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Abstract 
We develop an algorithm that extracts information about sale and repurchase agreements 
(repos) from disaggregated settlement data in order to generate a new historical dataset for 
research. Data from Canada’s fixed-income settlement authority, the Canadian Depository for 
Securities (CDS), is a valuable source of historical information on Canada’s fixed-income 
markets, especially from 2003 to 2016 when few other data sources were available. However, 
the CDS does not contain details on the terms of trade for repos, such as the repo rate, term 
or haircut. In the data, each repo is recorded as two distinct settlements but, critically, the sale 
and repurchase legs of a repo are not explicitly associated. We use a variant of the Gale-
Shapley algorithm to solve a “stable roommates” problem to link repos’ sale and repurchase 
transactions and compute their terms of trade. We verify our algorithm by running it on a 
separate dataset that explicitly associates the sale and repurchase legs of a repo. In addition, 
we verify the computed repo terms of trade by comparing a subsample of the CDS data with 
a third dataset that reports terms of trade directly. The derived data are useful for researchers 
to study the evolution of fixed-income market structure and market conditions. 

Topics: Econometric and statistical methods; Financial markets 
JEL codes: C55, C81, G10 

Résumé 
Nous élaborons un algorithme capable d’extraire de l’information sur les opérations de 
pension à partir de données de règlement désagrégées pour générer un nouvel ensemble de 
données historiques servant à la recherche. Les données de la Caisse canadienne de dépôt de 
valeurs (CDS), l’autorité de règlement sur les marchés canadiens des titres à revenu fixe, sont 
une source précieuse d’information historique sur ces marchés – surtout pour la période de 
2003 à 2016, où il existait peu d’autres sources de données. Toutefois, la CDS ne fournit pas le 
détail des modalités des opérations de pension, comme le taux, la durée ou la décote. Dans 
les données, chaque opération de pension correspond à deux règlements distincts, mais – fait 
important – les deux volets de l’opération, soit la vente et le rachat, ne sont pas explicitement 
appariés. Nous utilisons une variante de l’algorithme de Gale-Shapley pour résoudre un « 
problème des colocataires stables » afin de coupler les transactions de vente et de rachat des 
opérations de pension, et ainsi calculer leurs modalités d’exécution. Nous validons notre 
algorithme en l’appliquant à un ensemble de données distinct où les transactions de vente et 
de rachat sont explicitement appariées. De plus, nous validons les modalités calculées des 
opérations de pension en comparant un sous-échantillon des données de la CDS avec un 
troisième ensemble de données faisant directement état des modalités d’exécution. Les 
données dérivées sont utiles aux chercheurs qui étudient l’évolution de la structure et les 
conditions du marché des titres à revenu fixe. 

Sujets : Méthodes économétriques et statistiques; Marchés financiers 
Codes JEL : C55, C81, G10 
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1 Introduction 
A repo, or sale and repurchase agreement, is a form of collateralized loan and an important source 

of short-term funding for large Canadian financial institutions. In a repo, one counterparty sells a 

security to a second counterparty and then repurchases the same security at a later date for the 

original price plus interest at an agreed-upon “repo rate.” The repo market is one of Canada’s core 

funding markets and a key market for the implementation of monetary policy (Garriott and Gray 

2016; Fontaine, Selody and Wilkins 2009).  Despite their importance, limitations in historical data 

before 2016 pose a challenge for researchers in their efforts to deepen their understanding of this 

market in Canada.1  

Although historical data exist on Canada’s repo market, the data do not contain critical information 

needed to compute quantities relevant for studying repos. The main source of historical securities 

transactions data before 2016 is the Canadian Depository for Securities (CDS), which is the central 

settlement authority for fixed-income securities (namely, bonds and bills).  The CDS logs all 

transactions including repos and outright sales and purchases (“cash” trades). Repos are logged in 

two distinct settlements: the sale and the repurchase legs. From the perspective of the CDS, such 

logging is sufficient because it is concerned with settling transactions as opposed to any economic 

terms involved. Each settlement has information on trade and settlement time, the specific security 

issue, and prices and quantities. However, repo-specific details such as the repo rate, term, haircut 

and settlement are not logged.  In particular, the data lack a unique identifier to connect the sale 

and repurchase legs to each other and allow one to compute the terms of trade of the repo. These 

variables are useful in analyzing, for example, how repos rates and quantities respond to market 

conditions and how other terms of trade respond to changes in market structure.  

The goal of this work is to use the disaggregated data from the CDS to generate historical repo data 

that include key variables relevant to research of the repo market.  This repo dataset will have 

labelled sale and repurchase legs that in turn allow the computation of repo rates, tenor, settlement 

delay, trade size, security issue, and haircut. This dataset is constructed by applying a novel 

algorithm that performs a global optimization to match the two transaction legs of a repo from the 

unlabelled securities transactions data. 

 

 
1 Since 2016, the Investment Industry Regulatory Organization of Canada has collected detailed data on repos 
from Canadian fixed-income dealers through the Market Trade Reporting System.  
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2 Similar problems  
At a basic level, a repo-matching problem can be expressed in terms of matching members of one 

set to another. For repos, these sets are termed first and second legs of transactions. For clarity, in 

the first leg of a repo, a counterparty receives cash in return for some units of a bond; in the second 

leg, the same counterparty buys back those units of a bond for cash plus interest at an agreed-upon 

“repo rate.” A comparable problem is the stable marriage problem, which asks how N men and N 

women can be paired given each party’s preferences. Note that for repos, it is not known a priori 

which settlement is a first or second leg. This is equivalent, in the context of the stable marriage 

problem, to not knowing a priori whether someone is a man or a woman.  

The Gale-Shapley algorithm guarantees a stable match for every couple in the stable marriage 

problem (Gale and Shapley 1962). In this algorithm, a man will propose to his highest-ranked 

woman, who will tentatively “accept” the proposal and be “engaged” to the man, such that he is her 

highest-ranked man so far. An unengaged man may propose to an engaged woman, and if she ranks 

him higher, the woman will trade up. The original fiancé will be no longer be engaged and will 

rejoin the pool of prospective suitors. This process continues until everyone is married, which is 

when no woman can trade up. 

Our repo matching problem is similar to the stable marriage problem in that there exist two distinct 

types that will form pairs. In the CDS data, although settlements can be labelled as repos, it is not 

specified whether a settlement is a first or a second leg, nor who the counterparties are. The 

settlement labels are themselves occasionally inaccurate in that some repos appear to be labelled as 

cash trades, and vice-versa. From a practical perspective, a better analogy for the repo matching 

problem becomes a “stable roommates” problem (Irving 1985). 

Stable matchings cannot be guaranteed for the roommates problem, as there is only the one set. 

With the CDS dataset, it is possible that a trade labelled a repo may not have a match for a variety of 

reasons, such as an error in labelling or because the repo was aborted and the second leg does not 

exist. For a repo matching problem, it must be acceptable to not match a given settlement in the 

event that no plausible partner settlement exists. 

We build on prior work by Bulusu and Gungor (2021), who develop a similar algorithm to match 

repos using the CDS data. Other comparable work in economics has been done in particular for 

identifying uncollateralized loans using data from payment systems. The literature frequently 

follows Furfine (1999), who introduced an identification algorithm that consists of a series of 

filters, summarized as the following: 
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• finding a loan and repayment that involve the same set of counterparties and fall 

on different business days 

• eliminating candidate pairs whose interest rate is unreasonable for the given 

market conditions 

• ensuring the principal payment is in “round” increments as per market convention 

Other researchers have suggested refinements to this approach, such as considering only interest 

rates that are integer values in basis points (bps) or are increments of 1/32 percentage points 

(Demiralp, Preslopsky and Whitesell 2006), or systematic tests for possible false positives involving 

k-nearest neighbours (Rempel 2016). Most similar previous work has been done with payments 

data, where counterparty information is available—unlike for the CDS data. However, a recent 

example of work on securities transaction data is a study by Garvin (2018), who reviewed 

Australian data to assess repo market structure using an algorithm similar to Furfine (1999). 

3 Data description 
The CDS dataset can be grouped by date into three vintages (2003–07, 2008–09, and 2009–present; 

vintage 1, 2, and 3 respectively), which represent different versions of the data supplied to the Bank 

of Canada by the CDS. The major distinction between these three vintages is slight variability in 

which key data channels are available (to be covered later in this section). As vintage 3 is the 

modern dataset and is being continuously synchronized between the CDS and the Bank servers, our 

description will focus on it, highlighting the subtle distinctions in the two historical vintages as 

needed. 

The CDS dataset is a list of settlement instructions containing information that corresponds to 

transfers of securities and funds between two counterparties. Each row, corresponding to a single 

settlement, includes the traded bond characteristics, dates, and times relevant to the transactions 

as well as a variety of other miscellaneous attributes. For the purposes of matching the two legs of a 

repo transaction, we take a subset of these fields, along with some related or derived attributes, and 

store it in a relational database. The data used are listed in Table 1. The original data contain 

further fields that are not relevant to matching two legs of a repo; some examples of these omitted 

fields include the security’s short name, currency or instrument type.  

Vintage 1 data do not contain a trade type field. For the other vintages, a key step is to match for 

similar trade type (that is, cash or repo). While running the matching algorithm raises questions 

about the reliability of the trade type field as a truthful descriptor of the actual transaction, 
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experience suggests that cash and repo settlements will generally not be a valid match: that is, both 

legs of a repo will have the “cash” label if it is so mislabelled. Vintage 1 furthermore does not have 

an entry date time stamp—which gives the time that a trade was entered into the CDS database to 

the millisecond—but only a simple trade date. 

Vintage 2 data differ from vintage 3 data in that they do not have a net_amount field: that is, the 

actual amount of cash transferred for a bond settlement. They have an original price (also known as 

the clean price), which is the cash value of the bond. This cash value is in turn converted to a dirty 

price, which accounts for the accrued interest. We use this dirty price  in place of the net amount 

field for calculating the repo rate. There is some risk to using the original price, as the reporting 

convention is inconsistent and it may already be a dirty price. The original price may also be 

rounded, which affects the roundness of the repo rate. Unlike vintage 1, vintage 2 has both the trade 

type field and a precise time time stamp. 

A more detailed remark is merited on the meanings of various trade types found in the CDS data. By 

way of example, consider the distribution of trade type for the entire vintage 3 dataset (Table 2). 

Most of the settlements are either cash (C)or repos, PRA or RPA. One peculiarity to note is that 

there are two labels—purchase resale agreement (PRA) and repurchase agreement (RPA) 

(Canadian Depository for Securities 2018)) for repo settlements, but they appear to be wholly 

interchangeable as far as matching pairs. Using these labels in a strict manner strongly worsened 

performance, whereas using these labels interchangeably produced pairs whose only “deficiency” 

was a mismatch on those labels. The rest of the labels do not tend to bear repo pairs. 

Table 1: Data fields used for matching settlements as repos 
Field Data source Description Notes 

Entry date time since 
epoch 

Derived Conversion of 
entry_date_time to Unix 
time 

Using an integer time stamp, instead 
of a more complex date-time object, 
improves code readability and 
computational performance. 

Entry date time CDS Date and time (to 
milliseconds) of entry of 
settlement into the CDS 
database; used as a 
trade time 

It is possible this field represents 
when a settlement was entered into 
an older system, separate from the 
CDS database. 

Value date CDS Settlement date  

Par quantity CDS Dollar amount of a 
bond paid at maturity 

Maximum quantity is $50 million. 
Settlements can involve amounts 
greater than $50 million, but these  
will typically be split into chunks of 
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$50 million plus a remainder, and 
only rarely into equal chunks. 

Issue ISIN CDS International Securities 
Identification Number 
(ISIN) for bond 

 

Net amount CDS Actual amount of 
money in dollars and 
cents sent from one 
counterparty to another 

 

Coupon Other Bond coupon A complete set of coupon dates can 
be used for correction of the interest 
rate if the repo spans a payment 
date. It is also useful for searching for 
false positives whose interest rate is 
related to the coupon payment. 

CORRA Other Canadian Overnight 
Repo Rate Average 

CORRA is used to calibrate the range 
of plausible repo rates. 

Dirty price Derived Bond price including 
accrued interest 

This price derives from original price. 
It corrects for ghost rates, and 
substitutes for net amount, which is 
missing in vintage 2. 

Trade type CDS Type of trade, whether 
cash, repo or 
something else 

The types are not strictly reliable; 
some settlements labelled cash are 
likely repos (that is, have all 
characteristics of repos except the 
trade type label) and some 
settlements labelled as repos are 
likely cash trades. 

Master rowid Derived Primary key for a 
settlement 

 

Trade status CDS Whether a trade has 
been confirmed by 
both CDS members 
conducting the 
trade 

The status implements restrictions on 
matching. 

Note: CDS is Canadian Depository for Securities. 
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Table 2: Data fields used for matching settlements as repos 
Trade type tag Count Percentage 

A 91 0.0 

C 25,330,650 73.3 

DP 427,303 1.2 

DPL 56,105 0.2 

FR 2 0.0 

NI 633,930 1.8 

P 3,652 0.0 

PRA 2,863,897 8.3 

RPA 5,263,831 15.2 

SPR 51 0.0 

SPA 10 0.0 

 

4 Matching algorithm 
The basis of the matching algorithm, after matching on certain “hard” criteria, is that rankings are 

determined based on “soft” criteria, quantified by an affinity score, to establish which second 

settlement is most likely to be a matching repo pair for an initial settlement. A global search is done 

in which a given settlement is compared with all N as-of-yet unpaired settlements. As paired 

settlements are eliminated from further consideration (given that each leg would have been 

compared to all settlements, including paired settlements, at some point in the process), the 

complexity of the algorithm is at worst O(N2) with N decreasing, but not necessarily to zero, as the 

process executes. The algorithm is similar to the algorithm from Furfine (1999) but differs through: 

• doing a global search and optimization for rate roundness  and closeness in 

trade time subject to true-or-false filters for whether a pair can be a plausible 

repo 

•  focusing on the roundness of the repo rate as opposed to the amount loaned 

•  using  securities settlements instead of payments data 

Figure 1 presents a flowchart of the steps taken by the algorithm in assessing whether a candidate 

pair is matched as a repo. The flowchart shows a global search for a best matching partner for  
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Figure 1: Flowchart for matching algorithms 
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Figure 2: Example matching process for settlement A against five candidate 
partners 

 

settlement i out of a pool of candidates j1...jn. This process is double-ended; once a partner j is found 

for settlement i, the same process repeats using settlement j as the base settlement and a pool of 

candidates (i1....in). The (i,j) pairing is considered stable when both halves of the matching process 

return the same pair. If one of these settlements prefers a different settlement, the pairing is 

discarded. Figure 2 shows an example of the two-sided matching process. In the first half, 

settlement A is compared with five candidate partners. Settlements B through E have progressively 

decreasing affinity scores; thus, B is more likely to be another repo leg relative to settlement A than 

any of settlements C through E. Note that settlement F is labelled as “skip”: this notation signifies 

that settlement F was rejected at the hard criteria stage. Next, settlement B is compared with all the 

other settlements. Given that the preferred partner for settlement B is settlement A, these two 

settlements are considered a stable repo pair. 

This process is run for all settlements. Once all settlements are exhausted, further rounds of this 

algorithm are run until a round returns no matched pairs. Further rounds will either identify pairs 

with very low affinity scores (unlikely to be a valid repo—type I error) or the consequence of 

matching for repos where the legs were split into chunks of $50 million in par quantity. This 

algorithm assumes that because each repo had to be somehow contracted, one other settlement 

should be a true fit. It is thought that type II errors (not matching for a repo where one exists) are 

uncommon; tests run on orphan settlements suggest that there is either no plausible partner 

settlement left (usually, after satisfying the hard criteria, the only possible settlements yield an 

unrealistic interest rate) or that a repo may be found by accounting for a coupon payment. Repos 
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that occur over coupon dates need different accounting, as there exists a convention that coupon 

payments are paid back to the original bond holder. This process is not always directly observable 

in the data but can be inferred from changes to the dirty price. 

Several additional observations enrich Figure 1. At the fourth decision point (“is entry time diff > 

threshold”), the plausibility of the difference in trade time is assessed; in general, differences over 

two days are considered implausible. At the eighth decision point (“is settlement time plausible?”), 

the algorithm verifies that the candidate pair follows the usual convention of ≤ T1 settlement, 

although in practice, this part of algorithm was often relaxed to ≤ T5 settlement (Tn settlement 

signifies that a trade settles n days after the transaction date). At the following decision point, the 

plausibility of the repo rate is assessed; the typical range for an acceptable repo rate is between -50 

bps to the Canadian Overnight Repo Rate Average (CORRA) plus 100 bps. CORRA is a benchmark 

interest rate that serves as an estimate of average short-term general collateral repo rates. 

A common source of false positive matches is cash-market trades with different settlement dates 

and close trade prices that produce plausible repo rates. We can use information from market 

conventions to catch some of these false positives. Clean prices of cash-market trades are 

commonly found at round increments of 1 cent. In contrast, clean prices used in repos tend not to 

have round increments since they are a function of the negotiated repo rates in increments of round 

bps. It is rare to find a round-increment repo rate where the clean prices of both matched legs have 

round increments of 1 cent. On a repo rate–time graph, these data points appear as a series of 

horizontal lines, resulting in the sobriquet “ghosts.” We therefore exclude matches where the 

difference in clean prices between two legs is near a round number of cents. For most bonds, the 

following expression is checked for roundness such that when it evaluates between -0.006 to 

+0.006, the match is abandoned: 

abs(dcp x 200 x round(dcp ∗ 200))/2,  (1) 

 where 

dcp = dirty price leg2 − dirty price leg1 − term x coupon/365.  (2) 

For bonds with a coupon rate of zero (e.g., Government of Canada Treasury bills), we slightly 

modify the expression that is checked for roundness to account for market convention as follows: 

abs(dcp x 1000 − round(dcp x 1000))/10.  (3) 

A further explanation is merited for the affinity score, or the soft criteria. Most of the initial steps in 

the algorithm are in some way self-explanatory. For example, in our sample, the Canadian repo 

market functions by using specific bonds as collateral for each repo. Consequently, a repo pair may 
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not consist of settlements involving different bonds. Nevertheless, multiple candidate pairs will 

match based the initial hard criteria, which then have to be distinguished at the last decision point, 

that is, by the affinity score that combines the soft criteria.  

By inspection, matching repo settlement legs are usually entered and scheduled in the CDS system 

within seconds, often with an interval that is less than one second. The second key observation is 

that repos are negotiated for interest rates with round (i.e., integer) basis point increments. The 

algorithm uses an affinity score that itself is a function of a score that reflects closeness in time and 

a score that reflects the closeness of a repo rate to an integer value in bps (i.e., roundness). In this 

way, the algorithm will run a global optimization for closeness in entry time and roundness to 

discriminate for more likely repo pairs that otherwise meet the hard criteria for a repo. 

The affinity score is a function of two factors: closeness in entry time and the roundness of the repo 

rate weighted equally: 

affinity_score = 0.5 * subscore_(closeness in entry time) + 0.5 * subscore (roundness 
of repo rate)          (4) 

 

These subscores are explained as follows. Recall that candidate pairs are rejected if the separation 

in trade time (dt) is greater than a threshold, usually two days. When calculating this subscore, we 

use the following process: 

• If dt < 10.0 s, dt is scaled linearly from 0.5 to 1, where a score of 1 is for dt = 0, and 

a score of 0.5 is for dt = 10.0 s. 

• If dt > 10.0 s, an exponential decay function is fitted where the score is 0.5 for dt = 

10.0 s and the score is 0.001 for dt = 2 days. 

For the subscore for roundness, a similar approach is used. A residual is calculated as 

residual = |repo rate − round(repo rate)|,   (5)  

which is used as the subscore for roundness of the repo rate. 

For example, if the repo rate is 99.9999 bps, the residual is 0.0001. The smaller the residual, the 

higher the score.  We calculate as follows: 

• If the residual < 0.01, it is scaled linearly from 0.05 to 10, where a score of 1 is for 

residual = 0 and a score of 0.05 is for residual = 0.01. 
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• If the residual > 0.01, an exponential decay function is fitted where the score is 0.5 

for residual = 0.01 and the score is 0.01 for residual = 0.99. 

The scaling functions and coefficient cutoffs are determined empirically through trial-and-error 

experiments. The goal of these experiments is to improve optimization for roundness of repo rate 

and closeness in trade time without creating too many false positive or false negatives. The 

piecewise scaling functions are a consequence of many candidate pairs having similarly small 

residuals and small time separations. The result of this optimization is seen in the distribution of 

entry time differences and roundness of a high-circulation Government of Canada bond (Chart 1 

and Chart 2). 

 

Chart 1: Histograms of entry time difference for all repos using bond CA135087A610  

a. Entry time differences less than 1 s.   b. Entry time differences for all repos; note the  
      discontinuity in the y-axis 

 
 

Note:  Most repos have entry time differences less than 1 s, although some have greater difference, such as the cluster 
slightly prior to 1×105 s, which corresponds to a difference of 1 day (86,400 s). 
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Chart 2: Histogram of repo rate roundness for all repos using bond CA135087A610 

 

 

Chart 3: Distribution of affinity scores for all repos using bond CA135087A610 

a. Histogram of all residuals (scores)   b. Histogram of entry time differences  
            for repos with residuals of ~0.75.  

                                         
H  

A consequence of the piecewise scaling functions is that it creates clustering of affinity scores 

around 1.00, 0.75, 0.50 and 0.25, which can have specific meanings (Chart 3). With a score of about 

1.00, this signifies a very small residual and very small separation in entry time. At a score of 0.75, 

most of the repos will have a dt > 10.0 s, but not by much (there appears to be cluster in increments 
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of 10 s for this bond), with a very round repo rate. In a minority of cases, they will have a residual 

that is slightly greater than 0.01 while still having a separation in time less than 1 s. At a score of 

0.50, repos still generally have a round rate, but the separation in time increases more.   

Chart 4: Repo rate over time for bond CA135087A610 with and without low-affinity-
score pairs 

a. Entire dataset    b. Dataset with low-affinity-score pairs removed 

 
 

At a score of 0.25, there is always a large separation in entry time and a residual slightly above 0.01. 

The cases with residuals that are close to or slightly greater than 0.01 are possibly a result of net 

amounts being transacted to the dollar and not to the cent. Finally, when the score is much below 

0.25, a smattering of repo pairs match all the hard criteria but otherwise do not have a strong 

affinity in terms of closeness in entry time or repo rate roundness. Such repos are likely false 

positives; removing 4% of the repos with lowest affinity scores will generally show a very 

consistent trend of the prevailing interest rate (Chart 4). Post-processing can also be applied by 

comparing the interest rate on a repo with the prevailing interest rate at the time. Outlier pairs with 

low affinity scores can be considered false positives. 

Most repos are known to be overnight loans (one calendar day), over-the-weekend loans (three 

calendar days but also one business day) or over-the-week loans (seven calendar days). Chart 5 

shows the distribution of repo tenors (the difference in settlement dates) for bond CA135087A610. 

An early approach to the affinity score was to account for the tenor in the weighting. However, trial-
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and-error work, as well as experimentation with a labelled dataset (i.e., repo pairs are already given 

and labelled), suggested that accounting for tenor in the affinity score at best did not improve 

classification and at worst resulted in false negatives and false positives. 

Chart 5: Distribution of tenor (repo duration) for bond CA135087A610 

 

To produce a final dataset for analysis, we perform the following additional steps.  Only matches 

with scores greater than 0.2 are kept. This tends to eliminate false positive matches by inspection 

of, for example, Chart 3.  We keep only matches with first legs with positive confirmation status 

(trade was not cancelled). The CDS has confirmed the necessity of trade confirmation for the first 

leg of a repo. Outliers are removed by dropping matches with repo rates more than 1.5 standard 

deviations from the weekly average for a given bond. Haircuts are computed by comparing the dirty 

price with a reference market price from a commercial dataset from FTSE-Russell at the 

International Securities Identification Number (ISIN) date level. To protect a lender against 

counterparty credit risk, we set the amount lent as less than the market value of the bond collateral. 

The difference between the market value of collateral and the loan amount, in percentage terms, is 

known as the haircut and computed as 

 haircut = 100 * dirty price leg 1/dirty price reference (6) 

and rounded to integer percentage points per market convention. The “dirty price reference” is the 

market value for the bond. 

We take a step to improve estimates of repos’ trade volume since the CDS splits settlements of size 

volume greater  than $50 million par quantity into smaller settlements. Settlement volume is 

aggregated across matches with the same: 

• ISIN, tenor, trade date and first leg settlement date 
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• dirty price, rounded to the nearest .0001 cents 

• repo rate, rounded to the nearest basis point 

Where entry time is available, aggregation excludes repos with gaps in first leg entry time 

greater than 20 seconds.  

4.1 Verification of the algorithm 

A labelled dataset was acquired from the Canadian Derivatives Clearing Corporation, which is a 

clearing house that clears a subset of repos conducted by Canadian dealers before they are 

settled in the CDS. The data are similar to the CDS sample but include an additional unique 

identifier for the two matching legs of a repo. Running the algorithm on this labelled dataset 

resulted in 100% replication of the labels when the bond coupons were accounted for. In some 

cases, a repo leg was split in increments of $50 million par quantity where there was some 

permutation of the labels. We ran a script to demonstrate that the permutations involved only 

identical leg segments. For clarity, consider two legs each split in two parts, such as A = {A1 , A2} 

and B = {B1, B2}; the set {{A1, B1}, {A2, B2}} is equally valid as {{A1, B2}, {A2, B1}}. 

 

5 Example of results 
While the main focus of this document is to describe the algorithm used to find repo pairs in the 

CDS dataset, we can make a few brief exemplary observations about the possible uses of the data. 

Chart 6 shows a comparison between the average repo rate time series obtained from the Market 

Trade Reporting System (MTRS) and the analyzed CDS data. MTRS data consist of all repos 

conducted by Canadian Government Securities Distributors and is collected by the Investment 

Industry Regulatory Organization of Canada. The overlapping sample period is from 2016 to 2018. 

Upon visual inspection, it is readily apparent that both time series are highly similar. A distribution 

of the daily difference in repo rate, shown in Chart 6, panel b, shows that our matching is unbiased 

(a mean difference of 0.1 bps) with low error (a standard deviation of 2.6 bps). Chart 7 

demonstrates consistency with the market convention for overcollateralized repos of 2%, as 

derived from the CDS data. 
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Chart 6: The average repo rate time series as determined from the MTRS data 
and CDS , with the distribution of differences between the two datasets  

a. MTRS and CDS repo rates for a particular Government of Canada bond 
 

 

b. Distribution of daily differences in repo rate between 
MTRS and CDS data 

 

 
Note:  MTRS is the Market Trade Reporting System, and CDS is the Canadian Depository for Securities. 
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Chart 7: Distribution of repo haircuts for positive haircuts 

 
Note: The distribution is estimated using a kernel density estimator.   

 

6 Conclusion 

We develop an algorithm to obtain matched repo pairs from CDS trading data. This algorithm 

initially runs candidate pairs through a series of true-false filters, also known as “hard” criteria, 

which assess the plausibility of a pair of securities settlements being matching repo legs. A global 

optimization is then done based on a set of “soft” criteria to eliminate otherwise plausible pairs 

from consideration. When two possible legs most prefer each other, a stable pairing is found. 

Comparison to a dataset that already has securities settlements labelled with the actual repo tags 

found a 100% correspondence, subject to allowing the permutation of identical repo legs for cases 

where more than $50 million in par quantity were transacted, which is a known limitation of the 

CDS settlement. The present work has a generated a rich dataset of labelled repos, which can be 

used in the future to study the evolution and possible future of the Canadian repo. 

A caveat is needed for the accuracy of aggregate repo volume. Since vintages have differing levels of 

accuracy, aggregate volume may be biased to varying degrees. We recommend using the resulting 

data to study historical terms of trade and relative volume over time, but not aggregate volume. 
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