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Abstract 

This report presents the design and the analysis of a mounting plate for 
holding an omnidirectional transmitter during radiation pattern measure-
ment. The design achieves a smooth variation of the complex permittivity 
profile through the plate by means of boring circular cones from the front 
and the back surfaces of a lossy dielectric slab in a way that achieves near-
optimum packing of the cones on both surfaces. The resulting geometry is 
reminiscent of a honeycomb structure, and is modeled as a uniaxial medium 
with the optic axis parallel to the normal of the plate. A modified scatter-
ing matrix propagator technique was developed to predict the reflection and 
the transmission coefficients for both the TE and TM polarizations in a way 
that takes into account explicitly both the effect of the non-uniform wave 
propagation incurred by the presence of material losses, and the effect of the 
longitudinal anisotropy incurred by the conical inclusions and extrusions of 
the plate. A choice of parameters that yields a predicted reflection level of 
less than about -22 dB over an angular range of 00  to about 50° is presented. 
Also included is an analysis predicting the error  in  measuring the radiation 
pattern in the presence of a reflection from the mounting plate. 
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Chapter 1 

Introduction 

Figure 1.1 presents schematically the setup for measuring the far-field radi-
ation pattern of an omnidirectional source along conical cuts of constant 
angular values. The radiating device under test is spun about a horizontal 
z axis by the roll positioner for scanning the 0 angular range, and about 
a vertical axis by the azimuth positioner for scanning the 0 angular range. 
This process, however, requires that the mounting plate for the device un-
der test present a small reflection coefficient in order to avoid corrupting the 
measurem.ent. 

Conceptually, one easy way to achieve a low reflection level from a plate 
for various incidence angles and for both TE and TM polarizations might 
be to use the Fabry-Perrot resonance within a single dielectric slab. The 
resonance frequencies are given by (2kz H — LSII — ZSL) = 2nar where n is an 
integer, H is the thickness of the uniform homogeneous isotropic dielectric 
slab of relative permittivity Er  , 4 is the output reflection coefficient of 
the air-dielectric interface at the input face of the slab, and LSII is the 
input reflection coefficient of the dielectric-air interface at the output face 
of the slab. Owing to the fact that LSti = LSL = 0 for both TE and 
TM polarizations,  for any e  and for any er , the expression' for H becomes 
H = nfto/2)/\/er — sin 2  Oi for both TE and TM polarizations. Thus, when 
er  >>> sin2  H becomes nearly independent of O.  The integer n is chosen 
to obtain a value of H that corresponds to a plate that is thick enough to 

1 Rigorously, this is true only if the dielectric plate is of infinite size in the transverse di-
mensions. Otherwise, diffraction at the edge of a finite-size plate would cause the diffracted 
waves to modify the overall scattered field of the plate. However, if the finite-size plate is 
large enough, the overall scattered field would be dominated by the bulk response rather 
than the edge response. Since the resonance frequencies are not dependent on specific 
values of I  9ff  I  and ISL I (although the nulls at resonance frequencies are usually deeper 
when 15111 = 1512  I), the loss due to diffraction at the edge of the plate might be taken 
into account as part of  Sff  and 4.2. 



ensure the required stiffness. This design approach, however, requires very 
tight tôlerances on the flatness and the parallelism of the interfaces, and 
on the thickness of the plate specially when er  is large. Furthermore, the 
frequency response has an extremely narrow band because the resonance is 
very sharp. 

Another way to achieve a low reflection level from a plate would be to re-
alize the Uniaxial Perfectly Matched Layer (UPML) that is used in the Finite 
Difference Time Domain (FDTD) technique to truncate the computational 
space without incurring reflections from that truncation. According to this 
concept (see Reference [1]), a Perfect Electrical Conductor (PEC) plate could 
have a very low level of reflection for any incidence angle and polarization if 
the PEC surface were covered with the right combination of uniaxial lossy 
electric and uniaxial lossy magnetic material such that the wave impedance 
would be that of free space at the input face of the UPML. A wave incident 
at the input face of the UPML would then be transmitted into the UPML 
without any reflection, and be gradually absorbed as it propagated within the 
UPML because of the lossy electric and lossy magnetic media of the UPML. 
This approach, however, leads to designs that are not physically realizable 
because the values of the electric and the magnetic conductivities in the di-
rection normal to the absorbing plane are negative, which situation implies 
the existence of dependent sources within the UPML (see Reference [2]), and 
because som.e relative values of permittivity and/or permeability are smaller 
than 1. 

Yet another way to achieve a low reflection level from a plate is to make 
the plate from a dielectric structure that presents to an incident uniform 
plane wave propagating in free space, a very gradual variation of the effec-
tive complex permittivity as the wave propagates through the mounting plate 
(see References [3, 54, 55, 56]). This is the approach that is presented in this 
report. The design for a large mounting plate (see Figures 1.2 and 1.3) was 
made of a lossy homogeneous dielectric slab that has been machined in the 
shape of a honeycomb-like plate in order to achieve a specific permittivity 
profile that provides a low level of reflection over a broad range of incidence 
angles while also providing mechanical rigidity for mounting a large cylindri-
cal styrofoam jig (see Figure 1.4). The tower to which the mounting plate is 
attached has been constructed without the use of any metallic part in order 
to minimize the presence of reflections from the tower itself. 

The precise determination of the reflection coefficient of the plate requires 
that the losses of the dielectric be taken into account. The presence of losses 
inside a propagation medium introduces an increased complexity in the prop-
agation mechanism as a result of the plane waves being no longer necessarily 
uniform2 . 

2There are also other complications introduced by the presence of losses. They are: 

2 
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Chapter 2 presents the Adler-Chu-Fano formulation [4] for treating non-
uniform plane waves by taking the propagation vector to be complex-valued 
as = (d+ A, while keeping all propagation angles to be real-valued. 
Within the Adler-Chu-Fano formulation, this report not only presents a de-
velopment that is different from that given by Radcliff [6] and Holmes [8] but 
it also points out a fundamental error that Radcliff made in attempting to 
generalize Holme's expression from the case of the incident plane wave being 
uniform to the case of the incident plane wave being non-uniform. 

Once the expressions for the propagation constants and the transmission 
angles are known, the Generalized Scattering Matrix (GSM) for an interface 
between two lossy media can be written in terms of the generalized Fres-
nel equations, as presented in Chapter 3. These equations are obtained by 
generalizing, in the ordinary Fresnel equations that apply at the interface 
between two lossless media, the expressions of the wave impedances for the 
TE and the TM polarizations so as to account for the fact that the propaga-
tion constant and the permittivity of lossy media are complex-valued. The 
composite GSM for a cascade of interfaces separated by homogeneous lossy 
regions can then be computed most expediently by using not the transmission 

1. the fields Ê or 171*  might no longer be perpendicular to the propagation vector 
of the phase wavefront according to References [75, p. 706] and [84, p. 502] but 

Reference [4, p. 422] shows that É for the TM("f3)  mode, and fl for the  TE(") 

mode, are still perpendicular to 5;  
2. the Poynting vector no longer lies in the direction of (see References [4, pp. 424- 

425] and [7, pp. 135-142]); 

3. the charge density of free charges pfree  in the medium is no longer zero such that 
the decay of the charge density now presents a non-zero value of relaxation time 
(see Reference [9, p. 424]); 

4. É or fi  becomes elliptically polarized (see Reference  175, p. 706]) and the angle 
between them varies in time over a time period even for a uniform plane wave (see 
References [4, pp. 411-427] and [77] and [7, pp. 140-141]). 

However, the process of taking into account the conductivity a by means of taking the 
permittivity E to become complex-valued effectively replaces the term /*free=  a-É by 0 
in the curl equation for fi, and replaces, via the continuity equation, the charge density 
pfree  by 0 in the divergence equation for D. This leads to (1 D) = 0 = without 
implying that is orthogonal to ./3 or if because -Y, D and have now become complex-
valued vectors whose real and imaginary vectors point, in general, in different directions 
(see Reference [4, p. 403]). 

In isotropic media, the presence of losses does not prohibit the decomposition of a wave 
into TE' and TM' waves where û = (â x b) is the direction for which the fields have no 
spatial variation. Hence, in general, Hu  =-- 0 for TM' waves, and E,  = 0 for TE" waves, 
for a total of five non-zero field components for each mode. Under appropriate rotation 
of the system of coordinates, these five non-zero field components can often be reduced to 
only three non-zero field components, with Ê = û for TM' waves, and H  = û for TE' 
waves, such that the two modes are decoupled (see References [4, pp. 422-423 1 , [85, p. 31, 
problem 1.3], [76, p. 306] and [77, p. 584]). In such a case, these modes will be referred to 
as pure modes. Otherwise, they will be referred to as hybrid modes. 
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matrices but the scattering matrix propagator technique presented in Refer- 

•
ences [10, 11, 12] but corrected as per [13, p. 46]. The reflection coefficient 
for the mounting plate is obtained as the 811  element of the composite GSM 

• for the cascade. The use of the GSM stands in contrast with the invariant 

• imbedding formulation [5, 19, 20, 21] which is a recursive scheme for treating 
a planar stratified structure'. 

• In Chapter 3, the continuous variation of the complex permittivity through 

4111 	the mounting plate is approximated by means of modelling the plate as a 

11111 cascade of thin homogeneous layers of constant complex permittivity. In 
practice, this variation of the permittivity is realized by varying the mixture 
of free space and dielectric material in the longitudinal direction, i.e. the 
direction normal to the plate. This process results in the complex effective 

• permittivity having a different value in the transverse4  directions than in the 

•
longitudinal direction, and thus the plate becomes a uniaxial medium with 
the optic axis lying in the longitudinal direction. For such a case, the two 

11111 	eigenwaves (the ordinary and the extraordinary waves) propagate separately 

• through the entire plate without inter-coupling, and thus, the GSM of the 
plate can be obtained for each eigenwave separately. 

• Chapter 4 presents the characterization of the complex permittivity  pro-
file of the  mounting plate as a uniaxial medium. Many references exist on 

•
the topic of the propagation in a uniaxial or biaxial medium, and the wave 
phenomenon at the interface between isotropic and uniaxial or biaxial me-

.> 	 dia. A particularly general treatment that takes into account material losses 
and optical activity (i.e. the slab can be non-reciprocal), and is based on 

• the tangential electric and magnetic field components rather than the eigen- 

•
waves is given in References [22, 23, 24, 25, 26, 27] but the approach results 
in the existence of some coupling between the TE and TM waves at each 
interface whereas no such coupling arises between the two eigenwaves. Other 
treatments, based on the eigenwaves as in Reference [28], or on a TE e and 

• TMY decompo. sition (where was the normal to the incidence plane) as in 
References [61, 30, 29], dealt with the case of the optic axis being parallel 

• to the interfaces in order to address the applications of polarizers. Refer- 
• ences [29] and [30] also took into account material losses. Wait [31] and 

• Gedney [1, pp. 285-288] treated in the same way the case of lossy uniaxial 

3In  this author's opinion, the expressions given in Reference [21, p. 234-2361 are at odds 
• with those given in Reference [20, p. 395], which expressions contain also an error, albeit 

a small one (13,04 = 0 should read 0,0_ 1  = 0). • 4 There are two different references to which the words "transverse" and "longitudinal" 

11111 	can refer in this report: 

1. interface between two different media; 

•
2. optic axis of a uniaxial medium. 

•
Unless mentioned otherwise, the terminology of transverse and longitudinal that is used 
in this report, is synonymous with tangential and normal to the interface, respectively. • 

• 4 

• 
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stratified media with optic axis perpendicular to the interfaces. Their treat-
ment is simpler than the one presented here but it does not shed much light 
onto the physics of the phenomenon. Wait's expressions as given in Refer-
ence [31, p. 98] will be used for comparison. Finally, Chen [7] treated by a 
coordinate-free approach, the general case of the planar interface between a 
lossless isotropic medium and a lossless uniaxial medium whose optic axis 
was arbitrarily oriented. 

Chapter 5 presents the design of the mounting plate in terms of the choice 
of the design parameters, the resulting performance and a sensitivity analysis 
showing the performance variation due to the variation of the design param-
eters. Chapter 6 presents a brief conclusion and Chapter 7 presents the list 
of references. Appendix A presents the equivalence between the model based 
on the instantaneous multiple reflections and the model based on the steady 
state voltage travelling waves, for a system of two cascaded scattering inter-
faces separated by a uniform homogeneous layer. This development proves 
the equivalence between Adams' invariant imbedding technique presented in 
Reference [19, pp. 9-23], and Wait's recursive technique presented in Refer-
ence [5, pp. 135,151]. Appendix B presents the mathematical development 
for the equivalence between a non-uniform plane wave with real-valued prop-
agation angles and a uniform plane wave with complex-valued propagation 
angles. This development can be used to compare the results given by the 
method developed herein and the results given by Wait's method in treat-
ing the interface between two lossy uniaxial media. Appendix C presents 
a comparison between Holme's m.ethod and the method developed herein 
for treating the interface between two lossy media. Appendix D presents 
the development of the expression for the effective relative permittivity as 
seen by the extraordinary wave propagating in a uniaxial lossy half-space, 
as well as some generalization to a biaxial lossy half-space with arbitrarily 
oriented dielectric axes. Appendix E presents the development for the dis-
persion equation in a lossy biaxial medium. Appendix F presents the Matlab 
program to obtain the GSM for a free-standing isotropic slab. Appendix G 
presents a scheme for estimating the error in measuring the radiation pattern 
of the transmitter under test due to the reflection from the mounting plate. 
This scheme can be used to compute an error bar for every angle at which 
measurement was carried out. 
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Dielectric mounting plate and mounting struts 

Shielded anechoic chamber 

Figure 1.1: Geometry of a test setup for measuring the far field along conical 
cuts of constant 0 values. For convenience of representation, the transmitter 
is shown here as being mounted with three struts rather than a dielectric 
styrofoam jig. 



Figure 1.2: Front view of the mounting plate. The two handles are not used 
during measurement. 



Figure 1.3: Rear view of the mounting plate. 

8 



Figure 1.4: View of the fiberglass tower, the mounting plate and the styro-
foam jig that encases the transmitter under test. 
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• Chapter 2 
• 
• 
• Wave phenomena at the planar 
• interface of two isotropic • 
• homogeneous and possibly • 
• lossy media 
• • 
• This section presents a correction and a generalization of the solution pre- 

sented in References [6, 21] for the effective propagation constants of non- 
• uniform plane waves at the planar interface of two isotropic homogeneous 

• possibly lossy media of infinite transverse dimensions. 

• 
• 2.1 Introduction • 
• 
•

With the classical formulation, media losses are taken into account by ana-
lytical continuation of the lossless expressions by allowing the propagation 
vector to become complex-valued. The application of Snell's law of refraction 

• at a planar interface then produces a complex value for the transmission an-
gle. Since the plane waves propagate in straight lines between parallel planar 
interfaces, the incidence angle at the next interface in a multilayer structure 
becomes also complex-valued and hence, in general, Snell's law of refraction 
becomes written in terms of complex values for both the incidence and the 

• transmission angles. More physically meaningful, however, is the Adler-Chu-
Fano formulation where all angles remain real-valued but the plane wave is 
allowed to become non-uniform, i.e. the amplitude wavefront is given its 

• own propagation constant 5 separate from the phase wavefront propagation 

• constant p. Incidentally, an equivalence between these two formulations is 

• presented herein as part of the validation process for the new results also 

• 
•

10 
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presented herein. 

The problem of a planar interface between two lossy half-spaces has been 
treated with the Adler-Chu-Fano formulation by Holmes [8] for the case where 
the incident plane wave was uniform, and by Radcliff [6] for the more gen-
eral case where the incident plane wave was non-uniform but the vectors ci; , 

pi and the unit vector normal to the interface were coplanar. However, 
Radcliff in generalizing Holmes' expressions used inappropriately the intrin-
sic propagation constants a01  and poi  instead of the effective propagation 
constants al and Pi for the incidence medium when carrying out the phase 
matching at the interface. 

This chapter consists of four sections. The first section presents the Adler-
Chu-Fano formulation and the symbolism used herein. The second section 
presents the correction to Radcliff's treatment. The third section presents 
the treatment of the general case where the incidence propagation vectors 
are not necessarily coplanar. The fourth section presents the results for 
both the coplanar case and the general case, and they include the case of 
negative values of p which case was not treated by Radcliff nor Holmes. The 
results for the coplanar case are obtained by setting  b  = 0 in the expressions 
for the general case. These coplanar results are then compared with the 
results for the classical formulation by in.voking an equivalence between the 
two formulations. Results are then presented for cases with qP 0. Since 
the general case cannot be obtained as the mere extension of Snell's law of 
refraction from real to complex propagation angles, the results for the general 
case are presented without any comparison. 

2.2 Adler-Chu-Fano formulation 

Herein, the e+iwt time harmonic dependency is implicitly assumed such that 
the magnitude of a non-uniform plane wave progagating with the complex 
propagation vector -P5,  is written as For an isotropic homogeneous lossy 
medium, the following equations apply (see Reference [4, equations (8.5-8.6), 
p. 403]): 

1=d+ii.4  
;Y.. 	-Y02  

'Yo = ao + j,30 = iw \Mere,.  = ik0 -V777  
where the parameters a0 ,  130  and 1,0  are, respectively, the intrinsic propagation 
constants for the attenuation and the phase wavefronts, and the intrinsic 
complex propagation constant for the wave propagating in the lossy medium. 
In contrast, a and p are the effective propagation constants corresponding 

11 

(2.1) 

(2.2) 

(2.3) 



to a, and po , respectively. We note, however, that po , e„ and ko  refer to 
intrinsic variables of free space, not those of the lossy medium. The relative 
permittivity is generally a complex number given by: 

0" 
Er  = 	— j tan(6)) = Er  — j (—

wE
) 	 (2.4) 

, 

where eir 	1, tan(8) = ul(we), 	0, w = 27rf,  I  = a, 151 = p and 
6, are all real-valued. The intrinsic propagation constants are obtained from 
Equations (2.3) and (2.4) as [4, Equation (8.9), p. 404]: 

(2.5) 

(2.6) 

1 + 
\ 11460eir  

ao 	 —  
( ewe,E r) 2

1  

CO \ litoeoer/  0" 	2  
1+ 	, 	1 

Weoer 

We note that a is not necessarily zero in a lossless medium (a, = 0), 
and that /3 is not necessarily equal to /30  unless the plane wave is uniform. 
In fact, the case for a = a, and p = /30  occurs only for a uniform plane 
wave, i.e. p 0 (see Reference [4, p. 410]), in either lossless or lossy media. 
Thus, a 0 does not imply that the plane wave is non-uniform nor that the 
medium is lossy. However, a = 0 does imply that the plane wave is uniform 
and that the medium is lossless. Moreover, in general, it is not possible to 
relate a and /3 to some effective permittivity ereff  the same way that we can 
relate a, and po  to some intrinsic permittivity sr . The reason is that although 
we can write = a, + j130  = jk,\/;: as in Equation (2.3), we cannot write 

'Y = a 	= iko \lereff unless 5 and point in the same direction, i.e. unless 
the plane wave is uniform. 

Performing' 	and using Equations (2.1-2.3), then separating real and 
imaginary parts produces the following two expressions: 

a2 _ 102 a02 002 

'For a general complex-valued vector -7 = (5+ j, two different definitions exist for 
ry 2 . In References [80, 81], -y2  is defined as -y2  = = a2 + 02 and is a real-valued 
scalar quantity that represents the square of the magnitude of the vector. However, in 
Reference [4], -y2  is defined as -y2  = •=  (Ce2  —  132) + j(25 • ,j) and is a complex-valued 
scalar quantity. Since -yo  in Equation (2.3) is a complex-valued scalar quantity, '702  is clearly 
a complex-valued scalar quantity and we need to use the latter definition for -y2  as per 
Equation (2.2). 

( 2 . 7) 

12 



a = 
\/0o2 _ a02 

fi 
(2.9) 

(2.10) 

1 ± 	Cr 	— 1 	(2.13) 
W6 067.' cos(p) j

2 

\fi \ 
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aP cos(p) = a0)30 	 (2.8) 

where p is the acute (i.e. interior) angle between â and [7. All constants 
ao , [3o , a and 3 are taken to be positive real values. From Equations (2.7) 
and (2.8), one obtains the effective propagation constants as follows: 

( 	2(4,60 	2  
\ 1  + (13, — 	cos(p)) 

( 	2%30  	\ 2  1  
\. 1 4-  (ieg — 

	

cos(p)

0 
 

Equations (2.9) and (2.10) are not valid for a non-uniform plane wave 
in a lossless medium because the indetermination a0/ cos(p) = 0/0 arises 
since both ao  = 0 and cos(p) = 0 for a non-uniform plane wave in a lossless 
medium (see Reference [4, p. 426]). The equations are valid for any other 
case. From Equations (2.5) and (2.6), we obtain: 

2a0[10 = witou 	 (2.11) 

( 	
__ a29 ) __La2 tioeoe; 	 (2.12) 

and Equations (2.9) and (2.10) become: 

a 
.„ L40E04. 

2 
1+ 	 

CJE0 Eir  cos(p)

) 
+1 

 

Equations (2.13) and (2.14) are equivalent to those given in Equation (8.14) 
of Reference [4, p. 409]. From Equations (2.13) and (2.5), and from Equa-
tions (2.14) and (2.6), we see that a = and = 00 when p = 00 as 
mentioned above. The case p = 00  is the case of a uniform plane wave in a 
lossy medium (see Reference [4, p. 410]). 
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1-nt1 2  + Re (70Z) + 17d --YAI  
2 

(2.18) = 

2.3 Case when cn, 0, and are coplanar: Cor-
rection to Radcliff's formulation 

Figure 2.1 shows the wave phenomena in the incidence plane at the interface 
of two lossy media. It is assumed here that the interface is planar and of 
infinite transverse dimensions, and that the propagation vectors  5 ,  13' and the 
normal of the interface are coplanar. The solution consisting of a single 
reflected wave and a single transmitted wave is complete and valid everywhere 
in both half-spaces, i.e. even in the near-field region of the interface. The 
interface is illuminated by a non-uniform plane wave of arbitrary incidence 
angle and of polarization either parallel or perpendicular to the indicence 
plane. The treatment of these two polarizations is sufficent 2  to obtain the 
treatment of an arbitrary polarization, just as with uniform plane waves (see 
Reference [4, p. 423]). However, the determination of 5 and /4 does not 
require the knowledge of the polarization of the waves (even in anisotropic 
media) because it proceeds solely from the phase matching requirement at the 
interface (see Reference [9, pp. 506-508]). From References [4, 6, 8], Snell's 
law at the interface of two isotropic homogeneous lossy media, identified 
herein as media 1 and 2 in Figure 2.1, is given as: 

sin(6 + pi ) = az sin(6 + p2) 	 (2.15) 

131  sin(i)=  rez sin(6) 	 (2.16) 

where all parameters take real values. Holmes' expressions for computing 
/32 and a2  are [6, Equations (18-19)]: 

,e2 = 	 2 
\/1-rit1 2  - Re (')/j) +  (2.17) 

2A wave of arbitrary polarization propagating with propagation constants â and 73 can 
be decomposed into a pure TE' wave and a pure TM' wave where û = (â x b) is the 
direction for which the fields have no spatial variation, hence Ê = û for pure TM" waves, 
and fi = û for pure TE' waves (see References [4, pp. 422-423], [85, p. 31, problem 1.3]). 
It turns out, however, that when 5, and Z are coplanar, the two incidence planes of 
the general case reduce to a single incidence plane, and the normal unit vector of this 
single incidence plane is also parallel to û for both the transmitted and the reflected 
waves. Consequently, a decomposition into a TE' and a TM' waves corresponds to a 
decomposition into the usual TEv and TM' waves where 1) is the normal of the incidence 
plane. For instance, when the incidence plane is the xz plane, then û = û. 
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Radcliff has used inappropriately a 01  instead of ai  in Equation (2.15) 
(see [6, Equation (9) ]), and /301  instead of 01  in Equation (2.16) (see [6, . 
Equation (10)]). This led to incorrect values for the propagation constants 
a2  and 02 in his Figure 3. When ryi t  = al sin(6. + pi) + jPisin(i) is used 
instead of lilt  = a01 sin(6 + pi ) + j1301 sin( 1 ) in Holmes' expressions, the 
correct values are obtained for a2  and (32 . 

Solving for 6 from Equation (2.16) and the knowledge of /32 leads to two 
possible solutions: 

arcsin (.11 0.2 
180° — arcsin (k) 

where W = Oisin(i). Solving for p2 from Equation (2.15), from the 
knowledge of a2 and from the knowledge of the two possible solutions for 6 
leads to four possible solutions: 

arcsin ( 3L) — arcsin ( 1E) 
a2 	 )32 

180° — arcsin (Ï-; ) — arcsin 

arcsin ( 1 ) + arcsin (e) — 180° 
a2 

— arcsin ( 1 ) + arcsin ( I4La  
a2 

where V = al 	+ pl). The difficulty here lies in selecting the proper 
solution among these various expressions because the solution does not re-
main with the same expression for all values of and pi (see Appendix C). 
The correct results will be presented in section 2.5.1. 

2.4 Case when di, pi  and ,2 are not coplanar 

When the vectors di, /41 and the unit vector normal to the interface are 
not coplanar, the phase matching at the interface proceeds as follows: 

=12t)  	((à., ie.1) x 2) =2 x ((d2 	x 2) 

where the subscript t refers to the component tangential to the interface. 
Separating real and imaginary parts leads to these two equations: 

= (2.19) 

P2 (2.20) 

(2.21) 



• • • • • • 
•

ai sin((i) az sin((2) 	 (2.22) 

• = sin(Ù) 	 (2.23) 

• where the angles (1, (2, › i_ and à are shown in Figure 2.2. To simplify the 

Ille figure, the azimuth angle for the vector 51  was taken as zero. Thus, we have 
two separate incidence planes3  , one containing the vectors 2, cei and ci.2 , and e 	another incidence plane containing the vectors  2, 181  and 4, with Snell's law 

• of refraction being valid in each incidence plane as shown by Equations (2.22) 

• and (2.23). 

111 	From spherical trigonometry, we have: • 
• cos(pi ) = sin(ei) sin(Ci)  cos(0) cos(i) cos( i ) 	(2.24) • 
• cos(p2) = sin(6) sin(C2 ) cos(e) + cos(6) cos(C2) 	(2.25) 

• When e = 0, these two equations reduce to pi = —  i and p2  2  — e2 
respectively. Multiplying together Equations (2.22) and (2.23), then using 
Equations (2.8), (2.10), (2.23), and (2.25), and performing some algebraic 

• manipulations valid for the case e2 00 and G ±900 , one obtains the two 

• following expressions where all quantities are known from the knowledge of 
aol , 00,, a02, /302, 	and 

• • cos2(2)= 2H ± R2 — HF — 2 ± -\57 
(2.26) 

•
2(2H + R2  — 1) 

• 3  Contrary to the previous case where il, fl and were coplanar, here the normal of each 
incidence plane is no longer parallel to ii = (a x b) for the transmitted or the reflected 

• waves. Consequently, the decomposition of a wave of arbitrary polarization propagating 

•
with propagation constants à' and if into a TEu  and a TMu waves no longer corresponds 
to a decomposition into the usual Te and TMu  waves where f) wciuld be the normal of e . 	 the incidence plane. However, because the determination of the propagation constants 

. 	
is carried out from the phase matching requirement at the interface, the conclusion that 
the incident, the reflected and the transmitted (complex) propagation vectors all reside in 

II 	 the same (two) incidence plane(s) is independent of the polarizations of the plane waves. 

•
Furthermore, the conclusion is also independent of the nature of the two media on either 
side of the interface, and independent of the nature of the plane waves (i.e. uniform or 

• non-uniform). Therefore, this conclusion is remarlçably general! 

• 
• 
• 
•
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COS(p2) = 
S—a 1  sin(pi ) 

2(aî s1n2 (pi )U+A2 ) 
(2.29) 
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2H+R2 +HF—NTIFI (2.27) cos2  ((2) 
2H — R 2  + + R2 (R2  + 2H — HF) + (R2  — 

where: 

=  (HF  — R 2) 2  + 4H (H + F —  (HF  — R 2)) 
— aozie 02 
= 	sin(ei) 

sin((i) 
= 19g2 ce2 
= VW/A 
= Q/ (1 — Q cos(1P)) 
= 2W2  /U 
= (2A/U) 2  
=  (1+  R cos(e)) 2  G 

2ceo l  al  = 	 Ooi 		2  
' 	(13291 -41)cos(P1)) 

P1 = 	\A/1 	2a01[301  	2  4.1 
(091-aôl) C°S(P1) I 

Once e2 and (2 are known, we compute cos(p2) from expression (2.25). 
Then, substituting the value of cos(p2 ) into Equations (2.9) and (2.10) yields 
the knowledge of a2  and 02, respectively. 

For the case e2 = 0 0 , the solution can be obtained even more easily. 
Substituting  2 = 00  into Equation (2.23) yields = 0° and hence, pi = 
and p2  = (2. Substituting these values into Equation (2.15), then using 
Equation (2.9) for a2  and performing some algebraic manipulations yields 
the following expressions: 

where all variables have been previously defined, except for S and T which 
are given as: 

S = 	sin4 (p1 ) + aî sin2 (pi )U 2A2  
T = 	sin6 (p1 ) +  24 sin4 (p1 )U ai sin2 (pi )U2  4A2  (1 — U ai sin2  (pi)) 

(2.30) 
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We note that in spite of the fact that Equation (2.9) was not valid for 
a non-uniform plane wave in a lossless medium due to the indetermination 
mentioned previously, Equation (2.29) which was obtained from using Equa-
tion (2.9), produces nevertheless the correct value cos(p2) = 0 when a02  -= 0, 
except when both 6 = 00 and pi  = 00 in which case Equation (2.29) results 
in the indetermination 0/0. When both 6 = 00 and pi  = 00 , one obtains 
à = 00 and p2  = 00  from symmetry principle, irrespective of whether either 
one or both media is either lossy or lossless. 

When the incidence medium is lossless, i.e. aoi = 0, the incident plane 
wave is usually assumed to be uniform and thus, ai  = aoi -= 0 and thus, V = 
ai  sin((l ) -= 0. This situation results in (2  = 0, i.e. p2  = -C2 , from applying 
Equation (2.22) with an arbitrary value of a2 . This situation corresponds to 
d2 being normal to the interface. This result, which agrees with References [7, 
p. 172],[20, p. 369] and [84, p. 502], is remarkably general because it is based 
solely on the phase matching requirement at the interface, and thus, this 
result applies to any transmission medium, even the most general anisotropic 
medium. The case of V = 0 is also one of practical importance as it arises at 
all parallel interfaces of a planar multilayered structure standing in free space, 
illuminated by a uniform plane wave. At the first interface of the structure, 
V = 0 because a l  = aoi = 0. At any other interface of the structure, V = 0 
because p2 =  -6 at the preceding interface, and the waves travel in straight 
lines between interfaces, thus making  Pi  = —6 and V = 0 at the current 
interface. 

When the transmission medium is lossless, i.e. a02  = 0, the transmitted 
wave is a uniform plane wave when a2 = a02 = 0 which results in (1  = 0, i.e. 
pi  = —6, from applying Equation (2.22) with an arbitrary value of al . This 
situation corresponds to di  being normal to the interface. Otherwise, the 
transmitted wave is a non-uniform plane wave which leads to cos(p2 ) = 0. 

When the two media are lossy or, if either one or both media are lossless, 
when no non-uniform plane wave exists in a lossless medium, the procedure 
consists of solving Equations (2.26-2.27) when 6 00  or Equation (2.29) 
when 6 = 00 . Then, substituting the value of cos(p2) into Equations (2.9) 
and (2.10) yields the knowledge of a2  and 02, respectively. In practice, how-
ever, it was more convenient to use Equations (2.26-2.27) with a02  = e or 
Ci  = e whenever a02  = 0 or  Ci  = 00 , respectively, where the constant e 
represents a very small arbitrary positive value. 

2.4.1 Special case of practical importance 

As seen in the previous section, when the incidence medium is lossless, i.e. 
ceoi = 0, the incident plane wave is usually assumed to be uniform and 

18 



er2 = 6/7-2 — 
(WaE20 ) 

(2.33) 

(2.34) 

Erl = erl 

W\/f.1060
132 = 	 e'r2 	er.' sin2 	+ 

2 

	  = er/  1  sin2  + 
Weceir2 Cos(P2) 

(Er'  2  Elri  sin2  ei)2 	(  U2  ) 2  
eir2 
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thus, al =  a01  = 0 and thus, V = al  sin(j) = O. This situation results 
in (2  = 0, i.e. p2  =-6, from applying Equation (2.22) with an arbitrary 
value of a2 . This situation corresponds to 2  being normal to the interface. 
This case arises whenever the scatterer is a multilayer slab (of infinite size 
in the transverse directions) whose layers are parallel to the two faces of 
the slab, and the slab resides in a lossless host medium (e.g. free space) 
and is illuminated by a uniform plane wave. Since p2 = —6, we can easily 
obtain a2  and P2 as follows. From Snell's law for the phase wavefront as per 
Equation (2.23), we obtain: 

n 	P1 
COS

2 p2 = (1 — sin2  6) 1 — )72. sin 

Substituting this result into Equation (2.14), regrouping the terms in 02 

and solving the resulting quadratic polynomial in /6? produces: 

2 
2 	(1)  '11'°e° ( 2  E' + Ei  sin2 	± = 2 	2 	r 	rl 

where: 

Since 02 = 002 = W-V,U0E 0Er/  2  when u2  = 0, the + sign is the correct choice 
of sign in Equation (2.32). Therefore, we obtain: 

(Er'  2 	Eri i  sin2  i ) 2 +  Cr2 	) 2 	(2.35) 
weo 

From Equations (2.14) and (2.35), we obtain: 

2 

(2.31) 

— 2 	l sin2  6) 2  + (—
(72 )2 ) (2.32) r 	r COE 0  
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w.Vit0E0  
a2—  67, 2  +  E 1  sin2  + 

Substituting this last result into Equation (2.13) produces: 

(e/r2 	sin2e)2 	a2   ) 2  (2.36) 
weo  

On the other hand, with (2 = 0 we obtain: 

-y2z  = a2  COS (2 +i 02  cos à = a2  +ip2  COS à 
--- 

Œ2z 	 02z 

(2.37) 

From Equations (2.31) and (2.35) and the fact that e2 = —p2, we obtain: 

(132,) 2  = (132 COS e2) 2  
- (32  COS p2) 2  
= 	— Pi  sin 1 ) 2  

2  - L'-2 •2
2 	

Er/  2  — 	sin2  + \/(er' 2  — 617, 1  sin2  ei ) 2  + \Wo  / 

(2.38) 

From the knowledge of a2, and f32 z , we obtain 72z . From the knowledge 
that the transverse variation of the scattered field is dictated by the incident 
field as with A z =  — (131  sin 6_) 2  shown in Equation (2.38), we also obtain: 

(2.39) `Y2z = 	 sin 6) 2  

where: 

juWit0E.Eri 

= iw-Vitoeoer2 

Pulling the last three equations together with Equations (2.33) and (2.34) 
produces: 

— Er/ 	 j 
'Y2z  = w  bioe0 V (eir2 	sin2 	+  

6)2 ± (sa_we.)  2]1/4 
= WN/I-toeo [(.26/7.1 sin2 	 arctan<1. 

(2.40) 
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6) 2  + (e-0 ) 2  (e/r2 	sin2  

2( 	0. 	 )2 
\/(er'  2  — 	sin2  6) 	,„0 	

/ 	
sin2  6) 

21 1/4  — 67. 1  sin2 	
+ coeol 

eg - arctan 
2  

2 — 	sin2 6) 
± (e-,)

2 
+ (e'7•2 eir1  si  

(2.41) 
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where: 

0-2  
We0 

 — 	

we°  arctan = arctan 	 = 7r arctan , 	• 2 	 / 	• 2 
er2 Er1  sin 6 — (-7.2 eri  sm 6) 

Hence, we obtain: 

cos ( 1-  arctan , 	̀;'ec° 	)) 2 arctand) 	• 	 er2 -er sin2 â. e 2 	= 3  
— j sin arctan 	r°. 2 

r2 —erj. sin ei 

Applying cos (x/2)  = \/1  cos x \/2 and sin (x/2) = \/1 — cos x[ii and 
cos (arctan x) 1/N/1 x2  and carrying out some algebraic manipulations 
produces: 

Substituting into Equation (2.40) produces: 

Er' sin2  6) 2  (z)2 	 t 	2  — (67. 2  —  Cr i  sin — 	 + 	6) 

Therefore, we see that the real and imaginary parts of the last expression 
are restatements of Equations (2.36) and (2.38), respectively. This equality 
proves the validity of the Adler-Fano-Chu formulation for this special case of 
pratical importance. 

2.5 Results 

All computations presented here pertain to a case found in Reference [6], i.e. 
f =1 MHz, E = 4.0, cr = 0.01 S/m, e ir2  = 10.0 and cf2  = 0.001 S/m. 
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• 
• 2.5.1 Case with e 0 

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 show the results for a2, 02, ù, (2, and 
• 

• P2 respectively, when pi  = —80°, —60°, —40°, —20°, —10°, —5 0 , 00 , +50 , • 
+100 , +20°, +40°, +60°, +80°, while 6 varied from 0° to 90° in increments 

• of 1°. Rigorously speaking, 6 = 0.01° was taken in place of i = 0° since 

• Equations (2.26-2.27) are not valid for 6 = 0. 

• We note that the requirement —90° < p2  < +90° from physical principle 
• (see Reference [4, p. 426])  is borne out by all numerical results. Surprisingly, 

however, the same numerical results show that the magnitude of the angle 
(e2 + p2) can exceed 90°, and thus, for self-consistency, the magnitude 

of the angle (1 = (6 + pl) was also allowed to exceed 90° in generating these 
• figures. The physical meaning of having  2  > 90° for 6 < 90°, and having 

• (2 = (6 + p2) > 90° for (1  = (6 + pi) < 90° would seem to indicate the 

•
phenomenon of total reflection for the phase and the amplitude wavefronts, 
resp ectively. • 

• We note the dramatic change in the behaviour of the curves for —10° < 
< —5°. We note also how the curves of Figure 2.5 tend to the diagonal 

straight line 6 = el as pi varies from —10° to —80° as well as from +20° 
• to +80°. Thus, the same straight line 6 = 6 would be obtained for both 

Pi  = +90° and pi = —90°, and this makes sense for these two cases of pi  

•
correspond to parallel directions of 5. Figure 2.8 shows the results for (2 
as a function of = 	+ pi). We note that (1 = 	0 regardless of the 
value of pi , and that this case corresponds to the case of practical importance 
V = 0 mentioned above. 

le 
The trend of the curves is complicated and not always intuitively clear. 

In order to demonstrate that the above results are correct, the following com-
e 	 parison was carried out. First, the equivalence presented in Appendix B was 

e used to obtain the values of the complex incidence angle from the knowledge 

e
of the real incidence angles 6 and pi  for the case 'eP =- 0. Then these values for 
the complex incidence angle were used in Snell's law of refraction to obtain 

e the values for the complex transmission angle. Of course, if the equivalence 
• could have been used in the reverse direction, we could have obtained di- 

e rectly the values for the real transmission angles corresponding to the values 
for the complex transmission angle that were just computed from Snell's law. 

• However, such reverse equivalence cannot be established for the reason given 
• in Appendix B. Therefore, we used the same values of the real incidence 

e angles 6 and pi  in the expressions for the general case with 1P = 0 to obtain 

•
the values for the real transmission angles 2  and p2 . Then the equivalence 
presented in Appendix B was used again to obtain the values for the com- 

e plex transmission angle corresponding to the values of 6 and (2 . Then we 
e compared the two different sets of values for the complex transmission angle 

• 
•
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(OR 2  j0I2 ), one sét corresponding to the classical formulation and the other 
set corresponding to the Adler-Chu-Fano formulation. Now, the solution for 
the general case, the solution for the equivalence between the classical and 
the Adler-Chu-Fano formulations, and the solution for Snell's law, all offer 
multiple expressions from which to choose their proper respective solution. 
The choices that were made here provided a perfect match between the two 
sets of values for (0R2  j 012) over the entire ranges of 00  <  i < 900  and 
—900  < p1  < +90° as shown in Figures 2.9 and 2.10. These choices are ex-
plained in the following three subsections. We note some similarity between 
the general trend of Figure 2.7 and that of Figure 2.10, and to some lesser 
extent, we note also some similarity between some features of Figure 2.5 and 
some features of Figure 2.9. 

Choice of solution for the equivalence between the two formulations 

The variables OR , 0/ , 0, and 0,3 are defined in Appendix  B. Out of the four 
possible solutions given by MATLAB for Y = cos2 (0R) shown in Appendix B, 
the correct solution was obtained as: 

{ fourth solution for (0„ > 90°) OR (0,3 > 90°) 
Y = third solution otherwise 	' 

where OR is a logical operator. From the knowledge of Y, we obtained 
the knowledge of OR as: 

{ — larccos (e-)1 
OR = 180° — larccos(fY--)1 

l arccos( \/-17)1  

for (Oa  — 0,3) = 0 
for (0,  <0) AND (0,3  < 0,g) 
for 0,3 > 
otherwise 

00  

where AND is a logical operator, 00, and 09)30  are the values of p for 

which I arccos(f-Y)I reached 00  and 90°, respectively. These values were 
computed readily as 00, 1 0, (0)1  and 09, 90° — sign(610, — 0,3)10R(0)I where 
OR(0) was the value of I arccos(e)I at 0,3 = 0, and sign(x)={+1, 0, -1} for 
-fx > 0, x = 0, x < 11, respectively. Then substituting the knowledge of OR 

 into Equation (B.10), we obtained the knowledge of 01 as: 

0I  = —sign(0, — 0,3)arcsinh(-VC — Y) 

The results are presented in Figure 2.17. We see that the curves for OR  
have a slope of 1, and the curves for 01  have a slope of zero. 
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arccos Ycos2 (6)) 	otherwise 
6 = 

arccos (-Vcos 2 (6)) 	otherwise 
{ 180° — arccos (lcos 2 (6)) for 6 > e 

(2.42) 

Choice of solutions for 2 , (2 and p2  

The solutions for 6 and (2 were obtained from Equations (2.26) and (2.27), 
respectively, as: 

= 	180° — sign(( i ) arccos \/cos2 ((2)) for 	> 

sign((i) arccos (Vcos 2 ((2)) 	otherwise 
(2.43) 

The values d.  and correspond to the Values of 6 for which arccos( ,Vcos 2 (6)) 

and sign((1 ) arccos( \/cos2 ((2)) reached 900 , respectively. Once e2 and (2  were 
known, cos(p2 ) was computed from expression (2.25). The solution for p2  was 
obtained as: 

— arccos(cos p2 ) for (pi.  <0) AND (6 < 
P2 = + arccos(cos p2) otherwise (2.44) 

•  The value e corresponds to the value of 4.1  for which arccos(cos )02 ) = 0. 
When the curve did not cross the zero level, e was taken as 0 if pi > 0, 
and as 90° if pi < 0. For the case V) = 0, we see from Figure 2.7 that 
P2 = ((2 — 6) as expected. The values and ef were found by means of 
a simple root-searching subroutine using the bisection technique. 

Choice of solution for Snell's law with complex angles 

The solution for Snell's law with complex angles was obtained as: 

9R2  + j612  = 
180° — arcsin (e. sin (0 R 1 + ien)) { for i > :NELL 

arcsin ( 	 en .\./n. sin(ORi  + 	)) e2 otherwise 

,I   

(2.45) 

where eNELL corresponds to the value of for which Real(/ei/e2 sin(eRi On)) 
reached 90°. This value was computed as eeNELL o g0 R  

Sign(P1)10R1(0)I 
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where ORr was the value of OR1  for which Rea1(/ei/62 sin(ORi  + Ai)) reached 

900 , and Orti  (0) was the value of arccos( \FY) I at 6 = 0, with Y defined in 
section 2.5.1. The value OR?' was found by means of a simple root-searching 
subroutine using the bisection technique. 

2.5.2 Case with arbitrary value of 0 

The case with arbitrary values of /b wa,s generated by introducing the rotation 
angle 8  as shown in Figure 2.11. The spherical coordinate angles correspond-
ing to 6 are shown as Op and p,  whereas the spherical coordinate angles 
corresponding to ( I.  are shown as 0„ and Oa . From Figure 2.11, we have: 

= cos(p)1'0 + sin(p) sin(6)ê + sin(p) cos(8) 

where: 

f.  = sin(9) cos(0 0) 	sin(0) sin(0 p)Q cos(Op) 

â = COS(9/3) cos(q) 	cos(Op) sin(q5) j — sin(0) 

.13 0 = — sin(çb 0) 	cos(00 ) û 

Substituting in the above expressions and collecting the terms for each 
Cartesian component, we obtain the knowledge of 0 , and çb, as: 

Çba  = arctan 
X 

Oa arctan ( 	 

where: 

X = cos(p) sin(Op) cos(00)+sin(p) sin(6) cos(Op)  cos() —sin(p) cos(6) sin(0 0) 

Y = cos(p) sin(Op) sin(Op) +sin(p) sin(8) cos(00) sin(Op) +sin(p) cos(8) cos(00) 

Z = cos(p) cos(Op) — sin(p) sin(8) sin(Op) 

The case (5.  = +90° corresponds to the case lb = 0 with p > 0, whereas 
the case 8  = —90° corresponds to the case ,tp=  0 with p < 0. Unfortunately, 
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unlike for V) = 0, we do not know the generalization of Snell's law written 
with complex angles for 0. Thus, our knowledge of Snell's law written in 
terms of complex angles cannot aid us to confirm that we made the correct 
choice of expression for the solution when  b 0. The generalization that 
was used here to generate the results of Figures 2.12, 2.13, 2.14, 2.15 and 
2.16 was to add the following condition to the conditions that were used for e 0. We changed the sign of the value for 0,1  whenever l'ti) > 90 0  and 
then replace e with (180° — 0). We also defined the ranges for pi.  and (5 as 
—90° < pi  < +90°, and 00  < S Ç  180°, respectively. 

There are too many plots to present here for all the same values of pi  that 
were used for the case V) = 0. The value of pi  = —10° was chosen because it 
represents a difficult case for the interface at hand. Figures 2.12, 2.13, 2.14, 
2.15 and 2.16 show the results for a2, P21 .2) (2) and p2 , respectively, when 
pi  = —10° while 6 varied from 0° to 90° in increments of 1 0 , and (5 varied 
from 00  to 180° in increments of 50 •  Again, 6 = 0.01 0  was taken in place of 
6 = 00  since Equations (2.26-2.27) are not valid for 6 = 0. We note that 
in these figures, the curves for 5 = 90° correspond to the curves presented 
earlier for e=  0 and pi  = —10°. 

2.6 Chapter summary 

This section has presented a correction and a generalization of the solu-
tion presented in References [6, 21] for the effective propagation constants 
of non-uniform plane waves at the planar interface of two isotropic homo-
geneous possibly lossy media of infinite transverse dimensions. The analysis 
proceeded from the Adler-Chu-Fano formulation. The validity of the results 
obtained here for the case e = 0 was demonstrated by comparing these re-
sults with those obtained by Snell's law written in terms of complex angles. 
No such comparison, however, could be made for the case e 0 because 
the generalization of Snell's law written with complex angles is not known 
for V) O. The trends of the curves are rather complicated and not always 
intuitive, even for the case = O. The case of V = al  sin((, ) = 0 is one 
of practical importance in a planar multilayered structure, and results in 5 
being normal to all parallel interfaces of the structure regardless of the values 
of the intrinsic propagation constants of the layers of the structure. In other 
words, 5 is normal to all parallel interfaces of the structure, even for the 
most general anisotropic layers. When 52  is normal to the interfaces of the 
structure, the Adler-Chu-Fano formulation was also proved directly in Sec-
tion 2.4.1 by showing that the same result was obtained for 1,, when using 
the Adler-Chu-Fano approach as when using the complex-valued approach 
embodied by Equation (2.39). 
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Figure 2.1: Special case of a non-uniform plane wave incident on a planar 
interface between two isotropic homogeneous possibly lossy media. Here, the 
vectors di, [31. and the unit vector normal to the interface .' are coplanar. 
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Figure 2.2: General case of a non-uniform plane wave incident on a planar in-
terface between two isotropic homogeneous possibly lossy media. To simplify 
the figure, the incidence plane for the phase wavefront propagation vectors 
was taken to lie in the xz plane. 
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Figure 2.3: Effective propagation constant a2  as varies from 00  to 90° in 
increments of 1°, e 0 and pi takes successively the values of —80°, —600 , 
—40°, —20°, —10°, —5°, 0°, +5°, +10°, +20°, +40°, +60°, +80°. 
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Figure 2.4: Effective propagation constant /92 as 6 varies from 00  to 90° in 
increments of 1°, //) = 0 and pi  takes successively the values of —80 0 , —600 , 
—40°, —20 0 , —10°, —5°, 0°, +5°, +10°, +20°, +40°, +60 0 , +800 . 
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Figure 2.5: Transmission angle 6 as varies from 00  to 90° in increments 

of 1°, = 0 and pi  takes successively the values of L80°, —60°, —40°, —20°, 
—5 0 , 0°, +5°, +10°, +20 0 , +400 , +60°, +80°. 
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Figure 2.7: Transmission angle p2  as varies from 00  to 90° in increments 
of 1°, 'V) = 0 and pi  takes successively the values of —80°, —60°, —40°, —20 0 , 
—10°, —5°, 0°, +5°, +10°, +20°, +40°, +60 0 , +80°. We confirmed that 
P2 = ((2 e2) • 
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Figure 2.8: Transmission angle (2as a function of (1  = (6 + pi) as 6 varies 
from 00  to 90° in increments of 1., v,=  0 and pi takes successively the values 
of —800 , —60°, —40°, —20°, —10°, —5°, 0°, +5°, +10 0 , +20°, +40°, +60°, 
+80°. 



120 

100 

80 

60 

Q)' 
G) 

ocn  40 
-a 

cc 
CD 

20 

20 	30 	40 	50 	60 	70 	80 	90 
(degrees) 

—20 

40
0  

••
••

••
••

• •
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

 
Figure 2.9: Transmission angle 0R 2  as varies from 00  to 90° in increments 
of 1°, e 0 and pi  takes successively the values of —80 0 , —600 , —40°, —20°, 
—10°, —5°, 0°, +5°, +10 0 , +200 , +40°, +60°, +80°. 
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Figure 2.10: Transmission angle 012  as varies from 0 0  to 90° in increments 
of 1., e 0 and pi  takes successively the values of —80°, —60°, —40 0 , —20°, 
—10°, —5 0 , 00 , +5°, +100 , +20°, +40°, +60 0 , +80°. 
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Figure 2.11: Coordinate system for computing Oa  and 0„ from the knowledge 
of Op,  q ,  p and 8. 
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Figure 2.12: Effective propagation constant o2  as varies from 00  to 90° in 
increments of 1°,  5 varies from 00  to 180° in increments of 5°, and pi  = —10°. 
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Figure 2.13: Effective propagation constant 02 as j varies from 00  to 90° in 
increments of 10 , 6 varies from 00  to 180° in increments of 5°, and pi  = —10°. 
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Figure 2.16: Transmission angle p2  as 6 varies from 0 0  to 90° in increments 
of 1°,  5 varies from 0°' to 180° in increments of 5°, and pi  = —10°. 
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Figure 2.17: Complex incidence angle OR]. +Al as a function of the incidence 
angles 6 and pi  for e O. The solid line is for 9R 1 , and the dash line for Or i. 
The angle 6 varies from 00  to 90° while the angle pl  takes successively the 
values of —80 0 , —60°, —40 0 , —200 , —10°, —5 0 , 00 ,  • -0 ,  +10°, +20°, +40 0 , 
+600 , +800 . 
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• 
• Chapter 3 • • 
• Individual and composite GSM • • 
•

The GSM for each interface is obtained from the generalized Fresnel equations 
for a planar interface between two media. The incidence plane is defined as 

• the plane in which lie both the incidence propagation vector -77i= + j 
• and the unit vector normal to the interface 	i.e. the vectors 	and 

,  are assumed to be coplanarl. We assume also that  ft = 2 and that the 
incidence plane is the xz plane. Thus, the TEz or TMY, and the TMz or TEY 
polarizations correspond to the polarization with e being perpendicular and 

• parallel to the incidence plane, respectively. 

• 3.1 Individual GSM • 
• 3.1.1 Lossless media 

When the two media are lossless, the Fresnel equations for the interface are 
most conveniently obtained from the interpretation that the transverse elec- 
tric field of the TEz (or TMY) mode corresponds to a voltage travelling wave 
propagating on an equivalent transmission line modelling the propagation 

• medium, whereas the transverse magnetic field of the TMz (or TE") mode 
corresponds to a current travelling wave propagating on an equivalent trans- 

•
mission line modelling the propagation medium (see References [33, p. 415], 
[40, pp. 54-57] and [68, p. 304]). The concept of the equivalent transmission 
line can also be justified on the basis that the two dimensional Fourier trans- 

• form of the transverse components of the TEz or TMz electromagnetic field 

• obey the telegrapher's equations (see References [34, 35, 36]). The interface 
between the two media is then modelled as a discontinuity formed by the 

5 	 'The more general case where e 0 in Figure 2.2 is beyond the scope of this section. 
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junction of the two transmission lines that model the two media [37]. The 
equivalence is based here on taking the characteristic impedance of the trans-
mission line to be equal to the wave impedance Zw  of the wave propagating 
in each respective medium. Note that the elements of the scattering matrix 
can be defined in terms of either the whole electric field or just the tangential 
(to the interface) component of the electric field or the magnetic field. The 
latter scattering matrix is identified as S whereas the former is identified as 
C. The difference in the definition results in different expressions for the re-
flection or the transmission coefficients of the TM' mode (see References [13, 
p. 41], [5, p. 152] and [14, p. 543, Equation (9.100b)] for the transmission2  , 
and Reference [14, p. 543, Equation (9.100a)] for the reflection). 

For the TM' mode (or TEY), i.e. parallel polarization, one obtains: 

r  
E0i/(+77, ) 	Eoi 47  + 

zt ei 	Et kt 
ri 	 w.   = rz 	rz  

	

Eoi 	Ztv  4'47 	eirkzt 4,k zi 

	

I  Hot 	Eot 1(4_y) 	(ni 	 2Ztv 

	

— 	 
Eoi I (+77i) 	77i) 4 	+ 

Eot 	rit TI ( \leiretr) 2kiz  

77i) ztv  + 	e,:,ktz  ekzi o 

where 11  and T refer to the reflection and the transmission coefficients, re- 
spectively, the super-index I refers to current travelling wave parameters, 
the super-indices i, r and t on the E, or H, fields refer to the incident, 
reflected and transmitted fields, respectively, the super-indices i and t on 
77, Er, kz and Zw  refer to the incidence and the transmission regions, re- 
spectively, ri/ = \111,0 1(erle0 ) is the intrinsic impedance of the region 1 and 

, ku(w,rigo) is the wave impedance of the region 1 with 1 = tl. 

These expressions agree with References [9, p. 514], [15, p. 454] and [16, 
p. 314]. Note that some authors (see References [7, p. 152, Equation (4.207)] 
and [48, p. 59, Equation (2.144d)]) show a difference in sign for the expres-
sion of the voltage reflection coefficient of the TM' mode. The reason for this 
difference in sign owes to the difference 3  in defining the direction for which 

2E1 Reference [18, p. 415, Equation (70)] the expression given for the transmission 
coefficient of the TM' mode is -wrong! In fact, it corresponds to the expression given in 
[14, p. 543, equation (9.100b)] but the latter defines the transmission coefficient in terms 
of the tangential (to the interface) components whereas the former claims to define it in 
terms of the whole field. 

3Yet other authors ignore this distinction and end up missing the minus sign that would 
be required according to their figures (see References [17, p. 248, equation (7.76)] and [18, 
p. 415, Equation (69)]). 
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• • • • • • 
• .Éc, is positive (e.g. compare Figure 12.5 in [9, p. 511] or Figure 10.16 in [15, 

•
p. 454] or Figure 8.16 in [16,  P.  314] with Figure 4.5 in [7, p. 147] or Fig-
ure 2.25 in [48, p. 57]). In the former three figures, the positive direction of , •i 	É is defined as per a transmission line, i.e. the positive direction of É is that • 
whose tangential (to the interface) component of É points in the same direc-

t> 	 tion for the incident, reflected and transmitted waves. This makes identical 
the reflection coefficients of the parallel and the perpendicular polarizations , . 
at normal incidence. In the latter two figures, however, the positive direction 

, • 	 of É is defined by the â or C6 unit vectors of the spherical coordinate system 
e whose z axis is normal to the interface. This makes differ by a minus sign 

e
the reflection coefficients of the parallel and the perpendicular polarizations 
at normal incidence with the outward convention (but not with the inward a 	convention). To distinguish between these two definitions, different  matri- 
ces are used herein. The matrices S and C correspond to the transmission 

e line definition whereas the matrix C corresponds to the spherical coordinate 
definition4  with the outward convention. 11111 

IIII 	For the TEz (or TMY) mode, i.e. perpendicular polarization, one obtains: 

• Er Er 

	

	t  Z — ZW rv = = = 0 	t 	w  e 	• 	 Eoi El 4, ± e 
• +rv 	=  z z  Eor 	Zt  — Z i 	ki  .—. k t  

4kiz+ 	 (3.3) kz* • pit 	pit 	2Zwt 
• Tv = —0 = --t = 	 

4 Eti Ztv  ± ZW 

where the super-index V refers to voltage travelling wave parameters and 
• = (w 0)/k 1 is the wave impedance of the region 1 with 1 = {i, t } . 
11> 
• 
•

3.1.2 Lossy media 

• The case of lossy media is obtained from the case of lossless media by merely 
generalizing the concept of the wave impedance (see Reference [38, Equa- 

• tions (9a) and (9b)]), and bY taking the permittivities to be complex-valued. • 4In Reference [13], the distinction between the two definitions was embodied in Equa- 

• tion (2.3) on p. 38, which shows Sir  (X, Y) = —S ir(E,H) with the superscrit E referring, 

•
here, to the E-mode, i.e. the TM' mode. Note, however, that on p. 34, the matrices S 
and C used the spherical coordinate definition whereas on pp. 40-43, the matrices S and 
C used the transmission line definition. Fortunately, the conclusions in [13] remain un-
affected by this distinction, because comparisons between S and C matrices were made 

• while both matrices used the same definition. • 
• 46 
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The Fresnel equations are said to be still valid (References [84,  P.  501] and 
[7, p. 171]) but they become complex-valued. Furthermore, the scattered 
É and fi fields acquire' a com_ponent parallel to the direction of the phase 
wavefront propagation vector /3 (References [84, p. 502] and [4, p. 422]). The 
C scattering matrix written in terms of the TM' and TE' modes as given 
by Fresnel equations, however, determines only the transverse É components 
that are in the bp and q-5 p directions, respectively. The longitudinal compo-
nent that lies in the direction of the phase wavefront propagation vector 
is not taken into account by the C scattering matrix. Hence, it might not 
be sufficient to rely on the analytical continuation of the Fresnel equations 
in the complex plane to account fully for all the effects that are due to the 
presence of losses in the slab. 

For the TM' (or TEY) polarization, one obtains: 

'Yz 	a eos(e P) ifi cosW  zw  = = 
JCJE 	 jalE 

Zit,v  —  Z 	ét.-ytz  — eer-yiz  
RpARALLEL — ztv  + ztv = eirrytz  + 

4 (77t 	 _
(
\/44) 211 

4,v + ztv  

For the TE' (or TMY) polarization, one obtains: 

iwitt 
z 	a cos( + p) + j cosW 

	

Er 	4,17  — Z ii,v  
U) 	

i_ 
 = 	= 	. 	. 	(3.9) 

	

o 	Ztv  Zfi, 	ryzt 

	

E, 	2Z 	2-yiz  
TPERPENDICULAR = = = Zitiv 	 -yzt o 

Clearly, the generalized Fresnel equations for lossy media reduce to the ordi-
nary Fresnel equations when both al = 0 and a2  = 0, i.e. for lossless media. 
Note also that Equations (3.6), (3.7), (3.9) and (3.10) are independent of 
k, = 27r/À0  where A, refers to the wavelength in free space. Therefore, 

5 Comparison between simulation results for lossy (o-  =  0.15 S/m) and lossless slabs 
suggests the presence of an E field component along the direction of the phase wavefront 
propagation vector  3, as shown by a slight shift in the direction of both axes of the 
polarization ellipses at various points in the incidence aperture within the slab. In the 
numerical simulations, the scattered field of even the lossless slab was elliptically polarized 
because the Maxwellian excitation beam was itself elliptically polarized. This situation 
makes it difficult to assess the phase relationship between the E field components parallel 
and perpendicular to  3.  
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these equations are frequency independent as long as the various complex 
permittivities are frequency independent. This observation has practical 
importance. Rigorously, the Kronig-Kramer dispersion relations force the 
permittivity or permeability to be frequency dependent if the material has 
electric or magnetic losses, respectively. However, the permittivity and per-
meability can be approximated as being constant over a frequency band of 
interest when the material losses are small enough. 

3.1.3 GSM 

The GSM for each interface is defined as follows: 

\ 

	

(Ene 	Gip C HE cii-H 
U 	 E 

	

(Eos)f 	
11 	12 	12 	( oi ) 1 

C 	
1 

 ir 	CEH  CEE  

c CEE C 

	

(Eg)e 	 nii1H 12 	(ef = CHH cHE 
21 	21 L'22 	CLU 	o (Ei )e 

	

n (Egg 	\ cell 	M" EE 
21 	22 	22 	(ee 

where: • 

• the superscripts E and H refer6  to the EY and HY modes, i.e. the per-
pendicular and the parallel polarizations, respectively. When material 
losses are present, the elements of the scattering matrix for an interface 
become, in general, complex-valued for the TE' and TM' modes but 
the GSM formalism remains valid if the modes have all the essential 
non-zero field components to represent the whole electromagnetic field. 
Thus the modes in a lossy transmission medium would not be purely 
TEM due to the presence of an E field component in the direction of 
propagation (see Reference [84, p. 502]). 

6The TM' and TE' waves are sometimes referred to as the E-type and H-type waves, 
respectively. However, in this report, the superscripts E and H refer merely to the field 
that has only a y component. Hence, a pure TM' wave has only Ex , Hy  and Ez  and is 
called herein a TE Y or HY wave or a wave with a polarization parallel to the incidence 
plane. Similarly, a pure TE' wave has only Hw , Ev  and Hz  and is called herein a TMY 
or EY wave or a wave with a polarization perpendicular to the incidence plane. The 
superscript for the TE and TM modes varies depending on whether the emphasis is on 
the normal of the interface or the normal of the incidence plane. Note that when a plane 
wave is a linearly polarized TEM plane waves, there are truly only two essential non-zero 
field components. The only reason why the TE and TM modes show up with three instead 
of just two non-zero field components is that  fi , i) and 2 of the coordinate system do not 
coincide with Ê, fi and k.  However, when a plane wave is elliptically polarized due, for 
instance, to the presence of material losses, there are truly three essential  non-zero field 
components because the wave is no longer purely TEM (see References [84, p. 502] and 
[4, p. 422]). 
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o 
#1 #2 
;;Lie 

'Yz +7z 

o. 
#1 #2 

'Yz +'Yz 

lb 
lb • • • • • • • • • • 
lb 

lb • • 
lb • • 
lb • • • , 
lb • • • • • • • • • 
lb , • • • • •' • • 

• the superscripts s and i indicate the scattered (reflected or transmitted) 
and incident waves, respectively; 

• the subscripts 1 and 2 refer to the regions on the left and on the right 
of the interface under study, respectively, as shown in Figure 2.1; 

• the subscript o indicates that the field is the whole field rather than 
just its component tangential to the interface. 

Since an interface between two dielectrics does not produce any cross-polarized 
field, all cross-polarization terms of the GSM for a dielectric interface are 
zero. By substituting the region number for the super-indices i and t in 
Equations (3.6), (3.7), (3.9) and (3.10), the GSM for a dielectric interface 
b ecomes: 

C (3.13) 

O  
AE  

) 

O  
BE  

) 

#1 #2 #2#1  
Er 'Yz -Er -Yz  
#1 #2 #2 #1 

'Yz +Er -Yz 

o 
/ #1 #2 #1 

2 '\/ Er Er 'Yz  
#1 #2 #2 #1 

Er "Yz +Er 'Yz 

o 

/ #2 #1 #2 2v Er Er "Yz  
#2#1 #1#2  

Er -Yz +Er 'Yz 

o 
#2#1 #1#2  

Er 	-Er "Yz  
#2 #1 #1 #2 

Er -Yz +Er "Yz 

o 

o 
2 t2  

#1  #2  
'Yz +Yz 

o 
k1 

/!;ln-il-gr. 
'Yz +7z/ 

(3.12) 

The expression for the matrix C can be simplified as follows: 

( CA gCB 
CB -CA 

where: 

CA 
= ( AH  

CB 
(B H  -= 	0 

g 
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The angles 6 and 6 as seen in Figure 2.1 are defined as the acute (i.e. 
interior) angles between the normal of the interface and the corresponding 

• propagation vectors for the phase wavefronts id; and 52  in regions 1 and 2, 
• respectively. The angles and 6 are general angles in that they are valid 

for describing the field behaviour at one interface without making reference 

•
to any particular coordinate system. When many interfaces are cascaded 
together, the transmission from one interface represents an incident wave 

• applied onto the input port of the next interface in the cascade, and the 

• reflection off the next interface in the cascade represents an incident wave 

•
applied onto the output port of the interface under study. The proper angular« 

 relationship between these propagation vectors could be taken into account 
explicitly by defining all angles with respect to a same reference direction, 

, te  

say the 	direction. However, owing to the facts that all angles are defined 
as acute angles with respect to the same line, i.e. the normal to all parallel 

•
interfaces, and that the scattering coefficients in Equation (3.12) do not de- 
pend on the sinus of the propagation angles, there is no need to define the 

11, 	angles with respect to a particular axis of a particular coordinate system. 
Therefore, in the rest of this document, -yz  will actually mean 1-yz 1 in order 

•
to avoid using the the absolute value symbol on the various terms of the 
scattering coefficients (see Reference [13, pp. 40-42]). • 

• Owing to the facts that all plane waves propagate in straight line between 
all interfaces, that the reflection angle has the same value as the incidence 
angle at a planar interface, and that all interfaces are planar and parallel, 

• one obtains7 	in Figure 3.1. Furthermore, from reciprocity one 
• knows that the propagation angles at an interface remain the same upon 

reversing the propagation direction of the waves. Thus, from the knowledge 
of the incidence angle for the backward wave incident onto the interface 
from right to left, one obtains that the transmission angle for the multiply 

• reflected wave that exits from the input side of the interface has the same 

• value as the incidence angle for the forward wave incident onto the same 

• 7The same comments can be made for the angles pi and p2, and the angles (-1  and (2, 

•
respectively. 
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interface from left to right. Consequently, the multiply reflected wave and 
the directly reflected wave propagate in the same direction and combine into 
a single reflection wave that exits from the input port of the interface at the 
propagation angle f.  Consequently also, the scattering matrix is written 
for directions that are related by reciprocity. However, the matrix C in 
Equations (3.12) and (3.13) is not symmetrical even though the interface is 
a reciprocal device (see Reference [13, pp. 36,38]), and similarly for the C 
scattering matrix. 

If the planar interfaces of a multilayer slab were not parallel, or more 
generally, if the scatterers confined entirely between the two infinite paral-
lel z reference planes for which the scattering matrix was defined, were of 
arbitrary geometry, a backward wave would not, in general, trace back the 
propagation path of its corresponding forward wave as shown in Figure 3.1 
for parallel interfaces. Hence, the two ports of the scattering matrix would no 
longer be in the same geometrical relationship. In the case of an arbitrarily 
shaped scatterer, a single incident plane wave would even give rise to a mul-
titude of reflected and transmitted plane waves. The size of the scattering 
matrix would then need to be increased to include twice as many ports as 
there are different directions involved in the solution, with two orthogonal 
polarizations (hence two ports) per direction. However, if the scattering ma-
trix were defined in terms of the tangential E field components of the waves 
at the two reference planes instead of the whole E field, only the +z and the 
—z directions would be relevant as the scattering matrix would then charac-
terize an equivalent transmission line parallel to the z direction. These two 
directions would necessarily always be in the same geometrical relationship as 
with plane waves propagating normally to parallel interfaces. Nevertheless, 
the size of the scattering matrix would still need to be increased so that two 
ports corresponded to every different field structure (i.e. field mode) 8  , with 
two orthogonal polarizations (hence two ports) per field mode. Hence, the 
number of ports in the scattering matrix is not determined by the number 
of reference planes, but by the number of different propagating directions or 
equivalently, by the number of different field modes on a z = cte plane (see 

8Waves propagating at different oblique angles cast on a z = cte plane different 
mode patterns according to their respective ,yx  = ji3x  and ryy  =  j/9 (with 
—co G  {/3, /3,}  G -1-co). To each mode pattern corresponds a transverse spectrum but 
all transverse spectra (and hence, the plane wave spectrum as a whole) merely propagate 
(see Reference [41, p. 114]) along the z direction according to 6-7.z where  'y  = (az +jr@z) 
with forward waves having {,6z , az } > 0, and backward waves having {0z , az } < O. For 
exarnple, for the case that the scatterers consisted of a planar interface made from the 
juxtaposition of two isotropic media, with medium #1 being lossless and medium #2 
being lossy, and the excitation being a uniform plane wave incident from the side of the 
lossless medium, we would have arl = = at' = 0, (41 ) 2  + (g1 ) 2  < w2grEr 
and  or ) 2 = 	(fir ) 2 ( #1 ) 2  for both the incident and the reflected plane 

or2 waves in medium #1, and a 	= r2  = a#2 	= J3#1 3#2 = 	and -e2  given by 
Equation (2.41) for the transmitted plane wave in medium #2. 
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Reference [40, pp. 20,35,63]). 

3.1.4 Composite GSM from the scattering matrix prop-
agator technique 

The scattering matrix propagator technique can be applied to either the S, 
C or C matrices but not a mixture of them. The cascade connection shown 
in Figure 3.1 produces the following expressions written here in terms of S 
matrices but equally valid for C or C matrices (see Reference [40, pp. 82,121 ] ): 

SI 

bH,II 	 QIIE,II 011H,II cHE,H 	/ 
1 	 "11 	"11 	 '-'12 

IE, I QEH,II QEE,II QEH,II QEE,II 	E,II 
"11 	"11 	'12 	u12 

= 	QIIH,II QHE,II QHH,II 	 H,II 
2 	 ki21 	21 	 22 	 a2 

QEH,II QEE II CIEHJI QEE,II 	E,II ) 
/ 	"21 	 022 	 a2  

a2  
E

H,I 	 0 	) (bill'II 
J E d 	LE,11 a2 	 0 	--y e - z 

P- 

e--y_t.Hz d b112'I  
e—yezd ) ( gu 

P+ 

Se2E'  

L., 22 	u,2 
ciEE,E ) 	„Ea./.  ) 

sE 
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where d is the separation distance between two consecutive parallel planar 
interfaces. For con.venience, the matrix SE is written in terms of its four 
submatrices 4 with {i, j} = {1, 2} , and similarly for matrices S-1" and S".  
From simple matrix manipulations, the submatrices  S1  of the composite 
scattering matrix SE  are obtained (see [33, p. 419]) as: 

SF, = St1  S' ti2 G2StirP+ S-4.1  
cE = • st,c2sm 

sgc,4 
4 = 	+ sff.GisLP-sU 

where: 

G1 	(p-1 s/ p c\-1 
\ + 	22 - 11 

G2 	(P-1  — P 	-1  +SL) 

with -y, =- a cos(-1-p)I-j 13 cos() in each respective medium. When -y+, = 
the above expressions become equivalent to those given by Redheffer in 

Reference [39, Equation 20, p. 10] for the specific case of d = 0, and by Kerns 
in Reference [40, Equations (2.11)-(2.14), p. 84] for the general case. However, 
the expression for 4 reported by Cwik and Mittra in References [10, 12] as 

contains the same two typographical errors. SlEa  should read as being 
equal to Syp2G1 Sol , instead of So2 G1 8,32 .„. Redheffer refers to the above 
matrix operation as the star product of scattering matrices in contrast to 
the regular matrix product of the corresponding transmission (or ABCD) 
matrices [39, p. 13]. 

When there is no coupling between the TE, and TMz  modes, SIC' E  = 0 
for p q and the cascade system reduces to two separate but simpler cascade 
systems, one for each mode. 

For a cascade system consisting of N-1 interfaces separating N regions, 
the above procedure can be repeated N-2 times to reduce the N-1 scattering 
matrices to a single matrix that corresponds to the GSM for the overall 
structure. The reflection coefficient for the scatterer is obtained as the 
element of the composite GSM for the cascade. According to Equation (3.19) 
for SjEi  , the S11  element of the composite GSM for a cascade of interfaces 
depends not only on the Su element of every individual interface of the 
cascade but also on the other elements 812,  821 and S22 of every individual 
interface of the cascade. This mutual coupling between the interfaces is 
needed in order to account properly for the presence of the multiple reflections 
existing between the interfaces. These multiple reflections could not be taken 
into account by the scattering matrix of any individual interface because the 
scattering matrix for each interface was obtained with the interface being 
alone between two half-spaces, hence being isolated from any other interface. 
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The phases of both the reflection and the transmission coefficients for the 
overall cascade system are defined with respect to the reference planes of 
the first and last interfaces of the cascade, Le. one reference plane is at the 
position of the interface separating regions 1 and 2, and the other reference 
plane is at the position of the interface separating regions N-1 and N. Note 
that when the media are lossless, the Fresnel coefficients are real-valued but 
nevertheless, the values of the composite scattering matrix for the entire slab 
are, in general, complex-valued due to matrices P_ and P+  which account 
for the propagation delay through the slab. 

The fact that the values of the scattering coefficients for a device in situ 
remain the same as the values when the device was being characterized in 
a reference environment whereby all the ports of the device were impedance 
matched, owes to the fact that the scattering coefficients are geometical pa-
rameters that are independent of external excitations. The fact that the 
scattering parameters can be of any use when the device is in situ in spite 
of the fact that the incoming and outgoing waves at the various ports of 
the devices are generally different when the device is in situ than when the 
device was characterized in a reference environment, owes to the fact that 
the system is linear. 

One consequence of these two observations is that the cascading of two 
devices that have been characterized in a same reference environment, (e.g. 
50 ohm transmission lines) is equivalent to embedding each device in its ref-
erence environment and letting shrink to zero the thickness of the reference 
environment (i.e. the length of the 50 ohm transmission line) that lies be-
tween the two devices (see [39, p. 28] and [19, pp. 21-22]). This property was 
used herein in a MATLAB program that computes the composite scattering 
matrix when two interfaces happen to coincide as a result of the discretization 
scheme of the structure. 

If the devices were characterized in different reference environments, then 
an additional scattering matrix 9  like S in equation (3.12) would be introduced 
in the cascade to model the discontinuity created by butting the two different 
reference environments (see [44, pp. 178-179] with the series element jX = 0 
or with the shunt element j B = œ). This approach can be used to model 
a two-layer slab standing in free space as a 3-layer slab whose middle layer 
is a zero-thickness layer of free space (see Reference [19, pp. 22-23]). This 
approach has the advantage of replacing the more difficult treatment of the 
interface between media +1 and +2 by the simpler treatment consisting of 
the cascade of two simpler interfaces A and B, separated by a zero-length 
free-space transmission line, whereby interface A lies between medium #1 
and free space, and interface B lies between free space and medium +2. 

PFor a different treatment, see Reference [45]. 
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If the structure is reciprocal; the scattering coefficients are purely geo-
metrical parameters, i.e. their values do noti° depend on the method of 
excitation or the number of waves present at the interface, and furthermore, 
the values of the transmission coefficients for an incidence from one side can 
be obtained from the values of transmission coefficients for the corresponding 
incidence from the other side. From Reference [13, p. 51], electromagnetic 
reciprocity can be stated as: 

€CC,(08  = 1800  — c, Os = 1800  + d,  O = 1800  — a, çbi  = 180° + 	
(3.21) 

where CC, is the voltage scattering coefficients defined in terms of the 
whole fields, from medium y to medium u, with the polarization p of the 
scattered wave and the polarization q of the incident wave given by the â or 
unit vectors of the spherical coordinate systemil whose 2 axis is parallel to the 
normal of the interface, with 0 and gb values specifying a propagation direction 
of the phase wavefront in the outwards' convention, e = +1 for p = q and 
e = —1 for p q, the angles 00  < la, c,e,es) < 180° with u =  y if both 
a and c are larger or smaller than 90°, and  0°< {b, d, Oi  , 08 1 < 360°. The 
factor e arises from the behaviour of the â and q5 unit vectors of the spherical 
coordinate system. The statement of reciprocity given in Equation (3.21) was 
developed for a scatterer embedded in a same host medium on both sides of 
the interface, i.e. for the medium being the same at both ports u and y. 
If the host medium is different in each half-space, refraction and impedance 
mismatch must also be taken into account. References [40, Equation (1-16) 
on p. 122], [42, p. 140], and [43, Equation (20)] indicate that -ytzt and -yzy are 
then needed. The statement of reciprocity becomes13  : 

CE(08  = a, 08  = b, Oi  = c, = d) = 
CC,(05  = 180° — c, qS = 180° + d,  O  =  180° — a, 02:  = 180° + b) 

(3.22) 

1°If at least one of the two media composing the interface is not reciprocal (e.g. a 
gyrotropic medium), then the method of excitation (e.g. the orientation and strength of 
an external static magnetic field) can modify the values of the constitutive parameters of 
the medium. 

'The matrix C on p. 51 of Reference [1. ] corresponds to the matrix C herein. Re- 
call that evE = RPERPENDICULAR but Cju i.  = -RPARALLEL. At normal incidence, 
RpARALLEL = RPERPENDICULAR and thus Cvlivil  = _CvEvE 

121n the outwards convention, the spherical coordinate angles e and 02' that specify the 
direction of 731  are.those for f3z pointing outwards from the origin of the coordinate system. 

13This agrees with Equation (3.13) and Reference [42, p. 140] but it seems to disagree 
with References [40, Equation (1-16) on p. 122] and [43, Equation (20)]. In these last two 
references, -C and ,yzy seem to be interchanged. 
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The absolute value symbol on 141, is needed only if -y, is computed from 
the 0 angle of the spherical coordinazte system instead of the accute angles 
of Figure 3.1. The absolute value symbol becomes the magnitude symbol 
if the ratio becomes complex-valued. Interestingly, Reference [43, Equa-
tions (20,35,36)] shows that reciprocity holds true for any two waves, i.e. for 
two propagating waves, or for two evanescent waves, or for one propagating 
wave and one evanescent wave. This is in agreement with the understanding 
that reciprocity is a property of the medium rather than a property of the 
waves. 

The values of the reflection coefficients for an incidence from one side can 
also be obtained from the values of reflection coefficients for the corresponding 
incidence from the other side. From interchanging input and output media, 
and input and output propagation vectors in Equations (3.6) and (3.9), one 
obtains readily: 

= a, Os = b, = c, = = 
—CC,(9 .9  = 180° — c, Os = 180° + d, Oi  = 180° — a, oi 180° + b) (123)  

with u v. Equation (3.23) agrees 14  also with Equation (3.13) as well as 
with Reference [19, p. 19]. Note that Equation (3.21) with u = y and p q 
gives  C  —Cry  which is not the same as Cr„ = —CP,aqu  of Equation (3.23). 
Hence, Equation (3.23) is due not to reciprocity, but to reflection symmetry 
about the interface. Equation (3.23) also agrees with the behaviour of the 
reflection coefficient in transmission line theory, i.e. if r2,1 == (Z2 — Z,)/(Z2 

Zi. ), then r1,2 =  (z, - Z2)/(Z, + z2) = 

Therefore, by introducing a zero-thickness layer between every medium 
layer of a slab with flat parallel faces, thus making free-standing every medium 
layer, and by using reciprocity (i.e. Equation (3.22)), reflection symmetry 
(i.e. Equation (3.23)) and longitudinal symmetry, the scattering matrices for 

the mth medium layer of thickness d standing in free space can be obtained 
from the knowledge of only Cli  and CL as follows: 

14Note that Reference [28] gives the following two relations: 

iiHHrEE rHErEH cHEcEH cH.HrEE 
‘-'11 	‘-'11 	22 	22 	22 '-'22 

pHH j_ pEE pHH rEE 
`-'11 	‘-'22 

However, Equations (3.24) and (3.25) are nOt believed to be true, even for the simple 
case of an interface between two lossless isotropic media. For such an interface, CPq, = 0 
for p  L  q and from Equation (3.23),  C  = —C?„P, hence we have C 11CC = CDICe 
instead of CreiE  = —CUCf2E , and we have (C H = +(cr Cm instead 

O (Cr + Ce) = (Cel  — Ce). 
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/ RHH  RHE  +g THH  —g THE  
Rau REE g TEH +g TEE 

THH THE 
\ TEH TEE 

eI (3.26) —RHH  —R HE  
—REH —R EE  ) 

cII =__ 

-RHH -RHE THH THE  
REH _REE TER .  TEE )1  

+g THH  —g THE  RHH  RHE  
g TEH +g  TEE REH REE 

(3.27) . 

where: 

g = #0 

— (240  sin 	//logo cos e 
-ern \ky#m)2 _ (1,#o sin 	\/(,),#m)2 w2)1,t- eo sin' e 

( ,),#m ) 2 ern ,em 	 E.#m 

The composite scattering matrix for the free-standing layer becomes: 

eE 

/ RH 11,E RH E,E THH,E THE,E 
REH,E REE,E TEH,E TEE,E 
THH,E THE,E RHH,E RHE,E 
TEH,E TEE,  E REH,E REE,E 

(3.28) 

which clearly satisfies reciprocity and longitudinal symmetry. The ele-
ments of the matrix can be obtained with the Matlab symbolic math tool-
box. They are given in Appendix F. The scattering matrix of the multilayer 
slab is then obtained by cascading the scattering matrices of its layers in 
free-standing configuration. 

This author confirmed numerically that the use of the scattering matrix 
propagator technique is fully equivalent to the use of the invariant imbed-
ding method presented by Adams and Denman in Reference [19, pp.  22,29] 
or Weng Cho Chu in Reference [42, p. 140], and by Wait in Reference [5, 
p. 151], although the recursive schemes of the first two references appear to 
be different from the one of the third reference. That their recursive schemes 
are, in fact, equivalent to one another can be shown as follows. Consider 
the simplest problem of a slab of thickness d separating two half-spaces, thus 
forming three equivalent transmission lines with characteristic impedances 

57 



••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

 

Zn  where n ranges from 1 to 3 from left to right. The slab is illuminated 
from the left side. The reflection coefficient at the interface that separates 
media 1 and 2 is written here as the instantaneous (or local) reflection coef-
ficient 

Z2 
I 1 = 	 Z2 + Z1 

rather than the steady-state (or global) reflection coefficient 

rin  = zZlin  Zgl  
in - 1-  

where: 

Z• = Z2 
M 	Z2  + Z3tanh('y,d) 

When using the instantaneous reflection coefficient, all multiply reflected 
waves are accounted for individually whereas when using the steady-state 
reflection coefficient, only two waves are deemed to exist in every medium, 
namely the forward propagating wave and the backward propagating wave. 
Both approaches are equivalent upon lumping together in every medium all 
the instantaneous waves travelling in a same direction. This results in the 
following mathematical identity (see Appendix A): 

Zin  — 	 re_2,7zd 
(3.29) 

zin  + z, 	1 rir3e_2,,zd 

where: 

Z3  ± Z2 
For a problem with N interfaces, the recursive scheme results from writing 
Zinn  in terms of Zinn+, as was done by Wait in Reference [5, Equation 4.171], 
or equivalently by Equation. (3.29), from writing rn, in terms of rri+i , as was 
donel5  by Adams and Denman in Reference [19, Equations (7.14), (7.18)]. 
Note that although the steady-state reflection coefficient is obtained as (Zin

-Z1 )/(Zin  + Z1 ), the steady-state transmission coefficient is not obtained as 
2Zin/(Zin  + Z1 ); see Appendix A and References [5, Equations 4.172, 4.175] 
and [19, Equations 7.15, 7.19]. The reason for this difference lies in the fact 
that with the steady-state approach, the rest of the circuit lying beyond 
the interface where Zin  is computed, is effectively enclosed in a black box 
that does not give access to the output port where the knowledge of the 
transmitted wave is desired. 

15 Note that Adams and Denman's equations are written for the wave being incident from 
the right. Moreover, this author believes that their expressions given in Equations (7.7- 
7.10) remain valid in spite of errors in Equation (7.1) on page 11. Furthermore, it must 
be pointed out that Equations (7.9) and (7.10) are given for the parallel polarization in 
terms of the tangential (to the interface) electric field rather than the whole electric field. 
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Figure 3.1: The cascade connection of two consecutive parallel planar inter-
faces separated by a distance d. Each scattering matrix models the scat-
tering phenomenon at one interface while the transmission line models the 
wave propagation between the two interfaces. Note that the single term bf 
represents the time-harmonic phasor summation of the two waves travelling 
leftwards from the interface I. 



3.2 Modifications to the GSM for anisotropic 
media 

In a lossless medium that is anisotropic in permittivity, .È and D are no 
longer" parallel but 13 and e are still coplanar 17  (see Reference [7, 
p. 189]), and E1  =  Ê.  = (cu2it0lko2)D = D/eeff (see Reference [75, p. 665]). 
The two r) field vectors for the two eigenwaves of the medium are perpen-
dicular" to one another and perpendicular to the propagation vector  k  (see 
Reference [7, pp. 189-190]). Hence, the polarization is now defined in terms 
of D instead of E , and each eigenwave can be decomposed into a TE' wave 
with h = çbk and a TM' wave with h = bk. When the incidence plane is the 
xz plane, then qbk  = ±û and the modes become EY and HY. Note, however, 
that even when the polarization is defined with respect to /3 instead of É, the 
application of the boundary conditions at the interface between two media 
still invokes the tangential components of É, not  D.  

When the anisotropic medium is also lossy, the propagation vector be-
comes = (ci ji(1) and the vector ij is, in general, no longer perpendicular 
to 0 (see Reference [75, p. 706]). However, the process of taking into ac-
count the conductivity ci by means of taldng the permittivity e to become 
complex-valued effectively replaces the term ffree  =- crÉ.  by 0 in the curl 

equation for 11, and replaces, via the continuity equation, the charge den- 
sity pfree  by 0 in the divergence equation for D. This latter replacement 
leads to (1 • 13) = 0 without implying that  5  is orthogonal to D because 

and D are now complex-valued vectors whose real and imaginary vectors 
point, in general, in different directions (see Reference [4, p. 403]). Hence, 

= (DR + Di) and h is, in general, elliptically polarized 19  . The two 
eigenwaves with polarizations D' and /3" are no longer necessarily such that 
(h. ' • h") = 0 (see Appendix E). However, the presence of losses does not 
prohibit the decomposition of a wave into pure TEu and TMu waves where 
û = (â x fl) is the direction for which the fields have no spatial variation' , 
provided that the polarization' in the anisotropic medium is defined in terms 

16For the ordinary wave in a uniaxial medium, E and i5 are still parallel as in any 
isotropic medium. 

171t is interesting  to  note  that although e x , ey  and ez  can take any values, Ex , Ey  and 

Ez  cannot take any values because  E  = (Ex  + Ey 9 +  E2) must remain confined to the 
plane containing È and ./5. 

18 Section E.1.4 shows that this is certainly the case for uniaxial media but not for biaxial 
media. 

19 Similarly, 	ii) = 0 and due to the presence of losses, fi" could also be a complex- 
valued vector k> = (//tR + jer) that is elliptically polarized (see References [75, p. 706], 
[4, p. 422] and [77]). 

'See References [4, pp. 422-423], [85, p. 31, problem 1.3] and [77, p. 584]. 
21 When the medium is lossless and anisotropie, -E.  acquires a component parallel to  fi 
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of D instead of É. According to the case of practical importance presented 
in Section 2.4.1, we know that the amplitude wavefront propagation vector 

in the lossy anisotropie medium would be normal to the interfaces if the 
incidence medium were lossless and the incident plane wave were uniform. 
Furthermore, from phase matching at the interface,e know that the phase 
wavefront propagation vector  fi.  in the anisotropic medium always lies in the 
incidence plane. Therefore, under these conditions, û = (â x )3) is normal 
to the incidence plane and the eigenwaves can still be decomposed into pure 
TE' and TM' waves, provided that the polarization in the lossy anisotropic 
medium refers to D instead of É. If the incidence plane is the xz plane, then 
û = Q. 

If the anisotropie medium is uniaxial, there is only one optic axis and 
the medium is characterized by a transverse' permittivity value that is dif-
ferent from the longitudinal permittivity value. The two eigenwaves of the 
uniaxial medium have D or È perpendicular to the single optic axis. The 
propagation vectors iy• and 5take different complex values for each eigenwave 
(see Reference [46, Appendix]) since each eigenwave (i.e. the ordinary and 
the extraordinary waves) sees a different effective permittivity. The ordi-
nary wave sees the transverse permittivity while the extraordinary wave sees 
a mixture of the transverse and the longitudinal permittivities (this inter- 

due to the anisotropy of the medium. When the medium is lossy and isotropic, É also 
acquires a component parallel to 73+  due to the losses of the medium (see Reference [84, 
p. 502]). However, the difference between these two cases is significant: in the lossless 
anisotropic case, the polarization of É remains linear, i.e. the component of É parallel 
to ij remains in phase with the component of É perpendicular to ,d;  in the lossy isotropic 
case, the polarization of Ê is elliptical22  because the component of É parallel to  /3.  is not 
perfectW in-phase with the component of É perpendicular to id. When the medium is both 
lossy and anisotropic, D is also elliptically polarized. 

If the C scattering matrix based on using  Op  and 4 to define the polarization of waves 

does not take into account the component of É (or 15) that is parallel to )4, then why 
should the TE and TM polarizations be defined in terms of D instead of É for a lossless 
anisotropic scatterer, but remain defined in terms of É for a lossy isotropic scatterer? 
Or put another way, why should the use of the C scattering matrix provide the correct 
solution when the phase difference between the component of É (or D)  that is parallel to 
,à and the component of É (or É) that is perpendicular to r1 was ±900  but not so when 
the phase difference was 00  or ±1800 ? 

In the case of the lossless anisotropie medium, it is clear that there is no loss of informa-
tion (see Reference [7, pp. 190-195]) in characterizing the propagation phenomenon at the 
interface by using 13 instead of É in the anisotropic medium. Since b is perpendicular to 

D can be decomposed into components along  6 and q5.  Thus, it is a natural to use 
D instead of É for the elements of the C scattering matrix that pertain to the anisotropic 
medium. In the case of the lossy medium, however, there would be some loss of informa-
tion if the C scatterins matrix did not take into account the component of either É or 
that was parallel to  /3.  Thus, perhaps we should not expect to obtain the exact solution 
from using the C scattering matrix with lossy media. 

23The label "transverse" refers here to any direction perpendicular to the optic axis, 
and the label "longitudinal" refers here to a direction parallel to the optic axis. 
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pretation stems from the behaviour of the phase velocity in Reference [49, 
pp. 359-360]). Either the incidence polarization (defined with reference to 
the incidence plane) could be decomposed in a mixture of the two eigenpolar-
izations of the anisotropic medium (see References [46], [47, p. 106] and [48, 
p. 158]), or conversely, the two eigenwaves of the anisotropic medium could 
be decomposed into TE' and TM' modes defined in terms of D instead of 
É. However, for lossless' uniaxial media with the optic axis parallel to the 
normal of the interfaces, the following comments apply: 

1. the superscript E refers to both the eigenpolarization with  È and 15  
perpendicular to the optic axis, and to the incidence polarization with 
É and D perpendicular to the incidence plane, i.e. Ê =  D  = çbk. 
Similarly, the superscript H refers to both the eigenpolarization with 

-11.  perpendicular to the optic axis, and to the incidence polarization 
with É and ij parallel to the incidence plane, i.e. b =  bk but Ê  D.  
Thus, the modal decomposition of the electromagnetic field in TE' and 
TM' modes remains valid (see References [50, p. 170], [51] and [38]). 

2. no coupling arises between the ordinary wave of one layer and the 
extraordinary wave of an adjacent layer, and thus, each wave (i.e. or-
dinary or extraordinary) can be seen to propagate independently of 
the other wave (i.e. extraordinary or ordinary) throughout the entire 
cascade of layers (see References [53] and [27]). 

When the medium is uniaxial with its optic axis parallel or perpendicular 
to the incidence plane, no coupling arises between TE' and TM' modes 
(i.e. P12  = P21 = 0 in Reference [7, pp. 239-245]) in the isotropic medium 
from which the plane wave is incident. Hence, the reflected plane wave 
has then the same mode as the incident plane wave. However, this is not 
necessarily the case for the transmitted plane wave because T12 = T21 = 0 in 
Reference [7, pp. 239-245] means that there is no coupling between the TE' or 
TM' wave incident from the free-space side, and one of the two eigenwaves in 
the transmission medium. Since each eigenwave in the anisotropic medium 
is, in general, a mixture of TE' and TM' waves defined in terms of .5, 
the expressions T12 = T21 = 0 does not imply that there is no coupling 
between TE' and TM' waves in the anisotropic medium. Consequently, 
when the reflected plane wave has the same mode as the incident plane wave, 
the amplitude matching of the tangential E and H field components at the 
interface forces the cross-polarization" mode of one eigenwave to be cancelled 

'When the uniaxial medium becomes lossy, the vector /3 becomes a complex-valued 
vector and elliptically polarized. These comments would no longer apply rigorously. 

25The cross-polarization mode of an eigenwave is defined here with respect to the po-
larization mode of the incident plane wave, i.e. the cross-polarization mode is TE" if the 
incident plane wave is TM', and TM' if the incident plane wave is TE'. 
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by the cross-polarization mode of the other eigenwave at the interface in the 
anisotropic medium. Since Fresnel equations are valid only for zero cross-
polarization, Fresnel equations do not necessarily remain valid even when 
the medium is uniaxial with its optic axis parallel or perpendicular to the 
incidence plane. In fact, it turns out that Fresnel equations remain valid only 
when the optic axis is normal to the interface, provided that the permittivity 
value used in Fresnel equations is that seen by the D vector "in the interface" 
(see next sections). 

The use of the scattering matrix propagator technique requires the knowl-
edge of the scattering coefficients for incidence from each side of the interface. 
When the optic axis of a uniaxial medium is normal to the interface, the or-
dinary wave is equivalent to a TE' wave with b = + and H = 
and the extraordinary wave is equivalent to a TM' wave with b ilk  and 
H = = +Û. Hence, a TE' wave incident from the side of the isotropic 
medium gives rise only to the ordinary wave in the uniaxial medium, and a 
TM' wave incident from the side of the isotropic medium gives rise only to 
the extraordinary wave in the uniaxial medium. From reciprocity, the ordi-
nary wave incident from the side of the uniaxial medium gives rise only to 
the TE' wave in the isotropic medium, and the extraordinary wave incident 
from the side of the uniaxial medium gives rise only to the TM' wave in 
the isotropic medium. Therefore, it is easy to see that in this case as in the 
case of a planar interface between two isotropic media (see Equation (3.12)), 
the expressions for the scattering coefficients when the incidence is from the 
uniaxial medium can be obtained simply by interchanging input and output 
media, and input and output propagation vectors, in the expressions for the 
scattering coefficients when the incidence is from the isotropic medium. 

When the optic axis is not normal to the interface, both the ordinary 
and the extraordinary waves exist simultaneously in the uniaxial medium 
even if the wave incident from the isotropic medium is a pure TEM wave. 
In this case, the situation is much more complicated and it is no longer evi-
dent that the above simple interchange in the expressions for the scattering 
coefficients when the incidence was from the isotropic side, would produce 
the expressions for the scattering coefficients when the incidence was from 
the anisotropic side. However, if the structure is reciprocal, Equations (3.26- 
3.27) can still be used provided that the polarization of the eigenwaves are 
defined in terms of D instead of É. This last provision is necessary because 
Equations (3.26-3.27) were cast in terms of the unit vectors 15k and çh of 
the spherical coordinate system used to describe the polarization in the C 
matrices. When the anisotropie media become lossy, however, D becomes 
elliptically polarized with a component in the direction  of the phase wave-
front propagation vector ",(4 which is a radial vector in the spherical coordinate 
system. The behaviour of the radial unit vector  i ,  however, does not cause a 
problem with the statement of reciprocity in Equation (3.22), or symmetry in 
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Equation (3.23). Thus, Equations (3.26-3.27) and the use of the C matrices 
and the scattering matrix propagator technique remain valid in the presence 
of a field component in the direction of b. Furthermore, if this radial compo-
nent of .b>  is in phase quadrature with the transverse components of D , the 
scattering matrix for the radial component can be treated separately from 
the scattering matrix for the transverse components. 
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Chapter 4 

Complex permittivity profile 

In this report, a plate with a low reflection level is made from a dielec-
tric structure so that the plate presents to an incident uniform plane wave 
propagating in free space, a very gradual variation of the effective complex 
permittivity as the wave propagates through the plate (see References [3, 54, 
55, 56]). 

4.1 Effective permittivity 

The plate consisted, here, of three sections. The front and the back sections 
consisted of arrays of small circular dielectric cones arranged according to 
equilateral triangular lattices. The middle section consisted of a dielectric 
slab in which an array of circular air cones was bored from both the front and 
the back surfaces according to two interlaced equilateral triangular lattices 
so as to achieve almost optimum packing of the air cones. Figure 4.7 shows a 
cut-away section of the plate in its final design. Figure 4.8 shows a conceptual 
view of the plate. The combination of the front and the back lattices formed 
a composite array whose unit cell has the hexagonal cross-section shown in 
Figure 4.9. The resulting structure is honeycomb-like, light (less than about 
60% of the original weight of the dielectric slab) and strong. 

The assumption that formed the basis on which to compute the permit-
tivity profile was that the effective complex permittivity in each thin layer of 
the cascade forming the plate could be computed solely from consideration 
of the fractional volume occupied by the dielectric material with respect to 
the total volume of a unit volume within the layer. The rationale for this 
assumption lies in the fact that the dielectric material can be replaced by an 
equivalent electric polarization current acting in free space and distributed 
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throughout the volume of the dielectric material (see References [57, 58]). 
If the polarization current were unidirectional throughout the volume of di-
electric material, the effective permittivity would be that corresponding to 
a uniform polarization current density throughout all space, equal to the 
average polarization current density. The value for the average polarization 
current density would be obtained by scaling the value of the original po-
larization current density according to the fraction of volume occupied by 
the dielectric material with respect to the total volume of the unit volume. 
Therefore, the relative complex permittivity which accounts for the effect of 
the equivalent electric polarization current, could be computed by scaling the 
original complex permittivity value according to the same ratio. However, 
this approach is not accurate enough for most cases because it ignores the 
spatial anisotropy of the effective permittivity. 

In practice, the complex permittivity of each layer is realized by introduc-
ing small bits of a foreign material in an otherwise homogeneous dielectric 
host material.  Monta and Cohn in Reference [59] have used small circular 
holes as inclusions of air pockets. The holes play the role of macroscopic 
molecules that become polarized by the total electric field. This effect is the 
result of the differential charge density appearing on the walls of the cavities 
excited by the local internal electric field whose distribution is affected by 
the absence of the dielectric material in the holes. Different shapes of cavi-
ties present different polarizability values. The resulting composite material 
presents an effective permittivity with a value obtained from the weighted 
average of the permittivity for each material (i.e. dielectric and air) making 
up the composite material. The weighted average depends on the polarizabil-
ity of the inclusions (which itself 'depends on the shape of the inclusions and 
their orientation with respect to the total electric field), and the distribution 
of the inclusions throughout the host material. For a uniform distribution 
of spherical inclusions, the weighted average corresponds simply to the frac-
tional volume occupied by the inclusions within a total unit volume of host 
material. This approach is well known in the context of artificial dielectrics. 

In the context of gratings, however, grooves are normally used as in-
clusions. For grooves running in one-direction, the presence of the grooves 
concentrates the electric field differently for different polarizations, thus mak-
ing the composite material anisotropic, i.e. the effective permittivity value 
becomes polarization dependent. For instance, such anisotropy is taken ex-
plicitly into account in Reference [46] for triangular grooves, and in Ref-
erence [60, 62] for rectangular grooves. Other groove profiles have been 
investigated (see References [63, 64, 65]). Reference [66] mentions that a 
better prediction is obtained with using a second-order model of effective 
permittivity. The computation of the effective permittivity becomes even 
more complex for 2-D periodical arrays. The case for the square pyramidal 
element has been treated in References [67, 68, 69, 70, 71, 72, 73] in the 

66 



• • • • • • • • • • • • • • • • • • • '1 • • • • • • , • • • • • • • • • • • • • • • • • • • 

context of absorbers for anechoic chambers. The case for a rectangular array 
of cylindrical rods has been treated in References [74] and [75, p. 704] based 
on results from Lord Rayleigh, and in References [78, 79] in the context of 
anisotropic laminated composites. 

Here, the spatial anisotropy introduced by the presence of the holes in 
each thin layer was neglected in the transverse (to the interfaces) directions 
because this anisotropy was expected to be small for the following two rea-
sons: 

1. the element factor had rotational invariance because the holes were 
circular within each layer; 

2. the array factor for a lattice of equilateral triangles was almost rota-
tionnally invariant over the many cells making up the array. 

The effective permittivity value that was used herein for the transverse (to 
the interfaces) directions was an approximate value obtained from Refer-
ence [74, p. 192, Equation (7.6)]. Lord Rayleigh's formula was used even 
though his array was a rectangular array of cylinders of a same diameter 
whereas our array was triangular and used two different diameters equally 
distributed among all the cylinders of a same layer. Furthermore, the GSM 
used here does not include the effect of the evanescent' waves created by 
the sub-wavelength features of the geometry. When the layers are very thin, 
adjacent interfaces become so close to one another that evanescent waves of 
one interface can reach adjacent interfaces and couple with the propagat-
ing or evanescent waves of adjacent interfaces. Usually, evanescent waves by 
themselves do not carry real (i.e. active) power and are needed only to make 
the field distribution satisfy the boundary conditions at the sub-wavelength 
scale. However, the transfer of active power is possible when evanescent 
waves couple to other waves (see Reference [40, p. 65]), the prism coupler 
being an example of applications where such coupling is put to a good use 
[48, p. 65]. Reference [p. 1321]Sarabandi mentions that the effects of dis-
continuities (hence, the effect of the evanescent waves) can be neglected. A 
comparison between numerically simulated (based on a numerical technique 

lUsually, evanescent waves are present in the vicinity of a discontinuity, e.g. an inter-
face between different media or an inclusion in an otherwise homogeneous material. Note, 
however, that the solution to the problem of a multilayer slab of infinite transverse dimen-
sions, made of homogeneous layers with parallel planar interfaces, standing in free space 
and illuminated by a uniform propagating plane wave, does not require the presence of 
any evanescent (i.e. non-uniform) plane waves. Hence, our numerical technique based on 
modelling the corrugated slab as a multilayer slab where each layer is homogeneous, does 
not involve the presence of evanescent waves whereas our numerical technique based on 
modelling the slab with its actual inclusions as part of a FDTD simulation would include 
the evanescent waves. 
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presented later) or experimentally measured results could determine if the 
'effects of evanescent waves can be neglected. However, no attempt was made 
to model the complicated geometry of the profiled slab. 

The effective permittivity value that was used herein for the longitu-
dinal (to the interfaces) direction is said to be exact according to Refer-
ences [67, 68], and corresponds to the fractional volume mentioned above. 
The resulting composite material is uniaxial with the optic axis parallel to 
the longitudinal direction, i.e. normal to the interface. Thus, the polarization 
perpendicular to the incidence plane has the D field always perpendicular to 
the optic axis and gives rise to an ordinary wave, i.e. the electromagnetic 
wave propagates within the composite material as in an isotropic material 
with an effective permittivity corresponding to that for the transverse (to 

rtrans .  the optic axis) direction, e The polarization parallel to the incidence 

plane has the 1Î field always perpendicular to the optic axis, and thus the 
15 field inside the uniaxial medium has a component perpendicular and a 
component parallel to the optic axis. The parallel polarization gives rise to 
an extraordinary wave, i.e. the electromagnetic wave propagates within the 
composite material as in an isotropic material with an effective permittivity 
value eli  that depends on some average of the transverse permittivity ertrans 

and the longitudinal permittivity erlong  where the super-indices "trans" and 
"long" refer to directions perpendicular and parallel to the optic axis, respec-
tively. From the interpretation that the phase velocity of the extraordinary 

wave is equal to 1A/p,,,el,t and from Equation (10.80) of Reference [49, p. 360], 
one obtains (See [75, p. 677]): 

1 	cos2  (9) 	sin2 (0)  
II = trans ± 

Er 	69; 	lon Er  g 

where the angle 0 < 0 < 900  corresponds to the acute angle between the 
optic axis and the propagation vector el We confirm that for 0 = 00 , thus for 
D being perpendicular to the optic axis, Equation (4.1) produces the result 

= ertrans. We confirm also that for 0 -= 90°, thus for .b*  being parallel 
r.  to the optic axis, Equation (4.1) produces the result el! 	elong For any 

intermediary 0 value, the value for 1/elii lies between the values for 1/ertra115  

and 1/erlong. 

Since both the ordinary and the extraordinary waves see different effec-
tive permittivity values, the transmission angle at an interface between two 
layers is different for each eigenwave, but it is still given by Snell's law of 
refraction (generalized here to take into account the non-uniform wave prop-
agation caused by the presence of material losses). Bodnar and Bassett in 
reference [46] treated the case of an interface of two uniaxial lossless media. 

(4.1) 
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When the media are both lossy and uniaxial (or, more generally, anisotropie), 
the question arises as to how to obtain for the non-uniform extraordinary 
wave, the intrinsic effective propagation constants a o  and Po  from which to 
obtain the effective propagation constants a and 0 and the real-valued prop-
agation angles 2  and (2 = (21-p2) by the procedure presented in Chapter 2. 
The answer is provided in the next two sections. 

4.2 Computation of the intrinsic propagation 
constants ce, and Po  for the extraordinary 
wave 

By analogy with the expression 	jk0 VE7 of Equation (2.3) we give the 
interpretation that  y2  — ko2 eli where eli! represents the overall effective per-
mittivity that the wave sees, and k, is the usual wave number in free space. 
We apply this interpretation to the specific case of the extraordinary wave 
in the uniaxial medium. From Equation (2.2), we know: 

(ct — /602) 	(2%30) 

Equating the real and the imaginary parts of the last equation with those 
of equation -y2  = —k2Ai results in a system of two equations in the two 
unknowns ao  and 00  with the following solution: 

—Re [E 171] 

2 	 

ell' +Re [d] 

2 

where e!! = (Re [d] — ilm{e 171). For 	= Re [el , i.e. for Im [d] = 0, 
Equations (4.2) and (4.3) produce the expected results a, = 0 and i30  = 

k0  \I[, respectively. Substituting a, of Equation (4.2), and substituting po 
of Equation (4.3) into Equations (2.11) and (2.12) produces: 

= 	— Re2  =  Tm  
wE, 
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• 

• 
Er  = Re [41 ] 	 (4.5) 

• which is consistent with the expression ell = (Re [4] — jIm [di) and the 

•
expression Er  =  Er  — j 	of Equation (2.4). 

In general, the effective propagation constants a and p cannot be com- 

e puted without invoking a°  and 13, because the equation ,y2 =__ a2 02 + 

2jai3 cos(p) has three unknowns, whereas the equation  'y2  = Oe 5, — po2 +2ja°130 
has only two unknowns' . Moreover, it is not possible to relate a and p to 
some permittivity ere the same way that we can relate ao  and A, to d. The 

reason is that although we can write 7 	0 0  = a0 +, = jk,\I el,!, we cannot write 

• = a.+ j/3 = jko \ ereff unless as and ig point in the same direction. However, 
• the above procedure works because we can always write  5 • ,-)% = -y 2  = -y,2,. 

• 
• 
• 4.3 Computation of the effective permittivity 

• Ell for the extraordinary wave 

• For the case that the incidence medium is free space, and the transmission 

• medium is a lossless uniaxial medium, and the optic axis lies in the inci- 
dence plane at an angle 00  with respect to the normal of the interface, the 
application of Johnson's equation (10.80) (see Reference [49, p. 360]) for the 
velocity ct  of the extraordinary wave, and Johnson's equation (10.83) (see 

• Reference [49, p. 361]) for Snell's law, allows to find  e  = (c0/c,t ) 2  for any 

• value of 0,, where c, = 1/ \Au0E0 . As explained in Appendix D.1, the d- 

o
fective relative permittivity' for the extraordinary wave propagating in the 
uniaxial half-space for both cases of 00  = 0° and 00  = +90° can be written 

• as Equation (D.23), which translates into: 

trans) trans ± Er  sin  (ène ) 1 	 ne  — Er 	
Er 
erlong 

2For the special case of practical importance presented in Section (2.4.1) whereby p 
is known a priori from the fact that â is normal to the interface, f3 and a could be 
computed directly from the knowledge of Er'  and o-1(we 0 ) as per Equations (2.35) and 
(2.36), respectively. However, there would still remain the necessity to find the values of 
er  and u that correspond to the extraordinary wave. 

3The effective permittivity in Equation (4.6) corresponds to that in -yo = ao  + j[30  = 

• • • • • • • 

(4.6) 

• 
• jk o \lell, not that in -y =  a  + jf3 = iko \lee. • • • 70 
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where here4  "trans" and "long" refer to the directions parallel and per-
pendicular to the interface, respectively. This last equation corresponds to 
Collin's equation (118c) in Reference [47, p. 103] for a case where the optic 
axis is parallel to the interface, i.e. 0, = ±900 . One surprising consequence 
of this last equation is that although  e  = ertrans at normal incidence (i.e. 

inc= 0), the value for d is not bounded by the value for erimg at grazing 

incidence (inc  90°). In fact, depending on the value for (ertrans i erlong) 

it might be possible to have el?!  <1 or even  e < 0.  

In our case, we assume that a triangular array of circular cones presents 
an almost perfect rotational symmetry in the transverse (to the interfaces) 
plane such that the medium can be approximated by a uniaxial medium with 
its optic axis parallel to the normal of the interface, i.e. 00  = 0°. 

Equation (4.6) can be generalized to include intrinsic losses in both the 
incidence and the transmission media by replacing in each respective medium 
the propagation vector lî ffi by = 5 + 0 and taking -y2  = • = 
ce2  — 02 + 2ja • ,3 cos(r) as in Equation (2.2). From Collin's development in 
reference [47, pp. 97-103], we obtain  5,. •  D  = 0 as in reference [47, p. 97] and 
Collin's Equation (118c) becomes: 

7171 
(4.7) 

For the incidence medium being free space, i.e.  ainc = 0 and (Jim = k„, 
Equation (4.7) is consistent with Equation (4.6), as expected, since our -y 2  
corresponds to -02 of Collin. 

In summary, the new procedure for computing the equivalent intrinsic 
propagation constants a, and 130  that a transmitted wave sees in the lossy 
uniaxial medium beyond an interface, is based on the following sequen.ce of 
reasoning steps: 

1. using the interpretation -y2  = —ko2d where eiri is the overall effective 

4In. Appendix D.1, "trans" and "long" refered to the directions parallel and perpen-
dicular to the optic axis, respectively. Equation (4.6) with "trans" and "long" referring 
to the directions parallel and perpendicular to the interface, respectively, is thus valid for 
0„ = 0°, ±90° as per Equation (D.23), but not for intermediates values between 0° and 
90°. 
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complex permittivity that the transmitted wave sees in the lossy uni-
axial transmission medium; 

2. generalizing Equation (4.6) to include the presence of intrinsic losses in 
both the incidence and the transmission media, and computing -y2  as 
—kM; when the incidence medium is uniaxial, Equation (4.6) remains 
valid because it is based on the use of Snell's law of refraction which 
remains valid because Snell's law is based only on phase matching at 
the interface. 

3. using Equation (2.2) which leads to Equations (4.2) and (4.3) from 
which to compute the effective propagation constants a and p by the 
technique presented in Chapter 2; note that the values of the intrinsic 
propagation constants a, and po  are generally different between the 
two eigenwaves inside each uniaxial layer. 

This procedure relies on a bootstrap approach because it is circular5  in 
thinking and thus, in order to work, it requires the knowledge of an indepen-
dent method to determine a2  and 02. The motivation for using this bootstrap 
approach, however, is to be able to reuse the method of Chapter 2 that was 
developed for the case where a02  and /3„2  were known a priori. Furthermore, 
the independent method needed for the procedure can be generalized to the 
case of biaxial media (see Appendix D.2). Finally, this procedure has a clear 
physical interpretation. Note, however,  that since  Fresnel equations require 
the knowledge of only  'y  = .1,72 _ ( yinc sin  einc)2 with 'y2  for the extraor-
dinary wave given by Equation (4.7), Fresnel equations could be computed 
without having to find the values of intrinsic ao , po , the values of effective 
a and [3 and the values of the propagation angles p and This is precisely 
how Wait proceeded, as shown in the next section. 

4.4 Wait's method 

In comparison, Wait [31, pp. 98, 110-113] gives, for the case 00  = 00 , the 
reflection coefficients as: 

?Li  - Ut  
RpERPENDICULAR = • 

11,z 	Ut  

5The computation of the effective propagation constants a 2  and 132  of the transmission 
uniaxial medium by the procedure presented in Chapter 2 is made from the knowledge 
of the intrinsic propagation constants a02  and [30 2 of the transmission uniaxial medium. 
These, in turn, are themselves computed from the knowledge of effective propagation 
constants a2 and 02 obtained by an independent method (Collin's equation generalized 
to include losses and the uniaxial property in both the incidence and the transmission 
media). 
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72—  'Y 	'Y  
RpARALLEL — V 	 I V t  

-72 -I-  ---ez 
'Yz 	'Y 

1,2 = uwito) (0.trans + iweitrans) = _ko2ertrans 	(4.10) 

u = \42  + -y2 	 (4.11) 

v = •IA2 K + 72 	 (4.12) 

À = —j-yisin(0i) 	 (4.13) 

()Inns + iweitrans
-= 

 ftrans _ i trans 
= 

trans E 	 coa 	-- er  
along + iwe/long 	elong _ ialong 	elong 	

(4.14) 

Note that in Wait's development: 

• the variable called g is called o-  here; 

• RpARALLEL is the negative of our own as per Reference [5, p. 152]; 

• the real parts of u and y are chosen to be positive; 

• the propagation angles are complex-valued and thus, Oi  can be complex-
valued; 

• the incidence medium is free space, i.e. isotropic, which situation re-
sults in yi = ui in Equation (4.9), and results in the expressions given 
by Wait in Reference [31, p. 113]. 

Note that -y corresponds to the complex propagation constant for the 
ordinary wave as shown in Equation (4.10). Note also that the term jA = 
-yisin(0i) corresponds to the transverse component of The phase matching 
requirement of all waves at the planar interface forces the transverse variation 
of the fields for the transmitted eigenwaves to be precisely that of the fields 
for the incident plane wave, and results in the law of reflection and Snell's 
law of refraction. Consequently, we have: 

(4.9) 

= .VA2 ,yi2  = 	(9i) + 7i2 -yicos(8i) = (4.15) 



•
••

••
•
••

•
••

••
•
•.

••
•

•
••

••
••

••
••

•
••

••
•
••

•
••

•
00

 

and 

ut = 	2  142 	\/__,yt2sin2(ot) ,y t2 iko \I— Eirsin2 (0i) + 

ik,\14.\11 — 	(0i) = jk0\M \11— sin2 (0t) = -ytcos(e) = -y! 

(4.16) 
where the super-index "trans" for er  was suppressed to minimize cluttering 
the expressions. Thus, the variable u corresponds to the longitudinal com-
ponent of the complex propagation constant for the ordinary wave in the 
transmission medium as well as in the incidence medium. Therefore, the 
reflection coefficient RpERPENDICULAR  given by Equation (4.8) corresponds 
exactly to the expression given in Equation (3.9) since the eigenwave corre-
sponding to this polarization is the ordinary wave. 

The expression (4.9) can be modified easily to obtain: 

	

t 2 	t  — V t 2 	t i 	i t E V — E rV v 	 r  

	

RpARALLEL = • t2 	t i2 	+ 4,V t  viry 	v 'Y 

where all permittivity values refer to the transverse permittivity values. Re-
calling that RpARALLEL  is the negative of our own as per Reference [5, p. 152], 
we see that Equation (4.17) is the same  as  Equation (3.6) provided that all 
permittivity values in Equation (4.17) are the transverse (not the effective) 
permittivity values, and that y -yz . This expression also agrees with Equa-
tion (6.107) of Reference [7, p. 245]. For the isotropic case, it is clear that 
it = 1 and thus, y 7z , and Equation (4.17) reduces (notwithstanding the 
aforementioned difference in sign) to Equation (3.6). Now, Equation (4.7) 
can be re-written as: 

_Lo2_ (ainc sin (einc pinc) 	pinc sinec))2 	

- 

) er
trans ) 

tr long r 

(_ ko2ertran5) (( ainc sin(&w pinc) ipinc sin (einc)) 2) 

2 

1Wait 
= y2 

2 	s"--se•—•".  
2 -Yp 

(4.18) 

where •y, and -yp  are the longitudinal and the transverse components of 
respectively. Recall that -yp  = jA because the phase matching of the 

fields at every interface forces the transverse variation of the scattered fields 
to be that of the incident field (see Reference [5, p. 150]). Hence, we see 
that Wait's formulation corresponds, in fact, to Collin's formulation when 
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2ui 
TPERPENDICULAR = ut ut (4.20) 
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the optic axis is parallel to the normal of the interface, i.e. 0, -= 0 0 . In 
other words, Wait's Equation (4.12) can be obtained from Equation (4.7) 
and v2 = ,yz2 (

ollin 
1,2 	 _inc  as a result of eginc being — 11 2 C,0) When pine =  

normal to the interface, or when ainc  =  0 as a result of the incidence region 

being lossless, and since Pinc = ko ,Verinc, there results for the extraordinary 
wave: 

(,trans) 
E9 rans _ eirric h-2  (in)  - T  

long 
er 

which agrees 6  with Equation (4.12). For an isotropic slab, one obtains 
trans e 	=- Er2 = 

long 
 Er 	and thus, Equation (4.19) reduces to Equation (4.16) 

upon using Snell's law fe72 sin(6) = N/eri  sin(6) where "ill-c :._. 6 and 
67.1. 

From the above observations, the transmission coefficients for Wait's 
method could be obtained as follows: 

(\ eir4.) 2vi 
TPARALLEL = 	  V t  

where all permittivity values are again transverse permittivity values. This 
expression agrees' with Equation (6.106) of Reference [7, p. 245]. 

4.5 Validation 

For a structure consisting of two adjacent layers in otherwise free space, 
illuminated by a uniform plane wave, both predicted and numerical results 

6Note the difference between the expression for -yz  given by Equation (4.19) and the 

expression for  = jk o \là with elt given by Equation (4.6). 
7The agreement is seen when Equation (6.106) is divided by —k t  to account for the 

fact that Cll = —k tC_ as mentioned on page 234 of Reference [7]. Note that in Equa-
tion (6.106), el and ell refer to the principal dielectric values in the directions perpen- 

dicular and parallel to the optic axis, respectively, whereas here etrans  and elœlg refer to 
the permittivity values in the directions perpendicular and parallel to the normal of the 
interface, respectively. In the present case, however,  Cj = etrans and  ell  = elong because 
the optic axis and the normal of the interface are parallel to one another. 
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were obtained for various types of interfaces (i.e. lossless vs lossy, isotropic 
vs uniaxial, input vs output media) and for 00  =  0° or +900 . The predicted 
results were generated by the analytical method based on the Adler-Chu-
Fano formulation, with the generalized Fresnel equations modified to use the 
permittivity values "in the interface",  i.e. Ey  for the TE' polarization and ex  
for the TM' polarization. 

Two FORTRAN programs were written to compute the composite scat-
tering matrix of the free-standing multilayer slab. One program cascaded 
the scattering matrix given by Equation (3.28) for each free-standing layer, 
i.e. using a fictitious zero-thickness layer at every internal interface to make 
each layer free-standing, and then using reciprocity and longitudinal symme-
try. The other FORTRAN program cascaded the scattering matrices of all 
interfaces and intervening media in situ with the scattering matrix of each 
interface given by Equation (3.12) modified to use the permittivity values 
"in the interface".  Both programs gave identical results. This confirms the 
validity of using fictitious zero-thickness layers and Equations (3.26)-(3.28). 

The numerical results were generated by a numerical technique' based on 
FDTD simulations as explained here. The scattered field of an infinite-size 
slab was computed by a FDTD method that uses the separate field formalism 
so that the infinite-size slab could be modeled simply by extending the slab all 
the way to the outer boundaries that were terminated by eight PML layers. 
The excitation was a time-harmonic Maxwellian tapered beam synthesized 
and positioned such as not to illuminate the edges of the slab and such as 
to have negligible excitation over the innermost PML layer. The prescribed 
dominant polarization of the excitation beam was either TM' or TE'. The 
prescribed incidence of the excitation beam was 45° in the inward convention. 
After having computed the scattered field by the FDTD method, some post-
processing was carried out to compute the spectrum of the incident, reflected 
and transmitted beams, and the values of the scattering coefficients were 
obtained by forming the ratio of the E-field phasor of the spectrum for the 
scattered beams, over the E-field phasor of the spectrum for the incident 
beam, for all incidence angles of interest. 

4.5.1 Case of 0, = 0°, i.e. Œx  = Ey eZ 

Figures 4.1, 4.2 and 4.3 show the results for the case that the optic axis was 
oriented in a direction parallel to the normal of the interface, i.e. 00  -= 0°. 
Wait's method was also used as a second analytical method, with: 

8For more information on the numerical technique that computes the values of plane 
wave scattering coefficients, see CRC Technical report #CRC-RP-2008-002. 
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etrans = Ex  = Ey  

E
long 
 SZ 

where "trans" and "long" refer to both the optic axis and the normal of 
the interfaces. 

The results predicted by the two analytical methods are identical. The 
very good correspondence9  confirm that the permittivities to be used in the 
generalized Fresnel equations are, indeed, the permittivity values "in the in-
terface". The slight remaining discrepancy between the numerical curves and 
the analytical curves owe to numerical issues with the FDTD method mostly 
(e.g. numerical anisotropy from spatial and temporal discretizations, second-
order accuracy from the finite-difference algorithm, modeling of the interface 
by using the average of the two permittivity values on the two sides of the 
interface, modeling an infinite-size slab by terminating the slab model into 
PML layers, spurious residual reflections from the PML layers, carrying out 
the floating-point computation in single precision, etc.). The oscillations of 
the numerical curves about the analytical curves due to aperture truncation 
from computing the far fields from apertures of a necessarily finite size were 
mitigated by the technique of "window averaging". 

We note that the propagation angle values are different between the per-
pendicular and the parallel polarizations. We note also that, by finding the 
mathematical equivalence (see Appendix B) between a uniform plane wave 
with complex-valued propagation angle 8 and a non-uniform plane wave with 
real-valued propagation angles for and + p for 5), the complex-valued 
propagation angle corresponding to the real-valued propagation angles does 
not, in general, correspond to  8  = + i(e + p) . Recall that according to the 
case of practical importance presented in Section 2.4.1, we know that the 
amplitude wavefront propagation vector  52  would be normal to the interface 
if the incidence medium were lossless and the incident plane wave were uni-
form. Thus + p) = 0 and + + p) would become real-valued. However, 

9 Since Wait's equations reduce to Fresnel equations when the uniaxial media become 
isotropic, and if the predicted curves of plane wave scattering coefficient values for lossy 
media computed by the generalized Fresnel equations became less accurate as the conduc-
tivity values of the media increased, why should the correspondence between predicted 
values and numerically computed values be better for the lossy uniaxial slab than for 
the lossy isotropic slab? A possible reason is that both the losses and the anisotropy of 
a medium make the E and/or H field acquire a component parallel to the propagation 
direction of the phase wavefront. However, the component due to losses might point in 
one direction along the propagation direction while the component due to the anisotropy 
might point in the opposite direction. If so, the combined effect due to the presence of 
both these components parallel to the direction of propagation would be less for the lossy 
anisotropie media than for the lossy isotropic slab. 

77 



we know from Snell's law of refraction that 5 is not real-valued when the 
transmission medium is lossy, hence  S 	+ 	+ p). 

Since all results of the two analytical methods are identical, we could also 
confirm that the complex values of the propagation angle corresponding to 
the real values of the propagation angle would be the same as the complex 
values computed by Snell's law with complex propagation angles. More im-
portantly however, the fact that the results of the two analytical methods 
are identical indicate that the procedure presented in Appendix D for arriv-
ing at Equation (4.6), remains valid even if the uniaxial medium becomes 
lossy, which situation causes the plane waves to become non-uniform in the 
lossy uniaxial medium (with 52  being normal to the interface). This obser-
vation is important because the procedure in Appendix D can be generalized 
to compute the effective relative permittivity that a plane wave would see 
as it propagated through a more general anisotropie medium (i.e. a biaxial 
medium; see Appendix D.2), and from this knowledge, the problem could be 
solved by the Adler-Chu-Fano formulation. 

When at least one medium of the structure is uniaxial, Wait's formulation 
in Reference [31] does not indicate how Snell's law must be modified to 
compute the transmission angle for the extraordinary wave in the uniaxial 
medium. In fact, Wait's solution does not even require the explicit knowledge 
of the transmission angle since y given by Equation (4.12) is not written 
explicitly as a function of the transmission angle. Hence, our method is 
more comprehensive than Wait's method because it provides the explicit 
knowledge of all real-valued propagation angles in every layer. However, 
Wait's computation of from expressions (4.11) and (4.12) is much simpler 
than our method which requires solving for a, 0, and p, and then computing 

'Yz -= (a cos( + p)+ jPcosW). Our method, however, can be generalized to 
treat the case of more general anisotropie media (see Appendix D.2). 
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Figure 4.1: The magnitude results plotted on a linear scale, for the re-
flection coefficient of a two-layer slab standing in free space, obtained by 
three different methods: 1) Wait's analytical method (dot-dash); 2) ana-
lytical method by this author (dash); 3) numerical method by this author 
(solid). The parameters for the two-layer slab were d 1  =0.05 m, d2  = 0.10 m, 
Er = E #1  = 2(1 — j0.3)E 0 , = Et2  = 5(1 — j0.3) ,0, rel 5(1 — j0.3)e0 , 
Er2  = 2(1 — j0.3)e0„ and the frequency was f = 1900 MHz. All results are 
identical between the two analytical methods. 
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Figure 4.2: Same as Figure 4.1 except that the results are plotted on a dB 
scale. All results are identical between the two analytical methods. 
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Figure 4.3: The phase results corresponding to Figures 4.1 and 4.2. All 
results are identical between the two analytical methods. 
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• 4.5.2 Case of 90  --- 90 0 , i.e. ex  Ey  = Ex  

Figures 4.4, 4.5 and 4.6 show the results for the case that the optic axis was 
oriented in a direction parallel to the interface, i.e. 0, = 900 , in the incidence 1111 	plane. Wait's method was also used as a second analytical method, with: 

• etrans — ez — ey 
Elong = Ex 

F.  

where "trans" and "long" refer to the optic axis. The two analytical 
methods provided again identical results. The correspondence between the 
predicted and the numerical results is poor even for lossless media. This 

•
means that the generalized Fresnel equations cannot be used even when the 
permittivity values are those "in the interface", i.e. ey  for the TE' polariza- 

• tion and ex  for the TM' polarization. • • • • • • • • • • • • • • • • • • • • • • 
• 
•
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Figure 4.4: The magnitude results plotted on a linear scale, for the re-
flection coefficient of a two-layer slab standing in free space, obtained by 
three different methods: 1) Wait's analytical method (dot-dash); 2) ana-
lytical method by this author (dash); 3) numerical method by this author 
(solid). The parameters for the two-layer slab were d1  = 0.05 m, d2 = 0.10 m, 
Er = e# 1  = 5(1 — j0.0)E0 , Er . Er . 2(1 — j0.0)e0, 1 1  = 3(1 — j0.0)60 , v 
12  = 5(1 — j0.0)e0 , and the frequency was f = 1900 MHz. All results are 
identical between the two analytical methods. 
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Figure 4.5: Same as Figure 4.4 except that the results are plotted on a dB 
scale. All results are identical between the two analytical methods. 
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Figure 4.6: The phase results corresponding to Figures 4.4 and 4.5. All 
results are identical between the two analytical methods. 
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4.6 Computation of er trans and  Er  long 

Since each layer consists of a two-dimensional periodic structure, the analysis 
is restricted to the unit cell of that periodic structure. Stacking the unit cell 
of every layer in the order that the layers appear in the plate produces an 
hexagonal unit cell of height corresponding to the thickness of the plate. In 
the stacking process, however, the present analysis does not take into account 
how the dielectric material within each layer aligns from one layer to the next 
because each layer is modelled as a homogeneous layer (see Reference [66]). 

The cross-section of the hexagonal unit cell is composed of six equilateral 
triangles of length equal to 2s/VS per side, where 2s, labelled herein the 
cell size, is the diameter of the circle inscribed by the hexagonal unit cell in 
Figure 4.9. The cell size 2s must be much smaller than the wavelength in a 
homogeneous dielectric with permittivity value equal to the effective permit-
tivity value of the thin layer of interest, so that the material appears to be 
macroscopically homogeneous to an electromagnetic plane wave propagating 
through that layer (otherwise, higher order modes could begin to propagate 
and form grating lobes). Richmond in Reference [57] suggested for his vol-
ume integral equation technique that each cell not exceed a dimension of 
0.2/ %/  wavelengths. Bodnar and Bassett in Reference [46, Equation (19)] 
showed that the critical cell size for the onset of grating lobes becomes even 
smaller as the incidence angle increases in value. 

The volume of the hexagonal cell shown in Figure 4.9 contains: 

• one complete circular cone corresponding to the air cone bored into the 
front face of the dielectric slab; 

• the equivalent of one complete circular cone corresponding to the sum 
of three one-third sections of air cones bored into the back face of the 
dielectric slab; 

• the equivalent of two complete small cones corresponding to the sum of 
six one-third sections of dielectric cones protruding out from the front 
face of the dielectric slab; 

• the equivalent of two complete small cones corresponding to the sum of 
one complete and three one-third sections of dielectric cones protruding 
out from the back face of the dielectric slab. 

The permittivity profile was symmetrical with respect to the mid-thickness 
point of the plate in order to allow the electromagnetic wave to leave the 
plate as smoothly as it entered the plate. Consequently, only the front half-
thickness region is shown in Figure 4.10 which depicts the geometry of a 
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dielectric cone protruding from the front face of the dielectric slab and the 
geometry of one inverted and one non-inverted air cone bored into the dielec-
tric slab. A small separation distance between adjacent cone walls w given 
by: 

w = 2 (s — a2) 	 (4.22) 

was purposefully introduced and taken into account as part of the analysis 
in order to guarantee that the integrity of the walls of the air cones would not 
get compromised by fabrication tolerances. It turns out that the parameter 
w has also a significant effect on the response. The thickness of the dielectric 
slab HH and the minimum cone wall separation w were chosen according to 
the parametric analysis carried out in the next chapter. The drill bits used 
herein set the slope of the air cones to /4-.2  = and the length of the missing 
tip of the air cones to A.H2  = 1 Cm. The height hl  and the base radius al  of 
the dielectric cones were chosen such that the permittivity profile would form 
a continuous function, i.e. without discontinuity in the permittivity function 
nor its first derivative. The base radius of the air cones a2 , the cell size 2s 
and the vertical separation between the inverted and non-inverted air cones 
D were computed according to the development below. 

Since two adjacent dielectric cones would touch at their base when their 
base radius was equal to s/-fg (when w = 0), the requirement that the 
volume of the two dielectric cones be mutually exclusive was insured by 
limiting the base radius value to 8/-A. The height of the dielectric cone was 
H1  and its apex was located at z =  hl . Hence, the radius of the circular 
cross-section for a dielectric cone varied linearly from A1 = 0 at z = hl  to 
A1  = sflà.  at z = (h1 — H1), hence: 

Ai(z),  s 	 
) 

Since the hexagonal unit cell contained the equivalent of two complete 
dielectric cones protruding from the front face of the dielectric slab, the 
volume of dielectric material per hexagonal unit cell in a layer of thickness 
dz in the front section was obtained as: 

2 
Vf (Z) = 2R-Aî(z)dz — 2 (h1 — z 2dz 

3 

Similarly, the height of an inverted air cone was H2 and its apex was 
located at z = (h2  — H2). Since two inverted air cones would touch at their 
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base when their base radius was equal to s (when w = 0), the radius of the 
circular cross-section for an inverted air cone varied linearly from A2 = S at 
z =  h2  to A2 -= 0 at z = (h2  — H2 ), hence: 

A2(Z) = S ( z 	h2 +112  
H2 

Similarly, the height of a non-inverted air cone was H2, its apex was 
located at z = 0 and the radius of the circular cross-section varied linearly 
from A; = 0 at z = 0 to A.; s at z = —H2 , hence: 

Al2(Z) :7= S 
H2 

Since the hexagonal unit cell contained one complete inverted air cone 
bored from the front face of the dielectric slab, and the equivalent of one 
complete non-inverted air cone bored from the back face of the dielectric 
slab, the air volume per hexagonal unit cell in a layer of thickness dz in the 
middle section was obtained as: 

rj 

Vm (Z) - 
(z-h2+ 

H2 
// 2  2 

7s2dz 	
2 
 7rs2dz 

The total volume of the hexagonal unit cell in a layer of thickness dz is 
obtained as  V(z) = 2\fas 2 dz. Assuming that the host material has intrinsic 
permittivity  En , and the inclusion material has intrinsic permittivity 6,2 , and 
denoting the fill fraction by y = 	= 1 — ("1.-) the longitudinal effective ve(z) 
permittivity is given exactly by [67, 68, 30]: 

long er 	(z) = ver2+ (1— v)Eri 
= Er1 + v(er2 — sri) 

while the transverse effective permittivity is given approximately by [74, 
p. 192, Equation (7.6)]: 

(1-2v) 2 (ed -1-6d)+(1-1-4y-4v2 ) 2Er2Er1 — ( 1-2v)(67-2 —Eri) 
2 

(4.27) 

The last expression was obtained by Lord Rayleigh for a rectangular 
array of cylinders embedded in an otherwise homogeneous medium. The 
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dependence of the last equation onto the radius of the cylinders appears only 
through the volume fraction v. Thus, the expression was used in this work 
even though two different radius values could be present within a same layer. 

?trans 	long Figures 4.11 and 4.12 show e 	and Er 	as a function of the fill 
fraction v. Note is made that even if the real and the imaginary parts of Er  = 

r 	. er  — je',.'  = er(1 — j tan(6)) varied linearly, as in the case for the longitudinal 
effective permittivity, the loss tangent, which is the ratio of the imaginary 
part over the real part of the relative permittivity, would not vary linearly. 
This situation is clearly shown in Figure 4.12. 

Another point needs to be made and this point will be more easily brought 
out by invoking the following mathematical results: 

Real(A + B) = Real(A) + Real(B) 
Imag(A + B) = Imag(A) + Imag(B) 

Real(\/A + 	B) 	\iReal(A) + \/Real(B) 

Imag( \'/A + B) 	Omag(A) + Omag(B) 

Thus, although the same result is obtained from applying Equation (4.26) 
separately to each component of the variables as with applying the same equa-
tion to the complex-valued variables followed by resolving the result into each 
component, however this is not the case for Equation (4.27). The reason owes 
to the nature of the complex-valued operations involved in the expressions. 
In Equation (4.28), the operation of summation leaves separate the real and 
imaginary parts of the variables. In Equation (4.29), the operation of taking 
the square root causes the real and imaginary parts of the variables to mix. 
Hence, the question arose as to which approach should be taken since the 
expression (4.27) was given for the lossless case without indication as to how 
it should be generalized to the lossy case. So, both approaches were tried out 
and it was found that for the case here, the result of computing the imaginary 
part of ertrans by applying Equation (4.27) to the imaginary components of 
Eri  and E r2 produced a non-physical result (some values were positive instead 
of negative, and some values were larger than the greatest of the imaginary 
parts of E., '  and 6, 2 ). For this reason, the computation proceeded here by ap-
plying the equation to the complex-valued variables followed by resolving the 
result into its real and imaginary components. This approach corresponds, 
in fact, to the analytical continuation of a real-valued result to a complex one 
in the complex plane. However, this approach produced non-physical results 
of its own for the expression corresponding to the square array of square 

l pyramidal absorbing cones (the value for ertrans exceeded the value for e ongr 
as the fill fraction approached 1; perhaps the fact that a non-physical re- 
sult was obtained with the technique of analytical continuation is in itself 
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an indication that the expression given in Reference [68, Equation (25)] for 
evaluating ertrans  is just an approximation). 

For the front ((h1 — AH1) > z > 0) and back sections ((h2 — H2) >  z > 
 (h2  — H2 — hl + H1 )), the host material is air and the inclusion material is 

dielectric whereas for the middle section (0 > z > (h2  — H2)), the host mate-
rial is dielectric and the inclusion material is air. Therefore, the longitudinal 
effective permittivity becomes: 

• For (h1  — Ani) > z > 0: 

long 	7r 
Er 	

z)  
= Er1+ 	 2 — erl) 3 \/-3-  

• For 0 > z > 

long _ 	7F (Z — h2 4- H2 2 
er 	672+ 2 ,1g 	H2 

	  ( r 1 — 67 2)  

For —AH2  > z > (h2  — H2 + AH2): 

,long 	 7F (Z — h2 + H2) 2  + Z2  
c'r2 er2) 2•4 

• For (1/2 — + AH2) > z > (h2 — H2): 

E 	
2  r

long 	±  7r 
 (W-/-  Z 

 ) 2  (e. 
2:/3- 	2 	r' 	72)  

• For (h2 — H2) > z > (h2 — H2 — hi ± AH1): 

l 	 7r (h2  — H2 — hl — Z)  2  er ong _ 
eri  er2 erl) 

It is interesting to note that these equations are independent of the cell 
size 2s. 

For the complex permittivity profile to form a continuous function at 

z = 0, the permittivities ertrans and elongr  must themselves be continuous 
functions at z = O. For a function to be continuous at z =  0, the function 
must have the same ordinate and the same first derivative at z = 0-  and 
z = 0+. Hence, from the above expressions for E

long
r , the continuity of 

trans er 	is insured with: 

• 
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which expressions are independent of eri , er2  and s. Since both func-
tions  etrans and Er 	vary smoothly with the fill fraction v(z), insuring the 

r  continuity of elong  r 	also insures the continuity of etrans .  

In order to insure a non-zero wall separation w between adjacent air 
cones at z = 0 and z = —HH, the optimum packing of the air cones must 
be avoided. Instead, one must use: 

h2 D  tçn 	 1w h2  = _ 
2 	s ) 	H2 2 

where s is yet to be determined (but note that it = is set by the slope 
of the drill bits). The optimum packing of the air cones at z= 0 would have 
required w = h2  = D = O. With h2  = D and (h2  — H2) = —HH, and using 
Equation (4.32), one obtains: 

2(D HH)  (V-3-  1 ( 	1w 2  
hl = 

— 	
7r 	

2 
1 — —

2
—
s 

) 	(4.33) 
1 	1 w 

111 = 	
1 2(D HH)  
0. 

 

1- 1  

Therefore the dielectric cones have a physical height equal to h1  and a 
base radius al  obtained from Equations (4.23), (4.33) and (4.34) as: 
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hl = (4.30) 

( 1 	h2  
71 	2 

(4.31) 
H2) 

(4.32)  

(1 w  \ 2 

7r 	2 1 	
(4.34) 
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-\/-3- 	1 ( 	1w 2  

7r 	2 	2 s ) 

Since the value al  must be smaller than (sbfg) 0.57748 for which two 
adjacent dielectric cones would be touching at their base, one obtains: 

s ( hi ) 	s 	 
< —0 	> 1 < 

which result makes physical sense for, otherwise, the dielectric cone could 
not possibly exist. Thus one obtains: 

2 (LS  — 71 )) 2s 
7r 	3 

0.34 

The corresponding half-angle at the apex of the dielectric cone is obtained 
as: 

ai 
 = arctan (-7 

 n1 

Similarly, the inverted and the non-inverted air cones have a physical 
height of H2 and a base radius a2 obtained from Equations (4.24) and (4.32) 
as: 

h2 	 1 w 
a2  = A2 (z = 0) = s (1 — IT.2 ) = s (1 — 

HH 
H2 

Equations (4.22) and (4.37) are consistent with one another. The half-
angle for the air cones is set to: 

= arctan ( 1) 
8 

It is interesting to note that none of the geometrical parameters of the 
cones depends on the complex permittivities eri  and er2 . Hence, the same 
values for h 1 , al , a2 , D and s would result for a same choice of values for 

92 

s 
(4.35) 

(4.36) 

(4.37) 

(4.38) 



•
•
•
•
•

•
•
•
•

0
01

10
0

0
0

0
0
0

0
0

0
0

0
0

0
0

0
0
0

0
0

0
0

0
0
0

0
04

,
•
•
•
•
 

= H H and w, regardless of whether the dielectric material was Teflon, 1/2 
Plexiglas, Delrin, Nylon or else. Also, the same electromagnetic response is 
obtained from a frequency-scaled version of the geometry if the values for 
6,1 and 6,2  remain the same at the new design frequency, and if 2s remains 
much smaller than the new wavelength. 

No effort was made to minimize the discontinuity incurred by the missing 
tips for the dielectric cones or those for the air cones. The drill bits used 
herein corresponded to the case of having AH2  = 1.0 cm. 

The combined use of the scattering matrix propagator technique and the 
approximation of the permittivity profile as being a cascade of homogeneous 
layers: 

• permits to deal with the simpler 2-D geometry of a circular cylinder in 
each thin layer rather than the 3-D geometry of a circular cone; 

• permits to account readily for the presence of a longitudinal discontinu-
ity of the permittivity profile (e.g. the presence of a layer of glue at the 
mid-thickness point of a plate if the plate needs to be fabricated from 
two separate thinner dielectric plates, or the absence of the tips for the 
air cones or the dielectric cones as a result of fabrication limitations); 

• does not permit to account readily for the presence of a transverse dis-
continuity of the permittivity (e.g. the absence of air cones or dielectric 
cones at the centre of the plate in order to accomodate a hole for an 
axle, or the presence of the edge in truncating the infinite array to 
dimensions of a few wavelengths across). 

The effect of the stairca,se approximation of the complex permittivity profile is 
neglected here because, in principle, the staircase approximation can be made 
very small by taking each layer to be very thin. Although not mentioned 
in the literature, it might be possible that the process of cornputing the 
effective permittivity by the above method becomes more approximative or 
even invalid as the thickness of the homogeneous layer becomes much smaller 
than the transverse dimensions of the unit cell. Thus again, we will have to 
rely on experimental results to determine if such is the case. 
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Figure 4.7: 3-D representation of a small section cut away at the periphery 
of the round plate in its final design. 



Figure 4.8: Conceptual rear view of the plate showing in dash line the equi-
lateral triangular lattice, in solid line the footprints of the air cones bored 
into the back face of the dielectric slab forming the middle section, and in 
solid dark color the footprint of the dielectric cones protruding out from the 
back face of the middle section. The front face looks identical except that 
the equilateral triangular lattice is vertically offset as shown in Figure 4.9 in 
order that the air cones bored from the front face be interlaced with the air 
cones bored from the back face. The hole for the axle at the centre of the 
plate is not shown here. For convenience of representation, this figure shows 
a zero cone wall separation between adjacent cones, i.e. w =- 0 and s = a2, 
resulting in adjacent cones touching one another. 
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Figure 4.9: A close-up view of the composite array consisting of the overlay 
of the front (solid) and back (dash) interlaced triangular lattices. The two 
lattices are identical except for a vertical offset equal to 2sfla where s is 
the radius of the large circle inscribed by the hexagonal unit cell at the 
centre of the figure. The footprints for the circular air cones (large circles) 
and for the circular dielectric cones (small circles) are also shown in solid or 
dash (unless overlaid) line according to the lattice to which they correspond. 
The end result is that each lattice has every large circle surrounded by six 
small circles located at the periphery of the large circle. The composite 
array is symmetrical about the fat vertical dashed line. For convenience of 
representation, this figure shows a zero cone wall separation between adjacent 
cones, i.e. w 0 and s a2 , resulting in adjacent cones touching one 
another. 
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Figure 4.10: This variable arrangement of the cones contained in the hexag-
onal unit cell of Figure 4.9 for the front and the middle sections of the plate 
was used to compute the values of h1  and H1  that produce a continuous com-
plex permittivity function. The blank regions at the tips of both air cones 
are the missing tips of length AR-2, modelling the drill bits being truncated 
for practical purposes. The blank region at the tip of the dielectric cone is 
the missing tip of length AH1 , modelling possible fabrication imperfections. 
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Figure 4.13: This figure shows the staircase approximation of the structural 
profile of the hexagonal unit cell which is schematically represented here by a 
lens shape object for convenience. There are N regions with region n=1 and 
n=N being half-spaces. The permittivity is taken to be constant in every 
region, with a value corresponding to the permittivity at the mid-point of 
the region except for regions n=1 and n=N where the value er  is assigned. 
No region is thicker than the nominal value dz. 
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Chapter 5 

Design of the mounting plate 

5.1 Computed results 

This section presents the results of a parametric analysis for the reflection 
and the transmission level for both the perpendicular and the parallel polar-
izations. All computations were carried out with double precision in Matlab 
5.3.0 which corresponds to about a precision of 32 digits (see Reference [82, 
p. 1.65]) on a SUN Ultra Sparc workstation running OpenWindows 3.5.1. 
The values for the reflection and the transmission level in dB were computed 
as 'R(dB) = 20 log lo  IRI and 7-(dB) = 20 log io  In respectively, where R and 
T correspond to the co-polarization elements of the SH  and 821 sub-matrices 
for the composite GSM of the whole cascade system, with respect to either 
the parallel or the perpendicular polarization. 

The parameters investigated here are: 

• complex permittivity profile, i.e. shaped versus uniform profile; 

• incidence angle Ù, assuming that the incident waveform from the air 
medium was always a uniform plane wave, i.e. pi  -= 0; 

• slab thickness HH (m); 

o minimum cone wall separation w (m) at z = 0 and z = —HH. 

o layer thickness dz (m) for discretizing the geometry; 

Since there are too many parameters to explore every combination of all 
parameters, the parameters for all computations carried out below were as 
per the following ba,seline design unless mentioned otherwise: 

101 



• Er  = 3.7(1 — j0.004); 

• HH = 0.074 m; 

• AH2  = 0.010 m; 

• w = 0.0014 m; 

• AH1 = 0 m; 

• H3 = 0 m where H3 is the thickness (m) of the layer of glue at the 
mid-thickness point of the dielectric slab; 

• incidence angle 0 0  <  <90°  which range requires to use both Equa-
tions (2.25) and (2.29); 

• f = 1900 MHz; 

• layer thickness dz < 0.0025 m throughout the plate (in practice, the 
cone walls are smooth which correspond to having dz tending toward 
the limit 0). 

Because the optimum shaped profile that produces the least amount of 
reflection (see References [54] and [31, chapter 15]) may not be easily realiz-
able by means of boring holes of some particular geometrical shape into the 
dielectric, the strategy here was to start with the shaped profile correspond-
ing to circular cones and to find a particular value of HH and w that yielded 
a low reflection level of about -20 dB over as wide as possible a range of the 
incidence angle Hence, some performance at normal incidence was sacri-
fied for the sake of maintaining a better performance at off-normal incidence. 
The resulting design is also less susceptible to parameter variations than a 
design relying on the resonance phenomenon (e.g. a quarter-wave plate trans-
former, and designs mentioned on the next page with HH = 0.041 m and 
HH = 0.082 m). 

From Figure 5.1, we see that the choice of HH = 0.074 m and w = 
0.0010 m makes the two polarizations track each other almost perfectly over 
the range 0° < 6 < 35°. For HH > 0.074 m, the notch for the perpendic-
ular polarization would follow that for the parallel polarization whereas for 
HH < 0.074 m, the notch for the perpendicular polarization would precede 
that for the parallel polarization. At the same time, the reflection level at 
normal incidence j  = 0 increases with increasing the HH value. Since the 
perpendicular polarization is the one that limits the angular range for the 
incidence angle 6, the range of operation over which all reflection curves lie 
below -20 dB would increase if HH was chosen greater than 0.074 m but 
the reflection level at normal incidence would also increase. Note that the 
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maximum thickness that can be readily supplied by the manufacturer of Del-
rin material is about 0.076 m (i.e. 3 inches), and a minimum of 0.075  mis 

 required for achieving a reasonably flat plate by machining both the front 
and the back surfaces of the Delrin slab. Therefore, no value of HH greater 
than 0.075 m was investigated systematically. 

The effect of varying the parameter w turns out to be larger on the 
perpendicular polarization than on the parallel polarization. This situation 
affords us an additional degree of freedom to shape the response. The choice 
of HH = 0.074 m and w = 0.0014 m was retained for the final design at 
1900 MHz. The drill bit imposed the limitations corresponding to AH2  = 
0.010 m and t = 18--. Consequently, h2  = D = 0.0056 m, H2 = 0.0796 m, 
2s = 0.0199 m, 2h, = 0.0204 m and .H1 = 0.0341 m. 

Numerical experiments show that a low level of reflection is not neces-
sarily achieved just because the complex permittivity profile is a continuous 
function of z, and vice-versa, a large amount of reflection is not necessarily 
incurred just because the complex permittivity profile presents large disconti-
nuities. It is possible to obtain a low level of reflection from the uniform pro-
file by choosing the thickness to correspond to some resonant length within 
the dielectric. The values of HH = 0.041 m and 0.082 m for the case of the 
uniform profile with 6 = 0 corresponds to very nearly 0.5 and 1.0 wavelength 
in the dielectric, respectively. As the resonance phenomenon is achieved only 
over a narrow range of thickness values, frequencies and incidence angles, 
a low reflection level due to the resonance phenomenon is correspondingly 
achieved over only the corresponding narrow range of parameter values. In 
contrast to the use of the uniform profile at resonance, the use of the op-
timum shaped profile permits to maintain a reasonably low reflection level 
over a broader range of incidence angles for both polarizations. 

Figure 5.3 shows that the shape profile provides a reflection level below 
about —22 dB for both polarizations over the range 0 0  < 6 < 52°. In 
comparison, Figure 5.5 shows that the uniform profile produces significantly 
larger values of reflection level over the same angular range, specially for the 
perpendicular polarization. The Brewster angle' for a lossless slab with er  = 
3.7 would be "13  = arctan ('13.7)  çz--1 62.5 0 . The  reflection level corresponding 
to an incidence angle value equal to arctan ('13.7)  for El, 7-= 3.7 was computed 
as -304.49 dB and -47.20 dB for tan(6) = 0 and 0.004, respectively. The 
difference between --co dB and -304.49 dB is due to roundoff errors during 

'For a dielectric slab with its two interfaces being parallel to one another, the Brewster 
angle for the second interface is the 90° complement of the Brewster  angle for the first 
interface, i.e.  f  + e =- 90° since arctan (Ve 2/E1) + arctan ('1ei/E2) = 90°; since the 
Brewster's law gives  1B  + e2 = 90°, one obtains  2  = el23 ; therefore, both interfaces 
are operated at their respective Brewster angle and thus, the reflection level from the 
slab should theoretically be  —ce dB, for any thickness of a lossless homogeneous uniform 
isotropic slab. 
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the computation whereas the difference between -304.49 dB 2  and -47.20 dB 
is clearly due to the presence of the dielectric loss corresponding to tan(6) 
0.004. 

Figures 5.7 and 5.8 show that the dielectric loss corresponding to tan(8) = 
0.004 does not affect the response of the plate significantly. Figure 5.9 shows 
that the response for the lossless plate is very consistent with the principle of 
conservation of energy. The discrepancy is only very slight and is likely due 
to roundoff errors during the computation. Figure 5.10 shows the variation of 
the energy lost inside the lossy dielectric plate with respect to the incidence 
angle 6.. That the energy loss increases with increasing incidence angle ei  
is consistent with the fact that the energy loss increases with increasing 
path length for the ray propagating inside the lossy material, and that this 
path length increases with increasing e. That the energy loss reaches a 
maximum then decreases thereafter owes to the fact that reflection becomes 
so important that little energy is transmitted into the lossy material, thus 
counteracting the loss increase due to the increased path length inside the 
lossy material. 

Note that a bug in MATLAB 5.3 causes a discrepancy to appear in the 
position of the label for the curves, between the position as seen on the screen 
and the position as seen on the printed page. As a result, the labelling process 
required many iterations to produce the desired effect on the printed page. 
Owing to this very tedious task, many plots have been left unlabelled but one 
can easily identify each curve, either naturally by intuition or by referring to 
a similar plot that was labelled. Furthermore, many figures are provided for 
thoroughness, without formal comments in the text. 

A convergence analysis was carried out by comparing the results obtained 
with varying the discretization increment dz from 0.0002 m to 0.0064 m by 
successively doubling dz. Figures 5.21 and 5.22 demonstrate that the method 
and its numerical implementation produce stable and convergent results for 
both polarizations. The difference of magnitude was computed by taking the 
case of dz = 0.0002 m as the reference. 

The case of dz = 0.0002 m incurred a run time of about 20 h whereas 
the case for dz = 0.0064 m incurred a run time of less than 1 h. In contrast, 
the use of Holmes' expressions whenever V = 0 can sometimes cut down 
the computation time to less than a minute! A value of dz = 0.0025 m 
was chosen as a compromise between accuracy and computation time. The 
corresponding run time was about 1.5 h and the corresponding convergence 
results are shown in Figure 5.23. From this figure, one can observe that the 

2Although values less than about -100 dB might not be practically meaningful, they are 
nevertheless presented here to show the numerical values as computed from the program 
written in MATLAB. 
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error is less than 10 over the range 00  < 6 < 52° for both polarizations. 
Th.us, the error due to discretization for the reflection curves of Figure 5.3 
would make the true value X lie in the range: 

20 log (ioe _ Error) _< X _< 20 log (ioe + Error) 

For example, for the case of Error= 10-3 , a computed value of X' = —60 
would correspond to a true value X ranging between  —oc dB and —57 dB. 
A computed value of X' = —22 would correspond to a true value X ranging 
between —22.11 dB and —21.89 dB. Such an error is deemed quite acceptable 
for the purposes of assessing that the reflection level of the mountingplate 
does not exceed a given threshold value of, say, -22 dB over the range of, say, 

< 6 < 50° . 

The results for varying dz can also be interpreted in terms of the effect 
of the surface roughness of the walls of the cones whereby the average height 
of the peaks of the rough surface corresponds to lidz. Hence, the reflection 
level does not appear to be sensitive (within an error of about 10-3  over the 
range 0° <  j  < 52°) to a surface roughness corresponding to about 0.0035 m 
or less. Such a value of surface smoothness is not difficult to achieve at all 
with a conical drill bit of the appropriate vertex angle. 

Figures 5.13 to 5.16 show that the intrinsic propagation constants a, and 
0, are independent of the incidence angle 6 for the perpendicular polar-
ization, but that they increase smoothly with increasing 6 for the parallel 
polarization. Figures 5.17 to 5.20 show that the transmission angles 2  and 
P2 are symmetrical about the mid-thickness point of the plate. The stripes 
appearing in Figures 5.17 and 5.18 show the locations where the process of 
discretizing the various sections of the plate produced layers of thickness less 
than the nominal dz value as a result of the overall thickness of a section not 
being necessarily an exact multiple integer of dz. The excess layer in each 
section was arbitrarily located at the interface next to z = (h1  — AH1 ) for 
the front section, at the interfaces next to z =  0, z = —AH2 , z = —HHI2, 
z=(—HH+ AH2 ) and z = —HH for the middle section, and finally at the 
interface next to z = (—HH —h 1 + AH1 ) for the back section. 

Since the parallel and the perpendicular polarizations are indistinguable 
at normal incidence, the curves for ao , and /02 are the same for both 
the parallel and the perpendicular polarization whenever 6= 0. Not sur-
prisingly, the shape of the curves for Po  and a, when 6 = 0 is very siniilar 
to the shape of the permittivity profile. 

Figures 5.24 and 5.25 show clearly the effect of having dielectric cones in 
the front and back regions of the plate. If we define the range of operation 

105 



•
•
•
•
•
•
•
•
•

0
0

0
0

0
11

01
11

11
10

0
1

1
0

0
0

0
4

11
1

0
0

0
0

01
1

04
1
0

0
0

0
1

1
0
0
0
  

as that for a reflection level no larger than —22 dB, we observe that the 
presence of the cones increases the range of operation by about 100 . 
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Shaped, HH=0.074m, AI-12=0.010m, w=0.0010m, er2=3.7(1—j0.004), er1 =1•00(1—j0.00000) at 1900MHz 

Figure 5.1: This figure shows the computed reflection and the computed 
transmission levels in dB for the shaped profile with HH 0.074 m and 
w 0.0010 m. 
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Figure 5.2: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the shaped profile with HH = 
0.074 m and w = 0.0010 m. 
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Figure 5.3: This figure shows the computed reflection and the computed 
transmission levels in dB for the shaped profile with HH = 0.074 m and 
w = 0.0014 m. The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.4: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the shaped profile with HH = 
0.074 m and w -= 0.0014 m. The discretization was dz < 0.0004 m throughout 
the plate. 
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Figure 5.5: This figure shows the computed reflection and the computed 
transmission levels in dB for the uniform profile with H 0.074 m. The 
Brewster angle value is e 62.531° and the corresponding reflection level 
was computed as -47.20 dB which is not part of the plot because the null is 
much narrower than the 1° increment used in computing the curve. 
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Figure 5.6: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the uniform profile with HH = 
0.074 m. The Brewster angle value is e = 62.531° and the corresponding 
reflection level was computed as 0.0044 which is not part of the plot because 
the null is much narrower than the 1° increment used in computing the curve. 
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Figure 5.7: This figure shows the computed reflection and the computed 
transmission levels in dB for the shaped profile with I I = 0.074 m and 
w = 0.0014 m. The lossless and lossy cases correspond to tan(6) = 0 and 
0.004, respectively. The discretization was dz < 0.0004 m throughout the 
plate. 
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Figure 5.8: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the shaped profile with HH = 
0.074 m and w = 0.0014 m. The lossless and lossy cases correspond to 
tan(8) = 0 and 0.004, respectively. The discretization was dz < 0.0004 m 
throughout the plate. 
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Figure 5.9: This figure shows the energy balance for the shaped profile with 
H H =- 0.074 m and w = 0.0014 m, for the lossless plate. The discretization 
was dz < 0.0004 m throughout the plate. 
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Figure 5.10: This figure shows the energy balance for the shaped profile with 
HH = 0.074 m and w = 0.0014 m, for the lossy plate with tan(5) = 0.004. 
The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.11: This figure shows the profile for the real part of e ran's and 
long er 	for the shaped profile with HH = 0.074 m. The discretization was 

dz < 0.0004 m throughout the plate. Note that the maximum effective 
permittivity value which occurs at z = r÷1.1- is significantly less than the 
intrinsic value of e  = 3.7. 
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long er 	for the shaped profile with HH --= 0.074 m. The discretization was 

dz < 0.0004 m throughout the plate. Note that the maximum effective loss 
tangent value which occurs at z = -I-P-1  is significantly less than the intrinsic 
value of tan(5) = 0.004. 
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Shaped, HH=0.074m,  H2=0.01 0m, w=0.0014m, H 3=0.0000m, e r2=3.7(1–j0.004), c ri =1 

Figure 5.13: This figure shows the intrinsic amplitude propagation constant 
a°  for the shaped profile with HH = 0.074 m for the perpendicular polar-
ization. The discretization was dz < 0.0004 m throughout the plate. 
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Shaped, HH=0.074m, AH2=0.010m, w=0.0014m, H3=0.0000m, er2=3.7(1-j0.004), Eri=1 

Figure 5.14: This figure shows the intrinsic amplitude propagation constant 
ac, for the shaped profile with HH = 0.074 m for the parallel polarization. 
The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.15: This figure shows the intrinsic phase propagation constant [30  
for the shaped profile with HH = 0.074 m for the perpendicular polarization. 
The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.16: This figure shows the intrinsic phase propagation constant 00  
for the shaped profile with HH = 0.074 m for the parallel polarization. The 
discretization was dz < 0.0004 m throughout the plate. 
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Shaped, HH=0.074m, H2=0.010m, w=0.0014m, H 3=0.0000m, er2=3.7(1-j0.004), e ri =1 

Figure 5.17: This figure shows the value of the angle Ù at all the interfaces 
through the plate for the shaped profile with HH = 0.074 m for the perpen-
dicular polarization. The discretization was dz < 0.0004 m throughout the 
plate. 
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Shaped, HH=0.074m, H2=0.010m, w=0.0014m, H3=0.0000m, er2=3.7(1- "04) ' eri =1  

Figure 5.18: This figure shows the value of the angle fi at all the interfaces 
through the plate for the shaped profile with HH = 0.074 m for the parallel 
polarization. The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.19: This figure shows the value of the angle —p 2  at all the interfaces 
through the plate for the shaped profile with HH = 0.074 m for the perpen-
dicular polarization. The discretization was dz < 0.0004 m throughout the 
plate. 
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Figure 5.20: This figure shows the value of the angle —p2  at all the interfaces 
through the plate for the shaped profile with HH = 0.074 m for the parallel 
polarization. The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.21: This figure shows the convergence in computing the reflection 
level for the perpendicular polarization. The reference curve was that for the 
case of dz = 0.0002 m. 
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Figure 5.22: This figure shows the convergence in computing the reflection 
level for the parallel polarization. The reference curve was that for the case 
of dz = 0.0002 m. 
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Figure 5.23: This figure shows the convergence in computing the reflection 
level for both polarizations with dz = 0.0025 m. The reference curve was 
again that for the case of dz = 0.0002 m. 
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Figure 5.24: This figure shows the computed reflection and the computed 
transmission levels in dB for the shaped profile with HH := 0.074 m and 
w = 0.0014 m, with and without dielectric cones. The discretization was 
ciz < 0.0004 m throughout the plate. 
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Figure 5.25: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the shaped profile with HH = 
0.074 m and w = 0.0014 m, with and without the dielectric cones. The 
discretization was dz < 0.0004 m throughout the plate. 
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5.2 Parameter sen.sitivity an.alysis 

This section presents the results of a parametric analysis whereby only one 
parameter is varied at a time while all other parameters remain fixed at 
the value of the baseline design mentioned in the preceding section. In the 
previous section, the values of hl  and H1  were adjusted for any choice of HH 
and w so as to insure that the permittivity profile would form a continuous 
function at z = 0 and z = —HH. In this section, no such an adjustment 
is made other that which was part of the baseline design. This analysis 
thus permits to reveal the sensitivity of the parameters to manufacturing 
tolerances. The parameters investigated here are: 

• the slab thickness HH; 

• frequency f (MHz); 

• complex relative permittivity of the dielectric slab er2 ; 

• complex relative permittivity of the styrofoam holder E7 1; 

• the dielectric cone length hi; 

• missing tip length for the dielectric cones in the front and the back 
sections AB-j.  (m); 

• missing tip length for the air cones in the dielectric slab 3..H2  (m); 

• thickness of the layer of glue at the mid-thickness point of the dielectric 
slab H3 (m); 

Numerical experiments show that a +0.001 m variation of HH is not 
critical to the response of the plate. More numerical experiments show that 
the shaped profile produces a low reflection level only over a narrow frequency 
bandwidth. For instance, if we define the bandwidth on the basis of a —1 dB 
variation from the reflection values at the nominal frequency, then the plate 
can be operated from about 1890 MHz where the perpendicular polarization 
at 6 = 50° is the limiting factor, to about 1930 MHz where the reflection 
at normal incidence is the limiting factor. If we define the bandwidth on 
the basis of a —20 dB threshold value, then the plate can be operated from 
about 1850 MHz where again the perpendicular polarization at  j  = 50° is 
the limiting factor, to about 1970 MHz where again the reflection at normal 
incidence is the limiting factor. In any case, the bandwidth is seen to be 
rather small. This situation stands in sharp contrast with the very wide 
bandwidth reported for the anisotropic dielectric structure in Reference [46]. 
This anisotropic structure consists of a dielectric plate, the front and the back 
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surfaces of which have been machined to present deep triangular grooves, 
the grooves on the front surface running perpendicular to the grooves on 
the back surface. Could it be that the dramatic difference in frequency 
bandwidth owes to the difference in isotropic property? This author does 
not think so and is at loss to explain  the cause for the dramatic difference 
in frequency bandwidth between the two differently profiled dielectric plates. 
In any case, the frequency is a parameter that is very well controlled during 
the measurement so that any variation of the response with respect to the 
frequency is not deemed to be a problem if the plate is used at the design 
frequency. 

Numerical experiments show that the reflection and the transmission lev-
els for the shaped profile are not degraded adversely by a variation of ±0.001 
in the loss tangent value. Although the reflection level may increase or de-
crease depending on whether or not some resonance is occurring within the 
dielectric, the transmission level always decreases even when the reflection 
level decreases (e.g. the case for tan(S) = 100 with  i = 0), because the wave 
is partly absorbed within the dielectric as the wave propagates through the 
dielectric. At the limit, i.e. for a perfect conductor which corresponds to 
the case tan(8) approaching  oc, the transmission level becomes  —oc dB, i.e. 
perfect blocking, regardless of the profile type; the reflection level, however, 
becomes 0 dB, i.e. perfect reflection, only for the uniform profile, not for the 
shaped profile. This situation is consistent with the fact that a PEC mount-
ing plate with the shaped profile presents, in effect, a very rough surface 
unlike a uniform PEC slab. 

Numerical experiments show that the reflection and the transmissions 
levels for the shaped profile are not degraded adversely by a variation of 
±0.2 in the relative permittivity value. In contrast, the reflection level for 
the perpendicular polarization is degraded rapidly (by about 2 dB) for the 
first —0.001 m variation in the dielectric cone length h 1 . However, such a 
variation of h 1  represents a large variation of the fill fraction at z = 0 and 
is not likely to occur. A much more likely source of error is the missing 
tip length of the dielectric cones due to fabrication tolerances. Numerical 
experiments show that the effect due to a variation as large as 0.005 m in 
the missing tip length AH1  is insignificant, and the effect due to a ±0.001 m 
variation in the missing tip length 3.1-12  is not severe either. 

Figures 5.26 to 5.36 show the effect of replacing free space with a high 
density styrofoam (Er  = 1.04(1 — j0.0005)) in the region z > 0. We observe 
that the loss tangent curve has a clear discontinuity at z = 0 in spite of the 
fact that Equations (4.30) and (4.31) were observed to be independent of the 
permittivities. The reason for this situation is that these equations are valid 
only for the case of a two-material composite, i.e. if styrofoam is used as one 
medium, then it should fill the inclusions of the dielectric slab as well. In our • 
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case, the styrofoam does not fill the inclusions in the regions z < 0. 

Since the styrofoam is a lossy material, albeit only slightly lossy, the 
behaviour of the angle p2  in the region z > 0 is quite different from that when 
the inclusion material in the front section was just air (compare Figures 5.19 
and 5.20 with Figures 5.39 and 5.40, respectively). Because the foreground 
medium is now lossy, the amplitude wavefront is no longer normal to the 
interface at z = (h1  — AH1 ), i.e. p2  is no longer varying linearly from 00  to 
—900  as e varies from 00  to 900 . Since p2  -= 00  at the interface z = (hi — 
AH 1 ), the incident and transmitted plane waves are uniform at that interface. 
Moreover, the reflection and the transmission curves are significantly affected, 
specially for incidence angle values e > 79° (compare Figures 5.27 and 5.4). 
The upper limit for which the reflection level for both polarizations is less 
than about —22 dB has passed from about e = 52° to about e -= 48° as a 
result of the curves having a large gradient in that part of the plot. 

When styrofoam is present in the region z > 0, the transmission level for 
the parallel polarization Tparallel  can become greater than 1.0. However, 
this situation does not violate the principle of energy conservation because 
the ratio (pout/pin) 	( 1  _ 1,39 

/ 1-p aralle112) remains less than or equal to 1. 
For e > 79°, Figures 5.37 and 5.38 show that the wave is totally reflected, i.e. 
6 900 , for both polarizations. Consequently, Figures 5.27 show 1 RI  = 1 
and 171 O. The transmission level is different from zero because there is the 
electromagnetic field of an evanescent wave in the transmission medium (see 
Reference [4, p. 363]). To be precise, I RI is slightly smaller than 1 because 
the total reflection occurs at some interface inside the back section near the 
the output face of the plate and thus, the wave is partly being absorbed 
all the while that it is travelling within the lossy dielectric material before 
exiting as the reflected wave. If no losses are present, then 1 RI  = 1 exactly 
(see Figures 5.29 and 5.30). 

Note that the transmission angle from the mth interface to the nth in-
terface in a system of parallel planar interfaces depends on the ratio of the 
permittivity for the medium that acts as the input medium to the mth inter-
face, and the permittivity for the medium that acts as the output medium 
to the nth interface, and is given by: 

0011t = arcsin 	sin (6) n) 
,Verout 

regardless of the presence of any intermediary layer. This equation can 
be verified easily by successive application of Snell's law at all interfaces from 
the mth  to the nth  interface, or by the fact that the phase matching of the 
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fields at every interface forces the transverse variation of the scattered fields 
to be dictated by the incident field (see Reference [5, p. 1501). The critical 
angle is that for which eut = 90 0 , hence one obtains: 

Oi11  arcsin \/evut 

	

a. 	 = resin ( 	 

1/4irn 	 -N/1.04 = 78 ' 7°  

Note that intrinsic losses were neglected in the above numerical evaluation 
of the equation3  . For instance, if intrinsic losses were so high as to make 
the output immersing media behave like a very good conductor, then total 
reflection would occur for any value of the incidence angle, thus making the 
critical angle value to be effectively zero. 

That complete reflection occurs can be understood from the fact that 
when the input and the output immersing media are the same, Equation (5.1) 
gives eut = Bin, and thus, the full visible range of 0° to 90° is spanned by 
both the transmission and the incidence angles in the same manner, i.e. 
the transmitted phase wavefront exits the system of parallel interfaces at 
the same angle as that at which it entered it (see Reference [48, p. 156]). 
Consequently, no total internal reflection is possible within a parallel face 
slab that is illuminated by propagating plane waves on one of its two faces 
because for this geometry, the refracted wave inside the slab is incident on 
the output face at an angle 0' given by sin Ot  = - 67. sin 0 =  sin 00  sin Oi and 

thus e <OC  for e 90°. 

However, when the permittivity for the input immersing medium is higher 
than that for the output immersing medium, the transmission angle for the 
output phase wavefront spans its full visible range faster than does the in-
cidence angle for the input phase wavefront because the transmitted phase 
wavefront bends away from the normal of the interfaces as the incident phase 
wavefront departs from normal incidence, i.e. eut  > Bin • For all incidence 
angle values greater than the critical value, the transmitted phase wavefront 
is already travelling parallel to the interface and can bend no further. The 
transmitted angle thus becomes complex thereby giving rise to an evanescent 
wave travelling parallel to the interface. 

Note that the critical angle value is the same for both polarizations and for 
both the uniform and the shaped profiles (compare 5.27 and 5.28). That the 
critical angle is the same for both polarizations owes to Snell's law which is 
the result of phase matching (i.e. matching of the time harmonic exponential 
term of the electric and the magnetic fields) at the interface. That the critical 

3In fact, the presence of intrinsic losses affect the value of both the Brewster angle (as 
seen from Figure 5.5) and the critical angle. 
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• • • • • • 
• angle is the same for both profiles owes to the fact that Equation (5.1) does 

not depend on the permittivity of the intermediary layers. 

• Figures 5.41 to 5.48 show the effect due to the presence of a thin (H3  = 
5 0.0003 m) layer of glue (Loctite #401 with er  = 2.75(1 — j0.02)) located at 

the mid-thickness point of the mounting plate, i.e. z 	—HHI2, as if the 
• plate were be too thick to be . fabricated from a single bulk piece. Note that 

the thickness of the layer of glue is not discretized according to dz because 

• the program treats that thickness explicitly by means of the parameter 113 . 

•
Note also that the results for the layer of glue on Figures 5.43 to 5.48 show 

•
a triangular rather than a uniform profile because the curves are plotted by 
assigning the results for the entire layer to a single point at the centre of the 
layer. Figures 5.41 and 5.42 show that the effect of a layer of glue generally 

• tends to increase with increasing incidence angle because the waves propagate 
over a longer distance in the layer of glue as the incidence approaches grazing 

• incidence. It is important to understand that even a very thin layer can have 
• a very significant effect because the mechanism of reflection occurs at the 

interface, regardless of how thin the layer behind the interface happens to 

•
be. 

• 
• ,• 
• • • • • • • • • 
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Shaped, HH=0.074m, AH2=0.010m, w=0.0014m, e r2=3.7(1-j0.004), e ri =1.04(1-j0.0005) 

10 	20 	30 	40 	50 	60 	70 	80 	90 
Incidence angle (degrees) 

Figure 5.26: This figure shows the computed reflection and the computed 
transmission levels in dB for the shaped profile with lossy styrofoam present 
in the region z > 0. The discretization was dz < 0.0004 m throughout the 
plate. 
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Figure 5.27: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the shaped profile with lossy sty-
rofoam present in the region z > O. The discretization was dz < 0.0004 m 
throughout the plate. 
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0 

Uniform, HH=0.074m, e r2=3.7(1—j0.004), c r1 =1.04(1—j0.00050) 
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Incidence angle E, 1  (degrees) 

Figure 5.28: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the uniform profile with lossy sty-
rofoam present in the region z > O. 
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Shaped, HH=0.074m, 3,H2=0.010m, w=0.0014m, er2=3.7(1-j0.000), eri =1.04(1-j0•0000) 

Figure 5.29: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the lossless shaped profile with 
lossless styrofoam present in the region z > 0. The discretization was dz < 
0.0004 m throughout the plate. Note that a small segment of each curve 
is missing about fi = 82° because MATLAB produced NAN (i.e. Not A 

Number) results. The notch in the curve for TTM  at fi = 80° is also suspect. 
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Uniform, HH=0.074m, 	Eri  Er2=3.7' 	=1.04 
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Figure 5.30: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the lossless uniform profile with 
lossless styrofoam present in the region z > 0. 
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Shaped, HH=0.074m, AH2=0.010m, w=0.0014m, H3=0.0000m,  c=3.7(1 -j0.004),  Eri =1.04(1-j0.0005) 
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Figure 5.31: This figure shows the profile for the real part of ertrans  and er 
for the shaped profile with lossy styrofoam present in the region z > 0. The 
discretization was dz < 0.0004 m throughout the plate. 

-0.08 



— Transverse 
— - Longitudinal 

I .  

z.  

-0.02 -0.08 -0.06 -0.04 
z (m) 

0 	 0.02 

Q)  
Co  2 
> 
e' 
Q)  

ca 
1.5 

o 

2.5 

0.5 

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

 

Shaped, HH=0.074m.AH 2=0.010m, w=0.0014m, H
3
=0.0000m, e =3.7(1 -j0.004), e r1 =1.04(1 —j0.0005) 

x 10 

? 	Er Figure 5.32: This figure shows the profile for loss tangent of E trans and i°ng  
for the shaped profile with lossy styrofoam present in the region z > 0. The 
discretization was dz < 0.0004 m throughout the plate. 
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Shaped, HH=0.074m,  H2=0.01 0m,  w=0.0014m, H3=0.0000m, cr2=3.7(1—j0.004), eri =1.04(1—j0.0005) 

Figure 5.33: This figure shows the intrinsic amplitude propagation constant 
cro  for the shaped profile with lossy styrofoam present in the region z > 0 
for the perpendicular polarization. The discretization was dz < 0.0004 m 
throughout the plate. 
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Shaped, HH=0.074m, AH 2=0.010m, w=0.0014m, H 3=0.0000m, E r2=3.7(1-j0.004), r  = 1 04(1-j0.0005) 

Figure 5.34: This figure shows the intrinsic amplitude propagation constant 
a, for the shaped profile with lossy styrofoam present in the region z > 0 for 
the parallel polarization. The discretization was dz < 0.0004 m throughout 
the plate. 
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Shaped, HH=0.074m, H2=0.010m, w=0.0014m, H3=0.0000m,  =3.7(1 -j0.004),  Er1 =1.04(1-j0.0005) 

Incidence angle (°) 

Figure 5.35: This figure shows the intrinsic phase propagation constant 
for the shaped profile with lossy styrofoam present in the region z > 0 for the 
perpendicular polarization. The discretization was dz < 0.0004 m through-
out the plate. 
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Shaped, HH=0.074m,  H2=0.01 0m,  w=0.0014m, H 3=0.0000m, Er2=3.7(1 -j0.004), e 11 =1.04(1-j0.0005) 
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Figure 5.36: This figure shows the intrinsic phase propagation constant )30  
for the shaped profile with lossy styrofoam present in the region z > 0 for 
the parallel polarization. The discretization was dz < 0.0004 m throughout 
the plate. 
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This figure shows the value of the angle 2  at all the interfaces 
plate for the shaped profile with lossy styrofoam present in the 
0 for the perpendicular polarization. The discretization was 
m throughout the plate. 
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Shaped, HH=0.074m, AH2=0.010m, w=0.0014m, H3=0.0000m, er2=3.7(1-j0.004), eri =1.04(1-j0.0005) 
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Shaped, HH=0.074m, AH 2=0.010m, w=0.0014m, H 3=0.0000m, er2=3.7(1-j0.004), e r1 =1.04(1-j0.0005) 
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Figure 5.38: This figure shows the value of the angle 2  at all the interfaces 
through the plate for the shaped profile with lossy styrofoam present in the 
region z > 0 for the parallel polarization. The discretization was dz < 
0.0004 m throughout the plate. 

0.02 



90 

c 80 

17,5  
' 09 70 
o 
o. 
cy, 60 
(.9 

:.(2 50 
a) 
EL 
2. 40 

30 

0 20 -o 
80 

I 	1 0 
60 

40 

20 
—0.02 

z (m) 

0.02 	 Incidence angle 	(°) 

••
••

••
••

• •
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

 

Shaped, HH=0.074m,  H2 0.01 0m,  w=0.0014m, H3=0.0000m, er2=3.7(1—j0.004), eri =1.04(1—j0.0005) 

Figure 5.39: This figure shows the value of the angle —p2  at all the interfaces 
through the plate for the shaped profile with lossy styrofoam present in the 
region z > 0 for the perpendicular polarization. The discretization was 
dz < 0.0004 m throughout the plate. Note that MATLAB could not produce 
properly the 3D rendition of the plot below the plane p2  = 0 at the back 
section of the plate. 
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Figure 5.40: This figure shows the value of the angle —p2  at all the interfaces 
through the plate for the shaped profile with lossy styrofoam present in the 
region z > 0 for the parallel polarization. The discretization was dz < 
0.0004 m throughout the plate. Note that MATLAB could not produce 
properly the 3D rendition of the plot below the plane p2  = 0 at the back 
section of the plate. 



Shaped, HH=0.074m, Al-12=0.010m, w=0.0014m, H3=0.0003m, cr2=3.7(1-j0.004), eri =1.04(1-j0.0005) 
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Figure 5.41: This figure shows the computed reflection and the computed 
transmission levels in dB for the shaped profile with lossy styrofoam present 
in the region z > 0 and H3 = 0.0003 m. The discretization was dz < 0.0004 m 
throughout the plate. 
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Figure 5.42: This figure shows the computed reflection and the computed 
transmission levels on the linear scale for the shaped profile with lossy sty-
rofoam present in the region z > 0 and H3 = 0.0003 m. The discretization 
was dz < 0.0004 m throughout the plate. 
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for the shaped profile with lossy styrofoam present in the region z > 0 and 
H3 = 0.0003 m. The discretization was dz < 0.0004 m throughout the plate. 
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Shaped, HH=0.074m, 3,H 2=0.010m, w=0.0014m, H 3=0.0003m, sr2=3.7(1-j0.004), e r1 =1.04(1-j0.0005) 
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Figure 5.44: This figure shows the profile for loss tangent of Er 	and Er 
for the shaped profile with lossy styrofoam present in the region z > 0 and 
H3 = 0.0003 m. The discretization was dz < 0.0004 m throughout the plate. 
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Figure 5.45: This figure shows the intrinsic amplitude propagation constant 
a°  for the shaped profile with lossy styrofoam present in the region z > 0 
and H3 = 0.0003 m for the perpendicular polarization. The discretization 
was dz < 0.0004 m throughout the plate. 
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Figure 5.46: This figure shows the intrinsic amplitude propagation constant 
ao  for the shaped profile with lossy styrofoam present in the region z > 0 
and H3 = 0.0003 m for the parallel polarization. The discretization was 
dz  < 0.0004  m throughout the plate. 
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Figure 5.47: This figure shows the intrinsic phase propagation constant 00  
for the shaped profile with lossy styrofoam present in the region z > 0 and 
H3 = 0.0003 m for the perpendicular polarization. The discretization was 
dz < 0.0004 m throughout the plate. 
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Figure 5.48: This figure shows the intrinsic phase propagation constant i3o  
for the shaped profile with lossy styrofoam present in the region z > 0 and 
H3 = 0.0003 m for the parallel polarization. The discretization was dz < 
0.0004 m throughout the plate. 
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Figure 5.49: This 
through the plate 
region z > 0 and 
discretization was 

figure shows the value of the angle 6 at all the interfaces 
for the shaped profile with lossy styrofoam present in the 
H3 = 0.0003 m for the perpendicular polarization. The 
dz < 0.0004 m throughout the plate. 
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This figure shows the value of the angle e2  at all the inter-
the plate for the shaped profile with lossy styrofoam present 
z > 0 and H3 = 0.0003 m for the parallel polarization. The 
was dz  < 0.0004  m throughout the plate. 
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Figure 5.51: This figure shows the value of the angle —p2 at all the interfaces 
through the plate for the shaped profile with lossy styrofoam present in the 
region z > 0 and H3 = 0.0003 m for the perpendicular polarization. The 
discretization was dz < 0.0004 m throughout the plate. Note that MATLAB 
could not produce properly the 3D rendition of the plot below the plane 

P2 = 0 at the back section of the plate. 

162 

Incidence angle (°) 

• 



90 

80 

eto  70 
"C 

g.  60 

(7) fÇji.› 
50 

0  40 

!I' 

-2 30 

cm 20 

10 

I 

  

v 
8  

"e: ee e  
60 

40  

20 
-0.04 -0.02 

z (m) 

0.02 Incidence angle 	( ) 

• •
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

 

Shaped, HH=0.074m, H 2=0.010m, w=0.0014m, H 3=0.0003m, er2=3.7(1-j0.004), E r1 =1.04(1-j0.0005) 

Figure 5.52: This figure shows the value of the angle —p2 at all the interfaces 
through the plate for the shaped profile with lossy styrofoam present in the 
region z > 0 and H3 = 0.0003 m for the parallel polarization. The discretiza-
tion was dz < 0.0004 m throughout the plate. Note that MATLAB could 
not produce properly the 3D rendition of the plot below the plane p2  = 0 at 
the back section of the plate. 
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• Chapter 6 
• • 
• Conclusion 
• 
• 
•

This report has presented the analysis technique and the predicted results 
for a uniaxial composite plate with the optic axis normal to the plate. The 
analysis technique contains two elements of novelty: 

11111 
1. a new result for the effective propagation constants a and within a 

• lossy material; 

2. a new approach based on the Adler-Chu-Fano formulation for predict-
ing the behaviour of the extraordinary wave within a uniaxial medium. • 

• A computer program was written in MATLAB to implement the analysis 
technique. A series of simulations revealed a choice of parameters that pro-
vides a reflection level of less than about —22 dB over an angular range of 00  

• to about 500 . The mounting plate was manufactured and its response mea-
1, 	 sured. Originally, it was planned that the measurement setup, procedure, 

• results and comparison between predicted and measured results would be 

•
reported in another document as Part II. The comparison, however, turned 
out to be rather poor due to limitation in measurement setup'. 

• 

• • 

• • 
l Although the boom was extended to its full length, the spacing between the transmit-

ting horn positioned at the end of the boom, and the mounting plate positioned at the 111 	 centre of the rotating table, is thought to have been insufficient. 

• 
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Chapter 7 

References 

This chapter present the lists of references for the whole document, including 
the appendices. 
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Appendix A 

Equivalence between 
approaches using in.stantaneous 
parameters and steady-state 
parameters 

This appendix presents the proof for the mathematical identity of Equa-
tion (3.29). The input reflection coefficient computed by the method of 
multiple reflections is given as (see Reference [44, Equation (5.35), p. 226]): 

111 	
r3e—i213zd 

r. in 1 + r1r3e_i2pA 

where: 

ri = 
Z2 + 

Z3 — Z2 
F3=  z3  + z2  

Substituting the last two expressions into the first one produces: 

ri 
	(z2  - z1)(z3 + z2) + (z2 + z1)(z3 - Z2 )e-i2PA 
n (Z2  + Z1)(Z3  + Z2) + (Z2 — Z1)(Z3 — Z2)e -iezd 

Multiplying the numerator and the denominator by eifiz d  produces: 

(Z2  — Zi)(Zs + Z2)eee d  ± (Z2+ z1)(z3 — z2 )e-iozd  
rin  -=" (z2 + z1 )(z3 + Z2 )ejOzel + (Z2  — Z1)(Z3 — Z2)e -if3.d 
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(A.1) 

Z2 — 



Using tanh(jx) = jtan(x) produces: 

(Z2 Z3  - Z1Z2)  + (4 - ZiZ3)tanh(jfiA) \-,  
- (Z2 Z3  + Z1Z2) + (4 + ZiZ3)tanh(j[3,d) 

(A.2) 

T2 Z2 + Z1 
2Z2  
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Using Euler's expressions for the trigonometric functions written in terms 
of the complex exponentials, and collecting the terms of equal power pro-
duces: 

Dividing by cos(ezd) produces: 

(Z2 Z3  - Z1 Z2 )  + (4 -  Zi Z3)jtan(flzd)  r
in 

= 
(Z2  Z3 + Zi Z2 ) (Z ZiZ3)itan(0,(1) 

Now, the input reflection coefficient computed by the method of steady-
state parameters is given as: 

Fin  Zin  + 

where Zin  is given as (see Reference [44, Equation (3.91), p. 94]): 

Z3  + Z2tanh(',d) 
Z.  - Z2  

In 	Z2 + Z3  t anh (ryz  d) 

Substituting the last expression into the second last one and collecting 
the terms produces: 

(Z2 Z3  - Z1Z2)  + (4 - ZiZ3)tanh('yzd)  
Fin = (Z2  Z3 + Z1 Z2) ± (4 Z1Z3)tanh('yz d) 

When the system becomes lossy, jf3  becomes -yz =  az+j[3z and thus, the 
expression in Equation (A.2) becomes the same as that in Equation (A.3), 
and this proves the mathematical equality. Note, however, that the transmis-
sion coefficient obtained by summing all the instantaneous waves emergent 
from the system is obtained as: 

1 
Tout = T2eT3 	  1 + ri r3e-i2f3zd 

where: 
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(Z2 Z3  - Z1 Z2)cos(/3d)  + (4 -  ZiZ3)isin(ezd)  
"L  in (Z2 Z3  + ZiZ2)cos(i3A) + (4 + Z 1 Z3)jsin(13,c1) 

(A.3) 



2Z3  -- 

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

• •
••

••
••

 

T3= 
 z3 + z2 

Upon substituting and carrying out algebraic manipulations similar to 
those above, one obtains: 

2.32  Z3/COSh(iPzd)  
Tout (Z2Z3 Z1Z2) + (4 ± Z1Z3)tanh(jezd) 

whereas 

2Zin 	 2Z2 (Z3  Z2tanh(7A))  

Zin  +  Z1  = (Z2 Z3  + Z1Z2) + (4 + ZiZ3)tanh(-y,d) 

hence, the last two results are, in general, different (notwithstanding that 
A becomes = az  + j,ez when the system becomes lossy). Therefore, 
the steady-state reflection coefficient is obtained as (Zin  — Zi)/(Zin  + Z1 ), 
but the steady-state transmission coefficient is not obtained as 2Z111AZin  + 
Z1 ). See also References [5, Equations 4.172, 4.175] and [19, Equations 7.15, 
7.19]. The reason for this difference lies in the fact that with the steady-
state approach, the rest of the circuit lying beyond the interface where Zin  
is computed, is effectively enclosed in a black box that does not give access 
to the output port where the knowledge of the transmitted wave is desired. 
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Appen.dix B 

Equivalen.ce between  a uniform 
plane wave with a 
complex-valued propagation 
angle and a non-uniform plane 
wave with real-valued 
propagation angles 

This appendix presents the expressions for computing the complex propaga-
tion angle of a uniform plane wave from the knowledge of the real propagation 
angles of the corresponding non-uniform plane wave. The development pre-
sented here is more general than that presented in Reference [4, pp. 330-334]. 
The non-uniform plane wave is written as e-l'e where =  5  + se with the 
directions of 5  given by Oa  and 0,, and the directions of 73 given by Go  and 

p , in a spherical coordinate system with 2 parallel to the normal of the 

interfaces. In contrast, the uniform plane wave is written as e--117'..  where 
the directions of E is given by OR+ jel and OR + j01 in the same spherical 
coordinate system. Requiring an equivalence imposes the following: 

e-1.e = 

where: 
= a(sinOacos0„& + sint9„sin0„9 + cos0„) 

= p(sine,cosoe + sin0:esin0aû + COSOd) 

E k(Sin(0 R+ 0  I)C°S(0 R± çb 	R± I)Sin(q5  R+ 51»±COS( 0 R+  1)2) 
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For the equivalence to hold for any requires that: 

asinOacosO, + jPsin$9,3cos00 = j ksin(0 R j I)cos(çb R 	I) 

cesin0 asin0 a  + jig sin° osin0 p = j ksin(0 R ± j 1)sin(q5 R 	1) 

acos00, + j i3cos0,3  = jkcos(OR  + i0/) 

Squaring the last three equations and summing the results produces1.1 = 
—k2  but 	= -yo2 = (a0 + j 0 ) 2  hence -e, = —k2  and thus jk = 	ao - 
where a, and 13,  are the intrinsic propagation constants of the medium. 
Hence, we have: 

asinOacosO«  + sin() cosçb =  (a0 	P0)sin(0 R j 0 I)cos(0 R 	1) (B.1) 

asinOasin00, + jfisineosing5,3 (ao + i130)sin(OR +ljer)sin(OR + je7) (B.2) 

acos0a  + jficos00 = (a, + ji30)cos(OR + 9 

Dividing Equation (B.2) by Equation (B.1) produces: 

cesin0 asin0 ± jPsinOpsinq50  
tan(OR + içbr) = asinOacosO, + jPsinOpcosçbp 

Now the left hand side of the last equation gives: 

tanOR + jtanh0/ 

Multiplying the numerator and denominator of the right hand side of the 
last two equations by the conjugate expression of their respective denomina-
tor, then carrying out some algebraic manipulations and equating real and 
imaginary parts on both sides of the resulting equation produces: 

sinOR 	1 	a2sin2 Gc siny5acosO, + fl 2sin2 9psinOocos00  _ A — 
coshOi \/cos2 OR  + sinh201 	a2sin20cos20«  + 02sin2  e COS2 	

_ 
D 

(B.4) 
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(B.3) 

tan(OR + 	= 1 — jtanORtanhq5/ 
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cos2  R + sinh20/ 
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0  

sinhq51 	1 	 a 16 sin9 «slut 9 esin(0 — O a) 
c0sq5 R \ cos 2  R + sinh2q51 	a2sin2 Oacos2 0«  + [32sin200cos20,3

— —
D 

 (B.5) 

Hence: 
— A 

coshç 	B bi 	cosOR  
sinOR 

— 
sinhe 

from which one obtains: 

sinh(20/) = —A sin(295R) 

Squaring Equation (B.5) and carrying out some algebraic manipulations 
produces: 

(D 2  — B2 cos2 OR)sinh24 /  = B2cos4OR 

Now using Equation (B.6) and the knowledge of: 

2cosh2 q5/  — 1 = cosh(2q51) = 	+ sinh2 (295/) 

and 
sinh2 q51  = cosh2 01 — 1 

to obtain an expression for sinh2 0/  to substitute in Equation (B.7), then 
collecting the terms of equal power in cos2 g5R  produces the following cubic 
polynomial in the unknown X = cos2 95R: 

4B2 (U3X3  + U2X2  + UiX + U0) = 0 

where: 
= -B2 (A2  + B2 ) 

(12  = B2 (A2  + B2  + 2D2) 

U1  = -D2 (A2  + 2B2  + D2 ) 
Uo = D4  

For B 0, the solution for X can be obtained with MATLAB and is not 
reproduced here because of its length. Out of the three possible solutions for 
X,  two are complex-valued and must be rejected. From the knowledge of X,  
one obtains the knowledge of OR, then substituting in Equation (B.7), one 
obtains the knowledge of Oi. For B = 0, the solution is found simply from 
Equation (B.5) as 01  = 0 and then, from Equation (B.4) as OR = arctan(î). 
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(B .7)  
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For instance, when B =  0 due to 0, =00 ._=.1 0, we obtain eff, = tan q5 and 
thus, OR =  q and 01  = 0, as expected. 

Expanding Equation (B.3) and equating real and imaginary parts on both 
sides of the equation produces the following two equations: 

acos0c, aocosORcoshOi + fl0sinORsinh0/ 

Pcos00 = PocosORcoshOr — aosineRsinher 

Squaring Equations (B.8) and (B.9) and adding their results gives: 

cos2  0 a  ± 132  cos2  0 p cos2  0 R sinh2 0/  = 	 = C 
a20  + 002 

from which one obtains: 

sinh2 01  = C — cos2 t9R 

 cosh201 = 'CY + sin2 OR 

Substituting these results in the square of Equation (B.8), carrying out 
simple algebraic maniputations and collecting the terms of equal power in 
cosOR  produces the following quartic polynomial in the unknown Y = cosOR: 

v4Y4  + v3Y3  + v2 172  + vly + vo  o 

where: 

V3 = -2(C + 1)V4 

V2 = (C + 1)2 V4 + 2((a2, + [3,2)002 C + (a2, — ea2 cos2 0a) 

V1 = —2(C + 1 )((a20  + 002) 002c  (ao2 _ 002) a2 c0s2 ea) 

Vo = (a2 cos2 0„ — 1@C) 2  

The solution for Y can be obtained with MATLAB and is not reproduced 
here because of its length. Out of the four possible solutions for Y, the third 
one given by MATLAB was usually (but not always) found to be the correct 
one. This passing of the correct solution from one root of the polynomial to 
another one makes the determination of Y ambiguous and is a drawback of 
the method. However, once Y has been correctly determined, one obtains the 
knowledge of OR, then substituting in Equation (B.10) or (B.11) one obtains 
the knowledge of Op 
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(B.8) 

(B.9) 

(B.10) 

(B.11) 



••
••

••
••

••
••

••
••

••
••

•0
0•

••
••

••
••

••
••

••
••

••
••

 

Therefore the four variables OR, 01 , OR and 0/ can be determined from 
the knowledge of a0 , Po , a, p, ea, 00 , çba  and q50 . We note, however, that the 
converse operation of finding out the values for 0,, 00 , q5, and Op from the 
knowledge of ao , j30 , OR, 01, OR and 0/ is not possible because the knowledge of 
cos(p) = sin(0a) sin(00) cos(q5, — p) cos(0 cos(0) is needed to compute a 
and p. One exception is the special case treated in Section 2.4.1 where p = 
and thus, a and are given by Equations (2.36) and (2.35), respectively. In 
this special case, b  = 0 and thus, 0/ =  0, ÇbR  = 0, = çb p , and the knowledge 
of 0, and 0 p is obtained from Equations (B.8) and (B.9). 
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Appendix C 

Comparison between Holmes's 
approach and our approach in 
computin.g the effective 
propagation constants 

This appendix presents a comparison between Holmes's method and the 
method presented in Chapter 2 for computing the effective propagation con-
stants of non-uniform plane waves at the planar interface of two isotropic 
homogeneous possibly lossy media of infinite transverse dimensions. 

Holmes' expressions for computing 02 and a2  are [6, Equations (18-19)]: 

Vrit1 2  - Re (N ) + 1-rd -  
2 

+  Re  (10 4-  1'ri-  
2 

where lil t  = V ± jW with V = aj sin(ei ± pi) and W = [3]. sin(6). 

Solving for 6 from Equation (2.16) and the knowledge of 02 leads to two 
possible solutions: 

arcsin (W-) 
= 	)32 

7F - arcsin ( 17 ) 
)62 

Solving for p2  from Equation (2.15) and the knowledge of a2  and the two 
possible solutions for 6 leads to four possible solutions: 
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(C.2)  

(C.3) 
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arCsin (1a2 ) — arcsin (e) 

7r — arcsin (-) — arcsin 	) «2  
arcsin ( 1 ) 	arcsin ( 1.) — 71-  

— arcsin ( 1 ) arcsin ( 1') «2  

All computations in this appendix pertain to a case found in Reference [6], 
i.e. f = 1 MHz, e  4.0, (xi = 0.01 Sim, 617. 2  = 10.0 and o.2  = 0.001 Sim. 
Figures C.1 and C.2 show the results of computing p2  as per Equations (2.44) 
and (C.4) for the case pi  = 00 , respectively. Note that the corresponding 
curve given by Holmes'method is, in fact, made up of two solutions joint at 
a cross-over value of 6. R-3 19°: 

arcsin ( 11 — arcsin ( 1'") 	for à < 19° 
P2 = 

7r — arcsin( 1.L — arcsin ( 1-v-) for 6 > 19° a2 ) 	
f32 

In contrast, the solution given by the new procedure presented in Chap-
ter 2 yields the entire curve for all values of 6 in the range 00  <  i < 90°. 
Figures C.3 and C.4 repeat the comparison for the case of pi  = +20°. 
The cross-over value is now about el  11°. Figures C.5 and C.6 re-
peat the comparison for the case of pi = —20°. The cross-over value is 
now about el 	32° with the solution for 6.  > 32° now being given by 
p2 = (arcsin 	arcsin ( 1') — 7r). This passing of the correct solution 
from one possi le solution to another one as 6 varies makes Holmes' method 
difficult to use. 

P2 (C.4) 
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solution is given here by the solid line. 
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Figure C.2: The four possible solutions for p2  as per Equation (C.4) as a 
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= 7r — arcsin (-k). The valid solution is given here by the solid line for 
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Figure C.3: The four possible solutions for p2  as per the method presented 
in Chapter 2 as a function of the incidence angle ei  for pi = 200 . The valid 
solution is given here by the solid line. 
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Figure C.4: The four possible solutions for p2  as per Equation (C.4) as a 
function of the incidence angle .i. for pi  =--- 200 . Here, 6- = arcsin (IL') and ei2 
61 = 7r — arcsin (1). The valid solution is given here by the solid line for 

6 < 110  and the dash line for j  > 11°. 
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Appendix D 
• 

Effective permittivity 	 • • • • 
D01  Uniaxial media 	 • 

• 
Figure D.1 is a simplified reproduction of Figure 10.27 of Reference [49, 
p.361]. Throughout this section, it is assumed that the optic axis lies at an 
arbitrary 0, value in the incidence plane, which is taken to be the xz plane 

• in Figure D.1. Snell's law for the phase wavefront of the extraordinary wave 
is written from Equation (10.82) of the above Reference as: • 

sin Oi  
sin Ot 	ct 	 • i 

• 
where ci  = 1/Vitt0ei where ei  = eri  ec, is the permittivity of the incidence • 

medium, i.e. the isotropic half-space. Equation (10.80) of the above Refer-
ence gives c,t  as [75, p. 671: 

41 el  COS 
2 	2 	2 0 + sin' 0 	 (D.2) 

where: 

c,.co/M 	 (D.3) 

c 	/Mrans 	 (D.4) 	 • • • • 
189 

• • 



[(cî.  + 	sin2  0i  — 
sin (20t  — arctan B) 	  

\F-D 
(D.11) 

/ long 
C3 	Co/ V Er 

where el! is the effective relative permittivity that the extraordinary waves 
sees as it propagates through the uniaxial medium, 0 = (0t  0,), co  = 
11,1., and the super-indices "trans" and "long" refer to the directions 
perpendicular and parallel to the optic axis, respectively. Note that c1  and 

c3  become complex-valued when ertrans  and elongr 	become complex-valued, 
respectively. Born and Wolf in Reference [75, p. 668] point out that  e1 , c2  
and c3  are not components of a vector and are defined only with reference to 
the three principal dielectric axes. 

Pulling all these equations together and using the trigonometric identities 
cos2  0  = (1+ cos 20)/2 and sin2  U  = (1— cos 20) 12 gives: 

c 	— cos 20t ) = sin2  Oi  [(4 + c32) + 	— c23 ) cos 2(0t + 00)] 	(D.6) 

Expanding cos 2(Ot  + 00 ) and regrouping the terms in Ot  leads to: 

— (4 + 4) sin2  0i  = a cos 20t  — b sin 20t 	(D.7) 

where: 

•  a =  c  + (4.  — 4) sin2  0i  cos 20, 	 (D.8) 

b =  (e 	4) sin2  Oi  sin 20, 	 (D.9) 

Using the identity: 

a cos x — b sin x 	\/a2  + b2  sin(x — arctan alb) 	(D.10) 

leads to: 

(D.5) 

. where: 
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(D.12)  

(D.13)  

(D.14) 

(D.15)  

(D.17)  

(D.18)  
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B = 	  a 	[(cf — 	sin2  Oi  + ef] — 2(cf — 	sin2  Oi  sin2  0,, 
(d — 	sin2  Oi  sin 20 0 

D  a2 b2 	[(c9  sin2  Oi  + 	2  — 4cî(c .  — 	sin2  Oi  sin2  Go  

Squaring both sides of Equation (D.11) and using the identity sin2  x = 
(1 — cos 2x)/2 and some simple algebraic manipulations gives: 

arccos A arctan  B 
4 	2 

where: 

A = 1 
[(e2  + c2) sin2  Oi  — 	2  1 	3 

2 	  D 

Note that Ot  becomes complex-valued when c i  and c3  become complex-
valued. Substituting the result for Ot  of Equation (D.14) into Equation (D.1) 
and using the trigonometric' identities cos  (x/2)  = \/1 + cos x/\/ and sin (x/2)  = 
-V1 — cos x/\/  and cos(arctan x) =  1/\/1  + x2  and sin(arctan x) = x 1 \/1 + x2  
gives the effective relative permittivity for the extraordinary wave el?i  as: 

e ll 

	

r. 	(.)2 	2 sin2  Oi  
(D.16) 

	

6. 	Ct 1 _ 	1  + 11—A  B  
2 V1-1-B2 2 2 .\/1-1 

Note that: 

1 	(cî — d)  sin2  Oi  sin 200  

'VD 

(cî — 	sin2  Gi  cos 20,, + c22 
\/1 + B2  

1These trigonometric identities need to be modified when the argument is complex-
valued. Rigorously, the development presented here applies only to the case of lossless 
media so that Ot  be real-valued. However, the losses can be taken into account after 
treating the case of lossless uniaxial media as was done for Equation (4.7). 
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et = 



1 + A 
2 

2 c  [(c2  + 4) + (eî — 4)  cos  200] — 2cH sin2  
sinei  (D.19) 1  D 

\I
l — A  = g + eD sin2  Oi  cos 20,, — 4 

2 VT) 
(D.20) 

Therefore, the product of Equations (D.17) and (D.19) results in 0 when-
ever sin 200  = 0. Note also that B tends to  infinity whenever sin 200  = 0 
but B/.n/1 + B2  +1 when 0„ = 0, and Bb/1 + B2  = —1 when 0, = ±90°. 
There results for 00  = 0°: 

(4  _ 	sin2 ± 	e  trans 	etrans 
— = 	 = 	+ 	r 

 long 
sin2 2 

 

Er 

(D.21) 

and for 00  = +900 : 

e  long 
+ 

ertrans 	 (1 	

long ) 
= (4 — 4) sin2  + ci = ? 	 er 	 sin2  Oi 	(D.22) 

c32   

When the incidence medium is free space, sir  = 1 and thus, Equation (D.21) 
reduces to Equation (4.6). Note that both the transverse direction for 0,, = 0° 
and the longitudinal direction for 0o  = +90° correspond to the same direc-
tion which is the direction that is both parallel to the interface and in the 
incidence plane. Similarly, both the longitudinal direction for 0, = 0° and the 
transverse direction for 0, = ±90° correspond to the same direction which 
is the direction perpendicular to the interface. Therefore, with respect to 
the x and z axes of Figure D.1, the effective relative permittivity for the 
extraordinary wave is given as: 

er. Er.) = 	± 1 - 
	

sin2 Oi (D.23) 

when2  00  = 0° or 00  = ±90°. Such a coincidence between these two cases 
of 00  is also pointed out in Reference [7, p. 251]. 

2Note: Equation (D.23) does not generalize to the case of an intermediate value of 
00 , i.e. 0° < 0,, < 90°. This can be seen by working out a numerical example for an 
intermediate value of 0,, in Equation (D.16). 
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For the TE' polarization, the effective relative permittivity e;-.L  = ery . In 
contrast, for the TM' polarization, the effective relative permittivity elt is 
not, in general, the same as that which b.  sees "in the interface", i.e. Erx . 

Consequently, there results the surprising observation that different permit-
tivities are used in the numerator and denominator of Equation (3.5) for the 
wave impedance Zw  in the transmission uniaxial medium. The permittiv-
ity in the denominator is that which appears in Equations (3.6), (3.7) (4.17), 
(4.21), i.e. ers , whereas the numerator is computed from the effective relative 
permittivity er il given by Equation (D.23) or Equation (4.6). 
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X 

Figure D.1: Simplified reproduction of Figure 10.27 of Reference [49, p.361]. 
It depicts the wave phenomenon at the interface between an isotropic half-
space on the left and a uniaxial half-space on the right. The optic axis lies 
in the incidence plane. 
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D.2 Generalization to biaxial media 

Treating the general case of biaxial media is important for its own sake as 
well as for mitigating certain limitations. For instance, anisotropy can be 
readily handled by the FDTD method only if the three axes of anisotropy 
are aligned with the Yee lattice of the FDTD method. For another example, 
the uniaxial property is obtained in this report for the case of inclusions in 
the shape of circular cylinders; if the inclusions were to be elliptical cylinders 
instead of circular cylinders, the medium would become biaxial since the 
permittivity would not be the same in all transverse directions. For yet 
another example, suppose that the medium were uniaxial due to the inclusion 
of circular cylinders but the axes of the cylinders would be at an oblique angle 
with respect to the normal of the interface instead of being parallel to the 
normal of the interface. By discretizing the structure in thin layers parallel 
to the interface, the circular cylindrical inclusion would become elliptical 
inclusions in each layer. In the stacking process, the present analysis does 
not take into account how the dielectric material within each layer aligns 
from one layer to the next because each layer is modelled as a homogeneous 
layer (see Reference [66]). Each layer with the elliptical cylindrical inclusions 
could be shifted to reshape the circular cylindrical inclusions whose axes 
are oblique, into elliptical cylindrical inclusions whose axes would be normal 
to the interface. Hence, a uniaxial medium with oblique optic axis could be 
modeled as a biaxial medium whose three axes of anisotropy would be aligned 
with the Yee lattice, provided that one would know how to obtain the two 
transverse intrinsic permittivity values corresponding to elliptical inclusions. 
Being able to treat analytically the case of the uniaxial medium with oblique 
cylinders would allow to validate whether the choice of the two transverse 
(to the interfaces) permittivity values for elliptical cylindrical inclusions were 
correct in a FDTD simulation. 

Figure D.2 shows the Cartesian coordinates (u, v, w) used to specify the 
direction of the three principal dielectric axes corresponding to Eru) ETV and 
er„ with the correspon.ding principal velocities ca, cv  and cw , and the Carte-
sian coordinates (x, y, z) used to specify the interface and the refraction angle 
Ut in the transmission medium. The orientation of the uvw coordinate sys-
tem is known in the xyz coordinate system in terms of the angles Ow , çbw  
and Ou . We assume here that the principal axes for the permittivity coincide 
with the principal axes for the conductivity. 

Equation (D.2) is gen.eralized for propagation in a biaxial medium as (see 
Reference [84, p. 341]): 
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(D.24) 

where: 

coh/
1  

Cl  =  col 

where 1 = { u, v, w}, and c, = 11 \Moe, and (8u , 6„) ) are the direction 

angles for -ôt  in the uvw coordinate system. Also el?! is the effective relative 
permittivity that the eigenwave sees as it propagates through the biaxial 
medium. Note that c1  becomes complex-valued when el, becomes complex- 
valued. Note carefully that cu  is the intrinsic velocity when the polarization 
vector D points in the û direction, and similarly for c„ and c,„. Consequently, 

.9to ,\/itoci where -y/ is the value of 'y when the phase wavefront propagation 

vector ig points in the 1 direction. 

From spherical trigonometry, we have: 

cos cSu  = sin 0„ sin OD cos (Ou  — çbD) ± cos Ou  cos OD 

cos 6, sin 0, sin OD cos (0, — q5D) + cos 0, cos OD 

cos (5,„ = sin 0,, sin D cos  (0 11) — OD) + cos 0,, cos D 

where OD and OD are the spherical coordinate angles for f) in the xyz 
coordinate system. When the medium is uniaxial with its optic axis 'L'i) lying 
in the xz incidence plane (i.e. 1) = on one side of the z axis while Et  a et 
lies on the opposite side as shown in Figure D.1, we have çbu  = 00 , çb, = 270°, 

= 180°, 0„ = 90° 0,, 0„ = 90°, 0,, = 180° — 00 . 

Now if the polarization of the wave propagating in the uniaxial medium 
is such that its 15 field lies in the incidence xz plane, i.e. Dy  = 0, then 
the propagating wave is the extraordinary wave and we have OD = 0°, and 
OD = Ot — 90° = (180° — et) — 90° = 90° — et  where et  corresponds to Ot  in 
Figure D.1, and we obtain: 
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cos (5u  = cos 00  cos Oit  — sin 00  sin Oit  = cos (Oit  ± 0,) 

cos (5, = 0 

cos 6„= — sin 0, cos Oit  — cos 00  sin Oit  = — sin (Oit  + 00 ) 

and Equation (D.24) reduces to Equation (D.2). If the polarization is 
changed such that b = û, then the propagating wave is the ordinary wave 
and we have OD = 90 0 , and OD  = 90° and we obtain: 

cos Ou  = 0 

cos (5, = —1 

cos 0w  = 0 

and thus, Equation (D.24) reduces to ct  = c2  and since the medium is 
uniaxial with the optic axis along then c1  =  e2  and thus ct =  e1  = 
e2  as expected. For the general case where the uvw coordinate system is 
arbitrarily oriented with respect to the xyz coordinate system, we obtain 
from coordinate transformation: 

(D.30) 

cos 0. — +
sin Ow  cos (Ou  — çbw ) 

D 

sin 0
v 

= ±—D 

cos 0„ = +
sin (20w) sin  (Ou — çbw) 

2D 
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(D.31) 
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(D.33) 
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cos2  0„ cos q5„ + sin2  0„, cos çbw  cos (0, — Ow)  
sin Ov = 

cos çb 	
COS2  Ow sin çb„ + sin2  0„ sin çbw  cos (q5u — Ow)  

v 

D = 	sin2  0,, sin2  (0„ — çbw) 

E =-- ,V1 —(1  — cos 4  0„) sin2 (çb„ — çbw ) 

For the above case with 0, = 0°, g5„ = 270°, 0„ = 180°, 0„ = 90 °  + 00, 
0,= 90°, Ow 	180° — 00 , we obtain D = 1, E = 1 and: 

sin 0,, = ±(— cos 00 ) 	> cos 0, for the lower sign 

cos 0„ ±(— sin 00) 	> — sin 0, for the upper sign 

sin 0, = +1 	> +1 for the upper sign 

cos 0, = 0 	> still ambiguous 

sin g% = +1 	> —1 for the lower sign 

cos q5, = 0 	> still ambiguous 

For the case where the uvw system is rotated by 90° about the iù axis 
such that û and i  become 't) and —û, respectively, we obtain çb„ = 270°, 
45v = 180° , çb = 180°, 0„ = 90°, 0, = 00  — 90°, 0„ = 180° — 00 , D = cos 00, 
E = cos2  0, and: 

sin 0,  = ±(-1) 	> +1 for the lower sign 
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cos 0„ = 0 

sin 0, = ±(cos 00 ) 	> — cos 00  for the lower sign 

cos 0, = ±(— sin 0) 	> sin 0, for the lower sign 

sin 0„ = 0 

cos 0„ = (-1) 	> —1 for the upper sign 

Comparing the choice of signs for these two known examples shows that 
the correct choice can vary whenever any one of the three axes changes octan. 
There are too many cases to identify the correct choice of signs for them 
all here but suffice to say that the sign ambiguity can be resolved for any 
orientation of the uvw axes by solving the three simpler neighbouring cases 
where two of the uvw axes lie in a plane of the xyz system. 

From Equations (D.1) and (D.24), we  obtain: 

2 
2 	Ci 	• 2 	 2 	 2 	2 	2 et  = 	) sin et  = cu2  cos Su  + c2  „ cos 6, + c cos Sw  

sin u/  

Now, squaring Equations (D.27-D.29) and using  I  =  {u, y, w}, we obtain: 

cos2  5/ = [1 — sin2  0/  sin2  
+ [cos 20/ + sin2  0/ sin2  (0/ — OD)] cos 20D 
+ [0.5 sin 20/  cos (0/ — OD)] sin  20D 

Substituting this last equation into Equation (D.38) produces: 

2 	2  n  
sin 	= 	E c? sin2  0/ sin2  (0/ — OD)] 

+ [E c? (cos 201 + sin2  01  sin2  (0/ — 0D))] cos 20D 
+ [0.5 E cî sin 20/  cos (0/ — OD)] sin  20D 

(D.39) 
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(D.38) 

sin Oi 



cos Ot  tan ( cos Ot  — sin çbt 

 \/1 cos2  et  tan2  

cos Ot  tan  <  sin çbt  -I- cos 95t 

+ cos2  Ot  tan2  

cos OD = 

sin q5D = 

sin 20D  = 
1 + cos2  et  tan2  

2 cos Ot  tan Ç cos 20t  — sin 2,75t  (1 — cos2  Ot  tan2  () 

where, for convenience, the summation index is understood to be / = 
{u,  y , w } . From geometry3  and Figure D.3, we have: 

ÇbD = Çbt ± 90° — 	 (D.40) 

and: 

= arctan (cos et tan () 	 (D.41) 

where the polarization angle determines the polarization of the trans-
mitted wave. This real-valued angle is measured positive from the axis 
in the winding direction toward the axis -1-êt  through a 90° rotation while 
looking into the +bt  direction. The angle ranges from 0° to 3600 . For 

= 0°, h 	+çbt , and for = 180°, h = -D = —çbt, and the wave is 
an ordinary wave. For ( = 90°, h = 	and for ( = 270°, b =  —Of , and 
the wave is an extraordinary wave. 

Note that from Snell's law of refraction for the phase wavefront (see Equa-
tion (2.23)4  ), we have y5t  = çbi  if rr,i  is given in the outwards convention5 . 

Hence, we obtain: 

(D.42) 

(D.43) 

(D.44) 

2 cos et  tan Ç  sin 2q5t  + cos 2çbt  (1 — cos2  et  tan2  ()  cos 20D = (D.45) 
1 cos2  et  tan2  

3J.E. Roy," Generalization of the Ludwig-3 Definition for Linear Copolarization and 
Cross Polarization" , iIEEE Trans. Antennas Propagat., Vol. AP-49, No. 6, June 2001, 
pp. 1006-1010. 

4Note that e in Equation (2.23) does not mean the same thing as e in Equation (D.41). 
5In  the outwards convention, the spherical coordinate angles Oi and q5i  that specify the 

direction of k are those for k  pointing outwards from the origin of the xyz coordinate 
system. 
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2  ( — 	
(cos et  tan ( sin  (0/  — 0t) — cos (çbi  —  ot)) 2  

sin 0/ 0D) 1 + cos2  et  tan2  ( 

\ 
 cos ( — 	
cos et  tan ( cos (0/  — q5t ) +  sin  (0/  — 0t) 

0/  OD) 
\11+ COS2  Ot tan2  • 

(D.46) 

(D.47) 

From spherical trigonometry, we have: 

cos ( = sin OD COS 	 (D.48) 

Substituting Equation (D.41) and rearranging, we obtain: 

cos 20D = 1 — 2 (1 + cos2  et  tan2  () cos  ( 

sin 20D = EV1 ± cos2  et  tan2  () sin 2( sin Ot  

(D.49) 

(D.50) 

Substituting Equations (D.427D.50) into the expanded version of Equa-
tion (D.39) and regrouping terms in et  produces: 

0 = [(E C1  (1 — sin2  0/  cos2  (çbi  — çb t) — cos 2( (cos2  0 1  — sin2  01sin2  (çbi — 0t)))) 

2 
+ [(cos 2( — 1) (E (cos2  0/  — sin2  01 cos2  (01 — 0t))) ( sin Oi 	COS

2  0t 
D 

1-[(— sin 2() E cî (sin2  0/) sin 2(0/ — 0t)] cos et 

▪ [(0.5 sin 2() E cî (sin 2e1) sin (0/  — 0t )] sin et  

A 

+ [0.5 (cos 2( +1)  E cî (sin 201) cos (0/ — çbt)] sin et  cos et 

(D.51) 

where A, B, C, D, E and et  are complex-valued. Note that the ambiguity 
of Equations (D.30-D.35) affect terms A, B, and C. The corresponding 
generic equation is: 
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1 (e' + e20  
2 	eic'efi ) 

(D.53) 

( 62a _ 

2 	eiaefi 
(D.54) 
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(Ai l-j./31 ) sin Q-1-(A2 -I-jB2) cos Q+(A3 -I-jB3 ) sin Q cos Q+(A4+jB4)cos2  Q+(A5 + j B5) = 0 
(D.52) 

where Q =(a+j[3) and all other variables A1, B1, 112) B2) A3) B3) A4) 

B4, A5, B5, a, 0 are real-valued. The solution of this equation is obtained as 
follows. The trigonometric functions are exressed in terms of the exponentials 
eia and ê by using Euler's identities. There results: 

1 
cos (a + j,e) = (ei(c' +ie)  e) 

sin (a + Jo) = 	(ei(a+io) _ e ) = 

Substituting Equations (D.53-D.54) into Equation (D.52) and collecting 
the terms of equal power of ê gives the following quartic polynomial in the 
parameter ê with complex-valued coefficients: 

(a4+jb4)e 413 +(a3+jb3)e"+(a2+jb2)e 2)3 +(a1+jb1)&3 +(a0+jb0) = 0 (D.55) 

where: 

a4 + jb4 = (A4 — B3) + (B4 + A3) 

a3  jb3  = 2ei" [(A2  — B1)) j (B2+ 111)] 

a2 + jb2 = 2ei2a  (A4 + jB4) 

ai  jbl  = [2e13a (A2 + B1 ) + 4ei'A.5 1 j [2ei3a (B2  — A1 ) + 4eia./35] 

a()  + jb, = ei4Œ  [(A4 + B3) + j (B4 — A3)] 
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Splitting this complex-valued equation into its real and imaginary parts 
gives two real-valued equations to be solved simultaneously: 

p a4e40 a3 e30 + a2 e20  aie + a0  = 0 

where: 

a4  = A4 — B3 

a3  = 2 [(A2  — B1 ) cos a — (B2  + A1 ) sin a] 

a2  = 2 [A4 cos 2a — B4 sin 2a] 

al = 2 [(A2 + B1) cos 3a + (A 1  — B2) sin 3a + 2A5 cos a — 2B5  sin a] 

a0  = RA4  + B3 ) cos 4a + (A3  — B4 ) sin 4a] 

and: 

b4e413  + b3 e" + b2e2e + bie° + b0  = 0 

where: 

b4 = B4 + A3 

b3 = 2 [(A1 + B2) cos a + (A2  — B1) sin a] 

b2  = 2 [B4 cos 2ce + A4 sin 2a] 

b1  = 2 [(B2  — A1 ) cos 3a + (B1  + A2 ) sin 3a + 2135  cos a + 2A5  sin a] 
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• b0  = [(B4 — A3 ),cos 4a + (B3  + A4) sin 4a] • 
• Using once more Equations (D.53) and (D.54) with 0 = 0 and adjusting 
• all terms to an equal denominator and getting rid of this denominator by 

• moving it to the Right-Hand-Side of the equality sign transforms the quartic 

•
polynomial in the parameter e° of Equation (D.56) into: 

• 
• x4e40+x3e3P+x2e2e+x1eP+x3, 0 	(D.58) 

where: 

)(4 = 16eicia (A4 — B3) 

• 
X3 = 166.15" [(A2 — B1) + j (Ai + B2)] +  16e [(A2 — B1) — j (Ai + B2)] 

• 
• X2 = 86i6c/  [(A4 + B4)] + 16e14« [A4 — B4] + 8ei2a [A4  + B4] 
• 

= 4ei7a [(A2 + Bi) + (Ai — B2)] 
+4e.15  [(3 	+ A2) + 8A5) — j (3 (A 1  — B2 ) — 8B5 )] 

• +4ei3a [(3 	+ A2) + 8A5) + j (3 (A 1  — B2) — 8B5 )] 
• +4ei' [(B1 + A2) — j (Ai — B2)] 
• 

eim [B3 + A4 + A3 — B4] + ei6a  [4 (B3  + A4 — A3 + B4)] 

+ei4« [6 (B3  + A4 + A3 — B4)] + ei2a  [4 (B3  + A4 — A3 + B4)] • 
O  
• and the quartic polynomial in the parameter efl  of Equation (D.57) into: 

• Y4e4f3  + Ye" + Yee + Yi e'e  +Y0  = 0 	(D.59) 

it> 	 where: • 
y4  = 16e14' (B4  + A3 ) 

• 
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Y3 = 16ei5" [(A1 + B2) — j (A2 — B1)] + 16e33a  [(Ai + B2) + j (A2 — B1)] 

Y2 = 8ei6a [(B4 — A4)] + 16ej 4a [B4 + A4] + 8ei2a  [B4 — A4] 

4el7a [(B2 — A1) + j (B1 + A2)] 
-1-4ei5" [(3 (B2 — A1) + 8B5) — j (3 (B1 + A2) + 8A5)] 
-F4ei3a [(3 (B2  — A1) + 8B5) + j (3 (B1 + A2) + 8A5)1 
+4ei' [(B2 — A1) — j (B1 + A2)] 

Yo = ei'a [B4 — A3 + B3 + A.4] + el' [4 (B4 — A3 — B3 
+ei4a [6 (B4 — A3 + B3 + A4)] + ei2a [4 (B4 — A3 — B3 — A4)] 

Since the same real-valued solution for e0  must satisfy simultaneously 
both polynomials of the fourth degree in the parameter eO of Equations (D.58) 
and (D.59), the two sets of four possible solutions for both polynomials are 
equated' among themselves, resulting in 16 functions of various powers (in-
cluding fractional powers) in the parameter ei'. Although the correct so-
lution for eo is real-valued, not all 16 functions are necessarily real-valued 
because some of the false solutions for ef3  might be complex-valued. Fur-
thermore, the presence of fractional powers makes it impossible to write the 
functions in a clean polynomial form where the terms of equal powers of 

are collected. In any case, the degree of the polynomial is larger than 4 
and thus, the solution for each function must be solved numerically using a 
root-searching algorithm, e.g. the subroutine ZANLY7  of the IMSL Fortran 
library. The possible solutions for el' are then substituted into the quartic 
polynomial of Equation (D.58) or (D.59) to obtain the possible solutions for 
e'3 .  Once  the correct value of e° and the correct value of eia are identified, 
the value of sin et  can be computed from Equation (D.54) and substituted 
into Equation (D.1) to find the value of the effective permittivity ereff  as: 

6 Simply creating a single equation by adding or subtracting (and more generally, taking 
a linear combination of) the two Equations (D.58) and (D.59) is not satisfactory because 
for the equality to hold for any and all linear combinations would require either that the 
solution be the trivial solution, i.e. each coefficient is zero-valued regardless of the value 
of e0 , or the solution has  3  tending to  —oc  so that ee  tends to zero. 

7 ZANLY could be used to solve directly Equation (D.52) since ZANLY can handle a 
complex function of a complex variable. However, it was felt that more accurate results 
might be obtained by solving the problem analytically as much as possible. In our solution 
approach, only eie is determined by numerical means whereas e0  is determined from the 
exact solution of a quartic polynomial. 
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ereff  ( 2  = (sin  ) 2  
sin  Ot 

Note that up to this point, the computation of the propagation constants 
and 5 imposed no restriction on the incidence plane, the polarization angle 

(, or the orientation of the three principal dielectric axes of the anisotropic 
medium, provided that the propagation constant of the amplitude wavefront 

be normal' to the interfaces. But how do we know the value of in the 
transmission medium? If the TE/TM decomposition were still valid then, 
assuming that the incidence plane lied in the xz plane (i.e. çbi  = {0°, 180°}), 
the polarization angle in the transmission medium would be known as 

= {90°, 270° } for the TMz polarization, and = {0°, 180°} for the TEz 
p olarization. 

The above approach to compute e reff for a biaxial medium has the same 
clear physical interpretation as did the uniaxial case in Section D.1. However, 
a simpler (albeit less physical and more mathematical) approach is to use 
the dispersion equation Equation (E.11) and the interpretation that ry 2  = 
—k2ereff . 

8The case where the propagation constant of the amplitude wayefront ix' would not be 
normal to the interfaces is beyond the scope of this generalization. 
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Figure D.2: Generalized case of an anisotropie medium with its three prin-
cipal dielectric axes u, y, w being arbitrarily oriented with respect to the 
reference xyz coordinate system. 
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Figure D.3: Definition of the angles and (. 
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Appendix E 

Dispersion equation for the 
lossy biaxial medium 

This appendix presents the dispersion equation for the lossy biaxial non-
magnetic medium. The time-harmonic factor eiwt  is implicit throughout 
the development. A non-uniform plane wave is written as e-I'e where ,--)% = 
(ée.  j,g). Hence, the time derivative leads to a scalar multiplication by 
jw whereas the space derivative leads to vector multiplication by -1. The 
electrical conductivity is taken into account by the complex permittivity 
tensor which is assumed to take the diagonal form: 

( 0 e 0 
Eu 0 0  

4-2 = 
0 	0'  eu, 

where: 

. o-1) 
61 6o 

 ( 
rt - 

with / = tu,  y , wl. Hence, the principal conductivity axes are assumed 
to coincide with the principal dielectric axes which are given by the axes u, 
y and w. Although .f) Ê in general, Éj = Ê in the direction of the three 
principal dielectric axes [75, p. 664] since D1 -= eiE1. Maxwell's equations 
b ecome: 

(E.1) 

x = — jwitoft 	 (E.2) 



•
•
•
0
0

01
10

0
0

41
•
•
•

•
•
•
•
•
•
•
•
•
•

6
0
0
0

0
0

0
0

0
0

0
0
0

0
0

0
0

0
0

0
 

(E.3) 

(E.4) 

(E.5) 

= 0 

11 = 0 

Substituting Equation (E.3) into Equation (E.2) and using the vector 
calculus identity: 

2 'Y 

where 11 is a dyadic, produces the Helmoltz vector equation: 

- 	7 	+ê->) • È1  = 0 	 (E.6) 

4-> 

where / is the unit diagonal tensor, i.e. the identity matrix. This agrees 
with Reference [7, p. 184, Equation (5.15)] upon using the dyadic identity: 

e 	= (;),-* X 7) 2  

given in Reference [7, p. 17, Equation (1.100)]. Developing Equation (E.6) 
gives: 

2 	2  Eu 'Yu - 	w
2 
ftoEu 	" Yev 	 -Yew 

22 	2 	 v 'Yev 	 w i-toev 	'Yew 	 E 	= 0 
 

"Yew 	 'Yew 	
,yw2 ,y2 w2Fioew 	Ew  

(E.7) 

Note that -yWjczyp,„ei where / = {u, y, w} with el referring to the per-
mittivity in the three principal dielectric axes. Note that 7„, is the value of 'y 
when the phase wavefront propagation vector ;4, not the polarization vector 
D, points in the û direction, and similarly for 'y„ and 'y,„. 
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To avoid the trivial solution requires that the determinant of the matrix 
be 0. Developing the determinant from the first row of the matrix and then 
dividing the result by —w 2,a0  gives this quadratic equation in -y 2 : 

a,y4 + 	c 0  

where: 

a = (eu +ev +e„) 

b =  w 2 0  (ev ew  + euew + Euev) ((el)  e)1'2  + (Ev + ew)7v2  + (Eu + Eu)7W) 

4 2 	 2 	2 
= W Moeuevew W

2
1-60 (evewl'u euewN eueew2 ) 

Substituting -yu, = (1,2 _ 1,u2 1,12,) where -yu  and -y„ are the independent 
variables, produces the same quartic equation but with new coefficients: 

a = eu 	 (E.8) 

b = w2  ,uoew  (eu + eu) — ((ew eu)'yu2  (ew ev)1'2,2) 	(E.9) 

C = W4I.G>uev Ew  — w 2 1.1,0  (ev (Ew  — eu)'Y u2  Eu(ew ev)'yv2) 	(E.10) 

Solving for 'y2  produces the dispersion equation: 

— w 2  Moe w(eu + ev) + (ew — u)'yu2  + (ew eu)7v2  

2 
= 	  

\/(44)2 1-eoEw (Eu eu) (Ew Eu)'Y,2L (ew Eu )e 2  ± 4(ew — eu)(ew — \  
7  2ew  

(E.11) 

Developing Equation (E.7) produces these three equations: 

(
yu2 _ co 0eu  _ 2) 

	

Eu  'yu'YvEv + 'Yew Ew = 0 	(E.12) 

	

(Yv2  — w2it0ev — 'Y 2) Ev + 'Yv'YwEw +'"YzavEv =  O 	(E.13) 
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• 
• 

•
• 

('Y,20 — w2i-toew '72) Ew -1- '"Yu'YwEu + 'Yu'YwEv = 0 	(E14) 

gib Substituting Equation (E.11) into the last three equations produces: • 
• (w2I-t0ew (eu eu) + 6w ('eL 'e)) eulfu2  ev'Yv2) Eu -wry& + 'Yu'YwEw = 
• (E15) 

• 
• (w2m0Ew(Eu-Ev)+Ew(-yv2--eL)+Edyv2+Ev-y„2)Ev +-YewEw + 	= 
• (E16) 

• 
' e 

(w 2moew((eu — ew) + (ev — ew)) + ew(eYt% — '7u 2) + 	+ eu-ru2  + e/C22,) Eto 
11> 

• . 
• B(Ev-Ev)+A(Ev+Ev)+2,-yu-yv(Ev+E„)  . 	Ew=  	(E18) 
• 26,,w(-y.-F-yv) 
• 
• Substituting this last equation into Equation (E17) produces: 

• 
II/ (A + C) (A — B  2szeuliv) — 4E w2  'YYu 	E, 	(E.19) • (A + C) (A B 2Ewl'uN) — 461-neru + -yvbiu 

where: 

• A = 	±ev'Yv2 + \I (w 2  iloew(eu — eu) ± (ew eu)'CL (ew ev
)

e,2
)
2 4(ew eu)(ew 

• 
• B = w2  I-toew((ev — Eu) eweYu 2  'Yv2 ) • • 
• C =  w 2  ittoew ((eu  —  6)  + (ev — 6w)) ± ew(('Y12v ---Ye2L) eev — 1%2 )) 
• 

•
212 

+ 'Yu'YwEv = 0 
• (E.17) 

Adding Equations (E.15) and (E16) produces: • 

• 



Finally, substituting Equation (E.19) back into Equation (E.18) produces: 

(A — B 2E  w'YuN) — 21,v  B 
(E.20) = 2e w'y'w (A + C) (A B + 26.7ev) - 	+ 'Yvbitt 

Both Equations (E.19) and (E.20) are written in terms of Ev  as the in-
dependent variable. 

Since the transverse (to the interface) variation of the fields are dictated 
by the incident plane wave, we have 7tx  jkl and = j14 where kix  and 
ki are real-valued. In turn, 7u  = j kv  and 7, = j kv  in Equation (E.11) can 
be obtained from -n  and '4 by coordinate rotation. Although kl and kyi  are 
real-valued, i.e. 11 and '4 are pure imaginary values, it does not follow from 
coordinate rotation that 7u  and 7, are pure imaginary values. Note that the 
values of -ys  and -yy  are the values of 7 when the propagation vector 5 points 
in the x or y direction, respectively, the same way that 7/ with / = {u, y, w} 
is the value of 7 when the progagation vector 5 points in the direction î. 
There obtains: 

(sin  fLu  cos Ou)11,t  + (sin Ou  sin Ou)7yi  + (cos Ou)'4 

= (sin 0, cos 45v)'Yxt  + (sin Ov  sin Ov)'yIj  + (cos G)'4 

(E.21) 

(E.22) 

where 	= 	„yyt ikyi ( y tz )2 ,y2 („yW („y )2 ,y2 (g)2 ± (14)2 ,  

sin Ou  is given by Equation (D.30), cos Ou  is given by Equation (D.31), sin Ov 
is given by Equation (D.32), and cos Ov  is given by Equation (D.33). Sub-
stituting these expressions into Equations (E.21-E.22), squaring the results, 
substituting the results into Equation (E.11) and regrouping the terms in 72  
produce the following quartic l  in the variable 72 : 

('y2 ) 4  [G] 

-K1'2 ) 3  [2G4G2 + Q 2 ] 
+(I/2 ) 2  [G + 2G4G0 + 2w2p0QS + Q2 ((k) 2  + (

14)
2)] = 0 	(E.23) 

+(72 ) [2G2G0 + 221/0QS((g) 2  + (14) 2 ) + w4/4S2] 
{Gz, w4igs2(kix)2 	(kiy)2)] 

where: 

3- This is somewhat reminiscent of the Booker quartic equation in Reference [7, pp. 205- 
208]. 
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• • • • • • 
G4 ew ((ew  — Eu ) COS2  0 ± (ew  — eu ) COS2  Ou) 

• 
• 

G2 = peu, (eu, +  e t,)  — P — co 2  (ev (ew  — eu ) cos2  Ou  + eu (ew  — eu ) cos2  Ov ) 
• 

Go c4"4/20euevew w 2 it0R 

• 
• P = ((k ) 2  + (g)2) ((ew  — Eu) CO52  Ou  ± (ew  — eu ) cos' Ov) 

—(g)2 (ew  — e) sh-i2 eu  cos2 q + (eu, — eu) sin2  Ou  oos2  95v) 

• -(k)2 (ew- Eu) sin2  Ou Sin2  Ou (ew  — Eu ) sin2  Ov  sin2  çbv ) 
• ±(k)(g)((ew_ eu) sin2  Ou  sin 2q5u  (ew  — ev ) sin2  Ov  sin 20u) 

• 
•

Q = (g) ((ew — eu) sin 20u  cos Ou  + (eu, — ev ) sin 20v  cos Ou) 
+(k,ji  ) 	— eu) sin 20u  sin çbu  + (ew — ev ) sin 20v  sin Ou) • • 

• R = ((g)2 + (kyi )2) (eu (ew  — eu) cos2  Ou  + Eu (ew — Eu ) COS 2  Ov) 

• —(g)2 ev (ew  — eu) sin2  Ou  c052  q  + (e„ — eu ) sin2  Ov  cos2  çbv) 
-(kyi)2 	(ew  — eu) sin2  Ou  sin2 	Eu (e„ — eu ) sin2  Ov  sin2  0,) 

• 1-(kyi )(k,i,j ) ( v  ( w  — eu) sin2  Ou  sin 20u  + eu(ew — ev ) sin2  Ov  sin 245u) 

• 
• S = (g)  (v (w — eu) sin 20„ cos Ou  + eu (e, —  et,)  sin 20v  cos Ou) 

•
+(ki) (eu  (e w  — eu) sin 20u  sin Ou  + EU(eW ev ) sin 20v  sin çbv ) 

• . 
•

The closed-form solution of the quartic in Equation (E.23) can be ob-
tained by using the MATLAB symbolic math toolbox. This method turns 

• out to be simpler and more precise (because it is fully analytical) than the 

III 	previous one presented in Section D.2. However, the sign ambiguities intro- 

• duced by coordinate transformation still remain due to the presence of odd 

e 	powers of sin 20u , cos 20„, sin 20v , cos 20v , sing5v , cos 0„, sin 20v  and cos 20,. 

• From Equation (E.23) and the interpretation that 72 = _ko2ereff, the in-

III 	 trinsic propagation constants a, and j30  for each one of the two eigenwaves 

• 
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• 
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can be determined' from Equations (4.2-4.3), respectively. The correspond- • 
ing effective propagation constants a and fi  can then be computed by the 
the procedure presented in Chapter 2. 	 • 

In summary, one important feature of the analytical technique presented • 
in this report is that computing the effective propagation constants with the 
Adler-Chu-Fano formulation offers a general method to compute the effective 	 • 
propagation constants in multilayered slabs of biaxial media. The solution 	 • 
method would proceed as follows: 

• compute the value er eff = —(1/2 /q) with •72  given by the solution of 	 • 
Equation (E.23) for the desired eigenwave. 

• compute the intrinsic propagation constants a, and /30  from Equa-
tions (2.5-2.6) with er il replaced by ereff; 	 • 

• • compute the effective propagation constants a and fi  and the real-
valued propagation angles and p by the method presented in Chap- 
ter 2; 	 • 

• compute the Fresnel equations 3  , if still applicable, written in terms of 
eir  being the permittivity that .5 sees "in the interface" for the incidence 
medium, and etm  being the permittivity that D sees "in the interface" • 
for the transmission medium. The permittivity that  D  sees "in the 	

• interface" for the TM' polarization would be erx  given by: 
• 

erm 	( 	2  
(E.24) 

emi 	cm ) • 

where cx  would be computed from Equations (D.24-D.29) with OD = 00  
and CD  = 900  since Dx  is the projection of D onto the xy plane. 

If Fresnel equations are not applicaple, then the scattering coeffici- 	 • 
cients for the incidence from the free-space side must be derived from 	 • 
amplitude-matching the tangential field components at the interface. • 

• compute the scattering coefficients of the entire multilayered structure 	 • 
by using C matrices with the cascade approach of Chapter 3. 

	

2Equations (4.2-4.3) were written for the extraordinary wave in a uniaxial medium. For 	 . 	• 
the more general case of a biaxial medium, Elri needs to be replaced by Ereff  corresponding 

•to the eigenwave of interest. 

	

3 Since Fresnel equations require the knowledge of only 'yz  = \/y2  + (4) 2  + (k0 2 , Fres- 	 • 

	

nel equations could be computed without having first to find the values of intrinsic ao , 00, 	 • 
the values of effective a and 0 and the values of the propagation angles p and e. 

• • • 
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Ew 
= eV = 
= ell 

(E.25) 
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E.1 Validation 

These expressions are first validated for the lossy uniaxial medium with its 
optic axis parallel to either û, 1) or 'th.  The expressions are then validated 
for the lossy biaxial case with its two optic axes arbitrarily oriented. The 
subscripts  L and II will refer to the directions perpendicular and parallel to 
the single optic axis of the uniaxial medium, respectively. The superscripts ' 
and"  will refer to the ordinary and the extraordinary waves of the uniaxial 
medium, respectively, or the two eigenwaves  of the biaxial medium. The 
Reference that will be cited in this section is the following: 

Rodolfo Echarri and Maria T. Garea, "Behaviour of the Poynting vector 
in uniaxial absorbent media", Pure Appl. Opt. 3, pp. 931-941, 1994. 

Since the expressions are very long, the Matlab symbolic math toolbox 
was used to carry out the calculations. We will see that for all three uniaxial 
cases, we always obtain": 

ex'? 

_2/461  ,.yo2 ptic  ( 1  _ ell ) 
el  

where 7optic = 3w Oloell is the value of -y when the polarization vector 

13, not the propagation vector 	points in the direction of the optic axis. 
Consequently, one obtains: 

_w2m0eit  (2 	ell  

El ) 

E.1.1 Lossy uniaxial medium with optic axis along 'Co 

For { 

and using the lower sign in Equation (E.11), there obtains: 

41t is only a coincidence that the equation for (11)2 = _402/10seff resembles Equa-
_..„ s ong 	 strans tion (D.22) where 	l eii 	and el 	• The equation, here, applies to an un- 

bounded medium whereas Equation (D.22) applies to the case of an interface with the 
optic axis parallel to the interface. 

216 



• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
•  
• 
• 
• 
• 

• 
• 
• 

2 
= 	itoev = — C42M0e" 

E 	

— (

2/ ') Ev  
'Yu 

E=0  

These last two equations agree with Equation (11) of Echarri and Garea. 

15/ 	0  

Using the upper sign in Equation (E.11), there obtains: 

(,y")2 _w2itoew  ,yw2 ( Ew Ev) — — CO
2peg -r-  'yw  2 

ev 

Eu" = (1
Yv
'4- ) El, 

' 

— (e - 
E

) (7 —7-) Ev  
W 	litrYW  

2 	2 

These last two equations agree with Equation (12) of Echarri and Garea. 

13" . 	= o 

And finally: 

,61  •13 =0  

217 

_ ell 
\ 	El/ 



For f ev 
eu 

w2i20eu + (E./Ew)'y,2L  

w2,uoew + + 

E.1.2 Lossy uniaxial medium with optic axis along û 

- Ew  = 

- cil  

and using the lower sign in Equation (E.11), there obtains: 

(E.26) 

(7) 2  = W 2  [LE: = —W2 /J,06± 

42' =0 

"Yw 	Y  

i5.1 	=  o 

and using the upper sign in Equation (E.11), there obtains: 

" \ 2 	2 e ll 2 ( ew eu)  _2/10E11  ,yu2 (1 _) = — co lioeu+ -Yu ew  

= (a±)) (1'2 ')/u2 ) E 
"YuN 	v  

E" = (TA') E 
w  

D" 	= o 

And finally: 

f5' • f5" = Ev2e,,,2  
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For f 
EV 

Ew  

= ell 
(E.27) 

which can be reduced to: 

15' • 15" = (1 - 2;) 

This last equation would clearly produce 0 if  iui  lied in a planar interface 
(i.e. if the normal of the interface lied in the uv plane). This would be 
so because the transverse variations of the fields at a planar interface are 
dictated by the incident plane wave, i.e. = = . However, the 
presence of this condition would not be, in fact, a limitation because the 
optic axis û could still be oriented in an arbitrary direction even if 11) were 
restricted to lie in the interface. Still, it would be peculiar to have to rely 
on the presence of a planar interface to insure that the result be null. This 
suggests that we should have -y u  = even without invoking the presence of 
an interface. 

This peculiar reliance on 	= -yu, to make fl 	= 0 appears only 
because 7„2 = (1,2 _ _ ) was used as part of the development of Equa- 
tion (E.11). This implies that 7u , 7v  and 7 were assumed to be the indepen-
dent variables in this development. In an unbounded medium, however, 7u, 
would usually be taken as an independent variable, and it is 7 that would 
become the dependent variable, i.e. for a given propagating direction, the 
value of 7 would depend on 7u , 7„, 7u, and the polarization of the wave. 

E.1.3 Lossy uniaxial medium with optic axis along is) 

and using the upper sign in Equation (E.11), there obtains: 

(,),/ )2 = _co2itioew 	_w2 m08. 1_  

and using the lôwer sign in Equation (E.11), there obtains: 

(")2 	_w2itoev  ,yv2 ( 6w — 6v)  = _(.0 2/46. 11  ,),,v2 ( 1  _ 
Ew  

Because E is zero in the direction 
two preceding cases, then E„ = 0 here. 
expressible in terms of Eu  since Eu 
present formulation, which is expressed 
show that ( fi • 1) = 0 and (D. ' • /5") = 0  

of the optic axis as shown by the 
Therefore, Eu  and Eu, cannot be 

0 and E„, 0. Consequently, the 
in terms of E„, cannot be used to 
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E.1.4 Lossy biaxial medium 

Since the expressions are very long, the results from using the Matlab sym-
bolic math toolbox are reproduced here: 

syms om mu real 
syms Gu Gy eu ey ew AA BB CC Ey unreal 

BB=(om-2)*mu*ew*(ey-eu)+ew*((Gu -2)-(Gy - 2)); 
RAD=simple(sqrt(Mom-2)*mu*ew*(ey-eu)+(ew-eu)*(Gu - 2)-... 
(ew-ey)*(Gy -2)) -2)+4*(ew-eu)*(ew-ey)*(Gu -2)*(Gy- 2))); 
%pretty(simple(RAD)) 

% For the first eigenyalue of the propagation constant G and 
% the corresponding eigenpolarization D. 
G2=simple((-(om -2)*mu*ew*(eu+ev)+(ew-eu)*(Gu -2)+(ew-ey)*(Gy -2)+RAD)/(2*ew)); 
pretty(G2) 

2 	 2 	 2 
1/2 (-om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gy + ( 

4 	2 2 2 	4 	2 2 2 	2 	2 
om mu ew ey + om mu ew eu - 2 Gu ew Gy ey 

2 	2 	 2 	2 	 4 	 2 2 2 
- 2 Gu eu Gy ew + 2 Gu eu Gy ey - 2 Gu ew eu + 2 Gu ew Gv 

4 	 42 	42 	42 	42 
- 2 Gy ew ey + Gu ew + Gu eu + Gy ew + Gy ev 

4 	22 	 2 	2 	2 
- 2 om mu ew ey eu + 2 om mu ew ev Gu 

2 	 2 	 2 	2 	2 
- 2 om mu ew ey Gu eu - 2 om mu ew ey Gy 

2 	2 2 	2 	2 	2 
+ 2 om mu ew ey Gy - 2 om mu ew eu Gu 

2 	2 2 	2 	2 	2 
+ 2 om mu ew eu Gu + 2 om mu ew eu Gy 

2 	 2 	1/2 
- 2 om mu ew eu Gy ey) 	)/ew 
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41 
I/ 
41 

111 
11 

Gw=sqrt(G2-((Gu-2)+(Gv-2))); 
AA=eu*(Gu-2)+ev*(Gy-2)-RAD; 	 41 
cc-(om-2)*mu*ew*(eu+ev-2*ew)-Few*(2*(Gw-2)-(Gu-2)-(Gv-2)); 	 11 
Eu=simple(-Ey*((AA+CC)*(AA-BB+2*ew*Gu*Gy)-4*(ew-2)*(Gw-2)*(Gu+Gv)*Gy)/... 	41 
((AA+CC)*(AA+BB+2*ew*Gu*Gy)-4*(ew -2)*(Gw -2)*(Gu+Gy)*Gu)); 41 pretty(Eu) 

4 	 4 	2 2 	2 	 2 	 11 
- Ey (Gu ew - eu Gu - ev GY Gu - 2 om mu ew Gu eu 11 

2 	 2 	4 	2 2 	4 	2 2 	 11 
4. om mu ew Gy ev - om mu ew eu + om mu ew ey 	 11 

41 
2 	2 2 	2 	2 2 	2 	 1/2 11 

4. om mu ew Gu - om mu ew Gy + om mu ew 701 
g, 

2 2 	3 	 3 	 3 	 3 	 41 
+ Gu GY ew - Gu ew Gy - Gv ew Gu + Gy ey Gu + GY Gu eu 11 

1/2 	2 1/2 	2 	2 	 2 	2 	 11 
- Gy %1 	Gu + Gu %1 	- 2 om mu ew Gu GY + Gu om mu ew ev 	11 

01 
2 	 2 	 / 	4 	 1 

41 1 , + Gy om mu ew eu Gu + Gy om mu ew ev Gu) / (- ev Gy 

/ 	 11 
11 

2 	 2 	 2 	 2 	4 	2 2 1, 
4. om mu ew Gu eu - 2 om mu ew Gy ev + om mu ew eu 

11 
4 	22 	2 	22 	2 	2 2 	 41 

- om mu ew ey - om mu ew Gu + om mu ew Gy 	 11 
111 2 	 1/2 	2 2 	3 	 3 	 3 

+ om mu ew %1 	+ Gu Gy ew - Gu ew GY - GY ew Gu + Gy ey Gu 	41 
111 
.. 1  3 	 1/2 	2 1/2 	4 	2 	2 IF 

+ Gy Gu eu - Gy %1 	Gu + Gy %1 	+ Gy ew - Gy eu Gu 
11 

2 	2 	 2 	2 	 2 	 11 
- 2 om mu ew Gu Gy + Gy om mu ew eu + Gy cm mu ew eu Gu 	11 

11 2 
+ GY om mu ew ev Gu) 	 41 

11 • 
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4 	2 2 2 	4 	2 2 2 	2 	2 
%1 := om mu ew ev + om mu ew eu - 2 Gu ew Gv ev 

2 	2 	 2 	2 	 4 	 2 2 2 
- 2 Gu eu Gv ew + 2 Gu eu Gy ev - 2 Gu ew eu + 2 Gu ew Gy 

4 	 42 	42 	42 	42 
- 2 Gy ew ev + Gu ew + Gu eu + Gy ew + Gy ev 

4 	2 2 	 2 	2 	2 
- 2 om mu ew ev eu + 2 om mu ew ev Gu 

2 	 2 	 2 	2 	2 
- 2 om mu ew ev Gu eu - 2 om mu ew ev GY 

2 	2 2 	2 	2 	2 
+ 2 om mu ew ev Gy - 2 om mu ew eu Gu 

2 	2 2 	2 	2 	2 
+ 2 om mu ew eu Gu + 2 om mu ew eu Gy 

2 	 2 
- 2 om mu ew eu Gy ev 

Ew=simple(Ev*2*ew*Gw*((AA-BB+2*ew*Gu*Gy)*(Gu-Gv)-2*BB*Gy)/... 
((AA+CC)*(AA+BB+2*ew*Gu*Gy)-4*(ew -2)*(Gw-2)*(Gu+Gv)*Gu)); 
pretty(Ew) 

2 	 2 	 2 
1 -om mu ew (eu + ey) + (ew - eu) Gu + (ew - ey) Gy + %1 

Ev ew 12 	  
ew 

\1/2 

	

21 	2 	2 	 2 
- 4 Gy 1 	((Gu eu + Gy ev - %1 - om mu ew (ev - eu) 

2 	2 
- ew (Gu - Gy ) + 2 ew Gu Gv) (Gu - Gv) 
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• • • • • • 
// 

2 	 2 	2 	/ 11 	2 
- (2 om mu ew (ev - eu) + 2 ew (Gu - Gv )) Gv) / 11Gu eu 

\\ • 
2 	 2 	 1 

	

+ Gv ev - %1 + om mu ew (eu + ev - 2 ew)  +0W  1 	 to 

	

\ 	 I 
110 

2 	 2 	 2 	 ak  1 

-om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv + %1 	2 	w 
	 3 Gu 	e 

ew 	 • 
' 

	

\\ 	 •  

	

211 	2 	2 	 2 	 e 
- 3 Gv 11 (Gu eu + Gv ev - 7.1 + om mu ew (ev - eu) 	 I 

	

// 	 • 

2 	2 	 21  

	

+ ew (Gu - Gv ) + 2 ew Gu Gv) - 4 ew 1 	 • 
gie 

2 	 2 	 2 
-om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv + %1 	2 

1/2 	  Gu 
ew 

	

\ 	 \ 	 • 

	

21 	 1 	 5 
- Gv 1 (Gu + Gv)  Gui  

• 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
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4 	22  2 	4 	2 2 2 	2 	2 

:= (om mu ew ev + om mu ew eu - 2 Gu ew Gy ev 

2 	2 	 2 	2 	 4 	 2 2 2 

- 2 Gu eu Gy ew + 2 Gu eu GY ey - 2 Gu ew eu + 2 Gu ew GY 

4 	 42 	42 	42 	42  
- 2 Gv ew ev + Gu ew + Gu eu + Gy ew + GY ev 

4 	2 	2 	 , 	2 	2 	2 

- 2 om mu ew ey eu + 2 om mu ew ev Gu 

2 	 2 	 2 	2 	2 

- 2 om mu ew ev Gu eu - 2 om mu ew ev Gy 

2 	 2 2 	2 	2 	2 

+ 2 om mu ew ev Gv - 2 om mu ew eu Gu 

2 	 2 2 	2 	2 	2 

+ 2 om mu ew eu Gu + 2 om mu ew eu Gy 

2 	 2 	1/2 
- 2 om mu ew eu Gy ev) 
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• • • • • • • • • • 
% The first eigenpolarization DTOP. 
DTOPu=eu*Eu; 
DTOPv=ev*Ey; 
DTOPw=ew*Ew; 
% To test that the first eigenpolarization is perpendicular (in the complex sense). 
% to the propagation vector. 
GTOP=simple(Gu*eu*Eu+Gy*ev*Ev+Gw*ew*Ew); 	 1, 
pretty(GTOP) 

1, 
0 

% For the second eigenyalue of the propagation constant G 	 111 
% and the corresponding eigenpolarization D. Ill 
G2=simple((-(om-2)*mu*ew*(eu+ey)+(ew-eu)*(Gu -2)+(ew-ev)*(Gv-2)-RAD)/(2*ew)); 

	

pretty(G2) 	 II 
II 

2 	 2 	 2 	 II 
1/2 (-om mu ew (eu + ey) + (ew - eu) Gu + (ew - ev) Gy - ( lb 

4 	2 2 2 	4 	2 2 2 	2 	2 	 111 
om mu ew ev + om mu ew eu - 2 Gu ew Gy ev 	 111 

1111 2 	2 	 2 	2 	 4 	 2 2 2 
- 2 Gu eu Gy ew + 2 Gu eu Gy ev - 2 Gu ew eu + 2 Gu ew Gy 	I, 

1111 
4 	 42 	42 	42 	42 111 

- 2 GY ew ev + Gu ew + Gu eu + Gy ew + Gy ey 
111 

4 	2 2 	 2 	2 	2 	 II 
- 2 om mu ew ey eu + 2 om mu ew ey Gu 	 111 

II 2 	 2 	 2 	2 	2 
- 2 om ,  mu ew ey Gu eu - 2 om mu ew ey Gy 	 II 

111 
2 	2 2 	2 	2 	2 Il 

+ 2 om mu ew ey Gv - 2 om mu ew eu Gu 
11 

2 	 2 	2 	2 	2 	2 	 Ill 
+ 2 om mu ew eu Gu + 2 om mu ew eu Gy 

111 2 	 2 	1/2 
- 2 om mu ew eu Gy ev) 	)/ew 	 1110 

111 
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Gw=sqrt(G2-((Gu -2)+(Gy-2))); 
Al=eu*(Gu- 2)+ev*(GY-2)+RAD; 
CC=(om-2)*mu*ew*(eu+ey-2*ew)+ew*(2*(Gw - 2)-(Gu-2)-(Gy -2)); 
Eu-simple(-Ev*((AA+CC)*(AA-BB+2*ew*Gu*Gy)-4*(ew -2)*(Gw-2)*(Gu+GY)*Gv)/... 
((AA+CC)*(AA+BB+2*ew*Gu*Gy)-4*(ew -2)*(Gw- 2)*(Gu+Gy)*Gu)); 
pretty(Eu) 

1/2 	2 2 	 2 	 2 	2 	 2 
Ev (-Gy %1 	Gu + Gu Gy ey + 2 om mu ew Gu eu - om mu ew Gy ev 

4 	22 	4 	22 	2 	22 
+ om mu ew eu - om mu ew ey - om mu ew Gu 

2 	2 2 	2 	 1/2 	2 2 	3 
+ om mu ew Gy + om mu ew %1 	- Gu Gy ew + Gu ew Gy 

3 	 3 	 3 	2 	2 	 4 
+ Gy ew Gu - Gy ev Gu - Gy Gu eu - Gu om mu ew ey + Gu eu 

4 	2 1/2 	2 	2 	 2 
- Gu ew + Gu %1 	+ 2 om mu ew Gu Gy - Gy om mu ew eu Gu 

2 	 1/2 	 4 
- Gy om mu ew ey Gu) / (Gy %1 	Gu - ey Gy 

2 	 2 	 2 	 2 	4 	2 2 
+ om mu ew Gu eu - 2 om mu ew GY ey + om mu ew eu 

4 	2 2 	2 	2 2 	2 	2 2 
- om mu ew ey - om mu ew Gu + om mu ew Gy 

2 	 1/2 	2 2 	3 	 3 	 3 
- om mu ew %1 	+ Gu Gy ew - Gu ew Gy - Gy ew Gu + GY ey Gu 

3 	2 	1/2 	4 	2 	2 	2 	2 
+ Gy Gu eu - Gy %1 	+ Gy ew - Gy eu Gu - 2 om mu ew Gu Gy 

2 	2 	 2 	 2 
+ GY om mu ew eu + Gy om mu ew eu Gu + Gy om mu ew ey Gu) 
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2 

4 	2 2 2 	4 	22 2 	2 	2 
71 := om mu ew ey + om mu ew eu - 2 Gu ew Gy ev 

2 	2 	 2 	2 	 4 	 2 2 2 
- 2 Gu eu Gy ew + 2 Gu eu Gy ev - 2 Gu ew eu + 2 Gu ew Gy 

4 	 42 	42 	42 	42 
- 2 Gv ew ev + Gu ew + Gu eu + Gy ew + Gy ey 

4 	2 2 	 2 	2 	2 
- 2  cm mu ew ev eu + 2 om mu ew ey Gu 

2 	 2 	 2 	2 	2 
- 2 om mu ew ev Cu eu - 2 om mu ew ev Gv 

2 	2 2 	2 	2 	2 
+ 2  cm mu ew ev Gy - 2 om mu ew eu Gu 

2 	2 2 	2 	2 	2 
+ 2 om mu ew eu Cu + 2 om mu ew eu Gy 

2 	 2 
- 2 om mu ew eu Gy ev 

Ew=simple(Ey*2*ew*Gw*((AA-BB+2*ew*Gu*Gv)*(Gu-Gy)-2*BB*Gy)/... 
((AA+CC)*(AA+BB+2*ew*Gu*Gy)-4*(ew -2)*(Gw-2)*(Gu+Gy)*Gu)); 
pretty(Ew) 

2 	 2 	 2 
1 -om mu ew (eu + ev) + (ew - eu) Cu + (ew - ev) Gy - %1 

Ev ew 12 	  
ew 

\1/2 

	

21 	2 	2 	 2 
- 4 Gy 1 	((Cu eu + Gy ev + 71 - om mu ew (ev - eu) 

2 	2 
- ew (Cu - Gy ) + 2 ew Cu GY) (Gu - Gv) 
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// 
2 	 2 	2 	/ 11 2 

- (2 om mu ew (ev - eu) + 2 ew (Gu - Gv )) Gv) / 11Gu eu 
/ \\ 

2 	 2 	 1 
+Gv ev + %1 + om mu ew (eu + ev - 2 ew) + ew 1 

2 	 2 	 2 
-om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv - %1 	2 
	  3 Gu 

ew 

\\ 
211 	2 	2 	 2 

- 3 Gv 11 (Gu eu + Gv ev + %1 + om mu ew (ev - eu) 

// 

2 	2 	 21  
+ ew (Gu - Gv ) + 2 ew Gu Gv) - 4 ew 

2 	 2 	 2 
-om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv - %1 	2 

1/2 	  Gu 
ew 

21 	 1 
- Gv 1 (Gu + Gv)  Gui  
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0 

0 

0 
0 
0 
0 
0 

0 
0 , 
0 
tr 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

• 

4 	22 2 	4 	2 2 2 	2 	2 
%1 := (om mu ew ev + om mu ew eu - 2 Gu ew Gy ev 

2 	2 	 2 	2 	 4 	 2  22 
- 2 Gu eu Gv ew + 2 Gu eu Gv ev - 2 Gu ew eu + 2 Gu ew Gy 

4 	 42 	42 	42 	42 
- 2 Gv ew ev + Gu ew + Gu eu + Gy ew + GY ev 

4 	2 2 	 2 	2 	2 
- 2 om mu ew ev eu + 2 om mu ew ev Gu 

2 	 2 	 2 	2 	2 
- 2 om mu ew ev Gu eu - 2 om mu ew ev Gy 

2 	2 2 	2 	2 	2 
+ 2 om mu ew ey Gy - 2 om mu ew eu Gu 

2 	2 2 	2 	2 	2 
+ 2 om mu ew eu Gu + 2 om mu ew eu Gy 

2 	 2 	1/2 
- 2 om mu ew eu GY ev) 

0 
% To test that the second eigenpolarization is perpendicular (in the complex sense, 
% to the propagation vector. 
GBTM=simple(Gu*eu*Eu+Gy*ey*Ev+Gw*ew*Ew); 	 0 
pretty(GBTM) 

• 0 

0 
• 
0 
• 
• 
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% The second eigenpolarization DBTM. 
DBTMu=eu*Eu; 
DBTMv=ey*Ey; 
DBTMw=ew*Ew; 
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% To test if the two eigenpolarizations are perpendicular to one another. 
pretty(simple(DTOPu*DBTMu+DTOPy*DBTMv+DTOPw*DBTMw)) 

2 2 	2 	2 2 	2 	 2 	2 2 
(4 Ev GY ew eu - 4 Ey eu om mu ew ev + 4 Ey ew eu Gu 

2 2 	2 	2 	2 2 2 	2 2 	2 
+ 4 Ey eu om mu ew - 4 Ev eu Gy ev - 4 Ey eu ey Gu 

2 	2 2 	2 	2 2 	2 	2 	 2 
+ 4 Ey eu Gy ev + 4 Ey eu ev Gu + 4 Ev eu om mu ew ey + 

2  21/2 	2 	 2 	 2 	2 
ew Ev 2 	((-om mu ew eu - om mu ew ev - Gu ew - Gu eu 

2 	2 	 1/2 	 2 
- Gy ew - Gy ey + %1)/ew) 	(- (2 om mu ew eu 

2 	 2 	 2 	 2 	 2 
+ 2 om mu ew ey + 2 Gu ew + 2 Gu eu + 2 Gy ew + 2 Gy ev + 2 %1 

1/2 	2 2 2 	2 2 	2 	2 	2  21/2 
)/ew) 	eu - 4 Ey ey Gy ew - 4 Ey ev om mu ew - ew Ey 2 

2 	 2 	 2 	2 	2 	2 
((-om mu ew eu - om mu ew ey - Gu ew - Gu eu - Gy ew - Gy ev 

1/2 	 2 	 2 	 2 
+ %1)/ew) 	(- (2 om mu ew eu + 2 om mu ew ev + 2 Gu ew 

2 	 2 	 2 	 1/2 	2 2 	2 
+ 2 Gu eu + 2 Gy ew + 2 Gy ey + 2 %1)/ew) 	ey - 4 Ev ey ew Gu 

/ 	2 	 2 	2 	2 	 2 
) / (4 om mu ew eu - 4 om mu ew + 4 Gy eu + 4 Gu eu 

/ 

2 	 2 
- 4 Gy ew - 4 Gu ew) 
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4 	2 2 2 	4 	2 2 2 	2 	2 
%1 := (om mu ew ev + om mu ew eu - 2 Gu ew GI/ ev 

2 	2 	 2 	2 	 4 	 2 2 2 
- 2 Gu eu Gv ew + 2 Gu eu Gv ev - 2 Gu ew eu + 2 Gu ew Gy 

4 	 42 	42 	42 	42 
- 2 Gv ew ev + Gu ew + Gu eu + Gv ew + Gv ev 

4 , 2 	2 	 2 	2 	2 
- 2 om mu ew ev eu + 2 om mu ew ev Gu 

2 	 2 	 2 	2 	2 
- 2 om mu ew ev Gu eu - 2 om mu ew ev Gv 

2 	 2 2 	2 	2 	2 
+ 2 om mu ew ev Gv - 2 om mu ew eu Gu 

2 	 2 2 	2 	2 	2 
+ 2 om mu ew eu Gu + 2 om mu ew eu Gv 

2 	 2 	1/2 
- 2 om mu ew eu Gv ev) 

After some algebric manipulations, the result becomes: 

ev)  ( 
euev elv(eu HP 	E312  

\eu Ew 	
V 	w 

For an isotropic medium, we have eu  = ev  = ew  e and Equation (E.28) 
becomes: 

:e f)" (21 ) (o) 	o 

as expected. For a uniaxial medium with the optic axis parallel to ti), i.e. 
with eu  = eu , it is clear that Equation (E.28) produces: 
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in agreement with Section E.1.1. For a uniaxial medium with the optic 
axis parallel to û, i.e. with ev  = ew , Equation (E.28) becomes: 

w 2/L0eu + (eulew) -CL+7  
w 2 	

)
leoew + 7,2, + ')', 

which is the same expression as that shown in Section E.1.2 and produces 
a null result when the optic axis lies in a planar interface. For a uniaxial 
medium with the optic axis parallel to i.e. with e.„, Ew , we know that 
.E, = 0 and thus, Equation (E.28) becomes: 

0 

in agreement with Section E.1.3. 

Therefore, we see that Equation (E.28) produces the expected null result 
for isotropic or uniaxial media. However, for lossy biaxial media, Equa-
tion (E.28) produces (i5' • -./3")  L  O. In fact, this result remains the same 
for a lossless biaxial medium whereby the permittivities are real-valued and 
-y jk. Therefore, this result is NOT in agreement with the information 
shown in References [75, p. 672] and [7, p. 196]. 
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• • • • • • • • • • 
Appendix F 	 •  

• 
Matlab program to obtain the 	 • 

• GSVI for a free-standing 	 • 
isotropic slab 	 • • • • • 
syms RHH REE RHE REH THH TEE THE TEH unreal 
syms GzHp GzHm GzEp GzEm unreal 
syms d real 	 111 

111 

% Since this formulation uses reciprocity, then GzHp=GzHm, and GzEp=GzEm. 
syms GzH GzE Gz unreal 	 le 

GzHm=GzHp; 
GzEm=GzEp; 	 111 

111 
GHp=GzHp/Gz; 	 lb 
GHm=GzHm/Gz; 1, 
GEp=GzEp/Gz; 
GEm=GzEm/Gz; 

CII11(1,1)=-RHH; 
CII11(2,2)=-REE; 
CII11(1,2)=-RHE; 
CII11(2,1)=-REH; 	 11, 
CII22(1,1)=RHH; 	 111 
CII22(2,2)=REE; 
CII22(1,2)=RHE; 
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CII22(2,1)=REH; 
CII21(1,1)= THH*GHm; 
CII21(2,2)= TEE*GEm; 
CII21(1,2)=-THE*GHm; 
CII21(2,1)=-TEH*GEm; 
CII12(1,1)=THH; 
CII12(2,2)=TEE; 
CII12(1,2)=THE; 
CII12(2,1)=TEH; 

CII=[CII11 CII12; CII21 CI122]; 

CI11(1,1)=RHH; 
CI11(2,2)=REE; 
CI11(1,2)=RHE; 
CI11(2,1)=REH; 
Cl22(1,1)=-RHH; 
C122(2,2)=-REE; 
C122(1,2)=-RHE; 
Cl22(2,1)=-REH; 
Cl21(1,1)=THH; 
Cl21(2,2)=TEE; 
Cl21(1,2)=THE; 
C121(2,1)=TEH; 
CI12(1,1)= THH*GHp; 
CI12(2,2)= TEE*GEp; 
CI12(1,2)=-THE*GHp; 
CI12(2,1)=-TEH*GEp; 

CI=[CIll CI12; Cl21 Cl22]; 

Pp(1,1)=exp(-GzHp*d); 
Pp(2,2)=exp(-GzEp*d); 
Pp(1,2)=0; 
Pp(2,1)=0; 
Pm(1,1)=exp(-GzHm*d); 
Pm(2,2)=exp(-GzEm*d); 
Pm(1,2)=0; 
Pm(2,1)=0; 
HH1=inv(inv(Pp)-C122  *Pm*CII11); 
HH2=inv(inv(Pm)-CII11*Pp*Cl22 ); 
C11=CI11 +CI12 *HH2*CII11*Pp*Cl21 ; 
C22=C1122+CI121*HH1*C122 *Pm*CII12; 
C12=C112 *HH2*CII12; 
C21=CII21*HH1*Cl21 ; 
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• 
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• 

C11=simple(C11); 
C12=simple(C12); 
C21=simple(C21); 
C22-simple(C22); 

CC=[C11 C12;  021 C22]; 

R=simple(C11-C22) 

R 

[ 0, 0] 
[ 0, 0] 

T=simple(C21-C12) 

T =  

[ 0, 0] , 

[ 0, 0] 



%RHH_composite=C11(1,1) 
pretty(C11(1,1)) 

2 
(RHH Gz - 2 RHH Gz RHE %2 REH - RHH Gz REE exp(-2 GzEp d ) 

3 	 3 	 2 
- RHH Gz exp(-2 GzHp d ) + RHH Gz %1 REE 

2 	2 	2 
+ RHH Gz RHE %1 REH - 2 RHH Gz RHE %1 REH REE 

2 	 2 	2 
- GzHp exp(-2 GzHp d ) THH RHH + GzHp %1 THH RHH REE 

2 
+ GzHp %1 THH RHH THE REH REE - GzHp %1 THH REH RHE REE 

2 
+ GzHp %2 THH REH THE - GzHp %1 THH THE RHE REH 

2 
- GzHp %2 TEH RHE THH + GzHp %1 TEH THH RHE REH 

+ GzHp %1 TEH RHE THE REH RHH 

- GzHp %1 TEH REE THH RHE RHH 

+ GzHp exp(-2 GzEp d ) TEH REE THE 

2 	/ 
- GzHp %1 TEH REE THE RHH ) / (Gz (1 - 2 RHE %2 REH 

2 	 2 	 2 	2 
- REE exp(-2 GzEp d ) - RHH exp(-2 GzHp d ) + RHH %1 REE 

2 	2 
+ RHE %1 REH - 2 RHE %1 REH RHH REE )) 

%1 := exp(-2 d (GzEp + GzHp )) 

%2 := exp(-d (GzEp + GzHp )) 

236 



• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

%RHE_composite=C11(1,2) 
pretty(C11(1,2)) 

2 	 2 
(RUE Gz - 2 RHE Gz %2 REH - RUE Gz REE exp(-2 GzEp d ) 

2 	 2 	2 
- RHE Gz RHH exp(-2 GzHp d ) + RHE Gz RHH %1 REE 

3 	 2 	2 
+ RUE Gz %1 REH - 2 RUE Gz %1 REH RHH REE 

- GzHp exp(-2 GzHp d ) THE RHH THH 

2 	 2 
+ GzHp %1 THE RHH THH REE + GzHp %1 THE RHH REH REE 

2 
- GzHp %1 THE REH THH RHE REE + GzHp %2 THE REH 

2 	2 
- GzHp %1 THE RHE REH - GzHp  01,2 TEE RHE THH 

2 
+ GzHp %1 TEE THH RUE REH + GzHp 71 TEE RHE THE REH RHH 

- GzHp  71 TEE REE THH RUE RHH 

+ GzHp exp(-2 GzEp d ) TEE REE THE 

2 	/ 
- GzHp %1 TEE REE THE RHH ) / (Gz (1 - 2 RUE %2 REH 

2 	 2 	 2 	2 
- REE exp(-2 GzEp d ) - RHH exp(-2 GzHp d ) + RHH %1 REE 

2 	2 
+ RUE %1 REH - 2 RUE 0/1 REH RHH REE )) 

01,1 := exp(-2 d (GzEp + GzHp )) 

01,2 := exp(-d (CIZEp + GzHp )) 
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%REH_composite=C11(2,1) 
pretty(C11(2,1)) 

2 	 2 
(REH Gz - 2 REH Gz  RUE %2 - REH Gz REE exp(-2 GzEp d ) 

2 	 2 	2 
- REH Gz RHH exp(-2 GzHp d ) + REH Gz RHH %1 REE 

3 	2 	 2 
+ REH Gz RHE %1 - 2 REH Gz RHE %1 RHH REE 

+ GzEp exp(-2 GzHp d ) THH RHH TEH 

2 
- GzEp %1 THH RHH TEH REE - GzEp %1 THH RHH TEE REH REE 

+ GzEp %1 THH REH TEH RHE REE - GzEp %2 THH REH TEE 

2 	 2 
+ GzEp %1 THH TEE RHE REH + GzEp %2 TEH RHE 

2 	2 
- GzEp %1 TEH RUE REH - GzEp %1 TEH RHE TEE REH RHH 

2 
+ GzEp %1 TEH REE RHE RHH 

- GzEp exp(-2 GzEp d ) TEH REE TEE 

2 	/ 
+ GzEp %1 TEH REE TEE RHH ) / (Gz (1 - 2 RUE %2 REH 

2 	 2 	 2 	2 
- REE exp(-2 GzEp d ) - RHH exp(-2 GzHp d ) + RHH %1 REE 

2 	2 
+ RUE %1 REH - 2 RUE %1 REH RHH REE )) 

%1 := exp(-2 d (GzEp + GzHp )) 

%2 := exp(-d (GzEp + GzHp )) 
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11 
11 
11 
11 
11 
11 
0 %REE_composite=C11(2,2) 

pretty(C11(2,2)) 	 0 
0 

3 	 • 
(REE Gz - 2 REE Gz  RUE %2 REH - REE Gz exp( -2 GzEp d ) 

• 

2 	 3 	2 	 • 
- REE Gz RHH exp(-2 GzHp d ) + REE Gz RHH %1 	 0 , 

0 
2 	2 	2 

+ REE Gz  RUE %I REH - 2 REE Gz RUE %I REH RHH 	 0 
0 

+ GzEp exp(-2 GzHp d ) THE RHH TEH 	 0 
11 2 

- GzEp %1 THE RHH TEH REE - GzEp %I. THE RHH TEE REH REE 	11 
11 

+ GzEp %1 THE REH TEH RUE REE - GzEp %2 THE REH TEE 11 
2 	 0 

+ GzEp %1 THE TEE RUE REH + GzEp %2 TEE RHE TER 	 11 
11 
0 - GzEp %1 TEE TEH RUE  2  REH - GzEp %I TEE 

2
RHE REH RHH 

11 
+ GzEp %1 TEE REE TEH RUE RHH 	 0 

11 2 	 2 	2 	/ 
- GzEp exp(-2 GzEp d ) TEE REE + GzEp %1 TEE REE RHH ) / 	0 

/ 	11 
11 

2 
11 (Gz (I - 2  RUE %2 REH - REE exp(-2 GzEp d ) 
11 

2 	 2 	2 	2 	2 	 11 
- RHH exp(-2 GzHp d ) + RHH %1 REE + RHE %1 REH 11 
- 2  RUE %1 REH RHH REE )) 	 0 

11 
0/1 := exp( -2 d (GzEp + GzHp )) 11 
%2 := exp( -d (GzEp + GzHp )) 0 

11 
11 
01 
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%THH_composite=C21(1,1) 
pretty(C21(1,1)) 

2 	 2 	 2 	2 , 
- GzHp (-THH exp(-GzHp d ) + THH %2 RHE REH + THH %1 REE 

+ THH THE REH %2 RHH + THH THE REH %1 REE 

- TEH THH RHE %2 RHH - TEH THH RHE %1 REE 

2 
+ TEH THE exp(-GzEp d ) - TEH THE %2 RHH 

/ 
- TEH THE %1 RHE REH ) / (Gz (1 

/ 

2 
- 2 RHE exp(-d (GzEp + GzHp )) REH - REE exp( -2 GzEp d ) 

2 	 2 	 2 
- RHH exp( -2 GzHp d ) + RHH exp( -2 d (GzEp + GzHp )) REE 

2 	 2 
+ RHE exp(-2 d (GzEp + GzHp )) REH 

- 2 RHE exp(-2 d (GzEp + GzHp )) REH RHH REE )) 

%1 := exp(-d (GzHp + 2 GzEp )) 

%2 := exp(-d (GzEp + 2 GzHp )) 
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• 

%THE_composite=C21(1,2) 
pretty(C21(1,2)) 

GzHp (THE THH exp(-GzHp d ) - THE THH %2 RHE REH 

. 2 	2 	 2 
- THE THH %1 REE - THE REH %2 RHH - THE REH %1 REE 

+ TEE THH RHE %2 RHH + TEE THH RHE %1 REE 

2 
- THE TEE exp(-GzEp d ) + TEE THE %2 RHH 

+ TEE THE %1 RHE REH ) / (Gz (1 

2 
- 2 RHE exp(-d (GzEp + GzHp )) REH - REE exp(-2 GzEp d ) 

2 	 2 	 2 
- RHH exp(-2 GzHp d ) + RHH exp(-2 d (GzEp + GzHp )) REE 

2 	 2 
+ RHE exp( -2 d (GzEp + GzHp )) REH 

- 2 RHE exp(-2 d (GzEp + GzHp )) REH RHH REE )) 

%1 := exp(-d (GzHp + 2 GzEp )) 

%2 := exp(-d (GzEp + 2 GzHp )) 
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%TEH_composite=C21(2,1) 
pretty(C21(2,1)) 

GzEp (-THH TEH exp(-GzHp d ) + THH TEH %2 RHE REH 

2 
+ THH TEH %I. REE + THH TEE REH %2 RHH 

2 	 2 
+ THH TEE REH %1 REE - TEH RHE %2 RHH - TEH RHE %1 REE 

2 
+ TEH TEE exp(-GzEp d ) - TEH TEE %2 RHH 

- TEH TEE %1 RHE REH ) / (Gz (1 

2 
- 2 RHE exp(-d (GzEp + GzHp )) REH - REE exp( -2 GzEp d ) 

2 	 2 	 2 
- RHH exp(-2 GzHp d ) + RHH exp(-2 d (GzEp + GzHp )) REE 

2 	 2 
+ RUE exp(-2 d (GzEp + GzHp )) REH 

- 2  RUE exp(-2 d (GzEp + GzHp )) REH RHH REE )) 

%1 := exp(-d (GzHp + 2 GzEp )) 

%2 := exp(-d (GzEp + 2 GzHp )) 
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S 
lb 
S 
S 

S 
0 1  %TEE_composite=C21(2,2) 

pretty(C21(2,2)) 	 • • 
- GzEp (THE TEH exp(-GzHp d ) - THE TEH %2 RHE REH 	 lb 

lb 2 
- THE TEH %1 REE - THE TEE REH %2 RHH 	 lb 

S 
- THE TEE REH %1 REE + TEE TEH RHE %2 RHH lb 

2 	 2 	2 	lb 
+ TEE TEH RHE %1 REE - TEE exp(-GzEp d ) + TEE %2 RHH 

	

	 lb 
111 

2 
11› + TEE %1 RHE REH ) / (Gz (1 
S 
S 

2 lb - 2 RHE exp( -d (GzEp + GzHp )) REH - REE exp( -2 GzEp d ) 

2 	 2 	 2 	lb 
- RHH exp( -2 GzHp d ) + RHH exp( -2 d (GzEp + GzHp )) REE 	lb 

lb 2 	 2 
+ RHE exp( -2 d (GzEp + GzHp )) REH 	 lb 

S 
- 2 RHE exp( -2 d (GzEp + GzHp )) REH RHH REE )) lb 

lb := exp( -d (GzHp 	2 GzEp )) 
lb 

%2 := exp(-d (GzEp + 2 GzHp )) 111 
S 
S 
S 

• 
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• • • • • • • • 
• 
• Appendix G 
O  

• Estimation of the uncertainty 
• in m.easuring the direct ray due 

to the presence of the reflected 
• ray from the mounting plate 

• 
Figure G.1 depicts the phenomenon of the reflection off the mounting plate, ' • 	according to the principle of geometrical optics, i.e. each ray is assumed to 

• be a beam of infinitesimal widthl . For simplicity, both the transmitter and •• 	the receiver are taken to be dimensionless as if they were two points in free 

•
space. Consequently, we can assume that only one specular reflected ray 
comes to perturb the measurement of the direct ray. The power radiation 

• pattern for the receiving horn is approximated as a squared cosine function 

• with a single beam of about 600  width between the two -3 dB points, i.e. 

• dB (') 	9.05 — 20 logio  (cos(1.5e)) where '0° refers to the e value in 
degrees, and 9.05 refers to the gain (in dB) measured at e = 0 0 . • 

The two limit cases are: 

II • • 1.  9 0° 	> c = 0°; 
• 2.  9  = 90° 	H t an(c) = 	>  c=  arctan ( 21 ). 
•• 1 When the array is small, the diffraction of a plane wave around the edges of the array 

causes the actual value of the reflection angle to be slightly off the specular value [83]. 
This effect was neglected here. 

• 
• 
• 
• 
• 244 
• 



c° 
2(-0.0013) 

1.3251 	( 
1 

1.3251 

• •  •  • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • 
• • • • • 
• • 

From simple geometrical considerations, one obtains: 

L 	1 R2 +  H2 	2RH  
cos2 (c) 	cos(c)  cos(180°  — (0 + c)) 

= \I  R2+  H2 	2RH- 
cos2(c) + c3s(c)cos(0 

H2 
- R2  + L2  - 2RL cos(0 — cos2 (c) 

After sustituting for L and carrying out some algebraic manipulations 
valid for cos(c) 0, one obtains the following polynomial in X = cos(0 c): 

[(R2  cos2 (c) ± H 2  + 2H cos(c)X) (sin2  (2c) + cos (4c)X 2) 

— (R2  cos2 (c) + H2X2  + 2RH cos(c)X)] 2 
 — [R2  cos2 (c) + H2  + 2RH cos(c)X] 2  sin2 (c)(X 2  — X4) = 0 

Since the degree of this polynomial exceeds four, its solution cannot be 
obtained in closed form. However, a numerical solution is possible whereby 
X can be obtained for a given value of c provided that the correct solution is 
carefully selected from the multiple values at which the polynomial goes to 
zero. This selection is made from the knowledge that the solution is mono-
tonic and from the knowledge of the two limit cases presented above. The 
results for the case R = 3.35 m and H = 0.50 m are shown in Figures G.2 and 
0.3. The solution can be readily approximated with a quadratic polynomial 
0° = —0.0013(c0 ) 2  + 1.3251c° where 00  and c° refer to the values of 0 and c 
in degrees. A constraint of zero offset was applied to the regression process 
in order to insure that 0 = 00  when c = 0°. This polynomial can be readily 
inverted to obtain the knowledge of c as a function of 0. One obtains: 

4(-0.0013) 
1 + 

 (1.3251)2 
 0°) = 	509.6538 (1 — -V1 — 0.0030 61°) 

(0.2) 

Figure G.4 shows the steps involved in estimating the relative difference in 
magnitude and phase between the phasor corresponding to the reflected ray 
and the phasor corresponding to the direct ray. Since the measurement result 
corresponds to the vectorial addition of these two phasors, the measurement 
error introduced by the presence of the reflected ray could be estimated if 
we had the knowledge of the magnitude and phase values of each phasor. 
However, we only have the knowledge of the result of the vectorial addition 
since, by definition, the radiation pattern of the transmitter which affects 
both the direct and the reflected rays is unknown. 

245 

and: 

(G.1) 



V2 = 	  
( CO() 	L  (R 	clios(c) 
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In the absence of the knowledge of the phase value of each phasor, the 
result of the vectorial addition can range from a minimum value 1Elmin 
I ED1 IERI = IEDI(1 — le ) to a maximum value 1E1mam = IED1+ IERI = 
1ED 1(1 J - L4) where 1E1 refers to the magnitude of the electric field for the IED I 
desired polarization at the receiving horn, and the subscripts D and R refer 
to the direct and the reflected rays, respectively. Note that forming the ratio: 

IERI  
l E lmas 	IEDI  
IEImin 	1 

results in an expression equivalent to that for the VSWR of the transmission 
line theory. 

Now, we have J --M ve(180 0  — c)/P(0) where P is the radiated power IED I 
value (on a linear scale) that would be measured if there were no reflection, 
and 7) is a fractional constant that takes into account all the additional losses 
that the reflected ray incurs over the direct ray. These losses are: 

• the loss due to the reflection coefficient of the mounting plate, i.e. 

/11 	R(c); 

• the excess propagation loss due to the excess propagation length, i.e. 

H 2 	2H 
cos(c) ) 

+ 

R cos(c) cos(G c)  

• the loss due to the fact that the reflected ray is incident at  O  =  (9 — 
c) rather than 	= 0 on the radiation pattern of the horn: 7)3  = 
cos(1.5(0° —  c0)) .  

thus,  u  = v1 /f2 v3 . Hence, the knowledge of P(180° — c)/P(0) yields the 
knowledge of 1ER VIED I which represents the fractional error of the measure-
ment. Now, writing 

P (1800 
 — 	 v .VP( 18°0  e)  

P(0) 	 .Vp(0) 

suggests that  mie  thinks as 1ED1 = /P(9)  and IER1 = ve(180° — c). 
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(  JER I  _ 
1 E'D 	uN 

P(180°  —  
P(0) 	R3 j\ 

• • • • • • • • • • • • • • 
•  • • • • • • • • • • • • • • • • • • 
• • • • • • • • • 

One approximate way to obtain the knowledge of the ratio P(180° — 
c)/P(0) is to assume that P(0) and P(180° —c) are known from two separate 
measurements, i.e. P(0) = P(01) and P(180° — = P(02), even though 
each measurement value, P(01) and p(02 ), is corrupted by the presence of a 
reflected ray. This leads to having: 

ET, 
ED 2  P(02) 	(leD1)2 	

(E(1+ D ) 

7 (01) Val (ED( 1+ER )) ED 
(G.3) 

However, since 02  exceeds 900 , the mounting plate would lie between the 
transmitter and the receiving horn. This situation must be avoided by merely 
re-mounting the transmitter onto the plate after giving the transmitter an 
additional half-turn rotation about the single point representing the trans-
mitter. This single point is the origin of the reference coordinate system 
with respect to which the radiation pattern of the transmitter is being mea-
sured. This point lies at the intersection of the rotation axis for the azimuth 
positioner and the rotation axis for the roll positioner. From Figure G.5, it 
becomes apparent that the reflection angle value for the second measurement 
e is generally different from that for the first measurement c. The value for e 
is obtained from Equation (G.2) with 0 replaced by c. From the knowledge 
of the values for c and e, we compute the corresponding value for v and the 
corresponding fractional error for the second measurement. Therefore, one 
obtains: 

(IER I  

=(ii) 

 

(IERfl\  2 (02  \ 

PP(c) 

where P(c) for the second measurement corresponds to P(180° — c) for 
the first measurement as a result of the half-turn rotation of the transmit-
ter for the second measurement. Now,  the suggestion that one thinks as 
1ED  = P(0) and IER1 = v,VP(180° — c) leads to the concept that ((ER1)1 = 

(v)rIP(180° — c) (v)i\ P(c) = (v)1(IED()2. Repeating the process for es-
timating (i E R1)2 from a third measurement leads to (1 E RI) 2 = (V) 2 (1 E DI) 3. 
If this process is carried out repeatedly, it leads to (I E R 1)k -= (V)k (I E DI) k +1 • 
With every successive iteration, the reflection angle value becomes smaller 

247 

P(180° — 
P(0) 

(G.4) 

(G.5) 



P(e)  	 
P(0) LEM 

(G.6) 

(1E4 
IER 1)1. 

(G.7) 

ED 2 
ED(1+ ) )

ER  

ED. 1  ED(i+ER) )  

(11+ EE  DR  1) 2 

 (114-kil) 
rJ 

(IED D2  
(IED D1 

(G.8) 
- IEDI ) 
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until it reaches zero in which case the direct and the reflected rays can no 
longer be separated. The process would also stop if (O h  became so small 
that (IER I) k  was truly small enough to be neglected. However, instead of 
repeating the process many times without guarantee that the process would 
terminate successfully, one can proceed as follows. Substitute the value of 
P(c) in Equation (G.5) for the value of P(180° — c) in Equation (G.4) to 
obtain: 

( i EEDRi ) , = 

Th.en, substitute .1P(e) = (IED1)3 and .VP(0) = ED D i  in Equation (G.6) 
to obtain: 

(v)i(v), ( IED1 )3  
1 1-'1)1 )2 	 (I ED Di 

and let us estimate the effect that the error on each measurement has 
onto the desired quantity (JEL-4 ) 1  by making allowance for these errors as yet 

IED I 
unknown. From Equation (G.3), one obtains: 

Assuming that we do  not  have the knowledge of the phase values for 
ER and ED, the magnitude for (P. + it1) 1  can range from 1. — (e) , to 

1+ 	I and similarly, the magnitude for (11 + 	l)2  can range from 
IED   

1- 

 ( 2 tO 1+ ( 	IERI  . Therefore, the maximum error for (i - 	1 2-4 ) in Equa- 
IEDI 	 1ED I 2 	 1ED 

tion (G.8) is that which maximizes the numerator while also minimizing the 
denominator. Similarly, the minimum enor for ( le, in Equation (G.8) is 
that which minimizes the numerator while also maximizing the denominator. 
For the case of the maximum error, one obtains: 



n••nJ 

IED I 

(G.11) 

(G.12)  

• • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • •  • • • • • • • • • • 

n, 1\  1+ ffer,R I  
rD112 	 

lIEDDi 
1E.,01) 1  

(IEDD2 (IEDI)/ +(v)1(02(1ED1)2(1EDD3  (IEDI 
(IEDN  

\IEDi)i 

where Equation (0 .7) was used under the assumption that the reflected 
and the directed rays could still be separated on the third measurement. 
Collecting the terms leads to the following polynomial in the variable V = 
( ELEj.  . 

(IEDDi 	 (IEDDi 	
0 	(G.10) 

the solution of which is given by: 

1 —U2  + 2U + 12t — 4 
V = 

DD2  t = 
(IE 
GEDD3  = 
(IEDDi 

U= (+108(v)i(v)2tu — 12f3-  tP 36f — 8) 1/3  

P = 127 (v)FvAtu2  18(v) i (v) 2tu 4t2  — t — 4(v) i (v) 2u 

Similarly, for the case of the minimum error, one obtains: 

1 GEERD 

(ÎEERDDi 	(I EEDA21 	 21) 2  

(1-319 p) 21 _(01(,)2 (IEDOD(111)  D  

( it)i (1-e I 

IEDI )i 
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(G.9) 

—1/ 3  + V2  M ID R 2  v (0 1 (02 (1 E  Do1)2(1 ,E,9D1)3  

where: 
6 



• 
•

which leads to the following polynomial: 

+v3+v2 (IED1)2 v±(,),(v)2 (IED1)2(1 E DI) 3 	0 	(G.13) 
• (IED1), 	(LEA 

• the solution of which is given by: 

Ilb 	 v  = w2 - 2W +  12t + 4  
(0.14 ) 

• 6 
where: 

W = (-108(v)i(v) 2 tu + 121à.  tQ — 36t — 8) 1/3  

• Q = 127(v)EvAtu 2  +18(01(i/)2tu — 4t2  — t + 4(v) i (v) 2u 

• Although t = ( I EDI)2  and u = ( I EDI )3  are still unknown, we can approx-(1EDDi 	(IEDDi 
lb imate them as ( l eD 1)2  and ( l eD 1)3  res6ective1v in a way similar to what we 

•
(IEDDi 	(IEDDi ' 

did in Equation (0 .3). The advantage in computing (e) , from Equa- 

• tions (0.11) and (0 .14) rather than Equation (G.3) is two-fold: 

111 
• 1. Equations (0.11) and (0 .14) with t and u approximated as reDA 2i  and 

lb eDI )3  respectively, yield an approximate knowledge of the upper and (leDDi 
•

the lower bounds for the fractional error, respectively; 

• 2. the level of approximation involved in taking t = (IEEDD1) 2  '''' (IEDI)2 in  
•

Equations (G.11) and (G.14) is smaller than that involved in computing 
directly MI-) r--. ,- 	since V depends on (IEDI)2  or  (leD1)2(leD1)3  

e IEDI 	 in  1 	GEDDi. 	(IEDo. 
•

the power 2/3 or less, whereas GEEDRII ) •,,,-3 .(-112 . depends on 	in 1 	(IEDDi  
(leD 1)2  

the power 3/3. e 
a 

From now on, we will assume that Equations (G.11) and (G.14) have t 
411 	 and u approximated as fn.  and fie respectively. Therefore, one can 
C 	 estimate the fractional error on each measurement ( 1- 11  in terms of an u ' ) 	 p- 
(

IED1 k 
' per and a lower bound given by Equations (0.11) and (G.14), respectively, III 	from the knowledge of three measurements (E D)  k, (SD)  k+1 and (SD ) k+2  cor- 

• responding, respectively, to angles 0, (180 0  — e) and e defined with respect to 

•
the radiation pattern of the transmitter. This process could be generalized 
to include more than three measurements but the corresponding polynomial 

• might become unwieldy and thus, this generalization will not be attempted 

• here. 

• 
• 
•
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The true value corresponding to a measurement can thus range from a 
minimum value I El min, = IED 1[1 - (MED1 ) nrax] to a maximum value I.E1,,a  = 

1 E D 1 [1 + (e) r n  ] . However, this estimate is with respect to the true value 
1ED I rather than awxith respect to the measured value leD j. Since we do not 
know the true value, we must assume the worst case situation whereby the 
true and the mea,sured values are separated by the maximum uncertainty ( LsAn 

IEDI) 	. Therefore, the true value IED1 lies in the range of IED1± ( 1. - 
IEDI) max 

with ( Ia) 	given by Equation (G.11) where t and u are approximated as IED   
11- 1-2- and n11-h res t .  1 A more liberal estimation of the error could (leD1)1 	(Kai ' 	Pec lve  Y* 
use the geometrical mean of (-1--e1  ) IEDI min 

and 0-. 1[,, 
I—DI ) max 

instead of just the 

The corresponding true value IEDI would then 

lie in the range of leD  I ± \/(ilt) .min  (.(t) inn  with (tD inin  and (e). 
given by Equations (G.14) and (0.11), respectively, where t and u are again 
approximated as ree,  and reDI  , respectively. 
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Figure G.1: The phenomenon of reflection off the mounting plate, according 
to the principle of geometrical optics. For simplicity, the transmitter and the 
receiver are taken to be dimensionless so that we can assume that only one 
specular reflected ray comes to perturb the measurement of the direct ray. 
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Contours for polynomial values of 0.001, 0.01 and 0.1 when R=3.35m and H=0.50m 
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Figure G.2: The contour levels from the polynomial evaluation in Equa-
tion (G.1) for values of 0.001, 0.01 and 0.1 for the case R = 3.35 m and 
H = 0.50 m. The correct solution is the branch that satisfies the two limit 
cases: 0 = 00 for c = 00 and 0 = 90° for c 73.4°, corresponding to 
cos(0 + = +1 and cos(0 + 7,-, —0.96, respectively. 
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Figure 0 .3: The plot of 0 as a function of c for the correct branch of Fig-
ure G.2. The plot shows also the results from a linear or a quadratic regres-
sion with a zero offset constraint. 
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Figure G.4: The diagram showing the steps for estimating the effect of the 
specular reflected ray onto the measurement of the direct ray for the case 
R 3.35 m and H = 0.50 m. 
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Figure G.5: Comparison between the setup geometry for measuring P(01) = 
P(0) and P(02 ) = P(180° — c). 








