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ABSTRACT 

A general method of likelihood ratio computation is obtained for a filtered type of 
noise, with Gaussian and Poisson components. The idea is to call upon the Cramér-
Hida representation of second order processes and to interpret it as a path transforma-
tion. This approach applies to underwater acoustics signal detection and potentially 
it is a tool to be used in mobile communication techniques. 



• • • • • • • • 
• RÉSUMÉ 

Une méthode générale pour le calcul du rapport de vraisemblance est obtenue 
• pour des types de bruit filtrés, avec des composantes Gaussiennes et Poissoniennes. 
• L'idée est de faire appel à la représentation de Cramér-Hida et de l'interpréter comme 
• une transformation des trajectoires. Cet approche s'applique à la détection des sig- 
• naux acoustiques sous-marine et pourrait trouver usage dans les techniques de la 

I • 	communication mobiles. 

• 
• 
• 
• 
• 
• 
• 
• 
• 



EXECUTIVE SUMMARY 

Detection of random signals based on likelihood ratio is optimal in the sense of 
the Neyman-Pearson criterion. As in general the signals can be given, a priori, only 
a broadly qualitative description and have a dynamical behavior, they are modeled 
as stochastic processes. 

With the aim of fitting a general class of signals and noises, this report addresses 
the case of causally filtered Gaussian and Poisson noise components. It is assumed 
that the noise has paths of finite energy, i.e. they are continuous in quadratic mean. 
The signal is smoother than the noise, so it is assumed that it belongs to the repro-
ducing kernel Hilbert space of the noise. That ensures the absolute continuity of the 
probability laws induced by the received signal and the noise and hence the existence 
of the likelihood ratio. 

Explicitly, the likelihood ratio is obtained as a functional on the space of the 
received signal. Its computation is decoupled into two operations. The first one is 
the computation of the likelihood ratio for the unfiltered received signal and noise. 
This is basically a stochastic calculus problem and involves the use of a version of the 
Girsanov theorem as well as particular factorization results. The second one is the 
computation of the conditional probability law of the unfiltered noise with respect to 
the filtered noise. This conditional law depends mostly on the trace-class properties 
of the covariance operator of the filtered noise. 

The likelihood ratio method described in this document has been adapted to sonar 
applications. In particular the active sonar in a reverberation limited environment 
benefits from this approach, as the reverberation has the characteristics of a causally 
filtered phenomenon. 

iv 
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a • • • • 
• 
• 
• 
• 1.0 INTRODUCTION • 
• 
• A well known fact from the theory and practice of communication systems is that 

•
the simultaneous presence of environmental random fluctuations called "noise" makes 

• the status of the signal uncertain at the receiver. A priori it may be unknown if 
the received signal contains information or is just noise. In techniques like sonar and • 

0 

• track of an airplane, as well as the publication of the first book on radar detection 
• [2]. The idea, new at the time, was that the communication of information is a statis- 

• 
• The first technique used in detection problems was the "matched filter" 1 , de- 
• rived independently by Wiener, Hansen, North, Van Vie& and Middleton. It was 
• acknowledged that the "signal-to-noise ratio" was not the natural criterion for signal 
• detection. Mark Kaç provided the connection with statistical hypothesis testing, not- 
• ing that the Neyman-Pearson criterion is adequate for radar detection. The theory 
• shows that the key quantity to compute is the likelihood ratio, useful also for applying 
• a number of other criteria. Woodward [3] came to the likelihood ratio -via a different 
• route, inspired by the information-theoretic result that the relevant information is all 
• preserved in the conditional probabilities of the hypotheses given the observations. 
• Later, the so-called statistical decision theory introduced by Wald [4] was applied to 
• signal detection problems. In all cases, the basic operation is to compare a likelihood 
• ratio with a threshold, whose value is determined by the chosen criterion. A general 
• 

1 Based on the maximization of the signal-to-noise ratio. 

1 • 
• 
• 

radar, the answer to the question "does the received signal contain any information?" • is the core of the application. • 
• 

Signal detection theory appeared in the 1940's and seems to have been a conse-
quence of the war efforts [1]. Its foundations are strongly connected with the "l'air 

• du temps" brought by Norbert Wiener's work for a MIT project trying to predict the 

• tical problem and that the performance limits could be calculated from optimization 
• criteria and a systematic approximation designed. 
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Figure 1.1: The three steps of a signal detection algorithm. 	 • 
• 
• approach of the detection problem can be depicted as in fig. 1.1. • 
• 

Informally, if X(t), S(t), and N (t) are stochastic processes describing the received 	 0 
signal, the transmitted signal and the noise, respectively, then the detection problem 	 • 
consists, in terms of statistical hypotheses tests, of choosing between 	 • 

• 
f  Ho :  X(t) = N (t) 	0  <t  <  T

,. i H 1 :  x(t) . s(t) + N (t) 0 < t <  T. 	 I • • The strategy provided by Neyman-Pearson criterion assigns the detector to the e likelihood ratio d÷j±-, N-. This is an optimal detector, in the sense that it minimizes the • probability of non-aetection, i.e. P (H1 rejected I HI true) , for a given probability • of false alarm P (Ho  rejected I Ho  true) . In particular this fits the case of radar or 
sonar detection, where it is hard to judge the implications of not detecting a target 	 • 
but the acceptable probability of false alarm can be determined. 	 • 

• 
The performance of this detection method is usually measured by means of the 	 • 

• 
• 2 	 • 
• 
• 
• 
• 
• 
• 
• 
• 



• • • • • • • • 
• receiver operating characteristic (ROC), obtained by plotting the probability of de- 
• tection versus the probability of false alarm. 

9 
• Along with the expansion of application from radar to sonar, remote sensing and 

• pattern recognition, the noise models evolved from white Gaussian noise [5 ] [6] [3] to 
• coloured Gaussian noise and randomly modulated jump processes. Following these 
• ideas, the present report contains the derivation, under minimal assumptions, of a 

likelihood detection formula for a random signal of unknown law, disturbed by a noise 

• with filtered Wiener and Poisson components. Such models, as discussed at length in 

• [7] and [8], are applicable when the noise is very nonstationary and the signal cannot 

	

'1 • 	be represented as a set of narrowband components. Typical examples come from the 
radar and sonar areas [9]. • 

• 
• 
• 
• 2.0 GENERAL DESCRIPTION OF THE MODEL • 
• 
• In all that follows, signals and noise are monitored over the time interval [0, T] . N 
• denotes a zero-mean, mean-square continuous noise process with paths in £2  [0, 7 ] , 
• the set of functions over [0, T] whose square is integrable with respect to Lebesgue 
• measure. S is a random signal, dependent on N, such that, for almost every w E 
• with respect to a probability measure P, defined on a a-field of subsets of Q, 
• 
• S (w, .) E H (N) 

• where S (w,.) denotes the signal path for event w, and H (N) is the reproducing kernel 
• Hilbert space (RKHS) associated with N. The condition that signal paths belong to 
• the RKHS of the noise is an operational form of the requirement that the signal be 

	

0 	smoother than the noise. It also has the consequence, as the noise is mean-square 
• continuous, that S has continuous paths, and thus that S N has paths in .0 [0, 7 ] . 
• 
• Let PN be the probability measure induced on the Borel sets of L2 [0, T] by N, 
• and Ps+N that induced by S + N. When N is Gaussian, or more generally spher- 
• ically invariant, that is Gaussian with a random variance, no further mathematical 
• restriction is needed to obtain that Ps+N is absolutely continuous with respect to PN. • 

3 
• 
• 
• 
• 
• 
• 
• 
• 



• 
• 
• 
• 
• 
• 
• 

However, to have an "explicit" expression' for the likelihood, information on some 
derivative of the signal is required. Indeed, the likelihood is a functional 	 • 

• 
A : £2 [0, T] 	IR 	 • • 

to be computed for every function f E 	[0, T] (the received waveform), irrespective 
of the regime (PN or Ps+N) that produces f. A is related to PN and Ps+N through 	 • 
the expression: 	 • 

Ps-F-N (df) = A (f) PN (df) f E 	[0, 11] . 	 • 
• 

It turns out that the RKHS condition is enough to enable the derivation of the 	 • 
explicit expression for A only with respect to Ps+N, but not with respect to PN. 	 • 
The latter requires the information about the derivative already mentioned, which 	 • 
amounts to demanding mutual absolute continuity of Pg+N and PN. In its absence, 	 • 
an approximation to the likelihood, which is moreover signal dependent, is explicitly 	 • 
obtained (Proposition 12). Explicit expressions of the likelihood are useful in actual 	 • 
practice when computing its value using discretely collected data [7]. An explicit 
expression for the likelihood can be had by restricting the family of signals that are 
admitted. Such a sufficient condition may be stated as follows: 	 • 

E [exp { -2
1

iiS (*,*)11211(N)}]  <00. • 
• 

Establishing the form of A may be achieved through a decoupling operation which 	 • 
involves the Cramér-Hida decomposition [10, 11] and a theory of stochastic calculus 	 0 
that is tailor-made for that decomposition. The relevant papers are [12], [8], [13] and 
[14]. 

• 
As noises are frequently not purely Gaussian, nor for that matter spherically in- 	 • 

variant, it is imperative to obtain A for noises that accomodate at least an explicitly 	 • 
impulsive component, such as a Poisson process. For example, the underwater acous- 	 • 
tics noise [15] is such a noise which prompted the search for the method producing 	 • 

2The quotation marks on the word "explicit" are meant as a reminder that though the analyti 	 • cal 
form of A must be explicit, its actual use requires extensive calibration by actual data, and detailed 	 • 
knowledge of the specifics of the detection environment that applies. Some indication of what that 	 • 
entails can be found in [71. 	 • 

• 



• • • • • 
• • 
• A. It is shown in this report how to obtain the analytic form of A when the noise N 
• has the form: 

• N (co,t) 	F (t,x) .417 (w, dx) 
• 
• where F is a non-anticipative, non-random filter, and W is a white noise of the form: 
• 
• 

 

W !  t = 	(w,  t) + 	 (CO, t) 
• W, )  
• 
• 

where B1  is a generalized Brownian motion, ij2 is a Poisson martingale, and B1  and ij2 
• are independent and have the same variance function fr. The signal is still assumed 

to have paths in the RKHS of the noise. • 
• 
• When mutual absolute continuity holds, the analytic form of the likelihood A is 

then as follows. Let RN be the covariance operator built from the covariance CN of • 
the noise N, and K be the closure in L2 [0, T] of the range of the square root of RN 4  • 
Let us define an operator  U:  L2 [0] 	L2 [0, T] with the property that • • u= Rke • 

• 
• where 

•  J:  L2 [0, T] —› L2 [0] 
• 
• is a partial isometry with initial space K and final space L2 [0] and J* denotes its 

• adjoint. The families {An , n c W} and { en , n e N} are, respectively, the eigenvalues 
• and orthonormal eigenvectors of RN. Then the process M is defined as 

• 1 • m  (f ,  t) = E —(u-/[0,1 , ek)L2 [0,71(f ek)L 2 [o,1] 
• k=1 A le 

• 'The Cramér-Hida decomposition stipulates that W is a process with orthogonal increments and 

• variance 4. The specific form of W and cr?,v  that is chosen finds its justification a posteriori in 

• Girsanov's theorem - see Proposition 6. As shown later, the two sources of noise can be weighted 

• by considering a W of the form: YVa  = e, Bi  + -0. _ a fe2, 
	 i 

le 	 4Thus K = R.  (Rh)  C L2 [0,7 ]  , where R. denotes the range of an operator and the overbar 
denotes the closure in L2 [0, T] of a set. In what follows, K is always used for the set just defined. 

• 

• 5 



• 
• 
• 
• 
• 
0 
• 
• 

where f E D [0,T] defines a function continuous to the right and with limits to the 	 • 
left. While M is obtained with the help of the Cramér-Hida representation, from 	 0 
stochastic calculus it follows that • 

ln [À (f)] = 	s (f , x) ev (f , dx) 	 • 
• 1 IT --4 o s2 (f, x) 131. (dx) 	 • 

IT 
 	S (f , x) .13‘  2 (f , dx) 	 • 

• \/2 o 	 • 
• 

where ev ( f ,t) = f (t) , Ê2 is a centred counting process and s is a predictable process 	 • 
resulting from the condition S  (w,.)  E H (N) . M has paths in D [0, T] , and M is the 	 • 
path map of M (M (w) = {M (co, t) , t  E [0, T]l). Then, finally, • 

A ( f ) = {À M} (f) . • 
• 
• 

It is an interesting fact that with such a model it is no need to worry about robust 	 • 
versions of the likelihood as defined by J.M.C. Clark [16]. 	 • 

• 
Two remarks about the derivation should be made. As the stochastic calculus is 	 • 

used on D [0, T] , for processes which are adapted to the filtration generated by the 
evaluation maps and defined simultaneously for couples of probability measures not 	 • 
known a priori to be mutually absolutely continuous, the usual assumption of the 	 • 
"usual conditions"' of stochastic calculus being met is not warranted. Because no 	 • 
such assumptions are made in [17], that is the reference used for stochastic calculus. 	 • 
Secondly, most of the derivation is made under assumptions that are somewhat more 	 • 
general than those stated so far; the main reason for so doing is that the limits are 	 • 
better seen. In particular, it can be explicitly seen to what extent the Cramér-Hida • 
framework and the RKHS requirement are essential for a realistic modeling of signal 
detection problems (Section 4.6). • 

• Here is the rationale for the method of calculation which in turn structures the • report. It can be written, as a path relation [12, Thm 1, p.163], • 
N = o W. 	 • 

• 
'The exact meaning is given in section 3.1.1. • 

• 6 • 
• 
• 
• 
• 
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• 
• 



• 
• • • • 
• • 
• • 
•

As the requirement S (w,.) E H (N) translates into 

• P (1 s2 	<o) =1,  • • ! • denoting absolute continuity as <, then • 
Pfs dcr?,v +W < PW • • 

and consequently [12, Theorem 1, p.163], 
s + N 	(1 s 	+ W) . • • • 

• From there it follows for some explicit 111 involving N and W only 

• dPs+N  dPf s do-2 +w • w 0 T. dPN 	dPw • 
To have an explicit form of • • dPfS  d4.,-EW 

• dPW 

• f s dc4! + W has to be written in "innovations" form, that is, as a functional of its • 
past. Furthermore, the computation of • 

• dPf  s do-2w +1,v 
• dPw 
• 
• must pass through a form of Girsanov's theorem which is established first as a mutual 
• absolute continuity result following the introduction of an exponential martingale. 
• Only thereafter can path conditions and absolute continuity be introduced. 
• 
• In Section 3, the model used, and some of its properties, are presented and explained. 
• Section 4 deals with the unfiltered problem, that is, the computation of 
• 
• A 

 = dPf s ady -1-1,v 
• dPw 
• 7 • 
• 
• 

• 
• 
• 
• 
• 



and has several parts. The first deals with the required version of Girsanov's change 
of measure. Then, assuming that f s do-?v  +W can be written as a stochastic integral 
equation, the likelihood À is obtained. In the last part of Section 4, it is shown how 
the requirement P (f s'clo-Îv  <  oc) = 1 suffices; firstly it is proved that the condition 
on the exponential martingale can be stated as signal paths properties, and weakened 
to absolute continuity, and then the required innovations representation is provided. 
Section 5 yields the function qt. 

The systematic use of the methods that follow has its origins in [18], but some 
important ideas in the latter can be found already in [19]. "This is distinguished by its 
modelling of the problem on the space of sample paths, rather than on an underlying 
abstract probability space, and was found by us to be very useful" [12, p.160]. 

3.0 THE DETECTION MODEL 

This section contains an extended description of the noise and signal models. The 
signal is assumed to be smoother as randomness than the noise which is nonstation-
ary and non-Gaussian. Also, the complete list of the assumptions made along the 
presentation is included here. 

3.1 THE NOISE 

The noise, denoted Na , is defined as the integral of a non-anticipative deterministic 
kernel with respect to a process with orthogonal increments, and may be looked at 
as a filtered white noise with independent Gaussian and Poisson components. 

3.1.1 The integrator 

As usual, (Q, A, P) is the reference probability space, all processes considered are 
defined on that space, and adapted to a filtration A = {A t ,t e [0, 7]} of A, which 
satisfies the usual conditions: the filtration is right continuous, every null set belongs 
to all o--fields A t  and every subset of a null set is A t  measurable. A generalized 

8 



• 
• 
• 
• 
• 
• 
• 
• 
• Brownian motion is a Brownian motion for which the variance function is a non- 

• negative, monotone non-decreasing and continuous function. Its paths are almost 

• surely continuo -us, and those that are not may be taken as being continuous to the 

• right [17, 4.3.5, p. 71]. It is denoted Bi  in the sequel, and [31  represents its variance 

• function: 

• V [B1 (., t)] = E 	(- ,t)] = ,61 (t) , 0 	t < T. 

• 
• B 1  is a square integrable martingale and its compensator' [17, p.148] for fixed t E 
• [0,  T],  is given by 
• (Bi ) (w, t) 	(t) , 
• 
• almost surely with respect to P. 

• Let B2 denote a Poisson process. Then 02 (t) , which stands for E [B2  (. , t)] , is finite, 
• and continuous for t > 0 [20, 2.4.1, p.41]. Let 
• 
• L'2 (W, =-- B2 (W, t) - 	(t) . • 
•• É2 is a square integrable martingale. Its compensator [17, p.148] for fixed t E [0,  T],  

is given by 
• (B2 ) (w, t) = i32  (t) 
•
• 

almost surely with respect to P. 
• 
• Furthermore, for fixed t E [0, T] , almost surely with respect to P, the quadratic 
• variation' of B2 is given by 

• 
• [B2] (w,t) = 
• 
• It is assumed that B1  and B2 are independent. Then let 0 <  a < 1 and set 

• 
• 6 The compensator (also called predictable increasing process or conditional quadratic variation) 
• of a square integrable martingale M is denoted usually by (M) and is defined as the unique, up to 
• the almost sure equality, predictable increasing process, such that m2 — (m) is a local martingale. 

gie 	7The quadratic variation (also called increasing process) of a square integrable martingale M is t 
• defined by [M]  (w, t)  = M2  (w, t) — M 2  (w,  0) — 2 h m(w,x)11/1(co, dx). For almost surely continuous 

square integrable martingales, [M] = (M). • 



• 
• 
• 
• 
0 
• 
• 

and 	 • 
B a  (w,t) = VC-7 B i  (co ,t) + 	— a B2 (W, t) . 	 • 

• 
Ba  is then a square integrable martingale and, for fixed t E [0, T] , almost surely with 	 • 
respect to P, 	 • 

(Ba) (w,t) =-- 	(t) 	 • 
• and 
• [Ba] (w, t) = cv131  (t) + (1 — a) 02 (CO, t) . • 
• 

3.1.2 The integrand 	 • • 
Let F denote a Borel measurable function over the rectangle [0, T] X [0, T] that has 	 • 
the following properties: • 

• 
a. for t and x in [0, T] fixed but arbitrary, such that x > t, F  (t, w)  = 0, 	 • 

• b. for t e [0, T] fixed but arbitrary, fct, F2  (t, x) [3a  (dx)  < 00,  
• 

c, the map t 1—> [F (t, •)]a  E L2 [f3a] is continuous (where [F (t,  • )]a  is the equiva- 	 • 
lence class of F (t, .) in L2 [Pa]) 	 • 

d. {[F (t,  • )],„ t e [0, T]} generates L2  [,@a]. 	 • 
• 
• 

Remarks: 	 • 

a. As 	 • fo t 	, f 2  (3) (dx) — 	f2  (x) (dx) + (1 — a) f f 2  (x) i32  (dx) 	 • 
• 

whenever 0 <  o  < 1, 
£2 [/3a] = £2 [01] n £2 [02] 	 • • 

b. The conditions that F must satisfy are those that ensure that N has a canonical 	 • 
representation of multiplicity one, in the sense of Cramér-Hida [10, 11]. A 	 • 
discussion of the nature of the restriction on the noise process that is thus 	 • 
introduced may be found in [21]. • 
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• 
• 
• 
• 
• 
0 
• 
• 
• 3.1.3 Noise model and properties 

• 
• Ba  may be considered as a prototype of a process with orthogonal increments. The 

• stochastic process 

• 
• Na  (w,t) = 	F (t,x) Ba  (co, dx) , t E [0 ,T] 
• 
• can be defined by following the general construction of the integral with respect to a 

• process with orthogonal increments [20, 7.4, p.160]. 
• 

Then, for t G [0, T] fixed but arbitrary, E [Na  (•,t)] = 0, and the covariance C Na  of • 
• Na  is then given by the following expression: 

• sAt 

• C Na  (3 t) = 	F (t,x) F (s,x) 	(dx) ,  
• 
• As a consequence of the assumptions on F, the function t C (t, t) is continuous 
• for t  e ]0, T[ . Na  is thus continuous in quadratic mean [20, 6.21, p.133] and its 
• covariance is continuous [20, 6.2.2, p.133]. Furthermore, the paths of Na  are, almost 
• surely with respect to P, in £2 [0, . 

• 
• Let H (Na) denote the reproducing kernel Hilbert space of Na . Then [22, p.97] 
• 
• 
• H (Na) = 	(t) f F (t,x) f (x) (dx) , f E 	[Pa] } • 
• 
• For the inner product ( • , • ) H(No, )  of H (Na) , it follows that whenever f and g E 
• £2 [,Øa] and 

• 
• (t) = f F (t,x) f (x) 	(dx) , (t) = 	F (t,x) g (x) 	(dx) 

• then 

• (i,T9)H(N Œ ) = 
• 
• The covariance operator RNa  : L2 [0, T] —> L2 [0, 7 ]  is computed using the formula 

• 
• R ([f] L 2 [0 ,1]) = [10  C (' x) f (x) dx] 	f £2 [CI ) Ti 
• L2 [0,7] 
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where [•] denotes equivalence classes. 

This operator is non-negative, self-adjoint and continuous, with finite trace [23, p.125]. 
It can thus be written as 

RNc, = >=:  X [ei ei] 
i=1 

where, for an orthonormal family len , n E 

RN en  = Ài en , [en 0 en ]  f =  (f,  en) L 2 [0,1] en, Ai 0, E An, < oo. 
n=1 

In an obvious way, in L2 [P] it follows that 

[Na (.> t) 1 L2[P] 	(.5 t)] L2[P] 	{N2) (.5 t) ] L2[1:1 

with 

.K1)  (w,t) = •Vci fat  F (t,x) 	(w, dx) 

NP, )  (w , t) =N/1 — a lot  F (t,x) 2 (w, dx) . 

Ne and K2) are independent, and therefore, on L2 [O, T] , 

PN,„ = PN,(» * PAr2) 

where * denotes convolution. PNce  is the m.easure induced on L2 [O, T] by P and the 
maps 

wi—> (Na  (w ,.) , f) L2[0,11 , f E 	[0, T] . 

Proposition 1 

Let ce , S,?) , Sa  denote the supports in L2 [0, T] of Pe.), PN (2) and 	respectively. 
Then 

c9a 	 c9e)  . 8  

8The overbar denote here the closure in L2 [0, T] of a set. 
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• 
• Proof: In a separable metric space, the support of a probability measure p, is the 

• unique closed set of measure one that is contained in every closed set of measure one 

• and that has the property that, for each of its points x and for every open set 0 
• containing it, ,u (0)  >0  [24, Thm 2.1, p.27]. 

• Let ED denote addition in L2 [0, 	. Then 

PNŒ  (e)  + Se ) ) > PN„ (S1)  + 

•

Se) 
• = Pe)  * PAC )  (Eri  [ce s?)]) 

• = PN(1) (e) Pie) (se) ) 
• =1.  
• Consequently, by definition (9,, C 	Scç,2) . Let 

• Fe -= {liNa (to ,*) 	1 111,2[13,21 	el 
• Ge 	{le ) (w  .) u lL2[0,1] ?  
•
• 

H, = {111\ 2)  (w,.)  —> e l 
L2[0,2] - • • 

• Suppose now x =  u +  y E Sg)  + se , but x « Sc,. Then, since Ng) and Ne are 

• independent, 

• P (F,)  <P  (G, U 11,) =- P (G,) + P (H,) — P (G,) P  (H6 ). 
 • 

• But there is an eo  such that, for c < eo , P (F,) = 1. However, for any e > 0, 
• 
• P (G,) < 1 — (€) ,  

• 
and 

• P(H6 )  G 1 — (€) , ( E)  > 0.  
Thus 

• • 
• 9ED-1 will denote the inverse map associated with G : L2 [O, T] X L2 [O, T] 	L2 [O, T] . 

• 
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which is clearly impossible. Consequently Se )  + S(2) C Sa . 	 q.e.d. 

Remark: Proposition 1 and [25] yield that whenever K = L2 [0, T] then (9, = L2 [0, T] . 

Proposition 2 

Let U : L2 [Oa] —> L2 [0, T] denote the operator for which U f is the equivalence class 
of (F (t,.) , f) Lecd  in L2 [0, T]. Then 

U = Riv-J* , where  J:  L2 [0 , —› L2 [Pa]  

is a partial isometry onto L2  [/3a],  with initial space K. 

Proof: The right hand side of the equality that defines U is the equivalence class of 
a continuous function, and, as such, the latter is square integrable over [0, T] . U is 
thus well defined. It is continuous as 

f 0 21,2 [ o 	t tlegi51 0F (t  *)0 21,2[,3 	IIf  11 2L2[a] • 

Let U* denote the adjoint of U. Then 

1 
U*  : L2 [0, 71] —4 L2 [13  al [UV] (t) = f F (x,t) f (x)dx. 

A computation shows that UU* = RNa  . The polar decomposition yields then that 

If* =  JR,  

where J is a partial isometry with initial space K and final space L such that 

and L 'R,(U*). 

14 
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• 
• 
• 
• 
• 
• 
• 
• 
• 
• Furthermore, if U f = 0 in L2 [0, , by continuity, 

• (F (t, .), f)L2 p3cd = 0 , • 
• 

and thus f = 0 in L2 [Pa ]  . Hence, the null space of U is ./V . (U) = 101 and consequently, • since • • 
• it follows that 
•  • q.e.d. 411 
• 
• Remark: The operator J is unitary as soon as K =  L2 [0, . A sufficient condition 
• is that the closure of the range of RN2  (i)  be L2 [0,1 ]  , i.e., that PN(i) has full support. • 
• 
• 
• 
• Corollary 1 • 
• Let K° be the range of Rk, and define, on K°, the inner product 

• 
• (Rka  f , Rk_g) K. = (f, g)1,2 [0,1]- 
• 
• Then L2  [na] and K° are unitarily equivalent, and thus so are H (Na) and K°. 
• 
• 
• Proof: K° is obviously a Hilbert space. Define : L2 [pa] 	H (Na) by 
• 
• {t7 (f)} (t) = (F (t, .) , f)L2 Lecd. 
• 
• U  is a unitary operator. It thus suffices to show that L2 [Pa l and K° are unitarily 
• equivalent. But from Proposition 2 it follows that, "setwise," 
• 
• 
• 15 
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• • • • • • • • 
Hence, for f e L2 [0a 1 	 • 

• 
Uf II 	= II ef 	11f11 2L2p.i , 	 • 

• 
as JJ* is the identity of L2 [0] •  U :  L2 [Oa] 	K° is thus an isometry. It is onto, 	 • 
as 	 • 

K 	(R1 .) 	 • 
• 

and, if 11K  denotes the projection onto K, then for f E L2 [0, 

as the kernel of RI% is the orthogonal complement of the closure of its range. U is also 
• injective as Uf Ug means Ùf = fig, almost surely with respect to Lebesgue mea- 

sure, and that, Ûf and fg being continuous, they must then be equal. Consequently 
• K° and L2 [0a] are indeed unitarily equivalent. 	 q. e. d. • • • • Proposition 3 • • 

2)  7Z (4 TZ (4 + 7Z (4 ) • 

• 
• 

Proof: Ne) is a second order process, with covariance 	 • sAt • 
Ce.)  (s, t)  = a fo  F (s, x) F (t, x)  13i  (dx) . 	 • 

• 
• Analogously N2) is a second order process, with covariance •  • CN2)  (s, t)  = (1 — 	F (s, x) F (t, x) 02 (dx) . • 
• 16 • 
• 
• • • • • • • 

• 
„ (f) 	(f) + 	f )1 	 • • Ri,Ta riK  (f) 	 • 

= Rki r7J11K (f) 	 • = uniK  (f) , 	 • 
• 



• • • • 
• • • • 
• Furthermore, 
• C N a  (8 , t) = C 	(8 , t) C N (2) (8 t) . • • • 	Thus [26, Thm 3.1, p.9] 
• 
• H (Na) = H (.1e) 

•
• 

with 
• 
• ilf11 2B-(m„) = min{ 

• Il f1112H(N 1) ) 	il f211211(N2' 
• 
• (f1,12) E H (le) x H e) ) 
• + f2 f 

• • 
• As C Na  (s, 	C N(1)  (s,  t) , in terms of reproducing kernels, H (Na)  2  H (N2-)) . • 
• But, by the Corollary to Proposition 2, on one side, H (Na)  and R. (Rka ) , and on 

• the other, H (Ne)) and R. (%)) are related by bijections. Thus, 7Z (Rk) 
• 
• (R/ 1) ) . These ranges being vector spaces, finally 
• .Ar. 

• (Rk) 'R, ( 42) ) + 'R, (4(2)).  • 
• 
• 

t,6 

Now, writing Ft  (x) = F (t, , it follows that 
• 
• (Fe, f)L2[1 = a(F, f)L2E1.1 P« . 	 + (1 — a)  (Fi,  f)L2[02], • 
• and, mutatis mutandis, going to equivalence classes in L2 [O, T] , • • 
• U (f) = aUi (f) + (1 — a) U2 (f) • 

that is, • 
• Ri2 J* (f) = le 	(f) + R 2  (2)  (f) A r 	 Arc, • 
• 17 
• 
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To end the proof, f G L2 [O, 7 ]  is written as A + fk, with fo  E  (Ra)  . Then 

A E 	
)-1- 

L 	 = K , 

so that 

	

( 	 * ~, 

	

Rita  (f) = Rk (f ô1) = RV* 	= R (1) ,11 Vo
± 
 ) + RN2  (2)4 (k) 

where 

foL  E L2  [na], 	(k) = 
Consequently, 

(Riva ) ç (R N2  (1) ) + (%)) . 

q.e.d. 

3.2 DEFINITION OF THE SIGNAL S 

Let 8  denote a random signal, adapted to A. It is assumed that, almost surely with 
respect to P, 

S (w, .) G  

As it can be seen further in the presentation (Propositions 5 and 6), the method used 
works for S (w, .) E H (Na) only when 01  -= 02 . Nevertheless the assumptions which 
are made, though less natural and elegant for the problem at hand than those stated 
in the Introduction, cover that case also. They have the advantage of unmasking the 
role of each assumption. 

It can be shown [12, Thm 3, Step 3, p.170] that the following representation is ob-
tained: 

S (w, t) = a fo  F (t,x) s (w, x) (dx) 

18 



• • • • • • • • 
•• for some predictable s, with paths in £2  [01.1 . Thus • 
• P 	G 	Ils (W )*)11 2L2[011 < œ) = 1  • 
• always holds. • • 
•

Also, in what follows, s will usually be progressively measurable, except when a 
predictability assumption is required, and the assumption will be explicit. It is seen 

• here that this is not a restriction. • 
• In what follows, Xa  represents the process 8, Na  and Ya a process such that, for 
• t e [0, T] fixed, almost surely with respect to P, • • Y,(o , t) = a 	s (co, x) 	(dx) B a  (w,t) . • • 
• 3.3 SUMMARY LIST OF ASSUMPTIONS • 
• Here is a list of recurrent assumptions which will be called upon in order to shorten 
• the statement of many propositions. D denotes the u-field of D [0, T] generated by 
• the evaluation maps 
• • {ev ( , t) = f (t) ,  t e  [0, 71] , f E D [0 ,T11 , 
• 
• Dt  that which is generated by the evaluation maps "up to time t," and D = {Dt , t  e [0, T] }
•  
• a. A 0 • 
• The basic probability space is (S2, A, P) , and the basic filtration is A. For A 
• the usual assumptions hold. 

• .b. A 1 
• ./3,Ç7) is a process, defined on an appropriate probability space, with respect to 
• an appropriate filtration, represented by the symbol • (which can be absent!). 
• It has the following defining characteristics: • • 
• 19 
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(a) 0 < a < 1 

(b) 13,Ç") = 	M.°)  + N/1 — a e)  
(c) e)  is generalized Brownian motion with variance function pi  : it has con-

tinuous paths, almost surely and the non-continuous ones are continuous 
to the right; ,(31  is continuous non-decreasing. 

(d) ./3 .)  is a Poisson process with expectation 02 and le)  = 	- 02. 

(e) le)  and ..E4')  are independent. 

c. A2 

s is a process, progressively measurable for A ,  with the property w  

P(4) E : 	< oc) = 1. 

d. A3 

Y, is a process with paths in D [0, T] . It has the property that, for t e [0, T] 
fixed but arbitrary, almost surely with respect to P, 

Y, ((,) ,t) -= a 	s (tz x) 	(dx) + B, ((x) ,t) . 

e. A4 

s is a process, progressively measurable for D , with the property that 

P (o) G : 	52  (Y, (co, , x) 131  (dx) < oo) = 1. 

f. A5 

Y„ is a process with paths in D [0, T] . It has the property that, for t E [0, T] 
fixed but arbitrary, almost surely with respect to P, 

Y, (o), t) =- a 	s (Y, (o), .) , x) 13 1  (dx) + B (o 	. 

10This assumption is the consequence of the requirement that S (w,.) E H (Na) . 
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• 
• g. A6 • s is a process, progressively measurable for D, with the property that • • 
• P (a) G : f s2  (Ba (w,t) , x) (dx) < oo) = 1. 
• 
• h. A7 • 
• For 0, a deterministic, strictly positive, measurable function such that, simul- 
• taneously, 
• fT • h  (X) 02 (dx)  < oc and f 	(x) 132 (dx ) < (x)  0 • • 
• ln {La,s,qs (co, tll = 	

° s 
(w, x) 	(dx) — f t  s2  (w, x) (3 1  (dx) 

• t 	 2 
t 
 o 

• ln [0 (X)] B2 (w, dx) 	[1 — q5 (x)] [32  (dx) . 
• 
• 
• 
• Remark: The terms of L.„,,,0 involving 0, B2, and e, are basically those that 

• yield the likelihood in the pure Poisson case (with deterministic intensity) [27, 
• T2, p.165]. A likelihood L of the form 

• 
• ln [L] — f s dB, — -y  f s2  d [B& ] 
• 
• or 

• ln [L]  —f  s  dB  & —  o f s2  d(Ba) 
• 
• would require, to progress along Girsanov's route, an s with uniformly bounded 
• jumps and, in the first case, jumps strictly smaller than one [28, Lemma 23.19, 
• p.449]. On one hand, it is unlikely that such evidence would be readily available, 
• and on the other, the simpler form that has been chosen for the initial likelihood 
• provides sufficient evidence (Proposition 6) to confirm the fact that the part of 
• the likelihood effective in the change of measure is its Gaussian component. 
• 
• 
• 
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i. A8 

E p 	(. , 71)] = 1. 

Lemma 1 

When AO, A2, A4 and A6 hold, it can always be furthermore assumed, without the 
usual assumptions, that the maps 

t 1—>  
o
t 

t 1—> 	
o  s

2  (w , x) 131 (dx) 
t 

t 1—> 	Isl (Y, (w , .) , x) pi  (dx) 
o
t 

t 1—> 	s2  (Ira  (w , •) , x) 	(dx) 

are all continuous in the extended real line. 

Proof: All these statements are, mutatis mutandis, identical. It thus suffices, for 
example, to prove the fourth result. Now, as s is adapted, the process 

u:  ( f , t) 	L s2  (f , x) 	(dx) 

is adapted. For t E [0, T] fixed but arbitrary, let 

and define 

Ft  = {f E D[0,11]: v(f,t) < Do} 

( f , t) = 	(f) s (f ,t) , 
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, • 
• 
• 
• 
• 
• 
• where the notation 'A  holds for the indicator function of the set A 11 . 
• Now, for a Borel subset G of E, • 

	

, • 	{(g , u) E D [0 , 21] x [0, 	: 	(g , u) E Gl 
• = [{Fu  x [0 , 	n {(g, u) E D [0,2] x [0,1 : s (g, u) E Gl] 
• U 	x [0, 	n -{(g, u) E D[0,2] x [0, :  O e C}]. 
• • 
• 
• Thus, since Fu  e V C Dt, and s is progressively measurable, g is progressively 
• measurable. But, with respect to PBc, and Pya  , ,`§ is indistinguishable from s as 

I . 

• {f e D [O, 1 ] : 	s(f,.)} g ff E D [O, 71] 	(f, T)  = 001, 
• 
• and, for instance, by assumption A4, 

, • 
• Pire, ({f E D [0,7] : (f ,T) = col)  =  O. 

• 
• Let now 

• (f,t) = 	.§2  (f,x) 	(dx) 
• 

• The process D is continuous to the left because of monotone convergence. For fixed 

• f E D [0, , it is not continuous to the right at t < T if, for every sufficiently large 
positive integer n, • 1 

• (f, t) < oo, but D (f, t —n 	oo. 
• 
• Then, as a consequence of the definition of 	(f ,u) = 0, for u E [t 71-0 	, with 
• the result that 
• r -2 
• S  (f X) /31 (dX) -= 
• 
• and thus that 

• 
421 

(f) X) 01 (C11 ) = O. 
• 
• =  1 1f  x e A and /A(z) = 0 if x e A. 

• 
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• 
• 
• 

So, for u> t,  and D (f, t) fot  (f, x) ,(3 1.  (dx) , D (f,  u) =  D (f,  t) , and D is continuous 	 • 
to the right, and thus continuous. 	 q . e . d . 	 • • • • • 4.0 ABSOLUTE CONTINUITY AND LIKELIHOOD • 	 • 

RATIO FOR PBa  AND Pye, 	 • • 
In this section, it is proved that under some weak assumptions the probability law 	 • 
of the processes generating the noise is absolutely continuous with respect to the 	 • 
probability law of the process generating the signal. Further, the likelihood ratio 	 • 
between these two probability laws is calculated when it exists. 	 • 

• 
• 4.1 THE PROCESS La,s,0 	 • 
• The process La,,,,p serves as Radon-Nikod3'rm derivative in a Girsanov-type change of • measure operation. It is shown below that it is a semimartingale, a needed technical • result. • 
• For the proposition to be stated and proved, the following notation and definitions 

are needed. For any process U such that U  (w,  t—) makes sense, • 
(w, t) U (w, t) — U (a), t—) . 	 • 

• 
The process 	 •  

(w, t) = 	{AU} (w, x) 	 • 

	

x<t 	 • 
• 

is then called the process of the jumps of U. The process If' is subsequently defined 	 • 
as 	 • 

(w, t) 	U (w, t) — 	(w, t) . 	 • 
• 

The proof will furthermore require the following form of Itô's formula for semimar- 	• 
tingales [17, p.194]: 	 • 

• 
F (U (w , t)) = F (U (co, 0)) 	 • • 
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• • 
• 
• 
• 
• 
• 
• 
• +1 	(U (w, x —)) (lc (w, dx) • 
• o .F" (U  (w, x—))  (Ue) (w, dx) 2  • 
• + E [F 0 un 

0<x<t • 
• 
• 
• 
• Proposition 4 
• 
• /t is assumed that AO, Al, A2 and A7 hold. Define the process M by the relation 
• 
• M (w,t) 	s (w, x) 	(w, dx) . 
• Then it follows that • 
• L c , s , q  (w, t) = 1 
• 
• (w, x—) /V/ (w, dx) 

•

— La , s , (w, x — ) [1 — çb (x)] 132  (w,  dx) . 
• 
• 
• Proof: For any semimartingale U, and admissible integrand  f,  [17, 7.3.18, p.169] 

• {A/ fdU} (o.),t) = f (w,t) {LW} (w,dt) . 
• 0 
• So, letting Z (w ,t) = ln [L,,s , 95(w, t)] and using the explicit form of Z (in A7) it 
• follows that 
• {AZ} (w, t) =  ln [q  (t)]  {AB2 } (w, t) 
• 
• and consequently, that 

• Z 6  (w, t) = E ln [q5 (x)] {AB2 } (w, x) 
• s<t 

•
• = 	ln [q5 (x)] B2 (w, dx) . 
• 
• 
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Furthermore, 	 • 
• (w, 	—ftiM (w, t) — 2 (M) (w, +j  [1 - (x)] f32  (dx) 2 o • 

so that (Zc) (w, t) = a (M) (o.) ,t) . Itô's formula, in the format repeated above, applied 	 • 
to the function F (x) = exp [x] and the process  Z,  yields 	 • 

0 F (Z (w , t)) = exp [Z (w, t)] = 	(a), t) • 
and 	 • 

• 
(w, t) = 	(w,  0) 	 • 

• —fie" 	(w, x—)M (w, dx) • a  t i  -- 	L c,
' 

(w, x—)  (M) (o.) , dx) 

	

2- o 	 • • 
+(w , x —) [1 — (x)] 13 2  (dx) 	 • • a it +-2 o 's  (w , x—) (M) (w , dx) 	 • 

• + E {A.r,,, s ,,b } (a), x). 	 • 0<x<t 
But • 

IAL « , s , 0 1 (w, 	= exp [Z (w, t)] — exp [Z (w, 	 • 
exp [Z (w, t—)] {exp [{AZ} (w, t)] — 1} , 

• 
• 

and, since 	 • 

	

exp [Z  (w,  t—)] = 	(w, t) 	 • 

	

{AZ} (w ,t) = ln (t)] {AB2 } (w, t) , 	 • 
• 
• 

it follows, successively, 	 • 
exp [{Az} (w, t)] = [q5 (t)]1°B2}(w't) 	 • 

• exp [{3,Z} (w, t)] — 1 = [0 (t) — 1] {A B2 }  (w,  t) 	 • • • 
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• 
9 • • • • • • 
• and thus, finally, 

• • E {AL,,,,, 95}(w,x) = E 	(w,  —) [0 (x) — 1] { AB 2 }  (w, w).  
0<x<t 	 0<aKt • 

• 
• Now, using again the property stated at the beginning of this proof, 

• t 
• _434  (u.), t) =  1—  fie" La,,,,b  (w, x—) M (w, dx) o • t • +  / LOE ,84  (w, w — )  [1 — çb (x)] 02 (dx) o 
• t • +  / Le,,,,,,b (b.), x—) [0 (x) — 1 ]  B2 (w, dx) o • 
• = 1 — 	e 	(w, x —) 11/1 (c,o, dx) 
• 
• — fo  La,s , gs (w x —) [1 — (x)] 2 	dx) . 
• 
• q.e.d. 
• 

• 
• Corollary 2 • is a positive local martingale, and thus a supermarting ale. Consequently, 
• E 	(. , t)] < 1, 0 < t < T . • 
• 
• 4.2 A VERSION OF GIRSANOV'S THEOREM 
• 
• To use the change of measure method, it must be proved that the original process 

• (signal-plus-noise) has the same law as the original noise, with respect to the con- 

• structed absolutely continuous probability measure. It follows from what is proved 

• below that in the case considered the only possibility is  
• 
• In what follows, it is assumed that A8 holds. Consequently 

• 
• E [LQ ,s , 95 (. , t)] = 1, 0  < t  < T. 

• 
• 
• 27 
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• • • • • • • • • • 
This assumption allows the definition of a probability measure  Qa ,s ,  by setting • 

• 
(A) = 	La,,,o (w, T)P (d,w) , A e A.  • 

• 
As an immediate consequence, the following obvious proposition is obtained: • • • • 
Proposition 5 	 • 

/t is assumed that AO, Al, A2, A7 and A8 hold. Then P and Qa,s,o, as defined 	 • 
above, are mutually absolutely continuous. Furthermore 	 • 

• 
dP 	1 a  '.1') 	and 	 • 

dP 	's 'çb La,s , (.,T) . 	 • 

• 
• (a), = fo  s (co, x) i(31  (dx) + \/1 — a fo  [1 — (x)] i32  (dx) + 	(w,t) . 	 • • • 

Set 	 • 

	

(,t)  =f  s (to, x) 	(dx) + Bi  (b.) ,t) 	 • 
and 	 • 

(w, t) 	B2 (CO, t) — 	(X) /32 (dx) . 	 • 
o 	 • 

Obviously, 	 • 
= \Fe 	\/1 —  Œ  Va, s,o• 	 • • • • • • • 28 	 • 

• 
• 

Let the process  Z , 8 , ij be defined as follows: 	 • 



• • • • • • • • • • 
• Lemma 2 
• /t is assumed that AO, Al, A2, A7 and A8 hold. The process 
• 
• U (2, 	(w , 	s (w , x) 	(dx) + 	(w , t) 
• 
• 
• is then, with respect to 	a generalized Brownian motion such that 
• 
•

(Uce,s,0 )Qa's'qS 	131) 

• where the notation (U,,,o) Qc'-94  is chosen as a reminder of the measure that prevails. 
• 
• Proof: The reference measure being P, integration by parts yields again • 
• (w, t) 	(w, t) 	(w, 0) La ,s , (a), 0) 
• 
• UOE , 8 , 95(w, x—) L a,s ,  (w,  dx) ot • 
• + f La,s ,o (w, x—)  Ua,s,q  (w,  dx) 
• + [U«, s,o, 	, t) . 
• 
• 
• But 

• 
• fo  La, o (w, 	(o dx) 	La,,, (CO, x—) s  (w,  x) )31  (dx) 
• 
• + I 	(w, x—)  B1  (w, dx) , 

o 
• 
• and using successively, the fact that processes of bounded variation do not contribute 
• to quadratic variation [17, 7.3.13, p.167] properties of the stochastic integral ([17, 
• 7.4.2, p.171] and [17, 7.4.3, p.174]) and Proposition 4, • 
• — 	— [Bi, La,s,q51 • 
•

= 	[Bi
0 
 _Tf e 	dIVI]+ [B1, f La,s4 ( 1  — d-à 2] 's '° 	 0 • 

• 29 
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• • • • • • • • 
= lée>  f 47 d[Bi 1V1 ] 	

0 
	— 0) d[Bi, É2] h 	5 	) 	 's4 	

• • 
.= /f L ,3, sdI3i • 

o 	 • • 
where 47 (w, t) -= La,s ,  (w, t—)  . Finally, 	 • 

(w, t) La,,,  (w, t) =Uc„,9,0 (w,  x—)  La, s, (w, dx) 	 • 
• 

+(w , x —) B i (w, dx) . 
0 
0 

Thus, as P and 	are mutually absolutely continuous, Ua,,,o is (with respect to 	 • 
Qe„s ,o) a continuous local martingale [17, 10.1.4, p.247] and [17, p.245] 	 • 

• 
(Ua,s,o) Qa'84  = (Ua,s,o) P  = (B1) P  01. 	 • 

• 
Lévy's characterization [17, 9.1.1, p.204] then suffices to end the proof. 	q.e.d. 	 • 

• 
• 
• 
• 

Lemma 3 	 • 

	

it is assumed that AO, Al, A2, A7 and A8 hold. The process B2 is then a 	 • 
Poisson process, with respect to  Qa,,  such that 	 • 

• 
E [B2  (. , t)] 	(x) 02  (dx) . 	 • 

• 
• 

Proof: Define the process V„,8 ,0 by the equality: 	 • 

•ft  (w, = B2 (Ct.1, t) — 	(x) 02  (dx) . 	 • 
• 
• 

As above, use the integration by parts formula to get: 	 • 
• t) 	(w, t)  = Va, a ,  (w, 0) La,,,, (w, 0) 	 • • 

30 



• 
• 
• 
• 
• 
• 
• • • • +1  Va,,,,0 , x—) 	(w , dx) 
O   • 	 +  J  La , s ,, (w,  x—) V,1, (w,  dx) • • + [V,, s , 9  , L OE , s ,0] (w ,t) . 
• 
• The explicit expressions for V 5  and La,,, yield successively • fo t • 
• 
• • as L ,, (w,  x—)V a, 3 , 95 (w, dx) = 

	(w,  x—) B2 (U) dx) 

—La , s  (w,  x—)  (x) /32 (dx) 

• 
• and 
• 
• — 	La,8,0] = — [B2) La,s,ci5] 

• • = 	[B2, fo • 	,5,95 dA/-1] + [B2) L .  La—  ,8,q5 	— 95) dh- 2] 

• = fee
0 	d [B2, 11/1] + f  47, 	(1 — 95) d [B2> 13-2] 

•
'84 

• = 	Lt7e ,s , q5 (1 — çb) dB2. • • 
• Thus 

• ft 
Va,s4 (w , t) L a,s4 (t. 0, t) =- 	Vars,0 (w,  X—) La,s4 (w,  dx) • 

+ 0 	(w,  x—) (x) -B2 (0), dX) • •  • 
• and  Va,,,,0 is a local martingale, with respect to 	. Now, B2 is also a counting 
• process, with respect to 	. As just shown 
• 
• B2 (W t) — 	(x) [32  (dx) • • 
• is a local martingale, with respect to Q„,,,0 . So ff, 0 (X) 02 (dX) is the compensator 

• of B2, with respect to 	[29, Thm 2.3.1, p.61]. As it has been assumed that 

• 
• 31 • • • • • • • • 



are fixed. The expressions 

j=1 

• • • • • • 
• 

fct, (x) /32  (dx) < oo , 	 • 
B2 (Lt.) t) — 	0 (X) 	(dx) 	 • 

• 
• 

is a martingale, with respect to 	[29, Lemma 2.3.2, p.62]. But then B2 is a 	 • 
Poisson process, with respect to 	[27, T5 p.25], such that 	 • 

• EQ„,o  [B2  (., t)] -=• 
0 

q5 (X) 02 (dx) . 	 • • 

	

q.e.d. 	 • 
9 
9 
• 

Corollary 3 • 

	

/t is assumed that AO, Al, A2, A7 and A8 hold. The process Za, 8 ,0 is then a 	 • 
martingale, with respect to 	. 	 • 

• 
• 
• 
• 

Lemma 4 	 • 
• 

	

/t is assumed that AO, Al, A2, A7 and A8 hold.  Ua ,  and B2 are then inde- 	 • 
• 
• 
• 
• 
• 
• 
• 
• 

Al, • • • AM, [11) • • • 	
• 

• 
• 
• 

	

Mjc,,s,0 (w ,  ti) and i E i ikB2 (w, uk) 	 • 
k=1 	 • • 32 	 • 

• 

• 
• 
• 
• 
• 
• 

pendent processes with respect vo  ' 	' 	• n 7 	• 	e, 

Proof. The time points 

0 < t i  < • • • < 	< T, 0 < 	< • • • < 	< T, 

and the arbitrary real constants 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• can be written respectively as • 
• H (w,T) • 
• 
• where 

• h (x) = i E 	(x) and k (x) = i E 	(w).  
• j=1 	 1=1 
• • 
9 • 
• EQas  [exp {H (., T) + K (. ,T)}] = EQ a, s  [exp {H (., 	 [exp {K (., 
• 
• As the functions h and k are bounded, are continuous to the left, have limits to 
• the right and are adapted, they are predictable and properly integrable, so that the 

• processes H and K are semimartingales. Then Itô's formula for multiple processes 

• with the expression 

• L (w,t) exp {H (co, t) + K (w, t)} 
• 
• is used to get 

• 
• L (w ,t) — L (w , 0) = 	L (co , x—) h (x)U a,s ,95 (co, dx) 
• 
• + L (w , x —) k (x) B2 (w , dx) 

• +-1 
o
t L  (w,  —) h 2 	 (w,  dx) • 

2  
• +1 L  (w,  x—) h (x) k (x)[Ua,,,o, B2j e  (w,  dx) 

+-

1 f • 
• 2 o 
• + E {L(c,),u)—L(w,u—) 
• o<u<t 
• — L  (w,  u—) [h (u) {Atl a,,,0}  (w, u)  + k (u) {AB 2 } (w,u)D- . 
• 
• 
111 
• 33 
• 
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• 
• 

= 1 h (x)Ua,,,,0 (w,  dx) and K  (w, T)  = 	k (x) B2 (w, dx) , 

It is thus sufficient to check that 



• • • • • 
0 • • 

However it follows that (C2a, 8 ,0 being the prevailing probability): 	 • • (w, t) 

- 	

(dx) 	 • 
[U,,,,o, B2]c  (w, t)  = 0 	 • 

[B2, B2] e  (c4- 	= 0 	 • 

	

{AU,,,,,,p}(w, 1) - 0 	 • 
{AB 2 } (w ,u) = 0 or 1. 	 • • • 

Furthermore 	 • 
L (w — L  (w, t—)  = L (w ,t—) f ewilgtm-tmogt) _ 	 9 • 

= L (w, t—) {ek(t)1M21(''' 't)  — 1} 	 • 

= L (w ,t—) {e k(t)  — 1} {AB 2 } (w ,t) . 	 • • • 
Combining the above, it follows 	 • • 

L (w, t) — 1 = 	L (w , x—) h (x)U,, B4 O (w , dx) 	 • 
o • 

+1  L (w , x—) k (x) B2 (w dx) 	 • 0 
+-1 o L (w, x—) h 2  (x) [31  (dx) 	 • 

2 
t • 

+ I  L (w , x—) {e k(s)  — k (x) — 1} B2 (w , dx) 	 • • 
= f L  (w, x—)  h 	(w,  dx) 	 • 

JO 	 • +-1  f 
t o 

L (w , x —) h2  (x) (dx) 	 • 
2 	 • 

L(wx—) { ek( x )  — 1} B2 (w , dx) . 
o • • 

Let L (t) = EQ s,95 [L (•,t)] . On the last representation of L taking the expectation 	 • with respect to 	Lemma 2 and Lemma 3 yield the following equation 	 • • (t) = 1 + it  (x—) h2  (x) 13i  (dx) + f t  (x—) {e k(s)  — 1} (x) [32 (dx) . 
2 o • • 34 	 • • •• • • • • • • 



• 
• 
• 
• 
• 
• 
• 
• 
• This can be rewritten as 
• 
• (t) = (0) ± 	(x—) ,u, (dx) • 
• with 

•
j  (dt) = h2  (t) 131 (dt) + {ek(t)  — 	çb (t) "32  (dt) 

• 
• an equation which has the unique solution [30, Thm A4.12, p.428 ]  
• 
• (t) = exp {—I 	h2  (x) [31  (dx) 	o ek(x)  — 1} 0 (X) ,82 (dx)} . 2 o  • 

•
• 	Thus .C(T) = EQ, 8 ,0  [eu( ''2) ] EQ,8 , 0  [e 21 . 	 q.e.d. 
• 
• 
• Remark: It is only at the end of the proof of Lemma 4, when solving the integral 

• equation for L ,  that 95 (x) cannot be replaced with 0 (o.), x) . 
• 
• 
• As a consequence of the above, the following proposition is obtained, which is a 
• version of Girsanov's theorem, and applies later only when  q5 (t)  -= 1, t E [0, . • 
• 
• 
• Proposition 6 
• /t is assumed that AO, Al, A2, A7 and A8 hold. Then, with respect to Qa,s,1) • Z , f , i  defined by 
• ZaJ = 	Uce,f + — • 
• satisfies 
• Qa,s,1 ° 	P 
• 
• 
• Remark: In what follows, Ya  will be used for Za,s,i- 
• 
• 35 
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• • • • • • • • 
4.3 ABSOLUTE CONTINUITY AND RADON-NIKODI#LTM 	 • 

	

DERIVATIVES FOR PB, AND Pye, 	 • • 
The implicit form of the Radon-Nikodm derivatives for P&, and  Pya  are derived as 	 • 
a direct consequence of the Girsanov theorem. 	 • 

• In what follows, D [0, T] is the space of functions that are continuous to the right, • and have limits to the left. The topology is Skorohod's topology whose Borel sets D • are generated by the evaluation maps ev ( f , t) = f (t) . If X is a process with paths 0 in D [0, T] , the measure it induces on D [0, T] is denoted Px. Finally, • 
Dt = (ev (.,$), s t, t e [0,1]) , and 22 = {Dt, t E 	. 	 • 

• 
• 

Proposition 7 	 • 
/t is assumed that AO, Al, A2, A7 and A8 hold. Then, Py-, and PBa  are mutually 	 • 

absolutely continuous and, for f E D [0, T] , 	 • 
• 

a. almost surely with respect to Pya , 	 0 
dP 	 • 

Ba 	= Epya  [ La,8,1  (.,T)  I 	= f 	 • dPya  
• 

b. almost surely with respect to PBa 	 • 
dPya 	 • 
dpre«  [f = E PBa  [  	f 	 • • • 

Proof. Define 0 as in Section 4.2. As 0 and P are mutually absolutely con- 	 • 
tinuous, Qa„9,10Y-1-  and P o Y-1  are mutually absolutely continuous. But Girsanov's 	 • 
theorem (Proposition 6) yields that Q„,,, i  o Y 1  =- PBa , so that Pya  and PBa  are 	 • 
mutually absolutely continuous. Let now A belong to  V.  Then 	 • 

PBa  (A) = Qa,s o. (ra  E A) 	 • • 
=La , s , i  (w, T)  P (dw) • • 

A 
 Epya  [La, 8 , 1  (. , T) I Ya  = f] Pya  (df ) .  • • • 



• 
• 
• 
• 
• 
• 
• 
• 
• The conditional expectation being adapted to D, the conditional expectation in the 
• last expression is the Radon-Nikod3'rm derivative. Similarly, 

• 1 
• Pyc, (A)  =k;1(A) Larso. (w,  T) Qa , s , i (dw) 
• • 	f [ 	= f Qa,s,i 	(df) A 	- • • =  f EPB La 	1 	Ira f PBOE (df) . A 	c‘ • • q.e.d. • 
• 

It can be shown, as in the case for which Ba  -= B1 , that the following corollary holds. • 
• 
• 
• 
• Corollary 4 
• /t is assumed that AO, Al, A2 and A7 hold. Then Ep [L (.,T)]  <1, and Py-, is • absolutely continuous with respect to PBa . 

• Explicit expressions for the likelihood require that the Radon-Nikodm derivatives be 
• "lifted" onto D [0, T] . This is achieved through factorization by Y, of the different 
• components of each Radon-Nikod3'rm derivative of Proposition 7. When the evaluation 
• maps are taken as processes with respect to lifted probabilities of the form Pu, the 
• notation evPu will be used for ev. ut (Y„) is the a-field generated by {Y, (., s) , s < t} , 
• completed with the sets of measure zero, with respect to P, belonging to  A. o-  (Y„) 
• denotes the resulting filtration. 

• 
• 
• 
• Proposition 8 • 
• /t is assumed AO and Al hold. Let Y, denote a process with paths in D [0, T] . If 
• B, is adapted to o-  (Y,) there exist processes Bra, 	, and B Ya defined on (D [0, T] , D, Py) 
• • • 37 
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[B121-1 
_a  

= 

= P o B2-1 

 = P o B a-1  

Py,, 0 

Pya  

Py.c  0 

and adapted to D, with paths in D [0,T] such that, for' 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

and, for t E [0, T] ,fixed but arbitrary, almost surely with respect to P, 
to B ( ,t) = 	( Ira 	t) 

B2 (W, t) = BP (Y, (w, .) ,t) 
Ba (w,t) = BaYa 

Proof: The notation used is that of Section 3.1. Then 

{AB a} (w, =  
o ,t) =  \/1 — a B2 (W, 

(co , t) =  

Consequently, B, is adapted to a (Ira ), so then are Bf, and Bg, and hence  B, and B2. 
Since D [0, T] is a metric space, it can be checked that, as in the purely Gaussian case 
[18], there is a process Bra defined on (D [0, T] ,D, Pya ) , adapted to D, with paths 
in C [0, T], such that, for t E [O, T] fixed, almost surely with respect to P, 

B (co , t) =- Bra (Y„(W, .) , t) . 

It thus suffices to obtain the analogous result for B2. 

As in the Gaussian case, there exists, for t E [0, T] fixed but arbitrary, a modification 
B2 (., t) of B2 (., t) which is adapted to uî (Y,), and for which it follows that 

12 .1j2Y. = .13-12/“ 	)32.  

38 



• 
• 
• 
• 
• 
• 
• 
• 
• for some Br" (., t) adapted to Dt. 
• 
• Let now e denote the fraction +,T, 1 < i < 2,  and 'Tin)  the set 
• 
• {0, 1 < i < 2-1 . • 
• It follows that 

• Tin) c  
• 

and that TD, defined by 
• co 

	

I • 	 TD = Tin)) • n=1 
• is a dense subset of [0, T] . By construction, the paths of ,ge` , restricted to TD, are, 
• almost surely with respect to Pyc„ restrictions of paths of B2, a counting process 
• associated with a Poisson process. So, given n E IN, and f E D [0, T] , the set TnYc [f] 
• is defined as follows: • 
• 7-nY' [f]= {t E TD : 13.P (f,t) > n} . 
• 
• The next step requires the following definitions: 

• if TnYa  [f] • * [f ].= inf Tirce [f] 	if T'a  [f] • 
• and, for t E [0, T] , 
• co 

• fge  ( f ,t) = E 	( f , t) . 
• n=1 
• Because 
• 
• {f  E  D [0,T] :  Ê  ( f , t) = n} = {f E D [0,T] : T,,ra [f] < t < *i [f]} , 
• 
• 
• 
• {(,) E S2 : 	(Y, (w, .) , t) 	n} = {co e 	: T„Y- [Y, (w, )] 	t < 	[Y„ (ta , •)]} . • 
• Let 

• A = tw E 	BP (Yce (w,*),$) < n, s e TD} 
• 
• 39 
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As {w 	: 	(Ya (co *) s) < n, s G TD} 

= {w E : B 	S) n, s E 7-D} 

= fweç2: 	(Ya (co , .) s) < n, s TD} 

it follows that 

TnYa  [ Ya  (w, .)] = A 	T 	Ac (a)) inf {s E TD : 	(Ifc, (co , .) , s) > 

	

= I A (W)T + Ac (CO) inf {s E 'TD : 	(w, s) n} . 

Let N denote a measurable set of measure zero, with respect to P, such that, for 
w E  NC,  

B2 (LO, = B2 (à), S) 8 

Then, for w E NC, 

[Y, (w, •)] = iinN (a)) T r AcriNe (w) inf {s G 	: B2 (tx.), s) > n} . 

As the process B2 is separable and continuous in probability, every dense subset is a 
separator, so that 

inf {s E ED : B2 (w, S) > n} inf tt E [0,7] : B2 (a.), t) ?_ n} . 

Define thus 

f T 	 if B2 4, T)  < n  
[wi — inf ft G [0, T] : B2 (w, I) > n} 	if B2 (w , T) n. 

Then, almost surely with respect to P 

ea [17a  (cx) , t)] =1."72  [w] 

and, consequently, for t E [0, T] fixed but arbitrary 

= B2 (W, t) . 
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• 
• 
• • • 
• • 
• 
• Thus, with respect to Pya , .br- is a Poisson process restricted to [0,1 ]  , and Trr-, 
• being one of the times of discontinuity of ./g- , is a stopping time for D. In the sequel, 
• 13p will be dentoted .ga, and Mr-  will be the Poisson martingale 

• 
• {BP (0) t) — [12  (t) , (w ,t) E S2 x [o, /]} . 

0 q.e.d. • 
• 
• 
• Corollary 5 1 • 
• Let or' (Ba) be the cr-field generated by crî (Ba) and the sets of of (Ya) which have 
• measure zero for P. Similarly, let ar" (BaYa) be the cr-field generated by of (BaY.) and 
• the sets of Dt  which have measure zero for Pya . Then 
• 
•

(Ba ) y-1 { 	(BaYa 

• • 
• 
• Proposition 9 • 
• /t is assumed that AO, Al, A4 and A5 hold. There is then a process BaY., 
• defined on the base (D [0, T] ,D, Pya ) , adapted to D, such that, for t E [0,1 ]  fixed but 
• arbitrary, almost surely with respect to Pyx , 

• 
• evPYOE ( f, t) = a f s (f, x) (dx) B al/a (f , t) 
• 
• with Al true for BaY« . 
• 
• 
• Proof: Define BQYa as 

• 
• B (f, t) = evPYa (f ,t) — ce 	s (f, x) /31.  (dx) . 
• 
• 
• By definition, the map 

• t 1—> 	( f, t) 
• 
• 41 
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is, almost surely with respect to Pya  , in D [0, T] . But the paths of Bali-. that are not in 	 • 
D [0, T] can be taken as continuous to the right, thanks to Lemma 1. It is furthermore 
adapted to D. Finally, for t E [0, T] fixed but arbitrary, almost surely with respect to 	 • P, 	 • 

B (Y, (co , .) , t) = Y, (w,t) — a 	s (Ya  (co, •), x) 	(dx) = B, (co ,t) . 	 • 
• 

Thus, with respect to Pyc,„ _lea  is a Lévy process. But • 
• 

{ABalfa} (1/;›  (w, .) , 1) = {AB a } (w, = N/1 — a {AB2 } (w, t) , 	 • 
• 

so that the jump process of BaY- is, with respect to Pya , a Poisson process. Conse- 	• 
quently, its continuous part is a generalized Brownian motion. 	 q.e.d. 	 • 

• 
• 
• 
• 

Proposition 10 	 • 

	

/t is assumed that AO, Al, A4 and A5 hold. Let then the process M be defined 	 • 
on the base (1, A,  P) , and for the filtration u° (Y„) , as 	 • 

M (co ,t) = 	s (Y, (w , .) , x) 	(w , dx) . 	 • 
o • 

• 
A process MY. defined on the base (D [0, T],D,Pya ) and adapted to the filtration D 	 • 
can be find with the following properties: its paths are continuous to the right and 	 • 
belong, almost surely with respect to Py„, to C [0, T] . Furthermore, for a generalized 	 • Brownian motion Bra with variance 131 , defined on (D [0, T] ,D, Pya ) and adapted to 	 • D, for t E [0, T] fixed, almost surely with respect to Pya  • 

• MY. (f ,t) = 	s (f,  x) Bra (f,  dx) • 
• 

and 	 • 

	

MYa (Y, (w , .) ,t) = M (w ,t) . 	 • 
• 

Proof: Firstly simple processes s of the form 	 • 
• 

s  (f,  t) =  'A  (f) Au,v1(t) U y, A E  D • 
• 42 	 • 
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• are considered. Setting B = Y --1-  [A] , B then belongs to o-:,) (Y„) and by definition, 

• 
• s (Y, (w, .) , x) 	(w, dx) = A (Y, (w, •)) {Bi  (w, t A v) — 	(te, t A u)} . 
• 
• Now, from Proposition 8 it follows that Bi (w, t) = Bra (ye, (.,.),t), so that setting 

• 
• /V/Ya ( f, t) = 	s (f , x) 	(f  , dx) 
• the result for simple processes which are products of the appropriate indicators IA 

and ii„,v1 is obtained. 
I • 

• Let now S denote the class of processes s defined on D [0, T] x [0, T] , which are 
• progressively measurable for D, bounded and such thatn • 
• {s Ya} • = {s • Bra } Y, 
• 

as stated. S is a vector space containing all constants. It is closed for uniform • and monotone convergence. If Sf denotes the subspace of S made of finite linear 
• combinations of simple processes of the form 

• s (f , t) = (f) 'fuel (t) ,U<y, AE Du 
• 

then Sf is a subspace which is stable for multiplication. Hence, the monotone class 
theorem yields that S contains all bounded predictable processes, and thus all ele- • mentary processes in the sense of [17, p.72]. The properties of the stochastic integral 

• suffice then to claim that the proposition's assertion is true. 	 q.e.d. 
• 

Remark: The same proof yields, mutatis mutandis, the same result with Bi  replaced 
• with Ba , and Bra replaced with Bc,17-. 
• 

• 4.5 LIKELIHOODS FOR P.Be, AND Pya  • 
•

This section contains the likelihood formulae for the detection of Y, when the noise is 

• Ba . They only depend on the signal sent, the statistics of the noise and the received 
waveform. • 

• 
• 
• lso denotes composition and • stochastic integration. 

• 
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Theorem 1 	 • 
• /t is assumed that AO, Al, A4, A5, A7 with q5 = 1, and A8 hold. Then: 

• a. Pya  and PB OE  are mutually absolutely continuous; 
• 

b. for almost every f G D [0, T] , with respect to Pya , 

• 

	

ln [ dPB"1 (f) — 	s (f , x) Bra ( f , dx) — —a IT S 2  (f ,x) x) /3 1  (dx) ; dPya 	 2o • • 
c. for almost every f E D [0,T] , with respect to Pya , 	 • 

• 
—ln[ dP1(f) = IT  S (f )x) evPY" (f) dx) 

	

dPya 	 • • --a f s 2  (f , x) (dx) • 2 o  

\71 — a 	s (f, x) 	(f,  dx) ; 	 • 
o • 

• , 
• d. for almost every f E D [0, T] , with respect to PBOE , • 

—ln [dPBdPy ] 
 (f) = 	s (f , x) ev PB- (f , dx) 	 • a  

- I -

a 	 s2  (f , x) (dx) 
2  • 

- \/1 — 	s (f,x) Mjc 	(f,dx), 
0 

where ig""BOE  is the representation of Ép with respect to PBa 14  ; 	 1111 
141t is in fact the same process, as seen in the proof, but it is useful to keep in mind that it is a 

proven fact, not a priori obvious. It also helps to stress the fact that it is indeed a likelihood. 

• 
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e. for almost every f E D [0 ,T]  , with respect to PB0,, 

	

ln [ d
dPy 	 T 

P 
" 	

] 
(f) = f s (f , x) ev PBa (f , dx) 

	

Ba 	 o 
a IT 2  

--i 0 S (f) X) lel (dX) 

	 T 
- -\/1 — c e f s (f , x) .f?" - '13-  (f,  dx) ; 

o 

f. for almost every f E D [0, , with respect to Pya , 

in  d_IPT)Y1  (f) = 
urtsa  LT 

s (f x) ev PYOE (f , dx) 

o
r s2  (f, x) (dx) 

2  

0
S(LX) 	(f, dX) 

Proof: As (A4) 

Piza 	E D [0, T[ : 	s2  (f,  x)  th  (dx) 00) = 1, 

then the expression 

ln [À] (f) = _ fT  s (f x ) Bra  (f dx) — —a  f T  ,S2 (f,  x) [31.  (dx) 
2 o  

is well defined on (D [0, ,  V,  Pya ). Furthermore, from Proposition 10,  A (Y 	.)) 
La,,s(Y, « (co,•),•),1 (Le-) T) . Qya  is the probability obtained by setting 

QYa  = a,s(Ya(w,•),•),1° -1±7, 1  • 

Note that A2 is satisfied with respect to Pya  . Then Proposition 6 ensures Qya  =PB . 
Hence, the mutual absolute continuity of point (a) follows from Proposition 7 as well 
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Thus 

ln [À] (f) = 

as the formula for the Radon-NikodYm derivative of P.Ba  with respect to Pya  in point 
(b): 

dPB  
(f) = (f) dPya  

for almost every f G D [0, T] with respect to Pya . 

Now (Proposition 9), 

evPYa (f, t) = al s (f , x) (dx) + 	(f , dx) , 

and s is, by definition of the stochastic integral with respect to semimartingales, 
integrable with respect to evPY« with 

lot 
s (f x) ev% (f , dx) = a s2  (f , x) (dx) 

s (f , x) Br. (f  , dx) 

+\/1—a 	s(f,x) 	(f, dx) . 

S• (f , x) Bra (f , dx) 

fT S 2  ( f , x) (dx) 
2o  

= f S (f,x)ev PYa (f , dx) 
JO 

—a I s

• 2 

 (f , x) [3 1  (dx) 

—V1 — a 	s (f , x) 	(f , dx) 

+- I  s

• 2 

 (f, x) /31  (dx) , 
2  

which is the required expression (c). This has to be re-expressed with respect to 13.13 «,« . 
But stochastic integrals are invariant with respect to equivalent measures [17, p. 245] 
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• 
• so that, since the evaluation is a semimartingale for both PB,,, and Pya , 
• f t 
• s  (f,  x) ev PY,Y ( f, dx) =s  (f,  x) ev PB ,. (f,  dx) . • • Furthermore, since the process defined by • 
• 

 • 	
a  t 

ln [À (f, t)] = 	f s ( f, x) Bra (f,dx) —
f 

—2 o 
 

• 
• is by definition almost surely continuous, the process ÉTe  WhiCh is, with respect to 
• Py„„ an L2-martingale, has with respect to PBO, the representation [17, 10.1.6, p. 248] 
• 

ft  • 	 r 
(f) 	ÉTe"Ba  (f) t) 	

1 	 LÉP, (f, dx) . • 0 A (f,x) • 
• Now [17, 8.2.1. p. 183] À is the solution of the equation 
• 
• À (f, t) =1— fc 	À(f,x)s(f, x ) Br- (f , dx) • • 
• so that [É- p, À- ] = 0, and consequently that 13-p = Érc"Ba  . Thus (d) is also true. 

• 
• For (e), it has to be noted that 

• dPya  1 
• dPea  À' 

• so, from (d), 
• 
• ln dPY«  1 (  f 	foT  dPB 	 S(f,x)ev PB- (f , dx) 

C, • 
• a / _2 

2 o  
• 
• — a  T  s (f, x) igc" B-  (f , dx) . Jo • • 
• To obtain (f) it suffices, as seen, to switch back from ev PB- to evPY« , and from iiiT"B«  
• to iga. 	 q.e.d. 
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4.6 PATH REQUIREMENTS FOR ABSOLUTE AND MU-
TUAL ABSOLUTE CONTINUITY 

In the previous section the existence of the likelihood ratios and hence the mutual 
absolute continuity has been obtained under two conditions, namely that the random 
variable La,,, i  (., T) has expectation one, and that the signal-plus-noise process be the 
solution of a stochastic differential equation. The first condition is hard to check in 
practice and, given the context, is not a natural assumption. It makes more sense in 
practical situations to verify the finite energy of the signal derivative. In the model, 
this is expressed in conditions in terms of the finiteness of the RKHS norm of the 
signal, or of some function of it. And that is then a path condition, instead of an 
expectation condition. 

This section is thus devoted first to the investigation of mutual absolute continu-
ity in terms of such path conditions. In the second part of the section, innovation 
representations of "signal-plus-noise" models are studied; this is the usual approach 
to transform the received signal into the solution of a stochastic differential equation. 

4.6.1 Signal path conditions for absolute and mutual absolute continuity 

In what follows the same assumptions that have been made to this point are kept. 
The first result is the next proposition (Proposition 11) which will be proved as a 
sequence of lemmas; it determines conditions for mutual absolute continuity in terms 
of square integrability of the derivative of the signal paths. As only assumption A4, 
and not assumption A6 follows from the RKHS requirement, Proposition 11 must 
be weakened, and that leads to Proposition 12 which still calls on Proposition 11. 
Proposition 11 requires assumptions that are unlikely to be verifiable in practice, but 
its Corollary says that the Cramér-Hida framework is sufficient to ensure that these 
assumptions hold. 

Proposition 11 

it is assumed that AO, Al, A4, A5 and A6 hold, and furthermore that s is 
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• 
• predictable and that both' • • 

 • 	and 	

Pga  (f E D [0 , T] :  

•

• 
• 

Pya 	E D [0, T] :  f s (f,  x) /32  (dx) < oo) = 1 • 
• hold. Then Theorem 1 is valid. • 
• 
• Proof: The proof will be presented in a sequence of lemmas (Lemma 5 to Lemma 9), 
• followed by a short conclusion (Epilogue to Proposition 11). 
• 
• 
• Remarks: 

• 
• 1. From Proposition 9, given the assumptions AO, Al, A4 and A5 of the present 
• proposition, there exist on (D [0, T] ,D , Pya ) 
• 
• (a) a generalized Brownian motion Br-, adapted to D, with 

• • • (b) a Poisson process BP, adapted to  V,  independent of Br-, for which • 

• E [BP (. , t)] = 
• 
• such that, for t E [0, T] fixed but arbitrary, for almost every f G D [0, T] , 
• with respect to Pya , 
• 41, 	 evPY,x (f, t) = a f s (f, x) 	(dx) B alra (f ,t) 
0 
• with Bair' (f, t) = 	Br«  (f,t)+ \/1- 	(f, t) and Ma = B  — 02. • 
• 15These assumptions on s are needed in the proof of Lemma 8. 
• 
• 
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• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

Furthermore, from Lemma 4, it follows that s can be replaced by g, for which 
the following properties holds: 

(a) the map D (f, t) =fct, (f,  x) ,61 (dx) is continuous in ri+ ; 
(b) the probabilities 

PB. (f E D [0 , 7 ] 	(f, .)11 21,2ro11 < c'.°) 
and 

PY« 	E D [0  , 71] 	(f ')I1 2.r.,2[01] < 
are equal to 1; 

(c) and, for t E [0, T] fixed but arbitrary, for almost every f E D [0, T] , with 
respect to Py,„ 

evPY- ( f , = 	(f , x) /31  (dx) + B (f , t) . 
o 

2. Here is a brief sketch of the proof  to help the understanding of subsequent 
technicalities. 

The Girsanov's theorem requires that the exponential of some stochastic integral 
expression be one. Truncation of the signal, followed by a limiting argument, 
is the standard way to achieve such a result. But, to define a stopping time in 
the absence of the 'usual conditions, the continuity is needed, and the limiting 
argument that the stopping time converges to the observations' duration time. 
So the attention is restricted to a subset  D [0, T] of D [0, T] , which has measure 
one, with respect to PBa  and Pya , a restriction which is shown eventually not 
to matter. In the process, the evaluation map must also be truncated, hence 
the ei)„PY- process. The latter allows a likelihood-type functional, Li  to be 
introduced on D [0, T] , with probability 

Pya  (A) = Pya  (A n [0, 7]) , A E D . 

Actually, the likelihood functional of interest is 1P, which, restricted to D [0, T] , 
is denoted  W. Then, it will be shown successively, that 

E n  = 1 Pya   

Py " iiM 	1-É  n 
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• 
• and that, with respect to Py 	n E NI is uniformly integrable. 

• Consequently it will be proven that Epya 	= 1, and then Epy.c, [qf] -= 1. This 
• is the needed result, because it yields: 
• 
• pye, 0  [evpya ] 	p oB _. —  
• • • 
• To check uniform convergence, the probability (Z., defined on D [0, , by the 

• following relation: 

• Pyc, 0 [Fear • 
• is used. 

• But, since éïe,  is the solution of a stochastic differential equation, there is, 
• with respect to PBoo  on D [0,7 ]  , a Radon-NikodYm derivative, •  

such that 0 [ ,1 = • • 
• As q),, can be rewritten in terms of evaluation maps, the properties of martin-

gale integrals with respect to "'Br, and Pya  can be used to obtain the required 

•
convergence. 

• 
• The following steps restrict the problem to paths f E D [0, T] for which D  (f,  T)  <oo. 
•

• 	 The (strict) stopping time Tn  D [0, T] --> [0, T] is defined by the equality 

• if ft G [0, 	: D (f, t) n} = 
• (f) = 	inf {t E [0, 	:  D (f,  t) 	n} if ft e [0,T] : D (f,t)> n} O. • 
• It should be noted that lim„,c0  Tr,(f)=T if and only if t  < T  implies D (f, t)  < 00.  • 
• Further definitions are needed, as follows: • 
• D [0, 	= {f c D [0, :  D (f,  T)  < ool , 
• D  = Dnh[O,T], DeD, 
• 
111 
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= Pyc, (D n b [0, T]) , 	 • 
• D = Dnb [0 , • D n [0 , T] • 
• 
• 

The process ei)„PY('‘ is subsequently defined on the base (..b.  [0, T] ,15 , 154 , with respect • 
to the filtration 	as 	 • 

P11 	
• 

a ( f , ) 	
„ 	f 

n ' 	t = — " ' 	 if (f, t) E 	 • evPY. (f, t) — a 	(f x) (dx) if ( f , t) E 
110  Pyc,  

or 
This process can be rewritten as • 

• ( f , t) f (t) — I [Zell 	0 f t) {a 	1 in (f , x) g f , x) 	(dx)} , • 
• 

and this shows first that {êïe- (f,  t) , t [0, 7 ] } c D [0, T] , as f c  13 [0, T] , and 	 • 
then that, on  0,T7j, 	 • 

	

(f , t) = f (t) = ev (f, t) . 	 • 
• 

One last definition yields the progressively measurable, bounded process grr , given by 	 • 
the relation 	 • 

	

s. ( f , t) =40,Tra (f , t) (f,  t) . 	 • 
• 

Let J : 15 [0, T] 	D [0, T] be the (injection) map defined by the relation J (f) f . • If E is a Borel set of • 
[ev (., t) J]-1  (E) = tf e b [0,T] : ev (J (f) ,t) e 	 • 

• [0 , T] n {f E D [0 , 	: ev (f, t) e E} • 
E 73 . 	 • 

• Thus the restriction of gr, to b [0, / ]  has the measurability properties of gr, as de- • fined on D [0, T] , and it is therefore not necessary to introduce one more notation to • distinguish one situation from the other. In particular, an integral of the form • 
• n 	n ) ) 	1 	 • 

ft_ (_PY (f ) 	(dx) 
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• will be well defined for f E .b [0, . 
• 
• Define now ./-3. ,1r- as the restriction of B2,r. to h  [O, T] .  For 
• • 0 < < t2 < t3 < • • • t n, < T, 
• 
• and Borel sets of E, 
• E1, E2, E3 )  • • • 'En) • 
• it follows that 

• 
Ara  ( E 	[0, /1] : Éc,"1"' (f ti) G 	• • ,-àceir' (f)tn) G En) = • 

•• 

	

Pya  (I) [o, Ti nff ED [0, Ti : BaY- (f,ti) E 	• • • , BaYa (f, tn) En}) = 

• PItc, ({f E D[0,2] 	(f,ti)  E El) 	BaYa  (f)tn) e En}) • 
• so that 

• i5ye, o V31 -1  = Pya  0 [.13 „Yari  • 
• 
• Then the following result can be stated: 

• • • 
• 

Lemma 5 

• For every f e D[0,7], 
• 
• Tn (arrYa (f,.)) = Tn (f) • 
•• and, for t E [0, T] fixed but arbitrary, almost surely with respect to Pya , 
• 
• (f , t) = a / 	(F),P,Y- (f,.),x)0 1  (dx) +ga ( f , t) . 
• • • • • 53 
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Proof: Let Mn)  =ff E D [0,7] : Tn(f) =  t} E Dt. The function / (n) then has the 	 • D, 
representation 	 • 

D, (.) (f) = F (ev  (f,  ti ) , 0 < 	
• 

< t, i E /V) 	 • 

where the map F : IRe° 	E is measurable. But, as Tn (f) = t, as seen above, for 	 • 
i E IN 	 • 

&Yea (f ,t) = f (t i ) = ev (f , ti ) 	 • 
• 

so that 

• F (ev (f , t i ) , 0 5t < t, i _ilv) = F (êij„PY- (f , t i ) , 0 5, ti 5_ t, i E ,W) • 
• 

and consequently that • 
rmn, (f) = I Din) (a„PY- (L.)) • • 

which proves the first assertion of the lemma. 	 • 
O 

The same reason (and the definition of :§n ) yields that 	 • 
• 

(f, t) 	(F)7/PY' 	.) , . 	 • 
• 

Finally, when t < 	( f ) and f E  h [0, 1 ]  
• 

Ya  , t) = evPY- (f,  t) 
• = cyfg( f , x) (dx) + &If" (f ,t) 

t 	
• 

= 	(f , x) /31(dx) +(f , t ) 	 • 
t 	 • 

= a (a),1> (f , •) , (dx) + 13.  alra (f ,t) • 
• 
• 

and when t > Tn (f) 	 • • 
eTt ( f , t) = ev PYe,  (f,  — a T (f , x) (dx) 	 • n 	 • • 54 	 • 
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= a fo 	(f, x) (dx) + 	f ,t) 

= 
 aI

:§,, (f , x) [31  (dx) (f , t) 
o  

Define now iff,, : b [0, T] --> JR  by the relation 

q.e.d. 

ln 	(f)] = 
fT 

"\/(7e 	 (f, • 

ry  T 
o  

2 0 '371 	u71' 

) , 	(f,  dx) 

Then, since by definition fi gn2  ( f , x) (dx) < n, 

Lemma 6 
E p- ya  [ifin ]  =1,  

Lemma 7 

For f E D [0 ,T] , let 111 be defined by 

Ce 
 ln [11' (f)] 	 s  (f, x) Br« (f,dx)_ 	T _1 2 (f ,x) (dx) 

2 o 

and let if denote the restriction of Ill to b [0, 7 ]  (i1-1 = 	. Then 

lim 	(f) = (f) 
n—>oo 

in probability, with respect to  
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Proof: For (f , t) E 110, 7-17d 	 • 
(f, t) 	f (I) 	 • • 

so that, for almost every f  E h [0, , with respect to Pya  • 
lim 	gn2  (a„PY“ (f, .) ,x) 01 (dx) = lim 0  /inn] ( f , x) ( f , x) 131  (dx) 	 •  • e ( f , x) 131 (dx) 	 • 

• • by monotone convergence. Furthermore, for almost every f E D [0, T] , with respect • to i5y, for n large enough Tn  (f) =  T, so that for that same  f,  for n large enough, • 
sup { I (f , t)I 'mi x] (f , t)}  = 0. 	 • 0<t<T 	 • 

Consequently • 
• lim 	E 	[0,7] : sup { I ( f , t)I le„,/1( f , x)} > 	=o 	 • 0<t<T  • 

and therefore (continuity of the integral [17, 5.5.3, p. 98]) , if t 	t 	 • 
ign (f , t) = 

r 	
(f, x) ijr« (f , dx) —

f 
 (f t) fira (f clx) 	 • 

then 	 • 
lim Pya  (f  E [0, 	: sup IJn (f ,t)1 > e) =0. 	 • 

0<t<T 	 • 
q.e.d. 	 • 

• 
• 
• • 

Lemma 8 • 
Let the probability measure ejnYa be defined on D by the following relation: 	 • 

• ejnY' = Pya  0 [Fv„PYar. 	
• • 



• 
• 
• 
• 
• 
• 
• 
• 
• 

Then, for A E • 
• le (A) = 13ya 	[0 , T] n = Pya  (A) . 

•
• 

Proof: First, it can be shown, as in the continuous case [17, 2.2.6, p35], that  VT„ :=•- 
• a  (evn (•,t) , t E [0, Ti). Let On : D [0, T] •--> D [0, T] be defined by the relation 
• 
• ev (On  (f),t) evn (f,t) f (t A Tn(f)) • 

•
• 

Let then fo E D [0, T] be fixed but arbitrary, and set to  =  T (fo) .  If t < to , then 
• 
• ev (fo, 	fo  (t) = fo  (t A Tn (f0 )) = evn (fo ,t) ev (On  (fo) , . 
• 
• Thus, for every e adapted to Dto , e (fo) = e (on (fo)) . In particular, 

• /{7,„<to} (On (fo)) 	ITn<to (fo) = 1. • • 
• Consequently, for every 0 adapted to Dn. , 

• g5 (On (fo)) -= 0 (On (fo)) ign <to l (On (fo)) • • 
• 
• But 0/{7-4<to}  is adapted to Dt0 , so that 

• 0 (Orb (A)) = 0 (fo)/{T<to} (fo) = 0 (fo) • 
0 

• As 0 is adapted to D it has, for fixed, measurable F and ti E [0,  T],  i E  11V,  the 

• following representation: 

• 0(f) = F (ev (f,t i ) , 0 5_ ti  T, E IN) . 
• 
• 
• Using the relation 0(f) = (On  (f)) , valid for f E  VT 

• (f) tb (On (f)) = F (ev (f en,ti) , 0 < ti  < T, i E ,W) 
• = F (evn (f,ti ) , 0 <  t < T, i E • • 
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which is adapted to u (eyn (. ,  t),  t E [0, 7 ] ) . This establishes that 7,2,7, is contained 

in u (evn (., t), t E [0, T1) . The reverse inclusion is obtained by noting that ev is 

continuous to the right, so that [17, p. 41] evn (., t) is adapted to DtAT,,, 
that 

t E [0, 7]) 	(Ute[o,etATi,) g. DT„.• 

Finally, for B Borel in E and A={f ED [0 , : evn ( f , t) E B} , 

and thus 

e (A) = Pya  (f E b [0 ,T1 : 

= 

= Py,„ (A) .  

éT)nYa  (f) e 

t A (f)) G B) 

ev„T  (f, t)  e B) 

The proof is then complete with a monotone class argument. 	 q.e.d. 

Lemma 9 

The assumptions are those of Proposition 11. The sequence {L i , n G /N} is then 
uniformly integrable for :15y, 

Proof: Let utP'a (FijniGYa) denote the u-field generated by fariPYa (., s), s < t} and the 
sets of -Tit  which have measure zero for Pyr,. By Lemma 5, the following holds almost 
surely with respect to --Py, „ for t E [0, 7 ]  fixed but arbitrary: 

t 	, . 
0 

Ealt« (., t) is thus adapted to urYa (éT) PYa) 

The setup is now as follows. The underlying probability is j5,. anPY. is a process with 
paths in D [0, 7 ] . .fialr- is a process for which Al holds. As 13Ya  (' t) is adapted to 
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• • • • • • • • 
• o-ti5Yc 	, it follows from Proposition 8 that there is a process 	which factors 

• through eiea : 
(f, t) = 15" (eie. ( f , • ) , t) • • almost surely with respect to ./3Ya, and for which Al holds, with respect to the 

probability measure éj„Y. defined in Lemma 8. Then set, for f E D [0,7 ]  , almost 

•
surely with respect to Q„Ya, 

IA 1n[  (f)] = 	(f, x) 	dx) — 2 	 (f x) (dx) . • 2 0 n  • 
• By Proposition 10, almost surely with respect to Pya  

• 
• (f) = 11'n (é- '-13nPl'a  (f) . )) • 

• 
Furthermore, the equation • 

• ") 	f t ) al gn  (éÎea  (f, •) , X) (31 (dx) 	ceY«  (f ,t) • 
• can be rewritten as 

• t 
• (f , t) = a f ,§ UéieOE ( f , .) , x) 131  (dx) 	(Fea (f , •) , 0 
• eV (2nY'  (f , t) = a 	(f, x),(31 (dx) + aY7n  (f ,t) 

• almost surely with respect to 	Applying Lemma 6, it follows that 

• 
• E Qrc, [„] E pya  .12, a ri:Ya ] 	E pya  [ Én] = 1. 
• 

The two relations • 
• eV 	(f , t) = ce 	:§n (f) X) /31 (dX) 	( f , t) • • 
•

and 
E Y 	 1 [ 111  -= 

• Qn« n 
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• • • • • • 
• I 

together with Proposition 7, ensure that ejY. and Ppa  are mutually absolutely con- 	 • 
tinuous and that, almost surely with respect to éga, 	 • 

• dP  
Ba  (f) = Eet ['ti f-V C-e'=  J. ] = 	(f) 	 • dCga • 

• But, according to Theorem 1 (item d), (Dr, has, with respect to PBa  the following 
equivalent representation for some Poisson process Mrc" Ba : • • ln [(1] (f) = — s (f,  x) ev PBa  (f,  dx) • , 

+22 JOT  .'n2 
(f, x) (dx) • • • 

• 
• 
• 

Define the following stochastic processes 	 111 
• 

Mn (f, t) = " -7/ (f) x) ev PB- (f , dx) 	 • • Nn  (f , t) =(f , x) 	(f , dx) 	 • • 
Vn  (f ,t) =

0 	
(f)X)131 (dX) • • Wn (f,  t) = —Mn (f ,t) + \/1 — a Nn  (f ,t) 	Vn (f,  t) • 

and let K > 0 denote an arbitrary constant. Then 	 • 
• 

if ,In>K1 	(f) 13Y. (df) = 1.{(1),i>K1  d'n (f) Qoe  (df) PBa  ( )7/ > K) . 	 • • • But • 

P.Ba  ( 1 9/ > K) = Psa  (f E D [0,1] : Wn (f ,T) > ln [K]) 	 • 
• 
• 

	

PBa  (f E D [0,71 : 	( f ,T)1 > 
ln [K] 

3 ) 	 • • 60 • 
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Now, 

Pee, ( f e D [0, 71] 

+PB(f E D AT] 	Cf. 	>  	
in 

 [K]  3-V1 — 
21n [1 

+PB,, (f E D [0, 11] : 	(f ,T) > 	• 3a 

(f, T) , ln 3[K]  ) 

T 	 ln [K]  = P (
) 

a) E 	fo  S-2 : 	gn  (B, (w, .) , x) B„ (w, dx) 	3 	 

T 	 ln [K]  ) 

	

_< P (w E S2 : -\,/ 10  .§.„ (B, (w , .) , x) Bi (w , dx) 	6  

+P(  
 T 	 ln [K]  ) co E fl : V1 — a f Igni (Ba (a), •) , X) B2 (W 7  dx) 

o 	 12 

+P(  
 T 	 , ln  [K]  ) w e n : -V1 - a f Igni (Ba (w, .) , x) f32 (dx) > 12 o  

and, since, for a continuous local martingale M, and constants a > 0 and K>  0 [18, 
2.83. Lemma, p.19]'6  

P (w E : 	(w, t)1 > a) < P (w e : (M)(w t) > K) 2e -  fr2c 

one has, for L>  0, 

T 	 ln [K]  ) P ( w e S2 : 	\r& fo  ,§7, ( B „ (w , .) , x) B i  (w , dx) >  6  

< p (w e S2 : f
T 

e (Ba (co, .) , x))31 (dx) > L) 
o 

{ rh%ici] 2  1 .  
+2 exp 	L 	 

2L 

16See also the remark that follows the proof. 
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it follows that 

lim P (w E : 
K-->co (Ba (CO, •) X) Bi (w , dx) > 

 6
ln [K])  = 0 foT  

Choosing L = ln [K] , the exponential term becomes K --h. Furthermore, as 

P (co E : 	 e(B„ (w , .) , x) Pi (dx) < oo) = 1 
Jo 

independently of n. Now, if rp  denotes the time at which jump number p of the Poisson 

process B2 occ-urs, since  J  {p E 11V : 	(w) < T} l<  oc, for any w E Q 

(B, (w , •) , x) B2 (C. 0, dx) = E 	(Ba  (w, .),Tp (w)) < 00 
-rp <T 

from which it follows that 

ln [K]  
lim P 	E :\/1 - a f Ign  I (B (w , •) , x) B2 (a) dX) > 

12 ) K-,00 

independently of n. Finally, by assumption, 

P (co E  Q:  f 	(13, (w , .) , x)  2  (dx)  < oc)  = 1 

so that 

liM P 	E Q:  -V1 - a f 1,§77,1 (B, (w , .) , x) i32  (dx) > ln [K] 	
0 

12 K—>co 

independently of n. Consequently, 

lim PBa  (f E D [0 ,T] : 	cf  T) , > ln [K] 	0 
K—soo 	 3 

independently of n. Since ejnY- and PBa  are mutually absolutely continuous, stochastic 
integrals with respect to these probabilities are indistinguishable [17, p.245], and thus 

ln [K] 	 ln [K]  
13.13c, (f E D [0 ,T] : INn (f 71)1 >

3-V1 	 - teta (f E D [0,7] : INn (f 11)1 > 	_ 	a )  - 

foT  
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As _Ain  is adapted to DT,i , by Lemma 8, 

(f E  D [0 ,T] 
: 1n (f, r i  >  ln [K]  N  

a) 

= PY (f E D [0 ,T1 : INT, (f ,T)1 > 
ln [K]  

3-V1 — a) 
T 	 ln [K]  ) -.—.- P (w E ç :  

o 
ln [K]   ) < P ( 	

T 
w E e : f 11 (Y„ (w, .), X) B2 (Lt.) , dx) > 

 61 
 _  a  

o 

+P 	SZ : f 	(w , .) , x) (w , dx) >  ln [K]  
— a) 

Consequently, as above, 

lim PB (f e D [0 , 71] : 1N„ (f ,T)1 > 
ln [K] 

Kc0 	 3V1 — a) , 
 

independently of n. The term containing V7-,, similarly has a limit that vanishes. 
Lemma 9 is thus proved. 	 q. e d. 

Remark: If M is a local martingale, null at the origin, and such that its jumps are, 
almost surely, uniformly bounded  (I MI  < /./ < oo), almost surely, then' 

1(2  
P 	> K) P (2ç0  (47) [M]  > L) 2e—w 

where 

(x) 
x + ln (1 — x)±  

= 	  
X 2 

When M is continuous, ,u = 0, and this inequality allows the assumptions on the 
integrability of s with respect to 0'2 to be bypassed. Thus, even for s's with bounded 

17The proof for the continuous case (it=  0), can be found in [18, 2.83, p.19]. The proof given here 
is similar. 

=0  
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jumps, there is no obvious extension of the method that works for the continuous 
case. 

The proof of the inequality goes as follows. For u > 0 

P (111t 1 > K) = P ({Mt  > K} n {v[m] t  < L}) 
+P ({—Mt > K }  n Iv [m], <  L}) 
+P (v [M] > L) . 

Fix A > O. Then, for arguments of Mt  and [M] t  in the appropriate set, AM  t  > AK 
and )u[M] t  <  L,  so that 

À2 
AM t  — —

2
v [M]

t 
> AK —

2 
 - L. 

Consequently, 

P ({Mt > 	n {upul t  L})  P (AMt  — —A2  v[M] t  > AK — 
2 	 2 

P  (eAMt-ev[M] t  > eAK-4L) 

But, when /17/ = AM, the former inequality can be written in the form: 

-1n 21t - v
['

] > AK — 
2 	t 	2 

ço is strictly positive and increasing on 1—oo,1[ , and infinite and positive on [1, co[ 
Choosing for u the value v = 2(p (Ay) , it follows that [28, Lemma 23.19, p.449] 

eet'i[elt is a supermartingale. Using Doob's inequality, it follows that 

P ({Mt  > K}  n {u[M] t  < Ll) < P (AMt — —2 v[M] t  > AK — —
A2

L 
2 

< e-AK± L E  

L e 	2 
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• • 
• • 
• The minimum of e (A) = —AK + qL is achieved for Amin  = and then e (À„„n) = 
• _ — The value of v is then 

K2 
L 

• ( K\ 
• //min = 2(P (Amie) =  2 Vt—) • 
• 
• The same calculation yields the same bound for the probability involving —M. • • • • 
• Lemma 10 
• Let (Q, A, P) and (Q,  A, Q)  denote two probability spaces, and assume that Q0  G A 
• is such that P (Q0) = Q (Q0) = 1. Define 
• Ao = Ann, and, for A E A., Ao  = A n s20 . • 
• Set finally 
• Po  (A o ) = P (A n s2o ) and Qo(Ao) Q (A n oo) . 

•
• • 

Then, whenever Po  and Qo  are mutually absolutely continuous, so are P and Q and 

• furthermore, almost surely, with respect to P and Q, 

(w 	dQ° (w) if v.) E Qo  
•

) 	dPo 
dP "  'O 	if w Q 0 . 

• 
iè 	Proof: Let Jo  : Q0  --> Q be defined by Jo  (w) = w. For A E A, Jj1  (A) = A n Qo , so 

that Jo  is measurable for Ao  and A. Thus, for A E A, • 
• Po  o Jc7 1-  (A) = Po  (A n s-20 ) = P(A n f20 ) = P (A) . 

• Define, for w E Q, 

• • f 	= 	(w) if w G Qo  
0 	if w Sto . 

• As dQ°  is measurable for Ao , and thus for A, and since f = ho dj,.° , f is measurable dP. 
for A. Furthermore, for A E A, Ili 

• fA f dP = f [f o Jo ] dPo = f d,Q,°  dPo = Qo (A0) = Q (A) . 
• A o 	 .1 A o  ar-0 

 • 
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do.  Thus f = 	• dQ  Mutual absolute continuity holds since  - > 0, almost surely with dP 	 dPo 
respect to Po. 	 q.e.d. 

Epilogue to Proposition 11 

Lemmas 7 and 8 yield that 

71->C0 

in Li  [ Pya  . From Lemma 6, Epya  riÈ1= 1. But (Proposition 7), if PB,, is the re- 

striction of PB„ tO h [0, /1] also produced by EaYa, then Ara  and /5Ba  are mutually 
absolutely continuous. So, by Lemma 11, Py, and PBa  are mutually absolutely con-
tinuous. Furthermore E [T] = 1. 

Corollary 6 

If 02 = 	or if, almost surely, S (w,.) E H (Na) , Lemma 8 is true without the 
integrability conditions on s with respect to /32, since then for i = 1,2 

{Jo

t 	
} 

2 

IS (X)I0i (dX) 	([0, T]) f s2  (x) 	(dx) . 

But then, to be true, Proposition 11 does not require those same conditions either. 

Proposition 12 

it is assumed that AO, Al, A4, and A5 hold, that s is predictable and that both 

PBa  (f E D [0,11 : 	isl(fx) (dx) < oo) = 1 

and 

PYa (f  E D [0 	: 	Is' (f , x) i32 (dx) < oo)  =1  
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• 
• 
• 
• 
• hold. 

• Then Pya  is absolutely continuous with respect to PBa  and almost surely with respect 
• to Py,„ 
• 
• ln [ df„,..,Y" (f) ]  = iT  (f, x)ev PY& 
• dB Œ 

•

0 
ry  

• oT (f , 	(dx) 2  
• —  a  f (f, x) 	( f , dx) . • • 

• Proof: Absolute continuity comes from the Corollary to Proposition 7. Let f belong 
• to D [0 ,T] and 
• 

ln 	(f)1 = f 	(f,x)ev PBa (f , dx) • 
• — 2  IT  :§2  (f , x) 0 1. (dx) 
fe 	 2 o 
• — \/1. — a .1 ri  (f x) 	(f , dx) . • • 
• Let Tn be the stopping time of the previous proposition, and set 

•
411) 

C7, {f E D[0,71] : Ti, (f) = T} . 
0 
0 

Then, for A e D, An cn, belongs to D2-.fl  [31, 56.1, p.189], and by Lemma 8, 
O  

•

• 
ÉjnYa (A n cn) = .13ya  (A n cv, . • 

0 
As Pyc, (b [0, T1) = 1, limn  Pya  (Cr ) = 1, -(inY«  and PB„, are mutually absolutely 

• continuous, and almost surely with respect to PBa , 
• 
• 
• u,pBa  • 67 • • • 
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( f x) 	(f, dx) 

-2  IT 	x) (dx) 
2o  

— a / (f, x) ij fa (f, dx) . 

ln[ (f)] = 

• 

• 
• 
0 
6 

• 
• 
0 
• 
0 

• 
• 

• 
0 
0 
0 
0 
0 
• 
• 
0 
0 
0 

0 
• 
• 
• 
• 
• 
0 
• 
0 
0 

• 
• 
0 
• 

Then 

= lim Pya  (A n Cn ) 

= 	Pya  n [o, n cn) 

- ihn Py„ (A n cn ) 

= li71111 ej re (A n cn) 
ciCea  (f) _mn  (f PBa  (df) 

- n 	 al-Sa  

= liM f icn (Drj  (f) PB OE  (df) n A 

Let now 

The proof then proceeds as follows. First the sequence of localized Radon-Nikod3'rm 
derivatives {/c„d),,, n e 11V - } is shown to converge in probability for PBa  , and then it 
is shown to be uniformly integrable, still with respect to PBa • It must then converge in 
L1  [PBa ] towards an integrable limit. Since Pya  is absolutely continuous with respect 
to PBa , the limit of the {/cnn, n  E  /V} exists also with respect to Pya  , and it has 
the same value. But in that case, the limit can be identified: it is (D. 

When Tn  ( f) = T, f0T .§2  (f,  x) (dx) < n. Consequently, letting C =  b [0, , and 
using the fact that on Cn , _Te =  1:  

lOn  (f) (Dr, (f) = Ian  (f) elc(f)inPn(f)] 

The following definitions will shorten some unwieldy expressions: 

fo  t 
(f , 

 x) ev P13- 
 (f, 

 dx) 
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(f )t) =- 
11/17,,,p  ( f ,t) 

(w,t) 

(w, t) = 

mi(z32, (w, t) =  

g 7, ( f ,t) —  
fo t 

n ,p , x) ev PB- (f,  dx) 
lot 

n (B a  (w, .) , x)  B 1  (w,  dx) 
fo t 

lg„,p  (B a  (w, .) , x)I B2  (w,  dx) 
fo t 

Pn,p (Ba  (w, 	x)I 2  (clx) 

It follows that 

PBa  ( f E D [0 ,T] c (f)1M (f ,T) — IVIn+p (f ,T)I > K) 

= PBa  (f e D [0 	: 1c (f)Imn,p (f 7 1)1 > K) 

< P 	E 	: -\/-& lc (B (to , .))111/41;), (w,T) > 

K 
+P (co 	: \/1 — /c  (B,(w .))/W 	> --à-- 

-FP (co E : \/1. — a /c (Bo, (w.)) /V432, 	> 

By the inequality from [18, 2.84, p.19], 

P 	E Sr2 :  

is dominated by 

P 	E : a Ic (13,, (w , .)) 	(w , T) > 	+ 2 exp 	
1K8L2 

But, with respect to P, 

T  (M22,) (w ,T) = L AjT.(13a(c0,-)),T„,l_p(Ba(w,.))1  (w,  X) 	(Ba  (w , .)  x) fli  (dx) 
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foT  
then 

and since, for Ba  (w, E C b [0, T] , 

:§2  (13, 	.) , x) 	(dx) < oo 

K lim P 	E S2 : 	(B a  (w , •))1.11/17(2:), (w ,T)1 > —
3 ) -= O. 

n,p—>oo 

Given the assumptions on the integrability of I s 1, a similar argument yields that 

lim P (co E : \/1 — a Ic (13, (w , •)) MZ, (w,T) > —K 
= 0 

n,p—>co 	 3 

and that 

lim P 	E S2 :-V1 — a Ic (B a (w, •)) M22,(w, T) > —
3

) =-- O. n,p—>co 

Thus, with respect to PBa , the sequence 

{Ic (f) 	(f , x) ev PEcz (f,  dx) , n E 

has a limit in probability, which will be denoted J-Ba  (f) . 

Now, for f E b [0, T] , 

liM 	,§72,(f , x) (dx) f e(f, x) (dx) < 00 n—sco 	 0 

and, for Ic (f) -,§n(f,x)f3- r-B. ( f , dx) , the arguments already given are repeated. 
As, trivially, almost surely with respect to PBa , liMn ICn  IC, 

PBa  — 	{/cn  Min Pl.n 	 JBa (f) 

- (f) 	e( , x) (dx) 
2 

\/1 — a Ic (f) f ( f , x) 	' 13" (f , dx) . 
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• • • • • • • 
• The exponential of this limit will be denoted  

• As Pya  is absolutely continuous with respect to  PB ,  on one hand, • 
(f x) evPYOE (f, dx) = 
	

(f,  x) ev PBOE  (f,  dx) 
n  

• and, on the other, as seen in the proof of Theorem 1, 

fT 	 rT 
• Jo 	(f , x) 2Ya'B" (f , dx) Jo 	(f ,x) 13-12ta 	dx) • • 

so that, with respect to Pya , (D 7, has the following representation: • • 
• ln [(f)] 	

r T
d)„ (f)] 

— 	n  
(f x) ev PY- (f , dx) • 

•

--

a 	

§,t2  ( f , x) [3 1  (dx) 
2 o 

• —1/1 — / 	(f, x) 	(f, dx) . 

• But the assumptions made, in particular A4, now imply that the limit in probability, 
• with respect to Py,,„ of the sequence 	n E _FIV} iS a). So, with respect to Pya , 
• eBa • 
• To finish the proof, it must be confirmed that the sequence {/cr,d)n , n E IN} is uni- 
• formly integrable with respect to PB, which ensures that 
• 
• lim EpE a  Van (1,7,1 = EBB ,,  

• n—>co  • 
• But, since ejnYa and PBa  are mutually absolutely continuous, as seen in the proof of 
• i dc-2Y,  Lemma 9, and since (D =  n  s one of the Radon-Nikod3'rm derivatives, setting n dPga  • 
• = {f E D [0 ,T] : Icn  (f) (1'n (f) > K} , 

• • Dy, 	{f ED [0, :  

• • 71 • • 
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• • 
• • 0 • • • 
• 
O 
• 
• • 
• 
• • • • • • 
• 
• • • • • 0 • • • 0 • • • • • • • 0 • • 
• • • • 
6 
• 

gives 

Ln icri(f).(f) PB. (df) fDfl (P df) 

= 

Pyc, [éii„PYa 	(D. ) 

= 	E [0 , 	: 	0 	(f) > x) . 

But on p, 77d , 2'4> = ev, so that 

/3y,„ (f b [0, T]  
15ya 	E [0,71 : 	(f) > 

	

= PY (f E D [0,2]:  ff E D [0,1] : 	(f) > 	n [0, T]) . 

Now, assumptions AO, Al, A4 and A5 yield Proposition 9, therefore 

evPY- (f, t) = a /0  s (f, x) (dx) 	(f , . 

So, using the representation of (I)„ with respect to Pya , 

f Icn  (f) cEri (f) P.13 c, (df) _', Pyc, (
T 

 fci f gn ( f, x) 	 ( f , dx) D„ 	 0 

+ 2 fT 	

' 
g2  (f x) [3 1  (dx) > ln [K]) . 

2 o n  

The right hand side goes to zero as in previous arguments. 
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• 
• 
• 
O 
• 
• 
0 
•
0 

Corollary 7 
• When /32 	131 , or when, almost surely, S (w, .) E H (Na) , the integrability as- 
• sumptions on s with respect to /32  of Proposition 12 are no longer necessary, as the 
• argument given in the Corollary to Proposition 11 is still valid. 

• 
• 
• 
• Corollary 8 • 
• Given assumptions AO, Al, A4 and A5, assumption A6 is necessary and suffi- 
• cient for mutual absolute continuity of PBOE  and  
• 
• 4.6.2 Weak solution of a stochastic differential equation 
9 
• The innovations representation of the signal-plus-noise process, within the adopted 

• RKHS framework, requires the seemingly unrelated, preliminary results that follow. 

• Their reason for being presented here will emerge in the next section, when the 

• existence and the form of the likelihood for the filtered processes will be addressed. 

• Further, the results of Proposition 14 and 15 can potentially be used for extracting 

• the signal from noise when the likelihood ratio is known. 

• 
• A weak solution of the equation 

• 
• Y, (w , t) -= a 	s (Ire, (w, .) , x) (dx) + 	(w ,t) 
• 
• is a triple {Br, H", Pw} such that 
• 

•
• 	1. Pt' is a probability measure on D such that, with respect to it, 

411 	(a) Br is a generalized Brownian motion, adapted to D, with variance Vp. [Br (., t)] 
• (t) ; 
• (b) By is a Poisson process, adapted to D, for which 

• • Ep. [13`i (. , t)] = /32 (t) ; 
0 
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• • • • 
0 • 
O 
• 
• 
0 • • 
O 
0 • 
O 

O  
• 
• • 
O 

0 

• 
• 
0 
0 • • 
0 • • 
O • • • • • 
O • 
• • • • • • 

(c) Br and By are independent. 

2. and for fixed t E [0, T], almost surely with respect to Pw, 

ev Pw  ( f , t) -=af s ( f , x) ,(31 (dx) +  B ( f , t) 

where 

(f ,t) = \f& Br (f ,t) + \/1 — a BY (f ,t) 
= 	(f ,t) — 	(t) 

Lemma 11 

Let Ba  be a process satisfying Al. The process ev PBa has then, with respect to 
PBa , the representation 

ev PBa = 	B" + a ,B" 1 	 2 

where 
PBa o  [Br1-1  = P 0 B 1-1-  and PBa  0 [Br]-1  = P o _13"1  

and B‘r = BV -  /2,  for some probability space (S-2, A, P) . 

Proof: First, given PBa  it can always, without restriction, be assumed that it is a 
measure induced from a (S2, A, P) space by a generalized Brownian motion B1 and an 
independent Poisson process B2 summed to give the process Ba  = f;Bi + \/1 — aB- 2 , 
as in assumption Al. The process Br is then defined by the equality: 

Br ( f , t) 	1
E {AevPBa (f,  u).  

vl — a  ut  

For fixed 0 < tj. < 	< in  <T,  and a Borel set G E /Rn , let 

GD = ff E D[0,1]: (Br (f 	, • • • , 	(f,tn)) E 	. 
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• 
• Let G53 = Br (CD) . If w E G53, then 

• 
•

(  1  
-V1 — a u<t, 

	

E {.AB,} (w,  u) , ,  	1  E {Ba }  (w, u)) G G 

111 
6 	that is 
• (B2 (co, ti) 	B2 (co, tri )) E G. • 
• Br is thus, with respect to PBOE , a Poisson process such that 

• EpBOE  [Br (., t)] = 132 (t) . 
0 • 

Similarly, it can be shown that, with respect to PBOE, BV,  defined by • 
1 

— fev PB- — /1— a (Br — de2)} • • 
• is a generalized Brownian motion such that 
0 
• EPBc [Br (., t)] = [12 (t) • 

0 
• q.e.d. 
• 
• 
• 
• Corollary 9 

(ev PBa) =  o (Br) V ol  (B).  

• 
• 
• 
• Proposition 13 

Let s be progressively measurable for D, and assume that, for every f E D [0, TT], • 
• 
• À 8 2  (f , x) (dx)  < oc  and 	Is' (f , x) /32  (dx) < oo . 

• 
• 75 
• 
O 
• 
• 
• 
• 
• 



• • • • • • • • • 
With the notation of Lemma 11, define for almost every f G D [0,  T],  with respect to 

• 
• ln[ (f)] = -\/Fv 	s(f, x) 	(f , dx) — IT  s2  ( f , x) ,3 i (dx) . • 2 o 
• 

Then, • 
= a f s (Y, (w, •) , x) [3]. (dx) + 	(w , t) 	 • 

• 
• has a weak solution if, and only if EpW = 1, in which case the solution is unique. • • 

Proof: Suppose first that 	= 1. Let then Pt° be defined, as a probability, by 	 • 
the relation dPi" (1)dPB . Also define B": by 

(f ,t) = a f 	sl (f , x) (dx) + ev PBc‘ (f ,t) . 	 • 
• 
• As 1  can be written in the form 

• ln (f)] = 	I {—s}  (f,  x) 	(f,  dx) — f —a 	{-4 2  (f ,x) i3i(dx) 	 • 2 0  • Girsanov's theorem (Proposition 6) is applied to obtain that 	 • • 
pw 0 [B1 -1  = 	0 [evPB-] 1  Prea . • 

As furthermore, 	 • 
ev i3w  (f,  t)  = af s  (f,  x)  th  (dx) +  B (f ,t) 	 • 

• 
then there exists a weak solution since, for instance using Lemma 11, for G, a Borel 	 • 
set of En  0 < < t2 < t3 < • • • tn < T, 	 • 

• 
GD = If e D [0, 	: (f (ti) , f (1 .2) , f (t3) , • • • f(tn)) E Cl 

and 	 • 
(f , t) = 	{A 	(f , t)} 	 • 

u<t 	 • 
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• 
• 
• 
• 
• 
• 
• then 

• 

	

(f E D [0, T] : .M)  (f,.) c GD) = PDŒ  (f E D [O, 	: Br (f .) E G D) • 

•

• 
• 

Suppose now that a weak solution exists. Then, by definition, 
• 
• evPw  (f , t) = al s (f, x) i31  (dx) .13;;'), (f ,t) 
• 
• 
• which can be rewritten in the form 

• • ev w  (f, t) a 0 tP 	s 
( o 

(f,.) ,x) 	(dx) + .13,ew (f , t) . 

•

,  
• 

Proposition 11 can then be applied to get that P" and PBe  are mutually absolutely 

• continuous, and that, almost surely, with respect to PBg , 
• rT 
• ln [  dijw  (f) = j 	(f X) eV PBN (f ClX) 

	

dPBg 	 o 
• 
• -2 o 

a  IT  s2  (f , x) 131 (dx) 
• - B 
• —1/1. — 	s  (f,  x) BrPI° w ' ( f , dx) 0 le 
• 'w 

• where B2 eve  B 
 c' is the representation of ., with respect to P_Bg 	PBa ). Furthermore, 

•
with respect to PBN (Lemma 11) 

• ev PBN = \r&Br  + 	celj r . 
• 

a 
• 	Consequently 

2 • 

	

Ep [ln[  dPw 	ln 	= (1 — a) EBB ,b,,, [fT  s (f , x) 	(f , dx) 
• dP.Bg 
• rT 2  • — 	s (f, x) Br Plueg  (f, dx)1 

O  • 
• 
• Now the evaluation map ev is a semimartingale with respect to Pw as well as with 

• respect to PBg . As these two probability measures are mutually absolutely continuous, 

• 
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• 
• 
• 
• 
• 
• 
• 

[ev] Pw 	[ev] PB . As [eel' = By and [ev] Pe = Br , and taking into account the 	 • 
fact that By = rPBu  (proof of Theorem 1), then E pBa  [41)] "-= 1. 	 • • • Suppose now that a second solution (Br, B ,  Pl exists. Since 

• 
dPw' 	 • 

• dPB„, • • Pw 	 q.e.d. • • 
• 

Corollary 10 	 • • Proposition 13 will be true whenever pi 	02, or S 	E H (Ne ) , for every • E a • 
• • 
0 

Corollary 11 • 
If it is assumed, in Proposition 13, that only 	 • 

• 
(f E D [0,7] : 	< oc)  = 1, 	 • 

and that 	 •  • Ppa  (f E D [0,  T]:  f 	(f,  x) /32  (dx) < oo) = 1, 
• 
• hold there is still a solution, but it cannot be claimed any longer that it is unique. • 
• 
• • 
• • 
• 78 • 
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(1)nB (2) 
M (w , y) P (dw) 

Lemma 12 

Let (5 -2, A, P) be a probability space, and let B (1)  and B(2)  be, with respect to P, 
two independent filtrations of A. Set 

B t  = Bil)  V BP)  and B = {Bt , t E [0, Til . 

Then, if M is a martingale for B(1) , it is also a martingale for B. 

Proof: Bt  is generated by sets of the form 

B = B(1)  n B( 2), B (1)  E e) , B (2)  E 

If now u < v, and B( 1) e .K1), B(2) E 

BP)  . 

P (B(2) )
B  M (w, y) P  (th) o.) 

P (B(2) ) f (1)  M  (w, u) P (dw) B 

.1.BmnB(2) IVI (w , u) P (dw)). 

The proof ends with a monotone class argument. 	 q.e.d. 

Proposition 14 

Suppose Ira  is a process, defined on (S2, A, P) , adapted to A, with paths in D [0,  T], 
such that Pya  and PBa  are mutually absolutely continuous. When [3 1.  = 02 [3, the 
following can be found: 

a. a process s, defined on (D [0,71 , D, Pya ) , predictable for D; 

b. a zero-mean, generalized Brownian motion B 1  and a generalized Poisson process 
B2 )  defined on (n, A, P) , adapted to ce (Ira), with 

V[13 1  (. , t)] = (t) and E [B2  (. , t)] = (t) , 
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such that, for B = fa-B1 + 	— alj 2  and for t E [0, 71 fixed but arbitrary, 
almost surely, with respect to P, 

Y, (co ,t) = a 	s (Y, (to, .) , x) (dx) + B, (to , t) 

with 

PBOE  (f E D [0,7] : 	oo) = 1 

and 

Pya 	E D [0 ,T] : 	s2 	<) = 1. 

Proof: By Lemma 11, eyPB. = 	Br + \/1 — a 13r . Let 

e -=  o  (Br) , and B (1)  -= fe, t E [0, T]} . 

B (1)  is a Brownian filtration. 

Consider now the martingale L defined for B(1)  as 

dPv- L  (f,  t) = Ep,3 	 I 	. 
dPBa  

It has a modification [17, 9.7.5, p.2411 L which is continuous to the right and has 
continuous paths, almost surely, with respect to PB.,„ L has then the representation 
[17, 9.7.4, p.239 1  

L f , = + \f& I°  s (f , x) Br (f , dx) 

where s is predictable for B(1) . Furthermore 

P.Ba  (f E D [0 , 	: 	s2  (f , x) (dx) oo) = 1. 

Let 
(f) = inf t E [0, T] : [L( f , t) = 0] or [L( f , t —) = 	. 
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• 
• 
•
• On F, 	, the paths of L are, almost surely with respect to PB„, equal to zero. 

• However, because PBa  and Pya  are mutually absolutely continuous, L  (f,  T) > o, 
• almost surely, with respect to PBa . Consequently, 

• 
• PBa  (f E D [0, T] : inf (f , t)  > 0)  = 1. 

te[0,T] • • 
• The expression ln [L  (f ,  t)] makes sense, almost surely, with respect to PBa , and Itô's 
• formula then yields: 

• s  (f x ) ln [L ( f ,t)] = \fa- 	 , dx) 
a f t s  (f x)  )2  

• o
t 
" 

L (f , x)
(f 	2 	L (f, x) 

• 
• that is 
• L t) éfc7 f: ell,:)) B iv (L ds) — 'Z (ÉC) 2  Pcd.) 
• 
• Then set • 
• (f , x) 0 
• Since 
• \ 2 
• (f , x) 3 (dx) 	r 	x 	(dx) 
• o L (f , x) 
• 1  S 2  ( f x) 	(dx) • inftE[o,T] L2  ( f , t) fo 
• 
• then • 
• PBa  (f E D [0, T] : 1 	(f,  x) 3 (dx)  < oc)  = 1 
• 
• so that also 
• Pya  (f e D [0, T] :  f 2 

 ( f , x) 3 (dx) <) = 1. 
• 
• 0 81 
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Finally, Er),,,[L (. , T)] 	1. Consequently, there exists a weak solution to the "for- 
mal"' equation 

w, t) =- a(Y (w, •),x) (dx) + 	(w,t) . 

By the Corollary to Lemma 11 and Lemma 12, L is, with respect to PBa , a martingale 
for D. On (D [0, T] ,D) , and for the filtration D let us define 

Pct"' ( df ) = L (f,T) Pga  (df) 

and, with respect to 

(f , t) = —a L (f , x) 13 (dx) ev Pe (f ,t) . 

By Girsanov's theorem 
o 	Pga . 

Finally, L (.,T) is a version of ddpPY; as it is a martingale for D (Lemma 12). Conse-
quently /1): = Py„ Then set 

B„Y- = Ht: 

q.e.d. 

Proposition 15 

Supposel7c, is a process, defined on (Q, A, P) , adapted to A, with paths in D [0, , 
such that Py,, is absolutely continuous with respect to Pga . Wh,en pi  = ,62 p, the 
following can be found: 

a. a process s, defined on (D [0, T] ,D, Pya ) , progressively measurable for D; 
18Note that the Ba  of the "formal" equation is not the same as the Ba  of the proposition's 

conclusion. 
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If B( 1) E ./3 A1)27n , then 

pyr.,  (B(1)) 
IBM L (f T) PB. (df) =. 

b. a zero-mean, generalized Brownian motion B 1  and a generalized Poisson process 
B2, defined on (5-2, A,  P) >  adapted to o.° (Ira), with 

V [Bi (. , t)] 	(t) and E [B2 (. t)] = (t) 

such that, for BQ  = fc-e731  \/1 — aB- 2 , and, for t [0, 7 ]  fixed but arbitrary, 
alm,ost surely, with respect to P 

Ya  (co, t) =- a 	s (Ya  (o.), • ) , x) (dx) B a (w, 

with 

Pyc, (f E D [0,T] : 	2 co)  

Proof: As in Proposition 14, 

L (f , = 1 + lèèfo  s (f ,x) 	(f  , dx) 

with 

PBa  (f D [0 ,T] : 	s2  (f , x) [3 (dx) < oo)  =1.  

But now L can equal zero, therefore define 

inf {t E [0,71 : L (f 	< 	if it E [0,7] : L (f , t) < 
(f) = 	 if t E [0, 	: L (f ,t) < = 0.  

IB0.) E [L (.,T) 1 Bi lA)Tn ] PBa  (df) 

L (f ,t A Tri)PB e, df ) • 1B(1) 
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Thus, on B A1)Tn , 	(df) = (f , A Tri) PBc, (df) . But, as 1, (., t A Tn) > n , • 
• 

PB(df)-,  T'Y« (df)  • L(f,t ATn) 	 • • 
still on /3 A1)2-,n , so that, since D [0, 7 ]  belongs to BA1)T 	 • 

1  
 E [L(.AT] P 

	

pya 	 (D [0 , T]) = 1. 	
• 
• 

	

,t 	7,) = 
• 
• 

The sequence {T„, n e iN} is increasing and bounded. It thus has a limit, denoted 	 • 
limn  Tn , which is a stopping time. As L is continuous, almost surely, with respect to 	 • Py,„ by Fatou's lemma 	 • 1 	 1 	 • 

EPYa  [L (. , t A iilrin  )] 	EPYOE  [limninf 	(., t „n) }1 	 • • 
< lim inf Epya  [- 1 	 • 

• 
=1 	 • 

• 
• 

that is, 	 • 1 	 • 
EPY" [L (.,t A limn  Tin)] 	 • • 

As L (.,ffin n  Tn) = 0, almost surely with respect to Pya  , necessarily limn  n =  T, 	 • 
almost surely with respect to Pya . Furthermore, as 	 • 

• 
{

s~ (L x)}2 ,6 (dx) < n2  Ms  (f ,.)111,[0]  • 
L (f , x) • • 

it follows that 

• 

	

1 = PItc, (f 	D [°, 	ii s (f*)11 2L2E131 < 	 • 
Pya  (f E D [0

2  • , 	: f 	
L(f,x) 	 • 

Tn  { S (j. X  } /3 (dx) < oo) . 0  • • 84 	 • 
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• 
• 
• 
• 
• 
• 
• 
• 
• Consequently, 

• 2 

•
Py,,, (f E D [0 711 : 	{ 8-  (f  ' x) 	(dx) < co) 	1. • 

0 	L(f,x) 
• 

As 40,Tn ] is in L2 [,@], almost surely with respect to PB, , the process 	can 
• legitimately be defined on (D [0, 11]  , V,  PBJ and for the filtration D by the following 
• relation: • 
• ija,n (f , t) = —a fo 	( f , X) 

s (f x) 
 (dx) + ev PB- (f, t) . 

• L(f,x) • 
• Ln  is a martingale for the filtration B(1)  , and thus, by Lemma 13, for the filtration 
• D, define on Dt , a probability Qn, by setting • 
• Q. (df) = (f ,t A Tri ) PBa  (df) . 

• Then it must be shown that, on (D [0, , D, C2n) , rà,,,n is martingale for D such that • 
• Q.0 	PBa • • 
• 

But, almost surely with respect to PBOE , • 
• L(LtATT,)>_ • 
• 
• so that ln [L (f ,t A  Ta )]  can be computed and consequently Itô's formula can be 
• applied to obtain, almost surely with respect to PBOE , the following equality: • •  ln [L (f, t A 71)] = 	-40,Tn] (f 	

s (f x) 
X) 	 B1 ( f , dx) 

• o 	L(f,x) 
• a 	 s (f , x)  2 

• -40,T„] (f )  X) { 

	

	 (dX) . 
L  (f,  x) • 

• 
• But 

• Epi, 	(.,t A Tv,)] = 1 • 
• 85 
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because of the martingale property of L(•,t A Tn ) for D and PBa . Therefore the Gir- 
sanov's theorem can be invoked to assert that, for the base (D [0, ,D , Qn ) and the 
filtration D, 

---1 o 	=--- PBa  

Now /3,7 ;',2+1 — 	again for the base (D [0,1 ] ,D, PB) and the filtration D , the 
process 

jja  (f ,  t ) 	lo
t 	

(f x) 	, 12)  /3 (dx) ev PB- (f,  t) 

can be defined. 

Since limn  Tn  =  T, almost surely with respect to Py  and that Py„ is absolutely 
continuous with respect to PB., then almost surely with respect to 

(f , 	—a jof t  yef', x2)  (dx) + ev PY- ( f,t) • 

Finally, it is necessary to check that, for the base (D [0, T] ,D , Pyci and the filtration 
D, 

Pyr, o;1  =-- PBa  

To that end, note that 

L(LtATn) jja(f,tATn)=-L(f,tATn) ija,n(LtATn). 

86 

But, on the base (D [0, T] , 
Qn.(df) = (f , t A Tn) P13‘,, 
the base (D [0,7 ] , D, P.Ba ) 
the base (D [0, T) ,D,Qn) 
time for D. Since, DtAn 

D, Qn ) and for the filtration D, 	is a martingale, and 
(df), so that L (., • A Tn)  Ba  (., • A Tn) is a martingale on 
and for the filtration D, and consequently a martingale on 
for the same filtration. Since B (1)  C D, Tn  is a stopping 
B A1)7, V BL2)1-4  and Qn1DtAT,,, 	PYcet,,Tn  , it follows that 

PyOE  ( df) = L(f,tA T,i ) PBa  (df) . 



)3, is thus a local martingale on the base 

Finally it must be shown that  Ba has, 
with respect to P. But, for scalars 01 , 

(D [0, 71] ,D , Pya ) for the filtration D. 

with respect to Pya  the same law as Ba  
. . . 	,  0,  forming the vector Op, and times 

—(P) Epyc,  [ei(64,11a  ) — (p) 	- 
lim Ep, n 	.‘a 

—(p) 
lim EQ  

n 	n 

—cp) 
= Ep[ei(eP 	>Be 

where ij (P)  .F3 (P)  and /3 (P)  are vectors with respective components ija  (., ti ) , Ba,„ (., t i ) 
and Ba (ti ), for 0 < ti  < T, 1 <i < p. 	 q.e.d. 

Corollary 12 

/t is assumed that AO, Al and A2 hold. Then the following innovations repre-
sentation is valid almost surely with respect to P for t E [0,1 ] : 

Ya(w, t) = 	(Ya  (w , •) , 	(dx) B 1,:° (co , t) 
o 

where 

a. .§" is defined on (D [0, ,D , Pya ) , and is progressively measurable for D; 

b. Ball' is defined on (S2, A, P) , adapted to o-° (Ya) ; 

c. P 0 [B alra] 1  = PBa  
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Eppic, [Mi  (. ,t) M (., t)] = 
1 	r  (U Am] ei) L2 [0,71  (u [Intl Ai  Ai  L2 [0,TJ 

5.0 ABSOLUTE CONTINUITY AND LIKELIHOOD FOR 
Piva  AND  PXf  

The previous section derived explicit expressions for the likelihood ratio of the prob-
ability laws of unfiltered processes B, and Y.  That is interesting as a separate part 
but it is also a step in achieving results about the existence and the form of the 
likelihood ratios for the probability laws of the filtered processes Na  and Xa . Hence, 
these formulae are obtained by means of the conditional law of B, given Na  derived 
as a functional on a "defiltering" or inversion process. 

5.1 THE INVERSION PROCESS M 

The Cramér-Hida representation says intuitively that the paths of B, and Na  are, 
probabilistically, in one-to-one correspondence. The mathematical expression for this 
intuition is the process M whose definition and properties follow. 

Terms whose definitions are omitted are those of sections 3 and 4. /[ 0 ,ti denotes the 
indicator of the interval [0, . The basic probability space is 

(L 2 [0,71] ,B (L 2 [0 ,T]) , PArc,) . 

For t E [0, 7]  fixed but arbitrary, the following variables are considered on L2 [0, 	x 
[0,7] : 

1,2[0,21 (f ' ei)1,2[0,11 • ( f , t) = )7i  (U [I [0  m] 

Then Ep,,,a  [Mi  (. , t)] = 0, and that 

x EpNa  [(f 	L,[o,T](f ei) 1,2[o ,T]] 

= 	 [ei])L2 pcd (TA* J  [ei ]) .L2G3.1' 
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root of the 

O. However, 
in L2 [fic

] 
 is 

Lemma 13 

The family {J [ei ] , i G IN} is a complete orthonormal set in L 2  [/3a].  

Proof. Let f be arbitrary in L2 [ea] , and suppose that 

(f,  J  [ei ]) L2 pal =  O, i e e 

Then J* [f] is orthogonal to K (the closure of the range of the square 

covariance operator), that is J*[f] E A f (R«) , which means that U [f] = 
it has already been established (Proposition 2) that the only possibility 
f = O. Finally, 

(J [e] 	[ei])L2Vial (ei, J*J [ei])L2 [o,T]. 

But J*J is the projection onto the closure of the range of Râ , so that 

(ei ej [ei ] )L2 [0,2] = (ei, e.i).E2 [0,2]• 

Corollary 13 

q.e.d. 

00 
a. E Ep,e, [IVI? (. , t)] = H 2 

'PM II L2 [Oa] 	13a (t) 

b. For t E [0, 71] fixed but arbitrary, the series Eicîi Mi (f,t) converges almost 
surely, with respect to PN0,, and in L2 [PNJ . 

The following notation will be used 

en) 

 

co 
( f ,t) =- E 	f, , 	(f , = E 	(f, t) . 
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Lemma 14 

For (i, t) G  11V x [0, T] fixed but arbitrary, 
E  [Ba  (. ,t) (Na (' •) ei) L2[0,11] — (U.  [IPM] ' ei)  L2[0,TJ 

Proof: 
E [Ba  (. ,t) (Na (. , .) ei) L 2 [o,7]] 

E [Ba  (. ,t) 	ei (x) dx L 	(x , u) Bo, (. , du) 

= fo  ei (x) dx 

x E[{10T  i[om (u) Ba  (. , du)} UO2'  F (x, y) 	(. , dv)}1 

= 	ei  (x) dx 	(x , u) I[om (u) Oa  (du) 

= fo  ei (x) U [I[om] (x) dx 

= (U [I[0,1] ei) L2 [0,71 • 

q.e.d. 

Corollary 14 

For t E [0, T] fixed but arbitrary, 
E [{M (Na  (. , .) , — B (. , t)}l --- 0. 

Proof: 
E [{M (Na  (. , .) ,t) — B a  (., t)}l E pNa  [M2  (. , t)] 

— 2 E [M (N,(.,.) ,t) Ba  (. , t)] 
E 	(. , t)] . 
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It is already known that EpNc, [M2  (. , t)] = E [13,2, (. , t.)] =  0,„ (t) . But, using Lemma 
14, 

E [M(Na(.  .) , t) B, (. , t)1 

= fin' E 	(u-  [4,1 ] , ei) L2 ,0,,j  E [B, (. ,t)(Ara (•,•) 
i=1 Ai 
n r 	 \ 

— ( u 11[0,1] 	2 ,eil L2  [0,21 n 	A. i=1 
2 

= I Intl IlL2pcd 

(t) • 

q.e.d. 

As an immediate consequence of the above, the following proposition holds. 

Proposition 16 

Let 0 <ti G • • •  <t,,,  < T, and 01, 	, 	be arbitrary constants. Then, 

a. EpNe‘  [ei ri,=1  OiM(.,ti)] 	E   

b. M has, with respect to PAra , independent increments. 

c. For 0 < s <t < T, 	(•,$)IVI (•,t)] = /6,(s A t) . 

d. For 0  <s <t  < T, E 	[1M (• ,t) — IVI (• , s)} 2 ] 	(t) 	(s) . 

Corollary 15 

Let t E [0, T] be fixed, but arbitrary, and let Mi be the u-algebra generated by 
{M (•,$), s < t} , on L2  [O,  71]. Then, with respect to PNa  M is a square integrable 
martingale for NI° -= {Mt), t E [0,  T]}.  
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Proposition 17 

The process M is separable. 

Proof: Let n denote a countable subset of [0, T]. M is, with respect to PNa , a zero-
mean, square integrable martingale, so is its restriction to  T.  There is thus [17, 3.2.1, 
p.49] a measurable subset N of L2[0, T], such that PN0,(N) =-• 0, and, for f  E Na, 
and any monotone sequence {t ri , n G C n, the sequence {M  (f,  ta),  n e /N}  
is convergent in JR. However, since the sequence {M (.,  ta),  n  E B. } also converges 
in L2[PNa],  if limn  4, = t, the limit in L2[PNa l Of fig (•, ta), n e SV} is M (•,t) . 
Consequently, for f e  NC,

. 

lim M (f , t ri ) = M ( f ,t) . 

q.e.d. 

Corollary 16 

With respect to PNa , the paths of M almost surely belong to D [0, T] . 

Proof: Separability of M and the fact that it is a martingale yield the following: 

sup IM (NOE  (w, •) ,t) — B a  (w,t)I > 
te[oxl 

= P(a) E : sup IM (Na (w,•),t) — 	(w,t)I> 
ten 

ERsuPIM (Na(co,*) I) Ba (co ,t)I} 21 E 	ten 

4 E [{M (N, (co , •) ,T) — B a  (w, Till = O. 

q.e.d. 
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• • • 
• • • • 
• 5.2 THE CONDITIONAL LAW OF Ba  GIVEN Na  • 
• • 	When the one-to-one correspondence between the filtered and unfiltered processes 

• holds in L2 [P], it is possible to express the relationship between Ba  and Na .  Ill 
• the Proposition 18 this relationship will be expressed in terms of the conditional 

• probability law of the unfiltered process Ba  when the filtered process Na  is given. 

• 
• 
• 
•

Proposition 18 

• The assumptions are those of Section 3.1. Then Ba  has, with respect to Na , a 
• regular conditional law which is a point mass located at M. 
• 
• 
• Proof: Let F C D [0, T], and G C L2 [0,1 ]  be measurable subsets. Then 

• P (co E 	: Ba  (co ,•) E F, Na  (co , .) E G) • P (co E : M (Na (w,.) ,.) E F, Na (co,.) E G). • 
• 
• In L2 [P] , for t E [0, T] fixed but arbitrary, • 
• 13c, (. , t) 	M (Nc, (. , .) ,t) • • 
• This equality is obviously true whenever 

• 0 < t i  < • • • < tp  < T, • 
• Bi E B[E] , 1 < i < p, • 
• F {f E D [0 ,T] : evti  (f) E B1, 	, cut, (f) E Bp } 

• { gq} g L2 [0 , /], • 
• 13.  E B [JR] , 1 < j < q, 
• G 	{g e L2 [0, 21] 	(g, 91)L2[0,2 ]  E 13-1, 	(9›gq)L 2 [o,T] e 13- q} ' • • • • 93 • 
• 
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As such sets generate the corresponding u-algebras, the equality is true in general. 
But then 

P (u.) E SZ : 	M (Na (w,.))  E F, Na (cx.),•) E G) 

PNa  (dg) P (M 0 N, E  Fi Na  = g) 

PNa  (dg) E [IF (M 0 Na) I N, = g] 

PNa  (dg) IF (M (g)) . 

q.e.d. 

Corollary 17 
dPya 	 dPy

M (g)) . EpNa  [dpBa  Arc, = gl dpBa  

5.3 EXISTENCE AND FORM OF THE LIKELIHOOD 

The objective of the calculus undertaken so far is reached in Theorem 2. In few 
words, the content of this theorem is: 

a. The absolute continuity of the probability law of the signal-plus-noise with 
respect to the probability law of the noise holds under minimal assumptions. 

b. When, with respect to the probability law of the noise, the norm of the trans-
mitted signal in the reproducing kernel Hilbert space of the noise is finite, the 
mutual absolute continuity holds. Then the likelihood ratio exists and is ex-
pressed in explicit form. 
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• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• Theorem 2 • 
• Fix a = and write B for Ba, N for Na , and Y for Ya . Other notation is as 
• already encountered. Assume then that 

• 
• N (co ,t) = f F (t, x) B (c4.), dx) 
• 
• where • 
• I. assumptions AO and Al are valid for B with Pi  = 132  = ,e, • 
• II. F is a non-anticipative (F  (t, x)  = 0, for x > t), measurable function, defined 

• on [0, T] X [0, T] , whose equivalence classes generate L2[13] 

• S  (w,.) .) E H (N) , almost surely, with respect to P. • 
• 
• The following statements are then valid. 
• 
• a. Ps+N is absolutely continuous with respect to PN. • 
• b. 

dPs+N  
dPN 

(f)=À0M(f) 	 (2) • 
• where, for f  E  £2  [0, T] , M is the process • 
• 001  
• M (f ,t) = E —(0-/[0 , ek) 	(f [° [ 	) ek)L2[0,1]• 

k=1 Ak 	2 '  • 
• c. With respect to Py, and for f E D [0,1 ]  , À has the representation • 
• 
• 
• 
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1T  0  S  (1.  X) evPY (f,dx) 

— 41  IIDT s2  (f,  x) (dx) 

fT 
S  (f'X) 	(f, dx) 

(3 ) 

ln [À.(f)] =- 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• ' 
• 
• 
• 
• 
• 

with ig , a Poisson martingale, independent of Br, and s, the predictable process 
resulting from the RKHS condition of assumption III. 

d. With respect to PB, À can be approximated by the sequence 	where Cn  -= 
{f E D [0,1 ]  : Tn  (f) = T} , Tn is the stopping time of Proposition 11, and 
is given by the following expression, which must be interpreted as that of (c) 

ln [11.7, (f)] = s~n  ( f , x) ev PB (f,  dx) 

— —1  IT  :§2  f , x) (dx) 
4 o 

_ 
 1 r n ) 

AY,B 
0  '5  -°2 • 

e. If it can be assumed that 

PN 	E D [0 ,T1 : 	s2  (M (f , .) , x) (dx) <) = 1, 

then Ps+N and PN are mutually absolutely continuous, and mutatis mutandis, 
the likelihood formula of (c) holds with respect to PB = PNom-1. A sufficient 
condition for that, in terms of S, is 

E [exp
2
1

11 (' )(N)}]  <o°. 

Proof: In order to prove (a) and (b) it,is enough to note the following. Assumption 
III, in conjunction with [12, Thm 3, Step 3, p.170] means that, for some appropriate 
s, 

P (w e : 	s2  (w, x) (dx) < co) = 1. 
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• • • 9 
• 
• 
• 
• 
• The Corollary to Proposition 7 then yields that Py is absolutely continuous with 
• respect to PB, and then, from Proposition 15, it follows that Y has a stochastic integral 
• representation. The specific form of the likelihood follows then from Proposition 12. 
• 
• Now, as mutatis mutandis [12, Thm 1, p.163] 
• 
• N = .1.oBandS+N=.1.0Y 	 • 

• • 
• for any Borel set A of L2 [0, 7 ] , • 
• PS+N (A) =  • • dPy 
• =(f)) 	(f) PB (df) D[0,11 	 L4.1_ B • dPy • = 	(N (w)) — (f±(4) P (dw) 
• dPB 

dP • = E[ y—„, IN= f]PN(df) . 
• A ars • 
• But, because (Proposition 18) the law of B given N is a regular conditional proba- 
• bility, with mass concentrated at M, 

• • rdPy 	 dP 	 dPy  
E  [ dPB I 	L 	y[O,T1 dPB (g) P.13IN=f (dg)  = 	(M (f)) . u.ts • • 

• Point (c) was derived in Theorem 1 but it is relevant here. Also, the convergence 

• result in point (d) was proven in Proposition 12. Finally, (e) is arrived at by the 

• direct application of the corollary of Proposition 11. 	 q.e.d. 
• 
• 
• 
• 6.0 CONCLUDING DISCUSSION • 
• 
• A summary description of the results as well as the relevance of the proposed  sig-

nal and noise models to sonar techniques are presented in this section. It is also 
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• • • • • • • • 
noted that there are similarities between the underwater acoustic channel and the 	 • 
mobile communication channel, which may enable these results to be applied in that 	 • 
environment, as well. 	 • 

• 
• 6.1 CONTEXT OF APPLICABILITY' • • The detection problem of interest was formulated in the Introduction by means of the • hypotheses test given by relation (1). Fig. 1.1 gives a general picture of the approach • to the problem. In fact, when the detector is chosen to be based on a likelihood • ratio, in order to obtain a rigorous solution the following four operations have to be 

successfully accomplished. • 
• 
• A. Establish the existence of the likelihood ratio. Technically this means that the • absolute continuity of Ps+N with respect to PN has to be proved. • 

B. Derive explicitly the likelihood ratio, when it exists, as a functional A, com- 	• putable for each received signal and without knowing which of the Ps+N or PN 
regimes are applicable. 	 • 

• C. Determine the threshold Ao  required for decision (see fig. 1.1), when the func- • tional A is available. A Ao  is associated with every predefined probability of 
false alarm 6 and can be obtained from the equation 	 • 

• 
• 6 = PN (f E L 2 [0,71] : A( f) > A o ) . 	 (4) • 

Also, for every Ao  the probability of detection 1 — n  is obtained from the relation 	 • 
• 
• Ps+N (f L 2 [0,11] : A( f) 	A o ) . 	 (5) • 

The quality of detection is quantified then by the receiver operating charac- 	 • 
teristic obtained by plotting the probabilities of detection 1 — 77  versus the 	 • 
probabilities of false alarm 6. 	 • 

• D. Find a discretisation for which the likelihood ratio satisfies (4) and (5). Assum- • ing that the received signal is observed in discrete form, for example f (ti), f (12), • • • f (in), 
it has to be checked that approximations An  of A provide • 

• 
PN (f E L2 [0,7] : A  (f(ti), f (t2), • • • , f (tn)) > Ar) 	6 	 • • 98 • 
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• • • 
• 
• 
• 
• 
• and 

• 
• PS-EN (f E L2[0, T] : AT, (f (4), f (t 2 ), 	, f(4)) > Arc', ) 	1 — • 
• where Ai)n)  is the value of the threshold obtained when A is replaced by its 
• approximation Ar, in relation (4). 
• 
• 

	

' • 	While the results of points (C) and (D) in the previous description may be strongly 

• dependent on the particular features of the detection problem, the answers to the 

• points (A) and (B) require a theoretical approach only. The objective of this report 

• was to provide the mathematical tools in order to be able to fulfill operations (A) 

• and (B). In this context, Theorem 2 says that when the noise is modeled as the 

• superposition of filtered Gaussian and Poisson components, then 

• 
• a. Ps+N is absolutely continuous with respect to PN if the signal's finite energy 

•
condition 

• 
• P (w E SZ : 	s2 (w, x) i3(dx) <) = 1 	 (6) • 
• holds, where [3(t) is the variance of the noise 19 . • 
• b. The functional A having the required properties from (B) above is obtained by 
• means of the relations (2) and (3) if, in addition, PN is absolutely continuous 
• with respect to Ps+N. A sufficient condition for that is 
• • 

	

PN (f E D[O, : 	s2 (M(f, •), x)0(dx) < oo) = 1 

•
• 
• 

where M is the inversion process defined in section 5.1 2°. This condition is 
• satisfied if 

• 19 111 most practical situations (6) reduces to • 
• P (co E S.2 : f s 2 (w,x)dx < oo) = 1. • • 

'Which can be thought of as a whitening filter. 4111 



E [exp {i II S(*,*) 11 2H(N)}] = E [exp {
1T

-§› fo  s2 (., x)f3(dx)}]  <00.  

Condition (6) is generally satisfied for the common types of signals met in practice. 
The main steps of the algorithm to perform for the computation of the functional A 
are described below. Note that this algorithm requires knowledge of 

a. the span of time T available for observation, i.e. the number of discrete samples; 

b. the unfiltered noise variance  ,8:  [0, T] —› IR +; 

c. the causal filter  F:  [0, T] x [0, T] --> JR; 

d. the signal s : Il x [0, T] —› E. 21  

The received signal is assumed to be a continuous waveform f (t) such that 

rT 

.1 0 f 
(x)dx < oc. 

The algorithm consists of the following steps: 

Step 1. Compute the noise covariance 

tAr 
C N (t 7 -) -= 	F (t, x)F(r, x) (dx) 

Step 2. Compute the eigenvalues Ai , 1 < m, and the orthonormal eigenvectors  e , 1 < 
m, (m can be finite or infinite) of the covariance operator associated with 
C N(i )  

Step 3. Approximate the inversion process M ( f , t) by 

/16(f, t) = E 'V ()  (f , t) 
i=1 

21 I11  some applications the general parameters given by the type of modulation are known and the 
specific information may be estimated in parallel with the detection. 
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• 
• 
• 
• 
• 
• 
• 
• 
• where n < m, 
• 1 
• t) 

	

	— (UI[o
'  ei) L2[0 m(f ei)L2to,1i Ai   

• and 
• 

tAT • 
• U/[0 ,1 (T) 	F(Tx)dx 

o  
• Step 4. Check that • 
• 1 T 
• E [exp 	s2  (. , x)f3(dx)}1 • 
• is finite. 

Step 5. If the answer at the previous step is positive then compute the functional À 
giving the likelihood ratio for the unfiltered processes • 

•
• 

•
[À (f)] = exp {1 s (f, x) ev (f, dx) • 

• - -1  12'  S 2  (f , x) [3 (dx) • 
4 o 

• s (f, x) (B2 (f dx) — 0(dx))} • 
• 1 r 
• 
• Numerical implementation of this algorithm has to be performed in conjunction 
• with solutions for the operations (C) and (D). 

• 
• 6.2 CONNECTION BETWEEN THE THEORY OF LIKE- • • LIHOOD RATIO DETECTION ON FILTERED GAUS- 
• SIAN PLUS POISSON NOISE AND APPLICATIONS 
• FROM SONAR • • 
• The present model was developed as an approach to the requirements met in active 

• sonar. The active sonar is a bistatic system: the source and the receiver are located 

• 
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at separate points22 (see fig. 6.1). Basically, active sonar works as follows: the source 
injects an acoustic signal into the underwater channel with the objective of detecting 
the existence of a target by observing the signal at the receiver. Independent of the 
target's presence, the injected signal is distorted by the underwater channel. This 
consists of surface, bottom and volume scatterers. The velocities of the surface and 
volume scatterers are assumed to be random variables, as are the amplitude of their 
returns. The distribution of volume scatterers is assumed to be inhomogeneous. 
Volume scattering is produced by thermal layers, biological sources and suspended 
particles. As a result of these scatterers, the channel produces spreading in time, 
frequency and angle. The Doppler effect is present because of the relative motions 
among the source, the target and the medium [32]. The large values of the time delay 
spread give rise to a frequency selective fading channel. In addition to the fading, 
the signal is distorted by the echoes due to returns from surface, volume and bottom 
scatterers. These form an additional component of the noise, called reverberation 
noise. In fig. 6.1 the fading effect, the reverberation and the background noise at 
the receiver are represented. The transmitted pulse is spread by the channel and 
may undergo other changes as a result of the interaction with a contact, an object 
which represents in fact the potential target to be detected. The reverberation and 
the fading are coexisting phenomena. 

The active sonar system is said to be a reverberation limited environm,ent because 
the reverberation component dominates the background noise. Since the background 
noise exists equally in the presence or absence of the target, the detection model does 
not consider it. 

As a consequence of the random fluctuations in the submarine environment de-
scribed above, the signal observed at the receiver may be modeled as an oscillation 
process defined as 

E -Ykeiukt 

where eyk  are random variables. Hence, this is the superposition of oscillations with 
frequency e . The parameters of the transmitted signal may be components of -yk and 

22I11 a monostatic system, as is the case for passive sonar, the transmitter and the receiver share 
the same sensors. 

(7) 
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Figure 6.1: Active sonar diagram: reverberation limited environment when reverber-
ation noise surpasses the bottom noise. 

. 

For underwater propagation of the acoustic wave the scatterers are not homoge-
neous, rather they are close enough together to interact [33]. This fact, associated 
with the reverberation aspect, leads to the assumption that in relation (7) giving the 
oscillation process, the random variables (yk)k are correlated, i.e. 

E('yk-y;)= gki  < oo. 

Then e(t) is not a stationary process and cannot be studied by means of the linear 
theory of random processes, as Fourier transforms of 8,n orthogonal stochastic measure 
[34] . e(t) is then a particular case of an harmonizable process [35] [36]. As a second 
order process, the signal observed at the receiver and modeled by means of the oscil-
lation process (t) can be represented by means of the Cramér-Hida decomposition 
[10]. That means that it can be seen as a superposition of stochastic integrals with 
respect to stochastic processes with orthogonal increments Bk(t), 1 < k < K 23  in the 

23K is called the Cramér-Hida rraultiplicity of e(t) 
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• • • • • • • 
form given by 	 • 

• 
Kt 	 • (t) = E Fk (t,x)dB k (x) 	 (8) 

k=1 	
• 13 
• 

where Fk(t, s) are applications satisfying the same type of conditions as F(t, s) in 
Theorem 2. 

• A particular class of stochastic processes with orthogonal increments is the set • of processes with independent increments. Itô [37] proved that the processes with 
independent increments are generated essentially by the sum of Gaussian and Poisson 	 •  
processes. Hence, if we assume K = 1 is the multiplicity of the oscillation process 	 • 

(t) then (t) may be represented in the form 	 • 
• 
0 

(t) -= 	F (t, x)dB (x) 	 (9) 	 • 
0 

where the right side of the previous relation is exactly the process N(t) considered in 	 • 
this report. This is a ldnd of non-message bearing or "non-intelligent" noise. 	 • 

• 

	

If a target is present on the channel then one of the fluctuations modeled by the 	 0 
oscillation process has a particular behaviour. It is smoother than the other oscilla- 	 • tions: it has an "intelligent" [38] character. Then the signal observed at the receiver 	 • 
has one component outstanding in the oscillation process model. This component is • 
modeled by a stochastic process s(t) which includes the information carried by the • target, in the form • , 

• 
(t) 	F (t, x)[s(x)0(dx) + dB (x)] . 	 (10) 	• 

• 
The same factor F(t, x) multiplies both the noise and the "signal" s(t) as a conse- 	• quence of the fact that the injected signal is their common root. 	 • 

• Hence, the detection problem consists of determining for a given observed signal • at the receiver which one of the relation (9) or (10) applies. As emphasized in the 
Introduction, the Neyman-Pearson criterion is suitable for sonar detection because • of its optimality (the probability of detection is maximized for a fixed probability of • false alarm). Hence, the likelihood approach proposed in this report is relevant for 
underwater detection problems. 	 • 

• 
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• 
• 
• 
• 
• 
• 
• 
• 
• Now (t) can replace X(t) in the hypotheses test (1) in the Introduction and the 

• theory presented here can be used to derive an appropriate detector. 
• 
• 

The channel modeling used for sonar applications does not differ in essence from • that used in mobile communications [39] because whenever a narrowband signal is 
received from a scattering medium a fading phenomenon occurs. In addition to 

• the distortion produced by fading, signals on a wireless channel may be affected by 
• interference, a phenomenon for which the uncorrelation assumption is not appropriate. 
• This situation can be modelled, as for the case of the reverberation phenomenon, by 
• the model proposed here. • 
• 

• 1 	 6.3 MAIN CONTRIBUTIONS • 
• As the title emphasizes, this document is a theoretical development of likelihood 
• ratio detection. From mathematical point of view the new part consists of tailoring 

• stochastic calculus for second order processes as they arise from the Cramér-Hida 
• decomposition, when a jump process component is present. Continuing the ideas of 

• [12],[8],[13],[7], instead of worldng on an abstract underlying probability space the 

• problem here is m.odeled directly on the space of simple paths. This aspect brings 

• valuable results but at the same time involves restrictions which were avoided with 

• the expense of a significant amount of technicalities. 

• 
•

The main result of the calculus developed here is the derivation of explicit formulae 
for the likelihood ratios for filtered signals and noise, expressed by relations (2) and • 

• (3) in Theorem 2. The usefulness of this is as follows: 

• 
• a. The effect of the communication channel is modeled by the Cramér-Hida frame- 

• work, as a causal transformation corresponding to the time variant systems 

• arising in real applications. 

• b. The new feature of the model is the impulsive noise component, represented by 
• a filtered Poisson process. This fits some types of "non-intelligent" noise [38] 
• arising in communication systems as interference which is incoherent relative to 
• the transmitted signal. 
• 
• c. The "noise" may not be statistically independent from the transmitted signal. 

• Thus the model can be used to describe phenomena such as reverberation or 
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interference. 

d. The mathematical derivation leads to a likelihood ratio formula with no depen-
dence on the noise paths. The detector based on dPdpsr is a functional on the 
received path only. This point is crucial for the applicability of the theory. 

Some auxiliary results obtained here also deserve attention: 

• a. The inversion process M, defined in section 5.1, enables the effect of the channel 
to be removed, in a statistical sense. Its original construction comes from [12]. 

b. When the likelihood ratio does not exist, an approximation is provided in The-
orem 2 d. 

c. Proposition 14 and 15 may be applied for an inverse problem: when the likeli-
hood ratio is known, they yield a method for extracting the transmitted signal 
from noise. 

d. The likelihood ratio computation may serve to solve further estimation problems 
by Bayesian or maximum likelihood m.ethods, as described in [40]. 
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