

Environment Canada

Environnement Canada

込

Environmental Service de la Protection Service

Protection de l'environnement

CHARACTERISTICS OF FISH PLANT WASTES IN NOVA SCOTIA AND

THEIR EFFECTS ON COASTAL BAYS

II: WASTE WATER

CHARACTERIZATION

TD 172 C27 no.8 AR75-3 **Environmental Impact and Assessment**

Report EPS-8-AR-75-3

Atlantic Region

LIBRARY DEPT. OF THE ENVIRONMENT ENVIRONMENTAL PROTECTION SERVICE PACIFIC REGION

ENVIRONMENTAL PROTECTION SERVICE REPORT SERIES

Environmental Impact and Assessment Reports provide a review of potential or actual consequences of a project or undertaking. Reports on environmental emergencies are included in this category.

Other categories in the EPS series include such groups as Policy and Planning; Economic and Technical Review; Technology Development; Regulations, Codes, and Protocols; Surveillance; and Briefs and Submissions to Public inquiries.

Inquiries pertaining to Environmental Prote	ection
Service Reports sh	Protection
Service, Departme	a Scotia.
TD Characteristics of fish plant 172 wastes in Nova Scotia and their C27 effects on coastal bays II: water no.8 water characterization. AR75-3 LIBRARY ENVIRONMENT CANADA PACIFIC REGION	

ib./Bib. BVA

TD 172 C27 NO.8 AR75-3

CHARACTERISTICS OF FISH PLANT WASTES IN NOVA SCOTIA

AND

THEIR EFFECTS ON COASTAL BAYS II: WASTE WATER CHARACTERIZATION

A. R. KUMBHARE

FOOD & TEXTILES SECTION TECHNICAL SERVICES BRANCH ENVIRONMENTAL PROTECTION SERVICE ATLANTIC REGION

NOVEMBER, 1975

EPS-8-AR-75-3.

LIGHARY DEPT. OF THE ENVIRONMENT ENVIRONMENTAL PROTECTION SERVICE PACIFIC REGION

FOREWORD

- i -

This report is the second of a five part series entitled "Characteristics of Fish Plant Wastes in Nova Scotia and Their Effects on Coastal Bays". Other reports in the series are:

Vol. I	Summary and General Conclusions. EPS-8-AR-75-2.	
Vol. 111	Toxicity Studies. EPS-8-AR-75-4.	
Vol. IV	Bacteriological Characteristics. EPS-8-AR-75-5.	
Vol. V	Nearshore Effects. EPS-8-AR-75-6.	

Avant-propos

Ce rapport est la seconde d'une série en cinq parties intitulé "Les caractéristiques des effluents des usines de traitement de poisson en Nouvelle-Ecosse et leurs influences sur les œaux côtières".

Vol. I	Sommaire et conclusions générales. EPS-8-AR-75-2.
Vol. III	Etude sur la toxicité. EPS-8-AR-75-4.
Vol. IV	Les caractéristiques bactériologiques. EPS-8-AR-75-5.
Vol. V	Les effets sur la zone littorale. EPS-8-AR-75-6.

ABSTRACT

- ii -

Relevant physical and chemical data on fish plants to estimate the total pollutional load contributed by them to the bays has been collected and estimates of daily pollutional loads have been made. Important parameters observed are BOD₅, COD, SS, Grease, nutrients and wastewater flows. The information collected is concurrent to and co-ordinated with the environmental data collected in the bays.

Despite many limitations in the collection of information, it is felt that the estimates made in this study are reasonably accurate and also compare well with the results of other studies on similar wastes.

Résumé

Des données physiques et chimiques ont été recueillies les usines de traitment de poisson pour estimer le chargement total de pollution déchargé par eux. Une approximation a aussi été faite pour le chargement quotidien de pollution. Les paramètres observés sont le DOB5, DOC, SS, graisse, les nutrients et l'écoulement des effluents. Ces données ont été recueillies concurremment avec les données environmentales dans les eaux cotières.

Malgré les limitations de l'information, on considère que les approximations faites durant cet étude sont raisonablement exactes. Elles comparent aussi favorablement avec les résultats d'autres études sur des effluents semblables.

TABLE OF CONTENTS

|--|

FOR	EWORD	• • • • • • • • • • • • • • • • • • • •	(1)
ABS	TRACT	• • • • • • • • • • • • • • • • • • • •	(11)
RES	UME	· · · · · · · · · · · · · · · · · · ·	(11)
TAB	LE OF	CONTENTS	(111)
CON	CLUS 10	NS	(v)
REC	OMMEND	ATIONS	(ix)
АСК	NOWLED	GEMENTS	(x)
LIS	TOFT	ABLES	(xi)
LIS	TOFF	IGURES	(xiii)
t.	INTRO	DUCTION	1
11.	DESCR	IPTION OF WATER SUPPLY AND WASTEWATER SYSTEMS	•
	11.1	Louisbourg	
		<pre>II.1.1 National Sea Products Plant</pre>	2
		11.1.2 Hopkins Plant	- 4
	11.2	Lockeport	
		II.2.1 National Sea Products Plant	4
		11.2.2 Swim Brothers	6
111.	DETAI	LS OF WASTEWATER CHARACTERIZATION	9
	111.1	Selection of Physical and Chemical Parameters	9
	111.2	Analytical Procedures	10
· .	111.3	Field Sampling Techniques	10
	111.4	Measurement of Wastewater Flows	
		111.4.1 Louisbourg	10
		<pre>III.4.1.1 N.S.P. Plant</pre>	10
	•	111.4.1.2 Honkins Plant	13

TABLE OF CONTENTS (Cont'd...)

Page

III.4.2 Lockeport	13
III.4.2.1 N.S.P. Plant	13
III.4.2.2 Swim Brothers	14
IV. ESTIMATION OF POLLUTIONAL LOADS	15
V. DISCUSSION OF RESULTS	16
REFERENCES	48
APPENDIX: RAW DATA	49

- iv -

CONCLUSIONS

As a result of this study, the following conclusions can be drawn:

 The values of important wastewater parameters observed for the fish and fish meal plants are tabulated. It will be noticed that the values compare well with the observations made by other investigators.

- Collection of samples for Oil and Grease has to be done more carefully as outlines in the report to prevent it from adhering to the sides of the container, and thereby giving unreliable observational values.
- 3. Identification of all sources of pollution from any plant is important. This study indicates that the vacuum unloading facility of the type with water seal and water conveyance can make a substantial contribution to the total pollution of the bay.
- 4. The plants surveyed are representative of general ground fish processing operations in the Atlantic Region. The results of this study compare well with the results of studies conducted by other investigators at various other locations in the region. It can, therefore, be safely concluded that the wastewater characteristics from these plants are typical of the groundfish processing operations in the region.
- 5. The wastes discharged from the groundfish processing and fish meal plants are of low order of magnitude compared to other industries of comparable size. The recently developed federal guidelines (Fish Processing Operations Liquid Effluent Guidelines, EPS Report No. EPS-1-WP-75-1) for controlling pollution from these operations appear to be adequate. However, in areas which are environmentally more sensitive, more advanced effluent treatment than that stipulated in the Guidelines may be required.

SUMMARY OF RESULTS

Plant Name	Water Consumption (Gal/1000 lbs.)	BOD5 (1bs/1000 1bs.)	COD (1bs/1000 1bs.)	SS (1bs/1000 1bs.)	Grease (1bs/1000 1bs.)	TS (1bs/1000 1bs.)	TVS (1bs/1000 lbs.)	Total Inorganic Phos. (P04) (1bs/1000 lbs.)	
N.S.P. Louisbourg (Fish Plant)	<u>4,300</u> (4) 246 to 1724 (1) 504 (5) 16,500	<u>5.65</u> (4) 1.2 to 2.8 (1) 15	<u>9.65</u>	2.52 (4) 8.3 to 22.5 (1) 20 (5) 7	<u>1.49</u> (1) 13	<u>51.66</u>	12.36	<u>0.53</u>	-
N.S.P. Louisbourg (Fish Un- loading facil- ities)	<u>0.060 MGD</u>	<u>381</u> (1bs/day)	<u>633</u> (1bs/day)	<u>94</u> (1bs/day)	<u>81</u> (1bs/day)	<u>415</u> (1bs/day)	<u>290</u> (1bs/day)	<u>14</u> (1bs/day)	- vi -
Hopkins Plant Louisbourg	<u>9,500</u> ga1/day	<u>36.5</u>	<u>56.5</u>	<u>10.45</u>	-	<u>33.6</u>	21.98	2.12	
N.S.P. Lockeport (Fish Pl.)	2,534	<u>6.63</u>	<u>9.38</u>	<u>1.87</u>	<u>0.607</u>	_	-	<u>0.78</u>	
Swim Bros. Lockeport	<u>7,676</u>	24.42	<u>31.45</u>	6.89	13.095	<u>2278</u> *	228	<u>1.87</u>	
N.S.P. Lou- isbourg _{**} Meal Plant		<u>0.24</u>	<u>0.52</u>	<u>118.7</u>	<u>55</u>	<u>8985</u> *	<u>1105</u>	<u>5.64</u>	

•

J

(Cont'd...)

SUMMARY OF RESULTS (CONT'D...)

	· · · · · · · · · · · · · · · · · · ·			
Plant Name	VSS (1bs/1000 1bs.)	Organic P04 (lbs/1000 lbs.)	NO ₃ -N (1bs/1000 1bs.)	NO ₂ -N (1bs/1000 lbs.)
N.S.P. Louisbourg (Fish Plant)	-	-	-	-
N.S.P. Louisbourg (Fish Un- loading facilities)	/ <u>79</u> (1bs/day)	<u>1.75</u> (1bs/day)	<u>0.045</u> (1bs/day)	<u>0.003</u> (lbs/day)
Hopkins Plant Louisbourg	10.42	<u>`0.115</u>	<u>0.006</u>	-
N.S.P. Lockeport (Fish Pl.)	<u>115.7</u>	<u>0.144</u>	-	-
Swim Bros. Lockeport	-	<u>0.59</u>	0.006	-
N.S.P. Lou- isbourg _{**} Meal Plant	<u>123.5</u>	<u>1.23</u>	<u>0.018</u>	0.002

'n

;

.

- Note: (1) The underlined values represent the observations of this study. (2) Observations reported by others are given against

1

. .

- their references; e.g., (4) 246 to 1724 means that Nutt has reported values ranging between 246 and 1724. The references are listed on page .
- (3) Unless otherwise specified, values reported are per 1000 lbs. of round fish processed.

* Salt water used.

1 ۷ij ı 6. Accurate determination of the total pollutional load depends on the accurate determination of the wastewater flows. The determination of the latter in turn depends on the physical layout of the sewers and the ease with which they can be accessed for flow measurement. Older plants generally present greater difficulty in this regard.

- viii -

RECOMMENDATIONS

- The federal "Fish Processing Operations Liquid Effluent Guidelines" should be applied generally to all fish processing and fish meal plants.
- Sampling and analytical procedures for Oil and Grease need improvement.

ACKNOWLEDGEMENTS

I am grateful to the National Sea Products Ltd. for the excellent co-operation extended during the course of this study, both on my behalf as well as on behalf of the Environmental Protection Service. Gratefulness is also expressed for similar co-operation received from Hopkin's Plant at Louisbourg and Swim Brothers Plant at Lockeport.

I am grateful to Mr. George Lindsay for his guidance during all phases of this study.

Mr. Dave Scott and Mr. Kevin Roche deserve appreciation for their help, initiative and interest in collecting the samples.

The staff of the chemistry laboratory are worthy of appreciation for conducting the analyses of such a large number of samples.

Miss Pamela Elaine Tracey and Mrs. Gail Scott are worthy of appreciation for their patience and understanding in typing this report.

LIST OF TABLES

Table Number

<u>Title</u>

Page

1	LIQUID EFFLUENT CHARACTERISTICS, N.S.P. LOUISBOURG	
	FISH PLANT	19
2	LIQUID EFFLUENT CHARACTERISTICS, N.S.P. LOUISBOURG	
	MEAL PLANT	21
3	LIQUID EFFLUENT CHARACTERISTICS, N.S.P. LOUISBOURG	
	UNLOADING PLANT	22
4	LIQUID EFFLUENT CHARACTERISTICS, HOPKINS PLANT,	
	LOUISBOURG	23
5	LIQUID EFFLUENT CHARACTERISTICS, N.S.P. LOCKEPORT	
	FISH PLANT	24
۴	LIQUID EFFLUENT CHARACTERISTICS, N.S.P. LOCKEPURT	
	SKINNING OUTFALL	25
7	LIQUID EFFLUENT CHARACTERISTICS, N.S.P. LOCKEPORT	
	MEAL PLANT	26
8	LIQUID EFFLUENT CHARACTERISTICS, SWIM BROTHERS,	
	LOCKEPORT	27
9	ESTIMATION OF FLOWS, N.S.P. LOUISBOURG,	
	MEAL PLANT	28
10	ESTIMATION OF FLOWS, N.S.P. LOUISBOURG,	
		29
11	COMPARISON OF FLOWS, N.S.P. LOUISBOURG,	
	FISH PLANT	30
12	ESTIMATION OF WATER CONSUMPTION, HOPKIN'S	
	PLANT, LOUISBOURG	31
13	WATER CONSUMPTION, N.S.P. LOCKEPORT	
	FISH PLANT	31
14	WATER CONSUMPTION, SWIM BROTHERS,	
	LOCKEPORT	32

LIST OF TABLES (CONT'D...)

Table Number	Title	Page
15	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	N.S.P. LOUISBOURG, FISH PLANT	• 33
16	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	N.S.P. LOUISBOURG, MEAL PLANT	. 35
17	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	N.S.P. LOUISBOURG, FISH UNLOADING FACILITIES	. 38
18	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	HOPKIN'S PLANT, LOUISBOURG	. 40
19	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	N.S.P. LOCKEPORT, FISH PLANT	. 42
20	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	N.S.P. LOCKEPORT PLANT, SKINNING OUTFALL	. 44
21	ESTIMATION OF DAILY POLLUTIONAL LOAD,	
	SWIM BROTHERS, LOCKEPORT	. 45

LIST OF FIGURES

Figure Number	Title	Page
1	SCHEMATIC DIAGRAM SHOWING THE WATER SUPPLY AND SEWERAGE OF N.S.P. LOUISBOURG PLANT	3
2	SCHEMATIC DIAGRAM SHOWING THE WATER SUPPLY AND SEWERAGE OF HOPKINS PLANT, LOUISBOURG	5
3	SCHEMATIC DIAGRAM SHOWING THE WATER SUPPLY AND SEWERAGE OF N.S.P. LOCKEPORT PLANT	7
4	SCHEMATIC DIAGRAM SHOWING THE WATER SUPPLY AND SEWERAGE OF SWIM BROTHERS PLANT, LOCKEPORT	8

I INTRODUCTION

The objectives of this study were:

- To identify the sources of pollution entering the marine environments under consideration;
- To design and carry out a sampling program to determine the wastewater characteristics of each source;
- 3. To gather information on the total flow of wastewater from each source to determine the total pollution contributed;
- To gather information on the plant production during the period of survey to relate the waste characteristics to the products processed.

This information will complement the biological observations. Water quality data and measurement of certain biological parameters will indicate the effects of pollution created by the fish processing industry on the marine environment.

The collection of this information was difficult. The smaller and older plants particularly in the Lockeport area do not have adequate facilities to gain access to accurate information on wastewater flows. Thus, an effort has been made to make the best estimates of the wastewater flows and other factors involved, in the estimation of total pollutional load.

ĩ

II DESCRIPTION OF WATER SUPPLY AND WASTEWATER SYSTEMS OF THE PLANTS SURVEYED.

11.1 Louisbourg

II.1.1 National Sea Products Plant

The plant has two sources of water supply. The Town of Louisbourg, which supplies the fresh water and the harbour which supplies salt water. The fresh water, pumped in and metered, is used in the filleting plant and the fish unloading facilities. The salt water is drawn in to supply the demands of the condensers in the meal plant.

The filleting plant consumes most of the fresh water. It is used in fluming the fish and generally for washing and cleaning purposes. The fish offal is flumed out through the main sewer which conveys it to the meal plant for the manufacture of fish meal. The offal flume water is passed through a trommel screen which allows only coarser solids (>1/4" diameter) to enter the meal plant. A screw conveyor conveys the offal collected by the trommel screen in to the meal plant (to offal hoppers). The offal flume water, containing the solids and dissolved organics, after screening is drained to the bay through a 24" diameter concrete pipe.

The meal plant does not require much fresh water to operate. A small quantity of water is used in this plant for cleaning the offal hoppers and by the evaporators. After use, it is collected and drained out to a manhole where it meets the large flow of salt water from the condensers. The condensers require a large quantity of water which is supplied from the harbour. A 24" diameter sewer conveys the total flow to the bay.

The two 24" diameter sewers described here - one from the filleting plant and another from the meal plant - constitute the main outlets of wastewater from the NSP Louisbourg operation and are located close to one another (Refer Fig. 1).

FIGURE 1.

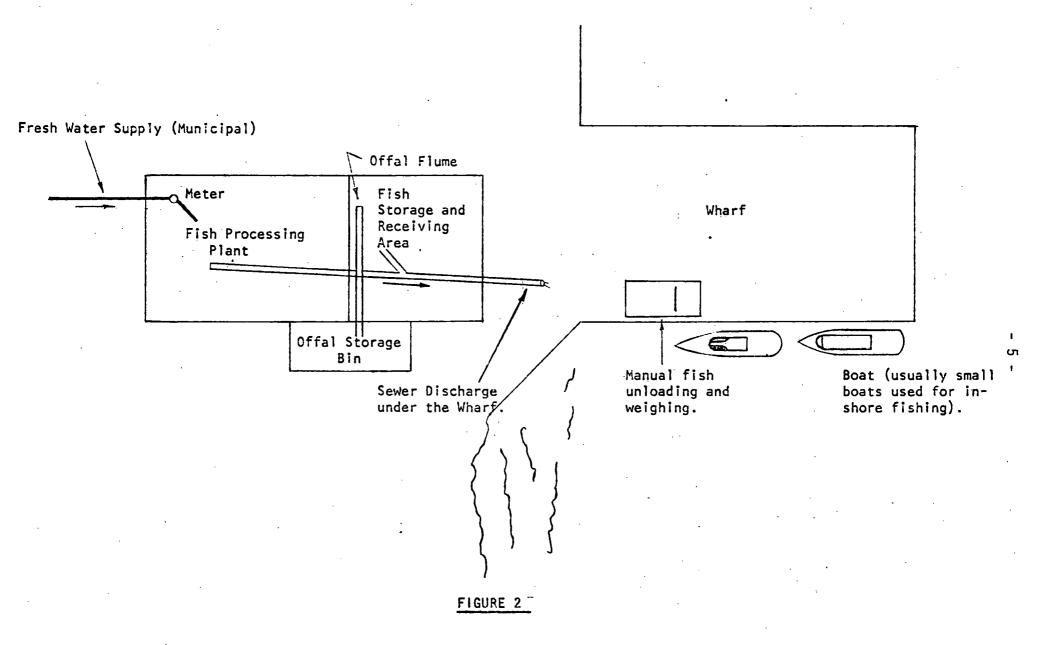
Schematic diagram showing the water supply and sewerage of NSP plant at Louisbourg, N. S.

II.1.2 Hopkins Plant

This is a small filleting plant compared to the NSP plant and operates only intermittently. The water supply is from the town of Louisbourg and is metered. Unfortunately, the meter was not working during the sampling period.

One drain collects all the process wastewater from the plant and discharges into the bay. Most of the offal and solids are collected manually and are trucked to the nearby NSP meal plant for manufacture of fish meal.

This plant is not automated to the same degree as the NSP Louisbourg plant and most of the processing is done manually. The fish is supplied by inshore fishermen and are unloaded, weighed and processed. Very little storage capacity is provided and generally the fish is processed soon after it is landed.


Fig. 2 schematically shows the water supply and wastewater system of this plant.

II.2 Lockeport

II.2.1 NSP Lockeport Plant

This is an old plant, mostly built on the wharfs. The two main operating sections of the plant are filleting and fish meal production.

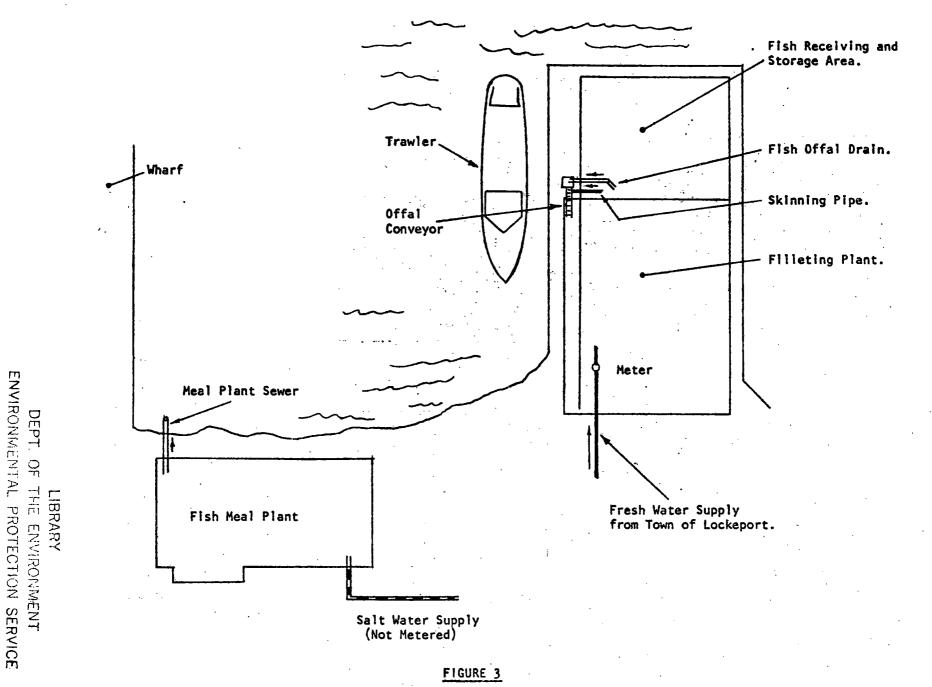
This conventional filleting plant has a metered salt water supply. The offal is conveyed from the filleting lines through above-floor metal flumes. These flumes are connected to a stainless steel lateral which in turn takes the offal out of the plant. At this stage, the material is dumped on to an inclined conveyor which loads the offal into trucks for transportation to

Schematic Diagram showing the water supply and sewerage of Hopkins Plant at Louisbourg, N. S.

:

the meal plant for the manufacture of fish meal. The inclined conveyor is a drag-flyte conveyor which separates the coarse offal from the flume water. In turn, the flume water drops onto a flat coarse mesh screen and is discharged to the harbour. From what has been observed, the performance of this screen is poor.

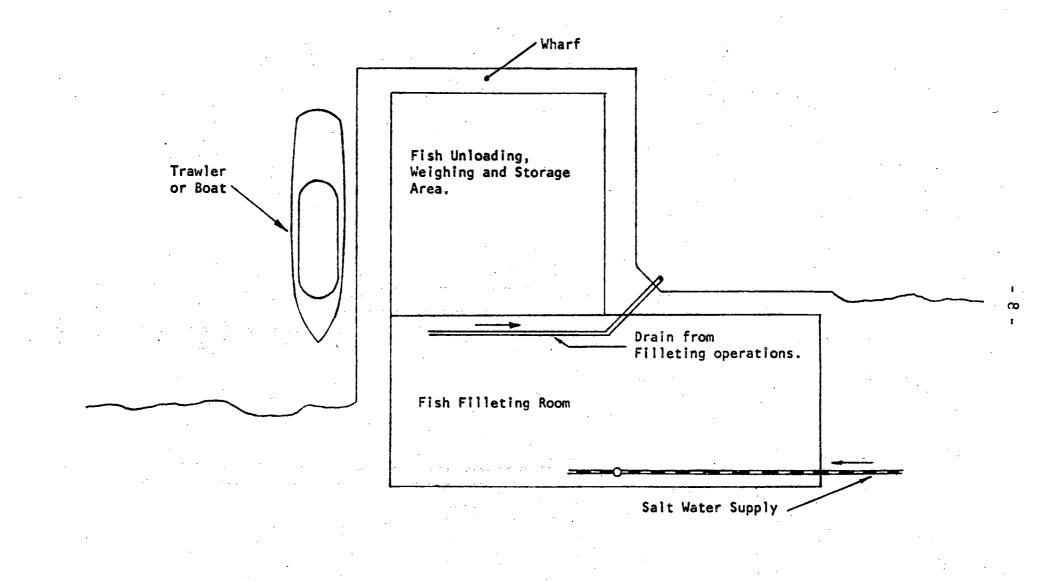
A small pipe conveys wastewater from the skinning operation and discharges at the same location as the lateral from the filleting plant.


Wastewater is generated in the meal plant, mostly at the offal hoppers and at the condensers. All the water from this plant is collected and discharged to the harbour through one sewer. Salt water is used in plant, but is not metered. The sewer is submerged during the high tide and the sampling time available is, therefore, restricted. In addition, there is no other location inside the meal plant where sampling can be carried out. Fig. 3 schematically shows the water supply and wastewater system of this plant.

II.2.2 Swim Brothers

This filleting plant is smaller than the NSP Lockeport plant and uses salt water, which is metered. The offal is transported to nearby fish meal plants, primarily the neighbouring NSP plant, for the manufacture of fish meal.

All the effluent is collected in a single sewer which drains the waste material into the harbour. This sewer is located below the high tide level and is, therefore, only available for a limited time period for sampling. Fish scales, some rejected fish, other miscellaneous solid wastes and a lot of greasy material accumulates close to the outfall and create unsightly conditions.


Fig. 4 shows schematically the water supply and wastewater system of this Plant.

PACIFIC REGION

Schematic Diagram showing the water supply and sewerage of NSP Plant at Lockeport, N.S.

7 -

Schematic Diagram showing the water supply and sewerage of Swim Brothers Plant at Lockeport, N. S.

III DETAILS OF WASTEWATER CHARACTERIZATION

Characterization of wastewater has been assumed to include the following:

- (i) Measurement of the concentration of the physical and chemical parameters of the wastewater; and
- (ii) Measurement of the quantity of wastewater to estimate the total amount of pollution.
- III.1 Selection of Physical and Chemical Parameters

The selection of physical and chemical parameters generally depends on the type of wastewater. Little work has been done in observing and defining the physical and chemical characteristics of fish plant wastes. Also, defining the characteristics of wastewater in this particular industry is difficult because of a number of factors involved. Some of these factors are:

- (1) the type of fish processed;
- (2) the type of fish processing done;
- (3) the type of water used;
- (4) The age of the plant which includes factors such as the amount of mechanization in processing, the type of materials used in processing equipment, the degree of control over the use of water, the plant layout, and the layout of the wastewater conveyance system which influences the ease of sampling.

From our experience of fish plant wastes and from the past studies (Ref. 1, 2, 3), it was decided that the following parameters should be observed:

- 1. Temperature
- 2. pH
- 3. BOD5
- 4. COD
- 5. SS
- 6. TS
- 7. TVS
- 7. 145
- 8. VSS

- 9. Total Inorganic Phosphorus as POL
- 10. Organic Phosphorus as PO4
- 11. Oil and Grease
- 12. Ammonia N
- 13. Nitrate (NO₃)-N
- 14. Nitrite (NO₂)-N

III.2 Analytical Procedures

For analyses of samples, the WPCF Standard Methods (1971) (Ref. 4) has been used. In certain cases the sample water was saline and suitable precautions were taken in the analyses to allow for the salinity effect.

III.3 Field Sampling Techniques

Samples for each parameter were collected at one-half hourly intervals in constant volumes and were generally composited over a two hour period as well as for the day (during the production period). Sample volumes were not collected proportional to the volume of the wastewater as it was not possible to do so.

Tables 1, 2, 3 and 4 give the liquid effluent characteristics of the NSP Louisbourg Fish Plant, Meal Plant, Fish Unloading Facilities and the Hopkins Plant respectively.

Tables 5, 6, 7 and 8 give the liquid effluent characteristics of plants in Lockeport. Table 5, 6 and 7 give the characteristics for the effluent from the NSP Lockeport fish plant, the skinning machine effluent and the fish meal plant respectively. Table 8 gives the liquid effluent characteristics for the Swim Brothers Plant.

III.4 Measurement of Wastewater Flows
III.4.1 Louisbourg
III.4.1.1 NSP Louisbourg Plant

Three sources of effluent discharge were identified and sampled from this plant. These are:

- 1. The fish meal plant sewer $(24^{\prime\prime} \phi)$
- 2. The filleting plant sewer $(24^{\prime\prime} \phi)$
- 3. The unloading facilities.

The fish meal plant water supply is not metered. The estimation of flow from this plant was made using the Hazen-Williams formula. The follow-ing form of the formula was used to give daily flow:

$$0 = 405.C.d^{2.63}s^{0.54}$$

where:

Q = the total flow in gallons per day (gpd);

C = the Hazen-William constant for the type of pipe surface; in this case it was assumed to be 130.

d = the internal diameter of the pipe in inches.

s = the slope of the pipe.

Since the pipe was usually not flowing full, the flow for the actual depth of flow was obtained by the proportionality relationships:

$$\frac{\phi}{2} = \cos^{-1} \left(1 - \frac{2\gamma}{d_0}\right);$$

and
$$\frac{Q}{Q_f} = \frac{(\phi - \sin \phi)^{5/3} \cdot \phi^{2/3}}{921946.7445}$$

where:

- ϕ = the angle subtended by the water surface line at the centre;
- y = the depth of water flowing through the pipe in inches;

do' = the inside diameter of the pipe, applicable for flowing full
 conditions;

 $Q = the flow for depth y; (y < d_0)$

 Q_f = the flow for pipe flowing full (depth d_o)

After Q was obtained for a 24 hr. period, the flow for the period during which sampling was carried out was obtained by simple proportional reduction.

The estimated flows for the meal plant sewer for the period of survey are tabulated in Table 9.

The value of d_0 for both the meal plant and the filleting plant sewers is 24". The slopes of these sewers were measured by using a levelling instrument and a levelling rod. The length of the meal plant sewer was measured by a steel tape which was passed through the sewer. One end of the tape was held at the manhole and the other was read off at the end of the sewer where wastewater was being discharged into the bay.

For the flow of water from the filleting plant, it was more convenient to measure the depth of flow in the U-shaped channel. This U-shaped channel carried the wastewater from the filleting plant to the trommel screer. The circular bottom of this channel is $30^{\prime\prime}$ diameter and the depth of flow was always very small $(3-4^{\prime\prime})$; thus, for the purpose of flow estimation this could be treated as a circular pipe of $30^{\prime\prime}$ diameter.

The depth of flow measurement for both the meal plant sewer as well as the filleting plant was done by a thin steel graduated rule held parallel to the direction of flow. Precautions were taken to see that the flow pattern was not disturbed and the rule registered the correct depth.

The flows estimated for the fish meal plant using the Hazen-William formula have been tabulated in Table 10.

The total fresh water supply to the NSP facility is consumed in three main areas:

- 1. the filleting plant (this is the main consumer);
- 2. the fish unloading facilities;
- 3. the sanitary facilities.

The main meter registers the total flow to the plant. This meter was read during the survey period both at the beginning and end of each sampling day. Since the flow to the unloading facilities is not metered, it was assumed that the flow estimated for the filleting plant would give an estimate of water consumption for the unloading facilities. This was the basis for estimation of flow for the fish unloading facilities.

On the basis of all these considerations and the available data, it was estimated that the fish unloading facilities consumed approximately 10,000 gal/hr. The water consumption by the fish unloading facilities has been tabulated in Table 10.

It was also possible to compare the flow estimates for the filleting plant as done by the Hazen-William formula against the meter readings. Table 11 shows this comparison.

111.4.1.2 Hopkins Plant

Estimation of flows for this plant was difficult for two reasons:

(1) The meter registering water supply to the plant had broken down, and(2) The sewer was inaccessible for flow measurement.

The only method available for flow estimates was to examine the water consumption data for the plant for the corresponding periods in the past and assume the same water consumption for the period of survey. The flow data based on this assumption is tabulated in Table 12.

III.4.2 Lockeport

III.4.2.1 NSP Louisbourg Plant

Three main sources of water consumption were identified in this plant. These are:

1. The fish plant

2. The skinning Outfall

3. The fish meal plant

The water supply to the fish plant is metered and the daily meter readings were used to estimate the total pollutional load from this plant. This data is tabulated in Table 13.

The water supply to the fish meal plant is not metered and, as already indicated earlier, it was not possible to measure the flow of water through the main outfall. The estimates are, therefore, based on the pumping rates. This gives a flow of 1350 gpm to the plant. Some of this water is expected to be lost in evaporation but this is difficult to estimate. The flow coming out of the meal plant sewer has been assumed to be 1350 gpm.

The water discharged through the skinning machine outfall is almost constant. The discharge takes place through a 4" ϕ pipe sloping at the rate of 0.12 ft. in 1000 ft. and flows 3/4 full. The estimated rate of flow from this pipe by using the Hazen-William formula with a value of C = 130, is 0.015 mgd flowing full and 0.01438 mgd flowing 3/4 full. The flow for 9 hr. working shift is 0.0054 mg.

III.4.2.2 Swim Brothers Plant

The water supply to this plant is metered and meter records were kept during the period of survey to estimate the total pollutional load. The flow figures are tabulated in Table 14.

IV ESTIMATION OF POLLUTIONAL LOADS

The estimation of total daily pollution load for each source of wastewater has been done by considering the average concentration of the pollution parameter for the day and the corresponding flow. The information has been presented in tabular form for both Louisbourg and Lockeport locations. Ref. Tables 15 to 21.

Tables 15 through 21 also relate the polluting parameters to the production.

The tables exhibiting the wastewater concentrations (Tables 1 through 13) present two values for the same parameter; one obtained by analyzing the daily composite sample and another by averaging the two hourly composites over the same period. Judgement has been exercised in using a suitable value for calculating the total daily pollutional loads.

V DISCUSSION OF RESULTS

The purpose of this segment of the study was to estimate the amount of waste discharged to the bays from the fish plants. The estimation of the total wastes is done by measuring the concentration of the pollutant and the total quantity of wastewater flow. Precautions were taken to ensure that all sources of wastewater were identified and included in the estimate of pollutional loads.

Accurate measurement of both the concentration of the pollutant and the wastewater flow is important. Estimates of pollutant concentrations are based on the sampling and analytical techniques already described. Thus, it has been assumed that the estimates of concentration are reliable. However, discrepancies have been observed in the values of the parameters obtained from the daily composite samples compared to the ones obtained over 2-hr. periods for the day. This discrepancy is within reasonable limits in most cases but is large in other cases. One of the explanations is the hourly variation in the fish processing operations. These hourly variations may be due to start-up, coffee and lunch breaks, variations in water flows and process changes to other species within the sampling period. However, in most cases, there is reasonable agreement between the average of the 2 hr. composite samples and the daily composite samples. In cases where the discrepancy is large, no satisfactory explanation can be provided. In most cases, the hourly averaged values have been considered more reliable than the daily composited ones for this study.

With regard to the estimation of the wastewater flows, an effort was made to measure them as accurately as possible. Generally, if the water supply to the plant was metered, records of the meter readings during the processing periods provided the best estimates of wastewater flows in the absence of any other applicable method. In some cases it was possible to make estimates by the application of the Hazen-William formula. The details for this have already been described. However, it is to be understood that there are a number of factors affecting the accuracy of flow estimates by this technique. The two most important ones are - the roughness coefficient, C, and the depth of flow. C has been assumed based on the age and construction material of the conduit. The depth of flow has been observed in the field taking adequate precautions that the measurement caused only the least possible disturbance to the existing flow pattern in the conduit.

The sampling carried out for the wastewater characterization in the plant was concurrent with the sampling carried out for the determination of water quality of the receiving water. This was done to facilitate correlation between the two types of information during the period of sampling. The estimation of daily pollutional load for each source of wastewater has been done by considering the average concentration of the pollutional parameter for the day and the corresponding flow. The results discussed here refer only to the average values of the parameters over the period of the survey. Also, the summary is limited to important parameters, such as flow, BOD₅, COD, SS and Grease.

The average flow from the NSP Louisbourg offal flume was 0.325 million gallons/day which is approximately 4300 gals/1000 lbs. of round fish processed. This result is in the lower range of that cited by other investigators. Nutt (5) has observed between 246 to 1724; Brodersen (1) 504 and Claggett et al (6) have assumed a value of 16,500 gals/1000 lbs. of round fish.

The values of other parameters observed from this plant are BOD₅, 5.65; COD, 9.65 and SS, 2.52, all expressed in terms of lbs/1000 lbs. of round fish. The value of BOD₅ observed is higher than cited by Nutt (4) which ranges between 1.2 to 2.8 and lower than that observed by Brodersen (1) which is 15 lbs/1000 lbs.

The value of 2.52 observed for SS is much lower than those observed by Nutt (5) which was found to range from 8.3 to 22.5. The value observed is also lower than that reported by Brodersen (1) and Claggett et al (6), which are 20 and 7 respectively.

The average oil and grease observed from this plant is 149 lbs/1000 lbs. and is much lower than 13 observed by Brodersen (1). The average values of BOD₅, COD, SS and Grease observed for NSP Lockeport offal flume water expressed in lbs/1000 lbs. of round fish are: 6.63, 9.38, 1.87 and 0.607 respectively. The corresponding observations for Swim Brothers Plant in Lockeport are: 24.42, 31.45, 6.89 and 13.095 respectively, whereas the observations for the NSP Lockeport offal flume water are comparable to those for the NSP Louisbourg operation, the observations for the Swim Brothers Plant are particularly high, compared to other observations in this study. The value of 24.42 for BOD₅ is higher than other reported values; 6.89 for SS falls within the range of values reported and the value of 13.095 for Grease compares very well with that of 13 reported by Brodersen (1).

The average meal plant wastewater characteristics are:

Flow = 0.304 million gals. BOD₅ = 923 mg/l COD = 1384 mg/l SS = 593 mg/l Oil & Grease = 399 mg/l

for NSP Louisbourg Plant. The corresponding values of BOD5, COD, SS for the NSP Lockeport Plant are 155, 271 and 54 mg/l respectively.

N.S.P. LOUISBOURG

,

TABLE 1

.

LIQUID EFFLUENT CHARACTERISTICS (mg/1)

	<u>FISH PLANT</u> 29.5.74 <u>30.5.74</u> <u>11.6.74</u> <u>12.6.74</u> 13.6.74									
· .	29.8 Daily Composite Values	Average Values	<u>30.5.74</u> Daily Composite Values	Average Values	Daily Composite Values	4 Average Values	 Daily Composite Values	4 Average Values	<u>13.6.74</u> Daily Composite Values	Average Values
рН	-	7.3	-	7.41	-	7	7.1	7.08	-	7.28
Temp.	-	7.8	-	9.5	-	14.25	9.0	12.0	-	· 13.75
BOD	136	126.75	: 107.0	114.5	144.0	120.25	207	218	156	142
COD	294.0	287.75	231.0	230.25	236.0	173.5	312	260	213*	194
SS	81.0	76.0	105	57.5	70.5	67.34	110.0	101.8	60	76.5
TS	1921.0	1828	1528.0	1447.0	1488	2054	2056	2109	1944	1897
TVS	396.0	404.0	324	321.0	360.0	448.0	528	497	300	303
VSS	-	-	-	-	-	-	-	-	·	-
Total Inor- ganic Phos. (PO ₄)	14.80	17.47	15.50	14.61	11.25	-	17.85	-	14.85	-
Organic Phos. PO ₄	3.05	2.275	2.25	2.05	-	-	005	-	.005	-
0il and Grease	38.7	-	21.6	-	23.6	-	12.8	-	14.1	-
Ammonia N	-	· -	- '	-	-	-	-			-
NO ₃ -N	-	-	-	-		-	-	-	-	0.706
NO ₂ -N	-	-	-	-	-	-	-	-	-	-

- 19 -

..../2

N.S.P. LOUISBOURG

.2.

Table 1 cont'd...

.

-

- 20 -

LIQUID EFFLUENT CHARACTERISTICS (mg/1)

FISH PLANT

		• •			 	
	<u>6.8.7</u> Daily Composite Values		<u>7.8.</u> Daily Composite Values	74 Average Values		
рН		7.0		6.67		
Temp.		21.25		21.2		
BOD .	326	324	332	348		
COD	450*	450	517	448		
SS	90	104	99	107		
TS	1530	1463	1336	1336		
TVS	380	331	428	390		
VSS	85*	85	_ 99	107		
Total Inor-						
ganic Phos. (PO ₄)	21.2	-	16.6	-		
Organic Phos.						
P0 ₄	3.95	:-	0.8	-		
Oil and Grease	90		-	■.		
Ammonia N						
NO ₃ -N	0.165	-	0.082	-		
NO ₂ -N	∥ 0.005	-				

* Value adopted from the average value.

.

4

N.S.P. LOUISBOURG

<u>Table 2</u>

.

LIQUID EFFLUENT CHARACTERISTICS (mg/1)

MEAL PLANT

	11.6.7	<u>4</u>	12.6.7	4	13.6.	<u>74</u> .	6.8.74		7.8.74	
	Daily Composite Values	Average Values	Daily Composite Values	Averag e Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average
рН	-	8.17	8.1	9.05	~	8.69	-	8.23	-	7.5
Тетр.	-	9.37	14.0	10.41	-	14.2	-	22.16	-	23.6
BOD	400**	333**	280**	297**	230*	236	1326	1550	1270	1104
COD	640	532	448	475	304	315	1800	21 30	2120	2454
SS	228	187	272	185	131	136	888	1050	660	757
TS	32967	32950	30620	29848	31381	31027	31730	33407	32650	31337
TVS	4528	4427.5	3172	3621	3378	3802	3950	5275	5210	4620
VSS	-	-	-	-	-	· <u> </u>	872	1032	632	739
Total Inor . ganic Phos. (PO ₄)	18.60	-	18.72	-	5.79	-	21.0	-	14.0	-
Organic Phos PO ₄	-	-	2.18	-	1.12	-	2.775	-	8.0	-
0il and Grease	127.4	-	111.0	-	61.9	-	736	-	340	-
Ammonia N	-	-	-		-	-	-	-	-	-
NO ₃ -N	-	-	-	-	-	-	0.151	-	0.106	-
NO2-N	-	-	-	-	-	-	0.005	-	0.006	-
										•

.

.

٠

* Assumed Value ** Derived from BOD: COD ratio of 0.6265 for the meal plant

...

.

,

N.S.P. LOUISBOURG

Table 3

,

LIQUID EFFLUENT CHARACTERISTICS (mg/1)

UNLOADING PLANT

	24.7.74		<u>6.8.74</u>	
	Daily Composite Values	Average Values	Daily Composite Values	Average Values
рН		7.6	-	7.01
Temp.	-	13.50	-	18.34
BOD	748	830.0	623	686.0
COD	1170	1596	862	1125.0
SS	244	173	168	210
TS	768	9 9 4	604	566
TVS	5 3 6	644	380	412
VSS	147.0	-	121	-
Total Inor- ganic Phos. (PO ₄)	29.8	32.36	25.5	-
Organic Phos PO ₄	2.4	3.45	3.10	-
0il and Grease	150.0	-	150	-
Ammonia N	8.7	1.5	-	-
N0 ₃ -N	0.103	0.153	0.10	-
N02-N	0.007	0.010	0.005	-

.

- 22 -

HOPKINS PLANT

Table 4

- 23 -

LIQUID EFFLUENT CHARACTERISTICS (mg/1)

•	<u> 25.7.7</u>	4	26.7.74	
	Daily Composite Values	Average Values	Daily Composite Values	Average Values
рН		7.25	6.97	
Temp.		16.75	18.12	
BOD		361	748	
COD		610	1140	
SS		201	176	
тѕ		446	640	
TVS		304	416	
VSS		199	176	
Total Inor- ganic Phos. (PO _L)		29.55	40.2	
Organic Phos. PO ₄		2.85	1.70	
Oil and grease				
Ammonia N				
NC ₃ -N		.0675	0.120	
N02-N		<0.005	0.005	

N.S.P. LOCKEPORT

LIQUID EFFLUENT CHARACTERISTICS (mg/l) FISH PLANT

Table 5

			•			•		•		
	25.6.	<u>74</u>	26.6.	<u>74</u>	<u>27.6.</u>	<u>74</u>	22.8	74	23.8.7	4
	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily	Average Values
BOD	244	297	253	274	257	259	281	288	320	-
COD	384	430	304	328	388	444.	420	410	370	-
SS	88.0	67.0	116	62.4	85.9	98.0	123	192	117	· _
TS	33,980	30,338	32,080	29,400	29,500	32,885	34,430	34,813	33,760	-
VS .	4,740	4,010	3,690	4,048	2,980	3,905	4,960	-	-	-
OIL & GREASE	70.7	53.3	9.7	-	<5	-	35	-	-	-
Total Inor- ganic P0 ₄	20.7	-	38.65	-	46.0	- ,	58.0 <	-	8.75	–
Total Organic PO ₄	4.0	.	<0.005	· _	7.15	-	<0.05	-	7.85	-
NO3-N	0.01 9	-	<0.005	- '	<0.005	-	<0.005	<0.005	<0.005	-
NO2-N	<0.005	÷	<0.005	-	<0.005	-	<0.005	<0.00	<0.005	-
NH3-N			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -						0.025	(Grab samp)

I. 24

TABLE 6 NATIONAL SEA PRODUCTS, LOCKEPORT

Liquid Effluent Characteristics (mg/l)

Skinning Outfall

(Fish Plant)

22.8.74

23.8.74

Parameter	Daily Composite Values	Average Values	Daily Composite Values	Average Values
BOD	120	100	101	-
COD	210	198	110	-
SS	49	51	66	: -
TS	20,140	34,870	34,990	-
TVS	2,030	-	-	-
Oil & Grease	10	- .	-,	-
Total Inor- ganic P04	2.44	3.21	4.95	-
Total Organic P04	5.21	1.88	3.74	-
N03-N	<0.005	<0.005	<0.005	-
NO2-N	<0.005	<0.005	<0.005	-
NH3-N	0.2 (grab sample)	-	-	-

NATIONAL SEA PRODUCTS, LOCKEPORT

Table 7

Liquid	Effluent	Characteristics	(mg/1)
Liquiu	LITIGENE		(ing/17

Meal Plant

Parameters	25.6.74	F	26.6.74		27.6.74		20.8.74		22.8.74	
	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values
									······································	
BOD	265	408	228	203	68	41.0	60	25	40	_ ·
COD	372	514	472	378	324	230	· 198	143	. 86	-
SS	45	89.4	88	119.0	14.6	18.4	26	28	14	-
TS	31,190	30,923	29,940	27,395	33,830	32,905	28,510	32,095	34,930	-,
TVS	3,470	3,103	2,420	2,350	3,810	3,650	2,890		4,260	-
) & Grease	6	-	56	16.2	<5	-	8.0		· 14	-
Tot. in. P04	22.62	-	21.0	-	1.34	2 7 - 2	24.25	-	0.025	-
ot. Org. P04	<0.005	-	6.30	- '	2.76	-	<0.05	-	0.575	-
N03-N	0.013	-	<0.005	-	0.064	-	<0.005	-	0.010	-
N02-N	<0.005	-	<0.005	-	<0.005	-	<0.005	-	<0.001	-
рH	-	8.2	· _	8.4	-	8.38	-	8.27	8.2	_
ſemp. ^O C	-	14 ⁰	_	15.25 ⁰	-	13.75 ⁰		18 ⁰	16 ⁰	-

- 26 -

LIQUID EFFLUENT CHARACTERISTICS (mg/1)

Table 8

٠.

		SWIM	BROTHERS	LOCKEPORT
5		••••••	prosineno,	LOOKEI OKI

Parameter	25.6.74		26.6.74		20.8.74	
	Daily Composite Values	Average Values	Daily Composite Values	Average Values	Daily Composite Values	Average Values
BOD	134	126.0	118	125.5	1,230**	-
COD	228	209	232	220	1,590	1,530
SS	21.8	22.0	17.3	16.4	199	362.5
TS	32,640	30,603	32,360	29,795	30,990	36,145
VS	4,160	2,883	2,930	2,925	4,360	-
0il & Grease	169.4	-	<5	-	490	-
Tot. In. PO4	8.15	-	7.82	-	96	-
Tot. Org. PO4	22.3	· _	2.53	-	<0.05	-
N03'-N	0.032	-	0.092	-	<0.005	<u></u> .
NO ₂ -N	0.005	-	0.005	-	<0.005	
рН	-	8.2	-*	-*	-	7.6
Temp. (^O C)	9 ⁰	7.5 ⁰	9 ⁰	9 ⁰	· -	14 ⁰

*pH meter out of order.

**Value obtained by BOD:COD ratio for sample no. 18686.

.

•

- 28 -

TABLE 9

ESTIMATION OF

MEAL PLANT FLOWS (N.S.P. Louisbourg)

Date	Depth of Flow (inches)	Hours of Sampling	Flow for the period of sampling (Gal.)
11/06/74	3''	3.5	94,049-
12/06/74	3''	7.17	192,667
13/06/74	3.25"	7.50	226,062
06/08/74	2.5"	6.25	51 ,97 0
07/08/74	2.75"	6.0	55,736

TABLE 10

£

N.S.P. LOUISBOURG

ESTIMATION OF FISH PLANT FLOWS

DATE	WATER CONSUMPT UNLOADING FACI		WATER CONSUMPTION BY FISH PLANT			
	Period of Operation (hrs.)	Total Flow @10,000 gal/hr. (gal)	Total Fresh Water Consumption p er meter readings	Water Consumption by Fish Plant		
		2.	3.	4.=3-2		
29.5.74	not operating	-	384,800	384,800		
30.5.74	not operating	-	322,700	322,700		
11.6.74	8.5	85,000	430,500	345,500		
12.6.74	not o perating	-	365,900	365,900		
13.6.74	5.0	50,000	378,000	338,000		
24.7.74	6.5	65,000	358,100	293,100		
25.7.74	not operating	-	211,000 (for 6.5 hrs.)	211,000		
6.8.74	5.5	55,000	398,000	343,100		
7.8.74	not operating	·	175,400	175,400		

TABLE 11

N.S.P. LOUISBOURG

COMPARISON OF FLOW ESTIMATES FOR FISH PLANT

DATE	DEPTH OF FLOW IN THE FISH PLANT FLUME	HOURS OF OPERATION	FLOW ESTIMATE BY HAZEN-WILLIAM FORMULA	FLOW ESTIMATE BY METER READING	PERCENT DIFFERENCE
	(inches)	(hours)	(gals)	(gals)	(%)
11.6.74	411	9	350,858	345,500	1.52
12.6.74	4.25"	· 9	378,801	365,900	3.40
13.6.74	411	9	350,858	338,000	3.6
24.7.74	3.75"	6.5	232,977	293,100	25.8
25.7.74	3.25"	6.5	272,869	211,000	7.06
6.8.74	3.25"	9	272,869	-	-
7.8.74	3.75''	9	322,584	-	-

- 30 -

- 31 -

TABLE 12

ESTIMATION OF WATER CONSUMPTION

BY HOPKIN'S PLANT, LOUSIBOURG

PERIOD: June and July, 1974

TOTAL WATER CONSUMPTION: (Estimated)* 480,000 gals.

NO. OF WORKING DAYS = June = 24; July = 27; Total = 51.

WATER CONSUMPTION PER DAY = 480,000/51 gal. per day

= 9,411.76

Assume = 9,500 gpd.

* Obtained from the Town of Louisbourg

TABLE 13

NATIONAL SEA PRODUCTS, LOCKEPORT FISH PLANT

WATER CONSUMPTION

DATE

25/6/74

26/6/74

27/6/74

WATER CONSUMPTION (USGAL) 206,000 191,000 158,000

22/8/74135,00023/8/74145,000

TABLE 14

SWIM BROTHERS, LOCKEPORT

WATER CONSUMPTION

DATE

WATER CONSUMPTION

7:30 am to 5 pm (gals.)

25.6.74	188,000
26.6.74	188,000
20.8.74	169,000

Flow	Roundfish		BOD			COD			SS			TS	
(mgd)	Landed (1bs x 1000/day)	Conc. mg/l	lbs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	1bs/1000 1bs.	Conc. mg/l	lbs/day	1bs/1000 1bs.	Conc. mg/1	lbs/day	1bs/1000 1bs.
0.3848	78.515	127.0	407.0	5.18	288	922	11.74	76.0	243.3	3.09	1828	5852	75.0
0.3227	82.425	115.0	308.76	3.74	231	620	7.52	60.0	161.09	1.95	1450	3893	47.23
0.3455	91.88	121.0	347.82	3.78	236	678	7.38	68.0	196.0	2.13	2054	5904	64.25
0.3659	106.685	218	663.65	6.22	260	792	7.42	102	310.5	2.91	2109	6420	60.0
0.338	96.54	142	399.32	4.13	213	599	6.20	76.5	215.13	2.23	1897	5335	55.26
0.3431	98.09	324	925.0	9.40	450	1284	13.09	104	297.0	3.03	1530	4368	44.53
0.1754	68.84	335	488.87	. 7.10	450	657	9.54	107	156.0	2.26	1336	1950	28.32
	(mgd) 0.3848 0.3227 0.3455 0.3659 0.338 0.3431	Landed (1bs x 1000/day) 0.3848 78.515 0.3227 82.425 0.3455 91.88 0.3659 106.685 0.338 96.54 0.3431 98.09	Landed (1bs x 1000/day) Conc. mg/1 0.3848 78.515 127.0 0.3227 82.425 115.0 0.3455 91.88 121.0 0.3659 106.685 218 0.338 96.54 142 0.3431 98.09 324	Landed (1bs x 1000/day) Conc. mg/l 1bs/day 0.3848 78.515 127.0 407.0 0.3227 82.425 115.0 308.76 0.3455 91.88 121.0 347.82 0.3659 106.685 218 663.65 0.338 96.54 142 399.32 0.3431 98.09 324 925.0	Landed (1bs x 1000/day) Conc. mg/1 1bs/day 1bs/1000 1bs.* 0.3848 78.515 127.0 407.0 5.18 0.3227 82.425 115.0 308.76 3.74 0.3455 91.88 121.0 347.82 3.78 0.3659 106.685 218 663.65 6.22 0.338 96.54 142 399.32 4.13 0.3431 98.09 324 925.0 9.40	Landed (1bs x 1000/day) Conc. mg/1 1bs/day 1bs/1000 1bs.* Conc. mg/1 0.3848 78.515 127.0 407.0 5.18 288 0.3227 82.425 115.0 308.76 3.74 231 0.3455 91.88 121.0 347.82 3.78 236 0.3659 106.685 218 663.65 6.22 260 0.338 96.54 142 399.32 4.13 213 0.3431 98.09 324 925.0 9.40 450	Landed (1bs x 1000/day) Conc. mg/1 1bs/day 1bs/1000 Ibs.* Conc. mg/1 1bs/day 0.3848 78.515 127.0 407.0 5.18 288 922 0.3227 82.425 115.0 308.76 3.74 231 620 0.3455 91.88 121.0 347.82 3.78 236 678 0.3659 106.685 218 663.65 6.22 260 792 0.338 96.54 142 399.32 4.13 213 599 0.3431 98.09 324 925.0 9.40 450 1284	Landed (1bs x 1000/day)Landed Conc. mg/11bs/day1bs/1000 1bs.*Conc. mg/11bs/day1bs/1000 1bs.0.384878.515127.0407.0 5.18 288 922 11.74 0.322782.425115.0 308.76 3.74 231 620 7.52 0.345591.88121.0 347.82 3.78 236 678 7.38 0.3659106.685218 663.65 6.22 260 792 7.42 0.33896.54142 399.32 4.13 213 599 6.20 0.343198.09 324 925.0 9.40 450 1284 13.09	Landed (1bs x 1000/day)Landed Conc. mg/1Ibs/dayIbs/loo Ibs/dayConc. mg/1Ibs/loo Ibs.*Conc. mg/1Ibs/dayIbs/loo Ibs.1000 Ibs.Conc. mg/10.384878.515127.0407.05.1828892211.7476.00.322782.425115.0308.76 3.74 2316207.5260.00.345591.88121.0347.82 3.78 2366787.3868.00.3659106.685218663.656.222607927.421020.33896.54142399.324.132135996.2076.50.343198.09324925.09.40450128413.09104	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Landed (hgd)Landed (hbs x 1000/day)Conc.Ibs/dayIbs/1000 hbs.*Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/1000 hbs.Conc.Ibs/dayIbs/dayIbs/1000 hbs.Conc.Ibs/day<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

NATIONAL SEA PRODUCTS LOUISBOURG PLANT Estimated Daily Pollutional Load

(Fish Plant)

Average 0.325

197 505 5.65 304 793 9.65 83.5 229.04 2.52 1722.5 4185 51.66 NO_3-N and NO_2-N were generally found to be below 0.005 mg/l, except on 6.8.74 and 7.8.74. The values for these dates were observed to be 0.145 mg/l and 0.082 mg/l respectively for NO_3-N . This gives total quantity discharged in lbs. per day = 0.41 and 0.119 respectively.

NO₂-N concentration for 6.8.74 = 0.005; which is = 0.014 lbs/day.

*1bs/1000 lbs. of roundfish landed.

ı ئ

Table 15

(Cont'd..)

.

NATIONAL SEA PRODUCTS LOUISBOURG PLANT

Estimated Daily Pollutional Load (Fish Plant)

Date		TVS		ΤΟΤΑΙ	INOR. PHOS	. (P04)	G	REASE	
· .	Conc. mg/1	lbs/day	1bs/1000 '1bs.	Conc. mg/l	lbs/day	1bs/1000 1bs.	Conc. mg/l	lbs/day	1 b s/1000 1bs.
29.5.74	404.0	1293	16.46	17.5	56.02	0.71	38.7	124	1.58
30.5.74	321.0	∂862	10.45	14.61		0,48	21.6	58	0.70
11.6.74	450.0	1294	14.08	11.25	32.26	0.35	23.6	68	0.74
12.6.74	500.00	1522	14.27	17.85		0.50	12.8	39	0.36
13.6.74	300.0	. 844	8.74	14.85	41.76	0.43	14.1	40.0	0.41
6.8.74	331	945	9.63	21.2	60.51	0.61	90	257.0	2.62
7.8.74	390	569	8.26	16.6	24.22	0.35			
Average	400	1183	12.36	16.23	42.37	0.53	51.4	148	1.49

+

- 34 -

NATIONAL SEA PRODUCTS LOUISBOURG PLANT

Table 16

1 Յ 1

.

.

,

Estimated Daily Pollutional Load . . (Meal Plant) ١

Date	Flow	Production	Hours of	Production		BOD	1	1	COD		ŀ	SS	
	mgd.	lbs/day <u>*</u>	Sampling	for the Sampling Period (Ibs)	Conc. mg/l	lbs/day	1bs/1000 1bs.**	Conc. mg/l	lbs/day	1bs/1000 1bs.**	Conc. mg/1	lbs/day	1bs/1000 1bs.**
1.6.74	0.094	11,600	3.5	5075	333	260.4	0.051	532	416	0.081	187	146.0	12.6
12.6.74	0.1926	2,800	7.17	2510	297	476.0	0.19	450	721.	0.287	185	296.0	105.7
13.6.74	0.226	9,700	7.50	9094	236	444	0.05	315	592	0.065	136	256	26.4
6.8.74	0.0519	16,200	6.25	12656	1550	670	0.052	2130	920	0.072	1050	453.0	27.9
7.8.74	0.557	15,600	6.0	11700	1104	.5116	0.43	2454	11372	0.97	757	3508	224.8
Average	0.304	·	<u> </u>	· · · ·	923.5	2688.2	0.24	1384.5	5894	0.52	593	1827	118.7

.

*lbs. produced during the day shift. **lbs. per 1000 lbs. of fish meal produced.

NATIONAL SEA PRODUCTS LOUISBOURG PLANT (Cont'd....)

3

ъ

	Estimated Daily Pollutional Load	
	(Meal Plant)	
<u> </u>		

Date		TS			TVS			VSS		Total I	no. P04	· . ·	Total	0rg. P04	
	Conc. mg/l	lbs/day	1bs/1000 1bs.**	Conc. mg/l	lbs/day	1bs/1000 1bs.**	Conc. mg/l	lbs/day	1bs/1000 1bs.**	Çonc. mg/1	lbs/day	1bs/1000 1bs.**	Conc. mg/1	lbs/day	1bs/1000 1bs.**
11.6.74	32967	25782	2223	4428	3463	298	-	1	L.	18.60	14.55	1.25	-	-	-
12.6.74	29848	47829	17081	3621	5802	2072		-	-	18.72	30.0	10.71	2.18	1.70	0.15
13.6.74	31027	58340	6014	3802	7150	737	-	-	-	5.79	11.0	1.13	1.12	1.79	0.64
6.8.74	33407	14425	890	5275	2238	138	1032	445	27.5	21.0	9.07	0.56	2.78	1.20	0.07
7.8.74	31337	145223	9309	4620	21410	1372	739	3425	219.5	ĩ4.0	65.0	4.17	8.0	37.0	2.38

٠

ട്ട

NATIONAL SEA PRODUCTS LOUISBOURGEPLANT

(Cont'd...)

Estimated Daily Pollutional Load (Meal Plant)

Date	011 &	Grease			.N03-N	• • • • • • • • • • • • • • • • • • •		NO2-N	
	Conc. mg/l	lbs/day	lbs/1000 lbs.**	Conc. mg/1	lbs/day	lbs/1000 lbs.**	Conc. mg/l	lbs/day	lbs/1000 lbs.**
11.6.74	127.4	99.64	8.59	-	-	-	-	-	_
12.6.74	111.0	177.87	63.52	-		-	-	-	-
13.6.74	61.9	116.39	12.0	-		-	-	-	-
6.8.74	736	317.81	19.62	0.151	0.07	0.004	0.005	0.041	0.002
7.8.74	340	1575.64	101.00	0.106	0.49	0.031	0.006	0.027	0.002
Average	398.95	837.62	54.795	0.13	0.28	0.018	0.006	0.034	0.002

NATIONAL SEA PRODUCTS LOUISBOURG

Table 17

.

,

Fish Unloading Facilities

Estimation of Total Pollutional Load

· ·

¢

.

Date	Flow	В	OD	Ċ	OD ·	_ S	S	ΤS	· .	т۷	S Š	. VS	S j	Total	lno. PO4
	mgd.	Conc. mg/1	lbs/day	Conc. mg/1	lbs/day	Conc. mg/l	lbs/day	Conc. mg/l	lbs/day	Conc. mg/1	lbs/day	Conc. mg/l	lbs/day	Conc. mg/l	lbs/day
24.7.74	0.065	.830	449	1170	633	173	. 94	768	415	536	290	147.0	79	29.8	16
6.8.74	0.055	-686	314	1125	515	210	96	. 604	276	412	189	121.0	55	25.5	12
Average	0.060	758	381	1147.5	574.0	191.5	95	686	345.5	474	239.5	134.0	67	27.65	14

Sampling for Ammonia-N was done only on 24.7.74. The daily composite value and the daily average value as calculated from the 2-hourly composites differ widely -- 8.7 and 1.5 mg/l respectively. Value of 1.5 mg/l is adopted bacause this value has been obtained by analyzing a number of samples. This (1.5 mg/l) will give the daily load of lbs/day.

NATIONAL SEA PRODUCTS LOUISBOURG

(Cont'd...)

Fish Unloading Facilities

Estimation of Total Pollutional Load

Date	Org. P	04	3 110	Grease	NO:	3-N _	NO	2-N
	Conc. mg/l	lbs/day	Conc. mg/1	lbs/day	Conc. mg/l	lbs/day	Conc. mg/l	lbs/day
24.7.74	3.45	2.0	150	81	0.103	0.05	.007	0.004
6.8.74	3.10	1.5	150	81	0.10	0.04	.005	0.002
Average		` <u>````````````````````````````````````</u>	150	81	0.102	0.045	0.006	0.003

י <u>39</u>י

HOPKINS PLANT, LOUISBOURG

Estimated Daily Pollutional Leed Flow has been assumed = 9,500 gal./day (U.S.)

.

Date	TOTAL	· · ·	BOD	·		COD			SS			TS		
	Packed Weight of Fish Processed (1bs.)	Conc. mg/1	lbs/day	1bs/1000 1bs.*	Conc. mg/l	lbs/day	lbs/1000 lbs.*	Conc. mg/l	lbs/day	lbs/1000 lbs.*	Conc. mg/1	ibs/day	1bs/1000 1bs.*	
25.7.74	2,480	361	29	12	610	48	19	. 201 .	16	6.4	446	35	14.2	
26.7.74	960	748	59	61	1140	90	94	176	14	14.5	640	51	53	
Average		554.5	44.0	36.5	875.0	69	56.5	188.5	15	10.45	543.0	. 43	33.6	

*1bs/1000 lbs. of finished product.

 $\frac{\text{Note:}}{(2)} \quad \text{In this case, the records for round fish landed weight were not available.}$

,

HOPKINS PLANT, LOUISBOURG

.

•

(Cont'd...)

1.8

.

Estimated Daily Pollutional Load

Flow has been assumed = 9,500 gal./day (U.S.)

Date		TVS			VSS		Total	inor. PO4		Organi	c P04			^{NO} 3-N	
<u></u>	Conc. mg/l	lbs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	lbs/1000 lbs.*	Conc. mg/1	lbs/day	1bs/1000 1bs.*	Conc. mg/l	lbs/day	1bs/1000 1bs.*	Conc. mg/l	lbs/day	lbs/1000 lbs.*
25.7.74	304	24	9.7	199	16	6.34	29.55	2.33	0.94	2.85	0.225	0.09	0.0675	0.0053	0.0021
26.7.74	416	33	34.25	176	14	14.5	40.2	3.17	3.3	1.70	0.134	0.139	0.12	0.0095	0.0098

.

- 41 -

NATIONAL SEA PRODUCTS, LOCKEPORT FISH PLANT

Date	Flow	Production	1	BOD	· . ·		COD			SS		· .	VS .	
	(U.S. Gal/ Day)	(lbs/day)	Conc. mg/l/	lbs/day	1bs/1000 1bs.*	Conc. mg/1	ìbs/day	1bs/1000 1bs.*	Conc. mg/1	1bs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	1bs/1000 1bs.*
25.6.74	206,000	91,264	297	509	5.58	430	737	8.07	67.0	115	1.26	4010	6873	75.3
26 .6. 74	191,000	71.815	274	435	6.06	328	521	7.25	62.4	99	1.37	4048	6433	89.5
27.6.74	158,000	44,327	259	340	7.68	388	510	11.5	98.0	- 129	2.91	3905	5133	156
22.8.74	135,000	56,995	288	323	5.67	410	.460	8.07	123.0	138	2.42	4960	5571	97.7
23.8.74	145,000	56,995	320	386	6.77	370	446	7.83	117.0	141	2.47	-	· -	-
Average	170,500	· · · ·	297	416	6.63	379	591.5	9.38	92.7	118.5	1.87	4432.5	6003.0	115.7

Estimation of Pollutional Load

. ...

... *1b/1000 lb. of round fish

NOTES:

.

- 1. NO₃-N was found to be <0.005 mg/l in all cases except on 25.6.74 when the value was 0.019 mg/l. In all the cases the lbs/day of this parameter discharged can safely be assumed to be negligible.
- 2. NO2-N was found to be <0.005 mg/1 in all cases. The lbs/day discharged can be safely assumed to be negligible.
- 3. NH3-N was only observed on 23.8.74 when the value was found to be 0.025 mg/l. The lbs/day discharged in this case can also be assumed to be negligible.

Table 19

NATIONAL SEA PRODUCTS, LOCKEPORT FISH PLANT

Estimation of Pollutional Load

Date	3 110	Grease		Total	Inor. PO4		Total	Org. P0 ₄	
	Conc. mg/1	lbs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	lbs/1000 lbs.*	Conc. mg/l	lbs/day	1bs/1000 1bs.*
25.6.74	53.3	91.3	1.0	20.7	35.48	0.388	4.0	6.85	0.075
26.6.74	9.7	15.41	0.214	38.65	61.42	0.855	-	-	· _
27.6.74	-	-	-	46.0	60.47	1.364	7.15	9.4	0.212
22.8.74	35	39.31	0.69	58.0	65.14	1.14	-	-	-
23.8.74	-	-	-	8.75	10.56	0.185	7.85	9.47	0.166

33.38

Average

31.5

53.36

0.607

37.85 0.78

0.144

8.16

5.93

- 43 -

- 44 - Table 20

the second second

NATIONAL SEA PRODUCTS, LOCKEPORT

Estimation of Total Pollution Load (lbs/day) Skinning Outfall

Parameter	22.8	.74	23.8.	74
	Conc. mg/l	lbs/day	Conc. mg/l	lbs/day
BOD	100	4.16	101	4.18
COD	198	8.89	110	5.0
SS	51	2.3	66	2.96
TS	34870	1566	34990	1572
TVS	2030	91.2	-	-
Grease	10	0.5	-	•
Total Inorganic P04	3.21	0.15	4.95	0.23
Total Organic PO4	1.88	0.084	3.74	0.168
NH3-N	0.2	0.009	-	-

Note: (1) Flow has been estimated = 0.0054 mg.

(2) Values of NO₃-N and NO₂-N are very small (<0.005) and the pollutional load for these parameters is negligible.

Table 21

. **4**5 -

t

.

١

SWIM BROTHERS; LOCKEPORT

-

Estimation of Total Pollutional Load

Date	Flow	Production	l	BOD			COD			SS			TS	
	mgd.	lbs. round flsh	Conc. mg/l	lbs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	1bs/1000 1bs.*	Conc. mg/l	lbs/day	1bs/1000 1bs*	Conc. mg/l	lbs/day	1bs/1000 1bs.*
25.6.74	0.188	39,015	126	197	5.05	209	327	8.4	22	34.4	0.88	30603	47,868	
26.6.74	0.188	13,494	125.5	196.3	14.54	220	344	25.5	16.5	25.8	1.91	29795	46,604	3454
20.8.74	0.169	39,504	1230	1729	43.78	1530	2151	54.5	362.5	509.7	12.9	30990	43,574	1103

,

* lb/1000 lb. of round fish. ** values negligible.

.

.

SWIM BROTHERS, LOCKEPORT

Date		VS		3 I i O	Grease		Total	Inor. PO4	
	Conc. mg/l	lbs/day	lbs/1000 lbs.*	Conc. mg/l	lbs/day	lbs/1000 lbs.*	Conc. mg/l	lbs/day	lbs/1000 lbs.*
25.6.74	2883	4510	116	169.4	265	6.79	8.15	12.74	0.33
26.6.74	2930	4583	340	-		-	7.82	12.23	0.9
20.8.74	4360	6130	1-55	490	766	19.4	96.0	135	3.41
Average	3621.5	5320	228	329.7	515.5	13.095	51.9	73.62	1.87

Estimation of Total Pollutional Load

SWIM BROTHERS, LOCKEPORT

(Cont!d...)

.

Estimation	of	Total	Pollutional	Load
------------	----	-------	-------------	------

Date	Total	Org. PO4			N03-N			NO2-N	
_	Conc. mg/l	1bs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	1bs/1000 1bs.*	Conc. mg/1	lbs/day	lbs/1000 lbs.*
25.6.74	22.3	34.8	0.89	0.032	0.05	0.0012	0.005	**	**
26.6.74	2.53	3.95	0.29	0.092	0.143	0.01	0.005	-	·
20.8.74	-	-		-		-	-	-	-
Average	12.42	19.38	0.59	0.062	0.097	0.006	0.005	-	-

-

REFERENCES

- Brodersen, K. T., "A Study of the Waste Characteristics of Fish Processing Plants in the Maritime Region", EPS Technology Development Report No. EPS-4-WP-72-1, May, 1972.
- EPS Report, "Brief Presented to the British Columbia Pollution Control Board Inquiry in the Food Processing, Agriculturally Oriented and other Miscellaneous Industries", November, 1972.
- Riddle, M. J. and Shikaze, K., "Characterization and Treatment of Fish Processing Plant Effluents in Canada", EPS Report No. EPS 3-WP-74-1, June, 1973.

"Standard Methods for the Examination of Water and Wastewater", prepared and published jointly by American Public Health Association, American Water Works Association and Water Pollution Control Federation, 13th edition.

- Nutt, S. "Maritime Fish Processing Plant Effluent Study", EPS Economic and Technical Review Report No. EPS-3WP-74-2, Water Pollution Control Directorate, January, 1974.
- Claggett, F. G. and Wong, J., "Treatment of Fish Processing Plant Wastewater", Bulletin of the Fisheries Research Board of Canada, No. 189, Ottawa, 1974.

APPENDIX

RAW DATA

ł

Environment Canada Environmental Protection Environnement Canada Protection de l'Environnement 문소

3

INDUS	TRIAL WASTE A	NALYSIS		ANA	LYSE DES		RAV DAT	TA IES INDUST	RIELLES				COMPANY Socéité LOCATION Endroit	Natle:	<u>nal Sea Produ</u> bourg, N. S.	
DATE COLLECTED Date du prélèvement	SAMPLING LOCATION Lieu du prélèvemen:	SAMPLING TIME Heure du prélèvement	30D mg/1	COD mg/l	\$5 mg/1	TS mg/1	TVS mg/1	T-inor ganic PO4 mg/l	NO3-N ppm	NO2-N ppm	0i1 & Grease ppm	Organi Total PO4 mg/l		LOUIS	BIOAS BIOAS Dosage bi Survival % TD - 50 HR.	SSAY
29/5/74	Fish Plant Sewer#1	Comp. 0800-1000	18 6- >147	362	100	1840	440		0.010	<0.005		2.95				
	JI	Comp. 1000-1200	91- 106 63	319	_83	2128	440	21.35	<0.005	<0.005	*	2.65				
	н	Comp. 1345-1500	200 139 ⁵ 93	238	_64	1872	388	17.50	<0.005	<0.005	*	1.65				.
		Comp. 1500-1700	91- 97 49	232	57	1844	348	14.40	<0.005	<0,005	32.2	1.85				
H		Daily Comp. Comp.	13671.5 13671.5	294	81	1828	396	14.80	<0.005	<0.005	38.7	3.05				
30/5/74		0815-1000 Comp.	113-69 128 160-60 136	250	44	964	220	14.00	<0.005	<0.005	106.7	2.25				<u></u>
		1000-1200 Comp.	136 ⁶⁰ 130-69 106 69	197	55	1684	352		<0.005			1.35				
	- 11 	1300-1500 Comp.	-106 -05 -103 -64 -178 -64	243 231	64 67 /	1620	356 356		<0.005			2.05			· · · · · · · · · · · · · · · · · · ·	
		1500-1700 Daily Comp.	-107 64	231	105	1 <u>520</u> 1528	<u>350</u> 324		<0.005			2.25			<u> </u>	
	<u> </u>					1220		12.20		-01002						
			*Unable	to dest	roy emu	lsions.				·				·		
		·				 				·		ļ				
				- · ·											ļ	
				. <u></u> .						 						
					<u> </u>						<u> </u>					
	· · · · · · · · · · · · · · · · · · ·						·	- 							<u>-</u>	
								1				1				

EP6-1103(Rev.2/74)

1 50 1

Environmental Protection Protection de l'Environnement COMPANY RAW DATA Socéité National Sea Products INDUSTRIAL WASTE ANALYSIS ANALYSE DES EAUX RÉSIDUAIRES INDUSTRIELLES LOCATION Endroit Louisboura SAMPLING DATE SAMPLING BIOASSAY T-inorg Organi 011 TIME NH3 BOD COD COLLECTED LOCATION SS TS ٧S NO3-N Dosage biologique NO2-N P04 T-Phos 3 Date du Lieu du Heure du ppm mq/1mq/1mg/l mg/1mg/1 ppm Survival ppm ррт % de survie ppm Grease prélèvement prélèvement prélèvement % TD - 50 HR. as POI TD - 50 H. naa 13-6-74 0800-1000 Sewer #1 A 0.73 ... 11 11 В 0.76 н 11 11 C 0.63 11 11 Sewer #2 A 15.6 11 11 i r 13.6 В 11 ... C ... 12.5 >73 110 110 168 62.5 1600 368 <5.0 11/6/74 Sewer #1 0800-1000 >75 103 11 11 1000-1200 106 160 464 8.3 79 2252 >74 123 11 н 122 1330-1500 176 2500 19.2 524 <5.0 >72 146 153 н н 1500-1700 220 60.5 1864 436 15.3 >74 163 н 11 144 236 Daily Comp. 1488 70.5 36Ò 23.6 <0.005 <0.005 | 11.25 | <0.005 107 54 114 11 264 Sewer #2 1330-1500 74 32980 4420 <5.0 0 н 1500-1700 >230 800 300 32920 4435 89.4 11 0 640 1 day comp. >230 228 32967 4528 127.4 <0.005 <0.005 | 18.60 | <0.005 1>148217 >72 12/6/74 Sewer #1 244 0820-1000 94 2396 592 41:8 >73 213 11 ... 1000-1200 >15 300 118 1844 392 30.0 >140 11 2088 ... 223 97.5 508 1330-1500 236 50.2 _ >140 528 k0.005 k0.005 | 17.85 |<0.005 2056 12.8 110 н ... Daily Comp 207 312

EP6-1103(Rev.2/74)

Environment Canada

Environnement Canada

- 5] -

Environment Canada Environmement Canada Environmental Protection Protection de l'Environmement

		Jon Protection C					RAW DAT	Ά					COMPAN			
													Socérté		onal Sea Proc	ucts
INDUS	TRIAL WASTE AN	NALYSIS		ANA	LYSE DES	EAUX RE	SIDUAIR	ES INDUST	TRIELLES				LOCATIO Endroit		sbourg	
DATE COLLECTED	SAMPLING LOCATION	SAMPLING TIME	BOD	COD	SS	TS	vs	011 8	NO3N	NO2-N	T-inor P04	g. T-phos			BIOAS Dosege bi	ologique
Date du prélèvement	Lieu du prélèvement	Heure du prélèvement	mg/1	mg/1	mg/l	mg/1	mg/1	Grease	ppm	ppm	ppm	ppm.			Survival % TD - 50 HR.	% at survie TD - 50 H.
2/6/74	Sewer #2	0820-1000	58 62 63	80	13.7	24788	2637	5.7								
<u></u>	,,	1000-1200	>140 210	212	_75	31928	4189	10.9			ļ					
		1330-1500	>230	728	352	31564	4084	176.1								
n	н	1500- 1700	>230	880	299	31115	3576	112.9								
	н	Daily Comp.	>230	448	272	30620	3172	111.0	<0.005	<0.005	18.72	2.18				
13/6/74	Sewer #1	0800-1000	>73 134 153	246	105	2172	360	37.7				ļ				
11		1000-1200	>73 140 140	160	77	1976	252	<5.0	 							
11	11	1330-1500	170 >140	228	68	1940	360	16.6								
		1500-1700	>74 123 13	140	56	1500	240	50.7	ļ		 					
	11	Daily Comp.	156 >140	128	60	1944	300	14.1	<0.005	<0.005	14.85	<0.005				
#3 	Sewer #2	0800-1000	305 ⇒230	448	224	30664	3484	97.4						ļ		
		1000-1200	193 >140	292	92	31144	3232	52.2								
<u>- 11</u>	11	1330-1500	223 >140	232	125	31404	3540	89.7				ļ				
ě1.		1500-1700	223	288	102	30895	3256	35.8			 	ļ		·		
	<u>u</u>	Daily Comp.	207.0 >230	304	131	31381	3802	61.9	0.011	0.005	5.79	1.12				
11	After Evaporators	08:40 Grab Sample	>2800	4600	2400	31510	6520	108.7	<u> </u>				L			
	Offal Hoppe Sewer	r 08:45 Grab Sample	>21515	194400	83300	88200	80340	Lost i lab ac	n cident.	· · ·		ļ		<u> </u>		· ···
					<u> .</u>			<u> </u>	ļ	. 		ļ 		ļ	ļ	
					ł			1								

.

.

EP6-1103(Rov.2/74)

...

.

τ

J

- 52 -

Environment Canada Environmement Canada Protection de l'Environmement

.

		tion Protection	De l'Environne.	ine i i									COMPANY			
	TOLAL WACTE A						RAW DAT						Socéné L'OCATION		onal Sea Prod	ucts
1003	STRIAL WASTE A	NALISIS		ANA	LYSE DES	EAUX RI	SIDUAIR	ES INDUST	RIELLES				Endroit	Loui	sbourg	
DATE COLLECTED Date du	SAMPLING LOCATION Lieu du	SAMPLING TIME Heure du	BOD mg/1	COD mg/1	NO3-N ppm	NO2-N	P04	.Organi T-Phos as PO4	S S	TS	TVS	VSS	110 3		BIOAS Dosage bio Survival	
prélèvement	prélevement	prélèvement	1		hh	ppm -		as PO4	mg/1	mg/1	mg/1	mg/l	Grease		% TD - 50 HR.	TD - 50 H.
24/7/74	Vacuum Unloaders	0830-1030	1170 1268 12	⁴ 2320	0.185	0.015	· · ·		300	1530	1000_					
11		1030-1200	670 668 67	1310	0.124	0.006	20.3	7.45	_210	756	484					
11		1315-1430	370 588 55	1160	0.150	0.010	20.8	0.90	222	696	452	-				
n	H	Dally Comp.	670 748 218	1170	0.103	0.007	29.8	2,40	173	768	536	147	150		ļ	<u>.</u>
	H. Hopkins Main Eff.A		348 354 33	649	0.060	<0.005	31.1	1.60	300	388	268	296				
	и в		388 374 748 754 754	571	0.075	<0.005	28	4,10	102	504	340	102				<u></u>
26/7/74	н	0830-1200	754>71	1140	0.120	0.005	40.2	1.70	176	640	416	176				
							·								1	
						_										
	•															
P6-1103(Rev.2/74	<u> </u>	•			<u> </u>		•	<u>.</u>			·		-		*	

EP6-1103(Rev.2/74)

*

- 53

T

.

-

Enviro	nmental Protec	tion Protectic	on de l'Er	ivironnen	nent		•							COMPAN			}
								PAW DATA	1					Socéité	Natio	nal Sea Produc	ts
INDUS	TRIAL WASTE A	NALYSIS			ANAI	LYSE DES	EAUX RE	SIDUAIRE	S INDUST	RIELLES				LOCATIO Endroit	Louis	ho	1
DATE COLLECTED				NH3										enaron		BiOASS Dosage biok	AY Dgique
Date du prélèvement	Lieu du prélèvement	Heure du prélèvement		ppm												Survival % TD - 50 HR.	% de survie TD - 50 H.
24/7/74	Vacuum Unloaders	Daily Comp.	۱	8.7												σ	
			3	1.5	_											·	
															·		
							-									ļ	
											· ·					 	
				<u></u>													
															ļ	 	
													·	·	 		
																ļ	
													· •		 	·	
			:												ļ	· · · · · · · · · · · · · · · · · · ·	
	<u> </u>																
							•							 			· .
							. <u> </u>									ļ	
						 		 				ļ					
			<u> </u>									 					<u>.</u>
	l		L	l												<u> </u>	

.

EP6-1103(Rev.2/74)

Environment Canada

2.

Environnement Canada

- 54 .

÷

Environment Canada Environmement Canada Environmental Protection Protection de l'Environnement

14

.

		tion Protection d					RAW DA						COMPANY Socéité	Nati	onal Sea Pro	lucts
INDUS	TRIAL WASTE A	NALYSIS		ANA	LYSE DES	EAUX RI	ESIDUAIR	IES INDUS	TRIELLES				LOCATION Endroit	Loui	sbourg	
DATE COLLECTED Date du	SAMPLING LOCATION Lieu du	SAMPLING TIME Heure du	BOD mg/1	COD m g/1	SS mg/1	VSS mg/1	TS mg/1	TVS	011 &	. NO3-N		T-Phos	Organic T.		BIOAS Dosage bi	ologique
prélèvernent	prilèvement	prélèvement		in y i	iiig7 i	ing/1	i mg/ i	mg/1	Grease ppm	ppm	ppm	ppm	PO4 Ppm		Survival % TD - 50 HR.	% <i>de survie</i> TD - 50 H.
6/8/74	Vacuum Unloader	0830-1030	804	1410	265		640	448								
		1030-1200	808 824 >75	¹⁰ 1290	245		680	440								
11	Sewer #1	0815-1000	144 183 146	500	108		1280	304								
	31	1000-1200	384 413 >38	³⁰ 404	_137_		1328	348								
	Sewer #2	0815-1000	>1500	1310	1056		32080	3940		, 		 	-			
		1030-1200	>1500	2270	1000	965	33800	5440								
11	Vacuum Unloaders	1300-1400	448 453	674	122	119	380	252	ļ							
	Sewer #1	1300-1500	· 544 >37	⁰ 562	105	105	1844	376								
1(1)		1500-1600	264 213 22	336	65	65	1400	296					· ·			
11	Sewer #2	1300-1500	>1480	1590	560	552	32690	4530								<u> </u>
	16	1500-1600	·>1500	3350	1585	.1580	35060	7190								
u	Vacuum Unloaders	Daily Comp.	688 484 62	862	168	121	604	412	150	0.100	<0.005	25.5	3.10			
	Sewer #1	Daily Comp.	326 263 28	345	90		1530	380	90	0.145	0.005	21.2	3.95			<u></u>
	Sewer #2	Daily Comp.	1326 >730 404	⁵⁵ 1800	888	872	31730	3950	736	0.151	0.005	21.0_	2.775			
7/8/74	Sewer #1	0800-1000	404 373 33	482	146	146	1076	348	<u> </u>	 		ļ				
	Sewer #2	0800-1000	>1340	3320	685	640	29500	4390	+		-		-			
11	Sewer #1	1000-1200	324 323 326	414	68	· 68	1596	432	<u> </u>							
it	Sewer #2	1000-1200	>1320	3180	1080	1080	32350	5410						·····	<u> </u>	······
11 EP6-1103(Rev.2/74	Sewer #2	1300-1500	653	862	506	496	32160	4060						·	L	

•

.

1 55 Т

•

.

.

.

L.

Environment Canada Environmentent Canada Environmental Protection Protection de l'Environmement

	TRIAL WASTE	LION Protection C				FAUX B	RAW DAT		TRIELLES				COMPANY Socéité	Nati	onal Sea Proc	uccs
DATE COLLECTED Date du	SAMPLING LOCATION Lieu du	SAMPLING TiME Heure du	BOD mg/1	COD mg/1	SS mg/1	VSS mg/1	TS mg/1	TVS mg/1	011 & Grease	N03-N	NO2-N	T-inorg P04 ppm	Endroit Organic T-Phos as PO4	Loui	Sbourg BiOAS Dasage bi Survival	nlogique % de survie
prélèvement	prélèvement Sewer #1	prélévement Daily Comp.	324 343 33	517	99	99	1336	428	 	0.082	<0.005	16.6	0.80		% TD · 50 HR.	TD - 50 H.
	Sewer #2	Daily_Comp.	>1270	2120	660	632	32650	5210	340	0.106	0.006	14.0	8.00	<u>-</u>		
											· · · ·	·		·		
				·			. 			· .					· ·	
								 								
	· · · · ·															
		·														
								· · · ·	ļ							
	 			•												
								<u> </u>	<u> </u>							
											 				· · · · · · · · · · · · · · · · · · ·	
	· · · · ·															
															· · · · · · · · · · · · · · · · · · ·	

•

EPG-1103(Rev.2/74)

- 56 -

Environment Canada Environmement Canada Environmental Protection Protection de l'environmement

.

-

Enviro		ction Protection				I	COMPANY Swim Bros. LOCATION Lockeport								
DATE COLLECTED	SAMPLING LOCATION	SAMPLING TIME	BOD	COD	SS	TS	vs	3	T-Inorg P04 ppm	NO3-N ppm					BIOASSAY
25/6/74		0930-1100	ng/1 108 144 128	mg/1 228	mg/1 23.2	mg/1 29,470	<u>mg/1</u> 2160	Grease ppm <5.0	ppii		p.pm	ppm			
14		1100-1200	78 74 228	200		31,160									
"		1600-1700	217 174 108	200	25.5	31,180	3160						· · · ·		
11		Daily Comp.	128 134 228	228	21.8	32,640	4160	169.4	8.15	0.032	<0.005	22.3			
26/6/74		0845-1015	117 228	192	18.0	26,810	2380						<u> </u>		
11		1015-1145	118 134 118 118 108	248	14.8	32,780	3470		 					ļ	
		Dally Comp.	118 108	232	17.3	32,360	2930	<5	7.82	0.092	<0.005	2.53			
					· · · ·								<u> </u>		
				<u> </u>											
			<u> </u> ·										-		· · · · · · · · · · · · · · · · · · ·
				•				<u> </u>							·
					<u> </u>	ļ					· 			 	
		ļ				· · ·							<u> </u>		
				L	L	L	L	ĺ							

.

EP6-1103(Rev. 2/73)

.

.

.

÷

Environment Canada Environmement Canada Environmental Protection Protection de l'environmement

Envir	UNITERIOF Fruid	ction Protection de	a Gran Granell	GIIL			NDUCTO	A1 10/ A					COMPAN	Nation	al Sea Products
						l l	NUUSIK	AL WASTE	ANALYS	iis			1	Lockep	ort
DATE	SAMPLING	SAMPLING TIME	BOD	COD	SS	тѕ	vs	011 8	N03-N	N02-N	T-inorg P04	T-org. P04			BIOASSAY
WLLECTED	LOCATION		mg/1	mg/1	mg/1	_mg/1	mg/1	Grease ppm	ppm_	ppm	ppm	ppm			Survival % TD-50 HR.
25/6/74	Fish	0830-1030	168	280	912	32950	3930	56.5							
		1030-1200	164 168	308	45.5	22720	3820	60.8							
ii		14:00-1530	204 208	364	44.8	32710	4260	45.4							
51		1530-1700	644 728	700	86.4	32970	4030	50.7			-			_	
		Daily Comp.	244 368	364	88.0	33980	4740	70.7	0.019	<0.005	20.7	4.0			
26/6/74		0900-1100	344 528	352	86.4	21670	1820	11.2	L						
, II		1100-1200	224 288	308	56.8	30760	3930	35.9	Ave.	$\begin{array}{rcl} \text{COD} &=& 3\\ \text{BOD} &=& 2 \end{array}$	74				-
		1315-1430	284 448	336	56.4	31310	6400			COD = 04 x 0.	0.835 835 = B	DD 253			
		1430-1600	244 288	318	50.0	33,860	4040	36.0)						
		Daily Comp.	253 328 ⁵²⁰	304	116	32080	3690	9.7	<0.005	<0.005	38.65	<0.005			
27/6/74		0845-1015	238 244	400	127.6	32410	3630	26.7							
		1015-1145	297 274 88	484	67.6	33360	4180	<5.0							
. 11		Daily Comp.	²⁵⁷ 108 304	388	85.9	29500	2980	<5	<0.005	<0.005	46.0	7.15			
25/6/74	Meal	0830-1030	232 204 168	360	49.0	31390	3150								
		1030-1200	37 36 32	48	9.2	29420	2520	<5.0		 					· · · · · · · · · · · · · · · · · · ·
8.		1600-1700	673 984 1288	1136	210	31960	3640								
11		Daily Comp.	265 274 274	372	45	31190	3470	6.	0.013	<0.005	22.62	<0.005			<u>_</u>
26/6/74		0900-1100	353 424 388	636	203	32290	3240	23.5		ļ					-
		1100-1200	18 14 28	120	36.3	22500	1460	8.9			1				

EPG-1103(Rev. 2/73)

.

- 58 -

Environment Canada

Environnement Canada

Enviro		ction Protection			IGI (L		1	NDUSTRI	AL WASTI	EANALYS	ilS			LOCAT	lational	Sea Products
DATE	SAMPLING LOCATION	SAMPLING TIME		BOD	COD	SS	TS	vs	5	T-inorg P04	NO3	NO2	T-org. P04			BIOASSAY
				mg/}	mg/l	mg/I	mg/l	mg/1	Grease ppm	ppm	ppm	ppm	ppm			Survival % TD-50 HR.
26/7/74	Meal ·	Daily Comp.		228 374 ⁶⁶⁸	472	88.0	29,940	2420	56	21.0	<0.005	<0.005	6.30			
27/6/74		0845-1015		43 14 228	144	11.2	32,590	3680	14.9							
		1015-1145		38 14	316	1	33,220					· ·		•		
13		Dally Comp.		58 14 68	324		33,830		<5	1.34	0.064	<0.005	2.76			
<u> </u>										· · · · ·						
							•	<u> </u>			<u> </u>					· · · · · · · · · · · · · · · · · · ·
		•					•									· · · · · · · · · · · · · · · · · · ·
	·															
												1				
		1														
· ·	1															
			·											,		······
•																
	1	1 .														
	1															
· · · · · · · · · · · · · · · · · · ·		1												·		

EP6-1103(Rev. 2/73)

- 59 -

24

Environment Canada Environmement Canada Environmental Protection Protection de Verwironnement

Envire		thon Protection				-	NDUSTRI	AL WAST	EANALY	515			LOCATIO	Swim DN	
DATE	SAMPLING	SAMFLING TIWE	BOD	COD	SS	TS	TVS	vss	011 &	N02-N	N03-N	T-inorg P04	T-org.	Locke	BIOASSAY
COLLECTED	LOCATION		, mg/1	mg/1 ·	mg/1	mg/1	_mg/l	mg/1	Grease	ppm	ppin	. bbw	P04		Survival % TD-50 HR.
0/8/74		0800-1000	*>1220	2000	433	36080									
11		1330-1530	පි20 620	1060	292	36210									
		Daily Comp.	- 15	1590	199	30990	4360*		490	<0.005	<0.005	96	<0.05		
			*all di	lutions	were d	epleted									
								[+						
		+				· ·									
	- <u>-</u>			<u> </u>	<u> </u>				1						
													-		
		+										· · ·			
	u_				· ·					}					
									· · · · · · · · · · · · · · · · · · ·						
	· · ·	<u> </u>		•											·····
		++-													
•	<u></u>														·····
							· · ·								<u>·</u>
<u> </u>															······································
	:								· · · ·	 .					-
		++-							1			[····+			

.

EP6-1103(Rev. 2/73)

60

ъ

Environment Carada Environmental Protection

Environcement Canada con Protection de Lenvironnement

	onmental Protect	uon Protection d	e) environnem	ent									COMPA	NY Nati	onal Sea Products			
				•		1	NDUSTRI	AL WAST	E ANALYS	sis			LOCATI	LOCATION Lockeport				
DATE	SAMPLING LOCATION	SAMPLING TIME	BOD	COD	SS	TS	TVS	vss	011 \$	NO2-N	N03-N	T-inore P04	T-org. P04	NH3	BIOASSAY			
WLLECIED			mg/1	mg/1	mg/l	mg/1	mg/1	mg/l	Grease mg/l	mg/1	mg/1	ppm	P04 ppm	ppm	Survival % TD-50 HR.			
0/8/74	Meal Plant	Daily Comp.	40 60 80	198	26	28510	2890		8		<0.005	24.25	<0.05					
	11	1330-1530	20 30 20	98	19	28640					· · · · · · · · · · · · · · · · · · ·							
	11	0840-0930	20 20	188	37	35550			·			· ·			<u> </u>			
2/8/74		Daily Comp.	40 -	86	14	34930	4260		14	<0.001	0.010	0.025	0.575					
	Skinning Outfall	0800-1000	80 150 ¹⁶⁰	250	62	34550				<0.005	<0.005	3.08	2.51					
16		1000-1200	²⁰⁰ 60	145	36	35180			 	<0.005	<0.005	2.6	2.11					
	ti	1330-1530	90 90	sample missing	57	34880				<0.005	<0.005	3.35	1.02					
<u></u>		Daily Comp.	80 130 120	210	49	20140	2030		10	<0.005	<0.005	2.44	5.21					
n	Fish Plant	0800-1000	240 321 ³⁰²	470	222	34570	·		ļ	<0.005	<0.005	10.00	3.62					
11		1000-1200	4 256 ²²⁰	370	132	34680				<0.005	<0.005	9.52	8.58					
11	11	1330-1530	320 321 382	390	222	35190				<0.005	<0.005	25.00	<0.05		-			
11	11	Daily Comp.	288	420	123	34430	4960		35	<0.005	<0.005	58.00	<0.05					
3/3/74	Skinning Outfall	0900-1130	240 101 140	110	66	34990				<0.005	<0.005	4.95	3.74					
	Fish Plant	0900-1130	364 240 ³²⁰	370	117	33760			ļ	<0.005	<0.005	8.75	7.85					
	Sam.A Meal Plant								 					0.4				
	Sam.A Fish Plant				 					ļ		ļ		0.45				
	Sam.B Fish Plant									· ·	 			0.2				
ı	Sam.B Skinning Ou	fall				ļ				ļ				0.2	-			
	Sam.B Skinning Ou	fall			_									0.2				

EPG-1103(Rev. 2/73)

	onment Canada onmentai Protect							COMPANY National Sea Products LOCATION Lockeport								
DATE COLLECTED	SAMPLING LOCATION	SAMPLING THE		NH3										· .		BIOASSAY . Survivel % TD-50 HI
3/8/74	Meal Plant Sewer B			ррля 0.3	<u> </u>				}			} 				
														· · ·		
						ļ								·		
			-							 	 					·
																· · · · · · · · · · · · · · · · · · ·
			<u> </u>				<u> </u>	·				ļ				· · · · · · · · · · · · · · · · · · ·
		<u>·</u>		· · ·					 	<u> </u>	 					
			<u> </u>		· · · · · · · · · · · · · · · · · · ·											
				+			 	<u> </u>								
			ļ													<u> </u>
			┼		·		· · ·	<u> </u>		<u> </u>	<u> </u>			·		· · · · · · · · · · · · · · · · · · ·

EP6-1103(Rev. 2/73)

