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Abstract

This report presents the design and the analysis of a mounting plate for
holding an omnidirectional transmitter during radiation pattern measure-
ment. The design achieves a smooth variation of the complex permittivity
profile through the plate by means of boring circular cones from the front
and the back surfaces of a lossy dielectric slab in a way that achieves near-
optimum packing of the cones on both surfaces. The resulting geometry is
reminiscent of a honeycomb structure, and is modeled as a uniaxial medium
with the optic axis parallel to the normal of the plate. A modified scatter-
ing matrix propagator technique was developed to predict the reflection and
the transmission coefficients for both the TE and TM polarizations in a way
that takes into account explicitly both the effect of the non-uniform wave
propagation incurred by the presence of material losses, and the effect of the
longitudinal anisotropy incurred by the conical inclusions and extrusions of
the plate. A choice of parameters that yields a predicted reflection level of
less than about -22 dB over an angular range of 0° to about 50° is presented.
Also included is an analysis predicting the error in measuring the radiation
pattern in the presence of a reflection from the mounting plate.
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Chapter 1

| Introduction

Figure 1.1 presents schematically the setup for measuring the far-field radi-
ation pattern of an omnidirectional source along conical cuts of constant 6
angular values. The radiating device under test is spun about a horizontal
z axis by the roll positioner for scanning the ¢ angular range, and about
a vertical axis by the azimuth positioner for scanning the § angular range.
This process, however, requires that the mounting plate for the device un-
der test present a small reflection coefficient in order to avoid corrupting the
measurement.

Conceptually, one easy way to achieve a low reflection level from a plate
for various incidence angles and for both TE and TM polarizations might
be to use the Fabry-Perrot resonance within a single dielectric slab. The
resonance frequencies are given by (2k,H — £SH — £SL) = 2nm where n is an
integer, H is the thickness of the uniform homogeneous isotropic dielectric
slab of relative permittivity ., Si, is the output reflection coefficient of
the air-dielectric interface at the input face of the slab, and /S is the
input reflection coefficient of the dielectric-air interface at the output face
of the slab. Owing to the fact that £SH = /S, = 0 for both TE and
TM polarizations, for any 6* and for any &,, the expression! for H becomes

H = |n|(X,/2)/+/e, — sin® §% for both TE and TM polarizations. Thus, when
er >>> sin® 0!, H becomes nearly independent of 6. The integer n is chosen
to obtain a value of H that corresponds to a plate that is thick enough to

'Rigorously, this is true only if the dielectric plate is of infinite size in the transverse di-
mensions. Otherwise, diffraction at the édge of a finite-size plate would cause the diffracted
waves to modify the overall scattered field of the plate. However, if the finite-size plate is
large enough, the overall scattered field would be dominated by the bulk response rather
than the edge response. Since the resonance frequencies are not dependent on specific
values of |S{{| and |S%,| (although the nulls at resonance frequencies are usually deeper
when |S{{| = |S%,|), the loss due to diffraction at the edge of the plate might be taken
into account as part of Sff and Si,.




ensure the required stiffness. This design approach, however, requires very
tight tolerances on the flatness and the parallelism of the interfaces, and
on the thickness of the plate specially when €, is large. Furthermore, the
frequency response has an extremely narrow band because the resonance is
very sharp.

Another way to achieve a low reflection level from a plate would be to re-
alize the Uniaxial Perfectly Matched Layer (UPML) that is used in the Finite
Difference Time Domain (FDTD) technique to truncate the computational
space without incurring reflections from that truncation. According to this
concept (see Reference [1]), a Perfect Electrical Conductor (PEC) plate could
have a very low level of reflection for any incidence angle and polarization if
the PEC surface were covered with the right combination of uniaxial lossy
electric and uniaxial lossy magnetic material such that the wave impedance
would be that of free space at the input face of the UPML. A wave incident
at the input face of the UPML would then be transmitted into the UPML
without any reflection, and be gradually absorbed as it propagated within the
UPML because of the lossy electric and lossy magnetic media of the UPML.
This approach, however, leads to designs that are not physically realizable
because the values of the electric and the magnetic conductivities in the di-
rection normal to the absorbing plane are negative, which situation implies
the existence of dependent sources within the UPML (see Reference [2]), and
because some relative values of permittivity and/or permeability are smaller
than 1.

Yet another way to achieve a low reflection level from a plate is to make
the plate from a dielectric structure that presents to an incident uniform
plane wave propagating in free space, a very gradual variation of the effec-
tive complex permittivity as the wave propagates through the mounting plate
(see References [3, 54, 55, 56]). This is the approach that is presented in this
report. The design for a large mounting plate (see Figures 1.2 and 1.3) was
made of a lossy homogeneous dielectric slab that has been machined in the
shape of a honeycomb-like plate in order to achieve a specific permittivity
profile that provides a low level of reflection over a broad range of incidence
angles while also providing mechanical rigidity for mounting a large cylindri-
cal styrofoam jig (see Figure 1.4). The tower to which the mounting plate is
attached has been constructed without the use of any metallic part in order
to minimize the presence of reflections from the tower itself.

The precise determination of the reflection coefficient of the plate requires
that the losses of the dielectric be taken into account. The presence of losses
inside a propagation medium introduces an increased complexity in the prop-
agation mechanism as a result of the plane waves being no longer necessarily
uniform?.

2There are also other complications introduced by the presence of losses. They are:



Chapter 2 presents the Adler-Chu-Fano formulation [4] for treating non-
uniform plane waves by taking the propagation vector to be complex-valued
as ¥ = (@ + 7B), while keeping all propagation angles to be real-valued.
Within the Adler-Chu-Fano formulation, this report not only presents a de-
velopment that is different from that given by Radcliff [6] and Holmes [8] but
it also points out a fundamental error that Radcliff made in attempting to
generalize Holme’s expression from the case of the incident plane wave being
uniform to the case of the incident plane wave being non-uniform.

Once the expressions for the propagation constants and the transmission
angles are known, the Generalized Scattering Matrix (GSM) for an interface
between two lossy media can be written in terms of the generalized Fres-
nel equations, as presented in Chapter 3. These equations are obtained by
generalizing, in the ordinary Fresnel equations that apply at the interface
between two lossless media, the expressions of the wave impedances for the
TE and the TM polarizations so as to account for the fact that the propaga-
tion constant and the permittivity of lossy media are complex-valued. The
composite GSM for a cascade of interfaces separated by homogeneous lossy
regions can then be computed most expediently by using not the transmission

1. the fields B or H might no longer be perpendicular to the propagation vector G

of the phase wavefront according to References [75, p. 706] and [84, p. 502] but
Reference [4, p. 422] shows that E for the TME*P) mode, and H for the TEEXA)
mode, are still perpendicular to 5,

2. the Poynting vector no longer lies in the direction of G (see References [4, pp. 424~
425] and [7, pp. 135-142]);

3. the charge density of free charges pg.qe in the medium is no longer zero such that
the decay of the charge density now presents a non-zero value of relaxation time
(see Reference [9, p. 424]);

4. E or H becomes elliptically polarized (see Reference [75, p. 706]) and the angle
between them varies in time over a time period even for a uniform plane wave (see
References [4, pp. 411-427] and [77] and [7, pp. 140-141]).

However, the process of taking into account the conductivity ¢ by means of taking the
permittivity € to become complex-valued effectively replaces the term Jfree = ok by 0

in the curl equation for H, and replaces, via the continuity equation, the charge density
Pfree by 0 in the divergence equatlon for D. This leads to (fy D) =0= (- H) without
implying that 7 is orthogonal to D or H because 7, D and H have now become complex-
valued vectors whose real and imaginary vectors point, in general, in different directions
(see Reference [4, p. 403]).

In isotropic media, the presence of losses does not prohibit the decomposition of a wave
into TE¥ and TM¥ waves where @& = (& x ) is the direction for which the fields have no
spatial variation. Hence, in general, H,, = 0 for TM" waves, and E, = 0 for TE* wayves,
for a total of five non-zero field components for each mode. Under appropriate rotation
of the system of coordinates, these five non-zero field components can often be reduced to
only three non-zero field components, with £ = 4 for TMY waves, and H = 4 for TE*
waves, such that the two modes are decoupled (see References [4, pp. 422-423], [85, p. 31,
problem 1.3], [76, p. 306] and [77, p. 584]). In such a case, these modes will be referred to
as pure modes. Otherwise, they will be referred to as hybrid modes.
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matrices but the scattering matrix propagator technique presented in Refer-

- ences [10, 11, 12] but corrected as per [13, p. 46]. The reflection coefficient

for the mounting plate is obtained as the Si; element of the composite GSM
for the cascade. The use of the GSM stands in contrast with the invariant
imbedding formulation [5, 19, 20, 21] which is a recursive scheme for treating
a planar stratified structure®.

In Chapter 3, the continuous variation of the complex permittivity through
the mounting plate is approximated by means of modelling the plate as a
cascade of thin homogeneous layers of constant complex permittivity. In
practice, this variation of the permittivity is realized by varying the mixture
of free space and dielectric material in the longitudinal direction, i.e. the
direction normal to the plate. This process results in the complex effective
permittivity having a different value in the transverse* directions than in the
longitudinal direction, and thus the plate becomes a uniaxial medium with
the optic axis lying in the longitudinal direction. For such a case, the two
eigenwaves (the ordinary and the extraordinary waves) propagate separately
through the entire plate without inter-coupling, and thus, the GSM of the
plate can be obtained for each eigenwave separately.

Chapter 4 presents the characterization of the complex permittivity pro-
file of the mounting plate as a uniaxial medium. Many references exist on
the topic of the propagation in a uniaxial or biaxial medium, and the wave
phenomenon at the interface between isotropic and uniaxial or biaxial me-
dia. A particularly general treatment that takes into account material losses
and optical activity (i.e. the slab can be non-reciprocal), and is based on
the tangential electric and magnetic field components rather than the eigen-

~ waves is given in References [22, 23, 24, 25, 26, 27] but the approach results

in the existence of some coupling between the TE and TM waves at each
interface whereas no such coupling arises between the two eigenwaves. Other
treatments, based on the eigenwaves as in Reference [28], or on a TEY and
TMY decomposition (where § was the normal to the incidence plane) as in
References [61, 30, 29], dealt with the case of the optic axis being parallel
to the interfaces in order to address the applications of polarizers. Refer-
ences [29] and [30] also took into account material losses. Wait [31] and
Gedney [1, pp. 285-288] treated in the same way the case of lossy uniaxial

3In this author’s opinion, the expressions given in Reference [21, p. 234-236] are at odds
with those given in Reference [20, p. 395], which expressions contain also an error, albeit
a small one (Bp41 = 0 should read Gpq1 = 0).

4There are two different references to which the words ” transverse” and ” longitudinal”
can refer in this report:

1. interface between two different media;
2. optic axis of a uniaxial medium.

Unless mentioned otherwise, the terminology of transverse and longitudinal that is used
in this report, is synonymous with tangential and normal to the interface, respectively.
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stratified media with optic axis perpendicular to the interfaces. Their treat-
ment is simpler than the one presented here but it does not shed much light
onto the physics of the phenomenon. Wait’s expressions as given in Refer-
ence [31, p. 98] will be used for comparison. Finally, Chen [7] treated by a
coordinate-free approach, the general case of the planar interface between a
lossless isotropic medium and a lossless uniaxial medium whose optic axis
was arbitrarily oriented.

Chapter 5 presents the design of the mounting plate in terms of the choice

of the design parameters, the resulting performance and a sensitivity analysis.

showing the performance variation due to the variation of the design param-
eters. Chapter 6 presents a brief conclusion and Chapter 7 presents the list
of references. Appendix A presents the equivalence between the model based
on the instantaneous multiple reflections and the model based on the steady
state voltage travelling waves, for a system of two cascaded scattering inter-
faces separated by a uniform homogeneous layer. This development proves
the equivalence between Adams’ invariant imbedding technique presented in
Reference [19, pp. 9-23], and Wait’s recursive technique presented in Refer-
ence [5, pp. 135,151]. Appendix B presents the mathematical development
for the equivalence between a non-uniform plane wave with real-valued prop-
agation angles and a uniform plane wave with complex-valued propagation
angles. This development can be used to compare the results given by the
method developed herein and the results given by Wait’s method in treat-
ing the interface between two lossy uniaxial media. Appendix C presents
a comparison between Holme’s method and the method developed herein
- for treating the interface between two lossy media. Appendix D presents
the development of the expression for the effective relative permittivity as
seen by the extraordinary wave propagating in a uniaxial lossy half-space,
as well as some generalization to a biaxial lossy half-space with arbitrarily
oriented dielectric axes. Appendix E presents the development for the dis-
persion equation in a lossy biaxial medium. Appendix F presents the Matlab
program to obtain the GSM for a free-standing isotropic slab. Appendix G
presents a scheme for estimating the error in measuring the radiation pattern
of the transmitter under test due to the reflection from the mounting plate.
This scheme can be used to compute an error bar for every angle at which
measurement was carried out.
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Figure 1.1: Geometry of a test setup for measuring the far field along conical
cuts of constant # values. For convenience of representation, the transmitter
is shown here as being mounted with three struts rather than a dielectric
styrofoam jig.



Figure 1.2: Front view of the mounting plate. The two handles are not used
during measurement.




Figure 1.3: Rear view of the mounting plate.




Figure 1.4: View of the fiberglass tower, the mounting plate and the styro-
foam jig that encases the transmitter under test.




Chapter 2

Wave phenomena at the planar
interface of two isotropic
homogeneous and possibly
lossy media

This section presents a correction and a generalization of the solution pre-
sented in References [6, 21] for the effective propagation constants of non-
uniform plane waves at the planar interface of two isotropic homogeneous
possibly lossy media of infinite transverse dimensions.

2.1 Introduction

With the classical formulation, media losses are taken into account by ana-
lytical continuation of the lossless expressions by allowing the propagation
vector to become complex-valued. The application of Snell’s law of refraction
at a planar interface then produces a complex value for the transmission an-
gle. Since the plane waves propagate in straight lines between parallel planar
interfaces, the incidence angle at the next interface in a multilayer structure
becomes also complex-valued and hence, in general, Snell’s law of refraction
becomes written in terms of complex values for both the incidence and the
transmission angles. More physically meaningful, however, is the Adler-Chu-
Fano formulation where all angles remain real-valued but the plane wave is
allowed to become non-uniform, i.e. the amplitude wavefront is given its
own propagation constant & separate from the phase wavefront propagation
constant §. Incidentally, an equivalence between these two formulations is
presented herein as part of the validation process for the new results also
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presented herein.

The problem of a planar interface between two lossy half-spaces has been
treated with the Adler-Chu-Fano formulation by Holmes [8] for the case where
the incident plane wave was uniform, and by Radcliff [6] for the more gen-
eral case where the incident plane wave was non-uniform but the vectors a7,
ﬁ_i and the unit vector normal to the interface Z were coplanar. However,
Radcliff in generalizing Holmes’ expressions used inappropriately the intrin-
sic propagation constants a,; and [, instead of the effective propagation
constants o and f; for the incidence medium when carrying out the phase
matching at the interface.

This chapter consists of four sections. The first section presents the Adler-
Chu-Fano formulation and the symbolism used herein. The second section
presents the correction to Radcliff’s treatment. The third section presents
the treatment of the general case where the incidence propagation vectors
are not necessarily coplanar. The fourth section presents the results for
both the coplanar case and the general case, and they include the case of
negative values of p which case was not treated by Radcliff nor Holmes. The
results for the coplanar case are obtained by setting 1 = 0 in the expressions
for the general case. These coplanar results are then compared with the
results for the classical formulation by invoking an equivalence between the
two formulations. Results are then presented for cases with ¢ # 0. Since
the general case cannot be obtained as the mere extension of Snell’s law of
refraction from real to complex propagation angles, the results for the general
case are presented without any comparison.

2.2 Adler-Chu-Fano formulation

Herein, the e*/** time harmonic dependency is implicitly assumed such that
the magnitude of a non-uniform plane wave progagating with the complex
propagation vector -+ is written as e~77. For an isotropic homogeneous lossy
medium, the following equations apply (see Reference [4, equations (8.5-8.6),
p. 403]):

J=a-+3if (2.1)
¥-7="% (2:2)
Yo = 0o + JBo = JWA/1o€rEe = JKor/Er (23)

where the parameters a,, [, and v, are, respectively, the intrinsic propagation
constants for the attenuation and the phase wavefronts, and the intrinsic
complex propagation constant for the wave propagating in the lossy medium.
In contrast, o and @ are the effective propagation constants corresponding
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to a, and f,, respectively. We note, however, that u,, €, and k, refer to
intrinsic variables of free space, not those of the lossy medium. The relative
permittivity is generally a complex number given by:

er=ce.(1 —jtan(f)) =€, — j ( Z ) (2.4)

We,

where €. > 1, tan(6) = o/(weLe,), ¢ > 0,.w = 2nf, |@ = a, |6] = B and
€, are all real-valued. The intrinsic propagation constants are obtained from
Equations (2.3) and (2.4) as [4, Equation (8.9), p. 404]:

' w\/uosos; o \?
Qo = T\ \ 1 -+ (w505;> —1 (25)

7
w\/ o€ oy

b= = 5\ L (w;€;>2+1 (2.6)

We note that « is not necessarily zero in a lossless medium (o, = 0),
and that 0 is not necessarily equal to (, unless the plane wave is uniform.
In fact, the case for @ = @, and § = [, occurs only for a uniform plane
wave, i.e. p =0 (see Reference [4, p. 410]), in either lossless or lossy media.
Thus, a # 0 does not imply that the plane wave is non-uniform nor that the
medium is lossy. However, oo = 0 does imply that the plane wave is uniform
and that the medium is lossless. Moreover, in general, it is not possible to
relate o and [ to some effective permittivity sfff the same way that we can
relate o, and G, to some intrinsic permittivity e,. The reason is that although
we can write v, = &, + jfo = jkoy/Er as in Equation (2.3), we cannot write

v=a+jl = jko\/s,?ff unless & and £ point in the same direction, i.e. unless
the plane wave is uniform.

Performing! 7 -7 and using Equations (2.1-2.3), then separating real and
imaginary parts produces the following two expressions:

of —f*=a; - 6 (2.7)

—

1For a general complex-valued vector ¥ = (& + j [3), two different definitions exist for
v2. In References [80, 81], v? is defined as v% = ¥ - * = o + (2 and is a real-valued
scalar quantity that represents the square of the magnitude of the vector. However, in
Reference [4], 42 is defined as v2 = 7 - 7 = (o2 — 8%) + §(26 - §) and is a complex-valued
scalar quantity. Since v, in Equation (2.3) is 2 complex-valued scalar quantity, v2 is clearly
a complex-valued scalar quantity and we need to use the latter definition for v? as per

Equation (2.2).

12



af cos(p) = aofo (2.8)

where p is the acute (i.e. interior) angle between & and 3. All constants
a,, B,, a and B are taken to be positive real values. From Equations (2.7)
and (2.8), one obtains the effective propagation constants as follows:

i \/133 — g 20,3 2 _
= T ((ﬁz ~a) cos(m) : (29)
. \/,33 —al 20,0, 2
p=t \ 1+ ((ﬁg—ag)cos(p)> +1 (2.10)

Equations (2.9) and (2.10) are not valid for a non-uniform plane wave
in a lossless medium because the indetermination «,/cos(p) = 0/0 arises
since both @, = 0 and cos(p) = 0 for a non-uniform plane wave in a lossless
medium (see Reference [4, p. 426]). The equations are valid for any other
case. From Equations (2.5) and (2.6), we obtain:

200, = WO (2.11)

(82 — 02) = wpotoe, (2.12)

and Equations (2.9) and (2.10) become:

o w\/ﬂosos’r 1+ <_a_m> -1 (2_13)

!
V2 \ WELE,. COS

,B _ w\/ﬂ'osos; 1 + ( g

=77 \\ (p>> * (2.14)

WE,E,, COS

Equations (2.13) and (2.14) are equivalent to those given in Equation (8.14)
of Reference [4, p. 409]. From Equations (2.13) and (2.5), and from Equa-
tions (2.14) and (2.6), we see that @ = o, and f = 3, when p = 0° as
mentioned above. The case p = 0° is the case of a uniform plane wave in a
lossy medium (see Reference [4, p. 410]).
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2.3 Case when a3, (1 and Z are coplanar: Cor-
rection to Radcliff’s formulation

Figure 2.1 shows the wave phenomena in the incidence plane at the interface
of two lossy media. It is assumed here that the interface is planar and of
infinite transverse dimensions, and that the propagation vectors &, ﬁ and the
normal of the interface Z are coplanar. The solution consisting of a single
reflected wave and a single transmitted wave is complete and valid everywhere
in both half-spaces, i.e. even in the near-field region of the interface. The
interface is illuminated by a non-uniform plane wave of arbitrary incidence
angle and of polarization either parallel or perpendicular to the indicence
plane. The treatment of these two polarizations is sufficent? to obtain the
treatment of an arbitrary polarization, just as with uniform plane waves (see
Reference [4, p. 423]). However, the determination of & and 8 does not
require the knowledge of the polarization of the waves (even in anisotropic
media) because it proceeds solely from the phase matching requirement at the
interface (see Reference [9, pp. 506-508]). From References [4, 6, 8], Snell’s
law at the interface of two isotropic homogeneous lossy media, identified
herein as media 1 and 2 in Figure 2.1, is given as:

a1 sin(éy + p1) = g sin(és + po) ' (2.15)

P sin(é1) = B sin(és) (2.16)

where all parameters take real values. Holmes’ expressions for computing
Bo and oy are [6, Equations (18-19)]:

By = \/ el — Re (%i) + i — vl (2.17)

o ¢ nal” + Re (38) + I — 1ef]

: (2.18)

2A wave of arbitrary polarization propagating with propagation constants & and ﬁ can
be decomposed into a pure TE* wave and a pure TM" wave where 1 = (& x B) is the

“direction for which the fields have no spatial variation, hence & = 4 for pure TM* waves,

and H = 4 for pure TE¥ waves (see References [4, pp. 422-423], [85, p. 31, problem 1.3]).
It turns out, however, that when &, ,5 and % are coplanar, the two incidence planes of
the general case reduce to a single incidence plane, and the normal unit vector of this
single incidence plane is also parallel to 4 for both the transmitted and the reflected
waves. Consequently, a decomposition into a TE* and a TM™ waves corresponds to a
decomposition into the usual TE” and TM” waves where 9 is the normal of the incidence
plane. For instance, when the incidence plane is the zz plane, then ¥ = 4.

14



Radcliff has used inappropriately o,; instead of o in Equation (2.15)

(see [6, Equation (9)]), and f,; instead of f; in Equation (2.16) (see [6, .

Equation (10)]). This led to incorrect values for the propagation constants
a and f in his Figure 3. When 1, = oy sin(é1 + p1) + 61 8in(£1) is used
instead of y1; = a1sin(&y + p1) + B sin(é1) in Holmes’ expressions, the
correct values are obtained for ay and [y.

Solving for &, from Equation (2.16) and the knowledge of §; leads to two
possible solutions:

(2.19)

| arcsin (E)
b= { 180° — a[f;csin (ﬁ—“;)

where W = f;sin(£;). Solving for py from Equation (2.15), from the
knowledge of o and from the knowledge of the two possible solutions for £,
leads to four possible solutions:

arcsin (—a‘%) — arcsin (ﬁL";)
180° — arcsin (gz-) — arcsin (ﬁ—“;)
arcsin (a%) -+ arcsin (ﬁ—“;) —180°
— arcsin (L) + arcsin (-2—;)

az

P2 (2.20)

where V = a1 sin(&; + p1). The difficulty here lies in selecting the proper
solution among these various expressions because the solution does not re-
main with the same expression for all values of & and p; (see Appendix C).
The correct results will be presented in section 2.5.1.

2.4 Case when o), #; and Z are not coplanar

When the vectors &, ,51 and the unit vector normal to the interface 2 are
not coplanar, the phase matching at the interface proceeds as follows:

(ae = Fa) = 2% (@1 +561) x 2) =2 x (@ +7B) x 2)  (221)

where the subscript ¢ refers to the component tangential to the interface.
Separating real and imaginary parts leads to these two equations:
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ay sin((r) = ag sin((2) (2.22)

Prsin(§) = Bz sin(&y) (2.23)

where the angles (1, (2, &1 and &; are shown in Figure 2.2. To simplify the
figure, the azimuth angle for the vector B1 was taken as zero. Thus, we have
two separate incidence planes® , one containing the vectors £, a4 and a2, and
another incidence plane containing the vectors 2, ,67;[ and B, with Snell’s law
of refraction being valid in each incidence plane as shown by Equations (2.22)
and (2.23).

From spherical trigonometry, we have:

cos(p1) = sin(&;) Sin(Cl) cos(y) + cos(&1) cos(r) (2.24)

cos(pe) = sin(&z) sin({a) cos(vp) + cos(&y) cos((s) (2.25)

When 9 = 0, these two equations reduce to p; = (1 —&; and ps = (o — &,
respectively. Multiplying together Equations (2.22) and (2.23), then using
Equations (2.8), (2.10), (2.23), and (2.25), and performing some algebraic
manipulations valid for the case & 5% 0° and (3 # £90°, one obtains the two
following expressions where all quantities are known from the knowledge of

Qo1, :8017 Qo2 :8027 £1 and Cl:

QH+ R2—HF —2++/M
2(2H + R? — 1)

cos?(&;) = (2.26)

3Contrary to the previous case where &, ﬁ and 2 were coplanar, here the normal of each
incidence plane is no longer parallel to & = (& x ) for the transmitted or the reflected
waves. Consequently, the decomposition of a wave of arbitrary polarization propagating
with propagation constants @ and # into 8 TE* and a TM® waves no longer corresponds
to a decomposition into the usual TE” and TM® waves where 9 would be the normal of
the incidence plane. However, because the determination of the propagation constants
is carried out from the phase matching requirement at the interface, the conclusion that
the incident, the reflected and the transmitted (complex) propagation vectors all reside in
the same (two) incidence plane(s) is independent of the polarizations of the plane waves.
Furthermore, the conclusion is also independent of the nature of the two media on either’
side of the interface, and independent of the nature of the plane waves (i.e. uniform or
non-uniform). Therefore, this conclusion is remarkably generall
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O0H + R+ HF — /M (2.27)
2H — R?+ HF + R?2(R?+2H — HF) + (R — 1)vVM

cos”((z) =

where:

I

(HF — R®? +4H(H+ F — (HF — Rz))
Qo202

1 sin(é:)

Oéé sm(Clz)

VIv/A

(24/U)*

(1+ Rcos(v))’F/G

/B3, 0%, 20001 o ?

a¢w+m%%@mﬂ”l
ﬂa"'o 2oﬂo 2

A= a¢w+w%ﬁmw)+l

I

QMO I<TIaR
I

R
Il

Once & and (, are known, we compute cos(ps) from expression (2.25).
Then, substituting the value of cos(ps) into Equations (2.9) and (2.10) yields
the knowledge of ay and fs, respectively.

For the case &, = 0°, the solution can be obtained even more easily.
Substituting £, = 0° into Equation (2.23) yields & = 0° and hence, p1 = (;
and ps = (3. Substituting these values into Equation (2.15), then using
Equation (2.9) for o and performing some algebraic manipulations yields
the following expressions:

_ S—a; sin(p )\/T
cos(pz) = \/Z(af sin2(p1);]+A2) (2.29)

where all variables have been previously defined, except for S and T' which
are given as:

S = ofsin*(pr) + o sin®(p1)U + 242

T = ofsin®(p1) + 20t sin*(p1)U + a2 sin?(p;)U? + 4 A (1 —U+of Sinz([)l))

(2.30)
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We note that in spite of the fact that Equation (2.9) was not valid for
a non-uniform plane wave in a lossless medium due to the indetermination
mentioned previously, Equation (2.29) which was obtained from using Equa-
tion (2.9), produces nevertheless the correct value cos(ps) = 0 when a,y = 0,
except when both & = 0° and p; = 0° in which case Equation (2.29) results
in the indetermination 0/0. When both &; = 0° and p; = 0°, one obtains
& = 0° and pp = 0° from symmetry principle, irrespective of whether either
one or both media is either lossy or lossless.

When the incidence medium is lossless, i.e. @,; = 0, the incident plane
wave is usually assumed to be uniform and thus, @; = a,; = 0 and thus, V =
a; sin((;) = 0. This situation results in {, = 0, i.e. py = —&;, from applying
Equation (2.22) with an arbitrary value of a. This situation corresponds to
¢z being normal to the interface. This result, which agrees with References [7,
p. 172],[20, p. 369] and [84, p. 502], is remarkably general because it is based
solely on the phase matching requirement at the interface, and thus, this
result applies to any transmission medium, even the most general anisotropic
medium. The case of V' = 0 is also one of practical importance as it arises at
all parallel interfaces of a planar multilayered structure standing in free space,
illuminated by a uniform plane wave. At the first interface of the structure,
V =0 because a3 = a7 = 0. At any other interface of the structure, V =0

because ps = —&; at the preceding interface, and the waves travel in straight
lines between interfaces, thus making p; = —¢§; and V = 0 at the current
interface. _—

When the transmission medium is lossless, i.e. o,y = 0, the transmitted
wave is a uniform plane wave when oy = g, = 0 which results in (; = 0, i.e.
p1 = —¢1, from applying Equation (2.22) with an arbitrary value of ;. This
situation corresponds to @&; being normal to the interface. Otherwise, the
transmitted wave is a non-uniform plane wave which leads to cos(pz) = 0.

When the two media are lossy or, if either one or both media are lossless,
when no non-uniform plane wave exists in a lossless medium, the procedure
consists of solving Equations (2.26-2.27) when & # 0° or Equation (2.29)

" when & = 0°. Then, substituting the value of cos(p;) into Equations (2.9)

and (2.10) yields the knowledge of cy and (s, respectively. In practice, how-
ever, it was more convenient to use Equations (2.26-2.27) with o,y = € or
& = € whenever o,y = 0 or & = 0°, respectively, where the constant e
represents a very small arbitrary positive value.

2.4.1 Special case of practical importance

As seen in the previous section, when the incidence medium is lossless, i.e.
@1 = 0, the incident plane wave is usually assumed to be uniform and
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thus, a1 = a,; = 0 and thus, V = a;sin((;) = 0. This situation results
in (o =0, i.e. ps = —&, from applying Equation (2.22) with an arbitrary
value of ay. This situation corresponds to &, being normal to the interface.
This case arises whenever the scatterer is a multilayer slab (of infinite size
in the transverse directions) whose layers are parallel to the two faces of
the slab, and the slab resides in a lossless host medium (e.g. free space)
and is illuminated by a uniform plane wave. Since ps = —&;, we can easily
obtain ay and (3, as follows. From Snell’s law for the phase wavefront as per
Equation (2.23), we obtain:

' 2
cos? py = (1 —sin® &) =1 — (ﬁ sinfl) (2.31)
, 2

Substituting this result into Equation (2.14), regrouping the terms in s
and solving the resulting quadraﬁic polynomial in 32 produces:

’ 2 o€o 4 ro. / A 2'
g = = /; (Erz +epysin?é £ \/(Erz — &y sin® £1)? + (sz ) ) (2:32)

o

where:

Ery =60y (2.33)

Epg = 5;,2 —j ( o2 > ' (234)

WE,

Since f2 = B,y = w4/ poe,e,., when g = 0, the + sign is the correct choice
of sign in Equation (2.32). Therefore, we obtain:

Wi/ Ho€o , ;. , .. o9 2
SR J%“ﬂsmzfl*@z—%smsz(w ) @)

From Equations (2.14) and (2.35), we obtain:

2 ' 3
! g9 I . ’ ’ . ]
ser 1+ (W) =€ sin® &+ \/(6T2 —€&pq sin? &)?2+ (w€o>
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Substituting this last result into Equation (2.13) produces:

WE,

w € 4 U ’ ' . 2
Qo = \;%O OJ —€po + Epr1 81112 51 + \/(51'2 — &, Sln2 51)2 + < 72 ) (236)

On the other hand, with ¢, = 0 we obtain:

Yo, = Q12 €08 (o +7 Bacos s = g + jf2 cos &y (2.37)
\T_/ \_E,_/
22 2

From Equations (2.31) and (2.35) and the fact that £, = —ps, we obtain:

(ﬂ2 Cos 52)2
(B cos pa)?
ﬂ% (ﬂl sin 51)

2
w_%;o_a, <€r2 £, 810 & + \/ Epg — Epy SIN &1)2 + (w&'o)
(2.38)

(B2.)?

I

Il

.From the knowledge of ag, and fs,, we obtain 7,,. From the knowledge
that the transverse variation of the scattered field is dictated by the incident
field as with 82, = 32 — (B1 sin&;)? shown in Equation (2.38), we also obtain:

.= % — (nsing)? (2.39)
Where:

M = JW/LoEofr1
Yo = JW/[ho€oEra

Pulling the last three equations together with Equations (2.33) and (2.34)
produces:

Yo = w\/ /‘1’060\/ 7‘2 1‘1 sin 61) +-7 (wso)

2.40
B Hoto [(67*2 6r1 sin 51) (%)2] " i3 arctan @ (2:40)
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where:

g2 g2

arctan ® = arctan e =7 — arctan( ———g )
— (5,_2 — €, sin fl) Erg — &1 SI0° &1

Hence, we obtain:

2.
cos < arctan <—,——“/£L——>)
arctan @

6‘7% = Epg—Epy SiN% &y

—4jsin | = arctan T
J st <2 ¢ Erp—Epq 8in? &1

Applying cos (z/2) = /I + cosz/v/2 and sin (z/2) = v/1T — cosz/v/2 and
cos (arctanz) = 1/4/1+ 22 and carrying out some algebraic manipulations
produces:

’ I 9
¢\/ ,.2 — g, sin §1) (wao) - (@»2 — €, Sin 51)
’ ro 92
+J\/V 7'2 €1 Sin? 51 (wgo) ( Erg — Epy S fl)
6“7% arctan® __

V2 [(5;'2 — &y sin? fl) + (552;)2] ”

Substituting into Equation (2.40) produces:

s | (s wro) ()~ (it
+y\/¢ (tha = st )"+ (22 + (el — i’ )

(2.41)

22 =

Therefore, we see that the real and imaginary parts of the last expression
are restatements of Equations (2.36) and (2.38), respectively. This equality
proves the validity of the Adler-Fano-Chu formulation for this special case of
pratical importance. '

2.5 Results

All computatlons presented here pertain to a case found in Reference [6], i.e
f=1MHz, €., =4.0, oy = 0.01 $/m, €., = 10.0 and o = 0.001 S/m.
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2.5.1 Case with ¥ =0

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 show the results for as, fs, &, (a2, and

- p2, respectively, when p; = —80°, —60°, —40°, —20°, —10°, —5°, 0°, +5°,

+10°, +20°, +40°, +60°, +80°, while &; varied from 0° to 90° in increments
of 1°. Rigorously speaking, & = 0.01° was taken in place of & = 0° since
Equations (2.26-2.27) are not valid for & = 0.

We note that the requirement —90° < py < +90° from physical principle
(see Reference [4, p. 426]) is borne out by all numerical results. Surprisingly,
however, the same numerical results show that the magnitude of the angle
(2 = (&2 + p2) can exceed 90°, and thus, for self-consistency, the magnitude
of the angle (1 = (&1 + p1) was also allowed to exceed 90° in generating these
figures. The physical meaning of having & > 90° for & < 90°, and having
(o = (& + pa) > 90° for (1 = (& + p1) < 90° would seem to indicate the

- phenomenon of total reflection for the phase and the amplitude wavefronts,

respectively.

We note the dramatic change in the behaviour of the curves for —10° <
p1 < —b°. We note also how the curves of Figure 2.5 tend to the diagonal
straight line & = & as p; varies from —10° to —80° as well as from +20°
to +80°. Thus, the same straight line & = &; would be obtained for both
p1 = +90° and p; = —90°, and this makes sense for these two cases of p;
correspond to parallel directions of &;. Figure 2.8 shows the results for ¢,
as a function of (1 = (£ + p1). We note that (; = (; = 0 regardless of the
value of p;, and that this case corresponds to the case of practical importance
V = 0 mentioned above.

The trend of the curves is complicated and not always intuitively clear.
In order to demonstrate that the above results are correct, the following com-
parison was carried out. First, the equivalence presented in Appendix B was
used to obtain the values of the complex incidence angle from the knowledge
of the real incidence angles &; and p; for the case 1 = 0. Then these values for
the complex incidence angle were used in Snell’s law of refraction to obtain
the values for the complex transmission angle. Of course, if the equivalence
could have been used in the reverse direction, we could have obtained di-
rectly the values for the real transmission angles corresponding to the values
for the complex transmission angle that were just computed from Snell’s law.
However, such reverse equivalence cannot be established for the reason given
in Appendix B. Therefore, we used the same values of the real incidence
angles &, and p; in the expressions for the general case with ¢ = 0 to obtain

the values for the real transmission angles &; and p;. Then the equivalence .

presented in Appendix B was used again to obtain the values for the com-
plex transmission angle corresponding to the values of £ and (5. Then we
compared the two different sets of values for the complex transmission angle
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(0r2+ jO12), one set corresponding to the classical formulation and the other
set corresponding to the Adler-Chu-Fano formulation. Now, the solution for
the general case, the solution for the equivalence between the classical and
the Adler-Chu-Fano formulations, and the solution for Snell’s law, all offer
multiple expressions from which to choose their proper respective solution.
The choices that were made here provided a perfect match between the two
sets of values for (0ry + j01,) over the entire ranges of 0° < & < 90° and
~90° < p; < 4+90° as shown in Figures 2.9 and 2.10. These choices are ex-
plained in the following three subsections. We note some similarity between
the general trend of Figure 2.7 and that of Figure 2.10, and to some lesser
extent, we note also some similarity between some features of Figure 2.5 and
some features of Figure 2.9.

Choice of solution for the equivalence between the two formulations

The variables 0g, 0, 0, and 05 are defined in Appendix B. Out of the four
possible solutions given by MATLAB for Y = cos?(fg) shown in Appendix B,
the correct solution was obtained as:

y — | fourth solution for (6 > 90°) OR. (05 > 90°)
| third solution otherwise

where OR is a logical operator. From the knowledge of YV, we obtained
the knowledge of 0 as:

05 for (0 — 05) =0

— ‘arccos(ﬁ)’ for (6, < 0) AND (65 < 63)
=1 180° - |arccos(\/7)’ for 05 > 03

|arccos(\/7 ) ’ otherwise

where AND is a logical operator, 65 and 03 are the values of 65 for
which |arccos(vY)| reached 0° and 90°, respectively. These values were
computed readily as 03 = |0z(0)| and 0 = 90° — sign(0, — 05)|0r(0)| where
0r(0) was the value of |arccos(vY)| at 5 = 0, and sign(z)={+1, 0, -1} for
{z > 0,z = 0,z < 1}, respectively. Then substituting the knowledge of 6
into Equation (B.10), we obtained the knowledge of 6; as:

0r = —sign(f, — 0g)arcsinh(vC —Y)

The results are presented in Figure 2.17. We see that the curves for 0p
have a slope of 1, and the curves for 6; have a slope of zero.
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Choice of solutions for £2, (2 and p;

The solutions for 3 and (; were obtained from Equations (2.26) and (2.27),
respectively, as:

£ = { 180° — arccoz ( cos?(&p)) for & > & (2.49)
arccos ( cos (52)) otherwise
{ 180° — sign((1) arccos'( cos?((z)) for & > &
2 =1 . : (2.43)
sign(¢y) arccos ( cos2(C2)) otherwise :

The values & and & correspond to the values of & for which arccos(y/cos?(&;))

and sign({y) arccos(y/cos?((z)) reached 90°, respectively. Once & and (, were
known, cos(ps) was computed from expression (2.25). The solution for p, was
obtained as:

_ | —arccos(cos p2) for (p1 < 0) AND (4, < &) (2.44)
2=+ arccos(cos p2) otherwise '

.The value &{ corresponds to the value of ¢ for which arccos(cos py) = 0.
When the curve did not cross the zero level, & was taken as 0 if p; > 0,
and as 90° if p; < 0. For the case ¢ = 0, we see from Figure 2.7 that
p2 = (( — &) as expected. The values &, £ and &0 were found by means of
a simple root-searching subroutine using the bisection technique.

Choice of solution for Snell’s law with complex angles

The solution for Snell’s law with complex angles was obtained as:

180° — arcsin (Esin(@m + j911)> for & > ¢FNBLL

Ora + jOr2 = _ i , _
arcsin (\/g sin(fgr; + 3911)> otherwise

(2.45)

where ¢&§VELL corresponds to the value of ¢ for which Real(y/e1 /€2 sih(@m + 5011))
reached 90°. This value was computed as &§VELL = R — sign(p;)|0r1(0)]
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where 01" was the value of O, for which Real(y/e1/e5 sin(fr; + j611)) reached

90°, and 0x;(0) was the value of | arccos(v/Y)| at & = 0, with ¥ defined in
section 2.5.1. The value 0r]° was found by means of a simple root-searching
subroutine using the bisection technique.

2.5.2 Case with arbitrary value of 1

The case with arbitrary values of 1) was generated by introducing the rotation
angle § as shown in Figure 2.11. The spherical coordinate angles correspond-
ing to £; are shown as fg and ¢g, whereas the spherical coordinate angles
corresponding to ¢; are shown as 6, and ¢,. From Figure 2.11, we have:

fo = cos(p)?g + sin(p) sin(6)s + sin(p) cos(8)d

where:

g = sin(fg) cos(pp) & + sin(bs) sin(¢g)g + cos(f4)2
05 = cos(0) cos(¢p)Z + cos(8) sin(¢p)g — sin(fg)Z
dp = —sin(pg)t + cos(dp)

Substituting in the above expressions and collecting the terms for each
Cartesian component, we obtain the knowledge of 8, and ¢, as:

Y
¢, = arctan (E)

ea = t
arctan ( VA

where:

X = cos(p) sin(6p) cos(¢g)+sin(p) sin(d) cos(d4) cos(¢g)—sin(p) cos(d) sin(¢p)
Y = cos(p) sin(0p) sin(¢p) +sin(p) sin(8) cos(f) sin(¢g)+sin(p) cos(8) cos(hp)
Z = cos(p) cos(f3) — sin(p) sin(d) sin(p)

The case § = +90° corresponds to the case 1 = 0 with p > 0, whereas
the case § = —90° corresponds to the case 1 = 0 with p < 0. Unfortunately,
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unlike for 9 = 0, we do not know the generalization of Snell’s law written
with complex angles for 9 5 0. Thus, our knowledge of Snell’s law written in
terms of complex angles cannot aid us to confirm that we made the correct
choice of expression for the solution when 1 # 0. The generalization that
was used here to generate the results of Figures 2.12, 2.13, 2.14, 2.15 and
2.16 was to add the following condition to the conditions that were used for
1 = 0. We changed the sign of the value for §,; whenever || > 90° and
then replace 9 with (180° — ). We also defined the ranges for p; and § as
—90° < p; < +90°, and 0° < § < 180°, respectively. '

There are too many plots to present here for all the same values of p; that
were used for the case ¢ = 0. The value of p; = —10° was chosen because it
represents a difficult case for the interface at hand. Figures 2.12, 2.13, 2.14,
2.15 and 2.16 show the results for as, fs, £a, (o, and ps, respectively, when
p1 = —10° while & varied from 0° to 90° in increments of 1°, and § varied .
from 0° to 180° in increments of 5°. Again, & = 0.01° was taken in place of
£ = 0° since Equations (2.26-2.27) are not valid for & = 0. We note that
in these figures, the curves for § = 90° correspond to the curves presented
earlier for ¢ = 0 and p; = —10°.

2.6 Chapter summary

This section has presented a correction and a generalization of the solu-
tion presented in References [6, 21] for the effective propagation constants
of non-uniform plane waves at the planar interface of two isotropic homo-
geneous possibly lossy media of infinite transverse dimensions. The analysis
proceeded from the Adler-Chu-Fano formulation. The validity of the results
obtained here for the case 1) = 0 was demonstrated by comparing these re-
sults with those obtained by Snell’s law written in terms of complex angles.
No such comparison, however, could be made for the case ¥ # 0 because
the generalization of Snell’s law written with complex angles is not known
for ¢ # 0. The trends of the curves are rather complicated and not always
intuitive, even for the case ¥ = 0. The case of V = a;sin((1) = 0 is one
of practical importance in a planar multilayered structure, and results in &
being normal to all parallel interfaces of the structure regardless of the values
of the intrinsic propagation constants of the layers of the structure. In other
words, & is normal to all parallel interfaces of the structure, even for the
most general anisotropic layers. When ds is normal to the interfaces of the
structure, the Adler-Chu-Fano formulation was also proved directly in Sec-
tion 2.4.1 by showing that the same result was obtained for 7, when using
the Adler-Chu-Fano approach as when using the complex-valued approach
embodied by Equation (2.39).
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Figure 2.1: Special case of a non-uniform plane wave incident on a planar
interface between two isotropic homogeneous possibly lossy media. Here, the
vectors @1, 1 and the unit vector normal to the interface Z are coplanar.
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Figure 2.2: General case of a non-uniform plane wave incident on a planar in-
terface between two isotropic homogeneous possibly lossy media. To simplify
the figure, the incidence plane for the phase wavefront propagation vectors
was taken to lie in the zz plane.
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Figure 2.3: Effective propagation constant «y as §; varies from 0° to 90° in
increments of 1°, 9 = 0 and p; takes successively the values of —80°, —60°;
—40°, —20°, —10°, —5°, 0°, +5°, +10°, +20°, +40°, +60°, +80°.
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Figure 2.4: Effective propagation constant fy as & varies from 0° to 90° in

increments of 1°, ¥ = 0 and p; takes successively the values of —80°, —60°,
—40°, —20°, —10°, —5°, 0°, +5°, +10°, +20°, +40°, 4+60°, +80°.
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Figure 2.5: Transmission angle &; as & varies from 0° to 90° in increments
of 1°, 4 = 0 and p; takes successively the values of —80°, —60°, —40°, —20°,
—10°, —5°, 0°, +5°, +10°, 4+20°, 4+40°, +-60°, +80°.
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Figuré 2.6: Transmission angle (s as & varies from 0° to 90° in increments

of 1°, 9 = 0 and p, takes successively the values of —80°, —60°, —40°, —20°,
—10°, =5°, 0°, +5°, +10°, +20°, +40°, +60°, 4-80°.
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Figure 2.7: Transmission angle py as &; varies from 0° to 90° in increments
of 1°, ¢ = 0 and p; takes successively the values of —80°, —60°, —40°, —20°,
—10°, —5°, 0°, +5°, +10°, +20°, +40°, +60°, +80°. We confirmed that
p2 = (G2 — &a)-
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Figure 2.8: Transmission angle (; as a function of {; = (&1 + p1) as & varies
from 0° to 90° in increments of 1°, 1) = 0 and p; takes successively the values
of —80°, —60°, —40°, —20°, —10°, —5°, 0°, +5°, +10°, -+20°, +40°, +60°,
+80°.
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Figure 2.9: Transmission angle 0g, as §; varies from 0° to 90° in increments
of 1°, 9 = 0 and p; takes successively the values of —80°, —60°, —40°, —20°,
~10°, —5°, 0°, +5°, +10°, +20°, 4+40°, +60°, +80°.
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Figure 2.10: Transmission angle 0y, as & varies from 0° to 90° in increments
of 1°, 9 = 0 and p; takes successively the values of —80°, —60°, —40°, —20°,
—10°, —5°, 0°, +5°, +10°, +20°, +40°, 4+60°, 4-80°.
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Figure 2.11: Coordinate system for computing 6, and ¢,, from the knowledge

of 03, ¢p, p and §.
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Figure 2.17: Complex incidence angle 61+ 7601 as a function of the incidence
angles &; and p; for ¢ = 0. The solid line is for 0g;, and the dash line for ;.
The angle &; -varies from 0° to 90° while the angle p; takes successively the
values of —80°, —60°, —40°, —20°, —10°, —5°, 0°, +5°, +10°, 4+20°, 4+40°,
+60°, 4+80°.
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Chapter 3

Individual and composite GSM

The GSM for each interface is obtained from the generalized Fresnel equations
for a planar interface between two media. The incidence plane is defined as
the plane in which lie both the incidence propagation vector 7* = & + iB
and the unit vector normal to the interface A, i.e. the vectors &, £ and
7 are assumed to be coplanar!. We assume also that # = 2 and that the
incidence plane is the zz plane. Thus, the TE? or TMY, and the TM?® or TEY
polarizations correspond to the polarization with Eji being perpendicular and
parallel to the incidence plane, respectively:

3.1 Individual GSM

3.1.1 Lossless media

When the two media are lossless, the Fresnel equations for the interface are
most conveniently obtained from the interpretation that the transverse elec-
tric field of the TE? (or TMY) mode corresponds to a voltage travelling wave
propagating on an equivalent transmission line modelling the propagation
medium, whereas the transverse magnetic field of the TM* (or TEY) mode
corresponds to a current travelling wave propagating on an equivalent trans-
mission line modelling the propagation medium (see References [33, p. 415],
[40, pp. 54-57] and [68, p. 304]). The concept of the equivalent transmission
line can also be justified on the basis that the two dimensional Fourier trans-
form of the transverse components of the TE? or TM? electromagnetic field
obey the telegrapher’s equations (see References [34, 35, 36]). The interface
between the two media is then modelled as a discontinuity formed by the

!The more general case where ¥ # 0 in Figure 2.2 is beyond the scope of this section.
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junction of the two transmission lines that model the two media [37]. The
equivalence is based here on taking the characteristic impedance of the trans-
mission line to be equal to the wave impedance Zy of the wave propagating
in each respective medium. Note that the elements of the scattering matrix
can be defined in terms of either the whole electric field or just the tangential
(to the interface) component of the electric field or the magnetic field. The
latter scattering matrix is identified as S whereas the former is identified as
C. The difference in the definition results in different expressions for the re-
flection or the transmission coefficients of the TM* mode (see References [13,
p. 41], [5, p. 152] and [14, p. 543, Equation (9.100b)] for the transmission® ,
and Reference [14, p. 543, Equation (9.100a)] for the reflection).

For the TM? mode (or TEY), i.e. parallel polarization, one obtains:

pr Ho _ B/(on) By Zw—Zy
G T OB Zly+ 2y

Er Zt _ Zi &It tkz‘
= 2= . - ZV g" = szk»: 5; : (3.1)
E! Ly + Ly erkt + srkz

i H_BYG) (0B _ 27k
0~ B \r) B Ty + 2

B @>I(@ 22y, _ (Veieh) 2
B \7f n') Zw+Zy kL +elk]

where I" and Y refer to the reflection and the transmission coefficients, re-
spectively, the super-index I refers to current travelling wave parameters,
the super-indices i, r and t on the FE, or H, fields refer to the incident,
reflected and transmitted fields, respectively, the super-indices 7 and ¢ on
N, €, k, and Zw refer to the incidence and the transmission regions, re-
spectively, n* = 1/u,/(eLe,) is the intrinsic impedance of the region I and
Z%, = kL [(wele,) is the wave impedance of the region [ with I = {i, t}.

These expressions agree with References [9, p. 514], [15, p. 454] and [16,
p. 314]. Note that some authors (see References [7, p. 152, Equation (4.207)]
and [48, p. 59, Equation (2.144d)]) show a difference in sign for the expres-
sion of the voltage reflection coefficient of the TM?® mode. The reason for this
difference in sign owes to the difference® in defining the direction for which

2In Reference [18, p. 415, Equation (70)] the expression given for the transmission
coefficient of the TM* mode is wrong! In fact, it corresponds to the expression given in
[14, p. 543, equation (9.100b)] but: the latter defines the transmission coefficient in terms
of the tangential (to the interface) components whereas the former claims to define it in
terms of the whole field.

3Yet other authors ignore this distinction and end up missing the minus sign that would
be required according to their figures (see References [17, p. 248, equation (7.76)] and [18,
p. 415, Equation (69)]).
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E,, is positive (e.g. compare Figure 12.5 in [9, p. 511] or Figure 10.16 in [15,
p. 454] or Figure 8.16 in [16, p. 314] with Figure 4.5 in [7, p. 147] or Fig-
ure 2.25 in [48, p. 57]). In the former three figures, the positive direction of
E is defined as per a transmission line, i.e. the positive direction of E is that
whose tangential (to the interface) component of E points in the same direc-
tion for the incident, reflected and transmitted waves. This makes identical
the reflection coefficients of the parallel and the perpendicular polarizations
at normal incidence. In the latter two figures, however, the positive direction
of E is defined by the § or ¢ unit vectors of the spherical coordinate system
whose z axis is normal to the interface. This makes differ by a minus sign
the reflection coefficients of the parallel and the perpendicular polarizations
at normal incidence with the outward convention (but not with the inward
convention). To distinguish between these two definitions, different matri-
ces are used herein. The matrices S and C' correspond to the transmission
line definition whereas the matrix C corresponds to the spherical coordinate
definition* with the outward convention.

For the TE” (or TMY) mode, i.e. perpendicular polarization, one obtains:

_E _ B _Zy—Zy

FV————.———.—
EY  Ef  Zy+ Zy
E! v Zh—Z4y K=k
=0 — a7V = Vo= 2 Z 3.3
BT Tz, Eak (3:3)
Tvzg‘=g=—%
Ei Ef Zi+Zy
i t i
B _yv_ 22 _ 2K (3.4)

Ei T Zhy+ Zi, K+
where the super-index V refers to voltage travelling wave parameters and
Zty = (wio) /KL is the wave impedance of the region I with I = {4,1}.

3.1.2 Lossy media

The case of lossy media is obtained from the case of lossless media by merely
generalizing the concept of the wave impedance (see Reference [38, Equa-
tions (9a) and (9b)]), and by taking the permittivities to be complex-valued.

4In Reference [183], the distinction between the two definitions was embodied in Equa-
tion (2.3) on p. 38, which shows SEZ(X,Y) = —SEF(E, H) with the superscrit E referring,
here, to the E-mode, i.e. the TM® mode. Note, however, that on p. 34, the matrices .S
and C used the spherical coordinate definition whereas on pp. 40-43, the matrices S and
C used the transmission line definition. Fortunately, the conclusions in [13] remain un-
affected by this distinction, because comparisons between S and C matrices were made
while both matrices used the same definition.
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The Fresnel equations are said to be still valid (References [84, p. 501] and
[7, p. 171]) but they become complex-valued. Furthermore, the scattered
E and H fields acquire® a component parallel to the direction of the phase
wavefront propagation vector 8 (References [84, p. 502] and [4, p. 422]). The
C scattering matrix written in terms of the TM® and TE® modes as given
by Fresnel equations, however, determines only the transverse E components
that are in the Gﬁ and ¢ﬁ directions, respectively. The longitudinal compo-
nent that lies in the direction of the phase wavefront propagation vector ﬂ
is not taken into account by the C scattering matrix. Hence, it might not
be sufficient to rely on the analytical continuation of the Fresnel equations
in the complex plane to account fully for all the effects that are due to the
presence of losses in the slab.

For the TM* (or TEY) polarization, one obtains:

7 v, _ acos(§+p) + 7B cos()
w

= = 3.5
s o (3.5)
a0 _B_Zy-Zy ey (3.6)
PARALLEL = B 2yt 2, eyt ety )
Et it ( glet) 2yt
TParaLLBL Ei <17Z T+ 2y ekt e (3.7)
For the TE? (or TMY) polarization, one obtains:
Jwu | Jwp
P , 3.8
W=y, acos(é + p) + 78 cos(€) (38)
B Zt -7 b — At
R — W_W _ 'z Iz 3.9
PERPENDICULAR = 7 Zf)v T, (3.9)
Et 27} 2}
T, = = W -~z 3.10
PERPENDICULAR = B 2yt Z i (3.10)

Clearly, the generalized Fresnel equations for lossy media reduce to the ordi-
nary Fresnel equations when both a; = 0 and ap = 0, i.e. for lossless media.
" Note also that Equations (3.6), (3.7), (3.9) and (3.10) are independent of
ko = 2m/)A, where A, refers to the wavelength in free space. Therefore,

SComparison between simulation results for lossy (¢ = 0.15 S/m) and lossless slabs
suggests the presence of an E field component along the direction of the phase wavefront
propagation vector , as shown by a slight shift in the direction of both axes of the
polarization ellipses at various points in the incidence aperture within the slab. In the
numerical simulations, the scattered field of even the lossless slab was elliptically polarized
because the Maxwellian excitation beam was itself elliptically polarized. This situation
makes it difficult to assess the phase relationship between the F field components parallel
and perpendicular to ﬁ
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these equations are frequency independent as long as the various complex
permittivities are frequency independent. This observation has practical
importance. Rigorously, the Kronig-Kramer dispersion relations force the
permittivity or permeability to be frequency dependent if the material has
electric or magnetic losses, respectively. However, the permittivity and per-
meability can be approximated as being constant over a frequency band of
interest when the material losses are small enough.

3.1.3 GSM

The GSM for each interface is defined as follows:

(B \  (CHE CEE CHT CEE\ ( (E)T
(En | = | Gy Gy Ga Cul || (B (3.11)
Eg‘%g G e B Che EEgg

: CcEE (| 2

0/2 21 21 22 22 o’

where: -

e the superscripts £ and H refer® to the E¥ and HY modes, i.e. the per-
pendicular and the parallel polarizations, respectively. When material
losses are present, the elements of the scattering matrix for an interface
become, in general, complex-valued for the TE? and TM?® modes but
the GSM formalism remains valid if the modes have all the essential
non-zero field components to represent the whole electromagnetic field.
Thus the modes in a lossy transmission medium would not be purely
TEM due to the presence of an E field component in the direction of
propagation (see Reference [84, p. 502]).

8The TM?* and TE® waves are sometimes referred to as the E-type and H-type waves,
respectively. However, in this report, the superscripts £ and H refer merely to the field
that has only a y component. Hence, a pure TM* wave has only E,, H, and E, and is
called herein a TEY or HY wave or a wave with a polarization parallel to the incidence
plane. Similarly, a pure TE® wave has only Hy, E, and H, and is called herein a TMY
or EY wave or a wave with a polarization perpendicular to the incidence plane. The
superscript for the TE and TM modes varies depending on whether the emphasis is on
the normal of the interface or the normal of the incidence plane. Note that when a plane
wave is a linearly polarized TEM plane waves, there are truly only two essential non-zero
field components. The only reason why the TE and TM modes show up with three instead
of just two non-zero field components is that £, § and 2 of the coordinate system do not
coincide with E, H and k. However, when a plane wave is elliptically polarized due, for
instance, to the presence of material losses, there are truly three essential non-zero field
components because the wave is no longer purely TEM (see References [84, p. 502] and
[4, p. 422)).
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e the superscripts s and i indicate the scattered (reflected or transmitted)
and incident waves, respectively;

o the subscripts 1 and 2 refer to the regions on the left and on the right
of the interface under study, respectively, as shown in Figure 2.1;

e the subscript o indicates that the field is the whole field rather than
just its component tangential to the interface.

Since an interface between two dielectrics does not produce any cross-polarized

field, all cross-polarization terms of the GSM for a dielectric interface are
zero. By substituting the region number for the super-indices ¢ and ¢ in
Equations (3.6), (3.7), (3.9) and (3.10), the GSM for a dielectric interface

becomes:

8#172%2—8#27?&1 2v/ 8#2&#17?&2
87# 17,# 2+s#277f 1 - 8# 272% 1+8f£17§% 2 42
—Z 277
C = 0 vz 1+’Yz 0 7# 1+’Yz 2
2 5#15#27?“ 0 57#27#1—5,#17#2
5# 17# 2+Ef&27f ! ' 41 87# 27# 1+83fié 17# 2 4
0 2v7 0 vy " =7
’Y#l'i"Yz 2 Yz 2+’Yz 1
(3.12)

The expression for the matrix C can be simplified as follows:

_{ Ca 9Cp
c=(c &)

where:

0 AZ
BE 0
o= o)
42
g=12_
i
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The angles & and &; as seen in Figure 2.1 are defined as the acute (i.e.

.interior) angles between the normal of the interface and the corresponding

propagation vectors for the phase wavefronts ,6_1 and ,6-; in regions 1 and 2,
respectively. The angles &; and &; are general angles in that they are valid
for describing the field behaviour at one interface without making reference
to any particular coordinate system. When many interfaces are cascaded
together, the transmission from one interface represents an incident wave
applied onto the input port of the next interface in the cascade, and the
reflection off the next interface in the cascade represents an incident wave
applied onto the output port of the interface under study. The proper angular
relationship between these propagation vectors could be taken into account
explicitly by defining all angles with respect to a same reference direction,
say the 4-2 direction. However, owing to the facts that all angles are defined
as acute angles with respect to the same line, i.e. the normal to all parallel
interfaces, and that the scattering coefficients in Equation (3.12) do not de-
pend on the sinus of the propagation angles, there is no need to define the
angles with respect to a particular axis of a particular coordinate system.
Therefore, in the rest of this document, -, will actually mean |v,| in order
to avoid using the the absolute value symbol on the various terms of the
scattering coefficients (see Reference [13, pp. 40-42)).

Owing to the facts that all plane waves propagate in straight line between
all interfaces, that the reflection angle has the same value as the incidence
angle at a planar interface, and that all interfaces are planar and parallel,
one obtains’ & = ¢ in Figure 3.1. Furthermore, from reciprocity one
knows that the propagation angles at an interface remain the same upon
reversing the propagation direction of the waves. Thus, from the knowledge
of the incidence angle &£ for the backward wave incident onto the interface
from right to left, one obtains that the transmission angle for the multiply
reflected wave that exits from the input side of the interface has the same
value as the incidence angle for the forward wave incident onto the same

"The same comments can be made for the angles p; and pz, and the angles ¢; and (z,
respectively.
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interface from left to right. Consequently, the multiply reflected wave and
the directly reflected wave propagate in the same direction and combine into
a single reflection wave that exits from the input port of the interface at the
propagation angle &/. Consequently also, the scattering matrix is written
for directions that are related by reciprocity. However, the matrix C in
Equations (3.12) and (3.13) is not symmetrical even though the interface is
a reciprocal device (see Reference [13, pp. 36,38]), and similarly for the C
scattering matrix.

If the planar interfaces of a multilayer slab were not parallel, or more
generally, if the scatterers confined entirely between the two infinite paral-
lel z reference planes for which the scattering matrix was defined, were of
arbitrary geometry, a backward wave would not, in general, trace back the
propagation path of its corresponding forward wave as shown in Figure 3.1
for parallel interfaces. Hence, the two ports of the scattering matrix would no
longer be in the same geometrical relationship. In the case of an arbitrarily
shaped scatterer, a single incident plane wave would even give rise to a mul-
titude of reflected and transmitted plane waves. The size of the scattering
matrix would then need to be increased to include twice as many ports as
there are different directions involved in the solution, with two orthogonal
polarizations (hence two ports) per direction. However, if the scattering ma-
trix were defined in terms of the tangential F field components of the waves
at the two reference planes instead of the whole E field, only the +2z and the
—z directions would be relevant as the scattering matrix would then charac-
terize an equivalent transmission line parallel to the z direction. These two
directions would necessarily always be in the same geometrical relationship as
with plane waves propagating normally to parallel interfaces. Nevertheless,
the size of the scattering matrix would still need to be increased so that two
ports corresponded to every different field structure (i.e. field mode)® , with
two orthogonal polarizations (hence two ports) per fleld mode. Hence, the
number of ports in the scattering matrix is not determined by the number
of reference planes, but by the number of different propagating directions or
equivalently, by the number of different field modes on a z = cte plane (see

8Waves propagating at different oblique angles cast on a z = cte plane different
mode patterns according to their respective v, = jf, and vy = JjBy values (with
—00 < {fz, By} < +00). To each mode pattern corresponds a transverse spectrum but
all transverse spectra (and hence, the plane wave spectrum as a whole) merely propagate
(see Reference [41, p. 114]) along the z direction according to e™7=* where v, = (o, +70:)
with forward waves having {3,,a,} > 0, and backward waves having {3,,c,} < 0. For
example, for the case that the scatterers consisted of a planar interface made from the
juxtaposition of two isotropic media, with medium #1 being lossless and medium #2
being lossy, and the excitation being a uniform plane wave incident from the side of the
lossless medium, we would have of! = off! = of? =0, (ﬂfl)2 + (ﬂ#l)z < w?uyey

and (ﬂfl)z = w2161 — (ﬂfl)z - (ﬂ#l)z for both the incident and the reflected plane
waves in medium #1, and o#? = off* = 0, #* = g7, pf* = ', and v#? given by
Equation (2.41) for the transmitted plane wave in medium #2.
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Reference [40, pp. 20,35,63)).

3.1.4 Composite GSM from the scattering matrix prop-
agator technique

The scattering matrix propagator technique can be applied to either the S,
C or C matrices but not a mixture of them. The cascade connection shown
in Figure 3.1 produces the following expressions written here in terms of S
matrices but equally valid for C or C matrices (see Reference [40, pp. 82,121)):

H,I HH,I oHE(I oHHI oHELI HI
b}E I S%H I S%E I Sl}_«%H I SIE2‘E I ale I
by’ S Syt St S a;’ @3 14)
pil | = | gHEI GHEI GHHI gHELI H,I .
oI BHI BBl BHI oBEI a%?f
by’ Sor " Sar " Sap v Sy ay’
P
H,II HH,II oHEII oHHII oHE,II H,II
ble I S%H I SlElE II SIE2H’II SIEQE I a}E I
by | Sy ST S S a;’ (3.15
piIl | = | GHHII GHEII GHHII GHE|II H,IT .15)
B BHII BB oBHII o8BIl a2E I
by’ Sor T S T Sas T Sas ay’
Qi1 '
HI —H g H,II
2= %) (B (3.16)
ay’ 0 e =4 by”
P
H,II o H H
o Y= 0 () (3.17)
ar’ 0 e Mt by ) -
Py
HS I
b{“ SﬁH,E Sﬁ“E,E Sg : Slf—.;E,Z) a{{’
b B SiElH,E SﬁE,E SIE2H,E Sf;E,E oy (5.18)
yI | = | gHE® GHES GHH® gHES H,II .
S Ras Bes Bus e a2E II
by" Sor 7 Se1 7 Sep T Sa ay’
g%
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where d is the separation distance between two consecutive parallel planar
interfaces. For convenience, the matrix S* is written in terms of its four
submatrices S with {4,j} = {1, 2}, and similarly for matrices S and S''.
From simple matrix manipulations, the submatrices 5’5 of the composite
scattering matrix ST are obtained (see [33, p. 419]) as:

Sﬁ = S{1+S112G25{{P+5271
Sh = S51,G251

S5 = SHG.S, (3.19)
S5 = S+ SHGSLP_SH

where:
G = (Pr!— SLP.SH)! 520

Gy = (P2 —S{{PpSp)™

with v, = a cos(é+p)+7 06 cos(€) in each respective medium. When v, =
~_,, the above expressions become equivalent to those given by Redheffer in
Reference [39, Equation 20, p. 10] for the specific case of d = 0, and by Kerns
in Reference [40, Equations (2.11)-(2.14), p. 84] for the general case. However,
the expression for S3; reported by Cwik and Mittra in References [10, 12] as
52 contains the same two typographical errors. S, should read as being
equal to Sy5,G15p,« instead of Sup, G158, Redheffer refers to the above
matrix operation as the star product of scattering matrices in contrast to
the regular matrix product of the corresponding transmission (or ABCD)
matrices [39, p. 13].

When there is no coupling between the TE, and TM, modes, Squ’z =0
for p # q and the cascade system reduces to two separate but simpler cascade
systems, one for each mode.

For a cascade system consisting of N-1 interfaces separating N regions,
the above procedure can be repeated N-2 times to reduce the N-1 scattering

matrices to a single matrix that corresponds to the GSM for the overall

structure. The reflection coefficient for the scatterer is obtained as the S1;
element of the composite GSM for the cascade. According to Equation (3.19)
for S, the Sy; element of the composite GSM for a cascade of interfaces
depends not only on the Si; elément of every individual interface of the
cascade but also on the other elements Sia, So1 and Sop of every individual
interface of -the cascade. This mutual coupling hetween the interfaces is
needed in order to account properly for the presence of the multiple reflections
existing between the interfaces. These multiple reflections could not be taken
into account by the scattering matrix of any individual interface because the
scattering matrix for each interface was obtained with the interface being
alone between two half-spaces, hence being isolated from any other interface.
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The phases of both the reflection and the transmission coefficients for the
overall cascade system are defined with respect to the reference planes of
the first and last interfaces of the cascade, i:e. one reference plane is at the
position of the interface separating regions 1 and 2, and the other reference
plane is at the position of the interface separating regions N-1 and N. Note
that when the media are lossless, the Fresnel coefficients are real-valued but
nevertheless, the values of the composite scattering matrix for the entire slab
are, in general, complex-valued due to matrices P~ and P, which account
for the propagation delay through the slab.

The fact that the values of the scattering coefficients for a device in situ
remain the same as the values when the device was being characterized in
a reference environment whereby all the ports of the device were impedance
matched, owes to the fact that the scattering coeflicients are geometical pa~
rameters that are independent of external excitations. The fact that the
scattering parameters can be of any use when the device is in situ in spite
of the fact that the incoming and outgoing waves at the various ports of
the devices are generally different when the device is in situ than when the
device was characterized in a reference environment, owes to the fact that
the system is linear.

One consequence of these two observations is that the cascading of two
devices that have been characterized in a same reference environment, (e.g.
50 ohm transmission lines) is equivalent to embedding each device in its ref-
erence environment and letting shrink to zero the thickness of the reference
environment (i.e. the length of the 50 ohm transmission line) that lies be-
tween the two devices (see [39, p. 28] and {19, pp. 21-22]). This property was
used herein in a MATLAB program that computes the composite scattering
matrix when two interfaces happen to coincide as a result of the discretization
scheme of the structure.

If the devices were characterized in different reference environments, then
an additional scattering matrix® like S in equation (3.12) would be introduced
in the cascade to model the discontinuity created by butting the two different
reference environments (see [44, pp. 178-179] with the series element jX = 0
or with the shunt element B = oco). This approach can be used to model
a two-layer slab standing in free space as a 3-layer slab whose middle layer
is a zero-thickness layer of free space (see Reference [19, pp. 22-23]). This
approach has the advantage of replacing the more difficult treatment of the
interface between media #1 and #2 by the simpler treatment consisting of
the cascade of two simpler interfaces A and B, separated by a zero-length
free-space transmission line, whereby interface A lies between medium #1
and free space, and interface B lies between free space and medium #2.

9For a different treatment, see Reference [45).
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If the structure is reciprocal; the scattering coefficients are purely geo-
metrical parameters, i.e. their values do not'® depend on the method of
excitation or the number of waves present at the interface, and furthermore,
the values of the transmission coefficients for an incidence from one side can
be obtained from the values of transmission coefficients for the corresponding
incidence from the other side. From Reference [13, p. 51], electromagnetlc
reciprocity can be stated as:

C®(6° = a,¢° = b0 = c, ¢ = d) =

ECZ%(HS = 1800 — C, ¢5 = 1800 + d, 01: — 1800 — CL,¢7: — 1800 + b) (3.21)

where CP? is the voltage scattering coefficients defined in terms of the
whole fields, from medium v to medium w, with the polarization p of the
scattered wave and the polarization q of the incident wave given by the 0 or ¢
unit vectors of the spherical coordinate system!! whose 2 axis is parallel to the
normal of the interface, with § and ¢ values specifying a propagation direction
of the phase wavefront in the outwards'? convention, € = +1 for p = ¢ and
¢ = —1 for p # g, the angles 0° < {a,c, 0, 6°} < 180° with v = v if both
a and ¢ are larger or smaller than 90°, and 0° < {b,d, ¢*,$°} < 360°. The
factor ¢ arises from the behaviour of the § and ¢ unit vectors of the spherical
coordinate system. The statement of reciprocity given in Equation (3.21) was
developed for a scatterer embedded in a same host medium on both sides of
the interface, i.e. for the medium being the same at both ports u and v.
If the host medium is different in each half-space, refraction and impedance
mismatch must also be taken into account. References [40, Equation (1-16)
on p. 122], [42, p. 140], and {43, Equation (20)] indicate that v* and ~? are
then needed. The statement of reciprocity becomes'®

CE(0° =0, ¢° =b,0' = c, ¢ = d) =
CP(6° = 180° — ¢, ¢° = 180° + d, 6 = 180° — a, ¢* = 180° 4 b)
(3.22)

10f at least one of the two media composing the interface is not reciprocal (e.g. a
gyrotropic medium), then the method of excitation (e.g. the orientation and strength of
an external static magnetic field) can modify the values of the constitutive parameters of
the medium.

1The matrix C on p. 51 of Reference [1}) corresponds to the matrix C herein. Re-
call that Cm, = RprErPENDIOULAR but C;;" = —RPARALLEL At normal incidence,
Rpararrer = RperPENDICULAR and thus C =—CZP.

12Tn the outwards convention, the spherical coordmate angles 0% and ¢* that specify the
direction of #* are'those for 3¢ pointing outwards from the origin of the coordinate system.

13This agrees with Equation (3.13) and Reference [42, p. 140] but it seems to disagree
with References {40, Equation (1-16) on p. 122] and {43, Equation (20)]. In these last two
references, v¥ and v% seem to be interchanged.

v

e| 2
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The absolute value symbol on % is needed only if v, is computed from
the 6 angle of the spherical coordinate system instead of the accute ¢ angles
of Figure 3.1. The absolute value symbol becomes the magnitude symbol
if the ratio becomes complex-valued. Interestingly, Reference [43, Equa-
tions (20,35,36)] shows that reciprocity holds true for any two waves, i.e. for
two propagating waves, or for two evanescent waves, or for one propagating
wave and one evanescent wave. This is in agreement with the understanding
that reciprocity is a property of the medium rather than a property of the
waves.

The values of the reflection coefficients for an incidence from one side can
also be obtained from the values of reflection coefficients for the corresponding
incidence from the other side. From interchanging input and output media,
and input and output propagation vectors in Equations (3.6) and (3.9), one
obtains readily:

CQP( _a¢s=b91_c¢z_ )_

CPL(0° = 180° = ¢, 6° = 180° + d, 0 = 180° — 0, & = 180° 4 b)  O20)

with u # v. Equation (3.23) agrees* also with Equation (3.13) as well as
with Reference [19, p. 19]. Note that Equation (3.21) with v =v and p # ¢
gives C% = —CP? which is not the same as C% = —C% of Equation (3.23).
Hence, Equation (3.23) is due not to reciprocity, but to reflection symmetry
about the interface. Equation (3.23) also agrees with the behaviour of the
reflection coefficient in transmission line theory, i.e. if I'y1 = (Zo— Z1)/(Z2+
Zl), then F1,2 = (Zl - Zz)/(Zl -+ Zz) = ——Fz,l.

Therefore, by introducing a zero-thickness layer between every medium
layer of a slab with flat parallel faces, thus making free-standing every medium
layer, and by using reciprocity (i.e. Equation (3.22)), reflection symmetry
(i.e. Equation (3.23)) and longitudinal symmetry, the scattering matrices for
the mt® medium layer of thickness d standing in free space can be obtained
from the knowledge of only C1; and C3, as follows:

14Note that Reference [28] gives the following two relations:

CRHCEE _ cHECEH — cHBeBH _ cHHCLE (3.24)
CEH | cBF — cBH _cJF (3.25)

However, Equations (3.24) and (3.25) are not believed to be true, even for the simple
case of an interface between two lossless isotropic media. For such an 111te1 face, CPe = 0
for p # ¢ and from Equation (3. 23) CrP = —CZ{’“ hence wo have 01}_1 BE = Huﬁ
mstead of C%HCEE = —CHHCEE and we have (CEH +CEP) = —(CILF +C3 ) mstead
of (CEF 4 cTF) = (cHH-c ).
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RHH RHE +g THH —g THE
REH REE —g TEH + g TEE

cl= THH THE _RHH  _pHE (3.26)
TEH TEE . REH _ REE
_RHH  _RHE HH qHE
_pEH _ pEE mEH EE
cri—| B A (3.27)

—g TEH + g TEE REH REE

where:

#m
z

9=
7P

72 = /(7992 — (4#05in £0)2 = jws ik, cos €’
y#m = \J#m) = (#0sin 0?2 = \/(1#m)? + wpsge,sin® €

#mN2 _ a#m | #Fm 2 F#m Hm
(ym)? =" A wiure

The composite scattering matrix for the free-standing layer becomes:

RHHE pHEE pHHY pHEY
REHE PREEX TEHT TEEZE ,

C* = THHY THEX RHHYE RHESE (3-28)
TEHE TEEL pREHY pEES

which clearly satisfies reciprocity and longitudinal symmetry. The ele-
ments of the matrix can be obtained with the Matlab symbolic math tool-
box. They are given in Appendix F. The scattering matrix of the multilayer
slab is then obtained by cascading the scattering matrices of its layers in
free-standing configuration. V

This author confirmed numerically that the use of the scattering matrix
propagator technique is fully equivalent to the use of the invariant imbed-
ding method presented by Adams and Denman in Reference [19, pp. 22,29]
or Weng Cho Chu in Reference [42, p. 140], and by Wait in Reference [5,
p. 151], although the recursive schemes of the first two references appear to
be different from the one of the third reference. That their recursive schemes
are, in fact, equivalent to one another can be shown as follows. Consider
the simplest problem of a slab of thickness d separating two half-spaces, thus
forming three equivalent transmission lines with characteristic impedances
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Z,, where n ranges from 1 to 3 from left to right. The slab is illuminated
from the left side. The reflection coefficient at the interface that separates
media 1 and 2 is written here as the instantaneous (or local) reflection coef-
ficient

. _h-2
LT Zo+ 23
rather than the steady-state (or global) reflection coefficient
e Zin — 2
n Zin + 21
where:
7 g Zs + Zotanh(v,d)
= 27, + Zgtanh(v,d)

When using the instantaneous reflection coefficient, all multiply reflected
waves are accounted for individually whereas when using the steady-state
reflection coefficient, only two waves are deemed to exist in every medium,
namely the forward propagating wave and the backward propagating wave.
Both approaches are equivalent upon lumping together in every medium all
the instantaneous waves travelling in a same direction. This results in the
following mathematical identity (see Appendix A):

Zin — 7 . I+ Fge_z'y"d

= 3.2
Zin -+ Z1 14 F1F3e—2')’zd ( 9)
where:
I — Zs — Zo
8T Zs+ Zy

For a problem with N interfaces, the recursive scheme results from writing
Ziy,, in terms of Z, | as was done by Wait in Reference [5, Equation 4.171],
or equivalently by Equation (3.29), from writing I', in terms of I'n41, as was
done'® by Adams and Denman in Reference [19, Equations (7.14), (7.18)].
Note that although the steady-state reflection coefficient is obtained as (Z;, —
Z1)/(Zi, + Z1), the steady-state transmission coefficient is not obtained as

' 27, /(Ziy + Z1); see Appendix A and References [5, Equations 4.172, 4.175]

and [19, Equations 7.15, 7.19]. The reason for this difference lies in the fact
that with the steady-state approach, the rest of the circuit lying beyond
the interface where Z;, is computed, is effectively enclosed in a black box
that does not give access to the output port where the knowledge of the
transmitted wave is desired.

15Note that Adams and Denman’s equations are written for the wave being incident from
the right. Moreover, this author believes that their expressions given in Equations (7.7-
7.10) remain valid in spite of errors in Equation (7.1) on page 11. Furthermore, it must
be pointed out that Equations (7.9) and (7.10) are given for the parallel polarization in
terms of the tangential (to the interface) electric field rather than the whole electric field.
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Interface | Interface I1

Figure 3.1: The cascade connection of two consecutive parallel planar inter-
faces separated by a distance d. Each scattering matrix models the scat-
tering phenomenon at one interface while the transmission line models the
wave propagation between the two interfaces. Note that the single term bf
represents the time-harmonic phasor summation of the two waves travelling
leftwards from the interface I.
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3.2 Modifications to the GSM for anisotropic
- media

In a lossless medium that is anisotropic in perm1tt1v1ty, E and D are no
longer'® parallel but E, D and k = f are still coplanar!? (see Reference [7,
p. 189]), and By = E-D = (wp,/k2)D = D/e®f (see Reference [75, p. 665]).
The two D field vectors for the two eigenwaves of the medium are perpen-
dicular'® to one another and perpendicular to the propagation vector k (see
Reference [7, pp. 189-190]). Hence, the polarization is now defined in terms
of D instead of E and each eigenwave can be decomposed into a TE? wave
with D = gbk and a TM? wave with D = 0. When the incidence plane is the
zz plane, then gbk +§ and the modes become £¥ and HY. Note, however
that even when the polarization is defined with respect to D instead of E, the
application of the boundary conditions at the interface between two media
still invokes the tangential components of E not D.

“When the anisotropic medium is also lossy, the propagation vector be-

" comes 7= (&+j ,5) and the vector D is, in general, no longer perpendicular

to 8 (see Reference [75, p. 706]). However, the process of taking into ac-
count the conductivity o by means of taking the permittivity ¢ to become
complex-valued effectively replaces the term ffree = oF by 0 in the curl
equation for H , and replaces, via the continuity equation, the charge den-
sity pgree by O in the divergence equation for D. This latter replacement
leads to (7 - 5) = 0 without implying that 7 is orthogonal to D because
~ and D are now complex-valued vectors whose real and imaginary vectors
point in gene1a1 in different directions (see Reference [4, p. 403]). Hence,
D= (DR + ]DI) and D is, in general elliptically polarized'® . The two
elgenwaves with polarizations D' and D" are no longer necessarily such that
(D'-D)=0 (see Appendix E). However, the presence of losses does not
prohibit the decomposition of a wave into pure TE* and TM" waves where
& = (& x f) is the direction for which the fields have no spatial variation?®
provided that the polarization? in the anisotropic medium is defined in terms

1For the ordinary wave in a uniaxial medium, E and D are still parallel as in any
isotropic medium. .

171t is interesting to note that although €z, €y and &, can take any values, By, Ey and
E, cannot take any values because E = (Bzd + By + E,2) must remain confined to the
plane containing k and D.

18Gection E.1.4 shows that this is certainly the case for uniaxial media but not for biaxial
media.

198imilarly, (5 - H) = 0 and due to the presence of losses, H could also be a complex-
valued vector H = (Hg + jH 1) that is elliptically polarized (see References [75, p. 706],
4, p 422] and [77]).

203ee References [4, pp. 422-423], [85, p. 31, problem 1.3] and [77, p. 584).
21'When the medium is lossless and anisotropic, E acquires a component parallel to 3
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of D instead of E. According to the case of practical importance presented
in Section 2.4.1, we know that the amplitude wavefront propagation vector
@ in the lossy anisotropic medium would be normal to the interfaces if the
incidence medium were lossless and the incident plane wave were uniform.
Furthermore, from phase matching at the interface, we know that the phase
wavefront propagation vector § in the anisotropic medium always lies in the
incidence plane. Therefore, under these conditions, & = (& x ) is normal
to the incidence plane and the eigenwaves can still be decomposed into pure
TE" and TM" waves, provided that the polarization in the lossy anisotropic
medium refers to D instead of E If the incidence plane is the zz plane, then

=9

If the anisotropic medium is uniaxial, there is only one optic axis and
the medium is characterized by a transverse?® permittivity value that is dif-
ferent from the longfcudmal perm1tt1v1ty value. The two eigenwaves of the
uniaxial medium have D or H perpendicular to the single optic axis. The
propagation vectors & and ,6 take different complex values for each eigenwave
(see Reference [46, Appendix]) since each eigenwave (i.e. the ordinary and
the extraordinary waves) sees a different effective permittivity. The ordi-

nary wave sees the transverse permittivity while the extraordinary wave sees

a mixture of the transverse and the longitudinal permittivities (this inter-

due to the anisotropy of the medium. When the medium is lossy and isotropic, E also
acquires a component parallel to ,3 due to the losses of the medium (see Reference [84,
p. 502]). However, the difference between these two cases is significant: in the lossless
anisotropic case, the polarization of E remains linear, i.e. the component of E parallel
to ,8 remains in phase with the component of E perpendlcular to ,0 ; in the lossy isotropic
case, the polarization of £ is elliptical22 because the component of E parallel to ﬁ is not
perfectly in-phase with the component of B perpendicular to ﬁ ‘When the medium is both
lossy and anisotropic, D is also elliptically polarized,

If the C scattering matrix based on using Gﬂ and ¢ﬂ to define the polarlzatlon of waves
does not take into account the component of E (or D) that is parallel to ﬁ, then why
should the TE and TM polarizations be defined in terms of D instead of E for a lossless
anisotropic scatterer, but remain defined in terms of E for a lossy isotropic scatterer?
Or put another way, why should the use of the C scattering matrix provide the correct
solution when the phase difference between the component of £ (or D) that is parallel to
G and the component of E (or 5) that is perpendicular to § was £90° but not so when
the phase difference was 0° or £180°7?

In the case of the lossless anisotropic medium, it is clear that there is no loss of informa-
tion (see Reference [7 , PD- 190-195]) in characterizing the propagation phenomenon at the
interface by using D instead of E in the anisotropic medium. Since Dis perpendicular to
ﬁ, D can be decomposed into components along Gﬂ and ¢ﬂ Thus, it is a natural to use
D instead of E for the elements of the € scattering matrix that pertain to the anisotropic
medium. In the case of the lossy medium, however, there would be some loss of informa-
tion if the C scattering matrix did not take into account the component of either Eor D
that was parallel to 8. Thus, perhaps we should not expect to obtain the exact solution
from using the C scattering matrix with lossy media.

23The label "transverse” refers here to any direction perpendicular to the opt1c axis,
and the label "longitudinal” refers here to a direction parallel to the optic axis.
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pretation stems from the behaviour of the phase velocity in Reference [49,
pp. 359-360]). Either the incidence polarization (defined with reference to
the incidence plane) could be decomposed in a mixture of the two eigenpolar-
izations of the anisotropic medium (see References [46], [47, p. 106] and [48,
p. 158]), or conversely, the two eigenwaves of the anisotropic medium could
be decomposed into TE® and TM* modes defined in terms of D instead of
E. However, for lossless? uniaxial media with the optic axis parallel to the
normal of the interfaces, the following comments apply:

1. the superscript E refers to both the eigenpolarization with E and D
pelpendlcular to the optic axis, and to the incidence polarization with
E and D perpendicular to the incidence plane, ie. B = D = b
Similarly, the superscript H refers to both the eigenpolarization with
H perpendicular to the optic axis, and to the incidence polarization
with E and D parallel to the incidence plane, i.e. D = 6, but & # D.
Thus, the modal decomposition of the electromagnetic field in TE? and
TM? modes remains valid (see References [50, p. 170], [51] and [38]).

2. no coupling arises between the ordinary wave of one layer and the
extraordinary wave of an adjacent layer, and thus, each wave (i.e. or-
dinary or extraordinary) can be seen to propagate independently of
the other wave (i.e. extraordinary or ordinary) throughout the entire
cascade of layers (see References [53] and [27]).

When the medium is uniaxial with its optic axis parallel or perpendicular
to the incidence plane, no coupling arises between TE? and TM?® modes
(i.e. T'y2 = T'y; = 0 in Reference [7, pp. 239-245]) in the isotropic medium
from which the plane wave is incident. Hence, the reflected plane wave
has then the same mode as the incident plane wave. However, this is not
necessarily the case for the transmitted plane wave because T1s = To; = 0 in
Reference [7, pp. 239-245] means that there is no coupling between the TE? or
TM? wave incident from the free-space side, and one of the two eigenwaves in
the transmission medium. Since each eigenwave in the anisotropic medium
is, in general, a mixture of TE® and TM® waves defined in terms of 5,
the expressions T1s = T3; = 0 does not imply that there is no coupling
between TE? and TM? waves in the anisotropic medium. Consequently,
when the reflected plane wave has the same mode as the incident plane wave,
the amplitude matching of the tangential £ and H field components at the
interface forces the cross-polarization? mode of one eigenwave to be cancelled

24When the uniaxial medium becomes lossy, the vector D becomes a complex-valued
vector and elliptically polarized. These comments would no longer apply rigorously.

25The cross-polarization mode of an eigenwave is defined here with respect to the po-
larization mode of the incident plane wave, i.e. the cross-polarization mode is TE? if the
incident plane wave is TM?, and TM? if the incident plane wave is TE®.
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by the cross-polarization mode of the other eigenwave at the interface in the
anisotropic medium. Since Fresnel equations are valid only for zero cross-
polarization, Fresnel equations do not necessarily remain valid even when
the medium is uniaxial with its optic axis parallel or perpendicular to the
incidence plane. In fact, it turns out that Fresnel equations remain valid only
when the optic axis is normal to the interface, provided that the permittivity
value used in Fresnel equations is that seen by the D vector ”in the interface”
(see next sections). '

The use of the scattering matrix propagator technique requires the knowl-
edge of the scattering coeflicients for incidence from each side of the interface.
When the optic axis of a uniaxial medium is normal to the 1nterface, the or-
dinary wave is equivalent to a TE® wave with D= qﬁk = +¢ and H= Hk,
and the extraordinary wave is equivalent to a TM? wave with D = 6, and
A= —qﬁk Fi. Hence, a TE? wave incident from the side of the isotropic
medium gives rise only to the ordinary wave in the uniaxial medium, and a
TM? wave incident from the side of the isotropic medium gives rise only to
the extraordinary wave in the uniaxial medium. From reciprocity, the ordi-
nary wave incident from the side of the uniaxial medium gives rise only to
the TE? wave in the isotropic medium, and the extraordinary wave incident
from the side of the uniaxial medium gives rise only to the TM?® wave in
the isotropic medium. Therefore, it is easy to see that in this case as in the
case of a planar interface between two isotropic media (see Equation (3.12)),
the expressions for the scattering coefficients when the incidence is from the
uniaxial medium can be obtained simply by interchanging input and output
media, and input and output propagation vectors, in the expressions for the
scattering coefficients when the incidence is from the isotropic medium.

When the optic axis is not normal to the interface, both the ordinary
and the extraordinary waves exist simultaneously in the uniaxial medium
even if the wave incident from the isotropic medium is a pure TEM wave.
In this case, the situation is much more complicated and it is no longer evi-
dent that the above simple interchange in the expressions for the scattering
coefficients when the incidence was from the isotropic side, would produce
the expressions for the scattering coefficients when the incidence was from
the anisotropic side. However, if the structure is reciprocal, Equations (3.26-
3.27) can still be used provided that the polarization of the eigenwaves are
defined in terms of D instead of E. This last provision is necessary because
Equations (3.26-3.27) were cast in terms of the unit vectors 0 and @ of
the spherical coordinate system used to describe the polarization in the C
matrices. When the anisotropic media become lossy, however, D becomes
elliptically polarized with a component in the direction of the phase wave-
front propagation vector (3 which is a radial vector in the spherlcal coordinate
system. The behaviour of the radial unit vector #, however, does not cause a
problem with the statement of reciprocity in Equation (3.22), or symmetry in
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Equation (3.23). Thus, Equations (3.26-3.27) and the use of the C matrices
and the scattering matrix propagator technique remain valid in the presence
of a field component in the direction of 3. Furthermore, if this radial compo-
nent of D is in phase quadrature with the transverse components of D the
scattering matrix for the radial component can be treated separately from
the scattering matrix for the transverse components.
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Chapter 4

Complex permittivity profile

In this report, a plate with a low reflection level is made from a dielec-
tric structure so that the plate presents to an incident uniform plane wave
propagating in free space, a very gradual variation of the effective complex
permittivity as the wave propagates through the plate (see References [3, 54,
55, 56]).

4.1 Effective permittivity

The plate consisted, here, of three sections. The front and the back sections
consisted of arrays of small circular dielectric cones arranged according to
equilateral triangular lattices. The middle section consisted of a dielectric
slab in which an array of circular air cones was bored from both the front and
the back surfaces according to two interlaced equilateral triangular lattices
s0 as to achieve almost optimum packing of the air cones. Figure 4.7 shows a
cut-away section of the plate in its final design. Figure 4.8 shows a conceptual
view of the plate. The combination of the front and the back lattices formed
a composite array whose unit cell has the hexagonal cross-section shown in
Figure 4.9. The resulting structure is honeycomb-like, light (less than about
60% of the original weight of the dielectric slab) and strong.

The assumption that formed the basis on which to compute the permit-
tivity profile was that the effective complex permittivity in each thin layer of
the cascade forming the plate could be computed solely from consideration
of the fractional volume occupied by the dielectric material with respect to
the total volume of a unit volume within the layer. The rationale for this
assumption lies in the fact that the dielectric material can be replaced by an
equivalent electric polarization current acting in free space and distributed
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throughout the volume of the dielectric material (see References [57, 58]).

- If the polarization current were unidirectional throughout the volume of di-

electric material, the effective permittivity would be that corresponding to
a uniform polarization current density throughout all space, equal to the
average polarization current density. The value for the average polarization
current density would be obtained by scaling the value of the original po-
larization current density according to the fraction of volume occupied by
the dielectric material with respect to the total volume of the unit volume.
Therefore, the relative complex permittivity which accounts for the effect of
the equivalent electric polarization current, could be computed by scaling the
original complex permittivity value according to the same ratio. However,
this approach is not accurate enough for most cases because it ignores the
spatial anisotropy of the effective permittivity.

In practice, the complex permittivity of each layer is realized by introduc-
ing small bits of a foreign material in an otherwise homogeneous dielectric
host material. Morita and Cohn in Reference [59] have used small circular
holes as inclusions of air pockets. The holes play the role of macroscopic
molecules that become polarized by the total electric field. This effect is the
result of the differential charge density appearing on the walls of the cavities
excited by the local internal electric field whose distribution is affected by
the absence of the dielectric material in the holes. Different shapes of cavi-
ties present different polarizability values. The resulting composite material
presents an effective permittivity with a value obtained from the weighted
average of the permittivity for each material (i.e. dielectric and air) making
up the composite material. The weighted average depends on the polarizabil-
ity of the inclusions (which itself depends on the shape of the inclusions and
their orientation with respect to the total electric field), and the distribution
of the inclusions throughout the host material. For a uniform distribution
of spherical inclusions, the weighted average corresponds simply to the frac-
tional volume occupied by the inclusions within a total unit volume of host
material. This approach is well known in the context of artificial dielectrics.

In the context of gratings, however, grooves are normally used as in-
clusions. For grooves running in one-direction, the presence of the grooves
concentrates the electric field differently for different polarizations, thus mak-
ing the composite material anisotropic, i.e. the effective permittivity value
becomes polarization dependent. For instance, such anisotropy is taken ex-
plicitly into account in Reference [46] for triangular grooves, and in Ref-
erence [60, 62] for rectangular grooves. Other groove.profiles have been
investigated (see References [63, 64, 65]). Reference [66] mentions that a
better prediction is obtained with using a second-order model of effective
permittivity. The computation of the effective permittivity becomes even
more complex for 2-D periodical arrays. The case for the square pyramidal
element has been treated in References [67, 68, 69, 70, 71, 72, 73] in the
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context of absorbers for anechoic chambers. The case for a rectangular array
of cylindrical rods has been treated in References [74] and [75, p. 704] based
on results from Lord Rayleigh, and in References [78, 79| in the context of
anisotropic laminated composites. '

~ Here, the spatial anisotropy introduced by the presence of the holes in
each thin layer was neglected in the transverse (to the interfaces) directions
because this anisotropy was expected to be small for the following two rea-
sons: '

1. the element factor had rotational invariance because the holes were
circular within each layer;

2. the array factor for a lattice of equilateral triangles was almost rota-
tionnally invariant over the many cells making up the array.

The effective permittivity value that was used herein for the transverse (to
the interfaces) directions was an approximate value obtained from Refer-
ence (74, p. 192, Equation (7.6)]. Lord Rayleigh’s formula was used even
though his array was a rectangular array of cylinders of a same diameter
whereas our array was triangular and used two different diameters equally
distributed among all the cylinders of a same layer. Furthermore, the GSM
used here does not include the effect of the evanescent' waves created by
the sub-wavelength features of the geometry. When the layers are very thin,
adjacent interfaces become so close to one another that evanescent waves of
one interface can reach adjacent interfaces and couple with the propagat-
ing or evanescent waves of adjacent interfaces. Usually, evanescent waves by
themselves do not carry real (i.e. active) power and are needed only to make
the field distribution satisfy the boundary conditions at the sub-wavelength
scale. However, the transfer of active power is possible when evanescent
waves couple to other waves (see Reference [40, p. 65]), the prism coupler
being an example of applications where such coupling is put to a good use
[48, p. 65]. Reference [p. 1321]Sarabandi mentions that the effects of dis-
continuities (hence, the effect of the evanescent waves) can be neglected. A
comparison between numerically simulated (based on a numerical technique

1Usually, evanescent waves are present in the vicinity of a discontinuity, e.g. an inter-
face between different media or an inclusion in an otherwise homogeneous material. Note,
however, that the solution to the problem of a multilayer slab of infinite transverse dimen-
sions, made of homogeneous layers with parallel planar interfaces, standing in free space
and illuminated by a uniform propagating plane wave, does not require the presence of
any evanescent (i.e. non-uniform) plane waves. Hence, our numerical technique based on
modelling the corrugated slab as a multilayer slab where each layer is homogeneous, does
not involve the presence of evanescent waves whereas our numerical technique based on
modelling the slab with its actual inclusions as part of a FDTD simulation would include
the evanescent waves.
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- presented later) or experimentally measured results could determine if the

effects of evanescent waves can be neglected. However, no attempt was made
to model the complicated geometry of the profiled slab.

The effective permittivity value that was used herein for the longitu-
dinal (to the interfaces) direction is said to be exact according to Refer-
ences [67, 68], and corresponds to the fractional volume mentioned above.
The resulting composite material is uniaxial with the optic axis parallel to
the longitudinal direction, i.e. normal to the interface. Thus, the polarization
perpendicular to the incidence plane has the D field always perpendicular to
the optic axis and gives rise to an ordinary wave, i.e. the electromagnetic
wave propagates within the composite material as in an isotropic material
with an effective permittivity corresponding to that for the transverse (to
the optic axis) direction, &,F88, The polarization parallel to the incidence
plane has the H field always perpendicular to the optic axis, and thus the
D field inside the uniaxial medium has a component perpendicular and a
component parallel to the optic axis. The parallel polarization gives rise to
an extraordinary wave, i.e. the electromagnetic wave propagates within the
composite material as in an isotropic material with an effective permittivity

value !l that depends on some average of the transverse permittivity e, ?Fans

and the longitudinal permittivity &,1°%8 where the super-indices "trans” and

"long” refer to directions perpendicular and parallel to the optic axis, respec-
tively. From the interpretation that the phase velocity of the extraordinary

wave is equal to 1/4/ ;1,057” and from Equation (10.80) of Reference [49, p. 360],
one obtains (See [75, p. 677]):

1 cos®() | sin®(9)
e—ﬂ g, trans ¢, long

(4.1)

where the angle 0 < 8 < 90° corresponds to the acute angle between the
optic axis and the propagation vector ﬁ We confirm that for 8 = 0°, thus for
D being perpendicular to the optic axis, Equation (4.1) produces the result
el = ¢80 We confirm also that for # = 90°, thus for D being parallel
to the optic axis, Equation (4.1) produces the result &)l = £,1°08. For any
intermediary 6 value, the value for 1/ell lies between the values for 1/e, trans
and 1/e,1008,

Since both the ordinary and the extraordinary waves see different effec-
tive permittivity values, the transmission angle at an interface between two
layers is different for each eigenwave, but it is still given by Snell’s law of
refraction (generalized here to take into account the non-uniform wave prop-
agation caused by the presence of material losses). Bodnar and Bassett in
reference [46] treated the case of an interface of two uniaxial lossless media.
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When the media are both lossy and uniaxial (or, more generally, anisotropic),
the question arises as to how to obtain for the non-uniform extraordinary

wave, the intrinsic effective propagation constants o, and g, from which to"

obtain the effective propagation constants « and £ and the real-valued prop-
agation angles &, and {; = (£2+ p2) by.the procedure presented in Chapter 2.
The answer is provided in the next two sections.

4.2 Computation of the intrinsic propagation
constants «, and (3, for the extraordinary
wave

By analogy with the expression 7, = jko/E, of Equation (2.3) we give the
interpretation that v? = —kZ2ell where el represents the overall effective per-
mittivity that the wave sees, and k, is the usual wave number in free space.
We apply this interpretation to the specific case of the extraordinary wave
in the uniaxial medium. From Equation (2.2), we know:

V=75 =2= (a2~ 2) +J (20)

Equating the real and the imaginary parts of the last equation with those
of equation 72 = —kZell results in a system of two equations in the two
unknowns o, and 3, with the following solution:

e,u —Re —e,ll—

o, =k, 5 (4.2)
61,[- +Re -eu—

/60 =k, 2 B (43)

where el = (Re [eﬂ] — jIm [EﬂD For ‘eﬂ‘ = Re [eﬂ], i.e. for Im[eﬂ] = 0,
Equations (4.2) and (4.3) produce the expected results o, = 0 and 3, =

ko 5!1, respectively. Substituting a, of Equation (4.2), and substituting £,
of Equation (4.3) into Equations (2.11) and (2.12) produces:

o = VR R ] ) =
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e, = Re [sﬂ] (4.5)

~

which is consistent with the expression el = (Re [sﬂ] — jIm [sﬂ]) and the
expression &, = €, — j (st.,) of Equation (2.4).

In general, the effective propagation constants o and £ cannot be com-
puted without invoking o, and B, because the equation v2 = a? — 8% +
273 cos(p) has three unknowns, whereas the equation y% = a2 — 82+ 25,0,
has only two unknowns? . Moreover, it is not possible to relate o and 8 to
some permittivity efﬁ the same way that we can relate o, and £, to ell. The

reason is that although we can write v, = a,+706, = J ko\/;;‘l , We cannot write

v=a+38 = jko/ efﬁ unless & and ,5 point in the same direction. However,
the above procedure works because we can always write 7 - 7 = 4% = 2.

4.3 Computation of the effective permittivity
el for the extraordinary wave

For the case that the incidence medium is free space, and the transmission
medium is a lossless uniaxial medium, and the optic axis lies in the inci-
dence plane at an angle 8, with respect to the normal of the interface, the
application of Johnson’s equation (10.80) (see Reference [49, p. 360]) for the
velocity ¢; of the extraordinary wave, and Johnson’s equation (10.83) (see
Reference [49, p. 361]) for Snell’s law, allows to find el = (c,/c;)? for any
value of 6,, where ¢, = 1/,/fic€,. As explained in Appendix D.1, the ef-
fective relative permittivity® for the extraordinary wave propagating in the
uniaxial half-space for both cases of 8, = 0° and 6, = £90° can be written
as Equation (D.23), which translates into:

I trans | _inc . _2/sinc g, trans
el =g, +&; sm. ) [1- . Tong (4.6)

“For the special case of practical importance presented in Section (2.4.1) whereby p
is known a priori from the fact that & is normal to the interface, 8 and « could be
computed directly from the knowledge of €, and o/(we,) as per Equations (2.35) and
(2 36), respectively. However, there would still remain the necessity to find the values of
e and o that correspond to the extraordinary wave.

3The effective permittivity in Equation (4.6) corresponds to that in y, = ao + 48, =

ko ET, not that in v = o + 78 = jk, 5$ﬂ.

70



where here* ”trans” and ”long” refer to the directions parallel and per-
pendicular to the interface, respectively. This last equation corresponds to
Collin’s equation (118c) in Reference [47, p. 103] for a case where the optic
axis is parallel to the interface, i.e. 8, = £90°. One surprising consequence
of this last equation is that although el = £,785 at normal incidence (i.e.

gine — 0), the value for ell is not bounded by the value for &,1°08 at grazing

incidence (£12€ = 90°). In fact, depending on the value for (¢, 7208/ g, longy,
it might be possible to have el < 1 or even el < 0.

In our case, we assume that a triangular array of circular cones presents
an almost perfect rotational symmetry in the transverse (to the interfaces)
plane such that the medium can be approximated by a uniaxial medium with
its optic axis parallel to the normal of the interface, i.e. §, = 0°.

Equation (4.6) can-be generalized to include intrinsic losses in both the
incidence and the transmission media by replaclrig in each respectlve medium
the propagation vector k = ,6 by ¥ = &+ 78 and taking v = -4 =
a? — 2 + 2ja - Beos(r) as in Equation (2.2). From Collin’s development in
reference [47, pp. 97-103], we obtain 7 - D =0 as in reference [47, p. 97) and
Collin’s Equation (118¢) becomes:

. ) ) . ' )
2 __ ;2| _ trans <a1nc sin(€'MC 4 ') 4 B¢ 81n(§1nc)> < Ertrans>
v =—k, | e — 1—

ko g, long
|
e
(4.7)
For the incidence medium being free space, i.e. ol1¢ = 0 and ﬁinc = ko,

Equation (4.7) is consistent with Equation (4.6), as expected since our
corresponds to —3? of Collin.

In summary, the new procedure for computing the equivalent intrinsic
propagation constants o, and G, that a transmitted wave sees in the lossy
uniaxial medium beyond an interface, is based on the following sequence of
reasoning steps:

1. using the interpretation v> = —k2ell where !l is the overall effective

4In Appendix D.1, "trans” and ”long” refered to the directions parallel and perpen-
dicular to the optic axis, respectively. Equation (4.6) with ”trans” and ”long” referring
to the directions parallel and perpendicular to the interface, respectively, is thus valid for

0, = 0°,£90° as per Equation (D.23), but not for intermediates values between 0° and
90°.
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complex permittivity that the transmitted wave sees in the lossy uni-
axial transmission medium;

2. generalizing Equation (4.6) to include the presence of intrinsic losses in
- both the incidence and the transmission media, and computing * as
—k2ell; when the incidence medium is uniaxial, Equation (4.6) remains
valid because it is based on the use of Snell’s law of refraction which
remains valid because Snell’s law is based only on phase matching at
the interface.

3. using Equation (2.2) which leads to Equations (4.2) and (4.3) from
which to compute the effective propagation constants o and § by the
technique presented in Chapter 2; note that the values of the intrinsic
propagation constants o, and B, are generally different between the
two eigenwaves inside each uniaxial layer.

This procedure relies on a bootstrap approach because it is circular® in
thinking and thus, in order to work, it requires the knowledge of an indepen-
dent method to determine ag and fB;. The motivation for using this bootstrap
approach, however, is to be able to reuse the method of Chapter 2 that was
developed for the case where iy and [, were known a priori. Furthermore,
the independent method needed for the procedure can be generalized to the
case of biaxial media (see Appendix D.2). Finally, this procedure has a clear
physical interpretation. Note, however, that since Fresnel equations require
the knowledge of only ~, = \/ 42 — (I0C gin £10C)2 with 42 for the extraor-
dinary wave given by Equation (4.7), Fresnel equations could be computed
without having to find the values of intrinsic «,, f,, the values of effective
o and § and the values of the propagation angles p and €. This is precisely
how Wait proceeded, as shown in the next section.

4.»4 Wait’s method

In comparison, Wait [31, pp. 98, 110-113] gives, for the case §, = 0°, the
reflection coefficients as:

u® — ut
u? + ut

(4.8)

RpERPENDICULAR =

5The computation of the effective propagation constants ce and By of the transmission
uniaxial medium by the procedure presented in Chapter 2 is made from the knowledge
of the intrinsic propagation constants a,y and B,o of the transmission uniaxial medium.
These, in turn, are themselves computed from the knowledge of effective propagation
constants s and S, obtained by an independent method (Collin’s equation generalized
to include losses and the uniaxial property in both the incidence and the transmission
media).
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vt vt
N
Rpararrer == 5 o (49)
R
Y v
where: .
= (jooso) (07208 o juoeMP1S) — pzebrans  (4.10)
U =4/A2+ 2 (4.11)
v=1/N2k+ 72 (4.12)
A = —j7'sin(6%) (4.13)
trans , . ,strans Arans _ j _trans trans
P -l—jwel zel ufal ZETI (4.14)
olong jweong gong _ Lglong 018

Note that in Wait’s development:

¢ the variable called g is called o here;
e Rpararngr is the negatlve of our own as per Reference [5 p. 152];
e the real parts of u and v are chosen to be positive;

o the propagation angles are complex-valued and thus, ° can be complex-
valued;

o the incidence medium is free space, i.e. isotropic, which situation re-
sults in v* = v in Equation (4.9), and results in the expressions given
by Wait in Reference [31, p. 113].

Note that v corresponds to the complex propagation constant for the
ordinary wave as shown in Equation (4.10). Note also that the term j\ =
yisin(#?) corresponds to the transverse component of . The phase matching
requirement of all waves at the planar interface forces the transverse variation
of the fields for the transmitted eigenwaves to be precisely that of the fields
for the incident plane wave, and results in the law of reflection and Snell’s
law of refraction. Consequently, we have:

ut = \52 + i \/—7 sin? (6%) + % = yicos(6?) =+ (4.15)
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and

= \/A2—i—fyt2 \/—fy %sin?(91) 4+ vt = jk, \/—6231.‘(12(01)—}—6’5

= jko\/_r,/l — Egsmz(w = _7]\;0\/—,,.\/ — sin?(8%) = ytcos(8?) =

(4.16)
where the super-index "trans” for e, was suppressed to minimize cluttering
the expressions. Thus, the variable u corresponds to the longitudinal com-
ponent of the complex propagation constant for the ordinary wave in the
transmission medium as well as in the incidence medinm. Therefore, the
reflection coeflicient Rprprpenprovrar given by Equation (4.8) corresponds
exactly to the expression given in Equation (3.9) since the eigenwave corre-
sponding to this polarization is the ordinary wave.

The expression (4.9) can be modified easily to obtain:

P2 .02 t,.0 i,k
vyt — oty gt — g

vigt? vt,yz‘2 glvt + gyt

RparaLLEL = (4.17)

where all permittivity values refer to the transverse permittivity values. Re-
calling that Rpararrer is the negative of our own as per Reference [5, p. 152],
we see that Equation (4.17) is the same as Equation (3.6) provided that all
permittivity values in Equation (4.17) are the transverse (not the effective)
permittivity values, and that v = ,. This expression also agrees with Equa-
tion (6.107) of Reference [7, p. 245]. For the isotropic case, it is clear that
k = 1 and thus, v = +,, and Equation (4.17) reduces (notwithstanding the
aforementioned difference in sign) to Equation (3.6). Now, Equation (4.7)
can be re-written as:

. . . . . 2\ [ g trans
_kggrll = (_ (alnc Sin(gmc + pmc) +j,8mc sin(fmc)) ) r
N’

[ v

'yzcollin 22 _—

. . . . . 9
n (_ kﬁertrans) n (( al\nc sin(¢inC 4 pincy | jginc sin(fmc)) )

N e

2
27Wait =
. 2 _
= 2L+ ()
N —r’
g/

(4.18)

where <y, and vy, are the longitudinal and the transverse components of
YCollin> Tespectively. Recall that vy, = jA because the phase matching of the
fields at every interface forces the transverse variation of the scattered fields
to be that of the incident field (see Reference [5, p. 150]). Hence, we see
that- Wait’s formulation corresponds, in fact, to Collin’s formulation when
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the optic axis is parallel to the normal of the interface, i.e. 6, = 0°. In
other words, Wait’s Equation (4.12) can be obtained from Equation (4.7)

and v* = 7} = (Vg ppin — 75)- When PG = _¢iNC o 5 result of GNC being

normal to the interface, or when o''® = 0 as a result of the incidence region

being lossless, and since BMC = k,4/elC, there results for the extraordinary
wave:

o ) ctrans
e = e it in(gine) | S (419)
Er

which agrees® ‘with Equation (4.12). For an isotropic slab, one obtains
girans — o, = Elong and thus, Equation (4.19) reduces to Equation (4.16)

upon using Snell’s law /g7 sin(¢;) = /&7 sin(&) where ¢12C = ¢; and £I7C = -

Epy-

From the above observations, the transmission coefficients for Wait’s
method could be obtained as follows:

T - (4.20)
TrERPENDIGULAR = T T -
, (, /ei:sﬁ) 20*
TparALLEL =~ 57— 71 (4.21)

eivt + etvt
where all permittivity values are again transverse permittivity values. This
expression agrees’ with Equation (6.106) of Reference [7, p. 245].

4.5 Validation

For a structure consisting of two adjacent layers in otherwise free space,
illuminated by a uniform plane wave, both predicted and numerical results

SNote the difference between the expression for v, given by Equation (4.19) and the

expression for v, = jk, sﬂ with sﬂ given by Equation (4.6).

"The agreement is seen when Equation (6.106) is divided by —k; to account for the
fact that C) = —k:C_ as mentioned on page 234 of Reference [7]. Note that in Equa-
tion (6.106), £, and gy refer to the principal dielectric values in the directions perpen-
dicular and parallel to the optic axis, respectively, whereas here 7815 and £1008 refer to
the permittivity values in the directions perpendicular and parallel to the normal of the
interface, respectively. In the present case, however, £, = 7205 and g = 1018 because
the optic axis and the normal of the interface are parallel to one another.
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were obtained for various types of interfaces (i.e. lossless vs lossy, isotropic
vs uniaxial, input vs output media) and for 6, = 0° or £90°. The predicted
results were generated by the analytical method based on the Adler-Chu-
Fano formulation, with the generalized Fresnel equations modified to use the
permittivity values ”in the interface”, i.e. g, for the TE® polarization and e,
for the TM? polarization.

Two FORTRAN programs were written to compute the composite scat-

tering matrix of the free-standing multilayer slab. One program cascaded.

the scattering matrix given by Equation (3.28) for each free-standing layer,
i.e. using a fictitious zero-thickness layer at every internal interface to make
each layer free-standing, and then using reciprocity and longitudinal symme-
try. The other FORTRAN program cascaded the scattering matrices of all
interfaces and intervening media in situ with the scattering matrix of each
interface given by Equation (3.12) modified to use the permittivity values
"in the interface”. Both programs gave identical results. This confirms the
validity of using fictitious zero-thickness layers and Equations (3.26)-(3.28).

The numerical results were generated by a numerical technique® based on

FDTD simulations as explained here. The scattered field of an infinite-size
slab was computed by a FDTD method that uses the separate field formalism
so that the infinite-size slab could be modeled simply by extending the slab all
the way to the outer boundaries that were terminated by eight PML layers.
The excitation was a time-harmonic Maxwellian tapered beam synthesized
and positioned such as not to illuminate the edges of the slab and such as
to have negligible excitation over the innermost PML layer. The prescribed
dominant polarization of the excitation beam was either TM? or TE®. The
prescribed incidence of the excitation beam was 45° in the inward convention.
After having computed the scattered field by the FDTD method, some post-
processing was carried out to compute the spectrum of the incident, reflected
and transmitted beams, and the values of the scattering coefficients were
obtained by forming the ratio of the E-field phasor of the spectrum for the
scattered beams, over the E-field phasor of the spectrum for the incident
beam, for all incidence angles of interest.

4.5.1 Case of §,=0° i.e. g, =€, F# ¢,

Figures 4.1, 4.2 and 4.3 show the results for the case that the optic axis was
oriented in a direction parallel to the normal of the interface, i.e. 6, = 0°.
Wait’s method was also used as a second analytical method, with:

8For more information on the numerical technique that computes the values of plane
wave scattering coefficients, see CRC Technical report #+CRC-RP-2008-002.
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ghrans €x =€y
glong €,

where "trans” and ”long” refer to both the optic axis and the normal of
the interfaces.

The results predicted by the two analytical methods are identical. The
very good correspondence® confirm that the permittivities to be used in the
generalized Fresnel equations are, indeed, the permittivity values "in the in-
terface”. The slight remaining discrepancy between the numerical curves and
the analytical curves owe to numerical issues with the FDTD method mostly
(e.g. numerical anisotropy from spatial and temporal discretizations, second-
order accuracy from the finite-difference algorithm, modeling of the interface
by using the average of the two permittivity values on the two sides of the
interface, modeling an infinite-size slab by terminating the slab model into
PML layers, spurious residual reflections from the PML layers, carrying out
the floating-point computation in single precision, etc.). The oscillations of
the numerical curves about the analytical curves due to aperture truncation
from computing the far fields from apertures of a necessarily finite size were
mitigated by the technique of ”window averaging”.

We note that the propagation angle values are different between the per-
pendicular and the parallel polarizations. We note also that, by finding the
mathematical equivalence (see Appendix B) between a uniform plane wave
with complex-valued propagation angle § and a non-uniform plane wave with
real-valued propagation angles (¢ for ﬁ and &+ p for @), the complex-valued
propagation angle corresponding to the real-valued propagation angles does
not, in general, correspond to § = £ + (€ + p). Recall that according to the
case of practical importance presented in Section 2.4.1, we know that the
amplitude wavefront propagation, vector ds would be normal to the interface
if the incidence medium were lossless and the incident plane wave were uni-
form. Thus (£ +p) = 0 and £+i(¢ + p) would become real-valued. However,

9Since Wait’s equations reduce to Fresnel equations when the uniaxial media become
isotropic, and if the predicted curves of plane wave scattering coefficient values for lossy
media computed by the generalized Fresnel equations became less accurate as the conduc-
tivity values of the media increased, why should the correspondence between predicted
values and numerically computed values be better for the lossy uniaxial slab than for
the lossy isotropic slab? A possible reason is that both the losses and the anisotropy of
a medium make the F and/or H field acquire a component parallel to the propagation
direction of the phase wavefront. However, the component due to losses might point in
one direction along the propagation direction while the component due to the anisotropy
might point in the opposite direction. If so, the combined effect due to the presence of
both these components parallel to the direction of propagation would be less for the lossy
anisotropic media than for the lossy isotropic slab.
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we know from Snell’s law. of refraction that ¢ is not real-valued when the
transmission medium is lossy, hence § # £ + (€ + p).

Since all results of the two analytical methods are identical, we could also
confirm that the complex values of the propagation angle corresponding to
the real values of the propagation angle would be the same as the complex
values computed by Snell’s law with complex propagation angles. More im-
portantly however, the fact that the results of the two analytical methods
are identical indicate that the procedure presented in Appendix D for arriv-
ing at Equation (4.6), remains valid even if the uniaxial medium becomes
lossy, which situation causes the plane waves to become non-uniform in the
lossy uniaxial medium (with @, being normal to the interface). This obser-
vation is important because the procedure in Appendix D can be generalized
to compute the effective relative permittivity that a plane wave would see
as it propagated through a more general anisotropic medium (i.e. a biaxial
medium; see Appendix D.2), and from this knowledge, the problem could be
solved by the Adler-Chu-Fano formulation.

When at least one medium of the structure is uniaxial, Wait’s formulation
in Reference [31] does not indicate how Snell’s law must be modified to
compute the transmission angle for the extraordinary wave in the uniaxial
medium. In fact, Wait’s solution does not even require the explicit knowledge
of the transmission angle since v given by Equation (4.12) is not written
explicitly as a function of the transmission angle. Hence, our method is
more comprehensive than Wait’s method because it provides the explicit
knowledge of all real-valued propagation angles in every layer. However,
Wait’s computation of v, from expressions (4.11) and (4.12) is much simpler
than our method which requires solving for «, 8, £ and p, and then computing
v, = (acos(§ + p) + 7B cos(€)). Our method, however, can be generalized to
treat the case of more general anisotropic media (see Appendix D.2).
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Figure 4.1: The magnitude results plotted on a linear scale, for the re-
flection coefficient of a two-layer slab standing in free space, obtained by
three different methods: 1) Wait’s analytical method (dot-dash); 2) ana-
lytical method by this author (dash); 3) numerical method by this author
(solid). The parameters for the two-layer slab were d; = 0.05 m, dy = 0.10 m,
ef! = eff! = 2(1 - j0.3)e,, eF? = ¥? = 5(1 — j0.3)e,, ¥ = 5(1 — j0.3)e,,
e#? = 2(1 — j0.3)e,, and the frequency was f = 1900 MHz. All results are
identical between the two analytical methods.
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Figure 4.2: Same as Figure 4.1 except that the results are plotted on a dB
scale. All results are identical between the two analytical methods.
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4.5.2 Case of 0, =90° i.e. g, # &, = &,

Figures 4.4, 4.5 and 4.6 show the results for the case that the optic axis was
oriented in a direction parallel to the interface, i.e. §, = 90°, in the incidence
plane. Wait’s method was also used as a second analytical method, with:

where "trans” and ”long” refer to the optic axis. The two analytical
methods provided again identical results. The correspondence between the
predicted and the numerical results is poor even for lossless media. This
means that the generalized Fresnel equations cannot be used even when the
permittivity values are those "in the interface”, i.e. g, for the TE? polariza-
tion and &, for the TM? polarization.
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Figure 4.4: The magnitude results plotted on a linear scale, for the re-
flection coefficient of a two-layer slab standing in free space, obtained by
three different methods: 1) Wait’s analytical method (dot-dash); 2) ana-
lytical method by this author (dash); 3) numerical method by this author
(solid). The parameters for the two-layer slab were d; = 0.05 m, d; = 0.10 m,
e¥! = e = 5(1 — j0.0)e,, e¥? = e¥? = 2(1 - j0.0)e,, ¥ = 3(1 — j0.0)e,,
e#2 = 5(1 — j0.0)e,, and the frequency was f = 1900 MHz. All results are
identical between the two analytical methods.
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Figure 4.5: Same as Figure 4.4 except that the results are plotted on a dB
scale. All results are identical between the two analytical methods.
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trans long

4.6 Computation of &, and &,

Since each layer consists of a two-dimensional periodic structure, the analysis
is restricted to the unit cell of that periodic structure. Stacking the unit cell
of every layer in the order that the layers appear in the plate produces an
hexagonal unit cell of height corresponding to the thickness of the plate. In
the stacking process, however, the present analysis does not take into account
how the dielectric material within each layer aligns from one layer to the next
because each layer is modelled as a homogeneous layer (see Reference [66]).

The cross-section of the hexagonal unit cell is composed of six equilateral
triangles of length equal to 2s/4/3 per side, where 2s, labelled herein the
cell size, is the diameter of the circle inscribed by the hexagonal unit cell in
Figure 4.9. The cell size 2s must be much smaller than-the wavelength in a
homogeneous dielectric with permittivity value equal to the effective permit-
tivity value of the thin layer of interest, so that the material appears to be
macroscopically homogeneous to an electromagnetic plane wave propagating
through that layer (otherwise, higher order modes could begin to propagate
and form grating lobes). Richmond in Reference [57] suggested for his vol-
ume integral equation technique that each cell not exceed a dimension of
0.2/./€, wavelengths. Bodnar and Bassett in Reference [46, Equation (19)]
showed that the critical cell size for the onset of grating lobes becomes even
smaller as the incidence angle increases in value.

The volume of the hexagonal cell shown in Figure 4.9 contains:

e one complete circular cone corresponding to the air cone bored into the
front face of the dielectric slab;

e the equivalent of one complete circular cone corresponding to the sum
of three one-third sections of air cones bored into the back face of the
dielectric slab;

e the equivalent of two complete small cones corresponding to the sum of
six one-third sections of dielectric cones protruding out from the front
face of the dielectric slab;

e the equivalent of two complete small cones corresponding to the sum of
one complete and three one-third sections of dielectric cones protruding
out from the back face of the dielectric slab.

The permittivity profile was symmetrical with respect to the mid-thickness
point of the plate in order to allow the electromagnetic wave to leave the
plate as smoothly as it entered the plate. Consequently, only the front half-
thickness region is shown in Figure 4.10 which depicts the geometry of a
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dielectric cone protruding from the front face of the dielectric slab and the
geometry of one inverted and one non-inverted air cone bored into the dielec-

tric slab. A small separation distance between adjacent cone walls w given
by:

w=2(s—ay) (4.22)

was purposefully introduced and taken into account as part of the analysis
in order to guarantee that the integrity of the walls of the air cones would not
- get compromised by fabrication tolerances. It turns out that the parameter
w has also a significant effect on the response. The thickness of the dielectric
slab H H and the minimum cone wall separation w were chosen according to
the parametric analysis carried out in the next chapter. The drill bits used
herein set the slope of the air cones to 4 i 8 and the length of the missing
tip of the air cones to AHy; =1 cm. The height A, and the base radius a; of
the dielectric cones were chosen such that the permittivity profile would form
a continuous function, i.e. without discontinuity in the permittivity function
nor its first derivative. The base radius of the air cones ay, the cell size 2s
and the vertical separation between the inverted and non-inverted air cones
D were computed according to the development below.

Since two adjacent dielectric cones would touch at their base when their
base radius was equal to s/v/3 (when w = 0), the requirement that the
volume of the two dielectric cones be mutually exclusive was insured by
limiting the base radius value to s/v/3. The height of the dielectric cone was
H; and its apex was located at z = hy. Hence, the radius of the circular
cross-section for a dielectric cone varied linearly from A; = 0 at z = h; to
Ay = s/+/3 at z = (hy — Hy), hence:

Ai(2) = % (th"l Z) (4.23)

Since the hexagonal unit cell contained the equivalent of two complete
dielectric cones protruding from the front face of the dielectric slab, the
volume of dielectric material per hexagonal unit cell in a layer of thickness
dz in the front section was obtained as:

2 hl -z 2
Vi(2) = 2nA3(2)dz = 3 ( . ) ns’dz

Similarly, the height of an inverted air cone was H,; and its apex was
located at z = (hy — Hs). Since two inverted air cones would touch at their
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base when their base radius was equal to s (when w = 0), the radius of the
circular cross-section for an inverted air cone varied linearly from A, = s at
z=hgy to Ay =0 at 2z = (hy — Hy), hence:

Ay(2) = s (ﬂ;;—m) (4.24)

Similarly, the height of a non-inverted air cone was Ha, its apex was
located at z = 0 and the radius of the circular cross-section varied linearly
from Ay =0 at 2 = 0 to A, = s at 2 = — Hj, hence:

Ay(z) =s (;—j) (4.25)

Since the hexagonal unit cell contained one complete inverted air cone
bored from the front face of the dielectric slab, and the equivalent of one
complete non-inverted air cone bored from the back face of the dielectric
slab, the air volume per hexagonal unit cell in a layer of thickness dz in the
middle section was obtained as:

. 2 _ 2
Vin(2) = (%) wszdz—l—(F;) ws?dz

The total volume of the hexagonal unit cell in a layer of thickness dz is
obtained as V,(z) = 24/35%dz. Assuming that the host material has intrinsic
permittivity e,;, and the inclusion material has intrinsic permittivity €,5, and
denoting the fill fraction by v = 1‘28; =1- (%), the longitudinal effective

permittivity is given exactly by [67, 68, 30]:

l
Erong(z) = UE'I’Z + (1 — U)E'l’l (426)
= &1+ V(ery — &r1)

while the transverse effective permittivity is given approximately by [74,
p. 192, Equation (7.6)]: '

\/(1—21))2 (Er%—l—sr%)+(1+4v—4v2)2sr25r1——(1—21)) (ero—er1)

2
(4.27)

The last expression was obtained by Lord Rayleigh for a rectangular
array of cylinders embedded in an otherwise homogeneous medium. The
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dependence of the last equation onto the radius of the cylinders appears only
through the volume fraction v. Thus, the expression was used in this work
even though two different radius values could be present within a same layer.

Figures 4.11 and 4.12 show eT805 and 61°P8 a5 o function of the fll

igures 4.11 and 4.12 show ¢, and & as a function of the

fraction v. Note is made that even if the real and the imaginary parts of €, =
£, — jer = &,(1 — jtan(8)) varied linearly, as in the case for the longitudinal
effective permittivity, the loss tangent, which is the ratio of the imaginary
part over the real part of the relative permittivity, would not vary linearly.
This situation is clearly shown in Figure 4.12.

Another point needs to be made and this point will be more easily brought
out by invoking the following mathematical results:

Real(A+ B) = Real(A)+ Real(B

Imag((A + B)) = Imag((A)) + Imaé(;) } (4.28)
Real(v/A+ B) # \/]E—{Eal(A) + \/Real(B) } (4.29)
Imag(v/A+ B) # \/ Imag(A) + \/ Imag(B)

Thus, although the same result is obtained from applying Equation (4.26)
separately to each component of the variables as with applying the same equa-
tion to the complex-valued variables followed by resolving the result into each
component, however this is not the case for Equation (4.27). The reason owes
to the nature of the complex-valued operations involved in the expressions.
In Equation (4.28), the operation of summation leaves separate the real and
imaginary parts of the variables. In Equation (4.29), the operation of taking
the square root causes the real and imaginary parts of the variables to mix.
Hence, the question arose as to which approach should be taken since the
expression (4.27) was given for the lossless case without indication as to how
it should be generalized to the lossy case. So, both approaches were tried out
and it was found that for the case here, the result of computing the imaginary
part of £,718 by applying Equation (4.27) to the imaginary components of
er1 and g,9 produced a non-physical result (some values were positive instead
of negative, and some values were larger than the greatest of the imaginary
parts of e.; and &,5). For this reason, the computation proceeded here by ap-
plying the equation to the complex-valued variables followed by resolving the
result into its real and imaginary components. This approach corresponds,
in fact, to the analytical continuation of a real-valued result to a complex one
in the complex plane. However, this approach produced non-physical results
of its own for the expression corresponding to the square array of square

pyramidal absorbing cones (the value for £7885 exceeded the value for elong

as the fill fraction approached 1; perhaps the fact that a non-physical re-

sult was obtained with the technique of analytical continuation is in itself
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an indication that the expression given in Reference [68, Equation (25)] for

evaluating 818 ig just an approximation).

For the front ((hy — AHy) > z > 0) and back sections ((hy — Ha) > 2z >

" (hg — Hy — hy + Hy)), the host material is air and the inclusion material is

dielectric whereas for the middle section (0 > z > (hg — Hy)), the host mate-
rial is dielectric and the inclusion material is air. Therefore, the longitudinal
effective permittivity becomes:

e For (hy — AH;) > 2> 0:

h _ 2
Evl'ong =€&m + _ﬂ-_ ( : Z) (87'2 - 57'1)
H,

For 0 > 2 > —AH,:

— H
glong _ o T (Z he + Hy

2
2\/§ H, ) (57'1 _57'2)
‘e For —AHy > z > (hg — Hy + AH,):

s (z—h2+H2)2+z2(€ )
2\/§ H22 1 72

FOI (hz - Hg + AHg) Z z 2 (hg — Hg):

Elong = Epg +

_ +_7f_<_?_)2( )
= Era 2\/§ o, Er1 — Ep2

For (hg—Hz) Z z Z (hg—H2"111+AH1):

glong

slong=8r1+ T <h2—H2~h1—Z

e (2 ) (erz — o)

It is interesting to note that these equations are independent of the cell
size 2s.

For the complex permittivity profile to form a continuous function at

z = 0, the permittivities £T1S and 1°"8 1ust themselves be continuous

functions at z = 0. For a function to be continuous at z = 0, the function
must have the same ordinate and the same first derivative at z = 0~ and
z = 0*. Hence, from the above expressions for 6¥ong’ the continuity of
€fTa0S is insured with:
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2
= QHi vi_1 (1 - ﬁi) (4.31)
\/g 1— f[% ™ 2 H2

which expressions are independent of .1, €, and s. Since both func-
tions 07818 gnd £r008 vary smoothly with the fill fraction v(2), insuring the

continuity of €£ong also insures the continuity of £t¥21S

In order to insure a non-zero wall separation w between adjacent air

cones at z = 0 and z = —H H, the optimum packing of the air cones must
be avoided. Instead, one must use:
w\ [ Hs hy 1w
ho =D = -)(-)=>——=—~ 4.32
2 (2 s Hy 2s (432)

where s is yet to be determined (but note that Hiz = é is set by the slope

of the drill bits). The optimum packing of the air cones at z = 0 would have
required w = hy = D = 0. With hy = D and (hy — Hy) = —H H, and using
Equation (4.32), one obtains:

h1:2(D-{—HH) (\/§~%<1~lg>2) 433

1w T

2s

1 2(D+HH) |3 1( 1w
VB 13 Nr 2

1— %)2 (4.34)

Therefore the dielectric cones have a physical height equal to h; and a
base radius a; obtained from Equations (4.23), (4.33) and (4.34) as:
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a :Al(z=0)=\/i§;—1l=8\J\/§—% (1—11:—) (4.35)

Since the value a; must be smaller than (s/+/3) & 0.5774s for which two
adjacent dielectric cones would be touching at their base, one obtains:

i(h_1>< s :}ﬁl<1
V3 \ Hi V3 Hy

which result makes physical sense for, otherwise, the dielectric cone could
not possibly exist. Thus one obtains:

w < (1— 2(?—%))23

'~ (.34

'The corresponding half-angle at the apex of the dielectric cone is obtained
as:

¢ — arctan (Z—i) (4.36)

Similarly, the inverted and the non-inverted air cones have a physical

height of H, and a base radius as obtained from Equations (4.24) and (4.32)
as:

a3 =Ag(z=0) = s (1 - Z-Z) —s (1 - %3:—) (4.37)

Equations (4.22) and (4.37) are consistent with one another. The half-
angle for the air cones is set to:

£ = arctan (%) (4.38)

It is interesting to note that none of the geometrical parameters of the
cones depends on the complex permittivities €., and e,,. Hence, the same
values for hy, a1, az, D and s would result for a same choice of values for
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7, = §» HH and w, regardless of whether the dielectric material was Teflon,

Plex1g1as Delrin, Nylon or else. Also, the same electromagnetic response is
obtained from a frequency-scaled version of the geometry if the values for
g,1 and €,9 remain the same at the new design frequency, and if 2s remains
much smaller than the new wavelength.

No effort was made to minimize the discontinuity incurred by the missing
tips for the dielectric cones or those for the air cones. The drill bits used
herein corresponded to the case of having AH,; = 1.0 cm.

The combined use of the scattering matrix propagator technique and the
approximation of the permittivity profile as being a cascade of homogeneous
layers:

e permits to deal with the simpler 2-D geometry of a circular cylinder in
each thin layer rather than the 3-D geometry of a circular cone;

e permits to account readily for the presence of a longitudinal discontinu-
ity of the permittivity profile (e.g. the presence of a layer of glue at the
mid-thickness point of a plate if the plate needs to be fabricated from
two separate thinner dielectric plates, or the absence of the tips for the
air cones or the dielectric cones as a result of fabrication limitations);

o does not permit to account readily for the presence of a transverse dis-
continuity of the permittivity (e.g. the absence of air cones or dielectric
cones at the centre of the plate in order to accomodate a hole for an
axle, or the presence of the edge in truncating the infinite array to
dimensions of a few wavelengths across).

The effect of the staircase approximation of the complex permittivity profile is
neglected here because, in principle, the staircase approximation can be made
very small by taking each layer to be very thin. Although not mentioned
in the literature, it might be possible that the process of computing the
effective permittivity by the above method becomes more approximative or
even invalid as the thickness of the homogeneous layer becomes much smaller
than the transverse dimensions of the unit cell. Thus again, we will have to
rely on experimental results to determine if such is the case.
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Figure 4.8: Conceptual rear view of the plate showing in dash line the equi-
lateral triangular lattice, in solid line the footprints of the air cones bored
into the back face of the dielectric slab forming the middle section, and in
solid dark color the footprint of the dielectric cones protruding out from the
back face of the middle section. The front face looks identical except that
the equilateral triangular lattice is vertically offset as shown in Figure 4.9 in
order that the air cones bored from the front face be interlaced with the air
cones bored from the back face. The hole for the axle at the centre of the
plate is not shown here. For convenience of representation, this figure shows
a zero cone wall separation between adjacent cones, i.e. w = 0 and s = as,
resulting in adjacent cones touching one another.
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Figure 4.9: A close-up view of the composite array consisting of the overlay
of the front (solid) and back (dash) interlaced triangular lattices. The two
lattices are identical except for a vertical offset equal to 2s/+/3 where s is
the radius of the large circle inscribed by the hexagonal unit cell at the
centre of the figure. The footprints for the circular air cones (large circles)
and for the circular dielectric cones (small circles) are also shown in solid or
dash (unless overlaid) line according to the lattice to which they correspond.
The end result is that each lattice has every large circle surrounded by six
small circles located at the periphery of the large circle. The composite
array is symmetrical about the fat vertical dashed line. For convenience of
representation, this figure shows a zero cone wall separation between adjacent
cones, i.e. w = 0 and s = ag, resulting in adjacent cones touching one
another.
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Figure 4.10: This variable arrangement of the cones contained in the hexag-
onal unit cell of Figure 4.9 for the front and the middle sections of the plate
was used to compute the values of h; and H; that produce a continuous com-
plex permittivity function. The blank regions at the tips of both air cones
are the missing tips of length A H,, modelling the drill bits being truncated
for practical purposes. The blank region at the tip of the dielectric cone is
the missing tip of length AH;, modelling possible fabrication imperfections.
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Figure 4.13: This figure shows the staircase approximation of the structural
profile of the hexagonal unit cell which is schematically represented here by a
lens shape object for convenience. There are N regions with region n=1 and
n=N being half-spaces. The permittivity is taken to be constant in every
region, with a value corresponding to the permittivity at the mid-point of
the region except for regions n=1 and n=N where the value ¢, is assigned.
No region is thicker than the nominal value dz.
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'Chapter 5

Design of the mounting plate

51 Computed results

This section presents the results of a parametric analysis for the reflection
and the transmission level for both the perpendicular and the parallel polar-
izations. All computations were carried out with double precision in Matlab
5.3.0 which corresponds to about a precision of 32 digits (see Reference (82,
p- 1.65]) on a SUN Ultra Sparc workstation running OpenWindows 3.5.1.
The values for the reflection and the transmission level in dB were computed
as R(dB) = 20 log;, |R| and 7 (dB) = 20 logyq |T'|, respectively, where R and
T correspond to the co-polarization elements of the Si; and Ss; sub-matrices
for the composite GSM of the whole cascade system, with respect to either
the parallel or the perpendicular polarization.

The parameters investigated here are:

(]

(]

complex permittivity profile, i.e. shaped versus uniform profile;

incidence angle £;, assuming that the incident waveform from the air
medium was always a uniform plane wave, i.e. p; = 0;

slab thickness HH (m);
minimum cone wall separation w (m) at z =0 and z = —HH.

layer thickness dz (m) for discretizing the geometry;

Since there are too many parameters to explore every combination of all
parameters, the parameters for all computations carried out below were as
per the following baseline design unless mentioned otherwise:
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e &, = 3.7(1 — 50.004);
e HH = 0.074 m;

o AHy =0.010 m;

o w=0.0014 m;

e AH, =0 m;

e H; = 0 m where Hj is the thickness (m) of the layer of glue at the
mid-thickness point of the dielectric slab;

e incidence angle 0° < & < 90° which range requires to use both Equa-
tions (2.25) and (2.29);

o f=1900 MHz;

o layer thickness dz < 0.0025 m throughout the plate (in practice, the
~ cone walls are smooth which correspond to having dz tending toward
the limit 0).

Because the optimum shaped profile that produces the least amount of
reflection (see References [54] and [31, chapter 15]) may not be easily realiz-
able by means of boring holes of some particular geometrical shape into the
dielectric, the strategy here was to start with the shaped profile correspond-
ing to circular cones and to find a particular value of HH and w that yielded
a low reflection level of about -20 dB over as wide as possible a range of the
incidence angle &;. Hence, some performance at normal incidence was sacri-
fied for the sake of maintaining a better performance at off-normal incidence.
The resulting design is also less susceptible to parameter variations than a
design relying on the resonance phenomenon (e.g. a quarter-wave plate trans-
former, and designs mentioned on the next page with HH = 0.041 m and
HH = 0.082 m).

From Figure 5.1, we see that the choice of HH = 0.074 m and w =
0.0010 m makes the two polarizations track each other almost perfectly over
the range 0° < & < 35°. For HH > 0.074 m, the notch for the perpendic-
ular polarization would follow that for the parallel polarization whereas for
HH < 0.074 m, the notch for the perpendicular polarization would precede
that for the parallel polarization. At the same time, the reflection level at
normal incidence & = 0 increases with increasing the HH value. Since the
perpendicular polarization is the one that limits the angular range for the
incidence angle £, the range of operation over which all reflection curves lie
below -20 dB would increase if HH was chosen greater than 0.074 m but
the reflection level at normal incidence would also increase. Note that the
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maximum thickness that can be readily supplied by the manufacturer of Del-
rin material is about 0.076 m (i.e. 3 inches), and a minimum of 0.075 m'is
required for achieving a reasonably flat plate by machining both the front
and the back surfaces of the Delrin slab. Therefore, no value of HH greater
than 0.075 m was investigated systematically.

The effect of varying the parameter w turns out to be larger on the
perpendicular polarization than on the parallel polarization. This situation
affords us an additional degree of freedom to shape the response. The choice
of HH = 0.074 m and w = 0.0014 m was retained for the final design at
1900 MHz. The drill bit imposed the limitations corresponding to AHy =
0.010 m and - = 5. Consequently, Ay = D = 0.0056 m, Hy = 0.0796 m,
23—00199m h1 —00204mand H; —00341m

Numerical experiments show that a low level of reflection is not neces-
sarily achieved just because the complex permittivity profile is a continuous
function of z, and vice-versa, a large amount of reflection is not necessarily
incurred just because the complex permittivity profile presents large disconti-
nuities. It is possible to obtain a low level of reflection from the uniform pro-
file by choosing the thickness to correspond to some resonant length within
the dielectric. The values of HH = 0.041 m and 0.082 m for the case of the
uniform profile with &; = 0 corresponds to very nearly 0.5 and 1.0 wavelength
in the dielectric, respectively. As the resonance phenomenon is achieved only
over a narrow range of thickness values, frequencies and incidence angles,
a low reflection level due to the resonance phenomenon is correspondingly
achieved over only the corresponding narrow range of parameter values. In
contrast to the use of the uniform profile at resonance, the use of the op-
timum shaped profile permits to maintain a reasonably low reflection level
over a broader range of incidence angles for both polarizations.

Figure 5.3 shows that the shape profile provides a reflection level below
about —22 dB for both polarizations over the range 0° < & < 52°. In
comparison, Figure 5.5 shows that the uniform profile produces significantly
larger values of reflection level over the same angular range, specially for the
perpendicular polarization. The Brewster angle® for a lossless slab with ¢, =
3.7 would be £8 = arctan (v/3.7) ~ 62.5°. The reflection level corresponding
to an incidence angle value equal to arctan (v/3.7) for €. = 3.7 was computed
as -304.49 dB and -47.20 dB for tan(é) = 0 and 0.004, respectively. The
difference between —oco dB and -304.49 dB is due to roundoff errors during

1For a dielectric slab with its two interfaces being parallel to one another, the Brewster
angle for the second interface is the 90° complement of the Brewster angle for the first
interface, i.e. £€P 4 ¢8 = 90° since arctan (4/e9/e1) + arctan (1/21/e2) = 90°; since the
Brewster’s law gives &f + & = 90°, one obtains & = &2 therefore, both interfaces
are operated at their respective Brewster angle and thus, the reflection level from the
slab should theoretically be —co dB, for any thickness of a lossless homogeneous uniform
isotropic slab.
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the computation whereas the difference between -304.49 dB? and -47.20 dB
is clearly due to the presence of the dielectric loss corresponding to tan(d) =
0.004.

Figures 5.7 and 5.8 show that the dielectric loss corresponding to tan(d) =
0.004 does not affect the response of the plate significantly. Figure 5.9 shows
that the response for the lossless plate is very consistent with the principle of
conservation of energy. The discrepancy is only very slight and is likely due
to roundoff errors during the computation. Figure 5.10 shows the variation of
the energy lost inside the lossy dielectric plate with respect to the incidence
angle &. That the energy loss increases with increasing incidence angle &;
is consistent with the fact that the energy loss increases with increasing
path length for the ray propagating inside the lossy material, and that this
path length increases with increasing &;. That the energy loss reaches a
maximum then decreases thereafter owes to the fact that reflection becomes
so important that little energy is transmitted into the lossy material, thus
counteracting the loss increase due to the increased path length inside the
lossy material.

Note that a bug in MATLAB 5.3 causes a discrepancy to appear in the
position of the label for the curves, between the position as seen on the screen
and the position as seen on the printed page. As a result, the labelling process
required many iterations to produce the desired effect on the printed page.
Owing to this very tedious task, many plots have been left unlabelled but one
can easily identify each curve, either naturally by intuition or by referring to
a similar plot that was labelled. Furthermore, many figures are provided for
thoroughness, without formal comments in the text.

A convergence analysis was carried out by comparing the results obtained
with varying the discretization increment dz from 0.0002 m to 0.0064 m by
successively doubling dz. Figures 5.21 and 5.22 demonstrate that the method
and its numerical implementation produce stable and convergent results for
both polarizations. The difference of magnitude was computed by taking the
case of dz = 0.0002 m as the reference.

The case of dz = 0.0002 m incurred a run time of about 20 h whereas
the case for dz = 0.0064 m incurred a run time of less than 1 h. In contrast,
the use of Holmes’ expressions whenever V = 0 can sometimes cut down
the computation time to less than a minute! A value of dz = 0.0025 m
was chosen as a compromise between accuracy and computation time. The
corresponding run time was about 1.5 h and the corresponding convergence
results are shown in Figure 5.23. From this figure, one can observe that the

2 Although values less than about -100 dB might not be practically meaningful, they are
nevertheless presented here to show the numerical values as computed from the program
written in MATLAB.
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error is less than 1072 over the range 0° < & < 52° for both polarizations.
Thus, the error due to discretization for the reflection curves of Figure 5.3
would make the true value X lie in the range:

20log (10’2‘—(5 - Error) < X < 20log (10-2’% + Error)

For example, for the case of Error= 102, a computed value of X’ = —60
would correspond to a true value X ranging between —oco dB and —57 dB.
A computed value of X’ = —22 would correspond to a true value X ranging
between —22.11 dB and —21.89 dB. Such an error is deemed quite acceptable
for the purposes of assessing that the reflection level of the mountingplate
does not exceed a given threshold value of, say, -22 dB over the range of, say,
0° <& < 50°

The results for varying dz can also be interpreted in terms of the effect
of the surface roughness of the walls of the cones whereby the average height
of the peaks of the rough surface corresponds to v/2dz. Hence, the reflection
level does not appear to be sensitive (within an error of about 102 over the
range 0° < ¢; < 52°) to a surface roughness corresponding to about 0.0035 m
or less. Such a value of surface smoothness is not difficult to achieve at all
with a conical drill bit of the appropriate vertex angle.

Figures 5.13 to 5.16 show that the intrinsic propagation constants o, and
B, are independent of the incidence angle & for the perpendicular polar-
ization, but that they increase smoothly with increasing &; for the parallel
polarization. Figures 5.17 to 5.20 show that the transmission angles &; and
po are symmetrical about the mid-thickness point of the plate. The stripes
appearing in Figures 5.17 and 5.18 show the locations where the process of
discretizing the various sections of the plate produced layers of thickness less
than the nominal dz value as a result of the overall thickness of a section not
being necessarily an exact multiple integer of dz. The excess layer in each
section was arbitrarily located at the interface next to z = (hqy — AHj) for
the front section, at the interfaces next to 2 =0, 2 = ~AH,, 2 = —HH/2,
z = (—HH + AH,) and z = —HH for the middle section, and finally at the
interface next to z = (—HH — hy + AH;) for the back section.

Since the parallel and the perpendicular polarizations are indistinguable
at normal incidence, the curves for a,, B,, & and p, are the same for both
the parallel and the perpendicular polarization whenever & = 0. Not sur-
prisingly, the shape of the curves for £, and o, when & = 0 is very similar
to the shape of the permittivity profile.

Figures 5.24 and 5.25 show clearly the effect of having dielectric cones in
the front and back regions of the plate. If we define the range of operation
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as that for a reflection level no larger than —22 dB, we observe that the
presence of the cones increases the range of operation by about 10°.
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Figure 5.1: This figure shows the computed reflection and the computed
transmission levels in dB for the shaped profile with HH = 0.074 m and
w = 0.0010 m.
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Figure 5.2: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the shaped profile with HH =
0.074 m and w = 0.0010 m. ‘
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Figure 5.3: This figure shows the computed reflection and the computed
transmission levels in dB for the shaped profile with HH = 0.074 m and
w = 0.0014 m. The discretization was dz < 0.0004 m throughout the plate.
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Figure 5.4: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the shaped profile with HH =
0.074 m and w = 0.0014 m. The discretization was dz < 0.0004 m throughout
the plate.
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Figure 5.5: This figure shows the computed reflection and the computed
transmission levels in dB for the uniform profile with HH = 0.074 m. The
Brewster angle value is £ = 62.531° and the corresponding reflection level
was computed as -47.20 dB which is not part of the plot because the null is
much narrower than the 1° increment used in computing the curve.
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Figure 5.6: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the uniform profile with HH =
0.074 m. The Brewster angle value is éZ = 62.531° and the corresponding
reflection level was computed as 0.0044 which is not part of the plot because
the null is much narrower than the 1° increment used in computing the curve.
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Figure 5.7: This figure shows the computed reflection and the computed
transmission levels in dB for the shaped profile with HH = 0.074 m and
w = 0.0014 m. The lossless and lossy cases correspond to tan(d) = 0 and
0.004, respectively. The discretization was dz < 0.0004 m throughout the
plate.
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Figure 5.8:, This figure shows the computed reflection and the computed
transmission levels on the linear scale for the shaped profile with HH =
0.074 m and w = 0.0014 m. The lossless and lossy cases correspond to
tan(d) = 0 and 0.004, respectively. The discretization was dz < 0.0004 m
throughout the plate. '
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1™ Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, 8|2=3.7(1—j 000), e, ,=1at 1900MHz

N: _.2 e .......................... ..
= :
oF :

4 :

"_ T .......................... 1
T ............................... |
B ............................... -

—— PARALLEL . :
— - PERPENDICULAR :
__10 I | | | ! ] i |
0 10 20 30 40 50 60 70 80 90

Incidence angle ¢, (degrees)

Figure 5.9: This figure shows the energy balance for the shaped profile with
HH = 0.074 m and w = 0.0014 m, for the lossless plate. The discretization
was dz < 0.0004 m throughout the plate.
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Figure 5.10: This figure shows the energy balance for the shaped profile with
HH = 0.074 m and w = 0.0014 m, for the lossy plate with tan(é) = 0.004.
The discretization was dz < 0.0004 m throughout the plate.
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Figure 5.11: This figure shows the profile for the real part of £!T8DS and

)
E‘l_ong for the shaped profile with HH = 0.074 m. The discretization was
dz < 0.0004 m throughout the plate. Note that the maximum effective
permittivity value which occurs at z = % is significantly less than the
intrinsic value of €, = 3.7.
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Loss tangent value
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Figure 5.12: This figure shows the profile for loss tangent of £'f18 and

Eiong for the shaped profile with HH = 0.074 m. The discretization was
dz < 0.0004 m throughout the plate. Note that the maximum effective loss
tangent value which occurs at z = :_!;2.{1{_ is significantly less than the intrinsic

value of tan(é) = 0.004.
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(neper/m) for perpendicular polarization
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Figure 5.13: This figure shows the intrinsic amplitude propagation constant
a, for the shaped profile with HH = 0.074 m for the perpendicular polar-
ization. The discretization was dz < 0.0004 m throughout the plate.
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o (neper/m) for the parallel polarization
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Figure 5.14: This figure shows the intrinsic amplitude propagation constant
o, for the shaped profile with HH = 0.074 m for the parallel polarization.
The discretization was dz < 0.0004 m throughout the plate.
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B (rad/m) for perpendicular polarization
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Figure 5.15: This figure shows the intrinsic phase propagation constant [,
for the shaped profile with H H = 0.074 m for the perpendicular polarization.
The discretization was dz < 0.0004 m throughout the plate.
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B _(rad/m) for parallel polarization
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Figure 5.16: This figure shows the intrinsic phase propagation constant /3,
for the shaped profile with HH = 0.074 m for the parallel polarization. The
discretization was dz < 0.0004 m throughout the plate.
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“’z (degrees) for perpendicular polarization
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Figure 5.17: This figure shows the value of the angle & at all the interfaces

through the plate for the shaped profile with HH = 0.074 m for the perpen-

dicular polarization. The discretization was dz < 0.0004 m throughout the
plate.
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0000m, & ,=3.7(1-j0.004), e ,=1
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Figure 5.18: This figure shows the value of the angle &, at all the interfaces
through the plate for the shaped profile with HH = 0.074 m for the parallel
polarization. The discretization was dz < (0.0004 m throughout the plate.
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=p,, (degrees) for perpendicular polarization
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Figure 5.19: This figure shows the value of the angle —p, at all the interfaces
through the plate for the shaped profile with HH = 0.074 m for the perpen-
dicular polarization. The discretization was dz < 0.0004 m throughout the
plate.
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=P, (degrees) for the parallel polarization
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Figure 5.20: This figure shows the value of the angle —p, at all the interfaces
through the plate for the shaped profile with HH = 0.074 m for the parallel
polarization. The discretization was dz < 0.0004 m throughout the plate.
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Figure 5.21: This figure shows the convergence in computing the reflection
level for the perpendicular polarization. The reference curve was that for the
case of dz = 0.0002 m.
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Figure 5.22: This figure shows the convergence in computing the reflection -
level for the parallel polarization. The reference curve was that for the case
of dz = 0.0002 m.
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Figure 5.23: This figure shows the convergence in computing the reflection
level for both polarizations with dz = 0.0025 m. The reference curve was
again that for the case of dz = 0.0002 m.

129



Magnitude (dB)

Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, & ;=3.7(1-j0.004), _=1.00(1-j0.00000) at 1900MHz
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Figure 5.24: This figure shows the computed reflection and the computed
transmission levels in dB for the shaped profile with HH = 0.074 m and
w = 0.0014 m, with and without dielectric cones. The discretization was
dz < 0.0004 m throughout the plate.
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Figure 5.25: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the shaped profile with HH =
0.074 m and w = 0.0014 m, with and without the dielectric cones. The
discretization was dz < 0.0004 m throughout the plate.
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5.2 Parameter sensitivity analysis

This section presents the results of a parametric analysis whereby only one
parameter is varied at a time while all other parameters remain fixed at
the value of the baseline design mentioned in the preceding section. In the
previous section, the values of h; and H; were adjusted for any choice of HH
and w so as to insure that the permittivity profile would form a continuous
function at z = 0 and z = —HH. In this section, no such an adjustment
is made other that which was part of the baseline design. This analysis
thus permits to reveal the sensitivity of the parameters to manufacturing
tolerances. The parameters investigated here are:

e the slab thickness HH;

e frequency f (MHz);

e complex relative permittivity of .the dielectric slab &.9;

e complex relative permittivity of the styrofoam holder €,;
e the dielectric cone length hy;

e missing tip length for the dielectric cones in the front and the back
sections AH; (m);

e missing tip length for the air cones in the dielectric slab AHj, (m);

?

e thickness of the layer of glue at the mid-thickness point of the dielectric
slab Hj (m);

Numerical experiments show that a £0.001 m variation of HH is not
critical to the response of the plate. More numerical experiments show that
the shaped profile produces a low reflection level only over a narrow frequency
bandwidth. For instance, if we define the bandwidth on the basis of a —1 dB
variation from the reflection values at the nominal frequency, then the plate
can be operated from about 1890 MHz where the perpendicular polarization
at & = 50° is the limiting factor, to about 1930 MHz where the reflection
at normal incidence is the limiting factor. If we define the bandwidth on
the basis of a —20 dB threshold value, then the plate can be operated from
about 1850 MHz where again the perpendicular polarization at & = 50° is
the limiting factor, to about 1970 MHz where again the reflection at normal
incidence is the limiting factor. In any case, the bandwidth is seen to be
rather small. This situation stands in sharp contrast with the very wide
bandwidth reported for the anisotropic dielectric structure in Reference [46].
This anisotropic structure consists of a dielectric plate, the front and the back
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surfaces of which have been machined to present deep triangular grooves,
the grooves on the front surface running perpendicular to the grooves on
the back surface. Could it be that the dramatic difference in frequency
bandwidth owes to the difference in isotropic property? This author does
not think so and is at loss to explain the cause for the dramatic difference
in frequency bandwidth between the two differently profiled dielectric plates.
In any case, the frequency is a parameter that is very well controlled during
the measurement so that any variation of the response with respect to the
frequency is not deemed to be a problem if the plate is used at the design
frequency. '

Numerical experiments show that the reflection and the transmission lev-
els for the shaped profile are not degraded adversely by a variation of :0.001
in the loss tangent value. Although the reflection level may increase or de-
crease depending on whether or not some resonance is occurring within the
dielectric, the transmission level always decreases even when the reflection
level decreases (e.g. the case for tan(d) = 100 with & = 0), because the wave
is partly absorbed within the dielectric as the wave propagates through the
dielectric. At the limit, i.e. for a perfect conductor which corresponds to

the case tan(d) approaching oo, the transmission level becomes —oo dB, i.e. .

perfect blocking, regardless of the profile type; the reflection level, however,
becomes 0 dB, i.e. perfect reflection, only for the uniform profile, not for the
shaped profile. This situation is consistent with the fact that a PEC mount-
ing plate with the shaped profile presents, in effect, a very rough surface
unlike a uniform PEC slab.

Numerical experiments show that the reflection and the transmissions
levels for the shaped profile are not degraded adversely by a variation of
40.2 in the relative permittivity value. In contrast, the reflection level for
the perpendicular polarization is degraded rapidly (by about 2 dB) for the
first —0.001 m variation in the dielectric cone length h;. However, such a
variation of h; represents a large variation of the fill fraction at z = 0 and
is not likely to occur. A much more likely source of error is the missing
tip length of the dielectric cones due to fabrication tolerances. Numerical
experiments show that the effect due to a variation as large as 0.005 m in
the missing tip length AH; is insignificant, and the effect due to a 4:0.001 m
variation in the missing tip length AH, is not severe either.

Figures 5.26 to 5.36 show the effect of replacing free space with a high
density styrofoam (e, = 1.04(1 — j0.0005)) in the region z > 0. We observe
that the loss tangent curve has a clear discontinuity at z = 0 in spite of the
fact that Equations (4.30) and (4.31) were observed to be independent of the

permittivities. The reason for this situation is that these equations are valid

only for the case of a two-material composite, i.e. if styrofoam is used as one

medium, then it should fill the inclusions of the dielectric slab as well. In our -
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case, the styrofoam does not fill the inclusions in the regions z < 0.

Since the styrofoam is a lossy material, albeit only slightly lossy, the
behaviour of the angle p; in the region z > 0 is quite different from that when
the inclusion material in the front section was just air (compare Figures 5.19
and 5.20 with Figures 5.39 and 5.40, respectively). Because the foreground
medium is now lossy, the amplitude wavefront is no longer normal to the
interface at z = (hy — AHy), i.e. pz is no longer varying linearly from 0° to
—90° as & varies from 0° to 90°. Since p, = 0° at the interface z = (hy —
AH), the incident and transmitted plane waves are uniform at that interface.
Moreover, the reflection and the transmission curves are significantly affected,

" specially for incidence angle values & > 79° (compare Figures 5.27 and 5.4).

The upper limit for which the reflection level for both polarizations is less
than about —22 dB has passed from about & = 52° to about £ = 48° as a
result of the curves having a large gradient in that part of the plot.

When styrofoam is present in the region z > 0, the transmission level for
the parallel polarization Tparallel can become greater than 1.0. However,
this situation does not violate the principle of energy conservation because
the ratio (POUt/piny = (1 — IRparallelP) remains less than or equal to 1.
For & > 79°, Figures 5.37 and 5.38 show that the wave is totally reflected, i.e.
& = 90°, for both polarizations. Consequently, Figures 5.27 show |R| = 1
and |T'| # 0. The transmission level is different from zero because there is the
electromagnetic field of an evanescent wave in the transmission medium (see
Reference [4, p. 363]). To be precise, |R| is slightly smaller than 1 because
the total reflection occurs at some interface inside the back section near the
the output face of the plate and thus, the wave is partly being absorbed
all the while that it is travelling within the lossy dielectric material before
exiting as the reflected wave. If no losses are present, then |R| = 1 exactly
(see Figures 5.29 and 5.30).

Note that the transmission angle from the mth interface to the nth in-
terface in a system of parallel planar interfaces depends on the ratio of the
permittivity for the medium that acts as the input medium to the mbY inter-
face, and the permittivity for the medium that acts as the output medium
to the nth interface, and is given by:

6°Ut = arcsin (\/\/E%}T% sin (Hin)) | (5.1)

regardless of the presence of any intermediary layer. This equation can

* be verified easily by successive application of Snell’s law at all interfaces from

the mtD to the nth interface, or by the fact that the phase matching of the
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fields at every interface forces the transverse variation of the scattered fields
to be dictated by the incident field (see Reference {5, p. 150}). The critical
angle is that for which 0% = 90°, hence one obtains:

- . /cout e
6™ = arcsin ( 8’". ) = arcsin ( L0 ) = 78.7°

ein 4/1.04

Note that intrinsic losses were neglected in the above numerical evaluation
of the equation® . For instance, if intrinsic losses were so high as to make
the output immersing media behave like a very good conductor, then total
reflection would occur for any value of the incidence angle, thus making the
critical angle value to be effectively zero.

That complete reflection occurs can be understood from the fact that
when the input and the output immersing media are the same, Equation (5.1)
gives GOUL = 91 and thus, the full visible range of 0° to 90° is spanned by
both the transmission and the incidence angles in the same manner, i.e.
the transmitted phase wavefront exits the system of parallel interfaces at
the same angle as that at which it entered it (see Reference [48, p. 156]).
Consequently, no total internal reflection is possible within a parallel face
slab that is illuminated by propagating plane waves on one of its two faces
because for this geometry, the refracted wave inside the slab is incident on
the output face at an angle 6 given by sin 6 = \/% sin §¢ = sin #°sin ¢ and
thus §* < 6 for §° < 90°.

However, when the permittivity for the input immersing medium is higher
than that for the output immersing medium, the transmission angle for the
output phase wavefront spans its full visible range faster than does the in-
cidence angle for the input phase wavefront because the transmitted phase
wavefront bends away from the normal of the interfaces as the incident phase
wavefront departs from normal incidence, i.e. 90U > ¢12. For all incidence
angle values greater than the critical value, the transmitted phase wavefront
is already travelling parallel to the interface and can bend no further. The
transmitted angle thus becomes complex thereby giving rise to an evanescent
wave travelling parallel to the interface.

Note that the critical angle value is the same for both polarizations and for
both the uniform and the shaped profiles (compare 5.27 and 5.28). That the
critical angle is the same for both polarizations owes to Snell’s law which is
the result of phase matching (i.e. matching of the time harmonic exponential
term of the electric and the magnetic fields) at the interface. That the critical

3In fact, the presence of intrinsic losses affect the value of both the Brewster angle (as
seen from Figure 5.5) and the critical angle.
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angle is the same for both profiles owes to the fact that Equation (5.1) does

- not depend on the permittivity of the intermediary layers.

Figures 5.41 to 5.48 show the effect due to the presence of a thin (Hs =
0.0003 m) layer of glue (Loctite #401 with e, = 2.75(1 — 50.02)) located at
the mid-thickness point of the mounting plate, i.e. z = —HH/2, as if the
plate were be too thick to be fabricated from a single bulk piece. Note that
the thickness of the layer of glue is not discretized according to dz because
the program treats that thickness explicitly by means of the parameter Hs.
Note also that the results for the layer of glue on Figures 5.43 to 5.48 show
a triangular rather than a uniform profile because the curves are plotted by
assigning the results for the entire layer to a single point at the centre of the
layer. Figures 5.41 and 5.42 show that the effect of a layer of glue generally
tends to increase with increasing incidence angle because the waves propagate
over a longer distance in the layer of glue as the incidence approaches grazing
incidence. It is important to understand that even a very thin layer can have -
a very significant effect because the mechanism of reflection occurs at the
interface, regardless of how thin the layer behind the interface happens to
be.
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Shaped, HH=0.074m, AH2=0.010m. w=0.0014m, Erz=3'7{1 =j0.004), £r1=1,04{1—j0.0005)
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Figure 5.26: This figure shows the computed reflection and the computed
transmission levels in dB for the shaped profile with lossy styrofoam present
in the region z > 0. The discretization was dz < 0.0004 m throughout the
plate.
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Figure 5.27: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the shaped profile with lossy sty-
rofoam present in the region z > 0. The discretization was dz < 0.0004 m
throughout the plate.
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Uniform, HH=0.074m, erz=3.7(1—-10,004). £ﬁ=1.04(1—j0‘00050)
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Figure 5.28: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the uniform profile with lossy sty-
rofoam present in the region z > 0.

139




1.8

1.6

14

1.2

-b

Magnitude

0.6

04

0.2

Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, ¢ ,=3.7(1 -j0.000), & _,=1.04(1-j0.0000)

T T T T I T T T

40 50
Incidence angle &, (degrees)

Figure 5.29: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the lossless shaped profile with
lossless styrofoam present in the region z > 0. The discretization was dz <
0.0004 m throughout the plate. Note that a small segment of each curve
is missing about & = 82° because MATLAB produced NAN (i.e. Not A

Number) results. The notch in the curve for TITM g & = 80° is also suspect.
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Figure 5.30: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the lossless uniform profile with
lossless styrofoam present in the region z > 0.
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Relative permittivity value

Shaped, HH=0.074m, aH2=0‘010rn. w=0.0014m, H3=0‘0000m. Erz=3‘7(1_j0‘004)' er1=1,04(1—j0.0005)
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Figure 5.31: This figure shows the profile for the real part of and €£0ng

for the shaped profile with lossy styrofoam present in the region z > 0. The
discretization was dz < 0.0004 m throughout the plate.
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?l’]%ogd HH=0.074m, AH,=0.010m, w=0.0014m, H3=O.0000m, £Q=3.7{1-j0.004). zr1=1.04(1-j0.0005)
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Figure 5.32: This figure shows the profile for loss tangent of ;7% and E‘l_ong

for the shaped profile with lossy styrofoam present in the region z > 0. The
discretization was dz < 0.0004 m throughout the plate.
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o._(neper/m) for perpendicular polarization

Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0000m, ¢ ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)
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Figure 5.33: This figure shows the intrinsic amplitude propagation constant

a, for the shaped profile with lossy styrofoam present in the region z > 0

for the perpendicular polarization. The discretization was dz < 0.0004 m
throughout the plate.
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o (neper/m) for the parallel polarization

Shaped, HH=0.074m, AH2=0.010m. w=0.0014m, H3=0.0000m. ea=3.7{1-j0,004). eﬁ=1.04{1-j0.0005)
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Figure 5.34: This figure shows the intrinsic amplitude propagation constant
o, for the shaped profile with lossy styrofoam present in the region z > 0 for
the parallel polarization. The discretization was dz < 0.0004 m throughout
the plate.
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B_ (rad/m) for perpendicular polarization

o

Shaped, HH=0.074m, aH2=0‘010rn. w=0.0014m, H3=0.0000m. & ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)

0.02 Incidence angle 51 ®)

Figure 5.35: This figure shows the intrinsic phase propagation constant J3,
for the shaped profile with lossy styrofoam present in the region z > 0 for the
perpendicular polarization. The discretization was dz < 0.0004 m through-
out the plate.
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B _ (rad/m) for parallel polarization

[+]

Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0000m, ¢ ,=3.7(1-j0.004), £ ,=1.04(1-j0.0005)

002 ©° Incidence angle &, (°)

Figure 5.36: This figure shows the intrinsic phase propagation constant 3,
for the shaped profile with lossy styrofoam present in the region z > 0 for

the parallel polarization. The discretization was dz < 0.0004 m throughout
the plate.
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E,‘, (degrees) for perpendicular polarization

Shaped, HH=0.074m, AH2=0.010m. w=0.0014m, H,=0.0000m, & ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)
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Figure 5.37: This figure shows the value of the angle & at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the

region z > 0 for the perpendicular polarization. The discretization was
dz < 0.0004 m throughout the plate.
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0000m, €,=3.7(1-j0.004), £ ,=1.04(1-j0.0005)
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Figure 5.38: This figure shows the value of the angle &; at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the
region z > 0 for the parallel polarization. The discretization was dz <
0.0004 m throughout the plate.
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-p, (degrees) for perpendicular polarization

Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0000m, ¢ ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)
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Figure 5.39: This figure shows the value of the angle —p, at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the
region z > 0 for the perpendicular polarization. The discretization was
dz < 0.0004 m throughout the plate. Note that MATLAB could not produce
properly the 3D rendition of the plot below the plane p; = 0 at the back
section of the plate.
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=P, (degrees) for the parallel polarization

Shaped, HH=0.074m, AH =0.010m, w=0.0014m, H,=0.0000m, £ ,=3.7(1-j0.004), €,,=1.04(1-0.0005)
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Figure 5.40: This figure shows the value of the angle —p, at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the
region z > 0 for the parallel polarization. The discretization was dz <
0.0004 m throughout the plate. Note that MATLAB could not produce

properly the 3D rendition of the plot below the plane p, = 0 at the back
section of the plate.
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Magnitude (dB)

Shaped, HH=0.074m, QH2=U.D10m. w=0.0014m, H3=0.0003m, £|2=3'7(1-j0'004)' Er1=1 .04(1-j0.0005)
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Figure 5.41: This figure shows the computed reflection and the computed
transmission levels in dB for the shaped profile with lossy styrofoam present
in the region z > 0 and H3 = 0.0003 m. The discretization was dz < 0.0004 m
throughout the plate.
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Figure 5.42: This figure shows the computed reflection and the computed
transmission levels on the linear scale for the shaped profile with lossy sty-
rofoam present in the region z > 0 and Hz = 0.0003 m. The discretization
was dz < 0.0004 m throughout the plate.
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0003m, £ﬂ=3.7{1-j0.004), € ,=1.04(1-j0.0005)
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Figure 5.43: This figure shows the profile for the real part of ¢3S and e,
for the shaped profile with lossy styrofoam present in the region z > 0 and
Hs = 0.0003 m. The discretization was dz < 0.0004 m throughout the plate.
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Loss tangent value
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0003m, ¢ ,=3.7(1-j0.004), €,,=1.04(1-j0.0005)
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Figure 5.44: This figure shows the profile for loss tangent of /7805 and Slong

for the shaped profile with lossy styrofoam present in the region z > 0 and
Hj3 = 0.0003 m. The discretization was dz < 0.0004 m throughout the plate.
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0003m, ¢ ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)
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Figure 5.45: This figure shows the intrinsic amplitude propagation constant

o, for the shaped profile with lossy styrofoam present in the region z > 0

and H3 = 0.0003 m for the perpendicular polarization. The discretization
was dz < 0.0004 m throughout the plate.
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«_ (neper/m) for the parallel polarization
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Figure 5.46: This figure shows the intrinsic amplitude propagation constant
a, for the shaped profile with lossy styrofoam present in the region z > 0
and H; = 0.0003 m for the parallel polarization. The discretization was
dz < 0.0004 m throughout the plate.
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B_ (rad/m) for perpendicular polarization

Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0003m, ¢ ,=3.7(1-j0.004), £ ,=1.04(1-j0.0005)
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Figure 5.47: This figure shows the intrinsic phase propagation constant [,

for the shaped profile with lossy styrofoam present in the region z > 0 and

Hj = 0.0003 m for the perpendicular polarization. The discretization was
dz < 0.0004 m throughout the plate.
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Figure 5.48: This figure shows the intrinsic phase propagation constant 3,
for the shaped profile with lossy styrofoam present in the region z > 0 and
Hi = 0.0003 m for the parallel polarization. The discretization was dz <
0.0004 m throughout the plate.
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Shaped, HH=0.074m, 4AH,=0.010m, w=0.0014m, H,=0.0003m, & ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)
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Figure 5.49: This figure shows the value of the angle &; at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the

region z > 0 and Hs = 0.0003 m for the perpendicular polarization. The
discretization was dz < 0.0004 m throughout the plate.
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0003m, ¢ ,=3.7(1-j0.004), & ,=1.04(1-j0.0005)
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Figure 5.50: This figure shows the value of the angle & at all the inter-
faces through the plate for the shaped profile with lossy styrofoam present
in the region z > 0 and H3 = 0.0003 m for the parallel polarization. The
discretization was dz < 0.0004 m throughout the plate.
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Shaped, HH=0.074m, AH,=0.010m, w=0.0014m, H,=0.0003m, ¢ ,=3.7(1-]0.004), € +=1.04(1-j0.0005)
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Figure 5.51: This figure shows the value of the angle —p, at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the
region z > 0 and H; = 0.0003 m for the perpendicular polarization. The
discretization was dz < 0.0004 m throughout the plate. Note that MATLAB
could not produce properly the 3D rendition of the plot below the plane
p2 = 0 at the back section of the plate.
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Figure 5.52: This figure shows the value of the angle —p; at all the interfaces
through the plate for the shaped profile with lossy styrofoam present in the
region z > 0 and H3 = 0.0003 m for the parallel polarization. The discretiza-
tion was dz < 0.0004 m throughout the plate. Note that MATLAB could
not produce properly the 3D rendition of the plot below the plane p, = 0 at
the back section of the plate.
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Chapter 6

Conclusion

This report has presented the analysis technique and the predicted results
for a uniaxial composite plate with the optic axis normal to the plate. The
analysis technique contains two elements of novelty:

1. a new result for the effective propagation constants o and § within a
lossy material;

2. a new approach based on the Adler-Chu-Fano formulation for predict-
ing the behaviour of the extraordinary wave within a uniaxial medium.

A computer program was written in MATLAB to implement the analysis
technique. A series of simulations revealed a choice of parameters that pro-
vides a reflection level of less than about —22 dB over an angular range of 0°
to about 50°. The mounting plate was manufactured and its response mea-
sured. Originally, it was planned that the measurement setup, procedure,
results and comparison between predicted and measured results would be
reported in another document as Part II. The comparison, however, turned
out to be rather poor due to limitation in measurement setup!.

! Although the boom was extended to its full length, the spacing between the transmit-
ting horn positioned at the end of the boom, and the mounting plate positioned at the
centre of the rotating table, is thought to have been insufficient.
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Chapter 7

References

'This chapter present the lists of references for the whole document, including
the appendices. '
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Appendix A

FEquivalence between
approaches using instantaneous
parameters and steady-state
parameters

This appendix presents the proof for the mathematical identity of Equa-
tion (3.29). The input reflection coefficient computed by the method of
multiple reflections is given as (see Reference [44, Equation (5.35), p. 226)):

_ Pl + 1‘\3e-j2ﬂzd

ﬁn“1+rmwﬁww (A1)
where: 7 7
Lo — 4
P = Zy+ 2y
73— 7,
3T Tt Z,

Substituting the last two expressions into the first one produces:

. (Zy — Z1)(Z3 + Zs) + (Za + Z1)(Zg — Zp)e~i2P=d
2o+ 20)(Zs + Zo) + (Zo — Z1)(Z3 — Zy)e—i2Bsd

Multiplying the numerator and the denominator by e/%¢ produces:

(Zz — Zl)(Zg -+ Zz)Gjﬂzd + (Zz -+ Z]_)(Zg — Zz)e“jﬂzd
(Z2 -+ Z1>(Z3 -+ Z2>€jﬂzd —+ (Z2 - Z1>(Z3 - Zz)G_jﬂzd

Lip =
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- Using Euler’s expressions for the trigonometric functions written in terms
of the complex exponentials, and collecting the terms of equal power pro-
duces:

I — (Z2Z3 — Z1Z2)COS(,Bzd) + (Z% - Z1Z3)]SID(ﬂzd)
n (Z2Z3 + Z1Z2)COS(,Bzd) + (Z22 + Z1Z3)]SID(,Bzd)

Dividing by cos(8,d) produces:

e — (Z2Z3 —_ Z1Z2) + (Z% — Z1Z3)jtan(ﬂzd)
mn (Z2Z3 + Z1Z2) + (Z22 + Z1Z3)jtan(ﬂzd)

Using tanh(jz) = jtan(z) produces:

.. = (Z2Z3 - Z1Z2) + (Z22 - Z1Z3)tanh(jﬂzd) (A 2)
W (2,23 + Z125) + (23 + Z1Z3)tanh(jB.d) '

Now, the input reflection coefficient computed by the method of steady-
state parameters is given as:
 _Zin— 4
in~
Zin + 7

where Z;, is given as (see Reference [44, Equation (3.91), p. 94]):

Z3 + Zstanh(v,d)

Zi =7
In = 27, + Zstanh(v,d)

Substituting the last expression into the second last one and collecting
the terms produces:

I — (Z2Zg — Z1Z2) + (Z22 — Z1Z3)ta,nh(’)/zd)

mn (Z2Z3 + leg) + (Z22 + Z1Z3)tanh(’)/zd)

(A.3)

When the system becomes lossy, j 5, becomes v, = a,+ 373, and thus, the
expression in Equation (A.2) becomes the same as that in Equation (A.3),
and this proves the mathematical equality. Note, however, that the transmis-
sion coefficient obtained by summing all the instantaneous waves emergent
from the system is obtained as:

1
14 Pnge—j2ﬁ"d

Tout = Toe™7P4T;

here:
where 27,

2=Z2+Z1
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27,
Zs + Zs

T3

Upon substituting and carrying out algebraic manipulations similar to
those above, one obtains:

T 27473/ cosh(j8,d)
O ™ (7373 + 71 Zo) + (23 + Z1 Z3)kanh(j,d)

whereas

27; _ 275(Z3 + Zgtanh(y,d))
ZiIl + Z1 (Z2Z3 + Z1Z2) + (Zg + Z1Z3)tanh(7zd)

hence, the last two results are, in general, different (notwithstanding that
jPB. becomes v, = o, + jB, when the system becomes lossy). Therefore,
the steady-state reflection coefficient is obtained as (Zy, — Z1)/(Ziy, + Z1),
but the steady-state transmission coefficient is not obtained as 27y, /(Z;,, +
Z1). See also References [5, Equations 4.172, 4.175] and [19, Equations 7.15,
7.19]. The reason for this difference lies in' the fact that with the steady-
state approach, the rest of the circuit lying beyond the interface where Zj;
is computed, is effectively enclosed in a black box that does not give access
to the output port where the knowledge of the transmitted wave is desired.
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Appendix B

Equivalence between a uniform
plane wave with a
complex-valued propagation
angle and a non-uniform plane
wave with real-valued
propagation angles

This appendix presents the expressions for computing the complex propaga-
tion angle of a uniform plane wave from the knowledge of the real propagation
angles of the corresponding non-uniform plane wave. The development pre-
sented here is more general than that presented in Reference [4, pp. 330-334].
The non-uniform plane wave is written as e~7" where ¥ = & + j ﬁ with the
directions of & given by 6, and ¢,, and the directions of ﬁ given by fg and
¢p, in a spherical coordinate system with 2 parallel to the normal of the
interfaces. In contrast, the uniform plane wave is written as e~I%7 where
the directions of % is given by 0 + 70; and ¢r + j¢; in the same spherical
coordinate system. Requiring an equivalence imposes the following:

e~ = e—glc-'r
where: :
& = a(sind,cosg.t + sinf,sind,y + cosf,2)

B = B(sinfscospp + sinfssinggy + cosfs?)
k= k(sin(0r+3501)cos(dr+idr)E+sin(fr+350r)sin(pr+jidr)i+cos(Or+765)2)
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For the equivalence to hold for any 7 requires that:

asinfacosd, + jBsinfgcosds = jksin(fg + j0r)cos(dr + jér)
asind,sing, + jOsindgsings = jksin(0g + j0r)sin(¢r + jér)

acostly, + jBcosts = jkcos(fr + 560r)

Squaring the last three equations and summing the results produces 7.y =
—k? but Y- = 42 = (co+756)* hence y2 = —k? and thus jk = v, = oo+,
where «, and f, are the intrinsic propagation constants of the medium.
Hence, we have:

osindacosda + jBsindgcosgs = (o + 5 8,)sin(0r + 70r)cos(¢pr + 7¢r) (B.1)

asind,sing, + j0sinfgsings = (o, + 7 5,)sin(0r —I—'jHI)sin(gbR +5¢r) (B.2)

acosty + jBcosls = (o + 78,)cos(0r + 70r) (B.3)

Dividing Equation (B.2) by Equation (B.1) produces:

asind,sing, + 7Fsinfgsingg
asinf,cosg, + jBsindgcosdg

tan(¢gr + jor) =

Now the left hand side of the last equation gives:

.\ _ tangg + jtanh¢;
tan(gf)R +]¢I) - 1— jtan¢Rtanh¢I

Multiplying the numerator and denominator of the right hand side of the
last two equations by the conjugate expression of their respective denomina-
tor, then carrying out some algebraic manipulations and equating real and
imaginary parts on both sides of the resulting equation produces:

singr 1 _ o%sin*0,sindacosd, + B2sin®fssingpcosds _A
coshg; \@sz + sinh?¢; - a2sin?f,cos2¢,, + B2sin*fpcos?ds - D
(B.4)
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sinh¢y 1 _ afisind,sinfpsin(¢dg — ¢a) _B (B.5)
cosdr \/COSZ¢R + sinh2¢; "~ o?sin0,c082, + B2sin®bgcosips D
Hence:
D cosh¢r cosgdr
= A— =B—F
\/ cos2¢p, + sinh?¢; singg sinher
from which one obtains:
sinh(2¢7) = Esin(ngR) (B.6)

A

Squaring Equation (B.5) and carrying out some algebraic manipulations

_ produces:

(D? — B%cos?¢r)sinh?p; = B2cos*dr (B.7)
Now using Equation (B.6) and the knowledge of:

2cosh?¢; — 1 = cosh(2¢;) = /1 + sinh®(2¢;)
and '
sinh?¢; = cosh?¢; — 1
to obtain an expression for sinh?¢; to substitute in Equation (B.7), then

collecting the terms of equal power in cos?$r produces the following cubic
polynomial in the unknown X = cos?¢g:

4B (UsX® + Up X2 + U1 X + Up) = 0
where:
Us = —B?(A? + B?)
U, = B%(A% + B? +2D%)
Uy = —D*(A? +2B?% + D?)
Uy = D*

For B # 0, the solution for X can be obtained with MATLAB and is not
reproduced here because of its length. Out of the three possible solutions for
X, two are complex-valued and must be rejected. From the knowledge of X,
one obtains the knowledge of ¢r, then substituting in Equation (B.7), one
obtains the knowledge of ¢;. For B = 0, the solution is found simply from
Equation (B.5) as ¢; = 0 and then, from Equation (B.4) as ¢ = arctan(4).
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For instance, when B = 0 due to ¢o = ¢g = ¢, we obtain % = tan¢ and
thus, ¢r = ¢ and ¢; = 0, as expected.

Expanding Equation (B.3) and equating real and imaginary parts on both
sides of the equation produces the following two equations:

ocosl, = a,cosfgcoshfr + B,sinfrsinhf; (B.8)

© PBeosts = B,cosfrcoshf; — a,sinfpsinhf; (B.9)

Squaring Equations (B.8) and (B.9) and adding their results gives:

a?cos?l, + (*cos*lg

. 2 —
cos?0g + sinh?4; = 2 B =C
from which one obtains:
sinh?0; = C — cos?0g (B.10)
cosh?d; = C + sin®0p (B.11)

Substituting these results in the square of Equation (B.8), carrying out
simple algebraic maniputations and collecting the terms of equal power in
cosfr produces the following quartic polynomial in the unknown Y = cosfg:

ViY*+ VY3 + VY2 + Y + V=0
where:
Vy= (o5 +65)
Vs =—2(C+1)V,
Vo = (C+ 1)*Va+2((of + B5)8,C + (o — 5) 0 cos?0a)
Vi=—=2(C +1)(( + B2)B2C + () — ) cos’la)
Vo = (0?cos?0, — B2C)?

The solution for Y can be obtained with MATLAB and is not reproduced

here because of its length. Out of the four possible solutions for Y, the third .

one given by MATLAB was usually (but not always) found to be the correct
one. This passing of the correct solution from one root of the polynomial to
another one makes the determination of ¥ ambiguous and is a drawback of
the method. However, once Y has been correctly determined, one obtains the
knowledge of fg, then substituting in Equation (B.10) or (B.11) one obtains
the knowledge of 6.
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Therefore the four variables 0g, 0r, ¢r and ¢; can be determined from
the knowledge of o, By, @, B, O, 08, ¢o and ¢s. We note, however, that the
converse operation of finding out the values for 0,, 03, ¢, and ¢g from the
knowledge of v, B,, Or, 01, ®r and ¢; is not possible because the knowledge of
cos(p) = sin(f) sin(0g) cos(¢pa — ¢p) + cos(ba) cos(fp) is needed to compute o
and . One exception is the special case treated in Section 2.4.1 where p = —¢
and thus, o and § are given by Equations (2.36) and (2.35), respectively. In
this special case, ¥ = 0 and thus, ¢; =0, dr = ¢ = ¢, and the knowledge
of 8, and 0 is obtained from Equations (B.8) and (B.9).
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-Appendix C

Comparison between Holmes’s
approach and our approach in
computing the effective
propagation constants

This appendix presents a comparison between Holmes’s method and the
method presented in Chapter 2 for computing the effective propagation con-
stants of non-uniform plane waves at the planar interface of two isotropic
homogeneous possibly lossy media of infinite transverse dimensions.

Holmes’ expressions for coﬁpUting B and ay, are [6, Equations (18-19)]:

4 \/ al” = Re (368) + [m? = 7.}

: (©.1)
oy = \/lf)'ltlz + Re (’YO? + h’l% — ’Yo%l (0.2)

where v, = V + jW with V = oy sin(€; + p1) and W = By sin(&).

Solving for &, from Equation (2.16) and the knowledge of 5, leads to two
possible solutions:

(C.3)

¢ { arcsin (BV%)
g =

T — aresin (E)
B2

Solving for p; from Equation (2.15) and the knowledge of o and the two
possible solutions for &, leads to four possible solutions:
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arcsin ( )

) — arcsin (ﬁ ) . (04)

arcsm( ) arcsm( ) — T
— arcsin (al) -+ arcsin ( )

All computations in this appendix pertain to a case found in Reference [6],
ie. f=1MHz ¢, = 4.0, oy = 0.01 $/m, ¢,, = 10.0 and o5 = 0.001 S/m.
Figures C.1 and C.2 show the results of computing ps as per Equations (2.44)
and (C.4) for the case p; = 0°, respectively. Note that the corresponding
curve given by Holmes’method is, in fact, made up of two solutions joint at
a cross-over value of &; ~ 19°:

arcsin ( )

8=

— arcsin (

P2

. arcsin (a%) — arcsin (ﬁ—v‘;) for & < 19°
2= T — arcsin a% — arcsin (%) for & > 19°

In contrast, the solution given by the new procedure presented in Chap-
ter 2 yields the entire curve for all values of & in the range 0° < & < 90°.
Figures C.3 and C.4 repeat the comparison for the case of p; = +20°.
The cross-over value is now about & = 11°. Figures C.5 and C.6 re- -
peat the comparison for the case of py = —20°. The cross-over value is
now about & = 32° with the solution for & > 32° now being given by
P2 = (arcsm &2) + arcsin (?;) - 71'). This passing of the correct solution
from one possible solution to another one as &; varies makes Holmes’ method
difficult to use.
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Figure C.1: The four possible solutions for ps as per the method presented
in Chapter 2 as a function of the incidence angle &; for p; = 0°. The vahd
solution is given here by the solid line.
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Figure C.2: The four possible solutions for p; as per Equation (C.4) as a
function of the incidence angle & for p; = 0°. Here, &5 = arcsin (ﬂm) and

&rr = m — arcsin (W The valid solution is given here by the solid hne for
& < 19° and the dash line for & > 19°.

184




150

100

50

Transmission angle p, (degrees)
Q

-100

-150

T [} I T 1 T [} I
—— acos
— — —(acos)
. —. T-acos
- —(n—acos)

-,
-
-
T,

~ e

10 20 30 60 70 80 90

40 . 50 .
Incidence angle &1 (degrees)

Figure C.3: The four possible solutions for ps as per the method presented
in Chapter 2 as a function of the incidence angle &; for p; = 20°. The valid
solution is given here by the solid line.
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Figure C.4: The four possible solutions for ps as per Equation (C.4) as a

function of the incidence angle ¢; for p; = 20°. Here, &y = arcsin (—%) and

& = m — arcsin (—“% . The valid solution is given here by the solid line for
&1 < 11° and the dash line for & > 11°.

186



150

100

50

Transmission angle p, (degrees)
o

-100

-150

T T T T T [ T I
— acos
— — —(acos)
| . —. W—acos
............. - .-+ —(m—acos)
1 1 1 1 | | | 1
0 10 20 30 40 50 60 70 80 90

Incidence angle &1 (degrees)

Figure C.5: The four possible solutions for p, as per the method presented
in Chapter 2 as a function of the incidence angle &; for p; = —20°. The valid
solution is given here by the dash line.
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Figure C.6: The four possible solutions for ps as per Equation (C.4) as a

function of the incidence angle & for p; = —20°. Here, &; = arcsin (b"%) and

&1 = ™ — arcsin (ﬂz) The valid solution is given here by the solid line for
& < 32° and the dash-dot line for & > 32°.
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Appendix D

Effective permittivity

D.1 Uniaxial media

Figure D.1 is a simplified reproduction of Figure 10.27 of Reference [49,
p.361]. Throughout this section, it is assumed that the optic axis lies at an
arbitrary 6, value in the incidence plane, which is taken to be the zz plane
in Figure D.1. Snell’s law for the phase wavefront of the extraordinary wave
is written from Equation (10.82) of the above Reference as:

s1n61 C;
sin 91; - a (Dl)

where ¢; = 1/4/1,€° where e* = ¢le, is the permittivity of the incidence

medium, i.e. the isotropic half-space. Equation (10.80) of the above Refer-
ence gives ¢; as [75, p. 677):

c2 = clcos?§ + c3sin? @ (D.2)

where:
i = cof el (D.3)

¢ = o/ €lrans (D.4)
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e = oV eLO18 (D.5)

where Eﬂ is the effective relative permittivity that the extraordinary waves
sees as it propagates through the uniaxial medium, § = (6; + 6,), ¢, =
1/4/Toto and the super-indices ”trans” and "long” refer to the directions
perpendicular and parallel to the optic axis, respectively. Note that ¢; and

¢s become complex-valued when /7208 gnd siong become complex-valued,

respectively. Born and Wolf in Reference [75, p. 668] point out that ci, ¢
and c3 are not components of a vector and are defined only with reference to
the three principal dielectric axes.

Pulling all these equations together and using the trigonometric identities
cos? = (1 + cos260)/2 and sin? § = (1 — cos 26)/2 gives:

¢ (1~ cos26;) = sin 0; [(c} + cB) + (¢} — c2) cos 2(60; + 6,)) (D.6)

Expanding cos 2(f; + 6,) and regrouping the terms in 6; leads to:

e — (& + c2)sin? 0; = acos26; — bsin 26; (D.7)

where:
-~ a=c+ (¢ —c2)sin®b; cos 20, (D.8)
b= (c} — c3)sin® §; sin 26, (D.9)

Using the identity:

acosz — bsinz = —va? + b?sin(z — arctana/b) (D.10)
leads to:
¢ +c2)sin?6; — ¢
sin (26, — arctan B) = G 3)\/5 ) (D.11)
- where:
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B_O_ [( — c2)sin®0; + ¢ ] — 2(c% — %) sin® §; sin® 6, (0.12)
b (c3 — c2) sin® §; sin 20, ’

D=ad*+b= [(cf — ¢2)sin? §; + cf]z — 4c2(c2 — c2)sin®0;sin%6, (D.13)

Squaring both sides of Equation (D.11) and using the identity sin®z =
(1 — cos2z)/2 and some simple algebraic manipulations gives:

B
6, — arcc;)s/l n arct;m (D.14)

where:

2
[(c% +c2)sin? 6, — cf]

A=1-2 D

(D.15)

Note that 6; becomes complex-valued when ¢; and cs become complex-
valued. Substituting the result for 6; of Equation (D.14) into Equation (D.1)

and using the trigonometric! identities cos (z/2) = v/T + cosz/+/2 and sin (z/2) =

V1= cosz/+/2 and cos(arctan ) = 1/+/1 + 22 and sin(arctan z) = z/+/1 + 2

gives the effective relative permittivity for the extraordinary wave el as:

I N2 : 2 sin? 4.
_EE% = (&> - 1+A 1Sln z 1-A_B (D-16)
O A By v
Note that:

1 (}—&)sin®0;sin 20, D17
Vi+B: VD (D7)

B (c? — c3)sin® 6; cos 20, + c?
i 75 (D.18)

1These trigonometric identities need to be modified when the argument is complex-
valued. Rigorously, the development presented here applies only to the case of lossless
media so that §; be real-valued. However, the losses can be taken into account after
treating the case of lossless uniaxial media as was done for Equation (4.7).
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. 5 o 2 9 _ 2.2 oin2 .
ﬁ;A=\ﬁc% () (o = 6)coshl “2ASM b g, (D.10)

_ 2, 2\ 2p 2
1—-A _ (¢ +c3)sin® 0; cos 20, c (D.20)
2 VD

Therefore, the product of Equations (D.17) and (D.19) results in 0 when-
ever sin26, = 0. Note also that B tends to infinity whenever sin 26, = 0
but B/+/1+ B% = +1 when 6, =0, and B/+v1+ B% = —1 when 0§, = +90°.
There results for 4, = 0°:

Coel 2 _ 2Vgin2 4. + 2 trans trans
= (1 — ) in ita & 41— T |sin?,  (D21)
€T 1 €7~ Er g

and for 6, = +90°:

el (d-4)sin®6; +¢ _ £0ng n elong
& c3 &

sv’grans

) sin” 0; (D.22)

When the incidence medium is free space, ¢t = 1 and thus, Equation (D.21)
reduces to Equation (4.6). Note that both the transverse direction for 4, = 0°
and the longitudinal direction for 8, = £90° correspond to the same direc-
tion which is the direction that is both parallel to the interface and in the
incidence plane. Similarly, both the longitudinal direction for 8, = 0° and the
transverse direction for 6, = +90° correspond to the same direction which
is the direction perpendicular to the interface. Therefore, with respect to
the z and z axes of Figure D.1, the effective relative permittivity for the
extraordinary wave is given as:

n
f_fs (1 - 2) sin? 6; (D.23)

gl ¢l Erz

when? 6, = 0° or 0, = +90°. Such a coincidence between these two cases
of 6, is also pointed out in Reference [7, p. 251].

2Note: Equation (D.23) does not(generalize to the case of an intermediate value of
By, ie. 0° < 8, < 90°. This can be seen by working out a numerical example for an
intermediate value of 6, in Equation (D.16).
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For the TE? polarization, the effective relative permittivity el = Ery- In
contrast, for the TM? polarization, the effective relative permittivity sﬂ is
not, in general, the same as that which D sees ”in the interface”, ie. €pq.
Consequently, there results the surprising observation that different permit-
tivities are used in the numerator and denominator of Equation (3.5) for the
wave impedance Zy in the transmission uniaxial medium. The permittiv-
ity in the denominator is that which appears in Equations (3.6), (3.7) (4.17),
(4.21), i.e. €4, whereas the numerator is computed from the effective relative
permittivity e, given by Equation (D.23) or Equation (4.6).
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ISOTROPIC UNIAXTAL

INTERFACE

Figure D.1: Simplified reproduction of Figure 10.27 of Reference [49, p.361].
It depicts the wave phenomenon at the interface between an isotropic half-
space on the left and a uniaxial half-space on the right. The optic axis lies
in the incidence plane.
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D.2 Generalization to biaxial media

Treating the general case of biaxial media is important for its own sake as
well as for mitigating certain limitations. For instance, anisotropy can be
readily handled by the FDTD method only if the three axes of anisotropy
are aligned with the Yee lattice of the FDTD method. For another example,
the uniaxial property is obtained in this report for the case of inclusions in
the shape of circular cylinders; if the inclusions were to be elliptical cylinders
instead of circular cylinders, the medium would become biaxial since the
permittivity would not be the same in all transverse directions. For yet
another example, suppose that the medium were uniaxial due to the inclusion
of circular cylinders but the axes of the cylinders would be at an oblique angle
with respect to the normal of the interface instead of being parallel to the
normal of the interface. By discretizing the structure in thin layers parallel
to the interface, the circular cylindrical inclusion would become elliptical
inclusions in each layer. In the stacking process, the present analysis does
not take into account how the dielectric material within each layer aligns
from one layer to the next because each layer is modelled as a homogeneous
layer (see Reference [66]). Each layer with the elliptical cylindrical inclusions
could be shifted to reshape the circular cylindrical inclusions whose axes
are oblique, into elliptical cylindrical inclusions whose axes would be normal
to the interface. Hence, a uniaxial medium with oblique optic axis could be
modeled as a biaxial medium whose three axes of anisotropy would be aligned
with the Yee lattice, provided that one would know how to obtain the two
transverse intrinsic permittivity values corresponding to elliptical inclusions.
Being able to treat analytically the case of the uniaxial medium with oblique
cylinders would allow to validate whether the choice of the two transverse
(to the interfaces) permittivity values for elliptical cylindrical inclusions were
correct in a FD'TD simulation.

Figure D.2 shows the Cartesian coordinates (u,v,w) used to specify the
direction of the three principal dielectric axes corresponding to &, &, and
€rw With the corresponding principal velocities ¢, ¢, and ¢, and the Carte-
sian coordinates (z, y, z) used to specify the interface and the refraction angle
0; in the transmission medium. The orientation of the uvw coordinate sys-
tem is known in the zyz coordinate system in terms of the angles 6., ¢y
and ¢,. We assume here that the principal axes for the permittivity coincide
with the principal axes for the conductivity.

Equation (D.2) is generalized for propagation in a biaxial medium as (see
Reference [84, p. 341]):
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2 2 2
& =c (Dt | 4 (Dt o+ (Dt c D (D.24)
€S by, €os 8y

where:

Ct = Co/\/gl‘ (D'25)

o = cofr/el (D.26)

where | = {u,v,w}, and ¢, = 1/,/lte€o and (0u, by, 0») are the direction
angles for D, in the uvw coordinate system. Also el is the effective relative
permittivity that the eigenwave sees as it propagates through the biaxial
medium. Note that ¢; becomes complex-valued when &\ becomes complex-
valued. Note carefully that ¢, is the intrinsic velocity when the polarization
vector D points in the 4 direction, and similarly for ¢, and ¢,,. Consequently,
Y1 F#jw+/tho€r Where -y, is the value of v when the phase wavefront propagation

vector  points in the [ direction.

From spherical trigonometry, we have:

cos 6, = sin 8y, sin Op cos (¢, — dp) + cos By, cosbp (D.27)
cos 8, = sin 8, sin p cos (¢, — ¢p) + cos b, cosOp (D.28)
c0os 8, = sin B, sin fp cos (¢, — ¢pp) + cos by, cosfp (D.29)

where 6p and ¢p are the spherical coordinate angles for D in the xyz
coordinate system. When the medium is uniaxial with its optic axis W lying
in the zz incidence plane (i.e. © = —{) on one side of the z axis while k; = 4,
lies on the opposite side as shown in Figure D.1, we have ¢, = 0°, ¢, = 270°,
¢ = 180°, 6, = 90° + 6,, 8, = 90°, 6,, = 180° — 6,

Now if the polarization of the wave propagating in the uniaxial medium
is such that its D field lies in the incidence zz plane, i.e. D, = 0, then
the propagating wave is the extraordinary wave and we have ¢p = 0°, and
0p = 0; — 90° = (180° — 6;) — 90° = 90° — 6, where 8, corresponds to §; in
Figure D.1, and we obtain:
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cos §, = cos b, cos b, — sin b, sin §;, = cos (0, -+ 6,)

cosd, =0

cos 0y, = — sin 6, cos B, — cos 8, sin 6, = — sin (6, + 6,)

and Equation (D.24) reduces to Equation (D.2). If the polarization is
changed such that D = §, then the propagating wave is the ordinary wave
and we have ¢p = 90°, and 6p = 90° and we obtain:

cosd, =0
cosd, = —1
cosd,, =0

and thus, Equation (D.24) reduces to ¢; = ¢z and since the medium is
uniaxial with the optic axis along @, then ¢; = ¢ and thus ¢, = ¢; =
co as expected. For the general case where the wvw coordinate system is
arbitrarily oriented with respect to the zyz coordinate system, we obtain
from coordinate transformation:

cos 8,

sinf, = + D (D.30)

cos 0, = 4300w 005 ($u = Ju) (D.31)
D |

sin @, = :t% (D.éQ)

cosf, = +50(20u) 5in (0 — du) (D.33)

2D
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082 0y, COS ¢y, + sin? @y, cos ¢, cos (y — Pu)

sin ¢, = & = (D.34)
cos by = :{:cosz 0, sin ¢1,,A+ sin? 65’ Sin ¢y, €08 (y — Gu) (D.35)
D = /1= sin® 9, sin? (¢ — du) (D.36)

B =14/1—(1—cost8,)sin® (¢u — du) (D.37)

For the above case with ¢, = 0°, ¢, = 270°, ¢, = 180°, 8, = 90° + 0,,
0, = 90°, 8,, = 180° — 6,, we obtain D =1, £ =1 and:

sin @, = £(— cosf,) => cosf, for the lower sign

cosfy, = £(—sinb,) => —sind, for the upper sign

sinf, = +1 = +1 for the upper sign

cosf, = 0= still ambiguous

sin¢, = £1 = —1 for the lower sign

cos ¢, =0 = still ambiguous

For the case where the uvw system is rotated by 90° about the W axis
such that @ and ¥ become ¥ and —, respectively, we obtain ¢, = 270°,
&, = 180°, ¢, = 180°, 6, = 90°, 8, = 8, — 90°, 8, = 180° — 8,, D = cosb,,
E = cos? 6, and:

sinf, = £(—1) = +1 for the lower sign
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cosf, =0
sin 6, = £(cosf,) = —cosf, for the lower sign
cosf, = +(—sinf,) = sinb, for the lower sign
sing, =0

cos ¢, = £(—1) = —1 for the upper sign

Comparing the choice of signs for these two known examples shows that
the correct choice can vary whenever any one of the three axes changes octan.
There are too many cases to identify the correct choice of signs for them
all here but suffice to say that the sign ambiguity can be resolved for any
orientation of the uvw axes by solving the three simpler neighbouring cases
where two of the uvw axes lie in a plane of the zyz system.

From Equations (D.1) and (D.24), we obtain:

N2
&= (Si:: 7 ) sin® 0, = c2 cos® §, + 2 cos® §, + c2, cos® &, (D.38)

Now, squaring Equations (D.27-D.29) and using | = {u, v, w}, we obtain:

cos’d; = [1 — sin® §; sin? (¢ — d)D)]
+ [cos 20, + sin? 0, sin? (¢; — q‘SD)] cos 26p
+ (0.5 sin 26; cos (¢; — ¢p)] sin 26

Substituting this last equation into Equation (D.38) produces:

. \2 . .
(5%@;) sin® 0, = [E ¢ — Y cZsin® 0 sin? (¢, — d)D)]
+ [Z c? (cos 20; + sin® 6; sin? (¢, — ¢D)>] cos 20p
+ 0.5 % ¢ sin 26; cos (¢, — ¢p)] sin 20
(D.39)
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where, for convenience, the summation index is understood to be | =
{u,v,w}. From geometry® and Figure D.3, we have:

¢p = ¢y +90° — & (D.40)

“and:

& = arctan (cos 6; tan ) (DA41)

where the polarization angle ¢ determines the polarization of the trans-
mitted wave. This real-valued angle is measured positive from the axis —I—gz%
in the winding direction toward the axis +0, through a 90° rotation while
looking into the +5, direction. The angle ¢ ranges from 0° to 360°. For
¢=0° D =49 = +¢y, and for ¢ = 180°, D=—9= —¢,, and the wave is
an ordma.ry wave. For ¢ = 90°, D = +0;, and for ¢ = 270°, D = —b,, and
the wave is an extraordinary wave.

Note that from Snell’s law of refraction for the phase wavefront (see Equa-
tion (2.23) ), we have ¢y = ¢; if k; is given in the outwards convention®.

Hence, we obtain:

cos Oy tan ¢ cos ¢y — sin ¢y

cos¢p = (D.42)

\/1 + cos? 6, tan? ¢
sinp — cos 0; tan ¢ sin ¢; -+ cos ¢, (D.43)

\/1 + cos? f; tan? ¢

) 2 cos 6, tan ¢ cos 2¢; — sin 2¢; (1 — cos? 6; tan? ()
= D.44
sin2¢p 1+ cos? §; tan? ¢ ( )
. o 2

cos2p = _ 2cosf;tan ¢ sin 2¢; + cos 2¢; (1 — cos? 6; tan® () (D.45)

1+ cos? f; tan? ¢

3J.E. Roy,” Generalization of the Ludwig-3 Definition for Linear Copolarization and
Cross Polarization”, iIEEE Trans. Antennas Propagat., Vol. AP-49, No. 6, June 2001,
pp. 1006-1010.

4Note that ¢ in Equation (2.23) does not mean the same thing as ¢ in Equation (D.41).

5In the outwards convention, the spherical coordinate angles 8; and ¢; that specify the -

direction of k are those for k, pointing outwards from the origin of the zyz coordinate
system.
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(cosf tan ¢ sin (¢ — ¢¢) — cos (¢ — ¢r))”
¢p) =

in? (¢ — D.46
sio” (1 1+ cos? §; tan? ¢ ( )
7 i -
cos (¢ — ¢D) cosf; tan { cos (¢, — @) + sin (¢r — ¢¢) (D.47)
\/ 1 + cos? 0; tan? ¢
From spherical trigonometry, we have:

cos( = sinfp cosé (D.48)

Substituting Equation (D.41) and rearranging, we obtain:
cos20p =1—2 (1 + cos® §; tan® C) cos® ¢ (D.49)
- sin26p = <\/1 + cos? §; tan? C) sin 2( sin 6, (D.50)

Substituting Equations (D.42-D.50) into the expanded version of Equa-~
tion (D.39) and regrouping terms in §; produces:

[(Z c (1 — sin” §; cos® (¢ — ¢¢) — cos 2¢ (cos2 6, — sin” ; sin® (¢ — ¢t)>>> — ( i

s

E

[ cos2( — 1) (cos 6, — sin® 6; cos® (¢ — ¢t)>> + (si;i€'>2] cos? 6,
+(

v

—sin2¢) Z q (sm 9,) sin 2(¢l ¢t)] cos b,

B
+((0.55in2¢) 3" ¢ (sin26)) sin (1 — )| sin 6,

A
+[0.5 (cos2¢ + 1) 3 ¢ (sin 26;) cos (¢, — ¢r)] sin 6, cos 6,

c

(D.51)

where A, B, C, D, E and 6§, are complex-valued. Note that the ambiguity
of Equations (D.30-D.35) affect terms A, B, and C. The corresponding
generic equation is:
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(A1+7By) sin Q+(Ag+7Bs) cos Q+(As+7 Bs) sin @Q cos Q+(As+7By) cos? Q+(As+jBs) = 0

(D.52)

where @ = (a + jf) and all other variables A;, By, Ay, Bs, As, Bs, As,
By, As, Bs, a, [ are real-valued. The solution of this equation is obtained as
follows. The trigonometric functions are exressed in terms of the exponentials
e® and e® by using Euler’s identities. There results:

. 1 A . s . 1 [ e - e2ﬁ
cos (Oé +]ﬁ) = 5 (€J(a+]ﬁ) +e ](a+Jﬁ)) = 5 <W (D.53)
. _ 4 200 _ 28
. . —j ) ) . ) ife e
sin (o + j0) = 5 (33("‘*"[’) —e 9("‘“[’)) =5 (W) (D.54)

Substituting Equations (D.53-D.54) into Equation (D.52) and collecting
the terms of equal power of e? gives the following quartic polynomial in the
parameter e with complex-valued coefficients:

(aa+5ba)e*P+(as-+35bs)e®P+(ag+ibe)e® +(ar+7b1 )€’ +(ag+4bo) = 0 (D.55)
where:

a4+ jbs = (Ag — Bs) + j (Bs + As)
ag + jbs = 26/* [(Ag — B1)) + 7 (Ba + A1)
ag + jby = 2€92* (Ay + §By)
o+ gby = [267°% (Ay + By) + 46/ Ag| + j 267 (By — Ar) + 467 Bs]

ag + jb, = ¥4 [(Ay + Bs) + j (Bs — As)]
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Splitting this complex-valued equation into its real and imaginary parts
gives two real-valued equations to be solved simultaneously:

a4e4ﬂ + a3e3ﬂ + a262ﬂ + aleﬂ +ap=0 (D-56)

where:

a4 = Ay — B3
ag = 2[(As — By)cosa — (By + A;) sinal
ag =2 [A4 cos 295 — By sin 20/
ay = 2 [(As + B1) cos 3a + (A1 — By) sin 3 + 245 cos oo — 2B sin Q]

ap = [(A4 + Bs) cosda + (Az — By) sin 40

and:

bae™® -+ bye®® 4 bye? + byef + by = 0 (D.57)

where:

by= Bs+ As
bs = 2[(A1 + Bs) cos o + (Ay — By) sin a]
by = 2 [Bygcos 2 + Ay sin 2a]

by = 2[(By — A1) cos 3a + (By + Aj) sin 3a + 2B5 cos a + 245 sin o]
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bo = [(Bs — As)-cosdo + (Bs + Ay) sinda]

Using once more Equations (D.53) and (D.54) with § = 0 and adjusting
all terms to an equal denominator and getting rid of this denominator by
moving it to the Right-Hand-Side of the equality sign transforms the quartic
polynomial in the parameter ¢® of Equation (D.56) into:

X% 4 X563 + X062 + X1eP + Xo =0 . (D.58)

where:

X4 = 166j4a (A4 — B3)

X3 = 166j5a [(A2 — Bl) +j (Al + Bz)] + 166‘7.?‘& [(A2 — Bl) —j (Al + Bz)]

X = 87 [(A4 + By)] + 167 [Ag — By] + 8¢/** [Ay + By

X1 = 4¢7[(As+ B1) +j (A1 — By)]
-|-46j5a [(3 (Bl + Az) + 8A5) - j (3 (Al - Bg) - 8B5)]
-|—46j3a [(3 (Bl + Az) + 814.5) +j (3 (Al — Bg) — 835)]
4467 [(By + A;) — j (A1 — Ba)]

Xo = ej80'4 [Bg + A4 + Ag - B4] + ejb‘oz [4 .(Bg + A4 - A3 + B4)]
+e94% 6 (B + Ay + Az — By)] + €72¢[4 (Bs + Ay — A3 + By))
+[Bs + Ay + As — B4

and the quartic polynomial in the parameter ¢ of Equation (D.57) into: .
Yie® + V3% + V2 + V1P + Y, =0 (D.59)
where:

Yy = 166 (By + A3)

204




Ys = 16e55% [(A; + By) — j (Az — By)] + 16e7* [(A; + Bg) -+ j (A2 — Bi)]

Y = 8e5% [(By — Ay)] + 166 [By + Ag) + 8e72* [By — A4

Y1 = 4e’™[(By — A1) + j (B1 + A2)]
4675 [(3 (By — As) + 8Bs) — § (3 (By + As) + 845)]
467 [(3 (By — Ar) +8Bs) + § (3 (By + Ag) + 845)]
+46j_a [(BZ - Al) — ] (Bl + Az)]

Yo = & [By— A+ By + Ad + e’ [4 (By— Az — B3 — Ay)]
+634a [6 (B4 — A3 + B3 + A4)] + 6‘720‘ [4 (B4 — A3 — B3 — A4)]
+ [By — A3 + Bs + A4

Since the same real-valued solution for e® must satisfy simultaneously
both polynomials of the fourth degree in the parameter e? of Equations (D.58)
and (D.59), the two sets of four possible solutions for both polynomials are
equated® among themselves, resulting in 16 functions of various powers (in-
cluding fractional powers) in the parameter e/*. Although the correct so-

lution for e? is real-valued, not all 16 functions are necessarily real-valued -

because some of the false solutions for e# might be complex-valued. Fur-
thermore, the presence of fractional powers makes it impossible to write the
functions in a clean polynomial form where the terms of equal powers of
e’® are collected. In any case, the degree of the polynomial is larger than 4
and thus, the solution for each function must be solved numerically using a
root-searching algorithm, e.g. the subroutine ZANLY" of the IMSL Fortran
library. The possible solutions for e/® are then substituted into the quartic
polynomial of Equation (D.58) or (D.59) to obtain the possible solutions for
e®. Once the correct value of e and the correct value of e/® are identified,
the value of sin6; can be computed from Equation (D.54) and substituted

into Equation (D.1) to find the value of the effective permittivity Efﬂ as

6Simply creating a single equation by adding or subtracting (and more generally, taking
a linear combination of) the two Equations (D.58) and (D.59) is not satisfactory because
for the equality to hold for any and all linear combinations would require either that the
solution be the trivial solution, i.e. each coeflicient is zero-valued regardless of the value
of e?, or the solution has 3 tending to —oo so that ? tends to zero.

"ZANLY could be used to solve directly Equation (D.52) since ZANLY can handle a
complex function of a complex variable. However, it was felt that more accurate results
might be obtained by solving the problem analytically as much as possible. In our solution
approach, only e/® is determined by numerical means whereas ef is determined from the
exact solution of a quartic polynomial.
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&t _ <C_>2 _ (ﬂ)z (D.60)

e ¢ sin 6,

Note that up to this point, the computation of the propagation constants
& and ,5 imposed no restriction on the incidence plane, the polarization angle
¢, or the orientation of the three principal dielectric axes of the anisotropic
medium, provided that the propagation constant of the amplitude wavefront
& be normal® to the interfaces. But how do we know the value of ¢ in the
transmission medium? If the TE/TM decomposition were still valid then,
assuming that the incidence plane lied in the zz plane (i.e. ¢; = {0°,180°}),
the polarization angle ¢ in the transmission medium would be known as
¢ = {90°,270°} for the TM? polarization, and ¢ = {0°, 180°} for the TE”
polarization.

The above approach to compute ‘»sreﬂ3 for a biaxial medium has the same
clear physical interpretation as did the uniaxial case in Section D.1. However,
a simpler (albeit less physical and more mathematical) approach is to use
the dis?fersion equation Equation (E.11) and the interpretation that v? =
—k2e, .

8The case where the propagation constant of the amplitude wavefront & would not be
normal to the interfaces is beyond the scope of this generalization.
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U R UG " J————— R

Figure D.2: Generalized case of an anisotropic medium with its three prin-
cipal dielectric axes u, v, w being arbitrarily oriented with respect to the
reference zyz coordinate system.
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Definition of the angles £ and (.

.

Figure D.3
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Appendix E

Dispersion equation for the
lossy biaxial medium

This appendix presents the dispersion equation for the lossy biaxial non-
magnetic medium. The time-harmonic factor ¢ is implicit throughout
the development. A non-uniform plane wave is written as e™7" where ¥ =
(@ + jﬁ) Hence, the time derivative leads to a scalar multiplication by
jw whereas the space derivative leads to vector multiplication by —7. The
electrical conductivity is taken into account by the complex permittivity
tensor which is assumed to take the diagonal form:

e 0 0
e=| 0 g 0 (E.1)
0 0 ey

where:

( 1 . 0] )
g =¢,|€., —
o\ Jweo

with [ = {u,v,w}. Hence, the principal conductivity axes are assumed
to coincide with the principal dielectric axes which are given by the axes u,
v and w. Although D # E in general, D = E in the direction of the three
principal dielectric axes [75, p. 664] since D; = ¢, ;. Maxwell’s equations
become:

¥ x E = —jwu.H (B.2)
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¥x H=4jwe -E (E.3)
3-D=0 (E.4)
F-H=0 (E.5)

Substituting Equation (E.3) into Equation (E.2) and using the vector
calculus identity:

Fx(Fx E)=7-7)E-57- E)

where 479 is a dyadic, produces the Helmoltz vector equation:
(7’7 - T —w? ?) CE=0 (E.6)

where T is the unit diagonal tensor, i.e. the identity matrix. This agrees
with Reference [7, p. 184, Equation (5.15)] upon using the dyadic identity:

— > 2
(- 77)= (37)

given in Reference [7, p. 17, Equation (1.100)]. Developing Equation (E.6)
gives:

,Yﬁ - '72 - LUZ,LI,OEU Yu Vv YuYw Eu
Yu Yo '73 — 7 — Wy Yo Yw E, |=0
YuYw Yo Yw '7120 - '72 - WZ/J'oew Ey,

(B.7)

Note that y7#jw,/eg; where | = {u,v,w} with g referring to the per-
mittivity in the three principal dielectric axes. Note that 7, is the value of v
when the phase wavefront propagation vector ,5, not the polarization vector
D, points in the 4 direction, and similarly for v, and 7,.
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" To avoid the trivial solution requires that the determinant of the matrix
be 0. Developing the determinant from the first row of the matrix and then
dividing the result by —w?u, gives this quadratic equation in 7%

Yt + by +c=0
where:
a=(y+ey+Ey)

b= Wz.u'o (€v€w + EyEw + Euev) - ((EU + Ew)%z: + (Eu + Ew)’)’g + (5u + 8'0)75;)

4,2 2 2 2 2
C = W UpyEyEyEyy — W lho (evswfyu + EuEwYy T ausvfyw>

Substituting v, = (¥* — 92 — ¥2) where v, and 7, are the independent
variables, produces the same quartic equation but with new coefficients:

a=é, (E.8)
b= wliotw (€4 +&y) — ((Ew — eu) 7y + (w — 5v)’)’5> (E.9)
¢ = white Eptnw — Wl (EU (6w — €)Y + €u(Ew — ev)fyf> (E.10)

Solving for ¥? produces the dispersion equation:

i\ﬂwzﬂogw(ev —€u) + (6w — 5u_)’)’1% — (€w — 50)'75)2 + 4w — €u)(Ew — €0)V272

)

( _Wz,uloew(eu + Ev) + (€w - Eu)fy'z% -+ (€w — 6“)75
7=

2e,,
(E.11)
Developing Equation (E.7) produces these three equations:
(fyi — WPty — 72) By + %Yo By + Y YwFw =0 (E.12)
(’)’5 - wzlu’oev - 72) Ev + f)’vf)'wEw + f)’u')’vEu =0 (E13)
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(72 = 0tobw = 7*) Bu + W Bu + B =0 (E14)

Substituting Equation (E.11) into the last three equations produces:

(wzlvl'og‘w(av - 5u) + 5w(’YqZL - 712;) + 6’1[7«3 + 51173) By + Yu Yo By + YuYw B =0
(B.15)

(W tow(Eu — €0) + Ew(V2 = 72) + €V + €075 ) Bo + VoY Bo + YutoBa = 0
| (E.16)

(WQMoew((gu — &y) + (6v —€w)) + ew((’)’zzu - fY‘l%,) + (’Yg; - ’Yg)) + E'U',Y’g, + 51:’)’12;) E,
+Yu Yo Bu + Yo YwEy = 0

(E.17)
Adding Equations (E.15) and (E.16) produces:
B, = _B(Eu - Ev) + A(Eu =+ Ev) + 25u’7u7v(Eu =+ Ev) (E18)
260 Yw(Yu + )
Substituting this last equation into Equation (E.17) produces:
_ A2 A2
B, = ATO (A= Bt2yny) —deut(ut W) p (g )
(A+C) (A+ B+ 2e0mm) — 45,7 (u + W)
where:

A= €u7121,+5v712):‘:\/(w2/v1'05w(5v - 811.) =+ (5w — €u)f71%, - (ij - 8‘0)7’3)2 + 4(510 - Eju) (ij - 8”)7’121'7"2’
B = w2l ((€y — €4) + €u(72 — 72)

C = W liotw((€n — €w) + (60 — €w)) + ew((V2 — 72) + (72 — 72))
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Finally, substituting Equation (E.19) back into Equation (E.18) produces:

(A — B + 2e4vuYw) — 2770 B

Ew =2 w fw
CTA LT O) (A + B+ 2e0rare) — 46272 (70 + 7o) Ta

E, (E.20)

Both Equations (E.19) and (E.20) are written in terms of E, as the in-
dependent variable.

Since the transverse (to the interface) variation of the fields are dictated
by the incident plane wave, we have % = jki and +f = jk! where k% and
ki are real-valued. In turn, v, = jk, and vy, = jk, in Equation (E.11) can
be obtained from % and 4} by coordinate rotation. Although k% and &} are
real-valued, i.e. v} and v} are pure imaginary values, it does not follow from
coordinate rotation that -, and =, are pure imaginary values. Note that the
values of vy, and <y, are the values of v when the propagation vector ﬁ points
in the z or y direction, respectively, the same way that ; with [ = {u,v,w}
is the value of v when the progagation vector 5 points in the direction L.
There obtains:

Yo = (8i0 0y, cOS o )75, + (sin Oy, sin ¢y, ) ¥, + (cos Bu )yl (E.21)

Yo = (sin 6, cos ¢, )v%, + (sin 6, sin ¢, )7, + (cos 6,)7% (E.22)

where v = jki, v, = jky, (V)? =7 — () — ()% = ¥* + (k) + (k}),
sin 6, is given by Equation (D.30), cosé, is given by Equation (D.31), siné,
is given by Equation (D.32), and cosf, is given by Equation (D.33). Sub-
stituting these expressions into Equations (E.21-E.22), squaring the results,
substituting the results into Equation (E.11) and regrouping the terms in ?
produce the following quartic! in the variable *:

()G

+(7")? [2GaGa + Q7]

+(7)2 [ G5 + 2G4Go + 21,Q5 + QX((K)* + ()% L =0 (E.23)
+(7?) [2G2Go + 202 QS ((kE)? + (k) )?) + whpi2S?]

+ G2+ SR + ()]

where:

1This is somewhat reminiscent of the Booker quartic equation in Reference [7, pp. 205-
208].
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Gy=¢y — ((sw — &) cos? 0, + (g, — &,) cOS> OU)
Go = W liofu(En + &) — P — w?ly (Ev (6w — €u) €OS% Oy, + Eu(Ew — &) cos? Ov)

4.9 2
Go = W EuEvEW — W o R

(k2)? + (K2)2) ((Ew — €u) 082 Oy, + (g0 — &) cOS? 6,)

2 ((&y — &) sin? 0y, cos? ¢y, + (€ — &) sin® 6, cos? q.')v)

2 (g4 — €4) sin? B, sin? ¢y, + (£ — &,) sin® 0, sin® ¢v)
(k) ((Ew — Ey) sin? 0, sin 2¢y, + (Ew — Ev) sin® 6, sin 2¢v)

L
=

Q = (k) (e — &) sin 20,, cos ¢y, + (€4 — &) sin 20, cos ¢y)
+ (k%) ((Ew — €u) Sin 20, Sin ¢y, + (6w — o) sin 26, sin ¢,,)

(E)? + (K!)%) (ev(Ew — u) cos® By + ey (ew — €v) cos® 6,)

2 (£4(g0 — &4) sin? 6, cos? ¢y, + £y (Ew — €,) sin® §, cos? ¢v)
£v(Ew — £4) sin® 0, sin® ¢, + €, (g, — &) sin? §,, sin? ¢v)
(k) (Ev(Ew — £4) 5in? 0y, 510 26y, + €4 (€w — &) sin? 6, sin 2¢v)

= (k%) (ey(€w — €u) 5in 20, cOS Py, + €4 (€ — €4) sin 26, cOS )
) (Ev(Ew — €u) SIN 20y, 8in @y, + £ (€ — €4) Sin 20, SN ¢y

The closed-form solution of the quartic in Equation (E.23) can be ob-
tained by using the MATLAB symbolic math toolbox. This method turns
out to be simpler and more precise (because it is fully analytical) than the
previous one presented.in Section D.2. However, the sign ambiguities intro-

‘duced by coordinate transformation still remain due to the presence of odd

powers of sin 20,, cos 26,, sin 20,,, cos 20,, sin ¢,,, cos ¢, sin 2¢, and cos 2¢,,.

From Equation (E.23) and the interpretation that y* = —lcg‘sf.’ff, the in-
trinsic propagation constants o, and [, for each one of the two eigenwaves
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can be determined? from Equations (4.2-4.3), respectively. The correspond-
ing effective propagation constants o and § can then be computed by the
the procedure presented in Chapter 2.

In summary, one important feature of the analytical technique presented
in this report is that computing the effective propagation constants with the
Adler-Chu-Fano formulation offers a general method to compute the effective
propagation constants in multilayered slabs of biaxial media. The solution
method would proceed as follows:

compute the value g, off — —(v2/k2) with v? given by the solution of

Equation (E.23) for the desired eigenwave.

compute the intrinsic propagation constants «, and G, from Equa-
tions (2.5-2.6) with e, replaced by g, off;

)

compute the effective propagation constants o and  and the real-
valued propagation angles ¢ and p by the method presented in Chap-
ter 2;

compute the Fresnel equations® | if still applicable, written in terms of
g being the permittivity that D sees ”in the interface” for the incidence
medium, and €’ being the permittivity that D sees "in the interface”
for the transmission medium. The permittivity that D sees ”in the
interface” for the TM? polarization would be €,, given by:

N2
fra (C—) . (E.24)
Ex o

where ¢, would be computed from Equations (D.24-D.29) with ¢p = 0°
and 0p = 90° since D, is the projection of D onto the zy plane.

If Fresnel equations are not applicaple, then the scattering coeffici-
cients for the incidence from the free-space side must be derived from
amplitude-matching the tangential field components at the interface.

e compute the scattering coefficients of the entire multilayered structure
by using C matrices with the cascade approach of Chapter 3.

“Equations (4.2-4.3) were written for the extraordinary wave in a uniaxial medium. For

the more general case of a biaxial medium, eu needs to be replaced by efﬂ corresponding
to the eigenwave of interest.

3Since Fresnel equations require the knowledge of only v, = /7% + (ki)2 + (ki)?, Fres-

nel equations could be computed without having first to find the values of intrinsic o, B,
the values of effective o and 2 and the values of the propagation angles p and €.
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| E.1 Validation

These expressions are first validated for the lossy uniaxial medium with its
optic axis parallel to either 4, ¥ or w. The expressions are then validated
for the lossy biaxial case with its two optic axes arbitrarily oriented. The
subscripts .L and || will refer to the directions perpendicular and parallel to
the single optic axis of the uniaxial medium, respectively. The superscripts ’
and " will refer to the ordinary and the extraordinary waves of the uniaxial
medium, respectively, or the two eigenwaves of the biaxial medium. The
Reference that will be cited in this section is the following:

Rodolfo Echarri and Maria T. Garea, ”Behaviour of the Poynting vector
in uniaxial absorbent media”, Pure Appl. Opt. 3, pp. 931-941, 1994.

Since the expressions are very long, the Matlab symbolic math toolbox
was used to.carry out the calculations. We will see that for all three uniaxial
cases, we always obtain®:

(7)? = —w?uoe 1

”» 8
(’y )2 = _wQIJ’OS" + ’Y(Q)ptlc <1 - i)

where Yoptic = Jw./Io€| is the value of v when the polarization vector

ﬁ, not the propagation vector ﬁ, points in the direction of the optic axis.
Consequently, one obtains:

” 6
()= —wnogy ( —-l )
€1

E.1.1 Lossy uniaxial medium with optic axis along

(E.25)

&
e
—N
m ™
g €
[l
oM M
=
i
™
—

and using the lower sign in Equation (E.11), there obtains:
ff

41t is only a coincidence that the equation for (v")2 = —w2uee®! resembles Equa-
tion (D.22) where g) = €008 and ¢, = &3NS, The equation, heve, applies to an un-
bounded medium whereas Equation (D.22) applies to the case of an interface with the

optic axis parallel to the interface.
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(7/)2 = —C‘)Z/J'osv = _WZ/J'OEJ_
E’:L - <’_Yg> E’v
Yu
E,=0

Using the upper sign in Equation (E.11), there obtains:

1 E - E E
() = —wtow — V2, ( = ”) = —w’loE| + 72 (1 — E—")
v 1

These last two equations agree with Equation (12) of Echarri and Garea.

ﬁu . f_y'” — 0
And finally:
D—'/ = $1} _ 0
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E.1.2 Lossy uniaxial medium with optic axis along 4

Ew = €L
E.26
‘l (E.26)

&
=
—
M M
g &
ol

and using the lower sign in Equation (E.11), there obtains:

(7,)2 = _w2lu'05w = _w2,U'OE.L

and using the upper sign in Equation (E.11), there obtains:

» 6 _8 6
Wf=—ﬁm%+ﬁ(£;JQ=—ﬁ%w+ﬁ0fgg
w 1

2 _ .2
E - (E_w) (u) E,
€u YuYv

And finally:

G_Jw%ﬁf“%k@ﬁ+ﬁ>

W2 pho€w + Y2 + 72
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which can be reduced to:
D.0 = <1—%"—>5 E?

w

This last equation would clearly produce 0 if @ lied in a planar interface
(i.e. if the normal of the interface lied in the wv plane). This would be
so because the transverse variations of the ﬁelds at a planar interface are
dictated by the incident plane wave, i.e. 7., = 7., = 7,. However, the
presence of this condition would not be, in fact, a limitation because the
optic axis 4 could still be oriented in an arbitrary direction even if @ were
restricted to lie in the interface. Still, it would be peculiar to have to rely
on the presence of a planar interface to insure that the result be null. This
suggests that we should have ,, = «,, even without invoking the presence of
an interface. '

This peculiar reliance on 7., = ~,, to make D' - D" = 0 appears only
because 2 = (y2 — v2 — 2) was used as part of the development of Equa-
tion (E.11). This implies that «,, 7, and v were assumed to be the indepen-
dent variables in this development. In an unbounded medium, however, =,
would usually be taken as an independent variable, and it is v that would
become the dependent variable, i.e. for a given propagating direction, the
value of v would depend on 7, vy, Y and the polarization of the wave.

E.1.3 Lossy uniaxial medium with optic axis along 7

€
For { v
Ey

and using the upper sign in Equation (E.11), there obtains:

;. (E.27)

(71)2 = —w? o = W lhoE L

and using the lower sign in Equation (E.11), there obtains:

» Ey —E €
(7)) = —wpots — % <——”> = —w’ ot + 75 (1 - ;'l—)

Because E is zero in the direction of the optic axis as shown by the
two preceding cases, then E, = 0 here. Therefore, F, and FE,, cannot be
expressible in terms of E, since £, # 0 and E, # 0. Consequently, the
present formulatlon which is expressed in terms of E,, cannot be used to
show that (D - 7) =0and (D'-D") =0.
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E.1.4 Lossy biaxial medium

Since the expressions are very long, the results from using the Matlab sym-
bolic math toolbox are reproduced here:

syms om mu real
syms Gu Gv eu ev ew AA BB CC Ev unreal

BB=(om™2) *mukew* (ev-eu) +ew* ((Gu~2)-(Gv~2)) ;

RAD=simple (sqrt ((((om™2) *muxew* (ev—eu) +(ew-eu) * (Gu~2)-. ..
(ew-ev)*(Gv™2) ) "2)+4x (ew—en) ¥ (ew—ev) * (Gu~2) *(Gv™2)) ) ;
%pretty(simple (RAD))

% For the first eigenvalue of the propagation constant G and

% the corresponding eigenpolarization D.

G2=simple ( (- (om™2) *mu*ew* (eu+ev)+(ew—ew) * (Gu~2) +(ew-ev) * (Gv~2) +RAD) / (2%ew) ) ;
pretty(G2)

2 2 2
1/2 (~om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv + (

4 2 2 2 4 2 2 2 2 2
om mu ew ev + om mu ew eun - 2Gu ew Qv ev

2 2 2 2 4 2 2 2
- 2Gu euGv ew +2Gu euGv ev - 2CGu eweu+ 2 Gu ew Gv

4 4_ 2 4 2 4 2 4 2
- 2GQGy ewev+Gu ew +Gu eu + Qv ew + Qv ev

4 2 2 2 2 2
- 2 om mu ew ev eu + 2 om ma ew ev Gu

2 } 2 2 2 2
- 2 om ma ew ev Gu eu - 2 om ma ew ev Gv

2 2 2 2 2 2
+2o0om mu ewev Gv - 2 om mu ew eu Gu

2 2 2 2 2 2
+ 2 om mu ew eu Gu + 2 om me ew eu Gv

2 2 1/2
- 2om mu ew eu Gv ev) Y/ ew
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Gw=sqrt (G2-((Gu~2)+(Gv"2))) ;

AA=eux (Gu~2)+ev* (Gv~2)-RAD;

CC=(om"2) *mu*ew* (eutev-2%ew) +ew* (2+ (Gw"2) - (Gu~2)-(Gv~2) ) ;

Eu=simple (-Ev* ( (AA+CC) * (AA-BB+2*ew*Gu*Gv) —4+* (ew”2) * (Gw"2) * (Gu+Gv) *Gv) /. . .
((AA+CC) * (AA+BB+2*ewxGusGv) ~4+* (ew™2) * (Gw"2) * (Gu+Gv) *Gu) ) ;

pretty(Eu)

4 4 2 2 2 2
-~ Ev (Gu ew - euGu —-ev Gv Gu -2o0om mu ew Gu eu

2 2 4 2 2 4 2 2
+om mu ew Gv ev-om mu ew eu-+om mu ew ev

2 2 2 2 2 2 2 1/2
+om mu ew Gu -om mu ew Gv + om mu ew %1

2 2 3 3 3 3
+ Gu Gv ew - Gu ew Gv - Gv ew Gu + Gv ev Gu + Gv Gu eu

1/2 2 1/2 2 2 2 2
- Gv %1 Gu + Gu %1 - 2o0om mu ew Gu Gv + Gu om mu ew ev
2 2 / 4
+ Grom mu eweuGu +Gvom mu ewev Gu / (-ev Gv
/
2 2 2 2 4 2 2

+om mu ew Gu eu - 2 om mu ew Gv ev + om mu ew eu

4 2 2 2 2 2 2 2 2
-—om mu ew ev-om mu ew Gu + om mu ew Gv

2 1/2 2 2 3 3 3
+ om mu ew %1 +Gu Gv ew - Gu ew Gv - Gv ew Gu + Gv ev Gu
3 1/2 2 1/2 4 2 2
+ Gv Gu eu - Gv %1 Gu + Gv %1 + Gv ew - Gv eu Gu
2 2 2 2 2

- 2 om mi ew Gu Gv + Gv om mu ew eu + Gv om mu ew eu Gu

2
+ Gv om mu ew ev Gu)
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%1 :=

4 2
om mu

2

- 2Gu euGv ew+ 2Gu euGv ev-2Gu eweu+ 2Gu ew Gv

4

2

ew

2 4 2 2 2

2 2

ev -+ on mu ew eu - 2Gu ew Gv ev

2 2 2

4 2 4 2 4

-2Gv ewev +Gu ew + Gu eu + Gv

4

mu

mu

mu

mu

mu

4 2

2 4 2

ew + Gv ev

2 2 2 2 2
ew ev eu + 2 om ma ew ev Gu

2 2 2 2

ew ev Gu eu- 2om mu ew ev Gv
2 2 2 2 2
ewev Gv -2 om mu ew eu Gu
2 2 2 2 2

eweu Gu + 2 om mu ew eu Gv

2
ew eu Gv ev

Ew=gimple (Ev*2*ew*Guw* ((AA-BB+2*ew*Gu*Gv) * (Gu-Gv) -2*BB*Gv) /. . .
((AA+CC) * (AA+BB+2*ewkGuGv) —4* (ew™2) * (Gw~2) * (Gu+Gv) *Gu) ) ;

] -om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv + %1
[2 ———mm e ——

pretty (Ew)
/ 2
Ev ew
\
\1/2
2]
- 4 Gv |
/
2
- ew (Gu

ew

2 2
((Gu eu + Gv ev - %1 - om

2

2

- Gv ) + 2 ew Gu Gv) (Gu - Gv)
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2

2

mu ew (ev — eu)

2

———————————————————————————— - 4 Gu




//
2 2 2 /12
- (2om mu ew (ev-eu) +2ew (Gu ~Gv)) Gv) / [|Gu eu
/ \\
/
2 2 |
+ Gy ev-Y%l+om mu ew (eu + ev — 2 ew) + ew |
\
2 2 2
—om mu ew (eu + ev) + (ew - ew) Gu + (ew - ev) Gv + %1 2
——————————————————————————————————————————————————————————— - 3 Gu
ew
\\
21| 2 2 2
-3Gv ||l (Gu eu +Gv ev - %l + om mu ew (ev - eu)
//
/
2 2 2 |
+evw (Gu -Gv) +2ew GuGv) - 4 ew |
' \
2 ' 2 2
~om mu ew (eu + ev) + (ew — euw) Gu + (ew - ev) Gv + %1
1/ e e e e e e e e e - Gu
ew
\ \
2] |
- Gv | (Gu + Gv) Gul
/ /
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4 2 2 2 4 2 2 2 2 2
%1 := (om mu ew ev + om mu ew eu - 2 Gu ew Gv ev

2 2 2 2 4 2 2 2_
- 206Gu euGv ew + 2CGu euGv ev-2Gu eweu+ 2 Gu ew Gv

4 4 2 4 2 4 2 4 2
- 2Gv ewev+Gu ew +Gu eu + Gv ew + Gv ev

4 2 2 ' 2 2 2
- 2 om mu ew ev eu + 2 om mu ew ev Gu

2 2 2 2 2
- 2om mu ewevGu eu-2om mu ew ev Gv

2 2 2 2 2 2
+ 2 om mu ew ev Gv - 2 om mu ew eu Gu

2 2 2 2 2 2
om mu ew eu Gu + 2 om mu ew eu Gv

2 2 1/2
- 2o0om mu ew eu Gv ev)
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% The first eigenpolarization DTOP.
DTOPu=eu*Eu;
DTOPv=ev*Ev;
DTOPw=ew*Ew;

% To test that the first eigenpolarization is perpendicular (in the complex sense)‘.

% to the propagation vector.
GTOP=simple (Gu*eu*Eu+Gvkev*Ev+Gukew*Ew) ;
pretty(GTOP)

% For the second eigenvalue of the propagation constant G
% and the corresponding eigenpolarization D.

G2=simple( (- (om"2) *mu*ew* (eu+ev) +(ew-eu) * (Gu~2) +(ew-ev) *(Gv~2) -RAD) / (2*ew) ) ;

pretty(G2)

2 2 2
1/2 (-om mu ew (eu + ev) + (ew — eu) Gu + (ew — ev) Gv

4 2 2 2 4 2 2 2 2 2

om mi - ew ev + om mu ew eu - 2 Gu ew Gv ev

2 2 2 2 4

-2Gu euGv ew+2Gu eu Gv ev - 2 Gu ew eu + 2 Gu

4 4 2 4 2 4 2 4 2
- 2Gv ewev +Gu ey +Gu eu + Gv ew + Gv ev

4 2 2 2 2 2
~ 2 om mu ew ev eu + 2 om mu ew ev Gu

2 2 2 2 2
-2 om mu ewevGu eu-2om mu ew ev Gv

2 2 2 2 2 2
+ 2 om mu ew ev Gv - 2 om mue ew eu Gu

2 2 2 2 2 2
+2om mu eweu Gu +2om mu ew eu Gv

2 2 1/2
-2 om mu ew eu Gv ev) )/ew
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Gu=sqrt (G2- ((Gu~2)+(Gv"2)));

AA=eux (Gu~2)+ev* (Gv"2)+RAD;

CC=(om"2) ¥muwkew* (eutev-2%ew) +ewx (2% (Gw~2) - (Gu~2)-(Gv™"2)) ;

Eu=simple (~Ev* ( (AA+CC) * (AA-BB+2%ewxGu*Gv) ~4* (ew™2) * (Gw™2) * (Gu+Gv) *Gv) /. . .
((AA+CC) * (AA+BB+2xewGuiGy) —4* (ew™2) * (Gw~2) * (Gu+Gv) *Gu) ) ;

pretty (Eu)
1/2 2 2 2 2 2 2
Ev (-Gv %1 Gu+Gu Gv ev+2om mu ew Gu eu - om mu ew Gv ev
4 2 2 4 2 2 2 2 2

+ om mu ew eu — om mu ew ev — om mu ew Gu

2 2 2 2 1/2 2 2 3
+om mu ew Gv + om mu ew %1 - Gu Gv ew + Gu ew Gv

3 3 3 2 2 4
+ Gv ewGu -Gv ev Gu -GvrGu eu-Gu om mu ew ev + Gu eu

4 2 1/2 2 2 2
- CGu ew + Gu Y1 +2o0om mu ew Gu Gv - Gvom mu ew eu Gu
2 / 1/2 4
- Grom mu ew ev Gu) / (Gv %1 Gu - ev Gv
/
2 2 2 2 4 2 2

+ om mu ew Gu eu — 2 om mie ew Gv ev + om mu ew eu

4 2 2 2 2 2 2 2 2
- om mu ew ev - om mu ew Gu + om mu ew Gv

2 1/2 2 2 3 3 3
- om mu ew %1 + Gu Gv ew - Gu ew Gv - Gv ew Gu + Gv ev Gu

3 2 1/2 4 2 2 2 2
+ Gv Gu eu - Gv %1 +Gv ew - Gv euGu - 2o0om mu ew Gu Gv

2 2 2 ' 2
+ Gv om mu ew eu + Gv om mu ew eu Gu + Gv om nu ew ev Gu)
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%1 = om mu

2 2

-2Gu eu Gv ew + 2 Gu

4

4 2

- 2Gv ewev + Gu ew +

4

mu

mu

mu

mu

‘mu

2

2
ew ev eu +

2
ew ev Gu eu

ew eu Gv ev

mu

2

ew eu

eu Gv

4

2

2

2

2

4

2 2

- 2 Gu ew Gv ev

4 2

ev -2 Gu ew eu+ 2 Gu ew Gv

2 4 2

Gu eu + Gv ew + Gv ev

2 om

2

2

2

mu ew ev Gu

2

- 2 om

2 om

2 om

2

2

2

mu ew ev Gv

2

2

mu ew eu Gu

2

2

2

mu ew eu Gv

Ew=simple (Ev2xew*Gwx ((AA-BB+2xew*Gu*Gv) * (Gu-Gv) —2*BB*Gv) /. ..
((AA+CC) * (AA+BB+2*ew*GukGv) —4* (ew™2) * (Gw~2) * (Gu+Gv) *Gu) ) ;

pretty (Ew)

/ 2

| ~om mu ew (eu + ev) + (ew - eu) Gu + (ew - ev) Gv

Ev ew |2 -

\

\

2|

-4 Gv |
/

- ew (Gu

1/2

2

2

2

2

((Gu eu + Gv ev + %1 ~ om

2

- Gv ) + 2 ew Gu Gv) (Gu - Gv)
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mu ew (ev - eu)

- %1
e -~ 4 Gu



//
2 2 2 /12
- (2om mu ew (ev —en) + 2 ew (Gu - Gv )) Gv) / |IGu en
/ \\
/

2 2 I

+ Gv ev+ %l +om mun ew (eu + ev — 2 ew) + ew |
\

2 2 2 ;
-om mu ew (eu + ev) + (ew — eu) Gu + (ew — ev) Gv - %1 2
———————————————————————————————— - —— -——— - 3 Gu

' ew :
\\
2] | 2 2 2
- 3Gv ]| (Gu eu +Gv ev+ %l +om mu ew (ev - en)
//
/
2 2 2
+ew (Gb - Gv ) +2ew GuGv) - 4 ew |
\
2 2 . 2

-om mu ew (en + ev) + (ew — eu) Gu + (ew — ev) Gv - %1 2

1/ e e e e e e - Gu
ew
\ \

2] |

- Gv | (Gu + Gv) Gu|
/ /
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4
%1 := (om mu

2

~2Gu eu Gv ew + 2 Gu

4

2

2 2 4 2

ew ev + om mu

2 2

4 2 4

- 2QGv ewev + Gu ew + Gu

4

mu

mu

mu

mu

mu

2 2
ew ev eu + 2 om

2
ew ev Gu eu - 2

ew ev Gv - 2 om

ew eu Gu + 2 om

. 2 1/2
ew eu Gv ev)

% The second eigenpolarization DBTM.

DBTMu=eu*Eu;
DBTMv=ev*Ev;
DBTMw=ew*Ew;

% To test that the second eigenpolarization is perpendicular (in the complex sense

% to the propagation vector.

GBTM=simple (Gu*euxEu+Gvkev*Ev+Gurew+Ew) ;

pretty (GBTM)

eu Gv ev - 2 Gu eweu + 2 Gu ew Gv

2 2 2 2
ew eu - 2 Gu ew Gv ev

2 4 2 2 2

2 4 2 4 2
eu + Gv ew + Gv ev

2 2 2
mu ew ev Gu

2 2 2
om mu ew ev Gv

2 2 2
mu ew eu Gu

2 2 2
mu ew eu Qv
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% To test if the two eigenpolarizations are perpendicular to one another.
pretty (simple (DTOPu*DBTMu+DTOPv*DBTMv+DTOPw+DBTMw) )

2 2 2 2 2 2 2 2 2
(4 Ev Gv eweu -4 Ev eu om m ew ev + 4 Ev ew eu Gu
2 2 2 2 2 2 2 2 2 2
+4Ev eun om mu ew -4 Ev eu Gv ev -4 Ev eu ev Gu
2 2 2 2 2 2 2 2 2

+ 4Ev euGv ev + 4 Ev enev Gu + 4 Ev eu om mu ew ev -+

2 2 1/2 2 2 2 2
ew Ev 2 ((-com mu eweu -om m1 ew ev - Gu ew - Gu eu
2 2 i1/2 2
- Gv ew - Gv ev + %1)/ew) (- (2 om mu ew eu
2 2 2 2 2

+20m mu ewev+ 20u ew+ 2Cu eu+ 2Gv ew + 2 Gv ev + 2 %1

1/2 2 2 2 2 2 2 2 2 2 1/2
Y/ ew) eu -4 Ev ev Gv ew - 4 Ev ev om mu ew - ew Ev 2

2 2 2 2 2 2
((-om mu €ew eu — om mu ew ev - Gu ew - Gu eu - Gv ew - Gv ev

1/2 2 2 2

+ %1) /ew) (- (2om mu eweu+ 2o0om mu ew ev + 2 Gu ew

2 2 2 1/2 2 2 2
+ 201 eu+2CGy ew+ 2Gv ev + 2 %l)/ew) ev — 4 Ev ev ew Gu

/ 2 2 2 2 2
) / (4om mu eweu-4om mu ew + 4 Gv eu+ 4 Gu eu
/
2 2

- 4 Gv ew - 4 Gu ew)
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4 2 2 2 4 2 2 2 2 2
%1 := (om mu ew ev + om mu ew eu - 2Gu ew Gv ev

2 2 2 2 4

4 4 2 4 2 4 2 4 2
-2Gv ewev+Gu ew +Gu euw + Gv ew + Gv ev

4 2 2 2 2 2
- 2 om mu ew eveu+2om mu ew ev Gu

2 2 2 2 2
- 2 om m ew ev Gu eu - 2 om mu ew ev Gv

2 2 2 2 2 2
+ 2 om mi ew ev Gv - 2 om mu ew eu Gu

2 : 2 2 2 2 2
+ 2 on mu ew eu Gu + 2 om mu ew eu Gv

2 2 1/2
~2om mu ew eu Gv ev)

After some algebric manipulations, the result becomes:

2
-20u euGv ew+2Gu eun Gv ev-2Gu eweu+ 2Gu ew Gv

S e Ey —E W2 lhoEyEy + EuY2 + E472
D~D=—E2<”——3) Eubp — Ew(Ey + ) + 372 orv _ tw W
v €4 — Ew ucv ’w(u+ 'U) w szOEw—i—’Yﬁ—Fﬁ’f}

(E.28)

For an isotropic medium, we have ¢, = &, = &, = ¢ and Equation (E.28)
becomes:

p.B = (g) (0) = 0

as expected. For a uniaxial medium with the optic axis parallel to 0, i.e.
with &, = &y, it is clear that Equation (E.28) produces:
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~ in agreement with Section E.1.1. For a uniaxial medium with the optic
axis parallel to 4, i.e. with &, = &, Equation (E.28) becomes:

(1_Jw%¢w+@d%hﬁ+ﬁ>

W2 hoEw + V2 + 72

which is the same expression as that shown in Section E.1.2 and produces
a null result when the optic axis lies in a planar interface. For a uniaxial
medium with the optic axis parallel to o, i.e. with &, = £, we know that
E, = 0 and thus, Equation (E.28) becomes:

2
5'-13"=<%>—>0

in agreement with Section E.1.3.

Therefore, we see that Equation (E.28) produces the expected null result
for isotropic or uniaxial media. However, for lossy biaxial media, Equa-
tion (E.28) produces (D' - D") # 0. In fact, this result remains the same
for. a lossless biaxial medium whereby the permittivities are real-valued and
v = jk. Therefore, this result is NOT in agreement with the information
shown in References [75, p. 672] and [7, p. 196].
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Appendix F

Matlab program to obtain the
GSM for a free-standing
isotropic slab

syms RHH REE RHE REH THH TEE THE TEH unreal
syms GzHp GzHm GzEp GzEm unreal
syms d real

% Since this formulation uses reciprocity, then GzHp=GzHm, and GzEp=GzEm.

syms GzH GzE Gz unreal
- GzHm=GzHp;
GzEm=GzEp;

GHp=GzHp/Gz;
GHm=GzHm/Gz;
GEp=GzEp/Gz;
GEm=GzEm/Gz;

CII11(1,1)=-RHH;
CII11(2,2)=-REE;
CII11(1,2)=-RHE;
CII11(2,1)=-REH;
CII22(1,1)=RHH;
CII22(2,2)=REE;
CII22(1,2)=RHE;

233




00000000000000000000000000000000000000000000

CII22(2,1)=REH;
CII21(1,1)= THH*GHm;
CII21(2,2)= TEE*GEm;
CII21(1,2)=—THE*GHm;
CII21(2,1)=—-TEH*GEm;
CII12(1,1)=THH;
CII12(2,2)=TEE;
CIIi2(1,2)=THE;
C1112(2,1)=TEH;

CII=[CIIii CII12; CII21 CII22];

CI11(1,1)=RHH;
CI11(2,2)=REE;
CI11(1,2)=RHE;
CI11(2,1)=REH;
CI22(1,1)=-RHH;
CI22(2,2)=-REE;
CI22(1,2)=-RHE;
€I22(2,1)=—REH;
CI21(1,1)=THH;
CI21(2,2)=TEE;
CI21(1,2)=THE;
CI21(2,1)=TEH;
CI12(1,1)= THH*GHp;
CI12(2,2)= TEE*GEp;
CI12(1,2)=-THE+GHp;
CI12(2,1)=-TEH*GEp;

CI=[CIi1 CIi2; CI21 CI22];

Pp(1,1)=exp (-GzHp*d) ;

Pp (2,2)=exp (-GzEp*d) ;

Pp(1,2)=0;

Pp(2,1)=0;

Pm(1,1)=exp (~-GzHm*d) ;

Pm(2,2)=exp (—GzEm*d) ;

Pm(1,2)=0;

Pm(2,1)=0;

HH1=inv(inv (Pp)-CI22 *Pm*CIIi1);
HH2=inv(inv (Pm)-CII11*Pp*CI22 );
C11=CIi1 +CI12 *HH2xCII11xPp*CI21 ;
C22=CII22+CII21*HH1*CI22 *PmxCII12;
C12=CI12 *xHH2xCII12;
C21=CII21*HH1*CI21 ;
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Cli=simple(C11);
C12=simple(C12);
C21=simple(C21);
C22=simple(C22);

CC=[C11 C12; C21 C22];

R=simple(C11-C22)
R =

[ 0, 0]
[ 0, 0]

T=simple(C21-C12)
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%RHH_composite=C11(1,1)
pretty(C11(1,1))

(RHH Gz

%1

%2

I

3
- RHH

- 2 RHH Gz RHE

2
%2 REH - RHH Gz REE exp(-2 GzEp 4 )

3 2

Gz exp(-2 GzHp 4 ) + RHH Gz %1 REE

2 2 2
+ RHH Gz RHE %1 REH - 2 RHH Gz RHE %1 REH REE
2 ' 2 2
- GzHp exp(-2 GzHp d ) THH RHH + GzHp %1 THH RHH REE
2
+ GzHp %1 THH RHH THE REH REE - GzHp 7’1 THH REH RHE REE
2
+ GzHp %2 THH REH THE - GzHp %1 THH THE RHE REH
2
- GzHp %2 TEH RHE THH + GzHp %1 TEH THH RHE REH
+ GzHp %1 TEH RHE THE REH RHH
- GzHp %1 TEH REE THH RHE RHH
+ GzHp exp(-2 GzEp d ) TEH REE THE
2 /
- GzHp %1 TEH REE THE RHH ) / (Gz (1 - 2 RHE %2 REH
/
2 2 2 2
- REE exp(-2 GzEp d ) - RHH exp(-2 GzHp d ) + RHH %1 REE
2 2
"+ RHE %1 REH - 2 RHE %1 REH RHH REE ))
exp(-2 d (GzEp + GzHp ))
exp(-d (GzEp + GzHp ))
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%RHE_composite=C11(1,2)
pretty(C11(1,2))

2 2
(RHE Gz - 2 RHE Gz %2 REH - RHE Gz REE exp(-2 GzEp d )

2 2 2
~ RHE Gz RHH exp(-2 GzHp d ) + RHE Gz RHH %1 REE

3 2 2
+ RHE Gz Y1 REH - 2 RHE Gz %1.REH RHH REE

- GzHp exp(-2 GzHp d ) THE RHH THH

2 2
+ GzHp J%1 THE RHH THH REE + GzHp J%1 THE RHH REH REE

| 2
- GzHp %1 THE REH THH RHE REE + GzHp %2 THE REH

2 2
- GzHp %1 THE RHE REH - GzHp %2 TEE RHE THH

2
+ GzHp %1 TEE THH RHE REH + GzHp J1 TEE RHE THE REH RHH

- GzHp %1 TEE REE THH RHE RHH
+ GzHp exp(-2 GzEp d ) TEE REE THE
| 2 /
- GzHp %1 TEE REE THE RHH ) / (Gz (1 - 2 RHE %2 REH
/

2 2 2 2
- REE  exp(-2 GzEp d ) - RHH exp(-2 GzHp d ) + RHH %1 REE

2 2
+ RHE %1 REH - 2 RHE %1 REH RHH REE ))

%1 := exp(-2 d (GzEp + GzHp ))

%2 := exp(-d (GzEp + GzHp ))
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|
|
|
|

%1

%2

(REH Gz

#REH_composite=C11(2,1)
pretty(C11(2,1))

2 2
- 2REH Gz RHE %2 - REH Gz REE exp(-2 GzEp d )

2 2 2
REH Gz RHH exp(-2 GzHp d ) + REH Gz RHH %1 REE

3 2 2
REH Gz RHE %1 - 2 REH Gz RHE 71 RHH REE

GzEp exp(-2 GzHp d ) THH RHH TEH

2
GzEp %1 THH RHH TEH REE - GzEp %1 THH RHH TEE REH REE

GzEp %1 THH REH TEH RHE REE - GzEp J2 THH REH TEE

2 2
GzEp %1 THH TEE RHE REH + GzEp %2 TEH RHE

2 2

‘GzEp %1 TEH RHE REH - GzEp %1 TEH RHE TEE REH RHH

2
GzEp %1 TEH REE RHE RHH

GzEp exp(-2 GzEp d ) TEH REE TEE
2 /
GzEp %1 TEH REE TEE RHH ) / (Gz (1 - 2 RHE %2 REH
/

2 2 2 2
REE exp(-2 GzEp d ) - RHH exp(-2 GzHp d ) + RHH %1 REE

2 2

+ RHE %1 REH - 2 RHE %1 REH RHH REE ))
exp(-2 d (GzEp + GzHp ))

exp(-d (GzEp + GzHp ))
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%REE_composite=C11(2,2)
pretty(C11(2,2))

(REE Gz - 2 REE Gz

-~ REE Gz RHH

+ REE Gz RHE

+ GzEp exp(-2

- GzEp %1 THE

+ GzEp %1 THE

+ GzEp %1 THE

- GzEp %1 TEE

+ GzEp %1 TEE

- GzEp exp(-2

(Gz (1 - 2 RHE

2
- RHH  exp(-2

3

RHE %2 REH - REE Gz exp(-2 GzEp d )

2 : 3 2
exp(-2 GzHp d ) + REE Gz RHH %1

2 2 2

%1 REH - 2 REE Gz RHE %1 REH RHH

GzHp d ) THE RHH TEH
2

RHH TEH REE - GzEp %1 THE RHH TEE

REH TEH RHE REE - GzEp
2

TEE RHE REH + GzEp %2 TEE RHE TEH
2 2

TEH RHE REH - GzEp Y%l TEE

REE TEH RHE RHH
2 2

GzEp d ) TEE REE + GzEp %1 TEE

: 2
%2 REH - REE exp(-2 GzEp d )

2 2 2

GzHp d ) + RHH %1 REE + RHE %1 REH

~ 2 RHE %1 REH RHH REE ))

%1

exp(-2 d (GzEp

%2

exp(-d

+ Gsz.))

(GzEp + GzHp ))
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%THH_composite=C21(1,1)
pretty(C21(1,1))

\ 2 2 2 2
- GzHp (-THH  exp(-GzHp d ) + THH %2 RHE REH + THH %1 REE

+ THH THE REH %2 RHH + THH THE REH %1 REE
- TEH THH RHE %2 RHH - TEH THH RHE %1 REE

2
+ TEH THE exp(-GzEp d ) - TEH THE ¥%2 RHH

/
-~ TEH THE %1 RHE REH ) / (Gz (1

/

2
2 RHE exp(-d (GzEp + GzHp )) REH - REE exp(-2 GzEp d )

2 2 2
RHH exp(-2 GzHp d ) + RHH exp(-2 d (GzEp + GzHp )) REE

2 2
RHE exp(-2 d (GzEp + GzHp )) REH

+

2 RHE exp(-2 d (GzEp + GzHp )) REH RHH REE ))

%1

I

exp(-d (GzHp + 2 GzEp ))

%2 := exp(-d (GzEp + 2 GzHp ))
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#THE _composite=C21(1,2)
pretty(C21(1,2))

GzHp

AR

%2

]

(THE TH

- THE

+ TEE

- THE

+ TEE

2 RHE

2
- RHH

2

i

RHE

2 RHE
exp(-d

exp(~-d

H exp(-GzHp d ) - THE THH %2 RHE REH

2 2 2
THH %1 REE - THE REH %2 RHH - THE REH %1 REE

THH RHE %2 RHH + TEE THH RHE %1 REE

2
TEE exp(-GzEp d ) + TEE THE %2 RHH

/
THE %1 RHE REH ) / (Gz (1
/

, 2
exp(-d (GzEp + GzHp )) REH - REE exp(-2 GzEp d )

2
exp(-2 GzHp d ) + RHH exp(-2 d (GzEp + GzHp )) REE

2
exp(-2 d (GzEp + GzHp )) REH

exp(-2 d -(GzEp + GzHp )) REH RHH REE ))
(GzHp + 2 GzEp ))

(GzEp + 2 GzHp ))
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#TEH_composite=C21(2,1)
pretty(C21(2,1))

GzEp (-THH TEH exp(-GzHp d ) + THH TEH %2 RHE REH

2
+ THH TEH %1 REE + THH TEE REH %2 RHH

2 2
+ THH TEE REH %1 REE - TEH RHE 2 RHH - TEH

2
+ TEH TEE exp(-GzEp d ) - TEH TEE %2 RHH

/
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Appendix G

Estimation of the uncertainty
in measuring the direct ray due
to the presence of the reflected
ray from the mounting plate

Figure G.1 depicts the phenomenon of the reflection off the mounting plate,
according to the principle of geometrical optics, i.e. each ray is assumed to
be a beam of infinitesimal width! . For simplicity, both the transmitter and
the receiver are taken to be dimensionless as if they were two points in free
space. Consequently, we can assume that only one specular reflected ray
comes to perturb the measurement of the direct ray. The power radiation
pattern for the receiving horn is approximated as a squared cosine function
with a single beam of about 60° width between the two -3 dB points, i.e.
Pyg(¥) =~ 9.05 — 20 logy, (cos(1.59°)) where 9° refers to the 1 value in
degrees, and 9.05 refers to the gain (in dB) measured at 9 = 0°.

The two limit cases are:

1. 0=0°= c=0%

2. 6 =90° = Htan(c) = % = ¢ = arctan (%)

IWhen the array is small, the diffraction of a plane wave around the edges of the array
causes the actual value of the reflection angle to be slightly off the specular value [83].
This effect was neglected here.
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From simple geometrical considerations, one obtains:

L = \/R2+ H® _ 2RH . (180° — (9 +c))

cos?(c) cos(c)
2 2RH
= \/R2 + cog(c) + cos(c) cos(6 + )

and: i
C_dsz—(c) = R?24+12—-2RL COS(9 — C)

After sustituting for L and carrying out some algebraic manipulations
valid for cos(c) # 0, one obtains the following polynomial in X = cos(f + ¢):

[(R2 cos®(c) + H? + 2RH cos(c) X) (sin2 (2¢) + cos(4c) X 2)
, — (R2 cos®(c) + H2X? + 2RH cos(c)X)]? (G.1)
— [R? cos?(c) + H? + 2RH cos(c) X]’sin?(c)(X2 — X*4) =0

Since the degree of this polynomial exceeds four, its solution cannot be
obtained in closed form. However, a numerical solution is possible whereby
X can be obtained for a given value of ¢ provided that the correct solution is
carefully selected from the multiple values at which the polynomial goes to
zero. This selection is made from the knowledge that the solution is mono-
tonic and from the knowledge of the two limit cases presented above. The
results for the case R = 3.35 m and H = 0.50 m are shown in Figures G.2 and
G.3. The solution can be readily approximated with a quadratic polynomial
6° = —0.0013(c°)? + 1.3251¢> where 6° and ¢° refer to the values of § and ¢
in degrees. A constraint of zero offset was applied to the regression process
in order to insure that = 0° when ¢ = 0°. This polynomial can be readily
inverted to obtain the knowledge of ¢ as a function of . One obtains:

2(—0.0013 (1.3251)2

g 3251 0.
o __13__) (1 _ \} 4 H0.0013) 90) = 509.6538 (1 — +/T — 0.0030 6°)

(G.2)

Figure G.4 shows the steps involved in estimating the relative difference in
magnitude and phase between the phasor corresponding to the reflected ray
and the phasor corresponding to the direct ray. Since the measurement result
corresponds to the vectorial addition of these two phasors, the measurement
error introduced by the presence. of the reflected ray could be estimated if
we had the knowledge of the magnitude and phase values of each phasor.
However, we only have the knowledge of the result of the vectorial addition
since, by definition, the radiation pattern of the transmitter which affects
both the direct and the reflected rays is unknown.
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" In the absence of the knowledge of the phase value of each phasor, the
result of the vectorial addition can range from a minimum value |E|mim =

.|ED| — |Egr| = |Ep|(1 — J-}ER—) to a maximum value |E|mqee = |Ep| + |Er| =

|Ep|
|Ep|(1 + J—Eﬁl) where |E| refers to the magnitude of the electric field for the
desired polarlzatlon at the receiving horn, and the subscripts D and R refer
to the direct and the reflected rays, respectively. Note that forming the ratio:

. Eg

|Blmas _ 1+ Ep
E i o _ ER

I |mn 1 Ep|.

results in an expression equivalent to that for the VSWR of the transmission
line theory.

Now, we have Jl_gfll = V\/ P(180° — ¢)/ P(6) where P is the radiated power
value (on a linear scale) that would be measured if there were no reflection,

and v is a fractional constant that takes into account all the additional losses
that the reflected ray incurs over the direct ray. These losses are:

e the loss due to the reflection coefficient of the mounting plate, i.e.
v1 = R(c);

e the excess propagation loss due to the excess propagation length, i.e.

R H B\’ 2H B
2= (cos(c) + L) (Rcos( ) + J L+ (Rcos(c)) + Rcos(c) cos(9 +¢) )

e the loss due to the fact that the reflected ray is incident at ¥ = (6 —
c) rather than 9 = 0 on the radiation pattern of the horn: w3 =
cos(1.5(6° — ¢°)).

thus, v = vivpv3. Hence, the knowledge of P(180° — ¢)/P(0) yields the
knowledge of | Eg|/|Ep| which represents the fractional error of the measure-
ment. Now, writing

|Erl _ ,,\J P(180° —¢)  vy/P(180° —¢)

2 P@) /PO
suggests that one thinks as |Ep| = 1/ P(#) and |Eg| = v+/P(180° — ¢).
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One approximate way to obtain the knowledge of the ratio P(180° —
)/ P(0) is to assume that P(0) and P(180° —c) are known from two separate
measurements, i.e. P(f) = P(6;) and P(180° — ¢) = P(6s), even though
each measurement value, P (0;) and P(6z), is corrupted by the presence of a
reflected ray. This leads to having:

1Bal\ _ \]P(lsoo—@N \JP(%)_(lepnz_(‘ED(”%)DQ
<|ED|> NTPE) T PE) €D, ~ ([Bpa+5R))),
(G.3)

1

However, since 65 exceeds 90°, the mounting plate would lie between the
transmitter and the receiving horn. This situation must be avoided by merely
re-mounting the transmitter onto the plate after giving the transmitter an
additional half-turn rotation about the single point representing the trans-
mitter. This single point is the origin of the reference coordinate system
with respect to which the radiation pattern of the transmitter is being mea-
sured. This point lies at the intersection of the rotation axis for the azimuth
positioner and the rotation axis for the roll positioner. From Figure G.5, it
becomes apparent that the reflection angle value for the second measurement
e is generally different from that for the first measurement c. The value for e
is obtained from Equation (G.2) with @ replaced by c¢. From the knowledge
of the values for ¢ and e, we compute the corresponding value for v and the
corresponding fractional error for the second measurement. Therefore, one
obtains:

|Brl\ _ , P(180° —¢)
(|ED|>1‘( 0 (G4)

Bl _ . [PE)
<|E0|>2‘”2 P(0) (©:5)

where P(c) for the second measurement corresponds to P(180° — ¢) for
the first measurement as a result of the half-turn rotation of the transmit-
ter for the second measurement. Now, the suggestion that one thinks as
|Ep| = 4/ P(0) and | Eg| = v/ P(180° — c) leads to the concept that (|Er|); =

(¥)14/ P(180° — ¢) = (¥)14/P(c) = (¥)1(| Ep|)2- Repeating the process for es-
timating (|Eg|)2 from a third measurement leads to (|Er|)2 = (¥)2(|Ep|)s.
If this process is carried out repeatedly, it leads to (|Er|)x = (¥)k(|Ep|)k+1-
With every successive iteration, the reflection angle value becomes smaller
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until it reaches zero in which case the direct and the reflected rays can no
longer be separated. The process would also stop if (v); became so small
that (|Eg|)r was truly small enough to be neglected. However, instead of

~ repeating the process many times without guarantee that the process would

terminate successfully, one can proceed as follows. Substitute the value of
P(c) in Equation (G.5) for the value of P(180° — ¢) in Equation (G.4) to
obtain:

|Er[\ _ P(e) (|Ep|
(o), = @1 Fo5 (@) (©5)
Then, substitute 1/ P(e) = (|Ep|)s and 1/ P(0) = (| Ep|): in Equation (G.6)

to obtain:
1Brl\ _ )y (), UEnDs (|Ep]
(|ED|)2—< hai2ls (|ER|>1 @)

and let us estimate the effect that the error on each measurement has
onto the desired quantity (l yors |) by making allowance for these errors as yet

unknown. From Equation (G.3), one obtains:

N
S
N——
[y
Q
TN
&
>
—
T

—

+
S5
’}/v

Assuming that we do not have the knowledge of the phase values for

Egr and Ep, the magnitude for (|1 + %')1 can range from 1 — ({g—ﬁ)l to

14+ (JIEI[) and similarly, the magnitude for (|1 -+ %ﬂ)z can range from

1— (Ilggll) to 1+ (llgRll) Therefore, the maximum error for (Jl%;—ll)l in Equa-

tion (G.S) is that Wthh maximizes the numerator while also minimizing the
denominator. Similarly, the minimum error for (llEﬂ;ll)l in Equation (G.8) is
that which minimizes the numerator while also maximizing the denominator.

For the case of the maximum error, one obtains:




(@) (B2 1+(.%B)l|>2

1 (Ep 4_(l|ER]
TFBT (G.9)

|ED|)2 +En ) (|ED|)2(|ED|)3 (|ED|>
(IEDI)l 2 (EpD? |Erl /1

1 (1Er
|Epl /1

where Equation (G.7) was used under the assumption that the reflected
and the directed rays could still be separated on the third measurement.
Collecting the terms leads to the following polynomial in the variable V =

(i31).

the solution of which is given by:

V=2 — (G.11)

where:

U = (+108(»)1(v)atu — 12V/3 tP + 36t — 8) e

P = 2T (»)jtu? + 18(v)1(v)atu + 462 — t — 4(v)1(v)au

Similarly, for the case of the minimum error, one obtains:

(o)~ g U
R I ()

G.12)
(1Bp)) (Ene(Epl)s [ |Bo] (
(Eel). =02 = (52 3(IEDI>1

+(fz)

Q

Q

[Epl /1

249




which leads to the following polynomial:

Ep|)2(|Epl)s
~ Y+ e (G18)
the solution of which is given by:
1 W2 —-2W +12t+4
== .14
Vv 5 T (G.14)

where: 3
W = (—108(v)1(v)atu + 12V/3 tQ — 36t — 8)

Q = /27(V)2(v)3tu? + 18(v)1 (v)atu — 482 — t + 4(v); (¥)gu

Although t = L%’B—z and u = (I_E_I)_ are still unknown, we can approx-

imate them as Elg” ;f and (Ignga, respectively, in a wa,y similar to what we

did in Equation (G.3). The advantage in computing (JI_ER_D from Equa-~
tions (G.11) and (G.14) rather than Equation (G.3) is two—fold

—~

1. Equations (G.11) and (G.14) with ¢ and u approximated as E{?’ {32 and

(Eoh’ respectively, yield an approximate knowledge of the upper and
ll iowel bounds for the fractional error, respectively;

(€pl)s

s . . . . — (EbD2 ~, Uepl)2 :
2. the level of approximation involved in taking ¢ = (Eahe ™ (eap: I

Equations (G.11) and (G.14) is smaller than that involved in computing

directly (TE—D %&u since V' depends on 8‘?’}3? or (|£D(P2(||‘)€1D|)3 in

the power 2/3 or less, whereas (E—g—ﬁ'l) (% depends on ﬂl%;—%z in
the power 3/3.

From now on, we will assume that Equations (G.11) and (G.14) have ¢

and v approximated as %llgg—:gf and %)Lf, respectively. Therefore, one can

estimate the fractional error on each measurement ({g—gll) . in terms of an up-

per and a lower bound given by Equations (G.11) and (G.14), respectively,
from the knowledge of three measurements (Ep)i, (Ep)r+1 and (Ep)p+2 cor-
responding, respectively, to angles 8, (180° —c¢) and e defined with respect to
the radiation pattern of the transmitter. This process could be generalized
to include more than three measurements but the corresponding polynomial
might become unwieldy and thus, this generalization will not be attempted
here.
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The true value corresponding to a measurement can thus range from a
minimum value |E| ., = |Ep| [1 — (JIE_DJ[) ] to a maximum value | E|pee =

|Ep| [1 + (Ilggll) ] However, this estimate is with respect to the true value

| Ep| rather than with respect to the measured value |Ep|. Since we do not
know the true value, we must assume the worst case situation whereby the
true and the measured values are separated by the maximum uncertainty
(Il—gﬁ%) . Therefore, the true value | Ep| lies in the range of |Ep| £ (J——)maw

maw |ED|
with (J|E_l> . given by Equation (G.11) where ¢ and u are approximated as

Eléﬂ Bi and 8?’ Bs, respectively. A more liberal estimation of the error could

use the geometrical mean of (Ilg_gll) . and (—[) instead of just the
min max

[ED|
maximum Value (J[%*ll) . The corresponding true value |Ep| would then
Erg| Ep|

given by Equations (G.14) and (G 11) respectively, where ¢ and u are again
approximated as 82—2}% and %?5%’ respectively.
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) 5\60‘ Receiving
c - horn

c
Virtual
Transmitter

Figure G.1: The phenomenon of reflection off the mounting plate, according
to the principle of geometrical optics. For simplicity, the transmitter and the
receiver are taken to be dimensionless so that we can assume that only one
specular reflected ray comes to perturb the measurement of the direct ray.
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cos(8+c)

Contours for polynomial values of 0.001, 0.01 and 0.1 when R=3.35m and H=0.50m

c (degrees)

Figure G.2: The contour levels from the polynomial evaluation in Equa-
tion (G.1) for values of 0.001, 0.01 and 0.1 for the case R = 3.35 m and
H = 0.50 m. The correct solution is the branch that satisfies the two limit
cases: @ = 0° for ¢ = 0° and @ = 90° for ¢ =~ 73.4°, corresponding to
cos(f + ¢) = +1 and cos(@ + ¢) = —0.96, respectively.

253




0 (degrees)

=Y
o
T

R=3.35m, H=0.50m

|
___ Computed
_ _ 1.2557¢

90_ ......................... SR R e T "

gob|. —. -0.0013c%+1.3251c |............ SO e SRR

20k e, U SRS ST A

B0 e ............. \ ............. ............. Teerenna, AT T

1]
o
T
R\

30k ............. // ....... ............. ............. .............
20F e ............ ............. ............ ............. .............

I I ST RO SR . SRR

0 10 20 30 40 50 60
¢ (degrees)

Figure G.3: The plot of § as a function of ¢ for the correct branch of Fig-
ure G.2. The plot shows also the results from a linear or a quadratic regres-

sion with a zero offset constraint.
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Excess propagation loss
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g
Reflected ray j)
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Figure G.4: The diagram showing the steps for estimating the effect of the

specular reflected ray onto the measurement of the direct ray for the case
R =3.35 m and H = 0.50 m.
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=
’j Directray 0-c
180-(0+c) 3

Figure G.5: Comparison between the setup geometry for measuring P(f,) =
P(#) and P(6;) = P(180° — ¢).
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