Not to be cited without permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries
Scientific Advisory Committee
CAFSAC Research Document 87/16

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 87/16

Analysis of the Voisey Assessment Unit Arctic Charr Populations in 1986
by
J. B. Dempson and L. J. LeDrew

Science Branch
Department of Fisheries and Oceans
P. 0. Box 5667

St. John's, Newfoundland A1C 5X1

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncēs finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

Abstract

The Voisey assessment unit, made up of Voisey Bay and the Antons subarea, was first assessed as a homogeneous unit at the end of the 1984 fishery. Annual landings have ranged from 4 to 41 t (mean $=22 \mathrm{t}$) and from 1977 to 1986 have represented 17% of the total commercial catch of Arctic charr from the Nain fishing region. Total allowable catch in 1986 was 20 t. Landings in 1986 were 17 t or 83% of the TAC. Effort increased by 44% and catch per unit effort decreased by 26% in comparison with 1985. A sequential population analysis was carried out on catch at age data from 1977 to 1986 and suggested a reference level catch of $17 t$ remain in effect for 1987.

Résumé

L'unitē d'évaluation de Voisey, constituée de la baie de Voisey et de la sous-zone Antons, a été évaluée pour la première fois comme unité homogène à la fin de la saison de pêche de 1984. Les débarquements annuels ont varié de 4 à 41 t (moyenne $=22 \mathrm{t}$) et, de 1977 à 1986, ils ont constitué 17 \% de la pēche commerciale totale d'omble chevalier pour la zone de pêche de Nain. En 1986, le TPA ētait de 20 t et les débarquements ont ēté de 17 t , ou 83% du TPA. L'effort a augmenté de 44% et les prises par unité d'effort ont diminué de 26% comparativement à 1985. Une analyse séquentielle de population a ētē rēalisēe à partir des donnēes sur les prises par âge de 1977 à 1986 et cette analyse a indiqué un taux de prise de rēfērence de 17 t pour 1987.

Introduction

Catch statistics for the Voisey assessment unit (Fig. 1) have been available since 1974. On the basis of tag recapture information these areas were considered as one unit and assessed as such beginning in 1985. The quota area catch column in Table 1 summarizes landings from this subarea only. Annual landings for the entire assessment unit have ranged from a low of $4 t$ in 1975 to 41 t in 1979 with an average of 22 t over the 13 -year period. Since 1977, landings from this assessment unit have represented 17% of the total commercial catch of Arctic charr from the Nain Fishing Region. The TAC recommended for 1986 was 20 t.

This paper examines the results of the 1986 fishery and provides a reference level catch for 1987 as derived from a sequential population analysis.

Stock Assessment

Catch and effort data for the Voisey assessment unit are summarized in Table 1 for 1974-86. Landings in 1986 totaled 17 t ; an increase of 6% from 1985. This catch was 83% of the recommended TAC. Effort increased by 44% although catch per unit effort decreased by 26% to $203 \mathrm{~kg} / \mathrm{man}$-week. This was similar to the value recorded for 1984. The majority of the catch from this assessment unit was taken from the Antons subarea. The quota area catch in Table 1 summarizes landings from the subarea specifically under quota regulation only (Voisey Bay) prior to the formation of the assessment unit in 1985.

Numbers at age were available since 1977 and are summarized in Table 2. Data were derived from annual commercial sampling programs. Mean age of the catch has ranged from 8.2 to 9.1 years with no apparent increasing or decreasing trend (Table 2). From 1977 to $1986,58 \%$ of the catch has been made up of 8 and 9 year old fish. Eleven per cent of the fish were 11 years of age or older.

Weights at age were calculated from commercial samples obtained from 1977 to 1986. Gutted head-on weights were converted to whole weight using the conversion factor of 1.22 (Dempson 1984). For the yield per recruit analysis, mean weight at age from 1977 to 1979 was used. For stock projections, mean weight at age for the period 1984-86 was used (Table 3).

As observed in the Nain assessment unit, mean weight at age has decreased over time. For 7-10 year old Arctic charr the average percentage decrease in weight was 15% (0.33 kg) (average 1977-79 to 1984-86), while the average decline for 11 to 14 year old fish was $23 \%(0.76 \mathrm{~kg})$. Both the Voisey Bay and Antons subareas have had declines in the proportion of large Arctic charr (charr greater than 2.3 kg gutted head-on weight) similar to that observed in subareas within the Nain assessment. This may suggest a selective removal of the larger fish from the population.

Total mortality (Z) was calculated using the Paloheimo method (Ricker
1975) for all years (1977-78 to 1985-86) was 0.82. Assuming a natural mortality rate of 0.2 yields an estimate of fishing mortality of 0.6. As in past years, there was a considerable amount of variation in the estimates and a catch curve was also used to provide an alternative measure of z. The use of catch per unit of effort at age data from $1984-86$ resulted in a z of 0.70 .

An initial cohort analysis was run using partial recruitment values and terminal fishing mortality $\left(F_{T}\right)$ from the 1985 assessment (Dempson and LeDrew 1986) $\left(F_{T}=0.45\right)$. An iterative procedure was used to obtain estimates of fishing mortality for the oldest age group (F_{B}) (Rivard 1982). Following this the cohort analysis procedure was rerun using the newly derived values for F_{B}.

Partial recruitment rates were calculated using the historical averaging method from the matrix of fishing mortality rates generated from the last cohort run and are listed in Table 3.

Yield per recruit was calculated by the method of Thompson and Bell (Ricker 1975) using partial recruitment rates and mean weight at age. $F_{0.1}$ was 0.39 at a yield per recruit of 1.08 kg .

Cohort analyses were performed using a range of terminal fishing mortality (F_{T}) rates from 0.2 to 0.7 using newly derived estimates of partial recruitment. In each cohort run, fishing mortality rates for the oldest age group (F_{B}) were re-evaluated using the iterative procedure. Regressions of F (weighted mean F for fully recruited fish) on fishing effort, and population biomass on catch per unit effort for fully recruited fish were used in tuning the analysis to identify an appropriate value for 1986. Regression were based on data from 1977 to 1985.

Regressions of F on effort produced the highest correlation at $F_{T}=0.35$ (Table 4). The distance from the last point to the regression line was lowest when $F_{T}=0.6$. The sum of the residuals for the last three years (1984-86) and the sum of squares of the residuals for the last three years was the lowest when $\mathrm{F}_{\mathrm{T}}=0.55$ and $\mathrm{F}_{\mathrm{T}}=0.60$ respectively.

Regressions of biomass on CUE produced the highest correlation coefficient obtained when $F_{T}=0.4$. The residual of the last year to the regression line was lowest when $F_{T}=0.6$. Similarly, the sum of the squares of the residuals for the last three years were lowest when $\mathrm{F}_{\mathrm{T}}=0.5$ and 0.55 respectively.

In summary, on the basis of the best correlations F_{T} for 1986 would be 0.35-0.4 while an analysis of the residuals would suggest F_{T} is 0.5-0.6. On the basis of the analyses of the residuals and in consideration of the Paloheimo and catch curve estimates, F_{T} in 1986 would appear to be 0.55-0.60.

Stock projections, however, were run with F_{T} varying from 0.45 to 0.6. Recruitment for projections was estimated from the geometric mean of population numbers for age 6 and 7 year-old fish for years 1977-84. Weights at age were based on 1984-86 data. Table 5 summarizes the population numbers and fishing mortality matrix for the cohort analysis run with $\mathrm{F}_{\mathrm{T}}=0.50$.

Results of the projections are summarized in Table 6. With $F_{T}=0.55$ to 0.60 suggests a 'reference level' catch in 1987 of approximately 17 t .

References

Dempson, J. B. 1984. Conversion factors for northern Labrador Arctic charr landings statistics. CAFSAC Res. Doc. 84/6. 8 p.

Dempson, J. B., and L. J. LeDrew. 1986. An assessment of the Voisey Assessment Unit Arctic charr population in 1985. CAFSAC Res. Doc. 86/27. 12 p .

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191.

Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091.

Table 1. Summary of catch and effort statistics for the Voisey assessment unit, 1974-86. Quotas and landings are in kg-round weight, effort is expressed as man-weeks fished.

Year	Quota	$\begin{aligned} & \text { Quota }{ }^{\text {a }} \\ & \text { area } \\ & \text { catch } \end{aligned}$	Landings	Effort	CUE
1974			29,180		
1975			3,727		
1976			14,652	57	257
1977			24,108	75	321
1978			36,991	102	363
1979	22,500	21,880	40,590	116	350
1980	22,500	11,557	19,694	82	240
1981	16,100	16,325	23,810	90	265
1982	16,100	2,688	13,309	60	222
1983	16,100	2,953	25,593	80	320
1984	16,100	8,113	20,873	101	207
1985	23,400		15,648	57	275
1986	20,000		16,655	82	203

a Quota applied to the Voisey Bay subarea only from 1979 to 1984.

	TABLE 2		ESTIMATED CATCH AT AGE FOR VOISEY STOCK UNIT,1977-86					ARCTIC1984	CHARR1985	ROM
	1977	1978	1979	1980	1981	1982	1983			1986
61	318	619	475	132	75	255	1841	253	1	41
71	2085	4374	4914	666	983	770	2870	2306	2012	797
81	4030	5372	7928	3349	2607	1628	3100	3352	3213	3025
91	2086	2330	3382	4086	4780	2297	4125	2374	3396	3644
101	1237	1236	1163	1341	2350	1140	1790	1577	454	1313
11 I	600	1141	634	521	941	595	1196	806	336	645
121	389	380	212	260	406	62	801	401	247	229
131	212	380	159	166	43	12	68	377	69	140
141	108	334	55	64	19	20	8	136	91	111
TOTAL	11065	16166	18922	10585	12204	6779	15799	11582	9819	9945
MEAN										
$A G E$	8.6	8.5	8.2	8.9	9.1	8.8	8.5	8.8	8.5	8.9

Table 3. Summary of weight (kg round) at age data, partial recruitment rates and calculated $\mathrm{F}_{0.1}$ for the Arctic charr population in the Voisey assessment unit.

Age	Weight		Partial recruitment
	1977-79	1984-86	
6	1.53	1.18	0.023
7	1.77	1.41	0.195
8	2.07	1.86	0.607
9	2.60	2.14	1.0
10	2.78	2.50	1.0
11	2.94	2.41	1.0
12	3.24	2.61	1.0
13	3.33	2.51	1.0
14	3.50	2.46	1.0
15	3.46		1.0
16	3.46		1.0
$F_{0.1}=0.39$ at a Y / R of 1.08 kg .			

Table 4. Results of regressions (1977-85) of F on effort and population biomass on catch per unit effort for various terminal fishing mortality rates (F_{T}) for the Voisey assessment unit.

Regression	Parameter	Terminal F										
		0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.7	
F (weighted mean for fully recruited fish) on effort												
	r	0.73	0.75	0.77	0.77	0.77	0.75	0.74	0.72	0.69	0.64	
	residual-1986	-0.33	-0.30	-0.26	-0.23	-0.19	-0.15	-0.11	-0.06	-0.02	0.07	
	normalized	-0.60	-0.53	-0.45	-0.38	-0.31	-0.24	-0.17	-0.10	-0.03	0.28	
	intercept	-0.01	0.03	0.06	0.09	0.11	0.14	0.16	0.18	0.20	0.24	
	normalized	-0.02	0.04	0.10	0.15	0.19	0.23	0.26	0.29	0.32	0.37	
	residuals $(1984-86)$	-0.64	-0.53	-0.43	-0.34	-0.25	-0.17	-0.08	-0.00	-0.07	-0.22	
	$\begin{aligned} & (\text { residuals })^{2} \\ & (1984-86) \end{aligned}$	0.16	0.12	0.09	0.06	0.04	0.02	0.01	0.01	0.00	0.02	

Population biomas
(fully recruited
fish) on CUE

r	0.50	0.63	0.74	0.81	0.82	0.81	0.78	0.74	0.70	0.64
residual (t)-1986	641	26	21	15	11	7	4	2	0	-2
normalized	1.52	1.13	0.84	0.62	0.45	0.31	0.20	0.10	0.02	-0.11
intercept (t)	13	12	12	12	12	12	12	12	12	12
normalized	0.47	0.49	0.50	0.51	0.51	0.52	0.52	0.53	0.53	0.54
residuals (1984-86)	60	40	27	18	11	5	,	-3	-6	-10
$\begin{aligned} & (\text { residuals })^{2} \\ & (1984-86) \end{aligned}$	1882	906	454	228	112	53	26	17	18	37

Table 5. Summary of the population numbers and fishing mortality matrix for the cohort analysis run at $\mathrm{F}_{\mathrm{T}}=0.50$ on the catch at age data for the Voisey assessment unit Arctic charr population.

FOFULATIOR MUMEEFS

1	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
61	40390	31435	19657	19466	17007	24648	28910	21894	11488	3792
71	21293	32781	25178	15664	15818	13856	19949	22004	17695	9405
81	11634	15515	22881	1.6167	12222	12061	10648	13736	15929	12668
91	5732	5879	7867	11560	10206	7648	8402	5912	8213	10134
01	3645	2806	270.	3381	5767	4031	4183	3146	2693	3651
11	1597	1865	1179	1162	1555	2595	2269	1805	1149	1794
21	1049	765	494	391	480	422	1587	776	749	637
3	756	507	282	213	85	26	289	574	272	389
41	152	427	71	87	24	31	10	175	129	160
$6+1$	86248	92012	80315	68093	63165	55317	75246	70022	58317	42630
$7+1$	45858	60576	60558	48626	46158	40670	47336	48129	46829	38838
$8+1$	24566	27795	35480	32962	30340	26814	27387	26125	27133	29434
$9+1$	12932	12249	12599	16795	18118	14752	16740	1.2389	13205	16766

FISHING MOF:TALITT

	1	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
6	1	0.009	0.022	0.027	0.008	0.005	0.011	0.073	0.013	0.000	0.012
7	1	0.115	0.160	0.213	0.048	0.071	0.063	0.173	0.123	0.134	0.098
8	1	0.483	0.481	0.483	0.260	0.269	0.162	0.383	0.314	0.252	0.304
9	1	0.514	0.576	0.615	0.795	0.729	0.403	0.782	0.587	0.611	0.500
10	1	0.470	0.667	0.645	0.577	0.598	0.375	0.640	0.807	0.206	0.500
11	1	0.536	1.128	0.902	0.684	1.105	0.292	0.874	0.680	0.390	0.500
12	1	0.527	0.796	0.642	1.325	2.730	0.177	0.816	0.847	0.454	0.500
13	1	0.371	1.761	0.973	1.976	0.816	0.728	0.301	1.293	0.329	0.500
14	1	0.496	0.716	0.673	0.548	0.735	0.369	0.719	0.695	0.479	0.500
-+1	0.497	0.749	0.676	0.563	0.773	0.370	0.754	0.707	0.493	0.500	

Table 6. Summary of projected available catch (t) for 1987 and 1988 with F_{T} in 1986 varying from 0.45 to 0.6 .

	F_{T} in 1986				
Reference leve1 catch	0.45	0.50	0.55	0.60	
1987	20.7	19.0	17.6	16.5	
1988	21.8	20.6	19.6	18.8	

