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ABSTRACT 

This document desciibes a free-space quasi-optical measurement system designed 

to characterise dielectric materials at Ka band. The measurement system consists of a pair 

of colinear hom-fed lenses between which the sample under test is inserted. A study is 

performed in order to determine the sensitivity of the structure to misalignments, which 

reveals that care must be taken to ensure constant exact positioning of the components of 

the measurement system. Reflection and transmission coefficients (S-parameters) of the 

sample are obtained using a two-port vector network analyser connected to the feed horns. 

Calibration of the system is performed using a free-space through-reflect-match (TRM) 

technique, which is preferred over other calibration techniques because it does not require 

the movement of any component of the system during the calibration process. 

Correction terms must be applied to the reflection and transmission coefficients 

because of en-ors due to the misplacement of the sample and the calibration procedure. 

The sample's dielectric constant is then extracted from the corrected reflection and 

transmission coefficients using one of two different numerical techniques: a root-finding 

algorithm and a genetiC algorithm. Results obtained with both extraction techniques were 

found to be similar. Moreover, these results are in good agreement with published 

manufacturer data and with measurements performed by an independent organisation using 

a resonance technique. 

This work demonstrates the feasibility of a low-cost, functional and flexible quasi-

optical measurement system for characterising dielectric materials at Ka band. 



RÉSUMÉ 

Le présent document décrit un système de mesure quasi-optique dans l'espace libre 

conçu pour caractériser des matériaux diélectriques dans la bande Ka. Le système de 

mesure est constitué d'une paire de lentilles colinéaires, alimentées par des antennes-

cornets, entre lesquelles l'échantillon à caractériser est inséré. Une étude a été réalisée 

pour déterminer la sensibilité de la structure due aux erreurs d'alignement. Cette étude a 

démontré qu'un positionnement constant des composantes du système de mesure est 

nécessaire pour obtenir des résultats adéquats. Les coefficients de réflexion et de 

transmission (paramètres S) de l'échantillon sont obtenus en connectant les antennes-

cornets à chacun des deux ports d'un analyseur de réseau. Le système est calibré en 

utilisant une technique de calibrage de type TRM (through-reflect-match) dans l'espace 

libre. Cette technique est choisie car, contrairement à d'autres techniques, elle ne nécessite 

pas le déplacement des composantes du système durant le calibrage. 

Des coefficients de correction doivent être appliqués aux paramètres S pour 

éliminer les erreurs d'alignement et de calibrage. La constante diélectrique est ensuite 

obtenue à partir des paramètres S corrigés en utilisant un algorithme numérique pour 

trouver la racine d'une equation ou un algorithme génétique. Les résultats obtenus avec 

ces deux techniques d'extraction sont similaires. De plus, ces résultats concordent avec les 

données des manufacturiers et avec des mesures effectués par un organisme indépendant 

en utilisant une technique de résonance. 

Ce travail démontre la faisabilité d'un système de mesure quasi-optique peu 

coûteux, versatile et fonctionnel pour caractériser des matériaux dans la bande Ka. 
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FOREWORD 

The work presented in this document is,based on a Master's thesis l  submitted at the 

University of Ottawa in May 2002. 

N. Gagnon, "Design and Study of a Free-Space Quasi-Optical Measurement System," Master's thesis, 
School of Information Technology and Engineering, University of Ottawa, Ottawa, Canada, May 2002. 
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CHAPTER 1 Introduction 

1.1 Background 

With the severe congestion of the electromagnetic spectrum at microwave 

frequencies, communications systems are increasingly being developed at higher 

frequencies, mainly at millimetre and sub-millimetre wavelengths (above 30 GHz). New 

broadband communications systems including Local Multipoint Communication Systems 

(LMCS) [1], Local Multipoint Distribution Services (LMDS) [2, 3] and multimedia 

satellite services [4] have already been assigned to the Ka band. These systems will be 

used to provide wireless high-speed intemet access, videoconferencing, interactive 

entertainment and other applications requiring large bandwidth. Since these systems are 

intended for both mobile and fixed terminals, low-profile antennas are desired. Moreover, 

some user ten-ninals may also be used for communications with satellites, which will 

require high-gain antennas and electronic beam-steenng capabilities. 

Traditionally, conventional reflector antennas have been used for satellite 

communications as they are low-cost and offer high gain. However, in the case of mobile 

terminals, such anteimas are quite large and do not provide electronic beam-steering 

capabilities. On the other hand, planar active phased array antennas are low-profile and 

capable of steering their beam electronically. Their major drawback is that a complex feed 

network made of a significant number of phase shifters and attenuators is needed to obtain 

good flexibility, which translates to increased overall cost. 

As an alternative to achieving high-gain, low-profile, electronically steerable 

antennas, optically-induced antennas have been proposed [5-7]. This new concept 



introduces optical illumination of a low-profile structure, such as a frequency selective 

surface or a reflectarray. The low-profile structure consists of a semiconductor slab which, 

when illuminated by an optical source, becomes conductive. By controlling the 

illumination, the optically-induced conductivity pattern can be modified, and can be used 

to either shape the radiation pattern of the beam or provide beam steering. The optically-

induced array configuration is potentially less complex than an active phased array as it 

needs fewer components. 

1.2 Motivation 

The design of planar optically-induced antennas first requires an accurate 

knowledge of the properties of the materials. In particular, semiconductor materials, such 

as silicon and gallium arsenide, have to be investigated with and without illumination. 

Many material characterisation techniques are available, but not all of them allow for 

optical illumination, contactless measurement and the capability to measure materials with 

either high- or low-loss. These criteria are crucial in the present situation. Furthermore, 

the measurement system to be used must operate in the frequency range of interest, offer a 

reasonable accuracy and be,relatively low-cost. 

1.3 Thesis Objectives 

The main objective of this thesis is to design and fabricate an accurate and versatile 

measurement system to be used to characterise optically-sensitive materials at Ka band. 

To achieve this goal, many steps must be completed. 

2 



First, a review of the various types of measurement systems is to be perforined so 

that a suitable candidate may be chosen. A free-space transmission/reflection quasi-optical 

configuration has been selected. 

Second, the quasi-optical measurement system is to be designed and fabricated for 

sample characterisation at Ka band. This entails the proper choice and/or design of quasi-

optical components. 

Third, the evaluation of the measurement system's performance is to be performed 

by studying the effects of manufacturing tolerance errors and component misalignment 

enors.. 

Foui-th, given that any measurement requires prior calibration of the system, an 

appropriate calibration technique is to be determined. Furthermore, an efficient and stable 

procedure is to be developed for extracting the dielectric constants from the measured data. 

Finally, the accuracy of the measurement setup is to be evaluated by measuring 

various samples of known dielectric constant. 

1.4 Thesis Contribution 

The main interest of the proposed measurement system is that it is designed with 

limited cost due to the use of pyramidal horns and millimetre-precision mechanical 

equipment. 

Investigation of misalignments in such an apparatus has not been reported before 

To perform this analysis, a theoretical formulation incoiporating occurrence of 

simultaneous misaligrnnents is developed. 

3 



The determination process uses correction terms to compensate for possible 

misplacement of the sample under test and errors due to the calibration. Additionally, the 

extraction techniques described in this thesis, which are used to convert recorded data into 

material parameters, use a numerical approach, including a novel approach based on a 

genetic algorithm. 

1.5 Thesis Organisation 

The second chapter reviews the relevant theory of quasi-optics required for the 

design of the measurement system. This theory is then used in the following chapters for 

the design and analysis of the measurement system. 

The third chapter presents a review of the various types of measurement systems as 

well as the description and design of the selected candidate (free-space 

transmission/reflection quasi-optical configuration). In particular, the design of the 

measurement system components is reported. Furthermore, the measurement technique 

and calibration process are described. 

The fourth chapter focuses on one of the main problems of the measurement 

system: the misalignment of the components. A theoretical treatment of the occurrence of 

simultaneous misalignments is given. Experimental and theoretical results are reported. 

The fifth chapter presents the determination of the dielectric properties of materials. 

In particular, this chapter presents the general manipulations to be performed on the 

recorded data before using it in the extraction process. These manipulations include data 

smoothing and corrections due to misplacement of the sample and calibration. This 

4 



chapter also describes the theory required in order to extract dielectric properties of 

• material, as well as extraction techniques. 

The last chapter summarises the work, provides a general conclusion and describes 

future work to be performed. 

5 





CHAPTER 2 Quasi-Optics Theory 

2.1 Introduction 

This chapter presents quasi-optics theory and the required background to fully 

understand the design and study of a quasi-optical test bench. Gaussian beams are one of 

the fundamental elements of quasi-optics. This chapter describes the propagation, 

launching and transformation of Gaussian beams which are used to design the 

*measurement system. Gaussian beam coupling, which is used in the study of the 

misalignment of the components of the measurement system, is also presented. 

2.2 Quasi-Optics Basics 

2.2.1 Definition of Quasi-Optics 

Quasi-optics is the study of the free-space propagation of a beam which is fairly 

well collimated but has transverse dimensions of the order of a wavelength [8]. Because 

the wavelength is not small with respect to the size of the beam and the system dimensions, 

diffraction  effects have to be considered [8]. From antenna theory, increasing the aperture 

of the radiating component would make the beam narrower and reduce diffraction; 

however this would increase the overall size of the system, which is not desired. 

At microwave, millimetre wave and sub-millimetre wave frequencies, Maxwell's 

equations are normally used to describe electromagnetic propagation. At these 

fi-equencies, it is difficult to obtain a narrow enough beam so that one can apply 

geometrical optics and neglect diffraction. This is only possible for a wavelength of about 

1 gm, which corresponds to the visible spectrum or light. However, if the beam launched 

7 



by the radiating device is fairly well collimated and characterised by a Gaussian amplitude 

distribution, Gaussian optics can be applied [9]. Gaussian optics satisfies Maxwell's 

equations, in which the beams are solutions to Maxwell's equations under paraxial 

approximation. This is a very attractive solution since Gaussian optics is simple and 

elegant compared to Maxwell's equations. Furthermore, Gaussian beams can easily be 

launched by common radiating devices like feed ho rns. 

2.2.2 Interest of Quasi-Optics 

At microwave frequencies and lower, wave-guiding structures are required to 

contain the energy of a propagating wave, otherwise the amount of diffraction causes the 

energy to disperse quickly with distance [10]. The guiding structures used at these 

frequencies, namely coaxial cables, printed transmission lines and waveg-uides, all contain 

metal and, in most cases, dielectric materials. As the frequency increases, the surface 

resistivity of metal and the loss tangent of dielectric materials increase, resulting in higher 

losses in the system. Therefore, one may take advantage of free space in order to achieve 

transmission at millimetre and sub-millimetre wavelengths. By propagating a beam having 

a low dispersion in free space, and using guiding elements such as lenses, a system similar 

to those used in optics can be designed. For that reason, quasi-optical systems fill a gap 

between traditional guiding structures at microwave or millimetre wavelengths and optical 

systems. 

8 



2.3 Gaussian Beam Propagation 

2.3.1 Paraxial Wave Equation 

Any wave propagation problem in a uniform medium can be described using the 

homogeneous Helmoltz equation [8, 11]. In free space: 

V 2 vt+k0 2 yf=  O , 

where  w  represents any scalar field or, in other words, any component of E, the electric 

field, or H, the magnetic field. k0  is the free-space wave number and is equal to 

k = 0 20  

where 20 is the free-space wavelength. If we assume the wave is propagating in the 

positive z direction, then  yt can be written (in rectangular coordinates) as 

ir = u(x, y, z)exp( — jko z), 	 (2-3) 

where u is a complex function that defines the propagating non-plane wave [8] and the 

exponential tenn dictates the phase of a plane wave propagating in the z direction [9]. 

Expressing (2-1) in rectangular coordinates and substituting (2-3) leads to the following 

expression: 

	

a2u  a2u a2u 	„ au „ + 

	

x2  ay  2 az  2 	 a z  

According to Goldsmith [8], (2-4) can be simplified based on the following assumptions: 

— the variation along the direction of propagation of the magnitude of u is small over a 

distance of about a wavelength; 

— the variation along z of the magnitude of u is small compared to the variation along x 

and y. 

(2-1) 

(2-2) 

(2-4) 
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(2-8) 

(2-9) 

W(Z)=-,  Wo 1+ 2
0 z 

71/4/02 )
2  - 

0.5 

(2-10) 

From the first statement, we have that 

U 

az 2  
« 2k0  

au 
az  (2-5) 

and from the second statement, we have that 

a 2  •-• 2 d U 

IDX 2  

a 2u  

ay 2 (2-6) 

Therefore, the third term in (2-4) can be dropped and we obtain 

a2u  a 2u  „ 	„ 
— +--G/K0  — = , ax2 ay  2 	az  

which is the paraxial wave equation. This is an important result since a solution to 

(2-7) is simpler than a solution to (2-4). If we convert this result into a cylindrical equation 

and apply axial symmetry, the following expression is obtained: 

a2u 
+-

1 au 
—2fico .?-L4 =o . ar 2  r ar 	az 

2.3.2 Fundamental Gaussian Beam Mode Propagation 

It is known [8] that the simplest solution for u in (2-8) is of the form 

0.5 

2 	 u(r ,z).( 	exp[ 
r 	j w(z)2  

	

2 	
117^ 

2 

itoR (z )+ 
7/W(Z)2  

where w is the beam radius, R is the radius of curvature and (po  is the Gaussian beam phase 

shift: 

(2-1) 
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(2-11) 

(2-12) 

The beam radius is defined as the transverse dimension where the power drops to 1/e2  with 

respect to the on-axis power. The beam waist radius, wo, represents the minimal beam 

radius. The radius of curvature is defined as the radius of an equiphase surface of a 

spherical propagating wave. The Gaussian beam phase shift is a phase term that only 

becomes significant if z is small. The behaviours of the beam radius and the radius of 

curvature are shown in Figure 2.1. 

Inserting (2-9) in (2-3), we obtain 

\ 0.5 
r2 

vi-fr ,z)  =[ 7114)2(42  , exp[ 	 jko z 'Mr 
 2 

+ j0 0 (z)). w (z ) 2 
/1.0R(Z) 

Figure 2.1: Schematic representation of a Gaussian beam propagation. 

(2-13) 
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In (2-13), the first term of the exponential is the Gaussian amplitude distribution, such that: 

2 
IV(r, 	ke(0, 41exp( 	r 	. 

w(z)2  

For a fixed distance along z: 

ly/Hi= W(0)lexp[-- 	. 

(27.14) 

(2-15) 

From (2-15), we find that the transverse distribution is always a Gaussian profile. In this 

case, only the fundamental mode is represented, which makes the problem simpler. The 

only term that modifies the distribution is w, the beam radius, which plays the same role as 

the variance. Referring to (2-13), the second term of the exponential is the phase of a 

plane wave propagating in the z direction. The third term gives the phase difference 

between a plane perpendicular to the axis of propagation and the spherical wavefront [9]. 

The last term is an additional phase term determined by the Gaussian beam phase shift. 

Equations (2-10) to (2-15) contain all the necessary information to describe the 

Gaussian beam propagation. Defining the beam waist location as the distance where the 

beam radius is minimal, we see that this location occurs at the distance where z is equal to 

zero. At the same location, the radius of curvature reaches its maximum value as it 

approaches infinity. Figure 2.2 shows the beam radius as a function of the distance plotted 

using (2-10) for three different values of beam waist radius. Figure 2.3 shows the radius of 

curvature as a function of the distance plotted using (2-11), for the three different values of 

beam waist radius. 

Figures 2.4 to 2.12 present the propagation of Gaussian beams for both phase and 

amplitude as obtained from analytical results. Figure 2.4, Figure 2.5 and Figure 2.6 
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Figure 2.3: Radius of curvature as a function of distance for different values of beam 
waist radius. 
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respectively show a three-dimensional view of the amplitude, a planar view of the 

amplitude and a planar view of the phase for a Gaussian beam with a beam waist radius of 

1 wavelength. Similarly, Figure 2.7, Figure 2.8 and Figure 2.9 also show a three-

dimensional view of the amplitude, a planar view of the amplitude and a planar view of the 

phase, respectively, for a Gaussian beam with a beam waist radius of 2 wavelengths. 

Finally, Figure 2.10, Figure 2.11 and Figure 2.12 respectively show a three-dimensional 

view of the amplitude, a planar view of the amplitude and a planar view of the phase for a 

Gaussian beam with a beam waist radius of 3 wavelengths. 

In Figures 2.4 to 2.12, the amplitude provides information about the beam radius 

whereas the phase provides information about the radius of curvature. The results obtained 

are in agreement with Figures 2.2 and 2.3. From all these figures, the following 

conclusions can be made: 

— beams with a smaller beam waist radius diverge more rapidly and are characterised by 

a wider beam at large distance; 

— beams with a smaller beam waist radius have a faster decrease in amplitude; 

— beams with a larger beam waist radius offer a more planar wave propagation. 

2.3.3 Limitations of Gaussian Beam Propagation 

The theory presented in the previous sections does not take into account two 

important limitations on the propagation model of Gaussian beams. The first limitation is 

the one that dictates the range of validity of the paraxial equation. In other words, one 

would like to know if (2-5) and (2-6) can be applied so that (2-7) or (2-8) are valid. As 
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Figure 2.4: Three-dimensional view of the amplitude of a propagating Gaussian beam 
with beam waist radius of 1 wavelength. 
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Figure 2.5: Planar view of the amplitude of a propagating Gaussian beam with beam 
waist radius of 1 wavelength. 
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Figure 2.6: Planar view of the phase of a propagating Gaussian beam with beam 
waist radius of 1 wavelength. 

Figure 2.7: Three-dimensional view of the amplitude of a propagating Gaussian beam 
with beam waist radius of 2 wavelengths. 
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Figure 2.9: Planar view of the phase of a propagating Gaussian beam with beam 
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Figure 2.10: Three-dimensional view of the amplitude of a propagating Gaussian 
beam with beam waist radius of 3 wavelengths. 

Figure 2.11: Planar view of the amplitude of a propagating Gaussian beam with beam 
waist radius of 3 wavelengths. 
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Figure 2.12: Planar view of the phase of a propagating Gaussian beam with beam 
waist radius of 3 wavelengths. 

mentioned in section 2.3.1, the propagating beam has to be fairly well collimated in order 

to obtain the paraxial wave equation. The satisfying criterion would then be the width of 

the beam, i.e. the beam radius. As shown in section 2.3.2, a large beam waist corresponds 

to a collimated beam while a small beam waist corresponds to a divergent beam. Many 

studies have been conducted in order to determine the minimum beam width for which the 

paraxial equation is still valid [12-14]. It is generally accepted that the beam waist has to 

be at least as large as a wavelength in order to apply the paraxial equation [12]. 

The second limitation concerns the higher-order modes of the propagating beam. 

Most common launchers radiate beams characterised by the fundamental Gaussian mode 

plus higher-order modes. In this case, the propagating beams are referred to Gauss-

Hermite beams in rectangular coordinates and Gauss-Laguerre beams in cylindrical 
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b = 0.73 . 
a 

(2-16) 

coordinates [8], which are also solutions to (2-7) and (2-8), respectively. The purity of the 

beam depends on the design of the radiating element. Even if a pure fundamental Gaus .sian 

mode is not easy to launch since higher-order modes will always be present, a fundamental 

Gaussian mode is commonly assumed because it still provides an accurate solution in most 

of the problems and because it is much easier to apply. 

2.4 Gaussian Beam Launching and Transformation 

2.4.1 Gaussian Beam Launchers 

In the analysis of Gaussian beam propagation, the fundamental mode is often the 

only mode considered. A much simpler problem is then obtained at the expense of 

relatively small errors. Not every radiating element has the capability of propagating only 

the fundamental Gaussian beam. The most common radiating elements that produce 

fundamental Gaussian radiation patterns are waveguide horns. Among them, the 

corrugated feed homs are the most effective fundamental Gaussian beam radiators if they 

are properly designed. However, these antennas are complex, heavy, bulky and require 

precise manufacturing tolerances. 

As an alternative, simple and common rectangular feed horns were used instead of 

corrugated horns. Figure 2.13 shows a representation of a rectangular feed horn. With a 

rectangular waveguide feed the beam widths in the H-plane and in the E-plane are related 

to the length a and b (as shown in Figure 2.13), respectively. A symmetric pattern can be 

obtained by simply applying the following equation [10]: 
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Figure 2.13: Representation of a rectangular feed horn. 

Furthermore, the beam waist radius can be approximated using the following equation 

[10]: 

14,0  0.32a or 14)0  0.44b. 	 (2-17) 

There are other types of feeding elements for quasi-optical systems than corrugated 

and rectangular horns. Other conunon antennas include conical feed horns, and slotline 

antennas operating in the end-fire mode. The latter are of interest because of their low 

fabrication cost. A complete list of Gaussian beam radiators has been prepared by 

Goldsmith and is presented in [8, 10]. 

2.4.2 Gaussian Beam Parameter Determination 

For a Gaussian beam feed, the size and location of the beam waist is a critical 

parameter. As mentioned in section 2.3.2, the beam radius and the radius of curvature are 
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0.5 

20  
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two important parameters of a propagating Gaussian beam. These two parameters are 

described by (2-10) and (2-11). Knowledge of the beam radius or the radius of curvature 

at two different positions is necessary in order to find the accurate location and size of the 

beam waist. Obviously, (2-17) gives an approximation of the beam waist radius with 

respect to the size of a rectangular feed horn, but this is not an accurate measurement even 

though it can be used as a guide. 

The best approach is to measure the radiating element in a near-field measurement 

system at two different distances. From these measurements, the beam radius can be 

determined as the distance where the beam power drops to 1/e2 , or —8.686 dB. Knowing 

the relative distance between the two sets of measurements, the location of the beam waist 

and its radius can be found using (2-10). However, this type of measurement is not always 

possible and other solutions have to be found. 

Another approach is to measure the far-field radiation pattern of the antenna. This 

is a more common type of measurement, from which the radiating power is measured as a 

function of angle. As mentioned in [8], the 1/e2  radius of the power of the beam can be 

expressed as 

In far-field measurements, the distance z is assumed infinite. Furthermore, defining 00 as 

the asymptotic beam growth angle, or the angle where the power drops to 1/e2  or 

—8.686 dB relative to the on-axis power, and replacing w in (2-18) by (2-10), we obtain 

22 



z=41±1  [2 
2,\2 

;two  
2: 	[ 20 R ,  

0.5 } 

(2-20) 

From the radiation patterns, 00 is measured, therefore wo is obtained. 

Since the beam waist location is still unknown, another source of information is 

required. For feed horns, a good assumption is that the field distribution at the aperture is 

spherical with radius of curvature R equal to the slant length p of the horn [8], as illustrated 

in Figure 2.14. Therefore, there are two known parameters at two different distances: the 

beam waist radius (obtained from far-field measurements) and the radius of curvature at 

the output of the feed hom. The position of the radius of curvature is physically known so 

that it can provide information on the location of the beam waist. 

Inverse formulas presented in [8] allow to find any missing parameter of the 

Gaussian beam from two known parameters. In this case: 

where wo and 20 are known, R is equal to p, the slant length, and z is the distance between 

the constant phase surface and the beam waist location, represented by A, as shown in 

Figure 2.14. Therefore, (2-20) can be rewritten as: 

0.5 

A = 2.{1+  [1 21ne° 2  12 1 } 
2 	2op ) 

(2-21) 

To obtain the distance between the aperture plane and the beam waist location, d, which is 

more useful information, the following equation is derived from Figure 2.14: 

A —d= p—p. 	 (2-22) 

Isolating for d in (2-22): 

d=A+p—p. 	 (2-23) 
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Figure 2.14: Representation of some parameters of a feed horn. 

For pyramidal horns, the slant length, p, will be different depending on the plane. 

For that reason, the beam waist location is different in the E-plane and H-plane. Therefore, 

the beam waist location will have to be chosen in order to satisfy both planes. 

2.4.3 Transformation by a Focusing Lens 

In the design of the quasi-optical test bench, a focusing lens is used to modify the 

Gaussian beam. An ideal lens does not modify the amplitude distribution of a propagating 

beam; it simply acts as a phase transformer by introducing a phase shift JO defined as [10]: 

where f is the focal length of the lens. The phase transformation changes the radius of 

curvature of the beam, which has the effect of focusing the beam or, in other words, 

creating a new beam waist  [10]. Figure 2.15 shows a propagating Gaussian beam being 
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modified by a quasi-optical lens. The distance parameters listed in this figure are 

described in [15]. 

The relationship between the input beam waist radius, win, the output beam waist 

radius, w0141,  and the focal length can be derived using the ray transfer matrices [8]. The 

relationship depends on the location of the input and output beam waists. A special case is 

obtained if the distance between the input beam waist and lens input plane is equal to the 

focal length of the lens, as shown in Figure 2.15. In such a configuration, the distance 

between the output beam waist and the lens input plane is also equal to the focal length. 

The thin lens expression that describes this beam transformation is: 

Input Output 
Plane Plane 

I 
Fele—  f T 141F— f  

Figure 2.15: Representation of a Gaussian beam being modified by a focusing lens. 
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Another important parameter of the lens is the lens diameter D, as shown in 

Figure 2.15. A large enough diameter is desired in order to intercept a large fraction of the 

power. The edge taper and the fractional power are used to obtain the amount of power 

intercepted by the lens. The edge taper, Te, is defined as the relative power density at 

radius re  [8]: 

Te (re ). exi-2( 141, 

which is derived from (2-15). In dB, (2-26) simplifies to 

2 

Te  (dB) = 8.686M . 

(2-26) 

(2-27) 

We can also define the fractional power, Fe, as the density function of the edge taper: 

Fe (re )=1—Te (re ), 	 (2-28) 

which describes how much power of the fundamental Gaussian mode is within a radius re . 

The shape of the lens is described in [16]. For a plano-convex lens, the curved 

surface has a hyperbolic shape. By proper manipulation, the three-dimensional equation 

for the lens is obtained: 

x2  +y 2  = 	—1).z 2  + 2f(j —1)z , 	 (2-29) 

where Er  is the dielectric constant of the lens. From (2-29), the thickness of the lens, T, is 

found: 
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exp 
n . 

2.5 Gaussian Beam Coupling 

Gaussian beam coupling analysis can be used to determine how much power is 

being transferred between two Gaussian beams. To simplify the analysis, the beams are 

considered to be only one-dimensional. A Gaussian beam defined in the x direction is 

obtained from (2-9) as 

It (X) = 
j 

	

2 0.25 
2 	x 2 	; Toc  2 

exp 2 21W  \ 	x 	 o x 
(2-31) 

where the Gaussian beam phase shift is neglected because its effect on the overall coupling 

mechanism is insignificant. The subscript x simply identifies the dimension in which the 

beam is defined. As a result, the field coupling coefficient in one dimension between two 

Gaussian beams, say ua  propagating in the positive z direction and ub propagating in the 

negative z direction, is [8]: 

Inserting (2-31) into (2-32): 
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Knowing that 

0.5 
fexp(— ax2 )clx =(-1e ) , 

a 

(2-33) gives the following result: 
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A representation of Gaussian beam coupling in x is shown in Figure 2.16. Finally, the 

exact same analysis can be conducted in y, which will lead to a similar result. 

The power coupling factor between the two beams is defined as 

Figure 2.16: One-dimensional Gaussian beam coupling. 

28 



•  The power coupling factor is an important parameter that states how much power is 

transfened between two beams. Its value varies between 0 and 1, where unity corresponds 

to the zero loss condition. 
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CHAPTER 3 Quasi-Optical Measurement System Description 

and Design 

3.1 Introduction 

This chapter presents a review of the various types of measurement systems that 

can be used to characterise materials. The quasi-optical transmission/reflection 

measurement system is found to be the best candidate, and the complete design of the 

various components of this setup are described. The measurement technique and 

calibration process are also reported. 

3.2 Comparison of Measurement Systems and Techniques for Material 

Characterisation 

The choice of a measurement system depends on many factors: cost, flexibility, 

frequency of interest, accuracy required, shape of the sample, physical modification of the 

sample, etc. This section presents various measurement techniques and how the quasi-

optical measurement system best suits our current needs. 

3.2.1 Characterisation Techniques 

The characterisation techniques used to measure materials can be separated into 

three main categories: reflection techniques, transmission/reflection techniques and 

resonance techniques. The first two  techniques  consist of measuring the S-parameters of 

the sample, fi-om which the dielectric parameters can be extracted. The reflection 
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techniques require that the sample under test is backed with metal and only the reflection 

coefficient is recorded [17, 18] whereas the transmission/reflection techniques measure 

both transmission and reflection coefficients [19, 20] (the quasi-optical test bench to be 

developed is a reflection/transmission measurement system). Resonance techniques 

normally consist of introducing a slab of dielectric material into a resonator. The dielectric 

properties of the material are then obtained from the resonance frequency and the width of 

the resonance peak [21;22]. 

Reflection and transmission/reflection techniques have the advantage of being 

broadband techniques, whereas resonance techniques only provide the information near the 

resonance frequency. Therefore, resonance techniques are not suited for materials that are 

characterised by a large variation of the permittivity over frequency, water being an 

example. 

Transmission/reflection techniques have been found quite inaccurate in measuring 

the loss tangent of low-loss materials (loss tangent less than 0.005) and medium-loss 

materials (loss tangent between 0.005 and 0.1) [19]. Results obtained using reflection 

techniques revealed that this approach is suited for high-loss and medium-loss materials, 

but it is not accurate for low-loss materials [17]. Resonance techniques are usually very 

sensitive, which makes them good for measuring low-loss materials and medium-loss 

materials with loss tangents up to about 0.05 [21]. However, their performance degrades 

rapidly as the loss tangent increases above 0.05 since the resonance may become 

indistinguishable. For this work, as mentioned in Chapter 1, one of the uses for the 

measurement setup is to measure semiconductor materials when exposed to optical 

illumination. This causes an increase in conductivity, thereby increasing the losses in the 
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material. For this reason, resonance techniques are not appropriate for measuring these 

semiconductors. Since reflection techniques require metal backing, optical illumination 

would not be possible from behind the sample and the metal layer could limit the accuracy 

of the measurement if the semiconductor thiclçness is smaller than the skin depth. 

Therefore, reflection techniques are not the best choice either. 

Finally, transmission/reflection techniques allow the measurement of any type of 

material, including magnetic and anisotropic materials [23]. This is usually not the case 

for the two other techniques, although some complex resonance techniques allow the 

determination of magnetic properties. Furthermore, even if this technique is not as 

accurate as the others for measuring the loss tangent, it is not an essential feature for the 

continuation of the project since the intended usage of this system is for the measurement 

of optically-induced materials, which would be quite lossy. Moreover, for low-loss 

materials, lmowledge of the loss tangent is not as important as the dielectric constant since 

below a certain range the loss tangent value is norinally not significant. These reasons led 

to the choice of the transmission/reflection technique. 

3.2.2 Types of Transmission/Reflection Techniques 

Different types of transmission media can be used in the determination of material 

properties. The most important types are: waveguide, coaxial, transmission lines and free-

space. The quasi-optical test bench is a free-space measurement system. In the present 

case, the frequency of interest is 30 GHz. As frequency increases, losses inside many 

transmission media increase and phase measurement becomes inaccurate. This is the case 

for coaxial cables and most printed lines. 
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Waveguides are known to be efficient at high frequencies. However, using 

waveguide technology requires high-precision machining of the sample under test, which 

has to be inserted into the waveguide. Positioning of the sample is also critical, especially 

at high frequency since the dimensions of the waveguide are small, making alignment 

more difficult. All these issues lead to increased process cost. Furthermore, optical 

illumination inside a waveguide would be a complicated task to achieve. 

A free-space measurement technique is not affected by these drawbacks. Free-

space measurements allow contactless and non-destructive characterisation, which makes 

possible physical modification of the sample under test, such as variation of its temperature 

or optical illumination. The sample preparation is relatively simple when compared to 

alternative methods. Finally, the measurement system is flexible as it can be used to 

measure quasi-optical components as well as materials [24]. 

The free-space transmission/reflection or quasi-optical test bench has some 

disadvantages. As mentioned in the previous section, it is not as accurate as other 

techniques for measuring the loss tangent of low-loss materials. Misalignments are also 

critical to the accuracy of the system. Chapter 4 is devoted to the misalignment issue. 

Misalignments can also be responsible for other problems, like having a non-plane wave at 

the surface of the sample. Accuracy of the measurement is also reduced because of the 

standing wave or multiple reflections between the two feed horns. Other source of errors 

in the measurement include diffraction, finite size of the sample and reflection from the 

environment [23]. Table 3.1 presents the major advantages and disadvantages of the quasi-

optical measurement system. 
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Plane Wave / Beam 
Waist Location 

Lens 1 

Horn 1 
Sample .417 

Table 3.1: Advantages and disadvantages of the free-space measurement system. 

Advantages 	 Disadvantages  
Contactless and non-destructive 	Misalignments  
Simple sample preparation 	Standing wave  
Broadband measurement 	Diffraction  
High-frequency 	Inaccurate loss tangent for low- 
Measurement flexibility 	and medium-loss materials 

3.3 Topology of the Quasi-Optical Test Bench 

The measurement system is designed to obtain the amplitude and phase of the 

reflection and transmission coefficients of a thin planar sample of material. This data is 

then used to determine the dielectric properties of the sample. In order to obtain this data, 

a two-port measurement system is necessary. A popular free-space two-port configuration 

for material measurement is shown in Figure 3.1. A similar configuration was previously 

reported in [19, 20, 24, 25]. 

Gaussian Beam Profile 	Lens 2  

Figure 3.1: Quasi-optical test bench. 
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The quasi-optical test bench uses two antennas, typically feed ho rns, to launch 

Gaussian beams. The Gaussian beams are then refocused with hyperbolic lenses. 

Refocusing the beams also has the advantage of creating a Gaussian plane wave midway 

between the two lenses. The sample under test is placed at this location, which allows the 

use of plane wave theory in order to extract the material properties, as will be shown in 

Chapter 5. Furthermore, the quasi-optical test bench is designed to be symmetrical, i.e. the 

components on each side of the sample under test are identical and the distance between 

the components is the same. 

3.4 Component Design 

This section presents the design of the constitutive components of the quasi-optical 

apparatus. More specifically, the choice and characterisation of a launching device and a 

focusing lens are presented. Finally, the complete setup is studied as a unit. 

3.4.1 Gaussian Beam Launcher 

The choice of an antenna capable of radiating a Gaussian beam is critical. If the 

radiated beam is not Gaussian or if it is too wide, Gaussian optics approximations may no 

longer apply. As mentioned in Chapter 2, the launching components were chosen to be 

pyramidal feed horns. 

For simplicity, we are interested in symmetrical beams for both E- and H-planes. 

This allows for the use of rotationally symmetric lenses, which can be inserted into the 

setup without the need of rotational alignment along the x and y axes. Table 3.2 presents 

the dimensions of the feed hom used (see Figure 2.13 for more details). Such dimensions 
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a 35 
(3-1) 

guarantee symmetrical beams and large enough beam waist radius to allow application of 

the paraxial wave equation. For these dimensions, the ratio b over a is 

According to (2-16), we can state that the propagating beam launched by this feed hom is 

symmetrical. From (2-17), these dimensions result in a beam waist radius of about 

34)0  0.32(35mm) 11.2mm or 14)0  0.44(25mm) 1 lmm 	(3-2) 

For a measurement system designed to operate at 30 GHz, the free-space wavelength is 

10 mm; therefore, the values of the beam waist radius obtained in (3-2) show that it is 

larger than a wavelength, and the paraxial approximation can be applied. 

To verify the symmetry of the beam and to evaluate with more accuracy the beam 

waist radius, the far-field radiation patterns of the feed horns were measured. Figure 3.2 

shows the measured radiation patterns for both feed horns at 30 GHz. In addition, a 

Gaussian beam pattern is included in the radiation patterns in order to compare with the 

feed hom patterns. From the radiation patterns, it is observed that E-plane and H-plane 

radiation can be considered synunetrical from 00  up to about ±20°. Moreover, the 

asymptotic beam growth angle (which conesponds to the angle where the power drops to 

1/e2  or —8.686 dB) is found to be approximately 16°. From (2-19), using a wavelength of 

Table 3.2: Measured dimensions of rectangular feed horn. 

Dimension 	 Symbol Value (mm)  
Longest dimension of the aperture 	a 	35  
Smallest dimension of the aperture 	b 	25  
Extension length 	 L 	77  
Waveguide longest dimension 	al 	7.112  
Waveguide smallest dimension 	1) 1 	3.556 

37 



30 

20 

10 

0 

-10 

-20 

-30 

-40 

-50 

-60 

-70 

- E-plane Co-pol 
- — H-plane Co-pol 

E-plane X-pol 
–411— H-plane X-pol 

- - • - - Gaussian beam 

1 	1 	1 	1 	1 	1 	1 I 	1 	L 	1 

30 60 90 

30 

20 

10 

0 

-20 

0 -30 

-40 

-50 

-60 

-70 

F-1-1 L  

• E-plane Co-pol 
–II— H-plane Co-pol 

• E-plane X-pol 
- — H-plane X-pol 

- -• - - Gaussian beam 

1 	 1 	 1 	 1 	 1 	 1 	1 	1 	1 	1 	 1 	1 	1 I 	II 1 	 1 	 1 	 I1  

90 30 60 

-90 	-60 	-30 	0 
Angle (degrees) 

(a) 

-90 	-60 	-30 	0 
Angle (degrees) 

(b) 

Figure 3.2: Far-Field radiation patterns and Gaussian beam profile of beam waist 
radius 1.1 cm for (a) feed horn at port 1; (b) feed horn at port 2. 
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(3-5) 

dh  =18.79mm +94.08mm —95.69mm =- 17.18mm . 	 (3-6) 

10 mm, a beam waist radius of 11.1 mm is found, which is in agreement with the 

approximate results in (3-2). Furthermore, the Gaussian beam in Figure 3.2 is obtained 

with a beam waist radius equal to 11 mm and reveals that the E-plane and H-plane co-pol 

radiation patterns are fairly Gaussian up to about ±20°. 

We  are now interested in the location of the beam waist with respect to the aperture 

of the hom. Appendix A develops all the required formulas to be applied in order to find 

the apex-to-aperture distance and the slant length. Table 3.3 presents the results of the 

apex-to-aperture distance and the slant length in both E- and H-plane. In addition, (2-21) 

and (2-23) are used to calculate the beam waist location with respect to the aperture plane. 

In the E-plane: 

0.5 	 0.5 

[2nwo2j
2 } 

88.28mm 	27r(1 lmm) 2  
— 21 70mm 

ÂroPe 	
2  	{1± [1 

(10mm) (88. 28mm) 	

} 

(3-3) 

de = 21.70mm +87.39mm —88.28mm = 20.81mm. 	 (3-4) 

In the H-plane: 

2  0.5 

+ 
[
1 - 

( 27/W
° 

2   j 	} 95.69mm {
1± 

[
1 	

27c(1 immy 	1'1 =18.79mm , 
\. 20 Ph 	 2 	 (10mm)(95.69mm) 

Table 3.3: Calculated values for a rectangular feed horn. 

Dimension 	 Symbol Value (mm)  
Apex-to-aperture distance in the E-plane 	Pe 	87.39  
Apex-to-aperture distance in the H-plane 	ph 	94.08  
Slant length in the E-plane 	 Pe 	88.28  
Slant length in the H-plane 	 Ph 	95.69 
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Table 3.4: Quasi-optical parameters of the pyramidal horn. 

Parameter 	 Symbol Value (mm)  
Beam waist radius or Input beam waist radius 	wo  or win  11  
Waist-to-aperture distance 	 d 	19 

The effective beam waist location is chosen to be about the average of the two values 

found above: 

d +d 20.81mm+17.18mm cl 	h = 	 - 19mm . 
2 	 2 

Table 3.4 shows the quasi-optical parameters of the pyramidal horn . 

(3-7) 

3.4.2 Focusing Lenses and Lens Design 

The lens is designed to satisfy the following requirements: 

— the focal length is chosen in order to focus the beam to an appropriate size; 

— the focal length is chosen to offer a large enough separation between the components of 

the test bench; 

— the diameter is chosen so that a large fraction of the power is intercepted. 

The lenses used were designed using a Plexiglas material. The diameter of the lens 

was 89.27 mm, the thickness was 14.94 mm and the focal length was designed to be 93 

mm. Knowing that Plexiglas has a refractive index of 1.6, which corresponds to a 

dielectric constant of 2.56 [8], the equation of the lens, as given by (2-29), is: 

x 2  +y2  =1.56z 2 + (111.6mm)z 	 (3-8) 

Table 3.5 summarises the parameters of the lens. 
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0.5 

= 29.07mm . (3-11) 

Table 3.5: Parameters of the Plexiglas focusing lens. 

Parameter 	Symbol 	Value  
Focal length (mm) 	f 	93  
Diameter (mm) 	D 	89.27  
Thickness (mm) 	T 	14.94  
Dielectric constant 	Er 	2.56 

As will be discussed in section 3.4.3, the size of the sample under test is limited to 

a diameter of 75nun. This will have a considerable effect on the choice of the output beam 

waist as it must be shorter than this size in order to avoid any undesired diffraction at the 

edge of the sample. Using (2-28), it can be shown [25] that 98.89% of the power is 

intercepted if the radius of the sample is 1.5 times larger than the output beam waist radius, 

or that 99.97% of the power is intercepted if it is 2 times larger. For a focal length of 93 

mm and assuming the input beam waist is 11 mm, the output beam waist radius at 30 GHz 

is obtained using (2-25): 

20f (10mm)(93mm)  
wout = 	= 	 2\  = 6.91mm . 

nwi„ 	7n1 lmm) 

With such a value of output beam waist radius and a sample of radius equal to 37.5 mm, 

(3-9) 

the fraction of the power intercepted is given by (2-28): 

2 

Fe  = 1 —  exp[-2(.11 1=1— exp[ 2
(  37.5mm  )21

=  
26.91mm 

(3-10) 

The diameter of the lens can give us the value of the edge taper at the lens location. 

In order to find this value, the beam radius must be known at the input surface of the lens. 

This is determined using (2-10): 

2 0.5 

	

W(Z  = f) = w 0[1 + /4f 	= MM +2 	11 [1 r(iomm)(93mm) 
 2 

	

2tW O 	 g(11MM) 2  j  
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Knowing the value of the diameter of the lens, the edge taper can be found using (2-27): 

Te (dB)=8.686( 89.27min12 ) 2  =20.5dB . 
29.07mm 

(3-12) 

Therefore, more than 99% of the power is intercepted by the lens. 

The ratio of the focal length over the diameter of the lens provides useful 

information on the validity of the thin lens approximation. For large ratios off/D, as it is 

the case in optics since propagating beams are usually fairly well collimated, the thin lens 

approximation holds. However, for small f/D ratios, i.e. for f/D = 1, the thin lens 

approximation is not valid and the thickness of the lens must be considered. In this case, 

the f/D ratio is 1.042, which is fairly small. Therefore, some parameters like the output 

beam waist may have to be corrected later on. 

The other important parameter is the width of the beam intercepted by the lens. 

Figure 3.3 shows the width of the beam intercepted by the lens. The intercepted angle is 

calculated from this figure. The value obtained should be close to the Gaussian 

approximation, as shown in Figure 3.2. With the appropriate values, we find that: 

89.27mm 0 = arctan( D/2  = arctan 	  = 22.47° , 	(3-13) 
f +T 	2(93.00mm +14.94mm) 

which is close enough to the estimated value of 20° to conclude that the intercepted beam 

is fairly Gaussian. 

3.4.3 Sample Under Test 

The sample under test is placed at the output beam waist location, where a plane 

wave exists. The size of the output beam waist radius must be smaller than the sample 
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D 

Figure 3.3: Width of the propagating beam intercepted by the lens. 

under test, typically between 1.5 and 2 times. From (3-9), lcnowing that the samples to be 

measured are circular disks with diameter of 75 mm, the ratio of the sample radius over the 

output beam waist radius is found to be 1.39, which is close enough to the required values. 

From (3-10), it was found that almost 98% of the power is intercepted by the sample. The 

size of the samples was dictated by the silicon wafers available for the future experiments 

with optical illumination. The thickness of the samples is typically between 0.25 mm and 

3 mm. 

3.4.4 Component Positioning 

The separation between the various components of the quasi-optical test bench is 

critical. As discussed in section 2.4.3, it was decided to have the distance between the 

input beam waist and the input plane of the lens equal to the focal length of the lens. Thus, 

the distance between the output beam waist and the input plane of the lens is also equal to 
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the focal length of the lens. The sample under test is then placed at the output beam waist. 

Therefore, a plane wave is obtained at the sample location since a beam waist always 

corresponds to a point where the radius of curvature of the propagating Gaussian beam is 

infinite. 

Figure 3.4 shows the theoretical dimensions of the measurement system. 

Theoretically, maximum power transfer occurs when the distance between the output beam 

waist and the input plane of the lens is equal to the focal length of the lens. Therefore, the 

separation between the horn and the lens was chosen in order to maximise the power 

transfer. Similarly, the distance between the lenses was chosen using the same technique, 

while keeping the distance between the horn and lens constant. The experimental 

dimensions of the setup are close to the theoretical ones. 

Figure 3.4: Dimensions of the measurement system. 
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3.5 Measurement Technique and Calibration 

3.5.1 Measurement Technique 

In order to determine the dielectric constant of a sample under test, the magnitude 

and phase of the reflection and transmission coefficients of the sample must be determined. 

Determining the transmission coefficient requires a two-port measurement, thus a vector 

network analyser was used. The ports of the analyser were connected to the horn antennas 

of the quasi-optical test bench as shown in Figure 3.5. Pictures of the measurement system 

are presented in Figure 3.6. 

3.5.2 Types of Calibration Techniques 

Measurements performed with a network analyser require calibration in order to 

compensate for the systematic errors of the instrument. Calibration is performed by 

measuring standards and is used to characterise and correct the systematic errors. 

Figure 3.5: Quasi-optical measurement system. 
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(a) 

(b) 

Figure 3.6: Pictures of the quasi-optical measurement system (a) Overall view; (b) RF 
components. 
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Calibration processes can be separated in two main groups: standard calibration and • 

self-calibration. The standard calibration technique is also known as short-open-load-

through (SOLT) calibration. It is the most common type of calibration, however it offers 

less accuracy because more standards have to be measured and, as the frequency increases, 

the short and open standards are difficult to define because of the increasing effect of 

parasitic inductances and capacitances [26]. Self-calibration techniques use a different 

approach based on the information obtained from transmission lines rather than discrete 

standards [27]. The advantage over the SOLT method is that less standards are used. 

Different types of self-calibration exists, but essentially they can be summarised as 

through-reflect-line (TRL) calibration and through-reflect-match (TRM) calibration. TRL 

calibration requires two different lengths of transmission lines (through and line) and a 

high-reflection standard (reflect), normally an open-circuit line, but a short-circuit line is 

also possible. The difference between the two lengths of line must be around a quarter 

wavelength, therefore the TRL is bandwidth limited [27]. The bandwidth can be extended 

if necessary by using more than two lengths of line. In many applications, like on-wafer 

probe systems [26], the equipment used to measure devices does not allow movement of 

the ports, which makes the TRL calibration unsuitable. TRM calibration uses a single line 

(through) and a reflective standard (reflect), but the major difference over TRL is the use 

of a match standard, which has the benefit of not limiting the bandwidth and allowing 

fixed locations of the ports. 

In the cuiTent measurement system, the free-space quasi-optical link has to be 

calibrated. Most of the free-space measurement systems reported [19, 20, 24, 25] are 

calibrated using a TRL method. The main reason appears to be that SOLT calibration is 

47 



difficult to perform in free space since the open standard has to be created artificially using 

periodic structure technology, in which case the standard is very narrowband. 

Using TRL calibration means one of the horn-fed lenses has to be moved by a 

distance of about a quarter wavelength. This is not a viable approach in the current 

measurement system, where the location of the components can be measured with a 

precision of only about 1 mm which, at 30 GHz, represents a tenth of a wavelength. This 

uncertainty in position would result in large phase errors and would lead to an incorrect 

calibration. Thus, the TRM calibration method is used for this quasi-optical measurement 

system since the method does not require any of the components to be repositioned during 

the calibration process. 

3.5.3 TR1VI Calibration 

The TRM calibration requires three standards. For each standard, four parameters 

can be recorded: 

— forward reflection coefficient, Sii ; 

— forward transmission coefficient, S21; 

— reverse transmission coefficient, S12; 

— reverse reflection coefficient, S22. 

Therefore, the total number of parameters from the standards in the calibration process is 

12. This yields a system of 12 equations to be solved. However, the error model for self-

calibration problems is usually described as two two-port error adapters connected on each 

side of the device under test [28]. This means each error adapter contains four parameters, 

for a total of eight parameters. Thus, only eight equations are required to solve the system 
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of equations, so that eight parameters of the standards are sufficient to fully calibrate the 

system. The resulting self-calibration eight-term error model contains as much 

information as a standard-calibration 10-tenn en-or model [29], i.e. a standard-calibration 

with excluded isolation. In other words, the standard-calibration 10-term model can be 

derived fi-om the self-calibration error model. 

For one of the standards, it was shown that all four parameters must be known [28]. 

This is usually done for the through standard as it is the simplest of all. For the others, 

only the reflection coefficients (Si/ and Sn) are recorded. One of the standards is a 

reference to the characteristic impedance, therefore the reflection coefficients must be low 

[28]. In this case, a match standard is used. The last standard must present a high 

impedance mismatch, so a highly reflectiVe device is used [28]. 

Many calibration algorithms have been proposed for TRM calibration. In 

particular, it was shown [28] that only seven parameters could be used rather than eight to 

calibrate the system because of the correlation between the two en-or adapters. For the 

calibration of the quasi-optical measurement system, the algorithms used are those of the 

network analyser [30] and require eight parameters to be measured. 

3.5.4 Calibration Standards and Procedure 

Since self-calibration techniques are normally used for planar circuits, the planar 

standards have to be transformed into free-space standards. The through standard simply 

corresponds to free-space transmission. The reflect standard is realised using a polished 

aluminium plate of diameter equal to the diameter of the samples to be tested and thickness 

equal to 1.34 mm. Aluminium was preferred over other metals because it is highly 
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conductivity, low-cost, easy to machine and commonly unaffected by oxide. The thickness 

of the plate is accounted for in the calibration process. The match standard is made of 

cone-shaped microwave absorbing material from Resin Systems Corporation. The cones 

have a length of 45 mm and they are backed by a flat sheet of absorbing material of 

thickness equal to 13 mm. Again, the diameter of this standard is the same as the one of 

the samples to be measured. Figure 3.7 shows the standards used in the TRM calibration. 

To verify the quality of the standards used, their performance was measured at 30 

GHz. First, the return loss of a simple horn-fed lens was measured to be 18.5 dB. Second, 

the other horn-fed lens was placed so that the measurement system is formed (see 

(a) 

(b) 

(c) 

Figure 3.7: Calibration standards (a) Through: no standard applied; (b) Match: 
absorber cones; (c) Reflect: metal plate. 
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Figure 3.7a), in which case the return loss was found to be 13.3 dB, which is still 

• acceptable as it does not degrade the match considerably. Third, when the match standard 

was applied (see Figure 3.7b), the return loss was 18.1 dB. This shows that the match 

standard is efficient as the return loss obtained is almost identical to the result for the 

single horn-fed lens. Finally, when inserting the metal plate (see Figure 3.7c), a return loss 

of 3.7 dB was obtained, which corresponds to a satisfyingly high mismatch to conclude 

that the aluminium plate is a good reflect standard. 

The transmission coefficient of each standard with calibration at the input of the 

hom antennas was also measured. The through standard showed a transmission coefficient 

of —3.7 dB, which indicates that almost half the power launched by one of the feed hom is 

received at the other end. This is a satisfyingly high value, which is similar to the 

reflection coefficient when the reflect standard is applied. Moreover, the transmission 

coefficient for the reflect and match standards is below —30 dB, which is quite low and 

shows that not much power is transmitted when these standards are applied. 

Table 3.6 summarises the previous results. In addition, results of the standards 

obtained after TRM calibration of the measurement system are also presented. These 

results reveal a dynamic range better than 50 dB for the reflection coefficients and 29 dB 

for the transmission coefficient. 

Table 3.6: Calibration standards results. 

Calibration 	Standard calibration at horn input 	Free-space TRM calibration  
Standard 	Reflection (S11) 	Transmission (S21) 	Reflection  (Su) 	Transmission (S21)  
Through 	-13.3 dB 	-3.7 dB 	<-50 dB 	— 0 dB  
Reflect 	-3.7 dB 	-33.5 dB 	-0.3 dB 	-29 dB  
Match 	-18.1 dB 	-37.2 dB 	<-50 dB 	-34 dB  
One port 	-18.5 dB 	 - 	 - 	 - 
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CHAPTER 4 Misalignments in Quasi-Optical Measurement 

System 

4.1 Introduction 

In setting up a quasi-optical test bench, accuracy of alignment is an important issue 

since small misalignments can result in an appreciable loss of power, which might lead to 

inaccurate results. This chapter presents a study of misalignment in the quasi-optical test 

bench which expands upon the work published in [31]. One of the main objectives is to 

investigate the degree of sensitivity of each component of the setup. The analysis is based 

on the Gaussian beam coupling formulation presented in Chapter 2. 

4.2 Structural Design 

Precision equipment designed for optical applications, providing alignment 

accuracy of the order of micrometres, is available. Since the test bench is designed to 

operate in the millimetre wave frequency band, the structural design should be a 

compromise between the structural complexity, which has cost implications, and the 

tolerable misalignrnent level. As a low cost and flexible alternative, the quasi-optical test 

bench was initially fabricated with a mechanical precision of the order of millimetres. 

However, such a precision may not be sufficient for some components of the 

measurement system. Therefore, it is necessary to know which components are most 

sensitive to misalignments and where the structure should be enhanced to maintain an 

acceptable level of performance. Also, no strict precaution is needed for less critical 
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misalignments such that complexity and cost are reduced. In other words, the objective is 

to design the test bench to minimise misalignment errors that can most degrade its 

performance. 

4.3 Study of Misalignments 

4.3.1 Types of Misalignments 

The study of misalig-nments involved the analysis of three types of misalignments: 

tilt, axial and transverse offset. Figure 4.1 shows these different types of misalignments 

for a component of the test bench assuming propagation in the z direction. These 

misalignments are: 

— Ax: transverse offset in x; 

— dy: transverse offset in y; 

— zlz: axial offset (in z); 

— Oxz : tilt in xz plane (Yaw); 

— Be: tilt in yz plane (pitch). 

The tilt in the xy plane (roll) is not considered since it is not related to the Gaussian beam 

coupling, but rather to the polarisation mismatch. Furthermore, this tilt is negligible in the 

setup. 

4.3.2 Occurrence of Simultaneous Misalignments 

The Gaussian beam analysis presented in this section is based on previously 

published material [8, 31, 32]. The objective of this section is to develop knowledge on 

the combination of multiple misalignments of different types occurring at the same time. 
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Figure 4.1: Possible misalignments of a component of the quasi-optical test bench. 

A one-dimensional Gaussian beam distribution as defined by (2-31) is first 

considered. Along x, two types of misalignments are possible: transverse offset, dx, and 

tilt, Oxz. The transverse offset affects directly the variable x; the tilt introduces a distance 

shift in the direction of propagation, which can be converted into a phase shift [33]. Figure 

4.2 shows the tilt of two coupling Gaussian beam. From this figure, 

z = x sin Oxz  , 	 (4-l) 

and the phase shift introduced is 

3,0 = ko z = —
27r z . 
R.D 

(4-2) 
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Tilted Propagating Beam 

(4-3) 

(4-4) 

Propagating Beam 

Figure 4.2: Tilt of tvvo coupling beams in the xz plane. 

Substituting (4-1) into (4-2): 

27r 	. 
—xs1nt9x, , 

and for small angles: 

27r 
A 0 x 0„, . 

Therefore, (2-31), assuming  mis alignments,  can be rewritten as 

u (x ) = 
0.25 

2 
2 j exp[ 	A°2 c)2  j le-(x  Ax)2 jexp[— 	x0x, , 	(4-5) 

ewx 	 wx 	2oR x 	10 

and we can apply (2-32) to obtain the field coupling coefficient: 

_ 	(  2  J0.25  ex[ 	AX)2 
 + j 

ir(x Axa  )2 	271-  
X  xza a b 2.1[ 711,v xa 2 	 2 

Wxa 	 2O Rxa 
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Reorganising (4-6): 
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the solution of (4-7) leads to the following result: 

—10.5 

{[[ 21Xa  +  &bj 

• exp 	w'a 	wxb   
( 1 + 1J

+J  
lj  

	

Wxa 	Wxb 

	

2 	2 	
20  R b Rxé , 

—A)Cb j+(01,b —O rza  )j1 2  
20 	R.„„ 

57 



Equation (4-8) is a very important result that dictates the occurrence of simultanéous 

misalignments. The same derivation can be performed in y, which will produce a similar 

result. If no misalignments are present, only the term in front of the exponential remains 

and the same result as (2-34) is obtained. 

Note that even though the axial offset Az does not appear directly in the coupling 

equation, it is accounted for through the parameters of each beam, i.e. w and R. Those two 

parameters are functions of distance z, as shown by equations (2-10) and (2-11), so that if 

that distance is varied through the axial offset dz, the beam radius and radius of curvature 

are modified accordingly to take into account this variation in the calculation of the power 

coupling factor. 

4.4 Results 

Results were simulated with Mathcad [34], in which all five types of misalignment 

shown in Figure 4.1 can be varied for all four components of the test bench, leading to the 

total power coupling factor as the final result. The parameters of the feed horns and 

focusing lenses can also be varied so that Mathcad can be used for any two-port quasi-

optical test bench with the same configuration. 

The power coupling factor calculation is performed between any two adjacent 

components of the test bench, i.e. between horn 1 and lens 1; lens 1 and lens 2; and lens 2 

and horn 2. This leads to three intermediate power coupling factors, which are then 

multiplied to give the total power coupling factor for the entire test bench: 

K= K  hornl,lensIK  lensl,1ens2 K  lens2,horn2 • (4-9) 
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Knowing that the test bench is symmetrical, a given misalignment in hom 1 gives 

the sanie total power coupling factor K as if it occurrnd on hom 2. The same applies for 

lens 1 and lens 2. Also, since the beam waist radius is symmetrical, similar misalignments 

in the x and y directions create the same power coupling factor in both dimensions. 

In order to compare the simulated results with experimental results, measurements 

were obtained using a microwave source connected at one of the feed horns while a power 

meter was connected to the other. Misalignments were then introduced in the test bench 

and the resulting power variation was measured. 

Experimental and theoretical results for certain misalignments are given in Figures 

4.3 to 4.8: Figure 4.3 presents the transverse offset of a horn; Figure 4.4 presents the 

transverse offset of a lens; Figure 4.5 presents the tilt of a hom; Figure 4.6 presents the tilt 

of a lens; Figure 4.7 presents the axial offset between a hom and a lens and; Figure 4.8 

presents the axial offset between the lenses. Furthermore, each figure shows an illustration 

of the conesponding misalignment. 

The theoretical results (labelled theoretical) were determined using the parameters 

of the beam reported in Chapter 3, which are summarised in Table 4.1. However, it was 

found that these results do not agree as expected with the experimental results for some 

misalignments: in the case of transverse offsets (see Figures 4.3 and 4.4), the difference 

between experimental results and theory can be as high as 1 dB. 

Table 4.1: Beam parameters of the horn-lens arrangement. 

Parameter 	 Symbol Value (mm)  
Input beam waist radius 	win 	11  
Output beam waist radius 	w0111 	26.91  
Focal length 	 f 	93 
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f IlWinWout  (4-10) 

In an attempt to improve agreement between theory and experimentation, the 

parameters of the beam were modified according to [15]. In [15], the following 

observations are made: 

— the Gaussian beam method using thin lens or thick lens models is not accurate for 

lenses with f/D ratios around 1; 

— the thin lens approximation breaks down when the input beam waist is located at a 

distance smaller than 1.5 D from the lens; 

— the beam size of a horn with a fundamental Gaussian beam is about 20% larger than the 

measured beam at large distances from the horn aperture. 

The first and second observations imply that (2-25) is no longer valid, therefore we should 

write: 

The third observation reveals a diScrepancy between theory and measurement while 

applying (2-19). The value of the input beam radius waist was obtained from 

measurement. However, the third statement says that, for the same beam waist radius, 

theoretical and experimental beams are different at large distances. Since the theoretical 

beam is used in the analysis, this value is not accurate. Therefore, to match the measured 

beam with the fundamental beam, the value of the input beam waist radius should be 

increased by 20%. This will have the effect of decreasing the fundamental beam at large 

distance by the same amount, which will match the theoretical and experimental values at 

large distances. We then obtain a new value of input beam waist radius of 13 mm instead 

of 11 mm. From (4-10), increasing the input beam waist radius will have the effect of 
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Table 4.2: Corrected beam parameters of the horn-lens arrangement. 

Parameter 	 Symbol Value (mm)  
Input beam waist radius 	win 	13  
Output beam waist radius 	wow 	25  
Focal length 	 f 	93 

reducing the  output  beam waist radius, but not by the same amount. The value of the 

output beam waist is then set to 25 mm. Note that the focal length of the lens is unchanged 

fi-om the design value, as observed in [35]. These beam parameters, referred to as 

corrected beam parameters, are presented in Table 4.2. The theoretical results obtained 

with the con-ected beam parameters (labeled theoretical - corrected) are also plotted in 

Figures 4.3 to 4.8. 

4.5 Discussion 

Analysis of Figures 4.3 to 4.8 reveals that the corrected beam parameters result in a 

better agreement with measured values than the uncorrected ones, as was expected. In 

each case, the misaligiunent introduced for opposite components is nearly identical, which 

confirms the symmetry of the test bench. - 

The transverse offset of either the hom or the lens was found to be about the same. 

Typically, a loss of 3 dB or less was observed for an offset of 10 nun. The tilt of a hom 

was found to be a very sensitive parameter, where a loss of 5 dB to 6 dB was observed at 

an angle of 100 . Theoretically, using the thin lens approximation or ideal components, the 

tilt of a lens should not introduce any loss in the system. Experimentally, a loss of about 

0.5 dB was observed at about 10 0, which can be explained by the fact that the effective 

area of the lens is reduced. 
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The axial offset between horn and lens leads to ripples in the experimental patterns. 

The theoretical equations do not take into account this phenomenon, which is explained by 

a simple standing wave present between the horn and lens due to wave impedance 

mismatch at the surface of the lens. The standing wave is caused by reflection of the 

power, which combines in-phase or out-of-phase, and creates ripples. According to 

standing wave theory, the ripples should be of period equal to half a wavelength, in this 

case 5 mm, which is what we observe here. As the horn is moved away from the lens 

(positive offset), the experimental curves follow well the corrected theoretical curve. 

However, as the horn is moved closer to the lens (negative offset), the experimental curves 

decrease more rapidly than the corrected theoretical curve. This is explained by the fact 

that less power is transmitted through the lens and more power is reflected as the horn gets 

closer to the lens. The axial offset between the two lenses presents the same kind of 

ripples, which again are caused by a standing wave. This time, the standing wave is due to 

wave reflection between lenses. In both case of axial offset, the fundamental power loss is 

not significant, but because of the presence of the standing wave, power variation as high 

as 1 dB can be observed for relatively small misalignments. 

This analysis has revealed that care must be taken to ensure the same exact 

positioning of all the components of the system during an entire measurement session. In 

some cases, especially for axial misalignments, major power variations as high as 1 dB can 

occur by moving some components by only a quarter wavelength, i.e. 2.5 mm (see Figure 

4.8). However, if the measurement system is calibrated with slight misalignments and if 

those misalignments remain constant during the entire measurement process, the errors 

should be insignificant since the misalignments are accounted for by the calibration 
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process. Therefore, the component precision of the test bench structure seems to be 

acceptable and, in order to reduce the overall cost, no modifications were made. 

In conclusion, a more complete stu.dy of the misalignments in a quasi-optical test 

bench could be conducted, taking into account efficient thick lens modeling and multimode 

Gaussian beam analysis. However, it is believed that such an analysis would be extremely 

complex and unnecessary if one is only interested in a general behavior of misalignments. 

A simple Gaussian optics, single mode analysis is sufficient to give a good estimate. 
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CHAPTER 5 Dielectric Material Properties Determination 

5.1 Introduction 

A complete procedure for determining the dielectric constant of materials from S-

parameters measured with the calibrated quasi-optical measurement system is presented in 

this chapter. Two correction terms are introduced to compensate for errors caused by the 

lateral misplacement of the sample and by the calibration procedure. Algebraic and 

numerical extraction techniques are presented. This chapter provides details about the 

work published in [36]. 

5.2 Preliminary Measurements 

Using the previously described apparatus, S-parameters of a few samples were 

measured. The measured samples were low-permittivity materials with thickness between 

0.5 mm and 3 mm. It was observed that many ripples of large amplitude are present when 

measuring from 28 GHz to 32 GHz. This is not a surprise since such ripples, which are 

caused by a standing wave between the lenses, have already been observed when changing 

the lens separation in Chapter 4 (axial offset). In this case, the separation between the 

lenses is not changed, however introducing a sample of dielectric constant greater than one 

has the effect of changing the overall electrical length between the lenses, which is similar 

to changing the distance between the lenses. Unfortunately, there is no easy means to 

compensate for such ripples because it is a broadband measurement, i.e. the electrical 

length varies with the frequency. 
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The amplitude of the ripples can easily be lowered if the wave impedance 

mismatch at the lens interface is reduced. One way to reduce the wave impedance 

mismatch is to use lenses with lower dielectric constant. Typically, the lens dielectric 

constant is preferred to be between 2 and 3, because a lower dielectric constant (1-2) 

requires fairly thick lenses and high dielectric constant (higher than 3) increases the 

mismatch. 

Figures 5.1 and 5.2 present the magnitude and phase of the reflection and 

transmission coefficients for a sheet of GML 1000 with dielectric constant of 3.05 and 

thickness of 0.508 mm. In these figures, large ripples are present in both magnitude and 

phase of reflection and transmission coefficients for Plexiglas lenses. The magnitude of 

the ripples can be as high as 2 dB for the reflection coefficient and almost 1 dB high for the 

transmission coefficient, whereas the phase drift is almost 20° for the reflection coefficient 

and 5° for the transmission coefficient. 

The Plexiglas lenses used have a dielectric constant around 2.56. In order to reduce 

the wave impedance mismatch at the lens interface, new lenses with lower dielectric 

constant were fabricated. The material used was Tivar 1000 with a typical dielectric 

constant of 2.3. The design of these lenses is presented in Appendix B. Table 5.1 

summarises the parameters of the Tivar lens. 

Table 5.1: Parameters of the Tivar focusing lens. 

Parameter 	Symbol 	Value  
Focal length (mm) 	f 	90.00  
Diameter (mm) 	D 	77.65  
Thickness (mm) 	T 	13.62  
Dielectric constant 	Er 	2.3  
Edge taper (dB) 	Te 	20 
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With the Tivar lenses, Figures 5.1 and 5.2 show that the amplitude of the ripples is 

lower in every case. The magnitude of the ripples is less than 1 dB for the reflection 

coefficient and less than 0.3 dB for the transmission coefficient. In the case of the phases, 

the drift angle is about 5° for the reflection coefficient and about 2° for the transmission 

coefficient. 

Finally, note that, in order to provide comparison between measurements taken 

with the two different lenses, the correction terms presented in section 5.4.2 and section 

5.4.3 have been applied in the results of Figures 5.1 and 5.2. 

5.3 Normal Plane Wave on Dielectric Slab 

In order to characterise materials using the free-space approach, the S-parameters 

of the sample under test are required. As discussed in Chapter 3, the quasi-optical test 

bench is designed to create a Gaussian plane wave at the sample location, which allows 

plane wave theory to be used in the calculations. In this section, the S-matrix of a sheet of 

material is derived. 

The S-parameters of a sample are represented in Figure 5.3, which are: 

— forward reflection coefficient, Sii ; 

— forward transmission coefficient, S21; 

— reverse transmission coefficient, S12; 

— reverse reflection coefficient, S22. 

While measuring passive elements such as a bulk slab of material with a symmetrical 

measurement system, the scattering matrix should be reciprocal: 

= S22  and S21 = S2 1 • 	 (5-1)  
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Figure 5.3: S-parameters of a slab of dielectric material. 

Therefore, the S-matrix can be written as 

[s].[rs Ts1.[Irs I exPG0r, ) ITs  I expG0Ts  )1 
Ts  Fs  j LITs  I exP(i0r, ) Irs I exP(Ors  )_I ' 

where 

SI I  =s22  = rs , 	 (5-3) 

S2I = SI2 = TS , 	
(5-4) 

in which case Fs and Ts are the reflection and transmission coefficients, respectively. In 

(5-2), S11 and S22 are set equal to a value Fs; similarly S21 and S12 are set equal to a value 

Ts. In addition, both Fs and Ts are separated into magnitude and phase components. 

Theoretically, both reflection and transmission coefficients are functions of the 

thickness, complex permittivity and complex permeability of the material. A straight-

forward derivation [37] leads to the following results: 

(5-2) 
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(5-5) 

(5-6) 

(5-7) 

(5-8) 

z s  = (5-9) 

(5-10) 

(5-11) 

4110 Z A  = 	, 
co  

Ys = lcolrIFE 

(5-12) 

(5-13) 

r= 	r_ (5-14) 

r(1-22 )  
FS= 1 — r2  ' 

Ts= T(1-1-2  ) 
' 

where 

z r=  S —z A  
5 Z s  +Z,  

exp(— ys t). 

In (5-7), _Pis the reflection coefficient at the air-sample interface, Zs is the wave impedance 

in the slab, and ZA is the wave impedance in free space. In (5-8), r is the transmission 

coefficient in the material sample over a distance equal to its thickness, ys  is the 

propagation constant in the sample under test, and t is its thickness. Zs, ZA and ys  are 

defined as follows: 

where 

= ecier 

/1  = 

and co is the angular frequency. From (5-9) and (5-10), (5-7) simplifies to 
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5.4 Data Smoothing and Correction Techniques 

Before applying the extraction process, some processing has to be performed to the 

recorded S-parameters. This section presents the three processes to be applied, which are 

data smoothing and two correction terms. 

5.4.1 Data Smoothing 

As shown in Figures 5.1 and 5.2, many ripples with significant amplitude are 

present in the S-parameters because of the multiple reflections between the lenses and the 

sample under test. This is a problem because such reflections alter the S-parameters of the 

sample under test. To overcome this problem, one would need to perform in-deep 

modelling of the measurement system in order to compensate for the multiple reflections 

between the lenses. However, this is a complicated task. 

To reduce the ripples amplitude, time-domain gating has been used [17, 19, 23]. 

Time-domain gating is implemented by performing the inverse Fourier transform of the 

frequency-domain S-parameters, such that time-domain S-parameters are obtained. Then, 

a filter in time is applied and S-parameters are re-transformed in the frequency domain by 

applying a Fourier transform. The filter in time eliminates undesired reflection from a 

device in the system. For a measurement system like the one presented in this report, time-

domain gating could be used to reduce the mismatch and, consequently, the multiple 

reflections present between the lenses [17]. This has the effect of smoothing the results 

since it removes the ripples. 

However, network analysers with time-domain gating are expensive. Because our 

equipment was not equipped with such capabilities, other means had to be found in order 
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to eliminate the ripples. It was shown [25] that accurate results can be obtained without 

time-domain gating if the beam waist is fairly large compared to a wavelength. Since this 

is not our case (such highly collimated beams could only be obtained with much larger 

antennas at Ka band), some processing needs to be applied in order to reduce the ripples. 

Knowing that time-domain gating has the effect of smoothing the result, a simple 

smoothing algorithm was adopted instead of time-domain gating in an attempt to improve 

the results. The smoothing was performed with Mathcad using a function that first 

calculates the median of n adjacent points, then its residual, and finally the residual is 

smoothed using the median technique. According to Mathsoft [34], this type of smoothing 

algorithm is one of the most robust as it is less affected by spulious data points, which can 

be present as shown in Figures 5.1 and 5.2. 

Smoothed and unsmoothed data is presented in Figures 5.4 and 5.5 for a 0.508-mm 

sheet of GML 1000 with dielectric constant of 3.05. Comparison with theory reveals that 

the maximum magnitude difference is about 0.3 dB for the reflection coefficient and less 

than 0.1 dB for the transmission coefficient whereas the phase difference is less than 2° for 

the reflection coefficient and less than 0.5° for the transmission coefficient. This is a 

significant improvement compared to the unsmoothed results. Note that a comparison of 

smoothed results and results processed with time-domain gating would give a better idea of 

the performance of the two techniques, however this was not possible since our network 

analyser is not equipped with time-domain gating. Nevertheless, we conclude that such a 

smoothing is very efficient and much less expensive compared to time-domain gating. 
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5.4.2 Sample Misplacement Correction 

Errors due to misplacement of the sample in the quasi-optical test bench can easily 

arise, especially for a measurement system where the precision is of the order of a 

millimetre. Therefore, some investigation is required and a correction term accounting for 

this type of error must be developed. 

5.4.2.1 Problem Statement 

During the measurement process, the complete S-matrix is recorded, i.e. reflection 

coefficients (Si / and S22) and transmission coefficients (S21 and S12). Since the test bench 

is syminetrical, Si/ should be equal to 522, and 521 should be equal to  512. However, in 

practice, this is not always the case. 

The main problem occurs with the phase of the reflection coefficients. In the 

measurement setup used, the phase of S1 1  is usually different from the phase of 322. The 

major reason to explain this discrepancy is that the sample may not be exactly at the 

reference plane (set by the calibration) or at an equal distance from the two feeding 

elements, i.e. at the output beam waist location. 

In [38], some expressions accounting for the reference planes location in the case of 

waveguide measurement techniques are presented. These expressions require the 

knowledge of the thicicness of the sample under test and its location or the distance of each 

reference plane. In the case of our free-space measurement system, this is a problem since 

the sample location is not perfectly known. However, by taking a similar approach, the 

problem can be solved differently without knowing the location of the sample. The result 

is a simple correction term. 
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5.4.2.2 Theory 

If the sample is placed exactly at the reference plane as shown in Figure 5.3, the 

resulting matrix will be the same as (5-2). However, if the location of the reference plane 

is moved by a distance 8, as shown in Figure 5.6, the resulting S-matrix, S', is obtained by 

moving the reference plane [37] and is found to be 

[51  [ exp(+ yo 8) 	0 	l[si exp(+ yo cS) 	0 	1 
o 	exp(— 708)] L 	0 	exP(—  708)] 

[so  rexp(+ yo
) 
	o 	TIrs I expUors ) IT, I exP(i Ors  )][exP(+ Yo 8) 

j 	0 	exP(—  YoelTs I exP(i Ors ) 'Fs I exl4i Ors  ) 	0 

[IF  s I exPG04' r, 	08) 	ITs  exPG Ors ) 

	

irsI exPUOT, 	Irsiexp(iors —2r08)] 
[S1— 	

' 

1 
exp(— 

(5-15) 

x,y 

/11e 	 Îz  
Plane Wave 
Location 

Figure 5.6: Side view of sample suffering from misplacement in direction of 
propagation. 
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bo -= ao 1/60 (5-16) 

ZSii i = Ors  +2fio 8  (5-18) 

where yo is the propagation constant in free space: 

In (5-16), ao is the attenuation constant in free space and flo is the phase constant in free 

space. Knowing that ao is equal to zero, (5-15) can be rewritten as 

[sq. i ex14/ (95r,y  2/60 (5 )] 	IT5 exP (jOrs  ) 	1 
ITs lexP U Ors  ) 	Irs I exP hrs  2fie 6.)li • 

(5-17) 

5.4.2.3 Correction 

Comparing (5-17) with (5-2) reveals the following information: 

— forward and reverse transmission coefficients of the slab, S21 and Si2, are not modified; 

— the magnitudes of the reflection coefficients, Sll and 522, are also unmodified; 

— the phases of the reflection coefficients is modified, but the only difference is the 

addition or subtraction of a 2,608term. 

Thus, from (5-17): 

ZS 22 ?-= Ors  2flS, 	 (5-19) 

and one can simply cancel out the 2'608 term by averaging the phase of the reflection 

coefficients. The true phase of the reflection coefficient is then obtained: 

'ZS
I 
 --ELS22 1  

Ors 	 (5-20) • 2 

We therefore conclude that the positioning of the sample along the axis of propagation is 

not very critical, as long as the sample remains close to the plane wave location. 

Otherwise, the wave might not be plane or nearly plane and there might be some error 
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introduced if a curved wave is incident on the sample. This misalignment becomes more 

critical as the frequency increases. 

5.4.3 Calibration Process Correction 

A second correction terni is introduced to take into account the thickness of the 

sample, which is not included in the conventional TRM calibration. This correction 

assumes that the phase of the fonvard and reverse reflection coefficients were initially 

corrected using (5-20). 

5.4.3.1 Problem Statement 

Calibration of the free-space measurement system using a TRM process assigns a 

default value of zero for the phase of the transmission coefficient in the absence of a 

sample under test. Moreover, in the default configuration, the reflection coefficient has 

zero magnitude, therefore its phase is somehow undeterinined. 

Analysis should be performed to find if the phase values obtained after calibration 

of the system are accurate or not. A simple investigation would be to perform 

measurements on a virtual sample of air. Measuring a sample of air, or any medium that 

would be of perinittivity equal to the ambient pemlittivity, basically means that no sample 

is being measured. In other words, the measurement system is unchanged and remains in 

its default configuration. Therefore, experimentally, the thickness of the virtual sample 

can be varied as desired without affecting the measured phase values. On the other hand, 

theoretical analysis reveals that the phase values should change with the thickness of the 
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T5-air = eXP(— 2tr  t) (5-23) 

sample. Thus, there is a contradiction between experimental and theoretical phase values. 

For that reason, a correction is needed to compensate for this inconsistency. 

5.4.3.2 Theory 

From (5-14), the reflection coefficient F of a sample of air is equal to zero because 

both relative permittivity and relative permeability are equal to unity. From (5-8): 

exp(— yo t) = exp(— j fl o t) = exp(— 	 (5-21) 

again for a sample of air. In (5-21), 20 corresponds to the free-space wavelength. 

Substituting these results for air in (5-5) and (5-6): 

FS-air 	, (5-22) 

which proves that, for a sample of air, the phase of the transmission coefficient 

theoretically varies with the thickness. 

Unfortunately, the phase of the reflection coefficient is undetermined in this case 

because its magnitude is zero. Nevertheless, the phase value can be found mathematically 

using (5-5) to (5-14) for any sample. Knowing that a lossless material has real values of er  

and sur, it is easy to show that F is real and that r has a magnitude equal to unity. 

Furthermore, in the case of a dielectric material, 4. is greater than unity and ,u,. is equal to 

one. From (5-14), this means T will  be negative. Considering the reflection coefficient of 

the slab, (5-5) can be modified as follow: 

	

[exp( ja)J2 	— G[1— exp( j2a)]  =  —  G[1—  cos(20-)— j sh (2er)], (5-24) 

	

1— G 2 [exp(j(y)] 2 	1—G 2  exp( j2c7) 1— G 2  cos(2cr)— jG 2 sin(2o-) 

where G is the magnitude ofT and o-  is the phase of v. We are interested in the phase of Ts: 
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G 2  sin(2a)  

cos(20), 1— G 2  cos(20) 07's = Cr + arctan (5-27) 

Ors  = arctan[ sin(20) 	arctan[ 	G2 sin(2e)  
1— cos(2e) 	1— G 2  COS(20-)j 

Or 	
cos cr 

s  = arctan( 	 + arctan  G2  sin (20-)  
sin e ) 
	

1— G 2  COS(20-)j 

+ arctan[  G2  sin(2) j + 900  if 0° 5 o-
1— G 2  coecr) 

0-  + arctan
/ G2 sin(2e)j 

90° if -180° 5_ a 5_ 0° 
G 2  coecr) 

(5-25) 

Thus, the phase of the reflection coefficient is obtained. 

The phase of the transmission coefficient can also be obtained mathematically. 

Considering the transmission coefficient of the slab, (5-6) can be modified as follows: 

Ts  — [exp( j cr)](1— G 2  ) 	[COS(CY)+ sin (o )](1  — G 2  ) 
= 1— G 2 [expUcri]

2  r 	1— G 2  cos(2o) —  3G 2  sin (2o-) 

Once again, we are interested in the phase: 

Ors  = arctan sin(o-)  arctan(  G2 sin(2o)
cos(e) 	1— G 2  cos(2a)j 

(5-26) 

5.4.3.3 Correction 

Comparison of (5-25) and (5-27) demonstrates that the phase difference between 

reflection and transmission coefficients of a slab is always +90°. This is always true for 

lossless materials, however this is not the case for lossy materials since I' is complex and I-

has a magnitude less than unity. It is also observed that the phase of the reflection 

coefficient never takes values between —90 0  and +900 . This is shown by considering 
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Orelative—measured = Orelative—theoretical • (5-28) 

(5-25): this equation is discontinuous as u tends to 0° or 1800 . Taking the one-sided limits 

from the right and from the left at values of o-  equal to 00  or 180° proves this statement. 

Hence, one will see that no value lies between —90° and +90°. This is true for any value of 

G. The discontinuity in the phase of rs  is in fact due to the discontinuous nature of the 

inverse tangent. 

Appendix C provides an alternative approach of understanding the behaviour of the 

reflection and transmission coefficients based on graphical approaches. From this point of 

view, it is observed that, for a dielectric constant of unity, the phase of the transmission 

coefficient of the slab varies with thickness, but tends to 0° as the thiclmess decreases. A 

similar comment can be formulated by considering the phase of the reflection coefficient 

of the slab, however in this case the phase tends to -90°. These observations are in 

agreement with (5-25) and (5-27). Therefore, for infinitely thin samples, the phase 

provided by the measurements with the TRM calibration applied would be accurate. This 

correction can then be seen as a compensation for the thickness of the sample, which is not 

taken into account by the TRM calibration. In other words, the phase measured is a 

relative phase rather than an absolute phase. 

Once it is known that a relative phase value is measured, the appropriate conection 

can be developed. Knowing that the measured phase shift should be equal to the 

theoretical phase shift, or that the measured relative phase is equal to the theoretical 

relative phase, we simply state that: 

The relative phase means the difference between the phase of the sample of thickness t and 

the phase of a virtual sample of air of the same thickness t. Comparison is made with air 
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360°  	t. -" 0 	0 
(5-31) 

Ors 	— Ors 	= Ors  — Or —nleaeured 	 —nir—meaviered 	 - S—alr 
(5-32) 

Ors_m. OTs_n„ ± 90°  (5-34) 

because it corresponds to the default configuration and it was shown from measurement 

that the phase is null, no matter what the thickness of the sample is. Thus: 

°TS—mcemured °TS—air—measured = °TS — ° TS—atr 	
(5-29) 

In this case, the phase measured by the sample of air is zero, as demonstrated previously. 

Reorganising (5-29): 

OTs 	 OTs_e. (5-30) 

where the phase of the transmission coefficient for a sample of air is obtained from (5-21): 

The correlation between the phase of the reflection coefficient and the phase of the 

transmission coefficient means that the phase of the reflection coefficient must also be 

corrected by the same amount as the phase of the transmission coefficient. Therefore, 

since the resulting value may end up in the forbidden region, we may have to apply an 

additional 180 0  correction. Consequently, proceeding the same way as for the case of the 

transmission coefficient is possible. Similarly to (5-29): 

Knowing that there is a ±90° phase shift between the measured phase of the reflection and 

transmission coefficients (see Appendix C) and that the measured phase of the 

transmission coefficient is equal to zero: 

= OTs_ofr-„,—„d ± 90 0  = ±900  . 	 (5-33) 

Similarly, From (5-25) and (5-27): 
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Substituting (5-33) and (5-34) in (5-32) and considering only valid solutions for the phase 

of the reflection coefficient: 

s  = 	Ø  Or 	
Ors—b- —180°' 

• —180° Or 	—90 0  or 90° Or 	1800 . (5-35) 

5.5 Dielectric Constant Extraction Techniques 

Having applied the correction terms, the reflection and transmission coefficients of 

the sample can be used to extract the dielectric constant. Various techniques can be 

utilised for the extraction of the dielectric constant from the S-parameter measurements 

[19, 38]. These techniques can be separated into two main categories: algebraic techniques 

and numerical techniques. 

5.5.1 Algebraic Techniques 

Algebraic techniques are usually based on explicit expressions. If the dielectric 

constant of a sample is known, the reflection and transmission coefficients at the air-

sample interface are easily obtained using (5-7) and (5-8). Then, the reflection and 

transmission coefficients of the slab are obtained using (5-5) and (5-6). 

However, in problems where the dielectric constant must be determined, the 

measured parameters are the reflection and transmission coefficients of the sample. From 

these values, the reflection and transmission coefficients at the air-sample interface must 

be calculated, then the dielectric constant is found. In other words, it is the inverse 

problem compared to what is presented in section 5.3. By manipulation of (5-5) and (5-6), 
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(5-36) 

(5-37) 

s 
141 -1  j(27zn — 

(5-39) 

1 	
+ts 	

1 
— 

—2 	 2 
(5-40) 

=  2° . S Ire7 (5-41) 

the values of the reflection and transmission coefficients at the air-sample interface are 

obtained: 

= K±Vic2  , 

Ts  = 	 
1 — Fe  

where 

s 2  — T s 2  +1  K = 	  
2Fs  

(5-38) 

Derivations of these equations are presented in Appendix D. 

In (5-8), we see that v is obtained fi-om ys, the propagation constant in the sample 

under test. By proper manipulation and considering multiple solutions [19]: 

where n is an integer. If the sample under test has a thickness less than half a guided 

wavelength in the slab, n is equal to zero. Otherwise, n must respect the following rule: 

where As is the guided wavelength in the slab. The problem is the following: Er  is 

unknown, hence  t  is also unknown because of the relationship between the two 

parameters: 

Therefore, the accurate value of n, and consequently the accurate value of ys, remain to be 

found. 
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t = n 	n2 s  = 	° . 
22  

(5-44) 

Assuming the propagation constant of the slab is known, the dielectric constant and 

the relative permeability can be found using the following equations [19]: 

r  yo  i+r)' 

„. ys  p+F) 
 yo  1— F 

(5-42) 

(5-43) 

For dielectric materials, it is known that the permeability is equal to unity. Therefore, a 

procedure based on the calculation of both dielectric constant and relative permeability is 

developed to accurately find the value of ys and hence the value of n.  The accurate values 

are the ones for which the relative permeability is unity. Thus, the dielectric constant is 

calculated using the same values. 

The algebraic method is straightforward and relatively simple to apply once the 

ambiguity of multiple solutions is eliminated. On the other hand, this method is found to 

be inaccurate for a certain range of sample thicknesses. It is observed that the magnitude 

of the reflection coefficient tends to zero when the thickness of the sample is close to 

multiples of half a guided wavelength in the sample [38] (see, for example, Figure C.1(a)): 

In this case, (5-36) and (5-38) become unstable. It is easy to determine if measurements 

are performed close to multiples of half a guided wavelength in the sample since this 

occurs when the magnitude of Fs is low. There are ways to overcome this problem, such 

as measuring at a different frequency or changing the thickness of the sample, but these 

modifications are not always desired or possible. Finally, we conclude that this extraction 
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r(i — 22 )  z-(1 — r2  )1 
1— F2 Z.2 1 — F2 r2 

2-(1 —  r 2  )  r(i —r2 ) 
(5-45) [s] = [FT: 

Ts ] 

technique, despite some obvious advantages, is unsuitable as a universal extraction 

solution, but can be used to aid in the convergence of numerical techniques. 

5.5.2 Numerical Techniques 

As an alternative, numerical techniques are considered. Numerical techniques 

cover a wide range of algorithms, such as root-finding algorithms, non-linear regression 

procedures, genetic algorithms, etc. These methods are usually more robust compared to 

algebraic techniques. We have selected two different numerical approaches to extract the 

dielectric constant: a root-finding algorithm and a genetic algorithm. 

5.5.2.1 Root-Finding Algorithm 

A root-finding algorithm (RFA) is used to extract the permittivity. The root-

finding algorithm is embedded in Mathcad [34] and employs the secant and Mueller 

methods to find the root of an equation. The tolerance criterion has been reduced from its 

default value to improve convergence. The equation used is based on the determinant of 

the S-matrix [38]. From (5-2) to (5-6): 

Li—r 2 1-2  i—r 2 r2  J 

Applying the determinant: 

det[S] = Fs ' — Ts  2  = [ F(1  — '1-2 )1 2  [  i.(1— F2  if 
L 1-1-2T2 i 	L 1 -1-21-2 j ' 

r  2 T  2 = r2  (i. —  2/ 2' .2  + 4 ) 	2(12F2  +F)  s  _ s   

(1 — r 2  T2  )2 	(1 — r2  z-2  )2 	' 
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2 
F 

 Ts 2 = 

r2e2 

(r2 2r2e2 F2e4 )7  (1,2 2r2e2 F4e2 

In' =Vs', and (5-48) 

1-S2 Ts 2  = (1-'2  + F2  e4 — T2  —F4 T2 ) 

(1.--r 2,2 )2  

F  2 	2 = (n2 
e2 _ F2 e2 s Ts   

	

2 	2 =  I 	
e2 

 

	

I  S 	
S 	r2 /-2  • 

F2,e2 

(5-46) 

In (5-46), T's and 7's are the corrected reflection and transmission coefficients of the sample 

obtained from measurement. Moreover, both  r and r are a function of the dielectric 

constant, Sr,  which is the unknown to determine. Since the root-finding algorithm requires 

a guess value to initialise the process, the value of the permittivity found with the algebraic 

technique described in section 5.5.1 is used [38]. 

Equation (5-46) will remain stable if T or r tend to zero. However, the determinant 

of the matrix must not be equal to zero. hi this case: 

det[s]= Fs2  —Ts 2  = OF 2 = T5 2 . 	 (5-47) 

For (5-47) to be true: 

LFs  = LTs  or Ll's  = LTs  +180° 	 (5-49) 

From the observations made in Appendix C, the phase of the reflection coefficient of the 

slab is always ±90 0  the phase of the transmission coefficient of the slab for lossless 

materials. Therefore, the determinant of the S-matrix will never be equal to zero, at least 
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not for low-loss materials, and we can conclude that proceeding with the determinant 

equation will ensure stability. 

Finally, it was found that trying to solve this problem with uncorrected reflection 

and transmission coefficients can make the root-finding algoritlun unable to converge to a 

solution. This shows the importance of the con-ection terms reported previously. 

5.5.2.2 Genetic Algorithm 

A novel alternative to handle parameter extraction problems is the application of a 

genetic algorithm (GA). In this case, the material parameters are determined by the GA 

from a best fit of the corrected reflection and transmission coefficients. 

The genetic algorithm used has been developed at the Communications Research 

Centre to be used for different optimisation problems [39]. In the parameter extraction 

problem, (5-5) to (5-14) are inserted into the genetic algoritlun. Initially, a certain number 

of trial solutions of dielecti-ic constant are generated randomly by the GA. These trial 

solutions are referred to as the population. Then, reflection and transmission coefficients 

are calculated for each trial solution and an error function is computed for each case. The 

error function consists of comparing the real and imaginary parts of the reflection and 

transmission coefficients of each trial solution with the corrected coefficients obtained 

fi-om the measurement process: 

error [Re(Fs  trial  )— Re  (rs  corracted )r , [Ini(rs friai )_ in(Fs corrected )12 

+ [Re (7-, s trial)_Re (T s corrected )12  +[Irn(istrial)_14T 
s cm.e c  led  r. 	 (5-50) 

Then, only the entities with the best fitness, i.e. the entities that give a minimal error 

function, remain. The other entities are simply discarded. The number of entities to be 
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replaced depends on the replacement ratio of the population, which is initially specified. 

From the remaining entities, a new set of entities is obtained, which form a new 

population. The process of creating a new population from a previous one is called a 

generation. The procedure is repeated for a certain number of generations. Using a 

genetic algorithm, global optimisation is obtained for a predetermined range of values. 

This is a significant advantage over a root-finding algorithm because if the initial value is 

not close enough to the solution, the problem may converge to another solution. For more 

details on genetic algorithms, see [40, 41]. 

Some genetic algorithms allow the user to specify a convergence criterion, which 

stops the computation and ensures convergence for a certain minimal effor. However, the 

algorithm used in this particular case does not support such a stopping criterion. Thus, the 

user must look at the value of the error function to conclude if convergence has occurred, 

in which case the problem has succeeded. If the error function is too high, the problem has 

to be recomputed with a larger population size or more generations. 

The main problem with the genetic algorithm used is that a lot of time was required 

to find a solution. As a comparison, a root-finding algorithm can find a solution for a 

frequency range of about 400 frequency points in only a few seconds whereas the genetic 

algorithm requires almost an hour to converge with about 10 frequency points. Solving a 

10-frequency point problem requires, in average, a population of about 5000 entities with a 

replacement ratio of 50% and around 500 generations. With similar results obtained with 

both RFA and GA, one should wonder if the genetic algorithm is useful for that type of 

problem. For low-loss materials with low value of dielectric constant, the advantage is 

limited, however for high-loss materials or materials with high dielectric constant, the 
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global optimisation nature of the genetic algorithm might be useful as root-finding 

algorithms may not be suited for these types of problems [42]. 

5.6 Measurement Results 

Dielectric and semiconductor materials were measured using the quasi-optical 

measurement system. The dielectric constant for these materials varies between 2 and 12. 

The materials are common materials from circuit board manufacturers or silicon wafers 

providers: RO 3006, RO 4003, RT 5880 and TMM 10i from Rogers Corporation, GML 

1000 from GIL Technologies and n-type high-resistivity 5000 ohm-cm silicon wafer from 

Silicon Quest International. 

Published data on the materials are provided at a frequency of 10 GHz. Our 

measurements were perforined in free space from 28 GHz to 32 GHz. Since the value of 

dielectric constant and loss  tangent  may vary with frequency, comparison of measurements 

over two different bands may not be appropiiate, even though the permittivity is known not 

to vary much between these two frequencies with such materials. 

To overcome this problem, the dielectric samples were sent for characterisation to 

the Radio-Frequency Technology Division at the National Institute of Standards and 

Technology (NIST). Measurements were performed over two different frequency  bands,  

corresponding to the manufacturers' band and the band of the measurement system. This 

allows comparison of manufacturers specifications with NIST split-post technique and our 

measurements with NIST split-cylinder technique. Note that both techniques used at NIST 

are resonance techniques. Measurements performed over two different frequency bands 

allows to verify the variation of the dielectric constant over frequency. 
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Table 5.2 provides the results obtained from the manufacturers, NIST and the free-

space measurement system. The results obtained with the free-space quasi-optical 

measurement system at 30 GHz are denoted CRC in Table 5.2. In order to present results 

over a frequency band rather than at a single frequency point, the extraction process has 

been applied to multiple frequency points. Dielectric constant and loss tangent for various 

materials are presented in Figures 5.7 to 5.14 from 28 GHz to 32 GHz: Figure 5.7 shows 

results for 0.7874-mm RT 5880; Figure 5.8 shows results for 0.508-mm GML 1000; 

Figure 5.9 shows results for 0.762-mm GML 1000; Figure 5.10 shows results for 0.508- 

mm RO 4003; Figure 5.11 shows results for 0.8128-mm RO 4003; Figure 5.12 shows 

results for 0.635-min RO 3006; Figure 5.13 shows results for 0.508-mm TMM 10i and; 

Figure 5.14 shows results for 350-pm high-resistivity silicon. The root-finding algorithm 

(RFA) uses 401 points whereas the genetic algorithm (GA) uses only 9 points. The 

number of points for the genetic algorithm is much less than for the root-finding algorithm 

in order to limit the size of the problem and allow convergence in an acceptable time. 

5.7 Discussion 

Measurements taken at X-band show that comparison of both characterisation 

techniques gives a difference up to about 8% for the dielectric constant and a difference as 

high as +0.001 for the loss tangent. Comparison of NIST measurements at both frequency 

bands shows that the dielectric constant varies by less than 2% from about 10 GHz to 

about 30 GHz and the loss tangent is relatively constant, except for 0.508-mm RO 4003 

and the high-resistivity silicon wafer, where the loss tangent is quite different between the 
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Table 5.2: Measurement results for materials at two different frequency bands using different techniques. 

Material 	 RT5880 	GML1000 	GML1000 	R04003 	R04003 	R03006 	TMM10i 	Silicon 

Thicicness (mm) 	 0.7874 	0.508 	0.762 	0.508 	0.8128 	0.635 	0.508 	0.350 

X-band measurements 

Manufacturers 	Dielectric constant 	2.20 	3.05 	3.20 	3.38 	3.38 	6.15 	9.80 	11.70 

(Stripline resonator) 	Loss tangent 	0.0009 	0.004 	0.004 	0.0027 	0.0027 	0.0025 	0.0020 	0.0030 

NIST 	 Dielectric constant 	2.29 	3.05 	3.30 	3.68 	3.61 	6.57 	10.17 	11.60 

(Split-post) 	 Loss tangent 	0.0010 	0.0051 	0.0051 	0.0028 	0.0027 	0.0016 	0.0018 	0.0041 

Frequency (GHz) 	9.944 	9.946 	9.854 	9.896 	9.815 	9.607 	9.474 	9.593 

K/Ka band measurements 

CRC 	 Dielectric constant 	2.31 	3.06 	3.28 	3.68 	3.48 	6.54 	9.88 	11.30 

(T/R free-space, RFA) 	Loss tangent 	-0.0018 	-0.0006 	0.0056 	0.0013 	0.0031 	0.0232 	0.0158 	0.0105 

CRC 	 Dielectric constant 	2.29 	3.03 	3.24 	3.64 	3.46 	6.41 	9.80 	11.20 

(TIR  free-space, GA) 	Loss tangent 	-0.0016 	-0.0005 	0.0068 	-0.0025 	0.0013 	0.0191 	0.0109 	0.0039 

NIST 	 Dielectric constant 	2.30 	3.02 	- 	3.62 	3.60 	6.59 	10.25 	11.62 

(Split-cylinder) 	Loss tangent 	0.0012 	0.0047 	- 	0.0051 	0.0028 	0.0014 	0.0022 	0.0015 

Frequency (GHz) 	29.531 	29.943 	- 	28.569 	26.425 	22.746 	20.969 	22.621 
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Figure 5.7: Dielectric constant and loss tangent for 0.7874-mm RT 5880. 
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Figure 5.8: Dielectric constant and loss tangent for 0.508-mm GML 1000. 
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Figure 5.9: Dielectric constant and loss tangent for 0.762-mm GML 1000. 
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Figure 5.10: Dielectric constant and loss tangent for 0.508-mm RO 4003. 
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Figure 5.12: Dielectric constant and loss tangent for 0.635-mm RO 3006. 
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Figure 5.13: Dielectric constant and loss tangent for 0.508-mm TMM 10i. 
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Figure 5.14: Dielectric constant and loss tangent for 350-um high-resistivity silicon. 
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two bands. However, the loss tangent of silicon is very sensitive to frequency, therefore 

this type of behaviour was expected. Appendix E explains the conversion of surface 

resistivity to loss tangent for silicon materials. 

Results obtained with the free-space quasi-optical measurement system reveal that 

the two different extraction techniques provide about the same results for the dielectric 

constant, where the difference is less than 2%. These results also agree with those from 

NIST, where the difference is less than 5%. Note that NIST resonance technique at high 

frequency was unable to find a solution for 0.762-mm GML 1000 material, which was 

apparently too lossy for the resonator to produce a clear resonance. 

In the case of the loss tangent, results differ more. 	In fact, the 

transmission/reflection free-space technique seems to fail in some cases since negative 

values of loss tangent are obtained. This confirms the affirmation by Ghodgaonlcar et al. 

[19], who state that loss tangent values less than 0.1 cannot be found accurately with a 

two-port free-space transmission/reflection measurement system. 

Analysis of the broadband measurements reveals that the resulting values of 

dielectric constant and loss tangent are always less for the genetic algorithm compared to 

the root-finding algorithm. This difference may be the result of unequal convergence of 

the two extraction methods. Comparison of the error function in (5-50) using the root-

finding algorithm and the genetic algorithm reveals that the genetic algorithm generally 

offers better convergence than the root-finding algorithm: typical values of eiTor function 

for the genetic algorithm are between 0.00001 and 0.0005 whereas the eiTor function is 

between 0.0001 and 0.0005 for the root-finding algorithm (it is observed that the error 

function varies depending on the material to determine). Nevertheless, it is expected that 
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adjustment of the convergence parameters of both extraction techniques would lead in 

identical results. 

However, the difference in convergence may be explained by the fact that the 

equations to optimise in the two techniques are different: the root-finding algorithm makes 

use of (5-46) while the genetic algorithm exploits (5-5) and (5-6). Thus, since the root-

finding algorithm uses an equation which does not desciibe directly the reflection and 

transmission coefficients of the sample, the convergence may not be as good as for the case 

of the genetic algorithm. 

Finally, we note that the dielectric constant is relatively constant over the frequency 

range of observation, where the highest difference is found to be 4%. On the other hand, 

the loss tangent is found to vary more, which could be explain by the inaccuracy of the 

method for determining the loss tangent. 
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CHAPTER 6 Conclusions and Future Work 

6.1 Summary 

This thesis has described the design and study of a free-space quasi-optical 

measurement system to be used for material characterisation at Ka band. A study of 

misaligmnents was performed using a Gaussian beam coupling formulation. A method for 

determining the properties of dielectric materials, including correction terms due to the 

misplacement of the sample under test and to the calibration procedure, was presented. 

Extraction techniques based on a root-finding algorithm and on a genetic algorithm were 

proposed. 

6.2 Conclusions 

A contactless and non-destructive measurement system, allowing one to physically 

modify the sample -under test, has been realised. The measurement system consists of a 

free-space quasi-optical test bench with a pair of colinear horn-fed lenses connected to a 

network analyser. The major accomplislunents of this work are the following: 

— the design, fabrication and study of the mechanical structure and RF components of the 

measurement system; 

— the study of the effects of component misalignments by means of a Gaussian beam 

coupling formulation; 

— the development of free-space calibration standards and procedure; 

— the application of unique conection terms to conect for sample misplacement and 

calibration procedure; 
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— the use of up-to-date numerical extraction techniques, which include a root-finding 

algorithm and a novel genetic algorithm; 

— the validation of the entire work by comparing our results with those obtained at the 

National Institute of Standards and Technology (NIST). 

Furthemore, the measurement system developed herein is relatively low-cost compared to 

other free-space quasi-optical measurement systems because it employs pyramidal horns, 

millimetre-precision equipment and it does not make use of time-domain gating. Based on 

the above accomplishments and the specific features of this system, it will now be possible 

to undertake the advanced material characterisation and component testing required for 

optically-induced array antenna development, as described in the next section. 

6.3 Future Work 

This thesis reported the characterisation of dielectric materials with relative 

permittivity value below 12 and high-resistivity silicon. Many more types of materials 

could be measured with the quasi-optical measurement system, such as: 

— dielectric materials with high value of dielectric constant; 

— ferrite materials; 

— artificial dielectrics; 

— anisotropie materials; 

— optically-induced semiconductors. 

For the characterisation of some of these materials, the extraction techniques presented in 

this thesis would have to be modified and/or validated. Moreover, quasi-optical 
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components, such as filters, amplifiers and polarisers, could also be measured with this 

measurement system. 

As mentioned in Chapter 1, the next step related to the development of the quasi-

optical measurement system is to integrate optical illumination for the characterisation of 

semiconductor materials with different intensity of optical power. Such an apparatus will 

allow to conduct a study of the induced plasma at the semiconductor surface, then leading 

to optically-controlled anteima design. Moreover, the extraction techniques presented in 

this thesis will have to be verified for the induced plasma characterisation. 

Improvements of the measurement system could also be performed. Some parts of 

the mechanical structure could be replaced to allow better confidence on the alignments. 

In addition, replacing the feed horns with narrower beam antennas or corrugated horns 

could improve the results, however such a change would require major modifications on 

the structure of the measurement system and more investments as such antennas are quite 

expensive. Furtherinore, the lenses could be improved by incorporating a matching layer, 

which would reduce the mismatch at the surface of the lenses and should reduce 

considerably the standing wave amplitude and the ripples in the S-parameter 

measurements. On the other hand, this matching method would limit the broadband 

advantage of the transmission/reflection free-space measurement system since the 

matching layer is designed for a single frequency. 
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APPENDIX A Pyramidal Horn 

A.1 Introduction 

The study of the geometrical structure of the pyramidal horns used to launched the 

Gaussian beam is presented in this appendix. It basically consists of an analysis to obtain 

all the necessary dimensions fi-om the pyramidal horn in order to find the location of the 

apex and the beam waist. 

A.2 Theory 

From the feed horn, only a few dimensions can be measured with accuracy: the 

internal size of the aperture, the internal size of the waveguide and the external extension 

length. All the other dimensions cannot be measured with precision, however they can be 

calculated fi-om the measured ones. This section develops the necessary equations required 

to calculate unknown dimensions. 

Figure A.1 represents the feed hom where some points were identified in order to 

find the missing dimensions. To simplify the analysis, the assumption is made that the 

external extension length is equal to the internal extension length. Table A.1 summarises 

the measured values of the rectangular feed hom. The first dimension to be found is the 

length of the hom, i.e. the size of the segment EE' (or FF', GG' and HH'). By projection of 

the waveguide onto the aperture plane, the length of every segment on the aperture plane 

can be found by simple trigonometry since the waveguide is centred with the hom. 
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I Figure A.1: Decomposition of a feed horn for structural study. 

Considering point A and the surrounding points (E', J and K), the length of segment KE' is 	 I 

obtained as follows: 

AB  — E' F' 
— 	2 	. 

Similarly, the length of segment JE' is obtained: 

AC — E' G' 
2 	. 

Table A.1: Measured values of rectangular feed horn. 

Dimension 	 Symbol 	Segments 	 Value (mm)  
Longest dimension of the aperture 	a 	AB, CD 	 35  
Smallest dimension of the aperture 	b 	AC, BD 	 25  
Extension length 	 L 	AE, BF, CG, DH 	77  
Waveguide longest dimension 	al 	EF, GH (E'F', G'H') 	7.112  
Waveguide smallest dimension 	b1 	EG, FH (E'G', F'H') 	3.556 
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(A-5) 

(A-6) 

(A-7) 

(A-8) 

From (A-1) and (A-2), The length of segment AE' can be found with simple trigonometry: 

-2 -2 -2 
JE' + KE' AE' . 

Furthermore, since the extension length (segment AE) is known, the length of the hom 

(segment EE') can be found using trigonometry: 

-2 -2 
AE' + EE' = 

-2 
 AE . 	 (A-4) 

Once the length of the hom is known, the apex-to-aperture distance can be found in 

both E-plane and H-plane. Figure A.2 shows side views of these two planes, in which C 

corresponds to the length of the hom (segment EE'), H conesponds to the extension height 

of the hom (segment JE') and W corresponds to the extension width of the horn (segment 

KE'). From C and H or W, the flare angle in each plane, a, or ah, can be found: 

tan ce  =—H 
C 

tan al 	. C 

Once the flare angle is known, the apex -to-aperture distance in each plane, pc  and ph can be 

found as follow: 

tan a= 	, 
2p, 

a tan ah  = — 
h 

. 
2p 

 

Similarly, the slant length in each plane, pe  and ph, can also be found: 

sin a  = —, 	 (A-9) 
e  2p, 

a since!, = 	 (A-10) 
2p', 

 

(A-3) 
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Apex 

Apex 

(a) 

(b) 

Figure A.2: Plane view of a horn (a) E-plane; (b) H-plane. 

A.3 Calculation 

In this section, the calculation of the unknown dimensions of the hom is performed. 

From measured values in Table A.1 and using (A-1), the length of segment KE' is 
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	 35mm-7.112mm 
W = KE' = 	 =13.944mm . 

2 
(A-11) 

Using (A-2), the length of segment JE' is 

= 25mm –3 .556min  =10.722mm . 	 (A-12) 
2 

The length of segment AE' is obtained by manipulation of (A-3): 

AE' = -\1 JE12  + KE' 2  = - \I(10.722mm) 2  + (13.944mm)2  =17.590mm . 	(A-13) 

The length of the hom is calculated from (A-4): 

C = EEt = -n I AE 2  – AE' 2  = V(77 mm) 2  –(17 .59mm) 2  = 74.96mm . 	(A-14) 

By manipulating (A-5) and (A-6), the flare angle is obtained in both E-plane and H-plane: 

H 
a, = arctan —

c 
= arctan

(10.722mm  ) 
=  8.14°, 

74.96mm 
(A-15) 

al, = arctan( 
w

) - arctan(
13.944mm 

 j =10.54° . 	 (A-16) 
C – 	74.96mm 

 

Using the result of (A-15), (A-7) can be rearranged so that the apex-to-aperture distance in 

the E-plane is obtained: 

b 	25mm  
P e = 	= 	= 87.39mm . 

2 tan c e 0  2 tan(8.14°) 

Similarly for the apex-to-aperture distance in the H-plane: 

(A-17) 

a 
Ph = 2 tan a h 

35mm 
= 	= 94.08mm . 

2 tan(10.54°) 
(A-18) 

The slant length of each plane are obtained from (A-9) and (A-10): 

	

b 	25mm 

	

PC  =  . 	=  . 	8, = 8.28mm, 
2sin cee  2sm

,
8.14°) 

(A-19) 
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a 	35mm 
Ph =  . 	=• 	= 95.69mrn . 

2smah  2sm(10.54°) 
(A-20) 

Table A.2 summarises the calculated dimensions to be used in the calculation of the beam 

waist location of the horn . 

Table A.2: Calculated dimensions of rectangular feed horn. 

Dimension 	 Symbol Value (mm)  
Apex-to-aperture distance in the E-plane 	pe 	87.39  
Apex-to-aperture distance in the H-plane 	ph 	94.08  
Slant length in the E-plane 	 pe 	88.28  
Slant length in the H-plane 	 Ph 	95.69 
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APPENDIX B Tivar Lenses 

B.1 Introduction 

To improve the performance of the measurement system, the Plexiglas lenses were 

replaced with Tivar 1000 lenses. Tivar 1000 has a dielectric constant lower than Plexiglas, 

therefore the wave impedance mismatch at the surface of the lens is reduced and the S-

parameters are more accurate since the ripples have lower magnitude. This appendix 

presents the design of these lenses. 

B.2 Lens Design 

The Tivar 1000 lenses were introduced to replace the existing Plexiglas lenses. 

Therefore, the new lenses should have similar parameters as the previous lenses, i.e. 

similar focal length, edge taper and diameter. 

The misalignment study performed in Chapter 4 using the original Plexiglas lenses 

revealed that the input and output beam waist radii had to be corrected. Therefore, in the 

new design, the corrected value of input beam waist radius was chosen, i.e. a value of 

13 mm. 

As mentioned in Chapter 3, 98.89% of the power is intercepted if the radius of the 

sample is 1.5 times larger than the output beam waist radius or 99.97% of the power is 

intercepted if it is 2 times larger. Knowing that the radius of the sample is 37.5 mm, an 

output beam radius of about this size is desired, which would give a value between 18.75 

min and 25 mm. hi order to intercept a little more power, the focal length was slightly 

reduced compared to the previous lenses, i.e. a value of 90 mm was chosen compared to 
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93 mm for the previous design. From (4-10), for an input beam waist radius of 13 mm at 

30 GHz, the output beam waist radius is 

/10f
= 

 (10mm)(90mm) 
 22mm . "-= 

7114;i„ 	7413mm) 

Knowing the approximate value of  the output beam waist radius, the approximate fraction 

of the power intercepted is given by (2-28): 

F, =1– exp[– 2(-112 1 =1– exp[ 2(
37.5mm )2 ] = 99.7% . 
22mm 

The diameter of the lens is one of the critical parameter. In order to choose it 

correctly, the beam radius must be known at the input surface of the lens, which is 

determined using (2-10): 

(B-1) 

(B-2) 

w(z = f)=w0  

-0.5 	 0.5 

1+  	13mm 
f j2 	[ (10MM)(90M121  

XWO 	
= 	1+ 	 = 25 . 59mm , (B-3) "

2 g(13mm) 2  

The diameter is then found using (2-27). In this case, an edge taper of 20 dB is chosen, 

which corresponds to a fractional power of 99%. From (2-27): 

D =0.3393(2w)(Te(c/B)) °5  =0.3393(2.(25.59me2Or =77 .65mm . 	(B-4) 

The dielectric material used for the lens is Tivar 1000. This material has a dielectric 

constant of 2.3. A low value of dielectric constant was chosen so that less reflection 

occurs at the surface of the lens. However, in this case the lens is thicker. Finally, the 

shape of the lens is hyperbolic and follows (2-29). With the values off and Cr  known, the 

equation of the lens dimensions is: 

x2  + y2  .1.3z2  + (92.984mm)z 	 (B-5) 

Table B.1: Parameters of the Tivar lens. 

118 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 

I 
I 

Parameter 	Symbol 	Value (mm)  
Focal length 	J 	90.00  
Diameter 	 D 	77.65  
Thickness 	T 	13.62  
Dielectric constant 	er 	2.3 

The thickness of the lens is found to be 13.62 mm using (2-30). Figure B.1 shows the 

focusing lens. Table B.1 summarises the parameters of the lens. 

B.3 Lens Analysis 

As for the Plexiglas lenses, we are interested in knowing the width of the beam 

intercepted by the lens. The intercepted angle is calculated from Figure 3.3: 

i f  D/2 	 77.65mm 0 = arctan 	 = arcta 
 j +T 	4 2(90.00mm +13.62mm)j = 

 20.54°. 
 

This value is close enough to the the estimated value of 20°, and therefore the beam 

intercepted by the focusing lens is fairly Gaussian. 

(B-6) 

Figure B.1: Representation of the shape of the Tivar lens used in the quasi-optical test 
bench. 
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APPENDIX C Representation of Reflection and Transmission 

Coefficients of a Dielectric Slab 

C.1 Introduction 

The goal of this appendix is to provide an alternative approach based on the 

graphical representation to the problem of reflection and transmission coefficients of a 

dielectric sample. It may provide a better understanding of the behaviour of the reflection 

and transmission coefficients of a dielectric slab compared to the mathematical derivations 

presented in Chapter 5. 

C.2 Magnitude and Phase Representation 

Theoretical values of reflection and transmission coefficients of a slab can be 

obtained from (5-5) and (5-6). These values are plotted versus the dielectric constant for 

different sample thicknesses in Figures C.1 and C.2. All samples are lossless, i.e. with a 

real value for the dielectric constant. Comparison of the phase of the reflection and 

transmission coefficients (Figures C.1(b) and C.2(b)) reveals that the phase of the 

reflection coefficient of the sample is always +90° compared to the phase of the 

transmission coefficient of the sample. 

Analysis of the phase of the transmission coefficient reveals that the phase 

decreases as the dielectric constant increases. Furthen-nore, as the thickness decreases, the 

phase tends to zero for the case where the dielectric constant is unity. Similar observations 
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Figure C.1: Magnitude and phase of reflection coefficient of the slab vs dielectric 
constant at 30 GHz. 
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Figure C.2: Magnitude and phase of transmission coefficient of the slab vs dielectric 
constant at 30 GHz. 
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can be made for the phase of the reflection coefficient (Figure C.2(b)), however in that 

case the phase does not tend to zero, but rather to —90 0. In other words, changing the 

thickness of a sample of air will lead to different values of phase for both reflection and 

transmission coefficients of the sample. However, the phase provided by the TRM 

calibration is valid for infinitely thin samples, therefore we can conclude that the 

calibration process does not take into account the thickness of the sample. 

As found mathematically in Chapter 5, the phase of the reflection coefficient never 

takes values between —90 0  and +900. This was also observed in Figure C.1(b), as shown by 

the grey shading. 

C.3 Smith Chart Representation of Lossless Materials 

Another way of representing the reflection and transmission coefficients is using a 

Smith chart. Such a representation gives a better explanation why the phase of the 

reflection coefficient never takes values between —90° and +90°. Reflection and 

transmission coefficients obtained with the sample thicknesses presented in Figures C.1 

and C.2 are shown in Figures C.3 to C.6 using a Smith chart: Figure C.3 presents results 

for a sample thickness of 0.1 mm; Figure C.4 presents results for a sample thickness of 

0.3 mm; Figure C.5 presents results for a sample thickness of 1 mm and; Figure C.6 

presents results for a sample thickness of 3 mm. It is found that the reflection coefficient is 

constrained within the left side of the imaginary axis, which corresponds to angle values 

from +90° to +270° (or —90°). This is true for any dielectric material, even if lossy. 
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	 IReflection coefficient --•—• Transmission coefficient 

Figure C.3: Reflection and transmission coefficients of a 0.1-mm sample vs dielectric 
constant at 30 GHz. 

pa 

270 

I--la-- Reflection coefficient —•—• Transmission coefficient 

Figure C.4: Reflection and transmission coefficients of a 0.3-mm sample vs dielectric 
constant at 30 GHz. 
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1E0 
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210 

	 I—II—  Reflection coefficient --*-- Transmission coefficient 

Figure C.5: Reflection and transmission coefficients of a 1-mm sample vs dielectric 
constant at 30 GHz. 

	 I—a-- Reflection coefficient —•—• Transmission coefficient 

Figure C.6: Reflection and transmission coefficients of a 3-mm sample vs dielectric 
constant at 30 GHz. 
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Moreover, the reflection coefficient is constrained within the circle of normalised 

conductance equal to 1, and the transmission coefficient lies outside the circle of 

normalised conductance equal to 1 and the circle of normalised resistance equal to 1. This 

is true for lossless dielectric materials. This observation is even more evident if the range 

of dielectric constant values is extended. 

Figure C.7 presents results for an extended range of dielectric constant values. This 

helps to understand the correlation between the magnitude and phase. For the reflection 

coefficient, angle values close to +90° corresponds to a low magnitude. On the Smith 

chart, it corresponds to the centre point, where the phase shifts since the slope of the curve 

tends to infinity. Furtherinore, angles close to 1800  corresponds to high values of 

magnitude of reflection coefficient. Similarly, for the transmission coefficient, when the 

phase is close to +90° the magnitude is low and when the phase reaches 0° or 180° the 

magnitude is high. 

C.4 Smith Chart Representation of Lossy Materials 

With the observations made in the previous section, it would be interesting to 

examine the behaviour of lossy materials. Figures C.7 to C.10 present the results for 

different values of loss tangent: Figure C.7 shows results for a lossless sample; Figure C.8 

shows results for a loss tangent of 0.001; Figure C.9 shows results for a loss tangent of 

0.01 and; Figure C.10 shows results for a loss tangent of 0.1. It is found that, as the loss 

tangent increases, the magnitude of the reflection coefficient increases and its angle tends 

to take values around 180°. On the other hand, the transmission coefficient becomes no 
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Figure C.7: Reflection and transmission coefficients of a lossless 3-mm sample vs 
dielectric constant from 1 to 600 at 30 GHz. 

270 

Reflection coefficient 	 Transmission coefficient 

Figure C.8: Reflection and transmission coefficients of a 3-mm sample with loss 
tangent 0.001 vs dielectric constant from 1 to 600 at 30 GHz. 
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Figure C.9: Reflection and transmission coefficients of a 3-mm sample with loss 
tangent 0.01 vs dielectric constant from 1 to 600 at 30 GHz. 
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Figure C.10: Reflection and transmission coefficients of a 3-mm sample with loss 
tangent 0.1 vs dielectric constant from 1 to 600 at 30 GHz. 
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longer constrained outside the circle of normalised conductance equal to 1 and the circle of 

normalised resistance equal to 1, but there is still a forbidden region similar to the shape of 

the two circles. However, this region tends to becomes smaller as the dielectric constant or 

loss tangent increase. For extremely high values of loss tangent, the material looks more 

like a conductive material rather than a dielectric material, and the transmission coefficient 

lies in the centre point of the Smith chart, whereas the reflection coefficient tends to left-

end side of the Smith chart (magnitude of 1 with phase of 180°). 

Finally, it is important to mention that the phase difference between the reflection 

and transmission coefficients will no longer be ±90° for lossy materials. It is found that the 

phase difference becomes more different from ±90° as the loss tangent increases. 
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APPENDIX D Derivation of Reflection and Transmission 

Coefficients of the Air-Sample Interface from the Reflection and 

Transmission Coefficients of the Slab 

D.1 Introduction 

This appendix presents the derivation of the air-slab interface parameters from the 

slab parameters, which are used to analytically find the dielectic constant. 

D.2 Reflection Coefficient Derivation 

The equations of the reflection and transmission coefficients of the slab, 

respectively Fs and Ts, as a function of the reflection and transmission coefficients at the 

air-slab interface, respectively I' and r, are given in Chapter 5: 

,, 	r(1.--1-2 )  
' i S = 	 (D-1) i—r2 T2   

Ts = 1-(1—r2)  
(D-2) 

i—r2 1-2  ' 

The goal is to obtain equations for T' and r as a f-unction of rs and T. Isolating r2  in (D-1): 

rs (1 _ r2,r2) = F(1. _ ,r2 ), 

Fs, — FsF2 2.2  =F — FT2  , 

Fs — r= (rsr 2 — r»2 , 

2 	 T = r(rsr—i) • (D-3) 
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The square root of (D-3) gives a solution for 2: 

.\/r — rsr2  

Substituting (D-4) in (D-2): 

F  —re  (I  F2)  
r— rsr2  

T5 = 	  2 • 
1_ r2 	Fs  j 

F — FsF2  

Simplifying (D-5): 

,\/ r —  re  (1 r2 ) 
r—rsr 2  Ts  = 
1—F2 	 

r—rsr2  

I 	—  
F(1  —rsr) 

r2 —rsr) 

1—r5r—r2  +rsr 

Ts  =  r— r' sF8  , r(i—rsr)`  

T 2 — F—rs (1  r5r)2 , 
r(1—rsr) 

Ts 2  = 
 (c —c5  )(1  FsF)  

rT5 2  = F—F2rs  — Fs  + rrs  2  , 

F2F5  F(F5 2  —Ts 2  1)± Fs  =  o,  

r2  —2r[ Fs  —Ts + 1+1=0 , 
2Fs. 

Ts  = 
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in which a new variable is substituted as follow: 

rs 2 — Ts 2  1r 	+1 = 	 . 
2Fs  

Equation (D-6) can then be simplified: 

F2  —2Fic+1= 0 . 	 (D-8) 

Equation (D-8) is a quadratic equation, therefore solving for Pleads to the following result: 

F= 2K ± V4K 2  —4 
, 

r=K+VK2  —1 . 

Equation (D-9) is the same equation as the one obtained in [19]. There are two possible 

solutions, however there will always be a solution of magnitude greater than unity, which 

has to be rejected. 

D.3 Transmission Coefficient Derivation 

The transmission coefficient r can be derived using the same procedure as for the 

reflection coefficient, however this method provides two solutions and there is no easy 

way to determine which solution is the valid one. Therefore, another approach is used, in 

which r is isolated using (D-1) and (D-2). First, r2  is obtained in (D-3). However applying 

the square root will provide two solutions, which does not solve the problem. Therefore, 

(D-2) is used instead of (D-1), in which r is isolated: 

(D-7) 

2 

(D-9) 

Ts  (1—F2 r2  ) 
1 —F 2 	. 

Then, (D-3) is substituted in (D-10): 

(D-10) 
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Ts  (i. —r2 	j r(rrs  —1) 
› 

1-F2  

Ts (1 rsr 	—F2 1 
FsF — 1 ) 

' 1—r 2  

2 = 
(1— r2  esr —1) 	' 

V --7---  

Ts  krsr — 1) —  (Fs  I' r2 )] 

Ts  (F 2  —1) r = 
(i—r2)(rsr—i)' 

Ts  2= 	 
1— FF 

This value of v provides no ambiguity since only one solution is possible. 

(D-11) 
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APPENDIX E Conversion from Surface Resistivity to Loss 

Tangent for n-Type and p-Type Silicon 

E.1 Introduction 

This appendix provides guidelines to perform conversion from surface resistivity to 

loss tangent for both n-type and p-type silicon. 

E.2 Resistivity and Dopant Density 

In converting between surface resistivity and loss tangent, the first conversion to be 

performed is between resistivity and dopant density, N. In this case, we assume that n-type 

silicon is doped with phosphorus and p-type silicon is doped with boron. This conversion 

can easily be performed from ASTM Standard F 723-97 curves, tables or equations [43]. 

Typical curves are presented in Figure E.1. 

E.3 Dopant Density and Complex Permittivity 

The Debye model for dielectric constant is generally defined for photoinduced 

holes and electrons [44]. However, in this particular case, we are only interested by the 

intrinsic permittivity. For n-type silicon, 

	

Ne,re2 	1 
= 	 ,\ 

	

inesc,(1+ a)2 	
1+ j 2,1 	core j 

Er ep 	
, 

where 

(E-1) 
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(E-2) 

(E-3) 

(E-4) 

I n-type (phosphorus-doped) 
- p-type (boron-doped) 

1 	I 1 1 1111 

e. 

T = fleme 
 e 	q  

Similarly for p-type silicon: 

Nq2i-p
2 	( 

1 
Sr  = ep 	 , +1 j — 

rn 	(11 CO2  1' 	OTC P 0 	P )\. 	P 

where 

lih n  p 
h = 

The loss tangent is then obtained from the complex relative permittivity sr. Constant 

values used in this calculation can be found in Appendix F. 

1o4  IIIIII1 1 	III 1111 II 1 1111 1 	1 1 1 111F I 	1 1 1 11111 	I 	II  111F  1 	I I I 1111 1 	I I I 1111 I  IIlFIlM 

1o3  

102  

! 10 1 

 0 
10°  

. 

10 -2  

1 o' 

10-4  1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 -1.71'à 

10 12 	10 14 	10 16 	10 18 

Dopant density (cm-3 ) 

Figure E.1: Conversion between resistivity and dopant density (curves generated 
from equations in [431). 
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E.4 Conclusion 

it is observed that the complex relative permittivity, and consequently the loss 

tangent, vary with frequency. Therefore, the loss tangent will not be the same depending 

on the frequency, as was observed in Chapter 5. Furthemlore, the dielectric constant, or 

the real part of the relative permittivity, can also vary with frequency, but for high-

resistivity silicon at microwave frequencies, the variation is insignificant. 
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APPENDIX F Physical Constants 

F.1 Free-Space Constants 

Table F.1: Free-space constants. 

Constant 	Symbol 	Value  
Permittivity 	60 	 8.854x10-12  F/m  
Perineability 	po 	1.257x10-6  H/m 

F.2 Physical Constants of Electrons 

Table F.2: Physical constants of electrons and holes. 

Constant 	Symbol 	Value  
Free-electron mass 	"no 	9.109x10-31  kg  
Electronic charge 	q 	1.602x10-19  C 

F.3 Silicon Parameters 

Table F.3: Silicon parameters. 

Parameter 	 Symbol 	Value  
Unperturbed relative permittivity 	ep 	11.7  
Electron mass 	 me 	0.259mo  
Hole mass 	 mp 	0.38m0  
Electron mobility 	 Pe 	1500 cm2/(V.$)  
Hole mobility 	 Ph 	600 cm2/(V.$) 
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