

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

Ecosystems and Oceans Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2021/030 Région du Golfe

Évaluation des stocks de Hareng de l'Atlantique (*Culpea harengus*) de la zone 4TVn de l'OPANO dans le sud du golfe du Saint-Laurent en 2018-2019

F. Turcotte, D.P. Swain, J.L. McDermid, R.A. DeJong

Pêches et Océans Canada Centre des pêches du Golfe 343, avenue Université, C.P. 5030, Moncton (Nouveau-Brunswick) E1C 9B6

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/csas-sccs/dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2021 ISSN 2292-4272 ISBN 978-0-660-38611-9 N° cat. Fs70-5/2021-030F-PDF

La présente publication doit être citée comme suit :

Turcotte, F., Swain, D.P., McDermid, J.L. et DeJong, R.A. 2021. Évaluation des stocks de Hareng de l'Atlantique (*Clupea harengus*) de la zone 4TVn de l'OPANO dans le sud du golfe du Saint-Laurent en 2018-2019. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/030. xv + 167 p.

Also available in English:

Turcotte, F., Swain, D.P., McDermid, J.L., and DeJong, R.A. 2021. Assessment of the NAFO Division 4TVn southern Gulf of St. Lawrence Atlantic Herring (Clupea harengus) in 2018-2019. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/030. xiv + 158 p.

TABLE DES MATIÈRES

LISTE DES TABLEAUX	IV
LISTE DES FIGURES	VIII
RÉSUMÉ	XV
1. INTRODUCTION	1
2. SOURCES DE DONNÉES	2
2.1. DÉBARQUEMENTS	
2.1.1. Classification du stock reproducteur	
2.2. SONDAGE TÉLÉPHONIQUE	
2.3. ÉCHANTILLONNAGE DES CAPTURES DE LA PÊCHE	5
2.4. RELEVÉ ACOUSTIQUE INDÉPENDANT DE LA PÊCHE	5
2.5. FILETS EXPÉRIMENTAUX	6
2.6. RELEVÉS ACOUSTIQUES DES FRAYÈRES	
2.7. RELEVÉ PLURISPÉCIFIQUE AU CHALUT DE FOND	
2.8. RENSEIGNEMENTS SUR L'ÉCOSYSTÈME	
3. INTRANTS ET INDICES	
3.1. MATRICES RELATIVES AUX CAPTURES SELON L'ÂGE ET AUX POIDS L'ÂGE	SELON
3.2. CAPTURES PAR UNITÉ D'EFFORT	
3.3. INDICE D'APRÈS LE RELEVÉ ACOUSTIQUE INDÉPENDANT DE LA PÊC	
3.4. INDICES RELATIFS AUX FILETS EXPÉRIMENTAUX	
3.4.1. Indice de sélectivité relative	
3.4.2. Captures selon l'âge au moyen de filets expérimentaux	
3.6. OGIVE DE MATURITÉ	
4. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS DE PRINTEME 4.1. MODÈLE RELATIF AUX REPRODUCTEURS DE PRINTEMPS	
4.1. MODELE RELATIF AUX REPRODUCTEURS DE PRINTEMPS	
4.2. RESULTATS RELATIFS AUX REPRODUCTEURS DE PRINTEMPS	
4.3.1. Projections à court terme	
4.3.2. Projections à long terme	
5. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS D'AUTOMNE	
5.1. MODÈLE RELATIF AUX REPRODUCTEURS D'AUTOMNE	
5.2. RÉSULTATS RELATIFS AUX REPRODUCTEURS D'AUTOMNE	
5.3. PROJECTIONS RELATIVES AUX REPRODUCTEURS D'AUTOMNE	
5.3.1. Projections à court terme	
5.3.2. Projections à long terme	
6. DISCUSSIONS ET CONCLUSIONS	
6.1. HARENGS REPRODUCTEURS DE PRINTEMPS	

6.2. HARENGS REPRODUCTEURS D'AUTOMNE31
7. SOURCES D'INCERTITUDE35
8. RÉFÉRENCES CITÉES37
TABLEAUX42
FIGURES102
ANNEXE A : TEST DE COHÉRENCE DE DÉTERMINATION DE L'ÂGE150
ANNEXE B : RÉSULTATS DU RELEVÉ ACOUSTIQUE INDÉPENDANT DE LA PÊCHE151
ANNEXE C : RÉSULTATS DES RELEVÉS ACOUSTIQUES DES FRAYÈRES156
ANNEXE D : RÉSULTATS DU RELEVÉ PLURISPÉCIFIQUE AU CHALUT DE FOND164
ANNEXE E : STRUCTURE DU MODÈLE ET REVUE DES PERFORMANCES165
LISTE DES TABLEAUX
Tableau 1. Débarquements (en tonnes) de Harengs de la zone 4T lors des pêches de printemps et d'automne par engins (fixes et mobiles) et par groupe reproducteur (SS = reproducteurs de printemps et FS = reproducteurs d'automne). Les allocations de TAC et les captures ciblées sont également fournies, car le TAC est plus élevé que la détermination des captures ciblées en raison des parts traditionnelles entre les régions
Tableau 2. Échantillons prélevés dans la pêche commerciale, nombre de poissons analysés (N), débarquements et pourcentage du TAC débarqué par zone au printemps (du 1er avril au 30 juin) et à l'automne (du 1er juillet au 31 décembre). Ces données sont utilisées pour calculer les matrices de captures et de poids selon l'âge de 2018 et 2019 pour le Hareng de la zone 4T.
Tableau 3. Comparaison des résultats du Programme de vérification à quai (PVQ) de 2018 et 2019 et des résultats des sondages téléphoniques, y compris le nombre de répondants, la longueur moyenne des filets (brasses), le nombre de filets installés, le pourcentage de filets de maillage de 2½ po dans la pêche d'automne, et un indice comparatif de l'abondance de 2018 et 2019, respectivement [échelle de 1 (médiocre) à 10 (excellent)]
Tableau 4. Captures selon l'âge des reproducteurs de printemps (milliers) pour les engins fixes dans la zone de pêche du Hareng 4T49
Tableau 5. Poids selon l'âge des reproducteurs de printemps pour les engins fixes dans la zone de pêche du Hareng 4T50
Tableau 6. Captures selon l'âge des reproducteurs d'automne (en milliers) pour les engins fixes dans la zone de pêche au Hareng 4T, par région : a) nord, b) centrale, c) sud51
Tableau 7. Poids selon l'âge des reproducteurs d'automne pour les engins fixes dans la zone de pêche du Hareng 4T, par région : a) nord, b) centrale, c) sud54
Tableau 8. Captures selon l'âge des reproducteurs de printemps (milliers) pour les engins mobiles dans la zone de pêche du Hareng 4T
Tableau 9. Poids selon l'âge des reproducteurs de printemps pour les engins mobiles dans la zone de pêche du Hareng 4T
Tableau 10. Captures selon l'âge des reproducteur d'automne (en milliers) pour les engins mobiles dans la zone de pêche du Hareng 4T, par région : a) nord, b) centrale, c) sud59

Tableau 11. Poids selon l'âge des reproducteurs d'automne pour les engins mobiles dans la zone de pêche du Hareng 4T63
Tableau 12. Pourcentage de jours de pêche sans capture au filet maillant selon le sondage téléphonique pour les principales zones de pêche au printemps et à l'automne
Tableau 13. Résultats du modèle linéaire général multiplicatif appliqué aux données de captures par unité d'effort de pêche pour chaque région (zone 4T de l'OPANO)64
Tableau 14. Valeurs des captures par unité d'effort (nombre par coup de filet) des reproducteurs de printemps pour les engins fixes dans la zone 4T de l'OPANO
Tableau 15. Valeurs des captures par unité d'effort (nombre par coup de filet) des reproducteurs d'automne par région : a) nord, b) centrale, et c) sud66
Tableau 16. Captures selon l'âge des reproducteurs de printemps et des reproducteurs d'automne provenant du relevé acoustique indépendant de la pêche dans la zone 4Tmno de l'OPANO
Tableau 17. Sélectivité relative selon l'âge pour les maillages 2 % po et 2 ¾ po calculée à partir de l'étude expérimentale sur les filets et de la pêche commerciale au filet maillant69
Tableau 18. Nombre moyen stratifié de Harengs reproducteurs d'automne par trait selon l'âge lors du relevé plurispécifique au chalut de fond71
Tableau 19. Estimations du maximum de vraisemblance de la biomasse des reproducteurs de printemps (t) au 1 ^{er} avril72
Tableau 20. Estimations du maximum de vraisemblance de l'abondance des reproducteurs de printemps (nombre en milliers) au 1 ^{er} janvier73
Tableau 21. Estimations du maximum de vraisemblance du taux instantané de mortalité par pêche (F) des reproducteurs de printemps selon l'âge. F ₆₋₈ est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 6 à 8 ans74
Tableau 22. Tableau d'analyse des risques des options de captures annuelles (entre 0 et 1 250 tonnes) pour 2020 et 2021 et les années suivantes jusqu'en 2028; comprend la BSR (en milliers de tonnes) prévue en 2021, 2022 et 2029; les probabilités (%) que la BSR soit supérieure au PRL; les probabilités que la BSR augmente de 5 %; et le taux de mortalité par la pêche pondéré en fonction de l'abondance (F ₆₋₈) pour la composante des Harengs reproducteurs de printemps du sud du golfe du Saint-Laurent
Tableau 23. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse (t) au 1 ^{er} août pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent
Tableau 24. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent
Tableau 25. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse (t) au 1 ^{er} août pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent
Tableau 26. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent

Tableau 27. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse (t) au 1 ^{er} août pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent
Tableau 28. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent
Tableau 29. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse (t) au 1 ^{er} août pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent
Tableau 30. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent.
Tableau 31. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse (t) au 1 ^{er} août pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent.
Tableau 32. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent
Tableau 33. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse (t) au 1 ^{er} août pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent
Tableau 34. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent
Tableau 35. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse totale (t) au 1 ^{er} août pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent88
Tableau 36. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent.
Tableau 37. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse totale (t) au 1 ^{er} août pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent90
Tableau 38. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1 ^{er} janvier pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent
Tableau 39. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 5 à 10 ans
Tableau 40. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1er janvier pour les poissons âgés de 5 à 10 ans
Tableau 41. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région centrale du sud du

golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 5 à 10 ans94
Tableau 42. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1er janvier pour les poissons âgés de 5 à 10 ans
Tableau 43. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 5 à 10 ans
Tableau 44. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 5 à 10 ans
Tableau 45. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 5 à 10 ans98
Tableau 46. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1 ^{er} janvier pour les poissons âgés de 5 à 10 ans
Tableau 47. Tableau d'analyse des risques du modèle qSCA sur les options de captures annuelles (entre 2 000 et 24 000 tonnes) pour 2020 et 2021 et les années suivantes jusqu'en 2028; comprend la BSR (tonnes) prévue en 2021, 2022 et 2029; les probabilités (%) que la BSR soit supérieure au PRL; les probabilités que la BSR augmente de 5 %; et le taux de mortalité par pêche (F ₅₋₁₀) pleinement recruté pour la composante de reproducteurs d'automne du Hareng de l'Atlantique du sud du golfe du Saint-Laurent
Tableau 48. Tableau d'analyse des risques du modèle qmSCA sur les options de captures annuelles (entre 2 000 et 24 000 tonnes) pour 2020 et 2021 et les années suivantes jusqu'en 2028; comprend la BSR (tonnes) prévue en 2021, 2022 et 2029; les probabilités (%) que la BSR soit supérieure au PRL; les probabilités que la BSR augmente de 5 %; et le taux résultant de mortalité par pêche (F ₅₋₁₀) pleinement recruté pour la composante de reproducteurs d'automne du Hareng de l'Atlantique du sud du golfe du Saint-Laurent

LISTE DES FIGURES

Figure 1. Zones de gestion de la pêche du Hareng dans le sud du golfe du Saint-Laurent (graphique du haut, a); zones 4T et 4Vn de l'OPANO, où le mauve représente la région nord, le bleu représente la région centrale et le vert représente la région sud (graphique du milieu, b); zones géographiques utilisées lors du sondage téléphonique portant sur la pêche du Hareng au filet maillant (graphique du bas, c)
Figure 2. Débarquements déclarés (tonnes) de Harengs de l'Atlantique du sud du golfe du Saint-Laurent (reproducteurs de printemps et d'automne combinés) par zone de l'OPANO (graphique du haut, a); par flotte (graphique du milieu, b) et par saison de pêche (graphique du bas, c), de 1978 à 2019. Dans tous les graphiques, le total autorisé des captures (TAC; tonnes) annuel correspondant est indiqué. Pour les débarquements par saison, les débarquements dans la zone 4Vn ont été attribués à la saison de pêche d'automne. Les données de 2018 et 2019 sont préliminaires
Figure 3. Débarquements estimés (tonnes) de la composante de reproducteurs de printemps (à gauche) et de la composante de reproducteurs d'automne (à droite) du Hareng de l'Atlantique du sud du golfe du Saint-Laurent, de 1978 à 2019. Les graphiques a et d montrent les débarquements estimés par type d'engin, la proportion des débarquements attribués à la flotte à engins fixes et le TAC pour la composante reproducteur (symboles rouges) pour la période de 1991 à 2019. Les graphiques b et e montrent les débarquements estimés de Hareng de la flotte à engins fixes qui ont eu lieu au cours de la saison de pêche de printemps et d'automne, ainsi que la proportion de Harengs débarqués au cours de la saison de pêche correspondante. Les graphiques c et f montrent les débarquements estimés de Hareng de la flotte à engins mobiles qui ont eu lieu au cours de la saison de pêche de printemps et d'automne, ainsi que la proportion de Harengs débarqués au cours de la saison de pêche correspondante. Pour les débarquements par saison, les débarquements dans la zone 4Vn de l'OPANO ont été attribués à la saison de pêche d'automne. Les données de 2018 et 2019 sont préliminaires
Figure 4. Captures selon l'âge de la composante de reproducteurs de printemps pour la pêche commerciale, tous engins confondus, de 1978 à 2019. La taille de la bulle est proportionnelle au nombre de captures selon l'âge et l'année. La diagonale représente la cohorte la plus forte la plus récente (1991). Les valeurs indiquées à l'âge de 11 ans représentent les captures selon l'âge de 11 ans et plus.
Figure 5. Captures selon l'âge de la composante de reproducteurs d'automne pour la pêche commerciale, tous engins confondus, de 1978 à 2019, pour les régions Nord (haut), Centrale (milieu) et Sud (bas). La taille de la bulle est proportionnelle au nombre de poissons dans les captures selon l'âge et l'année. Les valeurs indiquées à l'âge de 11 ans représentent les captures selon l'âge de 11 ans et plus.
Figure 6. Poids moyen (kg) du Hareng de l'Atlantique de 4, 6, 8 et 10 ans des reproducteurs de printemps (graphiques de gauche) prélevés dans les captures du printemps et des reproducteurs d'automne (graphiques de droite) prélevés dans les captures d'automne aux engins commerciaux mobiles (graphiques du haut) et fixes (graphiques du bas), dans la zone 4T de l'OPANO, de 1978 à 2019
Figure 7. Captures par unité d'effort (nombre par coup de filet par sortie) des Harengs reproducteurs de printemps, selon l'âge, de 1990 à 2019. La taille de la bulle est proportionnelle à la valeur maximale de l'indice des CPUE
Figure 8. Captures par unité d'effort (nombre par coup de filet par sortie) des reproducteurs d'automne avec engins fixes, sans regroupement par âge, par région (graphique du haut, nord;

graphique du milieu, centrale; graphique du bas, sud), de 1986 à 2019. La taille de la bulle est proportionnelle à la valeur de l'indice des CPUE109
Figure 9. Abondance selon l'âge d'après le relevé acoustique indépendant de la pêche pour les reproducteurs de printemps (graphique du haut; âges 4 à 8 ans) et d'automne (graphique du bas; âges 2 à 3 ans) de 1994 à 2019
Figure 10. Captures selon l'âge (quantité) de reproducteurs d'automne issus de l'étude au filet expérimental par région (graphique du haut, nord; graphique du milieu, centrale; graphique du bas, sud) de 2002 à 2017. La taille de la bulle est proportionnelle à la valeur de l'indice111
Figure 11. Variations des proportions de filets maillants avec des maillages de 2 5/8 po par région, de 1986 à 2019. Les autres filets utilisés ont un maillage de 2 3/4 po112
Figure 12. Indice d'abondance des relevés plurispécifiques au chalut de fond (nombre de poissons par trait normalisé) pour les Harengs reproducteurs d'automne, âge de 4 à 6 ans, de 1994 à 2019
Figure 13. Proportions de résidus selon l'âge (indices observés – prédits) pour le modèle de population des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Le graphique du haut représente les résidus relatifs à l'indice des CPUE, tandis que le graphique du bas représente les résidus relatifs à l'indice du relevé acoustique. Les rangées correspondent aux âges et les colonnes, aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (cà-d., observés < prédits)113
Figure 14. Indice des CPUE (graphique du haut) observés (cercles) et prédits (lignes et ombragés), et indice du relevés acoustiques (graphique du bas) pour le modèle de population des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Les lignes indiquent les indices médians prédits, tandis que les zones ombragées représentent les intervalles de confiance à 95 % des prédictions reposant sur l'échantillonnage MCMC
Figure 15. Biais rétrospectifs de la biomasse estimée du stock reproducteur de 4 à 10 ans pour les reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Les couleurs des lignes correspondent aux extractions entre 2015 et 2019
Figure 16. Estimation de la capturabilité (q) des poissons pleinement recrutés à l'indice des CPUE à partir du modèle de population des reproducteurs de printemps. Les lignes présentent les estimations médianes et les ombrages représentent leur intervalle de confiance à 50 % (ombrage foncé) et 95 % (ombrage clair) de l'échantillonnage MCMC
Figure 17. Capturabilité des poissons pleinement recrutés pour les CPUE au filet maillant (q) en fonction de la BSR (en milliers de tonnes) pour le Hareng reproducteur de printemps entre 1990 et 2019
Figure 18. Estimation du taux de mortalité naturelle instantanée (M, axe de gauche) et de la mortalité annuelle (%, axe de droite) de la composante de reproducteurs de printemps du Hareng de l'Atlantique, à partir du modèle de population, pour les 2 à 6 ans (graphique du haut) et les 7 à 11 ans et plus (graphique du bas). Les lignes présentent les estimations médianes et les ombrages représentent leur intervalle de confiance à 95 % de l'échantillonnage MCMC117
Figure 19. Mise à l'échelle (0-1) des indices d'abondance relative des principaux prédateurs du Hareng (Morue de l'Atlantique, Phoque Gris, Thon Rouge de l'Atlantique), entre 1970 et 2019 (graphique du haut). Mise à l'échelle de la valeur relative des estimations de l'abondance et de la mortalité naturelle de la Morue du sud du golfe du Saint-Laurent pour le groupe de 2 à 6 ans (M2-6) dans le modèle qmSCA des stocks de Hareng de printemps et d'automne (graphique du milieu). Mise à l'échelle de la valeur relative des indices d'abondance du Phoque Gris et du Thon Rouge de l'Atlantique du sud du golfe du Saint-Laurent, et estimations de la mortalité

naturelle pour les 7 à 11 ans et plus (M7-11+) dans le modèle qmSCA des stocks de Hareng de printemps et d'automne (graphique du bas). Les estimations de la mortalité naturelle sont des estimations médianes selon la méthode de MCMC
Figure 20. Estimation de la biomasse du stock reproducteur au 1er janvier (ligne bleue et ombrée) et au 1er avril (ligne rouge et ombrée) de la composante de Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent. La ligne continue est l'estimation médiane selon la méthode de MCMC et les ombrages représentent ses intervalles de confiance à 50 % (ombrage foncé) et 95 % (ombrage clair)
Figure 21. Estimation de la biomasse du stock reproducteur de la composante de Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent, de 1978 à 2019, au début de la saison de pêche (1er avril). La ligne continue est l'estimation médiane selon la méthode de MCMC et les ombrages représentent ses intervalles de confiance à 50 % (ombrage foncé) et 95 % (ombrage clair). La ligne horizontale rouge en pointillés est le point de référence limite (PRL = BSR de 47 250 tonnes)
Figure 22. Estimation de l'abondance au 1 ^{er} janvier des Harengs de 2 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales et l'ombrage représentent l'intervalle de confiance à 95 %
Figure 23. Estimation au 1 ^{er} janvier de l'abondance des Harengs de 4 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales et l'ombrage représentent l'intervalle de confiance à 95 %.
Figure 24. Taux de recrutement des recrues de 2 ans pour les cohortes de Harengs de reproducteurs de printemps de 1978 à 2017 dans la zone 4T de l'OPANO. Les lignes verticales représentent les intervalles de confiance à 95 %
Figure 25. Estimation au 1 ^{er} janvier de la mortalité par pêche des 6 à 8 ans pondérée par l'abondance (F6-8, axe de gauche; taux d'exploitation annuel, axe de droite) des Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Les cercles sont les estimations médianes et les lignes verticales leurs intervalles de confiance à 95 %
Figure 26. Trajectoire de la composante des Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent en fonction de la biomasse du stock reproducteur (BSR, en milliers de tonnes) et des taux de mortalité par la pêche pondérés par l'abondance pour les 6 à 8 ans. La ligne verticale rouge est le point de référence limite (PRL) et la ligne verticale verte pointillée est le point de référence supérieur (PRS). La ligne horizontale continue orange présente la valeur de référence du taux de captures (F _{0.1} = 0,35) dans la zone saine et la ligne pointillée orange représente la règle de décision de récolte provisoire du cadre de l'approche de précaution dans la zone de prudence et la zone critique. La ligne verticale grise est le PRL de l'évaluation précédente. Les étiquettes de points sont des années (83 = 1983, 0 = 2000). Le code de couleurs va du bleu dans les années 1970 et au début des années 1980 au rouge dans les années 2000.
Figure 27. Projection de la biomasse du stock reproducteur au 1 ^{er} avril (BSR en milliers de tonnes) de Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent, avec un niveau de recrutement moyen sur 5 ans et un niveau de mortalité naturelle moyen sur 2 ans à différents niveaux de captures en 2020 et 2021. Les lignes indiquent les estimations médianes de la BSR au 1 ^{er} avril, en foncé l'intervalle de confiance de 75 %, et en clair les intervalles de

MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection. La ligne horizontale rouge est le point de référence limite (PRL).
Figure 28. Projection du taux de mortalité par pêche (F) des Harengs reproducteurs de printemps, âgés de 6 à 8 ans, provenant du sud du golfe du Saint-Laurent, à différents niveaux de captures en 2020 et 2021. Les lignes indiquent les estimations médianes de la mortalité par pêche, en foncé l'intervalle de confiance de 75 % et en clair les intervalles de confiance à 95 % de ces estimations (selon l'échantillonnage MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection124
Figure 29. Projection de la biomasse du stock reproducteur au 1 ^{er} avril (BSR en milliers de tonnes) des Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent, avec un niveau de recrutement moyen sur 5 ans et un niveau de mortalité naturelle moyen sur 2 ans à différents niveaux de captures pour toutes les années entre 2020 et 2029. Les lignes indiquent les estimations médianes de la BSR au 1 ^{er} avril, en foncé l'intervalle de confiance à 75 %, et en clair les intervalles de confiance à 95 % de ces estimations (selon l'échantillonnage MCMC). La ligne horizontale rouge est le point de référence limite (PRL)
Figure 30. Résidus des proportions selon l'âge de captures par la pêche par région (nord, centrale et sud) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (cà-d. observés < prédits)
Figure 31. Résidus des proportions selon l'âge de l'indice des CPUE par région (nord, centrale et sud) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (cà-d. observés < prédits)127
Figure 32. Résidus des proportions selon l'âge de l'indice des filets expérimentaux par région (nord, centrale et sud) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (cà-d. observés < prédits).
Figure 33. Résidus des proportions selon l'âge de l'indice du relevé par navire de recherche (en haut) et de l'indice du relevé acoustique (en bas) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (cà-d. observés < prédits)
Figure 34. Indices des CPUE des filets maillants commerciaux observés (cercles) et prédits (lignes et ombres) pour chaque région (nord, centrale et sud), selon les modèles qSCA (gauche) et qmSCA (droite) pour les reproducteurs d'automne du sud du golfe du Saint-Laurent. Les lignes indiquent les indices médians prédits, tandis que les zones ombragées représentent les intervalles de confiance à 95 % des prédictions selon l'échantillonnage MCMC
Figure 35. Indices des relevés par navire de recherche observés (cercles) et prédits (lignes et ombres) [RV, toutes régions confondues] et indices acoustiques [AC, toutes régions

d'automne du sud du golfe du Saint-Laurent. Les lignes indiquent les indices médians prédits, tandis que les zones ombragées représentent les intervalles de confiance à 95 % des prédictions reposant sur l'échantillonnage MCMC
Figure 36. Biais rétrospectifs de la biomasse du stock reproducteur et du coefficient rho de Mohn des reproducteurs d'automne dans les trois régions (nord, centrale et sud) et pour tous les modèles de population qSCA (à gauche) et qmSCA (à droite) du Hareng de l'Atlantique du sud du golfe du Saint-Laurent. Les lignes de couleur représentent les extractions rétrospectives entre 2012 et 2019
Figure 37. Biais rétrospectifs dans les estimations de la mortalité naturelle des reproducteurs d'automne dans les trois régions (nord, centrale et sud) pour le modèle de population qmSCA du Hareng de l'Atlantique du sud du golfe du Saint-Laurent. Les lignes de couleur représentent les extractions rétrospectives entre 2012 et 2019.
Figure 38. Estimation de la capturabilité des poissons pleinement recrutés à l'indice des CPUE pour les filets maillants commerciaux par région (nord, centrale, sud), pour les modèles de population qSCA (à gauche) et qmSCA (à droite) des Harengs reproducteurs d'automne dans le sud du golfe du Saint-Laurent. Les lignes présentent les estimations médianes et les ombrages représentent les intervalles de confiance à 95 % selon l'échantillonnage MCMC
Figure 39. Estimation de la capturabilité des poissons pleinement recrutés à l'indice des CPUE pour les filets maillants commerciaux, par rapport à la BSR par région (nord, centrale et sud), pour les modèles de population qSCA (graphique du haut) et qmSCA (graphique du bas) des Harengs reproducteurs d'automne dans le sud du golfe du Saint-Laurent
Figure 40. Estimation du taux de mortalité naturelle instantanée (axe de gauche) et de la mortalité annuelle (%, axe de droite) des Harengs reproducteurs d'automne pour trois régions du sud du golfe du Saint-Laurent (nord, centrale et sud) à partir du modèle de population qmSCA, pour les poissons de 2 à 6 ans (bleu) et de 7 à 11 ans et plus (rouge). Les lignes présentent les estimations médianes et les ombrages représentent leur intervalle de confiance à 95 % selon l'échantillonnage MCMC
Figure 41. Estimation de la biomasse du stock reproducteur au 1er janvier (ligne bleue et ombrage) et au 1er août (ligne rouge et ombrage) de la composante de Harengs reproducteurs d'automne dans trois régions (nord, centrale et sud) du sud du golfe du Saint-Laurent pour les modèles de population qSCA (à gauche) et qmSCA (à droite). La ligne continue représente l'estimation médiane selon la méthode de MCMC et l'ombrage représente les intervalles de confiance à 95 %.
Figure 42. Estimation de la biomasse du stock reproducteur en début de saison de pêche (1er août) des Harengs reproducteurs d'automne, par région (nord, centrale et sud) et dans l'ensemble (total) du sud du golfe du Saint-Laurent, pour les modèles qSCA (graphique de gauche) et qmSCA (graphique de droite). La ligne noire représente les estimations médianes de l'échantillonnage MCMC et l'ombrage représente les intervalles de confiance à 95 %. Dans les graphiques du bas pour le total, les lignes horizontales jaunes pleines et pointillées représentent le point de référence supérieur (PRS) et la ligne horizontale rouge est le point de référence limite (PRL). La ligne horizontale grise représente le PRS de l'évaluation précédente. Les valeurs de la BSR, du PRS et du PRL sont corrigées au 1er août en utilisant les estimations de la mortalité naturelle à l'âge pour 7 mois
Figure 43. Estimation de l'abondance au 1 ^{er} janvier des Harengs de 2 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs d'automne dans trois régions (nord, centrale et sud) du sud du golfe du Saint-Laurent pour les modèles de

population qSCA (à gauche) et qmSCA (à droite). La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales représentent l'intervalle de confiance à 95 %139
Figure 44. Estimation de l'abondance au 1er janvier des Harengs de 4 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs d'automne dans trois régions (nord, centrale, sud) du sud du golfe du Saint-Laurent pour les modèles de population qSCA (à gauche) et qmSCA (à droite). La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales représentent l'intervalle de confiance à 95 %.
Figure 45. Taux de recrutement estimé (recrues par kg de BSR) des reproducteurs d'automne à l'âge de 2 ans (cercles) dans les trois régions (nord, centrale et sud) et totalisé sur les régions (total) du sud du golfe du Saint-Laurent, pour les modèles de population qSCA (à gauche) et qmSCA (à droite). Les barres représentent les estimations médianes et les lignes verticales les intervalles de confiance à 95 %
Figure 46. Estimation de la sélectivité des pêches (rangée du haut), des CPUE (rangée du milieu) et des filets expérimentaux (rangée du bas) pour trois populations du sud du golfe du Saint-Laurent (nord dans la colonne de gauche, centrale dans la colonne du milieu et sud dans la colonne de droite), pour le modèle de population qSCA. Les lignes présentent les estimations du maximum de vraisemblance pour les années ou les périodes indiquées dans les légendes des figures respectives.
Figure 47. Estimation de la sélectivité des pêches (rangée du haut), des CPUE (rangée du milieu) et des filets expérimentaux (rangée du bas) pour trois populations du sud du golfe du Saint-Laurent (nord dans la colonne de gauche, centrale dans la colonne du milieu et sud dans la colonne de droite), pour le modèle de population qmSCA. Les lignes présentent les estimations du maximum de vraisemblance pour les années ou les périodes indiquées dans les légendes des figures respectives.
Figure 48. Estimation de la mortalité par la pêche pondérée selon l'abondance des 5 à 10 ans (F ₅₋₁₀ , axe de gauche; taux d'exploitation annuel, axe de droite) des Harengs reproducteurs d'automne par région, et moyenne des région (Totale, pondérée par l'abondance propre à la région des 5 à 10 ans) dans le sud du golfe du Saint-Laurent pour les modèles qSCA (graphique de gauche) et qmSCA (graphique de droite). Les lignes présentent les estimations médianes et les ombrages représentent les intervalles de confiance à 95 %
Figure 49. Trajectoire de la composante des Harengs reproducteurs d'automne dans le sud du golfe du Saint-Laurent par rapport à la biomasse du stock reproducteur (BSR) et aux taux de mortalité par la pêche pour les âges de 5 à 10 ans de 1978 à 2019 pour le modèle de population qSCA. La ligne verticale rouge est le point de référence limite (PRL) et la ligne verticale verte est le point de référence supérieur (PRS). La ligne horizontale orange continue présente la valeur de référence du taux de captures (F _{0.1} = 0,32) dans la zone saine et la ligne orange pointillée présente la valeur de récolte par défaut du cadre de l'approche de précaution dans la zone de prudence et la zone critique. Les lignes verticales grises représentent le PRL et le PRS de l'évaluation précédente. Les étiquettes de points sont des années (83 = 1983, 0 = 2000). Le code de couleurs va du bleu dans les années 1970 et au début des années 1980 au rouge dans les années 2000.
Figure 50. Trajectoire de la composante des Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent par rapport à la biomasse du stock reproducteur (BSR) et aux taux de mortalité par la pêche pour les poissons de 5 à 10 ans de 1978 à 2001 (mortalité naturelle faible, graphique du haut) et de 2002 à 2019 (mortalité naturelle élevée, graphique du bas) pour

Figure 51. Projection de la biomasse du stock reproducteur (BSR en milliers de tonnes) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent à différents niveaux de captures en 2020 et 2021 pour le modèle qSCA (à gauche) et le modèle qmSCA (à droite), selon un scénario de recrutement moyen sur 5 ans et un scénario de mortalité naturelle moyenne sur 2 ans. Les lignes présentent les estimations médianes de la BSR au 1^{er} août, en foncé les intervalles de confiance à 95 % et en clair l'intervalle de confiance à 50 % (selon l'échantillonnage MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection. La ligne horizontale rouge est le point de référence limite (PRL).

Figure 53. Projections sur dix ans de la biomasse du stock reproducteur (BSR en milliers de tonnes) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent à différents niveaux de captures pour le modèle qSCA (à gauche) et le modèle qmSCA (à droite), selon un scénario de recrutement moyen sur 5 ans et un scénario de mortalité naturelle moyenne sur 2 ans. Les lignes présentent les estimations médianes de la BSR au 1^{er} août, en clair les intervalles de confiance à 95 % et en foncé les intervalles de confiance à 50 % (selon l'échantillonnage MCMC). La ligne horizontale rouge est le point de référence limite (PRL). ..149

RÉSUMÉ

Le Hareng de l'Atlantique du sud du golfe du Saint-Laurent comprend deux composantes de frai, à savoir les reproducteurs de printemps et les reproducteurs d'automne. Ce document présente l'information la plus récente sur les tendances concernant l'abondance, la distribution et la récolte des composantes de reproducteurs de printemps et d'automne dans la zone 4T de l'OPANO. Cela comprend les indices de captures selon l'âge et de captures par unité d'effort (CPUE), les indices acoustiques indépendants de la pêche, l'indice de la pêche expérimentale au filet maillant, la sélectivité des mailles et les captures dans le relevé plurispécifique au chalut de fond dans le sud du golfe du Saint-Laurent. Les données et les indices sont montrés pour l'ensemble de la région pour les reproducteurs de printemps, et désagrégés par région (régions nord, centrale et sud) pour les reproducteurs d'automne lorsque possible.

Les reproducteurs de printemps ont été évalués à l'aide d'un modèle statistique des captures selon l'âge permettant à la capturabilité dans la pêche au filet maillant et à la mortalité naturelle de varier dans le temps. Le modèle a estimé que la biomasse du stock reproducteur (BSR) se trouve dans la zone critique du cadre de l'approche de précaution depuis 2004. L'estimation médiane de la BSR au 1^{er} avril 2020 est estimée à environ 26 000 tonnes, soit 55 % du point de référence limite (PRL = 47 250 tonnes). Selon les conditions actuelles de recrutement faible et de mortalité naturelle élevée, le stock ne devrait pas se rétablir à court ou à long terme. La réduction de la mortalité par la pêche ne réduit que légèrement les probabilités de déclin de la BSR dans les projections. En 2029, la probabilité de dépasser le PRL était de 0 % à tous les niveaux de captures, avec des valeurs de BSR comprises entre 160 et 1 198 tonnes.

Les reproducteurs d'automne ont été évalués en tant que populations désagrégées par région à l'aide d'un modèle statistique des captures selon l'âge permettant à la capturabilité dans la pêche au filet maillant et à la mortalité naturelle de varier dans le temps. La BSR estimée a diminué dans les trois régions ces dernières années. À un niveau de captures similaire à 2019 (16 000 tonnes), les probabilités d'une augmentation de 5 % de la BSR d'ici 2022 sont de 29 %. Les projections à long terme indiquent un déclin continu, avec la BSR se trouvant dans la zone critique d'ici 2025. En raison de la faible productivité, l'exploitation de ce stock devrait faire l'objet de prudence jusqu'à ce qu'un recrutement élevé soit observé pendant des années consécutives. Le niveau de captures offrant les plus grandes probabilités d'augmentation de la BSR à court et à long terme était de 2 000 tonnes.

1. INTRODUCTION

Le stock de Hareng de l'Atlantique du sud du golfe du Saint-Laurent se situe entre la côte nord de la péninsule de la Gaspésie et l'extrémité nord de l'île du Cap-Breton, y compris les Îles de la Madeleine. Les adultes passent l'hiver au large des côtes nord et est du Cap-Breton, dans les zones 4T et 4Vn de l'Organisation des pêches de l'Atlantique du Nord-Ouest (OPANO) [Claytor 2001; Simon et Stobo 1983; Figure 1]. Des études réalisées au début des années 1970 ont indiqué que le Hareng du sud du golfe du Saint-Laurent passait également l'hiver au large de la côte sud de Terre-Neuve, mais une pêche exploratoire effectuée en 2006 n'a pas permis de détecter de concentrations (Wheeler *et al.* 2006). Le Hareng est une espèce pélagique qui vit en bancs, surtout pendant les périodes d'alimentation, de frai et de migration annuelle. Les œufs sont fixés au plancher océanique et les grandes femelles peuvent pondre jusqu'à 360 000 œufs (Messieh 1988). L'âge à maturité est habituellement de 4 ans.

La gestion du Hareng du sud du golfe du Saint-Laurent se fait selon sept zones de pêche du Hareng dans la zone 16 (A-G; Figure 1a). Ces zones couvrent la même région que la zone 4T de l'OPANO (Figure 1). La population de Hareng du sud du golfe du Saint-Laurent comprend deux composantes de frai, à savoir les reproducteurs de printemps et les reproducteurs d'automne. Le frai de printemps se déroule principalement en avril et en mai, mais se prolonge jusqu'au 30 juin à des profondeurs inférieures à 10 m. Le frai d'automne se déroule de la mi-août à la mi-octobre, à des profondeurs de 5 à 20 m, mais peut avoir lieu dès le 1er juillet. Les reproducteurs de printemps et d'automne du Hareng de la zone 4T sont considérés comme des stocks distincts et sont évalués séparément. Des études récentes ont confirmé la différenciation génétique entre ces stocks (Lamichhaney *et al.* 2017). Le Hareng se caractérise également par une grande fidélité aux lieux de frai (Wheeler et Winters 1985; McQuinn 1997; Brophy *et al.* 2006). Les stocks locaux sont ciblés par la pêche au filet maillant qui se déroule dans les frayères. Le Hareng reproducteur d'automne du sud du golfe du Saint-Laurent est donc évalué à l'aide de modèles d'évaluation désagrégés par région (régions nord, centrale et sud; Figure 1b).

Le Hareng du sud du golfe du Saint-Laurent est exploité par une flotte de pêche au filet maillant (flotte à engins fixes) et une flotte de pêche à la senne coulissante (flotte à engins mobiles). La flotte à engins mobiles comprend cinq grands navires du sud du golfe (> 19,8 m). Néanmoins, les petits senneurs (< 19,8 m) peuvent également participer à la pêche côtière avec la flotte de pêche au filet maillant. La pêche à engins fixes se concentre dans la zone 4T de l'OPANO, tandis que la pêche à engins mobiles se déroule dans la zone 4T et, par le passé, occasionnellement dans la zone 4Vn (Figure 1). Pendant les saisons de pêche du printemps et de l'automne, la flotte à engins mobiles n'est pas autorisée à pêcher dans les zones réservées exclusivement à la flotte à engins fixes (Claytor et al. 1998). Au cours de la pêche de printemps, les flottes à engins mobiles pêchent le long de la limite septentrionale de la zone 4Tf de l'OPANO, au bord du détroit de Cabot. À l'automne, les flottes à engins mobiles pêchent dans la Baie-des-Chaleurs. Le Hareng reproducteur de printemps et d'automne est pêché pendant les saisons de pêche de printemps et d'automne, et doit donc être séparé en groupes distincts à des fins d'évaluation.

Avant 1967, le Hareng du sud du golfe du Saint-Laurent était principalement exploité par des engins fixes, et les débarquements moyens entre 1935 et 1966 étaient de 34 000 tonnes. Au milieu des années 1960, une pêche aux engins mobiles a fait son apparition, et les débarquements moyens des deux flottes ont été de 166 000 tonnes entre 1967 et 1972. Depuis 1981, l'effort de pêche a été réduit dans les flottes à engins mobiles. La flotte à engins fixes a capturé la plupart des reproducteurs de printemps et d'automne (McDermid *et al.* 2018).

Une allocation globale, ou total autorisé des captures (TAC), a été instaurée en 1972; elle se situait alors à 166 000 tonnes. Elle a été réduite à 40 000 tonnes en 1973. Un TAC distinct pour les composantes « reproducteurs de printemps » et « reproducteurs d'automne » a été mis en place en 1985. Le TAC a d'abord été attribué par saison de pêche (printemps et automne), puis attribué aux débarquements de reproducteurs de printemps ou d'automne en fonction des échantillons biologiques prélevés pendant la pêche. Parmi les Harengs capturés, le pourcentage de reproducteurs de printemps et de reproducteurs d'automne varie selon la saison et le type d'engin. Par conséquent, les débarquements des saisons de pêche de printemps et d'automne doivent être séparés dans les groupes de reproducteurs de printemps et d'automne correspondants afin de déterminer si le TAC pour ces groupes a été atteint.

Pour la présente évaluation, la modélisation de la population est effectuée pour le Hareng reproducteur de printemps et d'automne jusqu'à la fin de 2019, avec des projections pour 2020, 2021 et 2029.

2. SOURCES DE DONNÉES

Pour l'évaluation du Hareng reproducteur de printemps, le modèle de population a été adapté aux données provenant de la zone 4T. Pour l'évaluation du Hareng reproducteur d'automne, les modèles désagrégés par région pour les trois régions (nord, centrale et sud) couvrent la totalité de la zone 4T. Les régions sont définies en fonction des frayères et des zones de pêche traditionnelles du Hareng : nord (Gaspé et Miscou; 4Tmnopq), centrale (Escuminac-Richibucto et ouest de l'Île-du-Prince-Édouard; 4Tkl) et sud (est de l'Île-du-Prince-Édouard et Pictou; 4Tfghj) [Figure 1]. Le choix des trois régions repose sur la proximité géographique des frayères et représente la plus petite échelle du niveau de regroupement qui peut être utilisée avec les données disponibles. Les modèles désagrégés par région comprennent des données propres à la région (p. ex. captures selon l'âge, captures par unité d'effort, proportions selon l'âge dans les captures de filets expérimentaux, sélectivité selon l'âge) et des données communes à l'ensemble de la zone (p. ex. indice des relevés acoustiques, indice du relevé plurispécifique au chalut de fond).

2.1. DÉBARQUEMENTS

Les données sur les captures ont été tirées des bordereaux d'achat et des fichiers ZIFF (fichier informatisé sur les échanges entre les zones) recueillis par la Direction des statistiques de Pêches et Océans Canada (MPO). Les données sur les captures jusqu'en 1985 sont accessibles par type de pêche (fixe et mobile) et par zone de pêche. Depuis 1986, les données sur les captures sont également déclarées par navire et par sortie. Les fichiers ZIFF sont basés sur les informations recueillies par le Programme de vérification à quai. Ce programme fournit une vérification des débarquements de poissons précise et opportune, effectuée par un tiers indépendant. Des entreprises sous contrat sont engagées par l'industrie de la pêche pour observer le déchargement du poisson, enregistrer les renseignements sur les débarquements et les communiquer au MPO.

Le total autorisé des captures (TAC) pour les composantes de reproducteurs de printemps et d'automne est fixé pour l'unité de stock 4T. En 2018, un TAC provisoire de 500 tonnes a été attribué pour les reproducteurs de printemps; toutefois, aucun TAC officiel n'a été fixé. Un TAC de 25 200 tonnes a été fixé pour les reproducteurs d'automne. Pour 2019, le TAC a été réparti entre les reproducteurs de printemps (1 250 tonnes) et les reproducteurs d'automne (22 250 tonnes) pour un total de 23 500 tonnes (Tableau 1; Figure 2). Au total, 77 % du TAC a été alloué à la flotte à engins fixes, et les 23 % restants à la flotte à engins mobiles (Tableau 1).

L'estimation préliminaire des débarquements de Harengs reproducteurs de printemps dans les pêches de printemps et d'automne était de 798 tonnes en 2018 et de 1 047 tonnes en 2019 (Tableau 1; Figure 3). On estime que la plupart des Harengs reproducteurs de printemps ont été débarqués par la flotte à engins fixes au cours de la période de 1981 à 2019. On estime que la flotte à engins fixes a débarqué 67 % de la récolte totale de reproducteurs de printemps en 2018 et 51 % en 2019 (Tableau 1; Figure 3a). Plus de 80 % du Hareng reproducteur de printemps débarqué par la flotte à engins fixes est débarqué pendant la saison de pêche de printemps, alors que la plupart (> 80 %) des Harengs reproducteurs de printemps débarqués par la flotte à engins mobiles sont débarqués à l'automne (Figure 3b, c).

L'estimation préliminaire des débarquements de Harengs reproducteurs d'automne a été de 16 742 tonnes en 2018 et de 15 544 tonnes en 2019 (Tableau 1; Figure 3d). Entre 1978 et 2019, la plupart des Harengs reproducteurs d'automne ont été débarqués par la flotte à engins fixes. On estime que la flotte à engins fixes a débarqué 91 % et 93 % de la récolte totale de Harengs reproducteurs d'automne en 2018 et 2019, respectivement (Figure 3). La majorité (près de 100 %) des Harengs reproducteurs d'automne capturés dans la pêche à engins fixes sont débarqués pendant la saison de pêche d'automne (Figure 3e). Sur l'ensemble des reproducteurs d'automne débarqués par la flotte à engins mobiles, 22 % ont été débarqués pendant la saison de pêche d'automne en 2018, contre 100 % en 2019 (Figure 3f).

La répartition moyenne récente de 2015 à 2019 du total des captures par pêche à engins fixes était de 69 % pour les reproducteurs de printemps et de 94 % pour les reproducteurs d'automne (Tableau 1). La majorité des captures du printemps 2018-2019 au moyen d'engins fixes ont été effectuées dans les zones de Hareng 4Th (sud) et 4Tmn (nord; Tableau 2). Parallèlement, la majorité des captures à l'automne 2018-2019 au moyen d'engins fixes ont été effectuées dans la zone de pêche du Hareng 4Tmn (nord; Figure 1; Tableau 2). La pêche de printemps à engins mobiles (au bord du détroit de Cabot) a débarqué 1 246 tonnes en 2018 et 0 tonne en 2019. Les captures de la pêche à l'automne 2018-2019 au moyen d'engins mobiles ont toutes été réalisées à partir de la zone 4Tmn (533 tonnes et 1 163 tonnes; nord; Figure 1; Tableau 2).

En 2018, 160 % du TAC provisoire pour les reproducteurs de printemps a été atteint, tandis que 84 % du TAC a été atteint en 2019. Toutefois, en raison de facteurs relatifs aux parts traditionnelles, le TAC n'est pas une représentation exacte des objectifs de pêche fixés chaque année. Les captures ciblées en 2019 étaient de 500 tonnes, tandis que 1 047 tonnes ont été capturées (209 % des captures ciblées; Tableau 1).

En 2018, 66 % du TAC de reproducteurs d'automne a été atteint, tandis que 105 % des captures ciblées ont été capturées. En 2019, 70 % du TAC a été atteint, tandis que 97 % des captures ciblées ont été capturées (Tableau 1). Les données relatives aux débarquements des zones de pêche du Hareng figurent dans le Tableau 2.

En 2010, un plan de rétablissement a été mis en place pour les reproducteurs de printemps. Ce plan comprend : (i) la fermeture de la pêche dans certaines zones de frai dans toutes les zones de pêche du Hareng, sauf 16A et 16F; (ii) des limites de débarquement hebdomadaires de 10 206 kg dans toutes les zones de pêche du Hareng, sauf 16A, 16D et 16F, où aucune restriction ne s'applique; et (iii) l'interdiction d'embarquer des filets ou du Hareng pendant une sortie de pêche entre 18 h et 4 h (HAA) dans la zone 16C-G et entre 22 h et 3 h (HAA) dans les zones 16A et 16B (DFO 2010, 2012, 2014).

2.1.1. Classification du stock reproducteur

La Direction des Sciences de la Région du Golfe a recours à trois méthodes pour assigner les échantillons de Hareng aux reproducteurs de printemps ou d'automne en fonction du stade de maturité des gonades (Cleary *et al.* 1982) :

- Pour les Harengs immatures des stades de maturité 1 et 2 (juvéniles), la saison d'éclosion est basée sur la taille à la capture et l'examen visuel des caractéristiques des otolithes (Messieh 1972). L'attribution de la composante de frai pour le Hareng juvénile est sa saison d'éclosion (Cleary et al. 1982). Les juvéniles représentent un faible pourcentage des captures commerciales, mais ils sont plus nombreux dans les échantillons du relevé de recherche.
- 2. Les Harengs adultes dont les gonades sont vides ou à maturité se voient attribuer leur stade de maturité par un examen macroscopique des gonades en laboratoire. On suppose que les poissons appartiennent à la composante de frai de la saison au cours de laquelle ils ont été capturés. Ils représentent plus de 90 % des captures au filet maillant et 75 % du total des débarquements annuels.
- 3. Le stade de maturité des Harengs adultes aux gonades non matures est déterminé à l'aide d'un indice gonadosomatique (IGS) basé sur un modèle de fonction discriminante. L'IGS est basé sur la longueur du poisson et le poids de ses gonades (McQuinn 1989). Une fois le stade de maturité déterminé par l'IGS, la composante de frai est attribuée en utilisant une règle de décision relative au calendrier de maturité (un tableau de vérification de concordance entre le stade de maturité attribué par l'IGS et la date de capture pour assigner une composante de frai) (Cleary et al. 1982).

Pour le mois de juin, l'IGS et les méthodes d'examen macroscopique ont historiquement donné lieu à une attribution différente des échantillons aux composantes de frai. En particulier, les échantillons de pêche au bord du détroit de Cabot de 2012 et 2013 n'étaient pas bien classés par la méthode de l'IGS. L'examen macroscopique a permis de constater qu'au moins 95 % des gonades étaient en développement, les classant ainsi parmi les reproducteurs d'automne. La fonction discriminante de l'IGS a reclassé au moins 20 % de ces gonades en développement en gonades vides, ce qui a donné lieu à une classification des reproducteurs de printemps. Un changement a été apporté aux règles de décision pour la méthode de l'IGS, de sorte qu'une gonade vide en juin est considérée comme un reproducteur d'automne.

2.2. SONDAGE TÉLÉPHONIQUE

Un sondage téléphonique est réalisé chaque année depuis 1986 pour recueillir des renseignements sur la pêche à engins fixes et des opinions sur les tendances de l'abondance (détails dans LeBlanc et LeBlanc 1996). Le sud du golfe du Saint-Laurent a été divisé en huit secteurs de sondage téléphonique correspondant aux secteurs où se trouvent les principales pêcheries (Figure 1c). On a posé aux titulaires de permis commerciaux actifs une série de questions concernant le nombre, les dimensions et la taille du maillage des filets utilisés, la fréquence de la pêche et l'abondance dans l'année en cours par rapport à l'année précédente, et la tendance à moyen terme. Une étude de 2008 sur la cohérence de la relation d'abondance entre les années a conclu que cet indice ne devrait pas être utilisé comme un indice de la biomasse dans le modèle de population. Les réponses au sondage téléphonique donnent des renseignements sur le calcul de l'effort de pêche pour les CPUE dans la pêche au filet maillant.

Le sondage téléphonique sur les engins fixes de 2018 a permis de contacter 265 pêcheurs choisis au hasard parmi environ 505 titulaires de permis commerciaux actifs pour les deux saisons combinées. Au total, 44 pêcheurs ont répondu au sondage sur la saison de pêche de printemps et 149 pêcheurs ont répondu au sondage sur la saison de pêche d'automne, pour un total de 193. Le sondage téléphonique sur les engins fixes de 2019 a permis de contacter 270 pêcheurs choisis au hasard parmi environ 526 titulaires de permis commerciaux actifs pour les deux saisons combinées. Au total, 67 pêcheurs ont répondu au sondage sur la pêche de printemps et 170 pêcheurs ont répondu au sondage sur la pêche d'automne, soit un total de

237. La répartition des répondants dans les huit secteurs du sondage téléphonique, les coups de filet moyens, les longueurs de filet et la tendance de l'abondance par rapport à l'année précédente sont indiqués dans le tableau 3. Dans l'ensemble, les pêcheurs ont estimé que le niveau d'abondance de la pêche de printemps de 2019 était similaire à celui de 2018 et à celui des années précédentes. Pour la pêche d'automne, l'abondance de 2018 a semblé avoir légèrement diminué dans la région nord, augmenté légèrement dans la région centrale et diminué dans le sud. Lorsqu'on leur a demandé de comparer la saison de pêche d'automne 2019 à celle de 2018, les répondants ont indiqué une baisse dans la région nord, une légère augmentation dans la région centrale et une augmentation dans la région sud (Tableau 3).

Chaque année, la source de données (soit le Programme de vérification à quai ou le sondage téléphonique) ayant reçu le plus grand nombre de réponses a été utilisée pour calculer l'indice d'abondance des CPUE dans la pêche à engins fixes. Dans la pêche de printemps, le maillage des filets maillant a été relativement constant à 2 ½ po. Dans la pêche d'automne, le maillage de 2 ½ po est le plus courant. Cependant, depuis 1992, de nombreux pêcheurs ont commencé à utiliser des maillages plus grands (2 ¾ po). En 2002, on a constaté que la part des maillages de 2 ½ po était revenue aux chiffres d'avant 1992. En 2018 et 2019, la part du maillage de 2 ½ po était de 100 % (Tableau 3).

2.3. ÉCHANTILLONNAGE DES CAPTURES DE LA PÊCHE

Les captures de la pêche commerciale sont échantillonnées à quai par le personnel scientifique du MPO pour la pêche à engins fixes et mobiles, et en mer par les observateurs des pêches dans la pêche à engins mobiles. Les procédures d'échantillonnage sont conçues pour obtenir des échantillons qui sont représentatifs des débarquements dans l'espace et dans le temps. Les débarquements et les échantillons par zone utilisés pour calculer les captures selon l'âge sont indiqués dans le tableau 2. Les échantillons sont utilisés pour déterminer la composition des captures en fonction de la taille, de l'âge et de la composante de frai (reproducteurs de printemps ou reproducteurs d'automne). Des tests annuels de cohérence de la lecture de l'âge sont effectués afin d'évaluer et d'assurer la cohérence de la lecture de l'âge dans le temps (annexe A).

2.4. RELEVÉ ACOUSTIQUE INDÉPENDANT DE LA PÊCHE

Depuis 1991, un relevé acoustique annuel des concentrations de Hareng au début de l'automne (septembre-octobre), indépendant de la pêche, est effectué dans le sud du golfe du Saint-Laurent. La zone de relevé annuel type se trouve dans les zones 4Tmno, où les deux composantes du Hareng 4T s'agrègent à l'automne. Le relevé utilise un plan stratifié aléatoire de transects parallèles à l'intérieur de strates prédéfinies. Les relevés sont effectués de nuit et utilisent deux navires : un navire acoustique pour quantifier la biomasse des bancs de poissons à l'aide d'un transducteur à faisceau divisé de 120 kHz monté sur la coque, et un bateau de pêche pour échantillonner des regroupements de poissons à l'aide d'un chalut pélagique (détails dans LeBlanc et al. 2015; voir aussi LeBlanc et Dale 1996). En 2018, le relevé acoustique a couvert une distance de transect totale de 1 259 km dans les zones 4Tmno. En 2019, en raison de problèmes mécaniques, le relevé a couvert 822 km (annexe B, Figure B1). Toutes les strates ont été couvertes, mais la densité des transects relevés a été réduite. Les échantillons de chalut sont utilisés pour séparer la biomasse estimée par composante de frai et par âge, ainsi que pour établir la composition taxinomique et la répartition des tailles pour évaluer l'indice de réflexion du poisson (méthodes décrites dans LeBlanc et Dale 1996; LeBlanc et al. 2015).

2.5. FILETS EXPÉRIMENTAUX

Dans le cadre de ce projet de partenariat industriel entre le MPO et les associations de pêcheurs, des filets maillants expérimentaux composés de plusieurs panneaux aux maillages différents ont été déployés chaque semaine par les pêcheurs pendant la saison de pêche d'automne. Ces filets maillants modifiés capturent des poissons de tailles plus variées et fournissent des renseignements sur la sélectivité relative des différentes tailles de maillage. Chaque filet maillant expérimental comportait cinq panneaux, chacun avec une taille de maillage différente, parmi un ensemble de sept tailles de maillage possibles, allant de 2 po à 2 ¾ po par incréments de ¼ po. Tous les filets maillant avaient des panneaux avec des maillages de 2 ½ po, 2 % po et 2 ¾ po, et deux maillages plus petits qui variaient selon les pêcheurs. Les pêcheurs de la saison de pêche d'automne ont participé au relevé des frayères suivantes (Figure 1a): banc de Miscou (région nord; 16B), Gaspé (nord; 16B), Escuminac (centrale; 16C), ouest de l'Île-du-Prince-Édouard (centrale; 16E), banc Fisherman's (sud; 16G) et Pictou (sud; 16F). La procédure de pêche cible était une immersion d'une heure, et les filets étaient posés sur les lieux de pêche pendant la pêche commerciale. Les données de Pictou antérieures à 2015 ont été corrigées pour tenir compte de la profondeur des filets maillant, car les filets dans cette région avaient une profondeur de 5 m (17 pieds) par rapport à la norme de 2.4 m (8 pieds) utilisée dans les autres fravères. Un facteur de correction de 8/17 (en pieds) a été appliqué aux filets de Pictou pour tenir compte de la différence de profondeur des filets.

Les captures des filets expérimentaux ont été utilisées pour estimer la sélectivité relative des filets maillant de différentes tailles de maillage (détails dans Surette *et al.* 2016) et pour produire des proportions selon l'âge. Les deux sont des intrants du modèle d'évaluation des reproducteurs d'automne.

2.6. RELEVÉS ACOUSTIQUES DES FRAYÈRES

En 2015, un projet de relevé acoustique des frayères qui suit la conception du relevé acoustique indépendant de la pêche a été lancé (section 2.4). Le plan du relevé utilise des transects parallèles aléatoires dans des strates prédéfinies qui couvrent les mêmes frayères que les filets expérimentaux (section 2.5, annexe C). Le relevé est un partenariat industriel entre le MPO et les associations de pêcheurs. Les relevés sont effectués par les pêcheurs pendant la saison de pêche d'automne selon des protocoles définis par le MPO. Le relevé est effectué de nuit, pendant les fermetures de pêche de fin de semaine, sauf dans la zone de pêche du Hareng 16C et E de 2015 à 2017 (centrale; Figure 1a), où cette région n'a pas connu de fermetures de fin de semaine. Le relevé acoustique des frayères est destiné à fournir une estimation nocturne de la biomasse reproductrice entre les régions. Il est analysé de la même manière que le relevé acoustique (section 2.4). Les captures des filets expérimentaux (section 2.5) sont utilisées pour calibrer l'indice de réflexion du poisson pour l'acoustique afin d'obtenir les estimations nocturnes de la biomasse reproductrice.

Cet indice de biomasse n'est pas encore intégré dans les modèles d'évaluation. Les résultats des cinq premières années de données sont présentés à l'annexe C. Bien que les résultats ne soient pas utilisés dans ce modèle d'évaluation, l'objectif est d'inclure l'indice dans les évaluations ultérieures lorsqu'une série chronologique plus longue sera disponible.

2.7. RELEVÉ PLURISPÉCIFIQUE AU CHALUT DE FOND

Le relevé annuel plurispécifique au chalut de fond, effectué en septembre depuis 1971, fournit des renseignements sur l'abondance et la répartition du Hareng dans la zone 4T du sud du golfe du Saint-Laurent en septembre (Savoie 2014). Le nombre et le poids total des captures, la fréquence des longueurs représentatives et les données individuelles représentatives sur la

longueur en fonction du poids sont enregistrés pour chaque espèce de poisson dans chaque série de relevés depuis 1971. Depuis 1994, un échantillonnage supplémentaire des captures de Harengs a été entrepris pour ventiler les captures par groupe de frai et par âge (détails supplémentaires dans Hurlbut et Clay 1990). Le Hareng a été principalement capturé près des côtes dans des eaux de moins de 30 brasses, surtout au nord-est de l'Île-du-Prince-Édouard, à l'ouest du Cap-Breton, ainsi que dans le détroit de Northumberland et dans la baie des Chaleurs (annexe D, Figure D1).

2.8. RENSEIGNEMENTS SUR L'ÉCOSYSTÈME

L'abondance des principaux prédateurs du Hareng a évolué au fil des séries chronologiques de l'évaluation. Les données sur l'abondance de la Morue de l'Atlantique âgée de 5 ans et plus et du Phoque Gris ont été obtenues auprès de Neuenhoff *et al.* 2019. Les données sur l'abondance du Thon Rouge de l'Atlantique propres au sud du golfe du Saint-Laurent ont été obtenues à partir du rapport publié en 2017 par la Commission internationale pour la conservation des thonidés de l'Atlantique, à partir de l'indice des CPUE par canne et moulinet. Puisque les données sur les prédateurs étaient exprimées en unités différentes, les indices d'abondance pour chaque prédateur et les estimations de la mortalité naturelle ont été remis à l'échelle entre 0 et 1 afin qu'il soit possible d'effectuer des comparaisons entre des sources de données. Cela a permis de comparer le moment et la direction des variations des valeurs.

3. INTRANTS ET INDICES

3.1. MATRICES RELATIVES AUX CAPTURES SELON L'ÂGE ET AUX POIDS SELON L'ÂGE

Les matrices relatives aux captures selon l'âge et aux poids selon l'âge pour les Harengs de la zone 4T, reproducteurs de printemps et reproducteurs d'automne, comprennent les captures des flottes à engins fixes et mobiles. Ces valeurs ont été calculées à partir des clés d'âge-longueur et des relations longueur-poids de chaque composante des reproducteurs, de chaque type d'engin et de chaque saison de pêche (Tableau 2). Lorsque moins de 30 poissons ont été échantillonnés pour une analyse détaillée, la relation longueur-poids globale et la clé âge-longueur la plus proche et adjacente en matière d'engin, de géographie et de temps ont été utilisées pour estimer les captures selon l'âge. Les captures et les poids selon l'âge sont présentés pour les engins fixes (reproducteurs de printemps : Tableaux 4-5, reproducteurs d'automne : Tableaux 6-7) et les engins mobiles (reproducteurs de printemps : Tableaux 8-9, reproducteurs d'automne : Tableaux 10-11).

Pour les reproducteurs de printemps, l'âge dominant de capture était de 5 ans en 2018, ce qui correspond à la cohorte de 2013. En 2019, l'âge dominant correspondait à la même cohorte (2013), maintenant âgée de 6 ans (Tableaux 4 et 8; Figure 4). Pour les reproducteurs d'automne, l'âge dominant était de 6 ans pour les deux années dans le nord (cohortes de 2012-2013), de 7 ans au centre pour les deux années (cohortes de 2011-2012), de 6 à 8 ans en 2018 (cohortes de 2010-2012) et de 7 ans en 2019 (cohorte de 2012) dans le sud (Tableaux 6 et 10; Figure 5).

Les poids selon l'âge au début de l'année ont été calculés à partir du poids selon l'âge pour les engins fixes et mobiles combinés. Pour l'âge a au début de l'année t, il s'agit de la moyenne géométrique du poids selon l'âge a-1 dans la pêche de l'année t-1 et du poids selon l'âge a dans la pêche de l'année t. Le poids moyen selon l'âge des reproducteurs de printemps pêchés par des engins mobiles et fixes au printemps a diminué depuis les années 1990 pour les engins mobiles, et depuis le milieu des années 1980 pour les engins fixes (Tableaux 5 et 8; Figure 6).

Le poids moyen selon l'âge a diminué de 37 % entre 1978 et 2019. Le poids moyen selon l'âge des Harengs reproducteurs d'automne provenant d'engins fixes et mobiles a diminué presque continuellement au cours de la période allant de 1978 à aujourd'hui (Tableaux 7 et 11; Figure 6). Le poids moyen selon l'âge a diminué de 32 % entre 1978 et 2019. Les poids moyens plus faibles sont une indication de l'état du stock et influent sur l'estimation du stock de la biomasse lorsque les chiffres sont convertis en poids.

À partir de cette évaluation, les captures des senneurs de la zone 4vn ont été réparties dans les régions nord, centrale et sud proportionnellement aux débarquements des engins fixes de la région. Lors des évaluations antérieures, la répartition était fondée sur les débarquements par les senneurs dans toutes les régions, de sorte que les captures provenant des débarquements par les senneurs dans la zone 4Vn n'étaient pas réparties dans les régions ne présentant aucun débarquement par les senneurs. De plus, à partir de cette évaluation, les captures par les senneurs au bord du détroit de Cabot ont été réparties dans les régions nord, centrale et sud proportionnellement aux débarquements par les engins fixes. Dans les évaluations antérieures, les débarquements étaient tous attribués à la région sud.

3.2. CAPTURES PAR UNITÉ D'EFFORT

Les pêches au moyen d'engins fixes ont lieu dans les frayères. Les débarquements de cette pêche représentent environ 50 % des captures de reproducteurs de printemps et plus de 95 % des captures de reproducteurs d'automne. Les données sur les captures et l'effort des engins fixes ont été utilisées pour construire des indices d'abondance des CPUE pour les reproducteurs de printemps et d'automne. Les indices des CPUE des engins fixes sont définis comme des captures en kg/filet par coup de filet/jour (ou kg/filet par coup de filet/sortie). Les filets sont normalisés à une longueur de 14 brasses (25,6 m). Les indices des CPUE totales et proportions selon l'âge pour les 4 à 10 ans sont utilisés dans les évaluations des deux stocks.

Les données sur les captures ont été extraites des données sur les débarquements. L'effort de pêche a été calculé comme le nombre moyen de filets maillants déployés par saison et par zone du sud du golfe du Saint-Laurent depuis 1978. De 1978 à 1985, le nombre moyen de filets utilisés a été recueilli au moyen de questionnaires effectués sur des quais et par la poste (Clay et Chouinard 1986). Depuis 1986, l'effort de pêche a été calculé en multipliant le nombre de sorties (bordereaux d'achat) par le nombre estimé de coups de filet standard, qui ont été déterminés à partir des dossiers du Programme de vérification à quai et du sondage téléphonique annuel, selon celui qui possède le plus de données (Tableau 3). Les données de la saison de pêche d'automne sur le nombre de filets posés sont disponibles depuis 1978 et sur le nombre de coups de filet depuis 1986. Les registres du Programme de vérification à quai sur les captures et l'effort de pêche du printemps sont disponibles depuis 1990.

Le pourcentage de jours de pêche à engins fixes sans capture est consigné depuis 2006 en fonction des réponses au sondage téléphonique (Tableau 12). Le pourcentage de jours sans capture au printemps 2018 (37,2 %) est supérieur à la moyenne (33,9 %), alors que le pourcentage de jours sans capture au printemps 2019 (25,5 %) est inférieur à la moyenne. À l'automne, les jours sans capture sont parmi les plus élevés de la série chronologique pour les deux années de la pêche d'automne aux engins fixes (40,7 % en 2018, 30,3 % en 2019, moyenne 28,12 %). Comme ces renseignements ne sont disponibles que pour la période la plus récente, ils ne sont pas encore inclus dans le calcul de l'effort de pêche.

Un modèle multiplicatif a été utilisé pour calculer les indices normalisés des CPUE, selon l'équation suivante :

In (CPUE_{ijk})=
$$\alpha+\beta_1$$
 I + β_2 J + β_3 K+ ϵ

où I indexe l'année, J indexe la zone de sondage téléphonique, K indexe la semaine et ε est l'erreur résiduelle. Pour les reproducteurs de printemps, le modèle a été appliqué aux données de toute la zone du stock. Pour les reproducteurs d'automne, le modèle multiplicatif a été généré par région (nord, centrale et sud) et n'incluait pas la division par zone. L'analyse des reproducteurs de printemps a été limitée aux semaines 9 à 22, tandis que l'analyse des reproducteurs d'automne a été limitée aux semaines 27 à 43.

Les modèles ont permis d'expliquer 39 % de la variance des données du printemps et les facteurs de l'année, de la semaine et de la zone étaient statistiquement significatifs. Pour les données de l'automne, les modèles ont permis d'expliquer entre 51 % et 69 % de la variance des données et les facteurs pour l'année et la semaine étaient statistiquement significatifs (Tableau 13). Les indices des CPUE selon l'âge pour les 4 à 10 ans ont été obtenus en divisant les captures selon l'âge effectuées par filet maillant par l'effort normalisé (CPUE) extrait du modèle multiplicatif. L'indice d'abondance selon l'âge des CPUE comprend les années de 1990 à 2019 pour les reproducteurs de printemps et de 1986 à 2019 pour les reproducteurs d'automne.

Les indices présentés dans les tableaux 14-15 et les figures 7-8 ne tiennent compte que des captures et de l'effort de pêche, et ne tiennent pas compte des éventuels changements de sélectivité ou de capturabilité, qui sont paramétrés dans le modèle de population. L'indice des CPUE pour les reproducteurs de printemps et d'automne montre une cohérence interne puisque l'abondance des cohortes est corrélée entre les années (Figures 7 et 8). En 2018 et 2019, les captures de reproducteurs de printemps au moyen d'engins fixes étaient principalement composées de poissons âgés de 5 à 7 ans (Tableau 4). En 2018 et 2019, les CPUE des reproducteurs de printemps ont diminué par rapport à 2017 pour tous les âges et l'âge dominant en 2019 était de 6 ans (cohorte de 2013, Tableau 14; Figure 7). Pour les reproducteurs d'automne de la région nord, l'âge dominant des captures en 2018 et 2019 était de 6 à 8 ans (cohorte de 2010 à 2013). Pour les reproducteurs d'automne de la région centrale, l'âge dominant des captures était de 7 à 8 ans en 2018 et de 7 ans en 2019 (cohorte de 2010 à 2012). Pour les reproducteurs d'automne de la région sud, l'âge dominant des captures était de 6 à 8 ans en 2018 et de 6 à 9 ans en 2019 (cohorte de 2010 à 2013; Tableau 6). Les CPUE du Hareng reproducteur d'automne ont augmenté en 2018 pour les régions nord et centrale, mais ont diminué dans le sud. En 2019, les CPUE ont augmenté dans le nord et le sud, mais ont diminué dans la région centrale. Dans toutes les régions, les CPUE des jeunes poissons reproducteurs d'automne (âgés de 4 et 5 ans) sont restées faibles depuis 2011 (Tableau 15; Figure 8).

3.3. INDICE D'APRÈS LE RELEVÉ ACOUSTIQUE INDÉPENDANT DE LA PÊCHE

Un deuxième indice d'abondance normalisé est généré à partir du relevé acoustique annuel indépendant de la pêche. Cet indice comprend les données de captures selon l'âge de la zone 4Tmno de l'OPANO, qui fait l'objet de relevés chaque année depuis 1994. Le tableau 16 présente l'indice d'abondance acoustique par âge pour les reproducteurs de printemps et les reproducteurs d'automne de 2 à 10 ans.

L'indice de biomasse acoustique de la zone 4Tmno pour les reproducteurs de printemps et d'automne combinés était de 23 313 tonnes en 2018 et de 18 826 tonnes en 2019. En 2018, la biomasse était composée de 35 % de reproducteurs de printemps et de 65 % de reproducteurs d'automne. En 2019, la biomasse était composée de 38 % de reproducteurs de printemps et de 62 % de reproducteurs d'automne. Un résumé des résultats du relevé acoustique est présenté à l'annexe B.

Le modèle d'évaluation des reproducteurs de printemps utilise les résultats des âges de 4 à 8 ans. Le relevé acoustique a permis d'estimer que les taux de captures (en nombre) des reproducteurs de printemps âgés de 4 à 8 ans étaient plus faibles en 2018 et 2019 qu'en 2017. L'âge dominant des captures était de 4 ans en 2017, de 5 ans en 2018 et de 6 ans en 2019, ce qui montre que la cohorte de 2013 était relativement forte, tel qu'observé dans l'indice de CPUE. Toutes les valeurs concordaient avec les faibles chiffres enregistrés depuis le début des années 2000 (Tableau 16; Figure 9).

Pour le modèle d'évaluation des reproducteurs d'automne, le relevé acoustique fournit un indice d'abondance du recrutement du Hareng (2 et 3 ans; LeBlanc *et al.* 2015). Il n'est pas considéré comme un indice d'abondance utile pour les poissons plus âgés, étant donné que le relevé est limité à une partie restreinte du sud du golfe du Saint-Laurent, au moment où les Harengs plus âgés fraient dans ces régions. L'âge dominant les captures en 2018 était de 3 ans (cohorte de 2015). L'abondance acoustique des reproducteurs d'automne de 2 et 3 ans était plus faible en 2019, parmi les valeurs les plus basses de la série chronologique (Tableau 16; Figure 9).

3.4. INDICES RELATIFS AUX FILETS EXPÉRIMENTAUX

3.4.1. Indice de sélectivité relative

Un indice de sélectivité relative a été établi pour tenir compte des changements dans la répartition des mailles 2 % po, et 2 ¾ po utilisées par les pêcheurs commerciaux, ainsi que des changements dans la longueur selon l'âge moyenne qui a généralement diminué avec le temps. Les calculs de la sélectivité selon l'âge (Tableau 17) et des CPUE corrigées selon la sélectivité sont décrits à la section 5.1.

3.4.2. Captures selon l'âge au moyen de filets expérimentaux

Dans l'évaluation précédente, les captures au moyen de filets expérimentaux ont été obtenues d'un modèle prédictif (Surette et al. 2016). Après avoir analysé la structure et le rendement du modèle, trois problèmes ont été relevés : 1) le modèle n'incluait pas les sorties sans capture, 2) les captures ont été normalisées en fonction du temps d'immersion, mais il n'y a pas de relation significative entre les deux et 3) l'analyse des résidus a montré un blocage sévère dans l'estimation de l'abondance des jeunes poissons par rapport aux vieux poissons. Cet indice a donc été revu. Dans le cadre de cette évaluation, les captures selon la longueur par chaque maillage ont été additionnées par jour et par région. Par la suite, les captures moyennes selon la longueur par région et par année ont été calculées. Les données sur les captures selon l'âge ont ensuite été établies à l'aide des clés d'âge-longueur, comme il est indiqué à la section 3.4.1. Les échantillons n'ayant aucune capture ont été inclus dans l'analyse, et aucun facteur de correction n'a été appliqué aux captures selon l'âge pour tenir compte de la durée d'immersion. La sélectivité des différents maillages a été traitée dans le cadre du modèle (voir la section 5.1).

Les modèles d'évaluation précédents utilisaient des indices d'abondance propres à la région, provenant de données de filets expérimentaux. Les travaux préliminaires sur les modèles statistiques de captures selon l'âge ont indiqué que cet indice contenait peu d'informations sur les tendances de la biomasse dans le temps (Turcotte *et al.* 2020). La biomasse annuelle avec regroupement par âge prévue ne correspondait que très peu aux indices observés, et l'indice de biomasse provenant des filets expérimentaux n'a donc pas été utilisé dans cette évaluation. Toutefois, les renseignements sur la structure par âge ont été jugés adéquats et les données sur les proportions selon l'âge ont été utilisées dans la modélisation.

L'indice des captures selon l'âge associé au filet expérimental montre une plus grande proportion de poissons âgés de 3 à 4 ans jusqu'en 2009, après quoi les effectifs diminuent.

Aucune tendance majeure n'a été observée pour le Hareng plus âgé au cours de la série chronologique. Ces dernières années, les proportions des captures selon l'âge montrent une augmentation des captures de poissons âgés de 6 à 8 ans dans toutes les régions (Figure 10).

3.5. INDICE PLURISPÉCIFIQUE AU CHALUT DE FOND

Cet indice utilise des données de 1994 à 2019 uniquement pour les reproducteurs d'automne (Tableau 19; Figure 12). L'indice ayant montré des captures de Hareng extrêmement élevées ces dernières années, il a été revu. Après avoir analysé les valeurs de captures anormalement élevées, il est apparu que le facteur de correction de l'effet de la migration nycthémérale appliqué aux données générait des valeurs de captures extrêmes. Ce facteur d'ajustement corrige la faible capturabilité du Hareng au chalut de fond la nuit, lorsque le Hareng a tendance à être réparti plus haut dans la colonne d'eau. Ce coefficient a été estimé à partir des données des relevés comparatifs qui ont eu lieu en 1985 et en 1992 (Benoît et Swain 2003). Depuis cette période (et après l'effondrement de la Morue), il a été démontré que le Hareng est de plus en plus associé au fond du sud du golfe du Saint-Laurent, même la nuit (observations du relevé acoustique annuel de la zone 4T; McQuinn 2009). L'application de ce facteur de correction entraîne une surestimation des captures de Hareng lors des traits de nuit du relevé au chalut de fond. Ainsi, dans cette évaluation, le facteur de correction de l'effet de la migration nycthémérale n'a pas été utilisé pour calculer l'indice d'après le relevé au chalut de fond (1994-2019).

Avant cette évaluation, les captures selon l'âge (nombre moyen par trait normalisé) de Harengs reproducteurs d'automne dans le cadre du relevé plurispécifique au chalut de fond ont été estimées à l'aide d'un modèle d'estimation bayésien (Surette 2016). Comme ce modèle utilisait des valeurs de captures corrigées en fonction de l'effet de la migration nycthémérale (Surette 2016), et après avoir analysé les résultats du modèle et les diagrammes de diagnostic des valeurs prévues et observées, il a été décidé de ne pas utiliser les données estimées par ce modèle.

Pour cette évaluation, on utilise comme indice d'abondance la moyenne des captures selon l'âge annuel stratifié du relevé (normalisé pour la distance de trait). Ce nouvel indice offre peu de différences dans les proportions selon l'âge de 4 à 6 ans, mais élimine les valeurs anormales des années 2010-2012 pour l'indice de biomasse totale (McDermid *et al.* 2018). Le nouvel indice indique une augmentation de l'abondance relativement élevée des âges de 4 à 6 ans en 2010-2014, suivie d'une baisse constante de l'abondance de ces âges jusqu'à une très faible abondance en 2019 (Figure 12).

3.6. OGIVE DE MATURITÉ

Aux fins de l'évaluation, on suppose que le Hareng suit un calendrier de maturation en forme de lame de couteau, avec une maturation à 100 % entre 3 et 4 ans.

4. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS DE PRINTEMPS

Dans les évaluations précédentes, la composante des reproducteurs de printemps a été évaluée à l'aide d'un modèle d'analyse de population virtuelle utilisant une estimation de la capturabilité (q) variant dans le temps (McDermid *et al.* 2018). Pour cette évaluation, des modèles statistiques de captures selon l'âge avec différentes hypothèses sur les paramètres variables dans le temps ont été conçus (Turcotte *et al.* 2020), et ont fait l'objet d'un examen par des experts en modélisation de la population le 10 février 2020. Les commentaires des évaluateurs et la manière dont ils ont été intégrés dans l'évaluation sont présentés à l'annexe E.

Le meilleur modèle a été sélectionné lors de l'examen et il constitue le modèle utilisé dans cette évaluation.

Les principales différences entre l'analyse de population virtuelle et le modèle statistique des captures selon l'âge sont les suivantes : 1) L'analyse de population virtuelle suppose que les captures selon l'âge sont connues sans erreur; le modèle statistique des captures selon l'âge suppose qu'il y a une erreur d'observation dans les proportions selon l'âge dans les captures. 2) L'analyse de population virtuelle s'ajuste aux indices d'abondance par âge et suppose que les indices à différents âges de la même année sont indépendants. Le modèle statistique des captures selon l'âge s'ajuste aux indices de la biomasse totale ainsi qu'aux proportions selon l'âge des captures de la pêche et des relevés; cela compense le manque d'indépendance entre les captures à différents âges au cours d'une même année. 3) L'analyse de population virtuelle est une rétropolation de l'abondance par âge dans l'année la plus récente; les abondances les plus récentes par âge sont des paramètres estimés dans le modèle. Le modèle statistique des captures selon l'âge fait des projections à partir de l'abondance par âge au cours de la première année et au premier âge pour toutes les années; celles-ci sont estimées dans le modèle, soit sous forme de paramètres (l'approche utilisée ici), soit par ajustement d'une relation stock-recrutement.

Les travaux préalables à l'évaluation ont permis d'examiner deux non-stationnarités possibles : la mortalité naturelle et la capturabilité variables dans le temps pour la pêche aux engins fixes (et donc pour l'indice des CPUE). Permettre à la capturabilité et à la mortalité naturelle de varier dans le temps constitue le meilleur moyen de faire correspondre les indices, de minimiser les résidus et de ne pas montrer de tendance rétrospective dans les estimations de la BSR (Turcotte et al. 2020). Les indices dépendants de la pêche, comme les CPUE des filets maillants commerciaux, peuvent ne pas être proportionnels à l'abondance en raison de changements dans la capturabilité au fil du temps. Par exemple, les taux de captures peuvent rester élevés malgré la diminution de l'abondance (augmentation de la capturabilité) due à la contraction de la distribution des stocks et au ciblage des regroupements par les flottes de pêche, ainsi qu'en raison de l'amélioration des technologies et des pratiques de pêche. L'évaluation des stocks de pêche est souvent basée sur l'hypothèse que la mortalité naturelle est constante dans le temps, mais de nombreux exemples montrent que les interactions prédateurs-proies sont dynamiques. Le fait de ne pas tenir compte des augmentations de la mortalité naturelle, causée par l'évolution des interactions prédateurs-proies, dans une l'évaluation des stocks peut donner lieu à des estimations biaisées en ce qui concerne les paramètres de population et les indices vitaux. La mortalité naturelle comprend également la mortalité due aux maladies et aux captures non déclarées, y compris les prélèvements d'appâts, pour lesquels aucune information n'est disponible. Cette composante de la pêche qui a soulevé de nombreuses questions dans le passé est maintenant incluse dans l'évaluation. bien que son effet ne puisse être distingué des autres sources de mortalité. La mortalité due à la maladie devrait représenter une faible fraction de la mortalité naturelle totale, car aucun événement de mortalité due à la maladie n'a été enregistré au cours de la série chronologique.

4.1. MODÈLE RELATIF AUX REPRODUCTEURS DE PRINTEMPS

Dans cette évaluation, la composante des reproducteurs de printemps est évaluée à l'aide d'un modèle statistique des captures selon l'âge mis en œuvre en utilisant AD Model Builder (Fournier *et al.* 2012). Les données d'entrée du modèle comprenaient :

 les captures commerciales de 2 à 11 ans et plus, en proportions selon l'âge, de 1978 à 2019:

- l'indice des CPUE, en proportions selon l'âge, et l'indice de la biomasse totale, de 1990 à 2019 (de 4 à 10 ans);
- l'indice du relevé acoustique indépendant de la pêche, en proportions selon l'âge, et l'indice de la biomasse totale, de 1994 à 2019 (de 4 à 8 ans).

Pour les proportions annuelles selon l'âge dans toutes les sources de données où les proportions selon l'âge étaient inférieures à 0,01, des groupes ont été créés avec des âges adjacents jusqu'à ce que les proportions selon l'âge soient supérieures à 0,01 (annexe E).

Les paramètres estimés par le modèle sont les suivants : les nombres selon l'âge au cours de l'année initiale (1978); le recrutement annuel (recrutement moyen et écarts de recrutement relativement au nombre de poissons âgés de 2 ans); les paramètres de sélectivité reliés à trois blocs chronologiques pour tenir compte des changements dans la sélectivité et la proportion d'engins; la mortalité par la pêche initiale avant 1978; la valeur q pour l'indice des CPUE et le relevé acoustique et les écarts annuels de q pour l'indice des CPUE; le paramètre M initial et les écarts annuels de M pour deux groupes d'âge (2 à 6 ans et 7 à 11 ans et plus); et l'erreur d'observation des indices. Tous les paramètres ont été estimés sur l'échelle logarithmique.

Des séries chronologiques indépendantes de M pour deux groupes d'âge ont été estimées : 2 à 6 ans (j = 1) et 7 à 11 ans et plus (j = 2). Ces séries chronologiques ont été estimées selon l'échelle logarithmique sous forme de marches aléatoires :

$$\log(M_{j,t}) = \log M_j^{init} \text{ où } t = 1978$$

$$\log(M_{j,t}) = \log(M_{j,t-1}) + M dev_{j,t}, \text{ où } t > 1978$$

$$M dev_{j,t} \sim Normal(0, \sigma_i^M)$$

où $\log(M_j^{init})$ et $Mdev_{j,t}$, sont des paramètres estimés par le modèle. Il a été supposé que les écarts de M ($Mdev_{j,t}$) présentaient une distribution normale, une moyenne de 0 et un écart-type σ_j^M fixé à 0,075 pour toutes les valeurs j. La marche aléatoire a commencé en 1979. Des données a priori ont été fournies pour M^{init} . Ces données a priori présentaient une distribution normale, une moyenne de 0,2 et un écart-type de 0,1 pour les deux groupes d'âge (c.-à-d. $M_i^{init} \sim N(0.2; 0.1)$).

La fonction de probabilité des modèles comprenait des fonctions de pénalité attribuables aux données a priori concernant le paramètre M:

$$0.5 \sum\nolimits_{j,y} (M dev_{j,t}^2)/(\sigma_j^M)^2 + 0.5 \sum\nolimits_{J} \exp(\log \left(M_j^{init}\right) - 0.2)^2/0.1^2$$

Le modèle permettait d'estimer l'erreur de processus dans la capturabilité (q) pleinement recrutée pour la pêche à engins fixes. La valeur initiale de q en 1990 (la première année de données CPUE) était un paramètre estimé par le modèle et les valeurs subséquentes de q ont été estimées par une marche aléatoire :

$$q_t = \exp(\log q)$$
 où $t \le 1990$
$$q_t = q_{t-1} * \exp(q dev_t)$$
 où $t > 1990$
$$q dev_t \sim Normal(0, \sigma^q)$$

où $\log(q_t)$ et $qdev_{t,}$ sont des paramètres estimés par le modèle. Il a été supposé que les écarts de q ($qdev_t$) présentaient une distribution normale, avec une moyenne de 0 et un écart-type σ^q fixé à 0,1.

La fonction de probabilité des modèles comprenait une fonction de pénalité attribuable à la donnée a priori concernant les écarts de q:

$$0.5 \sum\nolimits_t (q dev_t^2)/(\sigma^q)^2$$

La sélectivité $S_{g,a,t}$ a été indexée selon les sources de captures g, l'âge a et l'année t. Il a été supposé que la sélectivité de la pêche (g = 1), la sélectivité selon l'indice de CPUE dans la pêche au filet maillant (g = 2) et selon le relevé acoustique (g = 3) était des fonctions logistiques de l'âge. On pourrait soutenir que la sélectivité selon l'indice des CPUE et selon la pêche revêt la forme d'un dôme en raison de l'utilisation de filets maillants. Les modèles de sélectivité qui permettaient d'intégrer une courbe en forme de dôme (p. ex. logistique double, gamma, logistique exponentielle) ont également été examinés; ils ont estimé que la sélectivité prenait la forme d'un dôme. La partie descendante du dôme affichait une inclinaison plus forte et une baisse plus importante entre 2005 et 2017 comparativement à la période allant de 1990 à 2004. Par exemple, à l'aide des trois modèles de sélectivité décrits plus haut, il a été estimé que la sélectivité du filet maillant pour la pêche de poissons âgés de 10 ans se situait à environ 0,5, 0,8 ou 0,9 entre 1990 et 2004 respectivement, et à 0,2, 0,2 et 0,8 entre 2005 et 2017 (pour plus de renseignements, consultez l'annexe 2 de Turcotte et al. 2020). Toutefois, la taille selon l'âge du Hareng diminue depuis le milieu des années 1980 (Figure 6). Si la courbe de sélectivité prenait la forme d'un dôme, les Harengs âgés (p. ex. 10 ans) se trouveraient sur la partie descendante. Par conséquent, la diminution de la taille selon l'âge se traduirait par une augmentation de leur sélectivité dans le filet maillant, et non par une diminution. Des estimations indépendantes de la sélectivité relative selon l'âge des reproducteurs d'automne confirment que leur sélectivité aux âges avancés a augmenté, et non baissé, en raison de la diminution de leur taille selon l'âge. La baisse de l'abondance aux âges élevée qui n'est pas prise en compte par les captures de la pêche et la mortalité naturelle estimée peut être faussement expliquée en estimant une sélectivité décroissante aux âges avancés. Par conséguent, ces estimations entourant la sélectivité décroissante pour le Hareng âgé au cours des dernières années ont été jugées erronées; il a donc été décidé d'utiliser des modèles de sélectivité logistique. Pour le relevé acoustique, le modèle logistique a estimé la sélectivité à 1,0 pour tous les âges calibrés, ce qui correspond à l'hypothèse selon laquelle la sélectivité des estimations acoustiques pourrait être largement indépendante de l'âge.

Quant à la pêche commerciale et à l'indice CPUE, des fonctions de sélectivité distinctes ont été ajustées à trois périodes :

- 1. de 1978 à 1989 (p = 1)
- 2. de 1990 à 2004 (p = 2)
- 3. de 2005 à 2019 (p = 3) [c.-à-d. $S_{1,p} = f(s_{1,a,t})$ et $t \in 1978, 1979, ..., 1989$ pour p = 1, etc.]

Ces périodes ont été choisies en fonction d'un examen des proportions annuelles d'engins fixes et mobiles dans la pêche commerciale.

L'abondance de la population âgée de 2 ans (recrutement) dans l'année t a été estimée en fonction du recrutement moyen logarithmique (\overline{R}) et des écarts annuels de recrutement $Rdev_t$:

$$R_t = \exp(\bar{R} + Rdev_t)$$

$$Rdev_t \sim Normal(0, \sigma^R)$$

où \bar{R} et $Rdev_t$ sont des paramètres estimés par le modèle. Il a été supposé que les écarts de recrutement ($Rdev_t$) présentaient une distribution normale, avec une moyenne de 0 et écart-type σ^R fixé à 0,5. Pour les poissons plus âgés a ($a \in 3, 4, ...$ 11 ans et plus) au cours de

l'année 1, l'abondance de la population a été estimée en projetant les cohortes dans l'avenir à compter de l'âge de 2 ans à l'année moins-1 (a-2) jusqu'à leur âge durant l'année 1, comme suit.

Pour l'abondance selon l'âge $a \in 3,4, ...$ A-1 durant l'année 1, où A correspond au dernier âge (11 ans et plus) :

$$N_{a,1} = \exp(\bar{R} + Rdev_a^{r1} - \sum_{b=2}^{b=a-1} (s_{b,1}Fi + M_{b,1}))$$

Pour l'abondance selon l'âge A au cours de l'année 1 :

$$N_{A,1} = \frac{\exp(\overline{R} + Rdev_A^{r_1} - \sum_{b=2}^{b=A-1} (s_{b,1}Fi + M_{b,1}))}{1 - \exp(-(s_{A,1}Fi + M_{A,1}))}$$

où $N_{a,1}$ est l'abondance selon l'âge a dans l'année 1, $Rdev_a^{r1}$ est des écarts de recrutement utilisés pour initialiser l'abondance selon l'âge a dans l'année 1, $s_{b,1}$ est la sélectivité de la pêche selon l'âge b dans l'année 1, Fi est le taux de mortalité par pêche du Hareng pleinement recruté pour l'initialisation de l'abondance selon l'âge dans l'année 1, et $M_{b,1}$ est le taux de mortalité naturelle selon l'âge b dans l'année 1, et b indexe l'âge dans les sommations .

La fonction de probabilité du modèle comprenait des fonctions de pénalité en raison des données a priori sur les écarts de recrutement utilisés pour initialiser l'abondance des poissons âgés de 2 ans dans toutes les années et aux âges avancés dans l'année 1 :

$$0.5 \sum\nolimits_t (R dev_t^2)/(\sigma^R)^2 + 0.5 \sum\nolimits_a (R dev_a^{ri})^2/(s^R)^2$$

Après le recrutement à l'âge de 2 ans, les cohortes ont été projetées dans l'avenir de la manière habituelle :

$$N_{a,t} = N_{a-1,t-1} \times \exp(-Z_{a-1,t-1})$$

 $Z_{a,t} = s_{1,a,t} \times F_t + M_{a,t}$

où a et t sont l'âge et l'année de l'indice, N est l'abondance, Z est la mortalité totale, M est la mortalité naturelle, F est la mortalité par pêche du Hareng pleinement recruté et $s_{1,a,t}$ est la sélectivité selon l'âge a dans l'année t dans la pêche.

La fonction objective du modèle comprenait les éléments suivants :

- Les écarts entre les valeurs observées et prédites des indices de la biomasse totale pour les CPUE dans la pêche au filet maillant et le relevé acoustique. Il a été supposé que les indices présentaient une distribution log normale, associée à des écarts-types estimés par le modèle. Le modèle permettait de pondérer la probabilité des indices de biomasse.
- Les écarts entre les proportions observées et prédites selon l'âge dans la pêche, les CPUE et les captures des relevés acoustiques. Il a été a supposé que les proportions selon l'âge suivaient une distribution logistique à plusieurs variables, permettant d'estimer les écarts des données.
- Un a priori de distribution normale pour les écarts de M à l'échelle logarithmique.
- Un *a priori* de distribution normale pour les valeurs initiales de *M* à l'échelle logarithmique.
- Un a priori de distribution normale pour les écarts de q à l'échelle logarithmique.

- Un *a priori* de distribution normale pour les écarts de recrutement à l'échelle logarithmique pour les années 1979 à 2019.
- Un *a priori* de distribution normale pour les écarts de recrutement à l'échelle logarithmique utilisés pour calculer les abondance à l'âge en 1978.

À partir de l'analyse préliminaire de l'ajustement du modèle aux indices selon l'âge, un poids de 1 a été attribué à la probabilité de l'indice de la biomasse selon les CPUE, tandis qu'un poids de 3 a été attribué à la probabilité de l'indice de la biomasse du relevé acoustique. Des intervalles de confiance approximatifs à 95 % ont été obtenus pour les quantités estimées par le modèle en fonction de l'échantillonnage fondé sur la méthode de Monte-Carlo par chaîne de Markov (MCMC); sur 210 000 échantillons dont les premiers 10 000 ont été retirés, un échantillon tous les 40 a été conservé. Les estimations de population sont des médianes a posteriori reposant sur l'échantillonnage fondé sur la méthode de MCMC. La qualité de l'ajustement aux indices a été évaluée au moyen d'un examen visuel des graphiques illustrant la biomasse regroupée en fonction des valeurs estimées et observées. Les écarts entre la proportion selon l'âge prédite et observée ont été évalués en examinant les résidus par année et par âge et en cherchant des « blocs » à travers les âges ou les années. Les résidus ont été calculés dans l'espace logarithmique comme étant les valeurs observées moins les valeurs prédites, moins l'écart moyen par année. La somme des carrés des résidus a été calculée pour chaque indice d'abondance. Les tendances rétrospectives qui touchent les estimations de la biomasse du stock reproducteur (BSR) ont été évaluées en traçant la courbe des séries chronologiques de la BSR ayant été estimées en supprimant de manière séguentielle l'année terminale des données, pour 4 années (de 2015 à 2019).

4.2. RÉSULTATS RELATIFS AUX REPRODUCTEURS DE PRINTEMPS

Les tendances résiduelles indiquent un ajustement acceptable du modèle aux indices des CPUE et des relevés acoustiques, sans blocage apparent (Figure 13). Les ajustements aux indices de biomasse totale avec regroupement par âge sont aussi bons pour l'indice des CPUE que pour l'indice acoustique (Figure 14). L'analyse rétrospective des tendances de la BSR ne montre aucun changement progressif dans une direction consistante lorsque des données supplémentaires sont ajoutées au modèle d'année en année (Figure 15).

La capturabilité pour l'indice des CPUE était en moyenne d'environ 0,0021 dans les années 1990, augmentant jusqu'à un sommet d'environ 0,0069 en 2006, et se stabilisant à 0,0057 en moyenne entre 2015 et 2019 (Figure 16). La capturabilité estimée pour l'indice des CPUE a augmenté à mesure que la BSR diminuait (Figure 17).

Les estimations de la mortalité naturelle pour le groupe des 2 à 6 ans ont varié entre 0,24 et 0,53 (entre 21 % et 41 % de la mortalité annuelle) au cours de la série chronologique (Figure 18). Les estimations ont légèrement diminué de 1978 à 1986, puis les valeurs sont demeurées stables jusqu'en 1995, année où M a augmenté pour atteindre ses valeurs les plus élevées entre 2000 et 2009. Le paramètre M est passé de 0,53 en 2009 à 0,33 en 2015, et est demeuré à ce niveau jusqu'en 2019. Pour le groupe des 7 à 11 ans et plus, le paramètre M a augmenté progressivement, passant de 0,29 à 0,52 (entre 25 % et 41 % de mortalité annuelle) entre 1978 et 2005 (Figure 18). À compter de 2011, les estimations ont fortement augmenté pour atteindre 1,03 en 2018 et 2019 (64 % de mortalité annuelle).

L'abondance d'un certain nombre des principaux prédateurs du hareng dans le sGSL a radicalement changé au cours de la série chronologique (figure 19). La morue de l'Atlantique s'est effondrée au début des années 1990 et a continué de décliner depuis. L'abondance des phoques gris a augmenté de plus d'un ordre de grandeur au cours de la série chronologique et l'abondance du thon rouge de l'Atlantique dans le sGSL a été multiplié par cinq à partir du

milieu des années 2000. L'information disponible montre que a morue se nourrit principalement des plus petits harengs, alors que les phoques gris et thons rouges se nourrissent des plus gros harengs. La mortalité naturelle pour le groupe d'âge 2-6 ne semblait pas corrélée avec l'abondance de la morue (r de Pearson = -0,21), tandis que la tendance M estimée pour le groupe d'âge 7-11 + était significativement corrélée avec l'abondance relative cumulée du phoque gris et du thon rouge sur la même période (r de Pearson = 0,91, figure 19). La mortalité naturelle pour le groupe des 2 à 6 ans ne semble pas suivre l'abondance de la Morue (r de Pearson = -0,21), tandis que la tendance de M estimée pour le groupe des 7 à 11 ans et plus suit de manière importante la tendance de l'abondance relative du Phoque Gris et du Thon Rouge de l'Atlantique sur la même période (r de Pearson = 0,91, Figure 19).

Les modèles de cette évaluation et des évaluations précédentes présentent des estimations au début de l'année (1er janvier). Les modèles précédents supposaient une mortalité naturelle constante de 0,2 (18 % par an), ce qui signifie que la BSR ne diminuait que de 5 % entre le 1er janvier et le 1^{er} avril (lorsque la pêche au Hareng de printemps commence). Cette évaluation repose sur un modèle d'estimation de la mortalité naturelle variable dans le temps et elle est très élevée ces dernières années. Il est alors important de tenir compte du moment de la pêche dans les estimations de l'état des stocks. Étant donné que la pêche à engins fixes est limitée à une période de l'année et que la valeur de M est estimée être très élevée certaines années pour certains âges de Hareng, il est important de tenir compte de l'état du stock au début de la pêche, c'est-à-dire la proportion de la BSR du 1er janvier qui survit au début de la pêche. La BSR au 1er avril est plus faible, comme prévu, après avoir supprimé les prélèvements relatifs à la mortalité naturelle (Figure 20). L'écart moyen est de 8 %. En 2019, la BSR du 1er avril était inférieure de 4 291 tonnes à celle du 1er janvier. Cette proportion de la population de poissons qui a été retirée en raison de la mortalité naturelle n'est pas disponible pour la pêche. Ainsi, le 1^{er} avril a été utilisé dans les deux modèles pour indiquer la BSR, pour calculer les points de référence et pour faire des projections.

Le point de référence limite (PRL) pour le Hareng de la zone 4T est B_{rétablissement}, qui représente la biomasse la plus faible à partir de laquelle on a observé que le stock se rétablissait facilement. Il est calculé comme la moyenne des quatre estimations les plus faibles de la BSR au début des années 1980 (c.-à-d. de 1979 à 1983). Par conséquent, cette valeur dépend du modèle. Si le modèle change, la biomasse du stock peut être rééchelonnée vers le haut ou vers le bas. Avec le changement de modèle en 2020, y compris la mortalité naturelle variable dans le temps, la BSR a été ajustée à la hausse sur la série chronologique, comme prévu. Le PRL révisé est de 47 250 tonnes, soit 245 % de plus que la valeur précédente de 19 250 tonnes.

Le point de référence supérieur (PRS) du stock a été déterminé en 2005 comme point de référence provisoire (Chouinard *et al.* 2005). Les calculs utilisaient une analyse du rendement par recrue en supposant que M = 0,2 des vecteurs de recrutement partiel particuliers à la pêche qui ne s'appliqueraient pas au modèle actuel qui utilise des estimations de la BSR basées sur M avec variation temporelle. Par conséquent, pour cette évaluation, le PRS a été augmenté dans la même proportion que le PRL. Le PRS historique était de 54 000 tonnes de la BSR, et le PRS rééchelonné est de 132 546 tonnes. Le PRL et le PRS ont été calculés au 1^{er} avril pour tenir compte de trois mois de mortalité naturelle pour les deux groupes d'âge. Le taux d'exploitation de référence de la pêche dans la zone saine a été défini comme étant $F_{0.1}$ et cette évaluation a utilisé la même valeur de 0,35 que celle utilisée dans les évaluations précédentes.

La BSR estimée est passée des niveaux faibles au début des années 1980 aux niveaux les plus élevés entre le milieu des années 1980 et le milieu des années 1990. La BSR a diminué au milieu des années 1990 pour atteindre la zone critique en 2002. La BSR a légèrement augmenté jusqu'en 2010, toujours dans la zone critique, mais a ensuite de nouveau diminué. Les estimations de la BSR au 1^{er} avril, selon la méthode de MCMC, étaient de 40 134 tonnes

(intervalle de confiance à 95 % : 26 119 - 63 709) en 2018 et de 33 010 tonnes (intervalle de confiance à 95 % : 21 014 - 53 709) en 2019. L'estimation pour 2019 est de 70 % du PRL. Les probabilités que la BSR du 1^{er} avril soit sous le PRL (dans la zone critique de l'approche de précaution) étaient de 82 % en 2018 et de 91 % en 2019 (Figure 21). La BSR a diminué entre 2017 et 2019.

Le recrutement estimé (nombre de poissons de 2 ans) était le plus élevé au début des années 1980, en 1990 et en 1993 (Figure 22). Le recrutement est demeuré relativement stable à des valeurs plus faibles depuis 1993, les valeurs étant légèrement plus élevées entre 2005 et 2008. Le recrutement a diminué pour atteindre les valeurs les plus faibles de la série chronologique après 2008 jusqu'en 2019, sauf un petit sommet en 2015 (cohorte de 2013). Le taux de recrutement (nombre de poissons de 2 ans par kg de BSR) était le plus élevé vers 1980 et vers 2005, et le plus faible entre 1992 et 2000. Depuis 2005, les taux de recrutement sont tombés à de faibles valeurs, sauf pour un petit sommet en 2013 (Figure 24).

Les abondances estimées de recrues pour la pêche (poissons de 4 ans) ont été les plus élevées au milieu des années 1980, en 1992 et en 1995 (Figure 23). Le nombre de recrues pour la pêche a diminué de 1995 au niveau le plus bas observé en 2004 et est resté à un niveau très bas depuis lors (Figure 22; Tableau 20). L'estimation de l'abondance médiane des reproducteurs (4+) selon la méthode de MCMC en 2018 est de 268,6 millions de Harengs (intervalle de confiance à 95 % : 174,9 – 428,1), tandis que la médiane de 2019 selon la méthode de MCMC est de 245,8 millions de Harengs (intervalle de confiance à 95 % : 156,4 – 398,2), soit environ 35 % de l'abondance moyenne des reproducteurs de 1985 à 1995.

La mortalité par pêche estimée (pondération de l'abondance F_{6-8}) était élevée entre 1979 et 1980, a diminué jusqu'en 1984 et a ensuite augmenté de façon constante jusqu'à environ 0,5 en 2004. La valeur de F a ensuite diminué rapidement pour atteindre une faible valeur (<0,05) en 2010 et est demeurée à cette faible valeur depuis (Figure 25; valeurs de F dans le Tableau 21). L'estimation, selon la méthode de MCMC, de la médiane F_{6-8} entièrement recrutée était de 0,041 (intervalle de confiance de 95 % : 0,026 – 0,065) en 2018 et 0,047 (intervalle de confiance à 95 % : 0,029 – 0,076) en 2019 (mortalité annuelle de 4 % et 5 %).

La trajectoire de la population de Harengs reproducteurs de printemps par rapport à la BSR et aux niveaux de mortalité par pêche est illustrée à la Figure 26. La figure montre la zone saine, la zone de prudence et la zone critique de l'approche de précaution. La référence de prélèvement dans la zone saine pour le stock de Hareng reproducteur de printemps est $F_{0,1}$ = 0,35. Il n'y a pas de règles de contrôle de la récolte dans la zone de prudence et la zone critique pour ce stock. Le taux d'exploitation de référence de l'approche de précaution provisoire est donc fourni. La mortalité par la pêche a dépassé le taux d'exploitation de référence dans 27 des 42 années de la série chronologique. La mortalité par la pêche a dépassé le taux d'exploitation de référence de l'approche de précaution toutes les années après 1998 et a été particulièrement élevée pendant et peu après la diminution importante de la BSR, entre 1999 et 2007.

4.3. PROJECTIONS RELATIVES AUX REPRODUCTEURS DE PRINTEMPS

Le modèle de population a été projeté au 1^{er} avril 2021, au 1^{er} avril 2022 et à 10 ans au 1^{er} avril 2029 pendant l'échantillonnage MCMC de la distribution conjointe *a posteriori* des paramètres. Cela prend en compte les incertitudes dans les estimations des paramètres. Les projections ont été réalisées à plusieurs niveaux de captures annuelles (0, 250, 500 et 1 250 tonnes). Le recrutement a été stable à de faibles valeurs au cours des dernières années, donc des projections ont été effectuées à partir des valeurs moyennes de recrutement des cinq dernières années (2015-2019). La mortalité naturelle des 2 à 6 ans est stable depuis 5 ans.

Pour le groupe des 7 à 11 ans et plus, la mortalité naturelle a augmenté au cours de la dernière décennie pour atteindre les valeurs maximales en 2018 et 2019. Les projections ont donc été effectuées en utilisant la moyenne des valeurs M de 2018 et 2019 pour chaque groupe d'âge. Les figures 27 et 28 présentent les projections sur deux ans de la BSR au 1^{er} avril, et de la mortalité par pêche des âges 6 à 8 pondérée en fonction de l'abondance. Les probabilités d'atteindre les différents objectifs sont indiquées dans le tableau 22 pour chaque niveau de captures, pour dix ans. Les projections de la BSR sur dix ans sont illustrées à la figure 29.

Selon les projections, la BSR au 1^{er} avril 2020 était de 26 0114 tonnes (intervalle de confiance à 95 % : 15 541 – 44 409), ce qui place le stock dans la zone critique de l'approche de précaution.

4.3.1. Projections à court terme

Avec des captures annuelles de 0, 250, 500 ou 1 250 tonnes en 2020 et 2021, la BSR devrait rester relativement stable de 2020 à 2021, et diminuer légèrement de 2021 à 2022 (Figure 27, Tableau 22). La probabilité d'une augmentation de la BSR entre le 1^{er} avril 2020 et le 1^{er} avril 2021 se situait entre 50 et 54 % à tous les niveaux de captures. La probabilité d'une augmentation de plus de 5 % de la BSR entre le 1^{er} avril 2021 et le 1^{er} avril 2022 se situait entre 32 et 33 % à tous les niveaux de captures. Pour les projections à court terme, tous les niveaux de captures (y compris aucune capture) ont donné une probabilité de moins de 7 % que la BSR dépasse le PRL pour atteindre la zone de précaution en 2022. À court terme, il n'y a aucune chance que la population se trouve dans la zone saine ni qu'elle atteigne le PRS.

Des captures de 250 tonnes se traduiraient par des valeurs de mortalité par pêche (F) des 6 à 8 ans, pondérées en fonction de l'abondance, de 0,021 en 2020 et de 0,024 en 2021, valeurs inférieures à celles des dernières années. Des captures de 500 tonnes se traduiraient par des valeurs F de 0,043 en 2020 et de 0,050 en 2021, valeurs similaires à celles des dernières années. Des captures de 1 225 tonnes (le TAC annuel récent) se traduiraient par une augmentation de F par rapport aux dernières années, avec des valeurs de 0,108 en 2020 et de 0,130 en 2021 (Figure 28, Tableau 22).

4.3.2. Projections à long terme

Les projections sur dix ans en matière de BSR montrent une diminution constante de 2020 à 2029. En 2029, la probabilité de dépasser le PRL était de 0 % à tous les niveaux de captures, avec des valeurs de BSR comprises entre 160 et 1 198 tonnes (Figure 29, Tableau 22).

5. ÉVALUATION DE LA COMPOSANTE DES REPRODUCTEURS D'AUTOMNE

5.1. MODÈLE RELATIF AUX REPRODUCTEURS D'AUTOMNE

Dans le cadre de cette évaluation, la composante des Harengs reproducteurs d'automne est évaluée à l'aide de deux modèles statistiques de captures selon l'âge (Turcotte *et al.* 2020) mis en œuvre avec AD Model Builder (Fournier *et al.* 2012). À la suite de l'examen des modèles potentiels pour le stock de Harengs reproducteurs d'automne, il a été décidé de présenter deux modèles, car aucun modèle ne pouvait être sélectionné comme meilleur modèle selon les critères de rendement. Les modèles ne différaient que dans leur traitement de la mortalité naturelle (*M*). L'un a supposé que *M* était constant à 0,2 et l'autre estimé *M* variable dans le temps pour deux groupes d'âge. Les deux modèles présentent des avantages et des inconvénients en matière de rendement et de facteurs biologiques, qui seront examinés dans la section 6. Les modèles sont nommés comme suit :

- qSCA : estime la capturabilité des CPUE variant dans le temps (q); M est fixé à 0,2.
- qmSCA : estime la variation dans le temps de q des CPUE et de la mortalité naturelle (M).

Les données d'entrée des modèles comprenaient :

- o les captures de la pêche commerciale selon l'âge de 2 à 11 ans et plus par région de 1978 à 2019, en proportions selon l'âge;
- o l'indice des CPUE de la pêche au filet maillant en proportions selon l'âge et l'indice de biomasse totale des CPUE, par région, de 1986 à 2019 (de 4 à 10 ans);
- o les proportions selon l'âge dans les captures des filets expérimentaux, par région, de 2002 à 2019 (de 3 à 9 ans);
- o les proportions selon l'âge dans le relevé acoustique indépendant de la pêche et l'indice de la biomasse totale, de 1994 à 2019 (de 2 à 3 ans);
- l'indice des proportions selon l'âge et l'indice de la biomasse totale dans le relevé plurispécifique au chalut de fond (relevé du navire de recherche) dans l'ensemble du sud du golfe du Saint-Laurent, de 1994 à 2019 (de 4 à 6 ans);
- la proportion de filets maillants avec des mailles de 2 % po et la sélectivité relative de la pêche au filet maillant et aux filets expérimentaux par âge, année et maillage dans chaque région.

Les paramètres estimés du modèle sont les suivants pour chaque région (nord, centrale et sud) : les nombres selon l'âge au cours de l'année initiale (1978); le recrutement annuel (recrutement moyen et écarts de recrutement annuel relativement au nombre de poissons âgés de 2 ans); les paramètres de sélectivité pour chaque source de captures; la mortalité par la pêche initiale avant 1978; la valeur q initiale pour chaque indice et les écarts annuels de q pour l'indice des CPUE; le paramètre q initial et les écarts annuels de q pour deux groupes d'âge (2 à 6 ans et 7 à 11 ans et plus); et l'erreur d'observation pour les indices. Tous les paramètres ont été estimés sur l'échelle logarithmique.

La mortalité naturelle (*M*) variable dans le temps et la capturabilité par rapport aux CPUE dans la pêche au filet maillant (*q*), l'abondance initiale en 1978 et le recrutement en 1979 jusqu'à 2019 ont tous été estimés selon les méthodes décrites dans la section consacrée aux modèles d'évaluation du Hareng reproducteur de printemps, avec des paramètres estimés indépendamment pour chaque région (nord, centrale et sud). La population a été projetée dans le futur selon les méthodes décrites pour l'évaluation du Hareng reproducteur de printemps, sauf que le début de la saison de pêche a été définie au 1^{er} août plutôt qu'au 1^{er} avril. Les modèles statistiques des captures selon l'âge pour le Hareng reproducteur d'automne ont les

mêmes composantes de fonction objective que celles décrites pour le modèle d'évaluation du Hareng reproducteur de printemps.

La taille selon l'âge du Hareng de la division 4T est en baisse depuis au moins le milieu des années 1980 (Figure 6). On s'attend à ce que cette situation modifie la sélectivité selon l'âge du Hareng dans le cadre de la pêche au filet maillant. Par le passé, deux maillages ont été utilisés dans cette pêche, soit 25/8 po et 23/4 po. Les variations de la sélectivité selon l'âge par rapport à ces maillages ont été estimées comme suit. Tout d'abord, la sélectivité relative selon la longueur a été estimée pour ces maillages à l'aide des données provenant des filets expérimentaux (Surette *et al.* 2016). Les mailles mesuraient entre 2 po et 23/4 po. Ensuite, la sélectivité selon la longueur a été convertie en sélectivité relative selon l'âge de chaque année en fonction des clés d'âge-longueur pour chaque année. Les clés annuelles de longueur en fonction de l'âge ont été calculées à partir d'échantillons d'âge recueillis dans le cadre de la pêche commerciale de 1986 à 2019 et des captures des filets expérimentaux de 2002 à 2019, au cours des mois d'août à octobre. Les fonctions annuelles de sélectivité selon l'âge pour les indices des CPUE ($S_{t,a}^{Ca}$) ont été intégrées aux modèles comme suit :

$$S_{p,t,a}^{Ca} = S_{p,a}^{C} * \left(\left(Pr_{p,t}^{258} * rS_{t,a}^{258} \right) + \left(1 - Pr_{p,t}^{258} \right) * rS_{t,a}^{234} \right)$$

où $S_{p,a}^{\ C}$ est une courbe logistique de sélectivité propre à la population, invariable dans le temps, pour la pêche selon l'indice des CPUE; $Pr_{p,t}^{258}$ est la proportion de filets dans l'année t et la population p dont les mailles mesurent $2\,5/8$ po; $rS_{t,a}^{258}$ est la sélectivité relative des mailles mesurant $2\,5/8$ po pour l'âge a dans l'année t, $rS_{t,a}^{234}$ est la sélectivité relative des mailles mesurant $2\,3/4$ po pour l'âge a dans l'année t; et $S_{p,t,a}^{Ca}$ est la sélectivité dans la pêche selon l'indice des CPUE pour l'âge a dans la population p et l'année t. $S_{p,a}^{C}$ a été inclus dans l'équation pour passer de l'échelle relative à l'échelle absolue. Une procédure similaire a été utilisée pour ajuster la sélectivité des filets expérimentaux et de la pêcherie en fonction des changements de taille selon l'âge. Pour les filets expérimentaux, la sélectivité en longueur était la moyenne des valeurs des sept mailles utilisées. Pour la pêche commerciale, $S_{p,a}^{C}$ a été estimé séparément pour trois périodes afin de prendre en compte les changements dans la proportion des prises d'engins mobiles dans la pêcherie.

La procédure de conversion de la sélectivité par longueur en sélectivité annuelle en fonction de l'âge a légèrement changé par rapport aux années précédentes. Auparavant, la sélectivité à l'âge a de l'année t était basée sur la distribution de longueur des prises de CPUE à l'âge a de l'année t. Cependant, ce calcul doit être basé sur la distribution des tailles à l'âge a avant la sélection par la pêcherie. Nous avons adopté cette approche ici, en calculant la distribution des tailles selon l'âge dans la population avant la pêche en divisant la distribution des tailles selon l'âge dans la capture par la sélectivité par longueur.

D'après l'analyse préliminaire de l'ajustement du modèle aux indices et l'analyse rétrospective, des poids différents ont été attribués aux probabilités des indices de biomasse. On a attribué un poids de 4 à la probabilité reliée à l'indice de la biomasse selon les CPUE, un poids de 1 à l'indice de la biomasse d'après le relevé par navire de recherche, et un poids de 1 à la probabilité reliée à l'indice de la biomasse d'après le relevé acoustique. Cela a permis d'améliorer l'ajustement aux indices et de réduire les tendances rétrospectives. Des intervalles de confiance approximatifs à 95 % ont été obtenus pour les quantités estimées par le modèle en fonction de l'échantillonnage fondé sur la méthode MCMC; sur 210 000 échantillons dont les premiers 10 000 ont été retirés, un échantillon tous les 40 a été conservé. Toutes les estimations de population sont des médianes *a posteriori* reposant sur l'échantillonnage MCMC. La qualité de l'ajustement a été évaluée selon la méthode décrite pour les modèles s'appliquant au stock de printemps. Les résultats des analyses rétrospectives ont également été évalués à

l'aide du coefficient rho de Mohn (Mohn 1999), en utilisant le progiciel icesAdvice dans R (Magnusson *et al.* 2018).

5.2. RÉSULTATS RELATIFS AUX REPRODUCTEURS D'AUTOMNE

Certains blocs étaient évidents entre les proportions selon l'âge observées et prédites pour la pêche dans les résidus des deux modèles. Dans la région nord, les résidus étaient surtout positifs pour les 3 ans et les 8 à 11 ans entre 1980 et 2008. Les résidus étaient pour la plupart négatifs pour les 4 et 5 ans. Au cours des dernières années, les deux modèles ont montré des résidus négatifs plus importants pour les jeunes et les Harengs âgés, et des résidus positifs pour les 5 à 8 ans. Les régions centrale et sud ont montré des résidus négatifs pour les 5 et 6 ans entre 1978 et 2006. Dans l'ensemble, les deux modèles ont montré des résidus plus importants pour les 1, 2, 10 et 11 ans. Les résidus étaient généralement plus faibles pour les 3 à 7 ans. La somme des carrés des résidus était plus faible pour le modèle qmSCA dans toutes les régions (Figure 30).

Les tendances résiduelles des indices des CPUE n'étaient pas importantes, ce qui indique un ajustement adéquat à ces indices. Ces dernières années, on a constaté une tendance à surestimer les proportions selon l'âge de 4 et 5 ans, et à sous-estimer les proportions selon l'âge de 6 à 9 ans, dans toutes les régions. Cependant, il n'y a pas eu de blocs importants de résidus. La somme des carrés des résidus pour les proportions de CPUE selon l'âge était plus faible pour le modèle qmSCA que pour le modèle qSCA dans toutes les régions (Figure 31).

Les tendances résiduelles étaient plus importantes dans les proportions selon l'âge relatives au filet expérimental, tout comme pour ces indices dans l'évaluation de 2016 et de 2018. Les tendances observées entre les régions et les modèles étaient comparables. Entre 2002 et 2012, il y a eu un bloc de résidus négatifs pour les 5 à 7 ans et des résidus positifs pour les jeunes et les plus âgés. Ces dernières années, les résidus étaient surtout négatifs pour les 3 à 4 ans. La somme des carrés des résidus des proportions selon l'âge dans les prises de filets expérimentaux était plus faible pour le modèle qmSCA dans toutes les régions (Figure 32). Aucune tendance résiduelle majeure n'est apparente dans les proportions selon l'âge du relevé par navire de recherche et du relevé acoustique, et la somme des carrés était comparable entre les modèles (Figure 33).

L'ajustement du modèle aux indices de biomasse des CPUE était très bon pour les deux modèles et toutes les régions, les valeurs prédites étant conformes aux tendances générales des indices (Figure 34). L'ajustement à l'indice du relevé par navire de recherche était raisonnable pour le modèle qSCA et meilleur pour le modèle qmSCA. Les valeurs prédites du modèle qSCA ont eu tendance à sous-estimer les valeurs observées au cours des premières années de l'indice et au cours des années de biomasse élevée (par exemple, de 2010 à 2014). Les valeurs prédites du modèle qmSCA avaient tendance à sous-estimer les valeurs observées au cours des premières années de l'indice, mais l'ajustement était bon entre 2010 et 2019 (Figure 35). L'indice acoustique des juvéniles a été sous-estimé par les deux modèles pour toutes les années à forte biomasse. La tendance était comparable pour les deux modèles, mais le modèle qmSCA prédisait des valeurs plus élevées que le modèle qSCA en 2006 et 2007 (Figure 35). Dans l'ensemble, le modèle qmSCA a montré un meilleur ajustement.

Comme pour les évaluations précédentes, les biais rétrospectifs dans la BSR étaient apparents dans les deux modèles du stock de Hareng reproducteur d'automne. Le modèle qSCA a montré un biais rétrospectif positif dans le nord (rho de Mohn = 0,24), négatif au centre (rho de Mohn = -0,25) et un faible biais négatif dans le sud (rho de Mohn = -0,09). Le modèle qSCA a montré très peu de biais rétrospectifs dans la BSR totale (rho de Mohn = 0,03). Le modèle qmSCA a montré des biais importants dans toutes les régions. Les biais rétrospectifs montraient une

direction négative constante lorsque les années de données étaient retirées de l'analyse. Dans la région nord, le coefficient rho de Mohn était de -0,27, comme le coefficient rho du modèle qSCA, mais dans une direction opposée. Les biais étaient plus marqués dans la région centrale où les coefficients rho de Mohn étaient de -0,45 et de -0,38 pour la région sud. La BSR totale a montré une tendance négative avec un coefficient rho de Mohn de -0,36 (Figure 36). Bien que des tendances soient encore apparentes dans les régions nord et centrale, l'analyse rétrospective du modèle qSCA était meilleure que celle du modèle qmSCA, et également meilleure que les biais rétrospectifs des évaluations précédentes (Turcotte *et al.* 2020). Des biais rétrospectifs négatifs importants sont également apparus dans les estimations de la mortalité naturelle dans toutes les régions (Figure 37).

Les variations estimées de la capturabilité des poissons pleinement recrutés dans la pêche au filet maillant étaient généralement plus élevées dans le modèle qSCA que dans le modèle gmSCA. La capturabilité a augmenté dans toutes les régions entre 1986 et 2000. Dans la région nord, les modèles qSCA et qmSCA ont montré des tendances analogues avec une augmentation jusqu'en 2000 suivies d'une diminution, mais les estimations du modèle qSCA étaient plus élevées sur la suite de la série chronologique. Dans la région centrale, les estimations du modèle gmSCA ont diminué après le début des années 2000 pour atteindre les valeurs les plus basses vers 2010, et ont augmenté légèrement par la suite. Le modèle qSCA a également diminué après 2000, mais les estimations ont augmenté rapidement à partir de 2010. Dans la région sud, les estimations du modèle qSCA ont généralement augmenté au cours de la série chronologique, tandis que les estimations du modèle qmSCA sont restées stables à des valeurs faibles, avec un maximum autour de 2000 (Figure 38). Dans le modèle qmSCA, la capturabilité a augmenté à mesure que la BSR diminuait, à quelques variations près (Figure 39). Pour le qSCA, la capturabilité a augmenté alors que la BSR diminuait, avec quelques variations au nord et davantage de variations au sud, mais semblait varier indépendamment de la BSR dans la région centrale.

La mortalité naturelle a été fixée à 0,2 pour le modèle qSCA. Dans le modèle qmSCA, les tendances M estimées étaient comparables à l'intérieur des groupes d'âge entre les régions. Ces dernières années, les estimations de la mortalité naturelle pour les 2 à 6 ans dans la région nord ont été faibles et ont légèrement diminué pour atteindre des valeurs basses autour de 0,007. Dans les régions centrale et sud, les estimations sont restées stables autour de 0,4 au cours des premières années, puis ont décliné progressivement à partir de 1990 pour atteindre des valeurs similaires à celles de la région nord en 2019. Pour la tranche de 7 à 11 ans et plus, les estimations de toutes les régions ont augmenté progressivement, passant d'environ 0,2 au début de l'année à une plage comprise entre 0,25 et 0,3 en 2000. À partir de 2004, les estimations ont fortement augmenté pour atteindre un maximum de 0,98 au nord en 2017, 0,75 au centre en 2016 et 0,99 au sud en 2016. Ces dernières années, les valeurs se sont stabilisées à des valeurs M légèrement inférieures dans toutes les régions (Figure 40).

On s'attendait à ce que la Morue se nourrisse principalement du plus petit Hareng, et que le Phoque Gris et le Thon Rouge du plus gros Hareng. Les estimations du paramètre M pour le groupe d'âge 2 à 6 ans sont en corrélation étroite avec la tendance de l'abondance de la Morue du sud du golfe du Saint-Laurent dans les régions nord (corrélation de Pearson r = 0.95), centrale (corrélation de Pearson r = 0.94) et sud (corrélation de Pearson r = 0.90). Pour le groupe d'âge de 7 à 11 ans et plus, les tendances estimées du paramètre M sont en corrélation étroite avec la somme des indices d'abondance du Phoque Gris et du Thon Rouge de l'Atlantique au sud du golfe du Saint-Laurent dans les régions nord (corrélation de Pearson r = 0.98), centrale (corrélation de Pearson r = 0.98) et sud (corrélation de Pearson r = 0.99) [Figure 19].

Cette évaluation a utilisé deux modèles, dont l'un pour estimer la mortalité naturelle variable dans le temps (gmSCA). Les modèles de cette évaluation et ceux de l'évaluation précédente ont présenté des estimations au début de l'année (1er janvier). Les modèles précédents supposaient une mortalité naturelle constante de 0,2, ce qui signifie que la BSR au 1er janvier et au 1er août n'était pas si différente, car on supposait que peu de poissons étaient soustraits à la mortalité naturelle tout au long de l'année. Cette évaluation repose sur un modèle d'estimation de la mortalité naturelle variable dans le temps et elle est très élevée ces dernières années. En raison des estimations très élevées de la mortalité naturelle au cours des dernières années, nous avons jugé adéquat de comparer les niveaux de capture potentiels à la BSR survivant jusqu'au 1er août. Comme prévu, la BSR du 1er août était plus faible (Figure 41). Pour le qSCA, la différence maximale entre la BSR au 1er janvier et au 1er août était de 16 624 tonnes. Pour le gmSCA, la différence moyenne était de 11 979 tonnes, et la différence maximale était de 43 420 tonnes en 2010. Cette proportion de la population de poissons qui a été enlevée par la mortalité naturelle n'est pas disponible pour la pêche. Par conséquent, le 1er août a été utilisé dans les deux modèles pour montrer la BSR, pour calculer les points de référence et pour faire des projections.

Le point de référence limite (PRL) du Hareng de la zone 4T est $B_{r\text{\'etablissement}}$, qui est la plus faible biomasse à partir de laquelle on a observé que le stock se rétablit facilement, calculée comme la moyenne des quatre plus faibles estimations de la BSR au début des années 1980 (c'est-à-dire de 1980 à 1983). Par conséquent, cette valeur dépend du modèle. Si le modèle change, la biomasse du stock peut être rééchelonnée vers le haut ou vers le bas. Le changement de modèle dans cette évaluation a entraîné une variation de la biomasse dans les années 1980 dans les deux modèles, comme prévu. Le PRL révisé pour le modèle qSCA était de 45 589 tonnes, une valeur inférieure à l'ancienne valeur de 58 000 tonnes. Le PRL révisé pour le modèle qmSCA était de 52 825 tonnes.

Le point de référence supérieur (PRS) a été déterminé en 2005 comme point de référence provisoire (Chouinard et al. 2005). Les calculs avaient utilisés une analyse du rendement par recrue supposant que la valeur de *M* était de 0,2, ainsi que des vecteurs de recrutement partiel particuliers à la pêche qui ne s'appliqueraient pas au modèle actuel et ses estimations de la BSR basées sur la variation temporelle de M. Par conséquent, le PRS a été recalculé pour cette évaluation, comme suit. L'estimation de la mortalité naturelle dans les modèles de population d'automne a généré des estimations de la BSR plus élevées dans les années 2010, par rapport à la période antérieure aux années 2000 et aux estimations du modèle qSCA. Selon les évaluations précédentes, la zone saine de l'approche de précaution correspond à une BSR supérieure au PRS de 172 000 tonnes. D'après cette évaluation, on sait maintenant que le PRS a été calculé à partir d'une période caractérisée par une mortalité naturelle plus faible et une BSR maximale plus faible (1978-2001; 244 970 tonnes). La mortalité naturelle était entre trois et six fois plus élevée selon les régions dans les années 2000 qu'ayant les années 2000, et la BSR totale maximale était bien plus élevée, à 594 798 tonnes. Lorsque M augmente, le niveau de BSR requis pour un stock sain doit également augmenter afin de s'adapter aux plus grands prélèvements par une valeur de M élevée. Ainsi, le niveau de la BSR définissant la zone saine avant les années 2000 ne peut pas être utilisé pendant la période de forte mortalité naturelle et doit être revu à la hausse. Le PRS représentait 60 % de la BSR maximale au cours de la période de mortalité la plus faible (de 1978 à 2001). Pour la période de forte mortalité naturelle (de 2002 à 2019), un deuxième PRS a été calculé à 60 % de la BSR maximale de cette période. Le PRS₁₉₇₈₋₂₀₀₁ représentait 141 730 tonnes de la BSR, et le PRS₂₀₀₂₋₂₀₁₉ représentait 335 345 tonnes. Pour permettre la comparaison entre les modèles, le PRS du modèle qSCA a également été recalculé à 60 % de la BSR maximale à 135 196 tonnes. Les PRS ont été définis comme des valeurs provisoires en 2005 et n'ont jamais été révisés. Selon les nouvelles données biologiques disponibles sur les deux stocks, les définitions du PRS devraient être

mises à jour prochainement. Cependant, comme nous le verrons dans les sections suivantes, la BSR diminue depuis 2009 et est maintenant très proche du PRL, sans aucune probabilité d'atteindre le PRS dans les projections à court ou à long terme. Dans ce cas, les nouvelles valeurs provisoires proposées pour le PRS dans cette évaluation sont suffisantes, compte tenu de l'état des stocks et des projections. Le PRL et le PRS ont été calculés au 1^{er} août pour tenir compte de sept mois de mortalité naturelle pour les deux groupes d'âge. Le taux d'exploitation de référence dans la zone saine a été défini comme étant $F_{0,1}$, et cette évaluation a utilisé la même valeur de 0,32 que celle utilisée dans les évaluations précédentes.

Les tendances estimées de la BSR étaient similaires entre les modèles avant les années 2000, mais ont différé par la suite. Dans la région nord, la BSR est passée des valeurs les plus basses en 1980 à des valeurs élevées du milieu des années 1980 au début des années 1990. avant de diminuer à un niveau modéré au milieu des années 1990 pour les deux modèles. Dans le modèle gSCA, les valeurs ont légèrement augmenté entre 2000 et 2016. La BSR a diminué entre 2017 et 2019. Dans le modèle gmSCA, les valeurs ont légèrement augmenté entre 1999 et 2007, puis ont augmenté rapidement entre 2008 et 2013. La BSR a diminué rapidement entre 2014 et 2019 (Figure 42; Tableaux 23 à 26). Dans la région centrale, la BSR estimée a augmenté progressivement de 1980 à la fin des années 2000, mais a diminué de façon constante de 2010 à 2019 pour atteindre des valeurs faibles dans les deux modèles. Les estimations maximales de la BSR vers 2010 étaient plus élevées dans le modèle qmSCA, mais avec une plus grande incertitude (Figure 42; Tableaux 27 à 30). La BSR dans la région du Sud a augmenté rapidement de 1980 au milieu des années 1980. La BSR a ensuite diminué pour atteindre des niveaux modérés à la fin des années 1990, avant d'augmenter à nouveau jusqu'au milieu des années 2000 (qSCA) ou au début des années 2010 (qmSCA). Dans les deux modèles, la BSR est ensuite tombée à un niveau bas en 2019 (Figure 42; Tableaux 31 à 34). Les tendances initiales de la BSR totale étaient similaires pour les deux modèles avec une augmentation des niveaux les plus bas en 1980 au milieu des années 80. Les valeurs sont ensuite restées stables jusqu'au milieu des années 90, puis ont chuté à des niveaux modérés à la fin des années 90. Dans le qSCA, la SSB a augmenté jusqu'au début des années 2000, avant de retomber à des niveaux bas jusqu'en 2019. Dans la qmSCA, la BSR a augmentée jusqu'en 2011 pour atteindre un maximum, avant de diminuer rapidement jusqu'en 2019 (Figure 42, Tableaux 35 à 38).

Pour le modèle qSCA, les estimations de la méthode de MCMC de la BSR au 1er août étaient de 79 962 tonnes (intervalle de confiance à 95 % : 68 248 - 98 523) en 2018 et de 63 406 tonnes (intervalle de confiance à 95 % : 52 374 - 80 692) en 2019. En 2019, l'estimation était de 138 % du PRL. Les probabilités que la BSR du 1er août soit sous le PRL (dans la zone critique de l'approche de précaution) étaient de 0 % en 2018 et de 0 % en 2019. Les probabilités que la BSR du 1er août soit au-dessus du PRS (dans la zone saine de l'approche de précaution) étaient de 0 % en 2018 et de 0 % en 2019. La BSR a diminué entre 2017 et 2019 (Figure 42). Pour le modèle qmSCA, les estimations selon la méthode de MCMC de la BSR au 1er août étaient de 210 945 tonnes (intervalle de confiance à 95 % : 167 960 - 256 845) en 2018 et de 174 049 tonnes (intervalle de confiance à 95 % : 135 029 - 212 670) en 2019. En 2019, l'estimation était de 329 % du PRL. Les probabilités que la BSR du 1er août soit sous le PRL (dans la zone critique de l'approche de précaution) étaient de 0 % en 2018 et de 0 % en 2019. Les probabilités que la BSR du 1er août soit au-dessus du PRS (dans la zone saine de l'approche de précaution) étaient de 0 % en 2019. La BSR a diminué depuis 2011 (Figure 42).

Pour les régions du Nord et du Sud dans le modèle qSCA, le recrutement (nombre de poisson d'âge 2) est généralement passé d'une valeur très faible en 1978 à des valeurs maximales au début des années 2000, sauf pour un faible recrutement sporadique à la fin des années 80 et

au début jusqu'au milieu des années 90 (Figure 43). La région centrale a fait exception, avec un recrutement faible et constant de 1978 à la fin des années 80. Dans toutes les régions et au total, le recrutement est ensuite passé de niveaux élevés du milieu à la fin des années 2000 au niveau le plus bas jamais enregistré en 2016 ou 2017. Le recrutement est resté très faible depuis lors, bien que l'incertitude dans l'estimation de 2019 soit très élevée.

Dans le modèle qSCA, la variation de l'abondance estimée du Hareng âgé de 4 ans et plus reflétait en grande partie la variation du recrutement jusqu'à l'âge de 4 ans (Figure 44). Dans toutes les régions et au total, le recrutement à l'âge de 4 ans est passé de très faibles niveaux à la fin des années 1970 aux niveaux les plus élevés observés dans les années 2000. Le recrutement à l'âge 4 a ensuite diminué, atteignant des niveaux très bas en 2018 et 2019, comparables aux niveaux de la fin des années 1970. Les schémas de recrutement jusqu'à 4 ans différaient quelque peu dans le modèle qmSCA. Le recrutement est resté à de faibles niveaux la plupart des années jusqu'à la fin des années 90, puis s'est quelque peu amélioré. Le recrutement jusqu'à l'âge de 4 ans était le plus élevé à la fin des années 2000, mais a ensuite diminué, atteignant des niveaux très bas comparables à ceux du début des années 1970a en 2018 et 2019. L'abondance à 4 ans et plus a culminé vers 2010, mais a ensuite baissé à de faibles niveaux.

Les taux de recrutement estimés (abondance des recrues d'âge 2 divisée par la BSR qui les produit) étaient élevés vers 1980 et entre le milieu des années 90 et le début des années 2000 selon les régions et les modèles. Les taux ont commencé à baisser en 2004 pour atteindre des valeurs comparables ou inférieures aux valeurs les plus basses de la série chronologique. L'incertitude était élevée dans les estimations du taux de recrutement pour 2019 dans les deux modèles. Les estimations de qmSCA étaient généralement supérieures aux estimations de qSCA (Figure 45).

Pour les deux modèles et toutes les régions, la sélectivité de l'indice de CPUE était plate ou très légèrement en forme de dôme au début de la série chronologique (Figure 46 et Figure 47). Au fur et à mesure que la taille selon l'âge diminuait dans les années 1990, la sélectivité augmentait pour les âges les plus âgés et le dôme, puis le sommet plat se perdaient, la sélectivité augmentant régulièrement avec l'âge. À mesure que la taille selon l'âge diminuait davantage, la sélectivité selon l'âge diminuait et la courbe de sélectivité ne plafonnait pas aux âges plus avancés. Pour les filets expérimentaux, la sélectivité à l'âge était plate et variait peu dans le temps malgré la diminution de la taille à l'âge. Cela reflétait la gamme des tailles de maillage présentes dans ces filets. Étant donné que les captures de la pêche commerciale incluaient les captures par senne coulissante en plus des filets maillants, la sélectivité de la pêche par âge n'a pas pu être basée sur les estimations de la sélectivité des filets maillants obtenues à partir des filets expérimentaux. Au lieu de cela, des fonctions de sélectivité logistique ont été utilisées, avec des estimations séparées obtenues pour trois tranches de temps. Dans la plupart des cas, la sélectivité a plafonné entre 4 et 8 ans, le plateau se produisant généralement à un âge plus avancé ces dernières années, lorsque la taille selon l'âge était relativement faible.

Dans le modèle qSCA, les estimations de la mortalité par pêche ont généralement augmenté par rapport aux évaluations précédentes, car les estimations de la BSR sont plus faibles que pour le modèle d'analyse de population virtuelle utilisé dans l'évaluation précédente (McDermid et al. 2018). La mortalité par pêche pondérée par l'abondance estimée pour les 5 à 10 ans (F_{5-10}) a diminué dans la région nord depuis 2008, mais dans les régions centrale et sud, la mortalité par pêche F_{5-10} est restée relativement élevée et constante jusqu'en 2019 (Figure 48). La valeur F_{5-10} de la région nord a été en moyenne de 0,80 de 1995 à 2008, pour diminuer à une moyenne de 0,27 de 2013 à 2019 (Tableau 39). Dans la région centrale, la valeur moyenne de F_{5-10} a été estimée à 0,42 de 1995 à 2019 (Tableau 41). Dans la région sud, la valeur

moyenne de F_{5-10} a été estimée à 0,37 de 1995 à 2019 (Tableau 43). La moyenne pondérée de F_{5-10} sur les trois régions (pondérée par l'abondance régionale des 5 à 10 ans) a atteint son maximum en 1980, a diminué au début des années 1980 jusqu'au début des années 1990, pour augmenter à nouveau et atteindre 0,78 en 1995. La moyenne totale de F_{5-10} a ensuite diminué pour atteindre 0,29 en 2019 (Figure 48, Tableau 45). Les estimations de F_{5-10} pour le modèle qmSCA étaient semblables à aux estimations du modèle qSCA jusqu'au milieu des années 2000, lorsque la BSR a divergé entre les deux modèles. Comme les estimations de la BSR sont plus élevées pour le modèle qmSCA, les estimations F_{5-10} associées sont plus faibles. Au cours des dix dernières années, la moyenne F_{5-10} a diminué pour atteindre une valeur moyenne de 0,14 dans la région nord (Tableau 40), 0,11 dans la région centrale (Tableau 42) et 0,06 dans la région sud (Tableau 44). La moyenne totale F_{5-10} pour le modèle qmSCA a diminué depuis la fin des années 2000 pour atteindre une valeur moyenne de 0,11 au cours des dix dernières années (Tableau 46). La moyenne totale F_{5-10} pour le modèle qmSCA était de 0,10 en 2018 et de 0,13 en 2019 (Figure 48, Tableau 46).

La trajectoire de la population de Hareng reproducteur d'automne par rapport à la BSR et aux niveaux de mortalité par pêche est illustrée à la figure 49 pour le modèle qSCA et à la figure 50 pour le modèle gmSCA. Les figures montrent la zone saine, la zone de prudence et la zone critique de l'approche de précaution. Le taux d'exploitation de référence dans la zone saine pour le stock d'automne est $F_{0,1}$ = 0,32. Pour le modèle qSCA, le stock était dans la zone saine (BSR >PRS) la plupart des années de 1984 à 2012, sauf de 1996 à 1998, mais a diminué dans la zone de prudence (PRL<BSR<PRS) depuis 2012. La mortalité par pêche a dépassé la valeur cible définie par l'approche de précaution pendant 32 des 42 années de la série chronologique. La mortalité par pêche de 2018 et 2019 était supérieure au taux d'exploitation de référence de l'approche de précaution (Figure 49). Pour le modèle qmSCA, les chiffres montrent la trajectoire du stock dans la période de faible mortalité naturelle (de 1978 à 2001) et dans la période de forte mortalité naturelle (de 2002 à 2019), avec leurs valeurs de PRS correspondantes. Au cours de la période de faible mortalité naturelle, la mortalité par pêche a dépassé le taux d'exploitation de référence de l'approche de précaution de 1978 à 1983, en 1990 et de 1994 à 2001. Au cours de la période de forte mortalité naturelle, la mortalité par pêche a dépassé le taux d'exploitation de référence de l'approche de précaution de 2002 à 2003 et de 2005 à 2007. La mortalité par pêche était inférieure au taux d'exploitation de référence de l'approche de précaution de 2008 à 2019 (Figure 50).

5.3. PROJECTIONS RELATIVES AUX REPRODUCTEURS D'AUTOMNE

Les modèles de population ont été projetés dans le futur jusqu'au 1er août 2021 et au 1er août 2022 lors de l'échantillonnage par la méthode de MCMC de la distribution conjointe des paramètres a posteriori. Cela prend en compte les incertitudes dans les estimations des paramètres. Le recrutement a été stable à des valeurs faibles entre 2016 et 2018, et peut-être plus élevé (avec une forte incertitude) en 2019, à une valeur semblable à celle de 2015. Des projections ont donc été effectuées à partir des valeurs moyennes de recrutement des cinq dernières années (2015-2019). La mortalité naturelle des 2 à 6 ans est stable depuis 5 ans. Pour le groupe des 7 à 11 ans et plus, la mortalité naturelle a augmenté au cours de la dernière décennie, pour atteindre les valeurs maximales en 2015 et 2016, avant de diminuer légèrement en 2018 et 2019. Les projections ont été effectuées en utilisant la moyenne des valeurs M de 2018 et 2019 pour chaque groupe d'âge. Les projections ont été réalisées au moyen d'options de captures annuelles de 2 000 à 24 000 tonnes par tranche de 2 000 tonnes. Les projections sur deux ans de la BSR et de F_{5-10} au 1^{er} août sont présentées dans les figures 51 et 52. Les probabilités d'atteindre les différents objectifs sont données dans les tableaux 48 et 49 pour chaque niveau de captures, pour chaque modèle, pendant dix ans. Les projections de la BSR sur dix ans sont illustrées à la figure 53.

La BSR prédite au 1^{er} août 2020 était de 63 925 tonnes (intervalle de confiance à 95 % : 43 731 - 94 692) pour le modèle qSCA et de 149 301 tonnes (IC 95 % : 97 179 - 217 401) pour le modèle qmSCA, ce qui place le stock dans la zone de prudence de l'approche de précaution dans les deux modèles.

5.3.1. Projections à court terme

Dans les projections des deux modèles, les probabilités d'augmentation de la BSR d'ici 2022 diminuent à mesure que les captures augmentent. Dans les projections du modèle qSCA, la BSR devait augmenter légèrement de 2020 à 2021 à tous les niveaux de captures (probabilités d'augmentation de ≥ 5 % de la BSR entre 52 et 94 %), et devait diminuer de 2021 à 2022 à tous les niveaux de captures (probabilités d'augmentation de ≥ 5 % de la BSR entre 24 et 47 % (Figure 51; Tableau 47). Dans les projections du modèle qmSCA, la BSR devait augmenter légèrement de 2020 à 2021 à tous les niveaux de captures (probabilités d'augmentation de ≥ 5 % de la BSR entre 17 et 29 %), et devait diminuer de 2021 à 2022 à tous les niveaux de captures (probabilités d'augmentation de ≥ 5 % de la BSR entre 23 et 29 % (Figure 51; Tableau 48).

Pour le niveau de captures visé en 2019 (16 000 tonnes), les probabilités dans le modèle qSCA d'une augmentation de ≥ 5 % de la BSR entre 2020 et 2021 sont de 69 %, et de 30 % entre 2021 et 2022. Les probabilités dans le modèle qmSCA d'une augmentation de ≥ 5 % de la BSR au cours des mêmes années sont de 22 % et 25 %. Avec 2 000 tonnes de captures, les probabilités dans le modèle qSCA d'une augmentation de ≥ 5 % de la BSR entre 2020 et 2021 sont de 98 %, et de 96 % entre 2021 et 2022. Les probabilités dans le modèle qmSCA d'une augmentation de ≥ 5 % de la BSR au cours des mêmes années sont de 29 % (Figure 51; Tableaux 47 and 48)

Pour le modèle qSCA, les probabilités que la BSR se trouve dans la zone critique (sous le PRL) d'ici 2021 se situaient entre 0 et 2 %. Les probabilités que la BSR soit inférieure au PRL d'ici 2022 ont augmenté avec l'augmentation des options de captures, soit 0 % pour 10 000 tonnes de captures et moins, et plus de 10 % pour 18 000 tonnes (Tableau 47). Pour le modèle qmSCA, les probabilités que la BSR soit inférieure au PRL d'ici 2021 et 2022 étaient de 0 % (Tableau 48). À court terme, les probabilités que la BSR se trouve dans la zone saine (BSR > PRS) d'ici 2022 étaient de 0 % pour toutes les options de captures dans les deux modèles.

Pour le modèle qSCA, au niveau de captures de 2 000 à 24 000 tonnes en 2020, la valeur médiane de F_{5-10} sur l'ensemble des régions est passée de 0,03 à 0,57. En 2021, les mêmes niveaux de captures présentaient F_{5-10} entre 0,03 et 0,88. Pour les débarquements de 2019 (16 000 tonnes), les projections de F_{5-10} sont de 0,33 en 2020 et de 0,43 en 2021 (Figure 52, Tableau 47). Pour le modèle qmSCA, au niveau de captures de 2 000 à 24 000 tonnes en 2020, la valeur médiane de la moyenne pondérée F_{5-10} sur l'ensemble des régions est passée de 0,01 à 0,18. En 2021, les mêmes niveaux de captures présentaient F_{5-10} entre 0,02 et 0,30. Pour les débarquements de 2019 (16 000 tonnes), les projections de F_{5-10} sont de 0,11 en 2020 et de 0,18 en 2021 (Figure 52, Tableau 48).

5.3.2. Projections à long terme

Les projections de la BSR sur dix ans dans les deux modèles montrent un déclin constant de 2020 à 2029. Seul le modèle qSCA montre une légère augmentation de la BSR entre 2020 et 2021 pour les options de captures les plus basses, suivie d'une diminution jusqu'en 2029. Aucune option de captures ne permettrait au stock de croître jusqu'à la zone saine d'ici six ans (2020 à 2025). Les deux modèles prédisent que la BSR sera dans la zone critique (BSR < PRL) d'ici 2025 (Figure 53).

En 2029, pour des niveaux annuels de captures compris entre 2 000 et 24 000 tonnes, la probabilité que la BSR se trouve dans la zone critique se situait entre 87 et 100 % pour le modèle qSCA et à 100 % pour le modèle qmSCA (Figure 53, Tableaux 47-48). Pour le modèle qSCA, la BSR prévue en 2029 se situe entre 0 et 27 000 tonnes, selon l'option du niveau annuel de captures. Pour le modèle qmSCA, la BSR prévue en 2029 se situe entre 91 et 2 594 tonnes, selon l'option de captures annuelles.

6. DISCUSSIONS ET CONCLUSIONS

6.1. HARENGS REPRODUCTEURS DE PRINTEMPS

Comme pour les évaluations précédentes, cette évaluation a utilisé un modèle pour le Hareng reproducteur de printemps de la zone 4T qui permettait de faire varier la capturabilité de la pêche dans le temps (Swain 2016, McDermid et al. 2018). La capturabilité estimée a augmenté entre 1990 et 2006 avant de se stabiliser à une valeur légèrement inférieure. La variation de la capturabilité de la pêche (q) semble dépendre de la densité. Ce phénomène a été observé dans d'autres stocks de Hareng (Winters et Wheeler 1985). En général, on s'attend à ce que la capturabilité de la pêche augmente à mesure que la taille de la population diminue (Paloheimo et Dickie 1964; Winters et Wheeler 1985; Swain et Sinclair 1994; Rose et Kulka 1999). En effet, la zone occupée par un stock devrait diminuer à mesure que la taille du stock diminue (MacCall 1990) et que les pêcheurs ciblent les regroupements de poissons (par exemple, les regroupements de frai). La proportion du stock capturé par une unité d'effort de pêche devrait donc augmenter à mesure que le stock décroissant se concentre dans une zone de plus en plus restreinte. Une augmentation de la capturabilité dans la pêche au filet maillant pour une petite population peut entraîner une hyperstabilité dans la relation entre les CPUE et la biomasse. Enfin, la capturabilité par la pêche devrait augmenter au fil du temps en raison des progrès technologiques et de l'amélioration des stratégies de pêche.

Pour la première fois dans cette évaluation, un modèle de population qui permet également à la mortalité naturelle de varier dans le temps a été utilisé. Parmi les sources potentielles de mortalité naturelle pour les deux stocks, mentionnons les captures non déclarées, la maladie et la prédation. Les captures de Harengs non déclarées proviennent probablement, pour la plupart, de la pêche aux poissons-appâts et des rejets en mer. Autrefois, on ne tenait pas compte des captures de Harengs dans la pêche aux poissons-appâts dans les évaluations des stocks de Harengs, composantes des reproducteurs de printemps ou d'automne. Les captures réalisées dans ces pêches doivent être consignées dans les journaux de bord des pêcheurs, mais rares sont ceux qui respectent l'exigence de remplir ces journaux et de les renvoyer à Pêches et Océans Canada. Les captures de Harengs dans la pêche de poissons-appâts devraient être beaucoup plus faibles que les débarquements de la pêche commerciale. Toutefois, cette mortalité par pêche non comptabilisée est désormais prise en compte dans les estimations de la mortalité naturelle. La mortalité par maladie devrait être relativement faible chez le Hareng de la zone 4T, car aucun cas de mortalité par maladie n'a été enregistré au cours de la période visée par l'évaluation.

Les estimations de la mortalité naturelle devraient être principalement fondées sur la prédation. Le Hareng est une espèce-proie pélagique importante pour de nombreux prédateurs dans le sud du golfe du Saint-Laurent, dont le Phoque Gris (*Halichoerus grypus;* Hammill et Stenson 2000; Hammill et al. 2007, 2014), les oiseaux de mer (Cairns et al. 1991), les cétacés (Fontaine et al. 1994; Benoît et Rail 2016), la Morue de l'Atlantique (*Gadus morua*; Hanson et Chouinard 2002), la Merluche Blanche (*Urophycis tenuis*; Benoît et Rail 2016) et le Thon Rouge de l'Atlantique (*Thunnus thynnus,* Pleizier et al. 2012). Parmi ces principaux prédateurs, la Morue, le Phoque Gris et le Thon ont subi de grands changements d'abondance dans le sud du

golfe du Saint-Laurent au cours des dernières décennies. On s'attendait donc à ce que la mortalité naturelle du Hareng ait varié au fil du temps. Le Phoque Gris est le principal prédateur pinnipède des poissons marins dans le sud du golfe du Saint-Laurent (Hammill et Stenson 2000). L'augmentation de l'abondance du Phoque Gris dans le sud du golfe du Saint-Laurent a été associée à des hausses importantes de la mortalité de plusieurs stocks de poissons démersaux dont l'abondance diminue ou qui ne parviennent pas à se rétablir depuis l'effondrement provoqué par la pêche (Benoît et al. 2011; Swain et Benoît 2015, Neuenhoff et al. 2019). La biomasse des stocks de Thon Rouge de l'Atlantique Ouest a chuté à son niveau le plus bas dans les années 1970, niveau auguel elle s'est maintenue pendant plus de deux décennies. Elle a ensuite augmenté graduellement à partir de 2004 pour atteindre, en 2013, 60 % de la biomasse observée en 1974 (ICCAT 2017). L'abondance de la Morue âgée de 5 ans et plus était élevée à la fin des années 1970, avant que le stock ne s'effondre à la fin des années 1980 et au début des années 1990; elle continue de diminuer depuis (Neuenhoff et al. 2019). L'abondance des oiseaux de mer, dont le Fou de Bassan (Morus bassanus), le Cormoran à Aigrettes (Phalacrocorax auritus) et le Grand Cormoran (Phalacrocorax carbo), a également augmenté dans le sud du golfe du Saint-Laurent entre les années 1970 et les années 2000; ce sont tous des consommateurs de Hareng (Benoit et Rail 2016). Il est toutefois nécessaire de mener d'autres analyses sur leur répartition, leur régime alimentaire et l'ampleur de l'augmentation de l'abondance (Cormorans) avant d'établir des liens avec la mortalité naturelle estimée des Harengs. L'information sur la consommation par les cétacés est également très limitée. Pour le stock de Harengs reproducteurs de printemps, l'augmentation de la mortalité naturelle pour le groupe des 7 à 11 ans et plus est en corrélation avec les augmentations des indices d'abondance du Phoque Gris et du Thon Rouge dans le sud du golfe du Saint-Laurent, les deux plus importants consommateurs de Hareng dans le sud du golfe du Saint-Laurent (Benoit et Rail 2016; Thon : résultats non publiés). Une analyse plus approfondie de l'abondance, de la répartition spatiale, de la répartition par taille, du régime alimentaire et de la réponse fonctionnelle des prédateurs envers leurs proies sera nécessaire pour quantifier les effets des différents prédateurs sur la mortalité naturelle du Hareng reproducteur de printemps et d'automne.

La diminution de la BSR des Harengs reproducteurs de printemps dans les années 1990 et l'absence de rétablissement qui s'en est suivi s'expliquent par les points suivants. Après avoir atteint un maximum en 1990 et 1993, le nombre de recrues a atteint des valeurs basses et stables à partir de 1994. La diminution de la BSR a commencé en 1994 et a atteint une valeur minimale en 2004, sous le PRL. Au même moment, la mortalité par pêche est passée de 0,18 en 1997 à 0,53 en 2004. L'effort de pêche a été réduit après 2004 et la mortalité par pêche a diminué jusqu'en 2012 et est restée stable depuis. Le recrutement a légèrement augmenté entre 2002 et 2008, ce qui s'est traduit par une lente augmentation de la BSR. Cependant, la mortalité naturelle a augmenté rapidement depuis 2010, et le recrutement a de nouveau diminué après 2008, entraînant une nouvelle baisse de la BSR. Le recrutement a varié légèrement au cours des cinq dernières années et la mortalité naturelle a été la plus élevée, ce qui a maintenu une faible BSR. En outre, la diminution du poids selon l'âge au cours de la série chronologique a également contribué à la baisse de la BSR.

La diminution du recrutement de Harengs reproducteurs de printemps est en corrélation avec les changements à long terme de la température et de la composition de la communauté de zooplanctons du sud du golfe du Saint-Laurent, caractérisés par une diminution de l'abondance des copépodes d'eau froide *Metridia longa* et *Calanus glacialis* et une augmentation de l'abondance des petits copépodes d'eau chaude (Brosset *et al.* 2018). L'abondance actuelle de grands copépodes d'eau froide riches en énergie dans le golfe du Saint-Laurent au printemps (Plourde *et al.* 2014) pourrait ne pas être suffisante pour soutenir les fortes activités de recrutement des reproducteurs de printemps. Les poissons pélagiques tels que le Hareng

présentent souvent un recrutement sporadique et une grande partie de la dynamique de recrutement des poissons-fourrage n'est pas fortement influencée par la BSR (Szuwalski *et al.* 2019), ce qui rend les projections à long terme très incertaines. Cependant, le recrutement de Harengs reproducteurs de printemps dans la zone 4T est stable à de faibles valeurs depuis 1994. Étant donné la tendance constante vers des conditions plus chaudes et les changements associés dans l'abondance et la composition du zooplancton dans le sud du golfe du Saint-Laurent (Blais *et al.* 2019; Galbraith *et al.* 2019), le recrutement de Harengs reproducteurs de printemps ne devrait pas augmenter dans les années à venir. Le faible succès de reproduction de ce stock dans un environnement en réchauffement est conforme à un modèle indiquant que les conditions environnementales froides favorisent les reproducteurs de printemps tandis que les conditions chaudes favorisent les reproducteurs d'automne dans les stocks de Hareng de l'Atlantique de l'ouest (Melvin *et al.* 2009).

Dans les conditions de recrutement actuelles combinant un poids réduit selon l'âge et une mortalité naturelle élevée, ce stock ne devrait pas se rétablir à court ou à long terme. Dans les projections, la réduction de la mortalité par la pêche réduit légèrement les probabilités de diminution de la BSR. Comme ce stock se trouve dans la zone critique depuis 2004, le cadre de l'approche de précaution stipule que les mesures de gestion doivent favoriser la croissance du stock et que les captures par toutes les sources humaines doivent être maintenues au niveau le plus bas possible (MPO 2006).

6.2. HARENGS REPRODUCTEURS D'AUTOMNE

Comme pour l'évaluation précédente, cette évaluation a utilisé un modèle qui traitait les Harengs reproducteurs d'automne comme des populations indépendantes dans trois régions de frai. Les évaluations précédentes utilisaient une analyse de population virtuelle permettant de faire varier dans le temps la capturabilité de la pêche à engins fixes selon les CPUE (q). Pour cette évaluation, des modèles statistiques des captures selon l'âge permettant une variation de q dans le temps, ainsi qu'une variation de q et de la mortalité naturelle (M) dans le temps, ont été conçus et examinés par des pairs (Turcotte et al. 2020). La structure du modèle et l'examen du rendement n'ont pas permis de dégager un seul modèle optimal basé sur le seul rendement du modèle, car le modèle gmSCA a montré une meilleure adéquation aux indices, alors que le modèle gSCA a montré une tendance rétrospective moindre. Les deux modèles sont donc présentés dans l'évaluation, mais leurs faiblesses respectives doivent être prises en compte. Au cours des 30 dernières années, de grands changements dans l'abondance des prédateurs du Hareng ont été observés dans le sud du golfe du Saint-Laurent. En raison de ces changements, la mortalité naturelle du Hareng devrait avoir varié dans le temps. Les modèles qui incluent des valeurs M variables dans le temps estiment les changements de M cohérents entre les populations et avec les changements observés dans l'abondance des prédateurs. Si ces estimations sont correctes, les paramètres estimés du modèle qSCA devraient être biaisés. Ce modèle fournirait alors des projections de la BSR trop optimistes à court terme, car les prélèvements relatifs à la mortalité naturelle ne sont pas pris en compte. En outre, ce modèle a révélé des biais rétrospectifs importants dans les régions nord et centrale. Le modèle qmSCA est également biaisé, car la BSR est sous-estimée chaque année, comme le montre l'analyse du biais rétrospectif. Comme la valeur négative du coefficient rho de Mohn est constante entre les trois régions et la BSR totale, on peut s'attendre à ce que l'ampleur du biais concernant la sous-estimation de la BSR soit semblable dans les régions et dans l'ensemble. Comme le montre l'analyse rétrospective des estimations de la mortalité naturelle, le biais rétrospectif de la BSR peut être une conséquence du retard dans l'estimation des variations du paramètre M en raison de la pénalité sur les écarts de M non nuls. Quand de nouvelles années de données étayant un changement de M sont ajoutées au modèle, la pénalité est surpondérée par les données, et M est autorisé à changer, ce qui génère un changement de la BSR. Ce phénomène

est peut-être inévitable, à moins que des données très informatives ne soient ajoutées au modèle pour permettre une détection plus rapide des changements de *M* et de la BSR. L'indice de la biomasse des relevés acoustiques des frayères pourrait fournir cette information dans les évaluations futures, car un nombre suffisant d'années de données de cet indice sera disponible pour la prochaine évaluation.

Compte tenu des données biologiques relatives à la santé du stock, le modèle qmSCA doit être utilisé pour fournir l'avis scientifique car il s'agit du modèle le plus approprié en matière de précaution. Du point de vue de la durabilité et des décisions de gestion de prudence, il est moins problématique de sous-estimer la BSR que de la surestimer (comme le fait le modèle qSCA en ne comptabilisant pas la mortalité naturelle M). Les résultats des deux modèles ont été fournis dans l'évaluation pour en comparer le rendement et les résultats, mais compte tenu de l'état actuel des stocks et du fait qu'il est prévu d'atteindre le PRL d'ici 2025 dans les conditions actuelles, l'analyse des risques liés aux options de captures devrait utiliser le modèle le plus prudent. Le choix des projections du modèle qmSCA pour la prise de décisions repose sur les points suivants :

- 1. Le paramètre *M* variable dans le temps a été estimé de manière indépendante pour quatre modèles de population différents (reproducteurs de printemps, reproducteurs d'automne des régions nord, centrale et sud), qui affichent tous des tendances très similaires, comme prévu.
- 2. Le paramètre M pour le groupe des poissons âgés de 7 à 11 ans et plus montre des variations importantes au cours de la série chronologique. On pouvait s'y attendre compte tenu de l'information sur l'abondance des prédateurs (voir la section 6.1). La période, la direction et le taux de variation des tendances de M pour les poissons de 7 à 11 ans et plus pour tous les modèles sont très semblables à ceux de la tendance observée dans les variations combinées de l'abondance des principaux prédateurs pour la même période. Les tendances des jeunes Harengs (de 2 à 6 ans) étaient également semblables à celles de l'abondance de la Morue de l'Atlantique. Il est possible d'utiliser de l'information auxiliaire ou des covariables pour faciliter l'estimation de M d'après le modèle (p. ex. Marty et al. 2003; Deriso et al. 2007). Ici, aucune covariable n'a été intégrée au modèle. Toutefois, les estimations pour tous les modèles de stocks ont été estimées de manière indépendante et corrélées avec l'abondance des principaux prédateurs du Hareng dans le sud du golfe du Saint-Laurent.
- 3. Pour ce qui est du stock de Hareng reproducteur de printemps, aucun biais rétrospectif n'a été observé dans le modèle qmSCA, et les tendances de *M* constatées dans les modèles du stock d'automne sont presque identiques. On s'attendait à ce que les effets des prédateurs sur les stocks de Harengs de printemps et d'automne soient assez semblables.
- 4. La gestion des pêches repose souvent sur l'hypothèse que la mortalité naturelle est constante au fil du temps. De nombreux exemples montrent toutefois que les interactions entre les prédateurs et les proies sont dynamiques (Lee et al. 2011; Thorson et al. 2015; Skern-Mauritzen et al. 2016; Jacobsen et Essington 2018; Siple et al. 2018). Le fait de ne pas tenir compte des augmentations de la mortalité naturelle, causées par l'évolution des interactions prédateurs-proies, dans une évaluation des stocks peut donner lieu à des estimations biaisées en ce qui concerne les paramètres de population et les indices vitaux (Overholtz et al. 2008; Legault et Palmer 2015; Jacobsen et Essington 2018; Jacobsen et al. 2019).

Comme le montre l'évaluation du Hareng reproducteur d'automne, le fait de ne pas tenir compte des prélèvements relatifs à la mortalité naturelle génère des projections de la BSR trop optimistes à court terme. Au niveau de captures actuel (16 000 tonnes), les projections sur deux

ans de la BSR montrent avec le modèle qSCA une probabilité de plus de 77 % d'augmenter la BSR d'ici 2021, alors que la probabilité avec le modèle qmSCA n'est que de 30 %. Cela découle de deux processus : 1) l'incertitude élevée quant à la valeur du recrutement en 2019 génère la possibilité d'une augmentation à court terme de la BSR et 2) moins de poissons sont soustraits à la mortalité naturelle dans le modèle qSCA, ce qui maintient la BSR à un niveau plus élevé. Les projections sont plus semblables d'un modèle à l'autre à long terme. Les deux modèles ont montré une baisse continue de la BSR jusqu'en 2029, même dans les options de captures les plus basses du modèle qSCA. Les deux modèles prévoient les mêmes probabilités que la BSR soit sous le PRL d'ici 2029.

Comme prévu, permettre à la mortalité naturelle de varier au fil du temps a généré des augmentations des estimations de la SSB par le modèle qmSCA, en particulier dans les années 2000. Étant donné que des valeurs élevées de *M* sont estimées au cours de cette période, une abondance de Hareng beaucoup plus élevée est nécessaire pour tenir compte de la forte perte de Hareng par la mortalité naturelle. Cette différence dans l'estimation de la BSR entre les modèles se reflète dans le pic de recrutement en 2006-2008 (observé dans les prises du relevé acoustique à l'âge 2), qui est plus élevé dans le qmSCA.

La variation de *q* semble dépendre davantage de la densité dans le modèle qmSCA que dans le modèle qSCA. La relation dans le modèle qmSCA entre *q* et la BSR est conforme aux résultats des stocks de reproducteurs de printemps et d'autres stocks de Hareng (Winters et Wheeler 1985), où l'on s'attend souvent à ce que la capturabilité de la pêche augmente à mesure que la taille de la population diminue (Paloheimo et Dickie 1964; Winters et Wheeler 1985; Swain et Sinclair 1994; Rose et Kulka 1999). Comme vu à la section 6.1, la capturabilité pour la pêche devrait évoluer au fil du temps pour un certain nombre de raisons.

La diminution de la BSR totale des Harengs reproducteurs d'automne au cours de la dernière décennie peut s'expliquer par les points suivants. Le nombre de recrues de 2 ans produites à la suite de la valeur élevée de 2006 a rapidement diminué pour atteindre les valeurs les plus basses de la série chronologique en 2016, 2017 et 2018. La diminution de la BSR a débuté en 2011 et a été constante jusqu'en 2019. Parallèlement, la mortalité par la pêche est restée stable à mesure que la BSR diminuait, et la mortalité naturelle a augmenté rapidement depuis le milieu des années 2000 pour atteindre des valeurs maximales au milieu des années 2010. Comme peu de poissons entrent dans la BSR et comme plus de poissons que jamais subissent une mortalité naturelle dans les séries chronologiques, avec une mortalité par pêche constante, la BSR ne peut que diminuer.

La variabilité du recrutement des Harengs d'automne a été corrélée avec la température de la surface de la mer et la composition des communautés de zooplanctons. Un recrutement élevé se produit lorsque l'eau est chaude et que les copépodes typiques de ces conditions sont plus abondants (petits copépodes comme *Acartia sp.*). Le recrutement des Harengs reproducteurs d'automne est particulièrement sensible à la synchronisation d'un ensemble de conditions variables, qui n'étaient pas réunies au cours des dernières années pour produire de forts événements de recrutement (Brosset *et al.* 2018), ce qui explique la diminution du recrutement des poissons de 2 ans. Le recrutement de Harengs reproducteurs d'automne dans la zone 4T est stable à de faibles valeurs depuis les quatre dernières années (de 2016 à 2019). Il est impossible de prédire l'apparition des conditions environnementales favorables aux Harengs reproducteurs d'automne. Les perspectives de rétablissement de ce stock sont donc incertaines. Comme l'écosystème du sud du golfe du Saint-Laurent change, la synchronisation de l'abondance et de la qualité requises du zooplancton avec le moment de la libération des larves de Hareng est imprévisible.

En raison de la faible productivité, du poids selon l'âge réduit et de la mortalité naturelle élevée. l'exploitation de ce stock doit être faite avec prudence jusqu'à ce qu'un recrutement élevé soit observé pendant plusieurs années consécutives. En l'absence d'un recrutement important, la diminution de la BSR risque de se poursuivre. Puisque le stock se trouve largement dans la zone de prudence, le cadre de l'approche de précaution stipule que les actions doivent promouvoir le rétablissement du stock vers la zone saine (MPO 2006). La réduction de la mortalité par la pêche réduit légèrement les probabilités de diminution dans les projections à court et à long terme. Le niveau de captures annuel de 2 000 tonnes offre les meilleures probabilités d'augmenter la BSR à court et à long terme. Toutefois, les projections à long terme sont fournies avec des taux de captures annuels fixes. Puisque le stock est évalué sur un cycle de deux ans, les options de captures peuvent être ajustées si la diminution de la BSR se poursuit, ce qui modifie les résultats des projections. En outre, le modèle qmSCA utilisé pour les projections pourrait sous-estimer la BSR, qui fournit des projections pessimistes à long terme. D'autre part, comme la BSR diminue à prédation constante, la mortalité naturelle devrait augmenter. Les projections à long terme pour ce stock sont alors incertaines et doivent être interprétées avec prudence.

La diminution générale des deux stocks de Harengs du sud du golfe du Saint-Laurent n'a pas seulement des impacts négatifs sur la pêche, mais risque également d'avoir des impacts négatifs sur l'écosystème. Les poissons-fourrages se nourrissent de zooplancton et de phytoplancton et sont des sources importantes de transfert d'énergie dans les chaînes alimentaires, ce qui en fait des acteurs clés des écosystèmes. Pour de nombreux prédateurs. les poissons-fourrages constituent un pourcentage important de leur régime alimentaire, ce qui peut les rendre vulnérables aux réductions ou aux fluctuations de la biomasse des poissonsfourrages (Pikitch et al. 2014). Au cours des dernières décennies, le Hareng représentait de 20 à 50 % (jusqu'à 90 %) du régime alimentaire de la Morue du sud du golfe du Saint-Laurent, selon la taille de la Morue et les changements dans le régime alimentaire résultant des changements dans l'abondance du Hareng et d'autres proies (Benoit et Rail 2016). Le régime alimentaire du Thon Rouge de l'Atlantique dans le sud du golfe du Saint-Laurent est estimé à 50 % de Hareng, et le Thon est également ciblé par une pêche commerciale et une pêche récréative. La proportion de Harengs dans le régime alimentaire des Phoques Gris dépend de la région, de la saison et du sexe, mais varie entre 2 et 25 % (Benoit et Rail 2016). Il existe très peu de données pour estimer la consommation possible de Harengs par les cétacés dans le sud du golfe du Saint-Laurent, mais on sait que les Dauphins à Flancs Blancs, les Marsouins Communs et les Petits Rorquals se nourrissent de Harengs de la zone 4T (Benoit et Rail 2016). Les clupéidés (principalement le Hareng de l'Atlantique) peuvent constituer entre 10 et 92 % de l'alimentation des Fous de Bassan dans le golfe du Saint-Laurent (Benoit et Rail 2016). Étant donné que le Hareng peut constituer une part importante du régime alimentaire de nombreux prédateurs, la faible biomasse observée des deux stocks de Harengs de la zone 4T peut avoir des effets négatifs sur plusieurs composantes de l'écosystème.

Par rapport aux évaluations précédentes, l'incertitude des estimations de la BSR est réduite dans les évaluations des stocks reproducteurs de printemps et d'automne. L'estimation de la mortalité naturelle tient compte de la disparition de classes d'âge au fil du temps qui ne peut être expliquée par les prélèvements de la pêche, et permet une estimation du recrutement qui correspond mieux aux données. Des estimations précises de la mortalité naturelle, du recrutement et de la BSR sont essentielles à l'exactitude des projections, car elles permettent d'obtenir des résultats plus réalistes des mesures de gestion (total autorisé des captures).

7. SOURCES D'INCERTITUDE

Les indices dépendant de la pêche, comme les indices des CPUE pour les filets maillants commerciaux, peuvent ne pas être proportionnels à l'abondance en raison de changements dans la capturabilité au fil du temps. D'une part, les taux de captures peuvent rester élevés malgré la diminution de l'abondance (augmentation de la capturabilité) due à la contraction de la distribution des stocks et au ciblage des regroupements par les flottes de pêche, et en raison de l'amélioration des technologies et des pratiques de pêche. D'autre part, les taux de captures peuvent être touchés négativement par les limites imposées aux bateaux, la saturation des filets en cas de forte abondance et la fermeture de zones de pêche de premier ordre qui redirigent l'effort de pêche vers d'autres endroits. Les taux de captures calculés en fonction des débarquements réalisés et des données disponibles sur l'effort de pêche seraient soumis à ces effets. L'estimation des capturabilités variables au fil du temps dans les évaluations des Harengs reproducteurs de printemps et d'automne explique certains des effets énumérés cidessus.

Le calcul des CPUE commerciales est incertain. Les estimations sont principalement basées sur les valeurs saisonnières moyennes régionales des données sur l'effort de pêche (nombre de filets, nombre de coups de filet et longueur des filets maillants) provenant du sondage téléphonique, et non sur des données propres à une sortie. Les sorties sans capture ne sont pas documentées avant 2006 et ne sont donc pas intégrées dans les données sur l'effort. Un indice des CPUE pour cette période doit être calculé avec les traits nuls pour comparaison avec l'indice traditionnel des CPUE. Aucune information n'est recueillie sur la durée d'immersion des filets. Il existe également des incohérences potentielles dans la communication des données sur l'effort au sein des régions et des saisons et entre celles-ci.

L'approche de modélisation prend en compte la dynamique des Harengs reproducteurs d'automne dans trois régions. La dynamique est modélisée de manière indépendante entre les régions et suppose des populations fermées. Il s'agit d'une hypothèse audacieuse qui peut avoir des conséquences sur les estimations de l'abondance et de la dynamique propres à chaque région. Des preuves empiriques de la fidélité aux frayères ont été documentées dans le cas des Harengs reproducteurs d'automne, à partir d'expériences de marquage. Néanmoins, les analyses élémentaires des structures des otolithes n'ont pas permis de détecter de différences propres aux régions parmi les reproducteurs d'automne, bien qu'elles aient montré des différences distinctes entre les reproducteurs de printemps et les reproducteurs d'automne dans le sud du golfe du Saint-Laurent. Pour les reproducteurs d'automne, la recherche génétique n'a pas permis d'identifier les différences de population entre les régions (Lamichhaney et al. 2017).

Le poids selon l'âge du Hareng a diminué et reste à une valeur presque record. Les causes de ces baisses de poids selon l'âge et les conséquences sur le taux de recrutement sont inconnues.

Les captures de Harengs reproducteurs de printemps et d'automne provenant de la pêche aux poissons-appâts sont actuellement prises en compte dans les évaluations au moyen d'estimations de la mortalité naturelle, mais la proportion de captures non déclarées, de maladies ou de mortalité due à la prédation ne peut être dissociée. Les captures de la pêche aux poissons-appâts doivent être consignées dans les journaux de bord des pêcheurs, mais rares sont ceux qui respectent l'exigence de remplir ces journaux et de les renvoyer à Pêches et Océans Canada. Les captures de Harengs dans la pêche de poissons-appâts devraient être beaucoup plus faibles que les débarquements de la pêche commerciale, ce qui constitue néanmoins une source d'incertitude quant à la mortalité totale par la pêche.

L'estimation de la mortalité naturelle variable dans le temps dans le modèle gmSCA a généré des biais rétrospectifs plus importants dans la BSR par rapport au modèle qSCA. Étant donné que le recrutement, la capturabilité et la mortalité naturelle peuvent tous varier au fil du temps et que la sélectivité est estimée en blocs chronologiques, il est peu probable qu'un changement dans la dynamique des populations ne soit pas pris en compte par les modèles. Il est plus probable que la source de la tendance rétrospective soit un conflit entre les données sur les captures et l'âge des indices ou le manque de données suffisantes pour étalonner la dynamique des populations dans le modèle intégrant le paramètre M. Deux sources de données pourraient être utilisées pour modifier ou ajouter des données au modèle qmSCA. 1) Possibilité d'examiner un éventail plus large d'âges dans les données actuelles du relevé acoustique. Le relevé acoustique actuel fournit des renseignements sur la biomasse selon l'âge uniquement pour les poissons de 2 et 3 ans, mais l'information est disponible pour les poissons plus âgés. 2) Intégrer les données des relevés acoustiques des frayères. Introduit en 2015, le relevé acoustique axé sur les fravères offre pour le moment cinq années de données seulement. Ce relevé, réalisé en collaboration avec l'industrie, fournit une estimation moyenne de la biomasse par nuit pour chaque frayère, étudiée jusqu'à cinq fois durant la saison de frai. En raison de sa vaste couverture spatiale et temporelle de la dynamique de la biomasse sur toutes les principales frayères, l'ajout de ces données aux modèles de populations donnera lieu à un indice de la biomasse bien documenté. La composition selon l'âge de l'indice sera obtenue à partir du relevé des filets expérimentaux, dont l'échantillonnage se produira aux mêmes emplacements et à la même fréquence. En plus de l'ajout de données, la modélisation de la capturabilité en fonction de la densité peut également améliorer l'estimation de M, et aider à supprimer le biais rétrospectif dans les estimations de la BSR.

Le biais rétrospectif dans le modèle qmSCA est une source d'incertitude. Étant donné que le coefficient rho de Mohn est semblable dans les trois régions, l'ampleur du biais concernant la sous-estimation de la BSR devrait être semblable. L'analyse rétrospective et le coefficient rho de Mohn devraient faire l'objet d'une étude chaque année pour détecter les variations concernant la direction et l'échelle des biais. Si le paramètre statistique rho est négatif, cela signifie que la quantité évaluée est systématiquement sous-estimée (comparativement à l'estimation d'après la série chronologique complète) et qu'elle est potentiellement moins problématique que la surestimation en matière de durabilité (Hurtado-Ferro *et al.* 2015).

Les points de référence, en particulier le PRS et le taux d'exploitation de référence $F_{0.1}$ dans la zone saine, doivent être réexaminés pour les évaluations à venir. Pour cette évaluation, les PRS ont été mises à l'échelle pour être comparables à celles utilisées dans les évaluations précédentes. Comme aucun des stocks ne tend vers les PRS à court ou à long terme, l'incertitude quant à la pertinence des PRS et de $F_{0.1}$ ne devrait pas avoir un grand effet sur l'évaluation et l'analyse des risques des options de captures.

8. RÉFÉRENCES CITÉES

- Benoît, H. P., and Swain, D. P. 2003. Standardizing the southern Gulf of St. Lawrence Bottom-Trawl Survey Time Series: Adjusting for Changes in Research Vessel, Gear and Survey Protocol. Can. Tech. Rep. Fish. Aquat. Sci. 2505, iv + 95 p.
- Benoît H.P., Swain D.P., Bowen W.D., Breed G.A., Hammill M.O., and Harvey V. 2011. Evaluating the potential for grey seal predation to explain elevated natural mortality in three fish species in the southern Gulf of St. Lawrence. Mar. Ecol. Progr. Ser. 442: 149–167.
- Benoît, H.P., and Rail, J.-F. 2016. <u>Principal predators and consumption of juvenile and adult Atlantic Herring (*Clupea harengus*) in the southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/065. viii + 42 p.</u>
- Blais, M., Galbraith, P.S., Plourde, S., Scarratt, M., Devine, L. et Lehoux, C. 2019. Les conditions océanographiques chimiques et biologiques dans l'estuaire et le golfe du SaintLaurent en 2018. Secr. can. de consult. sci. du MPO. Doc. de rech. 2019/059. iv + 67 pp.
- Brophy, D., Danilowicz, B. S., and King, P. A. 2006. Spawning season fidelity in sympatric populations of Atlantic Herring (*Clupea harengus*). Can. J. Fish. Aquat. Sci. 63: 607–616.
- Brosset, P., Doniol-Valcroze, T., Swain, D.P., Lehoux, C., Van Beveren, E., Mbaye, B.C., Emond, K., and Plourde, S. 2018. Environmental variability controls recruitment but with different drivers among spawning components in Gulf of St. Lawrence Herring stocks. Fish. Oceanogr. 28: 1-17.
- Cairns, D.K., Chapdelaine, G., and Montevecchi, W.A. 1991. Prey exploitation by seabirds in the Gulf of St. Lawrence. In The Gulf of St. Lawrence: small ocean or big estuary? pp. 277-291. Ed by J.-C. Therriault. Canadian Special Publication of Fisheries and Aquatic Sciences. 113.
- Campana, S.E., Annand, M.C., and McMillan, J.I. 1995. Graphical and statistical methods for determining the consistency of age determinations. Trans. Am. Fish. Soc. 124: 131-138.
- Clay, D., and Chouinard, G. 1986. Southern Gulf of St. Lawrence Herring: stock status report 1985. DFO CAFSAC Res. Doc. 86/4. 50 p.
- Chouinard, G.A., Poirier G.A., and LeBlanc C. 2005. <u>Spawning stock biomass reference points</u> for spring and fall spawning Herring in the southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 05/82. 14 p.
- Claytor, R.R., and Allard, J. 2001. Properties of abundance indices obtained from acoustic data collected by inshore Herring gillnet boats. Can. J. Fish. Aquat. Sci. 58: 2502-2512.
- Claytor, R.R. 2001. Fishery acoustic indices for assessing Atlantic Herring populations. Can. Tech. Rep. Fish. Aquat. Sci. 2359: 213 p.
- Claytor, R., and Clay, A. 2001. Distributing fishing mortality in time and space to prevent overfishing. In Spatial processes and management of marine populations. Edited by G.H. Kruse, A.B.N. Bez, M. Dorn, S. Hills, R. Lipcius, D. Pelletier, C. Roy, S.J. Smith, and D. Witherell. University of Alaska Sea Grant, AK-SG-00-04, Fairbanks, Alaska. pp. 543–558.
- Claytor, R., LeBlanc, C., MacDougall, C., and Poirier, G. 1998. <u>Assessment of the NAFO Division 4T southern Gulf of St. Lawrence Herring stock, 1997</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 98/47. 154 p.
- Cleary, L., Hunt, J., Moores, J., and Tremblay, D. 1982. Herring aging workshop, St. John's, Newfoundland, March 1982. DFO CAFSAC Res. Doc. 82/41. 10 p.

- Deriso, R. B., M. N. Maunder, and J. R. Skalski . 2007. Variance estimation in integrated assessment models and its importance for hypothesis testing. Can. J. Fish. Aquat. Sci. 64: 187–197.
- DFO. 2010. Notice to fish harvesters: 2010-2011 total allowable catch (TAC) and harvesting plan for the spring inshore Herring fishery in the Southern Gulf of St. Lawrence (Herring fishing areas 16A-16G).
- DFO. 2012. Notice to fish harvesters: Two-year Southern Gulf of St. Lawrence spring Herring conservation and harvesting plan: 2012 and 2013.
- DFO. 2014. Notice to fish harvesters: Conservation and harvesting plan for the Southern Gulf of St. Lawrence Herring fisheries.
- Fontaine, P.-M., Hammill, M.O., Barrette, C., and Kingsley, M.C.S. 1994. Summer diet of the harbour porpoise (*Phocoena phocoena*) in the estuary and the northern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 51: 172–178.
- Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., and Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods & Software. 27:2, 233-249.
- Galbraith, P.S., Chassé, J., Caverhill, C., Nicot, P., Gilbert, D., Lefaivre, D. et Lafleur, C. 2019. <u>Conditions océanographiques physiques dans le golfe du Saint-Laurent en 2018</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2019/046. iv + 83 p.
- Gascoigne, J.C., and Lipcius, R.N. 2004. Allee effects driven by predation. J. Appl. Ecol. **41**: 801–810.
- Hammill, M.O., den Heyer, C.E., and Bowen, W.D. 2014. <u>Grey Seal Population Trends in Canadian Waters</u>, 1960-2014. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/037.
- Hammill, M.O., Stenson, G.B., Proust, F., Carter, P., and McKinnon, D. 2007. Feeding by Grey Seals in the Gulf of St. Lawrence and around Newfoundland. In Grey Seals in the North Atlantic and the Baltic, pp. 135–152. Ed. T. Haug, M. Hammill, D. Olafsdottir. NAMMCO Scientific Publication 6.
- Hammill, M.O., and Stenson, G.B. 2000. Estimated prey consumption by Harp Seals (*Phoca groenlandica*), Grey Seals (*Halichoerus grypus*), Harbour Seals (*Phoca vitulina*) and Hooded Seals (*Cystophora cristata*). J. Northw. Atl. Fish. Sci. 26:1–23.
- Hanson, J. M., and Chouinard, G. A. 2002. Diet of Atlantic Cod in the southern Gulf of St.-Lawrence as an index of ecosystem change, 1959-2000. J. Fish Biol. 60: 902–922.
- Honkalehto, T., Ressler, P.H., Towler, R.H., and Wilson, C.D. 2011. Using acoustic data from fishing vessels to estimate Walleye Pollock (*Theragra chalcogramma*) abundance in the eastern Bering Sea. Can. J. Fish. Aquat. Sci. 68: 1231–1242.
- Hurlbut, T., and Clay, D. 1990. Protocols for research vessel cruises within the Gulf Region (demersal fish) (1970–1987). Can. Manuscr. Rep. Fish. Aquat. Sci. 2082.
- Hurtado-Ferro, F., Szuwalski, C.S., Valero, J.L., Anderson, S.C., Cunningham, C.J., Johnson, K.F., Licandeo, R., McGilliard, C.R., Monnahan, C.C., Muradian, M.L., Ono, K., Vert-Pre, K.A., Whitten, A.R., and Punt, A.E. 2015. Looking in the rear-view mirror: Bias and retrospective patterns in integrated, age-structured stock assessment models. ICES J. Mar. Sci. 72(1): 99–110.

- ICCAT. 2017. Report of the 2017 ICCAT Bluefin stock assessment meeting. *Collect. Vol. Sci. Pap. ICCAT*, (Madrid, Spain).
- Jacobsen, N.S., and Essington, T. E. 2018. Natural mortality augments population fluctuations of forage fish. Fish and Fish.19: 791–797.
- Jacobsen, N.S., Thorson, J.T., and Essington, T.E. 2019. Detecting mortality variation to enhance forage fish population assessments. ICES J. Mar. Sci. 76(1): 124–135.
- Lamichhaney, S., Fuentes-Pardo, A. P., Rafati, N., Ryman, N., McCracken, G. R., Bourne, C., Singh, R., Ruzzante, D.E., and Andersson, L. 2017. Parallel adaptive evolution of geographically distant Herring populations on both sides of the North Atlantic Ocean. Proc. Natl. Acad. Sci. 114:17, E3452-3461.
- LeBlanc, C., and Dale J. 1996. Distribution and acoustic backscatter of Herring in NAFO Divisions 4T and 4Vn, Sept. 23 Oct. 08, 1995. DFO Atlantic Fisheries Res. Doc. 96/125. 28 p.
- LeBlanc, C., and LeBlanc, L. 1996. The 1995 NAFO Division 4T Herring gillnet telephone survey. DFO Atlantic Fisheries Res. Doc. 96/77. 37 p.
- LeBlanc, C.H., Mallet, A., Surette, T., and Swain, D. 2015. <u>Assessment of the NAFO Division 4T southern Gulf of St. Lawrence Atlantic Herring (*Clupea harengus*) stocks in 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/025. vi + 142 p.</u>
- Lee, H.H., Maunder, M.N., Piner, K.R., and Methot, R.D. 2011. Estimating natural mortality within a fisheries stock assessment model: An evaluation using simulation analysis based on twelve stock assessments. Fish. Res. 109(1): 89–94.
- Legault, C.M., and Palmer, M.C. 2015. In what direction should the fishing mortality target change when natural mortality increases within an assessment? Can. J. Fish. Aquat. Sci. 73(3): 349–357.
- MacCall, A.D. 1990. Dynamic geography of marine fish populations. University of Washington Press, Seattle, Wash. 153 p.
- Magnusson, A., Millar, C., Cooper, A. 2018. <u>icesAdvice: Functions Related to ICES Advice. R</u> package version 2.0-0.
- Marty, G.D., Quinn, T.J., Carpenter, G., Meyers, T.R., and Willits, N.H. 2003. Role of disease in abundance of a Pacific herring (*Clupea pallasi*) population. Can. J. Fish. Aquat. Sci. 60(10): 1258–1265.
- McDermid, J.L., Swain, D.P., Turcotte, F., Robichaud, S.A., et Surette, T. 2018. <u>Évaluation des stocks de hareng de l'Atlantique (Clupea harengus) de la division 4T de l'OPANO dans le sud du golfe du Saint-Laurent en 2016 et 2017</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/052. xvi + 125 p.
- McQuinn, I. H. 1989. Identification of spring and autumn spawning Herring (*Clupea harengus*) using maturity stages assigned from a gonadosomatic index model. Can. J. Fish. Aquat. Sci. 46: 969-980.
- McQuinn, I.H. 1997. Metapopulations and the Atlantic herring. Rev. Fish Biol. Fish. 7: 297–329.
- McQuinn, I. H. 2009. Pelagic fish outburst or suprabenthic habitat occupation: Legacy of the Atlantic Cod (*Gadus morhua*) collapse in eastern Canada. Can. J. Fish. Aquat. Sci. 66: 2256–2262.

- Melvin, G.D., Li, Y., Mayer, L., and Clay, A. 2002. Commercial fishing vessels, automatic acoustic logging systems and 3D data visualization. ICES J. Mar. Sci. 59: 179-189.
- Melvin, G.D., Stephenson, R.L., and M.J. Power. 2009. Oscillating reproductive strategies of Herring in the western Atlantic in response to changing environmental conditions. ICES J. Mar. Sci. 66: 1784-1792.
- Messieh, S. N. 1972. Use of otoliths in identifying Herring stocks in the southern Gulf of St. Lawrence and adjacent waters. J. Fish. Res. Bd. Canada 29: 1113-1118.
- Messieh, S. N. 1988. Spawning of Atlantic Herring in the Gulf of St. Lawrence. Am. Fish. Soc. Symp. 5: 31-48.
- Mohn, R. 1999. The retrospective problem in sequential population analysis: an investigation using Cod fishery and simulated data. ICES J. Mar. Sci. 56:473–488.
- MPO. 2006. <u>Stratégie de pêche en conformité avec l'approche de précaution</u>. Secr. can. de. consult. sci. du MPO, Compte rendu 2006/023.
- Neuenhoff, R. D., Swain, D. P., Cox, S. P., Mcallister, M. K., Trites, A. W., Walters, C. J., and Hammill, M. O. 2019. Continued decline of a collapsed population of Atlantic Cod. Can. J. Fish. Aquat. Sci. 76, 168–184.
- Overholtz, W. J., Jacobson, L. D., and Link, J. S. 2008. An ecosystem approach for assessment advice and biological reference points for the Gulf of Maine–Georges Bank Atlantic Herring complex. N. Am. J. Fish. Manag. 28: 247–257.
- Paloheimo, J. E., and Dickie, L.M. 1964. Abundance and fishing success. Rapp. P.-V. Reun. Cons. Int. Expior. Mer 155: 152-143.
- Pikitch, E.K., Rountos, K.J., Essington, T.E., Santora, C., Pauly, D., Watson, R., Sumaila, U.R., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Heppell, S.S., Houde, E.D., Mangel, M., Plagányi, É., Sainsbury, K., Steneck, R.S., Geers, T.M., Gownaris, N. and Munch, S.B. 2014. The global contribution of forage fish to marine fisheries and ecosystems. Fish. Fish., 15: 43-64.
- Pleizier, N. K., Campana, S. E., Schallert, R. J., Wilson, S. G., and Block, B. A. 2012. Atlantic Bluefin Tuna (*Thunnus thynnus*) diet in the Gulf of St. Lawrence and on the Eastern Scotian Shelf. Journal of Northwest Atlantic Fishery Science, 44, 67–76.
- Plourde, S., Starr, M., Devine, L., and St-Pierre, J. 2014. <u>Chemical and biological oceanographic conditions in the Estuary and Gulf of St. Lawrence during 2011 and 2012</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/071, v+46 pp.
- Rose, G.A., and Kulka, D.W. 1999. Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern Cod (*Gadus morhua*) declined. Can. J. Fish. Aquat. Sci. 56(Suppl. 1): 118-127.
- Savoie, L. 2014. Preliminary results from the September 2012 and 2013 bottom-trawl surveys of the southern Gulf of St. Lawrence and comparisons with previous 1971 to 2011 surveys. DFO Sci. Advis. Sec. Res. Doc. 2014/053. v + 127 p.
- Shen, H., Quinn, T., Wespestad, V., Dorn, M., and Kookesh, M. 2008. Using Acoustics to Evaluate the Effect of Fishing on School Characteristics of Walleye Pollock. Resiliency Gadid Stock. to Fish. Clim. Chang. AK-SG-08-0: 125–140.
- Simon, J., and Stobo, W.T. 1983. The 1982-1983 4Vn Herring biological update. DFO CAFSAC Res. Doc. 83/49. 28 p.

- Sinclair, A.F. 2001. Natural mortality of Cod (*Gadus morhua*) in the southern Gulf of St. Lawrence. ICES J. Mar. Sci. 58: 1–10.
- Siple, M. C., Shelton, A. O., Francis, T. B., Lowry, D., Lindquist, A. P., and Essington, T. E. 2018. Contributions of adult mortality to declines of Puget Sound Pacific Herring. ICES J. Mar. Sci. 75: 319–329.
- Skern-Mauritzen, M., Ottersen, G., Handegard, N.O., Huse, G., Dingsør, G.E., Stenseth, N.C., and Kjesbu, O.S. 2016. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17:165-175.
- Surette, T., Leblanc, C., and Mallet, A. 2016. <u>Abundance indices and selectivity curves from experimental multi-panel gillnets for the Southern Gulf of St. Lawrence fall Herring fishery</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/067. vi + 22 p.
- Surette, T. 2016. <u>Abundance indices of Atlantic Herring (*Clupea harengus*) from the southern Gulf of St. Lawrence September multispecies bottom trawl survey</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/064. vii + 34 p.
- Swain, D.P. 2016. <u>Population modelling results for the assessment of Atlantic Herring (Clupea harengus)</u> stocks in the southern Gulf of St. Lawrence (NAFO Division 4T) to 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/061. x + 53 p.
- Swain, D.P., and Benoît, H.P. 2015. Extreme increases in natural mortality prevent recovery of collapsed fish populations in a Northwest Atlantic ecosystem. Mar. Ecol. Prog. Ser. 519: 165–182.
- Swain, D.P., and Sinclair, A.F. 1994. Fish distribution and catchability: what is the appropriate measure of distribution? Can. J. Fish. Aquat. Sci. 51: 1046-1054.
- Szuwalski, C.S., Britten, G.L., Licandeo, R., Amoroso, R.O., Hilborn, R., and Walters, C. 2019. Global forage fish recruitment dynamics: A comparison of methods, time-variation, and reverse causality. Fish. Res. 214: 56–64.
- Thorson, J. T., Monnahan, C. C., and Cope, J. M. 2015. The potential impact of time-variation in vital rates on fisheries management targets for marine fishes. Fish. Res., 169: 8–17.
- Turcotte, F., Swain, D. P. et McDermid, J. L. 2021. Modèles de population du hareng de l'Atlantique de la division 4TVn de l'OPANO : de l'analyse de population virtuelle à un modèle statistique de capture selon l'âge estimant la mortalité naturelle. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/029. vii + 58 p.
- Wheeler, J.P., Squires, B., and Williams, P. 2006. <u>An assessment of Newfoundland east and south coast Herring stocks to the spring of 2006</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/101. 93 p.
- Winters, G.H., and Wheeler, J.P. 1985. Interaction between stock area, stock abundance, and catchability coefficient. Can. J. Fish. Aquat. Sci. 42: 989-998.

TABLEAUX

Tableau 1. Débarquements (en tonnes) de Harengs de la zone 4T lors des pêches de printemps et d'automne par engins (fixes et mobiles) et par groupe reproducteur (SS = reproducteurs de printemps et FS = reproducteurs d'automne). Les allocations de TAC et les captures ciblées sont également fournies, car le TAC est plus élevé que la détermination des captures ciblées en raison des parts traditionnelles entre les régions.

		C	aptures da	ns la zone	4T					
		Pêch	ne du	Pê	che					
		print	emps	d'aut	omne	Captures	Captures	Captures		
						annuelles	annuelles	totales		
	Groupe	Fixes	Mobiles	Fixes	Mobiles	dans la	dans la	dans la	TAC dans la	Captures
Année	reproducteur					zone 4T	zone 4Vn	zone 4TVn	zone 4TVn	ciblées
	•									
1981	SS	6,287	20	293	589	7,189	822	-	-	-
1301	FS	1,212	1	10,932	2,599	14,744	2,594	<u>-</u>	<u>-</u>	-
	Total	7,499	21	11,225	3,188	21,933	3,416	25,349	19,000	-
	SS	5,692	57	292	574	6,615	834	_	_	_
1982	FS	230	5	12,691	2,003	14,929	2,674	_	_	_
	Total	5,922	62	12,983	2,577	21,544	3,508	25,052	18,000	_
	rotai	0,022	02	12,000	2,011	21,011	0,000	20,002	70,000	
1983	SS	7,655	17	423	1,466	9,561	1,307	-	-	-
1903	FS	865	2	13,415	2,023	16,305	2,672	-	-	-
	Total	8,520	19	13,838	3,489	25,866	3,979	29,845	25,000	-
	SS	4 424	3	202	905	E 62E	1 276			
1984	FS	4,434		303 15,672	895 1,384	5,635 17,904	1,376	-	-	-
	Total	847 5,281	1 4	15,072	2,279	23,539	2,549 3,925	27,464	22,500	-
	TOtal	3,201	4	13,973	2,219	23,339	3,923	21,404	22,300	-
4005	SS	6,720	0	1,287	2,154	10,161	1,082	-	-	-
1985	FS	498	0	22,420	4,867	27,785	2,388	_	-	-
	Total	7,218	0	23,707	7,021	37,946	3,470	41,416	36,000	-
1986	SS	7,154	0	3,181	6,773	17,108	2,782	-	-	-
1000	FS	1,397	0	36,710	4,143	42,250	1,568	-	-	-
	Total	8,551	0	39,891	10,916	59,358	4,350	63,708	47,600	-
	SS	10,419	0	2,538	9,460	22,417	1,446	_	_	_
1987	FS	1,340	Ő	49,585	4,273	55,198	917	_	_	_
	Total	11,759	0	52,123	13,733	77,615	2,363	79,978	77,000	_
		,	•	0_,0	. 0,. 00	,	_,000	. 0,0.0	,	
1988	SS	9,166	0	2,843	12,036	24,045	1,766	-	-	-
1900	FS	3,719	0	38,367	5,496	47,582	806	-	-	-
	Total	12,885	0	41,210	17,532	71,627	2,572	74,199	83,100	-
	SS	0.060	0	1 601	0 770	10 E21	1 202			
1989	FS	9,062 2,032	0	1,691 32,157	8,778 5,492	19,531 39,681	1,302 815	-	-	-
	Total	11,094	0	33,848	14,270	59,212	2,117	61,329	91,100	-
	Total	11,034	U	33,040	14,270	39,212	2,117	01,329	91,100	_
4000	SS	4,083	1	2,146	6,756	12,986	3,088	-	-	-
1990	FS	818	0	59,138	3,551	63,507	1,623	_	-	-
	Total	4,901	1	61,284	10,307	76,493	4,711	81,204	91,100	-
			_							
1991	SS	12,073	5	178	3,319	15,575	1,902	17,477	21,000	-
.501	FS	817	13	26,965	4,741	32,536	2,888	35,424	70,100	-
	Total	12,890	18	27,143	8,060	48,111	4,790	52,901	91,100	-
	SS	12,291	641	322	3,327	16,581	493	17,074	21,000	_
1992	FS	186	478	32,760	3,789	37,213	3,735	40,948	70,100	-
	Total	12,477	1,119	33,082	7,116	53,794	4,228	58,022	91,100	_
-		,	.,	,	.,		.,==3	,	2.,	

		Ca	aptures dai	ns la zone	4T					
			ne du		che	-				
		printe	emps	d'aut	omne	Captures	Captures	Captures		
Année	Groupe reproducteur	Fixes	Mobiles	Fixes	Mobiles	annuelles dans la zone 4T	annuelles dans la zone 4Vn	totales dans la zone 4TVn	TAC dans la zone 4TVn	Captures ciblées
1993	SS	14,643	1,526	780	3,741	20,690	434	21,124	21,000	-
	FS	538	1,190	22,319	2,487	26,534	3,517	30,051	85,000	-
	Total	15,181	2,716	23,099	6,228	47,224	3,951	51,175	106,000	-
1994	SS	18,498	883	481	3,357	23,219	568	23,787	21,000	-
	FS	517	3,049	53,333	3,603	60,502	2,681	63,183	85,000	-
	Total	19,015	3,932	53,814	6,960	83,721	3,249	86,970	106,000	-
1995	SS	15,137	950	2,102	7,671	25,860	470	26,330	21,000	-
	FS	836	875	54,161	7,595	63,467	3,674	67,141	85,000	-
	Total	15,973	1,825	56,263	15,266	89,327	4,144	93,471	106,000	-
1996	SS	15,409	441	1,365	3,977	21,192	1,033	22,225	15,114	-
	FS	668	1,466	44,408	4,044	50,586	3,234	53,820	58,749	-
	Total	16,077	1,907	45,773	8,021	71,778	4,267	76,045	73,863	-
1997	SS	12,846	614	98	3,627	17,185	231	17,416	16,500	-
	FS	380	888	34,974	2,175	38,417	3,299	41,716	50,000	-
	Total	13,226	1,502	35,072	5,802	55,602	3,530	59,132	66,500	-
1998	SS	13,382	297	121	1,418	15,218	2	15,220	16,500	-
	FS	528	707	39,009	3,158	43,402	50	43,452	57,568	-
	Total	13,910	1,004	39,130	4,576	58,620	52	58,672	74,068	-
1999	SS	10,256	688	176	3,770	14,890	0	14,890	18,500	-
	FS	1,625	4,130	44,615	5,334	55,704	0	55,704	60,500	-
	Total	11,881	4,818	44,791	9,104	70,594	0	70,594	79,000	-
2000	SS	14,586	10	706	2,324	17,626	0	17,626	16,500	-
	FS	1,596	538	49,676	6,373	58,183	0	58,183	71,000	-
	Total	16,182	548	50,382	8,697	75,809	0	75,809	87,500	-
2001	SS	9,938	459	736	2,986	14,119	0	14,119	12,500	-
	FS	659	638	44,786	7,285	53,368	0	53,368	60,500	-
	Total	10,597	1,097	45,522	10,271	67,487	0	67,487	73,000	-
2002	SS FS Total	8,142 966 9,108	420 464 884	673 41,290 41,963	704 10,898 11,602	9,939 53,618 63,557	0 0 0	9,939 53,618 63,557	8,000 51,500 59,500	- -
2003	SS	8,458	41	37	449	8,985	0	8,985	11,000	-
	FS	608	60	47,766	12,779	61,213	0	61,213	62,000	-
	Total	9,066	101	47,803	13,228	70,198	0	70,198	73,000	-
2004	SS	7,671	21	122	410	8,224	0	8,224	13,500	-
	FS	374	31	35,904	7,090	43,399	0	43,399	73,000	-
	Total	8,045	52	36,026	7,500	51,623	0	51,623	86,500	-
2005	SS FS Total	3,571 925 4,496	0 0 0	14 51,715 51,729	1,084 7,756 8,840	4,669 60,396 65,065	0 0 0	4,669 60,396 65,065	11,000 70,000 81,000	-
2006	SS	1,409	0	293	745	2,447	0	2,447	9,000	-
	FS	1,257	0	47,630	4,409	53,296	0	53,296	68,800	-
	Total	2,666	0	47,923	5,154	55,743	0	55,743	77,800	-

				ns la zone						
			ne du emps		che comne	Contino	O==t::===	Contino		
						Captures annuelles	Captures annuelles	Captures totales		
Année	Groupe reproducteur	Fixes	Mobiles	Fixes	Mobiles	dans la zone 4T	dans la zone 4Vn	dans la zone 4TVn	TAC dans la zone 4TVn	Captures ciblées
0007	SS	1,734	0	10	2,414	4,158	0	4,158	5,000	_
2007	FS	496	0	43,161	4,426	48,083	0	48,083	68,800	-
	Total	2,230	0	43,171	6,840	52,241	0	52,241	73,800	-
2008	SS	1,503	0	35	1,473	3,011	0	3,011	2,500	-
2000	FS	187	0	38,831	2,738	41,756	0	41,756	68,800	-
	Total	1,690	0	38,866	4,211	44,767	0	44,767	71,300	-
2009	SS	1,256	0	70	519	1,845	0	1,845	2,500	-
2009	FS	94	0	44,780	1,939	46,813	0	46,813	65,000	-
	Total	1,350	0	44,850	2,458	48,658	0	48,658	67,500	-
2010	SS	769	5	2	595	1,371	0	1,371	2,000	-
2010	FS	386	297	42,458	4,154	47,295	0	47,295	65,000	-
	Total	1,155	302	42,460	4,749	48,666	0	48,666	67,000	-
2011	SS	833	0	21	664	1,518	0	1,518	2,000	-
2011	FS	210	0	36,882	1,372	38,464	0	38,464	65,000	-
	Total	1,043	0	36,903	2,036	39,982	0	39,982	67,000	-
2012	SS	265	5	68	262	600	0	600	2,000	-
2012	FS	152	223	31,820	381	32,576	0	32,576	43,500	-
	Total	417	228	31,888	643	33,176	0	33,176	45,500	-
2013	SS	874	180	1	649	1,704	0	1,704	2,000	-
2013	FS	24	3,025	29,911	1,409	34,369	0	34,369	43,500	-
	Total	898	3,205	29,912	2,058	36,073	0	36,073	45,500	-
2014	SS	634	56	132	429	1,250	0	1,250	2,000	-
2017	FS .	71	1,886	25,786	1,471	29,214	0	29,214	35,000	-
	Total	705	1,941	25,918	1,901	30,464	0	30,464	37,000	-
2015	SS	578	43	3	565	1,190	0	1,190	2,000	-
2015	FS	7	1,390	25,964	777	28,138	0	28,138	40,000	-
	Total	586	1,433	25,967	1,343	29,328	0	29,328	42,000	-
2016	SS	745	29	45	147	966	0	966	2,000	-
2010	FS	82	776	23,195	624	24,677	0	24,677	35,000	-
	Total	827	805	23,240	771	25,643	0	25,643	37,000	-
2017	SS	928	4	215	42	1,189	0	1,189	2,000	-
2017	FS	18	86	20,381	38	20,523	0	20,523	35,000	-
	Total	946	90	20,595	81	21,712	0	21,712	37,000	-
2018	SS	438	58	99	203	798	0	798	500	500
2010	FS	.39	1,187	15,186	330	16,742	0	16,742	25,200	16,000
	Total	477	1,245	15,285	533	17,540	0	17,540	25,200	16,500
2019	SS	485	0	44	518	1,047	0	1,047	1,250	500
2019	FS	56	0	14,844	644	15,544	0	15,544	22,250	16,000
	Total	541	0	14,888	1,162	16,591	0	16,591	23,500	16,500

Tableau 2. Échantillons prélevés dans la pêche commerciale, nombre de poissons analysés (N), débarquements et pourcentage du TAC débarqué par zone au printemps (du 1^{er} avril au 30 juin) et à l'automne (du 1^{er} juillet au 31 décembre). Ces données sont utilisées pour calculer les matrices de captures et de poids selon l'âge de 2018 et 2019 pour le Hareng de la zone 4T.

Engin/région	Pêche	Zone	Échantillons	N	Débarquements (t)	% TAC débarqué
	fixes – Filets maillants					•
Printemps						
Nord	Gaspé (16A) printemps	4Tp	2	58	7,6	382,3
Nord	Chaleur (16B) avril	4Tmn	6	158	92,9	445
Nord	Chaleur (16B) mai-juin	4Tmn	7	174	165,5	145,2
Centre	ÎPÉ. Ouest (16E) printemps	4TI	4	99	80,0	06.
Centre	Détroit de Northumberland (16E) printemps	4Th	6	152	100,6	96,0
Sud	îPÉ. Est	4Tgj	2	55	26,1	72,
Sud	Îles de la Madeleine (16D) printemps	4Tf	0	0	3,9	111,0
Automne						
Nord	Gaspé (16A) automne	4Topq	0	0	1,3	4,2
Nord	Chaleur (16B) juillet	4Tmn	4	102	290,7	121,0
Nord	Chaleur (16B) août	4Tmn	7	143	3 214,7	07
Nord	Chaleur (16B) septembre	4Tmn	6	132	5 030,0	97,3
Centre	Escuminac – ÎPÉ. Ouest (16CE) juillet à septembre	4TI	8	167	3 900,7	105,
Sud	Îles de la Madeleine (16D) automne	4Tf	-	_	-	0,
Sud	Pictou (16F) juillet à septembre	4Th	6	146	2 003,9	70
Sud	Pictou (16F) octobre	4Th	2	57	427,3	78,
Sud	îPÉ. Est (16G) août à octobre	4Tgj	0	0	408,4	20,2
Engin fixe		4T	60	1 443	15 753,5	62,
2018: Engins n						
Sud	Au bord du détroit de Cabot – Printemps, juin	4Tf	1	55	1 246,0	100
Nord	Est de Grande-Anse (16B) septembre à novembre	4Tmn	5	152	533,2	18,0
Engin mobile		4T	6	207	1 779,2	7,
2019 : Engins	fixes – Filets maillants					
Printemps						
Nord	Gaspé (16A) printemps	4Tp	0	0	11,1	442,
Nord	Chaleur (16B) avril	4Tmn	5	120	50,6	187,8
Nord	Chaleur (16B) mai-juin	4Tmn	6	146	127,1	101,0
Centre	îPÉ. Ouest (16E) printemps	4TI	0	0	99,6	
Centre	Détroit de Northumberland (16E) printemps	4Th	7	167	174,4	92,4
Sud	ÎPÉ. Est	4Tgj	5	130	63,2	

Engin/région	Pêche	Zone	Échantillons	N	Débarquements (t)	% TAC débarqué
Sud	I. de la Madeleine (16D) automne	4Tf	0	0	0,8	5,8
Automne	· ·					
Nord	Gaspé (16A) automne	4Topq	0	0	1,5	5,4
Nord	Chaleur (16B) juillet	4Tmn	3	76	243,1	120,8
Nord	Chaleur (16B) août	4Tmn	9	185	3 766,5	07.0
Nord	Chaleur (16B) septembre	4Tmn	6	123	3 767,4	97,2
Centre	Escuminac – ÎPÉ. Ouest (16CE) août	4TI	2	40	771,8	400.4
Centre	Escuminac – ÎPÉ. Ouest (16CE) septembre à octobre	4TI	10	236	2 514,5	102,1
Sud	Îles de la Madeleine (16D) automne	4Tf	2	48	4,7	2,7
Sud	Pictou (16F) septembre à octobre	4Th	8	167	2 975,8	95,5
Sud	îPÉ. Est (16G) août – septembre – octobre	4Tgj	2	51	801,9	24,9
Engin fixe		4T	65	1 489	15 374,0	91 %
2019 : Engins n	nobiles					
Sud	Au bord du détroit de Cabot – Printemps, juin	4Tf	0	0	0,0	0
Nord	Est de Grande-Anse (16B) septembre – octobre – novembre	4Tmn	5	161	1 162,5	23,8
Engins mobiles		4T	5	161	1 162,5	26,2

Tableau 3. Comparaison des résultats du Programme de vérification à quai (PVQ) de 2018 et 2019 et des résultats des sondages téléphoniques, y compris le nombre de répondants, la longueur moyenne des filets (brasses), le nombre de filets installés, le pourcentage de filets de maillage de 2½ po dans la pêche d'automne, et un indice comparatif de l'abondance de 2018 et 2019, respectivement [échelle de 1 (médiocre) à 10 (excellent)].

Région	Zone de sondage téléphonique	Source	Nombre de réponses	Longueur de filet (brasse)	Nombre de filets installés	% de filets de maillage 2⁵⁄₃ po	Comparaison avec l'année précédente
2018							
	u printemps						
Sud	1 – Îles de la Madeleine	PVQ Téléphone	2	- 17	13.43	- 86	- 6
Nord	2 – Québec	PVQ Téléphone	- 16	- 14.6	- 18.9	- 86	4.9
Nord	3 – Péninsule acadienne	PVQ Téléphone	6	15.0 14.4	15.8 19.3	86 86	6.4
Centre	4- Escuminac	PVQ Téléphone	7	11.4 15.5	16.9 24.7	89 86	- 4
Centre	5 – Sud-est du NB	PVQ Téléphone	30 10	12.8 14.1	20.3 22.1	86 86	2.5
Sud	6 – Nouvelle-Écosse	PVQ	-	-	-	-	2.5
Sud	7 – Est de l'ÎPÉ	Téléphone PVQ Téléphone	-	-	-	-	-
Centre	8 – Ouest de l'ÎPÉ	PVQ Téléphone	20 5	13.1 13.2	17.5 19.8	86 87	- - 4.8
Pêche d	'automne	releptione	<u> </u>	10.2	13.0		7.0
Sud	1 – Îles de la Madeleine	PVQ Téléphone	1	14.0 18	9.64	- 100	- 10
Nord	2 – Québec	PVQ Téléphone	22 33	14.0 13.3	7.9	100	3.8
Nord	3 – Péninsule acadienne	PVQ Téléphone	130 56	14.1 13.5	10.1 7.6	100 100	3.7
Centre	4- Escuminac	PVQ Téléphone	14 20	14.6 14.1	9.8 8.9	100 100	- 4.9
Centre	5 – Sud-est du NB	PVQ Téléphone	1	14.1 14.0	10.7 9.0	100 100	- 7
Sud	6 – Nouvelle-Écosse	PVQ Téléphone	93 33	14.1 15.1	7.2 6.4	100 100	4.9
Sud	7 – Est de l'ÎPÉ	PVQ Téléphone	11 2	13.6 13.5	9.2 9.2	100 100	3.5
Centre	8 – Ouest de l'ÎPÉ	PVQ Téléphone	33 3	12.6 14.0	8.7 8.8	100 100	6.7
2019							
	u printemps						
Sud	1 – Îles de la Madeleine	PVQ Téléphone	- 3	- 15.7	- 12.7	- 86	3.3
Nord	2 – Québec	PVQ Téléphone	20	14.3	17.5	- 86	6.1
Nord	3 – Péninsule acadienne	PVQ Téléphone	1 7	12.5 14.1	14.3 18.8	86 86	5.9
Centre	4- Escuminac	PVQ Téléphone	8 5	14.7 14.0	23.5 23.0	86 86	5.8

Région	Zone de sondage téléphonique	Source	Nombre de réponses	Longueur de filet (brasse)	Nombre de filets installés	% de filets de maillage 2% po	Comparaison avec l'année précédente
Centre	5 – Sud-est du NB	PVQ Téléphone	16 18	14.5 14.4	22.4 21.7	86 86	- 5.6
Sud	6 – Nouvelle-Écosse	PVQ Téléphone	-			-	-
Sud	7 – Est de l'ÎPÉ	PVQ Téléphone	1	16	17.1	86	-
Centre	8 – Ouest de l'ÎPÉ	PVQ Téléphone	26 10	13.5 13.3	18.7 20.0	86 86	- 5.3
Pêche d	l'automne						
Sud	1 – Îles de la Madeleine	PVQ Téléphone	2	14.0	-	-	-
Nord	2 – Québec	PVQ Téléphone	28 33	14.0 14.0	- 7.7	- 100	4.7
Nord	3 – Péninsule acadienne	PVQ Téléphone	148 36	14.1 13.9	10.2 7.8	100 100	- 4.4
Centre	4- Escuminac	PVQ Téléphone	17 27	14.0 13.1	9.6 8.3	100 100	- 5.1
Centre	5 – Sud-est du NB	PVQ Téléphone	3	14.8	11.7	100	-
Sud	6 – Nouvelle-Écosse	PVQ Téléphone	92 32	14.1 15.5	5.9 6.3	100 100	8.8
Sud	7 – Est de l'ÎPÉ	PVQ Téléphone	19 5	13.3 13.8	8.5 8.4	100 100	7.8
Centre	8 – Ouest de l'ÎPÉ	PVQ Téléphone	39 9	12.9 13.0	12.2 8.2	97 100	6.2

Tableau 4. Captures selon l'âge des reproducteurs de printemps (milliers) pour les engins fixes dans la zone de pêche du Hareng 4T.

						Capture	s selon l'â	ge				
Année	1	2	3	4	5	6	7	8	9	10	11+	total
1978	0	44	6 026	25 253	1 042	2 123	660	243	370	1 561	752	38 072
1979	100	112	7 352	2 544	17 558	540	842	127	127	327	1 421	31 050
1980	0	217	9 420	6 744	2 378	9 068	1 424	807	612	442	720	31 832
1981	3	438	11 843	7 099	1 941	1 399	3 052	415	422	171	882	27 664
1982	11	216	23 577	4 191	988	421	299	315	143	88	618	30 868
1983	0	155	13 547	26 208	2 142	472	76	0	0	8	0	42 608
1984	16	39	3 377	12 083	7 529	409	59	14	7	4	0	23 538
1985	0	39	4 921	12 685	13 742	4 630	614	100	32	71	0	36 833
1986	0	11	2 712	13 905	12 357	10 348	2 783	391	20	233	349	43 109
1987	0	10	1 232	6 164	20 071	11 410	9 674	4 080	947	512	258	54 357
1988	60	549	3 536	6 298	9 353	14 600	6 944	5 246	935	68	269	47 858
1989	0	0	3 941	15 672	4 836	4 912	6 957	4 326	2 598	1 025	279	44 546
1990	0	128	1 925	7 387	4 109	2 178	2 532	3 928	1 827	733	306	25 053
1991	0	0	6 070	11 715	14 140	9 142	3 166	2 897	4 448	1 640	1 097	54 314
1992	0	0	2 160	30 046	11 543	7 579	3 460	1 593	1 956	1 423	2 263	62 023
1993	0	8	231	5 488	40 374	18 381	4 900	2 409	1 375	708	2 724	76 597
1994	0	0	2 061	5 847	24 642	48 553	9 048	3 595	1 221	438	1 032	96 438
1995	0	0	200	13 345	10 782	17 781	28 929	6 408	1 788	1 156	2 271	82 660
1996	0	0	416	1 682	48 104	9 123	14 154	9 414	3 102	590	1 087	87 672
1997	0	2	107	5 440	4 069	37 818	6 961	4 149	3 938	1 015	179	63 678
1998	0	0	785	7 744	15 786	2 264	29 871	3 421	2 449	1 966	875	65 159
1999	0	89	1 724	6 599	9 410	10 297	2 255	16 045	2 583	1 342	1 155	51 499
2000	0	12	2 141	11 977	15 975	15 248	7 568	4 457	11 675	2 912	1 756	73 722
2001	0	0	910	11 316	13 082	9 859	4 920	3 360	1 387	6 593	1 735	53 163
2002	0	1	2 509	7 044	18 352	7 626	3 608	2 075	1 152	1 052	1 214	44 633
2003	0	0	285	10 766	11 071	12 832	3 925	2 483	998	686	759	43 803
2004	0	21	1 607	2 606	15 101	5 400	8 500	3 223	1 164	413	1 005	39 040
2005	0	0	72	3 639	3 209	5 784	2 561	2 023	566	125	174	18 153
2006	0	1	720	1 299	4 653	1 652	528	285	387	28	73	9 626
2007	0	1	864	2 037	1 563	2 323	1 738	803	196	149	110	9 784
2008	0	71	177	2 812	3 111	1 139	1 261	269	52	23	12	8 928
2009	0	23	411	1 060	2 445	3 033	344	349	91	6	14	7 775
2010	0	0	144	1 107	860	1 559	766	366	358	4	13	5 177
2011	0	0	25	116	885	812	1 102	512	782	287	5	4 526
2012	0	0	153	400	400	609	671	340	225	186	84	3 068
2013	0	0	16	303	963	1 157	1 492	1 141	814	50	39	5 974
2014	0	0	1	17	454	773	868	1 080	561	222	67	4 041
2015	0	0	0	103	157	783	1 195	535	396	76	41	3 287
2016	0	0	28	26	649	1 067	1 653	773	338	102	21	4 657
2017	0	6	88	703	746	1 977	1 617	1 207	276	49	3	6 673
2018	0	0	10	57	835	654	929	345	109	3	0	2 944
2019	0	0	13	261	603	1 338	416	327	107	14	0	3 079

Tableau 5. Poids selon l'âge des reproducteurs de printemps pour les engins fixes dans la zone de pêche du Hareng 4T.

					Poid	s selon l	'âge				
Année	1	2	3	4	5	6	7	8	9	10	11+
1978	_	0,154	0,148	0,187	0,215	0,251	0,283	0,318	0,308	0,337	0,364
1979	0,020	0,161	0,163	0,197	0,226	0,243	0,313	0,335	0,352	0,326	0,360
1980	-	0,184	0,167	0,189	0,231	0,278	0,304	0,334	0,359	0,369	0,379
1981	0,027	0,156	0,178	0,232	0,267	0,318	0,343	0,350	0,374	0,411	0,419
1982	0,038	0,186	0,173	0,207	0,261	0,311	0,370	0,385	0,396	0,416	0,449
1983	-	0,170	0,148	0,206	0,236	0,258	0,343	-	-	0,361	-
1984	0,063	0,104	0,174	0,196	0,217	0,289	0,340	0,404	0,490	0,369	-
1985	-	0,213	0,169	0,198	0,229	0,266	0,315	0,315	0,329	0,432	-
1986	-	0,111	0,183	0,210	0,242	0,261	0,307	0,348	0,336	0,364	0,392
1987	-	0,091	0,192	0,196	0,218	0,249	0,267	0,280	0,317	0,310	0,377
1988	0,040	0,080	0,160	0,197	0,237	0,265	0,290	0,307	0,335	0,369	0,359
1989	-	-	0,165	0,202	0,229	0,257	0,291	0,301	0,314	0,328	0,300
1990	-	0,153	0,169	0,203	0,241	0,273	0,297	0,290	0,311	0,322	0,339
1991	-	-	0,146	0,182	0,219	0,246	0,260	0,292	0,303	0,320	0,319
1992	-	-	0,145	0,172	0,201	0,232	0,255	0,274	0,291	0,299	0,332
1993	-	0,135	0,127	0,164	0,186	0,207	0,244	0,252	0,268	0,294	0,292
1994	-	-	0,141	0,156	0,177	0,200	0,218	0,249	0,314	0,272	0,304
1995	-	0,116	0,182	0,160	0,179	0,202	0,222	0,245	0,271	0,301	0,322
1996	-	-	0,157	0,182	0,173	0,193	0,209	0,233	0,230	0,275	0,277
1997	-	0,133	0,131	0,162	0,183	0,200	0,213	0,233	0,246	0,246	0,303
1998	-	-	0,137	0,161	0,185	0,206	0,221	0,240	0,246	0,257	0,278
1999	-	0,121	0,120	0,149	0,176	0,204	0,220	0,230	0,244	0,254	0,269
2000	-	0,114	0,131	0,158	0,184	0,207	0,225	0,250	0,253	0,262	0,273
2001	-	-	0,135	0,158	0,182	0,198	0,223	0,236	0,257	0,260	0,270
2002	-	0,098	0,141	0,165	0,188	0,205	0,227	0,251	0,270	0,279	0,289
2003	-	-	0,143	0,160	0,184	0,202	0,223	0,233	0,253	0,260	0,280
2004	-	0,130	0,134	0,149	0,178	0,203	0,229	0,238	0,254	0,262	0,288
2005	-	0,075	0,134	0,152	0,172	0,201	0,221	0,252	0,253	0,269	0,308
2006	-	0,120	0,132	0,147	0,169	0,196	0,221	0,246	0,248	0,293	0,242
2007	-	0,108	0,139	0,152	0,169	0,185	0,194	0,212	0,253	0,246	0,234
2008	-	0,137	0,144	0,158	0,164	0,181	0,203	0,237	0,240	0,268	0,298
2009	-	0,118	0,144	0,155	0,165	0,173	0,205	0,209	0,253	0,223	0,206
2010	-	-	0,121	0,148	0,157	0,189	0,202	0,225	0,234	0,248	0,268
2011	-	-	0,112	0,144	0,170	0,179	0,199	0,217	0,229	0,250	0,233
2012	-	-	0,154	0,140	0,143	0,155	0,169	0,186	0,190	0,222	0,220
2013	-	-	0,119	0,134	0,147	0,160	0,181	0,187	0,203	0,217	0,224
2014	-	-	0,114	0,130	0,160	0,170	0,190	0,197	0,208	0,226	0,226
2015	-	-	0,094	0,133	0,144	0,164	0,176	0,188	0,208	0,188	0,231
2016	-	-	0,124	0,129	0,147	0,164	0,17	0,181	0,195	0,211	0,203
2017	-	0,125	0,148	0,138	0,15	0,176	0,177	0,186	0,185	0,198	0,212
2018	-	-	0,138	0,143	0,168	0,178	0,191	0,200	0,201	0,213	0,225
2019	-	0,114	0,136	0,140	0,158	0,167	0,182	0,186	0,213	-	-

Tableau 6. Captures selon l'âge des reproducteurs d'automne (en milliers) pour les engins fixes dans la zone de pêche au Hareng 4T, par région : a) nord, b) centrale, c) sud.

						Capture	es selon l'â	âge				
Année	1	2	3	4	5	6	7	8	9	10	11+	Total
a) Nord												
1978	-	78	4 166	15 112	18 226	3 219	3 172	12 429	1 043	588	12 264	70 297
1979	-	2 747	7 055	9 223	5 480	4 247	1 301	1 314	2 248	511	2 845	36 971
1980	-	2 046	19 093	5 904	3 473	887	1 828	397	338	364	235	34 565
1981	-	38	4 140	13 002	2 853	596	244	278	56	99	60	21 366
1982	-	176	6 423	7 065	14 318	2 067	389	271	119	58	209	31 095
1983	-	4	238	9 387	3 795	9 056	1 026	415	99	16	103	24 139
1984	-	31	743	9 288	8 609	4 305	3 640	665	136	110	78	27 605
1985	-	50	1 361	4 630	17 980	12 369	6 822	6 303	3 334	843	6	53 698
1986	-	85	1 308	11 272	12 062	26 679	18 091	8 492	4 553	611	959	84 112
1987	-	958	9 069	25 621	15 424	14 506	23 181	12 544	6 238	3 192	1 089	111 822
1988	-	3 401	2 304	16 851	27 655	10 885	11 253	10 181	5 046	3 204	3 356	94 136
1989	-	721	1 217	14 051	23 624	25 115	11 942	6 677	8 284	4 011	3 148	98 790
1990	-	63	5 415	16 060	15 065	20 877	22 045	8 879	6 908	6 437	4 344	106 093
1991	-	0	4 344	42 760	9 956	6 009	8 962	8 250	2 638	1 762	2 904	87 585
1992	-	44	582	10 202	47 067	11 947	6 871	7 112	6 234	3 156	6 069	99 284
1993	-	298	4 311	4 345	24 023	28 219	4 387	2 460	2 516	1 540	1 772	73 871
1994	-	0	0	6 553	10 534	31 558	47 627	9 076	7 049	3 229	5 405	121 031
1995	-	0	1 738	6 333	39 879	15 572	32 348	34 437	5 907	3 469	3 940	143 623
1996	-	44	1 257	17 801	17 071	27 380	6 180	9 891	10 327	1 532	1 750	93 233
1997	-	88	1 479	11 613	33 452	10 224	10 099	1 848	3 271	2 758	874	75 706
1998	-	51	1 504	11 511	26 771	24 579	6 198	7 239	895	1 727	2 449	82 924
1999	-	690	7 392	30 630	29 595	32 392	11 766	2 850	1 817	545	629	118 306
2000	-	793	5 140	25 968	66 271	17 565	7 648	4 027	891	766	360	129 429
2001	-	1 194	7 118	27 441	34 008	33 879	5 257	2 541	788	175	249	112 650
2002	-	76	1 575	28 784	29 655	20 502	12 786	3 268	1 003	817	404	98 870
2003	-	0	4 767	21 265	29 962	20 051	14 752	17 730	4 407	2 061	1 267	116 262
2004	-	71	2 534	32 296	20 952	10 157	5 960	4 393	3 108	677	433	80 581
2005	-	802	3 145	14 180	63 862	24 200	8 867	4 859	3 020	2 067	221	125 223
2006	-	800	1 971	9 311	45 589	42 080	6 875	2 043	3 238	1 366	656	113 929
2007	-	1 491	15 022	9 848	18 055	37 702	25 449	5 486	1 033	891	572	115 549
2008	-	1 385	8 483	23 989	13 395	19 552	15 786	15 442	1 781	622	865	101 300
2009	-	179	5 180	28 524	40 887	10 914	10 705	6 167	1 707	302	253	104 818
2010	-	6	1 811	9 233	36 773	29 886	9 227	6 004	4 389	1 798	199	99 326
2011	-	1 177	749	3 757	8 691	29 240	25 258	3 118	3 147	2 909	779	78 825
2012	-	42	388	470	9 539	18 289	26 715	11 777	2 342	2 758	954	73 274
2013	-	527	447	3 957	10 840	31 420	22 142	11 196	2 536	201	108	83 374
2014	-	36	1 783	688	7 144	11 121	26 082	12 220	8 085	194	60	67 413
2015	-	229	1 252	466	2 966	20 616	14 344	17 718	5 721	1 135	226	64 673
2016	-	19	359	2 375	5 981	15 159	18 760	12 861	4 221	1 973	350	57 931
2017	-	112	102	637	5 314	7 943	14 284	16 573	5 793	2 069	364	52 829
2018	-	0	0	1 162	10 667	14 010	11 400	5 411	2 135	787	1	45 573
2019	-	0	38	986	9 029	17 250	6 587	4 186	1 324	428	9	39 837
b) Centı	rale											
1978	-	20	962	4 988	2 470	723	1 042	3 477	195	118	2 787	16 782
1979	-	0	144	3 673	2 048	3 849	901	2 115	1 898	1 314	7 211	23 153
1980	-	117	1 384	1 235	2 417	630	315	242	297	121	110	6 868
1981	-	2	1 001	6 248	1 912	1 150	461	629	31	83	238	11 755

						Capture	es selon l'á	àge				
Année	1	2	3	4	5	6	7	8	9	10	11+	Total
1982	-	1	45	1 658	1 568	212	139	116	0	0	31	3 770
1983	-	98	3 334	7 272	2 507	2 772	520	168	57	14	14	16 756
1984	-	2	56	2 006	2 818	982	1 028	321	78	11	6	7 308
1985	-	0	11	235	1 370	1 010	562	536	200	41	1	3 966
1986	-	0	47	1 600	1 328	2 455	1 120	435	200	27	46	7 258
1987	-	1	300	935	1 761	1 533	3 063	292	267	299	19	8 470
1988	-	0	817	3 091	2 817	2 473	1 136	1 189	886	15	0	12 424
1989	-	0	16	772	1 431	1 274	694	428	378	171	139	5 303
1990	-	0	219	1 923	1 390	1 508	2 655	548	382	298	64	8 987
1991	-	0	17	5 973	1 617	1 332	1 749	2 066	1 271	585	1 335	15 945
1992	-	0	12	3 880	9 415	1 284	534	304	220	106	249	16 004
1993	-	0	0	350	6 612	8 298	1 417	597	415	470	716	18 875
1994	-	0	28	5 939	3 033	10 738	13 998	1 774	635	577	1 025	37 747
1995	-	0	0	214	10 009	3 408	12 249	10 646	1 363	243	4 272	42 404
1996	-	0	11	3 592	2 188	12 193	1 116	3 225	3 647	843	883	27 698
1997	-	0	285	4 835	10 979	1 980	4 125	782	938	1 026	639	25 589
1998	-	0	82	5 383	4 855	10 417	1 911	3 426	737	1 652	2 656	31 119
1999	-	0	0	9 710	12 903	5 104	3 222	1 303	2 854	278	1 330	36 704
2000	-	0	13	11 054	21 136	7 789	2 516	1 394	414	369	165	44 850
2001	-	0	383	5 519	13 582	9 633	2 919	630	208	0	293	33 167
2002	-	0	595	9 546	8 399	7 636	7 127	1 310	172	146	220	35 151
2003	-	0	123	5 648	11 842	5 541	3 737	3 739	839	110	156	31 735
2004	-	0	15	5 579	10 122	7 144	5 096	4 523	2 652	920	175	36 226
2005	-	154	1 321	11 028	21 752	14 886	4 523	3 630	2 614	1 124	183	61 215
2006	-	1	28	1 890	8 314	13 874	5 124	2 613	1 949	1 544	523	35 860
2007	-	0	369	1 435	3 466	9 831	9 929	3 822	1 528	764	463	31 607
2008	-	0	1 426	12 175	2 575	4 491	5 326	8 515	1 536	1 451	332	37 827
2009	-	0	101	8 185	14 543	3 368	7 438	3 578	1 245	530	245	39 233
2010	-	0	8	1 529	11 467	17 000	4 954	4 333	2 473	1 154	644	43 562
2011	-	0	0	405	2 089	12 157	15 610	2 973	2 237	2 101	631	38 203
2012	-	0	7	147	1 935	8 679	11 646	8 142	925	526	443	32 450
2013	-	0	7	590	1 125	7 042	10 527	6 451	2 488	201	43	28 474
2014	-	0	0	0	3 452	2 161	7 389	8 144	1 536	755	0	23 437
2015	-	0	0	165	1 052	10 058	4 474	7 592	2 987	1 060	0	27 388
2016	-	0	18	279	1 227	7 869	6 459	3 603	1 610	570	0	21 634
2017	-	0	25	128	1 032	3 573	6 651	8 169	4 645	638	23	24 884
2018	-	0	0	76	849	3 125	8 219	6 071	610	407	0	19 357
2019	-	0	0	103	187	1 689	5 691	2 696	3 532	1 081	216	15 195
c) Sud												
1978	-	1 283	17 975	6 591	2 989	994	1 523	2 940	587	693	4 015	39 590
1979	-	31	333	5 183	2 950	1 817	464	769	477	134	2 217	14 375
1980	-	467	26 206	12 367	21 714	9 522	4 666	1 134	1 224	1 154	712	79 166
1981	-	528	7 044	10 729	2 648	1 150	661	326	165	99	24	23 374
1982	-	0	354	7 033	3 642	3 229	2 347	820	333	82	38	17 878
1983	-	3	548	7 570	5 073	3 269	1 016	1 267	478	48	162	19 434
1984	-	0	397	15 010	5 562	4 586	2 288	703	381	110	23	29 060
1985	-	0	89	3 442	15 465	6 385	3 221	2 234	509	333	29	31 707
1986	-	407	1 012	20 509	5 750	12 071	3 354	1 636	487	106	164	45 496
1987	-	5	1 093	11 149	12 826	6 146	14 119	6 233	4 296	1 856	1 324	59 047
1988	-	44	405	4 392	16 739	9 682	4 786	6 672	3 048	1 000	683	47 451
1989	-	0	33	1 355	2 076	8 332	4 204	1 803	2 446	622	300	21 171

	•					Capture	es selon l'á	àge				
Année	1	2	3	4	5	6	7	8	9	10	11+	Total
1990	-	0	875	6 772	6 732	7 712	36 015	9 853	4 322	4 591	2 472	79 344
1991	-	0	11	4 956	1 670	1 339	1 201	3 899	1 365	840	1 190	16 471
1992	-	0	74	1 607	7 934	1 495	938	1 681	3 465	1 361	1 329	19 884
1993	-	0	0	302	3 227	3 902	982	405	586	485	1 123	11 012
1994	-	0	1	3 228	1 563	14 241	19 458	2 410	3 386	5 586	9 558	59 431
1995	-	6	466	555	9 072	3 004	13 104	11 620	2 814	3 199	7 433	51 273
1996	-	3	7	4 669	4 030	15 424	6 026	12 269	11 236	2 942	8 751	65 357
1997	-	16	672	4 225	24 096	2 776	9 954	1 688	3 329	3 017	2 766	52 539
1998	-	0	3	9 405	4 526	16 058	4 079	9 381	1 842	3 702	4 920	53 916
1999	-	23	936	10 886	35 641	6 475	14 436	4 031	4 840	1 612	2 826	81 706
2000	-	236	2 003	11 839	33 520	19 907	3 447	4 144	799	1 195	835	77 925
2001	-	831	6 279	4 653	27 094	25 726	15 492	3 327	2 429	684	1 134	87 649
2002	-	954	2 799	23 768	12 044	21 649	17 528	5 119	1 304	1 382	721	87 268
2003	-	201	4 095	11 042	48 276	10 210	18 279	12 323	3 244	565	738	108 973
2004	-	448	2 059	11 615	14 605	27 486	7 034	6 253	3 620	1 066	645	74 831
2005	-	0	3	424	12 345	20 406	31 839	6 051	6 169	1 732	385	79 354
2006	-	240	411	3 085	8 157	20 671	21 003	15 521	5 133	2 724	760	77 705
2007	-	0	562	301	9 253	13 640	24 798	15 408	4 955	2 952	941	72 810
2008	-	0	292	4 858	1 774	6 585	12 063	15 009	6 873	3 646	2 818	53 918
2009	-	0	411	2 398	20 654	10 345	20 617	6 815	3 615	5 240	2 610	72 705
2010	-	0	65	3 008	9 270	32 445	8 390	10 419	6 814	3 819	2 440	76 670
2011	-	0	1	312	7 530	7 478	25 275	8 102	4 030	2 350	4 185	59 263
2012	-	0	0	64	1 410	13 351	14 788	15 946	1 718	481	1 611	49 369
2013	-	18	15	1 843	3 131	12 655	24 697	9 433	5 318	312	207	57 629
2014	-	0	0	669	5 737	3 967	11 170	17 913	4 495	1 963	58	45 972
2015	-	0	61	359	2 207	11 323	5 712	13 762	4 082	2 100	261	39 867
2016	-	694	1819	1697	5 297	10 631	5 826	4 287	1 947	570	39	27 032
2017	-	105	100	424	411	3 834	7 528	2 667	1 004	208	19	15 732
2018	-	0	0	25	1 043	4 285	4 227	4 893	938	439	77	15 927
2019	-	0	0	54	80	3 369	8 388	3 536	2 599	826	352	19 204

Tableau 7. Poids selon l'âge des reproducteurs d'automne pour les engins fixes dans la zone de pêche du Hareng 4T, par région : a) nord, b) centrale, c) sud.

Année	Poids selon l'âge										
	1	2	3	4	5	6	7	8	9	10	11
a) Nord											
1978	-	-	0,200	0,259	0,296	0,339	0,347	0,379	0,416	0,396	0,44
1979	-	-	0,215	0,265	0,307	0,332	0,384	0,401	0,417	0,434	0,45
1980	-	0,212	0,205	0,239	0,296	0,308	0,289	0,319	0,362	0,376	
1981	-	0,208	0,220	0,255	0,307	0,349	0,404	0,419	0,452	0,466	0,48
1982	-	-	0,226	0,271	0,304	0,344	0,384	0,425	0,425	0,439	0,44
1983	_	_	0,199	0,251	0,292	0,325	0,364	0,404	0,391	0,506	0,46
1984	_	-	0,232	0,255	0,295	0,340	0,356	0,398	0,434	0,391	0,50
1985	_	_	0,224	0,230	0,297	0,343	0,373	0,391	0,414	0,454	0,5
1986	_	_	0,216	0,265	0,303	0,333	0,376	0,396	0,407	0,446	0,4
1987	_	0,174	0,237	0,252	0,289	0,323	0,355	0,380	0,400	0,415	0,4
1988	_		0,212	0,260	0,285	0,311	0,341	0,367	0,393	0,389	0,4
1989	_	_	0,223	0,256	0,295	0,327	0,352	0,377	0,391	0,420	0,4
1990	_	0,148	0,198	0,248	0,287	0,325	0,350	0,368	0,389	0,408	0,4
1991	_	-	0,196	0,230	0,263	0,299	0,330	0,349	0,364	0,362	0,3
1992		_	0,200	0,230	0,258	0,283	0,312	0,345	0,355	0,362	0,3
1993	_	-	0,200	0,229	0,239	0,265	0,312	0,343	0,336	0,303	0,4
1993	-					0,265					0,3
1994	-	-	- 0.107	0,209	0,237		0,288	0,315	0,348	0,353	
	-	-	0,187	0,205	0,227	0,247	0,282	0,303	0,333	0,361	0,3
1996	-	-	-	0,221	0,244	0,258	0,281	0,306	0,329	0,376	0,4
1997	-	-	0,191	0,206	0,236	0,260	0,275	0,308	0,337	0,351	0,4
1998	-	-	0,149	0,209	0,232	0,258	0,286	0,293	0,330	0,355	0,3
1999	-	-	0,166	0,212	0,237	0,250	0,279	0,301	0,327	0,370	0,3
2000	-	-	0,177	0,214	0,235	0,260	0,275	0,304	0,317	0,334	0,3
2001	-	-	0,172	0,211	0,237	0,255	0,282	0,305	0,330	0,347	0,3
2002	-	0,031	0,181	0,220	0,240	0,264	0,282	0,296	0,326	0,332	0,3
2003	-	-	0,158	0,209	0,238	0,255	0,278	0,296	0,313	0,333	0,3
2004	-	-	0,149	0,200	0,218	0,252	0,263	0,285	0,308	0,329	0,3
2005	-	-	0,188	0,196	0,225	0,240	0,261	0,285	0,296	0,296	0,3
2006	-	-	0,158	0,202	0,220	0,241	0,258	0,285	0,300	0,303	0,3
2007	-	-	0,156	0,197	0,204	0,225	0,242	0,254	0,290	0,292	0,3
2008	-	-	0,159	0,190	0,214	0,228	0,244	0,259	0,264	0,294	0,3
2009	-	-	0,156	0,190	0,202	0,233	0,251	0,261	0,258	0,282	0,2
2010	-	-	-	0,179	0,206	0,217	0,238	0,250	0,261	0,279	0,2
2011	-	-	-	0,184	0,197	0,216	0,222	0,258	0,263	0,265	0,2
2012	-	-	0,126	0,158	0,183	0,204	0,214	0,225	0,250	0,250	0,2
2013	_	_	, -	0,171	0,195	0,205	0,215	0,231	0,242	0,286	0,2
2014	_	0,114	_	0,202	0,213	0,220	0,230	0,241	0,243	0,292	0,3
2015	_	-	_	0,173	0,200	0,212	0,227	0,229	0,241	0,225	0,2
2016	_	_	0,158	0,176	0,198	0,212	0,215	0,223	0,236	0,239	0,2
2017	_	_	-	0,182	0,190	0,205	0,221	0,227	0,238	0,254	0,2
2017	-	_		0,102	0,190	0,207	0,221	0,227	0,230	0,234	0,2
2019	-	-	0,118 -	0,171	0,197	0,207	0,225	0,231	0,247	0,271	0,2
	-	-	-	0,100	0,190	0,203	0,213	0,222	0,228	0,239	0,2
) Centrale			0.000	0.050	0.004	0.205	0.070	0.202	0.446	0.242	0.4
1978	-	-	0,200	0,259	0,261	0,305	0,279	0,363	0,416	0,313	0,4
1979	-	-	0,183	0,224	0,269	0,278	0,315	0,369	0,420	0,419	0,4
1980	-	-	0,244	0,249	0,353	0,384	0,354	0,390	0,546	0,504	0,5
1981	-	-	0,221	0,255	0,294	0,344	0,360	0,393	0,501	0,473	0,4

		Poids selon l'âge									
Annáo	1	2	3	4	5	6	age 7	8	9	10	11+
Année 1982	1		0,247	0,270					<u> </u>		0,499
1983	-			0,270	0,305	0,330	0,424	0,449	-	-	0,499
1984	-	-	0,183		0,263	0,302	0,340	0,430	0.422	0.494	0.540
1985	-	-	0,225	0,227	0,253	0,301	0,344	0,397	0,433	0,484	0,540
1986	-	-	0,224	0,259	0,302	0,331	0,369	0,391	0,414	0,454	0,563
1987	-	-	0,194	0,209	0,244	0,276	0,347	0,397	0,407	0,446	0,453
1988	-	-	0,249	0,230	0,261	0,229	0,326	0,296	0,361	0,249	0,402
1989	-	-	0,234	0,281	0,305	0,357	0,362	0,413	0,439	0,366	0,420
	-	-	0,224	0,249	0,278	0,324	0,336	0,335	0,384	0,410	0,419
1990	-	-	0,194	0,236	0,284	0,324	0,342	0,355	0,365	0,404	0,431
1991	-	-	0,185	0,233	0,262	0,272	0,348	0,348	0,364	0,395	0,406
1992	-	-	0,199	0,219	0,242	0,269	0,285	0,328	0,348	0,358	0,412
1993	-	-	-	0,218	0,242	0,263	0,263	0,321	0,341	0,354	0,387
1994	-	-	-	0,213	0,243	0,270	0,294	0,309	0,328	0,399	0,427
1995	-	-	-	0,222	0,244	0,255	0,280	0,286	0,341	0,358	0,385
1996	-	-	<u>-</u>	0,226	0,250	0,261	0,304	0,310	0,318	0,393	0,432
1997	-	-	0,174	0,206	0,235	0,247	0,256	0,295	0,320	0,314	0,387
1998	-	-	0,176	0,219	0,234	0,265	0,286	0,279	0,336	0,343	0,388
1999	-	-	-	0,210	0,237	0,244	0,275	0,296	0,283	0,351	0,362
2000	-	-	0,111	0,214	0,234	0,260	0,273	0,300	0,318	0,311	0,366
2001	-	-	0,168	0,205	0,233	0,254	0,277	0,290	0,303	-	0,308
2002	-	-	0,191	0,219	0,244	0,257	0,288	0,293	0,327	0,327	0,311
2003	-	-	0,170	0,210	0,234	0,260	0,275	0,301	0,312	0,359	0,390
2004	-	-	0,146	0,208	0,229	0,248	0,268	0,286	0,310	0,305	0,362
2005	-	-	-	0,200	0,227	0,240	0,266	0,285	0,303	0,309	0,430
2006	-	-	-	0,197	0,224	0,245	0,260	0,279	0,297	0,310	0,317
2007	-	-	0,155	0,196	0,211	0,228	0,244	0,257	0,275	0,281	0,310
2008	-	-	0,120	0,169	0,206	0,220	0,237	0,242	0,252	0,272	0,300
2009	-	-	0,157	0,180	0,201	0,234	0,239	0,260	0,270	0,268	0,287
2010	-	-	0,139	0,176	0,202	0,213	0,228	0,246	0,255	0,274	0,269
2011	-	-	0,104	0,175	0,197	0,215	0,226	0,231	0,264	0,266	0,283
2012	-	-	0,115	0,153	0,181	0,199	0,212	0,218	0,241	0,262	0,280
2013	-	-	0,131	0,156	0,194	0,198	0,213	0,227	0,232	0,251	0,284
2014	-	-	-	-	0,189	0,209	0,212	0,228	0,231	0,242	0,244
2015	-	-	-	0,195	0,216	0,211	0,227	0,229	0,245	0,247	-
2016	-	-	0,129	0,182	0,22	0,226	0,232	0,24	0,247	0,259	-
2017	-	-	0,134	0,174	0,2	0,212	0,213	0,225	0,234	0,251	-
2018	-	-	-	0,178	0,190	0,209	0,222	0,227	0,226	0,232	-
2019	-	-	-	0,172	0,179	0,201	0,209	0,222	0,225	0,238	0,248
c) Sud											
1978	-	0,077	0,133	0,192	0,228	0,236	0,295	0,318	0,331	-	0,338
1979	0,023	0,132	0,186	0,243	0,277	0,314	0,357	0,387	0,417	0,430	0,358
1980	-	0,212	0,205	0,245	0,297	0,315	0,324	0,340	0,358	0,396	0,351
1981	-	0,156	0,220	0,271	0,329	0,381	0,416	0,422	0,448	0,469	0,488
1982	-	-	0,210	0,263	0,297	0,330	0,371	0,360	0,391	0,357	0,404
1983	-	-	0,195	0,245	0,278	0,299	0,333	0,359	0,368	0,398	0,418
1984	-	-	0,212	0,242	0,282	0,304	0,339	0,400	0,405	0,406	0,496
1985	-	-	0,197	0,248	0,281	0,314	0,346	0,368	0,404	0,417	0,445
1986	-	0,175	0,189	0,240	0,277	0,311	0,343	0,361	0,385	0,427	0,348
1987	-	-	0,230	0,241	0,276	0,312	0,333	0,361	0,378	0,385	0,429
1988	-	_	0,226	0,246	0,287	0,322	0,352	0,381	0,403	0,416	0,446
1989	-	_	0,171	0,234	0,262	0,312	0,331	0,373	0,390	0,391	0,440
			•	•	•	-	•	-	-	•	•

					Doio	la aalaa l'	Âga				
Annás —	1	2	3	4	5	ls selon l' 6	age 7	8	9	10	11+
Année 1990			0,192	0,240	0,277	0,325	0,347	0,372	0,398	0,410	0,428
1991	_	_	0,192	0,240	0,277	0,323	0,335	0,372	0,369	0,392	0,420
1992	_		0,170	0,215	0,252	0,280	0,333	0,338	0,344	0,368	0,388
1993	_		_	0,213	0,232	0,262	0,268	0,323	0,357	0,366	0,300
1994	_	_	_	0,213	0,222	0,258	0,284	0,322	0,331	0,360	0,376
1995	_	0,103	0,135	0,215	0,227	0,258	0,275	0,298	0,335	0,356	0,383
1996	_	-	0,172	0,217	0,244	0,254	0,278	0,306	0,322	0,347	0,386
1997	_	_	0,165	0,203	0,232	0,271	0,279	0,320	0,323	0,342	0,399
1998	_	_	-	0,211	0,237	0,257	0,283	0,296	0,319	0,331	0,369
1999	_	_	0,161	0,209	0,236	0,253	0,269	0,300	0,306	0,344	0,346
2000	_	_	0,150	0,203	0,227	0,256	0,281	0,300	0,326	0,329	0,360
2001	_	_	0,160	0,209	0,230	0,248	0,270	0,291	0,306	0,336	0,301
2002	_	_	-	0,216	0,233	0,249	0,271	0,288	0,306	0,308	0,337
2003	_	_	0,169	0,203	0,227	0,247	0,259	0,278	0,302	0,306	0,327
2004	_	_	, <u>-</u>	0,206	0,224	0,237	0,254	0,282	0,282	0,303	0,308
2005	-	_	0,188	0,194	0,219	0,234	0,245	0,257	0,272	0,286	0,307
2006	_	_	0,169	0,190	0,215	0,231	0,249	0,257	0,276	0,279	0,299
2007	_	_	0,146	0,163	0,200	0,218	0,234	0,242	0,250	0,258	0,265
2008	-	0,093	0,138	0,160	0,206	0,214	0,227	0,237	0,248	0,257	0,271
2009	-	-	0,143	0,186	0,201	0,228	0,246	0,260	0,274	0,268	0,267
2010	-	_	0,107	0,161	0,205	0,214	0,241	0,257	0,264	0,281	0,296
2011	-	-	0,111	0,146	0,176	0,204	0,217	0,249	0,257	0,258	0,269
2012	-	-	-	0,150	0,170	0,193	0,216	0,221	0,239	0,270	0,265
2013	-	-	0,137	0,146	0,179	0,194	0,210	0,220	0,226	0,253	0,259
2014	-	-	-	0,157	0,175	0,200	0,201	0,213	0,237	0,231	0,272
2015	-	-	0,151	0,165	0,188	0,193	0,194	0,210	0,232	0,218	0,256
2016	-	-	0,12	0,161	0,208	0,206	0,214	0,22	0,237	0,235	0,260
2017	-	-	0,127	0,168	0,169	0,201	0,207	0,213	0,224	0,248	0,240
2018	-	-	-	0,129	0,156	0,171	0,189	0,199	0,216	0,229	0,246
2019	-	-	-	0,164	0,171	0,189	0,196	0,205	0,210	0,220	0,225

Tableau 8. Captures selon l'âge des reproducteurs de printemps (milliers) pour les engins mobiles dans la zone de pêche du Hareng 4T.

		Captures selon l'âge										
Année	1	2	3	4	5	6	7	8	9	10	11+	Total
1978	1 390	14 933	3 664	24 366	3 053	4 619	1 293	734	565	2 877	599	58 093
1979	11 644	14 535	4 553	4 800	25 927	4 014	6 971	2 139	1 638	1 501	12 300	90 021
1980	737	11 101	10 404	1 790	1 878	11 154	8 852	4 207	2 229	751	286	53 389
1981	0	362	1 105	939	9	881	347	699	264	417	7	5 031
1982	0	2 343	3 816	400	53	10	89	165	210	2	19	7 109
1983	0	1 349	8 017	3 838	449	1	65	71	89	0	0	13 878
1984	0	619	1 831	4 190	2 901	291	0	71	41	0	0	9 943
1985	601	1 132	4 581	2 451	3 085	1 153	77	0	0	0	294	13 373
1986	0	4 194	3 982	9 551	7 647	7 410	3 070	212	514	0	60	36 640
1987	0	1 476	1 977	2 945	10 495	7 260	7 060	3 696	0	0	93	35 002
1988	2 710	6 291	2 125	1 546	2 730	11 772	9 514	5 399	2 434	0	2 155	46 676
1989	374	425	2 982	4 949	1 644	4 682	10 289	4 223	2 285	430	118	32 401
1990	46	5 182	6 250	7 301	4 236	2 645	1 504	5 841	2 964	737	318	37 024
1991	32	1 825	9 393	3 064	2 640	1 271	654	1 000	890	653	1 307	22 730
1992	5	860	2 808	7 350	3 461	2 489	707	448	790	527	453	19 896
1993	35	3 093	2 374	6 696	5 403	2 662	1 577	974	1 309	902	2 289	27 315
1994	0	52	4 057	2 255	3 477	5 930	2 435	1 349	647	166	1 251	21 620
1995	0	1 418	1 588	17 081	5 809	4 899	7 749	1 675	1 024	280	1 708	43 231
1996	6	385	2 942	919	11 291	3 589	2 107	1 965	370	388	138	24 100
1997	83	419	1 405	3 457	1 246	7 719	911	1 610	1 444	146	466	18 906
1998	5	298	796	1 930	1 524	213	1 767	461	337	374	254	7 959
1999	267	1 771	2 841	4 854	3 057	1 516	933	2 949	987	480	579	20 234
2000	294	1 314	3 254	3 739	1 485	891	354	305	491	70	92	12 290
2001	557	4 259	3 721	4 852	2 521	1 130	1 157	448	195	288	148	19 276
2002	55	744	3 135	1 060	729	195	554	109	42	7	42	6 670
2003	26	209	654	869	327	279	270	9	5	40	22	2 709
2004	103	487	825	433	360	135	234	17	10	1	17	2 621
2005	372	1 816	1 864	2 571	259	336	52	0	71	0	0	7 340
2006	61	236	898	521	1 825	620	138	24	6	5	0	4 333
2007	524	3 651	3 605	2 396	1 786	2 368	700	256	15	0	113	15 414
2008	268	3 474	1 888	765	1 209	587	774	137	93	16	28	9 239
2009	7	441	1 670	227	171	172	441	17	0	173	38	3 358
2010	0	116	406	941	506	713	634	74	8	0	1	3 398
2011	19	629	814	669	682	577	576	73	106	356	23	4 525
2012	0	17	404	454	279	237	169	9	33	0	21	1 624
2013	1	124	282	831	1 120	703	621	442	41	0	18	4 185
2014	0	489	191	714	309	656	372	213	0	37	82	3 063
2015	0	564	560	206	270	554	864	457	190	22	17	3 704
2016	0	271	495	138	91	41	114	38	86	0	0	1 274
2017	2	102	101	140	18	2	5	1	0	0	0	369
2018	0	0	58	325	660	128	176	268	101	0	0	1 715
2019	0	0	43	687	542	1 469	258	100	49	0	0	3 147

Tableau 9. Poids selon l'âge des reproducteurs de printemps pour les engins mobiles dans la zone de pêche du Hareng 4T.

-					Poid	ls selon l'á	àge				
Année	1	2	3	4	5	6	7	8	9	10	11+
1978	0,078	0,131	0,182	0,262	0,248	0,281	0,301	0,308	0,352	0,381	0,389
1979	0,107	0,173	0,193	0,212	0,261	0,259	0,303	0,305	0,340	0,342	0,364
1980	0,114	0,158	0,165	0,217	0,262	0,273	0,258	0,264	0,275	0,364	0,341
1981	0,027	0,158	0,203	0,274	0,272	0,425	0,306	0,284	0,290	0,316	0,417
1982	0,038	0,133	0,225	0,266	0,253	0,315	0,463	0,308	0,339	0,436	0,451
1983	-	0,145	0,188	0,231	0,278	0,270	0,315	0,243	0,411	-	-
1984	0,063	0,121	0,192	0,229	0,262	0,291	0,300	0,380	0,351	0,376	-
1985	0,083	0,137	0,221	0,244	0,297	0,313	0,384	-	-	-	0,384
1986	-	0,144	0,196	0,249	0,283	0,315	0,339	0,349	0,315	-	0,392
1987	-	0,156	0,189	0,251	0,304	0,332	0,358	0,375	-	-	0,527
1988	0,082	0,115	0,176	0,251	0,301	0,337	0,339	0,393	0,412	-	0,442
1989	0,090	0,142	0,212	0,258	0,270	0,313	0,343	0,363	0,385	0,411	0,466
1990	0,078	0,173	0,197	0,246	0,280	0,294	0,333	0,342	0,352	0,409	0,363
1991	0,082	0,143	0,181	0,215	0,248	0,264	0,322	0,334	0,357	0,349	0,401
1992	0,056	0,117	0,148	0,200	0,241	0,272	0,292	0,323	0,327	0,338	0,385
1993	0,070	0,109	0,152	0,179	0,195	0,235	0,252	0,290	0,281	0,311	0,347
1994	-	0,145	0,156	0,188	0,207	0,234	0,258	0,269	0,274	0,316	0,330
1995	-	0,105	0,146	0,182	0,202	0,226	0,247	0,278	0,303	0,314	0,315
1996	0,073	0,116	0,169	0,205	0,224	0,233	0,246	0,276	0,324	0,300	0,378
1997	0,068	0,124	0,155	0,192	0,209	0,249	0,271	0,287	0,308	0,329	0,326
1998	0,076	0,109	0,145	0,171	0,217	0,203	0,248	0,263	0,279	0,296	0,402
1999	0,063	0,118	0,156	0,187	0,232	0,265	0,277	0,294	0,309	0,317	0,319
2000	0,068	0,131	0,159	0,186	0,218	0,247	0,277	0,293	0,294	0,284	0,332
2001	0,062	0,118	0,149	0,190	0,209	0,242	0,256	0,296	0,327	0,330	0,323
2002	0,061	0,106	0,149	0,176	0,206	0,213	0,251	0,281	0,288	0,288	0,329
2003	0,078	0,099	0,141	0,177	0,199	0,238	0,251	0,282	0,291	0,296	0,330
2004	0,068	0,110	0,146	0,162	0,209	0,231	0,251	0,300	0,314	0,290	0,367
2005	0,079	0,120	0,145	0,163	0,188	0,210	0,197	-	0,261	-	-
2006	0,063	0,110	0,145	0,171	0,179	0,203	0,234	0,300	0,350	0,286	-
2007	0,060	0,118	0,145	0,177	0,181	0,197	0,191	0,213	0,300	-	0,198
2008	0,076	0,128	0,141	0,182	0,199	0,207	0,222	0,245	0,230	0,350	0,253
2009	0,033	0,116	0,139	0,191	0,195	0,210	0,172	0,236	-	0,201	0,212
2010	-	0,109	0,134	0,162	0,167	0,200	0,211	0,241	0,255	-	0,269
2011	0,058	0,083	0,122	0,124	0,174	0,169	0,199	0,210	0,191	0,164	0,192
2012	-	0,083	0,123	0,151	0,177	0,184	0,219	0,242	0,216	-	0,236
2013	0,060	0,100	0,127	0,149	0,170	0,183	0,206	0,209	0,227	-	0,287
2014	-	0,099	0,129	0,145	0,176	0,180	0,179	0,212	-	0,194	0,206
2015	-	0,105	0,116	0,140	0,158	0,183	0,194	0,188	0,249	0,268	0,281
2016	-	0,104	0,123	0,142	0,156	0,160	0,185	0,211	0,195	-	-
2017	0,104	0,108	0,126	0,131	0,137	0,178	0,151	0,194	0,240	-	-
2018	-	-	0,125	0,128	0,153	0,154	0,176	0,167	0,170	-	-
2019	-	-	0,135	0,140	0,154	0,174	0,183	0,197	0,230	-	-

Tableau 10. Captures selon l'âge des reproducteur d'automne (en milliers) pour les engins mobiles dans la zone de pêche du Hareng 4T, par région : a) nord, b) centrale, c) sud.

	Captures selon l'âge											
Année	1	2	3	4	5	6	7	8	9	10	11+	total
a) Nord												
1978	0	78	4 003	12 990	16 826	2 873	2 860	10 286	1 055	512	11 617	62 963
1979	154	2 747	7 471	6 113	4 061	3 067	1 093	720	1 800	277	2 683	31 183
1980	0	2 174	17 021	4 658	1 969	730	870	402	482	402	235	29 477
1981	0	234	2 726	3 429	258	44	65	4	36	0	0	6 151
1982	0	0	8 115	2 280	5 593	494	67	84	63	21	202	15 713
1983	0	0	428	1 645	610	1 918	238	30	30	4	30	5 651
1984	0	0	682	2 731	3 196	1 560	1 122	205	36	6	29	9 497
1985	0	0	1 582	2 076	5 969	5 434	2 505	1 910	1 743	522	0	21 863
1986	0	85	1 372	1 723	2 781	5 476	3 343	1 485	1 548	198	211	18 550
1987	0	1 627	3 113	1 979	910	1 293	3 518	3 706	811	825	345	17 441
1988	0	0	2 187	2 615	3 030	1 430	3 033	2 609	995	1 326	1 558	22 622
1989	0	0	1 053	2 159	4 305	4 358	1 819	2 159	2 593	1 511	1 156	21 897
1990	0	71	4 018	2 950	3 203	1 815	1 576	1 271	1 782	846	261	17 319
1991	0	0	4 974	17 006	3 587	1 000	1 679	1 078	275	477	1 335	31 408
1992	0	0	579	4 637	11 898	2 348	1 564	1 074	1 084	914	3 912	27 750
1993	0	0	4 383	2 596	4 064	6 268	1 737	1 416	1 354	1 497	1 681	26 404
1994	0	0	0	6 300	2 312	5 250	6 666	1 029	706	463	871	24 063
1995	0	0	1 891	3 504	17 824	5 557	7 296	7 799	1 505	527	905	46 876
1996	0	0	1 257	9 473	3 269	7 600	2 168	1 610	1 196	318	271	26 671
1997	0	0	2 290	4 317	5 437	1 413	2 302	423	742	413	254	18 378
1998	0	0	1 481	2 817	2 842	1 690	468	1 778	108	455	144	11 826
1999	0	690	7 217	10 835	5 770	2 761	1 239	767	490	183	112	30 065
2000	0	793	4 875	8 784	10 216	2 650	1 369	582	223	272	136	29 899
2001	144	1 194	6 603	4 579	5 105	4 098	705	490	228	0	21	23 166
2002	0	76	1 363	7 505	6 378	4 178	4 009	975	321	346	217	25 367
2003	0	0	4 531	9 687	5 600	3 695	3 219	3 961	960	549	318	32 520
2004	0	71	2 533	8 511	3 204	1 537	741	344	333	40	0	17 314
2005	0	802	3 145	9 147	7 649	1 800	240	100	159	42	38	23 122
2006	0	800	1 966	3 218	7 747	5 366	1 417	493	315	239	54	21 616
2007	0	1 491	14 991	4 688	2 787	2 987	1 571	390	81	3	12	29 000
2008	0	1 385	8 080	5 566	1 678	834	607	771	3	24	0	18 948
2009	0	179	4 648	5 917	2 313	295	211	51	5	0	0	13 618
2010	0	0	1 811	6 543	10 381	6 966	1 272	690	204	90	0	27 845
2011	0	0	749	2 101	2 304	2 477	1 015	368	8	59	6	10 263
2012	0	0	379	333	1 085	827	485	119	26	13	2	3 301
2013	17	0	447	3 702	3 534	4 630	3 414	1 446	762	93	45	18 700

	Captures selon l'âge											
Année	1	2	3	4	5	6	7	8	9	10	11+	total
2014	0	36	0	769	3 890	2 468	2 904	1 572	1 052	104	0	14 697
2015	0	0	1 252	502	557	3 262	965	1 214	737	329	28	9 098
2016	0	0	1 168	2 045	1 658	656	806	344	148	60	16	7 264
2017	0	0	102	114	143	82	17	6	8	0	0	692
2018	0	0	0	313	463	1 649	1 762	736	456	586	1	5 950
2019	0	0	0	483	502	1 293	1 039	337	89	24	9	4 245
b) Centrale												
1978	0	20	933	4 614	2 041	574	723	1 891	197	63	2 166	13 288
1979	0	0	500	182	64	3 072	734	2 022	1 721	1 297	7 114	17 742
1980	0	117	1 096	419	333	239	90	251	665	149	551	3 448
1981	0	2	653	1 608	166	80	117	8	20	0	0	3 274
1982	0	0	73	252	415	22	4	9	0	0	28	1 108
1983	0	0	3 828	3 921	1 248	1 521	249	47	57	14	14	10 683
1984	0	0	51	323	653	239	223	60	10	1	2	1 566
1985	0	0	35	26	118	153	67	57	26	6	0	489
1986	0	0	51	60	62	82	45	17	19	2	1	401
1987	0	1	55	25	15	8	25	11	4	6	1	240
1988	0	0	194	50	27	23	33	28	15	1	0	292
1989	0	0	7	15	35	24	11	18	15	10	8	147
1990	0	0	89	90	77	33	28	15	25	9	1	320
1991	0	0	98	619	207	94	156	130	52	96	501	1 888
1992	0	0	9	371	548	130	79	33	30	23	150	1 946
1993	0	0	0	52	352	847	322	272	171	433	624	2 948
1994	0	0	0	157	85	311	383	49	22	44	81	1 293
1995	0	0	0	30	792	332	784	663	155	19	549	3 398
1996	0	0	11	1 366	305	676	197	225	169	89	60	3 505
1997	0	0	913	870	948	134	306	95	96	72	97	3 191
1998	0	0	68	303	564	1 690	151	140	141	360	427	3 839
1999	0	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	320	464	288	464	190	64	0	0	3	1 795
2003	0	0	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0	0	0
2005	0	154	1 321	8 673	7 234	3 128	988	583	515	229	116	22 941
2006	0	1	28	192	574	85	30	15	0	0	0	926
2007	0	0	176	238	37	322	118	87	19	31	8	1 036
2008	0	0	0	0	0	0	0	0	0	0	0	0
2009	0	0	0	0	0	0	0	0	0	0	0	0
2010	0	0	61	211	126	81	9	4	1	0	0	438

	Captures selon l'âge											
Année	1	2	3	4	5	6	7	8	9	10	11+	total
2011	0	0	0	0	0	0	0	0	0	0	0	0
2012	0	0	0	18	35	91	33	76	10	1	1	261
2013	0	0	0	447	212	543	1 060	571	565	82	17	3 307
2014	0	0	0	0	930	256	398	454	120	78	0	2 107
2015	0	0	0	231	108	906	253	261	185	49	0	1 810
2016	0	0	633	207	231	0	0	0	0	0	0	1 172
2017	0	0	98	7	18	33	7	2	6	0	0	155
2018	0	0	0	0	137	174	755	396	53	104	0	1 639
2019	0	0	0	0	0	0	0	0	0	0	0	0
c) Sud												
1978	0	1 253	16 471	5 727	2 628	890	1 469	2 846	592	693	4 007	36 647
1979	3	3 204	994	778	821	1 094	250	499	329	86	2 092	8 117
1980	0	653	23 220	10 725	19 568	9 324	3 900	1 139	1 437	1 194	1 064	72 306
1981	0	882	6 631	6 750	651	173	265	19	132	0	0	15 546
1982	0	0	700	1 053	954	324	65	63	41	5	33	5 157
1983	0	0	1 452	1 298	785	701	233	89	138	12	47	4 476
1984	0	0	343	1 770	1 140	950	449	121	43	4	7	5 290
1985	0	0	287	386	1 327	969	383	237	67	46	0	3 911
1986	0	262	1 101	836	272	408	138	63	47	8	5	2 750
1987	0	5	205	286	111	36	120	178	56	39	28	1 661
1988	0	0	117	101	193	106	173	185	64	75	71	1 374
1989	0	0	14	27	51	159	68	76	98	36	18	586
1990	0	0	356	318	373	170	377	263	277	134	34	2 823
1991	0	0	66	514	214	95	107	245	55	138	447	1 950
1992	0	0	74	400	907	523	400	335	581	392	806	4 150
1993	0	0	0	45	172	398	223	185	241	447	980	1 720
1994	0	0	0	2 036	1 272	4 691	6 226	618	1 076	858	1 777	18 229
1995	0	22	474	263	1 789	537	1 712	1 884	370	398	1 032	8 340
1996	0	0	1 444	2 400	2 169	2 433	1 720	1 383	729	424	751	13 927
1997	0	0	1 675	1 125	3 477	887	2 007	381	542	303	564	10 943
1998	0	0	3	77	122	353	118	490	91	273	697	2 240
1999	0	23	846	2 005	3 480	2 109	4 730	2 132	1 738	460	1 233	18 756
2000	0	236	1 926	3 738	1 875	1 020	371	459	83	47	118	9 875
2001	2	831	6 223	2 837	4 609	4 693	1 956	1 337	836	250	310	23 885
2002	0	954	2 799	6 060	4 530	4 663	3 411	870	232	455	174	24 148
2003	0	201	4 034	5 966	6 382	3 697	4 609	3 633	1 543	303	357	30 726
2004	0	448	2 059	6 792	3 471	2 984	2 191	1 801	1 445	467	333	21 992
2005	0	0	0	0	0	0	0	0	0	0	0	0
2006	0	240	360	260	420	381	129	10	15	3	0	1 817
2007	0	0	70	95	15	128	47	34	8	12	3	411

					С	aptures	selon l'âg	ge				
Année	1	2	3	4	5	6	7	8	9	10	11+	total
2008	0	0	0	0	0	0	0	0	0	0	0	0
2009	0	0	0	0	0	0	0	0	0	0	0	0
2010	0	0	3	287	96	152	15	11	3	0	0	751
2011	0	0	0	0	0	0	0	0	0	0	0	0
2012	0	0	0	3	22	136	41	146	19	1	4	387
2013	0	0	0	258	193	707	1 970	644	783	45	42	4 768
2014	0	0	0	324	765	270	483	889	274	175	0	3 189
2015	0	0	61	0	170	719	250	430	209	89	26	2 115
2016	0	0	345	227	644	0	0	0	0	0	0	1 465
2017	0	0	1	20	5	34	8	1	1	0	0	98
2018	0	0	0	0	168	239	388	319	82	112	0	1 350
2019	0	0	0	0	0	0	0	0	0	0	0	0

Tableau 11. Poids selon l'âge des reproducteurs d'automne pour les engins mobiles dans la zone de pêche du Hareng 4T.

					Poic	ls selon l'á	âge				
Année	1	2	3	4	5	6	7	8	9	10	11+
1978	-	0,100	0,149	0,214	0,253	0,278	0,293	0,331	0,332	0,316	0,388
1979	0,067	0,123	0,180	0,232	0,266	0,293	0,291	0,340	0,365	0,355	0,380
1980	0,033	0,108	0,139	0,174	0,224	0,245	0,290	0,338	0,379	0,388	0,423
1981	0,080	0,111	0,181	0,226	0,256	0,314	0,366	0,234	0,261	0,470	-
1982	-	0,095	0,168	0,221	0,259	0,279	0,374	0,334	0,355	0,455	0,434
1983	-	0,103	0,170	0,213	0,246	0,283	0,316	0,375	0,349	0,222	0,456
1984	-	0,095	0,146	0,208	0,248	0,279	0,305	0,329	0,373	0,392	0,433
1985	-	0,090	0,190	0,215	0,258	0,281	0,311	0,326	0,382	0,419	-
1986	-	0,116	0,158	0,207	0,252	0,276	0,306	0,328	0,335	0,362	0,404
1987	-	0,111	0,172	0,218	0,250	0,284	0,319	0,341	0,351	0,391	0,393
1988	0,074	0,095	0,157	0,220	0,261	0,307	0,327	0,341	0,342	0,414	0,382
1989	-	0,099	0,159	0,213	0,250	0,279	0,319	0,323	0,327	0,360	0,377
1990	-	0,105	0,171	0,213	0,236	0,288	0,310	0,323	0,329	0,338	0,386
1991	-	-	0,149	0,191	0,221	0,263	0,279	0,307	0,310	0,327	0,380
1992	-	0,072	0,128	0,171	0,211	0,237	0,261	0,282	0,290	0,301	0,335
1993	-	0,076	0,128	0,156	0,199	0,225	0,258	0,279	0,310	0,323	0,354
1994	-	0,086	0,134	0,159	0,174	0,204	0,222	0,262	0,274	0,302	0,336
1995	-	0,072	0,118	0,163	0,177	0,198	0,224	0,239	0,271	0,310	0,341
1996	-	0,089	0,133	0,165	0,183	0,209	0,222	0,248	0,269	0,291	0,331
1997	-	0,082	0,141	0,165	0,191	0,224	0,226	0,241	0,262	0,296	0,339
1998	-	0,076	0,126	0,165	0,187	0,224	0,248	0,244	0,303	0,300	0,387
1999	-	0,072	0,128	0,155	0,189	0,214	0,248	0,271	0,289	0,317	0,356
2000	-	0,077	0,131	0,162	0,185	0,208	0,231	0,262	0,263	0,275	0,318
2001	0,023	0,078	0,127	0,156	0,184	0,200	0,215	0,240	0,251	0,237	0,295
2002	-	0,084	0,148	0,188	0,222	0,245	0,272	0,290	0,321	0,329	0,360
2003	-	0,081	0,138	0,169	0,197	0,219	0,240	0,260	0,276	0,318	0,310
2004	-	0,080	0,131	0,160	0,181	0,204	0,224	0,248	0,265	0,278	0,290
2005	-	0,078	0,125	0,151	0,177	0,202	0,228	0,282	0,284	0,301	0,349
2006	-	0,079	0,132	0,164	0,181	0,206	0,215	0,228	0,264	0,301	0,345
2007	-	0,086	0,127	0,152	0,165	0,184	0,202	0,215	0,226	0,258	0,205
2008	-	0,093	0,133	0,153	0,159	0,179	0,184	0,197	0,210	0,218	-
2009	-	0,092	0,123	0,146	0,166	0,179	0,195	0,220	0,231	-	-
2010	0,044	0,094	0,118	0,137	0,155	0,166	0,176	0,198	0,194	0,205	0,309
2011	-	0,069	0,104	0,123	0,141	0,153	0,168	0,179	0,200	0,186	0,234
2012	-	0,076	0,107	0,125	0,142	0,162	0,163	0,206	0,228	0,219	0,245
2013	0,033	0,078	0,112	0,130	0,150	0,169	0,184	0,209	0,218	0,234	0,254
2014	-	0,065	0,109	0,134	0,150	0,167	0,182	0,200	0,222	0,224	-
2015	-	0,102	0,102	0,125	0,148	0,164	0,190	0,194	0,205	0,214	0,231
2016	-	0,096	0,115	0,125	0,167	0,165	0,171	0,186	0,195	0,186	0,196
2017	-	0,071	0,103	0,128	0,172	0,197	0,220	0,254	0,250	-	-
2018	-	0,097	0,097	0,107	0,131	0,151	0,168	0,198	0,191	0,224	0,233
2019	-	-	0,107	0,115	0,135	0,159	0,173	0,178	0,200	0,241	0,234

Tableau 12. Pourcentage de jours de pêche sans capture au filet maillant selon le sondage téléphonique pour les principales zones de pêche au printemps et à l'automne.

Année	Saison de pêche de printemps (%)	Saison de pêche d'automne (%)
2006	46,7	16,7
2007	40,0	28,8
2008	49,4	28,8
2009	23,2	17,5
2010	34,1	19,9
2011	26,2	27,3
2012	43,1	24,2
2013	36,3	22,8
2014	29,6	31,5
2015	16,2	40,9
2016	27,8	23,9
2017	39,8	40,5
2018	37,2	40,7
2019	25,5	30,3

Tableau 13. Résultats du modèle linéaire général multiplicatif appliqué aux données de captures par unité d'effort de pêche pour chaque région (zone 4T de l'OPANO).

Zone	R ²	Fannée	Pannée	F _{semaine}	Psemaine	Fzone	Pzone
Reproducteurs de printemps							
4T	0,39	25,5	<0,0001	16,6	<0,0001	49,7	<0,0001
Reproducteurs d'automne							
Région nord	0,56	3,2	<0,0001	17,8	<0,0001	-	-
Région centrale	0,69	6,3	<0,0001	13,6	<0,0001	-	-
Région sud	0,51	4,3	<0,0001	12,4	<0,0001	-	

Tableau 14. Valeurs des captures par unité d'effort (nombre par coup de filet) des reproducteurs de printemps pour les engins fixes dans la zone 4T de l'OPANO.

				Âge				
Année	4	5	6	7	8	9	10	11+
1990	93,0	51,8	27,4	31,9	49,5	23,0	9,2	3,9
1991	94,2	113,7	73,5	25,5	23,3	35,8	13,2	8,8
1992	326,3	125,4	82,3	37,6	17,3	21,2	15,5	24,6
1993	45,9	337,4	153,6	40,9	20,1	11,5	5,9	22,8
1994	41,8	176,4	347,5	64,8	25,7	8,7	3,1	7,4
1995	118,3	95,6	157,6	256,5	56,8	15,8	10,3	20,1
1996	18,4	527,7	100,1	155,3	103,3	34,0	6,5	11,9
1997	73,1	54,7	508,1	93,5	55,7	52,9	13,6	2,4
1998	89,4	182,3	26,1	345,0	39,5	28,3	22,7	10,1
1999	72,5	103,4	113,2	24,8	176,4	28,4	14,8	12,7
2000	103,1	137,5	131,2	65,1	38,4	100,5	25,1	15,1
2001	111,1	128,4	96,8	48,3	33,0	13,6	64,7	17,0
2002	67,6	176,2	73,2	34,6	19,9	11,1	10,1	11,7
2003	119,5	122,8	142,4	43,6	27,5	11,1	7,6	8,4
2004	22,9	132,8	47,5	74,8	28,3	10,2	3,6	8,8
2005	64,6	57,0	102,7	45,5	35,9	10,0	2,2	3,1
2006	48,4	173,3	61,5	19,7	10,6	14,4	1,0	2,7
2007	82,7	63,4	94,3	70,5	32,6	7,9	6,0	4,5
2008	122,4	135,5	49,6	54,9	11,7	2,3	1,0	0,5
2009	72,1	166,5	206,5	23,4	23,8	6,2	0,4	1,0
2010	46,1	35,8	65,0	31,9	15,2	14,9	0,2	0,5
2011	6,6	50,7	46,5	63,1	29,3	44,8	16,5	0,3
2012	38,6	38,6	58,7	64,8	32,8	21,7	18,0	8,1
2013	30,5	97,0	116,6	150,4	115,0	82,0	5,0	3,9
2014	2,0	52,2	88,9	99,8	124,2	64,5	25,5	7,7
2015	11,6	17,6	88,3	134,7	60,3	44,7	8,6	4,6
2016	1,7	42,1	69,2	107,2	50,2	21,9	6,6	1,4
2017	59,7	63,4	168,0	137,4	102,6	23,4	4,2	0,3
2018	6,0	88,1	69,0	98,0	36,4	11,5	0,4	0,0
2019	26,9	62,1	137,6	42,8	33,6	11,0	1,4	0,0

Tableau 15. Valeurs des captures par unité d'effort (nombre par coup de filet) des reproducteurs d'automne par région : a) nord, b) centrale, et c) sud.

Nord 1986 105,4 103,4 233,1 163,2 77,4 35,4 4,8 8,2 1987 192,6 116,3 105,5 157,3 72,0 43,6 19,2 6,6 15,1 1988 112,2 192,7 74,0 65,6 60,1 32,0 15,5 15,1 1989 186,4 304,1 325,0 158,0 72,4 91,1 40,8 32,5 1999 68,9 62,9 97,7 103,6 39,2 27,4 28,9 20,7 1991 485,7 123,5 91,1 135,2 129,4 41,6 26,0 42,5 1999 485,7 133,5 91,1 135,2 129,4 41,6 26,0 42,5 1993 30,5 313,2 363,2 51,0 28,5 29,3 8,3 10,6 65,3 1994 40,7 65,5 196,1 295,9 56,4 43,8 20,1 33,6 1995 17,8 129,4 59,9 144,6 153,5 26,8 17,2 18,8 1996 83,3 100,7 135,5 29,8 56,6 61,7 8,7 10,2 1997 91,3 314,5 97,0 86,4 16,6 28,9 25,9 7,5 1998 56,8 155,7 148,6 37,2 35,4 51,1 8,3 11,1 15,2 2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2001 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,6 2003 85,8 810,5 121,2 85,4 102,0 25,5 11,2 7,9 3,1 1,6 2004 21,7 158,7 77,1 46,7 36,2 24,8 57, 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 11,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2012 1,1 62,3 12,9 85,2 17,0 19,9 12,0 2014 1,7 4,9 5,7 5,6 56,0 32,6 9,1 1,6 1,4 2011 18,2 15,4 13,4 46,4 31,0 24,4 9,9 1,2 2011 18,2 15,4 13,4 46,4 31,0 24,4 9,9 1,2 2011 18,2 15,4 13,4 46,4 31,0 24,4 9,9 1,2 2015 24,6 6,9 49,7 56,6 56,0 32,6 9,1 1,6 1,6 1,4 2010 18,2 25,4 69,9 496,7 36,4 44,5 20,5 35,5 11,5 1,6 1,4 20,5 2010 1,1 1,4 2,2 3,4 4,4 3,4 4,4 3,4 4,4 3,4 4,4 3,4 4,4					Âge	<u> </u>			
1986	Année	4	5	6			9	10	11+
1986 1054 1034 233, 1 163, 2 77, 4 35, 4 4,8 8, 2 1987 192, 6 116, 3 105, 5 157, 3 72, 0 43, 6 19, 2 15, 5 15, 1 1988 112, 2 192, 7 74, 0 65, 6 60, 1 32, 0 15, 5 15, 1 1989 186, 4 304, 1 325, 0 158, 0 72, 4 91, 1 40, 8 32, 5 1990 68, 9 62, 9 97, 7 103, 6 39, 2 27, 4 28, 9 20, 7 1991 485, 7 123, 5 91, 1 135, 2 129, 4 41, 6 26, 0 42, 5 1992 74, 1 449, 8 128, 6 75, 0 81, 6 71, 8 34, 6 65, 3 1993 30, 5 313, 2 363, 2 51, 0 28, 5 29, 3 8, 3 10, 6 65, 3 1994 40, 7 65, 5 196, 1 295, 9 56, 4 43, 8 20, 1 336, 6 1995 17, 8 129, 4 59, 9 144, 6 153, 5 26, 8 17, 2 188, 1 1996 83, 3 100, 7 135, 5 29, 8 56, 6 61, 7 8, 7 102, 1 1999 13, 3 314, 5 97, 0 86, 4 16, 6 28, 9 25, 9 7, 5 1998 56, 8 155, 7 148, 6 37, 2 35, 4 51, 8 3 15, 0 1999 122, 9 147, 9 183, 9 65, 3 12, 9 8, 2 2, 2 3, 3 2, 2000 153, 3 500, 0 133, 0 56, 0 30, 7 6, 0 44, 4 2, 0 2001 147, 2 186, 1 191, 7 29, 3 13, 2 3, 6 11, 1 1, 6 2003 85, 8 180, 5 121, 2 85, 4 102, 0 25, 5 11, 2 7, 0 2004 212, 7 158, 7 77, 1 46, 7 36, 2 24, 8 5, 7 3, 1 1, 6 2007 35, 8 106, 0 241, 0 165, 7 35, 4 6, 6 6, 2 3, 9 2008 66, 0 42, 0 671, 1 54, 4 52, 6 64, 4 2, 1 3, 1		•			•				
1987 1926 116.3 105.5 157.3 72.0 43.6 19.2 6.0	•	105.4	103.4	233.1	163.2	77.4	35.4	4.8	8.2
1988 112.2 192.7 74.0 65.6 60.1 32.0 15.5 15.1 1989 186.4 304.1 325.0 158.0 72.4 91.1 40.8 32.5 1990 68.9 62.9 97.7 103.6 39.2 27.4 28.9 20.7 1991 485.7 123.5 91.1 135.2 129.4 41.6 26.0 42.5 1992 74.1 449.8 128.6 75.0 81.6 71.8 34.6 65.3 1993 30.5 313.2 363.2 51.0 28.5 29.3 8.3 10.6 1994 40.7 65.5 196.1 295.9 56.4 43.8 20.1 33.6 1995 17.8 129.4 59.9 144.6 153.5 26.8 17.2 18.8 1996 83.3 100.7 135.5 29.8 56.6 61.7 8.7 10.2 1997 91.3 314.5 97.0 86.4 16.6 28.9 25.9 7.5 1998 56.8 155.7 148.6 37.2 35.4 51.1 8.3 15.0 1999 122.9 147.9 183.9 65.3 12.9 8.2 2.2 3.2 2000 153.3 500.0 133.0 56.0 30.7 6.0 4.4 2.0 2001 147.2 186.1 191.7 29.3 13.2 3.6 1.1 1.5 2003 35.8 180.5 121.2 85.4 102.0 25.5 11.2 7.0 2004 212.7 158.7 77.1 46.7 36.2 24.8 5.7 3.9 2005 48.1 537.3 214.1 82.5 45.5 27.3 19.4 1.8 2006 16.6 102.9 99.8 14.8 4.2 7.9 3.1 1.6 2007 35.8 106.0 241.0 165.7 35.4 5.1 2.3 3.6 2008 66.0 42.0 67.1 54.4 52.6 6.4 2.1 3.1 2009 12.0 205.7 56.6 56.0 32.6 9.1 1.6 6.2 3.9 2008 66.0 42.0 67.1 54.4 52.6 6.4 2.1 3.1 2009 12.0 205.7 56.6 56.0 32.6 9.1 1.6 6.9 2011 8.3 31.8 31.35 120.9 13.7 15.7 14.2 3.9 2012 1.1 62.3 127.8 89.5 85.2 27.0 1.6 6.9 2014 1.7 80.9 178.3 44.4 52.9 3.6 20.1 1.6 6.9 2015 2.4 69.9 496.7 369.4 445.2 138.4 22.0 5.9 2016 19.5 80.5 219.2 271.3 389.2 61.6 28.9 50.0 2017 7.9 74.9 113.0 203.4 236.0 82.5 25.5 1.6 1986 83.8 62.7 55.0 25.3 26.5 19.7 0.3 0.0 1989 23.7 44.0 39.2 271.3 31.1 1.6 5.3 4.3 1990 4									
1989									
1990									
1991 485,7 123,5 91,1 135,2 129,4 41,6 26,0 42,5		•							
1992									
1993 30,5 313,2 363,2 51,0 28,5 29,3 8,3 10,6 1994 40,7 65,5 196,1 295,9 56,4 43,8 20,1 33,6 1995 17,8 129,4 59,9 144,6 153,5 26,8 17,2 18,8 1996 83,3 100,7 135,5 29,8 56,6 61,7 8,7 10,2 1997 91,3 314,5 97,0 86,4 16,6 28,9 25,9 7,5 1998 56,8 155,7 148,6 37,2 35,4 51,1 8,3 15,0 1999 122,9 147,9 183,9 65,3 12,9 8,2 2,2 3,2 2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2001 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,5 2002 187,1 204,7 143,5 77,2 20,2 6,0 4,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 144,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2001 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 1,5									
1994 40,7 65,5 196,1 295,9 56,4 43,8 20,1 33,6 1995 17,8 129,4 59,9 144,6 153,5 26,8 17,2 18,8 1996 83,3 100,7 135,5 29,8 56,6 61,7 8,7 10,2 1997 91,3 314,5 97,0 86,4 16,6 28,9 25,9 7,5 1998 56,8 155,7 148,6 37,2 35,4 51, 8,3 15,0 2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2000 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 33,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2016 19,5 80,5 219,2 271,3 189,2 61,6 22,9 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2010 1,1 14,3 242,5 453,9 15,8 33,1 15,7 34,2 2,0 5,9 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 94,4 7,3 1,6 1990 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1990 47,1 34,1 37,0 65,1 13,4 94,4 7,3 1,6 1990 15,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1990 47,1 34,1 37,0 65,1 13,4 94,4 7,3 1,6 1990 47,1 34,1 37,0 65,1 13,4 94,4 7,3 1,6 1990 47,1 34,1 37,0 65,1 13,4 94,4 7,3 1,6 1990 155,5 42,1 34,7 45,5 53,8 33,1 15,2 2,9 6,7 1990 125,7	1993								
1995	1994								
1996	1995								
1997 91,3 314,5 97,0 86,4 16,6 28,9 25,9 7,5 1998 56,8 155,7 148,6 37,2 35,4 5,1 8,3 15,0 1999 122,9 147,9 183,9 65,3 12,9 8,2 2,2 3,2 2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2001 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,5 2002 187,1 204,7 143,5 77,2 20,2 6,0 4,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,									
1998 56,8 155,7 148,6 37,2 35,4 5,1 8,3 15,0 1999 122,9 147,9 183,9 65,3 12,9 8,2 2,2 3,2 2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2001 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,5 2002 187,1 204,7 143,5 77,2 20,2 6,0 4,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6									
1999	1998								
2000 153,3 500,0 133,0 56,0 30,7 6,0 4,4 2,0 2001 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,5 2002 187,1 204,7 143,5 77,2 20,2 6,0 4,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2010 18,2 155,4 134,1<									
2001 147,2 186,1 191,7 29,3 13,2 3,6 1,1 1,5 2002 187,1 204,7 143,5 77,2 20,2 6,0 4,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 1,6 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 1,6 23,3									
2002 187,1 204,7 143,5 77,2 20,2 6,0 4,1 1,6 2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 1,1 62,3 127,8 <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			,						
2003 85,8 180,5 121,2 85,4 102,0 25,5 11,2 7,0 2004 212,7 158,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 225,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		•							
2004 212,7 155,7 77,1 46,7 36,2 24,8 5,7 3,9 2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0									
2005 48,1 537,3 214,1 82,5 45,5 27,3 19,4 1,8 2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3									
2006 16,6 102,9 99,8 14,8 4,2 7,9 3,1 1,6 2007 35,8 106,0 241,0 166,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7			•						
2007 35,8 106,0 241,0 165,7 35,4 6,6 6,2 3,9 2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2<									
2008 66,0 42,0 67,1 54,4 52,6 6,4 2,1 3,1 2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0									
2009 120,6 205,7 56,6 56,0 32,6 9,1 1,6 1,4 2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 2									
2010 18,2 155,4 134,1 46,4 31,0 24,4 9,9 1,2 2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2011 8,3 31,8 133,5 120,9 13,7 15,7 14,2 3,9 2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 225,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 <									
2012 1,1 62,3 127,8 190,5 85,2 17,0 19,9 6,9 2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 34,9 3,4 16,3									
2013 9,2 78,8 254,0 182,2 93,6 20,1 1,6 0,9 2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 <									
2014 1,7 80,9 178,3 444,8 204,8 138,5 1,8 1,1 2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2015 2,4 69,9 496,7 369,4 445,2 138,4 22,0 5,9 2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1									
2016 19,5 80,5 219,2 271,3 189,2 61,6 28,9 5,0 2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2017 7,9 74,9 113,0 203,4 236,0 82,5 29,5 5,2 2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>				•					
2018 0,0 18,5 222,4 269,3 210,0 101,8 36,6 4,4 2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993				•					
2019 1,1 14,3 242,5 453,9 157,8 109,5 35,1 11,5 b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 1									
b) Centrale 1986 132,6 110,0 203,5 92,8 36,0 16,6 2,2 3,8 1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7<									
1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 <td>b) Centrale</td> <td>,</td> <td>,-</td> <td>,-</td> <td> , -</td> <td>- ,-</td> <td> , -</td> <td> ,</td> <td>, -</td>	b) Centrale	,	,-	,-	, -	- ,-	, -	,	, -
1987 79,9 150,6 131,0 261,6 24,7 22,8 25,5 1,6 1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 <td>1986</td> <td>132,6</td> <td>110,0</td> <td>203,5</td> <td>92,8</td> <td>36,0</td> <td>16,6</td> <td>2,2</td> <td>3,8</td>	1986	132,6	110,0	203,5	92,8	36,0	16,6	2,2	3,8
1988 68,8 62,7 55,0 25,3 26,5 19,7 0,3 0,0 1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1989 23,7 44,0 39,2 21,3 13,1 11,6 5,3 4,3 1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8<									
1990 47,1 34,1 37,0 65,1 13,4 9,4 7,3 1,6 1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
1991 155,5 42,1 34,7 45,5 53,8 33,1 15,2 34,8 1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3	1990								
1992 103,9 252,2 34,4 14,3 8,1 5,9 2,9 6,7 1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3	1991								
1993 9,6 181,8 228,1 38,9 16,4 11,4 12,9 19,7 1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
1994 14,2 22,9 115,3 155,1 18,9 6,0 7,3 12,4 1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3	1993								
1995 2,7 126,0 42,9 154,2 134,0 17,2 3,1 53,8 1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
1996 61,7 38,1 218,7 18,9 56,8 65,2 15,1 15,7 1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
1997 125,7 285,5 51,5 107,3 20,3 24,4 26,7 16,6 1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
1998 53,7 45,2 91,7 18,5 34,5 6,3 13,6 23,4 1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
1999 118,8 157,8 62,4 39,4 15,9 34,9 3,4 16,3									
		202,1	386,4	142,4	46,0	25,5	7,6	6,8	3,0

-					Âge	.			
	Année	4	5	6	7	8	9	10	11+
	2001	108,6	267,3	189,6	57,4	12,4	4,1	0,0	5,8
	2002	146,6	130,9	115,8	112,0	20,1	2,8	2,4	3,5
	2003	85,2	178,7	83,6	56,4	56,4	12,7	1,7	2,3
	2004	126,7	229,9	162,3	115,7	102,7	60,2	20,9	4,0
	2005	54,2	334,2	270,6	81,4	70,1	48,3	20,6	1,5
	2006	47,4	216,3	385,3	142,3	72,6	54,5	43,1	14,6
	2007	51,0	146,2	405,5	418,4	159,3	64,3	31,3	19,4
	2008	318,4	67,3	117,4	139,3	222,7	40,2	37,9	8,7
	2009	154,3	274,2	63,5	140,3	67,5	23,5	10,0	4,6
	2010	12,8	95,8	142,0	41,4	36,2	20,7	9,6	5,4
	2011	4,4	22,8	132,8	170,5	32,5	24,4	22,9	6,9
	2012	2,3	30,7	137,6	184,6	129,1	14,7	8,3	7,0
	2013	17,0	32,3	202,4	302,5	185,4	71,5	5,8	1,2
	2014	0,0	48,0	30,1	102,8	113,3	21,4	10,5	0,0
	2015	7,0	44,4	425,0	189,0	320,8	126,2	44,8	0,0
	2016	18,1	79,9	512,3	420,5	234,6	104,8	37,1	0,0
	2017	2,1	17,3	60,0	111,6	137,1	78,0	10,7	0,4
	2018	4,0	37,2	154,3	390,3	296,7	29,1	15,8	0,0
	2019	4,3	7,8	70,8	238,4	112,9	148,0	45,3	9,0
c) Sud									
	1986	475,8	133,8	280,9	78,0	38,1	11,3	2,5	3,8
	1987	129,4	148,9	71,3	163,8	72,2	49,9	21,5	15,4
	1988	61,0	233,5	135,1	66,4	92,8	42,4	13,8	9,3
	1989	105,4	161,5	648,0	326,9	140,3	190,2	48,4	23,3
	1990	109,0	108,3	124,1	579,4	158,5	69,5	73,9	39,8
	1991	350,2	118,0	94,6	84,9	275,5	96,5	59,3	84,1
	1992	99,2	554,4	80,3	46,9	112,2	248,1	92,2	97,8
	1993	29,8	317,9	384,4	96,8	39,9	57,8	47,7	110,7
	1994	35,5	7,5	242,9	335,3	45,5	59,8	127,7	212,1
	1995	4,1	94,8	32,7	145,8	124,4	33,1	36,4	88,0
	1996	44,0	26,4	172,8	62,0	144,5	137,9	35,2	107,0
	1997	123,0	734,3	66,0	279,3	48,4	101,0	95,0	84,5
	1998	122,7	57,7	205,3	51,8	116,2	22,9	44,8	55,2
	1999	152,2	551,2	74,8	166,4	32,5	53,2	19,7	27,3
	2000	117,9	460,5	274,8	44,8	53,6	10,4	16,7	10,4
	2001	38,5	476,8	446,0	287,0	42,2	33,8	9,2	17,5
	2002	379,3	160,9	363,8	302,4	91,0	23,0	19,8	11,7
	2003	99,9	824,6	128,2	269,1	171,0	33,5	5,2	7,5
	2004	111,1	256,4	564,3	111,5	102,5	50,1	13,8	7,2
	2005	9,9	286,7	473,9	739,4	140,5	143,3	40,2	9,0
	2006	77,0	210,9	553,1	569,0	422,8	139,5	74,2	20,7
	2007	7,9	354,4	518,4	949,6	589,8	189,8	112,8	36,0
	2008	129,9	47,4	176,0	322,5	401,2	183,7	97,5	75,3
	2009	53,9	464,7	232,8	463,9	153,3	81,3	117,9	58,7
	2010	47,8	201,1	737,4	191,8	238,9	156,4	87,7	56,0
	2011	7,4	179,4	178,2	602,3	193,1	96,0	56,0	99,7
	2012	0,3	12,8	138,3	156,5	166,9	17,8	5,1	17,1
	2013	8,8	26,5	236,8	505,7	187,9	89,1	2,8	2,8
	2014	5,6	92,1	73,8	290,7	516,6	113,6	55,1	1,9
	2015	0,0	57,8	278,8	154,0	436,2	117,4	67,2	7,3
	2016	2,4	27,4	85,2	46,7	34,4	15,6	4,6	0,3
	2017	9,5	7,7	94,9	192,8	68,4	25,4	5,4	0,5
	2018	0,5	17,6	81,3	77,1	91,9	17,2	6,6	1,5
	2019	3,0	4,5	187,3	466,3	196,6	144,5	45,9	19,6

Tableau 16. Captures selon l'âge des reproducteurs de printemps et des reproducteurs d'automne provenant du relevé acoustique indépendant de la pêche dans la zone 4Tmno de l'OPANO.

				Captu	ıres selon l'âg	 ie			
Année	2	3	4	5	6	7	8	9	10
	eurs de print	temps							
1994	2 548	231 972	100 087	109 649	104 274	28 059	6 389	7 213	1 020
1995	46 535	7 724	76 887	21 389	24 905	20 645	4 959	736	74
1996	278 013	139 355	16 008	159 956	40 479	26 474	29 966	5 851	3 603
1997	101 589	68 210	70 032	9 970	84 978	5 522	12 833	14 800	2 648
1998	151 583	28 563	31 795	19 716	5 616	37 904	6 423	5 438	3 585
1999	238 373	107 078	47 912	19 836	6 278	3 667	18 015	2 748	1 380
2000	20 037	29 123	24 640	6 843	5 361	1 647	4 821	2 155	448
2001	27 425	4 997	6 963	4 343	1 605	1 844	119	500	440
2002	88 655	13 609	2 289	8 815	3 494	847	1 684	271	123
2003	220 566	29 059	29 526	18 176	17 349	1 461	1 878	3 586	2 843
2004	231 086	52 413	1 258	1 328	556	0	0	0	0
2005	15 262	34 282	31 252	1 542	2 852	588	249	0	Ō
2006	56 579	15 674	20 989	18 519	1 770	885	0	257	0
2007	37 678	31 964	6 481	11 994	8 039	1 050	1 456	0	Ō
2008	47 260	19 560	7 599	6 554	5 760	3 091	2 294	532	0
2009	36 674	35 845	16 153	7 076	2 438	1 224	1 773	0	Ö
2010	29 739	38 543	39 988	8 137	8 469	3 930	2 433	1 517	Ö
2011	20 724	39 960	14 878	16 259	10 973	4 135	106	3 538	104
2012	3 665	113 586	29 857	9 938	6 969	2 494	1 243	260	379
2013	604	8 850	21 554	21 927	13 612	4 517	1 456	0	0
2014	23 417	17 322	13 489	7 512	6 430	7 003	666	Ö	872
2015	57 318	66 883	30 346	26 148	8 971	22 890	16 166	1 244	1 713
2016	6 910	45 251	12 587	7 921	6 040	2 515	1 261	2 222	0
2017	977	21 840	45 750	9 669	7 939	15 161	900	0	0
2017	517	2 932	11 722	20 933	4 215	5 128	3 246	4 076	286
2019	121	5 732	11 452	8 947	11 240	5 954	1 975	1 027	12
	eurs d'auton		11 402	0 3-1	11240	J 3J 4	1 37 3	1 021	12
1994	2 157	4 442	201 387	61 956	33 090	17 255	2 309	0	12
1995	12 349	22 326	11 645	50 030	9 306	15 773	23 592	1 762	767
1996	225 769	241 001	163 904	21 951	72 902	16 442	9 671	4 046	961
1997	66 808	306 768	200 366	69 384	8 383	32 111	9 572	8 225	3 820
1998	66 600	190 598	74 419	45 341	27 959	5 228	22 791	3 178	5 052
1999	59 703	308 283	191 388	63 421	32 461	15 972	2 502	4 774	4 719
2000	55 502	127 954	188 246	137 871	40 048	13 236	6 624	2 368	3 731
2001	96 857	32 803	12 930	10 047	8 640	1 367	817	214	125
2002	258 715	44 258	31 652	20 948	28 715	16 128	4 708	689	93
2002	50 838	333 738	98 553	41 490	9 442	11 315	18 169	4 074	1 247
2004	29 536	69 977	53 648	10 918	2 238	63	278	0	734
2004	29 090	62 910	254 830	139 139	31 887	10 935	4 141	4 135	1 762
2006	220 870	75 320	43 319	75 695	51 402	7 406	1 436	806	543
2007	99 281	178 232	49 782	21 208	13 262	7 400 7 885	649	712	5 7 1
2007	71 833	114 412	60 903	9 288	6 846	5 522	5 750	520	322
2009	71 658	112 022	80 911	39 829	5 644	1 569	833	134	37
					25 242	4 023		213	213
2010 2011	35 034 29 046	108 389 42 618	114 470	94 716		4 023 22 620	1 296	2 908	1 077
2011	29 046 306	251 515	88 110 124 155	68 688 109 611	51 739 54 470	22 620 18 041	4 808 1 794	2 908 2 958	190
2012	4 292	19 527	124 155 173 674	70 662	99 164	41 757	10 859	2 936 7 683	11 321
2013		19 527 73 572			99 164 52 157				
	141 469		23 157	100 959		49 191	29 077	8 924	2 203
2015	9 286	475 926 45 012	140 251	51 569	218 421 64 463	46 386 50 730	28 011	15 334	1 606
2016	30 862	45 012	186 762	49 395		59 739	27 586	6 224	0
2017	20 893	41 153	64 922	148 495	61 293	18 118	30 772	1 595	641
2018	25 983	19 013	19 434	9 203	34 144	19 067	3 854	1 349	1 945
2019	1 740	25 633	23 656	7 543	11 635	16 264	5 022	308	749

Tableau 17. Sélectivité relative selon l'âge pour les maillages 2 ⅓ po et 2 ¾ po calculée à partir de l'étude expérimentale sur les filets et de la pêche commerciale au filet maillant.

					-		Â	ge						
Année	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2 % po			· ·			•							• • • • • • • • • • • • • • • • • • • •	
1986	0,167	0,351	0,615	0.843	0,948	0,930	0,916	0,834	0,525	0,769	0,537	0,462	0,456	0,446
1987	0,391	0,488	0,601	0,816	0,944	0,946	0,893	0,831	0,769	0,672	0,559	0,391	0,391	0,391
1988	0,188	0,352	0,662	0,838	0,928	0,946	0,902	0,875	0,779	0,725	0,665	0,490	0,442	0,414
1989	0,288	0,404	0,652	0,885	0,964	0,960	0,854	0,829	0,737	0,773	0,558	0,561	0,508	0,405
1990	0,018	0,309	0,608	0,827	0,936	0,934	0,854	0,752	0,758	0,698	0,648	0,575	0,520	0,418
1991	0,216	0,376	0,515	0,755	0,911	0,934	0,924	0,897	0,786	0,743	0,667	0,525	0,424	0,411
1992	0,237	0,255	0,469	0,714	0,934	0,885	0,915	0,859	0,808	0,761	0,681	0,546	0,423	0,391
1993	0,156	0,156	0,441	0,634	0,835	0,938	0,911	0,865	0,830	0,770	0,705	0,713	0,633	0,391
1994	0,042	0,059	0,332	0,627	0,784	0,919	0,953	0,917	0,851	0,807	0,672	0,541	0,726	0,488
1995	0,118	0,425	0,407	0,534	0,681	0,860	0,939	0,915	0,861	0,806	0,834	0,691	0,577	0,434
1996	0,074	0,196	0,402	0,613	0,693	0,814	0,917	0,956	0,862	0,774	0,708	0,746	0,573	0,642
1997	0,029	0,098	0,316	0,559	0,731	0,862	0,937	0,954	0,959	0,832	0,688	0,629	0,704	0,470
1998	0,034	0,138	0,368	0,527	0,722	0,866	0,934	0,947	0,940	0,928	0,752	0,734	0,684	0,571
1999	0,065	0,085	0,323	0,538	0,633	0,814	0,898	0,952	0,929	0,920	0,756	0,601	0,684	0,442
2000	0,009	0,100	0,332	0,501	0,690	0,818	0,917	0,954	0,958	0,901	0,833	0,799	0,711	0,468
2001	0,009	0,069	0,298	0,480	0,630	0,790	0,891	0,957	0,944	0,951	0,896	0,797	0,575	0,501
2002	0,002	0,130	0,286	0,450	0,588	0,731	0,855	0,937	0,947	0,935	0,944	0,875	0,749	0,723
2003	0,050	0,216	0,291	0,433	0,591	0,728	0,829	0,909	0,935	0,959	0,912	0,924	0,694	0,391
2004	0,006	0,100	0,276	0,425	0,580	0,701	0,840	0,910	0,942	0,937	0,899	0,838	0,578	0,510
2005	0,001	0,059	0,239	0,430	0,542	0,643	0,798	0,872	0,915	0,919	0,931	0,852	0,588	0,510
2006	0,014	0,126	0,249	0,400	0,561	0,658	0,769	0,890	0,925	0,959	0,913	0,728	0,915	0,721
2007	0,021	0,049	0,284	0,398	0,558	0,687	0,766	0,838	0,909	0,894	0,903	0,968	0,659	0,373
2008	0,015	0,035	0,185	0,382	0,528	0,655	0,748	0,796	0,880	0,906	0,932	0,953	0,806	0,800
2009	0,024	0,082	0,216	0,319	0,515	0,652	0,754	0,830	0,855	0,883	0,943	0,943	0,956	0,810
2010	0,001	0,028	0,149	0,325	0,388	0,590	0,656	0,741	0,812	0,806	0,898	0,957	0,970	0,771
2011	0,014	0,025	0,098	0,271	0,430	0,470	0,672	0,726	0,806	0,862	0,852	0,917	0,900	0,730
2012	0,000	0,057	0,092	0,212	0,347	0,489	0,541	0,711	0,818	0,893	0,934	0,870	0,656	0,610
2013	0,014	0,032	0,095	0,256	0,342	0,444	0,550	0,602	0,755	0,913	0,853	0,969	0,957	0,948
2014	0,014	0,051	0,172	0,264	0,357	0,404	0,493	0,581	0,628	0,978	0,965	0,937	0,888	0,823
2015	0,008	0,070	0,148	0,298	0,341	0,465	0,516	0,606	0,664	0,797	0,789	0,733	0,700	0,681
2016	0,002	0,069	0,200	0,353	0,445	0,512	0,586	0,651	0,700	0,798	0,899	0,817	0,597	0,579
2017	0,048	0,268	0,210	0,311	0,446	0,525	0,598	0,671	0,775	0,785	0,821	0,749	0,650	0,557
2018	0,014	0,029	0,126	0,303	0,411	0,503	0,569	0,627	0,714	0,784	0,861	0,918	0,904	0,894
2019	0,010	0,017	0,092	0,200	0,351	0,453	0,551	0,606	0,680	0,763	0,842	0,914	0,883	0,883
2 3/4 po														
1986	0,068	0,177	0,376	0,630	0,806	0,939	0,968	0,951	0,802	0,958	0,813	0,744	0,738	0,727
1987	0,030	0,266	0,363	0,584	0,809	0,900	0,962	0,942	0,901	0,893	0,821	0,670	0,670	0,670
1988	0,079	0,176	0,419	0,613	0,774	0,899	0,924	0,985	0,929	0,938	0,901	0,765	0,720	0,694
1989	0,132	0,207	0,412	0,693	0,822	0,944	0,966	0,957	0,926	0,950	0,823	0,826	0,774	0,692
1990	0,005	0,163	0,370	0,597	0,855	0,948	0,960	0,934	0,941	0,905	0,871	0,829	0,781	0,700
1991	0,093	0,191	0,292	0,509	0,715	0,933	0,958	0,963	0,955	0,928	0,889	0,793	0,704	0,691
1992	0,105	0,115	0,253	0,465	0,728	0,732	0,951	0,964	0,959	0,945	0,895	0,812	0,704	0,670
1993	0,063	0,063	0,233	0,392	0,602	0,774	0,877	0,969	0,961	0,921	0,905	0,916	0,879	0,670
1994	0,014	0,020	0,162	0,386	0,540	0,732	0,899	0,960	0,959	0,948	0,904	0,810	0,904	0,765
1995	0,059	0,222	0,212	0,306	0,453	0,651	0,776	0,904	0,967	0,948	0,970	0,899	0,841	0,715
1996	0,026	0,083	0,212	0,372	0,448	0,588	0,763	0,878	0,957	0,928	0,909	0,918	0,814	0,895
1997	0,009	0,037	0,155	0,331	0,481	0,640	0,767	0,855	0,931	0,934	0,899	0,870	0,925	0,752
1998	0,010	0,057	0,187	0,301	0,477	0,656	0,770	0,868	0,935	0,950	0,921	0,904	0,913	0,836
1999	0,022	0,031	0,158	0,309	0,396	0,585	0,687	0,878	0,915	0,947	0,937	0,853	0,876	0,724
2000	0,002	0,039	0,165	0,281	0,443	0,587	0,733	0,827	0,918	0,948	0,975	0,955	0,907	0,745
2001	0,002	0,025	0,143	0,265	0,387	0,550	0,683	0,817	0,912	0,912	0,946	0,936	0,823	0,764
2002	0,000	0,057	0,136	0,243	0,351	0,487	0,633	0,767	0,795	0,944	0,935	0,977	0,954	0,940
2003	0,017	0,104	0,140	0,232	0,354	0,482	0,604	0,723	0,824	0,917	0,975	0,976	0,896	0,670
2004	0,002	0,039	0,130	0,226	0,346	0,461	0,617	0,723	0,818	0,899	0,939	0,899	0,844	0,783

	Âge													
Année	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2005	0,000	0,022	0,111	0,230	0,315	0,403	0,569	0,670	0,746	0,846	0,908	0,816	0,828	0,771
2006	0,030	0,050	0,115	0,209	0,333	0,419	0,534	0,698	0,762	0,833	0,870	0,947	0,968	0,943
2007	0,006	0,017	0,135	0,207	0,329	0,446	0,529	0,628	0,736	0,768	0,802	0,933	0,900	0,815
2008	0,005	0,013	0,080	0,199	0,307	0,417	0,510	0,565	0,678	0,735	0,825	0,936	0,956	0,949
2009	0,007	0,031	0,098	0,157	0,299	0,417	0,519	0,618	0,642	0,686	0,850	0,865	0,942	0,983
2010	0,000	0,009	0,064	0,161	0,202	0,364	0,428	0,511	0,592	0,603	0,760	0,882	0,925	0,966
2011	0,030	0,009	0,038	0,133	0,233	0,261	0,446	0,496	0,587	0,691	0,720	0,874	0,943	0,939
2012	0,000	0,022	0,035	0,094	0,175	0,274	0,314	0,478	0,595	0,716	0,846	0,807	0,890	0,859
2013	0,030	0,010	0,038	0,121	0,172	0,240	0,318	0,360	0,517	0,703	0,613	0,958	0,973	0,984
2014	0,030	0,018	0,071	0,125	0,181	0,211	0,275	0,344	0,385	0,934	0,813	0,942	0,947	0,951
2015	0,002	0,025	0,060	0,143	0,170	0,256	0,293	0,366	0,419	0,583	0,949	0,935	0,924	0,916
2016	0,001	0,026	0,092	0,179	0,242	0,292	0,351	0,407	0,453	0,581	0,754	0,624	0,854	0,845
2017	0,016	0,129	0,100	0,154	0,244	0,304	0,360	0,426	0,543	0,597	0,953	0,918	0,862	0,806
2018	0,030	0,009	0,049	0,151	0,218	0,284	0,333	0,382	0,464	0,543	0,662	0,983	0,990	0,995
2019	0,003	0,005	0,036	0,090	0,177	0,246	0,322	0,366	0,433	0,519	0,601	0,684	0,999	0,999

Tableau 18. Nombre moyen stratifié de Harengs reproducteurs d'automne par trait selon l'âge lors du relevé plurispécifique au chalut de fond.

					Âge	!					
Année	1	2	3	4	5	6	7	8	9	10	11+
1994	0,43	1,46	3,89	48,32	12,34	17,06	17,80	4,69	2,93	8,36	6,67
1995	2,69	3,17	27,91	15,75	51,73	11,28	18,52	14,96	2,19	3,18	7,79
1996	4,44	1,12	0,60	2,06	0,72	3,37	1,44	2,18	1,27	0,48	1,36
1997	10,84	10,57	8,20	8,55	28,58	11,46	22,60	6,04	5,60	2,78	4,36
1998	2,40	4,17	2,55	15,72	5,85	9,14	3,36	5,97	1,38	1,63	2,62
1999	42,60	60,15	12,94	8,52	5,53	1,71	2,21	1,27	1,06	0,65	0,89
2000	14,21	12,43	17,18	32,82	20,53	8,25	1,56	3,12	0,98	0,74	0,18
2001	0,53	8,69	41,15	22,70	22,64	16,55	7,62	3,18	2,44	0,98	1,90
2002	1,82	36,29	39,48	102,42	26,97	21,96	15,86	4,12	2,41	0,61	0,63
2003	5,68	2,32	6,43	25,38	33,44	8,37	4,48	3,14	0,47	0,19	0,26
2004	6,51	4,57	16,84	26,49	17,57	17,97	12,22	8,09	4,03	0,90	0,82
2005	7,06	1,18	6,61	32,64	48,92	22,29	9,75	7,79	4,14	3,45	1,54
2006	37,10	11,55	2,23	7,79	6,02	9,66	4,73	2,61	0,24	0,11	0,27
2007	31,69	146,87	110,27	10,97	18,69	12,61	14,99	5,95	3,58	1,08	1,07
2008	23,84	15,63	24,81	18,50	3,37	6,36	6,54	4,09	3,09	1,10	1,11
2009	2,26	16,36	25,53	25,27	20,78	5,18	2,96	1,56	1,62	0,06	0,44
2010	3,16	38,96	46,17	71,07	50,75	49,98	6,44	6,53	4,77	3,50	2,83
2011	3,89	70,08	10,82	58,62	66,92	34,08	17,12	8,01	5,01	1,69	1,43
2012	0,16	50,47	243,65	59,90	159,89	131,15	63,86	29,16	5,07	1,37	0,38
2013	1,54	5,61	15,38	66,46	23,06	24,28	16,18	8,30	1,01	0,31	0,21
2014	4,14	21,58	10,55	20,35	87,41	15,48	11,74	7,77	0,39	0,09	0,01
2015	4,07	29,33	68,04	20,07	16,37	33,13	11,28	14,45	5,81	1,43	0,22
2016	7,58	8,87	13,64	21,29	10,41	20,79	11,18	2,07	1,42	0,30	0,08
2017	2,13	15,30	12,18	14,45	9,81	6,30	10,11	2,20	0,50	0,03	0,00
2018	2,34	23,91	6,36	3,59	5,42	8,26	3,11	2,29	0,70	0,49	0,02
2019	4,38	3,26	2,60	2,05	0,68	0,81	0,75	0,38	0,10	0,06	0,00

Tableau 19. Estimations du maximum de vraisemblance de la biomasse des reproducteurs de printemps (t) au 1er avril.

					Âge	!					_
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	20 700	14 961	58 435	15 038	14 407	6 723	3 266	3 298	3 471	8 961	113 599
1979	38 657	17 441	11 114	33 931	8 292	8 290	4 104	2 103	1 964	7 223	77 021
1980	39 622	22 779	11 102	5 988	15 803	3 638	3 973	1 946	1 086	4 308	47 844
1981	91 466	27 879	13 985	6 020	3 321	7 754	1 856	1 958	958	2 782	38 635
1982	104 928	69 504	20 001	10 222	4 372	2 408	5 310	1 303	1 444	2 386	47 446
1983	84 481	85 713	53 119	14 774	6 717	3 060	1 229	3 626	874	2 387	85 787
1984	63 305	73 304	71 315	39 206	11 213	4 972	2 065	728	2 234	2 001	133 733
1985	34 488	74 347	62 000	60 929	31 451	9 019	3 438	1 293	607	2 579	171 316
1986	24 418	34 795	73 619	52 269	50 321	26 199	6 003	2 012	765	2 093	213 280
1987	39 088	24 089	30 949	57 394	41 821	38 650	16 302	3 403	1 143	1 627	191 287
1988	31 506	31 426	20 612	23 931	43 741	30 841	23 104	9 617	1 880	1 538	155 266
1989	63 324	39 288	26 080	15 152	17 765	32 015	17 246	12 691	5 161	1 796	127 905
1990	213 027	64 028	39 291	21 637	11 562	12 835	17 795	9 477	6 930	3 561	123 088
1991	82 838	155 411	54 907	30 610	15 207	7 692	7 118	9 390	5 055	5 776	135 755
1992	40 044	62 627	115 242	40 119	20 239	9 232	4 163	3 781	4 969	5 599	203 344
1993	114 191	37 795	50 077	85 480	27 690	13 334	5 368	2 367	2 135	5 781	192 232
1994	22 631	117 139	32 942	39 133	59 751	17 964	7 421	3 112	1 278	4 294	165 895
1995	25 867	17 524	108 207	25 820	27 706	40 497	10 068	4 070	1 708	2 826	220 903
1996	29 005	30 863	14 828	83 224	18 304	18 211	20 889	4 908	2 037	2 104	164 506
1997	35 867	28 452	28 977	11 576	58 632	12 092	9 406	10 593	2 331	2 031	135 639
1998	31 184	29 274	23 952	20 778	7 556	38 859	6 454	4 962	5 402	2 202	110 165
1999	47 120	27 861	22 803	17 064	13 467	4 725	20 437	3 443	2 534	3 804	88 277
2000	26 224	37 929	21 615	15 558	10 276	7 397	2 521	10 495	1 714	3 090	72 665
2001	30 001	18 158	27 359	13 543	7 948	4 726	3 216	1 077	4 423	1 928	64 219
2002	14 380	22 882	12 252	16 626	6 786	3 573	2 004	1 347	434	2 572	45 594
2003	29 584	11 789	16 004	7 496	8 501	3 158	1 531	839	556	1 215	39 300
2004	23 794	24 946	8 258	9 315	3 615	3 666	1 240	583	309	639	27 624
2005	36 844	18 963	18 492	4 750	4 352	1 460	1 327	425	202	322	31 330
2006	38 336	26 194	13 457	11 892	2 851	2 206	566	446	146	149	31 713
2007	42 175	30 882	18 877	8 904	7 563	1 616	991	257	182	115	38 505
2008	61 833	30 825	22 667	12 372	5 446	4 176	729	393	107	114	46 003
2009	36 739	39 939	21 305	14 173	7 101	2 950	2 133	392	178	97	48 328
2010	35 282	23 587	24 977	12 854	8 497	4 127	1 800	1 232	216	151	53 854
2011	15 819	23 258	14 540	16 235	7 719	5 220	2 621	1 113	676	188	48 312
2012	13 202	15 820	16 913	9 967	10 249	4 893	2 807	1 361	587	447	47 224
2013	15 420	13 304	13 821	12 774	7 516	6 935	2 753	1 512	723	583	46 617
2014	13 902	13 547	11 960	10 532	9 300	5 309	3 646	1 390	764	605	43 506
2015	33 049	11 393	11 049	9 099	7 830	6 688	2 491	1 740	630	652	40 180
2016	13 821	27 819	9 610	8 367	6 762	5 420	2 650	975	683	455	34 922
2017	16 040	13 012	22 739	7 752	6 634	5 012	2 016	940	352	399	45 845
2018	6 310	12 875	10 341	18 339	6 017	5 089	1 822	710	341	259	42 919
2019	20 671	5 393	10 307	7 561	14 102	4 449	1 757	645	252	208	39 283

Tableau 20. Estimations du maximum de vraisemblance de l'abondance des reproducteurs de printemps (nombre en milliers) au 1^{er} janvier.

					Âge						
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	183 189	105 357	274 470	64 959	56 190	23 223	11 002	9 917	9 473	24 233	473 467
1979	218 402	115 583	60 863	144 327	33 435	28 845	13 649	6 466	5 829	19 810	313 223
1980	265 385	134 313	60 239	26 589	60 570	13 962	13 720	6 492	3 075	12 194	196 840
1981	626 906	164 673	70 453	26 417	11 194	25 372	6 496	6 383	3 020	7 104	156 439
1982	834 746	413 466	102 305	41 067	15 177	6 420	15 223	3 898	3 830	6 074	193 993
1983	636 155	573 333	273 527	65 026	25 866	9 548	3 982	9 443	2 418	6 144	395 955
1984	667 774	449 994	390 765	179 188	42 216	16 774	5 803	2 420	5 739	5 203	648 109
1985	288 120	485 925	321 743	274 206	125 203	29 482	10 513	3 637	1 517	6 858	773 159
1986	194 719	213 076	351 236	226 961	192 357	87 771	17 902	6 384	2 208	5 085	889 904
1987	259 720	145 464	153 211	242 475	155 236	131 417	50 252	10 249	3 655	4 176	750 671
1988	361 311	195 680	103 789	103 153	161 109	102 976	70 548	26 976	5 502	4 204	578 256
1989	518 625	272 642	137 844	67 945	66 410	103 508	53 080	36 364	13 905	5 003	484 058
1990	1 219 390	390 417	192 790	91 181	44 266	43 185	55 384	28 401	19 456	10 116	484 779
1991	583 774	916 337	289 745	136 653	59 753	27 728	23 215	29 697	15 221	15 848	597 858
1992	387 269	432 506	669 624	201 298	87 085	36 233	15 002	12 525	16 014	16 752	1 054 533
1993	1 229 180	285 673	315 547	469 153	131 607	54 714	20 474	8 458	7 059	18 465	1 025 476
1994	159 595	913 011	209 685	221 715	305 946	82 217	29 674	11 077	4 574	13 802	878 690
1995	310 532	118 969	671 678	146 957	143 035	188 185	42 144	15 170	5 660	9 388	1 222 217
1996	288 611	232 402	87 742	469 399	93 673	86 471	89 308	19 941	7 174	7 116	860 824
1997	308 670	213 765	169 851	61 055	300 370	57 119	40 860	42 087	9 393	6 730	687 465
1998	326 195	221 437	151 499	115 112	38 336	180 490	27 937	19 936	20 525	7 862	561 697
1999	445 370	223 069	149 334	97 066	67 573	21 399	88 472	13 656	9 739	13 866	461 105
2000	210 637	286 254	140 907	88 500	51 585	33 728	10 292	42 403	6 541	11 305	385 260
2001	283 559	131 293	173 598	77 256	40 845	21 561	13 683	4 152	17 090	7 190	355 375
2002	157 508	174 940	78 693	93 563	34 728	16 540	8 326	5 253	1 592	9 309	248 004
2003	353 452	96 390	104 397	42 811	43 460	14 729	6 618	3 314	2 089	4 334	221 753
2004	245 298	213 392	56 485	54 826	18 644	16 994	5 364	2 396	1 198	2 322	158 229
2005	330 737	149 669	125 795	29 339	22 940	6 888	5 518	1 730	771	1 133	194 115
2006	396 441	202 738	90 195	72 555	15 388	10 392	2 410	1 777	537	582	193 835
2007	392 330	245 288	124 436	54 228	41 713	8 257	4 549	1 015	736	460	235 393
2008	501 074	239 508	148 052	72 946	29 839	20 819	3 383	1 764	384	448	277 634
2009	333 994	297 831	141 376	85 846	40 692	15 682	10 138	1 593	819	383	296 527
2010	340 890	191 300	169 912	79 836	47 417	21 723	8 743	5 544	864	649	334 688
2011	239 676	201 896	112 975	99 604	46 056	26 687	12 411	4 926	3 105	845	306 607
2012	195 872	151 388	127 163	70 638	61 298	27 660	14 528	6 664	2 629	2 103	312 682
2013	174 241	129 672	100 082	83 763	46 166	39 581	14 815	7 728	3 534	2 506	298 176
2014	151 772	119 145	88 397	67 687	55 686	29 890	18 813	6 937	3 595	2 802	273 808
2015	343 548	105 983	83 013	61 234	46 303	37 365	13 307	8 285	3 040	2 798	255 344
2016	152 889	244 885	75 369	58 678	42 719	31 657	14 474	5 096	3 157	2 220	233 370
2017	153 932	109 440	174 913	53 535	41 181	29 430	11 296	5 111	1 791	1 886	319 144
2018	64 849	109 574	77 695	123 329	37 190	27 960	10 057	3 811	1 714	1 230	282 987
2019	205 071	46 013	77 615	54 792	86 148	25 599	9 393	3 351	1 265	976	259 138

Tableau 21. Estimations du maximum de vraisemblance du taux instantané de mortalité par pêche (F) des reproducteurs de printemps selon l'âge. F_{6-8} est la moyenne pondérée en fonction de l'abondance F au $1^{\rm er}$ janvier pour les poissons âgés de 6 à 8 ans.

					Âge						
Année	2	3	4	5	6	7	8	9	10	11+	F6-8
1978	0,021	0,109	0,203	0,225	0,227	0,228	0,228	0,228	0,228	0,228	0,228
1979	0,040	0,205	0,382	0,422	0,427	0,427	0,427	0,427	0,427	0,427	0,427
1980	0,040	0,208	0,387	0,428	0,433	0,434	0,434	0,434	0,434	0,434	0,433
1981	0,014	0,074	0,138	0,152	0,154	0,154	0,154	0,154	0,154	0,154	0,154
1982	0,009	0,046	0,086	0,096	0,097	0,097	0,097	0,097	0,097	0,097	0,097
1983	0,009	0,046	0,086	0,095	0,096	0,096	0,096	0,096	0,096	0,096	0,096
1984	0,004	0,022	0,041	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0,045
1985	0,005	0,028	0,053	0,058	0,059	0,059	0,059	0,059	0,059	0,059	0,059
1986	0,009	0,047	0,088	0,097	0,099	0,099	0,099	0,099	0,099	0,099	0,099
1987	0,013	0,067	0,126	0,139	0,140	0,141	0,141	0,141	0,141	0,141	0,140
1988	0,016	0,085	0,159	0,175	0,177	0,178	0,178	0,178	0,178	0,178	0,177
1989	0,015	0,078	0,144	0,160	0,161	0,162	0,162	0,162	0,162	0,162	0,162
1990	0,003	0,016	0,062	0,140	0,185	0,197	0,200	0,200	0,201	0,201	0,195
1991	0,004	0,017	0,068	0,154	0,204	0,217	0,220	0,221	0,221	0,221	0,211
1992	0,003	0,014	0,054	0,124	0,163	0,174	0,176	0,177	0,177	0,177	0,168
1993	0,003	0,015	0,059	0,133	0,176	0,188	0,190	0,191	0,191	0,191	0,181
1994	0,003	0,017	0,065	0,148	0,196	0,208	0,211	0,212	0,212	0,212	0,199
1995	0,004	0,018	0,072	0,164	0,217	0,232	0,234	0,235	0,235	0,235	0,226
1996	0,003	0,017	0,066	0,150	0,198	0,211	0,214	0,214	0,214	0,214	0,207
1997	0,003	0,015	0,060	0,136	0,180	0,192	0,195	0,195	0,195	0,195	0,183
1998	0,004	0,018	0,069	0,156	0,207	0,220	0,223	0,224	0,224	0,224	0,218
1999	0,004	0,022	0,086	0,195	0,257	0,274	0,278	0,278	0,279	0,279	0,270
2000	0,007	0,034	0,135	0,308	0,407	0,433	0,439	0,440	0,440	0,440	0,420
2001	0,007	0,036	0,143	0,324	0,428	0,457	0,462	0,464	0,464	0,464	0,443
2002	0,006	0,032	0,124	0,282	0,373	0,398	0,403	0,404	0,404	0,404	0,384
2003	0,008	0,037	0,147	0,334	0,442	0,471	0,477	0,478	0,479	0,479	0,452
2004	0,009	0,043	0,170	0,386	0,511	0,544	0,551	0,552	0,553	0,553	0,530
2005	0,010	0,027	0,070	0,165	0,312	0,451	0,533	0,570	0,584	0,588	0,374
2006	0,004	0,013	0,033	0,078	0,147	0,212	0,251	0,268	0,275	0,277	0,180
2007	0,006	0,018	0,047	0,110	0,208	0,300	0,355	0,379	0,389	0,392	0,234
2008	0,004	0,011	0,029	0,067	0,127	0,183	0,217	0,232	0,237	0,239	0,154
2009	0,002	0,006	0,016	0,039	0,073	0,105	0,124	0,133	0,136	0,137	0,088
2010	0,002	0,004	0,012	0,028	0,053	0,076	0,090	0,096	0,098	0,099	0,063
2011	0,002	0,004	0,012	0,028	0,052	0,075	0,089	0,095	0,097	0,098	0,065
2012	0,001	0,002	0,006	0,014	0,026	0,037	0,044	0,047	0,048	0,049	0,031
2013	0,002	0,005	0,013	0,030	0,056	0,081	0,096	0,103	0,105	0,106	0,072
2014	0,001	0,004	0,009	0,022	0,041	0,059	0,070	0,075	0,077	0,078	0,052
2015	0,001	0,004	0,010	0,023	0,043	0,062	0,074	0,079	0,080	0,081	0,055
2016	0,001	0,003	0,009	0,021	0,039	0,057	0,068	0,072	0,074	0,075	0,050
2017	0,001	0,004	0,011	0,026	0,049	0,071	0,083	0,089	0,091	0,092	0,061
2018	0,001	0,003	0,007	0,017	0,031	0,045	0,054	0,057	0,059	0,059	0,039
2019	0,001	0,003	0,009	0,021	0,039	0,057	0,067	0,072	0,074	0,074	0,045

Tableau 22. Tableau d'analyse des risques des options de captures annuelles (entre 0 et 1 250 tonnes) pour 2020 et 2021 et les années suivantes jusqu'en 2028; comprend la BSR (en milliers de tonnes) prévue en 2021, 2022 et 2029; les probabilités (%) que la BSR soit supérieure au PRL; les probabilités que la BSR augmente de 5 %; et le taux de mortalité par la pêche pondéré en fonction de l'abondance (F₆₋₈) pour la composante des Harengs reproducteurs de printemps du sud du golfe du Saint-Laurent.

		C	ptions de ca	ptures (t)	
	Année	0	250	500	1 250
	2021	28,2	28,0	27,9	27,4
BSR (en milliers de tonnes)	2022	25,2	25,0	24,8	24,0
	2029	1,2	1,0	0,7	0,2
	2021	7 %	6 %	6 %	6 %
BSR > PRL	2022	7 %	6 %	6 %	6 %
	2029	0 %	0 %	0 %	0 %
Hausse de 5 %	2021	54 %	53 %	53 %	50 %
de la BSR	2022	32 %	33 %	33 %	32 %
Г	2020	0	0,02	0,04	0,10
F ₆₋₈	2021	0	0,02	0,05	0,13

Tableau 23. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse (t) au 1^{er} août pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	11 364	6 663	7 782	5 698	3 712	2 706	2 965	928	689	1 825	26 305
1979	12 037	7 995	4 407	2 341	1 465	833	711	702	239	556	11 254
1980	9 854	14 133	4 688	1 700	784	460	263	222	215	258	8 590
1981	24 966	16 562	13 065	2 728	850	393	229	136	107	221	17 728
1982	13 917	22 108	20 533	10 103	1 784	510	231	135	80	183	33 560
1983	11 589	22 056	21 243	15 168	6 484	1 093	309	128	82	148	44 654
1984	14 569	18 983	28 748	19 008	11 495	4 723	789	218	85	172	65 237
1985	14 788	21 564	22 777	26 676	15 181	8 914	3 568	580	158	185	78 040
1986	17 237	24 964	26 738	18 788	19 230	10 745	6 050	2 349	379	209	84 489
1987	17 960	29 149	32 721	20 505	12 498	11 713	6 347	3 514	1 348	327	88 974
1988	10 080	20 119	34 972	23 736	11 341	6 681	6 173	3 245	1 780	845	88 773
1989	25 655	15 118	23 208	24 905	14 841	6 837	3 890	3 492	1 848	1 455	80 476
1990	29 533	38 728	18 948	18 222	14 362	8 337	3 744	2 080	1 863	1 750	69 305
1991	10 634	31 993	44 358	12 440	8 905	6 760	3 846	1 689	915	1 590	80 502
1992	14 015	12 960	33 812	32 789	7 456	5 199	3 866	2 149	932	1 367	87 569
1993	8 703	20 587	13 744	25 725	19 176	4 203	2 871	2 099	1 113	1 185	70 116
1994	13 021	12 847	27 963	12 307	17 096	12 148	2 636	1 797	1 254	1 401	76 603
1995	10 086	17 152	15 957	18 315	5 723	7 499	5 237	1 141	770	1 110	55 752
1996	11 374	12 792	19 950	7 854	5 313	1 588	2 095	1 438	319	517	39 074
1997	15 259	15 107	14 565	11 684	3 005	1 919	571	729	497	271	33 240
1998	13 073	22 223	16 643	8 888	4 667	1 153	721	220	271	274	32 837
1999	10 474	18 097	27 713	9 630	3 629	1 810	430	277	82	194	43 765
2000	9 774	16 337	22 122	17 554	3 951	1 402	695	159	104	99	46 084
2001	8 964	13 796	20 899	13 758	7 113	1 507	531	253	61	73	44 196
2002	19 601	14 802	17 757	13 831	6 255	3 065	632	227	104	56	41 927
2003	20 148	26 713	18 144	11 995	6 181	2 702	1 303	266	95	65	40 751
2004	15 868	25 452	29 019	8 763	3 774	1 851	802	387	80	47	44 722
2005 2006	8 074 14 875	18 625 11 168	27 058 21 222	20 676 18 182	4 873	1 973 2 283	975 896	410 450	193 183	60 112	56 218 53 476
2006				17 199	10 147			309		99	
2007	23 474 17 641	19 577 22 104	13 263 25 190	9 143	8 462 5 645	3 581 2 191	776 973	188	150 91	70	43 838 43 491
2008	21 966	26 985	37 019	19 413	4 794	2 529	931	333	91 77	44	65 140
2010	15 926	23 174	23 316	23 405	8 492	1 655	828	303	117	42	58 159
2010	18 264	14 444	23 706	19 242	12 224	3 812	724	358	128	71	60 265
2012	9 349	23 109	13 998	21 053	12 594	6 675	2 048	387	186	105	57 046
2013	8 569	11 199	26 620	13 813	14 579	7 544	3 828	1 171	226	161	67 941
2013	11 489	9 891	12 365	25 626	9 912	8 610	4 242	2 113	648	220	63 736
2015	11 838	14 756	10 521	12 200	19 444	6 395	5 316	2 608	1 203	514	58 200
2016	5 241	10 834	18 293	10 415	9 172	11 994	3 752	3 109	1 503	952	59 189
2017	1 212	5 591	11 508	18 560	8 035	5 718	7 259	2 227	1 902	1 532	56 741
2018	5 672	1 244	5 447	10 694	13 717	5 154	3 638	4 637	1 440	2 228	46 955
2019	11 166	5 639	1 277	5 179	7 498	9 104	3 324	2 303	2 965	2 268	33 918
	11 100	0 000	1 411	0 170	, +50	U 10 -1	0 027	2 300			00010

Tableau 24. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent.

-						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	53 014	38 826	35 905	23 269	12 629	9 666	8 784	2 916	2 342	4 548	100 060
1979	117 781	41 837	20 014	8 985	5 237	2 825	2 161	1 964	652	1 541	43 379
1980	136 789	93 632	23 644	6 340	2 614	1 516	818	626	568	635	36 760
1981	153 532	109 907	60 501	10 556	2 681	1 102	639	345	264	507	76 595
1982	206 844	125 401	86 328	36 811	5 571	1 399	575	333	180	402	131 598
1983	161 740	169 013	99 185	55 202	20 907	3 134	787	323	187	327	180 053
1984	182 295	132 282	135 879	71 283	37 269	14 045	2 105	528	217	345	261 671
1985	234 022	149 128	106 770	100 453	50 181	26 134	9 847	1 476	370	394	295 624
1986	228 978	191 326	119 096	73 157	63 195	31 354	16 323	6 150	922	478	310 674
1987	179 524	187 078	151 051	75 163	40 753	34 854	17 283	8 997	3 390	771	332 263
1988	143 914	146 596	146 353	89 287	38 003	20 350	17 392	8 624	4 490	2 076	326 575
1989	353 029	117 576	115 668	91 969	49 423	20 824	11 144	9 525	4 723	3 596	306 871
1990	296 275	288 301	92 104	69 028	47 163	25 039	10 543	5 642	4 822	4 212	258 553
1991	139 007	241 781	223 092	50 353	31 093	20 918	11 096	4 672	2 500	4 003	347 727
1992	262 842	113 575	190 995	141 374	28 220	17 256	11 603	6 155	2 591	3 607	401 800
1993	154 301	214 697	89 312	117 160	75 509	14 907	9 110	6 125	3 249	3 272	318 643
1994	439 760	187 139	383 726	103 247	174 946	44 465	8 774	5 362	3 605	3 838	727 963
1995	261 791	359 323	146 534	254 466	53 608	28 342	18 098	3 571	2 182	3 029	509 830
1996	454 259	213 549	279 668	75 080	121 886	6 312	7 319	4 673	922	1 346	497 207
1997	662 784	371 034	166 021	172 472	32 986	7 444	1 999	2 318	1 480	718	385 438
1998	589 442	541 339	294 411	100 012	86 993	4 284	2 643	710	823	780	490 656
1999	416 807	481 482	426 607	192 824	45 178	6 852	1 530	944	253	573	674 761
2000	736 782	340 299	380 150	265 288	88 972	5 466	2 437	544	336	294	743 486
2001	610 141	602 073	266 920	244 824	126 203	5 745	1 902	848	189	219	646 849
2002	770 797	498 632	481 676	169 195	127 705	11 571	2 217	734	327	158	793 583
2003	549 973	629 829	398 320	338 306	85 803	9 996	4 524	867	287	190	838 293
2004	474 864	448 815	495 726	266 602	185 343	7 195	2 854	1 292	247	136	959 395
2005	255 294	388 210	358 158	354 075	169 810	7 813	3 587	1 423	644	191	895 700
2006	728 042	208 599	308 588	234 151	203 919	9 426	3 383	1 553	616	362	761 997
2007	587 766	595 398	167 991	227 183	144 282	15 031	3 103	1 111	510	321	559 531
2008	559 849	480 309	481 324	119 165	138 145	10 988	4 142	853	305	228	755 150
2009	463 617	457 585	386 252	361 210	70 040	9 095	3 171	1 193	246	154	831 361
2010	276 665	378 948	369 719	284 710	243 307	7 190	3 357	1 168	439	147	910 037
2011 2012	550 429 289 265	226 168 450 194	306 009 183 212	278 187 232 506	180 064 190 098	17 946 31 546	3 031 9 203	1 413	492 724	247 378	787 389 649 220
								1 553		378 605	
2013 2014	246 861 347 517	236 647 201 932	365 492 192 125	139 894 278 055	157 463	36 421 40 269	17 342 18 920	5 055 9 000	853 2 623	757	723 125
2014 2015	238 603	284 298	192 125	149 653	90 728 191 718	29 021	23 392	10 982	2 623 5 223	1 962	632 476
2015	238 603 99 611	284 298 195 212	230 910	149 653	191 7 18	29 02 1 56 907	23 392 16 711	10 982	6 318	4 134	576 172 559 916
2016		81 482	230 910 158 776		88 955	26 531	32 985	9 679	7 795	4 134 6 053	
2017	47 056 106 272	38 509	66 224	178 044 124 669	125 001	25 011	32 985 16 295	20 245	7 795 5 940	8 499	508 818 391 884
2019	148 419	57 682	31 405	51 356	90 249	44 493	15 588	10 149	12 609	8 993	264 842

Tableau 25. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse (t) au 1^{er} août pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	8 958	5 856	7 082	5 222	3 431	2 591	2 946	879	678	1 931	24 761
1979	9 263	6 733	3 806	2 133	1 367	784	676	692	225	571	10 254
1980	7 295	11 628	3 895	1 444	710	427	240	205	206	250	7 376
1981	18 299	13 153	10 898	2 277	729	359	210	122	97	209	14 901
1982	10 383	17 481	17 239	8 669	1 587	469	221	128	75	178	28 566
1983	8 650	17 754	17 802	13 129	5 899	1 034	294	127	81	148	38 513
1984	10 687	15 297	24 752	16 804	10 655	4 608	780	217	88	179	58 082
1985	10 864	17 081	19 683	24 410	14 441	8 903	3 655	603	165	201	72 061
1986	12 603	19 796	22 600	17 096	18 952	11 036	6 357	2 531	414	235	79 222
1987	13 126	22 997	27 560	18 137	12 321	12 553	6 908	3 912	1 539	382	83 312
1988	7 310	15 947	29 351	20 918	10 970	7 236	7 004	3 739	2 099	1 026	82 341
1989	18 681	11 954	19 734	22 078	14 309	7 262	4 411	4 147	2 229	1 812	75 982
1990	21 278	30 897	16 106	16 377	14 042	8 904	4 150	2 461	2 309	2 235	66 583
1991	7 163	25 385	38 133	11 281	9 055	7 523	4 339	1 978	1 144	2 111	75 563
1992	8 791	9 675	29 333	30 666	7 639	5 996	4 449	2 507	1 128	1 835	83 554
1993	6 029	14 387	11 253	24 281	20 344	4 906	3 370	2 459	1 322	1 552	69 487
1994	8 990	9 968	21 644	11 133	18 423	14 762	3 089	2 118	1 475	1 757	74 400
1995	7 285	13 311	13 585	15 428	6 031	9 480	6 414	1 348	914	1 360	54 559
1996	7 864	10 415	16 783	7 175	5 381	2 035	2 712	1 804	386	640	36 915
1997	10 494	11 818	12 981	10 633	3 257	2 328	723	932	615	328	31 797
1998	9 157	17 341	14 372	8 721	5 086	1 510	856	273	338	330	31 485
1999	7 300	14 417	23 996	9 313	4 355	2 433	552	322	99	233	41 304
2000	6 355	12 975	19 572	16 961	4 650	2 065	900	196	116	115	44 575
2001	6 202	10 238	18 478	13 706	8 480	2 209	758	317	73	81	44 103
2002	13 086	11 711	14 780	14 040	7 793	4 608	907	317	128	64	42 637
2003	13 556	20 434	16 158	11 569	7 924	4 288	1 920	374	131	76	42 440
2004	9 970	19 661	24 967	9 351	4 972	3 282	1 322	592	117	63	44 666
2005	6 322	13 479	23 799	20 687	6 411	3 224	1 556	607	266	77	56 627
2006	13 463	10 096	17 458	18 608	12 719	3 790	1 280	628	238	132	54 853
2007	26 158	20 535	13 730	15 133	11 778	7 034	1 357	465	221	131	49 848
2008	22 890	28 622	30 384	10 307	7 376	5 378	2 209	382	159	114	56 309
2009	29 948	40 795	55 849	27 803	9 181	6 666	2 948	978	203	96	103 724
2010	21 923	36 877	41 333	43 414	20 223	6 031	2 614	1 151	412	125	115 303
2011	23 573	23 252	44 435	42 768	37 288	16 743	2 870	1 231	531	260	146 125
2012	10 792	34 952	26 568	48 976	42 328	33 407	7 667	1 310	544	356	161 156
2013	8 352	15 178	47 513	32 297	49 402	39 585	13 726	3 143	548	357	186 570
2014	11 116	11 338	19 828	56 907	34 950	47 632	15 936	5 430	1 247	369	182 300
2015	11 451	16 806	14 251	23 907	60 778	33 682	18 322	6 109	1 927	599	159 574
2016	4 789	12 344	24 625	17 197	25 249	55 956	11 879	6 447	2 117	850	144 319
2017	594	6 020	15 486	30 185	18 305	23 030	19 441	4 050	2 266	1 060	113 823
2018	4 150	718	6 912	17 098	29 329	16 192	8 524	7 228	1 525	1 262	88 070
2019	8 984	4 862	868	7 748	15 469	26 264	6 295	3 255	2 788	1 052	63 739

Tableau 26. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent.

					Âç	je					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	41 790	34 125	32 672	21 326	11 674	9 258	8 729	2 760	2 306	4 814	93 539
1979	90 632	35 229	17 286	8 186	4 885	2 660	2 055	1 937	613	1 580	39 202
1980	101 269	77 038	19 647	5 384	2 367	1 407	746	576	543	615	31 286
1981	112 533	87 282	50 468	8 809	2 300	1 009	584	310	239	481	64 199
1982	154 318	99 154	72 477	31 586	4 956	1 284	548	317	168	392	111 729
1983	120 724	136 048	83 120	47 783	19 020	2 965	748	320	185	326	154 467
1984	133 726	106 596	116 994	63 017	34 545	13 705	2 081	525	224	359	231 450
1985	171 922	118 122	92 265	91 920	47 735	26 100	10 087	1 532	387	429	270 454
1986	167 412	151 720	100 665	66 571	62 284	32 203	17 150	6 628	1 006	536	287 043
1987	131 203	147 595	127 226	66 482	40 177	37 353	18 809	10 017	3 871	901	304 836
1988	104 374	116 200	122 828	78 684	36 760	22 041	19 734	9 937	5 292	2 521	297 797
1989	257 060	92 970	98 357	81 528	47 649	22 118	12 636	11 312	5 696	4 479	283 775
1990	213 460	230 005	78 292	62 037	46 109	26 743	11 688	6 677	5 978	5 376	242 899
1991	93 638	191 848	191 788	45 663	31 618	23 279	12 517	5 470	3 125	5 314	318 774
1992	164 867	84 789	165 697	132 220	28 914	19 901	13 354	7 181	3 138	4 841	375 247
1993	106 897	150 037	73 122	110 585	80 107	17 400	10 693	7 175	3 858	4 287	307 228
1994	476 054	177 443	390 821	105 081	194 696	54 034	10 281	6 318	4 239	4 813	770 282
1995	264 103	377 646	141 436	260 398	57 988	35 827	22 163	4 217	2 591	3 713	528 332
1996	504 622	217 396	291 076	76 591	131 658	8 090	9 473	5 860	1 115	1 667	525 530
1997	691 606	405 702	172 153	186 040	36 974	9 029	2 531	2 964	1 833	870	412 394
1998	646 313	568 773	321 227	109 604	101 102	5 609	3 135	879	1 029	939	543 524
1999	435 287	533 370	457 693	220 562	55 745	9 213	1 963	1 098	308	689	747 271
2000	904 974	368 089	432 650	306 754	115 265	8 052	3 156	673	376	341	867 266
2001	744 904	752 801	302 833	302 978	169 529	8 419	2 718	1 065	227	242	788 012
2002	900 137	628 081	623 796	214 445	186 579	17 395	3 182	1 027	403	177	1 047 004
2003	611 198	768 944	525 121	481 916	132 706	15 860	6 665	1 219	394	222	1 164 103
2004	576 012	531 626	643 840	396 426	325 313	12 761	4 704	1 977	362	183	1 385 565
2005	335 478	502 027	458 102	512 985	294 851	12 765	5 722	2 109	886	244	1 287 664
2006	1 508 030	296 918	433 492	349 667	365 339	15 648	4 830	2 165	798	428	1 172 366
2007	1 136 880	1 328 280	261 884	354 950	260 643	29 522	5 427	1 675	751	425	915 276
2008	1 240 290	1 020 210	1 172 270	210 206	273 408	26 979	9 401	1 728	533	374	1 694 899
2009	892 440	1 120 000	913 397	1 006 710	163 756	23 979	10 048	3 501	643	338	2 122 372
2010	492 280	818 173	1 012 490	789 356	844 037	26 199	10 591	4 437	1 546	433	2 689 090
2011	954 935	456 294	750 846	896 909	668 774	78 822	12 019	4 858	2 036	908	2 415 172
2012	487 606	887 294	423 865	676 745	787 618	157 870	34 459	5 254	2 124	1 287	2 089 221
2013	371 401	453 135	826 202	385 306	598 039	191 114	62 185	13 573	2 070	1 343	2 079 831
2014	492 262	346 206	421 475	751 061	338 187	222 779	71 076	23 126	5 048	1 269	1 834 022
2015	395 725	461 761	322 821	385 912	667 083	152 856	80 628	25 723	8 370	2 286	1 645 679
2016	130 295	369 184	432 420	295 362	342 423	265 494	52 909	27 908	8 904	3 688	1 429 107
2017	79 226	122 918	343 839	394 274	261 759	106 854	88 339	17 604	9 285	4 190	1 226 144
2018	132 645	73 420	115 509	313 954	347 629	78 569	38 177	31 560	6 289	4 814	936 501
2019	119 420	49 725	67 972	104 915	278 740	128 360	29 515	14 341	11 856	4 171	639 870

Tableau 27. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse (t) au 1^{er} août pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	1 299	4 517	3 263	1 797	887	1 786	1 821	737	312	2 029	12 631
1979	3 325	2 556	3 421	2 604	1 005	393	850	784	282	804	10 143
1980	1 472	4 942	2 703	2 521	602	141	51	129	104	145	6 397
1981	1 439	2 917	5 436	2 081	1 222	225	50	20	46	84	9 164
1982	2 437	5 275	3 816	4 121	571	228	40	8	4	22	8 809
1983	1 471	4 933	3 488	2 770	2 781	357	147	23	4	14	9 583
1984	869	2 892	5 252	2 792	928	733	95	36	6	4	9 846
1985	1 278	5 623	3 952	5 219	1 786	511	384	48	17	6	11 923
1986	2 595	4 633	3 192	2 941	4 001	1 390	390	277	34	15	12 239
1987	1 058	4 693	3 999	3 117	1 790	2 529	799	234	134	29	12 631
1988	1 418	3 797	4 980	4 119	2 571	1 285	1 812	526	132	92	15 516
1989	8 072	6 392	3 085	3 736	2 783	1 510	799	1 011	318	130	13 373
1990	7 441	18 365	5 265	2 783	2 793	1 972	1 005	535	667	304	15 325
1991	1 553	13 101	20 878	4 539	1 841	1 852	1 205	616	342	577	31 850
1992	5 166	3 812	13 482	16 319	2 662	915	918	598	305	462	35 660
1993	2 326	11 870	3 958	11 733	11 695	1 713	636	582	386	474	31 177
1994	5 950	1 331	11 495	2 943	8 273	7 708	1 110	414	386	561	32 890
1995	2 042	4 596	3 599	12 819	2 025	5 311	4 776	750	260	575	30 115
1996	4 629	3 473	9 743	2 952	7 509	1 002	2 392	2 097	351	364	26 410
1997	9 758	10 060	5 263	7 530	1 522	3 296	457	1 084	931	312	20 395
1998	7 748	10 440	11 649	4 323	3 850	672	1 385	196	460	532	23 067
1999	5 782	7 001	18 019	8 906	1 772	1 280	223	440	65	309	31 013
2000	4 269	4 009	14 630	14 288	3 952	650	457	78	155	128	34 338
2001	6 270	10 950	9 323	11 543	7 004	1 624	266	180	29	102	30 072
2002	9 216	13 137	13 653	8 307	6 854	3 807	837	142	92	69	33 761
2003	4 989	21 727	17 068	11 095	5 011	3 562	1 969	422	75	85	39 287
2004	6 572	13 236	25 337	14 275	6 921	2 807	2 004	1 084	229	87	52 743
2005	2 728	5 807	10 821	20 292	9 086	4 040	1 622	1 159	607	189	47 816
2006	8 225	4 928	10 662	10 762	11 962	4 710	2 072	825	584	379	41 955
2007	12 342	18 238	7 370	9 295	9 421	7 243	1 999	774	291	342	36 735
2008	6 570	9 877	16 943	4 737	6 692	4 922	2 631	743	301	248	37 217
2009	6 790	13 563	16 162	17 841	5 289	5 070	2 981	1 475	314	198	49 332
2010	4 412	8 402	12 440	14 579	14 217	2 615	1 751	842	413	153	47 010
2011	6 586	3 982	9 470	11 243	11 749	7 924	902	557	252	171	42 266
2012	4 129	8 915	4 161	8 727	9 058	7 042	3 423	356	216	162	33 147
2013	3 789	5 824	10 919	4 611	7 117	5 877	3 500	1 541	162	168	33 895
2014	2 778	4 704	6 601	11 352	4 126	4 774	3 003	1 600	698	136	32 291
2015	1 965	4 854	5 324	6 719	10 200	2 850	2 591	1 499	767	424	30 375
2016	848	2 822	5 638	6 722	6 541	6 956	1 440	1 205	677	533	29 712
2017	928	1 226	3 569	6 461	5 453	4 306	3 895	742	634	610	25 669
2018	755	1 420	1 613	3 507	5 324	3 440	2 110	1 733	324	565	18 615
2019	2 511	1 109	1 772	1 511	2 920	3 527	1 826	1 044	848	437	13 884

Tableau 28. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	20 297	24 061	15 972	7 804	3 246	6 837	5 576	2 054	1 062	4 915	47 465
1979	36 519	16 553	19 078	10 609	3 569	1 275	2 625	2 134	786	2 287	42 364
1980	20 797	29 598	12 461	9 034	1 891	427	144	294	239	344	24 833
1981	26 599	16 944	23 267	7 825	3 533	610	134	45	92	182	35 686
1982	40 432	21 759	13 656	14 782	1 832	596	101	22	7	45	31 042
1983	22 185	33 097	17 757	10 609	9 339	1 081	350	59	13	31	39 239
1984	25 589	18 152	26 778	12 004	3 373	2 319	264	85	14	11	44 849
1985	29 979	20 944	14 776	19 955	6 174	1 537	1 048	119	39	11	43 658
1986	26 301	24 542	17 112	11 699	13 846	4 103	1 018	694	79	33	48 584
1987	19 786	21 530	20 035	13 359	7 572	8 428	2 487	617	421	68	52 986
1988	35 066	16 197	17 570	15 557	8 422	4 458	4 940	1 457	362	286	53 052
1989	136 198	28 703	13 201	13 364	8 856	4 360	2 293	2 540	749	333	45 696
1990	97 179	111 497	23 453	10 462	9 321	5 923	2 908	1 529	1 694	722	56 011
1991	26 437	79 550	90 993	18 229	6 626	5 520	3 492	1 714	901	1 424	128 899
1992	121 029	21 639	64 806	68 735	10 029	3 286	2 718	1 719	844	1 144	153 280
1993	25 626	99 078	17 674	51 033	46 437	6 443	2 104	1 740	1 100	1 273	127 804
1994	66 895	20 978	80 895	13 842	33 558	28 835	3 986	1 301	1 076	1 468	164 961
1995	40 645	54 760	17 121	62 945	8 814	20 011	17 119	2 366	772	1 510	130 658
1996	84 393	33 265	44 526	12 545	29 793	3 615	8 129	6 950	960	926	107 446
1997	136 777	69 071	27 060	32 849	6 141	12 750	1 533	3 446	2 946	800	87 525
1998	107 548	111 943	56 165	19 835	15 578	2 525	5 192	624	1 402	1 525	102 846
1999	74 420	88 008	90 762	39 282	7 461	4 781	764	1 571	189	885	145 696
2000	98 590	60 901	71 422	64 439	15 912	2 514	1 592	254	522	357	157 012
2001	127 871	80 686	49 483	51 696	28 713	6 048	945	598	96	331	137 910
2002	186 559	104 664	65 726	37 324	28 236	14 108	2 950	461	292	208	149 304
2003	110 887	152 698	85 236	49 370	19 970	13 517	6 704	1 401	219	237	176 654
2004	85 197	90 766	124 485	65 128	28 742	10 635	7 155	3 547	742	241	240 675
2005	51 785	69 739	74 025	95 728	39 130	15 927	5 861	3 942	1 954	542	237 109
2006	171 599	42 387	56 804	55 757	51 920	19 057	7 701	2 833	1 905	1 206	197 183
2007	142 093	140 450	34 631	45 871	41 943	29 642	7 755	2 798	1 009	1 104	164 753
2008	112 205	116 306	114 790	28 027	34 973	25 354	13 477	3 205	1 137	856	221 819
2009	90 751	91 838	95 026	92 701	21 090	19 993	10 345	4 911	1 145	710	245 920
2010	49 367	74 274	75 008	76 556	68 734	11 322	7 221	3 272	1 517	571	244 199
2011	122 115	40 403	60 655	60 382	56 497	36 167	3 933	2 183	965	613	221 397
2012	71 185	99 950	33 015	49 027	45 684	33 052	15 432	1 510	823	593	179 136
2013	59 928	58 268	81 705	26 751	37 658	28 504	15 979	6 850	660	617	198 723
2014	62 416	49 053	47 629	66 186	20 516	23 342	13 605	6 987	2 949	549	181 763
2015	35 565	51 091	40 104	38 625	51 101	13 084	11 774	6 344	3 213	1 605	165 850
2016	15 612	29 111	41 761	32 479	29 577	31 468	6 166	5 073	2 691	2 038	151 253
2017	18 078	12 780	23 805	33 915	25 298	19 585	17 072	3 129	2 544	2 367	127 715
2018	14 070	14 797	10 447	19 293	26 091	15 889	9 590	7 690	1 389	2 175	92 564
2019	47 277	11 518	12 099	8 477	14 945	16 876	8 237	4 616	3 654	1 689	70 593

Tableau 29. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse (t) au 1^{er} août pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	2 791	7 523	4 627	2 301	1 001	1 770	1 850	748	338	2 784	15 419
1979	8 646	4 337	4 565	3 181	1 144	370	872	823	296	1 096	12 347
1980	3 871	10 180	3 763	3 296	753	135	49	133	110	187	8 427
1981	4 270	6 064	8 998	2 535	1 424	227	47	19	47	100	13 397
1982	7 796	12 339	6 285	5 830	706	267	52	10	4	31	13 184
1983	4 627	12 440	6 437	3 662	3 290	369	181	30	5	20	13 994
1984	2 625	7 171	10 485	4 344	1 210	859	123	56	10	6	17 093
1985	3 736	13 392	7 745	8 541	2 537	617	524	73	31	12	20 079
1986	7 027	10 679	5 999	4 606	5 440	1 649	495	398	54	29	18 669
1987	2 573	10 019	7 274	4 701	2 359	2 904	1 007	316	205	52	18 817
1988	3 175	7 331	8 448	6 061	3 290	1 441	2 206	703	188	152	22 489
1989	16 883	11 375	4 742	5 173	3 569	1 691	977	1 342	463	218	18 175
1990	13 990	31 314	7 645	3 527	3 271	2 139	1 160	675	912	476	19 804
1991	2 560	20 650	29 875	5 613	2 052	1 900	1 363	742	450	860	42 854
1992	7 516	5 423	18 372	20 630	3 033	931	995	715	387	693	45 756
1993	3 180	15 234	4 971	14 263	13 460	1 770	665	647	473	682	36 931
1994	7 830	1 641	13 316	3 374	9 372	8 221	1 173	442	438	769	37 105
1995	2 616	5 580	4 096	13 873	2 209	5 673	5 155	802	281	739	32 827
1996	5 677	4 178	11 127	3 239	8 079	1 062	2 602	2 305	383	452	29 248
1997	11 842	11 706	6 018	8 366	1 677	3 491	492	1 197	1 038	368	22 648
1998	9 531	12 089	12 957	4 845	4 338	735	1 486	213	514	608	25 696
1999	7 058	8 291	20 138	9 909	2 088	1 472	249	482	72	357	34 769
2000	4 926	4 777	16 947	16 109	4 604	779	522	87	169	146	39 362
2001	6 904	12 460	10 976	13 622	8 472	1 994	321	207	33	115	35 741
2002	10 056	14 363	15 449	9 961	8 684	4 922	1 038	173	107	78	40 413
2003	5 851	23 732	18 714	12 940	6 619	4 971	2 612	537	94	100	46 587
2004	7 803	15 701	28 032	16 201	8 804	4 042	2 786	1 432	290	105	61 692
2005	3 649	7 057	13 155	23 443	11 239	5 588	2 259	1 558	775	229	58 246
2006	13 363	6 827	13 446	13 948	15 750	6 645	2 805	1 125	768 507	468	54 955
2007	22 841	31 097	10 726	12 329	12 617	10 595	3 371	1 393	537	598	52 165
2008	12 650	19 401	30 686	7 330	9 297	7 334	4 190	1 492	656	541	61 527
2009	13 168	27 980	34 044	34 707	8 660	8 055 5 437	4 957	2 914	799	548	94 684
2010	8 303	17 612	27 776	33 396	30 289		3 532	2 018	1 202	595	104 244
2011	12 117	8 188	21 722	27 682	30 597	23 639	2 532	1 734	954 818	863	109 723
2012	7 313	18 129	9 468	22 295	25 510	24 777	10 981	1 192		843	95 884
2013 2014	6 302 4 818	11 502 8 777	24 790 14 642	11 771 29 091	20 839 12 140	21 696 18 431	11 201 9 899	4 885 4 979	545 2 185	742 519	96 468 91 886
2014	3 657	9 486	11 201	16 881	30 161	10 431	9 699 8 464	4 513	2 210	1 275	85 622
2015	3 657 1 701	9 486 5 933	12 457	16 080	19 138	27 677	8 464 5 095	3 968	2 086	1 599	88 100
2016	1 880	2 781	8 492	16 223	15 065	16 139	12 702	2 295	1 846	1 648	74 409
2017	1 549	3 253	4 144	9 496	15 489	12 477	7 066	5 473	984	1 563	56 694
2016	4 624	2 576	4 144	9 496 4 414	9 142	13 276	5 968	3 385	964 2 626	1 235	44 644
2019	4 024	2 3/0	4 397	4 4 14	চ 142	13 2/0	2 900	J 305	2 020	1 233	44 044

Tableau 30. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	43 603	40 077	22 648	9 990	3 664	6 777	5 665	2 086	1 150	6 744	58 724
1979	94 944	28 087	25 454	12 960	4 066	1 200	2 692	2 240	824	3 119	52 555
1980	54 707	60 962	17 350	11 813	2 364	409	137	303	252	444	33 073
1981	78 905	35 218	38 511	9 534	4 116	616	128	42	94	216	53 257
1982	129 353	50 892	22 494	20 914	2 265	698	128	27	9	64	46 600
1983	69 783	83 466	32 774	14 022	11 046	1 118	432	79	16	45	59 534
1984	77 311	45 015	53 464	18 674	4 399	2 717	340	131	24	19	79 768
1985	87 660	49 883	28 954	32 659	8 769	1 856	1 432	179	69	23	73 940
1986	71 229	56 566	32 153	18 325	18 827	4 866	1 293	998	125	64	76 650
1987	48 131	45 962	36 440	20 149	9 975	9 677	3 137	833	643	122	80 976
1988	78 510	31 270	29 804	22 895	10 779	4 998	6 012	1 948	518	475	77 429
1989	284 843	51 079	20 290	18 506	11 360	4 881	2 803	3 370	1 092	556	62 858
1990	182 707	190 114	34 050	13 257	10 913	6 425	3 356	1 927	2 317	1 133	73 377
1991	43 569	125 387	130 204	22 543	7 383	5 664	3 951	2 063	1 185	2 121	175 114
1992	176 095	30 788	88 316	86 891	11 426	3 345	2 945	2 053	1 072	1 718	197 767
1993	35 032	127 165	22 198	62 039	53 447	6 658	2 197	1 934	1 348	1 832	151 654
1994	88 042	25 862	93 707	15 870	38 016	30 755	4 211	1 389	1 223	2 011	187 183
1995	52 075	66 480	19 486	68 121	9 612	21 372	18 479	2 529	834	1 942	142 377
1996	103 494	40 023	50 850	13 763	32 055	3 833	8 843	7 641	1 046	1 148	119 179
1997	165 988	80 374	30 943	36 500	6 765	13 503	1 650	3 804	3 287	944	97 396
1998	132 295	129 622	62 468	22 229	17 552	2 762	5 570	680	1 568	1 744	114 573
1999	90 850	104 227	101 435	43 708	8 792	5 501	855	1 723	210	1 025	163 250
2000	113 773	72 562	82 731	72 650	18 537	3 011	1 818	282	569	408	180 006
2001	140 811	91 814	58 258	61 008	34 730	7 426	1 142	689	107	370	163 730
2002	203 554	114 426	74 373	44 755	35 775	18 242	3 659	563	339	235	177 941
2003	130 048	166 784	93 454	57 577	26 378	18 867	8 892	1 783	274	280	207 505
2004	101 155	107 672	137 729	73 918	36 560	15 314	9 947	4 687	940	292	279 387
2005	69 262	84 750	89 992	110 596	48 401	22 028	8 162	5 300	2 497	656	287 631
2006	278 805	58 726	71 635	72 260	68 361	26 890	10 426	3 862	2 507	1 492	257 433
2007	262 961	239 486	50 397	60 842	56 175	43 358	13 076	5 035	1 864	1 930	232 678
2008	216 049	228 459	207 903	43 370	48 590	37 783	21 459	6 434	2 476	1 866	369 880
2009	175 993	189 460	200 164	180 335	34 528	31 763	17 200	9 704	2 908	1 962	478 564
2010	92 905	155 693	167 475	175 370	146 435	23 543	14 561	7 838	4 420	2 218	541 860
2011	224 684	83 073	139 135	148 678	147 134	107 891	11 043 49 500	6 800 5 051	3 659	3 099 3 090	567 439
2012 2013	126 057	203 268 115 074	75 124 185 495	125 243	128 658	116 287 105 222	49 500 51 135	5 051	3 109 2 215	3 090 2 719	506 063
2013	99 666 108 263	91 527	185 495	68 299 169 609	110 270	90 121	44 849	21 713 21 738	9 228	2 097	547 068
2014	66 198	91 527	84 376	97 037	60 361 151 101	50 121	44 849 38 467	19 098	9 228 9 254	2 097 4 821	503 641 454 273
2015	31 305	99 837 61 202	92 271	97 037 77 691	86 538	125 207	21 819	16 705	9 254 8 292	6 111	434 634
2016	36 597	28 983				73 413		9 683	8 292 7 412	6 391	364 255
2017	36 597 28 877	28 983 33 898	56 646 26 836	85 149 52 243	69 888 75 913	57 637	55 674 32 109	24 287	4 223	6 020	364 255 279 269
2016	20 07 7 87 072	26 746	31 387	24 762	46 800	63 529	26 928	24 267 14 967	11 318	4 773	279 269
2019	01 012	20 /40	31301	24 / 02	40 000	03 329	20 920	14 907	11310	4113	ZZ4 404

Tableau 31. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse (t) au 1er août pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	4 062	8 162	5 250	3 727	1 888	1 913	1 425	511	478	1 132	16 324
1979	13 549	5 655	10 403	4 983	2 312	1 058	843	588	200	515	20 900
1980	8 925	10 633	5 741	9 835	3 897	1 573	683	521	361	438	23 049
1981	10 976	11 054	9 670	3 673	3 877	1 008	310	102	83	122	18 844
1982	14 629	16 467	13 780	11 206	2 691	1 943	453	132	40	77	30 323
1983	7 974	24 096	19 504	12 908	7 380	1 347	887	201	60	52	42 338
1984	13 502	13 471	31 296	17 544	9 063	4 427	805	501	115	68	63 820
1985	17 478	22 814	17 020	29 634	13 190	5 824	2 750	494	301	107	69 320
1986	14 399	29 046	29 447	15 330	23 318	9 046	3 852	1 774	309	227	83 303
1987	5 389	18 428	38 780	27 397	11 834	15 550	5 797	2 399	1 080	341	103 177
1988	5 010	8 722	19 398	37 929	20 915	7 595	9 509	3 457	1 416	819	101 038
1989	16 687	7 370	10 284	16 393	30 442	14 668	5 199	6 423	2 246	1 483	87 137
1990	15 228	26 481	9 570	9 273	14 477	24 650	11 499	4 034	4 855	2 722	81 079
1991	4 345	19 542	33 105	9 090	6 342	8 281	12 784	5 854	1 993	3 759	81 209
1992	8 834	6 232	21 526	30 384	7 406	4 662	5 998	9 082	4 146	3 929	87 133
1993	3 010	18 509	6 494	20 425	24 344	5 394	3 497	4 407	6 548	5 892	77 001
1994	16 810	3 750	21 030	6 066	17 309	19 180	4 340	2 778	3 473	9 456	83 631
1995	3 935	10 789	4 740	20 184	4 275	10 609	11 409	2 737	1 638	7 366	62 957
1996	14 623	6 196	13 124	4 909	15 884	3 002	6 692	7 012	1 612	5 109	57 342
1997	17 267	20 659	8 282	18 262	3 374	8 194	1 469	3 178	3 329	3 003	49 090
1998	14 707	17 900	25 766	8 237	12 678	1 951	4 216	758	1 559	3 038	58 204
1999	7 417	21 022	22 692	23 934	5 362	6 390	935	1 985	358	2 026	63 682
2000	27 943	10 648	26 798	24 718	13 707	2 244	2 501	359	756	887	71 969
2001	17 815	37 671	13 512	26 266	15 675	6 705	1 038	1 138	158	670	65 161
2002	20 569	27 788	50 028	13 676	17 315	7 824	3 092	472	501	361	93 269
2003	10 125	25 238	33 844	50 125	9 191	8 692	3 731	1 427	219	391	107 619
2004	8 922	12 613	29 663	30 692	31 862	4 623	4 225	1 733	663	271	103 733
2005	4 191	17 124	15 882	30 754	24 242	20 582	2 940	2 637	1 073	581	98 691
2006	18 543	5 786	21 283	16 394	24 062	15 929	12 794	1 849	1 577	996	94 883
2007	10 318	27 499	6 797	17 876	13 659	16 618	7 974	5 494	763	1 018	70 198
2008	14 098	13 525	32 073	6 899	14 990	9 292	8 019	3 238	2 163	684	77 357
2009	8 886	17 722	16 299	30 931	6 456	11 234	5 160	3 844	1 468	1 246	76 637
2010	4 178	8 028	18 670	16 042	27 445	4 205	4 695	1 697	1 220	851	74 824
2011	4 739	4 061	8 274	16 787	12 754	16 142	1 430	1 192	398	475	57 452
2012	3 942	8 426	4 002	8 612	14 506	8 174	6 740	479	394	272	43 178
2013	3 286	5 810	8 813	3 910	7 639	10 202	3 933	2 700	180	253	37 631
2014	3 834	4 635	6 427	8 081	3 570	5 434	4 989	1 619	1 054	167	31 340
2015	4 652	3 830	4 655	5 967	7 401	2 472	2 452	1 867	555	432	25 801
2016	652	6 012	4 921	4 875	5 577	5 071	1 010	801	561	287	23 102
2017	731	805	7 588	5 822	4 740	3 664	2 155	348	268	262	24 847
2018	1 271	859	949	6 862	4 703	3 055	1 920	995	161	250	18 895
2019	5 816	1 568	1 053	898	5 774	3 528	1 692	943	481	185	14 554

Tableau 32. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	54 555	80 568	37 351	18 143	8 992	7 380	5 042	1 766	1 602	2 998	83 274
1979	108 728	42 591	58 652	23 613	9 312	3 781	2 737	1 762	602	1 550	102 010
1980	104 452	87 136	33 077	42 752	15 673	5 651	2 169	1 528	973	1 182	103 006
1981	129 833	77 528	55 994	15 889	13 364	3 248	904	307	206	283	90 193
1982	219 055	106 125	62 619	41 413	8 345	5 221	1 191	329	111	177	119 406
1983	111 495	179 141	86 063	47 732	24 815	4 061	2 430	551	152	134	165 937
1984	203 223	91 208	145 655	66 897	31 151	13 924	2 206	1 314	298	154	261 599
1985	277 695	166 256	74 195	113 637	44 368	17 954	7 786	1 229	732	252	260 153
1986	122 801	227 219	135 433	58 492	78 874	27 585	10 902	4 713	744	595	317 337
1987	67 711	100 477	185 045	106 552	40 240	48 319	16 483	6 493	2 806	797	406 734
1988	70 787	55 392	81 718	144 141	70 185	22 929	26 687	9 067	3 570	1 981	360 277
1989	235 160	57 924	45 147	64 676	101 775	44 900	14 360	16 669	5 661	3 466	296 653
1990	169 855	192 487	47 332	36 428	49 683	74 932	32 757	10 464	12 145	6 649	270 390
1991	56 331	138 917	156 208	36 267	22 330	25 113	36 338	15 800	5 044	9 058	306 158
1992	197 670	46 107	113 478	125 734	27 566	16 152	17 973	25 970	11 290	10 077	348 240
1993	48 925	161 793	37 661	91 294	95 360	19 868	11 514	12 794	18 484	15 207	302 182
1994	172 323	40 051	132 304	30 554	71 820	73 049	15 132	8 764	9 737	25 639	366 998
1995	75 380	140 980	32 587	103 369	20 392	41 829	41 317	8 526	4 936	19 922	272 877
1996	215 040	61 669	114 687	25 429	68 619	11 770	23 430	23 052	4 755	13 862	285 603
1997	238 327	175 838	49 965	86 831	14 793	31 789	5 192	10 270	10 097	8 153	217 090
1998	256 844	194 904	142 616	38 123	52 249	7 250	14 906	2 421	4 785	8 502	270 851
1999	137 459	210 028	157 957	108 184	22 366	24 547	3 247	6 635	1 077	5 909	329 921
2000	468 057	112 357	169 616	116 706	56 569	8 674	8 927	1 171	2 391	2 517	366 570
2001	313 652	382 723	91 020	128 265	67 540	25 979	3 790	3 876	508	2 129	323 106
2002	300 540	256 465	310 004	68 766	73 931	30 810	11 270	1 633	1 669	1 135	499 218
2003	154 275	245 767	207 899	235 595	40 670	35 203	14 002	5 091	737	1 266	540 462
2004	170 503	126 164	199 297	158 413	140 940	19 738	16 334	6 459	2 347	923	544 451
2005	69 567	139 506	102 745	156 779	108 930	86 274	11 784	9 720	3 842	1 945	482 019
2006	316 372	56 919	113 593	80 733	107 271	66 129	51 045	6 949	5 729	3 411	434 861
2007	152 022	258 984	46 555	92 395	63 433	71 612	32 558	21 672	2 862	3 746	334 832
2008	187 876	124 445	211 812	37 850	72 396	41 772	34 079	13 229	8 526	2 585	422 249
2009	101 478	153 798	101 792	172 355	29 817	48 957	21 238	15 081	5 691	4 757	399 689
2010	48 514	83 064	125 730	82 522	132 644	17 960	18 657	6 477	4 395	3 021	391 408
2011	100 707	39 709	67 884	101 722	62 701	74 988	5 844	4 640	1 525	1 730	321 033
2012 2013	69 469 55 391	82 435 56 867	32 467	55 086	78 757 43 083	38 914 51 388	30 785	1 962	1 495	1 041 962	240 507 220 228
2013		45 343	67 417	26 388 54 797	43 083 20 641	28 128	18 098	12 143 7 153	748 4 641	962 650	220 228 186 452
2014	65 140 79 778	45 343 53 322	46 507 37 077	54 797 37 761	20 641 42 577	13 038	23 936 12 065	8 505	4 641 2 446	1 798	186 452
2015	11 086	65 302	43 589	30 052	42 577 29 023	25 481	4 889	3 604	2 446 2 425	1 200	140 263
2016	12 462	9 075			29 023		4 889 10 087			1 104	
2017	21 686	10 202	53 388 7 423	35 355 43 470	23 199	17 751 15 993	9 469	1 566 4 749	1 106 719	1 010	143 557 110 793
2018	99 082	17 753	8 346	6 046	34 454	19 489	9 4 69 8 769	4 619	2 262	820	
2019	99 U8Z	11 / 53	0 340	0 040	J4 454	19 489	0 / 09	4019	2 202	820	84 807

Tableau 33. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse (t) au 1^{er} août pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	7 957	13 572	7 736	4 883	2 162	1 841	1 402	502	489	1 250	20 265
1979	28 838	9 224	14 787	6 497	2 696	1 028	860	595	200	562	27 225
1980	21 021	18 606	7 784	11 785	4 283	1 508	702	553	378	483	27 476
1981	27 836	22 192	15 193	4 779	4 474	955	299	99	81	120	26 000
1982	38 589	34 008	22 607	14 734	3 100	1 973	495	147	44	87	43 186
1983	20 735	51 755	32 881	17 595	8 429	1 348	1 029	250	76	66	61 674
1984	33 562	28 517	54 830	24 446	10 559	4 328	908	654	161	98	95 984
1985	41 536	46 166	29 389	42 879	15 678	5 804	3 030	627	442	170	98 018
1986	33 119	56 192	48 582	21 796	28 518	9 115	4 290	2 184	438	380	115 303
1987	11 974	34 508	61 168	37 234	14 236	16 126	6 528	2 985	1 484	584	140 345
1988	11 030	15 990	30 026	50 102	24 621	7 938	11 091	4 376	1 981	1 335	131 469
1989	36 525	13 539	15 750	21 386	34 660	14 907	5 985	8 248	3 131	2 419	106 484
1990	31 363	48 892	14 836	12 030	16 139	23 978	12 549	4 986	6 694	4 335	95 548
1991	7 939	34 098	51 911	12 173	7 420	8 346	13 937	7 155	2 759	6 123	109 823
1992	14 604	9 688	31 977	40 756	8 594	4 740	6 457	10 573	5 412	6 465	114 974
1993	4 608	26 349	8 700	26 274	28 650	5 506	3 761	5 019	8 064	9 136	95 111
1994	24 344	5 031	26 246	7 142	19 693	19 981	4 585	3 091	4 092	13 459	98 290
1995	5 572	14 098	5 747	23 045	4 750	11 419	12 561	3 054	1 926	10 550	73 053
1996	19 997	8 117	15 894	5 585	17 553	3 233	7 497	8 031	1 871	7 341	67 004
1997	23 746	26 631	10 259	21 346	3 910	9 280	1 685	3 791	4 059	4 368	58 698
1998	20 407	23 527	31 830	9 963	15 204	2 335	4 989	909	1 941	4 202	71 374
1999	10 879	28 325	29 052	29 421	6 840	8 177	1 168	2 450	448	2 819	80 375
2000	40 631	15 434	35 838	32 364	18 735	3 251	3 426	479	998	1 299	96 390
2001	27 686	54 932	19 715	36 319	22 999	10 616	1 594	1 653	223	990	94 109
2002	34 711	43 868	74 434	21 007	27 868	14 098	5 360	794	797	580	144 939
2003	19 001	43 662	55 021	79 337	16 738	17 716	7 443	2 741	409	692	180 097
2004	17 643	24 476	53 311	53 583	60 613	10 879	9 521	3 828	1 410	541	193 688
2005	9 720	35 323	32 241	58 998	48 478	47 081	6 923	5 956	2 375	1 218	203 270
2006	59 310	14 169	46 498	36 034	54 040	39 430	28 860	4 299	3 517	2 139	214 817
2007	37 105	93 783	17 757	41 764	32 366	43 041	22 035	15 900	2 346	2 973	178 181
2008	51 566	52 335	117 766	19 461	38 222	26 018	23 052	11 527	8 322	2 729	247 098
2009	30 338	70 305	68 443	123 588	20 048	34 078	14 805	12 917	6 278	5 838	285 994
2010	13 202	29 944	80 996	74 053	123 680	17 103	17 625	7 463	6 568	6 132	333 619
2011	14 467	14 121	34 015	80 901	68 339	106 028	7 979	7 981	3 293	5 529	314 065
2012	10 783	28 514	15 445	39 525	80 725	60 170	42 260	3 104	3 189	3 335	247 753
2013	8 514	17 712	33 273	16 916	40 392	75 301	22 003	15 109	1 076	2 308	206 378
2014	10 075	13 431	21 932	34 309	17 819	37 933	27 583	7 961	5 360	1 178	154 076
2015	12 262	11 281	15 134	22 961	36 423	16 583	13 303	9 631	2 642	2 246	118 923
2016	1 904	17 782	16 280	17 917	25 145	35 283	5 899	4 720	3 289	1 627	110 161
2017	2 026	2 637	25 216	21 774	20 371	23 039	12 771	2 128	1 726	1 672	108 697
2018	3 057	2 671	3 492	25 689	20 185	16 643	9 179	5 059	869	1 415	82 530
2019	12 706	4 233	3 676	3 721	24 744	18 961	7 352	4 025	2 235	940	65 655

Tableau 34. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	106 857	133 960	55 042	23 768	10 297	7 101	4 959	1 734	1 639	3 313	107 851
1979	231 426	69 476	83 371	30 788	10 862	3 675	2 793	1 784	602	1 693	135 568
1980	245 998	152 467	44 853	51 225	17 225	5 418	2 227	1 624	1 020	1 303	124 894
1981	329 265	155 643	87 975	20 669	15 421	3 079	873	297	201	279	128 796
1982	577 853	219 164	102 729	54 448	9 614	5 301	1 300	365	124	201	174 082
1983	289 923	384 765	145 088	65 067	28 341	4 065	2 817	686	193	171	246 428
1984	505 144	193 089	255 187	93 212	36 293	13 611	2 488	1 716	418	221	403 146
1985	659 928	336 441	128 110	164 425	52 737	17 893	8 577	1 561	1 076	401	374 779
1986	282 464	439 583	223 437	83 163	96 462	27 795	12 142	5 800	1 055	998	450 852
1987	150 445	188 146	291 875	144 811	48 407	50 109	18 561	8 079	3 857	1 365	567 065
1988	155 841	101 548	126 495	190 400	82 620	23 965	31 126	11 477	4 993	3 227	474 303
1989	514 727	106 405	69 148	84 375	115 877	45 631	16 532	21 405	7 889	5 650	366 506
1990	349 839	355 397	73 381	47 256	55 387	72 891	35 749	12 934	16 744	10 591	324 934
1991	102 933	242 395	244 942	48 567	26 127	25 311	39 615	19 310	6 981	14 753	425 607
1992	326 778	71 680	168 576	168 656	31 991	16 421	19 346	30 233	14 735	16 584	466 541
1993	74 895	230 321	50 453	117 437	112 231	20 280	12 385	14 569	22 763	23 580	373 698
1994	249 558	53 732	165 121	35 973	81 714	76 101	15 985	9 754	11 473	36 494	432 614
1995	106 744	184 212	39 515	118 023	22 660	45 025	45 489	9 514	5 803	28 532	314 560
1996	294 069	80 794	138 893	28 930	75 830	12 678	26 250	26 403	5 519	19 917	334 420
1997	327 762	226 665	61 892	101 495	17 145	36 001	5 959	12 251	12 312	11 859	258 914
1998	356 385	256 170	176 175	46 111	62 662	8 675	17 640	2 901	5 960	11 758	331 883
1999	201 611	283 000	202 230	132 988	28 532	31 411	4 055	8 191	1 346	8 219	416 972
2000	680 591	162 856	226 838	152 806	77 318	12 568	12 227	1 565	3 157	3 686	490 164
2001	487 430	558 086	132 807	177 355	99 094	41 133	5 823	5 629	720	3 148	465 709
2002	507 177	404 869	461 236	105 632	118 987	55 518	19 533	2 749	2 656	1 825	768 136
2003	289 522	425 181	337 990	372 894	74 066	71 754	27 932	9 780	1 376	2 242	898 034
2004	337 149	244 830	358 179	276 558	268 117	46 442	36 810	14 267	4 993	1 847	1 007 211
2005	161 335	287 759	208 571	300 765	217 831	197 345	27 754	21 950	8 505	4 077	986 798
2006	1 011 940	139 390	248 176	177 454	240 917	163 691	115 148	16 161	12 778	7 324	981 650
2007	546 701	883 244	121 624	215 869	150 316	185 472	89 977	62 722	8 795	10 939	845 713
2008	687 186	481 552	777 744	106 766	184 604	116 968	97 962	47 100	32 802	10 319	1 374 264
2009	346 442	610 128	427 446	688 664	92 590	148 513	60 937	50 673	24 345	22 287	1 515 454
2010	153 275	309 823	545 463	380 952	597 746	73 057	70 040	28 480	23 660	21 771	1 741 169
2011	307 413	138 089	279 063	490 218	335 982	492 560	32 609	31 062	12 622	20 133	1 694 248
2012	190 005	278 976	125 295	252 815	438 294	286 443	193 029	12 722	12 112	12 772	1 333 481
2013	143 526	173 370	254 518	114 160	227 789	379 314	101 238	67 962	4 477	8 757	1 158 216
2014	171 173	131 410	158 711	232 648	103 031	196 361	132 344	35 169	23 598	4 595	886 457
2015	210 297	157 049	120 543	145 305	209 532	87 465	65 449	43 864	11 650	9 338	693 146
2016	32 359	193 133	144 202	110 456	130 861	177 285	28 560	21 245	14 229	6 808	633 645
2017	34 534	29 731	177 413	132 219	99 703	111 629	59 773	9 578	7 120	7 051 5 724	604 486
2018 2019	52 175	31 720	27 305	162 733	120 012	87 134	45 269	24 153	3 869	5 724	476 198
2019	216 451	47 923	29 132	25 045	147 661	104 740	38 098	19 720	10 517	4 177	379 090

Tableau 35. Estimations du maximum de vraisemblance du modèle qSCA de la biomasse totale (t) au 1^{er} août pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	16 726	19 342	16 295	11 222	6 487	6 404	6 211	2 176	1 479	4 985	55 260
1979	28 911	16 206	18 231	9 927	4 781	2 284	2 404	2 074	721	1 875	42 297
1980	20 251	29 708	13 131	14 056	5 284	2 174	998	872	680	841	38 035
1981	37 381	30 533	28 171	8 482	5 949	1 625	589	257	236	427	45 736
1982	30 982	43 851	38 129	25 430	5 045	2 681	725	275	124	282	72 691
1983	21 034	51 085	44 235	30 846	16 645	2 796	1 343	351	146	214	96 576
1984	28 940	35 345	65 295	39 344	21 486	9 882	1 690	755	206	244	138 902
1985	33 544	50 000	43 750	61 529	30 156	15 249	6 702	1 122	476	298	159 283
1986	34 231	58 643	59 378	37 058	46 549	21 182	10 292	4 400	722	451	180 031
1987	24 406	52 270	75 500	51 019	26 122	29 792	12 943	6 147	2 562	697	204 782
1988	16 508	32 638	59 350	65 784	34 826	15 561	17 494	7 228	3 328	1 756	205 327
1989	50 414	28 880	36 576	45 033	48 066	23 015	9 888	10 926	4 412	3 069	180 986
1990	52 201	83 573	33 783	30 279	31 633	34 958	16 248	6 649	7 385	4 776	165 709
1991	16 532	64 635	98 341	26 069	17 088	16 893	17 835	8 159	3 251	5 927	193 562
1992	28 014	23 003	68 819	79 492	17 524	10 776	10 782	11 830	5 383	5 757	210 362
1993	14 039	50 966	24 196	57 883	55 214	11 311	7 004	7 089	8 048	7 550	178 295
1994	35 781	17 928	60 488	21 316	42 678	39 035	8 087	4 989	5 113	11 418	193 123
1995	16 062	32 537	24 296	51 318	12 023	23 419	21 422	4 628	2 668	9 051	148 824
1996	30 625	22 460	42 817	15 715	28 705	5 591	11 179	10 547	2 283	5 990	122 826
1997	42 283	45 826	28 110	37 475	7 900	13 409	2 497	4 991	4 756	3 585	102 724
1998	35 528	50 563	54 058	21 449	21 194	3 776	6 322	1 175	2 289	3 844	114 107
1999	23 673	46 120	68 424	42 469	10 764	9 479	1 588	2 701	505	2 529	138 459
2000	41 986	30 994	63 549	56 560	21 610	4 295	3 653	595	1 014	1 114	152 392
2001	33 049	62 417	43 734	51 567	29 793	9 836	1 834	1 571	248	845	139 428
2002	49 386	55 728	81 438	35 814	30 424	14 696	4 562	840	697	487	168 958
2003	35 261	73 679	69 056	73 216	20 383	14 956	7 003	2 115	389	540	187 657
2004	31 362	51 300	84 019	53 731	42 557	9 281	7 031	3 204	971	404	201 198
2005	14 993	41 556	53 761	71 722	38 201	26 595	5 537	4 206	1 873	830	202 725
2006	41 642	21 881	53 167	45 338	46 171	22 922	15 761	3 124	2 344	1 487	190 314
2007	46 134	65 313	27 430	44 369	31 541	27 442	10 748	6 576	1 204	1 459	150 771
2008	38 309	45 505	74 206	20 779	27 326	16 404	11 624	4 169	2 555	1 002	158 065
2009	37 643	58 270	69 480	68 185	16 540	18 832	9 072	5 653	1 859	1 488	191 109
2010	24 517	39 604	54 426	54 025	50 154	8 475	7 275	2 842	1 750	1 046	179 993
2011	29 589	22 486	41 450	47 272	36 726	27 878	3 056	2 107	778	717	159 983
2012	17 421	40 449	22 161	38 392	36 158	21 892	12 211	1 222	796	538	133 370
2013	15 644	22 832	46 353	22 334	29 335	23 623	11 261	5 411	568	583	139 467
2014	18 100	19 230	25 393	45 059	17 608	18 817	12 234	5 333	2 401	522	127 367
2015	18 454	23 440	20 499	24 887	37 046	11 716	10 359	5 975	2 525	1 371	114 377
2016	6 741	19 669	28 851	22 012	21 289	24 021	6 201	5 115	2 740	1 772	112 003
2017	2 872	7 623	22 665	30 844	18 228	13 687	13 309	3 317	2 804	2 404	107 258
2018	7 697	3 523	8 009	21 063	23 743	11 648	7 668	7 364	1 926	3 043	84 465
2019	19 493	8 317	4 102	7 588	16 191	16 159	6 842	4 290	4 294	2 890	62 356

Tableau 36. Estimations du maximum de vraisemblance du modèle qSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	127 865	143 455	89 228	49 216	24 867	23 883	19 402	6 735	5 006	12 461	230 799
1979	263 028	100 981	97 744	43 207	18 118	7 881	7 523	5 861	2 040	5 378	187 753
1980	262 038	210 366	69 182	58 126	20 178	7 595	3 130	2 448	1 780	2 160	164 600
1981	309 964	204 378	139 761	34 270	19 578	4 960	1 677	696	561	972	202 475
1982	466 331	253 285	162 604	93 006	15 747	7 216	1 866	684	299	624	282 045
1983	295 420	381 251	203 005	113 542	55 061	8 277	3 567	933	352	491	385 229
1984	411 107	241 642	308 312	150 184	71 793	30 288	4 575	1 928	529	510	568 119
1985	541 696	336 328	195 741	234 045	100 723	45 624	18 681	2 824	1 141	657	599 435
1986	378 080	443 087	271 641	143 347	155 916	63 042	28 243	11 557	1 744	1 106	676 596
1987	267 021	309 085	356 131	195 074	88 564	91 601	36 253	16 107	6 617	1 636	791 983
1988	249 767	218 185	245 641	248 985	116 610	47 736	49 019	19 148	8 421	4 343	739 904
1989	724 387	204 203	174 015	170 009	160 054	70 083	27 798	28 733	11 133	7 394	649 219
1990	563 309	592 285	162 888	115 918	106 167	105 894	46 208	17 636	18 660	11 583	584 954
1991	221 775	460 248	470 293	104 849	60 050	51 551	50 926	22 185	8 446	14 485	782 784
1992	581 541	181 321	369 279	335 843	65 815	36 694	32 294	33 843	14 725	14 828	903 320
1993	228 853	475 568	144 647	259 487	217 305	41 217	22 728	20 659	22 833	19 752	748 628
1994	678 978	248 168	596 925	147 643	280 324	146 348	27 892	15 426	14 418	30 945	1 259 921
1995	377 816	555 063	196 242	420 780	82 814	90 182	76 533	14 463	7 890	24 461	913 365
1996	753 692	308 483	438 881	113 054	220 298	21 697	38 878	34 676	6 637	16 134	890 256
1997	1 037 888	615 943	243 046	292 152	53 921	51 982	8 724	16 033	14 523	9 671	690 053
1998	953 834	848 186	493 192	157 970	154 820	14 059	22 741	3 755	7 010	10 807	864 354
1999	628 686	779 518	675 326	340 290	75 005	36 180	5 541	9 150	1 519	7 367	1 150 378
2000	1 303 429	513 557	621 188	446 433	161 453	16 654	12 955	1 969	3 249	3 168	1 267 068
2001	1 051 664	1 065 482	407 422	424 785	222 456	37 771	6 637	5 322	793	2 678	1 107 865
2002	1 257 896	859 761	857 406	275 285	229 871	56 488	16 437	2 828	2 288	1 501	1 442 105
2003	815 135	1 028 294	691 455	623 271	146 443	58 716	25 230	7 359	1 243	1 692	1 555 408
2004	730 564	665 745	819 508	490 143	355 025	37 567	26 343	11 298	3 336	1 301	1 744 521
2005	376 646	597 455	534 928	606 582	317 870	110 013	21 231	15 085	6 440	2 678	1 614 827
2006	1 216 013	307 905	478 985	370 641	363 110	94 612	62 128	11 334	8 251	4 979	1 394 040
2007	881 881	994 832	249 177	365 448	249 659	116 284	43 417	25 581	4 381	5 171	1 059 117
2008	859 930	721 060	807 926	185 042	245 514	78 115	51 697	17 287	9 968	3 670	1 399 218
2009	655 846	703 221	583 070	626 266	120 947	78 045	34 754	21 185	7 081	5 621	1 476 969
2010	374 545	536 286	570 457	443 789	444 685	36 472	29 235	10 918	6 351	3 739	1 545 644
2011	773 251	306 279	434 548	440 291	299 263	129 101	12 809	8 236	2 982	2 590	1 329 820
2012	429 919	632 579	248 694	336 619	314 540	103 511	55 421	5 025	3 041	2 013	1 068 863
2013	362 180	351 782	514 614	193 034	238 204	116 313	51 419	24 047	2 261	2 184	1 142 076
2014 2015	475 073	296 328	286 261	399 038	131 885	91 738 55 143	56 461 47 231	23 140	10 213 10 882	1 955 5 364	1 000 691
2015	353 946 126 309	388 711 289 625	241 401 316 261	226 039 189 991	285 396 162 616	113 856	27 766	25 831 22 137	10 882	7 372	897 286
2016	77 596					63 867			11 434	9 525	851 433
2017	142 029	103 337 63 508	235 969 84 095	247 314 187 432	137 453 179 052	56 893	60 144 35 353	14 374 32 685	8 048	9 525 11 684	780 090 595 241
2018											
2019	294 777	86 952	51 850	65 880	139 648	80 858	32 593	19 385	18 525	11 502	420 241

Tableau 37. Estimations du maximum de vraisemblance du modèle qmSCA de la biomasse totale (t) au 1er août pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent.

-						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	19 706	26 951	19 445	12 406	6 594	6 202	6 199	2 129	1 505	5 965	60 445
1979	46 746	20 294	23 158	11 810	5 207	2 183	2 408	2 110	721	2 229	49 825
1980	32 187	40 413	15 442	16 525	5 746	2 070	990	891	694	920	43 279
1981	50 405	41 408	35 089	9 590	6 626	1 542	556	240	226	429	54 298
1982	56 768	63 827	46 130	29 232	5 392	2 708	767	285	124	297	84 936
1983	34 012	81 949	57 120	34 386	17 617	2 751	1 504	407	162	235	114 181
1984	46 874	50 985	90 067	45 593	22 424	9 794	1 811	926	259	283	171 158
1985	56 136	76 639	56 816	75 830	32 655	15 324	7 209	1 302	638	383	190 158
1986	52 749	86 667	77 181	43 499	52 910	21 800	11 142	5 112	906	644	213 194
1987	27 672	67 524	96 002	60 072	28 916	31 583	14 442	7 213	3 229	1 018	242 475
1988	21 516	39 268	67 825	77 081	38 881	16 615	20 300	8 817	4 268	2 512	236 300
1989	72 088	36 868	40 227	48 636	52 538	23 860	11 372	13 736	5 823	4 448	200 641
1990	66 631	111 102	38 587	31 933	33 451	35 021	17 859	8 121	9 915	7 046	181 935
1991	17 663	80 133	119 919	29 067	18 527	17 769	19 639	9 874	4 352	9 094	228 241
1992	30 910	24 786	79 683	92 051	19 267	11 667	11 901	13 796	6 927	8 993	244 284
1993	13 817	55 970	24 924	64 819	62 455	12 183	7 795	8 125	9 860	11 370	201 530
1994	41 165	16 640	61 206	21 649	47 488	42 964	8 847	5 651	6 005	15 985	209 795
1995	15 473	32 989	23 429	52 346	12 990	26 572	24 130	5 203	3 121	12 649	160 439
1996	33 538	22 711	43 803	15 998	31 013	6 330	12 811	12 140	2 640	8 432	133 166
1997	46 082	50 154	29 258	40 346	8 844	15 098	2 900	5 920	5 713	5 064	113 143
1998	39 094	52 956	59 158	23 529	24 628	4 580	7 330	1 395	2 794	5 140	128 555
1999	25 237	51 034	73 186	48 643	13 284	12 083	1 969	3 254	619	3 409	156 447
2000	51 912	33 186	72 357	65 433	27 989	6 094	4 848	762	1 283	1 560	180 327
2001	40 792	77 630	49 169	63 646	39 951	14 819	2 674	2 178	329	1 186	173 953
2002	57 853	69 941	104 664	45 008	44 345	23 629	7 305	1 284	1 032	722	227 990
2003	38 408	87 828	89 894	103 846	31 282	26 975	11 975	3 652	633	868	269 123
2004	35 416	59 837	106 310	79 136	74 390	18 203	13 629	5 853	1 817	709	300 046
2005	19 691	55 858	69 194	103 129	66 128	55 892	10 738	8 122	3 416	1 524	318 142
2006	86 136	31 092	77 402	68 590	82 508	49 865	32 944	6 052	4 523	2 740	324 624
2007	86 103	145 415	42 213	69 226	56 761	60 669	26 763	17 758	3 104	3 702	280 195
2008	87 106	100 358	178 836	37 098	54 895	38 731	29 451	13 401	9 136	3 385	364 934
2009	73 454	139 079	158 335	186 098	37 888	48 799	22 710	16 810	7 280	6 483	484 402
2010	43 427	84 434	150 104	150 863	174 192	28 571	23 771	10 631	8 182	6 852	553 166
2011	50 157	45 561	100 172	151 351	136 223	146 410	13 381	10 946	4 778	6 652	569 913
2012	28 887	81 595	51 481	110 796	148 564	118 354	60 908	5 606	4 552	4 534	504 794
2013	23 167	44 391	105 576	60 985	110 632	136 583	46 930	23 136	2 169	3 406	489 416
2014	26 009	33 547	56 402	120 307	64 910	103 996	53 419	18 370	8 793	2 066	428 262
2015	27 370	37 572	40 586	63 749	127 362	61 180	40 088	20 253	6 780	4 120	364 119
2016	8 394	36 059	53 362	51 195	69 531	118 916	22 872	15 135	7 493	4 076	342 579
2017	4 500	11 439	49 194	68 182	53 741	62 208	44 913	8 473	5 837	4 381	296 929
2018	8 756	6 642	14 549	52 283	65 003	45 312	24 769	17 760	3 378	4 240	227 294
2019	26 314	11 670	9 140	15 883	49 356	58 501	19 615	10 665	7 649	3 228	174 037

Tableau 38. Estimations du maximum de vraisemblance du modèle qmSCA de l'abondance (en milliers) au 1^{er} janvier pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent.

Âge											
Année	2	3	4	5	6	7	8	9	10	11+	4+
1978	192 250	208 162	110 361	55 084	25 635	23 135	19 353	6 581	5 095	14 870	260 115
1979	417 002	132 791	126 111	51 934	19 813	7 535	7 539	5 961	2 039	6 392	227 325
1980	401 974	290 468	81 850	68 423	21 956	7 234	3 110	2 504	1 816	2 362	189 254
1981	520 703	278 143	176 954	39 012	21 838	4 704	1 585	650	535	975	246 252
1982	861 524	369 209	197 700	106 949	16 835	7 283	1 977	709	301	656	332 411
1983	480 430	604 279	260 982	126 872	58 408	8 149	3 997	1 085	394	543	460 429
1984	716 181	344 700	425 645	174 903	75 237	30 033	4 910	2 372	666	599	714 364
1985	919 510	504 446	249 329	289 004	109 241	45 849	20 095	3 272	1 532	853	719 174
1986	521 105	647 869	356 255	168 059	177 573	64 863	30 585	13 426	2 187	1 598	814 545
1987	329 779	381 703	455 541	231 442	98 559	97 140	40 506	18 929	8 371	2 388	952 876
1988	338 725	249 018	279 127	291 980	130 159	51 004	56 872	23 362	10 802	6 223	849 529
1989	1 056 630	250 453	187 795	184 409	174 886	72 630	31 970	36 087	14 678	10 685	713 139
1990	746 006	775 516	185 723	122 550	112 409	106 059	50 793	21 537	25 038	17 101	641 210
1991	240 140	559 630	566 934	116 773	65 128	54 254	56 083	26 844	11 291	22 188	919 495
1992	667 740	187 256	422 589	387 767	72 331	39 668	35 645	39 467	18 945	23 143	1 039 555
1993	216 824	507 523	145 774	290 061	245 785	44 338	25 276	23 678	27 970	29 699	832 579
1994	813 654	257 037	649 649	156 924	314 426	160 890	30 476	17 461	16 935	43 317	1 390 079
1995	422 922	628 338	200 437	446 542	90 259	102 225	86 131	16 260	9 228	34 187	985 269
1996	902 185	338 213	480 819	119 284	239 543	24 602	44 566	39 903	7 680	22 731	979 129
1997	1 185 356	712 741	264 988	324 035	60 885	58 533	10 140	19 019	17 432	13 673	768 704
1998	1 134 993	954 565	559 870	177 944	181 315	17 046	26 345	4 460	8 557	14 441	989 979
1999	727 748	920 597	761 358	397 258	93 069	46 125	6 874	11 011	1 864	9 933	1 327 492
2000	1 699 338	603 507	742 219	532 210	211 120	23 631	17 200	2 519	4 101	4 435	1 537 436
2001	1 373 145	1 402 701	493 898	541 341	303 353	56 978	9 684	7 384	1 054	3 760	1 417 451
2002	1 610 868	1 147 376	1 159 405	364 832	341 341	91 156	26 374	4 339	3 398	2 237	1 993 082
2003	1 030 768	1 360 909	956 565	912 387	233 150	106 480	43 489	12 782	2 043	2 744	2 269 642
2004	1 014 316	884 128	1 139 748	746 902	629 990	74 517	51 461	20 930	6 294	2 321	2 672 163
2005	566 075	874 536	756 665	924 346	561 083	232 138	41 638	29 359	11 888	4 977	2 562 094
2006	2 798 775	495 034	753 303	599 381	674 617	206 229	130 404	22 187	16 084	9 244	2 411 448
2007	1 946 542	2 451 010	433 905	631 661	467 134	258 352	108 479	69 433	11 409	13 294	1 993 667
2008	2 143 525	1 730 221	2 157 917	360 342	506 602	181 729	128 821	55 261	35 812	12 559	3 439 043
2009	1 414 875	1 919 588	1 541 007	1 875 709	290 874	204 255	88 185	63 877	27 896	24 587	4 116 390
2010	738 460	1 283 689	1 725 428	1 345 678	1 588 218	122 799	95 192	40 756	29 626	24 423	4 972 118
2011	1 487 032	677 456	1 169 044	1 535 805	1 151 890	679 273	55 671	42 720	18 316	24 140	4 676 859
2012	803 668	1 369 538	624 284	1 054 803	1 354 570	560 600	276 988	23 027	17 345	17 149	3 928 766
2013	614 593	741 579	1 266 215	567 765	936 098	675 650	214 558	103 248	8 762	12 819	3 785 115
2014	771 698	569 143	685 825	1 153 318	501 579	509 261	248 269	80 033	37 874	7 961	3 224 119
2015	672 220	718 647	527 740	628 254	1 027 716	290 440	184 543	88 685	29 274	16 446	2 793 098
2016	193 960	623 519	668 893	483 509	559 822	567 986	103 288	65 857	31 425	16 607	2 497 386
2017	150 357	181 632	577 898	611 642	431 350	291 896	203 786	36 864	23 818	17 631	2 194 885
2018	213 697	139 038	169 650	528 930	543 554	223 341	115 555	80 000	14 381	16 558	1 691 969
2019	422 943	124 395	128 491	154 722	473 201	296 629	94 541	49 028	33 691	13 121	1 243 424

Tableau 39. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1^{er} janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,037	0,463	1,185	1,291	1,298	1,298	1,298	1,298	1,298	1,298	1,295
1979	0,029	0,371	0,950	1,035	1,040	1,040	1,040	1,040	1,040	1,040	1,038
1980	0,019	0,237	0,606	0,661	0,664	0,664	0,664	0,664	0,664	0,664	0,662
1981	0,002	0,041	0,297	0,439	0,451	0,451	0,451	0,451	0,451	0,451	0,443
1982	0,002	0,035	0,247	0,366	0,375	0,376	0,376	0,376	0,376	0,376	0,367
1983	0,001	0,018	0,130	0,193	0,198	0,198	0,198	0,198	0,198	0,198	0,194
1984	0,001	0,014	0,102	0,151	0,155	0,155	0,155	0,155	0,155	0,155	0,153
1985	0,001	0,025	0,178	0,263	0,270	0,271	0,271	0,271	0,271	0,271	0,267
1986	0,002	0,036	0,260	0,385	0,395	0,396	0,396	0,396	0,396	0,396	0,391
1987	0,003	0,046	0,326	0,482	0,494	0,495	0,495	0,495	0,495	0,495	0,490
1988	0,002	0,037	0,265	0,391	0,402	0,402	0,402	0,402	0,402	0,402	0,397
1989	0,003	0,044	0,316	0,468	0,480	0,481	0,481	0,481	0,481	0,481	0,474
1990	0,003	0,056	0,404	0,598	0,613	0,614	0,614	0,614	0,614	0,614	0,607
1991	0,002	0,036	0,256	0,379	0,389	0,389	0,389	0,389	0,389	0,389	0,385
1992	0,002	0,040	0,289	0,427	0,438	0,439	0,439	0,439	0,439	0,439	0,431
1993	0,002	0,030	0,217	0,321	0,330	0,330	0,330	0,330	0,330	0,330	0,325
1994	0,004	0,064	0,460	0,680	0,698	0,699	0,699	0,699	0,699	0,699	0,693
1995	0,006	0,106	0,759	1,123	1,152	1,154	1,154	1,154	1,154	1,154	1,137
1996	0,005	0,087	0,625	0,925	0,949	0,950	0,950	0,950	0,950	0,950	0,938
1997	0,004	0,077	0,550	0,813	0,834	0,835	0,835	0,835	0,835	0,835	0,820
1998	0,004	0,076	0,546	0,808	0,829	0,830	0,830	0,830	0,830	0,830	0,816
1999	0,004	0,077	0,549	0,812	0,833	0,834	0,834	0,834	0,834	0,834	0,819
2000	0,005	0,079	0,563	0,833	0,855	0,856	0,856	0,856	0,856	0,856	0,838
2001	0,004	0,069	0,495	0,732	0,751	0,752	0,752	0,752	0,752	0,752	0,739
2002	0,004	0,068	0,486	0,719	0,738	0,739	0,739	0,739	0,739	0,739	0,727
2003	0,006	0,097	0,693	1,025	1,052	1,053	1,054	1,054	1,054	1,054	1,037
2004	0,003	0,046	0,326	0,483	0,495	0,496	0,496	0,496	0,496	0,496	0,488
2005	0,003	0,059	0,419	0,620	0,636	0,637	0,637	0,637	0,637	0,637	0,624
2006	0,003	0,030	0,241	0,720	0,891	0,911	0,913	0,913	0,913	0,913	0,787
2007	0,004	0,036	0,288	0,861	1,064	1,089	1,091	1,092	1,092	1,092	0,945
2008	0,003	0,035	0,276	0,824	1,019	1,043	1,045	1,045	1,045	1,045	0,920
2009	0,003	0,027	0,211	0,630	0,779	0,797	0,799	0,799	0,799	0,799	0,670
2010	0,002	0,022	0,175	0,525	0,649	0,664	0,665	0,665	0,665	0,665	0,563
2011	0,002	0,016	0,124	0,370	0,457	0,468	0,469	0,469	0,469	0,469	0,408
2012	0,001	0,013	0,105	0,315	0,389	0,398	0,399	0,399	0,399	0,399	0,351
2013	0,002	0,015	0,120	0,360	0,445	0,455	0,456	0,456	0,456	0,456	0,414
2014	0,001	0,011	0,091	0,271	0,335	0,343	0,344	0,344	0,344	0,344	0,301
2015	0,001	0,012	0,093	0,278	0,344	0,352	0,353	0,353	0,353	0,353	0,326
2016	0,001	0,012	0,091	0,273	0,338	0,345	0,346	0,346	0,346	0,346	0,321
2017	0,001	0,010	0,076	0,227	0,281	0,287	0,288	0,288	0,288	0,288	0,258
2018	0,001	0,009	0,072	0,216	0,267	0,273	0,273	0,274	0,274	0,274	0,253
2019	0,001	0,011	0,084	0,250	0,309	0,317	0,317	0,317	0,317	0,317	0,300

Tableau 40. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région nord du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1^{er} janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,048	0,557	1,261	1,351	1,356	1,356	1,356	1,356	1,356	1,356	1,354
1979	0,040	0,461	1,044	1,118	1,122	1,122	1,122	1,122	1,122	1,122	1,121
1980	0,026	0,300	0,679	0,728	0,730	0,731	0,731	0,731	0,731	0,731	0,729
1981	0,004	0,063	0,346	0,453	0,460	0,460	0,460	0,460	0,460	0,460	0,455
1982	0,003	0,054	0,294	0,384	0,391	0,391	0,391	0,391	0,391	0,391	0,386
1983	0,002	0,028	0,154	0,202	0,205	0,205	0,205	0,205	0,205	0,205	0,203
1984	0,001	0,022	0,118	0,155	0,158	0,158	0,158	0,158	0,158	0,158	0,156
1985	0,002	0,037	0,204	0,266	0,271	0,271	0,271	0,271	0,271	0,271	0,269
1986	0,003	0,053	0,292	0,382	0,389	0,389	0,389	0,389	0,389	0,389	0,386
1987	0,004	0,066	0,363	0,475	0,483	0,483	0,483	0,483	0,483	0,483	0,480
1988	0,003	0,054	0,297	0,389	0,396	0,396	0,396	0,396	0,396	0,396	0,393
1989	0,004	0,065	0,354	0,463	0,470	0,471	0,471	0,471	0,471	0,471	0,467
1990	0,005	0,080	0,437	0,572	0,582	0,582	0,582	0,582	0,582	0,582	0,578
1991	0,003	0,050	0,276	0,361	0,367	0,367	0,367	0,367	0,367	0,367	0,365
1992	0,003	0,057	0,314	0,410	0,417	0,417	0,417	0,417	0,417	0,417	0,413
1993	0,003	0,042	0,231	0,303	0,308	0,308	0,308	0,308	0,308	0,308	0,306
1994	0,005	0,090	0,494	0,646	0,657	0,658	0,658	0,658	0,658	0,658	0,654
1995	0,009	0,148	0,811	1,062	1,079	1,080	1,080	1,080	1,080	1,080	1,072
1996	0,007	0,123	0,672	0,879	0,894	0,895	0,895	0,895	0,895	0,895	0,888
1997	0,006	0,106	0,582	0,761	0,774	0,774	0,774	0,774	0,774	0,774	0,766
1998	0,006	0,103	0,563	0,737	0,749	0,750	0,750	0,750	0,750	0,750	0,742
1999	0,006	0,104	0,572	0,748	0,760	0,761	0,761	0,761	0,761	0,761	0,753
2000	0,006	0,106	0,579	0,757	0,769	0,770	0,770	0,770	0,770	0,770	0,761
2001	0,005	0,090	0,492	0,644	0,655	0,655	0,655	0,655	0,655	0,655	0,649
2002	0,005	0,087	0,476	0,623	0,634	0,634	0,634	0,634	0,634	0,634	0,628
2003	0,007	0,119	0,652	0,853	0,867	0,868	0,868	0,868	0,868	0,868	0,861
2004	0,004	0,058	0,318	0,416	0,423	0,423	0,423	0,423	0,423	0,423	0,419
2005	0,005	0,075	0,412	0,540	0,549	0,549	0,549	0,549	0,549	0,549	0,543
2006	0,003	0,042	0,321	0,560	0,589	0,591	0,591	0,591	0,591	0,591	0,573
2007	0,003	0,046	0,353	0,615	0,647	0,649	0,649	0,649	0,649	0,649	0,633
2008	0,002	0,034	0,256	0,446	0,469	0,470	0,470	0,470	0,470	0,470	0,459
2009	0,001	0,021	0,157	0,275	0,289	0,290	0,290	0,290	0,290	0,290	0,280
2010	0,001	0,014	0,105	0,183	0,192	0,193	0,193	0,193	0,193	0,193	0,186
2011	0,001	0,009	0,065	0,114	0,120	0,120	0,120	0,120	0,120	0,120	0,117
2012	0,001	0,007	0,056	0,099	0,104	0,104	0,104	0,104	0,104	0,104	0,102
2013	0,001	0,008	0,063	0,110	0,116	0,116	0,116	0,116	0,116	0,116	0,114
2014	0,000	0,007	0,053	0,092	0,097	0,097	0,097	0,097	0,097	0,097	0,095
2015	0,001	0,008	0,058	0,101	0,107	0,107	0,107	0,107	0,107	0,107	0,106
2016 2017	0,001	0,009	0,066	0,115	0,121	0,121	0,121 0,124	0,121 0,124	0,121 0,124	0,121	0,120
	0,001	0,009	0,067	0,117	0,123	0,124				0,124	0,121
2018	0,001	0,009	0,071	0,125	0,131	0,131	0,131	0,131	0,131	0,131	0,129
2019	0,001	0,012	0,092	0,161	0,169	0,169	0,169	0,169	0,169	0,169	0,168

Tableau 41. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent. F₅₋₁₀ est la moyenne pondérée en fonction de l'abondance F au 1^{er} janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,004	0,032	0,209	0,582	0,734	0,757	0,760	0,760	0,761	0,761	0,704
1979	0,010	0,084	0,547	1,524	1,923	1,983	1,990	1,991	1,991	1,991	1,743
1980	0,005	0,041	0,265	0,739	0,932	0,961	0,964	0,965	0,965	0,965	0,790
1981	0,001	0,016	0,254	1,252	1,579	1,601	1,603	1,603	1,603	1,603	1,372
1982	0,000	0,003	0,053	0,259	0,327	0,332	0,332	0,332	0,332	0,332	0,269
1983	0,001	0,012	0,192	0,946	1,193	1,210	1,211	1,211	1,211	1,211	1,072
1984	0,000	0,006	0,094	0,465	0,586	0,595	0,595	0,595	0,595	0,595	0,507
1985	0,000	0,002	0,034	0,165	0,209	0,212	0,212	0,212	0,212	0,212	0,179
1986	0,000	0,003	0,048	0,235	0,296	0,301	0,301	0,301	0,301	0,301	0,274
1987	0,000	0,003	0,053	0,261	0,330	0,334	0,335	0,335	0,335	0,335	0,304
1988	0,000	0,005	0,074	0,363	0,458	0,465	0,465	0,465	0,465	0,465	0,419
1989	0,000	0,002	0,032	0,160	0,202	0,205	0,205	0,205	0,205	0,205	0,186
1990	0,000	0,003	0,052	0,257	0,324	0,328	0,329	0,329	0,329	0,329	0,304
1991	0,000	0,005	0,081	0,398	0,502	0,508	0,509	0,509	0,509	0,509	0,452
1992	0,000	0,002	0,039	0,192	0,242	0,246	0,246	0,246	0,246	0,246	0,203
1993	0,000	0,003	0,044	0,219	0,276	0,280	0,281	0,281	0,281	0,281	0,250
1994	0,000	0,003	0,051	0,251	0,317	0,321	0,322	0,322	0,322	0,322	0,308
1995	0,000	0,007	0,111	0,548	0,691	0,701	0,701	0,701	0,701	0,701	0,614 0,625
1996 1997	0,000 0,000	0,006 0,007	0,104 0,111	0,514 0,546	0,649 0,689	0,658 0,698	0,658 0,699	0,658 0,699	0,658 0,699	0,658 0,699	0,625 0,614
1997	0,000	0,007	0,111	0,346	0,009	0,096	0,099	0,899	0,099	0,099	0,814
1998	0,001	0,010	0,138	0,778	0,981	0,993	0,990	0,990	0,990	0,990	0,895
2000	0,000	0,009	0,143	0,704	0,868	0,900	0,901	0,901	0,901	0,901	0,730
2000	0,000	0,005	0,123	0,000	0,707	0,778	0,779	0,779	0,779	0,779	0,048
2001	0,000	0,005	0,082	0,405	0,511	0,516	0,516	0,516	0,516	0,516	0,449
2002	0,000	0,003	0,069	0,423	0,337	0,344	0,344	0,343	0,343	0,343	0,488
2004	0,000	0,004	0,063	0,309	0,390	0,396	0,396	0,396	0,396	0,396	0,346
2005	0,000	0,005	0,083	0,412	0,519	0,527	0,527	0,527	0,527	0,527	0,457
2006	0,000	0,002	0,014	0,085	0,361	0,699	0,812	0,833	0,836	0,836	0,337
2007	0,000	0,002	0,012	0,071	0,303	0,588	0,684	0,701	0,703	0,704	0,321
2008	0,000	0,002	0,014	0,084	0,359	0,696	0,809	0,829	0,833	0,833	0,444
2009	0,000	0,002	0,016	0,099	0,422	0,818	0,951	0,975	0,978	0,979	0,334
2010	0,000	0,003	0,017	0,104	0,442	0,857	0,996	1,021	1,025	1,025	0,357
2011	0,000	0,002	0,013	0,079	0,336	0,652	0,757	0,776	0,779	0,779	0,329
2012	0,000	0,002	0,010	0,064	0,272	0,527	0,612	0,627	0,630	0,630	0,301
2013	0,000	0,002	0,011	0,065	0,278	0,540	0,627	0,643	0,645	0,645	0,365
2014	0,000	0,001	0,010	0,059	0,250	0,484	0,563	0,577	0,579	0,579	0,252
2015	0,000	0,002	0,011	0,067	0,285	0,552	0,642	0,658	0,660	0,661	0,308
2016	0,000	0,001	0,008	0,050	0,212	0,412	0,478	0,490	0,492	0,492	0,257
2017	0,000	0,002	0,010	0,062	0,265	0,514	0,597	0,612	0,614	0,615	0,321
2018	0,000	0,001	0,009	0,055	0,236	0,457	0,531	0,544	0,546	0,547	0,307
2019	0,000	0,001	0,009	0,052	0,223	0,433	0,503	0,516	0,518	0,518	0,343

Tableau 42. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région centrale du sud du golfe du Saint-Laurent. F₅₋₁₀ est la moyenne pondérée en fonction de l'abondance F au 1^{er} janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,002	0,016	0,120	0,461	0,678	0,716	0,720	0,721	0,721	0,721	0,626
1979	0,005	0,044	0,330	1,264	1,858	1,963	1,975	1,977	1,977	1,977	1,570
1980	0,002	0,021	0,161	0,616	0,906	0,957	0,963	0,964	0,964	0,964	0,686
1981	0,001	0,010	0,173	0,999	1,336	1,360	1,362	1,362	1,362	1,362	1,117
1982	0,000	0,002	0,035	0,200	0,268	0,273	0,273	0,273	0,273	0,273	0,209
1983	0,000	0,007	0,125	0,721	0,965	0,982	0,983	0,983	0,983	0,983	0,838
1984	0,000	0,003	0,055	0,318	0,425	0,433	0,433	0,433	0,433	0,433	0,350
1985	0,000	0,001	0,019	0,113	0,151	0,154	0,154	0,154	0,154	0,154	0,123
1986	0,000	0,002	0,029	0,170	0,228	0,232	0,232	0,232	0,232	0,232	0,205
1987	0,000	0,002	0,034	0,194	0,260	0,265	0,265	0,265	0,265	0,265	0,232
1988	0,000	0,003	0,047	0,271	0,363	0,369	0,369	0,370	0,370	0,370	0,320
1989	0,000	0,001	0,021	0,124	0,166	0,169	0,169	0,169	0,169	0,169	0,148
1990	0,000	0,002	0,036	0,209	0,279	0,284	0,285	0,285	0,285	0,285	0,257
1991	0,000	0,003	0,057	0,332	0,445	0,453	0,453	0,453	0,453	0,453	0,388
1992	0,000	0,002	0,028	0,161	0,215	0,219	0,219	0,219	0,219	0,219	0,171
1993	0,000	0,002	0,032	0,186	0,249	0,254	0,254	0,254	0,254	0,254	0,219
1994	0,000	0,002	0,038	0,221	0,295	0,300	0,301	0,301	0,301	0,301	0,284
1995	0,000	0,005	0,085	0,491	0,656	0,668	0,669	0,669	0,669	0,669	0,568
1996	0,000	0,005	0,079	0,458	0,612	0,623	0,624	0,624	0,624	0,624	0,584
1997	0,000	0,005	0,084	0,485	0,649	0,661	0,661	0,661	0,661	0,661	0,562
1998	0,000	0,007	0,119	0,689	0,922	0,939	0,940	0,940	0,940	0,940	0,823
1999	0,000	0,007	0,109	0,633	0,847	0,862	0,863	0,863	0,863	0,863	0,695
2000	0,000	0,005	0,090	0,524	0,701	0,713	0,714	0,714	0,714	0,714	0,569
2001	0,000	0,003	0,056	0,326	0,437	0,444	0,445	0,445	0,445	0,445	0,373
2002	0,000	0,003	0,057	0,330	0,441	0,449	0,449	0,449	0,449	0,449	0,394
2003	0,000	0,003	0,046	0,266	0,355	0,361	0,362	0,362	0,362	0,362	0,311
2004	0,000	0,003	0,043	0,247	0,330	0,336	0,336	0,336	0,336	0,336	0,288
2005	0,000	0,003	0,055	0,316	0,423	0,431	0,431	0,431	0,431	0,431	0,365
2006	0,000	0,001	0,011	0,100	0,303	0,368	0,375	0,375	0,375	0,375	0,240
2007	0,000	0,001	0,010	0,084	0,256	0,311	0,316	0,317	0,317	0,317	0,218
2008	0,000	0,001	0,011	0,097	0,294	0,356	0,363	0,364	0,364	0,364	0,268
2009	0,000	0,001	0,010	0,086	0,260	0,316	0,322	0,322	0,322	0,322	0,160
2010	0,000	0,001	0,007	0,064	0,194	0,235	0,239	0,240	0,240	0,240	0,138
2011	0,000	0,000	0,005	0,044	0,135	0,164	0,167	0,167	0,167	0,167	0,112
2012	0,000	0,000	0,004	0,036	0,110	0,133	0,136	0,136	0,136	0,136	0,098
2013	0,000	0,000	0,004	0,038	0,117	0,141	0,144	0,144	0,144	0,144	0,115
2014	0,000	0,000	0,004	0,035	0,105	0,127	0,130	0,130	0,130	0,130	0,085
2015	0,000	0,000	0,004	0,036	0,110	0,133	0,135	0,136	0,136	0,136	0,098
2016	0,000	0,000	0,003	0,029	0,087	0,106	0,108	0,108	0,108	0,108	0,084
2017 2018	0,000 0,000	0,000	0,004 0,004	0,038 0,033	0,116	0,141	0,144	0,144 0,126	0,144	0,144 0,126	0,107
		0,000			0,101	0,123	0,125		0,126		0,098
2019	0,000	0,000	0,004	0,033	0,100	0,121	0,123	0,123	0,123	0,123	0,105

Tableau 43. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent. F₅¹0 est la moyenne pondérée en fonction de l'abondance F au 1er janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,048	0,117	0,259	0,467	0,666	0,792	0,851	0,876	0,885	0,889	0,642
1979	0,021	0,053	0,116	0,210	0,299	0,356	0,383	0,394	0,398	0,400	0,265
1980	0,098	0,242	0,533	0,963	1,374	1,633	1,756	1,806	1,826	1,833	1,168
1981	0,002	0,014	0,102	0,444	0,740	0,803	0,812	0,813	0,813	0,813	0,610
1982	0,001	0,010	0,071	0,312	0,520	0,565	0,571	0,571	0,572	0,572	0,374
1983	0,001	0,007	0,052	0,227	0,378	0,410	0,415	0,415	0,415	0,415	0,291
1984	0,001	0,006	0,048	0,211	0,351	0,381	0,385	0,386	0,386	0,386	0,275
1985	0,001	0,005	0,038	0,165	0,275	0,299	0,302	0,302	0,302	0,302	0,212
1986	0,001	0,005	0,040	0,174	0,290	0,315	0,318	0,319	0,319	0,319	0,259
1987	0,001	0,007	0,050	0,218	0,362	0,394	0,398	0,398	0,398	0,398	0,303
1988	0,001	0,005	0,034	0,148	0,247	0,268	0,271	0,271	0,271	0,271	0,200
1989	0,000	0,002	0,015	0,064	0,106	0,115	0,117	0,117	0,117	0,117	0,098
1990	0,001	0,009	0,066	0,289	0,482	0,524	0,529	0,530	0,530	0,530	0,476
1991	0,000	0,002	0,017	0,074	0,124	0,135	0,136	0,136	0,136	0,136	0,118
1992	0,000	0,002	0,018	0,077	0,128	0,138	0,140	0,140	0,140	0,140	0,103
1993	0,000	0,001	0,009	0,040	0,067	0,072	0,073	0,073	0,073	0,073	0,058
1994	0,001	0,006	0,047	0,204	0,341	0,370	0,374	0,374	0,374	0,374	0,336
1995	0,001	0,006	0,048	0,210	0,350	0,380	0,384	0,384	0,384	0,384	0,298
1996	0,001	0,010	0,078	0,342	0,569	0,618	0,625	0,626	0,626	0,626	0,554
1997	0,001	0,009	0,071	0,308	0,513	0,557	0,563	0,564	0,564	0,564	0,418
1998	0,001	0,010	0,076	0,333	0,555	0,603	0,609	0,610	0,610	0,610	0,498
1999	0,002	0,014	0,103	0,448	0,747	0,811	0,820	0,821	0,821	0,821	0,567
2000	0,001	0,011	0,079	0,347	0,578	0,628	0,634	0,635	0,635	0,635	0,445
2001	0,001	0,011	0,080	0,351	0,585	0,635	0,642	0,643	0,643	0,643	0,462
2002	0,001	0,010	0,074	0,325	0,542	0,589	0,595	0,595	0,595	0,596	0,474
2003	0,001	0,010	0,072	0,314	0,523	0,568	0,574	0,574	0,575	0,575	0,382
2004	0,001	0,005	0,040	0,175	0,291	0,316	0,319	0,319	0,320	0,320	0,241
2005	0,001	0,005	0,041	0,179	0,299	0,325	0,328	0,329	0,329	0,329	0,257
2006	0,000	0,001	0,007	0,041	0,204	0,509	0,657	0,687	0,692	0,693	0,318
2007	0,000	0,001	0,007	0,044	0,218	0,543	0,701	0,733	0,738	0,739	0,343
2008	0,000	0,001	0,006	0,039	0,191	0,476	0,615	0,644	0,648	0,649	0,338
2009	0,000	0,002	0,010	0,062	0,307	0,765	0,987	1,033	1,040	1,041	0,340
2010	0,000	0,002	0,012	0,075	0,370	0,923	1,192	1,246	1,255	1,257	0,410
2011	0,000	0,001	0,009	0,056	0,277	0,690	0,891	0,932	0,939	0,940	0,341
2012	0,000	0,001	0,007	0,046	0,227	0,566	0,730	0,764	0,769	0,770	0,326
2013	0,000	0,001	0,007	0,046	0,226	0,564	0,728	0,762	0,767	0,768	0,415
2014	0,000	0,001	0,008	0,052	0,259	0,646	0,835	0,873	0,879	0,880	0,407
2015	0,000	0,002	0,010	0,063	0,313	0,781	1,008	1,055	1,062	1,063	0,427
2016	0,000	0,001	0,009	0,059	0,292	0,727	0,938	0,982	0,988	0,990	0,411
2017	0,000	0,001	0,006	0,035	0,172	0,428	0,553	0,579	0,583	0,583	0,224
2018	0,000	0,001	0,005	0,032	0,161	0,401	0,518	0,542	0,545	0,546	0,197
2019	0,000	0,001	0,006	0,038	0,189	0,471	0,608	0,636	0,640	0,641	0,339

Tableau 44. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans la région sud du sud du golfe du Saint-Laurent. F5-10 est la moyenne pondérée en fonction de l'abondance F au 1^{er} janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,025	0,068	0,175	0,377	0,625	0,806	0,895	0,930	0,943	0,948	0,580
1979	0,011	0,032	0,081	0,175	0,290	0,374	0,415	0,431	0,437	0,439	0,239
1980	0,052	0,144	0,369	0,795	1,316	1,698	1,886	1,960	1,987	1,997	1,041
1981	0,001	0,010	0,074	0,360	0,662	0,735	0,745	0,746	0,746	0,746	0,516
1982	0,001	0,007	0,051	0,247	0,455	0,505	0,512	0,513	0,513	0,513	0,301
1983	0,001	0,005	0,037	0,178	0,328	0,364	0,369	0,369	0,369	0,369	0,234
1984	0,001	0,004	0,034	0,164	0,301	0,335	0,339	0,340	0,340	0,340	0,219
1985	0,000	0,003	0,026	0,127	0,235	0,260	0,264	0,264	0,264	0,264	0,166
1986	0,000	0,004	0,028	0,135	0,249	0,277	0,280	0,281	0,281	0,281	0,213
1987	0,001	0,004	0,035	0,169	0,311	0,345	0,349	0,350	0,350	0,350	0,246
1988	0,000	0,003	0,024	0,115	0,212	0,236	0,239	0,239	0,239	0,239	0,164
1989	0,000	0,001	0,010	0,051	0,093	0,104	0,105	0,105	0,105	0,105	0,084
1990	0,001	0,006	0,047	0,226	0,417	0,463	0,469	0,470	0,470	0,470	0,408
1991	0,000	0,001	0,011	0,056	0,103	0,114	0,116	0,116	0,116	0,116	0,096
1992	0,000	0,002	0,012	0,058	0,106	0,118	0,119	0,120	0,120	0,120	0,081
1993	0,000	0,001	0,006	0,031	0,057	0,063	0,064	0,064	0,064	0,064	0,048
1994	0,001	0,004	0,033	0,159	0,293	0,325	0,330	0,330	0,330	0,330	0,289
1995	0,001	0,004	0,034	0,164	0,303	0,336	0,341	0,341	0,341	0,341	0,252
1996	0,001	0,007	0,054	0,264	0,485	0,539	0,546	0,547	0,547	0,547	0,473
1997	0,001	0,006	0,049	0,237	0,436	0,484	0,490	0,491	0,491	0,491	0,345
1998	0,001	0,007	0,051	0,250	0,461	0,512	0,518	0,519	0,519	0,519	0,407
1999	0,001	0,009	0,068	0,330	0,607	0,675	0,683	0,685	0,685	0,685	0,444
2000	0,001	0,006	0,048	0,235	0,433	0,481	0,488	0,488	0,489	0,489	0,323
2001	0,001	0,006	0,044	0,214	0,394	0,438	0,444	0,445	0,445	0,445	0,305
2002	0,001	0,005	0,037	0,179	0,330	0,366	0,371	0,372	0,372	0,372	0,288
2003	0,001	0,004	0,033	0,163	0,300	0,333	0,337	0,338	0,338	0,338	0,215
2004	0,000	0,002	0,017	0,081	0,148	0,165	0,167	0,167	0,167	0,167	0,122
2005	0,000	0,002	0,016	0,076	0,140	0,155	0,157	0,158	0,158	0,158	0,120
2006	0,000	0,000	0,003	0,030	0,126	0,184	0,193	0,194	0,195	0,195	0,129
2007	0,000	0,000	0,003	0,030	0,124	0,182	0,191	0,192	0,192	0,192	0,126
2008	0,000	0,000	0,003	0,024	0,099	0,145	0,152	0,153	0,153	0,153	0,110
2009	0,000	0,000	0,003	0,030	0,125	0,184	0,193	0,194	0,194	0,194	0,081
2010	0,000 0,000	0,000 0,000	0,002	0,021	0,089	0,131	0,138	0,138	0,138	0,138	0,075
2011 2012	0,000	0,000	0,002 0,001	0,015 0,013	0,062 0,053	0,092 0,078	0,096 0,082	0,097 0,082	0,097 0,082	0,097 0,082	0,058 0,056
2012	0,000							0,082	0,082		
2013	0,000	0,000 0,000	0,002	0,014	0,060	0,089	0,093 0,120	0,093	0,093	0,093 0,120	0,073 0,080
2014	0,000	0,000	0,002 0,002	0,019 0,020	0,078 0,082	0,114 0,120	0,120	0,120	0,120 0,127	0,120 0,127	0,080
2015	0,000	0,000	0,002	0,020	0,082	0,120	0,126	0,127	0,127	0,127	0,081
2016	0,000	0,000	0,002	0,018	0,074	0,109	0,114	0,115	0,115	0,115	0,079
2017	0,000	0,000	0,001	0,012	0,050	0,073	0,077	0,077	0,077	0,077	0,049
2019	0,000	0,000	0,002	0,014	0,060	0,088	0,093	0,093	0,093	0,093	0,072

Tableau 45. Estimations du maximum de vraisemblance du modèle qSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent. F_{5-10} est la moyenne pondérée en fonction de l'abondance F au $1^{\rm er}$ janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,005	0,028	0,056	0,043	0,025	0,024	0,020	0,007	0,005	0,012	0,956
1979	0,006	0,019	0,036	0,030	0,015	0,007	0,009	0,007	0,002	0,007	0,831
1980	0,013	0,044	0,035	0,052	0,025	0,011	0,004	0,003	0,002	0,003	1,051
1981	0,001	0,006	0,030	0,021	0,017	0,004	0,001	0,000	0,000	0,001	0,719
1982	0,001	0,005	0,027	0,030	0,007	0,004	0,001	0,000	0,000	0,000	0,356
1983	0,000	0,005	0,021	0,032	0,025	0,004	0,002	0,000	0,000	0,000	0,340
1984	0,000	0,003	0,023	0,030	0,019	0,009	0,001	0,001	0,000	0,000	0,232
1985	0,001	0,005	0,022	0,049	0,027	0,013	0,005	0,001	0,000	0,000	0,235
1986	0,001	0,008	0,037	0,041	0,052	0,022	0,010	0,004	0,001	0,000	0,323
1987	0,001	0,009	0,059	0,063	0,037	0,039	0,016	0,007	0,003	0,001	0,381
1988	0,000	0,006	0,043	0,062	0,036	0,016	0,017	0,007	0,003	0,002	0,287
1989	0,001	0,005	0,038	0,049	0,036	0,016	0,008	0,007	0,003	0,002	0,255
1990	0,001	0,018	0,042	0,054	0,056	0,057	0,025	0,010	0,010	0,006	0,514
1991	0,000	0,009	0,067	0,029	0,018	0,014	0,011	0,005	0,002	0,004	0,267
1992	0,001	0,005	0,060	0,083	0,018	0,011	0,008	0,007	0,003	0,003	0,251
1993	0,000	0,007	0,021	0,052	0,044	0,008	0,004	0,003	0,003	0,003	0,197
1994	0,002	0,012	0,187	0,080	0,157	0,067	0,013	0,007	0,007	0,013	0,525
1995	0,002	0,039	0,115	0,342	0,075	0,063	0,049	0,009	0,005	0,012	0,783
1996	0,003	0,020	0,188	0,085	0,174	0,016	0,027	0,023	0,004	0,011	0,756
1997	0,003	0,031	0,098	0,185	0,039	0,033	0,006	0,010	0,009	0,006	0,645
1998	0,003	0,044	0,180	0,109	0,116	0,010	0,016	0,003	0,005	0,007	0,721
1999	0,002	0,041	0,263	0,233	0,061	0,030	0,005	0,008	0,001	0,006	0,721
2000	0,004	0,028	0,236	0,301	0,121	0,012	0,009	0,001	0,002	0,002	0,694
2001	0,003	0,046	0,143	0,245	0,149	0,024	0,004	0,003	0,001	0,002	0,611
2002	0,003	0,037	0,263	0,160	0,149	0,034	0,010	0,002	0,001	0,001	0,612
2003	0,003	0,064	0,297	0,438	0,120	0,036	0,016	0,004	0,001	0,001	0,714
2004	0,001	0,021	0,178	0,177	0,144	0,014	0,009	0,004	0,001	0,000	0,378
2005	0,001	0,024	0,161	0,287	0,161	0,041	0,009	0,006	0,003	0,001 0,004	0,471
2006 2007	0,002 0,002	0,006 0,022	0,076	0,177 0,203	0,222 0,180	0,056	0,043	0,009	0,006	0,004	0,563 0,633
2007			0,049	0,203		0,073	0,031	0,019	0,003	0,004	0,635
2008	0,002 0,001	0,017 0,013	0,136 0,084	0,102	0,167 0,073	0,049 0,061	0,036 0,033	0,012 0,021	0,007 0,007	0,003	0,635
2010	0,001	0,013	0,064	0,247	0,073	0,031	0,033	0,021	0,007	0,008	0,499
2010	0,001	0,009	0,039	0,103	0,237	0,031	0,032	0,012	0,007	0,004	0,497
2012	0,000	0,004	0,039	0,113	0,119	0,054	0,010	0,007	0,002	0,002	0,373
2012	0,000	0,004	0,020	0,079	0,104	0,032	0,030	0,003	0,002	0,001	0,337
2013	0,000	0,004	0,043	0,033	0,090	0,043	0,031	0,018	0,001	0,001	0,404
2015	0,000	0,002	0,016	0,002	0,041	0,043	0,034	0,013	0,007	0,001	0,310
2016	0,000	0,004	0,010	0,047	0,050	0,020	0,020	0,017	0,007	0,004	0,330
2017	0,000	0,002	0,022	0,030	0,036	0,025	0,015	0,006	0,004	0,004	0,320
2018	0,000	0,000	0,005	0,029	0,044	0,020	0,014	0,012	0,003	0,004	0,247
2019	0,000	0,001	0,003	0,014	0,038	0,031	0,014	0,009	0,007	0,004	0,314

Tableau 46. Estimations du maximum de vraisemblance du modèle qmSCA du taux instantané de mortalité par pêche (F) pour les reproducteurs d'automne dans le sud du golfe du Saint-Laurent. F₅₋₁₀ est la moyenne pondérée en fonction de l'abondance F au 1^{er} janvier pour les poissons âgés de 5 à 10 ans.

						Âge					
Année	2	3	4	5	6	7	8	9	10	11+	F5-10
1978	0,005	0,029	0,054	0,042	0,025	0,023	0,020	0,007	0,006	0,015	0,912
1979	0,007	0,020	0,033	0,031	0,016	0,007	0,009	0,007	0,003	0,009	0,765
1980	0,016	0,046	0,033	0,052	0,027	0,011	0,005	0,004	0,003	0,003	0,957
1981	0,001	0,007	0,031	0,021	0,017	0,004	0,001	0,000	0,000	0,001	0,632
1982	0,001	0,007	0,027	0,030	0,007	0,003	0,001	0,000	0,000	0,000	0,309
1983	0,000	0,006	0,022	0,031	0,024	0,003	0,002	0,000	0,000	0,000	0,304
1984	0,000	0,003	0,025	0,031	0,018	0,008	0,001	0,001	0,000	0,000	0,206
1985	0,001	0,006	0,023	0,049	0,027	0,012	0,005	0,001	0,000	0,000	0,201
1986	0,001	0,010	0,037	0,040	0,053	0,021	0,010	0,004	0,001	0,001	0,283
1987	0,001	0,011	0,058	0,060	0,037	0,038	0,016	0,008	0,003	0,001	0,328
1988	0,000	0,007	0,041	0,059	0,036	0,016	0,017	0,007	0,003	0,002	0,247
1989	0,001	0,006	0,036	0,044	0,035	0,016	0,008	0,008	0,004	0,003	0,224
1990	0,001	0,021	0,039	0,049	0,053	0,051	0,025	0,011	0,012	0,008	0,456
1991	0,000	0,010	0,063	0,027	0,018	0,014	0,011	0,005	0,002	0,005	0,233
1992	0,001	0,005	0,056	0,078	0,018	0,011	0,009	0,007	0,003	0,004	0,212
1993	0,000	0,007	0,018	0,049	0,044	0,008	0,005	0,004	0,003	0,003	0,171
1994	0,003	0,016	0,202	0,077	0,163	0,070	0,013	0,008	0,007	0,016	0,485
1995	0,002	0,057	0,118	0,329	0,076	0,068	0,052	0,009	0,005	0,015	0,719
1996	0,004	0,027	0,207	0,081	0,174	0,016	0,028	0,024	0,005	0,013	0,692
1997	0,005	0,045	0,106	0,183	0,040	0,033	0,006	0,011	0,010	0,007	0,579
1998	0,004	0,061	0,197	0,108	0,121	0,011	0,017	0,003	0,005	0,008	0,636
1999	0,003	0,059	0,286	0,237	0,067	0,033	0,005	0,008	0,001	0,007	0,631
2000	0,006	0,040	0,269	0,306	0,135	0,014	0,010	0,001	0,002	0,002	0,593
2001	0,004	0,071	0,158	0,253	0,165	0,027	0,005	0,004	0,001	0,002	0,494
2002	0,005	0,057	0,318	0,167	0,173	0,040	0,011	0,002	0,001	0,001	0,474
2003	0,005	0,094	0,358	0,487	0,147	0,044	0,018	0,005	0,001	0,001	0,536
2004	0,002	0,032	0,216	0,205	0,189	0,018	0,011	0,005	0,001	0,000	0,281
2005	0,002	0,039	0,197	0,335	0,213	0,047	0,011	0,007	0,003	0,001	0,342
2006	0,004	0,013	0,141	0,208	0,266	0,049	0,029	0,006	0,004	0,002	0,341
2007	0,004	0,062	0,093	0,230	0,202	0,066	0,025	0,015	0,003	0,003	0,349
2008	0,003	0,035	0,304	0,100	0,161	0,043	0,027	0,010	0,006	0,002	0,274
2009	0,001	0,024	0,147	0,313	0,068	0,044	0,020	0,014	0,006	0,005	0,182
2010	0,000	0,011	0,109	0,163	0,244	0,020	0,015	0,007	0,005	0,004	0,141
2011	0,001	0,004	0,050	0,116	0,121	0,072	0,006	0,005	0,002	0,003	0,093
2012	0,000	0,007	0,024	0,074	0,119	0,054	0,026	0,002	0,002	0,002	0,084
2013	0,000	0,004	0,053	0,047	0,096	0,071	0,024	0,011	0,001	0,001	0,099
2014	0,000	0,002	0,023	0,079	0,047	0,055	0,029	0,009	0,005	0,001	0,089
2015	0,000	0,004	0,019	0,045	0,105	0,034	0,022	0,011	0,004	0,002	0,098
2016	0,000	0,003	0,029	0,038	0,059	0,065	0,012	0,008	0,004	0,002	0,102
2017	0,000	0,001	0,024	0,051	0,045	0,032	0,024	0,004	0,003	0,002	0,099
2018	0,000	0,001	0,008	0,043	0,059	0,024	0,013	0,009	0,002	0,002	0,099
2019	0,000	0,001	0,006	0,018	0,061	0,039	0,012	0,006	0,004	0,002	0,127

Tableau 47. Tableau d'analyse des risques du modèle qSCA sur les options de captures annuelles (entre 2 000 et 24 000 tonnes) pour 2020 et 2021 et les années suivantes jusqu'en 2028; comprend la BSR (tonnes) prévue en 2021, 2022 et 2029; les probabilités (%) que la BSR soit supérieure au PRL; les probabilités que la BSR augmente de 5 %; et le taux de mortalité par pêche (F₅₋₁₀) pleinement recruté pour la composante de reproducteurs d'automne du Hareng de l'Atlantique du sud du golfe du Saint-Laurent.

Option de captures (t)	BSR de 2021 (tonnes)	BSR de 2022 (tonnes)	BSR < PRL en 2021 (%)	BSR < PRL en 2022 (%)	BSR < PRL 2029 (%)	BSR > PRS en 2021 (%)	BSR > PRS en 2022 (%)	BSR > PRS en 2029 (%)	BSR 2021 > 2020 (%)	BSR 2022 > 2020 (%)	Hausse de 5 % de la BSR de 2020 à 2021 (%)	Hausse de 5 % de la BSR de 2021 à 2022 (%)	Moyenne F ₅₋₁₀ en 2020	Moyenne F ₅₋₁₀ en 2021
2 000	86 207	89 185	0	0	87	1	4	0	98	96	94	47	0,03	0,03
4 000	84 391	85 799	0	0	94	0	3	0	96	93	92	44	0,07	0,07
6 000	82 668	82 726	0	0	97	0	2	0	94	88	89	42	0,11	0,11
8 000	81 062	79 707	0	0	98	0	2	0	91	82	84	40	0,15	0,15
10 000	79 555	76 491	0	0	99	0	1	0	88	76	81	37	0,19	0,20
12 000	77 753	73 424	0	2	99	0	1	0	85	69	77	34	0,24	0,27
14 000	76 040	70 272	0	4	100	0	1	0	80	62	72	32	0,28	0,34
16 000	74 471	67 056	0	7	100	0	1	0	77	56	69	30	0,33	0,43
18 000	72 497	64 030	0	12	100	0	0	0	73	50	64	29	0,39	0,52
20 000	70 950	61 517	1	16	100	0	0	0	68	44	60	27	0,44	0,64
22 000	69 524	58 988	1	22	100	0	0	0	65	40	56	25	0,51	0,76
24 000	67 968	56 339	2	27	100	0	0	0	61	35	52	24	0,57	0,88

Tableau 48. Tableau d'analyse des risques du modèle qmSCA sur les options de captures annuelles (entre 2 000 et 24 000 tonnes) pour 2020 et 2021 et les années suivantes jusqu'en 2028; comprend la BSR (tonnes) prévue en 2021, 2022 et 2029; les probabilités (%) que la BSR soit supérieure au PRL; les probabilités que la BSR augmente de 5 %; et le taux résultant de mortalité par pêche (F₅₋₁₀) pleinement recruté pour la composante de reproducteurs d'automne du Hareng de l'Atlantique du sud du golfe du Saint-Laurent.

Option de captures (t)	BSR de 2021 tonnes)	BSR de 2022 (tonnes)	BSR < PRL en 2021 (%)	BSR < PRL en 2022 (%)	BSR < PRL 2029 (%)	BSR > PRS en 2021 (%)	BSR > PRS en 2022 (%)	BSR > PRS en 2029 (%)	BSR 2021 > 2020 (%)	BSR 2022 > 2020 (%)	Hausse de 5 % de la BSR de 2020 à 2021 (%)	Hausse de 5 % de la BSR de 2021 à 2022 (%)	Moyenne F ₅₋₁₀ en 2020	Moyenne F ₅₋₁₀ en 2021
2 000	144 440	131 175	0	0	100	0	0	0	39	29	29	29	0,01	0,02
4 000	143 296	129 356	0	0	100	0	0	0	38	28	27	28	0,03	0,04
6 000	142 502	128 254	0	0	100	0	0	0	36	27	26	28	0,04	0,06
8 000	141 189	126 839	0	0	100	0	0	0	35	26	25	28	0,06	0,08
10 000	140 459	124 735	0	0	100	0	0	0	34	24	24	27	0,07	0,10
12 000	139 502	123 143	0	0	100	0	0	0	33	23	23	27	0,08	0,13
14 000	138 681	121 677	0	0	100	0	0	0	31	21	21	26	0,10	0,15
16 000	137 395	119 884	0	0	100	0	0	0	30	20	22	25	0,11	0,18
18 000	136 308	118 546	0	0	100	0	0	0	28	19	20	25	0,13	0,21
20 000	135 451	116 897	0	0	100	0	0	0	27	19	19	25	0,14	0,24
22 000	133 994	115 126	0	0	100	0	0	0	26	17	17	25	0,16	0,27
24 000	133 604	114 065	0	0	100	0	0	0	25	16	17	23	0,18	0,30

FIGURES

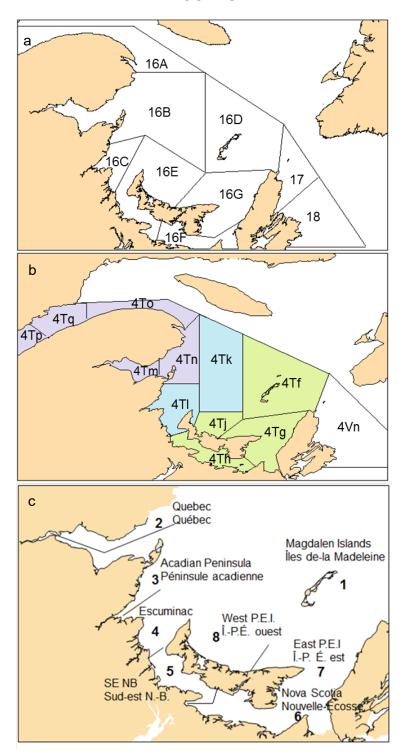


Figure 1. Zones de gestion de la pêche du Hareng dans le sud du golfe du Saint-Laurent (graphique du haut, a); zones 4T et 4Vn de l'OPANO, où le mauve représente la région nord, le bleu représente la région centrale et le vert représente la région sud (graphique du milieu, b); zones géographiques utilisées lors du sondage téléphonique portant sur la pêche du Hareng au filet maillant (graphique du bas, c).

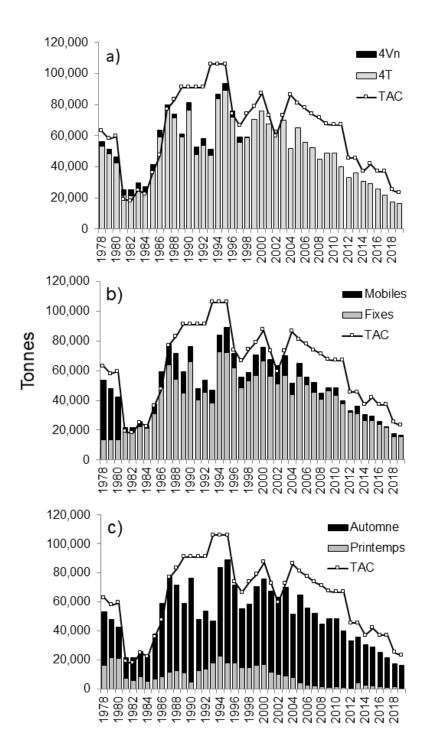


Figure 2. Débarquements déclarés (tonnes) de Harengs de l'Atlantique du sud du golfe du Saint-Laurent (reproducteurs de printemps et d'automne combinés) par zone de l'OPANO (graphique du haut, a); par flotte (graphique du milieu, b) et par saison de pêche (graphique du bas, c), de 1978 à 2019. Dans tous les graphiques, le total autorisé des captures (TAC; tonnes) annuel correspondant est indiqué. Pour les débarquements par saison, les débarquements dans la zone 4Vn ont été attribués à la saison de pêche d'automne. Les données de 2018 et 2019 sont préliminaires.

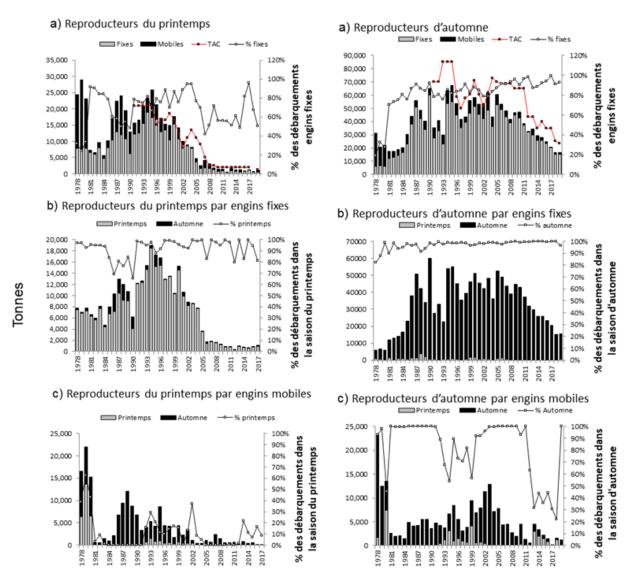


Figure 3. Débarquements estimés (tonnes) de la composante de reproducteurs de printemps (à gauche) et de la composante de reproducteurs d'automne (à droite) du Hareng de l'Atlantique du sud du golfe du Saint-Laurent, de 1978 à 2019. Les graphiques a et d montrent les débarquements estimés par type d'engin, la proportion des débarquements attribués à la flotte à engins fixes et le TAC pour la composante reproducteur (symboles rouges) pour la période de 1991 à 2019. Les graphiques b et e montrent les débarquements estimés de Hareng de la flotte à engins fixes qui ont eu lieu au cours de la saison de pêche de printemps et d'automne, ainsi que la proportion de Harengs débarqués au cours de la saison de pêche correspondante. Les graphiques c et f montrent les débarquements estimés de Hareng de la flotte à engins mobiles qui ont eu lieu au cours de la saison de pêche de printemps et d'automne, ainsi que la proportion de Harengs débarqués au cours de la saison de pêche correspondante. Pour les débarquements par saison, les débarquements dans la zone 4Vn de l'OPANO ont été attribués à la saison de pêche d'automne. Les données de 2018 et 2019 sont préliminaires.

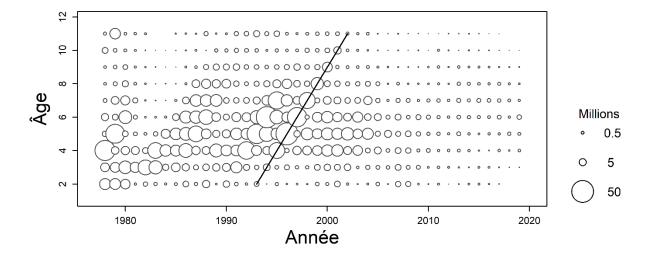


Figure 4. Captures selon l'âge de la composante de reproducteurs de printemps pour la pêche commerciale, tous engins confondus, de 1978 à 2019. La taille de la bulle est proportionnelle au nombre de captures selon l'âge et l'année. La diagonale représente la cohorte la plus forte la plus récente (1991). Les valeurs indiquées à l'âge de 11 ans représentent les captures selon l'âge de 11 ans et plus.

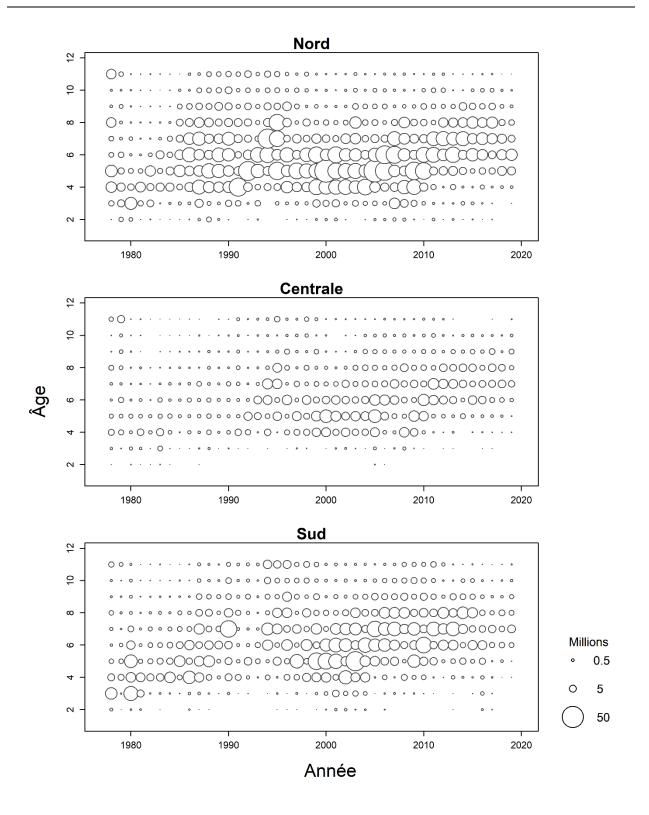


Figure 5. Captures selon l'âge de la composante de reproducteurs d'automne pour la pêche commerciale, tous engins confondus, de 1978 à 2019, pour les régions Nord (haut), Centrale (milieu) et Sud (bas). La taille de la bulle est proportionnelle au nombre de poissons dans les captures selon l'âge et l'année. Les valeurs indiquées à l'âge de 11 ans représentent les captures selon l'âge de 11 ans et plus.

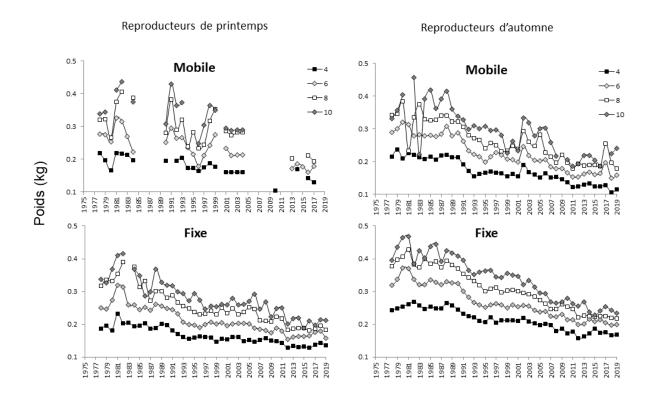


Figure 6. Poids moyen (kg) du Hareng de l'Atlantique de 4, 6, 8 et 10 ans des reproducteurs de printemps (graphiques de gauche) prélevés dans les captures du printemps et des reproducteurs d'automne (graphiques de droite) prélevés dans les captures d'automne aux engins commerciaux mobiles (graphiques du haut) et fixes (graphiques du bas), dans la zone 4T de l'OPANO, de 1978 à 2019.

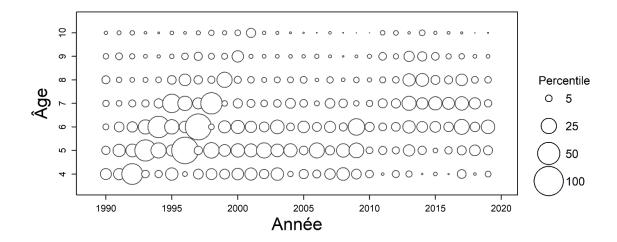


Figure 7. Captures par unité d'effort (nombre par coup de filet par sortie) des Harengs reproducteurs de printemps, selon l'âge, de 1990 à 2019. La taille de la bulle est proportionnelle à la valeur maximale de l'indice des CPUE.

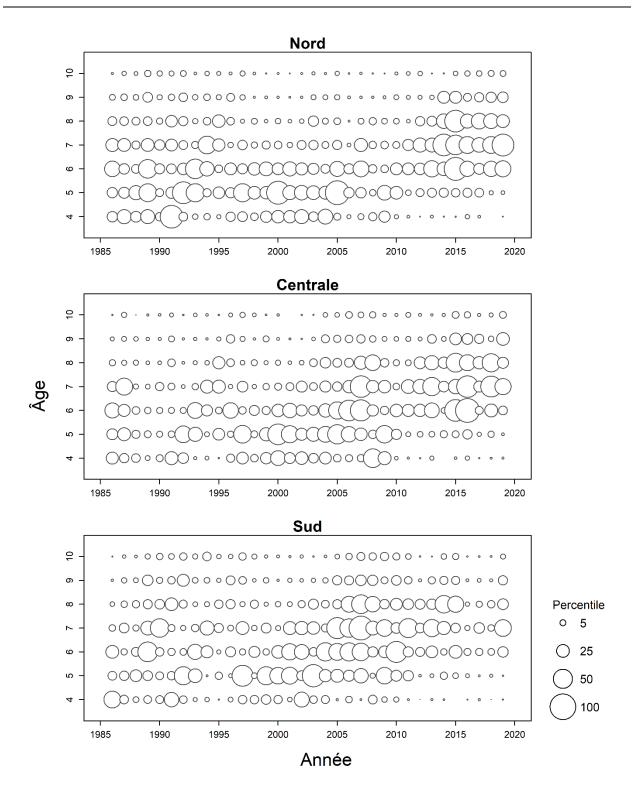


Figure 8. Captures par unité d'effort (nombre par coup de filet par sortie) des reproducteurs d'automne avec engins fixes, sans regroupement par âge, par région (graphique du haut, nord; graphique du milieu, centrale; graphique du bas, sud), de 1986 à 2019. La taille de la bulle est proportionnelle à la valeur de l'indice des CPUE.

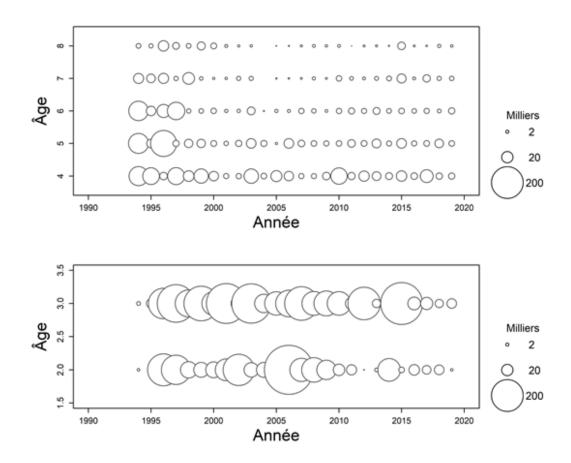


Figure 9. Abondance selon l'âge d'après le relevé acoustique indépendant de la pêche pour les reproducteurs de printemps (graphique du haut; âges 4 à 8 ans) et d'automne (graphique du bas; âges 2 à 3 ans) de 1994 à 2019.

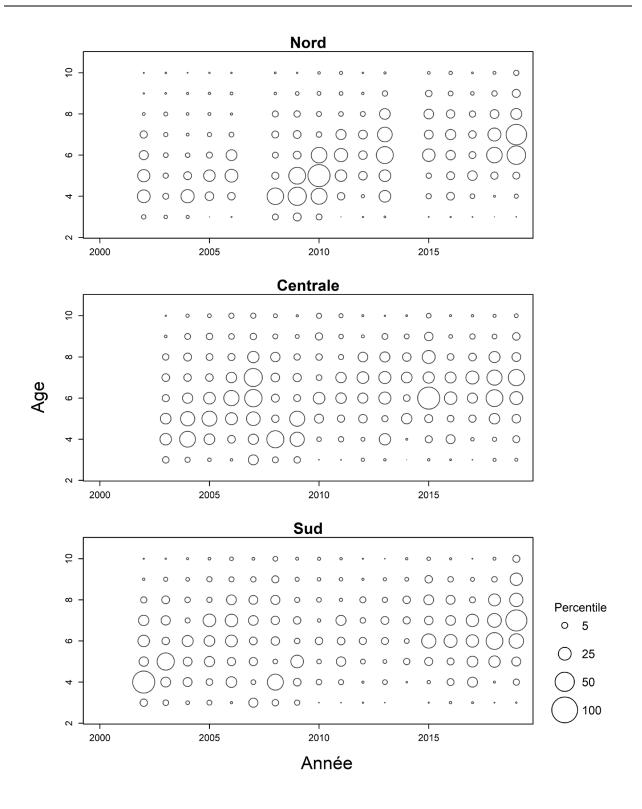


Figure 10. Captures selon l'âge (quantité) de reproducteurs d'automne issus de l'étude au filet expérimental par région (graphique du haut, nord; graphique du milieu, centrale; graphique du bas, sud) de 2002 à 2017. La taille de la bulle est proportionnelle à la valeur de l'indice.

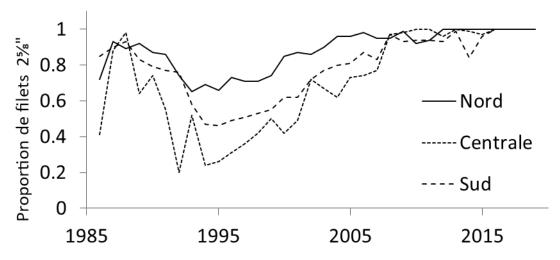


Figure 11. Variations des proportions de filets maillants avec des maillages de 2 5/8 po par région, de 1986 à 2019. Les autres filets utilisés ont un maillage de 2 3/4 po.

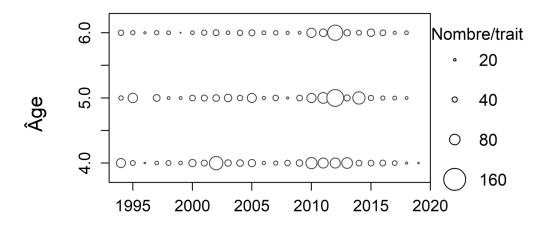


Figure 12. Indice d'abondance des relevés plurispécifiques au chalut de fond (nombre de poissons par trait normalisé) pour les Harengs reproducteurs d'automne, âge de 4 à 6 ans, de 1994 à 2019.

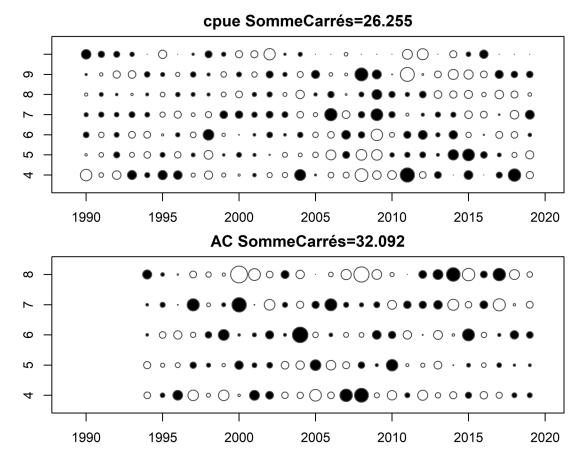


Figure 13. Proportions de résidus selon l'âge (indices observés – prédits) pour le modèle de population des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Le graphique du haut représente les résidus relatifs à l'indice des CPUE, tandis que le graphique du bas représente les résidus relatifs à l'indice du relevé acoustique. Les rangées correspondent aux âges et les colonnes, aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (c.-à-d., observés < prédits).

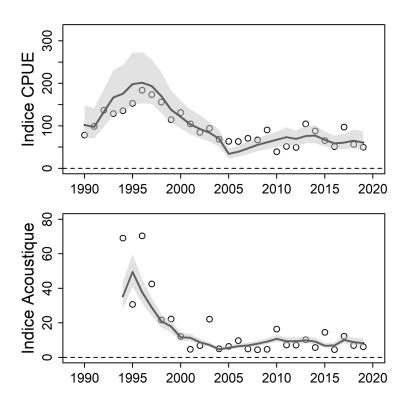


Figure 14. Indice des CPUE (graphique du haut) observés (cercles) et prédits (lignes et ombragés), et indice du relevés acoustiques (graphique du bas) pour le modèle de population des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Les lignes indiquent les indices médians prédits, tandis que les zones ombragées représentent les intervalles de confiance à 95 % des prédictions reposant sur l'échantillonnage MCMC.

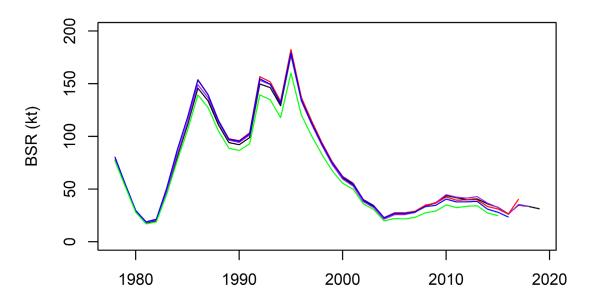


Figure 15. Biais rétrospectifs de la biomasse estimée du stock reproducteur de 4 à 10 ans pour les reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Les couleurs des lignes correspondent aux extractions entre 2015 et 2019.

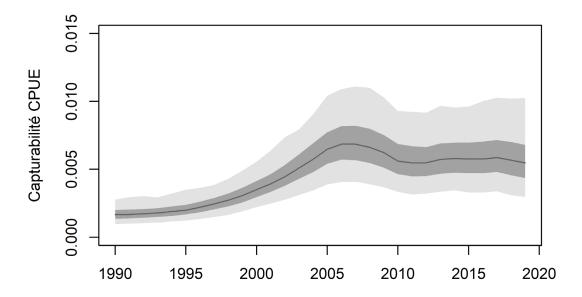


Figure 16. Estimation de la capturabilité (q) des poissons pleinement recrutés à l'indice des CPUE à partir du modèle de population des reproducteurs de printemps. Les lignes présentent les estimations médianes et les ombrages représentent leur intervalle de confiance à 50 % (ombrage foncé) et 95 % (ombrage clair) de l'échantillonnage MCMC.

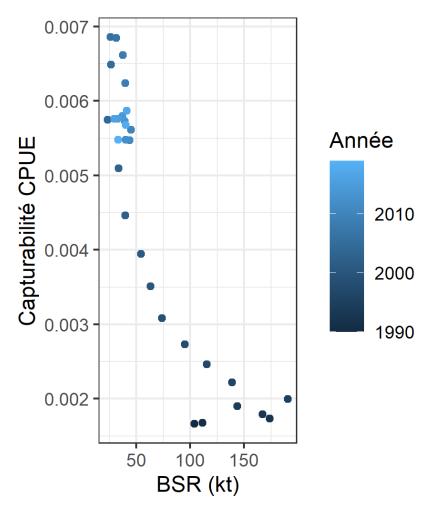


Figure 17. Capturabilité des poissons pleinement recrutés pour les CPUE au filet maillant (q) en fonction de la BSR (en milliers de tonnes) pour le Hareng reproducteur de printemps entre 1990 et 2019.

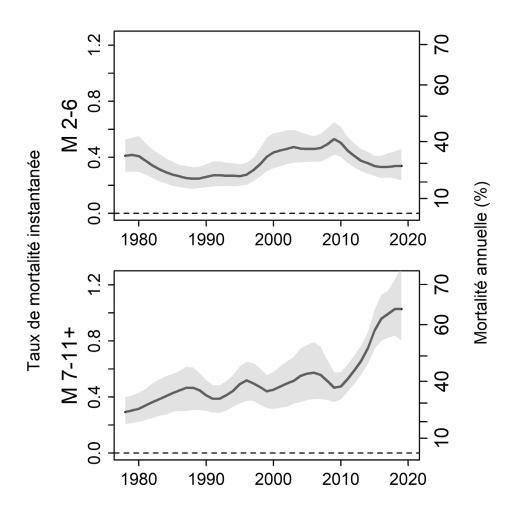


Figure 18. Estimation du taux de mortalité naturelle instantanée (M, axe de gauche) et de la mortalité annuelle (%, axe de droite) de la composante de reproducteurs de printemps du Hareng de l'Atlantique, à partir du modèle de population, pour les 2 à 6 ans (graphique du haut) et les 7 à 11 ans et plus (graphique du bas). Les lignes présentent les estimations médianes et les ombrages représentent leur intervalle de confiance à 95 % de l'échantillonnage MCMC.

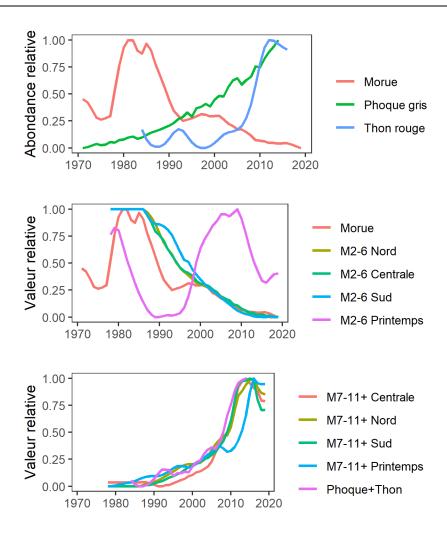


Figure 19. Mise à l'échelle (0-1) des indices d'abondance relative des principaux prédateurs du Hareng (Morue de l'Atlantique, Phoque Gris, Thon Rouge de l'Atlantique), entre 1970 et 2019 (graphique du haut). Mise à l'échelle de la valeur relative des estimations de l'abondance et de la mortalité naturelle de la Morue du sud du golfe du Saint-Laurent pour le groupe de 2 à 6 ans (M2-6) dans le modèle qmSCA des stocks de Hareng de printemps et d'automne (graphique du milieu). Mise à l'échelle de la valeur relative des indices d'abondance du Phoque Gris et du Thon Rouge de l'Atlantique du sud du golfe du Saint-Laurent, et estimations de la mortalité naturelle pour les 7 à 11 ans et plus (M7-11+) dans le modèle qmSCA des stocks de Hareng de printemps et d'automne (graphique du bas). Les estimations de la mortalité naturelle sont des estimations médianes selon la méthode de MCMC.

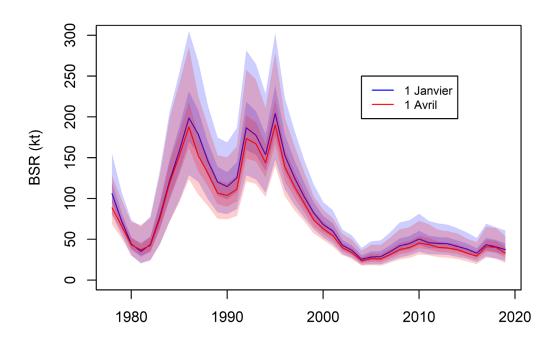


Figure 20. Estimation de la biomasse du stock reproducteur au 1er janvier (ligne bleue et ombrée) et au 1er avril (ligne rouge et ombrée) de la composante de Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent. La ligne continue est l'estimation médiane selon la méthode de MCMC et les ombrages représentent ses intervalles de confiance à 50 % (ombrage foncé) et 95 % (ombrage clair).

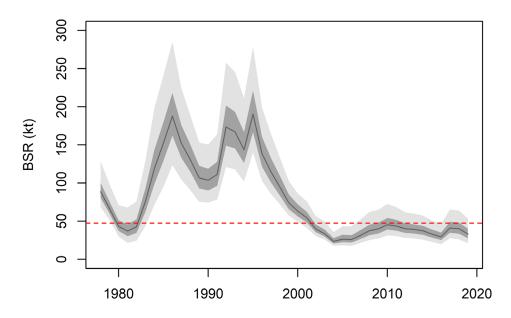


Figure 21. Estimation de la biomasse du stock reproducteur de la composante de Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent, de 1978 à 2019, au début de la saison de pêche (1er avril). La ligne continue est l'estimation médiane selon la méthode de MCMC et les ombrages représentent ses intervalles de confiance à 50 % (ombrage foncé) et 95 % (ombrage clair). La ligne horizontale rouge en pointillés est le point de référence limite (PRL = BSR de 47 250 tonnes).

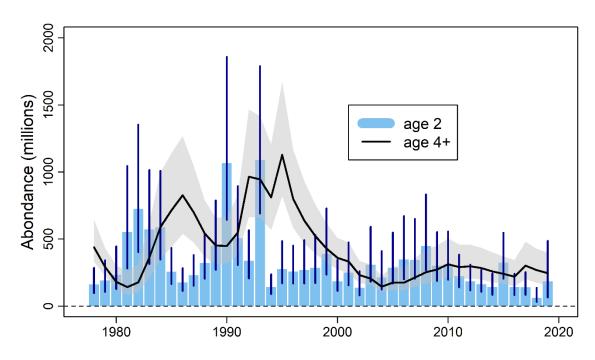


Figure 22. Estimation de l'abondance au 1^{er} janvier des Harengs de 2 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales et l'ombrage représentent l'intervalle de confiance à 95 %.

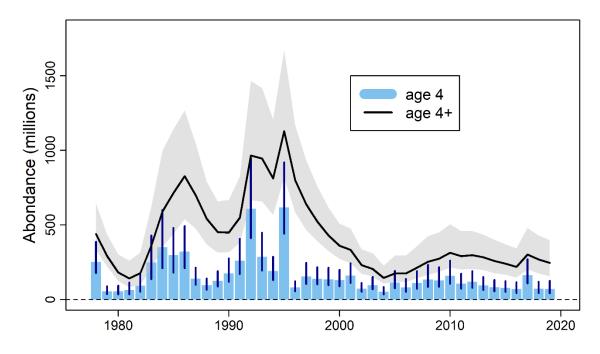


Figure 23. Estimation au 1^{er} janvier de l'abondance des Harengs de 4 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs de printemps dans le sud du golfe du Saint-Laurent. La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales et l'ombrage représentent l'intervalle de confiance à 95 %.

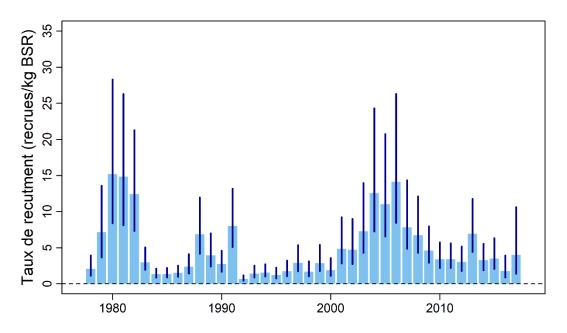


Figure 24. Taux de recrutement des recrues de 2 ans pour les cohortes de Harengs de reproducteurs de printemps de 1978 à 2017 dans la zone 4T de l'OPANO. Les lignes verticales représentent les intervalles de confiance à 95 %.

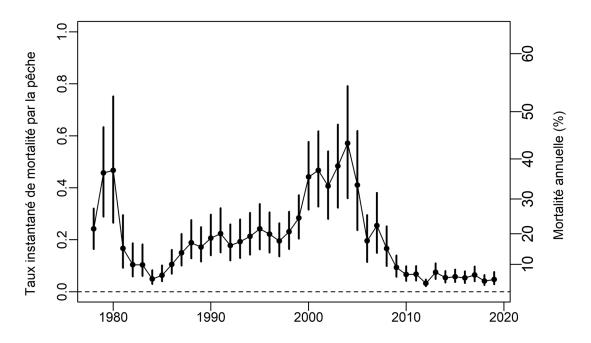


Figure 25. Estimation au 1^{er} janvier de la mortalité par pêche des 6 à 8 ans pondérée par l'abondance (F6-8, axe de gauche; taux d'exploitation annuel, axe de droite) des Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent. Les cercles sont les estimations médianes et les lignes verticales leurs intervalles de confiance à 95 %.

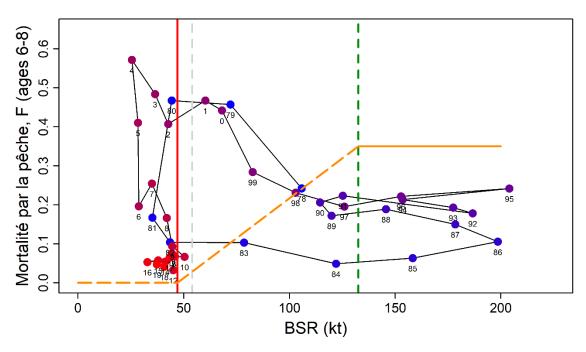


Figure 26. Trajectoire de la composante des Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent en fonction de la biomasse du stock reproducteur (BSR, en milliers de tonnes) et des taux de mortalité par la pêche pondérés par l'abondance pour les 6 à 8 ans. La ligne verticale rouge est le point de référence limite (PRL) et la ligne verticale verte pointillée est le point de référence supérieur (PRS). La ligne horizontale continue orange présente la valeur de référence du taux de captures ($F_{0.1}$ = 0,35) dans la zone saine et la ligne pointillée orange représente la règle de décision de récolte provisoire du cadre de l'approche de précaution dans la zone de prudence et la zone critique. La ligne verticale grise est le PRL de l'évaluation précédente. Les étiquettes de points sont des années (83 = 1983, 0 = 2000). Le code de couleurs va du bleu dans les années 1970 et au début des années 1980 au rouge dans les années 2000.

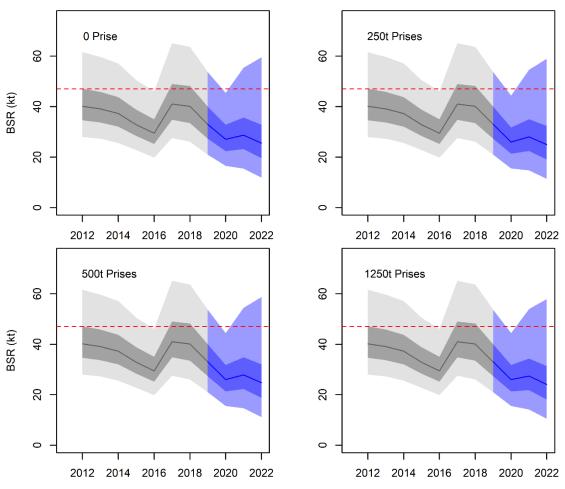


Figure 27. Projection de la biomasse du stock reproducteur au 1er avril (BSR en milliers de tonnes) de Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent, avec un niveau de recrutement moyen sur 5 ans et un niveau de mortalité naturelle moyen sur 2 ans à différents niveaux de captures en 2020 et 2021. Les lignes indiquent les estimations médianes de la BSR au 1er avril, en foncé l'intervalle de confiance de 75 %, et en clair les intervalles de confiance de 95 % de ces estimations (selon l'échantillonnage fondé sur la méthode de MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection. La ligne horizontale rouge est le point de référence limite (PRL).

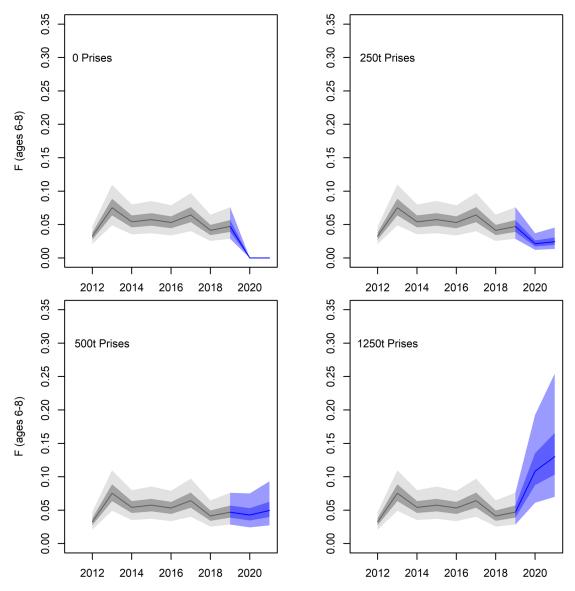


Figure 28. Projection du taux de mortalité par pêche (F) des Harengs reproducteurs de printemps, âgés de 6 à 8 ans, provenant du sud du golfe du Saint-Laurent, à différents niveaux de captures en 2020 et 2021. Les lignes indiquent les estimations médianes de la mortalité par pêche, en foncé l'intervalle de confiance de 75 % et en clair les intervalles de confiance à 95 % de ces estimations (selon l'échantillonnage MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection.

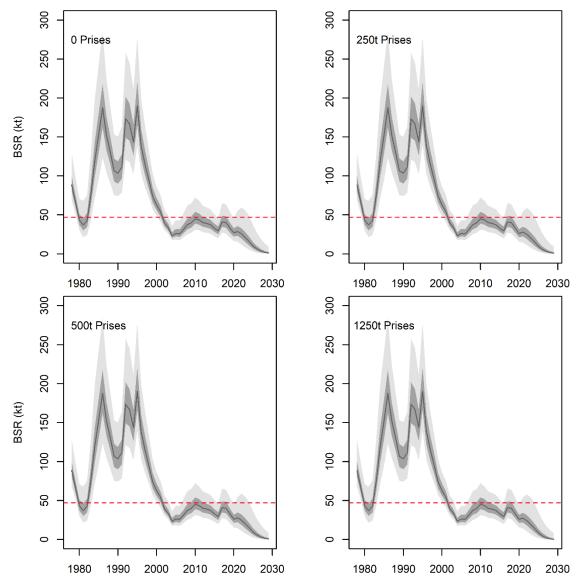


Figure 29. Projection de la biomasse du stock reproducteur au 1^{er} avril (BSR en milliers de tonnes) des Harengs reproducteurs de printemps dans le sud du golfe du Saint-Laurent, avec un niveau de recrutement moyen sur 5 ans et un niveau de mortalité naturelle moyen sur 2 ans à différents niveaux de captures pour toutes les années entre 2020 et 2029. Les lignes indiquent les estimations médianes de la BSR au 1^{er} avril, en foncé l'intervalle de confiance à 75 %, et en clair les intervalles de confiance à 95 % de ces estimations (selon l'échantillonnage MCMC). La ligne horizontale rouge est le point de référence limite (PRL).

Figure 30. Résidus des proportions selon l'âge de captures par la pêche par région (nord, centrale et sud) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (c.-à-d. observés < prédits).

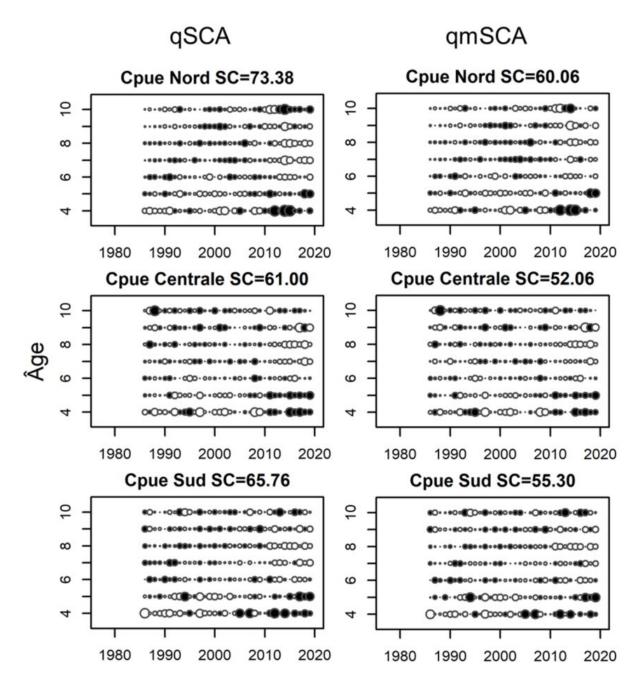


Figure 31. Résidus des proportions selon l'âge de l'indice des CPUE par région (nord, centrale et sud) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (c.-à-d. observés < prédits).

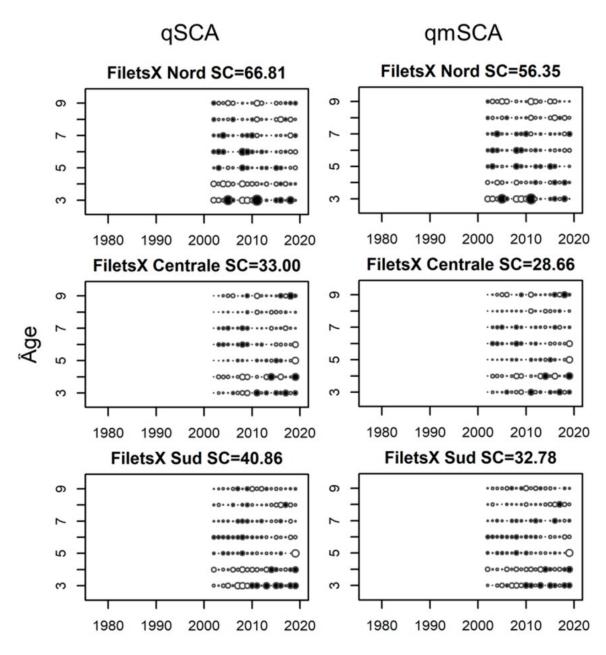


Figure 32. Résidus des proportions selon l'âge de l'indice des filets expérimentaux par région (nord, centrale et sud) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (c.-à-d. observés < prédits).

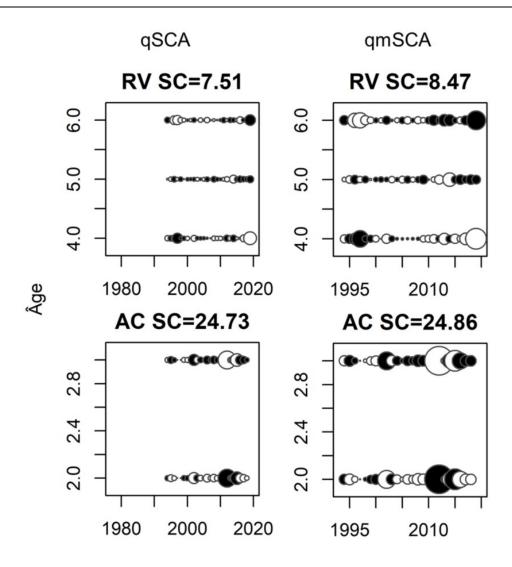


Figure 33. Résidus des proportions selon l'âge de l'indice du relevé par navire de recherche (en haut) et de l'indice du relevé acoustique (en bas) pour les modèles de population qSCA (à gauche) et qmSCA (à droite) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent. Les rangées correspondent aux âges et les colonnes aux années. Le rayon du cercle est proportionnel à la valeur absolue des résidus. Les cercles noirs représentent les résidus négatifs (c.-à-d. observés < prédits).

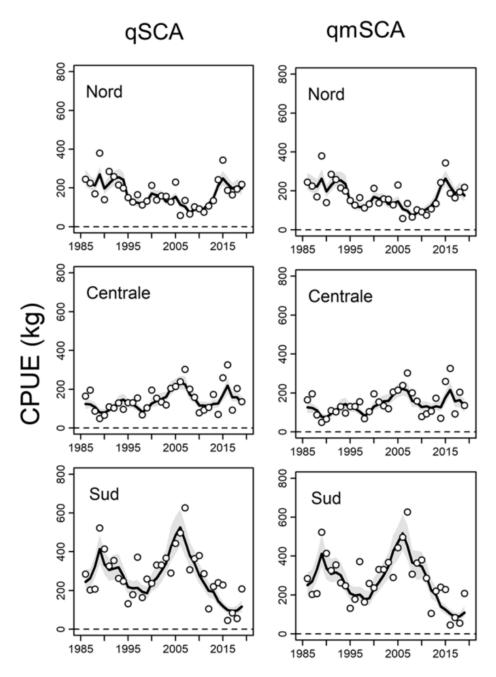


Figure 34. Indices des CPUE des filets maillants commerciaux observés (cercles) et prédits (lignes et ombres) pour chaque région (nord, centrale et sud), selon les modèles qSCA (gauche) et qmSCA (droite) pour les reproducteurs d'automne du sud du golfe du Saint-Laurent. Les lignes indiquent les indices médians prédits, tandis que les zones ombragées représentent les intervalles de confiance à 95 % des prédictions selon l'échantillonnage MCMC.

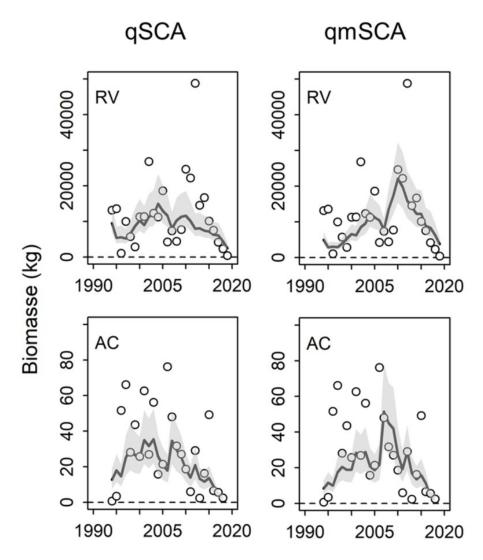


Figure 35. Indices des relevés par navire de recherche observés (cercles) et prédits (lignes et ombres) [RV, toutes régions confondues] et indices acoustiques [AC, toutes régions confondues] pour les modèles qSCA (gauche) et qmSCA (droite) pour les reproducteurs d'automne du sud du golfe du Saint-Laurent. Les lignes indiquent les indices médians prédits, tandis que les zones ombragées représentent les intervalles de confiance à 95 % des prédictions reposant sur l'échantillonnage MCMC.

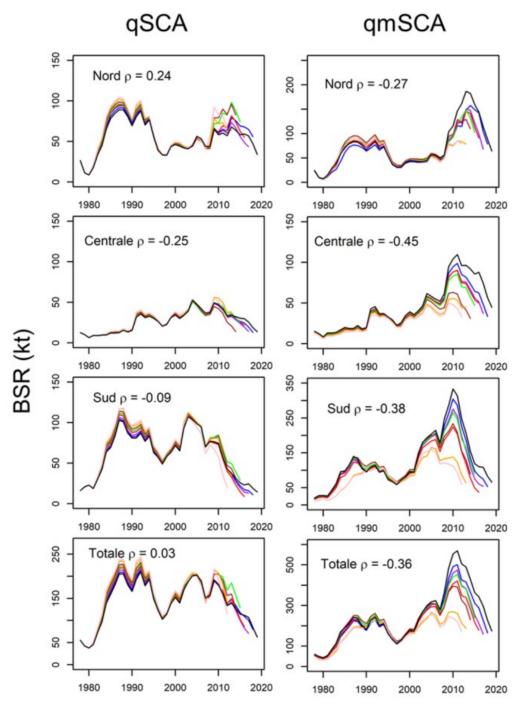


Figure 36. Biais rétrospectifs de la biomasse du stock reproducteur et du coefficient rho de Mohn des reproducteurs d'automne dans les trois régions (nord, centrale et sud) et pour tous les modèles de population qSCA (à gauche) et qmSCA (à droite) du Hareng de l'Atlantique du sud du golfe du Saint-Laurent. Les lignes de couleur représentent les extractions rétrospectives entre 2012 et 2019.

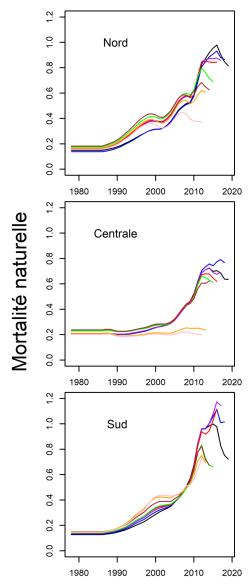


Figure 37. Biais rétrospectifs dans les estimations de la mortalité naturelle des reproducteurs d'automne dans les trois régions (nord, centrale et sud) pour le modèle de population qmSCA du Hareng de l'Atlantique du sud du golfe du Saint-Laurent. Les lignes de couleur représentent les extractions rétrospectives entre 2012 et 2019.

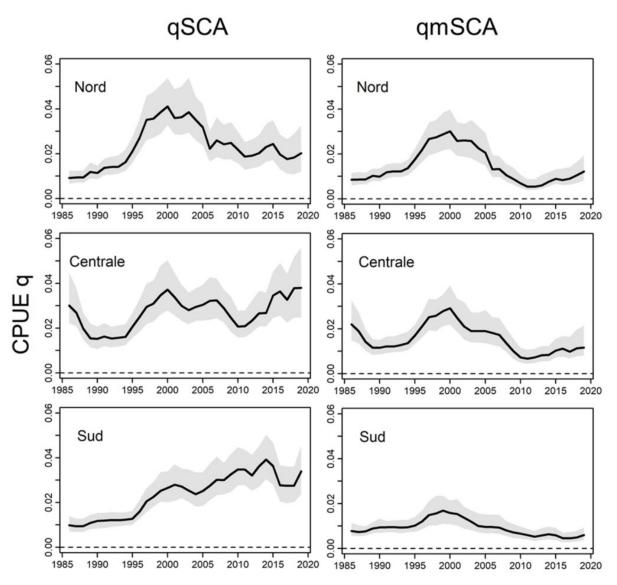


Figure 38. Estimation de la capturabilité des poissons pleinement recrutés à l'indice des CPUE pour les filets maillants commerciaux par région (nord, centrale, sud), pour les modèles de population qSCA (à gauche) et qmSCA (à droite) des Harengs reproducteurs d'automne dans le sud du golfe du Saint-Laurent. Les lignes présentent les estimations médianes et les ombrages représentent les intervalles de confiance à 95 % selon l'échantillonnage MCMC.

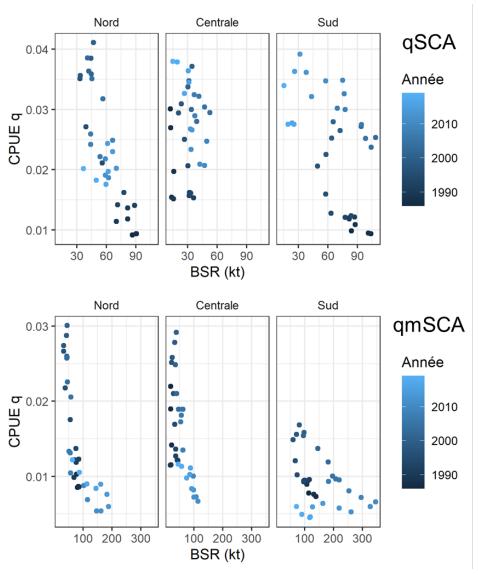


Figure 39. Estimation de la capturabilité des poissons pleinement recrutés à l'indice des CPUE pour les filets maillants commerciaux, par rapport à la BSR par région (nord, centrale et sud), pour les modèles de population qSCA (graphique du haut) et qmSCA (graphique du bas) des Harengs reproducteurs d'automne dans le sud du golfe du Saint-Laurent.

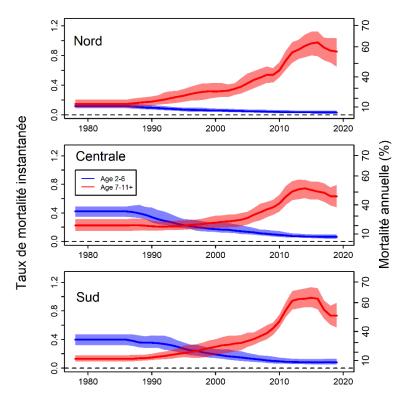


Figure 40. Estimation du taux de mortalité naturelle instantanée (axe de gauche) et de la mortalité annuelle (%, axe de droite) des Harengs reproducteurs d'automne pour trois régions du sud du golfe du Saint-Laurent (nord, centrale et sud) à partir du modèle de population qmSCA, pour les poissons de 2 à 6 ans (bleu) et de 7 à 11 ans et plus (rouge). Les lignes présentent les estimations médianes et les ombrages représentent leur intervalle de confiance à 95 % selon l'échantillonnage MCMC.

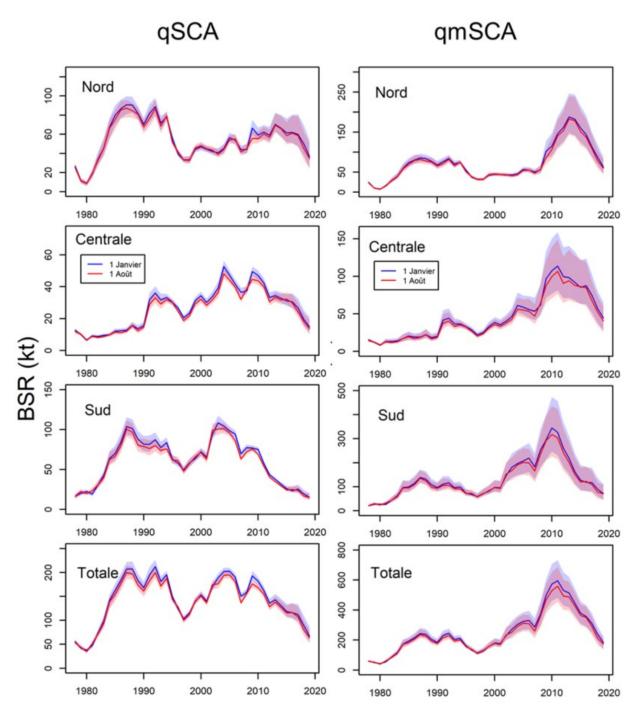


Figure 41. Estimation de la biomasse du stock reproducteur au 1^{er} janvier (ligne bleue et ombrage) et au 1^{er} août (ligne rouge et ombrage) de la composante de Harengs reproducteurs d'automne dans trois régions (nord, centrale et sud) du sud du golfe du Saint-Laurent pour les modèles de population qSCA (à gauche) et qmSCA (à droite). La ligne continue représente l'estimation médiane selon la méthode de MCMC et l'ombrage représente les intervalles de confiance à 95 %.

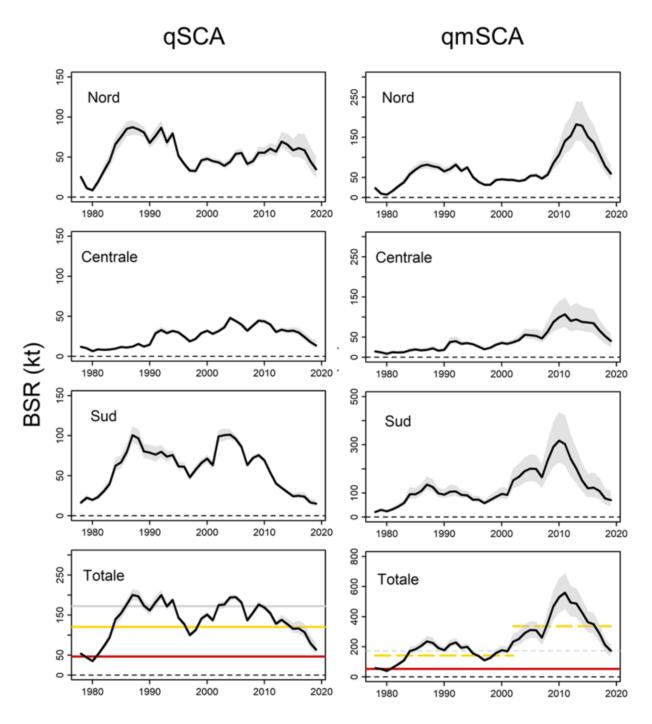


Figure 42. Estimation de la biomasse du stock reproducteur en début de saison de pêche (1er août) des Harengs reproducteurs d'automne, par région (nord, centrale et sud) et dans l'ensemble (total) du sud du golfe du Saint-Laurent, pour les modèles qSCA (graphique de gauche) et qmSCA (graphique de droite). La ligne noire représente les estimations médianes de l'échantillonnage MCMC et l'ombrage représente les intervalles de confiance à 95 %. Dans les graphiques du bas pour le total, les lignes horizontales jaunes pleines et pointillées représentent le point de référence supérieur (PRS) et la ligne horizontale rouge est le point de référence limite (PRL). La ligne horizontale grise représente le PRS de l'évaluation précédente. Les valeurs de la BSR, du PRS et du PRL sont corrigées au 1er août en utilisant les estimations de la mortalité naturelle à l'âge pour 7 mois.

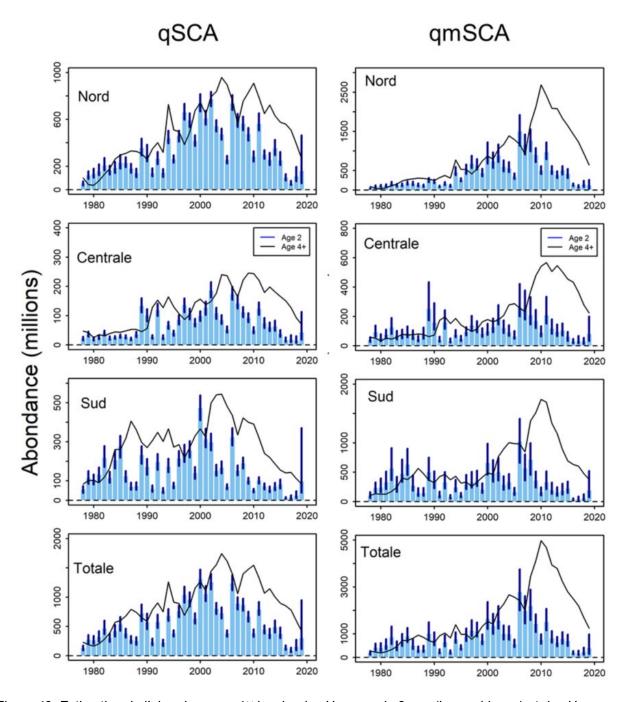


Figure 43. Estimation de l'abondance au 1^{er} janvier des Harengs de 2 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs d'automne dans trois régions (nord, centrale et sud) du sud du golfe du Saint-Laurent pour les modèles de population qSCA (à gauche) et qmSCA (à droite). La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales représentent l'intervalle de confiance à 95 %.

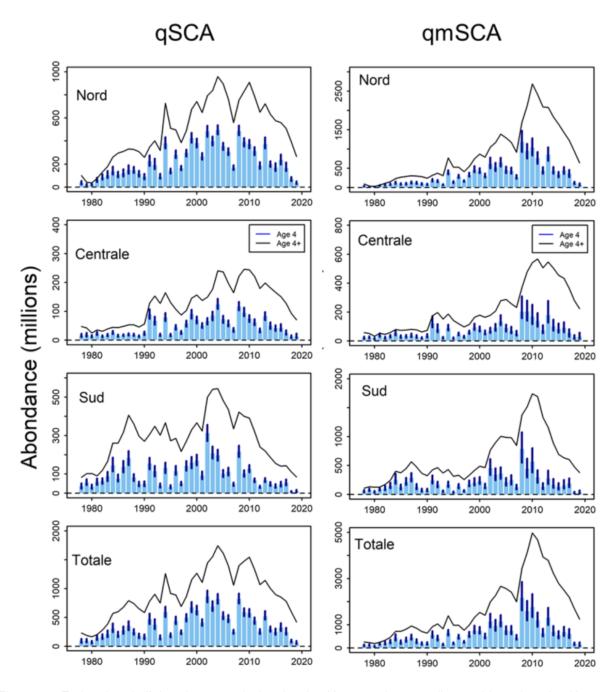


Figure 44. Estimation de l'abondance au 1^{er} janvier des Harengs de 4 ans (barres bleues) et des Harengs de 4 ans et plus (ligne noire) de la composante des reproducteurs d'automne dans trois régions (nord, centrale, sud) du sud du golfe du Saint-Laurent pour les modèles de population qSCA (à gauche) et qmSCA (à droite). La ligne noire indique l'estimation médiane selon la méthode de MCMC et les lignes verticales représentent l'intervalle de confiance à 95 %.

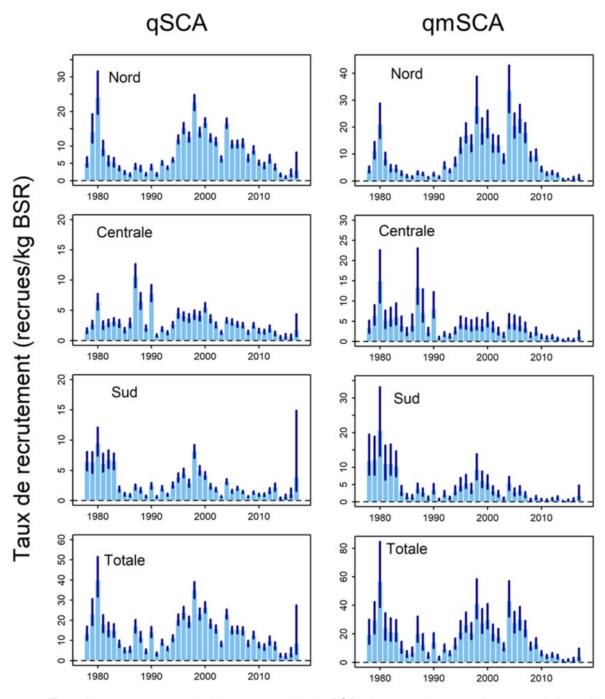


Figure 45. Taux de recrutement estimé (recrues par kg de BSR) des reproducteurs d'automne à l'âge de 2 ans (cercles) dans les trois régions (nord, centrale et sud) et totalisé sur les régions (total) du sud du golfe du Saint-Laurent, pour les modèles de population qSCA (à gauche) et qmSCA (à droite). Les barres représentent les estimations médianes et les lignes verticales les intervalles de confiance à 95 %.

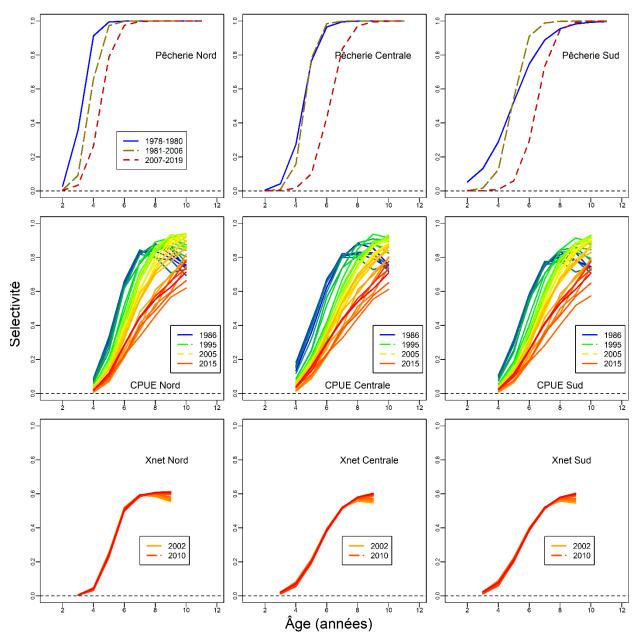


Figure 46. Estimation de la sélectivité des pêches (rangée du haut), des CPUE (rangée du milieu) et des filets expérimentaux (rangée du bas) pour trois populations du sud du golfe du Saint-Laurent (nord dans la colonne de gauche, centrale dans la colonne du milieu et sud dans la colonne de droite), pour le modèle de population qSCA. Les lignes présentent les estimations du maximum de vraisemblance pour les années ou les périodes indiquées dans les légendes des figures respectives.

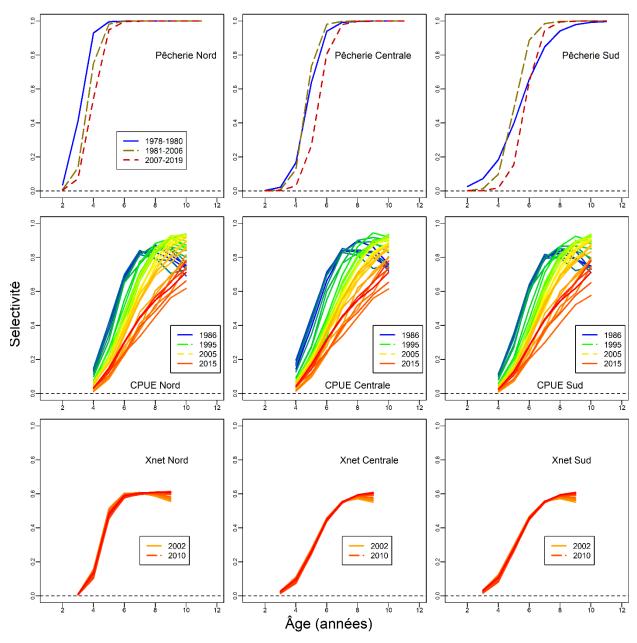


Figure 47. Estimation de la sélectivité des pêches (rangée du haut), des CPUE (rangée du milieu) et des filets expérimentaux (rangée du bas) pour trois populations du sud du golfe du Saint-Laurent (nord dans la colonne de gauche, centrale dans la colonne du milieu et sud dans la colonne de droite), pour le modèle de population qmSCA. Les lignes présentent les estimations du maximum de vraisemblance pour les années ou les périodes indiquées dans les légendes des figures respectives.

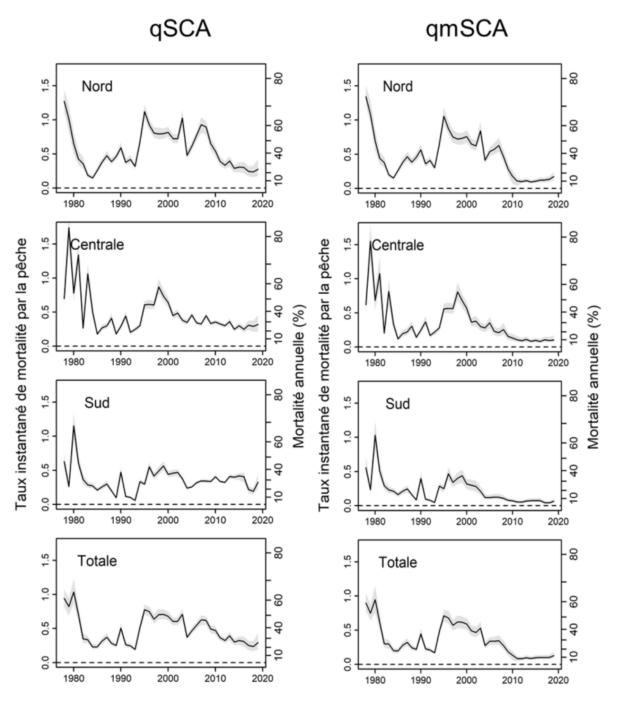


Figure 48. Estimation de la mortalité par la pêche pondérée selon l'abondance des 5 à 10 ans (F₅₋₁₀, axe de gauche; taux d'exploitation annuel, axe de droite) des Harengs reproducteurs d'automne par région, et moyenne des région (Totale, pondérée par l'abondance propre à la région des 5 à 10 ans) dans le sud du golfe du Saint-Laurent pour les modèles qSCA (graphique de gauche) et qmSCA (graphique de droite). Les lignes présentent les estimations médianes et les ombrages représentent les intervalles de confiance à 95 %.

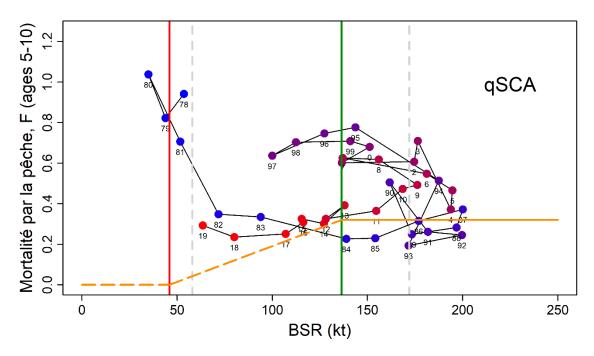


Figure 49. Trajectoire de la composante des Harengs reproducteurs d'automne dans le sud du golfe du Saint-Laurent par rapport à la biomasse du stock reproducteur (BSR) et aux taux de mortalité par la pêche pour les âges de 5 à 10 ans de 1978 à 2019 pour le modèle de population qSCA. La ligne verticale rouge est le point de référence limite (PRL) et la ligne verticale verte est le point de référence supérieur (PRS). La ligne horizontale orange continue présente la valeur de référence du taux de captures ($F_{0.1}$ = 0,32) dans la zone saine et la ligne orange pointillée présente la valeur de récolte par défaut du cadre de l'approche de précaution dans la zone de prudence et la zone critique. Les lignes verticales grises représentent le PRL et le PRS de l'évaluation précédente. Les étiquettes de points sont des années (83 = 1983, 0 = 2000). Le code de couleurs va du bleu dans les années 1970 et au début des années 1980 au rouge dans les années 2000.

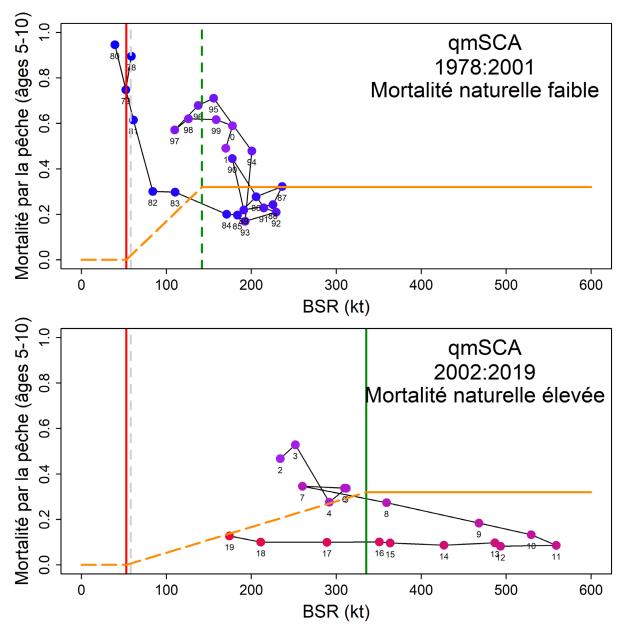


Figure 50. Trajectoire de la composante des Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent par rapport à la biomasse du stock reproducteur (BSR) et aux taux de mortalité par la pêche pour les poissons de 5 à 10 ans de 1978 à 2001 (mortalité naturelle faible, graphique du haut) et de 2002 à 2019 (mortalité naturelle élevée, graphique du bas) pour le modèle de population qmSCA. La ligne verticale rouge est le point de référence limite (PRL) et la ligne verticale verte est le point de référence supérieur (PRS). La ligne horizontale orange continue présente la valeur de référence du taux de captures (F_{0.1} = 0,32) dans la zone saine et la ligne orange pointillée présente la valeur de récolte par défaut du cadre de l'approche de précaution dans la zone de prudence et la zone critique. La ligne verticale grise représente le PRL de l'évaluation précédente. Les étiquettes de points sont des années (83 = 1983, 0 = 2000). Le code de couleurs va du bleu dans les années 1970 et au début des années 1980 au rouge dans les années 2000.

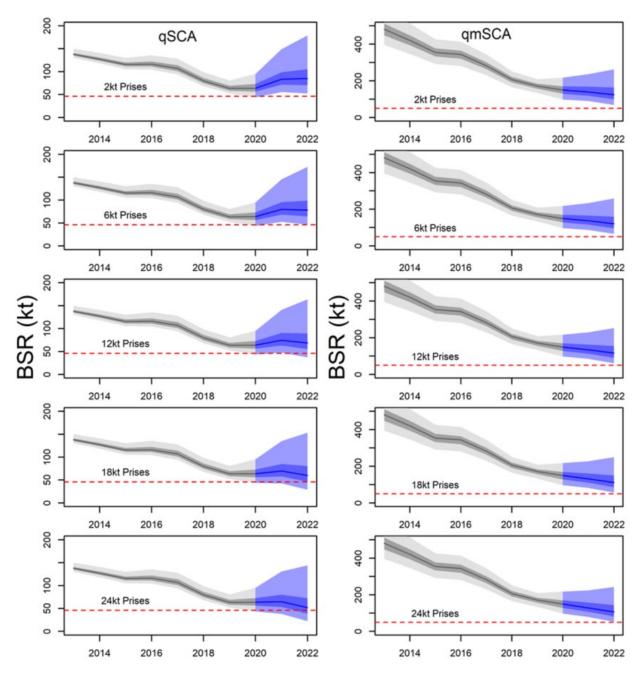


Figure 51. Projection de la biomasse du stock reproducteur (BSR en milliers de tonnes) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent à différents niveaux de captures en 2020 et 2021 pour le modèle qSCA (à gauche) et le modèle qmSCA (à droite), selon un scénario de recrutement moyen sur 5 ans et un scénario de mortalité naturelle moyenne sur 2 ans. Les lignes présentent les estimations médianes de la BSR au 1^{er} août, en foncé les intervalles de confiance à 95 % et en clair l'intervalle de confiance à 50 % (selon l'échantillonnage MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection. La ligne horizontale rouge est le point de référence limite (PRL).

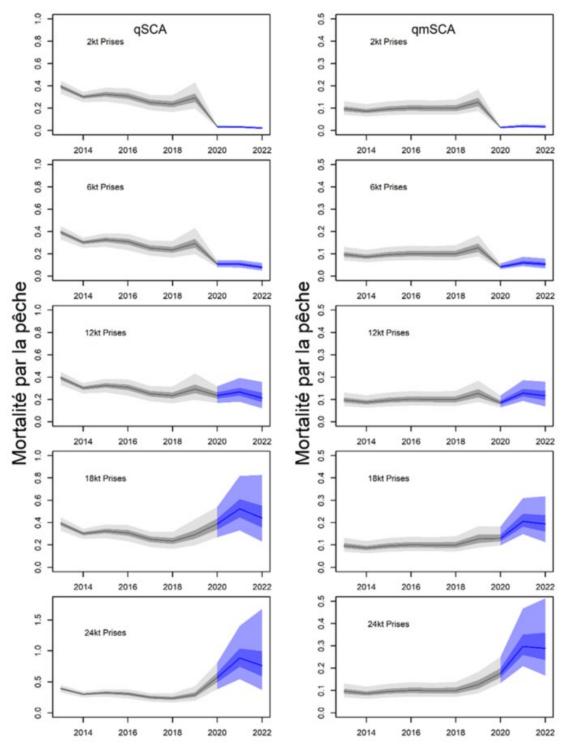


Figure 52. Projection de la mortalité par la pêche moyenne (F₅₋₁₀) des Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent à différents niveaux de captures en 2020 et 2021 pour le modèle qSCA (à gauche) et le modèle qmSCA (à droite), selon un scénario de recrutement moyen sur 5 ans et un scénario de mortalité naturelle moyenne sur 2 ans. Les lignes indiquent les estimations médianes de la mortalité par pêche, en foncé l'intervalle de confiance de 95 % et en clair les intervalles de confiance de 50 % (selon l'échantillonnage MCMC). Les ombrages en noir et gris correspondent à la période historique et les ombrages en bleu à la période de projection.

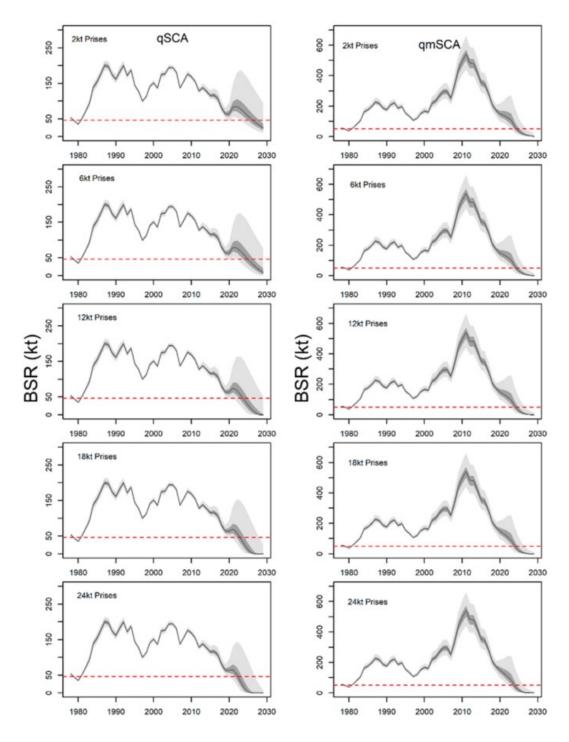


Figure 53. Projections sur dix ans de la biomasse du stock reproducteur (BSR en milliers de tonnes) de Harengs reproducteurs d'automne du sud du golfe du Saint-Laurent à différents niveaux de captures pour le modèle qSCA (à gauche) et le modèle qmSCA (à droite), selon un scénario de recrutement moyen sur 5 ans et un scénario de mortalité naturelle moyenne sur 2 ans. Les lignes présentent les estimations médianes de la BSR au 1^{er} août, en clair les intervalles de confiance à 95 % et en foncé les intervalles de confiance à 50 % (selon l'échantillonnage MCMC). La ligne horizontale rouge est le point de référence limite (PRL).

ANNEXE A: TEST DE COHÉRENCE DE DÉTERMINATION DE L'ÂGE

Des tests annuels de cohérence de la lecture de l'âge sont effectués afin d'évaluer et d'assurer la cohérence de la lecture de l'âge dans le temps. Un sous-échantillon de paires d'otolithes de Hareng des années 1993, 1994, 1996 et 2003 a été réévalué, et les nouveaux âges ont été comparés aux âges de référence. Les échantillons d'otolithes ont été sélectionnés au hasard pour les groupes d'âge de 1 à 11 ans et plus et pour les années entre 1993 et 2003, ainsi que les types d'engins utilisés et le type d'échantillon (commercial et recherche). Au total, plus de 200 otolithes ont été utilisés. La totalité de la détermination de l'âge a été effectuée par le lecteur principal en 2018 et 2019.

Les résultats montrent une concordance générale de 88 % et un coefficient de variation (CV) de 1,4 % pour le lecteur principal et une concordance de 88 % (CV de 1,7 %) pour le lecteur secondaire (Figure A1). Le CV est une mesure plus fiable de la précision de la détermination de l'âge (Campana *et al.* 1995). D'après la courbe du biais de lecture, il n'y avait aucun biais, et la détermination de l'âge pour les Harengs plus âgés (9+) varie davantage (Figure A1).

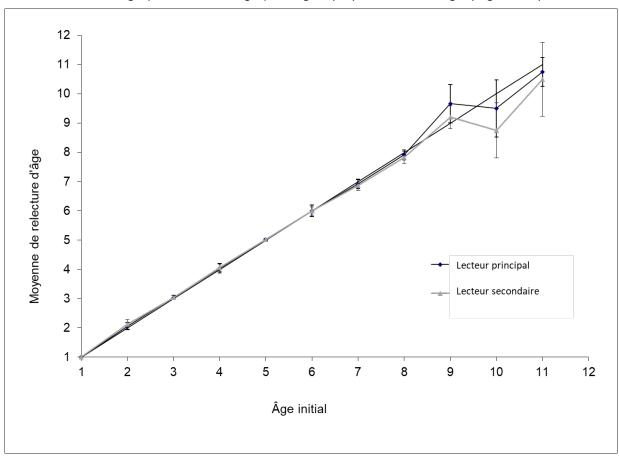


Figure A1. Comparaison des âges obtenus durant le test de validation avec les âges initiaux attribués. Les barres représentent le coefficient de variation. La ligne droite indique l'âge initial.

ANNEXE B : RÉSULTATS DU RELEVÉ ACOUSTIQUE INDÉPENDANT DE LA PÊCHE

En 2018-2019, les relevés acoustiques ont été effectués entre le 23 septembre et le 10 octobre dans les zones 4Tmno (c.-à-d. Chaleur-Miscou; Figures B1 et B2); la biomasse de Hareng a été estimée à 23 315 en 2018 et à 18 829 tonnes en 2019. La répartition du Hareng dans la région est présentée aux figures B1 et B2 et aux tableaux B1 et B2. Les indices acoustiques de biomasse de 2018 et 2019 de la région de Chaleur-Miscou pour les groupes combinés de reproducteurs de printemps (SS) et d'automne (FS) figurent parmi les enregistrements très faibles dans l'histoire du relevé (Figure B2).

Des échantillons ont été prélevés au chalut pélagique là où le navire hydroacoustique a trouvé des densités de Harengs. Les captures (fréquence des longueurs) par série ont été pondérées par la somme des densités acoustiques de Harengs enregistrées dans la strate ou le groupe de strates, définies dans les paramètres de captures selon l'âge comme représentant la biomasse dans cette région. L'utilisation des densités de Harengs enregistrées comme facteur de pondération est considérée comme une meilleure méthode, car elle ne dépend pas d'une quantité standardisée estimée de Harengs capturés dans une série d'un mille nautique.

Tableau B1. Densités de la biomasse de Hareng et estimations par strate et par région à partir des relevés acoustiques indépendants de la pêche effectués en 2018.

Strate	TS moyen (dB/kg)	Superficie de la strate (km²)	S _A moyenne (/m²)	Densité (kg/m²)	Biomasse (tonnes)	Écart- type (tonnes)	Écart-type (%)
Gaspé							
Rivière-aux-Renards	-	124,6	0,00	0,0000	0	0	0,0
Cap-Bon-Ami	-	69	0,00	0,0000	0	0	0,0
Malbaie	-34,72	95,6	-68,06	0,0005	44	73	163,4
Anse-à-Beaufils	-	96	0,00	0,0000	0	0	0,0
Chaleur							
Grande-Rivière	-	106,4	0,00	0,0000	0	0	0,0
Newport	-	124,9	0,00	0,0000	0	0	0,0
Shigawake	-	265,6	0,00	0,0000	0	0	0,0
New Carlisle	-34,47	169	-63,18	0,0013	227	162	71,2
New Richmond	-	111,6	0,00	0,0000	0	0	0,0
Belledune	-34,47	266	-50,97	0,0224	5 948	2 179	36,6
Nepisiguit	-34,47	211,3	-49,99	0,0281	5 932	1 603	27,0
Maisonnette	-34,26	145	-53,08	0,0131	1 904	661	34,7
Miscou							
Miscou Ouest	-34,32	330,5	-53,96	0,0109	3 593	1 535	42,7
Miscou Nord	-34,72	295,7	-68,68	0,0004	119	99	83,5
Miscou Nord-Ouest	-35,84	444	-62,29	0,0023	1 005	523	52,0
Miscou Nord-Est	-35,84	352,8	-60,30	0,0036	1 265	844	66,7
Miscou Sud-Ouest	-35,84	552,2	-59,53	0,0043	2 362	1 215	51,4
Miscou Sud-Est	-35,84	521,3	-63,40	0,0018	915	721	78,8
Total pour 2018					23 315		

Tableau B2. Densités de la biomasse de Harengs, et estimations par strate et par région selon les relevés acoustiques indépendants de la pêche effectués en 2019.

Strate	TS moyen (dB/kg)	Superficie de la strate (km²)	S _A moyenne (/m²)	Densité (kg/m²)	Biomasse (tonnes)	Écart- type (tonnes)	Écart- type (%)
Gaspé							
Rivière-aux-Renards	-	124,6	0,00	0,0000	0	0	0,0
Cap-Bon-Ami	-	69	0,00	0,0000	0	0	0,0
Malbaie	-	95,6	0,00	0,0000	0	0	0,0
Anse-à-Beaufils	-	96	0,00	0,0000	0	0	0,0
Chaleur							
Grande-Rivière	-34,72	106,4	-66,12	0,0007	77	79	103,7
Newport	-34,69	124,9	-60,42	0,0027	334	382	114,5
Shigawake	-34,69	265,6	-55,64	0,0080	2 133	817	38,3
New Carlisle	-34,47	169	-56,32	0,0013	1 168	645	55,2
New Richmond	-34,28	111,6	-56,59	0,0058	656	128	19,6
Belledune	-34,13	266	-53,24	0,0123	3 264	891	27,3
Nepisiguit	-35,02	211,3	-52,40	0,0183	3 859	2 044	53,0
Maisonnette	-34,83	145	-53,03	0,0152	2 198	500	22,8
Miscou							
Miscou Ouest	-34,53	330,5	-57,42	0,0051	1 700	682	40,1
Miscou Nord	-35,23	295,7	-63,48	0,0015	441	235	53,3
Miscou Nord-Ouest	-35,84	444	-59,63	0,0042	1 852	1 798	97,1
Miscou Nord-Est	-	352,8	0,00	0,0000	0	0	0
Miscou Sud-Ouest	-	552,2	0,00	0,0000	0	0	0
Miscou Sud-Est	-35,84	521,3	-62,44	0,0022	1 141	355	29,4
Total pour 2019					18 829		

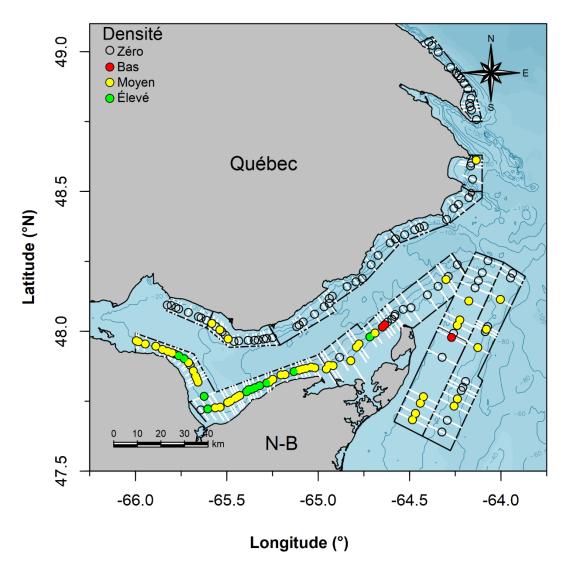


Figure B1. Transects relevés lors des relevés acoustiques de 2018 (lignes blanches) et densité de la biomasse de Harengs (cercles colorés, kg/m², faible, intermédiaire ou élevée, par transect).

Figure B2. Transects relevés lors des relevés acoustiques de 2019 (lignes blanches) et densité de la biomasse de Harengs (cercles colorés, kg/m², faible, moyenne ou élevée, par transect).

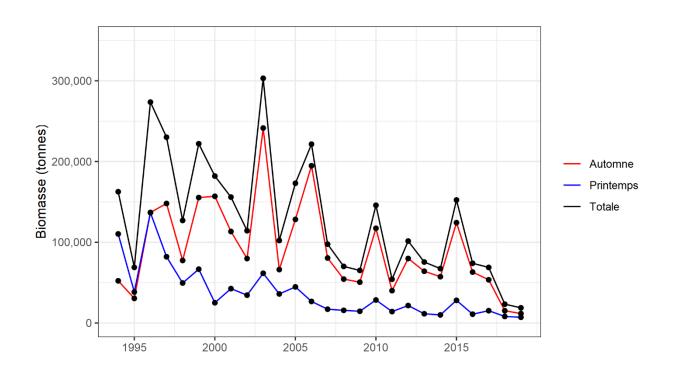


Figure B3. Indice de biomasse totale (noir) du relevé acoustique des reproducteurs de printemps (rouge) et d'automne (bleu) de 1994 à 2019.

ANNEXE C : RÉSULTATS DES RELEVÉS ACOUSTIQUES DES FRAYÈRES

Le relevé acoustique des frayères a commencé en 2015, et a été mené chaque année depuis. Il suit un plan aléatoire stratifié avec un protocole conforme au relevé acoustique indépendant de la pêche. Six frayères ont été échantillonnées : Gaspé, Miscou, Escuminac/Richibucto, ouest de l'Île-du-Prince-Édouard, est de l'Île-du-Prince-Édouard (Fisherman's Bank/North Lake), et Pictou (Figure C1). Des strates ont été établies pour chaque frayère à l'aide des renseignements acoustiques recueillis lors de précédentes études en partenariat avec l'industrie. Les strates ont été conçues pour être suffisamment grandes pour englober les frayères traditionnelles de chaque région. Les transects ont été générés de manière aléatoire chaque année à l'intérieur de strates distantes d'au moins 400 m (Figure C2).

Un ou deux pêcheurs ont été sélectionnés par chaque association de pêche pour effectuer des relevés acoustiques afin de quantifier la biomasse des bancs de poissons à l'aide d'un transducteur à simple faisceau de 120 kHz monté sur la coque, ou sur le côté du navire. Les données acoustiques des navires de pêche ont été utilisées pour analyser les caractéristiques morphologiques des bancs, la distribution spatiale et les changements relatifs de la densité des bancs (Shen et al. 2008), et pour concevoir des estimations de l'abondance (Melvin et al. 2002: Honkalehto et al. 2011). Dans le sud du golfe du Saint-Laurent, les données acoustiques de la pêche recueillies sur les regroupements de reproducteurs de Hareng de l'Atlantique peuvent être utilisées pour obtenir des estimations de la biomasse nocturne relative (Claytor et Allard 2001; Claytor et Clay 2001). Pour chaque région, l'objectif de l'analyse est d'estimer la biomasse relative de frai à partir d'une série d'observations acoustiques nocturnes. Les relevés devaient être effectués une fois avant et après la saison de pêche, ainsi que pendant chaque fermeture de la pêche de fin de semaine, dans la mesure du possible. Les régions de l'ouest de l'Île-du-Prince-Édouard et d'Escuminac/Richibucto n'ont pas connu de fermetures de pêche de fin de semaine avant 2018. L'échantillonnage dans ces régions n'a donc été possible qu'avant et après la saison de pêche jusqu'à la mise en place des fermetures de fin de semaine. Les données sur la taille et la fréquence d'âge des poissons utilisées pour convertir les données acoustiques en estimations de la biomasse ont été obtenues à partir des relevés expérimentaux au filet maillant. Les données acoustiques nocturnes ont été traitées et analysées pour chaque région afin d'obtenir une estimation nocturne de la biomasse (Tableaux C1 à C3), comme décrite dans Claytor et Clay 2001.

La figure C3 présente la biomasse nocturne moyenne par frayère pour chacune des années. Certaines régions ou années présentent de grandes variations dans la biomasse nocturne des poissons (par exemple, Miscou et Gaspé en 2016, Escuminac en 2015). En raison des conditions météorologiques et d'autres restrictions relatives à la logistique, il arrive que des sorties d'échantillonnage soient manquantes pour certaines régions et certaines années. La présence ou l'absence d'échantillons, en particulier au début ou à la fin d'une saison de pêche, peut avoir un impact important sur la biomasse nocturne moyenne des poissons observée dans une zone. Les régions d'Escuminac/Richibucto et de l'ouest de l'Île-du-Prince-Édouard sont particulièrement concernées par les échantillons manquants avant 2018, date de la fermeture de la pêche de fin de semaine, car seules deux sorties (une avant et une après la saison de pêche) ont pu être effectuées chaque année avant cette période. La proportion des strates couvertes et la fréquence de la couverture des relevés varient selon les années et les régions, allant d'une couverture complète des strates sur une base hebdomadaire à une absence totale de relevés pour l'est de l'Île-du-Prince-Édouard en 2015 et Escuminac en 2018 (Tableaux C1 à C6 pour plus de détails). Les régions de Gaspé (sauf pour 2017), de Miscou et de Pictou présentent une bonne couverture sur la saison d'échantillonnage avec près de cinq échantillons par an (Tableau C4).

Les régions de Gaspé et de Miscou présentent la biomasse nocturne moyenne la plus élevée en 2016, avec des valeurs intermédiaires pour 2015 et 2017. La biomasse de Gaspé était la plus faible en 2018 et 2019. Miscou présente une tendance de la biomasse à la baisse de 2017 à 2019, avec la biomasse la plus faible en 2019, comparable à celle observée à Gaspé en 2019. Pour une biomasse nocturne moyenne élevée, on a observé à Escuminac/Richibucto une biomasse nocturne totale élevée de 15 238 tonnes en 2015, avec une biomasse moyenne décroissante depuis lors. La biomasse la plus faible pour la région d'Escuminac/Richibucto a été observée en 2019. Cependant, l'effort d'échantillonnage dans cette région a été faible pour toutes les années. De même, en raison de l'absence de fermeture de la pêche de fin de semaine dans l'ouest de l'Île-du-Prince-Édouard jusqu'en 2018, il est difficile d'affirmer que la biomasse de frai est estimée avec précision de 2015 à 2017. En 2019, la biomasse nocturne moyenne de l'ouest de l'Île-du-Prince-Édouard était la plus élevée des six régions d'échantillonnage. En général, les régions de l'ouest et de l'êst de l'Île-du-Prince-Édouard présentent chaque année une biomasse nocturne inférieure à celle des autres régions. Pictou présente une biomasse intermédiaire avec une tendance générale à la baisse, la plus forte étant observée en 2015.

La figure C4 montre la biomasse moyenne de nuit par région géographique, où le nord représente Gaspé et Miscou, le centre représente Escuminac/Richibucto et l'ouest de l'Île-du-Prince-Édouard, et le sud représente l'est de l'Île-du-Prince-Édouard et Pictou. De manière générale, la biomasse la plus élevée pour chaque région géographique est observée en 2015 (régions centrale et sud), ou 2016 (nord), et la biomasse nocturne des relevés acoustiques la plus faible par région en 2018 et 2019 (Figure C4). Les résultats montrent une diminution générale de la biomasse moyenne nocturne dans toutes les régions géographiques au fil du temps. La région nord avait des biomasses plus élevées que les régions centrale et sud en 2016 et 2017, cependant, la biomasse observée dans les trois régions est devenue plus homogène en 2018 et 2019.

Pour que cet indice soit inclus dans les évaluations à venir, les relevés doivent être effectués avec uniformité dans les différentes régions et de manière consciencieuse. Les fermetures de fin de semaine qui ont débuté en 2018 à l'ouest de l'Île-du-Prince-Édouard et à Escuminac, et qui se poursuivront dans les années à venir, permettront aux pêcheurs d'acquérir davantage d'échantillons de ces frayères. Dans certains cas, la première date d'échantillonnage montre la biomasse la plus élevée de la saison, ce qui pourrait indiquer une saisie inadéquate de l'estimation de la biomasse des reproducteurs pour les frayères. Commencer les relevés acoustiques plus tôt dans l'année pourrait aider à mieux saisir la biomasse de frai sur l'ensemble de la saison de frai.

Tableau C1. Densités et estimations de la biomasse du Hareng de l'Atlantique par frayère, selon les relevés acoustiques des frayères effectués en 2018.

Zone de pêche	Région	Zone	Date	Indice réflexion poisson (dB kg ⁻¹)	Super -ficie totale (km²)	Rétrodiffu- sion moyenne (dB m ⁻²)	Densité moyenne (kg m ⁻²)	Biomasse (t)	Erreur type biomasse (t)
16B	Nord	Gaspé	17-08-2018	-35,59	38,6	-42,01	1,21E-03	39	39
16B	Nord	Gaspé	25-08-2018	-35,59	38,6	0,00	0,00E+00	0	0
16B	Nord	Gaspé	01-09-2018	-35,59	38,6	-53,12	1,95E-02	788	643
16B	Nord	Gaspé	08-09-2018	-35,59	38,6	0,00	0,00E+00	0	0
16B	Nord	Gaspé	24-09-2018	-35,59	38,6	-56,97	9,67E-03	351	157
16B	Nord	Miscou	17-08-2018	-35,59	386,9	-40,17	2,57E-02	10 235	6 690
16B	Nord	Miscou	24-08-2018	-35,59	386,9	-19,22	1,86E-05	8	8
16B	Nord	Miscou	31-08-2018	-35,59	386,9	-34,09	2,76E-04	51	51
16B	Nord	Miscou	15-09-2018	-35,59	386,9	-58,06	5,85E-03	869	562
16B	Nord	Miscou	27-09-2018	-35,59	386,9	0,00	0,00E+00	0	0
16E	Centre	IPÉ Ouest	17-08-2018	-35,56	111,3	0,00	0,00E+00	0	0
16E	Centre	IPÉ Ouest	24-08-2018	-35,56	111,3	-14,06	2,15E-03	759	283
16E	Centre	IPÉ Ouest	31-08-2018	-35,56	111,3	0,00	0,00E+00	0	0
16E	Centre	IPÉ Ouest	07-09-2018	-35,56	111,3	-27,27	8,02E-03	613	0
16E	Centre	IPÉ Ouest	15-09-2018	-35,56	111,3	-26,00	1,14E-02	2 125	1 410
16E	Centre	IPÉ Ouest	27-09-2018	-35,56	111,3	0,00	0,00E+00	0	0
16F	Sud	Pictou	04-09-2018	-35,31	127,2	-20,79	3,02E-02	1209	0
16F	Sud	Pictou	14-09-2018	-35,31	127,2	-11,69	9,72E-04	39	38
16F	Sud	Pictou	23-09-2018	-35,31	127,2	0,00	0,00E+00	0	0
16F	Sud	Pictou	28-09-2018	-35,31	127,2	0,00	0,00E+00	0	0
16F	Sud	Pictou	06-10-2018	-35,31	127,2	0,00	0,00E+00	0	0
16G	Sud	IPÉ Est	12-10-2018	-35,82	56,1	-52,45	2,24E-02	994	854
16G	Sud	IPÉ Est	05-11-2018	-35,82	56,1	0,00	0,00E+00	0	0

Tableau C2. Densités et estimations de la biomasse du Hareng de l'Atlantique par frayère, selon les relevés acoustiques des frayères effectués en 2019.

Zone de pêche	Région	Zone	Date	Indice réflexion poisson (dB kg ⁻¹)	Superficie totale (km²)	Rétrodiff- usion moyenne (dB m ⁻²)	Densité moyenne (kg m ⁻²)	Biomasse (t)	Erreur type biomasse (t)
16B	Nord	Gaspé	15-08-2019	-35,48	38,6	-54,29	2,15E-02	978	902
16B	Nord	Gaspé	24-08-2019	-35,48	38,6	-59,40	8,65E-03	326	287
16B	Nord	Gaspé	30-08-2019	-35,48	38,6	-58,45	6,02E-03	223	106
16B	Nord	Gaspé	06-09-2019	-35,48	38,6	-34,01	9,77E-02	2 418	1 837
16B	Nord	Gaspé	12-09-2019	-35,48	38,6	-60,37	1,73E-02	838	755
16B	Nord	Gaspé	23-09-2019	-35,48	38,6	-52,67	3,57E-02	1 677	1 573 **
16B	Nord	Gaspé	03-10-2019	-35,48	38,6	-61,08	7,01E-03	255	169**
16B	Nord	Miscou	14-08-2019	-35,48	386,9	-24,85	1,66E-03	823	581
16B	Nord	Miscou	06-09-2019	-35,48	386,9	-41,27	1,61E-03	293	195
16B	Nord	Miscou	13-09-2019	-35,48	386,9	-43,93	6,18E-04	137	84
16B	Nord	Miscou	27-09-2019	-35,48	386,9	-60,52	3,24E-03	1 019	702
16B	Nord	Miscou	30-09-2019	-35,48	386,9	-52,96	1,84E-02	2 719	1 367**
16B	Nord	Miscou	03-10-2019	-35,48	386,9	-36,95	7,19E-05	7	7 **
16B	Nord	Miscou	07-10-2019	-35,48	386,9	-26,67	8,20E-03	1 515	612**
16C	Centre	Escuminac	01-09-2019	-35,53	145,5	-68,04	6,29E-04	73	43
16E	Centre	IPÉ Ouest	18-08-2019	-35,34	111,3	0,00	0,00E+00	0	0
16E	Centre	IPÉ Ouest	06-09-2019	-35,34	111,3	-12,79	6,56E-03	2 324	1 459
16E	Centre	IPÉ Ouest	13-09-2019	-35,34	111,3	-43,38	1,01E-02	3 153	3 374
16E	Centre	IPÉ Ouest	18-09-2019	-35,34	111,3	-10,31	6,44E-02	1 958	1 907
16F	Sud	Pictou	03-09-2019	-35,43	127,2	0,00	0,00E+00	0	0
16F	Sud	Pictou	13-09-2019	-35,43	127,2	-23,24	8,21E-03	3 241	3 259
16F	Sud	Pictou	20-09-2019	-35,43	127,2	-44,09	1,55E-02	756	707
16F	Sud	Pictou	27-09-2019	-35,43	127,2	-30,36	1,61E-03	425	327
16F	Sud	Pictou	03-10-2019	-35,43	127,2	-12,37	4,55E-04	75	76
16G	Sud	IPÉ Est.	13-09-2019	-35,72	56,1	-56,82	8,66E-03	359	162
16G	Sud	IPÉ Est	21-09-2019	-35,72	56,1	-60,75	4,55E-03	170	123

^{**} Ces estimations de la biomasse nocturne ont été réalisées après la grille d'échantillonnage temporel normale et ne sont pas incluses dans les figures C3 et C4, ci-dessous.

Tableau C3. Nombre de sorties individuelles d'échantillonnage acoustique par an et par région pour les relevés acoustiques des frayères.

Région	2015	2016	2017	2018	2019
Gaspé	5	5	1	5	7
Miscou	5	5	4	5	7
Escuminac	2	2	1	0	1
Ouest de l'ÎPÉ.	2	1	2	6	4
Pictou	5	5	4	5	5
Est de l'ÎPÉ.	0	3	5	2	2
Total	19	21	17	23	26

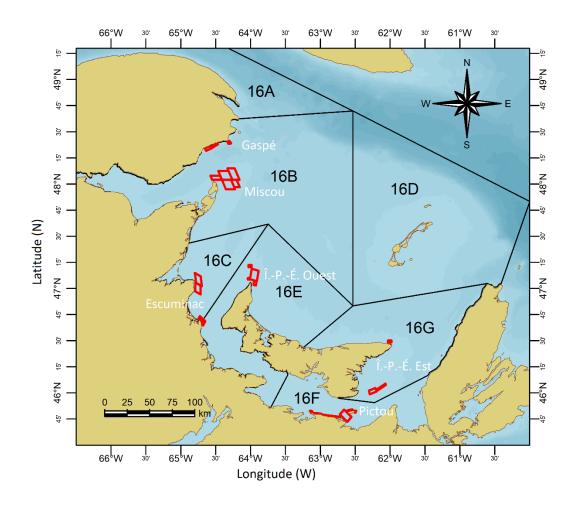


Figure C1. Frayères échantillonnées lors des relevés acoustiques des frayères en 2018 et 2019.

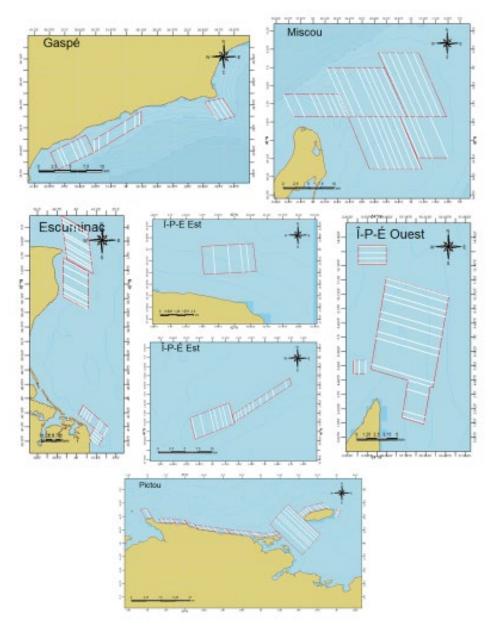


Figure C2. Strates (encadrés rouges) et transects (lignes blanches) échantillonnés lors des relevés acoustiques des frayères en 2018 et 2019.

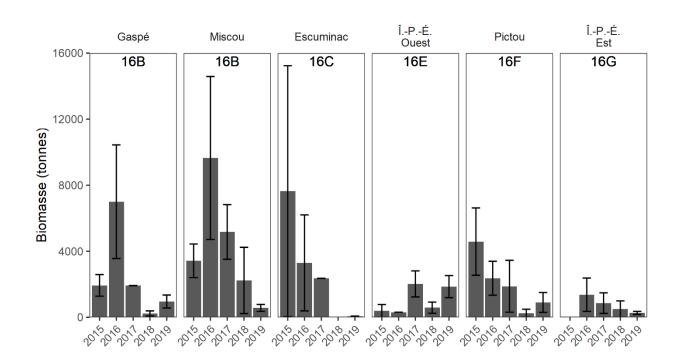


Figure C3. Estimations de la biomasse par nuit du Hareng de l'Atlantique (tonnes; moyenne ± une barre d'erreur type) par frayère selon les relevés acoustiques des frayères pour les années de 2015 à 2019.

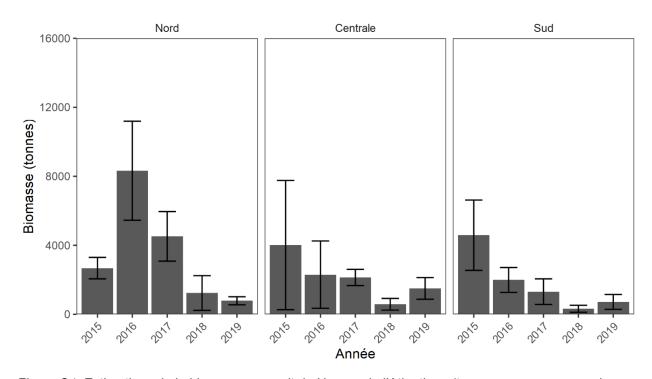


Figure C4. Estimations de la biomasse par nuit du Hareng de l'Atlantique (tonnes; moyenne ± une barre d'erreur type) par région géographique (nord, centrale, sud) selon les relevés acoustiques des frayères pour les années de 2015 à 2019.

ANNEXE D : RÉSULTATS DU RELEVÉ PLURISPÉCIFIQUE AU CHALUT DE FOND

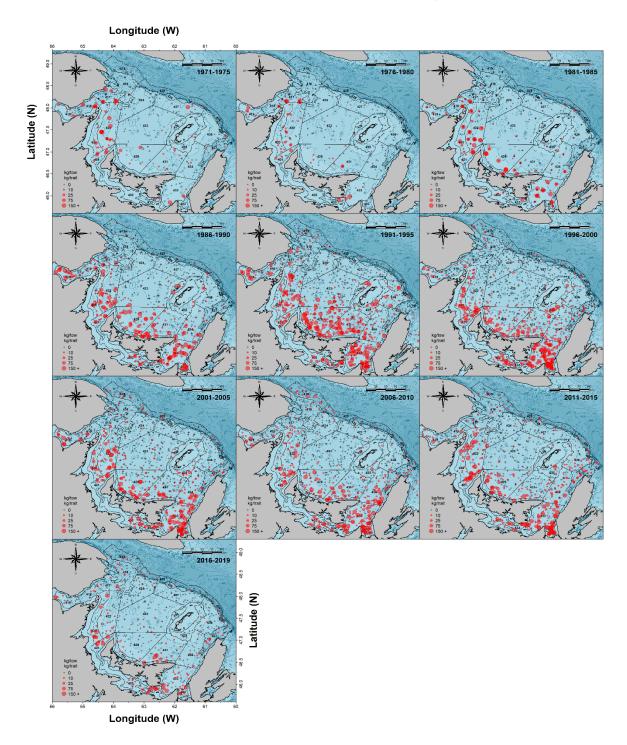


Figure D1. Répartition spatiale des captures de Hareng de l'Atlantique dans le sud du golfe du Saint-Laurent selon le relevé plurispécifique au chalut de fond. Les points indiquent l'emplacement des sites de pêche.

ANNEXE E : STRUCTURE DU MODÈLE ET REVUE DES PERFORMANCES

Des experts indépendants ont procédé à un examen par les pairs des modèles de population proposés pour les Harengs de l'Atlantique 4T, reproducteurs de printemps et d'automne (Turcotte *et al.* 2020). Une seule population a été modélisée pour les reproducteurs de printemps. Le modèle d'automne comprenait trois populations considérées comme indépendantes au début du recrutement. Les modèles ont permis une capturabilité variable dans le temps pour la pêche au filet maillant ou la mortalité naturelle. Ces modèles ont été comparés à un modèle qui supposait une dynamique des populations stationnaire, sauf pour le recrutement. L'examen a porté sur les modèles dont la dynamique varie dans le temps. Les examens ont été discutés par Webex le 10 février 2020.

L'équipe d'évaluation a décrit les modèles et présenté des diagnostics, y compris l'adéquation (résidus observés et prédits pour les indices de biomasse et les proportions selon l'âge dans les captures par pêche et dans les indices). Les biais rétrospectifs ont également été examinés. À partir de ces diagnostics, l'équipe d'évaluation a privilégié le modèle de printemps avec une capturabilité (q) et une mortalité naturelle (M) variables dans le temps, et les modèles d'automne avec soit une capturabilité q variable dans le temps, soit une mortalité naturelle (M) et une capturabilité q variables dans le temps. Les examinateurs ne sont pas contre cette proposition.

La pêche aux engins fixes (filet maillant) cible les regroupements de frai. La capturabilité des pêches ciblant les regroupements devrait augmenter à mesure que la taille de la population diminue (Paloeimo et Dickie 1964, Winters et Wheeler 1985, Rose et Kulka 1999). Dans les modèles qui permettaient à la capturabilité de la pêche au filet maillant de varier dans le temps, la capturabilité estimée était conforme à cette attente, augmentant à mesure que la taille de la population diminuait. Compte tenu de ces attentes et de ces résultats, les examinateurs ont fait valoir que la capturabilité variable dans le temps pour la pêche au filet maillant devrait être incorporée par défaut dans ces modèles. Reste alors à savoir si le fait d'inclure le paramètre M variable dans le temps ajoute quelque chose aux modèles. Dans le modèle de printemps, l'ajout du paramètre M variable dans le temps a amélioré la précision du modèle. Dans le modèle d'automne, la précision a également été améliorée par l'ajout du paramètre M variable dans le temps, mais a également donné lieu à un biais rétrospectif plus important que dans le modèle qSCA. Cependant, pour les deux modèles, les tendances estimées du paramètre M variable dans le temps étaient toutes cohérentes avec les données sur les écosystèmes qui étaient indépendantes des modèles. Pour les quatre populations (une au printemps et trois en automne), les valeurs du paramètre M estimé pour les Harengs plus âgés et de l'abondance des principaux prédateurs du Hareng (Phoques Gris, Thon Rouge) ont toutes deux augmenté au fil du temps. La forte ressemblance entre ces populations dans les tendances temporelles estimées du paramètre M pour ces Harengs plus âgés soutient l'hypothèse que ces résultats ne sont pas faux.

Il peut être difficile de distinguer les variations de q des variations de M. Les examinateurs ont suggéré que les évaluations à venir devraient envisager de modéliser explicitement q pour la pêche au filet maillant comme un processus dépendant de la densité. Cela pourrait aider à distinguer toute variation portant à confusion entre q et M. Ce point sera examiné dans de prochains travaux. On s'attend également à ce que la mortalité due à la prédation dépende de la densité. Elle augmente à mesure que l'abondance des proies diminue (Gascoigne et Lipcius 2004). Cependant, cela peut être difficile à modéliser ici en raison de la confusion entre les variations de l'abondance des proies et des prédateurs, mais il serait utile de l'examiner dans de futures analyses.

Les examinateurs ont également suggéré d'examiner les données probantes indépendantes du modèle pour les variations de la mortalité, en particulier les estimations de la mortalité basées sur les courbes de captures par cohorte. À l'instar de Sinclair 2001, nous avons estimé la mortalité totale Z au moyen d'un modèle linéaire où le taux de captures Loge est la variable dépendante, la cohorte un facteur et l'âge une covariable. Les âges étaient limités de 7 à 11 ans et plus. Les analyses ont été effectuées par blocs mobiles de 5 ans, les résultats étant indexés par la moyenne de l'année dans le bloc. En raison des contraintes de temps, cette analyse n'a été réalisée jusqu'à présent que pour les courbes de captures des reproducteurs de printemps. Pour obtenir une estimation indépendante du modèle de mortalité par pêche, les captures peuvent être divisées par un indice de l'abondance de la population. Cela a souvent été fait pour les poissons de fond en utilisant les taux de captures des relevés à l'échelle de l'abondance accessible au chalut. Aucun indice à une échelle comparable n'étant disponible pour ces stocks de Hareng, les estimations de Z ont été comparées aux estimations modélisées de l'abondance (basées sur le modèle qm du printemps). Les captures et l'abondance ont été limitées aux âges de 7 à 11 ans et plus et ont été réparties sur des blocs de 5 ans en moyenne. Les estimations de Z ont augmenté à des valeurs relativement élevées dans les années 2000 et 2010 lorsque les estimations de la mortalité par la pêche (capture/abondance) ont baissé à des valeurs très faibles (Figure E.1). Ce chiffre est conforme à la valeur élevée de M pendant cette période. À l'avenir, cette analyse devrait être répétée pour les populations de reproducteurs d'automne et pour d'autres données sur les captures par âge (les données des CPUE et de captures par relevés acoustiques selon l'âge au printemps et les données des CPUE et de filets expérimentaux à l'automne). Des analyses doivent également être menées pour estimer la mortalité par la pêche en tant que taux instantané.

Des questions ont été posées sur la modélisation et le calcul des résidus pour les proportions relatives selon l'âge. Les proportions selon l'âge ont été modélisées sur la base d'un modèle logistique multivarié avec des résidus calculés comme le décrit l'équation T4.6 dans Neuenhoff et al. 2019. Les examinateurs ont jugé cela acceptable. Toutefois, ils ont relevé une erreur dans le calcul des résidus pour les graphiques diagnostiques. Le dernier terme de l'équation T4.6 avait été omis dans les calculs pour ces graphiques. Cette erreur a été corrigée pour les graphiques de ce document de recherche.

Les examinateurs ont également suggéré des analyses supplémentaires pour évaluer les modèles : 1) analyses rétrospectives des projections sur deux ans, 2) comparaison des répartitions antérieures et postérieures des paramètres, 3) examen des répartitions prédictives postérieures des données et réalisations de simulations. Nous n'avons pas été en mesure d'effectuer ces analyses dans le délai imparti pour finaliser l'ébauche du document de recherche en vue de sa distribution finale (2 mars).

Un examinateur a noté que dans de nombreux cas, il y avait une fréquence élevée de très petites proportions selon l'âge. On suggère que, lorsque cela se produit, les âges adjacents soient regroupés en +groupes ou –groupes afin d'éviter de très faibles proportions dans les groupes d'âge. Nous n'avons pas réussi à mettre en œuvre ce changement dans les modèles d'automne dans le temps imparti, mais nous avons été en mesure de le faire pour le modèle de printemps. La principale incidence sur les résultats a été une augmentation de la biomasse estimée au début des années 1980 et une légère diminution ces dernières années. Une conséquence de l'augmentation de l'estimation de la biomasse au début des années 1980 a été une augmentation de la valeur du PRL. Cette situation a été quelque peu contrebalancée par la légère diminution des estimations récentes de la biomasse.

Comme la plupart des captures sont effectuées dans une période relativement courte, les examinateurs ont suggéré d'essayer des modèles dans les évaluations à venir qui soient plus explicites concernant le moment de la pêche. Dans ces modèles, une fraction de *M* serait

appliquée avant la pêche, puis les captures seraient supprimées, et enfin le reste de la mortalité naturelle serait supprimé. Cette question sera examinée plus tard.

Étant donné que la valeur de *M* est maintenant très élevée pour les Harengs plus âgés, les examinateurs ont suggéré de supprimer la mortalité naturelle subie avant la pêche pour estimer la BSR qui survit et est disponible pour la pêche. Cela a été fait pour tous les modèles présentés ici.

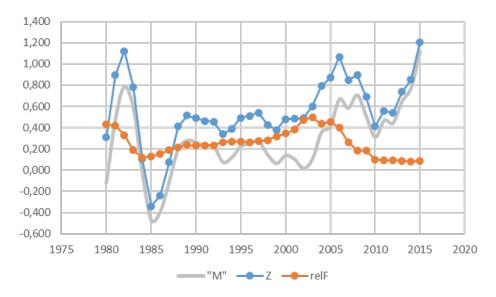


Figure E1. Estimations du taux instantané de mortalité totale (Z) et de la mortalité par pêche annuelle (relF) pour le Hareng reproducteur de printemps âgé de 7 à 11 ans et plus, estimées en blocs mobiles de 5 ans. La ligne grise indique un indice approximatif de la mortalité naturelle (Z moins relF).