

HE
7814
D665
1974
#15

CRC PROGRAM MANAGER:
PROJECT LEADER:

DLUCNS Report No.: 	15
Date of Issue: 	 August 1974

W.L. Hatton
A.R. Kaye 1253 es? '

COMMUNICAEONS CANADA

J Ià 1

LIBRARY "— BIBUDINÈQUE

DOMESTIC LONG DISTANCE COMMUNICATIONS NETWORK STUDY

Communications Systems Engineering

YN: A COMPUTER PROGRAM FOR LONG-RANGE NETWORK PLANNING

by

r
G.A. Neufeld .)

Systems Modelling & Analysis Group

I .• 4, 14

1

" I • . „„4

- 	
t

t4E7

4=it

1)01 3012-s_ ,)

Pti- 1-50g13K

TABLE OF CONTENTS

PAGE

1. 	INTRODUCTION 	 1

2 , 	INPUT FILES FOR PROGRAM SYN 	 3

3. OUTPUT FORM PROGRAM SYN 	 15

4. STRUCTURE OF PROGRAM SYN

4.1 	SUBROUTINE FPTH

4.2 SUBROUTINE FIND

4.3 SUBROUTINE X2

4.4 SUBROUTINE PTMT

4.5 SUBROUTINE STRTREE

4.6 SUBROUTINE TREE

4.7 SUBROUTINE SPRFIND

4.8 SUBROUTINE FINDER

4.9 SUBROUTINE X1

4.10 SUBROUTINE RCST

4.11 SUBROUTINE X4

4.12 SUBROUTINE X3

REFERENCES 	 30

17

19

20

21

22

23

24

25

26

26

27

28

29

APPENDIX A 	 31

1 0 	INTRODUCTION

The purpose of this report is to describe a

computer program called SYN which is an implementation of

an algorithm described in DLDCNS Report No. l4. SYN iS a

tool for routing end-to-end message and television

traffic, through a network model with step-like link

costs, at minimum cost.

The purpose of this report is to describe a computer

routine called SYN. SYN is an implementation of the minimum cost

routing algorithm described in DLDCNS Report No. 14 (see Neufeld

[2]). Since the implementation parallels the description of the

algorithm (see Neufeld [2]), the object of this report is more

concerned with how the algorithm was implemented and how to use

it, Before going on, a general remark on the implementation

should be made. The reader may from time to time question the

reason for having implemented certain parts of the algorithm as

they are in SYN. The only comment is that it reflects the "state

of the art" in software engineering (for example, see [1]).

There is little theoretical basis for development of software

whose requirements are being defined in parallel with its

development. SYN evolved over a period of time. During this

time, new features and constraints were added, during the course

of the long-distance communications study. As a result, the

program was continually being modified.

2

The basic problem, for which SYN is designed, is described

in Section 3 of DLOCNS Report No. 14 (see Neufeld [2]) . 	SYN

provides the user with a rather general tool for network planning

and its application is, to some degree, open to the imagination

of the user. SYN is written in FORTRAN IV and is presently set

up so as to be called as a subroutine by a control program (see

DLOCNS Report 14).

I.

}data for link 1

}data for link 2

}data for link NE

}end of file

}other information

Record 1
Record 2
Record 3
Record 4

Record 2NE-1
Record 2NE:
Record NE-1-1
Record> NE-1-2
Record NE-a

2. 	INPUT FILES FOR PROGRAM SYN

SYN was written in the form of a FORTRAN

Subroutine. The input ..to SYN consists of four files as -

well as input parameters via the subroutine call

statement.

The fol lowing is a description of all the input files to

program SYN. All files are read in under G Format. Thus data

elements can be specified in any format and separated by a blank

character(s).

The file, that contains all the link cost functions along

with some other information, is attached to Unit 4. Basically

the file contains two records for each link, followed by two

records containing an end of file mark, followed by a record

containing some further information. Thus a schematic of the

file with n links is as follows:

1

4

Let us describe the records (21-1,21) for a typical link I. 	(It

is assumed that each link cost function will have at most four

"steps", although this could readily be increased by adding more

records in file for each link followed by expanding the

corresponding dimension statement in the program and changing the

format statement.) Suppose link k is incident to nodes n1 and

n2 with nl < n 2 and its cost function is given in Figure 1.

Clearly each step i is completely specified by the parameters

(w i , x i , y i , z i), i=1,2,3, and (w4 , x 4) where

I.

1

C ost s

X3

I 	x2 h
! Yl

Y2=0

X 	v
N = 0 W2 	w3 	 w4

flow (capacity)

FIGURE 1

I. 	2

w • is the P coordinate of the "bottom" of step i, xi is the Q

coordinate of the "bottom" of step i, y i is the size of the

"step" or discontinuity, Z i is the slope of the linear portion of

step i, w4 is the P coordinate of the maximum capacity of link k,

and x 4 is the cost for w4 flow units in link k. The number of

parameters n3 is dependent upon the number of steps, s, in the

6

cost function. 	n 3 = (sx4)+2. 	(Note the function is actually

over-specified this was done for purposes of convenience within

the program SYN.) If a link cost function has 4 steps, then

record 21-1 and 21 are as follows:

Record 21-1: 11 1 n 2 n 3 wl x l yi ol w2 x2 Y2 e2 w3

Record 21: x3 y3 o3 w4 x4 e l e2

Record 21-1 contains the first 12 data elements and the

remainder are on record 21. The data element el is equal to

-1 if link k is a TCTS analogue link,

-2 if link k is a CNCP link,
-3 if link k is a TCTS digital link

1 if link k is incident to the satellite node and
is restricted to message traffic,

2 if link k is incident to the satellite node N and
is restricted to television transmit/receive traffic
(omni television traffic and broadcast television
traffic being transmitted to the satellite node),

3 if link k is incident to the satellite node and
is restricted to television traffic being received
from the satellite, and

0 othérwise0

k data element e2 is equal to n2 0

Record n+1 contains an end-of-file mark, namely "9999" and

record n+2 is empty.

Before going on to describe the last record (n+3) in the

file, let us state some assumptions regarding the ordering of the

links:

7

i) As already noted, n l < n 2 for each link k.

ii) The (node) n i for link k (in record 2k-1) is less than
or equal to the n l for link R. (in record 2t-1) for all
k<£.

iii) If (node) n i for link k (in record 2k-1) is equal to
the nl for link L (in record 2£-1) for some k<£. then
n 2 for link k (in record 2k-1) is less than the n2 for
link L (in record 29,-1).

If N is the number of nodes in the network model, then the

format of record n+3 is as follows:

b 2 X.. . 	.. 	bN where

s l is the cost per voice circuit for flow routed through

the satellite space segment, s 2 is the number of voice

circuits that are essentially equivalent to a television

channel when routed through the satellite space'segment,

and b i corresponds to node i in the network model and

i =0 unless node i corresponds to a node within the

satellite model, that is i is either the "satellite" node

itself or i is incident to a link that is incident to the

satellite node.

The data elements in this file correspond to the following

variables in program SYNTHESIS.

For link I, corresponding to record 21-1 and 21,

8

ISPEC (1 ,1) = n
ISPEC (I,2) =
ISPEC (1 ,3) = n3,
SPEC (I,1),....., SPEC (I, n 3)

correspond to w l , x 1 ,....... y t , a t , w t+1 , Xt.1.1

where t = (n 3 -2)/4. Furthermore

EDGE(I,4) = e l and DTNCI) = e 2 .

Corresponding to the very last record in the file, STCT = s l ,

ITVVCEQ=s 2 , and NODTYP(J)=b j , J=1,0000,N where N is the number of

nodes in the model.

The next file contains all the flow requirements and it is

attached to unit 5 in the program. Basically the file contains

one record for each message flow requirement, followed by a

record containing an end of message flow requirements marker,

followed by five records for each television flow requirement.

Thus a schematic for a file with fl message flow requirements and

f 2 television flow requirements is as follows:

Record 1

Record f
l

Record f 1 +1

Record f 1 +2

Record f1+6

Record f +2+f 5 2'- data for message flow
requirement f 2 0

r dr Record f 1 +r2 J+6

Record f12 e5+7 lend-of-file marker.

data far message flow
requirement 1.

data for message flow
requirement fl

end of message flow
requirement marker

l'

data for television flow
requirement 1.

o

o

For each message flow requirement i, the côrresponding

record i is as follows:

0
Record i: 	n n t•

0
where n i and n i are the source-sink nodes for the ith flow

requirement. Data element t i is number of voice circuits to be

10

routed between 	and n
i

. Data element n
i

is -1, -2, or -3

according to whether the traffic.requirement must be routed on

TCTS analogue, CNCP, or TCTS digital links where it is routed

terrestrially. Record fl 	1 contains "9999' for purpose of

indicating the previous record (f 1) as the last message flow

requirement. The no.des in the network are assumed to be labelled

such that if there are s nodes in the network that are either a
8

source (or sink) for message flow, then 1 É.n i , ni c s for all

message flow requirements i.

The data pertaining to each television flow requirement k

is kept in groups of five records a, b, c, d, e. Consider first

the case for a half-duplex television flow requirement k. Record

"a" contains four data elements kl, k 2 , k 3 , and k 4 as follows:

Record "a":

k l k 2 k 3 k4.

Data element kl equals the number of half-duplex channels

in the kth television flow requirement. Data element k 2 equals 2

to indicate'it as being half-duplex television. Data element

k 3 represents the source node from which distribution takes place.

Since every point receiving a half-duplex channel is also a

distribution point, k3 is set equal to 0. Data element k4 is -1,

-2, or -3 according to whether the traffic requirement must be

routed on TCTS analogue, CNCP, or TCTS digital links where it is

routed terrestrially. Records b, c, d and e are described making

direct reference to Neufeld [2] using the sanie variables.

1 1

Records "b" and "c" are as follows:

Record "b": Pik 02k . 0 . 9999 nî k ... 9999 rq k ... 9999 9999

II
	 c".

Record 	 m
2k l
	9999 m2lk " . 9999 m P 	9999

k n

where

{n i 	n i 	.1 	= lk' 	2k'° 9 V k and

fmi 	mi
' - lk' 	 = yAk n 	V.

Records "d" and "e" are as follows:

1 	1

	

Record "d": n
lk

n
2k 	

99 n 2 	. 9g99
lk"

	

e e 	9999 9999
lk 	lk

1 Record "e": ulk
	9998 . 11 1k ...9999 ..• l 	° G •

9999 uY ak ... 9998 u (rk ... 9999

where

{11 110 11 10e } = "C k n VI 	{ N } .
. 	i

{Uk9 u2ki'°. .}
	= 	V n V [3 .

Some of the sets of nodes {m1 k ,

-1 	-i and {u
lk'

u
2k". .} may be empty and this is designated with a

12

space character (). 	If for some i, Steiner tree.

S Ci k(Vk n V r k) is known:to correspond to some Steiner tree

S A k(V k n V A k) then {ui k' .u2ki9°° .) may be replaced in the file l
record by {o 	..The result is an increase in efficiency in the

program because the Steiner tree S c k(V k n V c k) is not

determined for a second time.

The specification for a simplex television flow

requirement 1(1 and k 4 are as for half-duplex television with a

few exceptions. 	First, k 2 is .equal to 3. 	Data element k 3 is the

node from which the simplex television is distributed.

Furthermore, the record "a" contains some additional data

pertaining to the source or node from which the television

channel is to bé distributed. Thus record "eis as follows:

1

where k l is as before, k 2 =3, k 3 is the source node, k 4 equals

 -2, -3 as described above, and £1 0000 9.. _ are the nodes that the

user wishes to be considered as points from which to transmit the

television channel to the satellite if it is used. 	It is assumed

that all the nodes 	 are in V B k.
1

The data elements in this file containing the flow

requirements correspond to the following variables in program

SYN. For message flow requirement I, corresponding to the I th

record in the file, IRM(I,1) = n .IRM(I,2) = n 1 	
and RM(i,1)

= t 0 For half-duplex television flow requirement K, I

13

corresponding to the k th group of five records that follow the

data pertaining to message flow requirements, TVREQ•(k) = k l ,

TYPE(k) = k 2 , TVREQ1(k) = k 3 , and TVCR(k) = k 4 in record "a";

SBGRPA(I), I=1,.. , corresponds to nl k , nh, •• 9999 9999 in

record "b"; SBGRPB(I),I=1,.., correspond to ml k , m l2k , ... 9999 in

record "c"; SBGRPC(I),I=1,... correspond to rlk, r2k99-99

9999 in record "d"; SBGRPD(I),I=1,,.., correspond to ul k , uh,

9999 in record "e". For the case of a simplex television flow

requirement l< then TVREQ(K), TYPE(K), TVREQ1(K), SEND(k,1),...

SEND(K,L), SEND(K,L+1) correspond to k l , k 2 , k 3 , 	 9999

in record "a".

There is input to program SYN that consists of various •

parameters which may be changed from run to run. They are passed

to SYN via the subroutine call statement. There are five

parameters, NET, SAT, ALP, BET, and ALP1. NET is really of no

significance and is always set equal to -3. SAT equal 0 or 1

according to Whether the satellite system .cannot or can be used '

for routing traffic. ALP and BET corresponds to thefalpha (a)

and beta (13) parameters discussed in DLDCNS Report No. 14 12].

ALP1 corresponds to an "alpha" value that applies only to the

links corresponding to the satellite system.

- The next input file is attached to unit 12. The file

specifies an initial load or flow for each of the NE link in the

model as well as the satellite. There is a one-to-one

correspondence between the first NE records in this file and the

records in the file read in on unit 4 (see above). A scheMatic

of the'lile is as follows:

14

Data for link 1 RECORD 1
o

o

RECORD NE 	Data for link NE
RECORD NE1-1 Data for satellite

Each record i has the following format:

29 alphanumeric characters 	td i°

The first twenty-nine characters may be blank or contain some

identifier. They are followed by the amount of flow td i to be

pre-loaded on link i, or the satellite when i=NE+1 9 before SYN

begins to route traffic. When all the links and the satellite

are being preloaded with zero traffic, then a file containing

only the first record e with £di . 10 6 9 is sufficient.

The file read in from unit 13 specifies constraints in

routing traffic through the network so as to achieve a more

reliable network. Each constraint i specifies a set of links I .

1 	2 {t i , t i ,...1 of which a given number q i must be loaded to some

percent p i of their capacity before any one of the links in I may

be loaded to more than p i percent of their capacity. Each record

of the file specifies one constraint and the last record in the

file contains a "9999" end-of-file marker. The format of each

record i specifying the i th constraint is

where n il 	n il 	and e il correspond to n i , n 2 and e i for link 1 	2 e 	1

50 in the file read in from unit 4 (see above).

1

15

3. OUTPUT FROM PROGRAM SYN

In addition to summary output to the printer

(teletype), , theré are two output files from SYN. One -

output file pertains to the total flow on each link in the

model s and the other pertains to information about the

traffic routed through the satellite.

•The total network cost and the amount of traffic routed

through the satellite is output on unit 6. The load on each link

in the network is output on a file attached to unit 9. There is

a one-to-one correspondence between the records in this file and

those in the file read in from unit 4. 	'

Information pertaining to traffic routed through the

satellite is output on unit 7. Every time SYN routes message

traffic through the satellite, it is identified as to its

source-sink nodes, its type (TCTS analogue, TCTS digital, CN/CP),

and the ground stations through which it was routed. Each time,

three new records are added to the file attached to unit 7. The

format of tnese three records is as follows:

RECORD 1: 	aaaa 1 	2 3 4
RECORD 2: 	b l

RECORD 3: 	c l

wheré a l is the amount of message traffic routed through the

satellite, a 3 , a 4 , are the source-sink nodes of the message

16

traffic, a 2 is the type of message traffic (TCTS analogue -1,

CR/CP -2 9 TCTS Digital -3) 9 and 1) 1 , c l are the nodes in the

terrestrial network at which the traffic is routed through the

ground stations. On the other hand, for each television channel

of a television traffic requirement routed through the satellite,

only one new record is added to the file attached to unit 7:

where a 1 is the number of channels of the b l
th television traffic

requirement routed, c l is the type of television channel (simplex

3, halfLduplex 2), and d l , d2 9are the nodes in the

terrestrial Iletwork at which the television channel has been

routed through a ground station.

17 	•

4. STRUCTURE OF PROGRAM SYN

MWNIMMIMMUMMOMUMIIIMMOUMNIMMINIOW0110...,WAINVMOIMU,MMIUM.W.

SYN is a subroutine and is itself made up of

several subroutines. The purpose of this section is to

provide the necessary information to understand the

structure of SYN and the function of its various

components.

Program SYN consists of a main subroutine along with

twelve subroutines. Figure 2 shows how all the routines

interrelate. A link between a pair of routines indicates one

routine involking the use of another by means of a subroutine

call statement. The links are directed to show the hierarchy;

control is always passed from one routine to another in the

direction indicated on each link. For example, the main

subroutine SYN involkes the use of subroutine FPTH (not

vice-versa). Control is always given back to the calling

routine. The number of call statements by which each routine

calls another is given •by the number adjacent to each link in

Figure 2. The areas shown in Figure 2 (indicated by broken

lines) give a correspondence between the function of different

groups of routines to the algorithm described in Section 4 of

DLOCNS Report #14 (see Neufeld [2]). 	In the remainderce this

section we describe the input, function, and output of each

subroutine.

• e

r
\‘'

(1)
Step 2 (for
message
traffic

' 	SYN
(Main

Subroutine

----1
\ ;

Subroutin
X4

I

Subroutin
X2

\

STRTREE 	 (1)
1 	Subroutine

(2

(1) 	\(4)

Subroutine
PTMT

Subroutine
FIND

ri
■

Subroutine
TREE

malamm memmommem

(All of Steps 1, 4, and 5;
parts of Steps 2 and 3)

t.

. 	 II :
o

Subroutine ili:
Subroutine 0

X1 	 RCST 	l' .,
P 	

1.
1,
,,

J
0 o

--1r -

Steps 3b ît3c 	Within 	 1(1)
s (for television 	Step 3b 	I
\ 	traffic).

1 	 1

1 1
L__
Step 3e (for •
television
traffic)

Subroutine
SPRFIND

Step 2 (for television
traffic)

FIGURE 1 	SCHEMATIC FLOU CHART OF SYN

Subroutine
FPTH

•••,......
	--/ 	i

1 • J_. _ _ ___ _ _ __ ___ -J

I ,

,

Subroutine
FINDER

Subroutine
X3 / Subroutine
X3

19

4.1 	SUBROUTINE FPTH

Input:

NE - 	is the number of links in the graph;

NREQNDS - is the number of ' n odes in the graph that are
either a source or a sink for some flow
requirement;

N 	is the number of nodes in the graph.

EDGE (M,1),M=1,... 9 NE - is equal to the weight ym assigned
to link M (see Neufeld [2]).

NREQ - is the number of flow , requirements corresponding to
message traffic.

NODTYP(I),I=1,...,N - as defined above (MAIN PROGRAM -
input).

SAT - 	as defined above (MAIN PROGRAM - input).

NET - 	as defined above (MAIN PROGRAM - input).

EDGE(J,4),J=1,...,NE -as defined above above (MAIN PROGRAM
- input).

IRM(J ,1),IRM(J,2) 9 IRM(J,3),J=1 9 ...,NREQ 	asdefined
above (MAIN PROGRAM - input).

RM(J,1),J=1 94 0 09 NREQ - as defined above (see MAIN PROGRAM
- input) except that RM(J,1) is the amount of flow
requirement J that remains to be permanently
routed (see Neufeld [2] - corresponds to f. in
DLDCNS Report #14).

TRBL - is equal to 1.

Function:

To find the shortest path in the graph between all
pairs of nodes IRM (J,1) and IRM(J,2) for all

ii) To record the length of each shortest path.

iii) To determine the total flow on each link in the graph
when the flow requirements J, each with RM(J,1) units
of unrouted flow, J=1,...,NREQ are routed along the
shortest paths determined in i.

20

Output:

IPTHLG(J),J=1,..0,NREQ - is the number of links in the
shortest path between nodes IRM(J„1) and IRM(J,2) 0

IEDGPTH(J,K),K=1,000,IPTHLG(J) - are the links in the
shortest path between nodes IRM(J,1) and IRM(J,2).
The links are stored in consecutive with IEDGTH(J,1)
being the link incident to node IRM(J,2) and
IEDGPTN(J,IPTHLG(J)) being the link incident to node
IRM(J,1).

RM(J,2),J=1,...,NREQ, - is equal to 0 if RM(J,1) = 0 and
• is equal to 1 if RM(J,1)>0.

EDGE(M 9 2),M=1,000,NE - is the total flow on link M when
the message flow requirements J, each with RM(J,1)
units of unrouted flow, J=1,.0.,NREQ are routed along
the shortest paths.

TRBL - is equal 0 if all the required shortest paths
exist and is equal to 1 otherwise.

4.2 SUBROUTINE FIND

Input:

N1,N2 - are two nodes in the graph with Nl<N20

NODVTR(N1,1) - is the first row in the array ISPEC such
that ISPEC(NODVTR)N1,1),1)=N1 0

NODVTR(N1,2) is the number of rows in the array ISPEC with
ISPEC(NODVTR(N1 9 1) 9 1)=N1 0

EDGE(44),J 	NODVTR(N1,1), NODVTR(N1,1) 	NODVTR(N1,2) as
defined above.

TYP -

Function:

is equal to 1, 2, or 3, depending upon the calling
routine. TYP is related to the type of traffic,
namely 1 for message traffic, 2 for omni
television, and 3 for broadcast television.

To determine the existence of a link'that is incident to
nodes Ni and N2 and that may be used for the type of
traffic specified in the variable TYPO

21

Output:

FOUND - is equal to 1 if the required link exists in the
graph and is equal to 0 otherwise.

IPOS1 - is equal to the row of the array ISPEC that
corresponds to the required link, if it exists.

4.3 SUBROUTINE X2

Input:

NE - 	as defined above.

NOTVREQ - is equal to the number of flow requirements
' corresponding to television traffic.

TVREQ(I) 9 I=1,...,NOTVREQ - is equal to the nueer of
channels remaining to be routed for the I" flow
requirement corresponding to television traffic.

TYPE(I),I=1,...,NOTVREQ - is the type of flow requirement
I corresponding to television traffic. TYP(I) = 2 if
the flow requirement corresponds to omni television
and = 3 for broadcast television.

NODTYP(I) 9 I=1 9 000 9 N (defined).

ITVVCEQ - is the number of voice circuits per television
channel in any of the links associated with the
satellite system model (see Neufeld [2]).

ITVTCTS - is the number of voice circuits per television
channel in any of the links I associated with the TCTS
system (i.e. EDGE(I,4)- -1) 0

ITVCNCP - is the number of voice Circuits per television
channel in any of the links I associated with the CNCP
system (i.e. EDGE(I,4)= -2).

TVCR(I) 9 I=1 - is the :type of terrestrial link that may be
used where the Itn television requirement is routed
terrestrially.

Function:

I, To determine the minimum cost tree through which to
distribute each flow requirement I,I=1,...9NQTVREQ.

22,

ii. To determine the total flow on each link in the graph
when the flow requirements I, each with TVREQ(I)
channels of unrouted flow, I=1,...,NOTVREQ, are routed
through the minimum cost trees determined in i.

Output:

TRBL i is equal to 1 if not all the required minimum cost
trees exist and is equal to 0 otherwise.

TMPEDG(J),J=1,000,NE - is the total flow on link J when
the televisio traffic flow requirements K, each with
FVREQ(K) channels of unrouted flow, K=1,000,NOTVREQ,
are routed through the minimum cost trees.

TVROPTR(I),I=1,.00„NOTVREQ - equals 1 if TVREQ(I)>0 and
equals 0 otherwise.

4 0 4 SUBROUTINE PTMT

Input:

SBGROA(K,J), SBGRPB(K,J), SBGRPC(K,J), and
SBGRPD(K,J),J=1,...,K=1,.0.,NOTVREQ. 	These arrays
contain all the infprma0on pertaining to nodes in the
various subgraphs A, discussed earlier in this
report under input tô Màin Program - SYNTHESIS.

Il 	- 	corresponds to the Ilth television traffic flow
requirement being considered, lc II c NOTVREQ.

SEND(I1,J)„J=1, 000 , - as defined above (MAIN
PROGRAM-input).

Function:

To determine the minimum cost Steiner tree through which
to distribute the Ilth television flow requirement.

Output:

GRP4 	is a constant that is c 100E30 unless there dos
not exist a tree through which to route the Iltn
television flow requirement.

STREDG(I1,I),I=1, 000 „NE - is equal to 1 if link I is part
of the minimum cost Steiner tree for the Ilth
television flow requirement and is equal to 0
otherwise.

23

SNUND-- equals 0 unless the flow required corresponds to
broadcast television in which case SNDND equals one of
the nodes stored in the Ilth row of the array SEND
,(input to Main Program).

4.5 SUBROUTINE STRTREE

Input:

IGRP1(1) - equals the number of nodes that must be in the
Steiner tree.

IGRP1(2) - equals the number of nodes that ma be in the
minimum cost Steiner tree that interconnects the nodes
IGRP1 (I),I-3,...,IGRP1(1)+2 0

IGRP1(I),I=3,.00,IGRRP1(1)+2 - are all the terrestrial
nodes, arranged in increasing order, that must be in
the Steiner •tree that is to be determined.

IGRP2(I),I=1,...,IGRP1(2) - are the nodes that may be in
the minimum cost Steiner tree.

BUFF - equals 1 if node N is to be in the Steiner tree
that is to be determined in subroutine STRTREE and
is equal to 0 otherwise.

SNDND - defined above.

Il - 	input from subroutine PTMT.

TYPE(I1) - as defined above (MAIN PROGRAM-input).

NODUTR(I,J),I=1,...,N,J=1,2 - as defined above (Subroutine
FIND-input).

NODTYP(I) 9 I=1 9 ..0,N - as defined above (MAIN
PROGRAM-input).

- as defined above (MAIN
PROGRAM-input).

Function:

To determine the minimum cost Steiner tree in the network
mode] that interconnects the nodes stored in
IGRP1(I),I=3,...,IGRP1(1)+2, as well as the node N if BUFF
equal 1, and that uses any of the nodes stored in
IGR2(I),I=1,...,IGRP1(2), as intermediate nodes if there
is a resulting reduction in cost.

24

Output:

STREDG(I1 9 0,I=1,00.,NE - equals 1 if link I is in the
minimum cost Steiner tree ,and is equal 0 otherwise.

GRP4 - equals the •cost of the minimum cost Steiner tree.

4.6 SUBROUTINE TREE

Input:

IPOS2 - equals the number of links in the subgraph for
which a minimum cost (weight) spanning tree is to
be found.

TABLE(I 0 1) and TABU (I,2),I=1,0.0,IPOS2 9 - are the nodes
to which tlie I" link in the subgraph is incident
(Note: "Itn link" here does not refer in any way to
the !el link in the network model (i.e 0 stored in the
•Ith row of the arrays ISPEC and SPEC.

TABLE(I3) - is the weight assigned to the Ith link in the
subgraph for which a minimum cost spanning tree is to
be found.

Function:

To determine the minimum coSt spanning tree in the
subgràph defined by the IPOS2 links stored in the array
TABLE.

Output:

COST - is the cost of the minimum cost (weight) spanning
tree.

TBL(I,3) 9 I=1,00.,IPOS2 - equals 1 if the link between
nodes TABLE(X1) and TABLE(I2) is in the minimum
spanning tree, and is equal to 0 or 2 otherwise.
Note that the "link" between nodes TABLE(Il) and
TABLE(I2) may not actually be in the model but
represent two links in the model that are in
series.

.25

4.7 SUBROUTINE SPRFIND

Input:

N1,N2 - two nodes in the network model with N1<N2.•

IPOS2 - is a pointer to the last (row) entry made in the
array TABLE.

NODVTR(N1,I),I=1,2 - as defined above (subroutine
FIND-input).

DTN(I),I=NODVTR(N1,1),...,NODVTR(N1,1)-1 	NODVTR(N1,2) -
as defined above (MAIN PROGRAM-input).

NET - 	as defined above (MAIN PROGRAM-input).

EDGEPX 9 1)i:EDGE(IX,4),IX = NODVTR(N1,1), NODVTR(N1,1)-1
NODVTR(N1,2) - as defined above (MAIN
PROGRAM-input).

ITVCNCP, ITVTCTS - as defined above (Subroutine X2-input.

Object:

To find the minimum cost link I, if it exists, that is
incident to Node Ni and such that DTN(I)=N2.

Output:

FOUND - equal 1 if such a link exists in the network model
and equals 0 otherwise.

IPOS1 - equals I where link I is the minimum cost link
that is incident to Ni and for which DTN(I)=N2.
No value is assigned to IPOS1 when FOUND=0.

TABLE(IPOS2+1,4) - is not specified when FOUND=0.
TABLE(IPOS2+1,4) is an indicator or pointer to
enable identification of the link just found.
TABLE(IPOS2+1,4) is the i th link, in a sequential
search beginning at the first row in arrays ISPEC
and DTN, for which ISPEC(i,1) = Ni, DTN(i) = N2,
and that corresponds to the link just found,
namely has the minimum cost of all such links.

ZMIN - is the cost of the link identified b N1,N2, and
TABLE(IPOS2+1,4).

METCOST - is always equal to O. (May have some future
• purpose).

. 	26

4.8 SUBROUTINE FINDER

Input:

N1,N2 - are terrestrial nodes in the network model
with N1<N2.

I 	- 	is an integer, 1 c I:c NE.

NODVTR(N1,I),I=1,2 - as defined above (Subroutine
FIND-input).

EDGE(IX,1),EDGE(IX,4),DTN(IX),IX =
NODVTR(N1,1),NODVTR(N1,1)-1 	NODVTR(N1,2) - as
defined above.

TABLE(I,4) - as defined above.

Function:

To identify the link I in the model that is incident to
node Ni, for which DTN(i)=N2, and such that it is the i th
such link, in a sequential search beginning at the first
row of arrays ISPEC and DTN, where i = TABLE(I,4) 0
Furthermore, subroutine FINDER identifies the link between
nodes N2 and DTN(I) when N2 e DTN(I).

Output:

STREDG(I1 9 1) — is set eqUal to 1 for those values of I
that corresponds to the link(s) identified in
subroutine FINDER.

4.9 SUBROUTINE X1

Input:

NOTVREQ - defined above.

TVRQPTR(I),I=1,000,NOTVREQ - equals 1 if TVREQ(I)>0 unless
TVROPTR(I) has been set equal to 0 during a
previous , call to subroutine X1 after subroutine X2

,was last called.

27

• - defined above.

- is the weight y i assigned to link
(see [2]).

N0DTYP(I),I=1,...,N - defined above.

- is as defined above except that it
equals 1.0 x 10 29 if for link I it was found that

• the expected cost of the temporary flow was not
within a specified range of the actual cost (see
[2]).

ITVCNCP - equals the number of voice circuits that are
• equivalent to one television channel (radio

channel) on the CNCP terrestrial systems.

• ITVTCTS - as for ITVCNCP except that it applies to TCTS
terrestrial systems.

Function:

To determine those television flow requirements I, 1 c I
c NOTVREQ and for which TVRQPTR(I)=1, that have been
temporarily routed through a link J for which EDGE(J,1) =
1.0 x 10 29 , that is through a link for which the expected

• cost is not within a specified range of the actual cost.

Output:

TMPEDG(I),I=1,...,NE - is as defined above (Subroutine
X2-Output) except that TMPEDG(I) is updated to
reflect the removal of those television flow
requirements that were previously temporarily
routed by subroutine X2.

TVRQPTR(I),I=1,...,NOTVREQ - is the same as input except
TVRQPTR(I) is set equal to 0 if television flow
requirement J was found to be routed through a
link K with EDGE(K) = 1.0 x 10 29 .

4.10 SUBROUTINE RCST-
.

Input:

I 	an.integer such that lcIcNE.

EDGE(1,2) - is the current total: amount of flow
tempoyarily routed through link I.

28

ISPEC(I,3) - defined above (MAIN PROGRAM-input).

EGFL(I,1) - is the current total amount of flow
permanently routed through link I.

SPEC(I,J),J=1,00.,ISPEC(I,3)*4+2 - as defined above (MAIN
PROGRAM-input).

STREDGA(I) - is the real or actual cost of routing the
EDGE(1 9 2) units of temporary traffic through link
I (taking into account that EGFL(I,1) units have
already been permanently routed through link I.

Function:

To determine to ratio of the expected cost, of routing
EDGE(I,2) units (voice circuits) of flow through link I,
to. the real cost. •

Output:

BUFF - is the described ratio.

4.11 SUBROUTINE X4

Input:

NOTVREQ - as defined above (Subroutine X2-input)0

TVREQ(I),I=1,00.,NOTVREQ - as defined above (Subroutine
X2-input).

TVRQPTR(I),I=1,00.,NOTVREQ - as defined above (Subroutine
Xl-input and output).

SLNNET - as defined above (MAIN PROGRAM-input).

ISPEC(J,1),ISPEC(J,2)„J=1,...,NE - as defined above (MAIN
PROGRAM-input).

EDGE(I,3),I=1,...,NE - is the maximum amount of flow to be
routed through link I during the current iteration
(see definition of variable U/ in [2]).

SATTRFK - is the current total amount of flow (in voice
circuits) through the satellite node N.

TVSTTFK - is the current total amount of television flow
(in voice circuits) through the satellite node N.

29

ITVVCEQ - as defined above (MAIN PROGRAM-input).

IREQCTR - is the current total number of of flow
requirements that have been completely routed
•"permanently" that is routed as in the final
solution.

Function:

• To:route as miAch as possible of each.televisiob flow
requirement I, lcIcNOTVREQ, for which. TVRQPTR(I)=10
The total amount of flow through any link J, 1 c J'c' NE,
must be less than or equal to EDGE(J,3).

Output:

SATTRFK •- possibly updated.

TVSTTFK - possibly update.

IREQPTR - possibly updated.

EDGE(I,3),I=1,...,NE, - may possibly be updated to reflect
the television flow that may have been routed
through link I during the current iteration.

4.12 SUBROUTINE X3

Input:

I 	is an integer, lcIcNOTVREQ.

Function:

To route as much as possible of the so far unrouted
television flow requirement I. The flow is of course
established in those links J, for which STREDG(I,J)=1, and
the amount may be limited by EDGE(J,3).

Output:

FLG - 	is the number of channels of television flow
requirement I that have just been routed and•
become part of the overall solution.

TMPEDG(I),I=1,...,NE - is the total amount of flow (in
voice circuits) that was routed through link I.

REFERENCES

1 0 Dijkstra, E.W., Structurni_pronlmming, Academic
Press, 1972.

2. Neufeld, G.A., "An Applied Graph Theoretic Approach to
Network Synthesis For Long-Distance Communications,"
DLDCNS Report No. 14, April 1974.

3U

31

APPENDIX A

The following is a source program listing of SYN. The
comment statements in the source listing become most useful when
taken together with the comments in the last section of the above
report.

* SUBROUTINE SYN(NET,SAT,
ALP,BET,ALP1)

* Program SYN routes flow requirements through a network (graph) at
* minimal cost. This program is an implementation of the algorithm
* described in CRC serial document #14. 	It will be assumed that the
* reader is familiar with this document. Most of the variables and
* arrays in the following Common Block are briefly described when
* they are first used.

COMMON ISPEC(144,3),SPEC(144,20),EGFL(144,6),IEGFL(144,3),
1IRM(285,3),RM(285,4),EDGE(144,4),VRTX(39,2),IEDGPTH(285,34),
2IPTHLG(285),,NE,NREQ,N,NRUNDS,RMLPTR(144),STORAGE(144,2),DTN(144)
4,TVRQPTR(10),FLG,IGRP1(25),IGRP2(15),IGRP3(15),GRP4,TYP,
5TABLE(85,4),TBL(85,3),NODVTR(41,2),IPOS1,IPOS2,I1,FOUND,CTR1,
6CTR2,CTR3,N1,N2,STCT,COST,I2,NODTYP(39),TYPE(12),TVREQ(12),

I . 	7TMPEDG(144),STREDG(10,144),FLWW,REQCTR,IPTR(10),X44,XCES(10)
8,ISTACK(60,2),SEND(12,7),ISTKPTR,TVREQ1(12),STKVTR(80),K,ITVVCEQ
9,METCOST,IRELVTR(12),SBGRPA(12,20),SBGRPB(12,20),SBGRPC(12,20),

I . 	9SBGRPD(12,20),COSTA(10),COSTB(10),STREDGA(144),STREDGB(144),BUFF
9,SNDND,TVSTTFK,I,ZZMIN,IPROTCT(23,30),IPROPTR(23)
9,ITRFKTP(5),TRTP,TVCR(12)
WRITE(6,101)NET,SAT,ALP,BET,ALP1

I 	101 	FORMAT(5G.5,3A4)
AFLAG=1
BFLAG=1

I . 	
CFLAG=1
ITVTCTS=1500
ITVCNCP=2100

I . 	ITVDIG=1344
OUTPUT=0
ISUPER=1

I C

	

	 READ IN THE FILE SPECIFYING THE CROSS SECTIONS AND THE

DO 13020 !Jr:,
PROTECTION TO BE APPLIED ACROSS THEM.

CII
INPUT:UNIT 13

CIII
READ(13,8) (IPROTCT(J,I),I=1,30)
IF(IPROTCT(J,1).EQ09999) CO TO 13025

32

13020 CONTINUE
13025 NCS=J-1
5000 ZMNCT=1.0E50

STORAGE(1,1)=9999
RCDR=0
TVSTTFK=0

C000
OUTPUT:UNIT 6

C00
ZMNCT=1.0E50
ITRNCTR=0
MAXITRN=1

C INPUT COST FCNS AND COMPUTE INITIAL MATRIX A

50 REWIND 4,5
DO 10 M=1,1000

CIII
INPUT:UNIT 4

CIII

* Read in the link cost functions from the file attached to unit 4.
* Each link is incident to two nodes stored in ISPEC(M,1) and
* ISPEC(M,2). ISPEC(M,3) specifies the number of data elements but
* is then reset equal to the number , of steps in the cost function.
* There are two additional data elements read in with each cost
* function: 	EDGE(M,4) equals -1 if the link belongs to the TCTS
* (TRANS CANADA) network, -2 if it belongs to CNCP, 1 if it belongs
* to the satellite system and is restricted to message traffic,
* 2 if it is restricted to television transmit/receive traffic,
* and 3 if it is restricted to receiving broadcast television traffic.
* Otherwise EDGE(M,4) = O. DTN(M) equals the real end node, rather
* , than ISPEC(M 8 2) which may be an intermediate dummy node (see
* DLDCNS Report #8, Figure 3).' SPEC(M,I), I=1,.0.contains the
* data specifying the Mth link cost function.

READ(4,30) (ISPEC(M,J),J=1,3),(SPEC(M,J),J=1,20)
IF(ISPEC(M,1)0EQ.9999) GO TO 9
EDGE(M,4)=SPEC(M,ISPEC(M,3)+1)
DTN(M)=SPEC(M,ISPEC(M,3)11.2)

12001 	ISPEC(M,3)=(ISPEC(M,3)-2)/4
10 CONTINUE

* NE equals the number of links in the model.

9 NE=14-1
ZMIN=0

* Determine the number of nodes N in the model.

33

DO 12000 M=1 9 NE
IF(ISPEC(M,2).LE.ZMIN) GO TO 12000
ZMIN=ISPEC(M,2)

12000 CONTINUE
N=ZMIN

CII
INPUT:UNIT 4

CI 111111111 111X1111 IIIIIIIIIIIIIIII IiIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

* Read in some more data from Unit 4
STC = 	offering price or cost for the satellite space

segment (see DLUNS Report No. 8 - Section 8).

ITVVCEQ = 	Number of voice circuits that equal one
Television channel in the satellite space
system.

* NODTYP(I) =1 if node I is in the satellite model and
equals 0 otherwise.

READ(4,8) STCT,ITVVÇEQ, (NODTYP(I),I=1,N)
8 	FORMAT(60G.0)

WRITE(6,11002) STCT .
11002 FORMAT(*1 SATELLITE SPACE COST PER VOICE CIRCUIT IS 	',F15.2)

* Reset STCT = cost per voice circuit for television traffic through
* the satellite space system in terms of the cost through the
* TCTS links.

STCT=(STCT*1TVVCEQ)/ITVTCTS
• 	.

* Create a table for looking-up a link cost function.
NODVTR(F9 1) = First row in the array SPEC for which

ISPEC(M,1) = I.

NODVTR(I,2) = Number. of rows in the array SPEC for which
ISPEC(M,1) =

NODVTR(1,1)=1
DO 11000 I=1,N
K=0
DO 11005 J=NODVTR(I,1),NE
IF(ISPEC(J,1).NE.I) GO 10 11010

11005 K=K+1
11010 NODVTR(I,2)=K

NODVTR(I+1,1)=J
IF(J.GT.NE) GO TO 11020

11000 CONTINUE
11020 CONTINUE

DO 11007 J=I+1,N
11007 NODVTR(J,2)=0

INITIALIZE A VECTOR WHOSE ELEMENT I CORRESPONDS TO

1
34

CROSS SECTION I °
DO 13040 1=1,20

13040 IPROPTR(I)=0
FOR EACH CROSS SECTION, PLACE THE TEMPORARY CAPACITY
ON EACH OF ITS LINKS

IF(NCS0EQ00) GO TO 21
DO 13045 I=1,NE

13045 IPTHLG(I)=0
DO 13290 I=1,NCS 	 111 DO 13100 3=1,9999
IF(IPROTCT(I,3*3),EQ.9999) 	GO TO 13290
DO 13050 K=NODVTR(IPROTCT(I,J*3),1),NODVTR(IPROTCT(I,J*3),1)4.
1NODUTR(IPROTCT(I,J*3),2)-1
IF(IPTHLG(K).EQ01) GO TO 13050
IF((ISPEC(K,2)0EQ.IPROTCT(I,J*31-1))

1 0 AND0(EDGE(K,4).EQ0IPROTCT(I,J*3-1-2))) GO TO 13060
13050 CONTINUE
13060 Z=SPEC(K,ISPEC(K,3)*44-1)*IPROTCT(I,2)/100

IPTHLG(K)=1
DO 13070 L=1,ISPEC(K,3)
IF(SPEC(K,L*4+1),GT.Z) GO TO 13080

13070 CONTINUE
GO TO 13100

13080 ISPEC(K,3)=L
SPEC(K 0 L*4+1)=Z
SPEC(K,L*44-2)=SPEC(K,(L-1)*44.2)+SPEC(K,(L-1)*41-3)4.
1(Z-SPEC(K,(L-1)*44-1))*SPEC(K,(L-1)*4+4)

13100 CONTINUE
13290 CONTINUE

21 REWIND 4,5
DO 16 M=1,1000

CIIIIIIIII IIIJi
INPUT:UNIT 5

CII III 111111111111111 IIIIIIIIIIIIIIIIIIIII 111111 IIIIIIIIIIIIIII 1111 *
* Read in the message traffic flow requirements from Unit 5.
* IRM(M,1) and IRM(M,2) are the source-sink nodes for the
* M th flow requirement and RM(M,1) is the amount of traffic. *

READ(5,8). 	IRM(M,1),IRM(M,2),RM(M,1),IRM(M,3)
IF(IRM(M,1)0EQ09999) GO 10 17

16 CONTINUE

* Set NREQ = Number of message flow requirements.

17 NREQ=M-1
ITRFKTP(1)=IRM(1,3)
ITR.FKTP(5)=1
DO 73000 I=2,NREQ
DO 73001 J=1,ITRFKTP(5)
IFORM(I,3).EQ.ITRFKTP(J)) GO 10 73000

73001 CONTINUE

35.

ITRFKTP(5)=ITRFKTP(5)+1
ITUKTP(ITRFKTP(5))=IRM(I,3)

73000 CONTINUE
DO 11 M=1,1000

CI 1111 111111111111111111 . 11111111111 11111 1111111111 11 .11 III 111111 I
CII
CIII

INPUT:UNIT 5
CII
CII
CIII

* Read in the television flow requirements from Unit 5.
* For the M th television flow requirement,

TVREQ(M) = Number of Television Channels
TYPE(M) = 	2 for half-duplex television

3 for simplex television

TVREQ1(M) = source node for simplex television.
SEND(M,I) = Ith potential node from which the simplex

television flow requirement is to be
considered being transmitted to the
satellite (corresponds to nodes n
(subscript L) - see DLDCNS Report No. 14 9
Section 5).

* Again referring to DLDCNS Report No. 14, data pertaining to the
* subgraphs A is read into arrays SBGRPA and SBGRPB where SBGRPA
* contains the nodes that must be in the Steiner tree and SBGRPB
* contains the Steiner nodes. Similarly, data pertaining to the
* subgraphs B and C is read into arrays SBGRPC and SBGRPD.
* For further information see DLDCNS Report No , 14 ,

READ(5 9 8,END=12) TVREQ(M),TYPE(M),TVREQ1(M),TVCR(M)
1 9 (SEND(M,I) 9 I=1,7)
IF(TVREQ(M).EQ.9999) 	GO TO 12
READ(5,8) (SBGRPA(M,I),I=1,20)
READ(5 9 8) (SBGRPB(M,I),I=1,20)
READ(5 9 8) (SBGRPC(M,I) 9 I=1,20)
READ(5 9 8) (SBGRPD(M,I),I=1,20)

11 CONTINUE

* Set NOTVREQ = Number of television flow requirements.

12 NOTVREQ=M-1
ZMIN=0
DO 12010 M=1,NREQ
IF(IRM(M,2)0LE 0 ZMIN) GO TO 12010
ZMIN=IRM(M,2)

12010 CONTINUE
NREQNDS=ZMIN

31 FORMAT(3G.0 9 NG.0 9 40G 0 0)

36

REWIND 12
CII

INPUT:UNIT 12
CII

* Read in the initial capacity to which the links are loadedt2fore
* any traffic is routed.

EGFL(1 9 1) = current load (amount of flow) on link I.
lte

READ(12,12120) EGFL(1,1)
12120 FORMAT(29X,G.0)

IF(EGFL(1,1)0EQ 0 1 0 0E6) GO TO 12101
REWIND 12
DO 12100 I=1,NE

* Read in the parameters ALPHA and BETA (see DLOCNS Report No. 14,
* Section 4).

ALP = 	ALPHA value that applies to all links except those
corresponding to the satellite ground station and
backhaul where ALP1 is the ALPHA value used.
BET equals the BETA value and it applies to all links.
ALP and BET are initial values for ALPHA and BETA.

CIII
INPUT:UNIT 12

CII
READ(12,12120) EGFL(1 0 1)
DO 12098 J=1,50
IF(EGFL(I11)0LE.SPEC(1 9 14-J*4)) 	GO TO 12099

12098 CONTINUE
12099 IEGFL(1 9 1)=J
12100 CONTINUE

GO TO 12105
12101 DO 12103 I=1,NE

IEGFOI,1)=1
12103 EGFOI,1)=0
*
* SATTRFK equals total amount of flow through the satellite node
* which is always considered assumed to be the node labelled N
* where N = number of nodes in the network model.

12105 READ(12,8) SATTRFK
DO 33 M=1,NE

* For each link M, determine the initial lower bound y (subscript M)
* (see DLDCNS Report No. 14, Section 4) and set EDGE(M 9 1) = Y
* (subscript M).

* Several other parameters (initial conditions) for each link M
* are specified. They are as follows:

IEGFL(M,1) = Step I of the cost function into which the range

37

of the current flow EGFL(M,1) falls.

IEGFL(M,2) = Step I of the*cost function into which the range
of the desired flow falls (desired flow = U

-

	

	(subscript M) - see DLDCNS Report No , 14,
Section 4).

EGFL(M,2) = Previously mentioned desired flow.

EGFL(M,3) = is set to 1 prior to determining the required
paths and trees. Later when the expected cost
of flow through link M is not realistic
(comparison is made with the real cost and the ratio
of the two costs is less than alpha - see DLOCNS
Report No , 14, Section 4), then EGFL(M,3) is reset
. O. 	EGFL(M,6) = 1 if link M is full and 	0
otherwise.

30 FORMAT(12G.0,/,11G.0)
. ZMIN=1.0E30
. IF(ISPEC(M,3).EQ.0) GO TO 23
DO 20 K=1,ISPEC(M,3)
IF(ISPEC(M 9 3).0.1) GO TO 12147
IF(SPEC(M,K*44.1).LE.EGFL(M,1)) 	GO TO 20

12147 L=IEGFL(M,1)
DEL=0
IF(EGFL(M,1).EQ.SPEC(M,14-(L-1)*4)) GO TO 12149
DEL.1 	•

12149 Z1=(SPLC(M,2+4*K)-(SPEC(M,24.(L-1)*4)+SPEC(M 0 3-1(L-1)*4))*DEL
1-SPEC(M,44-(L-1)*4)*(EGFL(M,1)-SPEC(M,11-(L-1)*4)))
1/(SPEC(M,11-4*K)-EGFL(M,1))
IF(Z1.GT.ZMIN) GO TO 20
ZMIN=Z1 	-
KO«

20 CONTINUE
23 EDGE(M,1)=ZMIN

ALPHA=1.0 •
BETA=1.0 •
IEGFL(M,2)=K0 •
EGFL(M,2)=SPEC(M,1+KO*4)
EGFL(M,3)=1
EGFL(M,6)=0
IEGFL(M,3).0

33 CONTINUE. 	 •
•

* IREQCTR equals the total number of flow requirements that have been
* completely routed.
*

IREQCTR=0
IATEMP=0

* TRFKCTR equals the number of message traffic flow requirements

38

* that have been routed.
* 	•

TRFKCTR=0
IF((NREQ+NOTVREQ).EQ.0) GO TO 800

C
C CALL FPTH TO FIND SHORTEST PATHS 	.

FIRST KEEP IMAGE OF MATRIX A

SLNNET=1
TRBLCTR=1
GO TO 45

* The following code pertains to improving a solution from a
* previously generated solution (see DLDCNS Report No. 14,
* Section 4). The capacity of some selected link is temporarily
* reduced in the hope that a solution of lower cost will be found.
* (Note: The present arrangement is such that this codepertaining
* to improving a solution is not used.)

7000 IF(COST.GE.ZMNCT) GO TO 7020
DO 7010 I=1,NE
STORAGE(I,1)=ISPEC(I,3)
STORAGE(I,2)=EGFL(I,1)

7010 RMLPTR(I)=0
ZMNCT=COST
ITRNCTR=0
PRCT=0
ZMAXSTR=0
10=1
GO TO 7030

7020 WRITE(6,7047) TYPE(1),TYPE(2)
7047 FORMAT(PLEASE TAKE PRECAUTIONS-IMPOSSIBLE 10 GET A SOLUTION',

1/,' 	NOTE TRAFFIC REQUIREMENT T=',F3.0,' 	N0.=',F3.0,
2/,' 	 (T=0 IS MESSAGE,T=1 IS TV)')
GO TO 800

7037 DO 7035 I=1„NE
ISPEC(I,3)=STORAGE(I,1)

7035 EGFL(ï,1)=STORAGE(I,2)
PRCT=PRCT-.2
ITRNCTR=ITRNCTR-1-1
IF(ITRNCTR.GE.MAXITRN) GO TO 5000

7030 IRMLPTR=0
DO 7080 1=10,5
PRCT=PRCT+02
DO 7070 J=1,NE
IF(RMLPTR(J).EQ.1) GO TO 7070
IF(EGFL(J,1).EQ.0) GO TO 7070
IFMEGFL(J91)-SPEC(J,(IEGFL(J,1)-1)*44-1))/

1(SPEC(J,IEGFL(J,1)*44-1)-SPEC(J,(IEGFL (J ,1)-1)*41-1)))
2.GT.PRCT) GO TO 7070
IFUSPEC(J,(IEGFL(J,1)-1)*41-3)+(EGFL(41)-

39

1SPEC(J,(IEGFL(J 9 1)-1)*44-1))*SPEC(J,(IEGFL(J,1)-1)*4-1-4))
2.LE.ZMAXSTR) GO TO 7070
IRMLPTR=J
STRR=ISPEC(J,3)
ZMAXSTR=SPEC(J,(IEGFL(J,1)-1)*44.3)+(EGFL(J,1)-
1SPEÇ(J,(IEGFL(J 9 1)-1)*41-1))*SPEC(J,(IEGFL(J,1)-1)*44-4)

7070 CONTINUE
IF(IRMLPTR.NE.0) GO TO 7075

7080 CONTINUE
IF(IRMLPTR.EQ.0) GO TO 5000

7075 ISPEC(IRMLPTR 9 3)=IEGFL(IRMLPTR,1)-1
RMLPTR(IRMLPTR)=1

C00
C 	 OUTPUT:UNIT 6
C000

WRITE(6,2050)
2050 FORMAT(1H0,'ARE IMPROVEMENTS TO SOLUTION TO BE ATTEMPTED')

CIII
INPUT:UNIT 6

CIII
READ(6,8) I
IF(I.0 0 0) GO TO 5000
GO TO 21

C000
OUTPUT:UNIT 6

C00
7085 WRITE(6 9 7086)
7086 F0RMAT(1H0,'THERE MAY NOT EXIST A SOLUTION')

GO TO 800

* We are now ready to perform Step 2 of the algorithm described in
* Section 4 of DLUNS Report No. 14.

45 M=0
FLWW=0

46'F0RMAT(1H0 9 	SPECIFY ALPHA & BETA & ALPHA1')

* First we set up the ALPHA and BETA values to be used. .
* TRBLÇTR equals the number of passes through Steps 2 and
* without there having - been any flow "permanently' routed,.
* The initial value of TRBLCTR equals O.

NOW CALL FPTH

TRBL=1
IF(NREQ.0.0) GO TO 54

* Now find the required shortest paths in the network for routing
* message traffic.

• 	ALPHA=ALP**TRBLCTR
BETA=BET**TRBLCTR
ALPHA=ALP**TRBLCTR
BETA=BET**TRBLCTR

CALL FPTH
IF(TRBL.EQ.1) GO TO 7020
TRBL=1
IF(OUTPUT.EQ00) GO TO 54
DO 70000 I=1,NREQ
IF(RM(I,1).EQ.0) GO TO 70000
WRITE(1,70001) I,(IEDGPTH(I,J),J=1,IPTHLG(I))

70001 FORMATU1MY',80(r3,1X))
70000 CONTINUE

* Next find all the minimum cost trees for the television traffic.

54 CALL X2
IF(TRBL.EQ.1) GO TO 7020
IF(TRBLCTR.LE.200) GO TO 49

C000
OUTPUT:UNIT 6

C000
WRITE(6,7850)

7850 FORMAT(1H0,'THERE EXIST DIFFICULTIES IN FINDING A SOLUTION')
GO TO 800

* The following code corresponds to Step 3 of the algorithm
* described in Section 4 of the DLDCNS Report No. 14.

* We begin by doing some bookkeeping, namely bysetting
* EDGE(M,2) equal to the total "temporary" flow through each link M.
* Furthermore, some conditions are checked with respect to
* preventing nonconvergence,

C** PART A **
C FINDS LINKS WHICH ARE UNDERLOADED ON THEIR OWN ACCORD

. 0 ELIMINATE ALL REQ. PAIRS THAT FLOW THRU AN UNDER
C LOADED LINK. ALSO ELIMINATE THE CORRESPONDING LINKS
C 	.

C

49 M=0
IF(AFLAGOEQ.0) GO TO 9999

FROM MATRIX FM,SET COST OF UNDERLOADED LINK TO
1.0E30

IF(OUTPUT.EQ.0) GO TO 77778
WRITE(1,77777) (EGFL(I,3),I=1,NE)

77778 CONTINUE

FIRST KEEP IMAGE OF PRESENT MATRIX A
AS WELL AS RSTORE ORIGINAL MATRIX A

41

* Now -compare the expected cost of flow in each link I to the
* actual cost (see Step 3b, Section 4, DLDCNS Report No. 14).

DO 53 I=1,NE
IF(EGFL(I,1).NE.0) GO TO 59000
STREDGA(I)=0
GO TO 59003

59000 DO 59001 J=1,ISPEC(I,3)
IF(EGFL(I,1).LE.SPEC(I,J*4+1)) GO TO 59002

59001 CONTINUE
59002 STREDGA(I)=SPEC(I,(J-1)*44.2)+SPEC(I,(J-1)*44.3) .

 11-SPEC(I,(J-1)*44-4)*(EGFL(I,1)-SPEC(I,(J-1)*41-1))
• 59003 EDGE(Ii2)=EDGE(1,2)+TMPEDMI) • 	 ' •

IF((EGFL(I,2)-EGFL(1,1)).LE.0) GO 10 50000 	.
IF(NODTYP(ISPEC(I,2)).GT.0) G0.TŒ.53 	 -
IF(TMPEDG(I).EQ.0) GO TO 53
IF(TMPEDG(I).NE.EDGE(I,2)) GO TO 53
TP=ITVTCTS
IF(EDGE(I,4).EQ.-1) GO TO 59005 	 ,
TP=ITVCNCP
IF(EDGE(I,4).EQ.-2) GO TO 59005 	. 	-
TP=ITVDIG

59005 IF((SPEC(L,1*4*ISREC(1,3)),EGFL(I,1)).GE.TP)...'GO. 10 53
50000 EGFL(1 9 6)=1

53 CONTINUE
•

* Then find flow requirements passing through links-for which the
* expected cost is too unrealistic (see Step 3c, Section 4,
* DLDCNS Report No. 14).

DO 80 I=1 9 NE
EGFL(I,4)=EDGE(I,2)
SALPHA=ALPHA
IF(NODTVP(ISPEC(I,2)).LE.0) GO 10 57
SALPHA=ALP1

57 CALL RCST
IF(BUFF.GE.SALPHA) GO TO 80
EDGE(I,1)=100E29
EGFL(I,3)=0
IEGFL(I,3)=1

80 CONTIAbE

FIND REQ PAIRS PASSING THRU UNDERLOADED LINKS

DO 8099 I=1,NREQ
IF(RM(I,2).EQ.0) GO TO 8098
DO 8090 J=1,IPTHLG(I)
IF(EDGE(IEDGPTH(I,J),1).GE.1.0E29) GO 10 8098 .

8090 CONTINUE
GO TO 8099

8098 RM(I,2)=0
8099 CONTINUE

42

CALL X1
IF(OUTPUT.0.0) GO TO 9999
WRITE(1,77777) (EGFL(I,3),I=1,NE)

77777 FORMAT(1H0, ° XXXXX I ,4(30(I1,1X),/))

* This next section repeats steps 3b-3c 0 It is a repeat of the
* code just executed. The object is to those flow requirements
* passing through links for which the expected cost is too
* unrealistic as a result of the flow requirements that were chosen
* to be ignored 0

C** PART B ***
C FIND LINKS WHICH ARE UNDER LOADED DUE TO PATHS GOING THRU
C UNDERLOADED LINKS FOUND IN PART A

9999 IF(BFLAG.EQ.0) GO TO 9998
DO 8120 I=1,NE

8120 EDGE(I,2)=0
DO 8130 I=1,NREQ
IF(RM(1,2).EQ.0) GO 10 8130
DO 8125 J=1 9 IPTHLG(I)
EDGE(IEDGPTH(I,J),2)=EDGE(IEDGPTH(I,J),2)+RM(I,1)

8125 CONTINUE
8130 CONTINUE .

DO 8132 I=1,NE
8132 EDGE(I,2)=EDGE(I,2)+TMPEDG(I)

FIND UNDERLOADED LINKS

DO 8000 I=1,NE
SALPHA=ALPHA
IF(NODTYP(ISPEC(1 9 2)) 0 LE 0 0) GO 10 8159
SALPHA=ALP1

8159 CALL RCST
IF(BUFF.GE.SALPHA) GO TO 8000
EDGE0,1)=1.0E29

• EGFL(I,3)=0
IEGFOI,3)=1

8000 EDGE(I,3)=EGFL(I,2)-EGFL(I,1)

FIND REQ. PAIRS PASSING THRU UNDERLOADED LINKS
•

DO 8199 I=1,NREQ
IF(RM(1 9 2) 0 EQ 0 0) GO TO 8198
DO 8190 J=1,IPTHLG(I)
IF(EDGE(IEDGPTH(I,J),1).GE01.0E29) GO TO 8198

8190 CONTINUE
GO TO 8199

8198 RM(I,2)=0
8199 CONTINUE

CALL X1

43

IF(OUTPUT.EQ.0) GO TO 9998
WRITE(1,77777) (EGFL(I,3),I=1,NE)

C

* Now repeat steps 3b and 3c but with the added restriction that the
* total flow b (subscript M) plus t (subscript M) does not exceed .
* U (subscript M) - for more details see step 3d of the algorithm
* in Section 4, DLDCNS Report No, 14).

* First establish some initial conditions. Then, for each flow
* requirement that is still eligible for further consideration
* during this pass through the algorithm, find the maximum
* allowable flow through the corresponding shortest path.
* Flow requirements corresponding to message traffic are considered
* first, followed by those corresponding to television traffic ,

C** PART C *.***
C FIND LINKS WHICH ARE UNDERLOADED DUE TOPATHS GOING THRU A
C LINK WITH RESTRICTED CAPACITY

SET MATRIX FM=0

9998 IF(CFLAG.EQ.0) GO TO 9997
DO 90 I=1,NE
EDGE(I,2)=0

90 CONTINUE

FOR EACH REQ. PAIR FIND MAX PATH
(IGNORE REQ. WHOSE CORRESP, PATH PASSES
THRU UNDERLOADED LINK)

DO 150 I=1,NREQ
IF(RM(I,2).EQ.0) GO TO 149
ZMIN=1.0E30
DO 140 J=1,IPTHLG(I)
IF(EDGE(IEDGPTH(I,J),1).GE.1.0E29) GO TO 149
IF(EDGE(IEDGPTH(I,J),3)0GE.ZMIN) GO TO 140
ZMIN=EDGE(IEDGPTH(I,J),3)

140 CONTINUE
142 IF(RM(I,1).GE.ZMIN) GO TO 141

ZMIN=RM(I D 1)
141 DO 147 J=1,IPTHLG(I)

EDGE(IEDGPTH(I,J),2)=EDGE(IEDGPTH(I,J),2)+ZMIN
147 CONTINUE

GO TO 150
149 RM(I,2)=0
150 CONTINUE

IF(NOTVREQ.EQ.0) GO TO 6095
DO 6085 I-1,NE

6085 TMPEDG(I)=0
X44=0

44

DO 6090 I=1,NOTVREQ
IF(TVREQ(I).EQ.0) GO TO 6090
IF(TVRQPTR(I).EQ.0) GO TO 6090
CALL X3

6090 CONTINUE
6095 CONTINUE

* Now flag all those links for which the expected cost is
* too unrealistic.

AGAIN NOTE UNDERLOADED LINKS AND SET THEIR
COST = 1.0E29

DO 167 I=1 9 14E
167 EDGE0,2)=EDGE(I,2)+TMPEDG(I)

DO 170 I=1,NE
SALPHA=ALPHA
IF(NODTYP(ISPEC(I,2)).LE00) GO TO 168
SALPHA=ALP1

168 CALL RCST
IF(BUFF.GE.SALPHA) GO TO 170
EDGE(I,1)=1.0E29
EGFL(I,3)=0

170 CONTINUE

* Next find the flow requirements that were temporarily routed
* through links that were flagged above.

FIND THE REQ. PAIRS WHOSE CORRESP. SHORTEST
PATH CONTAINS AN UNDERLOADED LINK

DO 173 I=1,NE
EDGE(I,2)=0

173 CONTINUE
DO 200 I=1 9 NREQ
IF(RM(I,2) 0 EQ 0 0 0 0) GO 10 200
DO 176 J=1,IPTHLG(I)
IF(EDGE(IEDGPTH(I,J) 9 1).GE.1.0E29) GO 10 180

176 CONTINUE
DO 178 J=1,IPTHLG(I)

178 EDGE(IEDGPTH(I,J),2)=EDGE(IEDGPTH(I,J),2)4.1
GO TO 200

180 RM(I,2)=0
200 CONTINUE

CALL X1
IF(OUTPUT.0.0) GO TO 9997
WRITE(1,77777) (EGFL(I,3),I=1,NE)

*
* Next we execute code corresponding to Step 3c of the algorithM

45

* in Section 4 of DLDCNS Report No. 14.

* First as much television traffic as is possible is routed.

C FOR EACH LINK TO BE CONSIDERED FIND THE REQ. PAIRS WHOSE
C SHORTEST PATH PASSES THRU THE LINK

TO FACILITATE THE ABOVE SOME PRELIMINARIES
MUST BE PERFORMED (FOR EASE OF COMPUTATION)

ALSO FIND THE MIN AND MAX OF FM(I,J)
(CORRESPONDING TO THE LINKS BEING CONSIDERED)

9997 CALL X4

* For message traffic those flow requirements, whose shortest
* path contains a link with the fewest number of flow
* requirements temporarily routed through it, are considered
* first for being routed permanently. So first find the
* "least used" link.
*

MIN=10000000
MAX=0
DO 220 I=1,NE
IF(EDGE(I,4).GE.2) GO TO 220
IF(EGFOI,3).EQ.0) GO TO 220
IF(EDGE(I,2)0GE.MIN) GO TO 206
IF(EDGE(1,2).EQ.0) GO 10 206
MIN=EDGE(I,2)

206 IF(EDGE(I,2).LE.MAX) GO TO 220
MAX=EDGE(1 9 2)

220 CONTINUE
IF(MIN.GT.MAX) GO TO 399

*
* NoW find the flow requirements.routéd through the least used
* links and permanently route. asmuch as possible of these
* flow requirementS,

FIND REQ. PAIRS WHOSE CORRESP. PATHS PASS
THRU LINKS THAT ARE BEING USED MIN TIMES

C
210 DO 300 I=1 9 NREQ 	"

BUFF=0
IF((RM(1 9 1)0EQ.0).0R0(RM(1 9 1).GT.0.02)) GO . T0 - 211
RM(I,1)=0
IREQCTR=IREQCTR4.1
TRFKCTR=TRFKCTR+1
GO TO 235

' .211 IF(RM(1 9 2).EQ00) GO TO 300
ZMIN=L0E29
KK=0

46

DO 225 J-1,IPTHLG(I)
IF(EDGE(IEDGPTN(I,J),2),NE.MIN) GO TO 223
KK=1

223 IF(EDGE(IEDGPTH(I,J),3).GE 0 ZMIN) GO 10 225
 ZMIN=EDGE(IEDGPTN(I,J),3)

IF(ZMIN.EQ.0) GO TO 235
225 CONTINUE

IF(KKGEO.0) GO TO 300
GO TO 240

235 RM(I,2)=0
GO TO 300

240 RM(I,2)=0
IF(R11(I,1)0GT0ZMIN) GO 10 244
ZMIN=RM(I,1)
RM(I,1)=0
IREQCTR=IREQCTR+1
TRFKCTR=TRFKCTR-1-1
FLWW=1
GO TO 245

244 IF(ZMIN.EQ.0) GO TO 300
RM(I,1)=RM(I,1)-ZMIN
FLWW=1

245 IF(SLNNE1.EQ.0) GO TO 247
IF(SLNNET 0 0 0 2) GO TO 243
DO 16500 J=1,IPTHLG(I)
KJ=ISPEC(IEDGPTH(I,J),2)
IF(NODTYP(KJ).EQ01) GO TO 243

16500 CONTINUE
GO TO 247

243 WRITE(7,246) 	ZMIN,IRM(1,3),IRM(I,1),IRM(I,2)
246 FORMAT(4I)
247 DO 248 J=1,IPTHLG(I)

EDGE(IEDGPTH(I,J),3)=EDGE(IEDGPTH(I,J),3)-ZMIN
KI=ISPEC(IEDGPTH(I,J),1)
KJ=ISPEC(IEDGPTN(I,J),2)
IF“NODTYP(KI).EQ.1).AND.(NODTYP(KJ).EQ.1).AND.
1(KJONEON)) GO TO 251
IF(KJ.NE.N) GO TO 241

251 BUFF=1
241 IF(SLNNET.EQ00) GO TO 248

IFHNODTYP(KI)0EQ.0).AND.(NODTYP(KJ).EQ.0)) GO 10 248
 IF((NODTYP(KI).EQ.1).ANDo(NODTYP(KJ),EQ.1)) GO TO 248

WRITE(7 9 246) KI
248 CONTINUE

IF(BUFF.EQ.0) GO TO 300
SATTRFK=SATTRFK+ZMIN

300 CONTINUE
IF(MIN g GE G MAX) GO TO 399

* Then find the next least used link and repeat the above
* code to find the corresponding flow requirements and permanently

47

* routing them (This is repeated until all the links have

11 * been considered).

NOW FIND NEXT LARGEST VALUE FOR MIN

C KK=MIN+1
MIN=10000000
DO 350 I=1,NE
IF(EGFL(I,3).EQ.0) GO 10 350

 307 IF(EDGE(I,2).GE.MIN) GO TO 350
IF(EDGE(1 9 2).LT.KK) GO TO 350

II 	
MIN=EDGE(I,2)

350 CONTINUE
GO TO 210

II c 399 CONTINUE

* Having completed Step 3 of the algorithm e we are now about
* to start steps 4 and 5. Before doing so, we determine those
* parallel links whose capacity can be increased because
* all the required conditions pertaining to protection have been
* met.
*
C UPDATE LINK INFORMATION AND READJUST THE INCREMENTAL COSTS
C I.E. UPDATE MATRIX A 	'
C

400 DO 401 I=1,NREQ
IF(RM(I,1).EQ.0) GO TO 401
RM0,2)=1

I 	401 CONTINUE
IF(OUTPUT.EQ.0) GO TO 389

II 	388 FORMAT(1H0,'ZZUZZUZZUZUZUZZZUM15)
III 	389 DO 16005 I=1,NE

16005 EGFL(I,5)=EGFL(I,2)-EDGE(I,3)-EGFL(I,1)
DO 16006 I=1,NE II 16006 IPTHLG(I)=0

DETERMINE WHETHER OR NOT THE CAPACITY RESTRICTION ON THE
SYSTEMS WITHIN EACH CROSS SECTION CAN BE REMOVED

C 	 ARE THERE ANY CROSS SECTIONS TO BE CONSIDERED?
IF(NCS.EQ.0) GO TO 16300

C 	DO 16260 IF.-l1S
,ICONSIDER THEM.

CHECK • IF THE CAPACITY RESTRICTION ON THE SYSTEMS IN CROSS

I c

	

	SECTIONS HAVE ALREADY BEEN REMOVED

C 	
IF(IPROPTR(I).EQ.1) GO TO 16260

DETERMINE THE LINKS IN THE CROSS SECTION I
ZMIN=0
DO 16190 J=1,9999
IF(IPROTCT(I,J*3)0EQ09999) 	GO TO 16200
DO 16050 K=NODVTR(IPROTCT(I,J*3)0.),NODVTR(IPROTCT(I,e3),1)1.

11 	1NODVTR(IPROTCT(I,P3)',2)-1

48

IF(IPTHLG(K).EQ01) GO 10 16050
1F((ISPEC(K,2)0EQ.IPROTCT(I,J*31-1))
10AND.(EDGE(K,4).EQ 0 IPROTCT(1 9 J*34-2))) GO TO 16060

16050 CONTINUE
16060 IRELVTR(J)=K •

IPTHLG(K)=1
HAS ALL THE MESSAGE BEEN ROUTED?(WE MUST DISTINGUISH FOR
PURPOSE.OF OVERALL CONVERGENCE)

IF(NREQ.EQ.TRFKCTR) GO TO 16100
NO IT HAS NOT.

TP=1
GO TO 16120

C 	 ONLY TV REMAINING TO BE ROUTED.
16100 TP=ITVTCTS

•F(EDGE(K,4).NE.-1) . G0 10 16120
TP=ITVCNCP
1F(EDGE(K 9 4)0EQ0-2) GO TO 16120
TP=ITVDIG

IS THE LOAD ON LINK K APPROACHING ITSFISTRICTED CAPACITY? I
16120 IFHSPEC(K,ISPEC(K,3)*4-1-1)-EGFOK,1)-EGFL(K,5)).GT.TP)G0 TO 16190

ZMIN=ZMIN-1-1
16190 CONTINUE •

DETERMINE IF CAPACITY RESTRICTIONS SHOULD BE LIFTED
16200 IF(ZMIN.LT.IPROTCT(I,1)) GO TO 16260

YES, THEY SHOULD AS ALL THE LINKS ARE LOADED TO THEIR
RESTRICTED CAPACITY

REWIND 4
MIN=0 • DO 16240 MN=1,J-1 .
MAX=9999
DO 16210 K=1,J-1
IF(IRELVTR(K).LE.MIN) GO TO 16210
IF(IRELVTR(K).GE.MAX) GO TO 16210
MAX=IRELVTR(K)

16210 CONTINUE
. 	L=MAX41IN4 	 ' 	11

IF(L.0.0) GO TO 16223 DO 16220 K=1,L*2 .
16220 READ(4,8) DUN
16223 READ(4,30) (ISPEC(MAX,M),M=1,3),(SPEC(MAX,M),M=1,20)

ISPEC(MAX 91)=(ISPEC(MAX,3)-2)/4
EGFL(MAX,6)=0
MIN=MAX

16240 CONTINUE •
IPROPTR(I)=1

16260 CONTINUE 11 16300 CONTINUE
IF(IREQCTR.LE.RCDR) GO TO 30011
WRITE(6,30009) IREQCTR,SATTRFK
RCDR=IREQCTR

30009 FORMAT(1H0,°N0 0 OF TRAFFIC REQ. ROUTED ISI4,
1 ° (SATELLITE TRAFFIC-°,F700,,)°)

49

30011 IF(OUTPUT.EQ.0) GO TO 30000
WRITE(1,30008) IREQCTR,TRFKCTR

30008 FORMAT(1H0, 1 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI10,5X,F10.1)
30000 CONTINUE

* Now consider each link I in the network.

DO 699 I=1,NE
FLG=0

403 IF(ISPEC(I,3).EQ.0) GO TO 437
IF(EGFL(I,6).EQ.1) GO TO 437

• 	 EGFL(I,3)=1
IF(FLWW.EQ.0) GO TO 440

* In this case some permanent flow was actually routed through
* the network (see Step 5 of the algorithm in . Section 4 of
* DLDCNS Report No , 14).

TRBLCTR=1

CONSIDER THE CASE WHERE SOME ADDITIONAL FLOW WAS
'ACTUALLY IMPOSED ON NETWORK

FIRST UPDATE CURRENT FLOW

IFUEGFL(I,1)FEGFL(I,5)).EQ0EGFOI,2)) GO TO 430
GO TO 421

OTHERWISE EXPECTED FLOW . DESIRED FLOW.

405 IF(EGFL(I,21.EQ.SREC(1,(IEGFL(I,2)-1)*4-1-1))
1G0 TO 406
R1=SPEC(I,(IEGFL(I,2)--1)*4+2)
1.1.SPEC(I,(IEGFL(I,2)-1)*44.3)
24-(EGFL(I,2)-SPECOMIEGFL(I,2)-1)*4-1-1)) 	.
3*SPEC(I,-(JEGFL(I,2)-1)*4-1-4)
GO TO 407 ' •

406 R1=SPEC(I,(IEGFL(I,2)-1)*41-2)
407 IF(EGFL(I,1)0EQ.SPEC(I,(IEGFL(I,1)-1)*4-1-1)):GO TO 408

R2=SPEC(Iè(IEGFL(I,1)-1)*4-1-2)
1+SPEC(I,(IEGFL(I,1)-1)*41-3)4.EGFL(I,1)-
2SPEC(I,(IEGFL(I,1)-1)*4-1-1))*SPEC(I,(IEGFL(i,1)-1)*44-4)
GO TO 409 	•

408 R2=SPEC(Ip(IEGFL(J,1)!-1)*44-2)
409 RUN=EGFL(1 9.2)-EGFL(I,1)

SL.P1=(R1-R2)/RUN
' 	GO TO 500

WAS THE FLOW INCREMENTED?

410 IF(EGFL(1 9 5).GT.0) GO TO 420

OTHERWISE ACTUAL FLOW WAS NOT INCRMENTED

GO TO 405

COMPARE ACTUAL FLOW TO DESIRED FLOW

420 IFNEGFL(I,1)-1-EGFL(1,5))0GE0EGFL(I,2)) GO 10 430

OTHERWISI ACTUAL FLOW INCREMEMNTED
WAS . DESIRED FLOW

50

421 DO 423 L=1,ISPEC(I,3)
IF((EGFL(I,1)+EGFL(I,5))0LE0SPEC(I,L*4-1-1))

423 CONTINUE
L=L-1

425 IEGFOI 9 1)=L
EGFL(I,1)=EGFOI,1)-1-EGFOI,5)
GO TO 405

GO TO 425

HENCE THE DESIRED FLOW WAS ATTAINED

430 IEGFL(I,1)=IEGFL(I,2)
438 MIN=IEGFL(I,1)

IFUEGFL(I,1)+EGFL(I,5))0NE0SPEC(I,IEGFL(I,2)*44.1))
1G0 TO 431
IF(MIN.EQ0ISPEC(I,3)) GO TO 436
MIN=IEGFL(1 9 1)+1

431 SLP1=100E30
DO 432 L=MIN 9 ISPEC(I,3)
R1=SPEC(I,L*4-1-2)
IF(EGFOI,2)0EQ0SPEC(1 9 (IEGFOI,2)-1)*44.1)) GO TO 433

•

R2=SPEC(I,(IEGFOI,2)-1)*44-2)+SPEC(I,(IEGFL(I,2)-1)*4+3)
1 4- (EGFL(I,2)-SPEC(I,(IEGFLO,2)-1)*41-1)-)*
2SPEC(1 9 (IEGFL(I,2)-1)*44-4)

• GO TO 434
433 R2=SPEC(I,(IEGFL(I,2)-1)*44-2)
434 RUN=SPEC(I,L*41-1)-EGFL(I,2)

IFMR1-R2)/RUN)0GT0SLP1) GO 10 432
 SLP1=(R1-R2)/RUN

KO=L
432 CONTINUE

IF(FLG0EQ01) GO TO 435
EGFL(I,1)=EGFL(I,1)+EGFL(I,5)

435 IEGFL(I,2)=K0
EGFL (I ,2)=SPEC(I,(K0)*4-1.1)
GO TO 500

436 EGFL(I,1)=EGFL(I,1)+EGFL(I,5)
• EGFL(I,2)=EGFL(I,1)
439 EGFL(I,6)=1 •

437 SLP1=1 0 0E30
GO TO 500

51

I.
*

I 	
* The following code updates the weights of link I as required
* for the case where no permanent flow was routed through the network
* (corresponding to Step 4 of the algorithm).

11 	

*

	

C 	 - NOW CONSIDER THE CASE WHERE NO ADDITIONAL FLOW WAS

	

C 	 IMPOSED ON THE NETWORK
C

I

	

 440 IF c 	 EGFL I 4 .4-EGFL I 1 	LE EGFL I 2 	GO TO 450 (((9) 	(9)). 	. 	(9)) 	 ..

	

C 	 HENCE EXPECTED LOAD EXCEEDED DESIRED LOAD

I ' 	
C

IF(EGFOI,2).EQ.SPEC(I,ISPEC(1 9 3)*44-1)) GO TO 405 	 .
444 IF(EGFL(1,2)..LT.SPEC(I,IEGFOI,2)*4+1)) GO TO 442

I 	 IF(IEGFL(I,2).U.ISPEC(I,3)) GO TO 442
MIN=LEGFL-(1,2)+1 	. GO TO 443 	-

442 MIN=IEGFL(I,2)

I 	
443 EGFL(1 9 2)=EGFOI,1)

GO TO 431
13000 IFHSPEC(I,ISPEC(I,3)*41-1)-EGFL(I,1)) 0 LT.TP) - GO 10 439

I 	
EGFW,2)=EGFL(I,1)+TP-.1

- DO 170+20 J=1,ISPEC(I,3)
17020 IF(EGFL0,21.LE.SPEC(I,J*4+1)) GO TO 17030 ..

I 	
17030 IEGFL0,2)=J

.G0 TO 444
C

	

C 	 THUS ADJUST (INCREASE) THE COST OF THIS LINK

I 	. C
C

	

. C 	 IF EXP LOAD WAS ZERO THEN DO NOT ADJUST SLOPE

II 	
C

450 IF(EGFL(I,4).EQ.0) GO TO 405 	 .

451 IF(EGFL(I,1).*EQ.SPEC(I,(IEGFLO,1)-1)*44.1)) GO TO 453
R2=SPEC(I,(IEGFOI,1)-1)*4+2)+SPEC(1,(IEGFLO,1)-1)*44-3)-1-

I 	 1(EGFLO,1)-SPEC(I,(IEGFL(I,1)-1)*44-1))*
2SPEC(I,(IEGFOI,1)-1)*41-4) 	

.

GO TO 454

I 	
453 R2=SPEC(I,(IEGFL(I,1)-1)*44-2)
454 RISE=R1-R2
458 ZMIN=(EGFL(I,2)-EGFL(I,1)-EGFL(I,4))*BETA

I 	
14-EGFLO,1)+EGfL(194)
DO 460 L=1,ISPEC(1 9 3)
IF(ZMIN0LE.SPEC(I e L*44-1)) 	GO TO 465

.460 CONTINUE 	.

I
L=L-1

465 R 1 =SPEC(I,(L-1) * 4 4- 2)+SPEC(I,(L-1)*4+3)-1-(ZMIN-SPEC(I,(L-1)*44-1))
1*SPEC(I,(L-1)*41-4)

I 	
SLP1=(R1-R2)/(ZMIN-EGFL(191))
EGFL(I,2)=ZMIN
IEGFL(1 9 2)=L

I GO TO 500

52

480 SLP1-SLP2
EGFOI,2)=EGFL(I,1)+EGFL(I,4)
IEGFL(I,2)L

500 IF(SLP1.GT00) GO TO 504
SLP1=.001

504 EDGE(I,1)=SLP1
IF(NREQ.NE.TRFKCTR) GO TO 503
FLG-1
IF(EDGE(I,1)0EQ0100E30) GO TO 503
TP=ITVTCTS
IF(EDGE(1 9 4).GE.-1) GO 10 507
TP=.ITVCNCP
IF(EDGE(I,4)00.-2) GO TO 507
TP=ITUDIG

507 IFUEGFOI,2)-EGFL(I,1)).LT.TP) 	GO TO 13000
501 FORMAT(24NOUPDATED SLOPE IS XXXXX,F10.5,7N XXXXX)
503 EGFL(I,4)=0

EGFL(I,5)=0
IEGFL(I,3)=0

699 CONTINUE

*.Increment TRBLCTR if no flow was permanently routed during the
* previous pass through steps 2 and 3 of the algorithm.
* If not all the. flow requirements are routed then go back to
* repeat steps a and 3.

IF(FLWW.EQ01) GO TO 701
TRBLCTR=TRBLCTR+1

701 IF(IREQCTR.EQ.(NREPNOTVREQ)) GO TO 800
IF(OUTPUT0EQ00) GO TO 45
WRITE(1,31000) (EDGE(1 9 1),I=1,NE)

31000 FORMAT(1N0,20(9(F1003,2X),/))
800 CONTINUE

COST=TVSTTFK*STCT*ITUTCTS/ITVVCEQ

* A complete solution has been attained - the total load on
* each link s as well as the total flow through the satellite
* node, is output on Unit 7. *

DO 899 1=1 9 NE
IF(EGFL(1 9 1)0EQ00) GO TO 899
COST=COSTI- SPEC(1 9 (IEGFL(I,1)-1)*44-2)
11-SPEC(I,(IEGFL(1 9 1)-1)*44-3)
24.(EGFL(I,1)-SPEC(1 9 (IEGFL(I,1)-1)*44-1))
3*SPEC(1 9 (IEGFL(I,1)-1)*41-4)

899 CONTINUE
C000
C000

OUTPUT:UNITS 6,7,9
C000
C000 0 00

902 F0RMAT(1H0,' TOTAL SATELITE TRAFFIC EQUALS 	',F10 01,

53

1' 	(TV =',F1001,°) 0)
949 FORMAT(1H0, 1 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 0)

WRITE(6,910) COST
910 FORMAT(23H0 COST OF NETWORK IS ,E15 0 6)

WRITE(6,902) SATTRFK,TVSTTFK
DO 985 I=1,NE

985 WRITE(9,983) ISPEC(I,1),ISPEC(I,2),EGFL(I e l)
983 FORMAT(5X,15,6X,15,5X,F12.1)

WRITE(9,902) SATTRFK,TVSTTFK
WRITE(9,910) COST
WRITE(9,949)
WRITE(7,987)

987 FORMAT(°9999 °)
RETURN

950 STOP

* Subroutine FPTH finds all the shortest paths for routing the flow
* requirements. Every link M has a weight Y (subscript M) assigned
* to it. The subroutine has two parts. The first part finds all
* the shortest paths in the network from node I to all the other
* nodes in the network. The array VRTX is used for this purpose.
*• The shortest paths are found using an algorithm that appears on
* page 193 in the book "Communication, Transmission, and
* Transportation Networks" by Frank and Frisch. The second part records
* the required shortest paths: The shortest path for flow
* requirement J.is stored i row J of array . IEDGPTH. The amount of
* flow on each link k is stored in EDGE(k,2).

SUBROUTINE FPTH
DO 3 I=1,NE

3 EDGE(I,2)=0
DO 1007 II=1,ITRFKTP(5)
DO 1000 I=1,NREQNDS-1
IF(I0EQ01) GO TO 5
DO 1 J=1,I-1
VRTX(J,1)=0

1 VRTX(J,2)=100E50
5 VRTX(1 9 1)=0
VRTX(I,2)=0
IF(I.EQ.N) GO TO 10
DO 8 J=I+1,N
VRTX(J,1)=0

8 VRTX(J,2)=1 0 0E50
10 K=0

DO 18 J=1,NE
IF((NO1)TYP(ISPEC(J,2)).GT.0).AND.(SAT.EQ.0)) GO TO 18

9 IF(EDGE(J,4).GE.2) GO TO 18
IFUEDGE(J,4)0GE00)00R 0 (ITRFKTP(II) 0 EQ.0)) GO TO 27
IF(EDGE(J,4).NE.ITRFKTP(II)) GO TO 18

27 IFHVRTX(ISPEC(J,1) 9 2)+EDGE(J,1)) 0 LT0VRTX(ISPEC(J,2),2)) GO TO 16
11 IF(URTX(ISPEC(42),2)+EDGE(J,1)).GE.VRTX(ISPEC(41),2))C0 TO 18

K=10.1

54

VRTX(ISPEC(J,1),1)=ISPEC(42)
VRTX(ISPEC(J 9 1) 9 2)=VRTX(ISPEC(J 9 2) 9 2)+EDGE(J 9 1)
GO TO 18

16 K=K-1-1
VRTX(ISPEC(J,2),1)=ISPEC(J,1)
VRTX(ISPEC(J,2),2)=VRTX(ISPEC(J,1),2)+EDGE(J,1)
GO TO 11

18 CONTINUE
IF(K 0 GT00) GO TO 10
DO 80 J=1 9 NREQ
IFORM(J 9 3).NE0ITREKTP(II)) GO TO 80
IF(IRM(J 9 1),NE01) GO TO 80
IF(RM(J 9 1).EQ00) GO TO 79
RM(J 9 2)=1
K2=IRM(J 9 2)
IF(VRTX(K2 9 2)0GE0100E30) GO 10 1011
Z=K2
DO 70 K=1 9 NE
K1=VRTX(K2 9 1)
IF(K10LT0K2) GO TO 22
N1=K2
N2=K1
GO TO 23

22 N1=K1
N2=K2

23 TYP=1
TRTP=IRM(43)
CALL FIND
IEDGPTH(J,K)=IPOS1
EDGE(IPOS1 9 2)=EDGE(IP0S1 9 2)+RM(J 9 1)
IF(K2.00Z) GO TO 50
IF(K20EQ 0 IRM(J 9 1)) GO 10 75
GO TO 69

50 IF(K10Ep0IRM(J 9 1)) GO TO 75
K2=K1

69 Z=K2
70 CONTINUE
75 IPTHLG(J)=K

GO TO 80
79 RM(J 9 2)=0
80 CONTINUE

1000 CONTINUE
1007 CONTINUE

TRBL=0
GO TO 1010

1011 TYPE(1)=0
TYPE (2)=J

1010 RETURN

* Subroutine STRTREE finds the minimum cost Steiner tree to connect
* specified nodes in a graph, using other nodes in the graph if there
* is a reduction in cost. The subroutine STRTREE is called upon to

5•5

* determine the Steiner trees of the.(sub)graphsA, B, and C discussed
* in Sections 5 and 6 of DLDCNS Report No. 14. The basic strategY
* used•to find the requiyed Steiner tree is found on page 118 in
* Networks, Volume 1, Number 2 (in a paper by Hakimi entitled
* "Steiner's Problems in Graphs). Subroutine STRTREE does all
* the bookkeeping, setting up an array called TABLE in which :
* are stored the links of the subgraph whose nodes are to be
* connected by a minimum cost tree. The tree itself is
* found in a subroutine called TREE. Subroutine STRTREE must
* determine TABLE for every different subgraph, of the graph
* in which a Steiner tree is to be found, that contains all
* the nodes - that must be interconnected by the Steiner tree.
* The nodes that are to be connected by the Steiner.tree

• * are presented to STRTREE in elements 3,...in the vector
* called GRP1. 	IGRP1(1) = number of nodes in IGRP1(3),
*. IGRP1(4),...etc. - TGRP1(2) = number of nodes in the vector
* IGRP2. Array GRP2 contains all intermediate nodes. that may
* or may not be in the Steiner tree. From this information,
* STRTREE consider.all possible subgraphs in the network that
* contain all the nodes in IGRP1 and some 'nodes in IGRP2..
* For each subset of nodes, all links in the network that join à

•* pair of nodes in this subset are found and stored in the array
* TABLE. Special provision has been built into the routine for
* temporarily eliMinating some intermediate nodes (see'
* discussion on special techniques discussed in SectiOn 5 of DLDCNS
* Report No , U). All nodes between the terrestrial netwOrk model and
* the satellite node are eliminated. Also, all nodes that lie
* between one of the nodes incident to a link and the real - ond
* (or destination) node (see the variable DTN(M)' read in earlier
* froM Unit.4) are eliminated. To ensure that stlbroutine TREE is always
* able to find a tree, - links with infinite weight.are used -. 	Brief comments
* are made below • to indicate what function various sections within the
* subroutine perform..

SUBROUTINE STRTREE
SNDCOST=0
GRP4 =1.0E30

3000 IPOS2=0

* Determine links incident to pairs of nodes in IGRP1.

• DO 3050 I=3,IGRP1(1)+1
• DO 3049 J=I+1,IGRP1(1)+2

N1=IGRP1(I)
N2=IGRP1(J)
CALL SPRFIND
IF(FOUND.EQ.0) GO TO 3049
IPOS2=IPOS2+1
TABLE(,IPOS2,1)=N1
TABLE(IPOS2,2)=N2

• TABLEOPOS2,3)=METCOST+ZMIN
3049 CONTINUE

56

3050 CONTINUE
DO 3055 I=4,IGRP1(1)+2
N1=IGRP1(3)

N2=IGRP1(I)
CALL SPRFIND
IF(FOUND.EQ.1) GO TO 3055
IPOS2=IPOS24.1
TABLE(IPOS2,1)=IGRP1(3)
TABLE(1P032,2)=IGRP1(I)
TABLE(IPOS2,3)=1.0E50

3055 CONTINUE

* Branch to statement 3526 if the satellite node N is in IGRP1.
* Then initialize various bookkeeping type variables.
* Basically, IGRP3 is a boolean vector to record which subsets
* of nodes in IGRP2 have been considered as intermediate nodes.
* The remaining variables are pointers.

IF(BUFF0EQ.1) GO TO 3526
3057 CTR4=IPOS2

DO 33.99 I2=0,IGRP1(2)
IF(I20.EQ.0) GO TO 3210
DO 3070 I=1 9 IGRP1(2.)

3070 IGRP3(I)=0
DO 3075 1=1 9 12

3075 IGRP3(I)=1
ICTR1=1
CTR1=12
IPOS2=CTR4
GO TO 3077

' 3076 IP0S2=IPTR(ICTR1-1)-1
3077 CTR2=0

DO 3200 I=ICTR1 9 IGRP1(2)
FLW=0
IF(IGRP3(0 0 0.0) GO TO 3200

* If the satellite node is not in IGRP1, then branch to
* Statement #3890. Otherwise determine links in the network
* model that exist between the nodes in IGRP2 and the satellite
* node N.

IF(BUFF.EQ.0) GO TO 3890
IF(NODVTR(IGRP2(0,2).EQ.0) GO TO 3890
IFOGRP2(I).NE 0 TVREQ1(I1)) GO TO 3082
IF((SNDND.NE.IGRP2(0).AND.(TYPE(I1).EQ.3)) GO TO 3890

3082 DO 3830 J=NODVTR(IGRP2(1) 9 1) 9
1NODVTR(IGRP2(0 0 1)+NODVTR(IGRP2(I),2)-1
IF(NODTYP(ISPEC(J 9 2)).GT00) GO TO 3850

3830 CONTINUE
GO TO 3890

3850 IF(IGRP2(I)0NE.SNOND) GO TO 3856
TP=2

57

GO TO 3857
3856 TP=TYPE(I1)
3857 DO 3860 K=NODVTR(ISPEC(J,2),1),

1NODVTR(ISPEC(J,2),1)+NODUTR(ISPEC(42),2)4
3860 IF(EDGE(K,4).EQ.TP) 	GO TO 3870

GO TO 3890
3870 IPOS2=IPOS2+1

TABLE(IPOS2,1)=IGRP2(I)
TABLE(IPOS2,2)=N
TABLE(IPOS2,3)=(EDGE(J,1)+EDGE(K,1))*ITVVCEQ/ITVTCTS
IPTR(I)=IPOS2
FLW=1
IF(IGRP2(1).14E.SNDND) GO TO 3890
SNDCOST=TABLE(IPOS2,3)
TABLE(IPOS2,3)=.0001

3890 IF(I.EQ.1) GO TO 3090

* Find all the links incident to pairs of nodes in IGRP2 and links
* incident to a node in IGRP1 and to another node in IGRP2.

N2=IGRP2(I)
DO 3085 J=I-1,1,-1
IF(IGRP3(J).EQ.0) GO TO 3085
N1=IGRO2(J)
CALL SPRFIND
IF(FOUND.EQ.0) GO TO 3085
IPOS2=IPOS2+1
IF(FLW.EQ.1) GO TO 3079
IPTR(I)=IPOS2

3079 TABLEOPOS2,1)=N1
TABLEOPOS2 9 2) =N2
TABLE(IPOS20)=METCOST+ZMIN
FLW=1

3085 CONTINUE
3090 DO 3110 J=3,IGRP1(1)+2

IFOGRP2(I).GT.IGRP1(J))
N1=IGRP2(I)
N2=IGRP1(J)
GO TO 3095

3093 N2=IGRP2(I)
N1=IGRP1(J)

3095 CALL SPRFIND
IF(FOUND.EQ.0) GO TO 3110
IP032=IPOS2+1
IF(FLW.EQ.1) GO TO 3097
IPTR(I)=IPOS2

3097 TABLE(IPOS2 9 1)=N1
TABLE(IPOS2,2)=N2
TABLE(IPOS2,3)=METCOST+ZMIN
FLW=1

3110 CONTINUE
IF(FLW.EQ.1) GO TO 3200

GO TO 3093

58

IPOS2=1P0S2+1
IPTR(I)=IPOS2

3103 TABLE(IP0S2,1)=N1
TABLE (IPOS2,2)=N2
TABLE(IPOS2,3)=1.0E50

3200 CONTINUE

* Call.subroutine TREE to find the minimum cost tree connecting
* .the nodes incident to the links stored in the first IPOS2 rows
* of the array.TABLE. There is one link for eaéh row I of
* array TABLE, I=1,0.,,IPOS2, where the I Th link is incident
* to the nodes stored in TABLE(I,1) and TABLE(1 9 2).
* The:weight Y (subscript.I) assigned to the I Th link is
* stored in TABLE(1,3)..

3210 CALL TREE
*
* A record of the links in the tree just found is kept if the
* cost of the. tree is better than any previously found tree.
* Otherwise branch ahead to Statement #3305.
*

COST=COST+SNDCOST
IF(COST0GE.1.0E30)G0 TO 3305

3213 IF(COST.GE.GRP4) 	GO TO 3305
3217 GRP4 =COST
3218 DO 3220 I=1,NE
3220 STREDG01,0=0

DO 3240 I=1 9 IP0S2
IFKTBL(1 9 3)0EQ00)0OR0(TBL(I,3)0EQ 0 2)) GO 10 3240

 IF(TABLE(I,3).EQ01.0E50) GO 10 3305
N1=TABLE(I,1)
N2=TABLE(I,2)
IF(N2.EQ.N) GO TO 3230
CALL FINDER
GO TO 3240

3230 DO 3250 J=NODVTR(N1,1),NODUR(N1,1)+NODUTR(N1,2)-1
IF(NODTYP(ISPEC(42)).G7.0) GO TO 3255

3250 CONTINUE
3255 N2=ISPEC(J,2)

CALL FIND
STREDG (I 1,IPOS1)=1
TP.TYP
IF(Nl.NE.SNDND) GO TO 3237
TYP=2

3237 N1=N2
N2=N
CALL FIND
TYP=TP
STREDG(I1,IPOS1)=1

3240 CONTINUE

* Before going back to determining the next tree, some bookkeeping

:59

* must be done: The vector IGRP3 is updated; therext subset of
* nodes to be considered, from those in IGRP2, is determined é
*
3305 CTR1=0

IF(I2 0 000) GO TO 3399
DO 3310 I=IGRP1(2),1,-1
IF(IGRP3(0.EQ 0 0) GO TO 3310
CTR1=CTR1+1
IF(I é EQéIGRP1(2)) 	GO TO 3310
IF(IGRP3(I+1).EQ.0) GO TO 3320

3310 CONTINUE
GO TO 3399

3320 IGRP3(0=0
IGRP3(I+1)=1
ICTR1=,I+1
IF(CTR1,EQ.1) GO TO 3076
IF((I+1),EQ0IGRP1(2)) 	GO 10 3076
DO 3330 J=I+2,IGRP1(2)

3330 IGRP3(J)=0
DO 3340 J=I+2,I+CTR1

3340 IGRP3(J)=1
GO TO 3076

3399 CONTINUE
GO TO 3505

* The following code determines links which are in the network
* model and that connect nodes in vector IGRP1 to the satellite
* node Né
*
3526 DO 3590 I=3,IGRP1(1)+2

IFOGRP1(0éNE0TVREQ1(I1)) GO TO 3519
IFUSNDND0NEOIGRP1(0).AND0(TYPE(I1).EQ.3)) GO TO 3590

3519 IF(IGRP1(0 0 NE.SNDND) GO TO 3528
TP=2
GO TO 3529

3528 TP=TYPE(I1)
3529 IF(NODUTR(IGRP1(0,2).EQ00) GO TO 3590

DO 3530 J=NODVTR(IGRP1(0,1),NODVTROGRP1(0,0
1+NODUTR(IGRP1(0,2)-1
IF(NOOTYP(ISPEC(J 9 2)).GTé0) GO 10 3550

3530 CONTINUE
GO TO 3590

3550 DO 3560 K=N0DVTR(ISPEC(J,2),1),
1NODVTR(ISPEC(42),1)+NODVTR(ISPEC(J,2),2)-1

3560 IF(EDGE(K,4)0EQ é TP) 	GO TO 3570
3570 IPOS2=IPOS2+1

TABLE(IP0S2 9 1)=IGRP1(I)
TABLE(1POS2 9 2)=N
TABLE(IPOS2,3)=(EDGE(J 9 1)+EDGE(K,1))*ITVVCEQ/ITVTCTS
FLW=1
IF(IGRP1(0éNE0SNOND) GO TO 3590
SNDCOST=TABLE(IPOS2,3)

60

TABLE(IPOS2,3)=00001
3590 CONTINUE

IF(FLW.0.1) GO TO 3596
IP0S2=IP0S2+1
TABLE(IPOS2,1)=IGRP1(
TABLE(IPOS2,2)=N
TABLE(IPOS2,3)=1.0E50

3596 CTR4=IPOS2
GO TO 3057

3500 CONTINUE
3505 CONTINUE

RETURN

* Subroutine FIND determines whether or not there is a link
* in the network model that is incident to nodes Ni and
* N2, and furthermore that the link can carry the type of
* flow requirement (message, half-duplex television, simplex
* television).

SUBROUTINE FIND
FOUND=0
IF(NODVTR(N1,2)0EQ 0 0) GO TO 15
ZMIN=100E50
DO 10 IX=NODVTR(N1,1),NODUTR(N1,2)-11-NODVTR(N1,1)
IF(ISPEC(IX,2).NE0N2) GO TO 10
IF((EDGE(IX,4)0GT00)0AND 0 (EDGE(IX,4).NE.TYP)) GO TO 10
IFHEDGE(IX,4).GE00)00R.(TRTP.EQ00)) GO TO 5
IF(EDGE(IX,4).NE.TRTP) GO TO 10

5 FOUND=1
IF(EDGE(IX,1).GE.ZMIN) GO TO 10
ZMIN=EDGE(IX,1)
IPOS1=IX

10 CONTINUE
GO TO 20

15 CONTINUE
20 RETURN

* SubroUtine Tree finds the minimum cost tree in a graph
* according to an algorithm given on page 207 in a book
* entitled Communications, Transmission, and Transportation
* Networks by Frank and Frisch. *

SUBROUTINE TREE
DO 3550 I=1,IPOS2
TBL(I,1)=TABLE(I,1)
TBL(I,2)=TABLE(I,2)

3550 TBL(I,3)=0
DO 3599 I=1,IGRP1(1)+12-1-1-BUFF
ZMIN=1.0E52
DO 3570 J=1,IP052
IF(TABLE(J,3).GE.ZMIN) GO TO 3570
IF(TBL(J,3) 0 NE00) GO TO 3570

LMIN=TABLE(J,3)
K=J

3570 CONTINUE
TBL(K,3)=1
DO 3580 J=1,IPOS2
IF(J.EQ.K) GO TO 3580

	

IF(TBL(J,1).NE 0 T8L(K 9 2)) 	GO 10 3572
TBL(41)=TBL(K,1)

	

3572 IF(TBL(J,2).NE.TBL(K,2)) 	GO 10 3578
TBL(J,2)=TBL(K,1)

3578 IF(T8L(J,1).NE.TBL(J,2)) GO TO 3580
TBL(J,3)=2

3580 CONTINUE
3599 CONTINUE

COST=0
DO 3585 J=1 9 IP0S2
IF(TBL(J,3)0NE.1) GO TO 3585
COST=COST-ETABLE(J 9 3)

3585 CONTINUE
RETURN

* Subroutine X1 determines those flow requirements,
* corrèsponding to television traffic, that have
* temporarily been routed through a link for which the
* expected cost of flow is too unrealistic compared to
* the real cost.

SUBROUTINE X1
IF(NOTVREQ.EQ.0) GO TO 8400
DO 8395 I=1,NOTVREQ
IF(TVRQPTR(I)0EQ.0) GO TO 8395
DO 8390 J=1 9 NE
IF(STREDG(1 9 J).EQ.0) GO TO 8390
IF(EDGE(J 9 1).LT01.0E29) GO TO 8390
TVRQPTR(I)=0
D0,8370 L=1,NE
1F(STREDG(1 9 L).EQ.0) GO TO 8370
IF(NODTYP(ISPEC(L,1)).NE.1) GO 10 8356
TV=ITVVCEQ
GO TO 8360

8356 TV=ITVTCTS
IFHEDGE(L,4).EQ.-1).0R.(NODTYP(ISPEC(L,2)).EQ.1))

1G0 TO 8360
TV=ITVCNCP

8360 TMPEDG(L)=TMPEDG(L)-TVREQ(I)*TV
8370 CONTINUE

GO TO 8395
8390 CONTINUE
8395 CONTINUE '
8400 CONTINUE

RETURN

61

62

* Subroutine X2 is the main subroutine for determining the required
* Steiner trees for television traffic©

Y
SUBROUTINE X2
DO 7920 I=1,NE

7920 TMPEDG(I)=0
IF(NOTVREQ.EQ.0) GO TO 7963
DO 7950 Il=1,NOTVREQ
IF(TVREQ(I1).EQ.0) GO TO 7950
TVRQPTR(I1)=1
TYP=TYPE(I1)
TRTP=TVCR(I1)
CALL PTMT
IF(GRP40GE0100E30) 	GO TO 7970
DO 7945 J=1,NE
IF(STREDG(I1,J)0EQ00) GO 10 7945
IF(NODTYP(ISPEC(J,1))0NE01) GO TO 7941
TV=ITVVCEQ
GO TO 7942

7941 TV=ITVTCTS
IF((EOGE(J,4).EQ0-1)00R0(NODTYP(ISPEC(J,2)) 0 EQ 0 1))

1G0 TO 7942
TV=ITVCNCP
IF(EDGE(J,4).EQ0-2) GO 10 7942 .

TV=ITVDIG
7942 TMPEDG(J)=TMPEDG(J)+TVREQ(I1)*TV
7945 CONTINUE
7950 CONTINUE
7963 TRBL=0

GO TO 7965
7970 TYPE(1)=1

TYPE(2)=I1
7965 CONTINUE

RETURN

* Subroutine X3 determines how the maximum number of television
* channels that can be routed through the corresponding tree
* without violating the constraint that the total flow through
* each linok be less than or equal to U (subscript M)
* (see Step 3 of the algorithm described in Section ?
* of DLDCNS Report No. ?).

SUBROUTINE X3
ZMIN=1.0E40
DO 6050 J=1,NE
IF(STREDG(I,J).0.0) GO TO 6050
IBUFF=EDGE(J,3)
IF(NODTYP(ISPEC(41)) 0 NE 0 1) GO TO 6031
IBUFF=(IBUFF/ITVVCEQ)*ITVTCTS
GO TO 6035

6031 IFHEDGE(J,4)0EQ0-1)00R0(NODTYP(ISPEC(J,2))0EQ01))

1G0 TO 6035
IBUFF=(IBUFF/ITVCNCP)*ITIITCTS
IF(EDGE(J,4).EQ.-2) GO TO 6035
IBUFF=(IBUFF/ITVDIG)*ITVTCTS

6035 IF(IBUFF.GE ..ZMIN) 	GO TO 60-50
ZMIN=IBUFF
JO=J

6050 CONTINUE
K=TVREQ(I)
DO 6070 J=1,1‹
IF((J*ITVTCTS).GT.ZMIN) GO . TO 6075

6070 CONTINUE
6075 J=J-1

FLG=J
IF(FLGGNE.0) GO TO 6076
GO TO 6085

6076 DO 6080 L=1,NE
IF(STREDG(I,L) 0.EQ 0 0) GO TO 6080
IF(NODTYP(ISPEC(L,1)) 0 NE01) GO 10 6090
TV=ITVVCEQ '
GO TO 6077

6090 TV=ITVTCTS
IF(CEDGE(L,4),EQ.-1)00R„(NODTYP(ISPEC(L,2)),EQ.1))

1G0 TO 6077
TV=ITVCNCP
IF(EDGE(4)0EQ0-2) GO TO 6077

TV=ITVDIG
6077 TMPEDG(L)=TMPEDG(L)+J*TV
6080 CONTINUE
6085 RETURN

* Subroutine X4 is a control routine for permanently routing
* television traffic.

SUBROUTINE X4
X44=1
IF(NOTVREQ (,EQ60) GO TO 6195
DO 61J0 I=1,NOTVREQ
IF(TVREQ(I).EQ.0) GO 10 6190
IF(TVROPTR(I).0.0) GO TO 6190
DO 6130 J=1,NE

6130 TMPEDG(J)=0
CALL X3
IF(FLG.EQ 0 0) GO TO 6190
BUFF=0

• IL=0
6147 DO 6150 J=1,NE 	 •

IF(STREDG(1 9 J) 0 EQ.0) GO TO 6150
• IF(ISPEC(J,2),NE 0 N) GO TO 6173

BUFF=1 	 •

6173 IF(SLNNET.EQ.0) GO TO 6150
IF((NODTYP(ISPEC(J,1)).NE.0)00R 0 (NODTYP(ISPEC(J,2)).NE.1))

63

64

IGO TO 6150
IL=IL+1

• IGRP1(IL)=ISPEC(J,1)
6150 EDGE(J,3)=EDGE(J,3)-TMPEDG(J)

IF(SEN11ET.EQ00) GO TO 6170
IF((SENNET.EQ.1).AND.(1L.0.0)) GO TO 6170
WRITE(7,6171) FLG,I 0 TVREQ1(I) 9 (IGRP1(J),J=1,IL)

• 6171 FORMAT(201)
6170 TVREQ(I)=TVREQ(I)-FLG

FLWW=1
IF(BUFF.EQ.0) GO TO 6155 '
SATTRFK=SATTRFK+FLG*ITVVCEQ
TVSTTFK=TVSTTFK+FLG*ITVVCEQ

6155 IF(TVREQ(I).GT.0) GO TO 6190
TVRQPTR(I)=0
IREQCTR=IREQCTR+1

6190 CONTINUE
6195 CONTINUE

RETURN
SUBROUTINE SPRFIND
FOUND=0
IF(NODVTR(N1,2).EQ.0) GO 10 20
ZMIN=100E50
IZMIN=0
IF(NODVTR(N1 9 2) 0 EQ.0) GO TO 20
DO 10 IX=NODVTR(N1,1),NODVTR(N1,2)-1+NODVTR(N1,1)
IF(DTN(IX).NE.N2) 	GO 10 10
IZMIN=IZMIN+1
IFNEDGE(IX,4)0GE.0).0R 0 (TRTP 0 EQ.0)) GO TO 5
IF(TRT,P.NE.EDGE(IX,4)) GO TO 10

5 ZZMIN=EDGE(IX,1)
IF(EDGE(IX,4)0GE„-1) GO TO 11

9 ZZMIN=EDGE(IX,1)*ITVCNCP/ITVTCTS
IF(EDGE(IX,4) 0 GE.-1) GO TO 11
ZZMIN=EDGE(IX,1)*ITVDIG/ITVTCT5

11 	IF(ZZMIN.GE.ZMIN) 	GO TO 10 	•

FOUND=1
IPOS1=IX
ZMIN=ZZMIN
TABLE(IPOS2+1,4)=IZMIN

10 CONTINUE
METCOST=0

20 RETURN
SUBROUTINE FINDER
IZMIN=0
DO 10 IX=NODUR(N1,1),NODVTR(N1,2)-14-NODVTR(N1,1)
IF(DTN(IX)0NE0N2) 	GO TO 10 	 •

TZMIN=IZMIN+1
IF(TABLE(I,4)0EQ0IZMIN) 	GO TO 40

10 CONTINUE
40 STREDG(I1,IX)=1

IF(ISPEC(IX 9 2).EQ.N2) GO TO 20

19010
19015

19020
19025

19115

19118

H1=112
N2=ISPEC(IX,2)
CALL FIND
STREDG(I 1,IPOS1)=1

20 RETURN
SUBROUTINE PTMT
DO 19005 I=1,NE
STREDGA(I)=0
STREDGB(I)=0
KC=1
KAA=1
KBB=1
SNDND=0
DO 19010 KA=KAA,
IF(SBGRPA(I1 9 KA)
IGRP1(KA-KAA-1.3).
IGRP1(1)=KA-KAA
KAA=KA4-1
IFOGRP1(1).EQ.0
DO 19020 KB=KBB,
IF(SBGRPB(I1,KB)
IGRP2(KB-KBB4.1)=
IGRP1(2)=KB-KBB
KBB=KB -1-1
DO 19028 I=1,NE
STREDG(I1,I)=0
BUFF=0
CALL STRTREE
DO 19040 I=1,NE
IF(STREDG(I1,I) 0

 STREDGA(I)=KC
CONTINUE
COSTA(KC)=GRP4
KC=KC4.1
GO TO 19007
CSTA=0
DO 19103 I=1,KC-
CSTA=CSTAI-COSTA(
IF(SAT.EQ.0) GO
KC=1
COSTB(KC)=1.0E60
KAA=1
KBB=1
GO TO 19190
DO 19110 KA=KAA
IF(SBGRPC(I1,KA)
IGRP1(KA-KAA4-3)=
IGRP1(1)=KA-KAA
IFOGRP1(1).EQ.

IF(SBGRPD(I1,1),
IGRP1(2)=0
GO TO 19127

19005

1000
.EQ.9999) GO TO 19015
SBGRPA(I1,KA)

) GO TO 19101
1000
.EQ.9999) GO TO 19025
SBGRPB(I1,KB)

19030
19028

EQ.0) GO TO 19040

19040

19101
1
I)
TO 19345

,1000
.EQ09999) GO TO
SBGRPC(I1,KA)

19115
0) GO TO 19320
NE.10000) GO TO

65

19007

19103

19107

19110

66

19118 DO 19120 KB=KBB,1000
IF(SBGRPD(I1,KB).EQ09998) GO TO 19125

19120 IGRP2(KB-KBP-1)=SBGRPD(I1,KB)
19125 IGRP1(2)=KB-K8B

KBB=KB-1-1
IF(IGRP2(1).EQ.0) GO TO 19150

19127 DO 19128 I=1 5 NE
19128 STREDG(I1,0=0

BUFF=0
CALL STRTREE
DO 19135 I=1,NE
IF(STREDG(I1,I).EQ.0) GO TO 19135
STREDGB(I)=KC

19135 CONTINUE
COSTB(KC)=GRP4
GO TO 19190

19150 COSTB(KC)=COSTA(IGRP2(2))
DO 19160 I=1,NE
IF(STREDGA(I).NE.IGRP2(2)) GO TO 19160
STREDGB(I)=KC

19160 CONTINUE
19190 L=0

DO 19210 KA=KAA,1000
IF(SBGRPC(I1,KA).EQ.9999)G0 TO 19215
IF(KAA.EQ.1) GO TO 19213
DO 19212 I=1 9 KAA-2

19212 IF(SBGRPC(I1,0„EQGSBGRPC(I1 9 KA)) GO TO 19210
19213 L=L4.1

IGRP1(L-1-2)=SBGRPC(I1,KA)
19210 CONTINUE
19215 IGRP1(1)=L
19217 KAA =KA+1

DO 19220 KB=KBB,1000
IF(SBGRPD(I1,KB)0EQ09999) GO TO 19225

19220 IGRP2(KB-KBB-1-1)=SBGRPD(I1,KB)
19225 IGRP1(2)=KB-KBB

KBB=KB+1
SNDFLG=0
DO 19240 I=3,IGRP1(1)+2

19240 IF(TVREQ1(I1)0EQ.IGRP1(0) GO TO 19260
SNDND=0
GO TO 19275

19260 SNDFLG=1
DO 19270 1=1 9 1000
IF(SEND(I1,I).EQ.9999) GO 10 19271 .

19270 CONTINUE
19271 NOSNDND=I4

DO 19299 KA=1,NOSNDND
SNDND=SEND(I1 9 KA)

19275 BUFF=1
DO 19227 I=1,NE

19227 STREDG(I1,I)=0

67

CALL S1RTREE
IF(COSTB(KC).LE.GRP4) GO TO 19298
COSTB(KC)=GRP4
DO 19290 I=1,NE
IF(STREDGB(I).NE.KC) 	GO TO 19280
STREDGB(I)=0

19280 IF(STREDG(I1,I).NE01) GO TO 19290
STREDGB(I)=KC

19290 CONTINUE
19298 IF(SNDFLG.EQ.0) GO TO 19300
19299 CONTINUE
19300 KC=KC-1-1

GO TO 19107
19320 CSTB=0

DO 19340 I=1,KC-1
19340 CSTB=CSTB+COSTB(I)

CSTB=CSTB+STCT
IF(CSTB.LT.CSTA) GO TO 19360

19345 GRP4=CSTA
DO 19350 I=1,NE
STREDG01,0=0
IF(STREDGA(I).EQ.0) GO TO 19350
STREDG(I1,0=1

19350 CONTINUE
GO TO 19380

19360 GRP4=CSTB
DO 19370 I=1,NE
STREDG(I1,0=0
IF(STREDGB(I).EQ.0) GO TO 19370
STREDG(I1,0=1

19370 CONTINUE
19380 RETURN

SUBROUTINE RCST
IF(EDGE(I,2).NE.0) GO TO 60004
BUFF=0
GO TO 60003

60004 IFUEGFL(I,1)+EDGE(I,2)).LT 0 EGFOI,2)) GO TO 60000
BUFF=1
GO TO 60003

60000 DO 60001 M=1 9 ISPEC(1 9 3)
IFUEDGE(I,2)+EGFL(I,1)).LE.SPEC(I,M*44-1)) GO TO 60002

60001 CONTINUE
60002 BUFF=SPEC(I,(M-1)*44.2) +SPEC(I,(M-1)*44-3)

1+SPEC(I,(M-1)*44-4)*(EDGE(1 9 2)+EGFL(I,1)-SPEC(I,(M-1)*4-1-1))
BUFF=(EDGE(1 9 1)*EDGE(I,2))/(BUFF-STREDGA(I))

60003 CONTINUE
IFUOUTPUT.EQ.0).0R.(EDGE(I,2).EQ.0)) GO TO 60009
WRITE(1 9 60010) I,EGFL(I,1),EGFOI,2),EDGE(I,2),BUFF,SALPNA

60010 FORMAT(1N1 9 I3,1X 9 5(F11.3,1X))
60009 RETURN

END

