DOMESTIC LONG DISTANCE COMMUNICATIONS NETWORK STUDY Communications Systems Engineering

SYN: A COMPUTER PROGRAM FOR LONG-RANGE NETWORK PLANNING

by
G.A. Neufeld

Systems Modelling \& Analysis Group

IDOMESTIC LONG DISTANCE COMMUNICATIONS NETWORK STUDY Communications Systems Engineering
2 $I_{\text {SYN }}$: A COMPUTER PROGRAM FOR LONG-RANGE NETWORK PLANNING
CRC PROGRAM MANAGER: W.L. Hat ton PROJECT LEADER:

TABLE OF CONTENTS

PAGE

1. INTRODUCTION 1
2. INPUT FILES FOR PROGRAM SYN 3
3. OUTPUT FORM PROGRAM SYN 15
4. STRUCTURE OF PROGRAM SYN 17
4.1 SUBROUTINE FPTH 19
4.2. SUBROUTINE FIND 20
4.3 SUBROUTINE X2 21
5. 4 SUBROUTINE PTMT 22
4.5 SUBROUTINE STRTREE 23
4.6 SUbROUTINE TREE 24
4.7 SUBROUTINE SPRFIND 25
4.8 SUBROUTINE FINDER 26
4.9 SUBROUTINE X1 26
6. 10 SUBROUTINE RCST 27
4.11 SUBROUTINE XA 28
4.12 SUBROUTINE X3 29
REFERENCES 30
APPENDIX A 31

The purpose of this report is to describe a
computer program called $S Y N$ which is an implementation of an algorithm described in DLDCNS Report No. 14. SYN is a tool for routing end-tomend message and television traffic, through a network model with stepolike link costs, at minimum cost.

The purpose of this report is to describe a computer routine called $S Y N$. $S Y N$ is an implementation of the minimum cost routing algorithm described in DLDCNS Report No. 14 (see Neufeld [2]). Since the implementation parallels the description of the algorithm (see Neufeld [2]), the object of this report is more concerned with how the algorithm was implemented and how to use it. Before going on, a general remark on the implementation should be made. The reader may from time to time question the reason for having implemented certain parts of the algorithm as they are in SVN. The only comment is that it reflects the "state of the art" in software engineering (for example, see [1]). There is little theoretical basis for development of software whose requirements are being defined in parallel with its development。 $S Y N$ evolved over a period of time. During this time, new features and constraints were added, during the course of the longadistance communications study。. As a result, the program was continually being modified.

The basic problem, for which SYN is designed, is described in Section 3 of DLDCNS Report No. 14 (see Neufeld [2]). SYN provides the user with a rather general tool for network planning and its application is, to some degree, open to the imagination of the user. SYN is written in FORTRAN IV and is presently set up so as to be called as a subroutine by a control program (see DLDCNS Report 14)。

2. INPUT FILES FOR PROGRAM SYN

SYN was written in the form of a FORTRAN subroutine The input to $S Y N$ consists of four files as well as input parameters via the subroutine call statement.

The following is a description of all the input files to program SYN. All files are read in under G Format. Thus data elements can be specified in any format and separated by a blank character(s).

The file, that contains all the link cost functions along with some other information, is attached to Unit 4. Basically the file contains two records for each link, followed by two records containing an end of file mark, followed by a record containing some further information. Thus a schematic of the file with n links is as follows:

Let us describe the records (2I-1,2I) for a typical link I。 (It is assumed that each link cost function will have at most four "steps", although this could readily be increased by adding more records in file for each link followed by expanding the corresponding dimension statement in the program and changing the format statement.) Suppose link k is incident to nodes η_{η} and n_{2} with $n_{1}<n_{2}$ and its cost function is given in Figure 1. Clearly each step \mathfrak{i} is completely specified by the parameters $\left(w_{j}, x_{i}, y_{i}, z_{i}\right), i=1,2,3$, and (w_{4}, x_{4}) where

FIGURE 1
w_{i} is the P coordinate of the "bottom" of step i, x_{i} is the Q coordinate of the "bottom" of step i, y_{i} is the size of the "step" or discontinuity, z_{i} is the slope of the linear portion of step i, W_{4} is the P coordinate of the maximum capacity of link k, and x_{4} is the cost for w_{4} flow units in link k. The number of parameters n_{3} is dependent upon the number of steps, s, in the
cost function: $n_{3}=(s \times 4)+2$. (Note the function is actually over-specified this was done for purposes of convenience within the program SYN.) If a link cost function has 4 steps, then record $2 I-1$ and $2 I$ are as follows:

Record 2I-1: $n_{1} \quad n_{2} \quad n_{3} \quad w_{1} \quad x_{1} \quad y_{1} \quad z_{1} \quad w_{2} \quad x_{2} \quad y_{2} z_{2} \quad W_{3}$
Record 2I: $x_{3} y_{3} z_{3} w_{4} x_{4} e_{1} e_{2}$

Record $2 I-1$ contains the first 12 data elements and the remainder are on record 21 . The data element ep is equal to

- 1 if link k is a TCTS analogue link,
- 2 if link k is a CNCP link,
-3 if link k is a TCTS digital link 1 if link k is incident to the satellite node and is restricted to message traffic.

2 if link k is incident to the satellite node. N and is restricted to television transmit/receive traffic (omni television traffic and broadcast television traffic being transmitted to the satellite node).

3 if link k is incident to the satellite node and is restricted co television traffic being received from the satellite, and

0 otherwise。
k data element e_{2} is equal to n_{2}.
Record $n+1$ contains an endoofofile mark, namely "9999" and record $n+2$ is empty。

Before going on to describe the last record $(n+3)$ in the file, let us state some assumptions regarding the ordering of the links:
i) As already noted, $n_{1}<n_{2}$ for each link k.
ii) The (node) n for link k (in record $2 k-1$) is less than or equal to the n_{1} for link ℓ (in record 2 $2-1$) for all $k<\ell$ 。
iii) If (node) ny for link k (in record $2 k-1$) is equal to the n for link ℓ (in record $2 \ell-1$) for some $k<l$ then n_{2} for link k (in record $2 k-1$) is less than the n_{2} for link \& (in record 2l-1).

If N is the number of nodes in the network model, then the format of record $n+3$ is as follows:
$s_{1} s_{2} b_{1} b_{2} x_{\ldots} \ldots \ldots b_{N}$ where
s_{1} is the cost per voice circuit for flow routed through the satellite space segment, s_{2} is the number of voice circuits that are essentially equivalent to a television channel when routed through the satellite space segment, and b_{i} corresponds to node i in the network model and $b_{i}=0$ unless node i corresponds to a node within the satellite model, that is \mathbf{i} is either the "satellite" node itself or \mathbf{i} is incident to a link that is incident to the satellite node.

The data elements in this file correspond to the following variables in program SYNTHESIS.

For link I, corresponding to record $2 \mathrm{I}-1$ and 2I,

```
\(\begin{aligned} \operatorname{ISPEC}(I, 1) & =n_{1}, \\ \operatorname{ISPEC}(I, 2) & =n_{2},\end{aligned}\)
\(\operatorname{ISPEC}(1,3)=n_{3}\).
\(\left.\operatorname{SPEC}(I, i), \ldots \ldots \operatorname{SPCC}^{(I,} \mathrm{n}_{3}\right)\)
```

correspond to $w_{1}, x_{1}, \ldots \ldots . y_{t}, z_{t}, w_{t+1}, x_{t+1}$
where $t=\left(n_{3}-2\right) / 4$ 。 Furthermore
$\operatorname{EDGE}(I, 4)=e_{1}$ and DTNCI $=e_{2}$.

Corresponding to the very last record in the file, $\operatorname{STCT}=5$, $\operatorname{ITVVCEQ}=s_{2}$, and $\operatorname{NODTYP}(J)=b_{j}, J=1, \ldots, N$ where N is the number of nodes in the model.

The next file contains all the flow requirements and it is attached to unit 5 in the program. Basically the file contains one record for each message flow requirement, followed by a record containing an end of message flow requirements marker, followed by five records for each television flow requirement. Thus a schematic for a file with f_{1} message flow requirements and f_{2} television flow requirements is as follows:

For each message flow requirement i, the corresponding record i is as follows:

Record $i: n_{i} n_{i}^{\prime} t_{i} n_{i}^{\prime \prime}$
where n_{i} and n_{i}^{i} are the sourceasink nodes for the i th flow requirement. Data element t_{i} is number of voice circuits to be
routed between n_{i} and n_{j}^{\prime} 。 Data element $n_{i}^{\prime \prime}$ is $-1,-2$ or -3 according to whether the traffic．requirement must be routed on TCTS analogue，CNCP，or TCTS digital links where it is routed terrestrially。 Record $f_{1}+1$ contains＂9999＂for purpose of indicating the previous record（ f_{f} ）as the last message flow requirement．The nodes in the network are assumed to be labelled such that if there are s nodes in the network that are either a source（or sink）for message flow，then $1 \leq n_{i}, n_{i}^{\prime} \subseteq s$ for all message flow requirements i 。

The data pertaining to each television flow requirement k is kept in groups of five records $a_{2} b, c, d, e$ ．Consider first the case for a halfaduplex television flow requirement k ．Record ＂a＂contains four data elements k_{1}, k_{2}, k_{3} ，and k_{4} as follows： Record＂a＂： $k_{1} k_{2} \quad k_{3} \quad k_{4}$ 。

Data element k_{1} equals the number of halfoduplex channels in the $k^{\text {th }}$ television flow requirement．Data element k_{2} equals 2 to indicate it as being halfuduplex television。 Data element k_{3} represents the source node from which distribution takes place． Since every point receiving a halfoduplex channel is also a distribution point．k_{3} is set equal to 0 。 Data element k_{4} is -1 ， －2，or－ 3 according to whether the traffic requirement must be routed on TCTS analogue，CNCP，or TCTS digital links where it is routed terrestrially，Records b, c, d and e are described making direct reference to Neufeld［2］using the same variables．

Records "b" and "c" are as follows:

$$
\begin{aligned}
& \text { Record "b": } n 1_{k} n_{2 k}^{1} \ldots 9999 n_{1 k}^{2} \ldots 9999 n_{1 k}^{2} \ldots 99999999 \\
& \text { Record "c": } m_{1 k}^{1} m_{2 k}^{1} \ldots 9999 m_{1 k}^{2} \ldots 999 m_{1 k}^{p} \ldots 999
\end{aligned}
$$

where

$$
\begin{aligned}
& \left\{n_{1 k}^{\dot{j}} n_{2 k}^{\dot{i}}, \ldots\right\}=V_{A_{i}^{k}}^{k} n V_{k} \text { and } \\
& \left\{m_{i k}^{\dot{j}}, m_{2 k}^{\dot{j}}, \ldots\right\}=V_{A_{i}}^{k} n \quad V_{0}
\end{aligned}
$$

Records "d" and "e" are as follows:
Record "d": $n_{1 k}^{1} n_{2 k}^{1} \ldots 9999 n_{1 k}^{2} \ldots 99.99$

$$
n_{i k}^{Q_{k}^{\prime}} n_{1 k}^{1} \ldots 999999999
$$

Record "e": $u_{1 k}^{1} \ldots 9998 u_{1 k}^{1} \ldots 9999 \ldots$

$$
9999 \text { u }_{k}^{1} \ldots 9998 u_{1 k}^{Q_{k}^{\prime}} \ldots 9999
$$

where

$$
\begin{aligned}
& \left\{n_{1 k}^{i}, n_{1 k}^{i}, \ldots 0\right\}=\left\{V_{C}^{k} n V\right\} \propto\{N\} 。 \\
& \left\{u_{i k}^{i}, u_{2 k}^{i}, \ldots,\right\}=V \cap V_{B}^{k} .
\end{aligned}
$$

Some of the sets of nodes $\left\{m_{i k}^{i}, m_{2 k}^{i}, \ldots\right\},\left\{u_{1 k}^{i}, u_{2 k}^{i}, \ldots\right\}$, and $\left\{u_{1 k}^{-1}, u_{2 k}^{\infty} \boldsymbol{i}, \ldots\right\}$ may be empty and this is designated with a
space character（）。 If for some i, Steiner tree． $S_{C} k_{i}\left(V_{k} \cap V_{C}{ }_{j}\right)$ is knowm to correspond to some Steiner tree $S_{A}^{k}\left(V_{k} \cap V_{A}^{k}\right)$ then $\left\{u_{j k}^{i}, u_{2 k}^{i} \ldots \ldots\right\}$ may be replaced in the file record by $\{0$ j\}。 The result is an increase in efficiency in the program because the Steiner tree $S_{C}{ }_{i}^{k}\left(V_{k} \cap V_{C}{ }_{i}^{k}\right)$ is not determined for a second time。

The specification for a simplex television flow requirement k_{1} and k_{4} are as for halfoduplex television with a few exceptions．First，k_{2} is equal to 3 。 Data element k_{3} is the node from which the simplex television is distributed． Furthermore，the record＂a＂contains some additional data pertaining to the source or node from which the television channel is to be distributed．Thus record＂a＂is as follows：

$$
k_{1} k_{2} k_{3} k_{4} l_{1} \ldots \ell_{1} 9999
$$

Where k_{1} is as before，$k_{2}=3 ; k_{3}$ is the source node，k_{4} equals -1 ， $-2,-3$ as described above，and $\ell_{1} \ldots \ldots l_{L}$ are the nodes that the user wishes to be considered as points from which to transmit the television channel to the satellite if it is used．It is assumed that all the nodes $\ell_{1}, 000 l_{L}$ are in $V_{B_{1}}{ }^{k}$ ．

The data elements in this file containing the flow requirements correspond to the following variables in program SYN．For message flow requirement I ，corresponding to the $f^{\text {ch }}$ record in the file， $\operatorname{IRM}(1,1)=n_{1}, \operatorname{IRM}(1,2)=n_{I}^{1}$ and $\operatorname{RM}(1,1)$ $=t_{I}$ For halfoduplex television flow requirement K ，
corresponding to the $k^{\text {th }}$ group of five records that follow the data pertaining to message flow requirements. $\operatorname{TVREQ}(k)=k_{1}$ g $\operatorname{TYPE}(k)=k_{2}, \operatorname{TVREQT}(k)=k_{3}$, and $\operatorname{TVCR}(k)=k_{4}$ in record "a"; SBGRPA(I), $I=1, \ldots$ corresponds to $n_{1 k}^{1}, n_{2 k}^{1}, \ldots 99999999$ in record "b"; $\operatorname{SBGRPB}(I), I=1, \ldots$ correspond to $m_{1 k}^{1}, m_{2 k}^{1}, \ldots 9999$ in record "c"; SBGRPC(I), $I=1, \ldots$ correspond to $r_{1 k}^{1}, r_{2 k}^{1}, \ldots 9999$ 9999 in record "d"; SBGRPD (I) $I=1 \ldots$ correspond to $u_{1 k}^{1}, u_{2 k}^{2}, \ldots$ 9999 in record "e". For the case of a simplex television flow requirement k then $\operatorname{TVREQ}(K), \operatorname{TYPE}(K), \operatorname{TVREQ1}(K), \operatorname{SEND}(k, 1), \ldots$ $\operatorname{SEND}(K, L)$, $\operatorname{SEND}(K, L+1)$ correspond to $k_{1}, k_{2}, k_{3}, \ell_{1}, \ldots, \ell_{L}, 9999$ in record "a"。

There is input to program $S Y N$ that consists of various parameters which may be changed from run to run. They are passed to SYN via the subroutine call statement. There are five parameters, NET, SAT, ALP, BET, and ALP1. NET is really of no significance and is always set equal to -3 . SAT equal 0 or 1 according to whether the satellite system cannot or can be used for routing traffic. ALP and BET corresponds to the alpha (α) and beta (β) parameters discussed in DLDCNS Report No: 14 [2]. ALP1 corresponds to an "alpha" value that applies only to the links corresponding to the satellite system.

The next input file is attached to unit 12. The file specifies an initial load or flow for each of the NE link in the model as well as the satellite. There is a onemo-one correspondence between the first $N E$ records in this file and the records in the file read in on unit 4 (see above). A schematic of the file is as follows:

RECORD 1 Data for link 1

RECORD NE Data for link NE
RECORD NE＋1 Data for satellite

Each record i has the following format：
29 alphanumeric characters $\quad \ell \mathrm{d}_{\mathfrak{i}}$ 。
The first twenty－nine characters may be blank or contain some identifier．They are followed by the amount of flow ℓd_{j} to be premoaded on link i ，or the satellite when $i=N E+1$ ，before $S Y N$ begins to route traffic．When all the links and the satellite are being preloaded with zero traffic，then a file containing only the first record，with $\ell d_{i}=10^{6}$ ，is sufficient。

The file read in from unit 13 specifies constraints in routing traffic through the network so as to achieve a more reliable network．Each constraint i specifies a set of links $I=$ $\left.\{\ell\}_{i}, \ell_{i}^{2}, \ldots\right\}$ of which a given number q_{i} must be loaded to some percent p_{i} of their capacity before any one of the links in I may be loaded to more than p_{i} percent of their capacity．Each record of the file specifies one constraint and the last record in the file contains a＂9999＂endoofofile marker．The format of each record i specifying the $i^{\text {th }}$ constraint is
where $n_{1}^{i l}, n_{2}^{i l}$ ，and $e_{1}^{i l}$ correspond to n_{1} ，n_{2} s，and e_{j} for link划 in the file read in from unit 4 （see above）。

In addition to summaxy output to the printer (teletype), there are two output files from SYN. One output file pertains to the total flow on each link in the model, and the other pertains to information about the traffic routed through the satellite.

The total network cost and the amount of traffic routed through the satellite is output on unit 6 . The load on each link in the network is output on a file attached to unit 9. There is a one-tome correspondence between the records in this file and those in the file read in from unit 4.

Information pertaining to traffic routed through the satellite is output on unit 7. Every time SYN routes message traffic through the satellite, it is identified as to its sourceasink nodes. its type (TCTS analogue, TCTS digital, CN/CP), and the ground stations through which it was routed. Each time, three new records are added to the file attached to unit 7 . The format of these three records is as follows:

```
RECORD 1: a al a
RECORD 2: b
RECORD 3: }\mp@subsup{\textrm{c}}{1}{
```

Where a_{1} is the amount of message traffic routed through the satelifite, a_{3}, a_{4} are the sourcemsink nodes of the message
traffic, α_{2} is the type of message traffic (TCTS analogue -1, CN/ $/$ CP -2 , TCTS Digital -3), and b_{ρ} e c_{1} are the nodes in the terrestrial network at which the traffic is routed through the ground stations. On the other hand, for each television channel of a television traffic requirement routed through the satellite, only one new record is added to the file attached to unit 7:
where a_{1} is the number of channels of the b_{j} th television traffic requirement routed, c_{1} is the type of television channel (simplex 3, halfoduplex 2), and $d_{1}, d_{2}, \ldots \ldots$ are the nodes in the terrestrial network at which the television channel has been routed through a ground station.

4. STRUCTURE OF PROGRAM SYN

SYN is a subroutine and is itself made up of several subroutines. The purpose of this section is to provide the necessary information to understand the structure of $S Y N$ and the function of its various components.

Program SYN consisis of a main subroutine along with twelve subroutines. Figure 2 shows how all the routines interrelate A link between a pair of routines indicates one routine involking the use of another by means of a subroutine call statement. The links are directed to show the hierarchy; control is always passed from one routine to another in the direction indicated on each link. For example, the main subroutine SYN involkes the use of subroutine FPTH (not vicewversa). Control is always given back to the calling routine. The number of call statements by which each routine calls another is given by the number adjacent to each link in Figure 2。 The areas shown in Figure 2 (indicated by broken lines) give a correspondence between the function of different groups of routines to the algorithm described in Section $4.0 f$ DLDCNS Report \#14 (see Neufeld [2]). In the remainder of this section we describe the input, function, and output of each subroutine。

Input：
NE－is the number of links in the graph；
NREQNDS ．is the number of nodes in the graph that are either a source or a sink for some flow requirement；
N－is the number of nodes in the graph．
$\operatorname{EDGE}(M, 1), M=1, \ldots, N E$－is equal to the weight y_{m} assigned to link M ${ }^{\circ}$（see Neufeld［2］）．

NREQ－is the number of flow requirements corresponding to message traffic．

NODTYP（I），$I=1, \ldots, N$ as defined above（MAIN PROGRAM ． input）．

SAT－as defined above（MAIN PROGRAM－input）．
NET－as defined above（MAIN PROGRAM－input）．
$\operatorname{EDGE}(J, 4), J=1, \ldots, N E$ was defined above above（MAIN PROGRAM －input）．
$\operatorname{IRM}(J, 1), \operatorname{IRM}(J, 2), \operatorname{IRM}(J, 3), J=1, \ldots, N R E Q \quad$ as defined above（MAIN PROGRAM－input）．
$\operatorname{RM}(J, 1), J=1,0,0$ NREQ as defined above（see MAIN PROGRAM ．－input）except that $\operatorname{RM}(J, l)$ is the amount of flow requirement J that remains to be permanently routed（see Neufeld［2］－corresponds to f_{j} in DLDCNS Report \＃14）。

TRBL．- is equal to 1 。

Function：

i）To find the shortest path in the graph between all pairs of nodes $\operatorname{IRM}(J, 1)$ and $\operatorname{IRM}(J, 2)$ for all $\mathrm{J}=1, \ldots$ NREQ。
ii）To record the length of each shortest path．
iii）To determine the total flow on each link in the graph when the flow requirements J，each with $\operatorname{RM}(J, 1)$ units of unrouted flow，$j=1, \ldots, N R E Q$ are routed along the shortest paths determined in i ．
output：
IPTHLG（J），$J=1, \ldots, N R E Q$ ．is the number of links in the shortest path between nodes $\operatorname{IRM}(\mathrm{J}, 1)$ and $\operatorname{IRM}(\mathrm{J}, 2)$ 。
$\operatorname{IEDGPTH}(J, K), K=1, \ldots$ IPTHLG（J）are the links in the shortest path between nodes $\operatorname{IRM}(J, 1)$ and $\operatorname{IRM}(J, 2)$ ． The links are stored in consecutive with IEDGTH $(J, 1)$ being the link incident to node $\operatorname{IRM}(J, 2)$ and IEDGPTH（J，IPTHLG（J））being the link incident to node $\operatorname{IRM}(J, l)$ 。
$\operatorname{RM}\left(J_{9} 2\right), J=1, \ldots N R E Q, \quad$ is equal to 0 if $\operatorname{RM}\left(J_{s} 1\right)=0$ and is equal to 1 if $R M(J, 1)>0$ ．
$\operatorname{EDGE}(M, 2), M=1, \ldots, N E$ is the total flow on link M when the message flow requirements J ，each with $R M(J, l)$ units of unrouted flow，$J=1, \ldots$ NREQ are routed along the shortest paths．

TRBL－is equal 0 if all the required shortest paths exist and is equal to 1 otherwise．

4．2 SUBROUTINE FIND
Input：
$N 1, N 2$－are two nodes in the graph with $N 1<N 2$ ．
NODVTR $\left(N Y_{0} 1\right)$－is the first row in the array ISPEC such that［SPEC（NODVTR）N1，1），1）＝N1。

NODVTR（N1，2）is the number of rows in the array ISPEC with $\operatorname{ISPEC}(\operatorname{NODVTR}(N 1,1), 1)=N 1$ 。
$\operatorname{EDGE}(J, 4), \mathrm{J}=\operatorname{NODVTR}(N 1,1), \operatorname{NODVTR}(N 1,1)+\operatorname{NODVTR}(N 1,2)$ as defined above．

TYP－．is equal to ${ }^{1,}$ 2，or 3 ，depending upon the calling routine．TYP is related to the type of traffic， namely 1 for message traffic， 2 for omni television，and 3 for broadcast television．

Function：
To determine the existence of a link＇that is incident to nodes $N 1$ and $N 2$ and that may be used for the type of traffic specified in the variable TYP。

Output：
FOUND－is equal to 1 if the required link exists in the graph and is equal to 0 otherwise：

IPOSI－is equal to the row of the array ISPEC that corresponds to the required link，if it exists．

Input：
NE－as defined above．
NOTVREQ－is equal to the number of flow requirements corresponding to television traffic．

TVREQ（I）$I=1, \ldots \ldots \operatorname{NOTVREQ}$－is equal to the numper of channels remaining to be routed for the 1 th flow requirement corresponding to television traffic．
 I corresponding to television traffic．TYP（I）＝ 2 if the flow requirement corresponds to omni television and $=3$ for broadcast television．

NODTYP（I），$I=1$ o．o．N（defined）。
ITVVCEQ ．is the number of voice circuits per television channel in any of the links associated with the satellite system model（see Neufeld［2］）．

ITVTCTS $=$ is the number of voice circuits per television channel in any of the links I associated with the TCTS system（i。e。EDGE（I，4）－－1）。

ITVCNCP－is the number of voice circuits per television channel in any of the links I associated with the CNCP system（ioe．EDGE（I，4）＝－2）。
$\operatorname{TVCR}(I), I=1$ ．is the type of terrestrial link that may be used where the $I^{\text {th }}$ television requirement is routed terrestrially．

Function：
i．To determine the minimum cost tree through which to distribute each flow requirement $I, I=1, \ldots, N O T V R E Q$ ．
if．To determine the total flow on each link in the graph when the flow requirements I ，each with TVREQ（I） channels of unrouted flow，$[=1, \ldots, N O T V R E Q$ ，are routed through the minimum cost trees determined in i 。
output：
TRBL i is equal to 1 if not all the required minimum cost trees exist and is equal to 0 otherwise．

TMPEDG（J），J＝1，．．．，NE－is the total flow on link J when the televisio traffic flow requirements K ，each with TVREQ（K）channels of unrouted flow，$K=1, \ldots$, NOTVREQ， are routed through the minimum cost trees．

TVRQPTR（I），$I=1, \ldots, \ldots$ NOTVREQ－equals 1 if TVREQ（I）＞0 and equals 0 otherwise．
4.4 SUBROUTINE PTMT

Input：
$\operatorname{SBGROA}(K, J)$ ， $\operatorname{SBGRPB}(K, J)$ ， $\operatorname{SBGRPC}(K, J)$ ，and
$\operatorname{SBGRPD}(K, J), J=1, \ldots, K=1, \ldots, N O T V R E Q . \quad$ These arrays contain all the information pertaining to nodes in the various subgraphs A, B_{j}^{k}, C_{i}^{k} discussed earlier in this report under input to Main Program－SYNTHESIS。

II－corresponds to the Ilth television traffic flow requirement being considered， 1 c Il c NOTVREQ．

SEND（I1，J），J＝1，ooo－as defined above（MAIN PROGRAM－input）。

Function：
To determine the minimum cost Steiner tree through which to distribute the Ilth television flow requirement．
output：
GRP4－is a constant that is c 1.0 E30 unless there does not exist a tree through which to route the Ilth television flow requirement。
$\operatorname{STREDG}(I 1, I), I=1,00, N E$ is equal to 1 if link I is part of the minimum cost Steiner tree for the Ilth television flow requirement and is equal to 0 otherwise。

SNDND - equals 0 unless the flow required corresponds to broadcast television in which case SNDND equals one of the nodes stored in the llth row of the array SEND (input to Main Program).
4.5 SUBROUTINE STRTREE

Input:
IGRPI(1) equals the number of nodes that must be in the Steiner tree.

IGRPI(2) s equals the number of nodes that ma be in the minimum cost Steiner tree that interconnects the nodes IGRPI (I), I-3,..., IGRP1 (1) +2 。

IGRPI(I), I=3,...gIGRRPI(1)+2-are all the terrestrial nodes, arranged in increasing order, that must be in the Steiner tree that is to be determined.

IGRP2(I),I=1,... IGRPT(2) - are the nodes that may be in the minimum cost Steiner tree.

BUFF - equals 1 if node N is to be in the Steiner tree that is to be determined in subroutine STRTREE and is equal to otherwise.

SNDND a defined above.
I1 © input from subroutine PTMT.
TYPE(II) - as defined above (MAIN PROGRAM-input).
$\operatorname{NODVTR}(I, J), I=1, \ldots, N, J=1,2$ as defined above (Subroutine FIND-input).
$\operatorname{NODTYP}(I), I=1, \ldots \circ N$ as defined above (MAIN PROGRAM-input)。
$\operatorname{EDGE}(1,4), I=1, \ldots, N E$ - as defined above (MAIN PROGRAM-input).

Function:
To determine the minimum cost Steiner tree in the network model that interconnects the nodes stored in IGRPI (I), I $=3, \ldots \operatorname{IGRPI}(1)+2$, as well as the node N if BUFF equal 1 , and that uses any of the nodes stored in IGR2 (I) $I=1, \ldots, I G R P I(2)$, as intermediate nodes if there is a resulting reduction in cost.

Output:
$\operatorname{STREDG}(I l, I), I=1, \ldots, N E$ - equals 1 if link I is in the minimum cost Steiner tree and is equal o otherwise。

GRP4 - equals the cost of the minimum cost Steiner tree.

4.6 SUBROUTINE TREE

Input:
IPOS2 - equals the number of links in the subgraph for which a minimum cost (weight) spanning tree is to be found.

TABLE (1,1) and TABLE $(1,2), I=1, \ldots, I P O S 2$, are the nodes to which the I^{t} link in the subgraph is incident (Note: "Ith link" here does not refer in any way to the ith link in the network model (i.e. stored in the Ith row of the arrays ISPEC and SPEC.

TABLE (I, 3) is the weight assigned to the Ith link in the subgraph for which a minimum cost spanning tree is to be found.

Function:
To determine the minimum cost spanning tree in the subgraph defined by the IPOS2 links stored in the array TABLE。

Output:
COST w is the cost of the minimum cost (weight) spanning tree.
$\operatorname{TBL}(1,3), X=1, \ldots, I P O S 2 \infty$ equals 1 if the link between nodes TABLE $(1,1)$ and $\operatorname{TABLE}(1,2)$ is in the minimum spanning tree, and is equal to 0 or 2 otherwise. Note that the "link" between nodes TABLE (I, 1) and TABLE (1,2) may not actually be in the model but represent two links in the model that are in series.

Input:

N1,N2 - two nodes in the network model with N1<N2.
IPOS2 - is a pointer to the last (row) entry made in the array TABLE.

NODVTR $(N 1, I), I=1,2$ as defined above (subroutine FIND-input).
$\operatorname{DTN}(I), I=\operatorname{NODVR}(N 1,1), \ldots \operatorname{NODVTR}(N 1,1)-1+\operatorname{NODVTR}(N 1,2)-$ as defined above (MAIN PROGRAMminput).

NET - as defined above (MAIN PROGRAM-input).
$\operatorname{EDGE}(I X, 7), \operatorname{EDGE}(I X, 4), I X=\operatorname{NODVTR}(N 1,1), \operatorname{NODVTR}(N 1,1)=1+$ NODVTR $(N 1,2)$ - as defined above (MAIN PROGRAM-input).

ITVCNCP, ITVTCTS - as defined above (Subroutine $\times 2$-input. Object:

To find the minimum cost link I, if it exists, that is incident to Node N1 and such that $\operatorname{DTN}(I)=N 2$.
output:
FOUND $=$ equal 1 if such a link exists in the network model and equals 0 otherwise.

IPOSI - equals I where link I is the minimum cost link that is incident to N1 and for which $\operatorname{DTN}(\mathrm{I})=\mathrm{N} 2$. No value is assigned to IPOSI when $F O U N D=0$.

TABLE (IPOS2+1,4) - is not specified when FOUND=0. TABLE (IPOS $2+1,4$) is an indicator or pointer to enable identification of the link just found. TABLE(IPOS $2+1,4$) is the i th link, in a sequential search beginning at the first row in arrays ISPEC and DTN, for which $\operatorname{ISPEC}(i, 1)=N T ; \operatorname{DTN}(i)=N 2$, and that corresponds to the link just found, namely has the minimum cost of all such links.

ZMIN - is the cost of the link identified $b N 1, N 2$, and TABLE (IPOS2+1.4).

METCOST - is always equal to 0 (May have some future purpose).

4.8 SUBROUTINE FINDER

Input:

```
    N1,N2 m are terrestrial nodes in the network model
                with NT<N2.
I - is an integer, l c I:c NE.
NODVTR(NI,I),I=1,2, as defined above (Subroutine
    FiND-input).
EDGE(IX,I),EDGE(IX,4),DTN(IX),IX=
    NODVTR(N1,1),NODVTR(NT,1)m1 + NODVTR(N1,2) - as
    defined above.
TABLE(I,4) . as defined above.
```

Function:
To identify the link I in the model that is incident to node NI, for which DTN(i)=N2, and such that it is the ith such link, in a sequential search beginning at the first row of arrays ISPEC and DTN, where $\dot{j}=\operatorname{TABLE}(\mathbb{I}, 4)$. Furthermore, subroutine FINDER identifies the link between nodes N2 and DTN(I) when N2 \neq DTN(I).

Output:
STREDG(II; I) - is set equal to 1 for those values of I that corresponds to the link(s) identified in subroutine FINDER.
4.9 SUBROUTINE X1

Input:
NOTVREQ \because defined above。
 TVRQPTR(I) has been set equal to 0 during a previous call to subroutine $X 1$ after subroutine $X 2$ was last called.
$\operatorname{STREDG}(I, J),[=1, \ldots, N O T V R E Q, J=1, \ldots, N E$ - defined above。
 NODTYP(I), $I=1, \ldots, N=$ defined above.
$\operatorname{EDGE}(I, 1), I=1, \ldots, N E$ is as defined above except that it equals 1.0×10^{29} if for link I it was found that the expected cost of the temporary flow was not within a specified range of the actual cost (see [2]).

ITVCNCP - equals the number of voice circuits that are equivalent to one television channel (radio channel) on the CNCP terrestrial systems.

ITVTCTS -- as for ITVCNCP except that it applies to TCTS terrestrial systems.

Function:
To determine those television flow requirements I, 1 c I c NOTVREQ and for which $\operatorname{TVRQPTR}(I)=1$, that have been temporarily routed through a link J for which EDGE $(J, 1)=$ 1.0×10^{29}, that is through a link for which the expected cost is not within a specified range of the actual cost.
output:
TMPEDG(I), $I=1, \ldots$. $N E$ is as defined above (Subroutine X2-output) except that TMPEDG(I) is updated to reflect the removal of those television flow requirements that were previously temporarily. routed by subroutine $\times 2$.

TVRQPTR(I), $I=1, \ldots$, NOTVREQ - is the same as input except TVRQPTR(I) is set equal to 0 if television flow requirement J was found to be routed through a link K with $\operatorname{EDGE}(K)=1.0 \times 10^{29}$.

4.10 SUBROUTINE RCST

Input:
$I \quad-\quad$ an integer such that $1 \subset I \subset N E$.
$\operatorname{EDGE}(I, 2)$ is the current total amount of flow temporarily routed through link I.

ISPEC（I，3）－defined above（MAIN PROGRAM－input）．
EGFL（I，1）－is the current total amount of flow permanently routed through link I．
$\operatorname{SPEC}(I, J), J=1, \ldots \operatorname{ISPEC}(I, 3) * 4+2$－as defined above（MAIN PROGRAM－input）．

STREDGA（I）a is the real or actual cost of routing the EDGE（I，2）units of temporary traffic through link I（taking into account that EGFL $(1,1)$ units have already been permanently routed through link I。

Function：
To determine to ratio of the expected cost，of routing EDGE（I，2）units（voice circuits）of flow through link I， to the real cost．

Output：
BUFF.\quad is the described ratio．

4．11 SUBROUTINE X4

Input：
NOTVREQ－as defined above（Subroutine X2－input）．
TVREQ（I），$I=1,000$ NOTVREQ－as defined above（Subroutine X2－input）。

TVRQPTR（I），$I=1, \ldots$ NOTVREQ－as defined above（Subroutine Xloinput and output）。

SLNNET－as defined above（MAIN PROGRAM－input）。
$\operatorname{ISPEC}(J, 1), \operatorname{ISPEC}(J, 2), J=1, \ldots, N E-$ as defined above（MAIN
PROGRAM－input）．
$\operatorname{EDGE}(I, 3), I=1, \ldots, N E \sim$ is the maximum amount of flow to be routed through link l during the current iteration （see definition of variable U_{I} in［2］）．

SATPRFK－is the current total amount of flow（in voice circuits）through the satellite node N ．

TVSTTFK－is the current total amount of television flow （in voice circuits）through the satellite node N．

ITVVCEQ－as defined above（MAIN PROGRAM－input）．
IREQCTR－is the current total number of of flow requirements that have been completely routed ＂permanently＂that is routed as in the final solution．

Function：
To route as much as possible of each television flow requirement I， 1 c I c NOTVREQ，for which $\operatorname{TVRQPTR}(I)=1$ 。 The total amount of flow through any link $J, 1 \subset J, c N E_{\text {，}}$ must be less than or equal to $\operatorname{EDGE}(J, 3)$ ．

Output：
SATTRFK $=$ possibly updated．
TVSTTFK－possibly update．
IREQPTR \therefore possibly updated．
$\operatorname{EDGE}(I, 3), I=1, \ldots A_{0}, \ldots$ may possibly be updated to reflect the television flow that may have been routed through link I during the current iteration。

4．12 SUBROUTINE X3

Input：
】 is an integer， 1 с I с NOTVREQ。
Function：
To route as much as possible of the so far unrouted television flow requirement I ．The flow is of course established in those links J ，for which $\operatorname{STREDG}(I, J)=1$ ，and the amount may be limited by $\operatorname{EDGE}(J, 3)$ ．

Output：
FLG ．－is the number of channels of television flow requirement I that have just been routed and become part of the overall．solution．

TMPEDG（I），$X=1, \ldots$ ，NE - is the total amount of flow（in voice circuits）that was routed through link I．

REFERENCES

1. Dijkstra, E.W., Structured Programming, Academic Press. 1972.
2. Neufeld, GoA. "An Applied Graph Theoretic Approach to Network Synthesis For Longmistance Communications," DLDCNS Report No. 14, April 1974.

APPENDIX A

The following is a source program iisting of SYN. The comment statements in the source listing become most useful when taken together with the comments in the last section of the above report.

> SUBROUTINE SYN(NET, SAT
> ALP,BET,ALPI
$\stackrel{C}{C}$
*

* Program SYN routes flow requirements through a network (graph) at
* minimal cost. This program is an implementation of the algorithm * described in CRC serial document \#14. It will be assumed that the
* reader is familiar with this document. Most of the variables and * arrays in the following Common Block are briefly described when * they are first used.

COMMON ISPEC(144,3), $\operatorname{SPEC}(144,20), \operatorname{EGFL}(144,6), \operatorname{IEGFL}(144,3)$, $\operatorname{IIRM}(285,3), \operatorname{RM}(285,4), \operatorname{EDGE}(144,4), \operatorname{VRTX}(39,2), \operatorname{IEDGPTH}(285,34)$, 2 IPTHLG (285), NE, NREQ,N,NREQNDS, RMLPTR (144), STORAGE (144,2), DTN (144) 4, TVRQPTR (10), FLG,IGRP1 (25), IGRP2 (15), IGRP3(15), GRP4, TYP, $5 \operatorname{TABLE}(85,4), \operatorname{TBL}(85,3), \operatorname{NODVTR}(41,2), 1 \operatorname{POS} 1, I P 0 S 2, I 1, F O U N D, C T R 1$, 6CTR2, CTR3,N1,N2,STCT,COST, I2,NODTYP (39), TYPE(12), TVREQ(12), 7TMPEDG (144), STREDG (10,144),FLWW,REQCTR,IPTR(10), X44, XCES (10) 8, ISTACK $(60,2)$, $\operatorname{SEND}(12,7)$, ISTKPTR, TVREQI (12), STKVTR $(80), K$, ITVVCEQ 9, METCOST, IRELVTR (12), $\operatorname{SBGRPA}(12,20), \operatorname{SBGRPB}(12,20), \operatorname{SBGRPC}(12,20)$, $9 \operatorname{SBGRPD}(12,20), \operatorname{CoSTA}(10), \operatorname{COSTB}(10), \operatorname{STREDGA}(144), \operatorname{STREDGB}(144), \operatorname{BUFF}$ 9, SNDND, TVSTTFK, I, ZZMIN, IPROTCT (23, 30) 。IPROPTR (23)
9, ITRFKTP (5), TRTP, TVCR(12)
WRITE $(6,101)$ NET, SAT,ALP, BET,ALP 1
101 FORMAT (5G.5,3A4)
$A F L A G=1$
$B F L A G=1$
CFLAG $=1$
ITVTCTS $=1500$
ITVCNCP $=2100$
ITVDIG $=1344$
OUTPUT $=0$
I SUPER=1

C
C

READ IN THE FILE SPECIFYING THE CROSS SECTIONS AND THE PROTECTION TO BE APPLIED ACROSS THEM.
DO $13020 \mathrm{~J}=1,9999$
CII
C
INPUT:UNIT 13.
CIII $\operatorname{READ}(13,8)$ (IPROTCT$(J, I), I=1,30)$
IF (IPROTCT $(J, 1), E Q .9999)$ © T0 13025

```
13020 CONTINUE
13025 NCS=Jm1
5000 ZMNCT=1.0E50
STORAGE (1, 1)=9999
RCDR=0
TVSTTFK=0
C00000000000000000000000000000000000000000000000000000000000000000
C
C000000000000000000000000000000000000000000000000000000000000000000
    ZMNCT=1.0E50
    ITRNCTR=0
    MAXITRN=1
C
C
C
C INPUT COST FCNS AND COMPUTE INITIAL MATRIX A
C
        50 REWIND 4,5
            DO 10 M=1,1000
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
C
CIIIIIIIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
* Read in tne link cost functions from the file attached to unit 4.
* Each link is incident to two nodes stored in ISPEC(M,T) and
* ISPEC(M,2). ISPEC(M,3) specifies the number of data elements but
* is then reset equal to the number of steps in the cost function.
* There are two additional data elements read in with each cost
* function: EDGE(M,4) equals -1 if the link belongs to the TCTS
* (TRANS CANADA) network, m2 if it belongs to CNCP, 1 if it belongs
* to the satellite system and is restricted to message traffic,
* 2 if it is restricied co television transmit/receive traffic,
* and 3 if it is restricted to receiving broadcast television traffic.
* Otherwise EDGE (M;4) = 0. DTN(M) equals the real end node, rather
* than ISPEC(M,2) which may be an intermediate dummy node (see
* DLDCNS Report #8, Figure 3): SPEC(M,I), I=1,...contains the
data specifying the Mth link cost function.
```

 \(\operatorname{READ}(4,30)(\operatorname{ISPEC}(M, J), J=1,3),(\operatorname{SPEC}(M, J), J=1,20)\)
 IF (ISPEC (M, 1) 。EQ.9999) GO T0 9
 \(\operatorname{EDGE}(M, 4)=\operatorname{SPEC}(M, \operatorname{ISPEC}(M, 3)+1)\)
 \(\operatorname{DTN}(M)=S P E C(M, \operatorname{ISPEC}(M, 3)+2)\)
 $12001 \operatorname{ISPEC}(M, 3)=(\operatorname{ISPEC}(M, 3)-2) / 4$
10 CONTINUE
*
NE equals the number of links in the model.
9 NE $=\mathrm{M}-1$
ZMIN $=0$
*

* Determine the number of nodes N in the mode1。

```
    DO 12000 M=1,NE
    IF(ISPEC(M,2).LE.ZMIN) GO T0 12000
    ZMIN=ISPEC (M,2)
12000 CONTINUE
    N=ZMIN
CIIIIIIIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIII
C
CIIIIIIIIIIIIIIIIIIMIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
*
* Read in some more data from Unit 4
* STC = offering price or cost for the satellite space
                                    segment (see DLDCNS Report No. 8-Section 8).
    ITVVCEQ = Number of voice circuits that equal one
                                    Television channel in the satellite space
                                    system.
        NODTYP(I) = 1 if node I is in the satellite model and
                        equals. 0 otherwise.
    READ(4,8) STCT,ITVVCEQ, (NODTYP(I), I=1,N)
    FORMAT(60G.0)
    WRITE(6,11002) STCT
11002 FORMAT('1 SATELLITE SPACE COST PER VOICE CIRCUIT IS `F15.2)
*
Reset STCT = cost per voice circuit for television traffic through
the satellite space system in terms of the cost through the
    TCTS links.
    STCT=(STCT*ITVVCEQ)/ITVTCTS
Create a table for lookingmup a link cost function.
        NODVTR(I;1) = First row in the array SPEC for which
                        ISPEC (M, l) = I.
        NODVTR(I,2) = Number of rows in the array SPEC for which
                        ISPEC(M.l)=I.
    NODVTR(1,1)=1
    D0 11000 I =1,N
    K=0
    DO 11005 J=NODVTR(I,1),NE
    IF(ISPEC(J,1).NE.I) GO TO 11010
11005 K=K+1
11010 NODVTR (I,2)=K
    NODVTR(I+1,1)=J
    IF(J.GT.NE) GO TO 11020
11000 CONTINUE
11020 CONTINUE
    DO 11007 J=I +1,N
11007 NODVTR(J,2)=0
C
```

C CROSS SECTION I.
D0 13040 I=1,20
13040 IPROPTR(I)=0
C
C ON EACH OF ITS LINKS
IF(NCS.EQ。0) GO T0 21
DO 13045 I=1,NE
13045 IPTHLG(I)=0
DO 13290 I=1,NCS
D0 13100 J=1,9999
IF(IPROTCT(I,J*3).EQ.9999) GO TO 13290
DO 13050 K=NODVTR(IPROTCT (I,J*3),1),NODVTR(IPROTCT (I,J*3), I)+
1NODVTR(IPROTCT(I,j*3),2)-1
IF(IPTHLG(K).EQ.1) G0 T0 13050
IF((ISPEC (K,2).EQ.IPROTCT (I,J*3+1.))
1.AND.(EDGE(K,4).EQ.IPROTCT(IっJ*3+2))) G0 T0 13060
13050 CONTINUE
13060 Z=SPEC(K,ISPEC(K,3)*4+1)*IPROTCT (I,2)/100
IPTHLG(K)=1
DO 13070 L=1,ISPEC(K,3)
IF(SPEC(K,L*4+1).GT.Z) G0 T0 13080
13070 CONTINUE
G0 T0 13100
13080 ISPEC(K,3)=L
SPEC (K,L*4+1)=Z
SPEC (K,L*4+2)=SPEC (K, (L-1)*4+2)+SPEC (K, (L-1)*4+3)+
1(Z-SPEC (K,(L-1)*4+1))*SPEC}(K,(L-1)*4+4
13100 CONTINUE
13290 CONTINUE
21 REWIND 4,5
D0 16 M=1,1000
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIXIIIIIIIMIMIMIXIIA!
C
CIII
*

* Read in the message traffic flow requirements from Unit 5.
* IRM(M,1) and IRM(M,2) are the source-sink nodes for the
* M th flow requirement and RM (M,l) is the amount of traffic.
READ(5,8) IRM(M,1),IRM(M,2),RM(M,1),IRM(M,3)
IF(IRM(M,1).EQ.9999) G0 T0 17
16 CONTINUE
*
* Set NREQ = Number of message flow requirements.
17 NREQ=M-1
ITRFKTP (1)=IRM (1,3)
ITRFKTP(5)=1
DO 73000 I=2,NREQ
D0 73001 J=1,ITRFKTP(5)
IF(IRM(I,3).EQ.ITRFKTP(J)) G0 T0 73000
7001 CONTINUE

```
\(\operatorname{ITRFKTP}(5)=\operatorname{ITRFKTP}(5)+1\)
\(\operatorname{ITRFKTP}(\operatorname{ITRFKTP}(5))=\operatorname{IRM}(I, 3)\)
73000 CONTINUE
D0 \(11 \mathrm{M}=1,1000\)
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIMIIIII CIIIIIIIIIIIIIIIIIIGIIIIIIIIIIIIIIGIIIIIIIIIII CIIIIIIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIIIIIIIIII C
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII CIIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ＊
＊Read in the television flow requirements from Unit． 5.
＊For the \(M\) th television flow requirement，
＊TVREQ（M）＝Number of Television Channels
＊\(\quad \operatorname{TYPE}(M)=2\) for half－duplex television
\(*\)
＊
\(x\)
交
娄
＊Again referring to DLDCNS Report No． 14 ，data pertaining to the
＊subgraphs \(A\) is read into arrays SBGRPA and SBGRPB where SBGRPA contains the nodes that must be in the Steiner tree and SBGRPB contains the Steiner nodes．Similarly，data pertaining to the subgraphs \(B\) and \(C\) is read into arrays SBGRPC and SBGRPD．
＊For further information see DLDCNS Report No． 14.
TVREQI \((M)=\) source node for simplex television． \(\operatorname{SEND}(M, I)=I t h\) potential node from which the simplex television flow requirement is to be considered being transmitted to the satellite（corresponds to nodes \(n\) （subscript L）－see DLDCNS Report No． 14, Section 5）．
\(\operatorname{READ}(5,8, \operatorname{END}=12) \operatorname{TVREQ}(M)\) ， \(\operatorname{TYPE}(M), \operatorname{TVREQ1}(M)\) ， \(\operatorname{TVCR}(M)\) 1 ，\((\operatorname{SEND}(M, I), I=1,7)\)
IF（TVREQ（M）．EQ．9999）GO T0 12
\(\operatorname{READ}(5,8) \quad(\operatorname{SBGRPA}(M, I), I=1,20)\)
\(\operatorname{READ}(5,8) \quad(\operatorname{SBGRPB}(M, I), I=1,20)\)
\(\operatorname{READ}(5,8) \quad(\operatorname{SBGRPC}(M, I), I=1,20)\)
\(\operatorname{READ}(5,8) \quad(\operatorname{SGGRPD}(M, I), I=1,20)\)
11 CONTINUE
\(\%\)
＊Set NOTVREQ \(=\) Number of television flow requirements．
12 NOTVREQ \(=\mathrm{M}-1\)
ZMIN＝0
DO \(12010 \quad \mathrm{M}=1\) ，NREQ
IF（IRM（M，2）．LE，ZMIN）GO TO 12010
\(Z M I N=\operatorname{IRM}(M, 2)\)
12010 CONTINUE
NREQNDS＝ZMIN
31 FORMAT（ \(3 \mathrm{G}_{\circ} 0, N \mathrm{G}_{\circ} 0,40 \mathrm{G} \circ 0\) ）

REWIND 12
CIJIIIIIIIIIIII
C
CIIIIIIIIIJIIIIXIIIIIIIIIIIXIIIIIIIIXIIIIIIIIIIIIII
Read in the initial capacity to which the links are loaded before any traffic is routed． \(\operatorname{EGFL}(1,1)=\) current load（amount of flow）on link \(I\) 。

READ（12，12120）EGFL \((1,1)\)
12120 FORMAT \(\left(29 X_{s} G .0\right)\)
\(\operatorname{IF}(E G F L(1,1)\) ，EQ。1。0E6）G0 T0 12101
REWIND 12
DO \(12100 \quad I=1\) ，NE
Read in the parameters ALPHA and BETA（see DLDCNS Report No． 14. Section 4）．
\(A L P=A L P H A\) value that applies to all links except those corresponding to the satellite ground station and backhaul where ALPT is the ALPHA value used．
BET equals the BETA value and it applies to all links． ALP and BET are initial values for ALPHA and BETA．

CIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
C
INPUT：UNIT 12
CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
\(\operatorname{READ}(12,12120) \operatorname{EGFL}(\mathrm{I}, 1)\)
D0 \(12098 \mathrm{~J}=1,50\)
\(\operatorname{IF}(\operatorname{EGFL}(I, 1) \cdot L E, \operatorname{SPEC}(1,1+J * 4)) \quad\) G0 T0 12099
12098 CONTINUE
12099 IEGFL（I，1）＝J
12100 CONTINUE
G0 T0 12105
12101 DO \(12103 \mathrm{I}=1\) ， NE
\(\operatorname{IEGFL}(\mathrm{I}, 1)=1\)
\(12103 \operatorname{EGFL}(\mathrm{I}, 1)=0\)
\(x\)
＊SATTRFK equals total amount of flow through the satellite node
＊which is always considered assumed to be the node labelled \(N\) where \(N=\) number of nodes in the network model．

12105 READ \((12,8)\) SATTRFK
D0 \(33 \mathrm{M}=1\) ， NE
For each link \(M_{9}\) determine the initial lower bound y（subscript M）
（see DLDCNS Report No．14，Section 4）and set EDGE（M， 1 ）\(=\gamma\) （subscript M）。

Several other parameters（initial conditions）for each link \(M\) are specified．They are as follows：
\(\operatorname{IEGFL}(M, 1)=\) Step \(I\) of the cost function into which the range
of the current flow \(\operatorname{EGFL}(M, 1)\) falls．
\(\operatorname{IEGFL}(M, 2)=\) Step \(I\) of the cost function into which the range of the desired flow falls（desired flow \(=U\) （subscript M）－see DLDCNS Report No． 14. Section 4）。

EGFL（M，2）＝Previously menitioned desired flow．
\(\operatorname{EGFL}(M, 3)=\) is set to 1 prior to determining the required paths and trees．Later when the expected cost of flow through link \(M\) is not realistic （comparison is made with the real cost and the ratio of the two costs is less than alpha－see DLDCNS Report No．14，Section 4），then \(\operatorname{EGFL}(M, 3)\) is reset \(=0\) ． \(\operatorname{EGFL}(M, 6)=1\) if link \(M\) is full and \(=0\) otherwise．

30 F0RMAT（12G．0，／．11G．0）
ZMIN＝1．0E30
IF（ISPEC（M，3）．EQ。0）G0 T0 23
D0 \(20 \mathrm{~K}=1\) ，ISPEC \((\mathrm{M}, 3)\)
IF（ISPEC \((M, 3) . E Q .1)\) G0 T0 12147
\(\operatorname{IF}\left(\operatorname{SPEC}\left(M, K^{*} 4+1\right) . \operatorname{LE} 。 \operatorname{EGFL}(M, 1)\right)\) G0 T0 20
\(12147 \mathrm{~L}=\operatorname{IEGFL}(\mathrm{M}, 1)\)
DEL＝0
\(\operatorname{IF}\left(\operatorname{EGFL}(M, 1)\right.\) ．EQ。SPEC \(\left.\left(M_{2} 1+(L-1) * 4\right)\right)\) GO TO 12149
DEL＝1
\(12149 \mathrm{Z}=(\operatorname{SPEC}(\mathrm{M}, 2+4 * K)-(\operatorname{SPEC}(M, 2+(L-1) * 4)+\operatorname{SPEC}(M, 3+(L-1) * 4)) * D E L\)
\(1-\operatorname{SPEC}(M, 4+(L-1) * 4) *(\operatorname{EGFL}(M, 1)-\operatorname{SPEC}(M, 1+(L-1) * 4)))\)
\(1 /(\operatorname{SPEC}(M, 1+4 * K)=\operatorname{EGFL}(M, 1))\)
IF（Z1．GT，ZMIN）G0 T0 20
ZMIN＝Z1
\(K 0=K\)
20 CONTINUE
\(23 \operatorname{EDGE}(M, 1)=\mathrm{ZMIN}\)
ALPHA \(=1.0\)
\(B E T A=1.0\)
\(\operatorname{IEGFL}(M, 2)=K 0\)
\(\operatorname{EGFL}(M, 2)=\operatorname{SPEC}(M, 1+K 0 * 4)\)
\(\operatorname{EGFL}(M, 3)=1\)
EGFL \(\left(M_{s} 6\right)=0\)
\(\operatorname{IEGFL}(M, 3)=0\)
33 CONTINUE
＊IREQCTR equals the total number of flow requirements that have been ＊completely routed．

IREQCTR \(=0\)
I ATEMP \(=0\)
＊
＊TRFKCTR equals the number of message traffic flow requirements
that have been routed.
TRFKCTR=0
IF ( (NREQ+NOTVREQ).EQ.0) GO TO 800
C CALL FPTH TO FIND SHORTEST PATHS

DO \(7010 \mathrm{I}=1\), NE
\(\operatorname{STORAGE}(I, 1)=\operatorname{ISPEC}(I, 3)\)
\(\operatorname{STORAGE}(I, 2)=\operatorname{EGFL}(I, 1)\)
7010 RMLPTR (I) \(=0\)
ZMNCT \(=\) COST
ITRNCTR \(=0\)
PRCT=0
ZMAXSTR=0
\(10=1\)
G0 T0 7030
7020 WRITE 6,7047 ) TYPE(1), TYPE(2)
7047 FORMAT ( \({ }^{\circ}\) PLEASE TAKE PRECAUTIONS-IMPOSSIBLETO GET A SOLUTION:

2/:'
GO TO 800
7037 DO \(7035 \mathrm{I}=1\), NE
\(\operatorname{ISPEC}(\mathrm{I}, 3)=\mathrm{STORAGE}(\mathrm{I}, 1)\)
\(7035 \operatorname{EGFL}(1,1)=\operatorname{STORAGE}(\mathrm{I}, 2)\)
PRCT \(=P R C T \ldots .2\)
ITRNCTR \(=\) ITRNCTR +1
IF (ITRNCTR.GE.MAXITRN) GO TO 5000
7030 IRMLPTR \(=0\)
D0 \(7080 \quad I=10,5\)
PRCT=PRCT+. 2
DO \(7070 \mathrm{~J}=1\), NE
IF (RMLPTR (J).EQ.I) GO T0 7070
IF \((E G F L(J, 1) . E Q .0)\) G0 T0 7070
\(\operatorname{IF}(((\operatorname{EGFL}(J, 1)-\operatorname{SPEC}(J,(\operatorname{IEGFL}(J, 1)-1) * 4+1)) /\)
\(1(\operatorname{SPEC}(J, \operatorname{IEGFL}(J, 1) * 4+1) \sim \operatorname{SPEC}(J,(\operatorname{IEGFL}(J, 1)-1) * 4+1)))\)
2.GT.PRCT) GO T0 7070
\(\operatorname{IF}((\operatorname{SPEC}(J,(\operatorname{IEGFL}(\mathrm{~J}, 1)-1) * 4+3)+(\operatorname{EGFL}(\mathrm{J}, 1) \ldots\)
```

 1SPEC(J, (IEGFL (J,1) w1)*4+1))*SPEC(J,(IEGFL(J,1)-1)*4+4))
 2.LE.ZMAXSTR) GO T0 7070
 IRMLPTR=J
 STRR=ISPEC (J,3)
 ZMAXSTR=SPEC}(J,(XEGFL(J,1)-1)*4+3)+(EGFL(J,1)-
 1SPEC(J,(IEGFL}(J,1)-1)*4+1))*SPEC(J,(IEGFL(J,1)-1)*4+4
 7070 CONTINUE
IF(IRMLPTR.NE.0) GO TO }707
7080 CONTINUE
IF(IRMLPTR.EQ,0) GO TO 5000
7075 ISPEC(IRMLPTR,3)=IEGFL(IRMLPTR,1)-1
RMLPTR(IRMLPTR)=1
C00
C
OUTPUT:UNIT 6
C000
WRITE (6,2050)
2050 FORMAT(1HO,'ARE IMPROVEMENTS TO SOLUTION TO BE ATTEMPTED')
CIIIIIIIIIIIIIIIIIINIIIIIIIIIIMIIIIIIIIIIIIIIIIIIIIIIII
C
INPUT:UNIT 6
GIII
READ (6,8) I
IF(I.EQ.O) GO TO 5000
G0 T0 21
C000
C
C00
7085 WRITE (6,7086)
7086 FORMAT(1HO, THERE MAY NOT EXIST A SOLUTION`)
GO TO }80
*

* We are now ready to perform Step 2 of the algorithm described in
* Section 4 of DLDCNS Report No。 14.
* 45 M=0
 FLWW=0
 46 FORMAT(1HO, SPECIFY ALPHA & BETA & ALPHAI')
 *
* First we set up the ALPHA and BETA values to be used.
* TRBLCTR equals the number of passes through Steps 2 and 3
* without there having been any flow "permanently" routed.
* The initial value of TRBLCTR equals 0.
ALPHA=ALP**TRBLCTR
BETA=BET**TRBLCTR
NOW CALL FPTH
TRBL=1
IF(NREQ.EQ.O) GO TO 54
* Now find the required shortest paths in the network for routing
* message traffico

```
```

* CALL FPTH
IF(TRBL.EQ.1) G0 T0 7020
TRBL=1
IF(OUTPUT.EQ.0) GO TO 54
D070000 I=1,NREQ
IF (RM (I,1).EQ.0) G0 T0 70000
WRITE(I,70001) I,(IEDGPTH(I,J),J=1,IPTHLG(I))
70001 FORMAT ('1YYYY',80(I3,1X))
70000 CONTINUE
*
* Next find all the minimum cost trees for the television traffic.
* 54 CALL X2
IF(TRBL.EQ.1) G0 T0 7020
IF(TRBLCTR.LE.200) G0 T0 49
C.000
C OUTPUT:UNIT 6
C00
WRITE (6,7850)
7850 FORMAT(1HO, 'THERE EXIST DIFFICULTIES IN FINDING A SOLUTION')
G0 T0 800
C
* The following code corresponds to. Step 3 of the algorithm
* described in Section 4 of the DLDCNS Report No. 14.
*
* We begin by doing some bookkeeping, namely by setting
* EDGE(M,2) equal to the total "temporary" flow through each link M.
* Furthermore, some conditions are checked with respect to
* preventing nonconvergence.
C** PART A **
C FINDS LINKS WHICH ARE UNDERLOADED ON THEIR OWN ACCORD
C
C
C ELIMINATE ALL REQ. PAIRS THAT FLOW THRU AN UNDER
C LOADED LINK. AlSO ElimiNATE THE CORRESPONDING LINKS
C
C FIRST KEEP IMAGE OF PRESENT MATRIX A
AS WELL AS RSTORE ORIGINAL MATRIX A
49 M=0
IF(AFLAG。EQ.0) GO T0 9999
C
C
C
IF(OUTPUT.EQ。0) GO T0 77778
WRITE(1,77777) (EGFL(I,3),I=1,NE)
77778 CONTINUE

```
\%
```

* Now compare the expected cost of flow in each link I to the
* actual cost (see Step 3b, Section 4, DLDCNS Report No. 14).
* DO 53 I=1,NE
IF(EGFL(I,1).NE,0) GO TO 59000
STREDGA(I)=0
G0 T0 59003
59000 D0 59001 J=1, ISPEC (I,3)
IF(EGFL(I,1).LE。SPEC(I,J*4+1)) GO T0 59002
59001 CONTINUE
59002 STREDGA(I) =SPEC(I, (J-1)*4+2)+SPEC (I, (J-1)*4+3)
1+SPEC(I, (J-1)*4+4)*(EGFL(I,1)-SPEC(I,(J-1)*4+1))
59003 EDGE(I,2)=EDGE (I,2)+TMPEDG(I)
IF((EGFL(I,2)-EGFL(I,1)).LE.0) GO TO 50000
IF(NODTYP(ISPEC(1,2)).GT.0) GO T0 53
IF(TMPEDG(I).EQ.0) GO T0 53
IF(TMPEDG(I).NE.EDGE(1,2)) GO TO 53
TP=ITVTCTS
IF(EDGE(I,4).EQ.\infty1) GO T0 59005
TP=ITVCNCP
IF(EDGE(I,4).EQ.m2) GO T0 59005
TP=ITVDIG
59005 IF((SPEC(I, 1+4*ISPEC(I,3)).0EGFL(I,1)).GE.TP) \therefore.G0 T0. 53
50000 EGFL (}1,6)=
5 3 ~ C O N T I N U E
*
* Then find flow requirements passing through links for which the
* expected cost is too unrealisitic (see Step 3c, Section 4.
* DLDCNS Report No. 14).
*

DO $80 \quad \mathrm{I}=1$ ， NE
$\operatorname{EGFL}(I, 4)=\operatorname{EDGE}(\mathrm{I}, 2)$
SALPHA＝ALPHA
IF（NODTYP（ISPEC（1，2））。LE．0）GO T0 57
SALPHA＝ALP1
57 CALLL RCST
IF（BUFF。GE。SALPHA）GO TO 80
$\operatorname{EDGE}(I, 1)=1,0 E 29$
EGFL（ 1,3 ）$=0$
$\operatorname{IEGFL}(I, 3)=1$
80 CONTINUE
FIND REQ PAIRS PASSING THRU UNDERLOADED LINKS
DO $8099 \mathrm{I}=1$ ， NREQ
$\operatorname{IF}(R M(1,2) . E Q .0)$ GO T0 8098
DO $8090 \mathrm{~J}=1$ ，IPTHLG（I）
IF（EDGE（IEDGPTH（I，J），1）。GE。1．0E29）GO T0 8098
8090 CONTINUE
GO TO 8099
8098 RM $(1,2)=0$
8099 CONTINUE

```

CALL X1
IF（OUTPUT。EQ。O）G0 T0 9999
WRITE（1，77777）（EGFL（I，3），I＝1，NE）
77777 FORMAT（1H0っ＇XXXXX＇。4（30（I1，1X），／））
C
＊This next section repeats steps \(3 \mathrm{~b}-3 \mathrm{c}\) ．It is a repeat of the
＊code just executed．The object is to those flow requirements
＊passing through links for which the expected cost is too
＊unrealistic as a result of the flow requirements that were chosen
＊to be ignored．
＊
C \(\%\) PART B \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 火 * * * * ~\)
C FIND LINKS WHICH ARE UNDER LOADED DUE TO．PATHS GOING THRU
C UNDERLOADED LINKS FOUND IN PART A
C
9999 IF（BFLAG。EQ。0）GO TO 9998
D0 \(8120 \quad I=1\) ，\(N E\)
\(8120 \operatorname{EDGE}(1,2)=0\)
DO \(8130 \quad I=1\), NREO
IF（RM（I，2）．EQ．0）GO T0 8130
DO \(8125 \mathrm{~J}=1\) ，IPTHLG（I）
\(\operatorname{EDGE}(\operatorname{IEDGPTH}(I, J), 2)=\operatorname{EDGE}(\operatorname{IEDGPTH}(I, J), 2)+\operatorname{RM}(I, 1)\)
8125 CONTINUE
8130 CONTINUE
DO \(8132 \quad 1=1, N E\)
8132 \(\operatorname{EDGE}(\mathrm{I}, 2)=\operatorname{EDGE}(\mathrm{I}, 2)+\operatorname{TMPEDG}(\mathrm{I})\)
C
C FIND UNDERLOADED LINKS
C
DO \(8000 \quad \mathrm{I}=1\) ，NE
SALPHA＝AL．PHA
IF（NODTYP（ISPEC（I，2））。LE。O）GO TO 8159
SALPHA＝ALP 1
8159 CALL RCST
IF（BUFF。GE。SALPHA）GO TO 8000
EDGE（J．，1）\(=1\) ．0E2 9
\(\operatorname{EGFL}(I, 3)=0\)
\(\operatorname{IEGFL}(\mathrm{I}, 3)=1\)
\(8000 \operatorname{EDGE}(1,3)=\operatorname{EGFL}(I, 2)=\operatorname{EGFL}(1,1)\)
\(C\)
\(C\)
\(C\)
FIND REQ。PAIRS PASSING THRU UNDERLOADED LXNKS
DO \(8199 \quad \mathrm{I}=1\) ，NREQ
IF（RM（I，2）。EQ。0）G0 T0 8198
DO \(8190 \mathrm{~J}=1\) ，IPTHLG（I）
IF（EDGE（IEDGPTH（I，J），1）．GE。1。0E29）G0 T0 8198
8190 CONTINUE
GO TO 8199
8198 RM \((I, 2)=0\)
8199 CONTINUE
CALL X1

IF（OUTPUT．EQ．0）G0 T0 9998
WRITE（ 1,77777 ）（EGFL \((I, 3), I=1, N E)\)

Now repeat steps \(3 b\) and \(3 c\) but with the added restriction that the total flow b（subscript M）plus \(t\)（subscript M）does not exceed \(U\)（subscript M）－for more details see step 3d of the algorithm in Section 4 。 DLDCNS Report No．14）．

First establish some initial conditions．Then，for each flow requirement that is still eligible for further consideration during this pass through the algorithm，find the maximum allowable flow through the corresponding shortest path． Flow requirements corresponding to message traffic are considered first，followed by those corresponding to television traffic．
＊PART C \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
FIND LINKS WHICH ARE UNDERLOADED DUE TOPATHS GOING THRU A LINK WITH RESTRICTED CAPACITY

SET MATRIX FM＝0
9998 IF（CFLAG。EQ．0）G0 T0 9997
D0 \(90 \quad I=1\) ，NE
\(\operatorname{EDGE}(I, 2)=0\)
90 CONTINUE
FOR EACH REQ．PAIR FIND MAX PATH （IGNORE REQ．WHOSE CORRESP．PATH PASSES THRU UNDERLOADED LINK）

D0 \(150 \quad \mathrm{I}=1\) ，NREQ
\(\operatorname{IF}(R M(I, 2) . E Q: 0)\) G0 T0 149
ZMIN＝1。OE30
D0 \(140 \mathrm{~J}=1\) ，IPTHLG（I）
IF（EDGE（IEDGPTH（I，J），1）．GE．1．0E29）G0 T0 149
IF（EDGE（IEDGPTH（I，J），3），GE．ZMIN）G0 T0 140
ZMIN＝EDGE（IEDGPTH（I，J），3）
140 CONTINUE
\(142 \operatorname{IF}(\operatorname{RM}(I, I) 。 G E 。 Z M I N)\) GO T0 141
\(Z M I N=R M(I, 1)\)
141 D0 \(147 \mathrm{~J}=1\) ，IPTHLG（I）
\(\operatorname{EDGE}(\operatorname{IEDGPTH}(I, J), 2)=\operatorname{EDGE}(\operatorname{IEDGPTH}(I, J), 2)+Z M I N\)
147 CONTINUE
GO T0 150
\(149 \operatorname{RM}(\mathrm{I}, 2)=0\)
150 CONTINUE
IF（NOTVREQ。EQ．O）GO TO 6095
DO \(6085 \mathrm{I}=1\) ， NE
6085 TMPEDG（I）\(=0\) \(X 44=0\)

DO \(6090 \mathrm{I}=1\) ，NOTVREQ
IF（TVREQ（I）。EQ。O）G0 T0 6090
IF（TVRQPTR（I）。EQ。0）G0 T0 6090
CALL X3
6090 CONTINUE
6095 CONTINUE
＊Now flag all those links for which the expected cost is too unrealistic．

AGAIN NOTE UNDERLOADED LINKS AND SET THEIR COST \(=1.0 \mathrm{E} 29\)

D0 \(167 \mathrm{I}=1, \mathrm{NE}\)
\(167 \operatorname{EDGE}(\mathrm{I}, 2)=\operatorname{EDGE}(\mathrm{I}, 2)+\operatorname{TMPEDG}(\mathrm{I})\)
DO \(170 \quad \mathrm{I}=1, \mathrm{NE}\)
SALPHA＝ALPHA
IF（NODTYP（ISPEC（I，2））．LE。0）GO T0 168
SALPHA＝ALP1
168 CALL RCST
IF（BUFF。GE．SALPHA）GO T0 170
\(\operatorname{EDGE}(\mathrm{I}, 1)=1.0 \mathrm{E} 29\)
\(\operatorname{EGFL}(1,3)=0\)
170 CONTINUE

C
Next find the flow requirements that were temporarily routed through links that were flagged above．

FIND THE REQ。 PAIRS WHOSE CORRESP。 SHORTEST PATH CONTAINS AN UNDERLOADED LINK

D0 \(173 \mathrm{I}=1, \mathrm{NE}\)
\(\operatorname{EDGE}(1,2)=0\)
173 CONTINUE
DO \(200 \quad I=1\) ， \(\operatorname{NREQ}\)
\(\operatorname{IF}(R M(I, 2), E Q .0 .0)\) G0 T0 200
DO \(176 \mathrm{~J}=1\) ，IPTHLG（I）
\(\operatorname{IF}(E D G E(I E D G P T H(I, J), 1) 。 G E .1 .0 E 29)\) GO T0 180
176 CONTINUE
DO \(178 \mathrm{~J}=1\), IPTHLG（I）
\(178 \operatorname{EDGE}(\operatorname{IEDGPTH}(\mathrm{I}, \mathrm{J}), 2)=\operatorname{EDGE}(\operatorname{IEDGPTH}(\mathrm{I}, \mathrm{J}), 2)+1\)
GO TO 200
\(180 \operatorname{RM}(I, 2)=0\)
200 CONTINUE
CALL X1
IF（OUTPUT。Eq．0）G0 T0 9997
WRITE（1，77777）（EGFL（I，3），\(I=1, N E)\)

Next we execute code corresponding to Step 3 c of the algorithm
```

in Section 4 of DLDCNS Report No. 14.
First as much television traffic as is possible is routed.
FOR EACH LINK TO BE CONSIDERED FIND THE REQ. PAIRS WHOSE
SHORTEST PATH PASSES THRU THE LINK
TO FACILITATE THE ABOVE SOME PRELIMINARIES
MUST BE PERFORMED (FOR EASE OF COMPUTATION)
ALSO FIND THE MIN AND MAX OF FM(I,J)
(CORRESPONDING TO THE LINKS BEING CONSIDERED)
9997 CALL X4
For message traffic those flow requirements, whose shortest
path contains a link with the fewest number of flow
requirements temporarily routed through it, are considered
first for being routed permanently. So first find the
"least used" link.
MIN=10000000
MAX=0
DO 220 I=1,NE
IF(EDGE(I,4).GE.2) GO T0 220
IF(EGFL(I,3).EQ,0) GO T0 220
IF(EDGE (I,2)。GE.MIN) GO TO 206
IF(EDGE(I,2).EQ.0) GO TO 206
MIN=EDGE (I,2)
206 IF(EDGE(X,2).LE.MAX) GO TO 220
MAX=EDGE (I,2)
220 CONTINUE
IF(MIN.GT.MAX) GO TO 399

* Now find the flow requirements routed through the least used
links and permanently route as much as possible of these
flow requirements.
FIND REQ. PAIRS WHOSE CORRESP. PATHS PASS
THRU LINKS THAT ARE BEING USED MIN TIMES
210 DO 300 I=1,NREQ
BUFF=0
IF((RM(I,1).EQ.0).OR.(RM(I,1).GT.0.02)) GO T0 211
RM(I, 1)=0
IREQCTR=IREQCTR +1
TRFKCTR=TRFKCTR+1
G0 TO 235
211 IF(RM(I,2).EQ。O) GO TO 300
ZMIN=1.0E29
KK=0

```
\(\underset{\sim}{C}\)
```

 DO 225 J=1,IPTHLG(I)
 IF(EDGE(IEDGPTH(I,J),2).NE.MIN) GO T0 223
 KK=1
 223 IF(EDGE(IEDGPTH(I,J),3).GE.ZMIN) GO T0 225
 ZMIN=EDGE(IEDGPTH(I,J),3)
 IF(ZMIN.EQ。O) GO TO 235
 225 CONTINUE
 IF(KK.EQ。0) G0 T0 300
 GO T0 240
 235 RM (1,2)=0
 GO TO 300
 240 RM(I,2)=0
 IF(RM(I,I).GT.ZMIN) G0 T0 244
 ZMIN=RM (I, 1.)
 RM(I, 1)=0
 IREQCTR=IREQCTR +1
 TRFKCTR=TRFKCTR+1
 FLWW=1
 G0 T0 245
 244 IF(ZMIN.EQ.0) GO TO 300
 RM(I, 1)=RM(I, 1)-ZMIN
 FLWW=1
 245 IF(SLNNET.EQ.0) GO TO 247
 IF(SLNNET.EQ.2) GO TO 243
 D0 16500 J=1,IPTHLG(I)
 KJ=ISPEC(IEDGPTH(I,J),2)
 IF(NODTYP(KJ).EQ&I) GO T0 243
 16500 CONTINUE
G0 T0 247
243 WRITE(7,246) ZMIN,IRM(I,3),IRM(I;1),IRM(I,2)
246 FORMAT(41)
247 D0 248 J=1,IPTHLG(I)
EDGE(IEDGPTH(I,J),3)=EDGE(IEDGPTH(I,J),3)-ZMIN
KI=ISPEC(IEDGPTH(I,J), 3)
KJ=ISPEC(IEDGPTH(I,J),2)
IF((NODTYP(KI).EQ.1).AND.(NODTYP(KJ).EQ.1).AND.
I(KJ.NE,N)) GO T0 251
IF(KJ.NE.N) GO T0 241
251 BUFF=1
241 IF(SLNNET。EQ。0) GO T0 248
IF((NODTYP(KI)。EQ.0).AND.(NODTYP(KJ).EQ.0)) GO TO 248
IF((NODTYP(KI)。EQ.1)。AND.(NODTYP(KJ).EQ.1)) G0 T0 248
WRITE(7,246) KI
248 CONTINUE
IF(BUFF。EQ。O) GO TO 300
SATTRFK=SATTRFK+ZMIN
300 CONTINUE
IF(MIN.GE.MAX) GO T0 399
C
4

* Then find the next least used link and repeat the above
* code to find the corresponding flow requirements and permanently

```
```

routing them (This is repeated until all the links have
been considered).
%
C
C
KK=MIN+1
MXN=10000000
DO 350 I=1,NE
IF(EGFL(I,3).EQQ.0) G0 T0 350
307 XF(EDGE(X,2),GE,MIN) GO TO 350
IF(EDGE(I,2).LT.KK) G0 T0 350
MXN=EDGE (1,2)
350 CONTINUE
go T0 210
399 CONTINUE
C

* Having completed Step 3 of the algorithm, we are now about
to start steps \& and 5. Before doing so. we determine chose
parallel links whose capacity can be increased because
all the required conditions pertaining to protection have been
met.
UPDATE LINK INFORMATION AND READJUST THE INCREMENTAL COSTS
I.E. UPDATE MATRIX A
400 DO 401 I=1,NREQ
IF(RM(I,1),EQ,0) G0 T0 401.
RM(1,2)=1
401 CONTINUE
IF(OUTPUT,EQ.0) G0 T0 389
388 FORMAT(1H0,'ZZZZZZZZZZZZZZZZZZZZZZZZZ',I15)
389 D0 16005 \=1,NE
16005 EGFL (I,5)=EGFL}(I,2)=EDGE(I,3)=EGFL(I, 1)
D0 16006 I=1,NE
16006 IPTHLG(I)=0
C DETERMINE WHETHER OR NOT THE CAPACITY RESTRICTION ON THE
C SYSTEMS WITHIN EACH CROSS SECTION CAN BE REMOVED
IF(NCS.EQ.0) GO T0 16300
IF SO, CONSIDER THEM.
D0 16260 I=1,NCS
C. CHECK IF THE CAPACITY RESTRICTION ON THE SYSTEMS IN CROSS
C SECTIONS HAVE ALREADY BEEN REMOVED
IF(IPROPTR(I)。EQ_I) GO T0 16260
DETERMINE THE LINKS IN THE CROSS SECTION \
ZMIN=0
D0 16190 J=1.9999
IF(IPROTCT(I,J*3).EQ.9999) GO T0 16200
DO 16050 K=NODVTR(IPROTCT(I,J*3),I)\&NODVTR(IPROTCT (X, J*3), I)*
INODVTR(IPROTCT(I,j*3),2)m1

```
```

 IF(IPTHLG(K).EQ。1) GO TO 16050
 IF((ISPEC (K,2),EQ.IPROTCT (1,J*3+1))
 1.AND.(EDGE(K,4).EQ.IPROTCT(I,J*3+2))) G0 T0 16060
 16050 CONTINUE
16060 IRELVTR(J)=K
IPTHLG(K)=1
C HAS ALL THE MESSAGE BEEN ROUTED?(WE MUST DISTINGUISH FOR
C PURPOSE OF OVERALL CONVERGENCE)
IF（NREQ。EQ。TRFKCTR）GO TO 16100
C NO IT HAS NOT．
$T P=1$
GO TO 16120
C ONLY TV REMAINING TO BE ROUTED．
$16100 \mathrm{TP}=1 \mathrm{TVTCTS}$
IF（EDGE（K，4）．NE．－1）G0 T0 16120
TP＝ITVCNCP
$\operatorname{IF}(E D G E(K, 4)$ EQ．－2）GO TO 16120
TP＝ITVDIG
C IS THE LOAD ON LINK K APPROACHING ITS RESTRICTED CAPACITY？ $16120 \operatorname{IF}((\operatorname{SPEC}(K, \operatorname{ISPEC}(K, 3) * 4+1)-\operatorname{EGFL}(K, 1)=\operatorname{EGFL}(K, 5))$ 。GT。TP）G0 T0 16190
$Z M I N=Z M I N+1$
16190 CONTINUE
C DETERMINE IF CAPACITY RESTRICTIONS SHOULD BE LIFTED
$16200 \mathrm{IF}(Z M X N . L T . I P R O T C T(I, 1))$ GO T0 16260
C YES THEY SHOULD AS ALL THE LINKS ARE LOADED TO THEIR
C RESTRICTED CAPACITY
REWIHD 4
MIN＝0
DO $16240 \quad M N=1, J=1$
iA $A X=9999$
DO $16210 \mathrm{~K}=1, \mathrm{~J}-1$
IF（IRELVTR（K）oLE．MIN）GO TO 16210
IF（IRELVTR（K）。GE，MAX）G0 T0 16210
MAX＝IRELVTR（K）
16210 CONTINUE
$L=M A X-M I N-1$
IF（L．EQ。0）GO TO 16223
DO $16220 \mathrm{~K}=1 . \mathrm{L} * 2$
$16220 \operatorname{READ}(4,8)$ ZMIN
$16223 \operatorname{READ}(4,30)(\operatorname{ISPEC}(\operatorname{MAX}, M), M=1,3),(\operatorname{SPEC}(M A X, M), M=1,20)$
$\operatorname{ISPEC}(\operatorname{MAX}, 3)=(\operatorname{ISPEC}(\operatorname{MAX}, 3)-2) / 4$
EGFL $(M A X, 6)=0$
MIN＝MAX
16240 CONTINUE
$\operatorname{IPROPTR}(\mathrm{I})=1$
16260 CONTINUE
16300 CONTINUE
IF（IREQCTR。LE。RCDR）G0 TO 30011
WRITE $(6,30009)$ IREQCTR，SATTRFK
$R C D R=I R E Q C T R$
30009 FORMAT（1HO，${ }^{\circ} \mathrm{NO}$ 。OF TRAFFIC REQ。ROUTED IS ${ }^{8}$ I4，
$\left.1^{\prime}\left(\text { SATELLITE TRAFFICo }{ }^{\circ},{ }^{\circ} 7.00_{9}{ }^{\circ}\right)^{\circ}{ }^{\circ}\right)$

```
```

30011 IF(OUTPUT.EQ.0) G0 T0 30000
WRITE (1,30008) IREQCTR,TRFKCTR
30008 FORMAT (1H0, 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', I10,5X,F10.1)
30000 CONTINUE

* Now consider each link I in the network。
* DO 699 [=1,NE
 FLG=0
 403 IF(ISPEC(I,3).EQ.0) GO T0 437
IF(EGFL(I,6).EQ:1) G0 T0 437
EGFL(I, 3)=1
IF(FI.WW.EQ.0).G0 TO 440
In this case some permanent flow was actually routed through
the network (see Step 5 of the algorithm in Section 4 of
ULDCNS Report No. 14).
TRBLCTR=1
C
C
CONSIDER THE CASE WHERE SOME ADDITIONAL FLOW WAS
ACTUALLY IMPOSED ON NETWORK
FIRST UPDATE CURRENT FLOW
$\operatorname{IF}((\operatorname{EGFL}(I, 1)+E G F L(I, 5)) . E Q . E G F L(I, 2))$ G0 T0 430 GO TO 421
405 IF(EGFL(I,2):EQ.SPEC(I,(IEGFL(I,2)-1)*4*1))
1G0 T0 406
RI=SPEC(I,(1EGFL(I,2)-1)*4*2)
1*SPEC(I,(IEGFL(I,2)-1)*4+3)
2+(EGFL(I,2)~SPEC(I, (IEGFL(I,2)-1)*4+1))
3*SPEC(I,(IEGFL(I,2)-1)*4+4)
G0 T0 407
406 R1=SPEC(I.(IEGFL (I,2) -1)*4+2)
407 IF(EGFL(I,1),EQ.SPEC(I,(IEGFL(1,1)-1)*4+1)):G0 T0 408
R2=SPEC(I;(IEGFL(I, 1)-1)*4+2)
1+SPEC(I, (IEGFL (I, 1) %1)*4+3)+(EGFL (I,1)m
2SPEC(I,(IEGFL(I,1)-1)*4+1))*SPEC(I,(IEGFL(I,1)-1)*4+4)
G0 T0 409
408 R2=SPEC(I,(IEGFL (I, 1)* 1)*4+2)
409 RUN=EGFL(I,2)-EGFL}(I,1
SLP1=(R1-R2)/RUN
GO TO 500
C
C
C
OTHERWISE EXPECTED FLOW . DESIRED FLOW
WAS THE FLOW INCREMENTED?
$410 \mathrm{LF}(E G F L(I, 5) . G T, 0)$ GO T0 420

```
```

C
C
G0 T0 405
C
C
420 IF((EGFL(I,1)+EGFL(I,5)),GE.EGFL(I,2)) G0 T0 430
C
C OTHERWISE ACTUAL FLOW INCREMEMNTED
C
421 DO 423 L=1,ISPEC(I,3)
IF((EGFL(I,1)+EGFL(I,5)).LE.SPEC(I,L*4+1)) G0 T0 425
423 CONTINUE
L=L-1
425 IEGFL (I, 1) =L
EGFL(I,1)=EGFL(I,1)+EGFL(I,5)
G0 T0 405
430 IEGFL (I,1)=IEGFL(I,2)
438 MIN=IEGFL(I.,1)
IF((EGFL(I,1)+EGFL(I,5))。NE,SPEC(I,IEGFL(I,2)*4+1))
1G0 T0 431
IF(MIN.EQ。ISPEC(I,3)) GO T0 436
MIN=IEGFL(I,1)+1
431 SLP1=1.0E30
DO 432 L=MIN,ISPEC(I,3)
R1=SPEC(I,L*4+2)
IF(EGFL (I,2).EQ。SPEC (1, (IEGFL(I,2)-1)*4+1)) GO T0 433
R2=SPEC(I,(YEGFL (I,2)-1)*4+2)+SPEC(I, (IEGFL (I,2)*1)*4*3)
I+(EGFL}(1,2)\cdotsSPEC(I, (IEGFL (I,2)-1)*4+1))
2SPEC(I,(IEGFL(I,2)-1)*4+4)
G0 T0 434
433 R2=SPEC(I,(IEGFL(I,2)m1)*4+2)
434 RUN=SPEC(I,L*4+1) - EGFL(I,2)
IF(((R1-R2)/RUN)。GT.SLP1) G0 T0 432
SLP1=(R1-R2)/RUN
K0=L
432 CONTINUE
IF(FLG。EQ。1) G0 T0 435
EGFL(I,I)=EGFL(I,I)+EGFL(I,5)
435 lEGFL (I,2)=K0
EGFL(I,2)=SPEC(I_(K0)*4+1)
G0 T0 500
436-EGFL(I,1)=EGFL(I,1)+EGFL(I,5)
EGFL(I,2)=EGFL(I,1)
439 EGFL (I,6)=1
437 SLPI=1.0E30
GO TO 500
C

```
＊The following code updates the weights of link 1 as required ＊for the case where no permanent flow was routed through the network （corresponding to Step 4 of the algorithm）．
\begin{tabular}{|c|c|c|}
\hline & \(\operatorname{IF}(\operatorname{EGFL}(\mathrm{I}, 2) . \operatorname{EQ} . \operatorname{SPEC}(\mathrm{I}, \operatorname{ISPEC}(\mathrm{I}, 3) * 4+1)\) ） & G0 T0 405 \\
\hline 444 & \(\operatorname{IF}(\operatorname{EGFL}(\mathrm{I}, 2) . \operatorname{LT} \cdot \operatorname{SPEC}(\mathrm{I}, \operatorname{IEGFL}(1,2) * 4+1))\) & G0 T0 442 \\
\hline & \(\operatorname{IF}(\operatorname{IEGFL}(1,2), \operatorname{EQ}\) ．ISPEC（I，3））G0 T0 442 & \\
\hline & \(\operatorname{MIN}=\operatorname{IEGFL}(1,2)+1\) & \\
\hline & GO T0 443 & \\
\hline
\end{tabular}
    \(442 \mathrm{MIN}=\operatorname{IEGFL}(\mathrm{I}, 2)\)
    \(443 \operatorname{EGFL}(1,2)=\operatorname{EGFL}(I, 1)\)
        G0 T0 431
\(13000 \operatorname{IF}((\operatorname{SPEC}(I, \operatorname{ISPEC}(I, 3) * 4+1) \cdots \operatorname{EGFL}(I, 1)) . L T, T P) \quad\) G0 T0 439
    \(\operatorname{EGFL}(I, 2)=E G F L(I, 1)+T P=1\)
    D0 \(17020 \mathrm{~J}=1\), ISPEC \((1,3)\)
\(17020 \operatorname{IF}\left(E G F L(I, 2) . \operatorname{LE} . S P E C\left(I, J^{*} 4+1\right)\right)\) G0 T0 17030
\(17030 \operatorname{IEGFL}(I, 2)=J\)
    GO TO 444
のののののの

\section*{THUS ADJUST（INCREASE）THE COST OF THIS LINK}

\section*{IF EXP LOAD WAS ZERO THEN DO NOT ADJUST SLOPE}
\(450 \mathrm{IF}(E G F L(I, 4)\) 。EQ．0）G0 T0 405
451 IF \((E G F L(I, 1): E Q . S P E C(I,(I E G F L(I, 1)=1) * 4+1))\) G0 T0 453 \(\operatorname{R2}=\operatorname{SPEC}(\operatorname{I},(\operatorname{IEGFL}(I, 1)-1) * 4+2)+\operatorname{SPEC}(\operatorname{I},(\operatorname{IEGFL}(1,1)-1) * 4+3)+\)
\(1(\operatorname{EGFL}(\mathrm{I}, 1)-\operatorname{SPEC}(\mathrm{I},(\operatorname{IEGFL}(\mathrm{I}, 1)-1) * 4+1)) *\)
2SPEC（I，（IEGFL（I，1）－1）＊4＋4．）
GO TO 454
\(453 \operatorname{R2}=\operatorname{SPEC}(\mathrm{I},(\operatorname{IEGFL}(1,1)-1) * 4+2)\)
454 RISE＝R1－R2
\(458 \operatorname{ZMIN}=(\operatorname{EGFL}(I, 2)-\operatorname{EGFL}(I, 1)-\operatorname{EGFL}(I, 4)) * B E T A\)
\(1+\operatorname{EGFL}(\mathrm{I}, 1)+\operatorname{EGFL}(\mathrm{I}, 4)\)
DO \(460 \mathrm{~L}=1\) ，ISPEC \((\mathrm{I}, 3)\)
\(\operatorname{IF}(Z M I N, L E, S P E C(I, L * 4+1))\) GO TO 465
460 CONTINUE
\(\mathrm{L}=\mathrm{L}-1\)
\(465 \operatorname{R1}=\operatorname{SPEC}(I,(L-1) * 4+2)+\operatorname{SPEC}(I,(L \sim 1) * 4+3)+(Z M I N-\operatorname{SPEC}(I,(L-1) * 4+1))\)
\(1 * \operatorname{SPEC}(I,(L-1) * 4+4)\)
\(\operatorname{SLP} 1=(R 1-\operatorname{R2}) /(Z M I N-\operatorname{EGFL}(I, 1))\)
EGFL（I，2）＝ZMIN
\(\operatorname{IEGFL}(1,2)=L\)
G0 T0 500

480 SLP \(1=\) SLP 2
\(\operatorname{EGFL}(1,2)=\operatorname{EGFL}(1,1)+\operatorname{EGFL}(1,4)\)
\(\operatorname{IEGFL}(\mathrm{I}, 2)=1\)
500
IF（SLP1。GT。0）G0 T0 504
SLP1＝．001
\(504 \operatorname{EDGE}(\mathrm{I}, 1)=\mathrm{SLP} 1\)
IF（NREQ。NE，TRFKCTR）G0 T0 503
\(F L G=1\)
IF（EUGE（I，1）©EQ。1．0E30）G0 T0 503
TP \(=\) ITVTCTS
\(\operatorname{IF}(E D G E(I, 4), G E,-1)\) GO T0 507
\(T P=I T V C N C P\)
\(\operatorname{IF}(E D G E(I, 4)\) ．EQ。－2）GO TO 507
TP＝ITVDIG
\(507 \operatorname{IF}((\operatorname{EGFL}(1,2)-\operatorname{EGFL}(I, 1))\) 。LT．TP）G0 T0 13000
501 FORMAT（24HOUPDATED SLOPE IS XXXXX，F10．5，7H XXXXX）
\(503 \operatorname{EGFL}(I, 4)=0\)
\(\operatorname{EGFL}(I, 5)=0\)
\(\operatorname{IEGFL}(\mathrm{I}, 3)=0\)
699 CONTINUE
＊Increment TRBLCTR if no flow was permanently routed during the ＊previous pass through steps 2 and 3 of the algorithm．
＊If not all the flow requirements are routed then go back to ＊repeat steps 2．and 3 。

IF（FLWW。EQ。1）G0 T0 701
TRBLCTR＝TRBLCTR +1
701 IF（IREQCTR。EQ。（NREQ＋NOTVREQ））GO TO 800
IF（OUTPUT。EQ．0）GO T0．45
WRITE（1，31000）（EDGE（I，1），\(I=1, \operatorname{NE})\)
31000 FORMAT（1H0，20（9（F10．3，2X）\(/\) ））
800 CONTINUE
COST＝TVSTTFK＊STCT＊ITVTCTS／ITVVCEQ
＊
A complete solution has been attained a the total load on each link．as well as the total flow through the satellite node，is output on Unit 7 。

DO \(899 \quad \mathrm{I}=1\) ，NE
IF（EGFL（I，1），EQ。0）G0 T0 899
\(\operatorname{COST}=\operatorname{COST}+\operatorname{SPEC}\left(I_{2}(\operatorname{IEGFL}(1,1)-1) * 4+2\right)\)
\(1+\operatorname{SPEC}(I,(\operatorname{IEGFL}(I, 1)-1) * 4+3)\)
\(2+(\operatorname{EGFL}(\operatorname{I}, 1)-\operatorname{SPEC}(\operatorname{I},(\operatorname{IEGFL}(I, 1)-1) * 4+1))\)
\(3 * \operatorname{SPEC}(I,(\operatorname{IEGFL}(1,1)-1) * 4+4)\)
899 CONTINUE
C0000000000000000000000000000000000000000000000000000000000000 C00000000000000000000000000000000000000000000000000000000000000

C
```

 1' (TV = ', F10.1, ')')
 949 FORMAT (1H0,' XX'`)
WRITE (6,910) COST
910 FORMAT (23H0 COST OF NETWORK IS ,E15.6)
WRITE(6,902) SATTRFK,TVSTTFK
D0 985 I=1,NE
985 WRITE (9,983) ISPEC(I,1),ISPEC(I,2),EGFL(I,1)
983 FORMAT(5X,I5,6X,I5,5X,F12.1)
WRITE(9,902) SATTRFK,TVSTTFK
WRITE(9.910) COST
WRITE (9,949)
WRITE (7,987)
987 FORMAT ('9999.')
RETURN
950. STOP

```
```

 VRTX(1SPEC (0,1),1)=ISPEC (0,2)
 VRTX(ISPEC}(\textrm{J},1),2)=\operatorname{VRTX}(\operatorname{ISPEC}(\textrm{J},2),2)+\operatorname{EDGE}(J,1
 GO TO 18
 16 K=K+1
 VRTX(ISPEC (J,2),1)=ISPEC (J,1)
 VRTX(ISPEC (J,2),2)=VRTX(ISPEC (J,1),2)+EDGE (J,1)
 GO TO 11
 18 CONTINUE
 IF(K.GT.0) GO. TO 10
 DO }80\textrm{J}=1\mathrm{ ,NREQ
 IF(IRM(J,3).NE.ITRFKTP(II)) G0 T0 80
 IF(IRM(J,1),NE,I) GO TO 80
 IF (RM(J,1).EQ.0) GO T0 79
 RM (J,2)=1
 K2=IRM(J,2)
 IF(VRTX(K2,2).GE.1.0E30) G0 T0 1011
 Z=k2
 DO 70 K=1,NE
 K1=VRTX (K2,1)
 IF(K1.LT.K2) G0 T0 22
 NI=K2
 N2=K1
 G0 T0 23
 22 M1=K1
 N2=K2
 23 TYP=1
 TRTP=IRM(J,3)
 CALL FIND
 IEOGPTH(J,K)=IPOS1
 EDGE(IPOS1,2)=EDGE(IPOS1,2)+RM(J,1)
 IF (K2.EQ.Z) GO TO 50
 IF(K2.EQ。IRM(J_1)) G0 T0 75
 G0 T0 69
 50 IF(K1.EQ.IRM(J,1)) GO TO 75
 K2=K1
 69 Z=K2
 70 CONTINUE
 75 IPTHLG(J)=K
 GO T0 80
 79 RM (J,2) =0
 8 0 ~ C O N T I N U E
 1000 CONTINUE
1007 CONTINUE
TRBL=0
GO T0 1010
101J TYPE (1)=0
TYPE(2)=J
1010 RETURN
*

* Subroutine STRTREE finds the minimum cost Steiner tree to connect
* specified nodes in a graphs using other nodes in the graph if there
* is a reduction in cost. The subroutine STRTREE is called upon to

```
determine the Steiner trees of the（sub）graphs \(A_{s} B\) ，and \(C\) discussed in Sections 5 and 6 of DLDCNS Report No。 14．The basic strategy used to find the required Steiner tree is found on page 118 in Networks，Volume 1，Number 2 （in a paper by Hakimi entitled ＂Steiner＇s Problems in Graphs）．Subroutine STRTREE does all the bookkeeping，setting up an array called TABLE in which are stored the links of the subgraph whose nodes are to be connected by a minimum cost tree．The tree itself is found in a subroutine called TREE．Subroutine STRTREE must determine TABLE for every different subgraph，of the graph in which a Steiner tree is to be found，that contains all the nodes that must be interconnected by the Steiner tree． The nodes that are to be connected by the Steiner tree are presented to STRTREE in elements 3 ，．．．．in the vector called GRP1．IGRP1（1）＝number of nodes in IGRP1（3），
IGRP1(4),...etc. IGRPI(2) = number of nodes in the vector
IGRP2. Array GRP2 contains all intermediate nodes that may
or may not be in the Steiner tree. From this information,
STRTREE consider all possible subgraphs in the network that
contain all the nodes in IGRPI and some nodes in IGRP2.
For each subset of nodes, all links in the network that join a
pair of nodes in this subset are found and stored in the array
TABLE. Special provision has been built into the routine for
temporarily eliminating some intermediate nodes (see'
discussion on special techniques discussed in Section 5 of DLDCNS
Report No. 14). All nodes between the terrestrial network model and
the satellite node are eliminated. Also, all nodes that lie
between one of the nodes incident to a link and the real end
(or destination) node (see the variable DTN(M) read in earlier
from Unit 4) are eliminated. To ensure that subroutine TREE is always
able to find a tree, links with infinite weight are used. Brief comments
are made below to indicate what function various sections within the
subroutine perform.

SUBROUTINE STRTREE
SNDCOST \(=0\)
GRP4 \(=1.0\) E 30
3000 IPOS2 \(2=0\)
Determine links incident to pairs of nodes in IGRPI．
D0 \(3050 \quad I=3, \operatorname{IGRPI}(1)+1\)
DO \(3049 \mathrm{~J}=1+1\) IGRP1（1） 1 ＋2
N1＝IGRP1（I）
N2＝IGRP1（J）
CALL SPRFIND
IF（FOUND。EQ。O）GO TO 3049
IPOS2 \(=1\) POS2 \(2+1\)
TABLE（IPOS2，1）＝N1
TABLE（IPOS 2,2\()=N 2\)
TABLE（IPOS2；3）＝METCOST＋ZMIN
```

3050 CONTINUE
D0 3055 I=4,IGRPI(1)+2
NI=IGRPI(3)
N2=IGRP1(I)
CALL SPRFIND
IF(FOUND.EQ.1) GO T0 3055
IPOS2=1POS2r1.
TABLE (IPOS2, I)={GRP1(3)
TABLE (IPOS2,2)=IGRP1(
TABLE (IPOS2,3)=1.0E50
3055 CONTINUE
*

* Branch to statement 3526 if the satellite node N is in IGRPI.
* Then initialize various bookkeeping type variables.
* Basically, IGRP3 is a boolean vector to record which subsets
* of nodes in IGRP2 have been considered as intermediate nodes.
* The remaining variables are pointers.
* IF(BUFF。EQ.1) GO T0 3526
3057 CTR4=IPOS2
D0 3399 I 2=0,IGRP1(2)
IF(I.2.EQ,0) GO T0 3210
DO 3070 I=1,IGRPI(2.)
3070 IGRP3(I)=0
D0 3075 I=1,12
3075 IGRP3(I)=1
ICTR1=1
CTRI=12
IPOS2=CTR4
G0 T0 3077
3076 1POS2=IPTR(ICTR1-1)-1
3077 CTR2=0
D0 3200 I=ICTRI,IGRP1(2)
FLW=0
IF(IGRP3(I).EQ.0) GO T0 3200
*
* If the satellite node is not in IGRP1, then branch to
* Statement \#3890. Otherwise determine links in the network
* model that exist between the nodes in IGRP2 and the sacellite
* node N.
IF(BUFF.EQ.0) GO T0 3890
IF(NODVTR(IGRP2(I),2),EQ.0) GO T0 3890
IF(IGRP2(I).NE,TVREQI(II)) G0 TO 3082
IF((SNDND.NE:IGRP2(I)),AND。(TYPE(II).EQ.3)) GO T0 3890
3082 DO 3830 J=NODVTR(IGRP2(I),I),
INODVTR(IGRP2(I),1)+NODVTR(IGRP2(I),2)-1
IF(NODTYP(ISPEC(j,2)),GT,0) GO T0 3850
3830 CONTINUE
g0 T0 3890
3850 IF(IGRP2(I).NE.SNDND) GO TO 3856
TP=2

```
```

 G0 T0 3857
 3856 TP=:TYPE(11)
3857 D0 3860 K=NODVTR(ISPEC(J,2),1),
1NODVTR(ISPEC (J,2),1)+NODVTR (ISPEC (J,2),2)-1
3860 IF(EDGE(K,4).EQ.TP) G0 T0 3870
G0 T0 3890
3870 IPOS2=IPOSS2+1
TABLE (IPOS2,1)=IGRP2(I)
TABLE (IPOS2,2)=N
TABLE(IPOS2,3)=(EDGE(J,1)+EDGE(K,1))*ITVVCEQ/ITVTCTS
IPTR(I)=IPOS2
FLW=1
IF(IGRP2(I).NE.SNDND) G0 T0 3890
SNDCOST=TABLE(IPOS2,3)
TABLE(IPOS2,3)=.0001
3890 IF(I.EQ.1) G0 T0 3090
*

* Find all the links incident to pairs of nodes in IGRP2 and links
* incident to a node in IGRPI and to another node in IGRP2.
* N2=IGRP2(II)
IF(IGRP3(J).EQ.0) G0 T0 3085
N1=IGRP2(J)
CALL SPRFIND
IF(FOUND.EQ.0) GO TO 3085
IPOS2=IPOS2+1
IF(FL.W.EQ.1) GO T0 3079
IPTR(I)=IPOS2
3079 TABLE(IPOS2,1)=N1
TABLE (IPOS2,2) =N2
TABLE(IPOS2,3)=METCOST+ZMIN
FLW=1
3085 CONTINUE
3090 D0 3110 J=3., IGRPI(1)+2
IF(IGRP2(I).GT.IGRPI(J)) G0 T0 3093
N1=1GGRP2
N2=IGRF1.
G0 T0 3095
3093 N2:=IGRP2(I)
N1=IGRP1(J)
3095 CALL SPRFIND
IF(FOUND.EQ.0) GO TO 3110
IPOS2=IPOS2+1
IF(FLW。EQ。1) GO TO 3097
IPTR(I)=IPOS2
3097 TABLE (IPOS2,1)=N1
TABLE (IPOS2,2)=N2
TABLE(IPOS2,3)=METCOST+ZMIN
FL.W=1
3110 CONTINUE
IF(FLW.EQ.1) GO TO 3200

```
```

 IP0S2=1P0S2+1
 IPTR(I)=IPOS2
 3103 TABLE(IPOS2,1)=N1
 TABLE (IPOS2,2)=N2
 TABLE (IPOS2,3)=1.0E50
 3 2 0 0 ~ C O N T I N U E ~
 * Call subroutine TREE to find the minimum cost tree connecting
the nodes incident to the links stored in the first IPOS2 rows
of the array. TABLE. There is one link for each row I of
array TABLE, I=1,···..IPOS2, where the I Th link is incident
to the nodes stored in TABLE(I,1) and TABLE(I,2).
The weight Y (subscript.I) assigned to the I Th link is
stored in TABLE(I,3).
*.
3210 CALL TREE
A record of the links in the tree just found is kept if the
cost of the tree is better than any previously found tree.
Otherwise branch ahead to Statement \#3305.
COST=COST+SNDCOST
IF(COST.GE.I.0E30)G0 T0 3305
3213 IF(COST.GE.GRP4).GG T0 3305
3217 GRP4 =COST
3218 DO . 3220 I=1,NE
3220 STREDG(I1,I)=0
D0 3240 I =1, IPOS2
IF((TBL(I,3).EQ。0).OR.(TBL(I,3).EQ.2)) G0 T0 3240
IF(TABLE (I,3).EQ.1.0E50) GO T0 3305
N1=TABLE (I, 1)
N2=TABLE (I,2)
IF(N2.EQ。N) GO T0 3230
CALL FINDER
G0 T0 3240
3230 D0 3250 J=NODVTR(N1,1),NODVTR(N1,1)+NODVTR(N1,2)-1
IF(NODTYP(ISPEC(J,2)).GT.0) G0 T0 3255
3250 CONTINUE
3255 N2=ISPEC(J,2)
CALL FIND
STREDG(I1,IP0S1)=1
TP=TYP
IF(N1。NE.SNDND) GO T0 3237
TYP=2
3237 N1=N2
N2=N
CALI. FIND
TYP=TP
STREDG(I1,IPOS1)=1
3240 CONTINUE
*
* Before going back to determining the next tree, some bookkeeping

```
```

* must be done: The vector IGRP3 is updated; the rext subset of
* nodes to be considered, from chose in IGRP2, is determined.
3305 CTR1=0
IF(I2.EQ.0) G0 T0 3399
D0 3310 I=IGRP1(2),1,o1
IF(IGRP3(I).EQ.0) G0 T0 3310
CTR1=CTR1+1
IF(I.EQ.IGRP1(2)) GO T0 3310
IF(IGRP3(I+1).EQ.0) GO TO 3320
3310 CONTINUE
G0 T0 3399
3320 IGRP3(I)=0
IGRP3(I+1)=1
ICTR1=T I 1
IF(CTR1.EQ.1) G0 T0 3076
IF((I+1).EQ.IGRP1(2)) G0 T0 3076
D0 3330 J=I+2,IGRP1(.2)
3330 IGRP3(J)=0
DO 3340 J=I+2,I+CTR1
3340 IGRP3(J)=1
G0 T0 3076
3399 CONTINUE
G0 T0 3505
*
* The following code determines links which are in the network
* model and that connect nodes in vector IGRP1 to the satellite
* node N.
*

3526 D0 3590 I=3,IGRP1(1)+2
IF(IGRP1(I).NE.TVREQ1(I1)) GO T0 3519
IF((SNDND.NE.IGRP1(I)).AND.(TYPE(II).EQ.3)) G0 T0 3590
3519 IF(IGRP1(I).NE.SNDND) GO TO 3528
TP=2
G0 TO 3529
3528 TP=TVPE(I1)
3529 IF(NODVTR(IGRP1(I),2).EQ.0) GO T0 3590
DO 3530 J=NODVTR(IGRP1(I I),1),NODVTR(IGRP1(I),1)
1+NODVTR(IGRPI(I),2)m1
IF(NODTYP(ISPEC(J,2)).GT.0) GO T0 3550
3530 CONTINUE
g0 T0 3590
3550 DO 3560 K=NODVTR(ISPEC(J,2),1),
INODVTR(ISPEC (J,2),1)+NODVTR (ISPEC (J,2),2)-1.
3560 IF(EDGE(K,4).EQ.TP) GO T0 3570
3570 IPOS 2=1POS2+1
TABLE(IPOS2,1)=IGRP1(I)
TABLE (IPOS2,2)=N
TABLE (IPOS2; 3)=(EDGE (J,1)+EDGE (K,1))*ITVVCEQ/ITVTCTS
FLW=1
IF(IGRP1(I).NE,SNDND) GO TO 3590
SNDCOST=TABLE(IPOS2,3)

```
\(\operatorname{TABLE}(I \operatorname{POS} 2,3)=.0001\).
3590 CONTINUE
IF（FLW．EQ．1）GO TO 3596
IPOS2＝IPOS2＋1
\(\operatorname{TABLE}(\operatorname{IP} 0 \mathrm{~S} 2,1)=\operatorname{IGRP} 1(3)\)
TABLE（IPOS2，2）＝1
TABLE \((\operatorname{IPOS2,3})=1.0 E 50\)
3596 CTR4 \(=1\) POS 2
G0 T0 3057
3500 CONTINUE
3505 CONTINUE
RETURN
＊
＊Subroutine FIND determines whether or not there is a link
＊in the network model that is incident to nodes N1 and
＊N2．and furthermore that the link can carry the type of
＊flow requirement（message，halfmduplex television，simplex
＊television）。
SUBROUTINE FIND
FOUND \(=0\)
IF（NODVTR \((N 1,2)\) EQQ0）GO TO 15
\(\mathrm{ZMIN}=1\) 。OE50
D0 \(10 \operatorname{IX}=\operatorname{NODVTR}(N 1,1), \operatorname{NODVTR}(N 1,2)-1+\operatorname{NODVTR}(N 1,1)\)
\(\operatorname{IF}(\operatorname{ISPEC}(I X, 2)\) ．NE，N2）G0 T0 10
IF（ \((E \cup G E(I X, 4)\) 。GT：0）。AND。（EDGE（IX，4）．NE。TYP））GO TO 10
\(\operatorname{IF}((E \cup G E(I X, A), G E, 0) . O R 。(T R T P, E Q 。 0))\) GO T0 5
IF（EDGE（IX，4），NE．TRTP）GO T0 10
5 FOUND＝1
IF（EDGE（IX，1）。GE．ZMIN）GO T0 10
\(Z M I N=E D G E(I X, 1)\)
IPOS1＝IX
10 CONTINUE
G0 TO 20
15 CONTINUE
20 RETURN
＊Subroutine Tree finds the minimum cost tree in a graph
＊according to an algorithm given on page 207 in a book
＊entitled Communications，Transmission，and Transportation
＊Networks by Frank and Frisch．
SUBROUTINE TREE
D0 \(3550 \quad \mathrm{I}=1\) ，IPOS 2
\(\operatorname{TBL}(1,1)=\operatorname{TABLE}(I, 1)\)
\(\operatorname{TBL}(I, 2)=\operatorname{TABLE}(I, 2)\)
3550
\(\operatorname{TBL}(\mathrm{I}, 3)=0\)
DO \(3599 \mathrm{I}=1\). IGRP1（ 1 ）\(+12-1+\) BUFF
ZMIN＝1。0E52
DO． \(3570 \mathrm{~J}=1\), IPOS 2
IF（TABLE（J，3）。GE。ZMIN）GO T0 3570
IF（TBL \((\mathrm{J}, 3)\) ，NE，0）GO TO 3570
```

 ZMIN=TABLE (J,3)
 K=J
 3570 CONTINUE
TBL(K,3)=1
DO 3580 J=1,IP0S2
IF(J.EQ,K) G0 T0 3580
IF(TBL (J,1).NE,TBL(K,2)) G0 T0 3572
TBL (J,1)=TBL (
3572 IF(TBL(J,2).NE.TBL(K,2)) G0 T0 3578
TBL (J,2)=TBL (K,1)
3578 IF(TBL(J,1).NE.TBL(J,2)) G0 T0 3580
TBL (J,3)=2
3580 CONTINUE
3599 CONTINUE
COST=0
D0 3585 J=1,IP0S2
IF(TBL(J,3).NE,1) G0 T0 3585
COST=COST+TABLE (0,3)
3585 CONTINUE
RETURN
*

* Subroutine Xl determines those flow requirements,
* corresponding to television traffic, that have
* temporarily been routed through a link for which the
expected cost of flow is too unrealistic compared to
the real cost.
* SUBROUTINE XI
IF(NOTVREQ.EQ.0) G0 T0 8400
DO 8395 I=1,NOTVREQ
IF(TVRQPTR(I).EQ.0) G0 T0 8395
D0 8390 J=1,NE
IF(STREDG(I,J).EQ.0) G0 T0 }839
IF(EDGE (J,1).LT.1.0E29) G0 T0 8390
TVRQPTR(I)=0
D0 . 8370 L=1,NE
IF (STREDG(I,L).EQ.0) G0 T0 8370
IF(NODTYP(ISPEC(L,1)),NE.1) G0 T0 8356
TV=ITVVCEQ
G0 T0 8360
8356 TV=ITVTCTS
IF((EDGE(L,4),EQ。~1)。OR.(NODTYP(ISPEC(L,2))。EQ。1))
1G0 T0 8360
TV=ITVCNCP
8360 TMPEDG(L)=TMPEDG(L) -TVREQ(I)*TV
8370 CONTINUE
G0 T0 8395
8390 CONTINUE
8 3 9 5 ~ C O N T I N U E ~
8400 CONTINUE
RETURN

```
```

Subroutine X2 is the main subroutine for determining the required

* Steiner trees for television traffic.
*

y SuBROUTINE X2
DO 7920 I=1,NE
7920 TMPEDG(I)=0
IF(NOTVREQ.EQ.0) GO T0 7963
D07950 II=1,NOTVREQ
IF(TVREQ(I1).EQ.0) GO T0 7950
TVRQPTR(I1)=1
TYP=TYPE(I1)
TRTP=TVCR(II)
CALL PTMT
IF(GRP4.GE.1.0E30) GO T0 7970
DO 7945 J=1.,NE
IF(STREDG(I1,J).EQ。0) G0 T0 7945
IF(NODTYP(ISPEC(J,1)).NE.1) G0 ro 7941
TV=ITVVCEQ
GO T0 7942
7941 TV=ITVTCTS
IF((EUGE(J,4).EQ。\infty1).OR。(NODTYP(ISPEC(J,2)).EQ\&1))
1G0 T0 7942
TV = ITVCNCP
IF(EDGE(J,4),EQ.-2) G0 T0 7942
TV=ITVDIG
7942 TMPEDG(J)=TMPEDG(J)+TVREQ(II)*TV
7 9 4 5 CONTINUE
7 9 5 0 ~ C O N T I N U E ~
7963 TRBL=0
G0 T0 7965
7970 TYPE(1)=1
TYPE (2)=11
7965 CONTINUE
RETURN
*

* Subroutine X3 determines how the maximum number of television
* channels that can be routed through the corresponding tree
* without violating the constraint that the total flow through
* each linok be less than or equal to U (subscript M)
* (see Step 3 of the algorithm described in Section ?
of DLDCNS Report No.?).
SUBROUTINE X3
ZMIN＝1。OE40
DO $6050 \mathrm{~J}=12 \mathrm{NE}$
IF（STREDG（I，J）。EQ。0）G0 T0 6050
$\operatorname{IBUFF}=\operatorname{EDGE}(J, 3)$
IF（NODTYP（ISPEC（J，1））．NE。1）G0 T0 6031
IBUFF＝（IBUFF／ITVVCEQ）＊ITVTCTS
G0 T0 6035
$6031 \operatorname{IF}((\operatorname{EDGE}(J, 4), E Q,-1) \circ O R 。(\operatorname{NODTYP}(\operatorname{ISPEC}(J, 2)), E Q 。 1))$

```
JG0 T0 6035
IBUFF＝（IBUFF／ITVCNCP）\(\because\) ITVTCTS
IF（EDGE（J，4），EQ。－2）G0 T0 6035
IBUFF＝（IBUFF／ITVDIG）＊ITVTCTS
6035 IF（IBUFF．GE．ZMIN） ..... G0 T0 6050
```ZMIN＝IBUFF\(\mathrm{J} 0=\mathrm{J}\)
```

6050 CONTINUE
$K=T V R E Q(I)$
D0 $6070 \quad \mathrm{~J}=1, \mathrm{~K}$

```IF（（J＊ITVTCTS）。GT．ZMIN）GO．T0 6075
```

6070 CONTINUE
$6075 \mathrm{~J}=\mathrm{J} \ldots 1$
$F L G=J$
IF（FLG．NE．0）GO T0 6076
G0 T0 6085
6076 D0 $6080 \mathrm{~L}=1$ ，NE
IF（STREDG（I，L）。EQ。0）GO T0 6080
IF（NODTYP（ISPEC（L，1））。NE。1） ..... GO TO 6090
TV＝ITVVCEQ
GO T0 6077
6090 TV $=$ ITVTCTS

```\(\operatorname{IF}((\operatorname{EDGE}(\mathrm{L}, 4), E Q,-1), O R,(\operatorname{NODTYP}(\operatorname{ISPEC}(L, 2)), E Q .1))\)
```

1 GO T0 6077
TV＝ITVCNCP

```IF（EDGE（L，4）©EQ。－2）G0 T0 6077
```

TV＝ITVDIG
6077 TMPEDG（L）$=$ TMPEDG（L）$+\mathrm{J} *$ TV
6080 CONTINUE

```6085 RETURN
Subroutine \(X 4\) is a control routine for permanently routing
```television traffic．
```

SUBROUTINE $\times 4$
$X 44=1$
IF（NOTVREQ。EQ。O）GO TO 6195
DO 6190 $I=1$ ，NOTVREQ
IF（TVREQ（I）．EQ．0）G0 TO 6190
IF（TVRQPTR（I）。EQ。O）GO T0 6190
DO $6130 \mathrm{~J}=1, \mathrm{NE}$
$6130 \operatorname{TMPEDG}(J)=0$
CALL X3
IF（FLG。EQ。0）GO TO 6190
$B U F F=0$
IL $=0$
$6147 \mathrm{DO} 6150 \mathrm{~J}=1$ ，NE
IF（STREDG（I，J）．EQ．0）G0 T0 6150
IF（ISPEC $\left(\mathrm{J}_{3} 2\right)$ ．NE．N $)$ G0 T0
$B U F F=1$
6173 IF（SLNNET。EQ。0）GO TO 6150
$\operatorname{IF}((\operatorname{NODTYP}(\operatorname{ISPEC}(J, 1)), N E .0) \cdot O R 。(\operatorname{NODTYP}(\operatorname{ISPEC}(J, 2)), N E .1))$

```
    1G0 T0 6150
    IL = I L + + 
    IGRP1(IL)=ISPEC (J,1)
6150 EDGE(J,3)=EDGE(J,3)~TMPEDG(J)
    IF(SLNNET,EQ.0) G0 T0 6170
    IF((SLNHET.EQ.1)。AND.(IL。EQ。0)) G0 T0 6170
    WRITE(7,6171) FLG,I,TVREQ1(I),(IGRP1(J),J=1,IL)
6171 FORMAT(20I)
6170 TVREQ(I)=TVREQ(I)-FLG
    FLWW=1
    IF(BUFF。EQ。O) GO T0 6155
    SATTRFK=SATTRFK+FLG*ITVVCEQ
    TVSTTFK=TVSTTFK+FLG*ITVVCEQ
6 1 5 5 ~ I F ( T V R E Q ( I ) . G T 。 0 ) ~ G 0 ~ T 0 ~ 6 1 9 0 ~
    TVRQPTR(I)=0
    IREQCTR=IREQCTR+1
6 1 9 0 \text { CONTINUE}
6 1 9 5 ~ C O N T I N U E ~
    RETURN
    SUBROUTIINE SPRFIND
    FOUND=0
    IF(NODVTR(N1,2).EQ。0) GO TO 20
    ZMIN=1.0E50
    IZMIN=0
    IF(NODVTR(N1,2).EQ.0) G0 T0 20
    DO 10 IX=NODVTR(N1,1),NODVTR(N1,2)m1+NODVTR(N1,1)
    IF(DTN(IX).NE.N2) GO TO 10
    IZMIN=IZMIN+1
    IF((EDGE(IX,4).GE,0).OR。(TRTP.EQ.0)) G0 T0 5
    IF(TRT:P.NE.EDGE(IX,4)) GO T0 10
5 \text { ZZMIN=EDGE(IX,1)}
    IF(EDGE(IX,4)。GE.-1) G0 T0 11
    9 ZZMIN=EDGE(IX,1)*ITVCNCP/ITVTCTS
    IF(EDGE(IX,4)。GE。-1) G0 T0 1].
    ZZMIN=EDGE(IX,I)*ITVDIG/ITVTCTS
11 IF(ZZMIN,GE,ZMIN) GO TO 10
    FOUND=1
    IPOS 1=IX
    ZMIN=ZZMIN
    TABLE(IPOS2+1,4)=IZMIN
10 CONTINUE
    METCOST=0
20 RETURN
    SUBROUTINE FINDER
    IZMIN=0
    D0 10 IX=NODVTR(N1,1),NODVTR(N1,2)=1+NODVTR(N1,1)
    IF(DTN(IX).NE,N2) G0 T0 10
    ZMIN=IZMIN+1
    IF(TABLE (I,4).EQ。IZMIN) GO T0 40
    10 CONTINUE
    40 STREDG(I1,IX)=1
    IF(ISPEC(IX,2).EQ.N2) GO T0 20
```

```
    N1=N2
    N2=ISPEC(IX,2)
    CALL FIND
    STREDG(I1,IPOS1)=1
20 RETURN
    SUBROUTINE PTMT
    DO 19005 I=1,NE
    STREDGA(I)=0
19005 STREDGB(I)=0
    KC=1
    KAA=1
    KBB=1
    SNDND=0
19007 DO 19010 KA=KAA,1000
    IF(SBGRPA (I1,KA).EQ.9999) G0 T0 19015
19010 IGRPI (KA-KAA+3)=SBGRPA (I1,KA)
19015 IGRP1(1)=KA-KAA
    KAA=KA+1
    IF(IGRP1(1).EQ.0) GO T0 19101
    DO 19020 KB=KBB,1000
    IF(SBGRPB(I1,KB).EQ.9999) GO T0 19025
19020 IGRP2(KB-KBB+1)=SBGRPB(I1,KB)
19025 IGRP1 (2)=KB - KBB
    KBB=KB+1
19030 DO 19028 I=1,NE
19028 STREDG(I1,I)=0
    BUFF=0
    CAlL STRTREE
    DO 19040 I=1,NE
    IF(STREDG(I1,I).EQ.0) GO TO 19040
    STREDGA (I)=KC
19040 CONTINUE
    COSTA(KC)=GRP4
    KC=KC+1
    GO TO 19007
19101 CSTA=0
    D0 19103 I=1, KC-1
19103 CSTA=CSTA +COSTA(I)
    IF(SAT.EQ。O) GO T0 19345
    KC=1
    COSTB(KC)=1.0E60
    KAA=1
    KBB=1
    GO TO 19190
19107 DO 1.9110 KA=KAA, 1000
    IF(SBGRPC(I1,KA).EQ.9999) GO TO 19115
19110 IGRP1 (KA=KAA+3)=SBGRPC(II,KA)
19115 IGRP1(1)=KA-KAA
        IF(IGRP1(1)。EQ,0) G0 T0 19320
        IF(SBGRPD(I1,1).NE.10000) GO TO 19118
        IGRPI(2)=0
        GO TO 1912%
```

```
19118 D0 19120 KB=KBB,1000
    IF(SBGRPU(I1,KB).EQ。9998) GO TO 19125
19120 IGRP2(KB=KBB+1)=SBGRPD(I1,KB)
19125 IGRP1(2)=KB-KBB
    KBB=KB+1
    IF(IGRP2(1).EQ.0) GO T0 19150
19127 DO 19128 I=1,NE
19128 STREDG(I1,I)=0.
    BUFF=0
    CALL STRTREE
    DO 19135 I=1,NE
    IF(STREDG(I1,I).EQ,0) G0 T0 19135
    STREDGB(I)=KC
19135 CONTINUE
    COSTB(KC)=GRP4
    G0 T0 19190
19150 COSTB(KC)=COSTA(IGRP2(2))
    D0 19160 I=1,NE
    IF(STREDGA(I).NE.IGRP2(2)) GO T0 19160
    STREDGB(I)=KC
191.60 CONTINUE
19190 L=0
    D0 19210 KA=KAA, 1000
    IF(SBGRPC(I1,KA).EQ.9999).G0 T0 19215
    IF(KAA.EQ。1) GO T0 19213
    D0 19212 I=1;KAA -2
19212 IF(SBGRPC(I1,I).EQ.SBGRPC(I1,KA)) GO TO 19210
19213 L=L+1
    IGRP1(L+2)=SBGRPC (I1,KA)
19210 CONTINUE
19215 YGRP1 (1)=L.
19217 KAA = KA+1
    DO 19220 KB=KBB,1000
    IF(SBGRPD(I1,KB)。EQ。9999) G0 T0 19225
19220 IGRP2(KB*KBB+1)=SBGRPD (II, KB)
19225 IGRP1 (2)=KB\omegaKBB
    KBB=KB+1
    SNDFLG=0
    DO 19240 I=3.IGRP1(1)+2
19240 IF(TVREQ1(II).EQ.IGRP1(I)) GO TO 19260
    SNDND=0
    GO T0 19275
19260 SNDFLG=1
    DO.19270 I=1,1000
    IF(SEND(I1,I).EQ.9999) G0 T0 19271
19270 CONTINUE
19271 NOSNDND=I~1
    DO 19299 KA=1,NOSNDND
    SNDND=SEND (I1,KA)
19275 BUFF=1
    DO 19227 I=1,NE
19227 STREDG(I1,I)=0
```

```
    cAll strtree
    IF(COSTB(KC).LE.GRP4) G0 T0 19298
    COSTB(KC)=GRP4
    DO 19290 I=1,NE
    IF(STREDGB(I).NE.KC) GO T0 19280
    STREDGB(I)=0
19280 IF(STREDG(I1,I).NE.1) G0 T0 19290
    STREDGB(I)=KC
19290 CONTINUE
19298 IF(SNDFLG.EQ。0) G0 T0 19300
19299 CONTINUE
19300 KC=KC+1
    G0 T0 19107
19320 CSTB=0
    DO 19340 I=1, KC-1
19340 CSTB=CSTB+COSTB(I)
    CSTB=CSTB+STCT
    IF(CSTB.LT.CSTA) G0 T0 19360
19345 GRP4=CSTA
    D0 19350 I=1,NE
    STREDG(I1,I)=0
    IF(STREDGA(I).EQ.0) G0 T0 19350
    STREDG(II,I)=1
19350 CONTINUE
    G0 T0 19380
19360 GRP4=CSTB
    D0 19370 I=1,NE
    STREDG(I1,I)=0
    IF(STREDGB(I).EQ.0) GO T0 19370
    STREDG(I1,I)=1
19370 CONTINUE
19380 RETURN
    SUBROUTINE RCST
    IF(EDGE(I,2).NE.O) GO T0 60004
    BUFF=0
    G0 T0 60003
60004 IF((EGFL(I,1)+EDGE(I,2)).LT。EGFL(I,2)) G0 T0 60000
    BUFF=1
    G0 T0 60003
60000 D0 60001 M=1,ISPEC(I,3)
        IF((EDGE(I,2)+EGFL(I,1)).LE.SPEC(I,M*4+1)) G0 T0 60002
6 0 0 0 1 ~ C O N T I N U E ~
60002 BUFF=SPEC(I, (M-1)*4+2)+SPEC(I, (M-1)*4+3)
    1+SPEC(I, (M-1)*4+4)*(EDGE(I,2)+EGFL}(I,1)-\operatorname{SPEC}(I,(M-1)*4+1)
        BUFF=(EDGE (I,1)*EDGE(I,2))/(BUFF-STREDGA (I))
6 0 0 0 3 ~ C O N T I N U E ~
    IF((OUTPUT.EQ.0).OR.(EDGE(I.,2).EQ.0)) GO TO 60009
    WRITE (1,60010) I, EGFL(I,1), EGFL(I,2),EDGE(I,2),BUFF,SALPHA
60010 FORMAT(1H1,13,1X,5(F11,3,1X))
60009 RETURN
    END
```


