however, the 

performance of PML-ABC using FDTD and FVTD-ABC will be compared in Chapter 5. 

4.4.4 Periodic Boundary Conditions 

When using a conformal-structured mesh to model a circularly symmetric problem 

space, the transformation into a uniform rectangular computational space requires that the 

transformed coordinates, aligned with the azimuth direction (for example, 0 of a 

cylindrical coordinate system), exhibit the same properties; this means that the beginning 

and the end of the aforementioned transformed coordinate must map into the same points 

in the physical space (as shown in Figure 3.1). Hence, the periodic boundary conditions 

simply ensure that when computing field or flux components at the vicinity of these 

boundaries, the field components that lie beyond the periodic boundary are properly 

associated with their respective symmetric point at the other extreme (see Figure 4.6). In 

other words, the periodic boundaries maintain the wrap-around nature of the azimuth 

direction. 

4.4.5 Zero-Flux Boundary Conditions 

The zero-flux boundary condition is proposed for cases where all of the grid points 

collapse into a single point on a given boundary condition (for example, at r = 0 in a 

cylindrical or spherical coordinate system). Theoretically, numerical fluxes would not flow 

in or out of that point since there is no surface through which they may flow (see Figure 

* This is often not the case, however, since in many scattering problems, the direction of the outgoing 
wave is unknown. 
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4.6). This means that all of the numerical flux components at that cell interface must be set 

to zero (i.e. h = 0 ) which implies that in addition to the tangential electric and magnetic 

fields at the zero flux boundary, all of the field and fluxes lying beyond the zero-flux 

boundary are also vanishing [93]. This formulation of a zero-flux BC was implemented in 

the 3D-FVTD scheme and was tested on both a pyramidal structure as well as on a circular 

waveguide. In both cases, the numerical solution became unstable at the zero-flux 

boundary. It appears that the method is theoretically flawed. As will be shown in future 

chapters, in the majority of cases, zero-flux boundaries can be replaced by PMC walls. 

4.5 Summary 

In this chapter, the 3D-FVTD scheme was methodically developed. A fully windward 

Riemann solver was derived from a directional-biased upwind LW flux split Riemann 

solver. Then, the flux split difference terms of the newly derived algorithm were defined 

with respect to the numerical fluxes at cell interfaces which resulted in 3D-FVTD update 

equations as well as expressions for computing numerical fluxes at any given cell 

boundary. Next, the newly derived algorithm was tested for lossy media, and, in order to 

maintain the numerical stability of the scheme for the given CFL criterion, a new semi-

implicit version of FVTD was proposed. Since all simulation spaces have to be terminated 

by some type of boundary conditions, a discussion of several types of boundary conditions 

(PEC, PMC, ABC, periodic BCs, and zero-flux BCs) and their formulation was also 

included. The task of formulating the 3D-FVTD algorithm and its respective BCs has now 

been completed. The next chapter deals with its validation and some of the issues that 

arise while implementing and developing a 3D-FVTD engine. 
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• Chapter 5 • • • 
• Validation of the Finite-Volume Time-Domain Method • 
0 
• 
• 
0 
• 
• 
• 
0 
• Thus far, an explicit, fully windward, flux split version of the Lax-Wendroff algorithm 
• 
• has been described for solving the 3D Maxwell's equations with sources. The next logical 
• 
• step is to develop a 3D-FVTD computational engine using the implementation of the 
• 
• aforementioned algorithm. The 3D-FVTD engine must then be tested and validated using 
• 

several benchmark problems. As is always the case, any numerical solution of analytical 

• 
• problems involves some numerical issues that are a consequence of the method of 
• 
• solution. These are often referred to as "computational issues." The windward LW 

• technique is no exception. Hence, in the following sections, in addition to testing and 

• 
O validating the 3D-FVTD engine, some numerical issues that arise from the LW method of 

• solving Maxwell's equations are also discussed. In this case, some computational issues 

• 
O

surface before implementation can even begin! They are considered first. 

• 
• 
• 
• 
• 
0 105 0 • 
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0 5.1 Computational Issues: Pre-Processing • 
0 

	

In most computational engines, the problem has to be "prepared" before it can be 	• 
O  

solved by the simulator. This means that in addition to defining the problem's geometry 
O 

	

and structure, the simulator also requires the problem to be meshed (i.e. discretised) by the 	• • 
user. This preparation before processing is appropriately known as pre -processing. 	 • • 0 • 5.1.1 Mesh Generation 

	

Although some EM simulators (especially FEM-based packages) have been partially 	0 
0 

	

successful in automating the mesh generation process, the pre-processing stage still 	• • 

	

requires a significant investment of time and effort by the user. This is largely in the form 	• • 

	

of drawing, defining,  and  meshing the problem structure using a Graphical User Interface 	• 

	

(GUI) tool. Since the mesh generator is a separate entity from the EM solver, a discussion 	• 
• 

	

of the different types of mesh generators and various methods of mesh generation 	• 
• 

employed by them is beyond the scope of this thesis. It is sufficient to recognize that the • 
• 

computation space can be meshed using one of three types of (often non-uniform and • 
conformal) meshes. These include: structured, unstructured, and hybrid meshes. 

	

A structured mesh is defined as a grid in which the nodes follow a certain regular 	• 
 • 

pattern, and the constant-coordinate lines do not cross. In these types of meshes, the nodal 

	

points are arranged in an structured manner where the next nodal point can be located by 	• • 

	

simply incrementing the indices' of the current node. In contrast, an unstructured mesh 	• • 
follows no regular pattern and has no specific coordinate lines. At any given node, a look- • 

	

up table must be used in order to locate the next nodal point. Finally, a hybrid mesh 	• 

	

contains both structured and unstructured meshes. An example of both structured and 	• 
• 
• • • • 



unstructured grids is shown in Figure 5.1. 
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Figure 5.1. Examples of structured (left) [25] and unstructured meshes (right) [46] 

Although unstructured meshes are more flexible when modelling very complex 

geometries, their irregular grid pattern requires a certain amount of computation effort for 

bookkeeping. On the other hand, structured meshes require no bookkeeping and, in many 

cases, can perform just as well as unstructured grids. However, since unstructured mesh 

generators have been developed and used for FEM-based solvers for several decades, they 

are more readily available, whereas structured meshes have just recently come to the 

attention of the CEM community; therefore, these types of mesh generators lack maturity 

and a diversity of tested applications. Thus, when seeking a structured grid mesh 

generator, one often faces a limited selection (especially for a modest budget). A list of 

public domain and commercial mesh generators (both structured and unstructured) is 

included in [113]. 

Due to the simplicity of its implementation and its computational efficiency, the 3D-

FVTD engine was designed based on a 3D structured mesh; hence, the engine's initial 

requirement is an input data file that provides the coordinates of the meshed computational 

space. The search for a mesh generator capable of generating a 3D multi-block structured 
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mesh began by examining several public domain packages, namely Chalmesh (Chalmers 

University of Technology, Sweden) [114], Genie++  [115], and NGP (Mississippi State 

University, U.S.A.) [116]. In general, public domain packages fall short of the minimum 

requirements of flexibility, diversity of meshing capabilities, and ease of use. Therefore, 

several commercial software packages were considered and tested. Both Gridgen®  

(Pointwise, Inc.) [117] and TrueGrid®  (XYZ Scientific Applications, Inc.) [118] 

performed well above the aforementioned minimum requirements. However, TrueGrid®  

was more economically feasible and was selected as the pre-processor and mesh generator 

for the 3D-FVTD engine. A sample of the input file generated by TrueGrid®  is given in 

Figure 5.2. 

# COAXIAL WAVEGUIDE TEST PROBLEM 
# Generated: Mon. Oct. 19 10:11:46 1998 

# This file was created using TrueGrid by XYZ Scientific Applications, Inc. 
# For further information, call (510) 373-0628 or write to: 

# 	XYZ Scientific Applications, Inc. 
# 1324 Concannon Blvd. 
if 	Livermore, Ca. 94550 

it size of computational mesh (lmin, Imax, Jmin, Jmax, Kmin, Kmax) 
1 	31 	1 	61 	1 	251 

# number of materials, material identification/tag numbers 
11 

# output mesh 
# computational coordinates (i,j,k) and physical coordinates (x, y, z), 
# material tag/ID number, and Node number 
# i 	j 	k 	x 	 Y 	 z 	ID 	Node 

1 	1 	1 1.036000E-03 0.000000E+00 0.000000E+00 1 	1 
2 	1 	1 1.121867E-03 0.000000E+00 0.000000E+00 1 	2 
3 	1 	1 1.207733E-03 0.000000E+00 0.000000E+00 1 	3 
4 	1 	1 1.293600E-03 0.000000E+00 0.000000E+00 1 	4 
5 	1 	1 1.379467E-03 0.000000E+00 0.000000E+00 1 	5 
6 	1 	1 1.465333E-03 0.000000E+00 0.000000E+00 1 	6 
7 	1 	1 1.551200E-03 0.000000E+00 0.000000E+00 1 	7 

Figure 5.2. The mesh input file generated by TrueGrid®  for the 3D-FVTD engine 

5.1.2 Numerical Evaluation of Partial Derivatives 

Although some structured grid generators (such as Gridgen®) use a family of elliptic 

partial differential equations (such as Laplace's equations) to define conformal grids 

[23, 119], in the majority of cases, simple geometrical techniques (such as the geometric 
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projection method that is used in TrueGrid®  [120]) are utilized to construct a conformal 

mesh. Hence, in many instances, the transformation does not involve (closed-form) 

analytic expressions which means that the exact nature and value of the metrical 

coefficients of the transformation are unknown. The transformation of physical to 

computational coordinates is given by a mesh file which maps a set of computational 

coordinates to their corresponding points in the physical space. Thus, the coordinate 

transformation and its corresponding partial derivatives must be computed for each cell 

using conventional finite difference methods (see Appendix A). 

k+112  

Computational Cell 

Figure 5.3. Schematic of cells in the 3D-FVTD engine 

Since the FVTD algorithm proposed in Chapter 4 is a cell-centred algorithm, the 

local coordinate transformation must also be computed with respect to the centre of each 

FVTD cell. However, most mesh generators (including TrueGrie) define computational 

cells in terms of their corresponding nodes (see Figure 5.3). Therefore, in order to 

accurately compute and apply a coordinate transformation, it is essential to find the exact 

location of cell centres. The location of the cell centres can be found using: (1) a linear 

approximation (averaging) of the geometric centre of each cell or (2) via a double 

discretised mesh. 
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A linear approximation of the geometric centre of a cell can be found by computing 

the average of the computational ' cell's nodal coordinates. Then, the partial derivatives 

required for the local coordinate transformation of each cell are calculated at the cell's 

centre using one of the proposed centre differencing schemes in Appendix A. These 

partial derivatives are calculated at the approximated cell centre and are assumed constant 

over the whole computational  cell.  For example, a second order accurate centre difference 

approximation, equation (A.8), of located at (i, j, k) , is given by: 

(X) 1, 	= 

(X i + 1/2 - X i-1/2 )j- 1/2, k- 1/2 + (X i+ 1/2 - Xi-1/2) j+ 1/2, k- 1/2 + 

(X i + 1/2 - Xi-1/2 )  j- 1/2, k + 1/2 + (X i+ 1/2 - Xi-1/2 )j+ 1/2, k+ 1/2 [ 1 . (5.1)  

j+5/2  

1 

j+3/2 

 

\ 
j+1 • 	..,---`'"-,----.\----"` 

\ 
j+1/2 

Figure 5.4. Double discretised mesh (left) and its respective single discretised grid (right) 

The main disadvantage of the aforementioned method is the linear approximation of 

the geometric centre of a cell. This method becomes especially unreliable (i.e. inaccurate) 

for curved or stretched cells. In the double discretisation technique, the computational 

space is discretised using twice the number of nodal points required. Thus, it is clear that 

the exact geometric centre of each cell and their respective neighbours are located at the 

intersection of even numbered grid lines (i.e. the dashed lines in Figure 5.4). Therefore, it 
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• 
• 
• is conceivable that more accurate partial derivatives (with respect to the centre of each 
• 
• cell) can be computed by applying the second order accurate centre differencing 

• expression of (A.8) to the exact geometric centres of the lines forming each cell. The 
• 
• accuracy of the approximation of the metrical coefficients and the Jacobian of 

O 	 transformation can be further improved if the fourth order accurate central differencing 
w  
• scheme of (A.10) (spanning the mid-point of the sides of the cell and the centres of its 

•
• 

neighbours) is applied to the double discretised mesh. The partial derivatives of the cells 
• 
• adjacent to the boundaries of the computational space are calculated via the second order 
• 
• accurate forward (for the cells on the lower boundary) or backward (for upper boundary 
• 
• cells) differencing scheme given in Appendix A. 

• In order to evaluate the accuracy of the aforementioned methods for computing partial • 
• derivatives, the Jacobian of transformation of a simple coaxial waveguide structure, with 

• • = 1 cm and r outer  = 10 cm, was calculated analytically at all points and was inner 

• compared with similar values obtained using numerical methods of various accuracies. • 
• One such comparison of the computed Jacobian of transformation is given in Table 5.1. • 
• As expected, the most accurate value of the Jacobian of transformation (and its respective • 
• 

partial derivatives and metrical coefficients) is obtained using a fourth order accurate • 
• 

central differencing scheme applied to a double discretised mesh. Finally, it must be noted • 
that although the use of double discretised meshes increases the amount of memory • 

0 
• required in the mesh generation stage by a factor of eight, it adds very little to the 

• computational burden of the FVTD code. Thus, it is used as the default method of 

•
• 

computing partial derivatives in the 3D-FVTD computational engine. 

0 
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Table 5.1. A comparison of analytic and calculated Jacobians of transformation 

0(Ax) 2 , 	0(Ax) 2 , 	0(Ax) 4 , 
Method 	Analytic 

linear approx. 	double discrete. 	double discrete. 

Jacobian 	6.447 	6.693 	6.502 	6.447 

% difference' 	--- 	 3.820 	0.850 	0.000 

a. As compared to the analytical value. 

5.1.3 Ratio of Eigenvalues and the Accuracy of the Solution 

Although one of the advantages of using conformal meshes is their capability of 

accurately modelling curved surfaces, some PDE solvers may not be able to take full 

advantage of this property. It has been shown that the majority of upwind schemes only 

achieve second order accuracy on uniform meshes [94]. In general, the accuracy of most 

upwind schemes (such as the Lax-Wendroff technique) begins to erode as the grid 

becomes more non-uniform. This degradation in accuracy of the numerical solution is in 

part due to the method of estimation of the fields on the cell faces. In most upwind 

schemes, the value of the fields (located on the cell centres) is extrapolated to the cell faces 

using a first order accurate model. However, the error terms of this estimation are 

proportional to the difference in neighbouring cell dimensions [46]. Thus, the larger the 

difference in cell dimensions, the lower is the (order of) accuracy of the solution. This 

deficiency of many upwind schemes can be partly avoided by using a uniform conformal 

grid. This implies that although each cell is shaped to fit various features present in the 

problem space, its volume and (in most cases) its respective dimensions remain uniform, 

thus avoiding the lower accuracy of the solution due to large differences in cell 

dimensions. 

The eigenvalues of a computational space indicate the numerical speed of waves on 
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the computational grid. Eigenvalues are used to compensate for the difference between the 

physical and computational cells and play a critical role in maintaining a link between the 

two meshes. For example, a physical cell that is twice as long in the x -direction than it is 

in the y -direction will have a counterpart in the transformed space that has equal 

dimensions; hence the task of maintaining a physically accurate model of wave 

propagation will fall on the eigenvalues of each cell. That is, in the above computation 

cell, the magnitude of the cell's eigenvalue (hence its speed of wave propagation) aligned 

with the transformed x -axis must be twice as large as the magnitude of the eigenvalue of 

its counterpart aligned with the transformed y -axis in order to maintain the correct wave 

propagation model in the computational space. Therefore, the difference in the cells' 

dimensions can be tracked via the change in magnitude of the eigenvalues in any given 

direction. Consequently, when considering the entire computational space, the maximum, 

Xmax> and minimum, Xmin  , eigenvalue in each transformed coordinate will correspond to 

the largest and smallest cell dimensions in that direction. Table 5.2 includes the ratio of 

the maximum to minimum eigenvalues in any direction and the ratio of each eigenvalue 

with respect to the sum of the maximum eigenvalues in all directions, Xtotal> 

(4.106). Thus, the most accurate solutions (0(Ax) 2 ) that are obtained using the 3D-FVTD 

method require an eigenvalue ratio of unity or near unity. 

Table 5.2. The ratio of eigenvalues in a uniform waveguide 

1 X max  

X 	
Xtotal 

min 

	

Xmax 	

Xtoral  

X min 

	

-direction 	1.00 	3.00 	3.00 

	

ri -direction 	1.00 	3.00 	3.00 

	

-direction 	1.00 	3.00 	3.00 

given by 
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5.2 Testing and Verification of the 3D-FVTD Engine 

5.2.1 Verification of the Source Term Formulation 

The theoretical modelling and derivation of source terms in the FVTD technique and 

the time-averaged FVTD algorithm are tested for their accuracy of formulation using a 

simple benchmark problem of reflection from a lossy medium. The solution to the 

problem of reflection of normally incident plane waves from a lossy medium is well 

known. In general, the reflection coefficient of a uniform plane wave (launched in medium 

one with intrinsic impedance,  Z 1 )  that is normally incident on (a single and sufficiently 

thick lossy) * medium two of intrinsic impedance,  Z2 ,  is given by [3]: 

Z2  — Z 1  

= Z2+Zi 

which is defined as the reflection coefficient of medium one (referred to as the boundary of 

media one and two). The intrinsic impedance of a medium is determined by the medium's 

permittivity, permeability, conductivity, and the angular frequency/frequency-content of 

the incident wave, co = 21-cf, 

z= 	 rni • + jcoe 

If one of the media is free space, 

I-to 
Z == 376.73  [fa] . 

80  

* This assumption assures that there are no reflected waves within medium two. 

(5.2) 
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Figure 5.5. Boundary conditions required for the propagation of a uniforrn plane wave 

5.2.1.1 Excitation of the Problem Space 

Although the reflection of a plane wave from a single dielectric boundary is a 1D 

problem, it can be modelled and solved using a 3D simulator. In order to excite and 

propagate a uniform plane wave in a rectangular computational space, certain initial 

conditions must be imposed. For example, a uniform plane wave propagating in the z - 

direction of the problem space can be launched by imposing an Ey  Gaussian pulse initial 

condition, given by: 

where A is the pulse's maximum amplitude at the pulse centre, z 0 ,  b is the width of the 

pulse, and z is the spatial position over the entire computational space. In addition, 

particular boundary conditions must also be enforced in order to maintain the propagation 

of a uniform plane wave; that is, in a problem space with a rectangular cross section, PEC 

boundary conditions are enforced on the lower and upper y -bound, and PMC boundary 

conditions are enforced on the lower and upper x -bound (as shown in Figure 5.5). The 
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PEC walls enforce the boundary conditions necessary for propagating a transverse electric 

wave while the PMC walls employ a combination of the duality theorem and image theory 

to simulate an infinitely long space required for a plane wave. These boundary conditions 

are essential for supporting the propagation of a uniform plane wave in the computational 

space. 

5.2.1.2 Problem Configuration 

In order to investigate the performance of the new time-averaged FVTD algorithm, the 

method's accuracy for computing reflection coefficients was compared to an analytical 

solution as well as to results obtained using other popular finite difference methods, such 

as FDTD and TLM. In a problem space 80 cm in length, the free space-medium boundary 

of a sufficiently thick slab of a lossy dielectric (E r  = 1.5 and a = 0, 0.01, 0.10, 1,  10,  

50, and 100 [Sim]) was placed at z = 7.5 cm. For both the 1D-FDTD and TLM codes, 

the space was uniformly discretised using Al  = 0.1 mm; the mesh size for the 3D-FVTD 

space was Al  = 0.25 mm. The simulation space was terminated at both ends (lower and 

upper z -bound) using first order ABCs for the TLM simulation, Mur's first order ABCs in 

the case of FD'ID, and characteristic-based ABCs in the FVTD simulation. Since these 

ABCs are all reported to have better than a -40 dB reflection coefficient for similar 

problems [45, 59, 121], the reflected waves from these artificial boundaries were 

negligible. 

The problem space was excited by a uniform plane wave of Gaussian shape. This 

Gaussian pulse of spatial width of approximately 1.3 cm (with a frequency content of 

about 50 GHz at -40 dB level) was centred at z = 2.5 cm. It was launched in the free- 
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• space region of the problem, and the wave impinged normally onto the dielectric-lossy 

• medium. The value of the electric field component, transverse to the direction of • 
• propagation at z = 4.5 cm, was recorded after each time step for a total time of 1.7 ns • 
• and is shown in Figure 5.6. However, for low conductivity cases (c 	0.01, 0.1 [S/m]), • 
• the sampling period of the transient response was increased to 5.8 ns. A longer transient • 
• response was required due to the diffusion behaviour exhibited by the reflected signal 

•
• 

where the reflection from the lossy medium required a much longer interval to reach zero. *  
• 
• 
• 
• 5.2.1.3 Calculation of Reflection Coefficients 
• 
• The reflection coefficient in free space,  S11 ,  with respect to the lossy dielectric was • 
• computed analytically via (5.2), and by applying all three numerical solutions by using the 
• 
• pulse-separation method (see Appendix C). Figures 5.6, 5.7, and 5.8 contain plots of the 
• 
• magnitude of the reflection coefficient of several lossy media for frequencies up to 
• 
• 15 GHz.t These plots compared the accuracy of the computed coefficient of reflection 
• 
• using the TLM,FDTD, and FVTD methods with the analytical solution. In the majority of 
• 
• cases, the numerical methods computed S i  within 1% of the theoretical value for all 

• frequencies; thus, the various curves representing the reflection coefficients are indistin- 
• 
• guishable. Hence, in order to further quantify and compare the accuracy of the numerical 
• 
• solutions, each plot is accompanied by a table that contains the "worst case scenario" error 
• 
• for each numerical method. These errors represent the maximum percentage of deviation 
• 
• of the numerical solution with respect to the theoretical value at a given frequency (or 
• 
• * Recall that the leading and trailing zeros in a transient response will result in a smooth frequency 

• domain transformation especially in the case of lower frequency components. 

• 
This upper limit of frequency was chosen to include most (but not necessarily all) of state-of-the-art 
applications in computational electromagnetics. 



simply maximum error). Mathematically, the maximum error is formulated as: 

SAllna(f) ellum (f) 
Ana 

S ll (f) 
% error — x 100 f =  0...15  GHz. 

• 
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(5.6) 
• 

• 
• 
fir 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

In most cases, the maximum error was found near or at 15 GHz, and hence, the maximum 

error was calculated at that frequency. 

Figure 5.6 is a benchmark of the accuracy of the original formulation of the FVTD 

method (i.e. source free formulation) as compared to FDTD and TLM for computing the 

reflection coefficient of a perfect dielectric. Although, the FVTD technique does not seem 

to posses the same level of accuracy as do the FDTD and TLM methods,
* 
 its error remains 

within the sub-percent region and from a practical view point is negligible. The new time-

averaged FVTD algorithm accurately computed S11  since the maximum error of FVTD 

remained low for low loss dielectrics (see Figure 5.7). However, this trend was reversed 

for the lossy media of Figure 5.8, where the maximum error spiked to 2% for 

= 100 [S/m]. Meanwhile, both FDTD and TLM exhibit a consistent yet opposite trend 

in the accuracy of the computed coefficient of reflection of lossy media. The maximum 

error indicates that both techniques more accurately model poor conductors (a > 1 ) than 

they do poor insulators (a <  1).  However, one must exercise caution with the conclusions 

drawn in the case of poor insulators. Given that the 1-DTD and TLM transient response of 

these cases was diffused, the corresponding coefficient of reflections may not have been 

accurately computed. Furthermore, although the maximum error calculations were 

performed at the upper limit of frequency, one might argue that the entire data set is 

unreliable, and, therefore, no definite conclusions may be dawn regarding their accuracy! 

* This is partially due to the artificial dissipation of the LW formulation of the FVTD method and will 
be addressed in future discussions. 

• 
• 
• 
• 
• 
• 
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Figure 5.6. Test problem for source term formulation (a): (top) the initial condition at 
= 0, (middle) the transient response for a perfect dielectric sampled at 

z = 4.5 cm, and (bottom) its reflection coefficient calculated using 
analytical,  TLM,  FDTD, and FVTD  methods. 
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Figure 5.7. Test problem for source term formulation (b): the reflection coefficient for 
lossy dielectrics of various conductivity was calculated using analytical, 
TLM,  FDTD, and FVTD methods. 
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Figure 5.8. Test problem for source term formulation (c): the reflection coefficient for 
lossy dielectrics of various conductivity was calculated using analytical, 
TLM,  FDTD, and FVTD  methods. 
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In general, both the source-free and the new time-averaged FVTD method were tested 

and compared to FDTD and TLM. All methods computed the coefficient of reflection of 

lossy and loss-less media to an acceptable level of accuracy (within 2% of theoretical 

values). Although the new time-averaged FVTD has equivalent accuracy to FDTD and 

TLM for frequencies up to 10 GHz, its performance declines for higher frequencies. 

Figure 5.9. Rectangular waveguide twist ((left) and the theoretical field configuration as 
wave propagates from port 1 to port 2 of the device (right) 

5.2.2 Rectangular Waveguide Twists 

A waveguide twist is a two port device that changes the polarization of any wave 

propagating through it. This property is either exploited on its own (for packaging 

complex waveguide systems) or along with other techniques to build complex devices.
* 

 

The change in wave polarization is achieved through the gradual rotation of the plane of 

one of the waveguide's ports with respect to the other. Consider a uniform plane wave 

propagating from port one to port two (see Figure 5.9). As the wave propagates through 

* For example, in a gyrator, the Faraday rotation technique and a 90 0  twist are used to build a device 
tlriat has a 180° relative difference in the phase shift for transmission from port 1 to port 2 as 
compared to the reverse direction [122]. 
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• 
•
• 	the waveguide twist, the plane of polarization (here defined as the plane pmendicular to 

•
• 	the direction of propagation which contains the E and H components of the Poynting 
• vector) progressively rotates, thus merely changing the composition of the components of • 
• the Poynting vector. • 
• 
• 
• The mathematical models, propagation characteristics, field configurations, and other 

• 
• parameters of interest for the waveguide twists have been developed and well documented 

• 
• [123]. The main objective of this section is not to characte rize, analyse, and extract the 

• 
• various parameters of a specific waveguide twist but rather to verify the application of the 

•
• 

general coordinate transformation that was developed in Section 3.2.2. 
• • 
• 5.2.2.1 Problem Configuration and Excitation • 
• The first step in designing the simulation space is to model the framework of the • 

•
• 	interior of the waveguide twist. The frame of a twisted guide (aligned with the z - 
• direction) is formulated by the following expressions, • 
• 
• 27c 
• y, z) = xcos(—L + y sin(2—ir  

•• (—
L 

2m 
11(x, y, z) = ycos 	– x sin( 24z) • 

• y, z) 	z 	 (5.7) • 
• where (,  i, () represent the transformed coordinate system, (x, y, z) are the coordinates 
• 
• of the Cartesian system, and L is the length of the waveguide twist. 

• The modelled waveguide twist was a "4"- WR T28 -90 0  E-Field twist" which has a • 
• guided area of (3.556 mm x 7.112 mm) and a total length of L = 101.6 mm. For the • 
• purpose of this example, the twist was modelled using a simpler (and less mathematical) • 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • 

• 
• 
• 
• 

approach; the total length of the vvaveguide twist was divided into 22 equal partitions, and • 
• 
• (starting with the second piece) each portion was rotated 4.5° (clockwise) with respect to • 

the previous section. Thus, the final part was rotated 90° with respect to the initial 	• 
• 

segment. The first and last piece of the model serve as the continuation of the leading or 	• 
• 

the trailing waveguide circuit. The modelled twisted guide was meshed using a uniform, 	• 
• 

conforrnal, and double discretised mesh which assigned 40 cells per wavelength for the 	• 
• 

lowest cutoff frequency of a waveguide of identical cross-section. Thus, the computational 	• 
• 

space consisted of (10 x 20 x 386) cells. Table 5.3 presents the properties of the 	• 
• 

generated rnesh in terms of its eigenvalues. The maximum ratio of the eigenvalues in each 	• 
• 

direction was near unity. The largest eigenvalue necessary for numerical stability was 	• 
• 

computed to be IXtotall = 2.5193 x10 11  [mis] which corresponds to a time-step of 

• 
• 
• 
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At 	4.5835 ps. 

Table 5.3. The ratio of eigenvalues in the twisted waveguide problem 

X max 	 X total  

2 itirt 	 X max 

	

-direction 	1.00 	. 	2.98 	

IXZntiani 

2.99 

	

1-direction 	1.00 	2.98 	2.98 

	

-direction 	1.01 	3.02 	3.06 

5.2.2.2 Simulation Results 

In order to test and verify the accuracy and applicability of the derivation (the 

implementation of the general coordinate system in general, and the mesh generation 

process and local coordinate transformation in particular), the following test involving the 

propagation of a uniform plane Wave within a twisted guided structure was devised. A 

Gaussian pulse uniform plane wave was supported using a combination of PEC (on lower 
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•  
•
• 	 and upper -boundaries) and PMC (on lower and upper Ti -boundaries) boundary 

•
•

• 	

conditions (see Section 5.2.1.1 for details and formulation). It was launched in a straight 

• section of space that was added to the source-end of the waveguide twist. This straight • 
• section was meshed with cells of comparable size (and eigenvalues) to the twists's • 
• computational space. The computational space was terminated with characteristic ABCs • 
• at the lower and upper z planes. All elec tric and magnetic field components were sampled 
• 
• at each time-step at five equal distance locations. These points represented locations • 
• within the twisted guide where the change in polarization commenced (source) and • 
• completed (end). • • 
• Figure 5.10 contains the plots of these fields at various locations. The successive 

• 
• plotted field values at each observation point are intended to visualize the gradual 

• 
transformation (i.e. change in polarization) of the field components as the wave 

• 
propagated through the twist. The simulation results of the gradual transformation of the • 

• configuration of the propagating pulse are consistent with the theoretical explanation of • 
• the operation of a waveguide twist discussed earlier (see Section 5.2.2). • • • • • • • • • • • • • • * As previously discussed, one of the advantages of using the FVTD technique in combination with a 

•
general coordinate system is the ease of locating and enforcing various types of boundary 
conditions. For example, in the case of a twisted guide, the boundary conditions that are defined and 

• applied in the computational space are mapped into the proper locations in the physical space via the 
• coordinate transformation. • • • • • 
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Figure 5.10. Propagation of a uniform plane wave in a twisted rectangular waveguide: 
meshed simulation space (top) along with the transient response of electric 
(middle) and magnetic (bottom) fields of a uniform plane wave sampled at 
various locations. 
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• 
• 5.2.3 Characteristic ABCs and Non-Orthogonal Grids • 
• The characteristic ABCs used in the FVTD method are most effective in absorbing • 
•
• 	normal incident waves. Although conformal meshes can be designed to take advantage of 

• this property (by aligning the direction of the outgoing wave with the normal to the ABC) • 
• and maximize the absorbing rate of the ABC, it is not always possible to do so. Hence, it is • 
• important to test and document the effectiveness of the characteristic ABCs used in FVTD • 
• in several non-uniforrn conformal meshes. • 
• 
• Three separate tests were conducted using a test case similar to that described in 

• Section 5.2.1.1, namely, a Gaussian pulse uniform plane wave propagating in the z - 
• 
• direction supported by a combination of PEC and PMC boundary conditions. The first 
• 
• simulation was conducted on a uniform orthogonal grid which served as a benchmark for 
• 
• future applications. The other two grids consisted of uniform orthogonal portions (where 
• 
• the pulse was launched) and then were gradually deformed using either a skewed or a 
• 
• curved pattern in the same manner as shown in [124]. The largest eigenvalues necessary 
• 
• for the numerical stability of the uniform skewed and curved grids were computed to be 

• IXtotall = 3.5983x10 11 , 9.6174x101 1 , and 1.2635x10 1 2 
[M/S1, respectively. These 

• 
• correspond to a time-step of At = 0.32090 , 1.2006 , and 0.91388 ps, respectively. Table 
• 5.4 and Table 5.5 contain the properties of the generated skewed and curved meshes in 

• terms of their eigenvalues. In both cases, the maximum ratio of the eigenvalues in each 

• direction was very close to unity which ensured the second order accuracy of the solution. 

• In all cases using the modal expansion method (described in Appendix C), the • 
• reflection from the ABC was computed at several grid points adjacent to the ABC. Figure • 
• 5.11 plots the reflection coefficients from the characteristic ABC defined at the end of the • 
• 
• 
• 
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problem space. The reflection from the ABC in the uniform orthogonal space represents 	• • • 
the best case scenario and with a reflection of better than -60 dB, is more thari adequate, 	• 

• 
for analysing most practical problems. Although the reflection coefficient of the ABC for 	• 

• 
• the skewed grid is almost two orders of magnitude larger than is the one comPuted for the • 
• uniform grid, it is still better than -30 dB for a wide band of frequencies and can still be • 
• 

used in many applications. In a curved mesh, the characteristic ABC has a reflection 	• 
• 

coefficient of better than -45 dB, which outperforms the skewed mesh case, but is 	• • 
effective for a narrower range of frequencies. The aforementioned reflection coefficient of, 	• 

• 
the characteristic ABCs of the FVTD method was compared with the absorption rate for 	• 

• 
PML-ABC and 1-DTD on similar meshes reported in [124]. In all cases, the characterisiic 	• 

• 
ABC of the FVTD method did not perform as well as the PML-ABC in the 1-4DTD 	• 

• 
technique; however, considering that characteristic ABCs require minimal computation 	• 

• 
resources (as compared to PML-ABC), its performance is far better than expected. 	 • 

• 
• 

• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

-direction 	1.37 	2.27 	3.10 
• 
• 
• 
• 
• 

• 
• 

Table 5.4. The ratio of eigenvalues in the skewed mesh 	 • Table 5.4. The ratio of eigenvalues in the skewed mesh 

X  max 	 1 X total 
X 	

Xtotal 
X 2.„,„, 	 max 	 min  

	

-direction 	1.00 	3.05 	3.05 

	

ri -direction 	1.00 	3.05 	3.05 

	

-direction 	1.07 	2.91 	3.11 

Table 5.5. The ratio of eigenvalues in the curved mesh 	 • Table 5.5. The ratio of eigenvalues in the curved mesh 

1 2Lx: Ea 

 in 

 xl 	 2''total 

Xmax 	

hotal  

	

-direction 	1.12 	3.58 	4.26 
min 

	

ri -direction 	1.19 	3.58 	4.26 
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5.3 Summary 

Since the principal goal of this thesis is to investigate and develop a general purpose 

EM simulator that is capable of accurately modelling and solving complex EM problems, 

the testing and implementation of the newly derived time-averaged FVTD algorithm is 

necessary. In this chapter, the accuracy of the aforementioned algorithm was investigated 

for both modelling material properties and geometrically complex objects. In addition to 

these test cases, some key numerical issues, such as the method of discretisation, the 

computing coordinate transformation metrical coefficient, and the cell size ratio were also 

discussed. These numerical issues are essential in obtaining solutions of sufficient 

accuracy. Another crucial issue is the performance of the characteristic ABCs that are 

used to terminate the problem space. The reflection coefficients from the characteristic 

ABCs were computed and documented for several uniform and non-uniform grids. 

Although the characteristic ABCs do not perform as well as the FDTD's PML-ABCs (on 

similar grid configurations), their performance is well within the acceptable range 

required for analysing most practical problems. 
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• Chapter 6 • 
• 
• 
• Formulation of Lumped Elements • 
• in General Coordinate Systems • • 
• 
• 
• 
• 
• Recently, the full-wave modelling of (electronic) circuits has been receiving • 
• considerable attention from the CEM community [125]. Some of the applications of the • 
• EM analysis of circuit structures may include: the study of cross-talk and radiation from 0 
• circuit elements, EMI/EMC studies, and the broad band analysis of microwave or • 
• electronic circuits [126]. However, in order to accurately represent and solve a circuit • 
• structure, a model for various lumped elements must be developed. This chapter focuses 

• on extending the Lax-Wendroff version of the 3D-FVTD formulation to include linear • 
• passive circuit/lumped elements, such as resistors and capacitors, and linear independent 

• 
active elements (i.e. voltage and cun-ent sources). The modelling and formulation of • 
circuit elements demand an understanding of the basic operation of lumped elements and • 

• 
• their relation to Maxwell's equations. Hence, the theory of the operation of these devices 

• 
• is considered first. 

• * The formulation for inductors was not considered due to the scarcity of applications. • 
• • • 131 • 
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• • • • • 6.1 Introduction to the Formulation of Lumped Elements • • 
The general form of Ampere's Law is given by: 	 • • • v x E = aD +GE +JL , 	 (6.1) 	• 

rit •  • and after substituting J 	GE for the conduction current density term, it becomes: • • 
aD 	 • V x H — 	= Jc + JL , 	 (6.2) 	• at • aD where 	is the displacement current density, and JL is referred to as the lumped element 	' 	• at • 

current density [127]. The lumped element current density is an additional current 
0 

component due to the presence of the lumped element. Note that this assumption treats 	• 
• 

lumped elements as imaginary (more specifically size-less) components that are 	• 
• 

distributed*  over a pre-defined region and are connected in parallel to individual cells in the 	• • 
direction of the current flow. This implies that the content (and property) of the gells, for 	• 

• 
which a lumped element is defined, does not change; that is, the total current density 	• • 
flowing through the cross-section of a cell is the sum of the displacement, conduction, and 	• • 
lumped element current densities. This approach allows for the independent modelling of 	• 

• 
lumped elements as circuit elements (say, the resistance of a resistor) and as an object (say, 	• • 
the physical property of the resistor' s casing). Thus, the distributed model of a lumped 	• 

• 
element may differ from its physical location in a given structure. 	 • 

• 
• 6.2 Electric Current and Current Density in Lumped Elements 	 • • • 

Electric current is defined as an ordered motion of electric charges that quantifies the • 
• * The exact method of modelling lumped elements and the rules that apply to the current density 

distribution of lumped elements are element-type specific and will be clearly stated in later 	 • 
discussions. 	 • • • • • • 
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• magnitude (or intensity) of the flow of charges passing through a reference point in units • 
of magnitude of electric charge per unit time (C/s ) [127]. A more rigorous measure of • • 
current flow is given by current distribution, a vector field that defines the direction of the 

flow and the rate of flow of the electric charges through a surface orthogonal to the flow of • • the charges. Likewise, current density, J, is defined as the magnitude of the charges • • passing through a surface (orthogonal to the current flow) of a unit area in a unit time; • • hence, an electric current element is defined as: 

• AI = J • nAs 	[A], 	 (6.3) • 
• where n is the unit normal vector which defines the positive direction of current flow, and • 
• As is an element of a surface, S, through which the current density flows. The total current • 
• flowing through S is determined by [127]: • 
• I = 	•nds. 	 (6.4)  JJ  • • " 
• Although the most general formulation of lumped elements in the FVTD method • 
• demands the modelling of devices that are arbitrarily shaped and randomly located in the • 
• physical space of a given problem, it is realistic to assume that in most practical cases, the • 
• lumped element is placed (or can be defined and modelled) in the direction of one of the • 
• axes of the computational coordinate system. Hence, the lumped element current density 
• 
• has components that are aligned with the axis of the general coordinate system in the • 
• computational space, 
• • 
• JL  = ,I.Le+JL .rien +Jga. 	 (6.5) 
• • • * For most future discussions, the subscript,  L,  is dropped for brevity. • 
• 
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Figure 6.1. The lumped element cu rrent in (a) a physical cell and in (b) a computational 
cell 

However, the uniform rectangular grid of the computational space is the transformation of 

a general (non uniform) coordinate system. This transformation not only affects individual 

grid points, but also requires that the gove rn ing differential equations and differential 

operators be recast in order to reflect the transformation between the physical and the 

computational space. Therefore, using the theory of curvilinear coordinates in 

Appendix B, and the corresponding formulation of line and surface elements in general 

coordinate systems, the current density through (and the potential difference between) the 

faces of a physical cell is represented in terms of the computational components of the 

voltage and current of that cell. 

Hence, for a given cell centred at (i,  J'  k),  one component of the lumped element 

current density, J ç , is defined to be flowing in the positive Ç direction and is assumed to 

be uniformly distributed over a surface, S ç , orthogonal to the direction of the current flow, 

and located in the  E, r1  plane (as shown in Figure 6.1). The total current flowing through 
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•
• 

the computational cell is given by (6.4): • • • (r) i, j, k  = f Ji,  j,  k • nds = f 	j,  k fids = (f 	k() i, , k . 	(6.6) 
• 
• The current flow through the cell in the physical space is also calculated using (6.4) where • 
• the surface integral and its corresponding surface element are evaluated using the • 

expressions derived for curvilinear coordinates (see Appendix B). • 
• Consider the total lumped current flowing through a cell in the physical space given 

j, k  = fJJ , j, k • nds . 	 (6.7) • • 
• The surface integral is then transformed into the computational space via the expression of 

•
• 

surface elements in the -surface (B.34): 

6 	 2 • I = J • n( ,Igugrun  — %)4c/ri , 	 (6.8) 
• 
• where the unit normal vector, n , is orthogonal to the .-.surface and is defined in terms of 

• the reciprocal vector, aC  , as well as unitary vectors of the curvilinear coordinates (B.68), 
0 
• aC 	 V 	 	 a = 	 a

c • (11 x • . n =  	 (6.9) 
• AJaa 	I(a x a • (a 	i ) 	,\I(ax an ) •(a x an ) 

• The above expression is then recast in terms of the metrical coefficients of transformation • by utilizing equations (B.29) to (13.37). Hence, the scalar product of the current density and • 
• unit normal vector of (6.8) becomes: • • 
• J • n = 	

2 (.1 • j). 	 (6.10) 
• 1\igerlrl - • 
• Furthermore, it was previously shown (see (B.21)).that 
• 
• 
• 
• 

• 
• by: • 
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• • 

	

(6.11) 	• • • 
• 
• • 

(6.12) • • • • • 

	

(6.13) 	• 
• • • • • • • • • • 

	

(6.14) 	• • • • • • • • 

	

(6.15) 	5 

a 	.j4 

where  J  is the unit vector component of the lumped current density in the Ç direction. 

Next, (6.10) and (6.11) are substituted in (6.8): 

J 
Iç  = f f  I 	̂5' 2 IJ  

S  g Ug1111—  g 1 g 

and then in (6.7). The lumped current flowing through a cell in the direction is given by: 

= Jgdri , 
s 

where, by definition of coordinate transformation, 4 and di represent the displacement 

of unit length along the and i axes respectively. The total lumped current flow in a cell 

in the direction is computed by: 

	(.1" c) 	k • = ,j(gg)i, 
j, k 

 k 

Similar expressions for the lumped current due to the elements defined in the and ri 

directions can be derived as: 

g j, k  k  =  	i j k 
eni (g 	j, k 

AI g i j, k  
.n ) 	k  =  	j, k • 

,nI‘g 11 11 1  j, k 

Therefore, after substituting (6.14) to (6.16) in the expression of the total lumped current 

density flowing through a cell given in (6.4), this expression is calculated in terms of the 

components of the lumped element current; that is: • • • • • 

9 
• 
• 

(6.16) 	• 
5 • 
• • 



Al(gg) i j k " «Ag CC )  j, k 
+ 	I 	(47). , . 

1 J, 
n g j, k 

(J 	j, k 
j k 

k C • 

a 

ab —SE • di , (6.18) 

fE • dl =  o,  (6.19) 

a E • di = — 	fB • ds , (6.20) 
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(6.17) 

6.3 Potential Difference and Cell Voltages 

Voltage is defined as the negative line integral of the electric field between two points 

on the path of integration [128]. In a static field, the potential difference, 01) , between 

points a and b is defined as "work done on a unit test charge in moving from a to b [128]" 

which would suggest that on a closed path of integration, no net work is done; that is: 

and that the value of the potential difference is independent of the path of integration [127]. 

However, in the case of time-varying.electric fields, Faraday's Law, 

indicates that on a closed path of integration, the voltage is not zero because of the 

contributions of the time varying magnetic flux to the closed path of integration. *  Also, due 

to the contribution of the time-varying magnetic field through the path of integration, the 

voltage between the two points is path dependent [128]. Therefore, all lumped element 

voltages (which are due to the flow of lumped element currents in cells) must be defined 

using an identical path of integration in all cells. 

In general, a lumped element voltage between any two cell faces (located on the same 

* The voltage on such a closed path is often referred to as the electromotive force (emf) [3]. 



a 
Vr = -SE • dl. (6.21) 

a 
V = —f E • ardÇ. (6.22) 
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coordinate plane) is represented in terms of electric field values located at the centre of the 

cell. This is accomplished by applying the classical definition of the potential difference 

between two points: 

Since the fields located at the centre of each cell are assumed to be constant over the volume 

of the cell, the potential difference between the two faces of a cell in the direction, for 

example, is calculated by: 

The scalar product of the electric field and the unitary vector is defined by (B.17) to (B.19) 

E • 	e= E 

In (6.11), ei  = Ei/ 	and hence, (6.23) becomes: 

• a = 	E +  gT1    E 	 E ç 	E 	 E , 

Lgi•  J ^MU 	Algrrn 
Next, the above expression is substituted in (6.22), 

(6.23) 

(6.24) 

a f 

V _j 
g 
	E+ 	

g1 
 E1  E 	 (6.25) 

gU 	 'n g 

where in a computational space, a and b are located on two parallel faces of the cell 

located on the plane, with the path of integration passing through the centre of the cell as 

well as through a and b. Since in a computational space the differential, e, is of unit 

* Once more, the subscript,  L ,  is dropped for brevity. 



[ (gU) i, j, k  (E  )

" j, k  

	(E)  

j, k 

j, k 

(V) k  = 

(V) j, k = (girl)  1, k  

j, k 
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length, the lumped voltage of a cell (due to the lumped current flow in the direction), with 

its centre located at (i, j, k) , is given by: 

(V) k  = 
(gu) i, k 	j(6.26) (gCrdi 	iP 

j, k 
f  (g 	j, k 	_ 	 '  	j, k ' 	\ 

k 

	

J k 	I 	\ 
/n,

f
11 11/ 	k j(gUi k 

The expressions of the voltages, V and V 1 ,  which are defined between the other parallel 

faces of the cell located in the 	and ri-surface respectively, are: 

(gU) i' 	j' 	k  (E i 
 k 	 , 

kk) (6.27) 

A,Aerm ) i, j,  (g 	j 

(gig) i,  j, k  (E i kj(6.28) 
liCg j, k 

(g11 ) i, j, k (E. rd lk  

6.4 Ohm's Law and Lumped Elements 

A lumped element refers to any device that is used to construct an electric circuit. 

However, the following discussion focuses on either passive (devices without a source of 

electric energy, such as resistors and capacitors) or active elements (i.e. voltage and 

current sources). In the case of active devices, the element is assumed to be independent; 

that is, the terminal voltage or current of the device remains constant regardless of the load 

connected to the source. In circuit analysis, the relationship between the terminal voltage 

and the current of a circuit element is determined by Ohm's Law. In all cases, positive 

current flow is defined in the direction of the voltage rise across the device. Hence, the I-V 

• relationship of various lumped elements, as given by Ohm's Law, is [129]: 

I = -Y- R' 
resistor: (6.29) 



• • • 
• 

(6.32) 
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(6.30) 

(6.31) 

• • • • • • 

, [L] = 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0  0000  1 

[K] = 22 

I CdV 
capacitor: dt 

V + Vsource Thévenin voltage source: 	I = 

V and Norton current source: 	I = R— +  'source •  

Generally, the source term, S,  of Maxwell's equations (3.25) is the sum of the 

conduction current and lumped current density. However, the lumped element current is 

represented as a function of the terminal voltage of a device. Also, the terminal voltage of 

an element is expressed as a function of the electric field (see (6.26) to (6.28)). Hence, the 

lumped current density can be written as a function of the electric field; that is [130] : 

f(/) where I = f (V) and V = f(E) then J = f.(E). 	(6.33) 

In order to take advantage of the newly formulated Lax-Wendroff FVTD algorithm, 

(4.108), the source term is expressed as a function of the solution vector, Q,  

S = 	= [K]Q+[L]f(Q) 

where [K] represents the conductivity of each cell, and [L] contains the coefficients that 

satisfy the algebraic relationship between the terminal voltage and current of the lumped 

element as stated by Ohm's Law; i.e.: 

0 	0 	0 	0 	0 	0 

0 	0 	0 	0 	0 	0 

0 	0 	0 	0 	0 	0 

0 	0 	0 f(E) f(E1) f(Ec) 

0 	0 	0 f(E) f(E1) f(E) 

0 	0 	0 f(E) 	f(E) 

(6.34) 

(6.35) 

• • 
• 

• 
• 

• • • 
• 
• 

• 
• • • • • • • 

• 
• 
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Figure 6.2. Model of a lumped resistor in a general coordinate system 

6.5  Formulation of Lumped Resistors 

If a resistor (shown in Figure 6.2) of resistance, R, is defined (distributed) over a 

region of 1 in ,  11c_.p, aligned with the axis, then according to 

Ohm's Law, the algebraic relationship between the terminal voltage and current is: 

R . where 	as the algebraic sum of the individual cell voltages (computed in any column of 

cells within the lumped model) in the direction of lumped current flow; that is: 

T712 
=

x1P  .uR \  
v 	1_, 	j,k • 	 (6.37) 

k = 

The corresponding lumped current,/ 1  , is represented in terms of a respective component 

of the lumped element current density, (6.14). Thus, the total current flowing across any 

constant plane, say Ei  -plane, perpendicular to the direction of the current flow is given by: 
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(6.38) 

(V lb k  
) i, j,k = 	TR 	• 

k  
(6.42) 

n 
„R, 	 Vn 	j, k  

= E E 	= ZJ ZJ 	\ 	ç ) il jek • 
i=lj=1 	 i=  1 j =  

It is assumed that the terminal current of the resistor is equally distributed over the 

entire region of the lumped model; hence, the current density across any plane surface of 

the model is constant. Thus, (6.38) becomes: 

(JR01, k 
I(  

in 	n 

i= 1j= 1 Al(g 	j, k 

(6.39) 

where the cell current density is replaced by its equivalent expression of (6.14); that is: 

(6.40) 

The above equation represents a cell's lumped current as a function of the total current of 

the resistor defined along the -direction. Furthermore, using (6.36) and (6.37), 

, R 	
= 	A,l(g 	j, k  k  	m n  m n 	 • 

,R 	1 i  
/ TR\ 	 '\I(g  g)  i; j k 	v  ( = AM'  U)  i, j, k k = 1  li 1i, j, k = m 	n 	' 

E E /gi,
)
j,k  1? 

 

in 	n 	1,1 	k  

i=lj=lieggii,j,k 	 i=  1 j = 1 AAgg ) i, j, k 

,„12 \  
v 	k 

(6.41) 

Ohm's Law also applies to individual cells of a lumped model; hence: 

After substituting for 	k  from (6.41), 



• • • • 
a • 1 z  nlg i, j,k  
• 
O i = 1j= 1 Al(gU) i, j,k 	R  fi ,R\  (RO i,  k  = 	 Ç . v y i, i,  k . P 0 	 ,igi, - k  
• ( 0  .\i' 	 E (17 ) , • k 
• '1` .5  U/ i, j, k k =1 	' j'  
or 
• Equation (6.26) supplies the expression for cell voltage; then (6.43) becomes: 
• 
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(6.43) 

• ,,, 	111,„ .  . 

	

, • 	 1 z  ../.5,, j, k  

1 

 

• (Ro i, i,  k  = i = 1  j = 1 n\1(g  U) i, j, k  0  

• iig i, j,k 	
it 

• 
• tnAgU) i, j, k 

1 0 
• [  (gU)i, j, k ( t,R.\     (.12, k.i.:,u ( i k  -1- ,  (ig 	t..,R)i k . (gg) i j k 	R 

11( 	j_ 	i 	'' 	(.1.,t, ) ( i k  
• ,i(gU) i, j, k 	' ' 	4(g 11 11 ) i, j, k 	' 
• ' 

vP  [ (g 	CO 	i, j,k ,.,-,,R, i  Z.1 	k 	..c,v i  k+   t,R 	_,_  (gU  • )i k t) i  i k,R 
(r_:, rd i  i k  -.- 	i 	' j  ' 	(.L:., 

• k=  1 	n,l‘gU) i, j,k 	' ' 	ti(grIll ) i, j,k  
• (6.44) 
O R The current flowing through each cell, (I)  k , and, the current density of the cell, • 
• R i,  k'  are associated with an electric field component in that direction; that is: 
• 
0 
• (J)i, j,k = f((E)i, j,k) • 	 (6.45) 
• 
• Consequently, the electric fields of the lumped element that are not aligned with the 
• 

direction of current flow in the resistor are zero, and (6.44) becomes: 0 
" 	 k 	(gg) i, j,k 	R • E 	(E ) i, j, k • 

i = 1 j = 1 ,\I(g 	j,k 	 j,k 	
(6.46) • (R c) i 	= ,  

P (g& j, k  t,R \  • j, k  k a 
,\Agu)i,j,k 	k = 1 A,i(gffl j,k • 

• It is also assumed that (within a lumped element) the fields due to the lumped current flow • 
• are uniformly distributed along the direction of currentflow. This means that the (E( )• k 

• term is k independent; therefore, upon the cancellation of like ter ris in (6.46), the value of 

0 
0 • 
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the distributed lumped resistance of any cell (within the lumped model defined in the 

direction) is given in terms of the value of the lumped resistor via: 	 • 
0 
0 

	

m n 	 • 

	

(gg) i, j,k E E 	 

	

(R) i,  k  = 	  
1> t  . 	(6.47) 	• • E i,j,k 

k = 1 	 to • 
Essentially, the aforementioned procedure is repeated to derive expressions for 

• 
resistors defined in other directions. Thus, the distributed resistance of an -axis aligned 

resistor is given by: 

9 n p 

	

xr 	k 	 • 
(gg)  j, k 

	

 
= 	

\ 
= 1  k =  1 /(g&  j, k  R  (RO k  

	

(6.48) 	• 
j, k E A/cgu)i, j, k 

i = 1 	 • 

while the distributed resistance of an î -axis aligned resistor becomes: 

0 ..Itin vP 	«Igi' 
	' 
j k  • 

i =  1 k =  1 	 • (6.49) (Rr ) i,  i, k  = n 	 1. 	 • 
• 

j = 1 	 • • 
Next, the above expression, along with the I-V relationship of a lumped resistor, • 

(6.29), and the value of various cell voltages, given in (6.26) to (6.28), are substituted in • 
• 

the general expression of the lumped element current density of (6.17)'; *  Thus, the • 
• 

expression for lumped cunent density (within a lumped element model) becomes: • 
• 
• 
• * It must be noted that only the field components along the direction of (lumped) current flow are non- 

zero. 	 • • 

• 

to • 



, TR, 	 (gU) i, j,  , 
	

j, k . 
L )i, j, k = (RO k  

j, 	j, k  . 

AJgJk 
 (R1) j,k 

Tlxgin  Çg 0 	 R 	R 	Re j.  j, k diag 

(6.53) 
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Ia 
7„R 

+ (gg) i, j,  n )i, j, k 

j, k (R)  j,k 

(6.50) 

However, the general coordinate FVTD formulation requires the field components to be 

represented in terms of the components in the Cartesian coordinate system. Then using 

(B.50), the above expression for lumped current density is rewritten as: 

/ 	\ 3/2 // \ 	/ R \ 	 / R \ 	 / r,R \ 	\ 
, ,R, 	kgui i, J,kk‘'..x)i, j, k'L:  ' x  Ji, j, k + ( Y ) i, j,  k"--"'Y ) i, j, k + ( z  )i, j, k"-'z ) i j k )  
ltl Lk , j k = 	1 	 ' ' i 

A Igi, j, k 	
(RO i, i, k  

/ 	\3/2 if  \ 	/ rR 	 / e.,R \ 	\ 
\gill/ i, j, kkk Ilx ,  i, j, kV "' x ) i, j, k + (11y )  i, j,  k‘'L .Y i i, j, k + ( Z )  j, j, kk""' z i i, j, ki  i, 

\ 3/2 	 rR 	 r,R 	 rR 
‘gg) i, j, 

 fir  \ 
j, kka" x

\ 
 j, k + 	j, 	

\ 
j, k 	j, k"-"z

\ 
 j,  ic 

(R) k  

The source term in Ampere's law, defined in (6.34), is given by: 

AtFi,T,k 	
(R.n ) k  

g j, k (6.51) 

(ir  LR )i, j, k 	 k [LT 1  j, ke j, k (6.52) 

where [LR ] is the I-V relation matrix of the lumped resistor, and [LT ] is the general-to-. 

Cartesian coordinate transformation matrix for the electric field components of (6.50). 

[LR ] is given by: 

—1 	[ 
[LRI jf k = 	

[

I
O 

ei, j, kJi,  j, k 

where the cell's discrete lumped resistance, (R ) i, k'  (KO k , and (R ) i, k  

computed via (6.48), (6.49), and (6.47), whereas [LT ] is given by: 

are 
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(6.54) 

—Vc I 

000  0 	0 	0 
000  0 	0 	0 
000  0 	0 	0 

0 0 0 LJ  
0 0 0 Tixigni  11"471-1  lz ,/groi 

0  0 0 ÇA/gu 3'11-gU zArgU j,k 

[LT ] k  = 

Figure 6.3. Model of a Thévenin source in a general coordinate system 

6.6 Formulation of Lumped Resistive Voltage (Thévenin) Sources 

In the FDTD method, lumped sources are modelled as (distributed) sources which 

impose (i.e. additional to the existing value of) an electric field density in each cell within 

the lumped element [130, 131 ].  A similar approach has been adopted for formulating 

lumped sources in the FVTD method. 

Thus, a lumped voltage source with an internal resistance, 1-?, and a source voltage of 

V s  (aligned with the Ç axis) is modelled as an element distributed over a region of 

1 1 with each cell containing both a distributed resistor, 

(R) k'  and a distributed voltage source, ( 	k , as shown in Figure 6.3. The 
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• 
• 
• relationship between the terminal voltage and the terminal current of a Thévenin source is 

• given by Ohm's Law as stated in (6.31): 
• 
• 
• V R  Vs  • — — (6.55) 
• RR 
• where the current due to the voltage source, VVIk, is represented as an imposed electric 

• field density in each of the lumped element cells, whereas the term  V/R characterizes • 
• the contribution of the source resistance. The latter was examined in the previous section, 

9 
• The terminal voltage of a lumped element due to the source, V's.  , is the algebraic sum • 
• of its (individual cell) counterpaits in any column of the lumped model (in the direction of 

• source current flow), and is given by: 

= E (q),, k 	 (6.56) 
k = 1 

• and after substituting for the expression of cell voltage from (6.26), it becomes: • 
• 
• 

	

P  [ (gU) i, j, k 	 (g& i, • k 	s 	(g 	i • k 	s • V s  - 4- it 	j ' 	(Erdi, j,k+ 	 ' 	(E)i, k , (6.57) 
• k = 1 1n1 (g )  j, k 	1nI vg11 11 )  j, k  
• 
• where (Es ) i,  k, etc. are the electric field components due to the source voltage and are to 

• be imposed in addition to the field components present in each cell within the lumped 

• element model. Since the lumped element current and current density are associated with 
• 
• an electric field oriented in the same direction, the electric fields of the lumped element not • 
• aligned with the direction of current  flow in the cells are vanishing; hence (6.57) becomes: 

• 
• and appropriate expressions were derived (see (6.47) to (6.53)). Therefore, only the • 

formulation of the current due to the voltage source term is considered here. 

• 

• 
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vs 	,J(gu)i,,,k(Es)i,j,k" 	 (6.58) 	• 
k = 1 	 • 

0 As in the case of lumped resistors, the electric field due to the lumped current is assumed • 
to be uniformly distributed within the lumped element along the direction of lumped current • • flow. Thus, the (E )  k term becomes k independent; therefore, (6.58) can be rearranged 

• 

	

so that the electric field due to the source voltage is given as a function of the lumped 	• 
• 

element terminal voltage via: 	 • 
• 

—V s  
(Es )i, j, k = 	p 	 (6.59) 	• 

AAgg)i, j, k 
k=  1 

9 

	

Similar expressions are derived for sources that are aligned in either the - or ri -axis 	• • 
respectively: 	 • 

• 
( 	 —Vs 

m 	 (6.60) • 
E A/(g&i, j, k 	 • = 	 • 

—Vs 	 • (Es  rdi, k = n 	 (6.61) • 
E A/(gm-di, 	j, k 	 • 	• 

j = 1 	 • 
• 

Next, the general expression of the lumped element current density of (6.17) is recast • • 
for lumped sources, 	 • 

rR, 	 • 
Ch)i, k 	j, k (IL)i, j, 	 (6.62) • 

where ( IL ) i, j,  k represents the distributed source resistor's current density, and (J1)i, j,  k • 
• 
• denotes the current density due to the distributed voltage source. The expression of the 0 
• former was derived earlier and is given by (6.50) to (6.51). Thus, using the notation of • 

• 
• 
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(6.52), the source term due to a Thévenin source becomes: 

IL ) 	k  = 	k [LT 1 	k (Qi,  j, k 	j, k ) 	 (6.63) 

where [LR ] and [LT ] are given by (6.53) and (6.54) respectively; V s  is a vector 

containing lumped voltage sources and is computed via: 

E 	j, k 	 j, k E Alcgrg)i, j, k 
i = 1 	 1=1 	 k=1 

(6.64) 

Computationally speaking, the imposed fields due to the lumped source can be 

imposed any time dining the computation of fields at a specific time step; that is, these 

fields can be added to the total fields within the lumped model at the beginning of each 

time step and can still correctly represent the I-V relationship of a lumped voltage source! 

Therefore, in each time step, the following expression is executed before the field update 

equations: 

1z 	 f 	\ fl 
Qii, j, k 	r,. j, k +  [LT ]  j, kk 	j, k • (6.65) 

Finally, an ideal voltage source, (i.e. a Thévenin source whose internal resistance is 

zero) is considered. In this case, there will be no voltage drop due to internal resistance 

which will eliminate the need for a lumped resistor cutTent density. This is achieved by 

setting [LR] to zero in (6.63) which would effectively remove the lumped element current 

density term in the update equations; yet the source terms are still added via (6.65). 
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Figure 6.4. Model of a Norton source in a general coordinate system 

6.7 Formulation of Lumped Resistive Current (Norton) Sources 

Since there is little difference between lumped current (Norton) sources and lumped 

voltage sources, and in fact one can be easily converted to the other using a source 

transformation [129], the formulation of lumped current sources can be derived using a 

procedure very similar to the one described for lumped voltage sources. 

A lumped current source with an internal resistance, 	and source current of 

(aligned with the axis) is modelled as an element distributed over a region of 1 

1..j...ç.n,15_k5_p, with each cell containing both a distributed resistor, (R ) i,  j,k , and a 

distributed current source, (TD k , as shown in Figure 6.4. The relationship between the 

terminal voltage and the terminal current of a Norton source is given by Ohm's Law as 

stated in (6.32): 

V 	s = 
1(  

(6.66) 
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• 
• where VV.12 c  represents the contribution of the source resistor, and /Z is the source 

• current. Appropriate expressions for the former were derived and are given by (6.47) to 
• 
• (6.54). Thus the latter is considered here. 

• As in case of the lumped resistor, it is assumed that the terminal current of the resistor 
• 
• is equally distributed over the entire region of the lumped model; hence, the current 
• 
• density across any plane swface of the model (normal to the direction of current flow) is 
• 
• constant. Thus, the cell current density due to the source current is given by (6.39); that is: 
9 
• /s  

• k = in r  It 	 (6.67) 
• z  Ag7,k  

• 
i= 1 j= 1 AfigU ) i, j, k 

• Similar expressions are derived for sources that are aligned in either the - or 1 -axis 
• 

respectively: 
• 
• 
• is  
•

(sr (6.68) 
•

k n 	 n p 

• j lk=1 ,\AgU ) i,j,k • • 
Geri ) ie k 	p • • 	

(6.69) 
• z 	A/gi, j, k  • 
• • 
• The general expression for the lumped element current density,(6.17), is once again 

• 
re-written to include the cun-ent density term for lumped current sources; that is: 

• 
• yR 
• k = 	, j, k (eL)i, j, k • 	 (6.70) 
• 
• where CrL ) i,  k denotes the current density due to the distributed current source, and 
• 
• (J 	k represents the source resistor's current density. The expressions for the source 
• 



(JeL)i, j, k = [LT ]1, j, 	j, k (6.71) 

(6.72) 	• 
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resistor current density are given by (6.50) to (6.52), and the source current density is 

computed in a similar manner as in case of the Thévenin source; thus, it is given by: 

where [LT ] is the transformation matrix defined by (6.54) and j 	is the lumped source 

term given by: 

000 	   n 	p 	I 	 

j = 1 k = 1 nAgg) i, j, k 

Is  

in p 
AJg  j, k  

i = 1 k = 1 Al( g1111 ) i, j, k 

mn  

1= 1j  

k  = 

Finally, Norton current sources are incorporated into the computational expressions via: 

Qtiz, j, k = Qti: j, k [LT ]  j, k (is  j, k (6.73) 

Figure 6.5. Model of a lumped capacitor in a general coordinate system 



chic  
I=c= 	, (6.74) 

in  

k 	',Age, j, k 
i = 1 

V1 V1 4i,j,k 
p n 

(g 	j, k 	Z.J 	\ 

k = 1 j = 1 AI 	j, k 

(C) j J k  = Cr (6.75) 

p 	• I z 	k  

i=  1 k = 1 nAg 1111 )  j, k 
j, k 

k = (C1.1 ) 1,  C
TI (6.76) 
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6.8 Formulation of Lumped Capacitors 

A capacitor, C, which is aligned with the 	axis is shown in Figure 6.5. It is 

modelled as a lumped element distributed over a region of 1 i 

The relationship between its terminal voltage and current is stated in (6.30) as: 

where  I  is the total current flowing across any plane within the lumped model normal to 

the direction of the current flow, and  V  is the algebraic sum of the individual cell voltages 

(in any column of the lumped model) in the direction of the current flow through the 

element. A procedure (nearly) identical to the one described in the case of lumped resistors 

(see Section 6.5) is used to derive expressions for the distributed capacitance of individual 

cells. Although in the case of lumped capacitors, the time derivative of the capacitor's 

terminal voltage, V', and its corresponding electric field, Ec  , replace the terminal voltage 

and electric fields of the lumped capacitors, this slight alteration does not affect the overall 

procedure used previously. Hence, the expressions for the distributed capacitance of the , 

- and -axis aligned capacitors are given below: 



(C )  1, k 
k = 1 

" 
j, k EE 	 

(6.77) 

—1 	
f [ 

ei, lc/kJ, j, 
[id ] k  — (6.79) 0 	0 	0 	

xgg  %girl  çggi 
C C C 

ri 
C 	Cr 
xg Trri xg  

j, k diag 

Qt + [A]Q+ [B]an + [C]Q = ([K] + [LR ][LT ])Q + ULR ][LT ]) + [Lc][LT ]Qt, 
17 , 

jS  

Vs 
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g j, k E 	j, k 

Thus, the general expression for a capacitor's lumped density is written as: 

hc )i, j, k 7.= 	Cii, j, k [LT ]i, j, 	k ' (6.78) 

where [Lc] is the I-V relationship matrix of the lumped capacitor. This matrix is recast in 

terms of the time derivative of Cartesian electric field components and is given by: 

However, it must be noted that the treatment (and solution) of the lumped current density 

of a capacitor is markedly different than that of previously discussed lumped elements. In 

the case of a lumped capacitor, the source term of Ampere's law, (6.78), contains a time 

derivative of the solution vector (as opposed to the just the solution vector in the case of 

other lumped elements). Hence, Maxwell's equations of (3.34) can be written in ternis  of 

lumped element current densities as: 

(6.80) 

where it is simplified into the general form of a system of PDEs that the FVTD method is 

capable of solving; that is: 

[A] 	[13]  
Qt+ [L c][L,7 1Q+ [Lc][LT] 

[C] 	([K] + [LR][LT ] 	 ([L R][LT ] 

[Lc][LT ] Q 	[Lc][LT] )Q  -F [Lc.] [LT ]) 

(6.81) 
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• 
• 6.9 Formulation of Lumped Networks 
• 
• Thus far, the discussion has concentrated on the modelling of specific types of lumped • 
• elements in the FVTD algorithm. Although this is convenient for modelling simple • 
•

circuits, more complex two terminal networks (that may include several types of lumped 

• elements) cannot be accurately modelled using the characteristics of one type of lumped • 
•
• 

	

	element. In fact, most lumped networks exhibit a terminal I-V relationship that is a 

combination of the resistive, capacitive, and inductive elements' I-V characteristics. They • 
• are commonly referred to as RLC lumped networks [129]. The I-V relationship of RLC • 
• lumped networks is often formulated (and obtained) in the Laplace domain, that is; • 
• 
• VLN(s) = Z(s)/LN (s) 	 (6.82) • 
• where V LN (s) and /LN (s) are the terminal voltage and the terminal current of the lumped • 
• network; Z(s) is the impedance function of the RLC network given by [132] : • 
• 
• 
• 
•

Z(s) — 	bi(s)1J[E ai(s) 1  (6.83) 
L 

= 	0 • 
• with L representing the number of capacitive or inductive elements in the RLC network. • 
• 
• In [132], the lumped network I-V relation of (6.82) was derived for the FDTD method. 

• 
• The resulting equations were discretised and solved using the bilinear transformation 

• 
• method (a standard signal processing technique [1331) and a semi-explicit FDTD scheme). 

• 
• This technique along with other methods capable of modelling nonlinear lumped elements 

• 
• in FDTD [134] can be adopted to model complex electronic circuits using the FVTD 
• 

method. Additional research on the formulation and modelling of lumped networks using • 
• 

the FVTD technique is required and will be pursued in the future. • 
• 
• 
• 
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6.10 Case Study: Coaxial Transmission Lines 

Transmission lines are one of the most common devices of the transportation and the 

distribution of power*  (whether it is microwave or electric power). They are two-(or more) 

conductor structures that propagate energy via Transverse ElectroMagnetic (TEM) waves 

(that are characterized by the absence of any components in the axial direction) [135]. The 

properties and characteristics of various types of transmission lines have been extensively 

studied, analysed, and documented [14, 15, 135, etc.]. The aim of this section is to model 

a standard coaxial transmission line, excite and propagate a pulse within it (via a lumped 

voltage source), and verify the general coordinate system formulation of distributed 

lumped voltage sources, derived in Section 6.6, using the FVTD method. In addition, the 

performance of the characteristic ABCs of the FVTD method are also evaluated in a non-

orthogonal grid. 

6.10.1 Excitation and Lumped Sources 

Although there are various methods of exciting and propagating waves in coaxial 

transmission lines, a coaxial cable is often connected to an external source (and eventually 

to a load) via various types of connectors, such as a Type-N connector (operation 

frequency of 11 to 18 GHz) or an SMA connector (operation frequency of up to 25 GHz) 

[136].  Thus, in numerical simulations, a lumped source must excite the dominant mode of 

the coaxial guide (i.e. TEM-mode). Although the junction of the connector and the cable 

often forms a discontinuity that could excite higher-order (TE and/or TM) modes, these 

* Another popular method of transporting microwave energy is using waveguides. Waveguides are 
single conductor structures that propagate energy via Transverse Electric (TE) and/or Transverse 
Magnetic (TM) waves that are characterised by their longitudinal electric or magnetic field 
components respectively [14]. 
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• modes are often cutoff (evanescent) and only exist in very close proximity to the 
• 
• discontinuity or sources where they were excited [11. Furthermore, one must consider the 
• 
• potential distribution on a given longitudinal plane; that is, the lumped source must 
• 
• correctly represent the solution to the problem: "when a potential Vo  is applied between 
• 

•• the inner and the outer conductor of a coaxial guide find the electric field values at any • 
• point between the two conductors [1 page 186]." This problem is solved by the simple 
• 
• application of Laplace's equation in the cylindrical coordinate system (assuming that the 
• 
• line is very long so that av/az  O, and that the space between the inner and outer 
• 
• conductor is filled with a linear homogenous isotropic medium [3[): 
• 
• 2 	2 
• v2v .1.(raV) + la v + a v 0,  (6.84) • r* ar 	r2 a1)2 aZ2 
• 
• where due to the cylindrical symmetry with respect to en , and the assumption of no change 
• 
• in the longitudinal, z, direction, it can be simplified to: 
• • • v2 v  _1  â 

r& a 
(raV) (6.85) • rar 

• The boundary conditions are fairly obvious and are given as: (a) V = 0 at r = b and (2) • 
• V = Vo  at r = a.  Following two successive integration operations and the application of • 
• boundary conditions, the solution to the simplified Laplace's equation of (6.85) is given as: • • 
• ln(b/ r)  V = V°ln(b/a)• 	 (6.86) C .   • 
• It is important to note that the above solution is applicable to time-varying fields and 
• 
• sources [1]." 
• 
• Hence, the problem space must be excited using a lumped voltage source which not 
• 
• only obeys the above potential distribution, but also excites a TEM-mode. The formulation 
• • • • 
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of distributed lumped voltage sources developed for general coordinate systems uses 

directional derivatives that inherently account for the latter; that is, the lumped element 

formulation resolves the radial and azimuth (circumferential) electric field components 

into corresponding E.„ and Ey  components through the use of directional derivatives. By 

the same token, the axial component, Ez , is negligible since the directional derivatives 

(metrical coefficients) corresponding to the axial direction are zero. The potential 

distribution condition is satisfied via (6.86). The effectiveness of both of these 

formulations is verified next. 

kiek tttsumummum  

Figure 6.6. Cross section of an RG-9B/U coaxial transmission line with a = 1.036 min 
and b = 3.612 mm (left) and its meshed model (right). 

6.10.2 Problem Configuration 

An RG-9B/U standard coaxial cable was selected for modelling. This cable has an 

overall diameter of 425 Mils and a dielectric material (Polyethlene, Er  =  2.25)  diameter 

of 285 Mils (see Figure 6.6). *  An 8 cm long section of the above cable was meshed using 

TrueGrid®  for various combinations of discretisation in the radial, circumferential, and 

* For an impedance of 50f1, the coaxial waveguide characteristic impedance is given by: 

z  _ 1 	50.  
— 270 a 

Thus, the radius of the inner conductor can be calculated assuming that the diameter of the 
dielectric material is 2b [136]. 



properties of the grid in terms of its eigenvalues are given in Table 6.1. Due to the nature 

of the cylindrical coordinate system, the maximum ratio of the eigenvalues in the azimuth 

direction could not be unity due to the gradual increase in the perimeters of the concentric 

circles (as is reflected in the ratio of the eigenvalues). In such problem spaces, every effort 

was made to maintain the maximum ratio of the eigenvalues near unity. 

Table 6.1. The ratio of eigenvalues in a coaxial cable 

2Ltotall  

Xmax 	

2t'tota1 

2 'inin 

	

-direction  	1.00 	2.21 	2.21 

	

1. 1 -direction 	3.16 	3.02 	9.55 

	

-direction 	1.00 	4.60 	4.60 

A distributed lumped voltage source was modelled by a one-cell-thick longitudinal 

plane. It was placed 1.33 min (3 cells) way from the lower bound of the axial, z, direction. 

The voltage source generated a Gaussian wave form: 

• 
• • 159 • 
• 
• axial directions. In all cases, the lower and upper radial limits were terminated using PEC • 
• boundary conditions (hence modelling the inner and outer conductors), both limits of the • 
• axial direction were terminated with characteristic ABCs, and periodic boundary • 
• conditions were used on the lower and upper bounds of the azimuth direction. A double • 
• discretised mesh was used to more accurately compute the transformation matrices. • 
• 
• In one such simulation, the above cable was modelled using a (15 x  30><  150) cell 
• 
• space. The value of the largest eigenvalue required for numerical stability was 

• 12 • 1.7230x10 [es] which corresponded to a time-step of At = 0.67016 ps. The 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• _ toy 
• V(t) = A o e 	 (6.87) 
• 
• 
• 
• 
• 
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Figure 6.7. (Top) Profile of the transverse electric fields at the distributed lumped 
voltage source's longitudinal plane, (mid) calculated voltages at various 
locations along the coaxial line, and (bottom) their respective magnitude 
spectrum. 
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of amplitude A o  = 30 V, pulse width tw  = 49 ps, and to  = 150 ps. Figure 6.7 displays 

a contour plot of the transverse electric fields at the plane containing the lumped voltage 

source. The value of the Ez  fields in this longitudinal plane was also examined and was 

determ.  ined to be negligible. *  At several locations along the coaxial line (z = 1.7 , 3.76, 

7.92 cm corresponding to the source, t mid, and end points of Figure 6.7), the voltage 

between the inner and outer conductors was calculated via (6.57) and (B.50). These 

calculations were repeated at every time step for a total time of 2.1 ps. A time domain plot 

of these voltages and their corresponding magnitude spectrum (calculated using the 

Discrete Fourier Transform, DFT, method [133]) are also shown in Figure 6.7. 

The profile of the Ex  and Ey  fields at the distributed lumped voltage source and the 

trivial size of the Ez  field (in comparison) validate the formulation of the distributed 

lumped voltage source in general coordinate systems as well as its implementation in the 

FVTD engine-. In addition, the transient response of the line voltages (shown in 

Figure 6.7) has also demonstrated the propagation of a Gaussian voltage pulse within the 

coaxial cable. The numeiical dissipation of the mesh was gauged at 2% of the amplitude 

of the original pulse (see the transient response plot of Figure 6.7). This inherent artificial 

dissipation of the FVTD algoiithm was further studied using a one-sided magnitude 

spectral plot of the line voltages (see bottom plot of Figure 6.7) which demonstrated that 

the dissipation is uniform across the spectrum. The peculiar behaviour of the magnitude 

spectrum of the source and mid.  point voltages at lower frequencies ( 1.5 GHz) is 

probably due to the effect of evanescent modes and/or the premature termination of the 

* It was three orders of magnitude smaller than its corresponding Ex  or E field strengths. 

t Higher-order modes were observed in the vicinity of the lumped source; hence the first observation 
point, dubbed "source", was located 13 cm away from the lumped voltage source in order to only 
capture the contribution of the TEM mode. 
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transient response. *  

Frequency [GHz] 
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Figure 6.8. (Top) Magnitude spectrum of voltages at various locations along the coaxial 
line (bottom) and the calculated reflection coefficient from characteristic 
ABCs. 

Finally, in order to evaluate the performance of the characteristic ABCs in a non-

rectangular geometry, the coaxial cable was selected as a test case. Thus, the reflection 

coefficient from the upper z bound was computed by applying the pulse-separation 

method to the transient voltages at all three observation points. However, in order to 

achieve better accuracy for higher frequencies, the line was excited with a Gaussian pulse 

* Since the cutoff wavelength of the dominant mode of a coaxial guide is infinite (i.e. it can support 
DC [76]), the transient response approaches without becoming zero, which is known to cause 
inaccuracies in low frequency DFT calculations. 
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• of a higher frequency content (tw  = 24 ps) than before. Both the excitation pulse's • 
• magnitude spectrum and the reflection coefficient from the characteristic ABCs are shown • • • in Figure 6.8. In general, coefficient reflections of better than -40 dB were obtained for • 
• frequencies above 1 GHz. • • • 
• 6.11 Summary 
• 
• The general approach in modelling lumped elements is to modify Ampere-Maxwell • 
•
• equations to include a lumped electric current density in addition to the displacement and 

conduction current of any given cell. This lumped cuffent density is represented as a • 
• function of a discrete cell voltage defined by the I-V relations of the lumped element. • 
• Finally, these cell voltages are described in terms of the discrete electric field components • 
• of Maxwell's equations. In this chapter, this procedure was illustrated by deriving the • 
• expressions for distributed lumped voltage and current sources, as well as lumped resistors • 
• and capacitors, on a generalised grid. The main advantage of this approach is that the • 
• derived expressions were not only coordinate independent but were also independent of • 
•• 	the numerical method used for solving Maxwell's equations. The aforementioned • 
• formulation of the lumped elements was tested and validated for the case of a coaxial • 
• cable. • 
• 
• 
• 
• 
• • 
• 
• * Once more, due to the premature termination of the transient response, the low frequency 

calculations are rendered inaccurate. • 
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• Chapter 7 • • • 
• Applications of the 3D-FVTD Engine • • • • • • • • • • 
• In previous chapters, the newly derived fully windward, flux split, Lax-Wendroff • 
• version of the FVTD algorithm for solving Maxwell's equations with a source term was • 
• implemented and validated using several benchmark problems. Some of these cases • 
• involved a quantitative study of the FVTD method, which also included a direct compar- • 
• ison with other popular numerical techniques, such as the FDTD and TLM methods • 
• (Section 5.2.1), while other test cases served as a proof of concept (Sections 5.2.2 and • 

6.10), or as a study of certain characteristics of the FVTD method (Section 5.2.3). In • 
• general, all of the aforementioned case studies have done little to highlight the strengths • 
• and weaknesses of the LW version of the FVTD technique. In this chapter, the 3D-FVTD • 
• engine is used to analyse several practical problems that either have appeared in the litera- 
• 
• 

ture or are currently under study in industry. As is always the case, the proposed LW- • 
• FVTD method peiforms better for a certain class of problems than for others. Hence, the • 
• shortcomings of the LW-FVTD are discussed, and possible remedies are considered. • 
• 
• 
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7.1 Case One: TE Cutoff Frequencies of Coaxial Waveguides 

Many analytical and semi-analytical methods of calculating '11, and TM cutoff 

frequencies of coaxial and eccentric waveguides (with a variety of combinations of 

circular and elliptical conductor cross-sections) have been proposed [137, 138, 139]. In 

order to compare the accuracy of the body fitted coordinate system version of the FVTD 

method with other rectangular grid based time domain methods (namely TLM) that use 

stair step lines for curve representation, the TE cutoff frequencies of a circular coaxial 

metallic waveguide are computed using both the FVTD and TLM methods. *  The obtained 

TE cutoff frequencies of the waveguide using each method are then compared with one of 

the most widely accepted (semi-analytical) solutions presented by Kuttler in [137]. 

7.1.1 The Simulation Space and the Results 

A coaxial waveguide with an outer-to-inner conductor radius ratio of 4.0 , (i.e. 

r = 1.0 m, and a = 0.25 in) was modelled using both TLM and FVTD techniques. The 

physical space of the TLM simulation was discretised using a uniform mesh with a cell 

size, Al, of 1/30 m (60 x 60 x 10 ) (see Figure 7.1). The inner and outer conductors 

were modelled using PEC materials. The FVTD simulation space was modelled using a 

conformal (double discretised) mesh that was composed of 40 cells radially, 80 cells 

circumferentially, and 10 cells axially (see Figure 7.1). The inner and outer conductors 

were laid on the lower and upper radial direction and were modelled using PEC boundary 

conditions, while periodic boundary conditions were used on the lower and upper 

circumferential direction. In both the TLM and FVTD simulations, the upper and lower 

* Although the 3D-FVTD engine is capable of modelling eccentric elliptic-circular waveguides [139], 
due to the limitations of the TLM engine, only circular coaxial waveguides are considered. 
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axial direction were terminated using PMC boundary conditions. 

Figure 7.1. (Top) A comparison of an FVTD (body fitted) and a TLM (stair step) 
simulation space for a circular coaxial waveguide, and (bottom) a 
comparison of the first seven TE cutoff frequencies for a coaxial waveguide 
(r  = 1.0 m,  a = 0.25  m) 
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Table 7.1. The ratio of eigenvalues in the coaxial waveguide mesh 

	

1 2`, : : icii: 	 total 	 X total  

	

i 	 X '  

	

2'iriax 	

1  2L min 

	

-direction 	1.00 	2.42 	2.42 

	

i -direction 	3.82 	2.63 	10.0 

	

-direction 	1.00 	4.84 	4.84 

In both simulations, the waveguides were excited using a (De)  point source Gaussian 

pulse in time (with a frequency content of about 500 MHz at -40 dB level). The TLM 

code was executed for a total time of 417 ns (At  = 55.556 ps), while all the electric field 

components at several observation points in space were recorded at each time step. The 

DFT of the transient responses was computed and plotted for each observation point (one 

such DFT plot is provided in Figure 7.1). The DFTs of all observation points were 

compared with one another to determine the location of their peaks since the location of 

each peak indicates the cutoff frequency of the waveguide. Thus, the first seven TE cutoff 

frequencies were computed. In the case of the TLM simulations, the Number of Cells per 

Wavelength, defined as NCW = 2n13.1, varied from 30 (for the smallest frequency) to 

115 (for the largest frequency). This value of NCW was well above the recommended 

range of 10 NWC for this type of problems. 

Table 7.1 presents the properties of eigenvalues of the FVTD conformal mesh used 

for modelling the coaxial waveguide. The value of the largest eigenvalue required for 

numerical stability was 3.87x101°  [mis],  which corresponded to a time-step of 

At = 29.837 ps. The FVTD code was also executed for 417 ns dming which the 

previously described procedure was used to extract the first seven TE cutoff frequencies. 

In this case, the NCW for the smallest wavelength varied from 13 to 53 (due to the 
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variation of cell sizes of the conformal grid). These NCW values were still larger than 

were the recommended values. 

Table 7.2. TE cutoff frequencies obtained by TLM and FVTD techniques as they 
compare to the exact solution 

Exact 	 TLM 	 FVTD 

(f ) TE (f  c) TE a % error 	(X/A/) 	
(f  )T 	% error 	(X/A/) b  

78.465 	75.500 	3.8 	115 	78.000 	0.6 	49-203 

143.58 	148.25 	3.3 	63 	144.00 	0.3 	27-111 

200.09 	183.75 	8.2 	45 	202.50 	1.2 	19-80 

212.21 	--- 	- - - 	42 	213.75 	0.7 	18-75 

238.78 	243.00 (?)c 	1.8 	38 	240.50 	0.7 	16-67 

253.66 	--- 	- -- 	36 	251.00 	1.0 	15-63 

303.32 	290.75 (?) 	4.1 	30 	304.00 	0.2 	13-53 

a. All cutoff frequencies are in MHz 
b.Calculated with respect to the "exact" cutoff frequencies. 
c. "(?)" indicates that the computed cutoff frequency was located somewhere in between the 

"exact" solution; hence, it was assumed to be predicting the nearest TE cutoff frequency! 

Table 7.2 presents a comparison of the first seven TE cutoff frequencies predicted by 

the TLM and FVTD methods to the exact (semi-analytical) solution given in Table IX of 

[137]. Despite an over discretised computational space, where the NCW ratio was at least 

three times larger than was the minimum recommended value (10), the TLM method was 

successful in predicting the cutoff frequencies (with some degree of certainty) in fewer 

than half of the cases, which is a clear indication of the short-coming of the stair step 

representation of curved surfaces. However, the stair-step representation of curves is 
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acceptable for large values of NCW. For example, in the case of the lower cutoff 

frequencies of Table 7.2, where the NCW is about 60 MHz or higher, reasonable accuracy 

(a percentage error of less than 5 percent) was obtained. On the other hand, in all but one 

case, the FVTD scheme successfully predicted the TE cutoff frequencies of the waveguide 

within one percentage point of the semi-analytical solution. This was accomplished with 

the aid of a minimum NCW of 13. Also, the accuracy of the first seven predicted cutoff 

frequencies appeared to be independent of this ratio, which might indicate that a lower 

NCW can generate more accurate results. 

Table 7.3. Computational requirements for various schemesa  

Scheme 	Multiplication 	Addition 	Variables 

FVTDb 	486 x Ne 	 504 x N 	213 xN 

FVTDd 	1161 x N 	 1386 x N 	105 xN 

um  [1401 	12 x N 	 54 x N 	 30 x N 

1 41)TD [451 	12 xN 	 24 x N 	 18 x N 

a. In all cases, a free-space formulation is assumed. 

b. Fast FVTD method; per-calculation of all coefficients and some fluxes (CPU efficient). 

c. Total number of mesh points in the computational space. 

d. Memory Efficient FVTD method; recalculation of fluxes at every time step. 

7.1.2 Comparison of Computational Resources 

Table 7.3 summarizes the computational resources required for several time domain 

algorithms. In general, the orthogonal-grid-based TLM and FDTD techniques require 

similar computational resources and yield results with comparable accuracy. Two modes 

of implementation of the FVTD method are proposed with respect to the computational 

resources available to the user. The memory efficient FVTD method requires that the field 



• 
•
• 	 171 
• 
• values and the time invariant coefficients be stored in memory while all the numerical 

• fluxeS are re-compined for each cell update. Alternatively, the fast FVTD scheme stores all • 
• time  invariant coefficients, the field components, and the numerical fluxes in memoiy; it • 
• only computes numerical fluxes as they are required in the calculation of new time steps. 9 • 
• The memory efficient FVTD scheme is not recommended due to the large number of • 
• floating point operations it requires. Although the fast FVTD method is between one to 

• two orders of magnitude slower than is either the TLM or FDTD method, and has seven to • 
• twelve times the .memory, requirement of either method respectively, the fast FVTD a 
• scheme's large demand for computational resources is often offset by its use of conformal 
• 
• meshes which results in increased accuracy. For most cases, these results may be obtained • 
• using fewer cells, which in turn reduces the required computational resources for an • 
• FVTD simulation. 
• 
• 
• 7.2 Case Two: A Cavity Resonance Problem • 
• 
• Sooner or later, one would face the problem of fitting the proverbial square peg in a • 
• round hole! The cavity resonance problem fits this analogy well. These types of structures • 
• are used for a variety of applications, such as tuning the resonant frequency of a cavity or • 
• accurately computing the permittivity of sample materials. For a given set of assumptions • 
• and size restrictions, these types of problems can be solved using perturbation methods • 
111 	 [15]. However, in the majority of cases a numerical solution is more feasible. Figure 7.2 

- represents a rectangular PEC cavity partially loaded with a dielectric ring of et. = 2.06 
• [142]. 	• • 
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Figure 7.2. (Above) Rectangular PEC cavity (a = 324 mm, b = 121 mm, c = 43 mm) 
partially loaded with a dielectric ring (r 1  = 16.65 mm, r2  = 26.75 mm, 
h = 39 mm) centred at b/2,  W1  = 207.25 mm, and W2 = 116.75 mm. (Left) 
the cross- section of its corresponding mesh 
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Table 7.4. The ratio of eigenvalues in the cavity resonance problem 

X max 	 total 	 X total 

Xmi„ 	 X max 	 X min 

	

-direction 	7.07 	11.9 	79.2 

	

i -direction 	117 	1.12 	131 

	

-direction 	1.68 	12.6 	21.3 

Since this structure cannot be meshed using one of the elementary coordinate systems 

(outlined in [811), a numerically generated grid is required. The original mesh was based 

on a circular cylindrical coordinate system where its outer regions were projected onto the 

walls of the rectangular cavity. Due to the symmetry of the problem, only half of the 

structure was meshed using TrueGrid®  (with a magnetic image wall placed at the plane 

of symmetry) [141 ] . Three discretised versions of the problem, with resolution of 

(14 x 48 x  13),  (24 x 48 x  20), and (24 x 24 x  20),  were tested. The best ratio of 

eigenvalues was obtained using a (24 x 24 x 20 ) double discretised mesh (see 

Figure 7.2). Table 7.4 presents the properties of the double discretised (24 x 24 x 20 ) 

mesh in terms of its eigenvalues. The largest eigenvalue necessary for numerical stability 

was computed as IXtota l ' = 1.9174x10 12 [MA] which corresponded to a time-step of 

At = 0.60222 ps. Due to the unusual nature of the problem (grid) structure, the 

maximum ratio of the eigenvalues in all directions (especially in the circumferential 

direction) far exceeds the ideal value of unity (see Table 7.4). Hence, as explained in 

Section 5.1.3, for large eigenvalue ratios, the FVTD algorithm is no longer second order 

accurate; that is, the obtained solutions are expected to be less accurate. Thus, this 

problem may serve as a case study where the accuracy of the solutions is examined for 

grids of large eigenvalue ratios. 
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The cavity was excited using a (De ) point source Gaussian pulse in time (with a 

frequency content of about 5 GHz at -40 dB level). This point source was located at a non-

symmetric position within the cavity. The FVTD code was executed for 30,000 time steps, 

while at each time step, the De  field components were recorded at several observation 

points within the dielectric ring. The DFT of the transient responses of these observation 

points was computed and analysed in order to extract the resonant frequencies of the 

partially loaded cavity. The resonant frequencies of the first four cavity modes computed 

by FVTD are given in Table 7.5. 

Table 7.5. The resonant frequencies of the first four modes of the partially filled cavity 

Modea 	Measured 	TD-1-4F,M 	% errorb 	FVTD 	% error' 

K0 1 	1.258 	1.259 	0.8 	1.283 	1.7 (2.0)b  

K02 	- - - 	 1.512 	- - - 	1.540 	1.9 

K03 	- - - 	 1.841 	-- - 	1.758 	4.5 

K 04 	--- 	 2.175 	--- 	2.117 	2.7 

a. All resonant frequencies are in GHz. 
b. Percentage errors are computed with respect to the measured data. 

c. Percentage errors are computed with respect to the data obtained via TD-FEM. 

A comparison of the first resonant frequency of the partially loaded PEC cavity as 

obtained via measurements [142], TD-FEM [141], and the FVTD method indicates that 

although the resonant frequency obtained via the FVTD method is less accurate than is the 

one computed using TD-FEM, it still predicts the first resonant frequency of the loaded 

cavity within the range of accuracy of most measuring instruments. The remainder of 

Table 7.4 compares the other three resonant frequencies of the cavity modes obtained by 
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• 
• TD-FEM [141] *  with the ones computed using the FVTD method. In all cases, the FVTD 
• 
• solutions are within the range of accuracy (of ±5 %) required for most engineering 

• 
• problems. Thus, despite the large eigenvalue ratios of the discretised space, the FVTD 
• 
• method provides reasonably accurate solutions for most engineering applications. 

• 

• 7.3 Case Three: A Wide Band SMA-Air Transformer 
• 

In the previous sections, the FVTD technique was successfully used to analyse two • 
• (reasonably complex) practical problems that have appeared in the literature. In this • 
• section, a complete study of an EM problem (currently under research in industry) is 

• conducted. This study includes theory, design, and FVTD simulations. Unfortunately, 
• 
• measurements are not available at this time. 
• 
• 
• 7.3.1 Background and Theory 

• 
• Transmission lines are often considered to be simple devices that guide energy from 

• the generator (source) to the load. However, not only must this mode of energy • • transportation be lossless, but it also must ensure maximum energy/power transfer from • 
the source to the load [3]. Thus, matching networks are often introduced at either or both • 

• ends or along the transmission line in order to accomplish impedance matching. In a • • matched system, most of the generated power is delivered to the load (i.e. very little is 

•
• reflected back to the source), which often results in other improvements in system 

• performance [136]. 1.  • 
• * Reference [46] also includes resonant frequencies of the PEC cavity obtained by DSI-FDTD and N- 
• FDTD. However, due to the argument put forward in Chapter 2, the results obtained via TD-TEM 
• were deemed more accurate, and therefore, are used for comparison. 
• 
• t For example, impedance matching in some antennas and low-noise amplifiers results in a better 

signal-to-noise ratio. • • • • 
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As for most circuit parameters, the impedances of the source, the load, and the 

matching network are frequency dependent. Although the matching network can be 

designed to have zero or close to zero reflection coefficients at a specific frequency, it is 

desirable (and often required) to match the impedance over a band of frequencies. 

Generally, a better than —10 dB Return Loss, RL, (see Appendix C for definition) over 

the operating bandwidth is the minimum requirement for matching networks in most 

applications [136]. Many methods of impedance matching have been previously 

developed where the impedance matching has been achieved using lumped elements, 

stubs of a variety of configurations, reactive elements, and quarter-wave transformers [3]. 

However, quarter-wave transformers and specifically, tapered transmission lines, are the 

main focus of the following discussion. 

7.3.2 Quarter-Wave Transformers and Tapered Transmission Lines 

The input impedance,  Z,,,  of a quarter-wave transformer of impedance, 

connected to a pure resistive load of impedance, ZL  , can be determined as [136]; 

ZL + jZ T tanI31 
Z— ZT ZT+ jZdan51'  

where  13  = 2n/2, is the phase constant, and the length of the line is 1 =  X/4.  Thus, at the 

tuning frequency, 13 1  —>  m/2, the reflection coefficient of the quarter-wave transformer of 

impedance, 

Z T  = «/Z inZL , 	 (7.2) 

is zero at the input to the transformer (see Figure 7.3). However, the reflection coefficients 

at adjacent frequencies are non trivial; that is, the matching network is frequency sensitive 

[136]. 

Z T , 
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Figure 7.3. The quarter-wave matching transformer (top-left), theoretical response of 
single and multi-section quarter-wave transformers (top-right), and two 
possible configurations for three-segment quarter-wave transformers 
(bottom) 

It has been shown that the bandwidth of a matching network may be increased if 

several quarter-wave transformers of various characteristic impedance are connected in 

series, where each segment acts as a matching circuit for its neighbouring elements [3]
• *  

The resulting matching network will have an overall reflection coefficient which arises 

from the smaller reflections of each transformer. Thus, for a given tolerance of the 

maximum value of the reflection coefficient, a broader band of operating frequency may 

be achieved.  (see Figure 7.3). Alternatively, the discrete segments of a multi-section 

quarter-wave transformer can be replaced with a continuously tapered transition matching 

* This also represents the standard application of quarter-wave transformers; they are often used as the 
intermediate matching section of transmission lines with different characteristic impedances, such 
as connecting transmission lines of different width, height, diameter, etc. [3]. 

t The theory and design of multi-section quarter-wave transformers have been discussed extensively 
in the literature. Some excellent references include [3, 135, 136]. 
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segment. The impedance matching is accomplished through a continuous but smooth 

change in the characteristic impedance of the transformer section. Theoretically, a zero 

return loss over an infinite bandwidth is feasible if an infinitely long and gradually tapered 

segment of a transmission line is used. However, in most practical circuits, only a finite 

space is available; thus only a finite bandwidth is matched [3]. 

1 .0 

'FI  

I-*---- 1 or more X 

13 

Figure 7.4. Examples of two possible configurations of tapered transformers for wide 
band applications (Left) and their theoretical input reflection coefficient 
(Right) 

There are a variety of techniques for ensuring a smooth change in a transformer's 

impedance; two of the more common methods, that is, the gradual changing of the 

conductors' diameters or the spacing between the conductors, are shown in Figure 7.4. 

Figure 7.4 also contains a plot of the reflection coefficient response of the tapered line 

(based on the theory of small reflections) which demonstrates a standard passband 

characteristic often associated with these types of matching circuits [135, 136].  A detailed 

study of the theory of small reflections, various design methods, and the evaluation of the 

performance of tapered transmission lines is beyond the scope of the current discussion 

and may be found in [136].  However, in the next section, the discussion on SMA-air 

0.0 
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• transformers will include the theory and design details of the device. The discussion will 

• further concentrate on issues associated with the device's numerical simulations. 

• 
• 7.3.3 SMA-Air Transformer: Theory and Design 

• As stated earlier, quarter-wave transformers in general, and tapered transmission lines 

• in particular, are often used as an intermediate matching device between two transmission 
• 
• lines of different characteristic impedance. Conversely, a tapered transformer may be 

• utilized to maintain a constant characteristic impedance in transmission lines of changing 
9 
• size and composition [136]. In the case of the SMA-air transition, the input signal to a 

• coaxial transmission line was supplied by means of an SMA connector with an inner 

•
• 

conductor radius, rinsmA , of 0.63 min and an outer conductor of inner radius, 
9 
• r out = 2.05 mm; it was filled with a material with a dielectric constant, er  =  2.0. The 
0 
• output was a device surrounded by free space, with an identical outer conductor radius. An 
• 
• input and output impedance of 50 n was required. Thus, following the application of the 

• expression of impedance of coaxial lines, 

0 • Api 	root  Z = 1 	ln 	 =  50, 	 (7.3) 0  • e rinLoad 

• the required inner conductor radius, r inLoad, at the load end was 0.89 min. Figure 7.5 

includes both the profile and a 3D view of the SMA-air transition problem. 

• The SMA-Air transition was designed in two stages [143]. First, the tapered 

• 
• transmission line segment was considered and then, the tapered dielectric region was 
• 
• calculated. The equation for the tapered transmission line segment was easily derived by 
• 
• assuming that at any given cross section of the tapered region, the impedance of an air- 

* 
• filled line was constant, and thus (7.3) was solved in ternis of the inner conductor radius 
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r  inTran =  r0 1  (7.4) 
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	r  inSMA)  
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(7.5) 

a 

(in the transition region) [143], 
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The inner radius of the entire coaxial transmission line, r inner  , was represented as a linear 

function of axial distance, z;  that is, 

Transition Region 

Figure 7.5. Profile and 3D view of the SMA-air transformer problem (not to scale) 
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where a gradual change in the radius of the tapered line was distributed over the axial length 

of the transition region,  L.  This axial length must be at least as long as the wavelength of 

the maximum frequency of operation (45 GHz); it was therefore chosen to be 6.35 mm 

long (f 47 GHz). The design of an air-filled tapered coaxial line was complete. The 

tapered dielectric region was considered next. 

In order to gradually make the transition from the dielectric material to air in the 

tapered line region while keeping the characteristic impedance constant, the dielectric 

region must be slowly phased out. The problem was simplified by equating the series sum 

of the per-unit-length impedance of two loads (one for air and one for the dielectric 

region) to the desired characteristic impedance of Zo  = 50 52 and solving for the change 

of the radius of the tapering dielectric region [143], i.e. 

(f. 	 n 

rtaper(z) = e 

er in(ro„,)+ In(rh,„„(z))j/(1 —6,) 
In(r:::  r(n  z)) 

47E2Zo2e,80  

(7.6) 

The expressions for the tapered line and tapered dielectric region of the SMA-air 

transformer (equations (7.5) and (7.6), respectively) were plotted in an axial plane cross-

section of the coaxial transmission line and are shown in Figure 7.6. A linear tapered 

dielectric region was also plotted in order to emphasize the exponential nature of the 

curvature of the tapered dielectric segment. The SMA-air transformer problem has now 

been fully defined in terms of mathematical expressions and is ready for modelling/ 

meshing. 
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The SMA-air transformer shown in Figure 7.5 was modelled using the TrueGrid®  

mesh generation software package. The mathematical expressions derived in 

Section 7.3.3 were utilized to define the structure in TrueGrid®. The standard cylindrical • 
• 

coordinate system mesh (used for modelling coaxial cables in Section 6.10) was then 	0 

fitted/projected onto the curves and surfaces defining various features of the SMA-air 

transformer. Many electrically insignificant features, such as the alignment hole and the 	• 

thickness of the inner and outer conductors, were not modelled. 	 9 

• 
An orientation similar to the coaxial cable example was assumed in which the axial 

direction was placed along the z -direction. The inner and outer conductors were assumed • 
• 
• to be peifect conductors and were modelled using PEC boundary conditions in the lower 

and upper bounds of the radial direction; periodic boundary conditions were utilized in the • 
• lower and upper circumferential directions, while characteristic ABCs terminated the • 
• simulation space in the axial direction. The total length of the simulation space in the axial • 
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1 	 1 1 	 1 1 

Figure 7.6. Axial plane cross-section of the designed SMA-air transition section 

7.3.4 SMA-Air Transformer: Modelling and Discretisation 
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, • • direction was 44.45 mm, which was defined from —25.4 mm to 19.05 min in the z - 
* 
9 	direction of the cylindrical coordinate system. Two uniformly meshed sections of length 

12.7 trim (18 x 50 x 32 cells) and 6.35 mm (18 x 50 x 16 cells) were placed at the 

leading and trailing ends of the simulation space respectively. The uniformly meshed 

• 
6 	 sections provide transition zones in which the outgoing waves at either ends were 

• perpendicular to the ABCs. Thus, the performance of the ABCs was similar to the circular 

coaxial cables (see Figure 6.8). 

• Although the tapering of the inner conductor and the dielectric region was initiated at 

• 
the origin and was completed at z = 6.35 mm, a gradual deflection of the mesh planes • 

• perpendicular to the direction of propagation was launched at z = —12.7 mm. The 

• deformed mesh was slowly restored to its original uniform form at z = 12.7 min. This 

• region provided an exact and convenient (structured) fit to both the inner conductor and 

• 
• the dielectric taper without stair-stepping or individual cell assignment. Figure 7.7 

• demonstrates partial profiles of the meshed simulation space; the top frame displays 

0 
411 	 discrete planes that form the dielectric region. The bottom frame is a sketch of the plane of 

• the discretised problem space in the axial direction which clearly outlines the exact form 

•• of various mesh points in that direction. 

0 
• The SMA-air transformer of the aforementioned configuration was meshed using a 

• 
• variety of combinations of discretisation in the radial, circumferential, and axial 

• directions; the ratio of the eigenvalues of all of the meshed cases was computed for the 

• coaxial transformer structures filled with materials of relative dielectric constant a/- 
= 1.0 

0 
* Recall that in a structured mesh, any object (regardless of its shape) may be defined using only six 

mesh indices « ( istart —> i  end,  start -4  end, kstart -4  kend)' 
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(from this point on referred to as an air-filled  SMA  -air  transformer) and Er  = 2.0 (as •  

specified in the original SMA-air transformer design). The best results (i.e. lowest ratio of 

eigenvalues) were obtained using a double discretised mesh of size (18 x 50 x 113) cells. 

For this mesh, the value of the largest eigenvalue was 1.5660x10 13  [mis] which 

corresponded to a time-step of 73.736 fs computed at the stability limit. The properties of 

the meshed space in terms of its eigenvalues for both air-filled and SMA-air transformers 

are given in Table 7.6 and Table 7.7 respectively (The value of the largest eigenvalue 

remained the same for both meshes.). These tables clearly indicate that due to the unique 

features of the tapered dielectric region and the nature of the cylindrical coordinate 

system, various ratios of eigenvalues far exceed unity. Thus, in such cases, the main 

objective is to reduce this ratio as much as possible. 

Table 7.6. The ratio of eigenvalues in the air-filled SMA-air transformer 

X max 	 1 X total  

Xmax 

	 total 

X min 	 X min 

	

-direction 	3.75 	2.18 	8.18 

	

i -direction 	3.01 	4.40 	12.3 

	

Ç -direction 	17.5 	2.17 	37.8 

Table 7.7. The ratio of eigenvalues in an SMA-air transformer 

Xrnax 	X toial 	 X total 

Xmin 	 X ,nax  

	

-direction 	5.31 	2.18 	11.6 

	

1 -direction 	3.14 	5.97 	18.7 

	

-direction 	14.6 	2.59 	37.8 
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Figure 7.7. Partial profile of the discretised SMA-air transformer problem: (Top) the dielectric region: 
scale (X, 2Y Z), (Bottom) meshed problem space in the axial direction: scale (X, 6Y Z) 
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7.3.5 Simulation Results 

In both the air-filled and SMA-air transformer case, a one-cell-thick distributed 

lumped voltage source was placed at z = —23.6 min (four cells away from the lower z - 

bound ABC). The lumped source generated a Gaussian pulse of width  ç  = 6 ps and 

to  = 18 mm (frequency content of approximately 80 GHz at -40 dB level). In both 

cases, the voltage between the inner and outer conductors was computed at several 

observation points located at z =  —13.3, —7.42, and 17.62 mm (referred to as 

V source' V mid 

approximate locations of the distributed lumped source and the observation points are 

marked in a diagram of the cross section of the simulated space in Figure 7.8 which also 

contains plots of the transient response of the two simulated cases. The modal 

decomposition method was applied to the transient responses computed at the source and 

end observation points in order to compute the return losses and the reflection coefficient 

of the ABCs of both structures. The return  loss and the reflection coefficient of the ABCs 

were plotted over a frequency range of 0 to 50 GHz and are shown in Figure 7.9. One 

must note that in the case of an air-filled transformer, the tapered transmission line 

converts (matches) a 70.7 52 line (on the left) to a 50 line (on the right), whereas in the 

case of an SMA-air transformer, both ends have a characteristic impedance of 50 . The 

tapered conductor and dielectric regions are utilized to convert (match) the input physical 

characteristics to the ones required by the output device. 

The simulated transient response of both cases indicates that the frequency 

components associated with frequencies for which the tapered line and tapered dielectric 

region were designed (f .5_47 GHz) are propagating through the transformer, but the 

and Vend  respectively) at every time step for a total of 500 ps. The 
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higher frequency components are reflected. This phenomenon is represented by the 

broadening of the launched pulse, source, as it propagates through the transformer section 

Air-Filled SMA-Air Transformer 

a) 

o  

0.1 0.2 

Time [ns] 

SMA-Air Transformer 

Figure 7.8. Approximate location of the lumped source and observation points (top) and 
calculated voltages at various locations along the coaxial line for an air-filled 
(middle) and an SMA-air transformer case (bottom) 
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(and was recorded at the end point). The air-filled configuration also exhibits a larger and 

more distinct reflection than does the SMA-air transformer structure where the reflections 

from the transition are limited to small damped oscillations. 

Return  Loss 

ABC Reflection Coefficient 

—L n 

1 0 0 	 10 	 20 	 30 	 40 	 50 

Frequency  [GHz]  

Figure 7.9. The return loss of the air filled and the SMA-air transformer cases (top) and 
the reflection coefficient from the characteristic ABC of both cases (bottom) 

In both cases, the voltages computed in the "transition" region (mid) are significantly 

different in amplitude as compared to the ones at the source and end locations. This is due 
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• to two independent factors. The first involves the length of the path of integration for 

• 
• which the voltages were computed. The voltages at the source and end points were • 
• calculated in the uniformly meshed region where the path of integration was perpendicular 
• 
• to both the inner and outer conductors. In contrast, the mid voltage was calculated in the 

conformal mesh region where the path of integration was slanted, not perpendicular to 
111 
• either the inner or the outer conductors, and was significantly longer than were the paths of 

• integration utilized in the computation of the source and end voltages. Secondly, the • 
gle 	discontinuity introduced by the tapered region generated reflected waves in the form of • 

higher order (TE and TM) modes. The total effect of these modes will generate a standing 

TEM mode behind the discontinuity (i.e.  the transformer). Thus, the position of the • • 
observation point in the field of the standing wave could affect the overall amplitude of the 

• 
• computed voltage at that point. 

• 
The reflection coefficient of the characteristic ABCs of both structures was better than • 

• —28 dB for frequencies larger than 3 GHz (see Figure 7.9). Thus, the results obtained for 

• lower frequency components may not be accurate and hence, are not discussed here. For 

the case of the air-filled tapered transmission lines, the return losses computed at the 

9 
• source point exhibit a behaviour similar to what was predicted by Figure 7.4 (see top plot • 
• of Figure 7.9). The addition of the tapered dielectric region dramatically improves the 
0 

performance of the structure. Not only is the overall matching of the structure now better 

• than —10 dB for the entire operating frequency but also, the frequency dependence of the • 
• matching transformer is reduced. A better than —20 dB match was observed for the SMA- • 
0 
• air transformer for frequencies of 12 to 50 GHz. 

• 
• 
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7.4 Case Four: The FVTD Method and Sharp Metallic Edges 

Heretofore, the problems analysed and solved using the FVTD method have all 

involved "smooth" and continuous solutions (fields) to Maxwell's equations. However, 

this is not always the case, since many practical problems, such as microstrip structures 

and coplanar waveguides, contain sharp metallic edges. As explained in Section 2.2.2.2, 

due to the inherent assumption of the continuity and smoothness of the numerical solution 

Of PDEs, most numerical methods are not capable of accurately modelling the rapid 

spatial variation of the field distribution in the vicinity of the singularity (of a metallic 

edge) [147]. Thus, based on the nature and characteristics of a given numerical method, 

dissipation, dispersion, or both types of errors may appear in the final solution. In 

reference DO], dissipation and 'dispersion errors of various numerical techniques for 

solving PDEs have been rigorously studied and quantified. It is generally known that most 

finite-difference methods (such as FDTD and TLM) are dispersive [148, 149], while the 

LW-FVTD method is dissipative [10, 150]. 

The accuracy of the TLM and liDTD solution of problems containing sharp metallic 

edges has been the subject of many studies [147-149] in which the dispersive errors are 

quantified. However, to date, no comprehensive study of dissipation error due to the 

FVTD modelling of the singularity at sharp metallic edges is available. In the following 

section, a study of a microstrip structure is conducted using FVTD, FDTD, and TLM 

methods and the results are compared with measurements. 

7.4.1 Multi-Segment Dielectric Resonator Antennas 

Multi-Segment Dielectric Resonator Antennas (MSDRAs) offer versatility and design 

flexibility, making them attractive candidates for numerous applications. MSDRAs can be 
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designed for narrow band, multi-band, or wideband usage; can be made low-profile or 

compact; can radiate linear or circular polarization; and can be used as an individual 

element or in a large planar array [1511. The details of the design and the theory of 

operation of MSDRAs are outlined in [151, 152]. In general, it is desirable to feed the 

MSDRAs with microstrip lines, since this facilitates the integration of MSDRAs with 

printed feed distribution networks. Accurate numerical modelling of these types of 

structures is of interest, since optimizing the performance (i.e. maximizing the amount of 

energy coupled into the MSDRAs) and various characteristics of MSDRAs via 

experimental methods is often time consuming and expensive. 

Figure 7.10. The multi-segment dielectric resonator antenna structure 

The MSDRA shown in Figure 7.10 was fabricated from a composite ceramic material 

with Er  = 10 and Ei  =  40,  with W = 10.0 mm, D = 4.0 mm, H = 6.5 mm, and 

t = 1.0 mm. The antenna was placed on a 50 52 microstrip feecl line with substrate 
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permittivity, Es  , of 3.0 , with w = 1.75 min and h = 0.75 mm. The return loss of the 

aforementioned MSDRA structure was measured over a frequency range of 5 to 15 GHz. 

This structure was also modelled via two types of FDTD-based techniques as well as the 

TLM method. In all cases, S1 1  data were extracted and were compared to the measured 

data. A brief description of these methods follows. 

7.4.1.1 Computational Methods 

The Finite-Integration Technique (FIT), as implemented within the MAFIA CAE® 

 tool [153], is based on an integral form of Maxwell's equations where static, time-

harmonic, and time-dependent problems can be analysed with this formulation [154]. The 

analytic formulation is discretised using two staggered grids which are orthogonal to each 

other. For the present investigation, computations were performed in the time domain. A 

waveguide absorbing boundary condition was used to match the exterior boundaries that 

utilized mode patterns of the microstrip line. The mode patterns were determined using a 

two-dimensional eigenvalue solver. A graded mesh was used to improve the discretisation 

of the problem near the microstrip line and dielectric insert. The mesh cell size ranged 

from 0.16 mm to 1.0 mm. The symmetry of the MSDRA was exploited such that only one 

half of the structure was modelled (i.e. a magnetic wall was used). Details regarding the 

UWO-FDTD simulation program are given in [155, 156]. To briefly summarize, it is 

based on Yee's formulation and utilizes first-order Mur ABCs. A Gaussian pulse was 

launched on the microstrip line using a matched Thévenin equivalent voltage source. The 

geometry was discretised using a uniform mesh of cell size 0.25 mm, within a mesh of 

(85 x 200 x 70) cells. 
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The TLM simulation tool is based on the SCN-TLM, and is described in [59, 60]. A 

Gaussian pulse was launched on the rnicrostrip line using an idealized TEM source. The 

match termination for normal incidence ABCs was applied, which provided a 

performance that was superior to first-order, but inferior to second-order ABCs. The 

geometry was discretised using a uniform mesh of cell size 0.25 mm within a mesh of 

(96 x 120 x 71) cells. 

Return Loss 

-10 

Eil 	-20 se 
_ 

- ur -30 _ 

-40 

-50 

Figure 7.11. The return loss of the MSDRA structure computed via the TLM, FDTD and 
FIT-FDTD method and compared with measured data. 

All simulations were performed for the same amount of physical time which 

corresponded to approximately 5000 TLM time steps. At each time step, the voltage (with 

reference to the ground plane) on a specific point of the microstrip line was recorded. In 

the case of the FDTD and TLM simulations, the pulse separation method was used to 

compute the return loss of the MSDRA via its transient response. In Figure 7.11, the FIT, 

FDTD, and TLM numerical results for S 11  are compared to the measured data. Despite the 

difference in algorithm, mesh size, and ABCs used in the MAFIA-FDTD and the UWO- 
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FDTD simulator (with the MAFIA code generally being regarded as the more accurate of 

the two), the numerical results of the two agree well with each other. However, the 

agreement of the numerical results with the measured data was poor. Further simulations 

and research have been conducted to improve the agreement between the numerical and 

measured data. A summary of this ongoing work can be found in [152, 157]. 

end 

Figure 7.12. The top and side view of a simple 50 S2 microstrip structure 

7.4.1.2 FVTD Simulation of Microstrip Structures 

An FVTD simulation of the aforementioned MSDRA structure was conducted using a 

uniform mesh similar to the one utilized for the UWO-FDTD simulation. The computed 

return loss of the structures exhibited very poor agreement with the previously computed 

S 11  data. This prompted a study of the transient response of an FVTD simulation of a 

50 S/ microstrip structure which has been extensively studied and documented in [60]. 

The microstrip structure of Figure 7.12 was modelled using both the FDTD and FVTD 

method. The ground plane was modelled using PEC BCs, and the remaining BCs were 

enforced via Mur's first order ABCs (for the FDTD simulation) or characteristic ABCs (in 
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case of the FVTD method). In both cases, the microstrip line was excited using a 

distributed lumped voltage source placed at the source end of the line. The Thévenin 

voltage source (R = 50 ) generated a Gaussian wave form of amplitude 10 V, pulse 

width tw  = 12 ps, and to  = 50 ps. At several locations along the microstrip line 

(corresponding to the source, mid, and end points of Figure 7.12), the voltage between the 

line and the ground plane was calculated and is plotted in Figure 7.13. 

Transient Response of a PCB 

0 > 

Figure 7.13. A comparison of the FDTD and FVTD simulated transient response of a 
PCB at several spatial locations 

The FDTD simulation displays a dispersive behaviour in the pulse propagation (due to 

the high frequency content of the excitation pulse). However, the FVTD computed 

transient response of such a structure bore little resemblance to the typical wave 

propagation along a microstrip line [60]; rather, it exhibited both diffusion and dissipation 

behaviour. Upon closer examination of the electric field distribution at the edges of the 

microstrip line, it was revealed that the FVTD simulation "smooths" the rapid spatial 

variation of the field distribution in the vicinity of the singularity at the edge of the metal 
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strip. This numerical property (i.e. dissipation error) of the FVTD method changes the 	• 

	

behaviour of the pulse propagation along the microstrip line, and hence, affects the 	• 

	

scattering parameters of the structure. This example clearly demonstrated that due to the 	• 
• 

	

dissipation error associated with the LW version of the FVTD method [10, 150], this 	• 
• 

	

technique is incapable of modelling structures that contain sharp metallic edges. The most 	• 

	

obvious remedy is to reduce or eliminate the dissipation errors of the LW algorithm. Many 	• 
• 

	

attempts at reducing the effect of the dissipation term in the LW algorithm have been 	• 
• 

	

unsuccessful and have often resulted in a numerically unstable scheme [121]. Thus, the 	• 
• 

next logical step is to consider other PDE solvers with little or no dissipation error. 

	

In many recent publications [46, 77, 91, 158, 159], the Runge-Kutta (RK) family of 	• 
9 

	

single-step multi-stage PDE solvers has been formulated for a characteristic based FVTD 	• 

	

method. Initially, the RK version of FVTD was formulated to be second-order accurate in 	• 

	

both space and time [77]; however, a four-stage, temporally fourth-order and spatially 	• 
9 

	

third-order accurate scheme has been derived in [158]. Although this algorithm appears to 	0 
• 

	

have dissipation and dispersion characteristics superior to LW-FVTD and Yee's FDTD 	• 
0 

	

method respectively, the provided examples did not include a case with sharp metallic 	• 
• 

edges, and, hence, further investigation of this class of PDE solvers is required. 	 • 
111 

7.5 Case Five: A GTEM Cell 
• 

International standards and certifications require radiated emissions and radiated 
• 

	

immunity tests of all electronic equipment. Traditionally, full compliance testing has been 	• 

	

conducted in Open Area Test Sites (OATS) or anechoic chambers [160]. However, the 	• 
0 

	

construction and operation of these facilities are often costly and will have to be added to 	• 
0 

the final cost of the product [161]. Recently, Gigahertz Transverse Electromagnetic 
• 
• 
• 
• 



Figure 7.14. A GTEM cell 
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(GTEM) cells have become a more cost effective alternative to using chambers and OATS 

for compliance testing [161]. 

A GTEM cell is a gradually 

widening rectangular transmission line 

(with impedance of 50 Q) [162]. The 

cell is excited at the narrow end via a 

coaxial connector and is terminated (at 

the wide end) via hybrid 50 Q resistors 

and absorber materials (see Figure 7.15 and Figure 7.16) [163]. *  This particular design of 

the GTEM cell allows the formation of homogenous electromagnetic fields which, in turn, 

supply the user with an exact knowledge of field distributions within the GTEM cell [164]. 

This information is used for the calibration of various types of probes as well as for 

accurately gauging the susceptibility of test results [165]. 

The matched termination of the GTEM cell over its frequency range of operation is 

essential. In general, at lower frequencies, the resistors are the main matching circuit, 

while at the upper frequency range, the absorber materials are the primary matching 

elements [160]. In the intermediate frequency range, a combination of both is required for 

a matched termination of the circuit, hence preventing the creation of higher order modes 

[162]. Therefore, the numerical simulation of various types of septums and termination 

circuits is of interest in order to optimize the termination circuit without costly and time 

consuming experimentation [163]. 

* The details of the GTEM cell design and structure, along with its theory of operation, is beyond the 
scope of the current discussion, but can be found in [160-165]. 
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50  û  resistors 

Figure 7.15. Principle schematic of a GTEM cell (side view) 

absorber cones 
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77 cm 

Figure 7.16. Perspective view (left) and approximate dimensions of a GTEM cell (right) 

7.5.1 FVTD Modelling of a GTEM Cell 

A GTEM cell, as defined in [163], was modelled and meshed using the TrueGrid®  

mesh generation package. The modelling of the GTEM cell began with defining the outer 

shell of the cell, the septum, and the absorbing materials. Next, a rectangular meshed 

block was defined and then projected onto the outer shell of the GTEM cell. This 



••
••

••
••

••
• •

••
••

••
• •

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
• 

199 

procedure was also repeated with the curved edges of the septum. The most tedious and 

time consuming part of the mesh generation was projecting the mesh points on the surface 

of the absorber cones, which was performed one cone at a time (for all 36 cones). Finally, 

the entire mesh space was inspected for overlapping or triangular cells, and appropriate 

adjustments to the mesh (where required) were made. Several aspects of the GTEM cell 

make its modelling and analysis challenging. First, the internal structure of the cell is 

geometrically complex and is cumbersome to define. Second, the particular geometric 

features (such as the tip of the absorbing cones), along with the peculiar shape of the 

GTEM cell, require a highly non-uniform mesh. Third, in the case of the LW version of 

the FVTD method, numerical dissipation will occur at the septum's sharp metallic edges. 

Despite the GTEM cell's geometrically complex structure, most mesh generation 

packages (including TrueGrie) are capable of defining such an object via mathematical 

equations and the intersection of surfaces. This process (although very tedious, time 

consuming, and occasionally frustrating) can be performed for most geometrically 

complex EM problems. Ideally, the problem structure is defined and supplied in electronic 

format using one of many available Computer Aided Design (CAD) systems (such as 

AutoCAD°) that can be directly imported into the mesh generator software package and 

hence shorten the problem structure's definition time. The last short-coming can be easily 

remedied by using an FVTD engine based on a (temporally fourth-order and spatially 

third-order accurate) RK-FVTD method which has dissipation and dispersion 

characteristics superior to the LW-FVTD technique. 

Thus, the only remaining challenging aspect of the aforementioned meshed GIEM 

cell is the highly non-uniform nature of its mesh. Since a structured mesh was utilized to 
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discretise the problem space, the same number of cells had to be fitted into the narrow end 

of the GI'EM cell as in the wide end which resulted in highly disproportionate cell 

volumes and hence eigenvalue ratios of 1000 or higher. In addition, similar problems are 

encountered when modelling the tip of the absorber cones. Such non-uniform grids not 

only reduce the accuracy of the numerical solution, but also require a very small time step, 

which in turn increases the computation time of the simulation. For example, the Gl'EM 

cell of Figure 7.16 was modelled using a conformal mesh of (56 x 64 x 186 ) cells with 

At = 43.4 fs. The computation time for one time-step was 237 s which means the total 

computation time required for a complete run (250,000 time steps) was about two years! 

Obviously, due to this unrealistic computation time, no results were obtained. 

Clearly, any structured mesh configuration will experience (similar aforementioned) 

difficulties in meshing this type of problem. In Section 5.1.1, the use of unstructured grids 

was recommended for modelling very complex geometries. The main advantage of 

unstructured meshes is their flexibility in terms of controlling mesh density and cell shape 

(see Figure 5.1). For example, in the case of a GTEM cell, a cluster of cells can be 

allocated near the finer features of the problem space (i.e. at the absorber cone tips) or in 

the areas with a rapidly varying field distribution (such as near the launching assembly or 

at the edges of the septum) while much larger cells can be fitted into areas with a uniform 

field distribution, say inside the absorbing material. Hence, an FVTD engine based on an 

unstructured grid is more suitable for the modelling and analysis of geometrically 

complex EM problems. 
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• 
• 
• 7.6 Summary 
• 
• The strengths and weaknesses of the LW version of the FVTD technique were • 
• examined using five practical case studies. In the first case, the FVTD method computed 

• the TE cutoff frequencies of a coaxial waveguide with much better accuracy than those • 
• found using the TLM technique. Next, resonant frequencies of a partially loaded cavity • 

•
• 	were computed using the FVTD method and were compared with those of measurements 

•
• 	and TD-FEM. Once more, the computed resonant frequencies agreed well with those 

• given in literature. The third case involved a complete theory, design, and analysis of a 

•
• 

wide band SMA-air coaxial transformer. The air-filled SMA-air transformer exhibited the • 
• classical return loss characteristics of such tapered structures. The combination of the 
• 
• tapered conductor and tapered dielectric used in the SMA-air transformer improved the 
• 
• overall return loss characteristics of the structure. A better than —20 dB match was 
• 
• observed for the SMA-air transformer for frequencies of 12 to 50 GHz. A better than 

• —10 dB match was observed for frequencies of 3 to 50 GHz. • • 
• The weaknesses of the developed FVTD engine are mainly due to the properties of the 

• 
• LW algorithm. Due to the dissipative nature of the LW-FVTD method, the FVTD engine 

• 
• is unable to accurately solve problems that contain sharp metallic edges (such as 

• microstrip structures) that generate rapid spatial variations of the field distribution. This • 
• was demonstrated in the fourth case study which involved the analysis of an MSDRA and 

• its microstrip feed. It was suggested that these problems are better modelled and solved 

• via less dissipative FVTD algorithms, such as RK-FVTD schemes. The final case study 

• 
• involved another problem of interest to industry, namely modelling a GTEM cell. 

• Although the flexibility and versatility of the structured grid based on the FVTD method 

• 
• 
• 
• 



• • 202 	• • • 
was demonstrated via meshing a complete GTEM cell, due to the particular properties of 	• • 
the structured meshes, it is more practical to use unstructured grids for these types of 	• • 
problems. In general, the current FVTD engine is capable of modelling and solving 

• 
reasonably complex EM problems but requires further improvements and revisions for 	• • 
more geometrically complex structures. 	 • • • • • • • 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
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Chapter 8 

Summary and Discussion of Future Work 

The purpose of this research was to investigate a class of versatile numerical methods 

that are capable of providing accurate solutions to general EM field problems without 

placing restrictions on the composition or geometric configuration of the simulation space. 

Following a comprehensive literature review, a class of time domain CEM techniques, 

namely the FVM, was selected as the method of choice. Thus, a time-domain general 

purpose EM solver was developed, based on a generalised coordinate system and the LW 

formulation of the FVTD scheme. This EM solver was shown to be capable of modelling a 

broad range of EM problems defined via rectangular  and/or non rectangular geometries in 

any given simulation environment. In addition, new models for lossy media, lumped 

elements, and lumped sources were derived and implemented in order to improve and 

complement the original formulation of the FVTD method. The performance of the 3D-

FVTD computational engine was then evaluated and compared to other time domain CEM 

methods (where possible) for a number of benchmark EM problems involving various 

203 
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• 
• 

types of geometries. This process was necessary to validate the developed EM engine, as . • 
• 

well as to identify the strengths and weaknesses of the developed FVTD EM simulator. • 
• 
• 

8.1 A Summary of the Presented Work 	 0 
• 
• 

A brief summary of the contribution of this thesis is as follows: 	 • 
• 
• • A review of some of the more popular differential equation-based numerical methods, • 
• such as various types of FDTD, TLM, TD-FEM, and FVTD, was completed where • 
• each technique was evaluated for its ability to model complex and curved geometries. • 
• 

• The governing equations of an EM field problem were expressed in terms of 	• 
• 

Maxwell's equations in conservative form on a curvilinear frame using a general 	• 
• 

coordinate system. This multi-dimensional system of PDEs was represented as a 	• 
• 

succession of flux-split one-dimensional Riemann problems. 	 • 
• 
• 

• The FVTD method was selected to solve the set of flux-split one-dimensional 	• 
• 

Riemann problems resulting from Maxwell's equations. The generalised solution to 	• 
• 

each equation of this set of scalar PDEs is given via the method of characteristics 	• 
• 

along with the modified Rankine-Hugoniot jump condition. 	 • 
• 
• • A new 3D-FVTD scheme for lossy media was developed using a fully windward • 
• algorithm which was derived from a directional-biased upwind LW flux split Riemann • 
• solver. The flux difference terms of this algorithm were defined with respect to the • 
• numerical fluxes at cell interfaces as well as several types of boundary conditions (i.e. • • PEC, PMC, ABC, and periodic BCs). • 
• 
• 
• 
• 
• 
• 
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• Expressions for distributed lumped elements and lumped sources were derived for a • 
•
• 

general coordinate system and were validated for the case of a coaxial cable. These 

• expressions are not only coordinate independent, but are also independent of the • 
• numerical method used for solving Maxwell's equations. • 
• 
• • The accuracy of the newly derived LW-FVTD algorithm was investigated for both • 
• modelling material properties (permittivity and conductivity) and geometrically • 
• complex objects (twisted waveguide). The performance of the characteristic ABCs • 
• (used in 3D-FVTD engine) for several uniform and non-uniform grids was also 

• evaluated and compared to the FDTD's PML-ABCs. 
• 
• 
• • The TM cutoff frequencies of a coaxial waveguide and the resonant frequencies of a 

• 
• partially loaded cavity were computed using the 3D-FVTD engine, and the results 

• 
• agreed well with semi-analytical solutions, measurements, or other numerical 

• 
• solutions. In addition, a complete analysis of a wide band SMA-air coaxial 

• 
• transformer was performed and the results agreed well with theory. 

• 
• • 8.2 Future Work • • 
• During the course of the research, development, implementation, and validation of the 

• 
LW version of 3D-FVTD EM simulator, two main weaknesses of this CEM tool were • 

• 
identified. The first involved the dissipative nature of the LW-FVTD algorithm, while the • 

• 
• second (although not a weakness per se) was due to the original choice of using structured 

• 
grids which (to a certain degree) limited the level of geometric complexity of the problems • 

• 
that can be solved using the 3D-FVTD engine. Both of these shortcomings can be • 

• 
remedied via the following research plan. • 

• 
• 
• 
• 
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• 
• 8.2.1 Reducing Dissipative Errors 	 • 
• 

	

The dissipative nature of the LW-FVTD method has been well documented 	• 
• 

	

[10, 46, 94, 150]. It was shown that the LW version of the FVTD method is unable to 	• 
• 

	

accurately solve problems that contain sharp metallic edges which generate rapid spatial 	• 
O 

	

variations of the field distribution (see MSDRA example of Section 7.4). Recently, several 	• 
• 

numerical methods with dissipation and dispersion characteristics superior to the LW- • 
• FVTD technique have been introduced to supersede the LW version of the FVTD method • 
• [46, 77, 91]. One of the most popular methods is the Runge-Kutta family of PDE solvers • 
• [26]. Despite the additional memory and computational effort that is associated with this • 
• multi-stage technique, its higher order of accuracy (both in space and time) and low and • 
• tunable [166] dissipation and dispersion characteristics have made the RK scheme the • 
• method of choice for CFD and CEM researchers [158]. Hence, the next step in FVTD • 
• research should involve the investigation of the RK family of PDE solvers and their • 
• formulation and application to the FVTD method. This research work was recently • 
• initiated by the author and is currently under way. • 
• 
• 8.2.2 Unstructured Grids • 

	

The GTEM cell example of Section 7.5.1 clearly demonstrated the challenges that 	• 
• 

	

one would encounter when modelling a large and very complex EM problem using a 	• 
• 

	

structured grid. Although in most cases structured grids are capable of meshing very 	• 
• 

complex problems, it is more practical (both in terms of the accuracy of modelling and • 
• reduced computational resources) to use unstructured grids for griding very complex EM • 
• 

problems. Several formulations of unstructured-grid FVTD methods have been proposed 

• in the literature [46, 159, 167]. These references provide an excellent starting point for the • 
• 
• 
• 
• 
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•
• further investigation and formulation of an unstructured-grid FVTD scheme. 

• 
• 8.3 Fast FVTD Engines 
• 
• The ever-increasing computational demand of very complex EM scattering and field 
• 
• problems has been partially offset by the advent of massively parallel computer systems. • 
• 
• However, most traditional computer programming techniques (i.e. vector programming) 
• 
• do not take advantage of the multiple-processing capabilities of these new computers 
• 
• [159]. Thus, any CEM tool must be optimized (distributed) for a specific computer 
• 
• architecture in order to minimize the computation time [46]. Although at first glance this 
• 
• type of research appears to be an exercise in computer programming, one cannot lose sight 
• 
• of its importance; a well optimized CEM simulator may reduce the required computation 

• time from days or weeks to a matter of hours, therefore, removing one of the obstacles in 
• 
• the simulation of practical problems. Hence, further research in the area of code 
• 
• optimization and the development of fast FVTD engines is strongly recommended. 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
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• Appendix A • • 
• The Finite Difference Method • • • • 
• 
• 
• 
• 
• 
• Over the years, many books and articles have been devoted to the topic of algorithms 
• 
• that could be used in approximating and solving systems of PDEs. The majority of these 
• 
• methods (often referred to as FDMs) are derived from Taylor Series Expansion (TSE). In 
• 
• FDMs, the solution domain is subdivided into discrete points, and information between 

• points is provided using a truncated TSE [4]. The following sections outline the FDM and 
• 
• the terminology and notation associated with it; in addition, some of the commonly used 
• 
• formulations and approximations are also included. 
• • 
• A.1 Taylor Series Expansions • 
• 
• The Taylor series expansion of an analytic function, ii(x), at the point x = a is [39]: 
• • _Ù(x) 	z (x— a)   mni 
• m! 	axm 	

(A.1) 
• = 0 	a 

 

• The first step in developing a finite difference algorithm is to represent a continuous • 
• 
• 209 • • 



• • 

• 
• 
• 
• 
• 
• 

210 • • 
• 
• 

function, i2(x) , and its variable in terms of a discrete function, u(iAx) = u i , evaluated at • 
• discrete g rid points, x = iAx . Thus, the Taylor expansion of a discrete function at various 

points is given by: • 
• 
• 

u(iAx + Ax) = u 	 (A.2) i  +1  = E —, — , 
m=0 m! axml 

Ax m  [am  
• 
• 

1 • 
• 

in[ 

 am i ' 	 • u(iAx - Ax) = u• 1  = E 
in! 

i_ 	
(-Ax)  ain  Ft (A.3) 	• 

m = o 	x l  • 
where upon expansion, the following infinite series emerge: 	 • 

0 • 
Ili + 1 = -ii i + (Ax)(ax)i + ( 2 	

A

)(ii-xx)i +
( 

‘--e-)(i7txxx)i + -.. 	(A.4) 	• 
• 

A  3 	 • 
Ui  _ 1 = 3! 	) xx /(it x ). + ... 	(A.5) 	• 

 • 

• 
• 

The first derivative of a function (denoted as Ftx ) is approximated by truncating the 

higher order terms of the series  (t. e.  terms with Ax2  or higher) and solving for the 

derivative term (while substituting for the discrete value of the function); that is, 

• ui  -u.  
Ax + 0(Ax), 	 (A.6) 	• 

• 
u • - u • ) = 	Axt- x 

• 
• (0(Ax)) since the truncation en'or is no larger than (Ax) . Hence, the accuracy of the • 
• estimated solution can be increased by either using algorithms with a higher order of • 
• accuracy or by utilizing a finer mesh [40]. • • • 

The above expressions are referred to as forward (A.6) and backward (A.7) difference • 
• approximations of the first order derivative of u. They are said to be first order accurate 

• 
(A.7) 	• 

• 
• 

• • 
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• 
• A.2 Finite Difference Expressions • • 
• There are three classes of finite difference expressions for approximating differential 

• 
• equations. In central difference approximation, grid points to both the left and right of the 

• 
• point of differentiation are required. This method has superior accuracy to both backward 

• 
• difference approximation (that requires only points to the left of i) and forward difference 

• 
• approximation (that uses only points to the right of i). The following sections include a 

• 
• summary of some of the three classes of difference approximations that have been used in 

• 
• this thesis. A full derivation of these expressions is presented in [41]. 
• • 
• A.2.1 Central Difference Expressions 
• 
• A.2.1.1 Expressions with Errors 0(Ax) 2 • • 
• + 1 -14i-1  
• ( 12x)i = 	2Ax 	 (A.8) 
• 
• ui  +1  - 2u i  ui  _ 1  
• (uxx)i 	 (A.9) 
• Ax 2 

• 
• A.2.1.2 Expression with Errors 0(3..x) 4 

• 
• -ui+2 4-8u i+1 -  Su i-1 1- tt -2 • (ux) i  =  	 (A.10) 
• 12Ax 
• 
• A.2.2 Forward Difference Expressions 
• 
• A.2.2.1 Expressions with Errors 0(iXx) • • 
• u. ,-u• (ux)i    • Ax 
• 
• (uxx)1 2u i2+ + u i 	 (A.12) • Ax • • • • • 



A.2.2.2 Expressions with Errors 0(3,x) 2  

(ux) i  = 
+ 4u1+1 — 3u. 

2Ax 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
1 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
1 
• 
• 
• 
• 
• 
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—ui+3 + 4ui+2 -5ui+i  + 2u • 
(uxx)i = 

Ax2 

A.2.3 Backward Difference Expressions 

A.2.3.1 Expressions with Errors 0(Ax) 

ui  — 
(ux) i  = 	 

Ax 

u• —2ui-1+  ui -2 
( uxx)i = 

Ax2 

A.2.3.2 Expressions with Errors 0(Ax) 2  

3ui  — 4ui  _ 1  + ui _ 2 
 (Ux)i = 	2Ax 

2u•— 5 Ui-1 + 4u• — u. 1-2 	1-3 

Ax 

A.3 Finite Difference Operators 

In order to represent the aforementioned finite difference approximations in a concise 

format and to avoid lengthy and cumbersome algorithms, a set of difference operators has 

been developed [10]. Table A.1 summarizes the standard difference operators that have 

been used in this thesis. 

(uxx)i 2 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 
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Ax  

A2  

-2 
A, 
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Table A.1. Standard finite difference operators 

Operator 

Forward Difference 

Forward Difference 

Forward Difference 	2nd 

Forward Difference 	2nd 

Backward Difference 	1st 

Backward Difference 	1st 

Backward Difference 	2nd 

Backward Difference 	2nd 

Central Difference 	2nd 

Central Difference 	2nd 

Central Difference 	4th 

Averaging Operation 

Operation 

Axui  = ui  +1  — ui  
2 Aui  = ui+  2  - 2ui +1  + ui  

LXUj = 

Vx 	VxUi = Ui Ui- 1 

v  x 

 

V u  = 	2ui  _ 1  + ui _ 2  

uj  = 3 ui  — 4ui  _ 1  + ui _ 2  
-2 
V x Ui  =  

5x 

52x 

8x  

0(Ax) 

1st 

1st 

-A  2 
LAxtii =  

vx  
r7-2 
v x 

5xui = ui + 	ui - i 

8x2u 1  = ui  +1  — 2u i  + ui _ 

-8„ui  = —ui+ 2  + 8ui  + — 8u i _ i  + ui _ 2  

13U(i -I- 1, 	= (tt i  +1 	ui)/2 
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• Appendix B • • • 
• General Coordinate Systems • • • 
• 
• 
• 
• 
• 
• 
• 
• The theory of general (curvilinear) coordinate systems is described through the • 
• application of differential calculus which is generally known as differential geometry. The 
• 
• purpose of this appendix is to outline some of the general concepts and to introduce some 

• useful terminology and formulae associated with curvilinear coordinate systems. A 
• 
• complete discussion of these topics is included in [80, 81]. The following is a summary of 
0 
• the discussions that appear in these references. 
111 • 
• B.1 General Coordinate Systems: Definitions • • In a given region, the following functions: 

O  
• 
• 

u = f i(x 1 , x2,  x3), 	i = 1, 2, 3 	(B.1) • • are defined to be independent, continuous, and single-valued in the (x 1 , x2, X
3

) coordinate • 
• system. There also exist equally independent, continuous, and single-valued functions • • which represent the solution to (B.1) in terms of the original coordinate system, i.e.: • • 
• 215 • • 
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i 	, 	 , x = (f)Au 1  , u2  , u3 ) , 	i = 1, 2,  3. 	 (B.2) 

In general, both  f1  and (p i  are continuously differentiable functions (within a region that 

does not contain singular points) that define transformation from one coordinate system to 

another. For example, point P(x 1 , x2
, x3 ) is associated with point P' (u1 , u2 , u3 ) using the 

transformation defined in (B.1). The new coordinate system,  u1 ,  is referred to as a general 

or curvilinear coordinate system. 

Figure B.1. The parallelepiped defined by base vectors of a curvilinear coordinate system 

Consider point P' in a given region where three coordinate surfaces (see Figure B.1) 

(B.3) u = constant, i = 1, 2, 3 , 

pass through it. Any two of these coordinate surfaces intersect in a curve (commonly 

known as a coordinate curve). Along any of the three coordinate curves,  u1-curve, two 

coordinates are variable, while one is constant. These coordinate curves are labelled by the 

constant coordinate. If a position vector, r,  is defined as a function of the curvilinear 

coordinates, u l , u2
, u3

, 

r = r(u1 ,u2
, u3

) , 

small displacement changes along the coordinate curves (and tangential to the respective 

coordinate curves) represent differential changes in r;  that is, 

(B .4) 
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• 

	

ar ar 	ar 3 • dr = i du + —du 2  + du . 	 (B.5) 
• au' 	au 2 	au3 

• 
• Hence, unitary vectors, which form the base vectors for a curvilinear coordinated system, 

• are defined as follows: 

• ar 	 ar 	 ar * 
• al  = —7 , 	a2  = 	a 3 = 	 (B.6) 
• au ' 	au 	au 
• Therefore, the differential changes in the position vector, as given in (B.5), can be re- 

11, written in terms of the above base vectors, • • • 

	

dr = a i du + a2du2 + a3du3
. 	 (B.7) 

• The aforementioned base vectors, (a 1 , a2, a3 ) , form a parallelepiped in the curvilinear 

• coordinate system, with its volume computed by: • • 
• V = al - (a2 x a) = a2  • (a3  x a 1 ) = a3  • (a i x a2 ) 	 (B.8) 
• 
• After algebraic manipulation of the above expression and the introduction of a new triplet, 

• 
• (a l , a2

, a3
) , a new reciprocal system is introduced whose reciprocal unitary vectors are: 

• • 

	

 l 	1 2 	1 
• a 	—(a 2 x a 3 ) , V 	 a = —V (a

3 
x a l ) 	a3 

= 1 (a l x a2) 

	

V 	(B.9) 
• 
• The base vectors of this reciprocal system are also perpendicular to the respective • 
• coordinate surfaces defined by the pairs (a2, a3 ) , (a3 ,  a 1 ),  and (a 1 ,  a2 ) , as were their 
O  
• counterparts in the general coordinate system. Conversely, the unitary vectors can be • 
• denoted in terms of the reciprocal unitary vectors given in the following expressions: 

• 
111 	 al = —1 (a2 

X a3
) , 	a2  = —1 (a3 

X al ) , 	a3  = —1 (a l x a2
) . 	(B.10) • V 	V 	V 

* Although unitary vectors form base vectors for a general coordinate system, their length, as a rule, is 

•
not unity! Their length and dimensions will be determined by the nature of the curvilinear coordinate 
system. • 
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218 	• • • 
B.2 Differential Vectors and General Coordinate Systems 	 • 

• 
• 

	

In the last section, it was shown that any point in a general coordinate system may be 	• • 

	

represented/associated with either a unitary vector or its corresponding reciprocal unitary 	• • 

	

vectors. Similarly, a differential change in a position, dr,  , can also be represented in terms 	• 
of reciprocal unitary vectors: 	 • • • 

dr = a 1  du + a2du2 + a3 du3 

	

(B.11) 	• • 

	

where du i , du2, du 3  are differentials defined in the direction of the base vectors of the 	• • 
reciprocal coordinate system. The two definitions of the differential, dr,  , equations, (B.7) • 
and (B.11), must be equivalent; that is: 	 • • • 

	

3. 	3.  
dr = 	a' dui  = E el  du 	 (B.12)  • 

1 =1 	j=1  • 
In order to manipulate the above expression to a desirable form, consider the 

• following properties of the scalar product of the unitary and reciprocal vectors. Upon close • • examination of all of the possible scalar products of a coordinate system with base vectors • 
of its reciprocal system, the following expression is deduced: *  - •  • • 

	

{ 0  (i = ./) 	 • 
ai • a = 8 — 	 • 1, 2, 3 , 	j 	1, 2, 3 	(B.13) 

	

1 (i j) 	 • • 
where 	is generally referred to as the Kronecker delta. One of the implications of the • 

	

above relationship is that the unitary vectors of the base system,  a1 ,  and their counterpa rts 	• • 

	

in the reciprocal system, ai , are orthogonal. In addition, the differential components of 	0 
• 

vector, dr,  , can be expressed in terms of unitary vectors through successive scalar • 
multiplications of (B.12) by ai  and a application of the condition stated by (B.13): 	• • • • • 
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• 3 

du = 
3 

a. • a J.dut  dui  = 	a.' • a'
„  

dui' 	 (B.14) 
• 
• The following standard notation is used to replace the scalar product of unitary and • 
• reciprocal unitary vectors; that is: • • 
• g ii 	gii = ai  • ai , gu  = gii  = ai  • ai , 	 (B.15) • 
• and the differential components of dr are rewritten as: • • 
• 33 
• du. = E ,,dui, du'  = 	dui . 	 (B.16) 
• i = 1 	 j = 1 • 
• In addition to differential vectors, fixed vectors can also be represented using the • 
• above notations. For example, a fixed vector, F,  defined at the point, P,  can be written in • 
• terms of components in either a unitary system or a reciprocal system: 

• 3 	3 
F= 	f iai  = 	E f jai  . 	 (B.17) 

i = 1 	j= 1 • Furthermore, similar methods of the scalar multiplication of unitary vectors and the • * Partial Proof: 
• Consider the scalar product: a • al  where the definition of a is substituted from (B.10): 

a l • ai  •_• a l • r_1 (a2 x a3 )] 
• Lv` 

After rearranging the above and using the definition of the volume of a parallelepiped formed by base 
• vectors, the above is evaluated as: 
•

l 	 2 3 	1 a • a 1  = — [a  • (a x a )] =—v (V) =  1.  

•
• 	 v 

Next, the following scalar product is evaluated as per the definition of a3  provided by (B.10): • 
a l  • a 3  = a l  .[._(a

i  x a 2)] = --1 [Va 1  • (a 1  x a3  )] • 
• and by using a vector identity A. B x C = Ax.13-C: 

2 
• a • a

3 
= —v [(Va x a ) • a ] =  0 .  

Similar results can be obtained by the evaluation of the remainder of the scalar products of the unitary 
• and reciprocal unitary vectors. • 
• 
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• 

3 	i 	3 	 • 
fi 	

f i 	 • 

	

(B.18) 	• 
i=1 	 j=1 	 • 

Still, further scalar multiplications of (B.17) provide: • 
• 

f i = F • ai , • f = 	• . 	 (B.19) 

	

a  J 	 • • which can be substituted in (B.17) to express the fixed vector, F , in terms of its unitary and • 
• reciprocal vectors; that is: 0 • 

3 	 3 	 • 
F = E (F • al )a = E (F • a .)ai 	 (B.20) 

i=1 	 j=1 	 • • 
Finally, it is important to recognize the relationship between unitary vectors and unit 

• 

	

vectors with which most readers are more familiar. As was previously stated, the nature of 	• 
• 

the coordinate system determines the length and dimension of unitary vectors. A unit 

vector, ii  , is defined to be of length, unity, and has the same direction as its respective 

unitary vector, a1 ;  hence unit vectors can be expressed in terms of unitary vectors: • 
• 0 

a l 	al 	 a2 	a2 	 a3 	a3 	 • 
1 1 = 	 i2 = [ 	 1 3  =   	, (B.21) 	• 

Alai  • a l 	Ar- gil 	«/a2 a2 	A1-87; 	ja3  • a 3 	jg33 	• 
• 

and vector, F,  can be resolved into its unit vector components: 

F = Fij i + F2i2 + F3 l3  . 	 (B.22) 	• • • B.3 Vector Calculus in General Coordinate Systems 	 • 
• 

	

A line element,  dl,  is the magnitude of a displacement vector, dr.  . As was noted 	• 
• 

	

earlier, dr expresses an infinitesimal displacement between a pair of points, P(ul , u2, u3) 	• 
• 
• and P' (u + du 1 , u2 + du2, u3 + du3 ), in terms of differentials, du l , du2 , du3 . Hence 	

• 

• 
• 
• 
• 
• 
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• 
• 3 	3 	• 	' 	3 	3 	. 	. 

dl2 = dr dr = E E ai alduI dui = E E al aJduiduj, 	(B.23) 0 
• 
• which can be simplified to: 

•
• 
• 

3 	3 	 33  
dl2 	 i  = 	gudu dui  = z E , 	(B.24) • g du .du 

• i=lj=1 	i=ii=i 
• j.  

• In the above definition of the length of a line element, gu  and g are coefficients of 

• 
• differential quadratic forms in either a unitary or a reciprocal system. This differential 

• 
quadratic form is often refen-ed to as first fundamental form, and for a curvilinear 

• , 	coordinate system is given by: 

• 
• 3 	3 
• dl2 = E E gudui  dui  
• 
• • = g ii du 1 du 1 + gi2du 
• 
• + g2i du2du 1 + g22du2du2 1- g23 du2du3 

• • + g31  du3 du 1 + g32du2du3 + g33du3du3 
(B.25) • • 

• Following the notation of equation (B.15), and after some algebraic manipulation: 

• 
• d12 = gl 1 (du

1
)
2 

g22(du2)2 
3 2 

+ g33 (du ) + 2g 12du 1 du2 2g 13du 1 du3 + 2g23 du2du3 . 

• 
• Although equation (B.26) provides the most general expression for a line element in a • 
• curvilinear system, it is often necessary to compute line, surface, and volume elements • 
• from a definition where the differential vector elements represent infinitesimal • 
0 	 displacement along a given coordinate curve. Equation (B.12) may be utilized to • 
• formulate displacement vectors along the u 1 -, u2-, and u3-curves, where in each case, there • 
• is a differential change in r along the ui  direction, which means the only non-zero • 

1 2  gi3 du l du du A- 
 



• 
• 

	

222 	• • • differential is  du'  ; that is: • 
• dr, = al du , 	dr2  = a2du2

, 	dr3  = a3du3
. 	 (B.27) • 

	

The respective line elements are given by the magnitude of the above displacement vectors 	• 
• 

or by equation (B.24): • • 
dt i  = glidu i , 	d/2  = ,F,222dit2, 	d13= ,igi(1113 	(B.28) 	• • 

	

A surface element is commonly characterized by the area on an infinitesimal 	• 
• 

	

parallelogram on a given surface, say the // I-surface, defined by two intersecting curves 	• • 

	

(In this case, the u2- and u3-curves.). Mathematically, the surface element of the 	• 
• 

	

aforementioned parallelogram is determined by the magnitude of the vector product of its 	• 
• 

intersecting sides; that is: 	 • 
• 
• 

ds i  = Idr2  x dr3I = la 2  x a3 Idu2du3  = ,i(a2  x a 3 ) • (a 2  x a3 )du2du3 . 	(B.29) 	• 
• It is evaluated using the vector identity: 	 • 
• 

(A x B) • (C x D) = (A C)(B • D) - (A • D)(B • C) 	 (B.30) 
where it is rewritten as: 	 • 

O  • 
j(a2 - a2 )(a 3  • a 3 ) - (a 2  • a 3 )(a 3  • a2)du2du3 , 	 (B.31) 	• 

• and following the utilization of the notation introduced in (B.16), 	 • 
• 

ds i  = Afdu 2du3 . 	 (B.32) 	• 
• 

	

An analogous procedure can be employed to compute the surface elements in the u2-surface 	• 

as: 	 • 
O  • 

ds2 Aig  1 1 g33 g - 2i3duldu3 	 (B.33) 	• • 
and the surface elements in the u3-surface as: 	 • 

• 

O 

• 



g = 
g11  g12 g13 

g21 g22 g23 

g31 g32 g33 

(B.37) 

dS3 = /1g11g22 —g 2 	1 2 i2du du . 
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(B.34) 

A volume element is defined by the three differential vectors of (B.27) which form a 

parallelepiped whose volume is: 

dv = dr•dr2 x dr3  = (ai  • a2 x a 3 )du l  du2du3 	 (B.35) 

After algebraic and vector manipulation of the above equation, *  the expression for a 

volume element in a curvilinear coordinate system is given by: 

dv = 	du2du3 	 (B.36) 

where g is the determinant of the following matrix: 

It has already become clear that the coefficients, gu  , play an important role in defining 

and characterizing the properties of a general coordinate system. In fact these coefficients, 

* In equation (B.20) set F = a2  x a3  ; hence: 
3 

al  • (a2  x a3 ) = a l  • E ((a2  x a 3 ) • ai)ai  
1= 1 

= al  • [((a2 x a 3 ) • a )a i + ((a2  x a3 ) • a2
)a 2  + ((a2  x a 3 ) a3

)a3 1 

The definition of the reciprocal unitary vectors of (B.10) allows further development of the former 
step, 
a l  • (a 2  x a3 ) = a l  • [((a 2 x a 3 ) (a2  x a3 ))a i  + ((a2  x a3 ) (a 3  x a 1 ))a2  + ((a2  x a3 ) (a I x a2))a 3 ] 

where the vector identity of (B.30) is applied to expand and then simplify the previous equation into: 
a • (a2  x a3) = al - ai Ray  a2)(a3 - a3 ) - (a2  • a3)(a3  • a2)] 

+ a l . a2 [(a2  a3 )(a3 - al ) - (a2 . ai )(a3  • a3 )] 

+ al  • a3 [(a2 . a i )(a3 . a2)-(ar a2)(a3 - a l )] 

Finally, with the aid of the definition of scalar products of unitary vectors, as noted in(B.16), the 
above expression is written as: 

a l  • (a 2 x a3 ) 

which might be recognized as the determinant of a 3 x 3 matrix of the respective gu  elements. 

g 11(g22g33 g23g32) g12(g23g31 g21g33) g13(g21g32 - g22g31) 
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• 224 • • • generally known as metrical coeffi cients, contain all the information required to represent 

• the differential of one coordinate system in terms of the differentials in another coordinate • 
system. Hence, determining the values of the metrical coefficients is crucial in • • • computations involving general coordinate systems. Consider a rectangular coordinate • • system, (x 1

, X
2

, x3 ) which is represented in terms of curvilinear coordinates (u 1 , u2 , u3 ) 

and the following functions/transformations: • • 
l1 	2 1 	 2 	2 123 	3 	3123 	 al 

 x = x (u, u , Li
3 ) , 	x = x (U, U, U ) , 	x = X(U, U, U ) . 	(B.38) 	• • 

After differentiating the above equations, the following linear relationships between the 	• 
• 

differentials of the rectangular coordinate system and the differentials of the general 	9 , • 
coordinates emerge. 	 • 

• 
• 

1 	OX 	1 OX 2 ax 3 	 0 dx = —i du + du + 3 du au  

	

au 2 	au 	 • 
• .-, 2 	2 	2 

	

2 OX 1 OX 2 OX 3 	 • dx = —,du + du + du 
au' 	at? 	au3 	 • 

	

.-, 3 	\ 3 	3 	 • 

	

3 	OX 	I OX , 2 OX 	3 	 • xa 	; a u + —au + —au 

	

au . 	au2 	au3 	 (B.39) 	0 
• 

Next, the first fundamental form of the rectangular coordinates is given by equation (B.25) 
• where, due to the orthogonality of the unitary vectors, it is reduced to: • 
0 

33  

	

j 	 3 dl2  = E 	gudx i  dx = gii(dx 1 )2 
+ g 22 (d 

x2 )2 
g33(dx )2  . 	(B.40) 	• i=ii=i 	 • 0 • Moreover, by definition, the unitary vectors of the rectangular coordinate system (i.e. 

ax ,  ay, az ) are of unit length, and, therefore, all the metrical coefficients will have a • 

	

magnitude of unity as well. 	 • 
• • • • 
0 



• 
9 
• 
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3 2 	 k dl = z (dx  )2  = (dx
1
)

2 
(dx

2
)
2 

(dx
3 

) 2 

k=1 
(B.41) • 

• curvilinear coordinate system gives: 
0 
• 
0 
• 
• 

(B.42) 
3 	3 	 3 

d12 
= E 	g 	dui  = 	(dx

k
)

2 

i=lj=1 	 k=1 

(dx 1 )2 (dx2)
2 

(dx
3

)
2 

(B.43) 

0 

• • • • 
• 
• • • 
• • • 
• 
• • 
• • • 

g=  
g11  g 1 grl 

gç, g t;11 g 

(B.46) 

A comparison of the first fundamental form of the rectangular coordinate system and the 

where the expanded form of the above summation is as follows: 

3 
 dl2 

= gl 1 (du
1
)

2 
g22(du

2
)

2 
+ g33(du )

2 
 + 2g 12du 1 du2 

+ 2g 13 du 1 du3 
+ 2g23 du2du3 

• 

Finally, after substituting for the value of the rectangular coordinate system, dx l , dx2, dx3  , 

from (B.39), and solving for the like terms of the above equation, the expression for the 

metrical coefficients is given by: 

ax 

 

11 1 ax2 ax2 ax3 ax3 
gij  = =—. 	j = 1, 2, 3 . 	(B.44) 

au i au] aui  au i  au' a Ili 

In the context of this document, x 1  = x, x2 
= y,  x 3 

= ; hence: 

axax ay ay az az gii  = 	—.—.+ 	 j = 1, 2,  3, 	(B.45) 
au au)  auz aui  aul auf  

and after substituting for u 1  = 	u2  = , and u3  = 	g becomes: 



0•n • ,.n •• 

A xax  
A a Y Y 

A zaz  

= 
Aa 
A a rt 
Aa 

A=  
A xax  
A a Y Y 

A a z z 
= lx ly 

çx y 

Hence, the components of A in the general coordinate system are represented in terms of 

their components in the Cartesian coordinate system; that is: 

• 
• 
• 
• 
• 

(B.50) • 

• 
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• 
B.4 Vector Coordinate Transformation 

The following procedure outlines the general approach to vector coordinate 

transformation. Consider the vector field, A, in a general coordinate system where it is 

represented in terms of the base (Cartesian) coordinate system using the relationship 

However, the length and dimension of unitary vectors, 	an, a , of a general coordinate 

system are determined by the nature of the coordinate system. A set of (curvilinear 

coordinate) unit vectors derived from unitary vectors was given in (B.21); thus, the unit 

vectors of a general coordinate system are given by: 

• 
0 • • • • 

(B.47) 	• 
• • 
• 

t7 	 a 	 a 

	

' 	
c 

, i =  	iT1  = 	T1 ' 
	

i — 	 

	

— 	 

	

',Iii > 	el—m 	,,IgU 

where the above metrical coefficients are evaluated using (B.41): 

• = 	yv+ ze 

• = 	+ yen  + zizri  

= 	ycy+ zçzç  

• 
(B.48) 	• 

• 
• 

• 
• 

(B.49) • 

A = 	+ Arian  + A ac  
= ,\Igu ( xA x + yA y 

+Aigroi (ri xAx  + ii yAy  + .n zA z )ii  

+,i,d(ÇxAx  + (yA y Çz A z)ic  

• 



xr  xo  x z  

Yr Ye Yzi 
Zr  Zo Zz 

 - 

[ cos0 —rsin0 0 
= sin° rcos0 0 

0 	0 	1 

1 _ 
J - (B.52) 

_ - 
rr r x y z 
0 0 0 x y z 

Zx  Z Z _ 	y z 

cos° sin0 0 

sin0 cos° 

	

.   0 —r r 

0 	0 	1 

J = with if' = 1  . 	 (B.53) 

a,.  ax 
aY  
az  _ 
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In order to demonstrate the applicability of the above theory of vector coordinate 

transformation, a cylindrical-to-Cartesian coordinate transformation is examined next 

[81]. Consider a vector field, A , in the cylindrical coordinate system, where the coordinate 

transformation is given by: 

x = rcos0, 	y = rsinO, 	z = Z, 	 (B.51) 

and the inverse Jacobian of transformation is 

J 

Thus, the Jacobian of transformation is written as: 

The unitary vectors of the cylindrical coordinate system are represented in terms of the 

Cartesian coordinate system using the relation: 

cos° sin0 0 

ao  = 

az  

sin0 cos° 
—r  r 

0 	0 	1  

(13.54) 0 

However, as discussed earlier, the length and dimension of the unitary vectors of a general 

coordinate system are determined by the nature of the coordinate system. Therefore, the 

unit vectors of a cylindrical coordinate system are given by: 



where the above metrical coefficients are evaluated by (B.49): 

1 0  = 	 
a 0  • a = z 

`z 
A/ ~ 0 	 Ariz; 

a, 
ir 

err 
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(B.55) 

Hence, vector A in the cylindrical system is represented in terms of its components in the 

Cartesian system by: 

Ax  

AY  
A 

cos° sin0 0 

r00 0  	 0 r 
(B.57) A(r, 0, z) = J AY  

LA  Z 

0 

• 
• 
• 
0 

• 
• 
• 
• 
• 
0 

• 
• 
• 
• 
• 
• 
• 

• 

• 

• 
• 

• 
• 

grr = xrxr+YrYr+zrzr = 1 

gee = 'c 0 -x. 0 + yeyo  + zozo  = r2  

gzz= XzXZ YZYZ ZzZz = 1 (B.56) 

sin° 	cos°  A (r, 0, z) = (A x cos0 + A y sinO)a r  +(--r A x  + r 
 A)ao+ (A z)a z  , 	(B.58) 

and following the substitution of unit vectors, (1 r, i o, iz) , for unitary vectors, (a r, a o , a z ) , 

from (B.55) and (B.56), the final expression of vector A in the cylindrical system in terms 

of its rectangular coordinate components becomes: 

A (r, 0, z) = (A x cos0 + Ay sinO)i r + (A y cos0 — A x sinO)i o  + (A)i2; , 	(B.59) 

which is identical to the one derived via geometric methods [81]. 

B.5 Operators in a General Coordinate System 

Although any general discussion of vector calculus must include a general review of 

various differential operators (i.e. gradient, VcD , divergence, V • F, curl, V x  F,  and 

Laplacian, V20) , only the curl operator is utilized in this thesis. Thus, in the interest of 



1 (V x F) • n = urn dl.  
c --> 

(B .61) 
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brevity, only the formulation of the curl of a vector in the curvilinear coordinate system is 

examined here. Excellent discussions and derivations of other operators are given in 

[80, 81]. 

The definition of the curl of a vector is often derived from the second fundamental 

theorem of vector analysis, i.e. Stoke's theorem. Stoke's theorem states that ([81] page 5): 

"the line integral of the vector F (u1 , u2
, u3

) along a closed path C is equal to the integral 

of the dot product of the curl of the vector (function) F with the normal to the surface S 

that has the contour C as its boundary." That is, 

F dl = f (V x F) nds 	 (B.60) 

where dl is the line element along the integral path, C, and n is a unit vector normal to the 

positive side of the plane containing the surface element, ds . Therefore, the curl of the 

vector function,  F,  written as V x  F,  is evaluated at the point,  P,  using Stoke's theorem 

where the contour, C, is allowed to shrink to the point, P,  which requires the area it 

encloses, i.e.  S,  to become infinitesimally small, *  or 

The scalar product of the curl of F and unit normal vector, n , indicates the direction of the 

component of the curl. Consider the surface element enclosed by C located on the u t-

surface where the path of integration is represented by a parallelogram and is also located 

on the ut-surface. The path of integration is determined by the direction of an outward unit 

vector normal to the positive side of the plane containing the surface,  S,  and the right hand 

* The inherent assumption of this argument is that all first derivatives of F are continuous at  P,  and all 
other points are enclosed by  C .  
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rule, as shown in Figure B.2. The contribution of each side of the parallelogram to the 

contour integral is computed by evaluating the components of the original function, parallel 

to each side, at the appropriate spatial location. These components are determined using the 

scalar product of the vector function with infinitesimally small displacement along the 

coordinate curve where the respective sides are located. Hence, the components of the 

original function representing the sides of the parallelogram are given by F • a2du2 and 

F • a3 du3 respectively. Therefore, the contour integral of (B.61) is written as: 

• 
• 
• • • 
• 
• 

• 
.2+ di? 

— (F • a2du2)1 	—(F • a 3du3 )1 g3.62) 	• du3  
fiF • dl = (F • a2du2)1 + (F a3du3 ) 

u3  

• and then it is re-arranged to highlight the contributions of the sides along the coordinate 

curves, or: 	 • 
• 
• 
0 

f n F • dl = {(F • a3du3 )I 2 	— (F • a3du3) 2 1 	—(F • a 2du2 )1 	— (F a2du2)I 
u + du' 	 u U

3 
+ du3 	

U
3 • 

Figure B.2. Contour integral and surface element of a function located in the u 1-surface  

The bracketed terms of (B.63) resemble the first two terms of the linear Taylor expansion *  

of the derivative of a function centred at u2 and u
3 respectively. These terms are then 

(B.63) 	• • • 

• 
0 

0 • • 
• • • 
0 

• 
• 
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• replaced with their corresponding definition from Taylor's expansion; i.e. • • • 

fF • dl = --2-a (F • a3du3 )du2  —2--3-(F • a2du2)du3  , 	 (B.64) 
•

au 	 au 
• and the final expression for a line integral taken about the contour, C, enclosing a surface 

• element, S, located on the  u 1 -surface is: • • 
• fF • dl = 2(F • a3 ) 	(F • a 2 )1d u2  d u3 	(B.65) 
• au au • 

Similarly, the expression of the contour integral on the u2-surface is: 

• p • dl = —[a3 (F • a 1 ) — 	(F • a3  )1d u 1  du 3 	(B.66) • â u 	a u 
• 
• and for the u3-surface, it is given by: 

•
• 
• 

dl = [.,(F •a2)---' 2(F • a i )idu l du2 	(B.67) 
• au- 	au • In addition, one must consider the unit normal vector of the left hand side of (B.61). • 
• According to the original definition of surface, unitary, and reciprocal vectors, the • 
• reciprocal vector, a , is normal to the plane containing the vector product of unitary 

• vectors a2  and a3  (i.e. the u1-surface). In general, the unit normal vector, n, is defined in 0 
terms of the appropriate reciprocal vectors,  a1 ,  for a given surface element located in the • 

• ui-surface; that is: 

• 
•

• 

n= 	a
i 	

(B.68) 
ai  

• * The Taylor expansion of a function, f (x), centred at a is given by: 

• f (x) = f (a) + f (a)(x — a) + 0(x2
) 

• where the first derivative of the function is approximated as: 
f (a)(x — a) = f (x) — f (a) . 

• 



written as: 

(V x F) • al  = 

Thus, the curl of F is given by: 

r a 
Tîi_p(F. a3)  --._(F  • a

2 
 )] 

a u3   
(B.71) 
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0 In the case of a unit vector normal to the /41-surface, the above expression is modified using • the definition of the reciprocal vectors of equation (B.9) and the volume of a parallelepiped • 
0 of (B.8): • 
0 

a l V  
	 a i = 	 ai  . 

a • (a 2  x a 3 ) 
n =  	 (B.69) 	• a i 	Al(a 2  x a 3 ) (a2  x a 3 ) 	,l(a 2  x a 3 ) (a 2  x a 3 ) 

The above definition of unit normal, along with the expression of the contour integral of • 
• (B.67), and the area of the surface element on the u/-surface given by (B.29), are 

• substituted into (B.61), and following some simplification: • • 
a 	a (V  X F) [al  • (a2  X a3)]a = [-2-(F • a3 ) - --3-(F • a2)]. 	(B.70) • au 	au • 

As was demonstrated in the derivation of the expression for volume elements, 

al  • (a2  x  a3 )  = 	, the component of the curl of F perpendicular to the /4 1-surface is 	0 
• 

0 

• • 
(V X F) • al  =—,-_1  p---(F • a3 ) -  a 

3 (F a2))]. 	 (B .72) 	• 
• 

A/g au2 	au 	 • 
• 

• • 
• • • 
• 
• • 

(B.72) 



V lo ttt  S 11 = 
VIM 

= Viout  and S  12 	v 
r 2in 

V2in re- 0  vlin =  ID 

(C.2) 

Appendix C 

Calculation of Scattering Parameters 

The scattering matrix, [S] , represents the reflected voltages (waves),  V101  and 

V 2out , in terms of the input voltages (incident waves), V lin  and V2in  ; that is: 

[V 1 on] = [S1 1 S12 V1 in 	(C.1) 

V 2out 	521 S22 V2in 	 v11„ -)... '2i, 
-«*--- 

2 1 
V2out --).- where S11  is the reflection coefficient 

from port (medium) 1, S22  is the reflection 

coefficient from port (medium) 2, and S 12 , 

S21  are transmission coefficients from 

port (medium) 2 to port (medium) 1 or 

transmission coefficients can be written as: 

.«._V lout .  

Figure C.1. Waves (voltages) at ports 
of a microwaves circuit 

vice versa [3]. Hence, the reflection and 
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respectively [3]. In general, the scattering matrix elements are complex; however in the 

majority of cases, only the magnitude of the elements is of interest [136]. 

One of the most common methods of assessing the efficiency of the impedance-

matching of a circuit is by utilizing scattering parameters, and in particular, the magnitude 

of the reflection coefficient, 'S i  (also known as return loss, RL) where [136]; 

RL = —20/ogIFI = 20/oe 11 l 	 (C.3) 

The following is a brief description of two methods that can be used to calculate the RL of 

various circuits and circuit structures. 

• C.1 Pulse Separation Method • 
0 

The pulse separation method is one of the simplest methods of computing the 
0 

scattering parameters of a circuit (or structure). It only requires the voltage (or field) 

response of the corresponding port (or medium) that contains both the incident voltage 	gib 

and the reflected voltage response of the circuit. The exact procedure of this method is 
0 

illustrated in the following example. 
0 

• 

0 

0 

• • 
0 • 

In the case of the MSDRA test example (see Figure 7.10 and Section 7.4.1), the 

microstrip line was excited using a time domain Gaussian pulse voltage source (with a 

frequency content of approximately 60 GHz). A voltage observation point was placed at 

an equal distance from both the source and the MSDRA. The total transient response 

observed at this point is plotted in Figure C.2. This transient response includes both the 

incident voltage response, Vi  , as well as the reflected voltage response, V, , of the 

MSDRA. However, due to the temporal distance between the incident and reflected 

pulses, the two voltage responses can be easily identified and separated (thus the term 



• • 
a a • 
• • • 
* 
• • 
• 
I. • • 
• • • • • 
• • 
• 
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V i(f) 

(C.4) 
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pulse separation method). Next, the frequency domain voltage response of the circuit is 

obtained via the application of the DFT method. Finally, the return  loss of the MSDRA is 

computed by: 

RL = 20/ogiS 11 i =  20 log  

Transi  ant Response 

incident 
pulse 

0.2 

o 
cs) 

> 	0.1 

-0.1 I- 

0 	 150 

Figure C.2. Transient response of an MSDRA structure computed via the FDTD method. 

0.0 

reflected 
pulse 

0 
• C.2 Modal Expansion Method 

O In the pulse separation method, an adequate physical distance between the source (or 

• the scatterer) and the observation point is required in order to provide a temporal • 
• separation between the incident and reflected wave. This requirement often demands 
9 

either a narrow (in time) excitation pulse (hence a very small time step) or a very large • 
• distance between the source (or the scatterer) and the observation point; both of these • 

requirements are computationally expensive if not prohibitive. In the method presented 

below, the scattering parameters are evaluated by using a modal expansion of the fields in • 
• • 
• 



• • 
• 
• • 

• 
• • • 
0 • • • • 
• 
• 
0 

O • 

0 

• 

• • 
• • • 
• 
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the frequency domain. With very little computational effort, this simple and rigorous 

method is capable of computing scattering parameters using the circuit's transient 

response observed at any two consecutive observation points (planes) on the circuit [144]. 

A detailed description of this method can be found in [146]; however, for completeness, 

the main steps taken in computing the scattering matrix parameters using the modal 

expansion method are presented -below. 

The modal expansion method is based on the orthogonal decomposition of fields on 

two neighbouring planes on a transmission line [145]. The field distribution on the 

observation points is expressed as linearly independent modal fields that can be 

represented via the following potential functions [145 ]: 

00 

-i131z 	 13„z 
Fi(e)) = AiVie 	+ Bi 	+  

n = 2 

CO 

F2(w) = Act], e 1(z 1- Az) 
+ 	eiI3 1(z + Az) 	n---t Cn 	if3,7(z + Az) 

, 	(C.6) + L vne 
n = 2 

where F 1 (w) and F2(w) are frequency domain field distribution values at the observation 

points (planes); ic 1  and iji ,  are the potential functions of the dominant and the higher order 

modes (on the observation planes) respectively; p i  and f3n  are the propagation constants 

of the dominant and the higher order modes respectively; A 1  and B 1  are the amplitudes of 

the dominant mode's incident and reflected waves respectively; and Cn  is the amplitude of 

the higher order modes' reflected waves. Finally, z and àZ are the location of the first 

observation point and the separation of the observation points respectively. Since the 

amplitude of the higher order modes attenuates exponentially as a function of the distance 

from the discontinuity (or scatterer) where they originated, the summation terms of (C.5) 

(C.5) 
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and (C.6) can be neglected if the observation points are located sufficiently away from the • 
• discontinuity. Hence, (C.5) and (C.6) can be simplified to: • 
• 
• -/Riz 	iRiz F 1 (w) = A i w i e 	, 	 (C.7) • 

F2(0)) = Aivie—ipicz+Az)  +Boy l ejP1(z+Az) (C.8) 
111 

The above equation can be solved for unknown incident and reflected wave amplitudes (i.e. 
• 
• A 1  and B 1 ), and the reflection coefficient is computed by: 

0 
• B 1  
• S11  = 747 • 	 (C.9) •  

• • • 
• 
0 

• • • 
9 • • 
• 

• 
• • 
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