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• 
• 
• 
O  
• 
• Abstract 

• ship image profile. This profile is derived from the original TSAR image 
• following a sequence of image processing steps to filter, rotate, and 
• enhance the ship image. The underlying motivation for the choice of a 
• spatial Fourier spectrum to characterize an image and to serve as the input 
• vector to the neural network classifier is the postulation that such a 
• characterization combined with the learning capability of the neural 

• network can effectively create an image classifier which encompasses and 

111 	 implicitly incorporates the classification criteria used by trained, human 

•
classifiers. The empirical results presented in this report strongly support 
this assertion in that perfect or near-perfect classification accuracies are • , 	routinely obtained for the cases where the neural network classifier is 

• tested using images drawn from the same  TSAR image folders used to 
• train the network. In the case where the classifier is evaluated using 
gib 	 images drawn from image folders not employed in the training phase, the 
• classification accuracies are significantly lower but are found to quickly 
• increase to acceptable levels as the number of distinct images folders used 

• in the training stage is increased. • • • • • • • • • 
• • • • • 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 • 

• 
• An artificial neural network classifier is proposed and evaluated for the 

task of automated classification of ISAR ship imagery. Critical to the 
methodology employed in this research is the adoption of an image 

• feature vector based exclusively upon the spatial Fourier spectrum of the 

• 
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Résumé 

Le présent document propose et évalue un classificateur de réseau 
neuronal artificiel servant au classement automatisé des images de navires 
réalisées à l'aide d'un radar à ouverture synthétique inverse (ROSI). La 
méthode employée par cette recherche exige l'adoption d'un vecteur de 
caractéristiques d'image fondé exclusivement sur le spectre spatial de 
Fourier du profil de l'image des navires. Ce profil est tiré de l'image 
initiale du ROSI ayant fait l'objet d'une série de traitements de l'image 
pour filtrer, tourner et améliorer l'image des navires. Le choix d'un 
spectre spatial de Fourier pour caractériser une image et servir de vecteur 
d'entrée du classificateur de réseau neuronal s'explique par le fait que la 
combinaison d'une telle caractérisation et de la capacité d'apprentissage 
du réseau neuronal peut efficacement créer un classificateur d'images qui 
englobe et intègre implicitement les critères de classification utilisés par 
des classificateurs humains formés. Les résultats empiriques présentés 
dans ce rapport semblent confirmer l'affirmation selon laquelle il est 
possible d'obtenir couramment un classement parfait ou presque parfait 
lorsque le classificateur de réseau neuronal est mis à l'essai à l'aide 
d'images provenant des mêmes dossiers d'images du ROSI utilisés pour 
former le réseau. Quand le classificateur évalue des images provenant de 
dossiers d'images inutilisés lors de l'étape de la formation, alors la 
précision du classement est beaucoup plus faible; toutefois, cette 
précision augmente à des niveaux acceptables à mesure qu'augmente le 
nombre de dossiers d'images distincts utilisés à l'étape de la formation. 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 
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Executive summary 

An analysis is presented of an TSAR image recognition system which is 
based upon the use of an artificial neural network classifier and an image 
feature vector derived from the Fourier spatial frequency spectrum of the 
ship image profile. The empirical results confirm the viability and 
soundness of the premise that characterizing these types of TSAR images 
by a Fourier spatial frequency spectrum leads to accurate, reproducible 
image recognition using an artificial neural network classifier. The 
underlying assumptions that 'human classification rules' can be 
encompassed and enlarged upon by a Fourier spatial frequency spectrum 
and that an appropriately designed and trained neural network can 
discover the essential relationships in the spectral components needed to 
yield accurate pattern recognition are valid ones. The results from several 
empirical trials are given which examine the cases of testing the classifier 
on images drawn from folders used in the training sets versus testing the 
classifier on images drawn from folders not used in the training. When 
using images from common training-testing folders, essentially perfect 
classification results are found for as many as thirteen different ships. 
Conclusions are given along with suggestions for additional work in this 
area of image pattern recognition. 

Sala, K.L. 2006. A Neural Network Classifier for TSAR Ship Imagery. DRDC Ottawa TR 
2006-24/CRC RP-2006-001 Communications Research Centre. 
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Sommaire 

Le présent document propose une analyse du système de reconnaissance 
des images de radar à ouverture synthétique inverse (ROSI) s'appuyant 
sur l'utilisation d'un classificateur de réseau neuronal artificiel et sur un 
vecteur de caractéristiques d'image tiré du spectre des fréquences 
spatiales de Fourier du profil de l'image des navires. Les résultats 
empiriques confirment la viabilité et la justesse du principe selon lequel la 
caractérisation de ces types d'images de ROSI par un spectre des 
fréquences spatiales de Fourier favorise la reconnaissance d'images 
reproductibles et précises à l'aide d'un classificateur de réseau neuronal 
artificiel. Deux hypothèses ont été validées : les « règles de classification 
humaine » peuvent être intégrées et élargies par un spectre des fréquences 
spatiales de Fourier, et un réseau neuronal adéquatement conçu et formé 
peut découvrir les relations essentielles des composants spatiaux requis 
pour obtenir une reconnaissance précise des modèles. Ce document 
compare les résultats de plusieurs essais empiriques concernant la 
classification des images provenant de dossiers utilisés dans les 
ensembles de formation ainsi que les résultats des essais portant sur la 
classification des images tirées de dossiers inutilisés lors de la formation. 
L'utilisation des images provenant de dossiers communs employés 
pendant la formation permet d'obtenir des résultats de classification 
presque parfaits pour un nombre maximal de 13 navires différents. Le 
document présente des conclusions ainsi que des suggestions visant à 
approfondir les travaux dans le domaine de la reconnaissance des modèles 
d'images. 

Sala, K.L. 2006. A Neural Network Classifier for TSAR Ship Imagery. DRDC Ottawa Tà 
2006-24/CRC RP-2006-001 Communications Research Centre. 
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1: Introduction 

The task of automated image classification of SAR or TSAR imagery 
of military and commercial ships is a particularly challenging undertaking 
that involves simultaneously developing a rigourous, general means to 
characterize the underlying patterns in the individual images along with a 
pattern recognition methodology by which correlations in these patterns 
can yield accurate and robust image classification. Research in this area 
has been underway for several years and the Defense Research 
Establishment Ottawa has led much of the Departrnent of Defense effort 
in this field with in-house and contracted projects. A variety of distinctly 
different approaches to this problem have been explored such as classical 
Bayesian classification, image mensuration analysis, template matching, 
and neural network pattern recognition. 

In research efforts reported by Lockheed Martin Canada (Tessier and 
Shahbazian, 2000), a set of classification rules is presented which is 
derived from observations of how human classifiers arrive at a decision as 
to the category and/or identification of a particular ship or ship type. 
What is striking about this empirical set of rules is that the preponderance 
of these rules are based upon the recognition of concurrent spatial 
features within the image, i.e., a characteristic pattern is detected by the 
presence of two or more image features located at reproducible positions 
along the ship image profile (Gagnon L. and Klepko R., 1998, and 
Gouaillier V. and Gagnon L., 1997). 

In the work presented in this report, the approach to defining an image 
pattern or feature vector to characterize individual images is based 
exclusively upon the spatial Fourier spectrum of the ship profile. It is felt 
that such a representation of the image embodies the underlying principle 
that the distribution of spatial Fourier components in the ship image 
profile is the optimal mechanism upon which to base an automated 
classifier. A neural network classfier is employed in this work (multi-
layer perceptron network trained by backpropagation). It is a well 
established, empirical fact that a suitably designed neural network can 
serve, over a broad range of types of problems, as an accurate pattern 
recognition scheme and classifier provided that the quantitative measure 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 	 1 



used to characterize the data is appropriately chosen (see Haykin 1994 
and the Matlab manual for examples). In short, it is taken a priori that the 
methodology of neural network classification is fundamentally a sound 
one and that the principal task at hand is therefore the design and testing 
of the specific means for deriving a feature vector description of the TSAR 
images. 

It is important to establish from the outset that the approach followed 
in the present work is primarily one of classification by means of 
individual ship identification and not one of classification of ships by 
category or type. The work reported by Lockheed Martin Canada in this 
area points to fundamental problems in attempting to categorize ships 
(military and commercial) either by class or category of ship. These 
difficulties arise largely because of the somewhat arbitrary, often 
subjective schemes adopted a priori to define, e.g., a particular ship as a 
destroyer escort as opposed to a destroyer. These classifications 
frequently involve operational intent or historical assignment of the 
particular ship and reflect neither subsequent refittings or upgrades nor 
recognize changing roles of other previously designated ships in the same 
or similar categories. Therefore, the work here adopts the precept that the 
classification of TSAR imagery of ships is carried out on a ship-by-ship 
basis and makes no attempt to recognize or classify ships as belonging to 
any pre-defined groups or categories. In other words, the approach 
adopted here treats each individual ship as defining a "class of one" so 
that there will exist as many classes as are ships within an image 
database. Classification of an unknown ship attempts therefore to find the 
closest match to a particular ship contained within the training set and, 
implicitly, recognizes the unknown ship as being in the same class or 
category of the matching ship. In certain cases, as would normally 
become apparent in the process of training the classifier, two (or more) 
distinct ships, for example, would be routinely misclassified one for the 
other. This would demand that a new class be defined characterized by 
imagery of both and either ship, i.e., the two (or more) ships would define 
a single class containing the two (or more) ships in question. 

Chapter 2 of this report describes in some detail the TSAR image 
database provided by Defense Research and Development Canada in 
Ottawa and the various stages involved in the vetting of this set to 

2 DRDC Ottawa TR 2006-24 / CRC RP-2006-001 



• 
• 
• 
• establish a working set of ship imagery consisting of data for 20 different 

• ships. Chapter 3 discusses the specifics of the feature vector calculations 

• for the images and the details of the neural network classifier and the 
training/testing procedures followed. The results of various trials 
employing different numbers of ships and combinations of training and 

• test sets are given in chapter 4 along with a discussion of work carried out 
• to provide a means of measuring ship image length. Results and 
• conclusions drawn from the work presented in this report are summarized 
• in chapter 5 along with a discussion of promising, specific topics of 
• research which would motivate and guide future work in this area. 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
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2: PreparatIon of the ISAR Image Dataset 

The image dataset as originally received from DND consisted of 
28,984 images contained in 220 folders. After removing empty folders, 
deleting corrupt, unreadable image files (as indicated by their file size), 
and deleting the unusable files for one particular target (for one ship, only 
8 files existed and all 8 proved unusable), the remaining dataset consisted 
of 

214 directories with 28,854 files 

This set could then be logically divided into four groups: 

/prospot_ctr 	with 54 directories containing 6331 files 
/prospot_roi 	with 53 directories containing 6107 files 
/prospot_ctr_H559 with 54 directories containing 8335 files 
/prospot_roi_H559 with 53 directories containing 8081 files 

The roi images were essentially identical to and hence redundant with the 
ctr images, differing primarily in the degree of contrast in the image, the 
result of a different  TSAR processing methodology. It was decided to 
work with the ctr images exclusively since these images were judged 
overall to be superior in contrast and definition in general to their roi 
counterparts. The prospot_ctr set represented 19 different ships while the 
prospot_ctr_H559 represented a single ship only. Clearly, the distribution 
of images over the ships was highly skewed. While the H559 set 
comprised 57% of the unvetted total set, some ships were represented by 
as few as 4 images (0.03% of the unvetted set). 

The very fffst task undertaken was to rename all of the image files. 
File names in the original set were duplicated in different folders. It was 
mandatory that each image file have a unique filename since, in the 
training and test sets ultimately formed for use with the neural network 
classifiers, the images files would be collected into common folders. This 
somewhat pedantic task was carried out using a MatLab routine that 
stepped through the various folders and renamed each image file with a 
name containing the flight, scene, and file numbers. 

DRDC Ottawa TR  2006-24/  CRC RP-2006-001 



• • 
• 
• Following the creation of a duplicate image set with unique file 

• names, a MatLab routine was written which read each image in the set 
and created both a positive and negative tiff image from the TSAR image. 
This was a pragmatic exercise which subsequently allowed the user to 

• easily view and browse through any subset of the ship images using 
• standard image viewing software (e.g., the browse function in Paint Shop 
• Pro). This ability was frequently called on throughout all of the 
• subsequent work with the image set. • 
• A cursory examination of the image dataset indicated that a 

• substantial portion of the original set represented images that were 

• unusable for a variety of reasons. These included: 

• ( 1) Obviously bad frame, mostly dark or white, no image 
present; 

• (2) Multiple images within frame, i.e., no one clear ship image; • (3) Image truncated, portion of ship image is missing; • (4) Obvious 'smearing' of all or a portion of ship image 
• vertically or horizontally; 
• (5) Severe 'ghosting' of all or a portion of ship image; or 
• (6) Ship image is very faint or portions of image not discernable 

•
• 

Examples of rejected images for each of the above reasons are shown in 

•
figure 2.1. 

• A MatLab routine was written which permitted the user, after 
• selecting a particular folder, to view each image in that folder sequentially 
• and to either accept or reject that image. Rejected images were moved to 
• distinct folders containing rejected images only. In this way, the entire 
• set was eventually split into two new image sets, i.e., the rejected images 
• and the vetted (usable) images. In practice, the usual methodology was to 

• run this routine twice on each folder. On the first pass, the obviously 

• unusable images were rejected. The second pass through the folder then 

• served to more critically (and, undeniably, somewhat subjectively) reject 

•
those images deemed unusable. The routine kept accumulatively a count 
of the total images rejected/accepted fi-om the original folder. The final 

• vetted sizes were • 
• 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 	 5 • 
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/prospot_ctr_vetted with 54 directories containing 3826 files 
/prospot_ctr_rejected with 54 directories containing 2505 files 

revealing a 39.5% rejection rate. The corresponding results for the H559 
set were 

/prospot_ctr_H559_vetted with 54 directories containing 5546 files 
/prospot_ctr_H559_rejected with 54 directories containing 2789 files 

revealing a rejection rate of 33.5%. Thus the total vetted image set 
consisted of 9372 images (63.9% of the original 14666 images). The 
vetted image set was then grouped into 20 folders, each folder 
representing a single ship, and tiff images of this set were generated for 
reference purposes. Details of the final, vetted image data set are given in 
table 2.1. Note that several of the ships listed there are of limited 
usefulness in studies presented here since they are represented by a 
relatively small number of images contained in a single image folder. As 
well, it should be noted that the total number of images in the final image 
data set is considerably less than the number of 9372 stated above. This 
is chiefly the result of limiting the size of the dataset for ship number 20 
to 12 folders and 1499 images, a pragmatic choice given the lesser 
number of folders and images employed for all other ships in the set. 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 	 7 



Original Directory 	Directory 	Ship 	No. of 	No. of 
CDROM 	 Total 

Name 	Name Used 	No. 	Targets Images 
Prospot 2 	h559s20_21 ctr 	H559S200 	20 	1 	151 	1499 
Prospot 2 	h559s23_24=ctr 	H559S230 	20 	1 	233 	1499 
Prospot 3 	h559s41_ctr 	H559S 410 	20 	1 	108 	1499 
Prospot 3 	h559s45_ctr 	H559S450 	20 	1 	121 	1499 
Prospot 3 	h559s48_ctr 	H5595480 	20 	1 	123 	1499 
Prospot 3 	h559s49_ctr 	H5595490 	20 	1 	111 	1499 
Prospot 3 	h559s57_ctr 	H559S570 	20 	1 	105 	1499 
Prospot 3 	h559s74_ctr 	H559S740 	20 	1 	119 	1499 
Prospot 3 	h559s76_ctr 	H559S760 	20 	1 	102 	1499 
Prospot 3 	h559s78_ctr 	H559S780 	20 	1 	101 	1499 
Prospot 4 	h559s79_ctr 	H559S790 	• . 	20 .idik 1 	102 	41149 .9à1 
Prospot 4 	h559s92_ctr 	H559S920 , 	2Mi. 1 	123 	eleffl 
Prospot 1 	h068s_30 0_ctr 	H0685 30 	1 	1 	30 	617  
ProspoTT—h068s 32 0 ctr 	H068S 32 	1 	1 	79 	617  
Prospot—i—h068s_51 0_ctr 	H068S-50 	 1 	75 	617  
Prospot 4 	h270s40 	r 	H270S7100  	I 	1 	206 	617  
Prospot 1 	h271s90 ctr 	H271S900 	.1 	1 	104 	617  
Prospot 2 —1-1475s14—ctr 	H475S14.0 	1 	1 	123 	617 
Prospot 1 	h056s_1 -à 0_ctr 	lr H056S 10 	2 lieilenIr 	7/r1' 	Miel •  
Prospot 1 	h0568_39:0_ctr 	H0565:30 	2 	1 	77 	519 
Prospot 1 	h056s 9_0 ctr 	H056S 90 	2 	1 	74 	519 
Prospot 1 	h468 -4_ct7* 	H468S40 	2 	1 	10 	519 
Prospot 2 	h468s35_ctr 	H468S350 	2 	1 	68 	519 
Prospot 2 	h468s51_ctr 	H468S510 	2 	. 	1 	31 	519 
Prospot 2 	h471s39_ctr 	H471S390 	2 	1 	89 	519 
Prospot 	1s42_ctr 	-H471S420 	 _. 
Prospot 1s09 _ctr 	H467S090 	3 	1 	165 	408  
Prospot 1 	h467817_ctr 	H467S170 	3 	1 	121 	408  
Prospot 	h473s06_ctr 	H473S060 	3 	1 	122 	408 
Prospot 1 	h116s_6 0_ctr 	116S_60 
Prospot 1 	h117s15—_ctr 	117S150 
Prospot 1 	I h056s 4 0 ctr 	1H0565_40 	 1 	45 	213  
Prospot 1 	' h056s—_6_0_ctr 	H056S _60 	5 	1 	92 	213  
Prospot 1 	. h115s 3 0 ctr 	H115S 30 	5 	1 	76 	213 
Prospot 1 	' h468823_ctr 	H468S230 	. 
Prospot 2 	h471s18_ctr 	H471S180 
Prospot 2 	h471s68 ctr 	H471S680 	 1 
Prospot 1 	h068s 3.Ti 0 ctr 	H068S_34 	7 	1 	82 	179  
Prospot 1 	h068s 43 0_ctr 	H068S  40 	7 	1 	46 	179 
Prospot 1 	h068s 52:0_ctr 	H068S 52 	 1 	51 	179 
Prospot 2 	h516s34_ctr 	 H516Si40 	 90 	' ' 172 
Prospot 2 	h516s36_ctr 	H516S360 	 82, 	172 
Prospot 1 	h116s 5_0_ctr 	1H1165 50 	9 	1 	73 	143 
Prospot 1 	. h117s75_ctr 	 IH117S250 	9 	1 	70 	143 
Prospot 1 	h271s61_ctr 	H271S610 	10 	 135 
Prospot 1 	h271s62_ctr 	 1S620 	10 	 135 
Prospot 2 	h514s64_ctr 	''..14S640 	11 	1 	9 	132 
Prospot 2 	h514s68_ctr 	.1-14S680 	11 	1 	123 	132 
Prospot 2 	h474817_ctr 	 170 	12 	 20 
Prospot 1 	h038s 34 0_ctr 	H038S 30 	13 	 104 	104 
Prospot 1 	h116840 étr 	 684 00 	s 14. 	 95 
Prospot 1 	hO67s 16 0_ctr 	H067S 10 	15 	 85 	85 
Prospot 2 	h475s05:étr UM '11475Sb-50 	le 	 55 	55 
Prospot 1 	h067s_36_02ztt 	IH067S 30 	17 	1 	38 	38 
Prospot 1 	h038s_55_0 411.11 H038.9150 	181 	31 	f 	• 31 
Prospot 1 	h058s 42 0 ctr 	II-1058S 40 	19 	1 	4 	4 

Table 2.1: Final vetted image database 
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3: Calculation of Feature Vectors for the ISAR 
Images 

3.1 Overview 

There exists a diversity of approaches to the task of classifying 
images which includes classical techniques such as statistical analysis, 
template matching, and principal component analysis, along with neural-
network-based approaches based upon the concept of adaptive learning. 
As with any methodology for pattern recognition, the essential and 
arguably most important element in the design of a classifier is the choice 
for a quantitative measure to serve as, hopefully, a unique descriptor or 
'fingerprint' by which the object may be classified. In the case of 
imagery, one rarely would use the raw image as such a measure since, (1), 
the amount of data and spurious detail could prove prohibitive and, (2), 
such data would be subject to wide variations owing to translations, 
rotations, and scaling of the image object. In practice, it is highly 
desirable to incorporate certain types of invariance (or, at least, a 
minimized sensitivity) in the image descriptor to variables such as scale 
and rotation of the object in the image plane. 

In the present work, the descriptor or feature vector chosen to 
characterize an TSAR ship image is a normalized, spatial frequency of a 
one-dimensional profile of the image. Prior to calculating the spatial 
FFT, a series of processing steps are carried out to filter, normalize, 
rotate, and crop the image. 

3.2 Image processing and feature vector calculation 

A MatLab algorithm entitled "fingerprint", which is listed for 
reference purposes in Appendix A, was written to cany out the following 
sequence of tasks: 
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• 
• • 

• 
• 

1. List the ship folders within a particular directory to allow the 	 • 
user to select (by number) a specific folder; • 

• 2. List the image files within the folder chosen in step 1 to allow • the user to select (by number) one specific ship image; • 
3. Read the image file and header and normalize the intensity 	 • 

values to max = 1 (all of the files have an initial max = 65535); 	• 
• 
e 

4. Apply a high-pass intensity filter to the image to increase the • contrast and reduce the amount of background noise; • 
• 5. Perform an edge detection operation on the filtered image; • 

6. Perform a Radon transform on the edge detected image; 	 • 
e 

7. Crop the Radon transform to exclude any detected lines close to 	 e ±900 ; 	 • 
I 

8. Determine the maximum value of the Radon transformation, 	 • 
rotate the image so that the principal line of the ship image is • horizontal, and determine the new image dimensions of the e rotated image; • 

9. Measure the vertical profile of the image (i.e., a row vector of 	 III 
the image integrated along the horizontal), determine the peak 	 • 
of the profile, and subsequently crop the rotated image to 	 te 
eliminate any vertical ghosting in the image and/or any spurious 	 • 
images; 	 e 

• 
10. Determine the (horizontal) profile of the filtered, rotated, 	 e 

cropped image; • 
11. Approximately center the ship profile and pad it to a dimension 	 •  

of 512 (for FFT purposes); 	 e 
• 

12. Calculate the FFT of the centered, padded ship profile; 	 • 
s 
• 
• 
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13. Zero the DC component of the FFT; 

14. Cut the FFT spectrum to a pre-determined length of specdim (— 
64 throughout); and 

15. Normalize the cut FFT spectrum to 1. 

The resulting 1-D row vector of dimension `specdim' with max = 1 
constitutes the feature vector for the chosen image. 

The 'fingerprint' routine described above examines a single, user 
chosen image file. This routine was readily amended to remove the 
prompts and to suppress the screen output so that it could be run 
recursively on a collection of images in a given folder. This generated a 
feature vector matrix for the training or test set of images and it was this 
matrix which was subsequently used in the training or testing of the 
neural network classifier, respectively. Figures 3.1 to 3.6 illustrate the 
results of the 'fingerprint' routine as it works through the various steps 
given above. Figure 3.1 shows the screen output fi-om this routine listing 
the information read from the image file header. 

A typical 'good'  TSAR raw image is shown in figure 3.2(a) while 
the same image, after applying the high-intensity-pass filter, is shown in 
figure 3.2(b). The applied filter takes the form: 

1-e 2  where a=-1001n(1- OTL) 

where OTL is the transmission level for I = 0.10 (max I for all images is = 
1). The ad hoc value of OTL = 10% was used throughout this work. 

The MatLab toolbox routine "edge" was invoked with the Sobel 
option to form an edge-detected version of the image, figure 3.3(a). This 
image was then used in another MatLab function "radon" to produce the 
Radon transformation shown in figure 3.3(b). The Radon transformation 
is used to detect the existence of linear structure in the original image in 
that the peak values found in the Radon transformation correspond to 
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pixelspaceazimuth = 
pixelresazimuth 
imagedataformat 
rangeframe 
sartapevolno 
numberpulses 
acaltitude 
sampl  ingrate 
velocity 
lfft 

0.00 
= 	0.00 
= 	0.00 
= 101039 
= 68.00 

0 
= 	1.00 
= 	0.00 
= 406.00 
= 512.00 

Processing Image d:\prospot\ship0l\H068S030F026  168 Columns x 171 Rows 

Image Header Information 

pixelspacerange = 
pixelresrange 
imagefilever 
imageheadersize = 
sarmode 
targetselectmode = 
acheading 
lfmrate 
squintangle 	- 
adaption 
aperturetime 
nramp 
rangecorrect 
xyaltitude 	 0.00 
frameheadersize = 	2048 
rangeofmax 	= 178.00 
latitude 	= 1666972 
scenenumber 	= 255.00 
numbercolumns 	= 	168 

missionid 
inversefilter 
prf 
receivergain 

overlap 	 = 0.50 
autofocus 	= 	1.00 
trackanglestart = 91.40 
radialspeed 	= -8.44 
firstsceneno 	= 	0 
azimuthofmax 	= 269.00 
longitude - 4.292742e+009 
lastframe 	= 	0 
numberrows 	= 	171 
= 0 -18 -18 -18 0 

1469154535 
200000000 
1002159896 

0.00 
0.00 
1.00 
2048 

17.00 
0.00 
0.00 

52.73 
95.80 

0 
0.00 
0.00 
0.00 

rcmc 	 = 	4.008636e-1-009 
timestamp 	 33554942 
maxpixelvalue 	= 	2.433650e-005 
FrameScaleFactor = 	2.692868e+009 

Product : MaxPixelValue x FrameScaleFactor = 65535.00 
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Figure 3.1: Header Information from Fingerprint Routine 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 12 



Filtered Image : H068S030F026 171 Rows by 168 Columns 
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Figure 3.2: (a) Raw ISAR image (b) High-intensity-pass filtered image 
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Figure 3.3: (a) Edge detected image (b) Radon transformation 
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Image : H068S030F026 Rotated -26 degrees 229 Rows by 229 Columns 
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Figure 3.4: (a) Rotated image (b) Vertical profile of rotated image 
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Cropped Image : H068S030F026 Rotated -26 degrees 229 Rows by 229 Columns 
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Figure 3.5: (a) Cropped, rotated image (b) Horizontal profile of rotated image 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 16 

• • • • • • • • • • • (a) • • • • • • • • • • • • • • • • • • (b) • • • • • • • • • • • • • • • 



One-Sided FF1" Spectrum of Horizontal Profile 512 

(a) 

___Ar  

Normalized Feature Vector 

50 100 150 200 250 

••
••

••
••

••
••

••
••

• •
••

••
• •

••
••

••
• •

••
••

••
••

••
• •

 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Figure 3.6: (a) Full FFT of horizontal profile (b) Feature vector of image 
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those angles at which 'line structure' is found in the image. In the 
example shown, the peak of the Radon transformation lies at a value of 
64°  which indicates a ship 'image axis' lying at (64 — 90) or —26 degrees. 
The rotated image is shown in figure 3.4(a) with the axis of the ship 
image lying horizontal. It is noted that, very infrequently, the presence of 
a small, much fainter 'object' in the image (not part of the ship image per 
se) could produce a strong feature in the Radon transformation, 
particularly if the 'object' was a short, horizontal line. In some cases, this 
feature would be chosen by the fingerprint algorithm as that determining 
(incorrectly) the desired rotation of the image. In retrospect, such 
anomalies can be avoided completely by performing the Radon 
transformation not on the edge-detected image of figure 3.3(a) but instead 
directly on the filtered ship image of figure 3.2(b). 

The image of figure 3.4(a) is then "scanned" along the vertical 
direction, i.e., the image matrix is summed along its rows to produce a 
vertical profile as in figure 3.4(b). This allows for the identification of the 
position of the image axis. The image is then cropped by zeroing all 
values above and below the cut lines (set at ±15 pixels from the 
maximum). The resulting filtered, rotated, and cropped image, figure 
3.5(a), is then "scanned" along the image axis, i.e., the image matrix is 
summed along its columns, to produce the ship profile, figure 3.5(b). It is 
this profile which now serves as the basis for application of the FFT to 
determine a spatial frequency spectrum. 

The ship profile of figure 3.5(b) is "padded" to make its length 
exactly 512 pixels (the original profile is approximately centered in this 
padded profile — the FFT spectrum is invariant to the precise position of 
the original profile within the final profile) and an FFT is calculated for 
the ship profile. This yields a 256-point FFT shown in figure 3.6(a). It 
can be argued that the higher spatial frequencies in this spectrum are 
chiefly if not entirely determined by random noise and speckle in the 
original ISAR image and so the upper portion of the full FFT spectrum, 
along with the DC component, are discarded. The resulting portion of the 
FFT, normalized to one and running from the original frequencies from 2 
to (specdim + 1), is shown in figure 3.6(b). It is this spatial frequency 
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• • • • 
• distribution that acts as the feature vector of the original image and serves 

• as the input vector to the neural network classifier. 

• • • 3.3 Mensuration of the ship length • 
• 
• As envisioned in the present work, the overall strategy for ship 

•
classification is to treat each individual ship as defining a distinct class. 
As the number of ships/classes is increased in the training database, it is 
anticipated that, at some point, a new ship added to this set will prove 

• essentially indistinguishable from some existing ship already present in 
• the imagery database (indistinguishable in the sense that both ships are • misclassified as one another roughly 50% of the tune). In such a case, a 
• new "hybrid" class would be created composed of the tvvo ships (the 
• original classes corresponding to the individual ships removed from the 
• training assignments) and subsequent testing of an unknown vessel could 

• then compare to the class composed of the two similar ships. 

• 
•

However, in such an approach, it is critical that the classifier be 
able to distinguish between disparate ships/classes which, although they 

• may exhibit closely similar spatial frequency spectra, are nevertheless 
• completely different vessels. By way of example, a small 12 meter 
• gunship could, FFT-wise, appear indistinguishable from a much larger • 120 meter frigate or destroyer. In such a case, it would be mandatory that 
• the neural classifier be capable of clearly distinguishing between the two 
• ships/classes. One of the obvious candidates for a feature vector 
• component which could allow such classes to be separated would be a 

• determination of the ship's absolute length. In the present work, since 

• accurate ship-by-ship ground proofing was not available (and cannot be 

•
assumed to be present in any future testing and application of the 
classifier), the possibility of measuring the 'ship width' approximately by 

• determining the 'width' of the filtered and rotated ship image was 
• explored. It is stressed that, since the angle of viewing of the TSAR 
• platform relative to the ship's orientation is an unknown, this approach to 
• rotating the ship's image in the image plane is a heuristic one expected to 
• yield an approximate but nevertheless reasonably accurate estimate of the • • 
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ship length. As well, it is required a priori that precise knowledge of the 
pixel resolution for range and azimuth directions be known. 

To this end, the 'fingerprint' MatLab routine incorporated five 
different approaches to such a mensuration task based upon the MatLab 
toolbox routines for calculating correlation and covariance vectors. 
Succinctly, the ship image profile (such as shown in fig. 3.5(b)) and a 
'step width' square pulse (of a variable width from 1 to 512 pixels) 
together defined correlation and covariant vectors for the image. By 
examining the minmax properties of these vectors along with their points 
of discontinuity, estimates of the width of the image profile ("bestwidth") 
were calculated which attempted to allow for disparate cases of images 
partially or totally segmented owing to low image intensities and/or 
image corruption. The interested reader can find the details of these 
calculations in Appendix A. 

For a 'clean' image such as that shown earlier in this chapter, all 
five approaches yield essentially identical results as illustrated in figure 
3.7. Many images, however, tend to have low contrast and intensities 
resulting in 'dark gaps' within the overall image profile. These 'gaps' 
can then be misinterpreted by the mensuration calculations as illustrated 
in fig. 3.8 for the same ship (and folder) of the previous figure. In the 
particular case shown, only one of the five approaches yields the 'correct' 
result. Figure 3.9 illustrates a 'worst case' scenario for the type of image 
normally vetted and omitted from the final database. The image in fig. 
3.9(a) shows a (false) second object in the image plane along with two 
'ghosting' regions on either side of the ship image. The resulting 
bestwidth measurements shown in fig. 3.9(b) reveal four distinctly 
différent width results with only one of the estimates being close to 
correct. It should be also noted that, when processed by the fingerprint 
routine, the image of fig. 3.9 is improperly rotated (by 00), i.e., the image 
artifact on the left in fig. 3.9(a) and not the ship image becomes the basis 
for determining the image rotation. This error produces, in turn, an error 
(albeit a small one for the example shown) in the ship image profile. 

Table 3.1 lists the results of the bestwidth measurements for 30 
consecutive images drawn from a single image folder (the 'correct' width 
being approximately 110 pixels). This table reveals that no one approach 
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Figure 3.7: (a) Raw ISAR image (b) Bestwidth measurements 
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Unfiltered Image : H068S030F000 171 Rows by 168 Columns 
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Figure 3.8: (a) Raw ISAR image (b) Bestwidth measurements 
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Unfiltered Image : H2715620F604 152 Rows by 426 Columns 
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Figure 3.9: (a) Raw ISAR image (b) Bestwidth measurements 
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Ship 	Filename 	Bestwidth Bestwidth Bestwidth Bestwidth Bestwidth 	Rotation 
Number 	 A 	B 	C 	D 	E 	Angle  

1 	H068S030F000 	65 	111 	69 	63 	62 	28  
1 	H068S030F001 	71 	115 	103 	71 	70 	28  
1 	H068S030F002 	65 	105 	97 	91 	60 	19  
1 	H068S030F003 	61 	101 	97 	59 	54 	13  
1 	H068S030F004 	61 	95 	93 	55 	54 	6  
1 	H068S030F005 	61 	97 	65 	53 	52 	5  
1 	H068S030F006 	67 	99 	73 	59 	58 	4  
1 	H068S030F007 	73 	107 	75 	47 	46 	4  
1 	H068S030F008 	101 	105 	103 	99 	92 	8  
1 	H068S030F009 	63 	93 	83 	59 	58 	9  
1 	H068S030F010 	63 	103 	105 	93 	62 	11  
1 	H068S030F011 	65 	93 	71 	59 	58 	9  
1 	H068S030F012 	67 	93 	69 	67 	66 	10  
1 	H068S030F013 	67 	93 	75 	65 	64 	0  
1 	H068S030F014 	65 	99 	77 	63 	62 	0  
1 	H068S030F015 	73 	105 	103 	97 	60 	-8  
1 	1-10688030F017 	103 	149 	117 	99 	86 	-15  
1 	H068S030F018 	75 	127 	87 	73 	72 	-7  
1 	H068S030F019 	61 	103 	81 	55 	54 	1  
1 	H068S030F021 	61 	97 	73 	71 	60 	-1  
1 	H068S030F025 	81 	143 	117 	111 	110 	34  
1 	H068S030F026 	115 	127 	117 	117 	116 	26  
1 	H068S030F027 	97 	107 	101 	97 	96 	22  
1 	H068S030F028 	75 	105 	83 	69 	68 	22  
1 	H068S030F032 	77 	93 	77 	69 	62 	-6  
1 	H0688030F043 	69 	101 	79 	67 	66 	-5  
1 	H068S030F044 	63 	127 	67 	109 	108 	16  
1 	H068S030F045 	55 	67 	61 	53 	52 	17  
1 	H068S030F046 	59 	105 	69 	59 	50 	10  
1 	H068S030F053 	79 	107 	107 	103 	102 	_ 	-2 

Table 3.1: Measurements of ship width for a single image folder 
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is entirely accurate in all cases and that it is possible for all of these 
different techniques to fail for particular images. Such a finding would 
come as no surprise to any reader familiar with the fundamental 
difficulties encountered in image mensuration algorithms in general. The 
data in figure 3.10, as will be discussed in the conclusions, suggests that a 
better approach to the task at hand would be to utilize the image sequence 
characteristics of SAR and TSAR imagery to more 'intelligently' arrive at 
estimates of physical parameters such as ship image width by employing 
weighted averages of such measurements taken over similar images from 
within an image folder. 
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4: Evaluation of the Neural  Network Classifier 

4.1 Overview 

The primary aim in the design and testing of a neural network 
classifier for TSAR ship imagery is to evaluate the soundness of the 
underlying methodology of characterizing the imagery by the use of a 
Fourier spatial spectrum and not the assessment or optimization of the 
neural network classifier by empirical testing of its operational 
parameters. In other words, it can be assumed a priori that a suitable 
neural network paradigm (such as a multi-layer perceptron network 
trained by a backpropagation algorithm) can accurately and robustly 
classify such imagery provided that the feature vector employed to 
characterize an image serves as an appropriate means by which images 
can be distinguished from each other. Thus, the intent of the testing trials 
conducted for the TSAR imagery is to determine the legitimacy and 
applicability of the Fourier spatial frequency characterization of the 
imagery as a sound feature vector representation of the ship images from 
an information-theoretic point of view. To this end, extensive 
investigation of the neural network classifier was not carried out in the 
sense that no systematic study was undertaken of the neural network 
architecture, the various types of distinctly different training 
methodologies, the effects of neural transfer functions, feature vector 
normalization, or of any of several other neural network design features 
or parameters which can affect a classifier's performance beyond those 
simple variations or choices for such parameters necessary to ensure 
convergent, reproducible training. 

As the results to follow will clearly indicate, it is necessary to 
fundamentally draw a distinction between images drawn from a single 
data folder (same flight and scene number) and images drawn from 
different folders, whether or not the latter are for the same or different 
ships. There is a strong degree of correlation among the images within a 
single folder. The degree of correlation between same-ship folders is 
considerably less so that the success of any classification scheme will 
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• • • • 
• ultimately rest, in large part, on the question of the degree of correlation 

i ce 	 between same-ship folders being stronger than any 'residual' degree of 

•
correlation between folders representing different ships. The results 
presented in this section will therefore be distinguished unambiguously 

• according to whether or not the images used in the test set are drawn from 
• the same ship folders from which the training set images were drawn or 
• drawn from folders whose images were not used in forming the training 
• set. The most realistic scenario and the one which provides the more 
• stringent test of a classifier is that in which the test images are taken from 
• folders not seen by the neural network in the training phase. 

• 
• The final point to be clarified concerns the adoption in this work of 

• the "one ship --- one class" concept as opposed to any attempt to a priori 

•
define ships as belonging to distinct naval categories such as destroyers, 
frigates, escorts, etc. or to non-military categories such as commercial 

• freighters, oil tankers, and so on. As detailed in the Tessier and • Shahbazian report, the categorization of military ships into broad groups 
• such as destroyers and fiigates is a largely artificial exercise which leads 

to, in many cases, obvious discrepancies and inconsistencies when 
• assigning a particular ship to one pre-defined category. Factors such as 
• legacy assignments, refitting and upgrading of a ship's structure and 

• armaments, and inherent variability of ship size, speed, etc. within any 

• category make it pragmatically unattainable for a classifier (neural 

• network or otherwise) to provide consistent and accurate assignment of 

•
ships to such broadly defined and variable categories. By way of just one 
example, many modern destroyer escorts are larger, faster, and more 

• heavily armored than older ships originally commissioned as destroyers. 
• The approach followed here is to treat each ship as defining a single class, 
• presumably distinguishable from all other ships/classes by the appropriate 
• classifier. Examination therefore of an unknown ship would lead to its 
• classification as being most similar to a known ship used in the classifier 
• training process. In practice, it could be anticipated that, as the number of 

• ships used in the training phase is increased, certain pairs of ships would 

• prove to be effectively redundant or equal from the classifier's point of 

• view. In such cases, new classes would be defined which would, in 

•
effect, be a (possibly weighted) collection consisting of images drawn 
from these "indistinguishable" matches. • • • • 
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4.2 The neural network classifier and training-test procedure 

The basic neural network architecture used throughout these 
studies was a three-layer feedforward perceptron network trained using 
four different variations of the backpropagation training algorithm. The 
first layer of the network is a distribution layer accepting all of the feature 
vector components at each node and forwarding a weighted sum of these 
components to the succeeding, 'hidden' layer. The outputs from the 
'hidden' layer are then forwarded to the third, output layer which 
produces values between 0 and 1 at each node. In all cases, the network 
dimensions were [64 x 32 x numclasses] where numclasses is the number 
of classes (not necessarily the number of ships) defined for the 
training/test sets. The MatLab Neural Network Toolbox was used 
exclusively to define, monitor, train, and test the neural classifier. 
Logarithmic-sigmoid transfer functions were employed for both the input-
to-hidden layer and the hidden-to-output layer. The neural classifier was 
an analog device with the output values in the range of [0,1]. 

The four different variations of the training algorithm used were: 

RP - Resilient Backpropagation 
SCG — Scaled Conjugate Gradient 

GDX — Variable Learning Rate Backpropagation 
CGB — Conjugate Gradient with Powell-Beale Restarts 

Other training algorithms were tested but rejected because of a failure to 
converge, consistently poor classification results, and/or excessively long 
training times. Of the four algorithms tested, the RP and SCG routines 
generally provided the fastest and most consistent training results. 

Each trial consisted of three distinct steps: 

1. 	Preparation of separate training and test image sets. 
Images were selected at random from the source image folders 
to compose the training set. The test set images then either 
consisted of the remainder of the images from these folders or 
images drawn from different folders not used in the training set. 
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• training images. 
e 
• 
• The training of the neural network classifier proceeded iteratively, 

• stepping through each image in the training set with the order of the 

•
images randomized upon each pass through the set. The modification of 
the neural network weights was carried out by the MatLab training 

• routine either upon completing a calculation for the entire training set, e 
• 
• 
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• 2. 	Generation of the training and test feature vector matrices. 

• An automated version of the MatLab routine 'fingerprint' was 
written which calculated the feature vectors for the entire set of e training and test images by iteratively stepping through each 

• image in an assigned data folder. The individual feature vectors 
• were normalized to 1. The final result was a matrix of 
• dimension [numtrain x 64] or [numtest x 64] where numtrain 
• and numtest are the dimensions of the training and test sets, 
• respectively. These matrices served as the direct inputs to the 
• neural network classifier. 

• 
• 3. 	Training and testing of the neural network. 

•
A relatively short and simple MatLab routine was written 
which, after first defining the neural network architecture and 

• basic operating parameters, trained the classifier and then 
• calculated the classification matrix for the assigned test set. 
• This routine was iteratively run 100 times with a random 
• initialization of the untrained network at the commencement of 
• each run. The network and all the result matrices were saved as 
• mat files and a "winner" was chosen from the 100 runs as that 
• run producing the smallest least-mean-square error for the test 

• set. A separate MatLab routine was written which read these 

• result mat files and carried out an analysis of the network 

•
classifier's performance. Training times varied considerably 
from trial to trial and for the different training algorithms with 

• times as short as minutes (for the algorithms RP and SCG on the 
• smallest, single folder training sets) and as long as days (30 or 
• more hours) for the GDX and CGB algorithms on the trials 
• involving large numbers of classes and/or large numbers of 
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i.e., one epoch, or, depending upon the specific training algorithm, after 
the result for a subset of the training set was calculated, the size of the 
subset determined by the dimensions of the training set. The training of 
the network ended upon reaching one of the three following criteria: 

1. Network performance (the calculated error for the test set) 
reached a predefined lower limit. This limit was set to 10-7  
for all trials. 

2. The error gradient of network performance fell below a 
predefined lower limit, indicating that no further training was 
occurring. This limit was set to 1018  for all trials. 

3. The maximum number of epochs (training passes through 
the entire training set) was reached without reaching either of 
the limits for network error or error gradient. The maximum 
number of training epochs was set to 4000 for all trials (a 
small number of training/test runs were conducted with a 
higher limit for trial 3 as described in the notes for this trial 
in the trial summaries to follow). 

When conducting the trials using multiple runs, the MatLab routine 
calculated and saved a record of the number of times the training process 
ended according to the three criteria above. This record provided 
valutable insight to how well any given training algorithm dealt with the 
particular training set under study. 

4.3 Empirical trials 

In all, nine complete trials were conducted using all four training 
algorithms for a total of 36 measurements of network performance. The 
results of these trials are given in the trial summary sheets of Table 4.1 to 
4.9. The trials consisted of three related groups, namely trials 1 to 3, 
trials 4 and 5, and trials 6 to 9. Trials 1 to 5 employed "common" folders, 
i.e., test images were drawn from the same folder(s) used to compose the 
training sets, while trials 6 through 9 employed "exclusive" folders, i.e., 
test images were drawn from folders which were not used in the training 
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Totals 300 304 

Training 	Number of 	Error Goal 
Algorithm 	Runs 	Reached 

Minimum 
Derivative 
Reached 

Maximum 
Epochs 
Reached 

Best Result 

Ship 1 

Average 
Classification 

Accuracy Ship 20 Ship 3 
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7'71 Trial Number= 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 300 images 

Test Set = 304 images 
Training/Test Image Folders = Common 

Trial Description = 3 Classes, 3 Ships, Single Folder per Class 
Mean Squared Error Goal = 10-7 

 Mininum Gradient Limit = le 
Maximum Number of Epochs = 4000 

Training 
Images 

Image Folder Ship Number Test Images 

H559S230 	20 	 100 	 133  
H2703400 	 1 	 103 	 106  
H467S090 	3 	 1 03 	 65 

RP 	 100 	 99 	 1 	 0 	- 	100.0% 	100,0% 	100.0% 	100.0%  
SCG 	 100 	 98 	 2 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
GDX 	 100 	 100 	 0 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
CGB 	 100 	 73 	 29 	 0 	 100.0% 	100,0% 	100.0% 	100.0% 

Notes: 	Perfect or near perfect classification for al1100 runs with training algorfthm RP and GDX 
Perfect or near perfect classification for 98 runs with training algorithm SCG. 2 runs producing a result of 100,0,0 
"Hit or mise resultswith training algorithm CGB. Many runs perfect or near perfect but many with 1 or 2 classes 100% misciassified 

Table 4.1: Summary of Trial 1 



118 210 Totals 

Minimum 
Derivative 
Reached 

Maximum 
Epochs 

Reached 

Best Result 

Ship 4 

Average 
Classification 

Accuracy Ship 6 Ship 2 

Trial Number = 2 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 300 images 

Test Set = 304 images 
Training/Test Image Folders = Common 

Trial Description = 3 Classes, 3 Ships, Single Folder per Class 
Mean Squared Error Goal = 10-7 

 Mininum Gradient Limit = 104  
Maximum Number of Epochs = 4000 

Training 
Images 

Image Folder Ship Number Test Images 

H4715420 	2 	 70 	 26  
H116S060 	4 	 70 	 42  
H4663230 	 6 	 70 	 50 
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Training 	Number of 	Error Goal 
Algorithm 	Runs 	Reached 

RP 	 100 	 100 	 0 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
SCG 	 100 	 100 	 0 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
GDX 	 100 	 100 	 0 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
CGB 	 103 	 74 	 26 	 0 	 100.0% 	100.0% 	100.0% 	100.0% 

Notes: 	A repeat of trial 1 with three different ships 
Perfect classification for all 100 runs with training algorithm RP, SCG, and GDX 
"Hit or miss" resultswith training algorithm CGB. Majority of runs perfect or near perfect but several with 1 or 2 classes 100% misclassified 

Table 4.2: Summary of Trial 2 
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Totals 910 532 

Best 
Result 

Ship 4 Ship 12 Ship 13 Ship 11 Ship 10 Ship 8 Ship 5 Ship 5 
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Trial Number  =3  
Number of Ships = 13 

Number of Classes = 13 
Training Set = 910 images 

Test Set = 532 images 
Training/Test Image Folders = Common 

Trial Description = 13 Classes, 13 Ships, Single Folder per Class 
Mean Squared Error Goal = 10 ;7 

 Mininum Gradient Limit = 10-8  
Maximum Number of Epochs = 4000 

Image 	Ship 
polder  Number 

Training 	Test 
Images Images 

H5593200 	20 	 70 	81  
H4753140 	1 	 70 	53  
H4719420 	2 	 70 	26  
14733060 	3 	 70 	52  
H1173150 	4 	 70 	33  
H0563060 	5 	 70 	22  
H4685230 	6 	 70 	50  
H5163340 	B 	 70 	so  
H2713610 	10 	 70 	33  
H5143680 	11 	 70 	53  
H4743170 	12 	 70 	so  
140383030 	13 	 70 	34  
H1169400 	14 	 70 	25 

Ship 1 

Minimum Maximum Training Number of Error Goal Derivative Epochs 
Algorithm Runs Reached Reached Reached Ship 20 Ship 2 	snip 3 

Average 
Class- 

IficatIon 
Ship 14 Accuracy 

RP 	103 	14 	86 	o 	93.8% 	100.0% 	100.0% 	1003% 	100.00% 	100.00% 	98.03% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	98-90%  
SCG 	100 	71 	29 	o 	95.1% 	100.10% 	100.0% 	100.0% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	99.20%  
GOX 	103 	0 	 0 	103 	95.1% 	100.0% 	100.0% 	100.0% 	100.00% 	10030% 	98.03% 	10030% 	97.00% 	100.00% 	100.00% 	10030% 	10300% 	98.90%  
CGS 	103 	27 	73 	o 	95.1% 	100.0% 	100.0% 	100.0% 	97.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.00% 	100.03% 	loom% 	100.00%  _ 99.10% 

Notes: Perfect or near perfect classification for all 100 runs with training algorithm RP. 

Perfect or near perfect classi fication for most runs with training algorithm SCG. Many runs producing a result vvith from 1 to 10 classes 100% misclassified 
Results with training algorithm GDX similar to that for SCG. CGS also "hit and miss" but with many more runs exhibiting 100% misclassifications 
20 additional runs were carried out for the GDX algorithm with max. no. of epochs increased to 10,000 with no measurable improvement in resufts 

Table 4.3: Sumrrtary of Trial 3 



Average  
Class-

ification  
Accuracy Ship 20 

Totals 

Ship 20 

720 

Shipl 

600 

Best 
Result 
Ship 1 Ship 1 Ship 3 Ship 3 Ship 3 

Trial Number = 4 
Number of Ships = 3 

Number of Classes = 9 
Training Set = 720 images 

Test Set = 600 images 
Training/Test Image Folders = Common 

Trial Description = 9 Classes, 3 Ships, Each Folder a Class 
Mean Squared Error Goal = 10-7 

 Mininum Gradient Limit = 104  
Maximum Number of Epochs = 4000 

Cs.1 

Image 	Ship 
Folder Number 

Training 	Test 
Images Images 

I0
0-

90
0Z

-d
ll M

ID
 / 1

7 Z
-9

00
Z "

21.
1.  

U
N

It
1
1
0
 D

M
IG

I 

H5593230 	20 	 SO 	153  
H559S480 	20 	 80 	43  
H559S920 	20 	 60 	43  
H2705403 	1 	 80 	126  
H2713903 	1 	 80 	24  
H475S143 	1 	 80 	43  
H467S090 	3 	 80 	85  
H4673170 	3 	 80 	41  
H4733063 	3 	 BO 	49  

Minimum Maximum 
Training Number of Error Goal 

Derivative Epochs 
Algorithm 	Runs 	Reached 

Reached Reached Ship 20 

RP 	100 	19 	51 	0 	96.1% 	97.7% 	100.0% 	96.8% 	100.0% 	97.7% 	97.6% 	100.0% 	97.6% 	97.5%  
SCG 	100 	68 	32 	0 	96.7% 	100.0% 	100.0% 	99.2% 	100.0% 	100.0% 	100.0% 	100.0% 	100.0% 	99.5%  
G DX 	100 	0 	0 	100 	98.7% 	100.0% 	100.0% 	99.2% 	100.0% 	100.0% 	100.0% 	100.0% 	100.0% 	99.5%  
CGB 	100 	41 	59 	0 	98.7% 	100.0% 	100.0% 	99.2% _ 100.0% 	100.0% 	100.0% 	100.0% 	100.0% 	99.5% 

Notes: 	This trial combined with trial 5 tests the intrinsic distinguishability between same-ship folders as opposed to the distinguishability of ships 
represented by multiple folders 
Both the RP and GDX algorithms produced near perfect classifications with some 'hit and miss' results for the GDX method 

The SCG and CGB algorithms produced similar results to the RP and GDX algorithms but with considerably greater number of results exhibiting 
one or more 100% misclassified classes 

Table 4.4: Summary of Trial 4 
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Training 	Numberof 	Error Goal 
Algorithm 	Runs 	Reached 

Minimum 
Derivative 
Reached 

Totals 

Maximum 
Epochs 

Reached 

600 
Best Result 

Ship 1 

Average 
Classification 

Accuracy Ship 3 

720 

Ship 20 
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Trial Number = 5 	 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 720 images 

Test Set = 600 images 
Training/Test Image Folders = Common 

Trial Description = 3 Classes, 3 Ships, Three Folders per Class 
Mean Squared Error Goal = 10:7 

 Mininum Gradient Limit = 104  
Maximum Number of Epochs = 4000 

Training 
Test Images 

Images 

H559S230 	20 	 80 	 153  
H559S480 	20 	 80 	 43  
H559S920 	20 	 80 	 43  
1-1270S400 	 1 	 SO 	 126  
H271S900 	 1 	 SO 	 24  
H475S140 	 1 	 80 	 43  
H467S090 	 3 	 80 	 85  
F1467S170 	 3 	 80 	 41  
H473S060 	 3 	 80 	 42 

Image Folder Ship Number 

RP 	 100 	 1 	 99 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
SCG 	 100 	 0 	 100 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
GDX 	 100 	 0 	 100 	 0 	 100.0% 	100.0% 	100.0% 	100.0%  
CGB 	 100 	 3 	 97 	 0 	 100.0% 	100.0% 	100.0% 	100.0% 

This trial combined with trial 4 tests the intrinsic distinguishability between same-ship folders as opposed to the distinguishability of ships 
represented by multiple folders 
All 4 training algorithms produced perfect or near perfect classifications for alf (RP and GDX) or most (SCG and CGB) runs. 
The SCG and CGB algorithms produced results with 1 or 2 100% misclassified classes, a small number for the SCG method 
and considerably more (— 25%) for the CGB algorithm 

Table 4.6: Summary of Trial 5 

Notes: 

CO 



180 425 Totals 

Minimum 
Derivative 
Reached 

Maximum 
Epochs 

Reached 

Best Result 

Ship 1 

Average 
Classification 

Accuracy Ship 2 Ship 20 

Trial Number = 6 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 180 images 

Test Set = 425 images 
Training/Test Image Folders = Exclusive 

Trial Description = 3 Classes, 3 Ships, 1 Train Folder per Ship 
Mean Squared Error Goal = 10-7 

 Mininum Gradient Limit = 104  
Maximum Number of Epochs = 4000 

Training 
Images 

Image Folder Ship Number Test Images 

H559S200 	20 	 60 	 0  
H559S480 	20 	 0 	 123  
H475S140 	 1 	 60 	 0  
H270S400 	 1 	 0 	 206  
H056S030 	2 	 60 	 0  
H472S420 	2 	 0 	 96 
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Training 	Number of 	Error Goal 
Algorithm 	Runs 	Reached 

RP 	 100 	 52 	 48 	 0 	 91.1% 	53.4% 	83.3% 	71.1%  
SCG 	 100 	 46 	 54 	 0 	 86.2% 	57.8% 	87.5% 	72.7%  
GDX 	 1 03 	 70 	 30 	 0 	 87.8% 	68.9% 	60.4% 	72.5%  
CGB 	 103 	 34 	 66 	 0 	 87.0% 	64.6% 	82.3% 	75.1% — 

Trials 6, 7, 8, and 9 measure the improvement in classification accuracies as the number of folders and images used to form the 

training set is increased. The test set of 425 images is the same in all 4 trials 
Both the SCG and CGB training algorithms exhibited "hit or miss" results with several runs yielding 1 or 2100%  misclassifications 

Table 4.6: Summary of Trial 6 

Notes: 
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Training 	Numberof 	Error Goal 
Algorithm 	Runs 	Reached 

Minimum 
Derivative 
Reached 

Totals 

Maximum 
Epochs 

Reached 

425 
Best Result 

Ship 1 

Average 
Classification 

Accuracy Ship 2 

360 

Ship 20 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

D
R

D
C

 O
ttaw

a
 T

R
 2006

-24 /  C
R

C
 R

P
-2006-00

1  

- 	Trial Number =  7 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 360 images 

Test Set = 426 images 
Training/Test Image Folders = Exclusive 

Trial Description = 3 Classes, 3 Ships, 2 Train Folders per Ship 
Mean Squared Error Goal = 10-7 

 Mininum Gradient Limit = 104  
Maximum Number of Epochs = 4000 

Training 
Images 

H559S200 	20 	 60 	 0  
H559S920 	20 	 60 	 0  
11559S480 	20 	 0 	 123  
H475S140 	 1 	 60 	 0  
H068S032 	 1 	 60 	 0  
H270S400 	 1 	 0 	 206  
H056S030 	2 	 60 	 0  
H471S390 	2 	 60 	 0  
H472S420 	 2 	 0 	 96 

Image Folder Ship Number Test Images 

RP 	 100 	 3 	 97 	 0 	 54.5% 	79.1% 	76.0% 	71.3%  
SCG 	 100 	 3 	 97 	 0 	 76.4% 	55.3% 	86.5% 	68.5%  
GDX 	 100 	 0 	 0 	 100 	 82.9% 	41.7% 	88.5% 	64.2%  
CGB 	 100 	 14 	 86 	 0 	 80.5% 	65.5% 	99.0% 	77.4% 

Trials 6, 7, 8, and 9 measure the improvement in classification accuracies as the number of folders and images used to form the 
training set is increased. The test set of 425 images is the same in  all 4 trials 
Both the SCG and CGB training algorithms exhibited "hit or miss" results with several runs yielding 1 or 2100%  misclassifications 

Table 4.7: Summary of Trial 7 

Notes: 



RP 	 100 	 1 	' 	99 	 0 	 76.4% 	87.9% 	94.8% 	86.1%  
SCG 	 100 	 0 	 99 	 1 	 83.7% 	94.7% 	95.8% 	91.8%  
GDX 	 100 	 0 	 0 	 100 	 83.7% 	94.7% 	95.8% 	91.8%  
CGB 	 100 	 1 	 99 	 0 	 84.6% 	96.1% 	93.8% 	92.2% 

Trials 6, 7, 8, and 9 measure the improvement in classification accuracies as the number of folders and images used to form the 
training set is increased. The test set of 425 images is the same in all 4 trials 
Both the SCG and CGB training algorithms exhibited "hit or mise results with several runs yielding 1 or 2 100% misclassifications 

Table 4.8; Summary of Trial 8 

Notes 

Training 	Numberof 	Error Goal 
Algorithm 	Runs 	Reached 

Minimum 
Derivative 
Reached 

Totals 

Maximum 
Epochs 

Reached 

425 

Best Result 

Ship 1 

Average 
Classification 

Accuracy Ship 2 

540 

Ship 20 
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Trial Number = 8 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 540 images 

Test Set = 425 images 
Training/Test Image Folders = Exclusive 

Trial Description = 3 Classes, 3 Ships, 3 Train Folders per Ship 
Mean Squared Error Goal = 10-7 

 Mininum Gradient Limit = 104  
Maximum Number of Epochs = 4000 

Training 
Images 

H559S200 	20 	 60 	 0  
H559S920 	20 	 60 	 0  
H559S740 	20 	 60 	 0  
H559S480 	20 	 0 	 123  
H475S140 	 1 	 60 	 0  
H068S032 	 1 	 60 	 0  
H271S900 	 1 	 60 	 0  
H270S400 	 1 	 0 	 206  
H056S030 	 2 	 60 	 0  
H471S390 	 2 	 60 	 0  
H468S350 	 2 	 60 	 0  
H472S420 	2 	 0 	 96 

Image Folder Ship Number Test Images 
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Training 	Number of 
Algorithm 	Runs 

Error Goal 
Reached 

Minimum 
Derivative 
Reached 

Totals 

Maximum 
Epochs 
Reached 

425 
Best Result 

Ship 1 

Average 
Classification 

Accuracy Ship 2 

720 

Ship 20 
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Trial Number  = 9 
Number of Ships = 3 

Number of Classes = 3 
Training Set = 720 images 

Test Set = 426 images 
Training/Test Image Folders = Exclusive 

Trial Description = 3 Classes, 3 Ships, 4 Train Folders per Ship 
Mean Squared Error Goal = 10 -7  
Mininum Gradient Limit = 10-8  

Maximum Number of Epochs = 4000 
Training 
Images 

H559S200 	20 	 60 	 0  
H559S920 	20 	 60 	 0  
H559S740 	20 	 60 	 0  
H559S780 	20 	 60 	 0  
H559S480 	20 	 0 	 123  
H4753140 	 1 	 60 	 0  
H068S032 	 1 	 60 	 0  
H271S900 	 1 	 60 	 0  
H068S050 	 1 	 60 	 0  
H270S400 	 1 	 0 	 206  
H056S030 	2 	 60 	 0  
H471S390 	2 	 60 	 0  
H468S350 	2 	 60 	 0  
H056S090 	2 	 60 	 0  
H472S420 	2 	 0 	 96 

Image Folder Ship Number Test Images 

CA) 
CO 

RP 	 100 	 0 	 100 	 0 	 81.3% 	97.6% 	78.1% 	88.5%  
SCG 	 100 	 0 	 100 	 0 	 90.2% 	95.6% 	91.7% 	93.2%  
GDX 	 100 	 0 	 0 	 100 	 79.7% 	87.9% 	90.6% 	86.1%  
CGB 	 100 	 0 	 100 	 0 	 88.6% 	95.6% 	92.7% 	92.9% 

Trials 6, 7, 8, and 9 measure the improvement in classification accuracies as the number of folders and images used to form the 
training set is inc eased. The test set of 425 images is the same in all 4 trials 
Both the SCG and CGB training algorithms exhibited "hit or mise resultswith several runs yielding 1 or  2100%  misclassifications 

Table 4.9: Summary of Trial 9 

Notes: 



set. In that respect, the latter trials were expected to represent the more 
realistic scenario for future applications of such a classifier in that 
attempts to classify an "unlmown" target would almost certainly involve 
test images not previously seen (i.e., used in training) by the network 
classifier. 

Trial 1, 2, and 3: 

These three trials could be described as "proof of principle" trials 
in that they were conducted to prove that the basic premise that the 
Fourier spatial frequency feature vectors could, in fact, be used to 
distinguish between different ships was true. All three trials used a single 
folder per ship for both the training and test images. It is clear that the 
underlying pedagogy of using a Fourier spatial frequency to characterize 
the imagery is capable of distinguishing between ships with perfect or 
near perfect accuracy even in the case of the 13 ships used in trial 3. 

The summary sheets show the classification accuracies for the 
"best result" from the 100 runs conducted. However, as such, it is 
important to note that even though a given training algorithm on a given 
trial may yield the same "best result" as an alternate algorithm, the 
behaviour over the entire set of 100 runs may be radically different. The 
notes on each summary page are intended to offer some indication of 
these differences. For example, a commonly observed behaviour for the 
algorithms SCG, GDX, and CGB (but never for RP) can be desciibed as a 
"hit and miss" characteristic in which many runs result in one or more 
classes being 100% misclassified while the other classes are 100% (or 
nearly so) correctly classified. This characteristic is especially true of the 
GDX and CGB algorithms. Table 4.10 shows the classification rates for 
all 13 ships of trial 3 for each of the 100 runs for the training algorithm 
RP (the "best result", run 60, is highlighted). This should be contrasted 
with the equivalent data in Table 4.11 for the training algorithm CGB (the 
"best result", run 16, is highlighted). The latter shows several runs in 
which the network converged but resulted in as many as 10 classes being 
100% misclassified (as zero). Nevertheless, the "best results" for both 
algorithms are essentially identical. It should also be noted that, in certain 
cases, the "best result" for a given algorithm and a trial of 100 runs is not 
necessarily a run which ultimately meets the minimum error criterion 
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W72 
98.5 
97.8 
96.0 
97.5 
98.8 
98.9 
96.8 
97.8 
97.8 
97.2 
97.2 
989 
98.9 
98.7 
96.3 
97.5 
97.1 
97.7 
97.6 
98.0 
96.4 
97.2 
96.0 
98.0 
98.2 
96.3 
97.5 
97.5 
97.9 
97.7 
97.7 
97.9 
97.6 
98.2 
96.8 
994 
98.1 
98.9 
97.9 
96.2 
96.3 
96.2 
97.1 
87.3 
96.1 
97.8 
98.4 
97.3 
96.2 
98.4 
96.7 
97.7 
99.2 
97.9 
96.3 
98.0 
97.4 
96.9 

98.1 
97.9 
96.9 
97.3 
97.9 
96.9 
97.9 
97.1 
97.7 
98.1 
94.7 
97.4 
98.4 
97.4 
97.2 
97.3 
98.0 
99.5 
96.6 
96.6 
98.1 
95.4 
97.3 
97.1 
98.3 
97.4 
97.0 
96.2 
97.0 
95.7 
96.5 
98.1 
97.3 
96.7 
969 
97.3 
968 
97 2 
96.5 
99_8 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Run No. Average 
R6 4 	100.0 	100.0 	100.0 	939 	95.5 	940 	100.0 	1000 	943 	92.0 	94.1 	100.0 
87 7 	981 	100.0 	98.1 	87.9 	100.0 	960 	95.0 	100.0 	962 	98.0 	97.1 	100.0 
90 1 	96 2 	100.0 	100.0 	90.9 	100.0 	980 	100.0 	100.0 	96.2 	100.0 	100.0 	100.0 
914 	98.1 	100.0 	100.0 	93.9 	100.0 	98 0 	100.0 	100.0 	98.1 	94.0 	100.0 	100.0 
92.6 	100.0 	100.0 	100.0 	93.9 	100.0 	96.0 	100.0 	97.0 	96.2 	98.0 	94.1 	100.0 
88.9 	100.0 	100.0 	100.0 	93.9 	95.5 	960 	100.0 	100 0 	94 3 	94.0 	100.0 	96.0 
914 	100.0 	100.0 	98.1 	90.9 	95.5 	98.0 	100.0 	97.0 	962 	100.0 	97.1 	96.0 
90 1 	100.0 	92.3 	98 1 	90.9 	100.0 	94.0 	100.0 	970 	96 2 	100.0 	100.0 	100.0 
92.6 	100.0 	100.0 	100.0 	100.0 	100.0 	88.0 	95.0 	100.0 	98.1 	100.0 	912 	96.0 
91.4 	100.0 	100.0 	100.0 	97.0 	100.0 	92.0 	100.0 	100.0 	98.1 	100.0 	97.1 	96.0 
88.9 	98.1 	1000 	100.0 	93.9 	100.0 	94.0 	100.0 	1000 	98.1 	96.0 	94.1 	100.0 
86.4 	100.0 	100.0 	100.0 	93.9 	100.0 	100.0 	95.0 	100.0 	100.0 	98.0 	94.1 	96.0 
85.2 	100.0 	98.2 	100.0 	97.0 	100 0 	96.0 	100.0 	970 	98.1 	96.0 	97.1 	96.0 
87.7 	100.0 	98.2 	98.1 	87.9 	100.0 	98 e 	loon 	100 0 	98.1 	98.0 	100.0 	960 
91.4 	100.0 	100.0 	100.0 	97.0 	956 	98.0 	1000 	100.0 	88.7 	90.0 	97.1 	100.0 
888 	100.0 	96.2 	100.0 	90.9 	100.0 	100.0 	95.0 	1008 	88.7 	96.0 	100.0 	96.0 
91.4 	98.1 	100.0 	100.0 	93.9 	95.5 	100.0 	100.0 	100.0 	98.1 	98.0 	97.1 	96.0 
90.1 	98 1 	100.0 	98.1 	97.0 	95.5 	96.0 	960 	100e 	92.5 	100.0 	100.0 	100.0 
888 	98 1 	woe 	100.0 	93.9 	100.0 	see 	100.0 	100.0 	88.2 	100.0 	97.1 	100.0 
88.9 	98.1 	1008 	98.1 	97.0 	100.0 	98e 	95.0 	100.0 	96.2 	98.0 	100.0 	100.0 
93.8 	100.0 	100.0 	100.0 	87.0 	100.0 	98.0 	95.0 	100.0 	98.1 	98.0 	100.0 	96.0 
914 	98.1 	96.2 	98.1 	87.9 	100.0 	90.0 	100.0 	100.0 	98.1 	100.0 	97.1 	96.0 
90.1 	94.3 	100 0 	100.0 	97.0 	100 0 	98.0 	100.0 	100.0 	98.1 	92.0 	94.1 	100.0 
889 	100.0 	96.2 	96.2 	87.9 	100 0 	see 	95.0 	100.0 	928 	96.0 	100.0 	100.0 
95.1 	991 	96.2 	98.1 	97.0 	100.0 	968 	100.0 	woe 	96.2 	98.0 	100.0 	100.0 
901 	100 0 	100.0 	100.0 	93.9 	100.0 	980 	100.0 	100.0 	981 	98.0 	100.0 	100.0 
90 1 	98 1 	80.9 	100.0 	90.9 	966 	940 	100.0 	100.0 	96 2 	1000 	97.1 	96.0 
926 	100 0 	96.2 	100.0 	97.0 	100 0 	98.0 	100.0 	100.0 	906 	1000 	97.1 	96.0 
88.9 	98.1 	100.0 	100.0 	93.9 	1000 	98.0 	100.0 	100.0 	96.2 	96.0 	100.0 	96.0 
963 	100 0 	96.2 	100.0 	97.0 	100 0 	100.0 	100.0 	100.0 	¶000 	seo 	97.1 	100.0 
90.1 	100.0 	1008 	100.0 	90.9 	100 0 	100.0 	100.0 	100.0 	96.2 	98.0 	97.1 	100.0 
88.9 	100.0 	1008 	98.1 	93.9 	100 0 	see 	100.0 	970 	96.2 	98.0 	100.0 	100.0 
90.1 	100.0 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	100.0 	98.1 	96.0 	84.1 	86.0 
90.1 	98.1 	96.2 	100.0 	90.9 	95.5 	100.0 	100.0 	100.0 	1 00.0 	98.0 	100.0 	100.0 
92.6 	98.1 	96.2 	100.0 	90.9 	955 	968 	100.0 	978 	96.2 	94.0 	94.1 	100.0 
90.1 	981 	92.3 	98.1 	100.0 	¶000 	988 	100.0 	97.0 	94.3 	94.0 	97.1 	100.0 
914 	100.0 	100.0 	100.0 	97.0 	968 	98.0 	100.0 	100.0 	100.0 	100.0 	97.1 	100.0 
93.8 	98.1 	1000 	100.0 	97.0 	100.0 	960 	100.0 	100.0 	94.3 	seo 	100.0 	100.0 
914 	100.0 	100.0 	100.0 	93 9 	100 0 	96.0 	100.0 	1000 	98.1 	96.0 	88.2 	96.0 
92.6 	98.1 	100.0 	100.0 	90.9 	100.0 	980 	100.0 	100.0 	98.1 	98.0 	97.1 	100.0 
90.1 	96.2 	86.2 	100.0 	93.9 	100.0 	94.0 	100.0 	97.0 	92.5 	100.0 	94.1 	96.0 
86.4 	100.0 	100.0 	98.1 	87.9 	100.0 	96.0 	100.0 	97.0 	96.2 	96.0 	93.1 	100.0 
91.4 	100 0 	100.0 	98.1 	93.9 	100.0 	98.0 	100.0 	100e 	830 	90.0 	100.0 	98.0 
901 	98.1 	100.0 	100.0 	90.9 	100.0 	988 	100.0 	100.0 	96.2 	96.0 	97.1 	96.0 
93.8 	100.0 	92.3 	98.1 	97.0 	100.0 	98.0 	100.0 	100.0 	100.0 	96.0 	94.1 	96.0 
85.2 	98.1 	96.2 	100.0 	87.9 	100.0 	94.0 	95.0 	100.0 	92.5 	100.0 	100.0 	100.0 
901 	981 	1000 	100.0 	97.0 	100.0 	980 	100.0 	1000 	98.2 	96.0 	100.0 	96.0 
938 	100.0 	100.0 	100.0 	100.0 	965 	980 	100.0 	100e 	96.2 	100.0 	100.0 	96.0 
939 	962 	1000 	100.0 	93.9 	100.0 	100.0 	95.0 	100.0 	96.2 	94.0 	100.0 	96.0 
87.7 	100.0 	100.0 	94.2 	93.9 	95.5 	980 	95.0 	970 	98.1 	96.0 	97.1 	100.0 
91 4 	981 	100.0 	98.1 	90.9 	100.0 	98.0 	100.0 	100.0 	968 	96.0 	94.1 	100.0 
914 	962 	woe 	100.0 	90.9 	100.0 	98.0 	100.0 	970 	981 	96.0 	91.2 	100.0 
939 	98.1 	100.0 	100.0 	90.9 	100.0 	98.0 	100.0 	97.0 	96.2 	100.0 	100.0 	96.0 
95.1 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 	95.0 	100.0 	98.1 	98.0 	94.1 	96.0 
939 	100.0 	100.0 	100.0 	90.9 	100.0 	980 	100.0 	970 	925 	1000 	100.0 	100.0 
93e 	99.1 	100.0 	100.0 	93.9 	100.0 	96.0 	86.0 	970 	96.2 	99.0 	94.1 	100.0 
88.9 	100.0 	96.2 	100.0 	97.0 	100.0 	96.0 	100.0 	100.0 	962 	100.0 	100.0 	100.0 
93.8 	96.2 	100.0 	100.0 	90.9 	100.0 	98.0 	100.0 	97.0 	96.2 	98.0 	100.0 	960 
91 4 	92 9 	96.3 	100.0 	93.9 	100.0 	94.1 	95.0 	100.0 	98.2 	100.0 	100.0 	100.0 
93.8 	100.0 	100.0 	100.0 	100.0 	100.0 	00.01111100.0 	100.0 	loom 	ma 	100.0 	100.0 
914 	1000 	100.0 	100.0 	1000 	95.5 	ose 	100 0 	100.0 	98.1 	92.0 	100.0 	100.0 
925 	se 2 	100.0 	98.1 	93.9 	100 0 	98.0 	1000 	100.0 	98.1 	96.0 	100.0 	100.0 
91.4 	98.1 	100.0 	100.0 	87.9 	100.0 	92.0 	1000 	100.0 	943 	100.0 	100.0 	96.0 
877 	100.0 	100.0 	98.1 	97.0 	100.0 	100.0 	100.0 	100 0 	96.2 	96.0 	94.1 	96.0 
92.6 	100.0 	96.2 	100.0 	97.0 	100.0 	100.0 	100.0 	100.0 	96.2 	98.0 	97.1 	96.0 
87.7 	98.1 	96.2 	100.0 	93.9 	100.0 	98.0 	100.0 	100.0 	96.2 	90.0 	100.0 	100.0 
90.1 	1008 	96.2 	100.0 	93.9 	100.0 	980 	100.0 	100.0 	1000 	94.0 	100.0 	100.0 
91 4 	99.1 	100.0 	100.0 	90.9 	100.0 	96.0 	1008 	978 	962 	96.0 	97.1 	100.0 
864 	100 0 	96.2 	100.0 	loon 	100.0 	960 	1000 	100.0 	96.2 	98.0 	97.1 	100.0 
92.6 	98.1 	100.0 	100.0 	90.9 	100.0 	96.0 	100.0 	100.0 	100.0 	100.0 	97.1 	100.0 
864 	100.0 	98.2 	98.1 	93.9 	1008 	96.0 	1008 	100.0 	86.8 	96.0 	94.1 	84.0 
914 	100.0 	100.0 	100.0 	87.9 	95.5 	100.0 	95.0 	100.0 	100.0 	100.0 	97.1 	100.0 
929 	100.0 	96.2 	100.0 	97.0 	100.0 	98.0 	100.0 	100.0 	100.0 	98.0 	97.1 	100.0 
914 	100 0 	100.0 	100.0 	93.9 	1000 	96.0 	100.0 	100.0 	925 	96.0 	97.1 	100.0 
87.7 	92.5 	100.0 	100.0 	93.9 	100.0 	98.0 	1008 	100.0 	96.2 	98.0 	97.1 	100.0 
889 	98.1 	100.0 	98.1 	97.0 	100.0 	103.0 	95.0 	100.0 	98.2 	98.0 	97.1 	96.0 
90.1 	100.0 	100.0 	100.0 	93.9 	100.0 	100.0 	100.0 	100.0 	94.3 	98.0 	97.1 	100.0 
93.8 	98.1 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	100.0 	98.1 	98.0 	94.1 	100.0 
889 	98.1 	100.0 	98.1 	93.9 	955 	94.0 	100.0 	970 	943 	seo 	100.0 	100.0 
829 	98.1 	100.0 	98.1 	87.9 	965 	96.0 	86.0 	100.0 	88.1 	98.0 	97.1 	100.0 
95.1 	1000 	100.0 	100.0 	90.9 	96.5 	960 	loon 	loon 	100.0 	98.0 	100.0 	100.0 
92.6 	98.1 	96.2 	100.0 	87.9 	95.5 	84.0 	100.0 	100.0 	94.3 	96.0 	100.0 	96.0 
90.1 	100.0 	96.2 	962 	93.9 	100.0 	980 	100.0 	1000 	98.1 	100.0 	97.1 	98.0 
87.7 	98.1 	92.3 	100.0 	97.0 	100.0 	son 	95.0 	100.0 	100.0 	94.0 	100.0 	100.0 
939 	99.1 	100.0 	100.0 	97.0 	100.0 	960 	1000 	100.0 	943 	98.0 	100.0 	103.0 
926 	100.0 	96.2 	98.1 	93.9 	100.0 	980 	100.0 	970 	925 	98.0 	100.0 	100.0 
929 	98.1 	100.0 	100.0 	87.9 	95.5 	980 	100.0 	1000 	909 	98.0 	100.0 	100.0 
92.8 	98.1 	96.2 	100.0 	93.9 	100.0 	98.0 	100.0 	970 	88.7 	90.0 	100.0 	98.0 
88.9 	98.1 	100.0 	100.0 	93.9 	100.0 	96.0 	100.0 	100.0 	90.6 	100.0 	97.1 	96.0 
95.2 	100.0 	100.0 	99.1 	87.9 	100.0 	94.0 	100.0 	97.0 	92.5 	96.0 	97.1 	96.0 
90.1 	1008 	100.0 	991 	90.9 	1008 	900 	1000 	970 	962 	96.0 	97.1 	96.0 
929 	100.0 	100.0 	100.0 	938 	100.0 	980 	95.0 	1000 	96.2 	100.0 	100.0 	100.0 
889 	98.1 	100.0 	100.0 	87.9 	1000 	98.0 	100.0 	100.0 	94.3 	100.0 	97.1 	100.0 
91.4 	98.1 	100.0 	100.0 	90.9 	90.9 	94.0 	100.0 	97.0 	98.1 	100.0 	97.1 	100.0 
90.1 	96.2 	92.3 	100.0 	93.9 	100.0 	98.0 	1000 	100.0 	962 	100.0 	97.1 	96.0 
92.6 	1000 	92.3 	100.0 	97.0 	100.0 	980 	1000 	100.0 	90.6 	100.0 	94.1 	100.0 
91.4 	98.1 	100.0 	100.0 	87.9 	100.0 	96.0 	1000 	97.0 	928 	98.0 	97.1 	100.0 
901 	1008 	96.2 	100.0 	97.0 	1008 	98_0 	1008 	1000 	906 	98.0 	94.1 	100.0 
88.9 	100.0 	92.3 	100.0 	97.0 	100.0 	96.0 	980 	100.0 	94.3 	94.0 	97.1 	100.0 

6,8 	 1,15 	 III 	Iii 	 III 	•.: 	 I 	SIS 	 •: 8 	11 	 III  

Table 4.10 
Classification Accuracies for Trial 3 using the RP Training Algorithm 
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1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

55 
56 
57 
sa 
59 
eo 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

se 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

1_0_0 

Riz  No. Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Average 
93 8 	00 	100 0 	t000 	0.0 	00 	100 0 	00 	100.0 	98 I 	100 0 	00 	100 0 
0.0 	100.0 	98.2 	0.0 	100.0 	100.0 	00 	0.0 	970 	1000 	100.0 	97.1 	0.0 
0.0 	100.0 	100.0 	00 	0.0 	100.0 	980 	1Q00 	100 0 	00 	00 	100.0 	100.0 

928 	100.0 	100.0 	00 	0.0 	100.0 	980 	0.0 	100.0 	100 0 	100.0 	0.0 	100.0 
0.0 	100.0 	100.0 	100.0 	97.0 	100.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	1009 

951 	100.0 	1000 	100.0 	939 	100 0 	1000 	100.0 	970 	1X0 	100.0 	100.0 	1000 
926 	100.0 	1000 	100.0 	100.0 	100.0 	980 	1000 	100 0 	100 0 	100.0 	97.1 	100.0 
951 	100 0 	100 0 	100.0 	970 	100 0 	980 	100.0 	100 0 	1000 	100 0 	100 0 	100.0 
92.6 	100.0 	100.0 	100.0 	90.9 	100.0 	98.0 	100.0 	97.0 	100_0 	100 0 	100.0 	100.0 
95.1 	0.0 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	97.0 	98.1 	100 0 	100.0 	100.0 
93.8 	100.0 	100.0 	100 0 	1000 	100 0 	00 	100.0 	100 0 	100G 	98.0 	100.0 	100.0 
92.6 	100.0 	100.0 	100.0 	970 	1000 	960 	100.0 	100.0 	0.0 	980 	100.0 	100 0 
926 	100 0 	100 0 	1000 	970 	100 0 	980 	100 0 	100 0 	1000 	100 0 	100 0 	100.0 
975 	100 0 	0.0 	100 0 	00 	00 	00 	00 	100 0 	0.0 	00 	100.0 	0.0 
901 	98.1 	100.0 	100.0 	970 	1000 	98.0 	100 0 	100.0 	100 0 	98.0 	97.1 	100.0 
05.1 	100.0 	100.0 	100.0 	079 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
97.5 	0.0 	100.0 	100.0 	0.0 	0.0 	100.0 	100.0 	100.0 	0.0 	100.0 	100.0 	0.0 
0.0 	57 	100.0 	100.0 	100.0 	100.0 	980 	100 0 	100.0 	1000 	100 0 	00 	100.0 

951 	100.0 	100.0 	0.0 	97.0 	00 	0.0 	100.0 	100.0 	100.0 	1000 	100.0 	100.0 
926 	100 0 	lase 	too o 	97.0 	00 	100 0 	100 0 	100.0 	100 0 	100.0 	100 0 	1000 
93.8 	98.1 	100.0 	0.0 	100.0 	100.0 	98.0 	100.0 	0.0 	0.0 	0.0 	97.1 	100.0 
926 	100.0 	100.0 	103.0 	97.0 	100.0 	98.0 	100.0 	97.0 	100.0 	100.0 	100.0 	100.0 
926 	100.0 	100 0 	100.0 	919 	100.0 	980 	100.0 	100.0 	98.1 	00 	1000 	100.0 
93 8 	100.0 	1000 	100.0 	93.9 	100 0 	100.0 	100.0 	100 0 	981 	100.0 	100.0 	too 0 
926 	100 0 	100 0 	100.0 	939 	100.0 	960 	100 0 	970 	981 	100 0 	woo 	too o 
914 	0.0 	100 0 	15.4 	970 	0.0 	00 	00 	00 	0.0 	100.0 	971 	100 0 
961 	100 0 	100 0 	1000 	97.0 	0.0 	1000 	00 	100 0 	1000 	100.0 	0.0 	100.0 
95 1 	100 0 	00 	1Q00 	97.0 	100.0 	980 	100.0 	1000 	981 	100.0 	100 0 	100.0 
92.6 	100.0 	100.0 	0.0 	97.0 	100.0 	0.0 	100.0 	100.0 	103.0 	100.0 	0.0 	100.0 
93 8 	100 0 	100 0 	1000 	100 0 	0.0 	00 	00 	00 	981 	100.0 	100.0 	100.0 
938 	100.0 	1000 	100 0 	93.9 	100 0 	980 	1000 	970 	100 0 	100.0 	100.0 	100.0 
926 	100 0 	1000 	00 	00 	0.0 	00 	00 	00 	0.0 	00 	1000 	100 0 
93.8 	100.0 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	97.0 	1C0.0 	100.0 	100.0 	1009 
93.8 	100,0 	100.0 	100.0 	100.0 	100.0 	92.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
951 	100 0 	100 0 	1000 	100 0 	0.0 	100.0 	1000 	00 	00 	100.0 	0.0 	100.0 
914 	100.0 	00 	100 0 	970 	100.0 	100.0 	1000 	00 	0.0 	0.0 	0.0 	100.0 
91.4 	100.0 	1000 	100 0 	0.0 	100.0 	900 	00 	1000 	100 0 	100.0 	1000 	100.0 
92.8 	100 0 	100.0 	100.0 	100.0 	100 0 	980 	100.0 	100.0 	981 	100.0 	100.0 	100.0 
929 	100 0 	1000 	100 0 	93.9 	0.0 	100.0 	1000 	00 	100 0 	100.0 	00 	1000 
00 	100.0 	1000 	0.0 	0.0 	00 	0.0 	100.0 	100.0 	1Q00 	100.0 	100.0 	0.0 

95.1 	100.0 	0.0 	100.0 	97.0 	100.0 	0.0 	0.0 	970 	0.0 	100.0 	100.0 	0.0 
92.6 	100.0 	100.0 	100.0 	93.9 	100.0 	96.0 	100.0 	100.0 	103.0 	100.0 	100.0 	100.0 
88.9 	100 0 	100.0 	100 0 	90.9 	100.0 	980 	95.0 	100.0 	100 0 	1000 	100.0 	100.0 
914 	100 0 	100 0 	100 0 	93.9 	0.0 	990 	100 0 	100.0 	962 	100.0 	100 0 	100.0 
90.1 	100.0 	100.0 	100.0 	97.0 	100.0 	100.0 	0.0 	97.0 	100.0 	0.0 	0.0 	100.0 
975 	100.0 	00 	100.0 	97.0 	0.0 	980 	100.0 	100.0 	98.1 	100.0 	100.0 	100.0 
928 	100 0 	100 0 	100 0 	93.9 	9S 	960 	100.0 	970 	1000 	100.0 	100 0 	100.0 
93e 	1Q00 	100 0 	0.0 	97.0 	95S 	960 	100.0 	00 	925 	100 0 	0.0 	100.0 
975 	100.0 	100 0 	100 0 	970 	0.0 	00 	100 0 	100.0 	98.1 	99.0 	100.0 	100 0 
901 	100.0 	100 0 	100 0 	97.0 	100.0 	860 	100.0 	970 	100 0 	100 0 	100.0 	100.0 
98.3 	100.0 	00 	1000 	0.0 	0.0 	1Q00 	00 	1000 	00 	100 0 	100.0 	100.0 
00 	00 	1000 	0.0 	0.0 	0.0 	1000 	100.0 	1Q00 	981 	100.0 	100.0 	100.0 
929 	100.0 	100.0 	100.0 	93.9 	100.0 	98.0 	100.0 	100.0 	98.1 	100.0 	100.0 	100.0 
92.6 	100.0 	100.0 	100.0 	93.9 	100.0 	99.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
914 	00 	100.0 	100 0 	100.0 	1000 	980 	100 0 	100 0 	0.0 	980 	97.1 	100.0 
914 	100.0 	100.0 	100 0 	100.0 	100.0 	980 	00 	100.0 	100 0 	loon 	100 . 0 	100.0 
97.5 	100.0 	100.0 	100.0 	100.0 	0.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
95.1 	100.0 	0.0 	0.0 	90.9 	100.0 	0.0 	100.0 	970 	100.0 	100.0 	0.0 	1009 
914 	981 	100.0 	1000 	90.9 	955 	980 	100 0 	970 	100 0 	100.0 	94.1 	1000 
100.0 	0.0 	00 	0.0 	0.0 	0.0 	00 	00 	0.0 	19 	00 	824 	0.0 
914 	100 0 	00 	100 0 	1000 	100.0 	96.0 	100e 	t000 	too o 	loon 	1000 	100.0 
93 8 	100 0 	100.0 	100 0 	939 	00 	98.0 	100.0 	1000 	981 	100.0 	1Q00 	1000 
914 	100 0 	100.0 	100 0 	939 	100 0 	980 	00 	970 	981 	100.0 	100.0 	100.0 
914 	100 0 	100.0 	100 0 	1000 	100.0 	980 	95.0 	100 0 	1000 	100.0 	100.0 	100.0 
929 	100.0 	100.0 	100.0 	97.0 	95.5 	0.0 	100.0 	97.0 	100.0 	100.0 	100.0 	100.0 
92.6 	100.0 	100.0 	100.0 	93.9 	100.0 	103.0 	100.0 	100.0 	100.0 	100.0 	100.0 	0.0 
929 	100.0 	woe 	too o 	970 	100.0 	980 	1Q00 	97.0 	100 0 	1000 	100 0 	1000 
0.0 	100.0 	00 	0.0 	939 	0.0 	00 	0.0 	100 0 	100 0 	100.0 	100 0 	100.0 

926 	00 	loon 	too 0 	100.0 	100.0 	980 	100 0 	970 	96.2 	100 0 	971 	1000 
0.0 	100.0 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	0.0 

914 	100 0 	1000 	100 0 	97.0 	100.0 	960 	100 0 	00 	1000 	100.0 	100.0 	100 0 
129 	0.0 	00 	0.0 	13.2 	0.0 	100.0 	00 	00 	0.0 	00 	00 	0.0 
929 	100.0 	1000 	100 0 	97.0 	1000 	00 	100 0 	97.0 	100 0 	100.0 	100.0 	100 0 
00 	100 0 	100.0 	100 0 	970 	100.0 	0.0 	100 0 	00 	1000 	100 0 	100.0 	100.0 

914 	100 0 	100.0 	100 0 	100.0 	100 0 	100.0 	100.0 	100 0 	100.0 	100 0 	100 0 	100.0 
928 	100 0 	1000 	1000 	100.0 	1000 	980 	100 0 	97.0 	100.0 	100 0 	971 	100_0 
914 	0.0 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
90.1 	100.0 	100.0 	100.0 	90.9 	100.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
926 	100.0 	100.0 	1000 	939 	100.0 	980 	100 0 	970 	1000 	100 0 	100 0 	100.0 
926 	00 	00 	100 0 	100.0 	100.0 	980 	960 	970 	100.0 	0.0 	971 	100.0 
00 	100 0 	1000 	1000 	100.0 	1000 	980 	100 0 	1000 	00 	100.0 	100.0 	100.0 

93.8 	100.0 	100.0 	100.0 	97.0 	100.0 	100.0 	100.0 	97.0 	100.0 	100.0 	97.1 	100.0 
951 	00 	1000 	100.0 	100.0 	100.0 	98.0 	1000 	970 	1000 	00 	100.0 	100.0 
926 	0.0 	100.0 	100 0 	0.0 	100 0 	100.0 	00 	100.0 	100 0 	100.0 	oe 	100.0 
91 4 	98.1 	00 	00 	0.0 	100.0 	100 0 	00 	97.0 	981 	0.0 	00 	so 
00 	loo o 	00 	00 	tooe 	oe 	00 	oe 	woe 	too o 	too o 	00 	100.0 

938 	100 0 	100 0 	1000 	93.9 	100 0 	100.0 	100 0 	100.0 	100 0 	100.0 	100.0 	100.0 
0.0 	0.0 	100.0 	0.0 	100.0 	1000 	0.0 	00 	0.0 	100 0 	0.0 	100.0 	100.0 

93.8 	100.0 	100.0 	100.0 	97.0 	1000 	98.0 	100.0 	100.0 	0.0 	100.0 	100.0 	100.0 
93.8 	100.0 	100.0 	100.0 	97.0 	0.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
938 	100 0 	100.0 	1000 	93.9 	100.0 	980 	100 0 	1000 	1000 	100 0 	100.0 	100.0 
0.0 	00 	100.0 	100 0 	1000 	955 	980 	1000 	woe 	too o 	too o 	971 	0_0 
914 	100 0 	100.0 	1000 	1000 	100 0 	1000 	100 0 	100.0 	981 	100 0 	971 	1000 
90.1 	100.0 	100.0 	100.0 	100.0 	100.0 	98.0 	100.0 	100.0 	100.0 	100.0 	100.0 	100.0 
951 	00 	100 0 	100 0 	1000 	100.0 	980 	100.0 	970 	98.1 	100 0 	100.0 	100.0 
938 	100 0 	100 0 	100 0 	93.9 	100.0 	960 	100 0 	970 	100 0 	100 0 	100.0 	100.0 
951 	100.0 	tope 	too o 	90.9 	100.0 	see 	too o 	970 	1000 	1000 	100.0 	0.0 
914 	100 0 	100 0 	1000 	970 	100 0 	960 	100 0 	100 0 	1000 	100 0 	97.1 	1000 
939 	0.0 	tooe 	0 . 0 	0.0 	0 . 0 	980 	100 0 	00 	981 	100 0 	1000 	100.0 
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808 
81 4 
685 
919 
869 
991 
982 
98.3 
91A 
91.7 
910 
99.0 
38.3 
99.3 
1111.4 
61.3 
77 2 
76 3 
91 5 
88.1 
98.8 
91 0 
98.9 
903 
462 
78 3 
91.4 
76.1 
686 
987 
37 9 
99.1 
98.9 
889 
606 
839 
991 
75.9 
538 
60.7 
98.7 
97 9 
90.7 
75.7 
83.9 
901 
75 0 
839 
98.6 
81.3 
81 4 
96.7 
96.8 
934 
915 
920 
67.9 
97.3 
14.2 
91.3 
91 1 
908 
988 
03.9 
91.3 
988 
534 
90 8 
64.5 
91 1 
9.7 
91a 
76 7 
993 
98.8 
91.5 
913.4 
906 
75.4 
84 5 
98.8 
838 
687 
460 
48 2 
98.1 
48.2 
91.3 
91.4 
98.9 
76 2 
99 0 
99.1 
91 4 
985 
908 
986 
80.8 
938 

Table 4.11 
Classification Accuracies for Trial 3 using the CGB Training Algorithm 
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• 
,• 
• 
• described in the previous section. In certain cases, the "best result" run 

• was one terminated on either reaching the minimum error derivative or 
the maximum number of training epochs. Indeed, many of the runs listed 

• in Table 4.11 which resulted in completely misclassified classes 
• nevertheless trained and met the minimum network error criterion. Table 
• 4.11 (and, to a lesser extent, Table 4.10) also illustrates the essential need 
• to carry out multiple training runs for any given training/test environment 
• since the results from run-to-run can vary dramatically depending upon 
• the training algorithm used. For example, contrast run 16 in Table 4.11 
• with the result of run 72 in which essentially only one of the 13 classes is 

• correctly identified. In practice, even though both the RP and CGB 
• algorithms yielded the same "best result" in this case, the consistency of 

• the RP data in Table 4.10 would favour its adoption over the CGB 
algorithm since the data would strongly indicate that the RP algorithm is 
more strongly "matched" to this particular classification task than the 

• CGB method. 
• • 
• Trials 4 and 5: • 
• These two trials again used "common" train/test folders but with 

• three folders per ship. The training and test sets were identical in each of 

• these trials, the difference lying in the choice of definition of the classes. 

•
In trial 4, each folder is considered a class (nine classes in all, one per 
folder) while in trial 5, the three folders for each ship are collectively 

• considered a class (three classes in all, one per ship). Together, these two 
• trials provide a measure or comparison of the ability for the network 
• classifier to distinguish between same-ship folders for multiple ships as 
• opposed to the ability to distinguish between ships represented by 
• multiple folders per ship. The results for trial 5 are noticeably better than 
• those of trial 4 and thus confirm, (a), that there is a high degree of 

• correlation between disparate folders for a given ship (poorer 

• discrimination between classes in trial 4) and, (b), the ability to accurately 

• recognize and correctly classify a given ship improves as the number of 

•
disparate folders and total number of images used in the training process 
is increased. 

• 
• 
• 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 	 43 • 
• 



• •
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

 

Trials 6 to 10: 

These trials differ significantly from the previous trials in that the 
training and test sets are "exclusive", i.e., the test set images are drawn 
from folders not used in the composition of the training sets. The same 
test set is used in each trial while additional folders for the individuals 
ships are added to the training set in each succeeding trial, starting with 
one training folder in trial 6 and increasing to four folders in trial 9. As 
expected and as shown in Figure 4.1, the overall classification accuracy 
of the network classifier improves for each of the training algorithms as 
the number of training folders is increased. It would be desirable to 
pursue this scheme to include a much larger number of training folders 
(an objective which is stymied by the lack of data in the image database) 
since it must not be assumed that this improvement in overall 
classification accuracy would monotonically increase. As more and more 
folders representing a wider variety of views of the ships are added to the 
training set, a measure of degeneracy is expected to arise owing to the 
fact that, for certain views of the ships (e.g., low attitude and/or near- stem  
or near-bow views), the images for different ships would be essentially 
indistinguishable. Thus the addition of such folders to the training set 
would be expected to limit or even reduce overall classification 
accuracies. It is possible, therefore, in practice, that the training set size 
for a working, trained neural network classifier would have to be limited 
and, more importantly, contain a balanced mix of folders representing 
non-redundant but comprehensive  TSAR views of the ship. 
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Figure 4.1: Improvement in classification accuracies 
with number of training folders 

DRDC Ottawa TR 2006-24 / CRC RP-2006-001 

••
••

• •
••

••
••

••
• n

••
••

••
••

••
••

ii•
e  

45 



5: Concluding Remarks 

The experimental results offered in the trials described in chapter 4 
confirm the viability and soundness of the premise that characterizing 
these types of TSAR images by a Fourier spatial frequency spectrum leads 
to accurate, reproducible image recognition using an artificial neural 
network classifier. The underlying idea that the 'human classifier rules' 
can be encompassed in a Fourier spatial spectrum and that an 
appropriately designed and trained neural network can then 'discover' the 
essential relationships in the spectral components needed to yield accurate 
pattern recognition is a valid one. 

The results from trials 1 through 5 illustrated convincingly that 
perfect or near-perfect classification rates can be obtained by the 
methodology described in this report when the classifier is presented with 
imagery from the same folders used in the training process even in the 
case of several ships as in trial 3. The results from trials 6 through 9 
represented the more realistic scenario of a classifier presented with test 
images drawn from image folders not seen in the training phase. As 
expected, the classification rates were generally lower but clearly could 
be improved to fall in the 80% or 90% range when the number of training 
folders used for the different ships was increased. 

There are three principal areas of work which should be pursued in 
order to further the research effort presented here. 

(1) There is an obvious need for additional, more methodical data. 
Although the initial image database utilized in the present study 
was impressively large, it was clear that the distribution of 
imagery was highly askew and that, after vetting of the images, 
many of the ships contained in the database were poorly 
represented. As the work in this report has revealed, it is 
necessary to have not only many images of a given ship but to 
have these images distributed over many different folders, the 
latter particular to one 'view' of the ISAR platform. For future 
studies of automated classification, it is highly desirable to 
generate an image database for a given ship in a more 
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• • 
methodical manner by systematically collecting images 

• corresponding to a prescribed regimen of angles of view of the 
imaging process. In this way, the data used for training the I • 

• classifier would present a much more comprehensive and 
complete representation of the ship's image describing the 
TSAR view from different (and hopefully, known) angles of 

• approach. To this end, such a dataset would prove valuable 
• even if only a small number of ships were so studied, i.e., a ali- 
• inclusive set of ship image folders for a small number of ships 

• would better enable the design and testing of a classification 
methodology than a much larger dataset of a larger number of 

• ships for which only limited or redundant views are available. 

(2) There is a need to enhance the feature vector representation of 
an image to include, in addition to the Fourier spatial frequency • components, one or more physical attributes of the ship 
determined from the image. The example of estimating the 

• overall ship length has been discussed in section 3.3, a 
• discussion which also served to illustrate the innate difficulties 
• that may be encountered in such a task. Nevertheless, 
• incorporating into the image feature vector a quantity such as 
• ship length may prove an essential requisite to the design and 

• implementation of a classification system intended to operate 

• for a large number of disparate ships and ship types. 

• would be the exploitation of the 'ciné' nature of the TSAR 
• imagery (Musman S., Kerr D., and Bachmann C., 1996). The 
• present work has treated the imagery of a ship one image at a 
• time without any reference to the other, generally similar, 
• images contained in the same data folder. The intrinsic nature 

• of the collection of TSAR images leads to datasets consisting of 

• image folders (one flight and scene number) containing up to 

• several hundred individual images. Thus, as illustrated in 

1111 	 section 3.3, while any given image may produce an incorrect 
estimate of overall ship length, the measurement of such a • 

(3) An important enhancement to the fundamental approach of 
• feature vector derivation and neural network classification 

parameter over the sequence of images can lead to a consistent • 
• 
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and more accurate estimate by exploiting the similarity of the 
individual images and by objectively assessing the quality of 
these images. However, it cannot be assumed that exploitation 
of the plurality of images within an image folder is merely a 
question of averaging or accumulation of estimates or of 
classification results. Statistical inference would certainly play 
a role here along with some methodology of determining which 
images are superior to others in the sequence, i.e., a weighting 
of the results. Such an approach would also most likely involve 
reiteration of the image sequence in that images would be 
revisited and analyzed once the features have been calculated 
and evaluated over the full sequence. The "final" version of the 
feature vector for any given individual image would then be 
influenced by the measurements of the feature vectors for all of 
the images in the test image folder. Finally, the conclusion of 
the classifier as to the identity of the ship for a given folder 
would be formed by a "committee approach" in that the 
classification results for each image would be weighted and 
statistically combined to yield a single, concluding classification 
result. 
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Appendix A 

Listing of the MatLab algorithm `fingerprint.m' 

°/.  FINGERPRINT.M 

%  Author: K.  L.  Sala, Communications Research Center, Ottawa 
%  Last Revised:: September 2005 
% 
%  This routine  performs the following series of  operations upon  an  image from  the  ProSpot database of ship ISAR 
%  images: 

c'h  1. List the ship folders within a pa rt icular directory to allow  the user  to  select  (by number) a speci fi c folder; 
% 2. List the image files within the folder chosen  in step  1  to allow the user to select one  specific ship image; 
% 3. Read the image file and header information and normalize the image intensity values to max  = 1  (all of the files 
% 	initially have initial max  =  65535): 
% 4. Apply a high-intensity-pass filter to the image  to increase the contrast and reduce  the  amount of background 
noise; 
% 5. Perform an edge detection operation (Sobel) on the filtered image: 
% 6. Perform a Radon transform on the edge detected image: 
% 7. Crop the Radon transform to exclude any detected lines close to  ±90. 
% 8. Determine  the maximum value of the Radon transformation, rotate the image  so that the principal axis of the 
ship 
% 	image  is  horizontal and determine the new image dimensions of the rotated image; 
% 9. Measure the vertical  profile  of the image  (i.e.,  a row vector  of the image integrated along the horizontal), 
determine 
°A, 	the peak of the profile , and subsequently crop the  rotated  image to eliminate any vertical  ghosting and/or 
spurious 
% 	images in the image; 
%  10.Determine the (horizontal) profile of the filtered, rotated, and cropped image; 
%  11.Approximately center  the  ship profile and pad it to a dimension of  512  (for FFT  purposes); 

12.Calculate the FFT of the centered, padded ship profile; 
%  13.Zero the DC component of the FFT: 
%  14.Cut the FFT spectrum to  a pre-determined length of "specdim" specified at  the start of this routine; 
%  15.Normalize  the  cut FFT spectrum to  1; 
%  16.Display various MatLab figures illustrating the various stages above. 

% 

% Initialize the Mat  Lab workspace  and define the parameters 'specdim' and 'root'. 

clear all;dose all;C1C; 
specdim=64; 
root=  d \prospot_codenames\'; 
cd(root); 
`Y. 

%  Begin by listing the  folders found at the path 'root' and prompt user to select one folder (by directory number). 

LD=dir(* ."); 
INED,NDUMD1=size(LD): 
NED=NED-2; 
IstD=[1 :NED]; 
nrIstD=fix(NED/4)+1; 
nremIstD=NED-4*(fix(NED/4)); 
fprintf( . - ectories by number  :  \n') 

nrIstO > 1 
for  i=1:(nrIstD-1), 

)*4; 
fprintf('%-3i %-18s %-3i %-18s %-3i %-18s %-3i %-18s\n',IstD(j+1),LD(j+3).name,IstD(j+2),LD(j+4).name, 
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IstD(j+3),LD(j+5).name,IstD(j+4),LD(j+6).name) 
end 

end 
j=4*(nrIstD-1); 
if  nremIstD=r3 

fprintfr-31 %-18s %-3i %-18s %-3i %-18s\nIstD(j+1),LD(j+3).name,IstD(j+2),LD(j+4).name,... 
IstD(j+3),LD(j+5).name) 

elseif  nremIstD==2 
fprintf('°/0-3i %-18s %-3i %-18s\n',IstD(j+1),LD(j+3).name,IstD(j+2),LD(j+4).name) 

elseif  nremIstD==1 
fprintf('% - 3i °/0-18s\n',IstD(j+1),LD(j+3).name) 
end 

dimumber = inputnnEnter  directory number : 
dirnum=str2num(dimumber); 
longdirname=LD(dimum+2).name; 
subdir=strcat(root,longdirname,' '); 
cd(subdir); 

% Now pointing to the chosen ship directory. List the image files within the folder and prompt user to pick a specific 
file 
% by number. 

L=dir(-  ''); 
[NE,NDUM]=size(L); 
NE=NE-2; 
Ist=[1:NE]; 
nrIst=fix(NE/4)+1; 
nremIst=NE-4*(fix(NE/4)); 
fprintf('Directory  entries by number : \n') 
if  nrlst > 1 

for  i=1:(nrIst-1), 
j=(i-1 )*4; 
fprintf(%-3i %-18s %-3i %-18s %-3i %-18s %-3i %-18s\n',Ist(j+1),L(j+3).name,Ist(j+2),L(j+4).name,... 

Ist(j+3),L(j+5).name,Ist(j+4),L(j+6).name) 
end 

end 

j=4*(nrIst-1); 
if  nremIst==3 

fprintf("V0-3i %-18s %-3i %-18s %-3i %-18s\n',Ist(j+1),L(j+3).name,Ist(j+2),L(j+4).name,... 
Ist(j+3),L(j+5).name) 

elseif  nremIst==2 
fprintf('%-3i %-18s %-3i %-18s n',Ist(j+1),L(j+3).name,Ist(j+2),L(j+4).name) 

elseif  nremIst==1 
fprintf('% -3i °/0-18s\n',Ist(j+1),L(j+3).name) 
end 

filenumber = inputnnEnter  file number : 
filenum=str2num(filenumber); 
longfilename--L(filenum+2).name; 
fullfilename=strcat('d:\prospotV ,Iongdirname,"',Iongfilename); 
fid=fopen(longfilename,Y,'W); 

% 
=== 

% Now have chosen an image file from within a chosen ship folder. Open the file and read the image header 
information. 

fileid=fread(fid,1,'ulong');imageheadersize=fread(fid,1,'ulong'); 
imagefilever=fread(fid,1,'ulong);imagedataformat=fread(fid,1,'ulong'); 
pixelspacerange=fread(fid,1,'float);pixelspaceazimuth=fread(fid,1,'floar); 
pixelresrange=fread(fid,1,'float');pixelresazimuth=fread(fid,1,'float'); 
sarmode=fread(fid,1,'ulong);sartapevolno=fread(fid,1,'ulong'); 
missionid=fread(fid,Kchar'); 
done=8; 
for  k=1:8, 

if  missionid(k)==0 
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done=k-1; 
end 

end 
if  done==0 
done=1; 
end 

mission=sprintf( 	,missionid(1:done));firstsceneno=fread(fid,1,'ulong'); 
targetselectmode=fread(fid,1,'ulong);receivergain=fread(fid,1,'ulong'); 
acheading=fread(fid,1,11oat);acaltitude=fread(fid,1,'ulong'); 
inversefilter=fread(fid,1,'ulonglIfmrate=fread(fid,1;floar); 
squintangle=fread(fid,1,11oatIvelocity=fread(fid,1,1loat'); 
prf=fread(fid,1,11oat);samplingrate=fread(fid,1;float'); 
adaption=fread(fid,1,'ulong');Ifft=fread(fid,1,  Wong . ); 
aperturetime=fread(fid,1;floatloverlap=fread(fid,1,11oar); 
nramp=fread(fid,1,iilong');autofocus=fread(fid,1;ulong'); 
secondaryname=fread(fid,44;char'); 
done=44; 
for  k=1:44, 

if  secondaryname(k)==0 
done=k-1; 
end 

end 
if  done==0 
done=1; 
end 

secondname=sprintfros',char(secondaryname(1:done))); 
numberpulses=fread(fid,1,'ulong'); 
rcmc=fread(fid,l,'ulong');rangecorrect=fread(fid,l,'ulong'); 
trackanglestart=fread(fid,1;float);xyaltitude=fread(fid,1;floar); 

% Now read the parameters contained in the frame header 

frewind(fid); 
status=fseek(fid,imageheadersize,-1); 
frameheadersize=fread(fid,1,.uiong);maxpixelvalue=fread(fid,1,11oar); 
rangeofmax=fread(fid,1;ulonglazimuthofmax=fread(fid,1,'ulong'); 
latitude=fread(fid,1,'ulonglbngitude=fread(fid,1,'ulong'); 
rangeframe=fread(fid,1;ulongltimestamp=fread(fid,1;ulong'); 
scenenumber=fread(fid,1,'ulong);lastframe=fread(fid,1;ulong'); 
numbercolumns=fread(fid,1;ulong);numberrows=fread(fid,1;ulong'); 
framescalefactor=fread(fid,1,11oaqradialspeed=fread(fid,1,11oar); 
frewind(fid); 

% Now read the number of rows and columns from the frame header .  

status=fseek(fid,2088,-1); 
N=fread(fid,2, Jint'); 

°A Take care on this point! The first integer read, N(1), is the number of COLUMNS while N(2) is the number of 
ROWS. 

frewind(fid); 
status=fseek(fid,2096,-1); 
FSF=fread(fid,1;floar); 
frewind(fid); 
status=fseek(fid,4096,-1); 

% Now read the actual image data in matrix form. Note that max(max(iraw))  =  65535. 
% Normalize I such that max(max(I))  =  1.0 

1=fread(fid,[N(1),N(2)),Iushortliraw=1; 
fclose(fid); 
1=1 ./65535:A=1; 

% Now apply a filter function to the image intensity in the form 
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%  I  = factorl where factor = 1  -  exp(-alpha*(1e2)) with 

%  alpha  =  -100*In(1  -  OTL) where OTL  is the transmission factor for 
the  one  tenth  level' 

%  i.e., OTL  =  1  -  exp(-0.01*alpha) 

OTL=0.10; 
alpha=100*log(1/(1-0TL)); 
for  j=1:N(1),; 

for  i=1:N(2),; 
factor=1.-exp(-alpha*(1(i,j))^2); 
F(i,j)=factor; 
1(i,j)=factorl(i,j); 

end; 
end; 

%  Display the header information. 

cic; 
fprintfnn \t\t Processing Image  %s\t\t%i  Columns x %i Rows\n'Jullfilename,N(1),N(2)) 
fprintf('\n\n\t\t\t\t\t\t\t\t\t\tImage  Header Information\n'); 
fprintf('\n\t\t\t\t\t\tpixelspacerange = °/06.2Atpixelspaceazimuth = %6.2f,pixelspacerange,pixelspaceazimuth); 
fprintf('\n\t\t\t\t\t\tpixelresrange = %6.2f\tpixelresazimuth = %6.2f,pixelresrange,pixelresazimuth); 
fprintf('\n\t\t\t\t\t\timagefilever 	= °/06.2f\timagedataformat = °/06.2f,imagefilever,imagedataformat); 
fprintf('\n\t\t\t\t\t\timageheadersize 	%6i\trangeframe 	= °/06r,imageheadersize,rangeframe); 
fprintf('\n\t\t\t\t\t\tsarmode 	= %6.2fitsartapevolno 	= %6.2f,sarmode,sartapevolno); 
fprintf('\n\t\t\t\t\t\ttargetselectmode = %6.2f\tnumberpulses 	= °/06C,targetselectmode,numberpulses); 
fprintf('\n\t\t\t\t\t\tacheading 	= °/06.2f\tacaltitude 	= %6.2f,acheading,acaltitude); 
fprintf(\n\t\t\t\t\t\tlfmrate 	= °/06.2fitsamplingrate 	= %6.2f,lfmrate,samplingrate); 
fprintf('\n\t\t\t\t\t\tsquintangle 	= °/06.2f\tvelocity 	=  0/06.2r,squintangle,velocity); 
fprintf('\n\t\t\t\t\t\tadaption 	= °/06i\tIfft 	= °/06.2f,adaption,Ifft); 
fprintf('\n\t\t\t\t\t\taperturetime 	= %6.2f\toverlap 	= 0/06.21  ,aperturetime,overlap); 
fprintf('\n\t\t\t\t\t\tnramp 	= %6.2f\tautofocus 	= %6.2f,nramp,autofocus); 
fprintfnn\t\t\t\t\t\trangecorrect 	= °/06.2f\ttrackanglestart = %6.2f,rangecorrect,trackanglestart); 
fprintf(1n\t\t\t\t\t\txyaltitude 	= %6.2f\tradialspeed 	= %6.2f,xyaltitude,radialspeed); 
fprintf('\n\t\t\t\t\t\tframeheadersize = °/06i\tfirstsceneno 	= °/06r,frameheadersize,firstsceneno); 
fprintf(\n\t\t\t\t\t\trangeofmax 	= %6.2f\tazimuthofmax 	= %6.2f,rangeofmax,azimuthofmax); 
fprintf(\n\t\t\t\t\t\tlatitude 	=°/08i\tIongitude = `Yolli',Iatitude,longitude); 
fprintf('\n\t\t\t\t\t\tscenenumber 	= °/06.2f\tlastframe 	= °/06r,scenenumber,lastframe); 
fprintf('\n \t\t\t\t\t\tnumbercolumns = %6i\tnumberrows 	= %6C,numbercolumns,numberrows); 
fprintfnn\t\t\t\t\t\t\t\tmissionid 	=%3i %3i %3i %3i %3i %3i %3i 	,missionid(1:5)); 
fprintf('\n\t\t\t\t\t\t\t\tinversefilter 	%16r,inversefilter); 
fprintfOn\t\t\t\t\t\t\t\tprf 	= °/016i',prf); 
fprintfc\n\t\t\t\t\t\t\t\treceivergain 	= %16i',receivergain); 
fprintfc\n\t\t\t\t\t\t\t\trcmc 	= %16r,rcmc); 
fprintf('\n\t\t\t\t\t\t\t\ttimestamp 	= °/016i',timestamp); 
fprintf('\n\t\t\t\t\t\t\t\tmaxpixelvalue = °/016e',maxpixelvalue); 
fprintfc\n\t\t\t\t\t\t\t\tFrameScaleFactor = %161',framescalefactor); 
fprintfnn\t\t\t\t\t\tProduct : MaxPixelValue x FrameScaleFactor = %10.2f,(maxpixelvalueframescalefactor)); 
fprintf('\n'); 

%  Now carry out an edge detection  of  the  raw  image  followed by  a Radon  transform. Then rotate  the filtered image 
%  clockwise by -(thetamax-90) degrees. 

BW=edge(1,'sobef); 
theta=1:179; 
[R,xpl=radon(BW,theta); 

%  To avoid the case where there is a strong vertical  line  within the image which will be the max for the Radon 
matrix, 
%  we (ad hoc) 'cut' out the beginning and end portions  of the  Radon  matrix  R  (i.e., we  eliminate any rotation angles 
%  near + or  -  90. 

RCUT=R; 
for  ii=1:20 

RCUT(:,ii)=0; 
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RCUT(:,159+ii)=0; 
end 

% Determine the rotation angle by the max of the Radon matrix. 
% Rotate the image and find its new dimensions. 

YY=max(max(RCUT)); 
[xpmax,thetamax]=find(RCUT==YY); 
rotateangle=-(thetamax-90); 
IRC=imrotate(1,rotateangle,bicubic . ); 
[dimroty,dimrotx]=size(IRC); 

% Now find the 'vertical profile of the rotated image. 
% We then set a cutwidth of 15% of the vertical size and, ad hoc, cut this profile to keep only that portion of the 
image 
)̀/0 within +/- cutwidth/2 rows of the ship's horizontal axis. 

arry=sum(IRC,2); 
YIRCMAX=max(arry); 
rowline=find(arry==YIRCMAX); 
cutwidth=round(0.15*dimroty); 
isodd=mod(cutwidth,2); 
if  isodd == 1 

cutwidth=cutwidth+1; 
end; 
upperline=rowline+(cutwidth/2); 
if  upperline > dimroty 

upperline=dimroty; 
end 

lowerline=rowline-(cutwidth/2); 
if  lowerline < 1 

lowerline=1; 
end; 

CUT=zeros(size(IRC)); 
for  iy=lowerline:upperiine 

CUT(iy,:)=IRC(iy,:); 
end 

% Now form the 'profile' of the ship by summing over the rows of the 'cut' image. 

arrx=sum(CUT,1); 
XIRCMAX=max(arrx); 

% Now approximately center the profile and then cut and 'pad' the image to have a uniform width of 512 pixels (for 
% FFT purposes). 

LL=floor((512-dimrotx)/2); 
for  ii=1:dimrotx 

profile(LL+ii)=arrx(ii)/XIRCMAX; 
IRCCUT(:,LL+ii)=CUT(:,ii); 

end 
for  ii=1:LL 

profile(ii)=0; 
IRCCUT(:,ii)=0; 
profile(LL+dimrotx+ii)=0; 
IRCCUT(:,LL+dimrotx+ii)=0; 

end 

profile(512)=0; 
IRCCUT(:,512)=0; 

% Take the FFT of the profile. 
% Zero the DC component, normalize the spectrum to 1, and save the values from 2 to specdim+1 
% to serve as the image feature vector. 

spectrum=abs(fft(profile)); 
fftspectrum=fftshift(spectrum). 
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• for  ii=1:256 
monospectrum(ii)=fftspectrum(ii+256); 

• end 
monospectrum(1)=0; 

• specmax=max(monospectrum); 
normmonospectrum=monospectrum/specmax; 
normspec=normmonospectrum(2:specdim+1); 
for  ii=1:specdim 

endry 
=norms ) 	ec• P 

e 	 === 
a,. 

e
a,.  The next portion of this routine is a mensuration calculation which determines a best estimate of the ship's length 
% measured in image pixels. Five different approaches to this calculation are carried out to enable a comparison of 

•
a,. these approaches. 
% Note that this parameter of "bestwidth" was not used in the image feature vector owing to a lack of sufficient data 

•
oh  needed to determine the ship width in absolute length units. 
% 

• %  We now compute the Convolution and Correlation matrices of the ship profile with a step pulse of width = 
stepwidth. e % This leads to the vectors peakcov and peakcorr as functions of the stepwidth from 1 to 512. 
% a peakcorr=zeros(1,512); 

Ill 	 peakcov=zeros(1,512); 
for  jj=1:1:512 

• step=zeros(1,512); 
stepwidth=jj; 

III 	 LL=256-round(stepwidth/2)+1;UL=256+ceil(stepwidth/2); 
step(LLUL)=1; 

• °/(0%% C=conv(profile.step); Same as xcorr 
D=xcorr(protile,step); 

IIII E=xcov(profile,step); 
peakcorr(jj)=max(max(D)); 

III, P 	(jj) 	( 	()). 
eakcov =max max E • 

end   

W
% 
°/0 Finally, we integrate the profile relative to the step pulse of width =  pulsewidth 1:512 to give a matrix 'total'. 

O
% The best estimate of the image width = bestwidthA is found by finding the first point where peakcov is a maximum. 
% The row of total at row no. =  .bestwidthA' will give the sta rt ing column for the step pulse of width =  bestwidthA. 

• % 
total=zeros(512,512); • % 
%  The vector peakcov will give us the 'A' bestwidth estimate for the ship length by the coordinate at whick peakcov is 

• a 
°A  maximum. The corresponding sta rt ing point for the shippulse  is  found from the large matrix "total(bestwidthA,:)" 

• as the • %  first point of the maximum. 
 oh, 

maxpeakcov=max(peakcov); 
• jjpeakcov=find(peakcov==maxpeakcov); 
• bestwidthA=jjpeakcov(1); 

for  jj=1:512 

•

if  (jj+bestwidthA <= 512) 
dummy1=profile(jj:jj+bestwidthA); 

• elsdeurnmY2=°;  

•
dummy1=profile(jj:512); 
overlap=jj+bestwidthA-512; 

•
dummy2=0; end   

total(bestwidthAjj)=sum(dummy1)+sum(dummy2); end   

startcurve=total(bestwidthA,:); 
maxstartcurve=max(startcurve); • • • 
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KK=find(startcurve==maxstartcurve); 
startpointA=KK(1); 
endpointA=startpointA+bestwidthA; 

%  A  second 'B' bestwidth estimate for the ship length  is  found by the first index into peakcorr at which peakcorr max 
is 
%  > or =  to a value =  0.99 of max(peakcorr). The factor 0.99 is  an ad hoc factor. 
')/0  The corresponding starting point for the shippulseB is found from the large matrix "total(bestwidthB,:)" as the first 
point 
%  of the maximum. 

workingmax=0.99`max(peakcorr); 
III=find(peakcorr>=workingmax); 
bestwidthB=II1(1); 
for  jj=1:512 

If  (jj+bestwidthB <= 512) 
dummy1=profile(jj:jj+bestwidthB); 
dummy2=0; 

else 
dummy1=profile(jj:512); 
overlap=jj+bestwidthB-512; 
dummy2=0; 

end 

total(bestwidthB,jj)=sum(dummy1)+sum(dummy2); 
end 

KKK=find(total(bestwidthB,:)==max(total(bestwidthB,:))); 
startpointB=KKK(1); 
endpointB=startpointB+bestwidthB; 

%  For  interest ,  we calculate  a  third  "bestwidth" for comparison purposes. 

product=peakcom`peakcov; 
NNN=find(product==max(product)); 
bestwidthC=NNN(1); 
for  jj=1:512 

if  (jj+bestwidthC <= 512) 
dummy1=profile(jj:jj+bestwidthC); 
dummy2=0; 

else 
dummy1=profile(jj:512); 
overlap=jj+bestwidthC-512; 
dummy2=0; 

end 

total(bestwidthC,jj)=sum(dummy1)+sum(dummy2); 
end 

KKK=find(total(bestwidthC,:)==max(total(bestwidthC,:))); 
startpointC=KKK(1); 
endpointC=startpointC+bestwidthC; 

%  Now calculate two additional estimates for 'bestwidth' based upon the peakcorr curve. 
%  The bestwidthD estimate is that point at which the parameter 'intgradstep' first reaches its maximum value. 
% Gradstep is a 1x512 vector which is  = 1  if the gradient of peakcorr is greater than 0.1 (ad hoc number) and  = 0 
%  otherwise. Intgradstep  then is the quantity sum(gradstep(1:ii)). 
°A,  The  bestwidthE estimate is an  attempt to improve on bestwidth D by allowing  for  the  case  where the peakcorr 
curve 
%  shows a 'flat' region near  the  final 'flat' region, i.e., where there is a near-zero gradient followed by a short increase 
to 
%  the final near-zero gradient. It does this by defining the 'edgepoint'  to be the last point in gradstep which  is = 1 
AND 
%  which has at least 4 of the nearest points to it also equal to 1 (including,  of course, the point itself). 

deriv=diff(peakcorr); 
deriv=deriv./(max(deriv)); 
grad=gradient(peakc,orr); 
grad=grad./(max(grad)); 
gradstep=zeros(1,512); 
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for  ii=1:512 

if  grad(ii) > 0.1 
gradstep(ii)=1; 

end 
intgradstep(ii)=sum(gradstep(1:ii)); 

end 
vetgradstep=gradstep; 
edgepoint=zeros(1,512); 
for  11=10:500 

points=sum(gradstep(ii-2:ii+2)); 
if  gradstep(ii)== 1 

if  points >= 4 
edgepoint(ii)=1; 

end 
end 

end 
edgepoint(1:9)=1; 
[CC1=find(edgepoint== 1); 
maxintgrad=max(intgradstep); 
[BBI=find(intgradstep==maxintgrad); 
bestwidthD=BB(1); 
bestwidthE=max(CC); 
for  jj=1:512 

if  (jj+bestwidthD <= 512) 
dummy1=profile(jj:jj+bestwidthD); 
dummy2=0; 

else 
dummy1=profile(jj:512); 
overlap=jj+bestwidthD-512; 
dummy2=0; 

end 
total(bestwidthD,jj)=sum(dummy1)+sum(dummy2); 

end 
for jj=1:512 

if  (jj+bestwidthE <= 512) 
dummy1=profile(jj:jj+bestwidthE); 
dummy2=0; 

else 
dummy1=profile(jj:512); 
overlap=jj+bestwidthE-512; 
dummy2=0; 

end 
total(bestwidthE,jj)=sum(dummy1)+sum(dummy2); 

end 
KKK=find(total(bestwidthD,:)==max(total(bestwidthD,:))); 
startpointD=KKK(1); 
endpointD=startpointD+bestwidthD; 
KKK=find(total(bestwidthE,:)==max(total(bestwidthE,:))); 
startpointE=KKK(1); 
endpointE=startpointE+bestwidthE; 

% Now calculate two "zero profiles" with the ship pulse subtracted to give a profile of zero average. Also calculate its 
FFT 

average=(sum(profile(startpointA:startpointA+bestwidthA)))/bestwidthA; 
shippulseA=zeros(1,512); 
shippulseA(startpointA:startpointA+bestwidthA)=average; 
zprofileA=zeros(1,512); 
zprofileA=profile-shippulseA; 

average=(sum(profile(startpointB:startpointB+bestwidthB)))/bestwidth8; 
shippulseB=zeros(1,512); 
shippulseB(startpointB:startpointB+bestwidthB)=average; 
zprofileB=zeros(1,512); 
zprofileB=profile-shippulseB; 
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average=(sum(profile(startpointC:startpointC+bestwidthC)))/bestwidthC; 
shippulseC=zeros(1,512); 
shippulseC(startpointC:startpointC+bestwidthC)=average; 
zprofileC=zeros(1,512); 
zprofileC=profile-shippulseC; 

average=(sum(profile(startpointD:startpointD+bestwidthD)))/bestwidthD; 
shippulseD=zeros(1,512); 
shippulseD(startpointD:startpointD+bestwidthD)=average; 
zprofileD=zeros(1,512); 
zprofileD=profile-shippulseD; 

average=(sum(profile(startpointE:startpointE+bestwidthE)))/bestwidthE; 
shippulseE=zeros(1,512); 
shippulseE(startpointE:startpointE+bestwidthE)=average; 
zprofileE=zeros(1,512); 
zprofileE=profile-shippulseE; 

setfft=fft(profile); 
Note that 2=512, 3=511, 4=510, 	 256=258,257=257 

cutoff=64; 
upcut=514-cutoff; 
setfft(cutoff:upcut)=0; 
calmer=ifft(setfft); 
modspectrum=abs(fft(zprofileE)); 
shiftedmodspectrum=fftshift(modspectrum); 
for  ii=1:256 

monomodspectrum(ip=shiftedmodspectrum(ii+256); 
end 

=== 

%  Now display various plots of the image and data results from above . 

figure; 
captionb=spnntf( 	i  Rows by %i  Columns',N(2),N(1)); 
precaptionc=sprintf('Unfiltered  Image :  %s',Iongfilename); 
captionc=strrep(precaptionc,'_':\_'); 
orient  .indscape; 

imagesc(A);axis equal;axis tight;axis xy;colormap(jet);zoom 	; 
caption = strcat(captionc,captionb); 
title(caption); 

figure; 
captionb=sprintft 	bi Rows by %i  Columns',N(2),N(1)); 
precaptionc=sprintf(  Filtered Image  :  %s',Iongfilename); 
captionc=strrep(precaptionc,';\_'); 
orient  landscape; 

imagesc(I);axis egual;axis tight;axis xy;colormap(jet);zoom 	; 
caption = strcat(captionc,captionb); 
title(caption); 

figure; 
captionb=sprintf('  %i Rows by  %i  Columns',N(2),N(1)); 
precaptionc=sprintf('Edge Detection on Image  %s',Iongfilename); 
captionc=strrep(precaptionc,':;\_'); 
orient  landscape; 
imagesc(BW);axis tight;axis xy;zoom ;colormap(gray); 
caption = strc,aftcaptionc,captionb); 
title(caption); 

figure; 
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[NR,NC]=size(R); 
captionb=sprintf(' %i  Rows by  %i Columns',NR,NC); 
precaptionc=sprintf('Radon  Transform of Image  : %s',Iongfilename); 
captionc=strrep(precaptionc,";\_'); 
orient  landscape; 
imagesc(theta,xp,R);axis tight;axis xy;colormap(hot);colorbar;zoom 
xlabel('\theta (degrees)');ylabel(  x  \prime . ); 
caption = strcat(captionc,captionb); 
title(caption); 

figure; 
[NR,NC]=size(RCUT); 
captionb=sprintf(' %i  Rows by  %i Columns',NR,NC); 
precaptionc=sprintf('Clipped  Radon Transform of Image  : %s',Iongfilename); 
captionc=strrep(precaptionc,";\_'); 
orient  landscape; 
imagesc(theta,xp,RCUT);axis tight;axis xy;colormap(hot);colorbar;zoom or'; 

xlabeIntheta (degrees)');ylabel(x \prime . ); 
caption = strcat(captionc,captionb); 
title(caption); 

% Now display the rotated, filtered image. 

figure; 
[NR,NC]=size(IRC); 
captionb=sprintf(' %i  Rows by  %i Columns',NR,NC); 
captionc=sprinnlmage :  %s Rotated  %i degrees',Iongfilename,-rotateangle); 
orient  landscape; 
imagesc(IRC);axis equal:axis tight;axis xy;zoom on; 
caption = strcat(captionc,captionb); 
title(caption); 

figure; 
[NR,NC]=size(CUT); 
captionb=sprintf(' %i  Rows by  %i Columns',NR,NC); 
captionc=sprintf('Cropped  Image  : %s  Rotated  %i degrees',Iongfilename,-rotateangle); 
orient  landscape; 
imagesc(CUT);axis equal:axis tight;axis xy:zoom on; 
caption = strcat(captionc,captionb); 
title(caption); 

figure; 
orient  landscape; 
plot(arry/YIRCMAX,b- );axis tight;zoom un;hold 	; 
yline=[0,1];xline=[rowline,rowline]; 
xlineupper=[upperline,upperline];xlinelower=[lowerline,lowerline]; 
HL=line(xline,yline,'Color','r'); 
line(xlinelower,yline,'Color','r');line(xlineupper,yline,'Color','r'); 
caption=sprintf('Vertical  Profile with a Cutwidth  =  %31',cutwidth); 
title(caption); 

% % %figure; 
%%% orient landscape; 
%%% plot(arrx/XIRCMAX;r-');axis tight:zoom on; 
%%% title('Horizontal Profile'); 

figure; 
orient  landscape; 
plot(profile,'r-');axis tight;zoom on; 
title('Horizontal  Profile  512'); 
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%%%figure; 
%,%% orient landscape; 
%%% plot(fftspectrum..r.-');axis tight:zoom on; 
%%% title('Shifted FFT Spectrum of Horizontal Profile 512'); 

figure; 
orient  landscape; 
plot(monospectrum,'r. - ');axis tight;zoom  on; 
title('One-Sided  FFT Spectrum of Horizontal Profile 512'); 

figure; 
plot(peakcorr,b.-');hold on;plot(peakcov,'r.-');axis  tight; 
legendrorrelation','ConvolutionIzoom  on; 

%%%figure; 
%%% contourf(tota1,10);axis tight;colorbar; 

%%%figure; 
%%% plot(tops,b.-');axis tight: 

figure; 
plot(profile,b-);hold on;plot(shippulseA,'r-');plot(shippulseB,'g-'); 
plot(shippulseC;rn-Iplot(shippulseD;c-Iplot(shippulseE,%-');axis  tight; 
tstringA=sprintf('BestVVidthA  =  %3r,bestwidthA); 
tstringB=sprintf('BestWidthB  =  %3C,bestwidthB); 
tstringC=sprintf('BestWidthC  =  °/03P,bestwidthC); 
tstringD=sprintf('BestWidthD  =  %3i',bestwidthD); 
tstringE=sprintf('BestWidthE  =  %3i',bestwidthE); 
text(20,0.90,tstringA); 
text(20,0.84,tstringB); 
text(20,0.78,tstringC); 
text(20,0.72,tstringD); 
text(20,0.66,tstringE); 
legend(Profile','BestwidthA','BestwidthB','BestwidthC',.BestwidthD','BestwidthE);zoom 

figure; 
subplot(3,1,1);plot(profile, 	);hold  •  ;plot(shippulseft0-');plot(shippulseE, 	);axis  ;  ;zoom 
subplot(3,1,2);plot(zprofileA,  :  );hold  •  ;plot(shippulseA,'r-');axis 	• ;zoom  •  ; 
subplot(3,1,3);plot(zprofileE, 	);hold 	;plot(shippulseE,'g-');axis  .•  ;zoom 	; 

figure; 
[NR,NC]=size(CUT); 
captionb=sprintf(  %i Rows by %i Columns  ,NR,NC); 
captionc=sprintf(Cropped  Image %s Rotated  %idegrees',Iongfilename,-rotateangle); 
orient  landscape; 

imagesc(IRCCUT);axis equal;axis tight;axis  xy; 
caption = strcat(captionc,captionb); 
title(caption); 
xline=[rowline,rowline];yline=[0,dimroty]; 
xlineupper=[startpointA+bestwidthA,startpointA+bestwidthAJ;xlinelower=[startpointA,startpointA]; 
line(xlinelower,yline,  • • 	, );line(xlineupper,yline,  : r:rrr ,  r  );zoom 	; 
xline=[rowline,rowline];yline=[0,dimroty]; 
xlineupper=[startpointB+bestwidthB,startpointB+bestwidthB];xlinelower=[startpointB,startpointB]; 
line(xlinelower,yline,  Color',  g);line(xlineupper,yline,'Oolor','g'); 
xlineupper=[startpointC+bestwidthC,startpointC+bestwidthC];xlinelower=[startpointC,startpointC]; 
line(xlinelower,yline, 
xlineupper=[startpointD+bestwidthD,startpointD+bestwidthInxlinelower=[startpointD,startpointD]; 
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xlineupper=[startpointE+bestwidthE,startpointE+bestwidthE];xlinelower=[startpointE,startpointE]; 

zoom  on; 

figure; 
plot(monospectrum;r.- ');axis tight;zoom on; 

%%%  plot(monomodspectrun'r.-');axis tight;zoom on; 
caption='Fourier Spatial Spectrum with DC Suppression': 
title(caption); 

figure; 
plot(fv;r.-');axis tight;zoom  on; 
caption='Normalized  Feature Vector; 
title(caption); 

figure; 
subplot(2,1,1);plot(profile,b-);hold on;plot(shippulseE;r 2);axis tight;zoom  on; 

°/0%°/0 ploffshippulseB:g-');axis tight;zoom on; 
subplot(2,1,2);plot(zprofileE,'b-');hold on;plot(shippulseE;r-');axis tight;zoom  on; 

°/0%% plot( shippulseB,'g-');axis tight;zoom on; 

figure; 
°/0°/0%subplot(2,1,1);ploffprofile,'b-');axis tight;zoom on; 
%%%subplot(2,1,2);ploffabs(calmer),'b-');axis tight;zoom on; 

plot(profile,b-lhold on;plot(abs(calmer),'r-');axis tight;zoom  on; 
legend('Original  Profile','FFT Filtered Profile'); 

% 
%%%figure; 
')/0°/0°/0 for ii=1:511 
%°/0°/0 	diffcorr(ii)=peakcorr(ii+1)-peakcorr(ii); 
°eh, %  end  

 °/0%°/0 plot(diffcorr,'r.-');axis tight;zoom on; 
(1/0 

figure; 
plot(product,'r.-');axis tight;zoom  on; 

`1/0 

%%%figure; 
%°/0°/0 iistart=bestwidthA-30;iiend=bestwidthA+140; 
°/0%°/0 for ii=iistart:10:iiend 
°/0%% 	plot(total(ii,:),'r-');hold on; 
Glo%°/0 end 
%%% axis tight; 

figure; 
plot(0.99*gradstep,b1;hold on;plogintgradstepimaxintgrad,'r.-');axis  tight; 

%%%fprintfnnBestwidthA  =  %3i StartPointA  =  %3i EndPointA  =  %3F,bestwidthA,startpointA,endpointA); 
°/0°/0%fprintfnnBestwidthB  =  %3i  StartPointB  = %3i  EndPointB  =  °/03r,bestwidthB,startpointB,endpointB); 
%%%fprintf(\nBestwidthC  =  %3i StartPointC  = %3i  EndPointC  =  %3r,bestwidthC,startpointC,endpointC); 
°/0%%fprintf(\nBestwidthD =  %31  StartPointD  =  %3i  EndPointD  =  ')/03r,bestwidthD,startpointD,endpointD); 
%%we Ip- rintf('\nBestwidthE  =  %3i StartPointE  = %3i  EndPointE  =  °A3r,bestwidthE,startpointEendpointE); 
°/0%%fprintf('\n \ n  \  n'); 
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