

TD 427 P66 L48 1988

TDLevels of polychlorinated427dibenzo-p-dioxins (PCDDs) andP66polychlorinated dibenzofuransL48(PCDFs) in biota and sediments1988near potential

LIBRARY ENVIRONME CANADA PACIFIC MEGION

TREENTS Alberts S.N. (Highes, LOBERM 05/04/2007 13:54 FAX 8199975349

. 4

ŧ

Levels of Polychlorinated Dibenzo-p-dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) in Biota and Sediments Near Potential Sources of Contamination in British Columbia, 1987

by

R.J. Norstrom and M. Simon Environment Canada Canadian Wildlife Service National Wildlife Research Centre Ottawa, Ontario KlA OH3

P.E. Whitehead Environment Canada Conservation and Protection, Facific Region Canadian Wildlife Service Delta, British Columbia V4K 3Y3

R. Kussat and C. Garrett Environment Canada Conservation and Protection, Facific Region Kapilano 100 - Park Royal South West Vancouver, B.C. V7T 1A2

> Analytical Report CRD-88-5 April 26, 1988

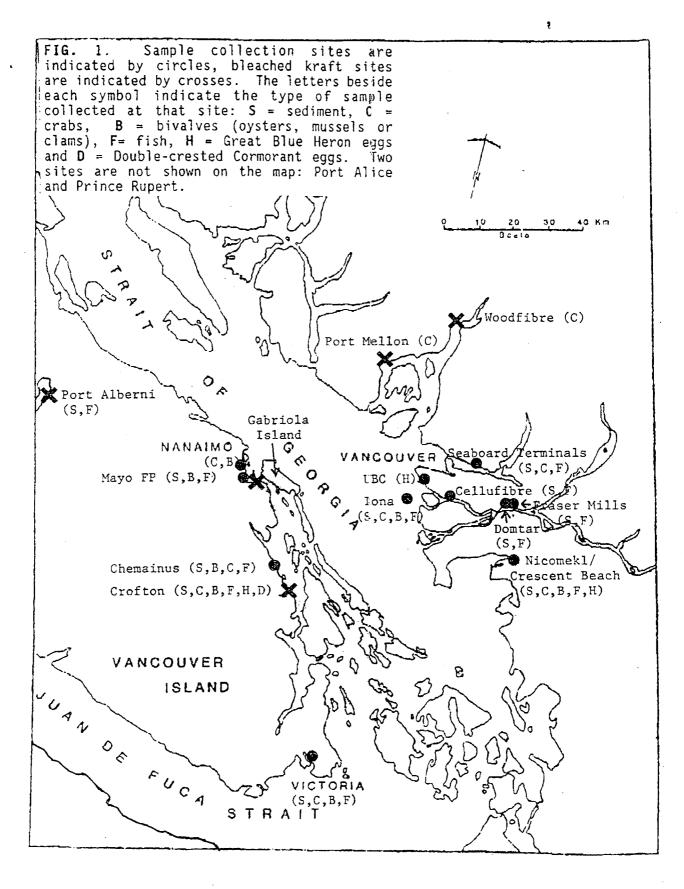
TD 427.P66 L48 c. 2

LIBRARY ENVIRONMEDI CANADA PACIFIC REGION

APACTOR N

1

INTRODUCTION


This report is intended to bring together in one place all of the chemical data obtained as part of the joint CWS/HQ and C&P, Pacific Region Pestfund projects on levels in biota and sediments and sources of PCDDs and PCDFs in the Strait of Georgia area in British Columbia in 1987. Details of the description of samples and their collection, analytical methodology, quality control data, and so on are not provided, although a map indicating the approximate sampling areas is included for orientation (Fig. 1). Many of the missing details are contained in previous analytical reports CRD-88-4, CRD-88-1 and CRD-87-13. Collation and analysis of the data are, however, not yet complete, therefore this report must be treated as a preliminary presentation of an extremely complex and difficult to interpret subject -"dioxins" or polychlorinated dibenzo-p-dioxins (PCDDs) and and polychlorinated dibenzofurans (PCDFs). General analytical methodology may be found in Norstrom et al. (1986) and Norstrom and Simon (1988).

Research into PCDD and PCDF contamination in the Strait of Georgia began as a result of a survey of PCDD contamination in fish-eating birds in Canada (Norstrom and Simon, 1933) in which 740 ng/kg (ppt) of 123678hexachlorodibenzo-p-dioxin (HxCDD), 490 ng/kg of 12378-pentachlorodibenzo-pdioxin (PnCDD) and 76 ng/kg of 2378-tetrachlorodibenzo-p-dioxin (TCDD) were discovered in pooled eggs of the Great Blue Heron (Ardea herodius) from a colony on the Endowment Lands of the University of British Columbia (UBC, Fig. 1) in 1982. These levels would be embryotoxic in a sensitive species such as the chicken, although there was no evidence of reproductive failure in this colony of herons. The Great Blue Heron feeds mainly in shallow water on small fish such as sculpins, gunnels and perch, but will also feed on fish, shrimp, or any aquatic animal of suitable size. In addition to aquatic animals, Great Blue Herons in British Columbia have been known to forage for small rodents in farmer's fields . Great Blue Herons are year-round residents in Coastal British Columbia (Butler, 1988). There is, therefore, little doubt that the PCDD and PCDF contamination in their eggs is of local origin.

The monitoring program was extended to three more colonies of Great Blue Herons in 1983, including one "control" site in an uncontaminated area just south of Vancouver (Nikomekl/Crescent Beach), and two sites on the mainland, Crofton and Gabriola Island (Fig. 1). Neither of the latter two sites were chosen for any reason other than that their location was known, but both colonies are near bleached kraft mills, sawmills and lumber mills.

The Crofton and Gabriola Island colonies proved to be more contaminated than that at UBC in 1983, and the colony at Nikomekl was significantly less contaminated (Elliott et al., 1988). Again there was no direct evidence of reproductive problems at any colony, but the levels were unusually high in comparison to other known contaminated areas such as the Great Lakes (Stalling et al. 1986), especially levels of 123678-HxCDD and 12378-PnCDD. Because of the large use of chlorophenols in British Columbia for anti-sapstain treatment (fungicide) in the lumber industry (Garrett and Shrimpton, 1988), this source was suspected for 123678-HxCDD, which had been identified in chlorophenol formulations used in Canada (Miles et al., 1985). The source of the 12378-PnCDD and 2378-TCDD was, however, more difficult to deduce, since neither was found in the formulations of chlorophenols used in EC BIBLIO LIBRARY

British Columbia (mainly 2346-tetrachlorophenol with some pentachlorophenol as active ingredients). Nevertheless, the ratio &f all three PCDDs was relatively constant, regardless of site and absolute concentration in heron eggs, suggesting a common source.

In 1986, activities were confined to measurement of PCDD levels in individual heron eggs from Crofton, UBC and another "control" colony on Sydney Island to determine the variance in PCDD concentrations (Elliott et al., 1988). Mean concentrations of 2378-TCDD remained the same at UBC as in 1983, but levels of 123678-HxCDD and 12378-PnCDD decreased about a factor of 2. At Crofton, mean levels of 2378-TCDD increased about a factor of 2, while 123678-HxCDD and 12378-PnCDD levels remained about the same. The net result was that the relative levels of all three PCDDs were the same at both colonies, although levels were significantly higher at Crofton (p < 0.1).

Analysis of Dungeness crab (<u>Cancer magister</u>) hepatopancreas as part of an assessment of the effects of a chlorophenol spill in Boundary Bay, near Vancouver in 1984 (Colodey, 1986) showed that a wide range of PCDD and PCDF congeners accumulated in this organ of the crab. Patterns of HxCDDs and HxCDFs in crabs were similar to those expected from chlorophenols, but were higher in the control site (Buntzen Bay in Burrard Inlet) than in Boundary Bay. As a result of these findings, a joint project was planned for 1987 by the Chemistry Research Division of the Canadian Wildlife Service in Ottawa and Canadian Wildlife Service and Environmental Protection Branches in Conservation and Protection, Pacific Region, to address the question of sources, with the aid of the Environment Canada Pestfund.

Initial choice of sites was based on the assumption that chlorophenols were the main source of PCDDs. However, because contamination in heron eggs was high near two pulp mills, these sites were also included. This was a fortuitous decision since it was revealed at the Dioxin '87 conference in Las Vegas that pulp mills were ϵ specific source of 2378-TCDF and 2378-TCDD (Amendola et al., 1987). Twelve sites were initially chosen: Crofton (pulp mill); Harmac (pulp mill, wood-treatment and chlorine plant); Chemainus (wood-treatment); Mayo Forest Products, Nanaimo (wood-treatment); BCFP, Victoria (wood-treatment); Port Alberni (pulp mill and wood treatment); Seaboard Terminals, Vancouver harbour (wood-treatment); three sites on the north arm of the Fraser River delta - Fraser Mills, West Coast Cellufibre and Domtar - (all wood-treatment); Fraser Estuary (Iona Island sewage outfall for the City of Vancouver); and Crescent Beach/Nikomekl (control site), as indicated in Fig. 1. Sediments were obtained at all of these sites, and attempts were made to obtain Dungeness Crab, Staghorn Sculpin (Leptocottus armatus) and bivalves (oysters, mussels or clams) at the marine sites and Prickly Sculpin (Cottus asper) at the Fraser River sites. In addition, Great Blue Heron eggs were collected at UBC, Croftom and Nikomekl, and Double-Crested Cormorant (Phalocrocorax auritus) eggs were collected from a colony nesting at Crofton near the pulp mill. Cormorants feed mainly on fish, but since they dive and chase their prey in the water, they feed more offshore in deeper water than herons.

After it was known that pulp mills were potential sources, crab samples were obtained in the winter of 1987-88 from five additional sites: Crofton (repeat sample), Port Alice (sulfite mill), Prince Rupert, Port Mellon and Woodfibre (all bleached kraft mills).

RESULTS AND DISCUSSION

Great Blue Heron eggs

Mean levels of 123678-HxCDD and 12378-PnCDD in Great Blue Heron eggs from UBC and Crofton (Table 1) did not change significantly from 1986. Mean levels of 2378-TCDD increased significantly (p<0.01) at Crofton, and increased at UBC, but not significantly (p<0.05), between 1986 and 1987. Levels of 2378-TCDF were significantly higher (p<0.05) at UBC than at Crofton, and 23478-PnCDF levels were significantly higher (p<0.05) at Crofton than at UBC. The significant, and similar, correlation between PnCDD and HxCDD levels in heron eggs at UBC and Crofton was strong indication that the source (i.e., fungicide or process, not a geographical site) of both PCDDs was the same in these areas. Conversely, the increase in 2378-TCDD levels at Crofton indicated that the source of this contaminant was not singularly connected with that of PnCDD and HxCDD. Since the Crofton herons feed near a kraft pulp mill, one hypothesis to explain the TCDD increase is that direct (effluent from plant) or indirect (release from wood fibre beds, sediments) environmental input of 2378-TCDD increased significantly between these two years. Another hypothesis is that Crofton herons fed more on species exposed to higher revels of kraft mill concamination in 1987 than in 1986, and that levels of 2378-TCDD in these food species stayed the same in 1987, but levels of the PnCDD and HxCDD decreased, as apparently occurred at UBC.

Double-crested Cormorant eggs

Mean levels of PCDDs and PCDFs in cormorant eggs were slightly lower than those in Great Blue Heron eggs from the same site, but in the same range (Table 1). The diet of the cormorant probably overlaps that of the heron, but since the cormorant feeds further offshore, the size of the fish eaten may be larger. The Double-crested Cormorant is a resident species in B.C.

Dungeness Crab Hepatopancreas

PCDD and PCDF levels in crabs were extremely variable among sites (Table 2). Only traces were found at the control site, Crescent Beach, but this may have been influenced by the small size (9 cm, 83 g) and young age of the crabs. Levels were also low at the Port Alice site, which was near a sulfite pulp mill, rather than a bleached kraft mill. The bleached kraft mill sites were at Crofton, Harmac, Port Mellon and Woodfibre. Crab hepatopancreas from the latter three contained by far the highest levels. Crabs were relatively large (18-19 cm, 500-600g) from all these areas, which is probably a factor in the high levels. Crabs from kraft mill sites had the highest levels of 2378-TCDF and 2378-TCDD. In addition to these isomers, the main tetrachloro- isomers found were the 1278-TCDF and 1278-TCDD. This is the expected pattern for bleached kraft sources (C. Rappe, Dioxin '87 conference, Las Vegas), and clearly implicates this source. It is interesting that the Iona Jetty crabs and Chemainus crabs also displayed a bleached kraft-type pattern of TCDDs and TCDFs. In the case of Chemainus, this may have been due to influence from the nearby Crofton mill. The explanation for a bleached kraft pattern at the Iona Jetty site is less easy to find. There are no kraft mills in the immediate vicinity, but there are kraft mills in the Quesnel and Prince George areas much further up river. Another possible explanation is bleaching of recycled paper at paper mills on the lower Fraser River.

-4-

In addition to the bleached kraft pattern, there were significant levels of PnCDDs, HxCDDs, HpCDDs and OCDD in most areas. The most abundant of these was the HxCDDs, as observed in Great Blue Heron eggs. The pattern of HxCDD isomers was consistent with a chlorophenol source (Hagenmaier and Brunner, 1987) and different from that in combustion sources, in which 123468 is a major isomer. The presence of mainly 124689- and 124678-HxCDFs in Iona Jetty, Chemainus, Victoria, Harmac, Nanaimo and Seaboard Terminal crabs was another indication of chlorophenol contamination. The virtual absence of HxCDFs in Crofton, Port Mellon, Prince Rupert and Woodfibre crabs, although HxCDDs were high at these sites and also had a typical chlorophenol-related pattern, is also interesting. One explanation may be the practice of using chlorophenol contaminated wood chips as feed stock to the pulp mill. Condensation of chlorophenols or chlorophenoxyphenols to PCDDs could occur under these conditions without producing PCDFs. The high correlation between 12378-PnCDD and 12368-HxCDD levels in crabs from all sites indicates that chlorophenols were also the source of this contaminant.

Bivalves (Oysters, mussels and clams)

The geographical distribution of these samples was much less than for fish and crabs, and the species diversity was higher (Table 3). Oysters appeared to be the most useful indicator species. Where detectable levels were observed, the patterns were nearly identical to those in crab hepatopancreas from the same site, indicating that both species were accumulating PCDD and PCDF isomers with little or no discrimination according to chlorine substitution pattern.

Sculpins

As has been well established in other studies with fish, mainly 2378- substituted congeners were observed. PCDDs did not exceed 10 ng/kg at any site except at Crofton (Table 4). The relative levels of 123678-HxCDD/12378-PnCDD/2378-TCDD were very similar to that in Herons found at the same site. These small bottom-dwelling fish are typical of the food of Great Blue Herons. PCDFs consisted almost entirely of 2378-TCDF, presumably of bleached kraft origin, since levels were highest at these sites. The relatively high level of 2378-TCDF at the sites on the lower Fraser River and Iona Jetty strengthens the suggestion from the crab and heron data that there was a bleached pulp-type influence in the area.

Sediments

PCDDs and PCDFs in sediments were much more dominated by the highly chlorinated congeners than was the case for biota (Table 5). Experimental studies have indicated that OCDD in sediments is not readily bioavailable (Kuehl et al. 1987). The approximately 1:2 ratio of the two HpCDF isomers at all sites is a clear indication of a chlorophenol source, since the first of these isomers is always dominant in combustion sources (Swerev and Ballschmiter, in press). The suggestion from the crab data that HxCDFs are higher where chlorophenols per se are the source, as opposed to digested, chlorophenol contaminated wood chips, appears to be confirmed by the sediment data. HxCDFs were very high at Victoria, Nanaimo and Port Alberni, but virtually absent at Grofton.

REFERENCES

- Amendola, G.; Barna, D.; Blosser, R.; LaFleur, L.; McBride, A.; Thomas, F.; Tiernan, T.; Whittemore, R. 1987. The occurrence and fate of PCDDs and PCDFs in five bleached kraft pulp and paper mills. Presented at Seventh International Symposium on Chlorinated Dioxins and Related Compounds; October 1987; Las Vegas, Nevada.
- Butler, R.W. 1988. The breeding ecology of the Great Blue Heron (<u>Ardea herodias</u>) in the Strait of Georgia, British Columbia. In: The ecology of aquatic birds in the Strait of Georgia, British Columbia, ed. by K. Vermeer and R.W. Butler, Can. Wildl. Serv. Spec. Publ., Ottawa (in press). .pa
- Environmental Protection Service. 1979. Monitoring environmental contamination from chlorophenol contaminated wastes generated in the wood preservation industry. Regional Program Report 79-24, 74 pp.
- Colodey, A.G. 1986. Investigations in Boundary Bay and Georgia Strait following a chlorophenate spill. Environment Canada, Conservation and Protection, Environmental Protection. Regional Program Report 86-18, 36 pp.
- Elliott, J.E.; Butler, R.W.; Norstrom, R.J.; Whitehead, P.E. 1988. Levels of polychlorinated dibenzodioxins and dibenzofurans in eggs of Great Blue Herons (<u>Ardea herodius</u>) in British Columbia, 1983-87: Possible impacts on reproductive success. Can. Wildlife Serv. Progress Note (in press).
- Garrett, C.L.; Shrimpton, J.A. 1988. Chemicals in the environment -Chlorophenols. Environment Canada, Pacific and Yukon Region Report No. V, 40 pp. (in press).
- Hagenmaier, H.; Brunner, H. 1987. Isomerspecific analysis of pentachlorophenol and sodium pentachlorophenate for 2,3,7,8-substituted PCDD and PCDF at sub-ppb levels. Chemosphere 16:1759-1764.
- Kuehl, D.W.; Cook, P.M.; Batterman, A.R.; Lothenbach, D.; Butterworth, B.C. 1987. Bioavailability of polychlorinated dibenzo-p-dioxin and dibenzofurans from contaminated Wisconsin river sediment to carp. Chemosphere 16:667-679. .pa
- Miles, W.F.; Singh, J.; Gurprasad, N.P.; Malis, G.P. 1985. Isomer specific determination of hexachlorodioxins in technical pentachlorophenol (PCP) and its sodium salt. Chemosphere 14:807-810.
- Norstrom, R.J.; Simon, M. 1988. Determination of Specific Polychlorinated dibenzo-p-dioxins and dibenzofurans in biological matrices by gelpermeation/carbon chromatography and gas chromatography-mass spectrometry. In: Environmental Carcinogens - Methods of Analysis and Exposure Measurement. Vol. 11 - Polychlorinated Dibenzodioxins, Dibenzofurans and Biphenyls. World Health Organization, International Association for Research on Cancer, Lyon, France (in press).

All and a second

Survey of

Bur cras

Not over

- Norstrom, R.J.; Simon, M.; Mulvihill, M. 1986. A gel-permeation/column chromatography cleanup method for the determination of CDDs in animal tissue. Internat. J. Environ. Anal. Chem. 23: 267-287.
- Norstrom, R.J.; Simon, M. 1983. Preliminary appraisal of tetra- to octachlorodibenzodioxin contamination in eggs of various species of wildlife in Canada. In: IUPAC Pesticide Chemistry: Human Welfare and the Environment, ed. by Miyamoto, J. pp. 165-170. Pergamon, Oxford.
- Stalling, D.L.; Peterman, P.H.; Smith, L.M.; Ncrstrom, R.J.; Simon, M. 1986. Use of pattern recognition in the evaluation of PCDD and PCDF residue data from GC/MS analyses. Chemosphere 15:9-12.
- Swerev, M.; Ballschmiter, K. 1988. Pattern analysis of PCDDs and PCDFs in environmental samples as an aproach to occurrence/source correlation. Chemosphere (in press).

Ø 010

785512

ŧ

TABLE 1

PCDD and PCDF levels in Great Blue Heron eggs and Double-Crested Cormorant eggs, collected from B.C., 1987 Levels are in ng/kg (wet wt.)

\square					•	PCDI)s				PCI	Fs		
AREA	TISSUE	USOX NO.	2378-T4CDD くの	12378-P5CDD 537	123478-H6CDD 563	123678-н6CDD 564	123789-H6CDD 565	1234679-н7СDD 590	1234678-н7срр 54/	ocdd 54	2378T4CDF 605	23478-P5CDF 6 39	& Moisture	& Lipid
UBC	Great Blue Heron egg	37707 37709 37710 37711 37715 37718 37722 37724 37727 37730	41 204 9 87 78 80 28 41 91 55	34 109 23 42 82 66 40 25 55 72	ND ND 4 ND ND TR ND ND ND ND	79 158 39 97 99 125 52 55 99 97	4 12 7 9 8 TR TR 8 5	TR TR ND TR ND TR TR TR TR 8	12 10 11 11 TR TR 9 8 10 7	TR 16 TR 10 TR 13 10 19 19	29 20 5 19 7 6 35 39 13	13 I 10 18 20 20 10 12 20 25	81.9 81.4 80.9 82.5 82.2 80.5 81.4 82.0 83.0 83.3	5.49 6.39 6.36 5.96 5.21 7.16 6.45 5.02 6.04 6.38
CROFTON	Great Blue Heron egg	37692 37693 37694 37695 37696 37697 37698 37699 37699 37700 37701	380 67 444 173 59 234 331 369 307 158	728 107 582 232 73 256 392 216 264 291	ND ND ND ND ND ND ND ND ND	799 185 1052 434 110 580 661 530 456 357	40 9 58 27 8 35 45 39 34 18	ND ND ND ND ND ND ND ND ND	TR 7 TR ND TR 6 7 TR 8	TR TR ND ND TR TR TR ND 10	7 1 3 1 3 17 6 4 3	64 16 104 42 10 45 47 34 46 37	80.3 82.4 81.3 81.5 80.8 82.2 82.8 83.5 83.6 82.2	8.17 6.35 5.33 6.50 6.97 5.69 5.52 5.50 5.49 5.13
CRO	Double-Crested Cormorant egg	37702 37703 37704 37705 37706	69 56 100 58 85	105 97 212 68 275	ND ND ND ND ND	226 242 602 133 962	25 22 63 14 125	ND ND ND ND ND	TR 11 9 7 11	TR TR TR 10 TR	8 5 11 5 15	20 22 34 11 36	83.1 83.0 77.6 81.3 78.6	3.86 4.14 5.61 5.07 4.67
sig	MI gnal/r	X noise=3	1	3	4	4	4	6	6	10	1	2		

ND No peak observed (sinal/noise 2);

TR trace level below the minimum detectable concentration

(MDC, signal/noise between 2 and 3);

I Interferences in the monitored ion prevented determination of the contamination level.

EC BIBLIO LIBRARY

Table 2a

15005-0-1

Anna an

Salar Sector

Mana and

10-17

Concession of the local distance of the loca

Contrastantian (

Concession of the local division of the loca

Number of Street, or St

and and

All and a second se

Statements of the second

100 C

100

PCDD levels in dungeness crab hepatopancreas, collected in BC, 1987, project 8719. Levels are in ng/kg (wet wt.)

LOCATION		IONA JETTY, VANCOUVER	M & B, CHEMAINUS	BCFP, VICTORIA	BCFP, CROFTON	M & B, HARMAC	ASSEMBLY WHARF, NANAIMO	SEABOARD TERMINALS	CRESCENT BEACH	WESTERN PULP, PORT ALICE	NDC SIGNAL/NOISE=3
	USOX NO.	38036	38037	38038	38039	3 8040	38041	38042	38043	38117	
	Specimen No.	PF-29	PF-30	PF-31	PF-33	PF-34	PF-36	PF-37	PF-38	-	
	No. in pool	9	11	10	8	37	13	4	17	UN	
T4CDDs	TD1 570 TD2 501 1378 502 TD3 503 TD4 504 TD5 505 2378 506 1278 507	ND ND 3 ND 11 22 (1)	ND 2 5 ND ND 2 10 2	2 9 20 7 7 18 10 7	ND ND 3 ND ND 100 4	ND ND 2 ND 16 2	ND ND ND ND ND 4 ND	ND ND ND ND 4 5 ND	ND ND ND ND ND 2 ND	ND ND ND ND ND 3 ND	2 2 2 2 2 2 2 2 2 2 2 2
P5CDDs	12479/12468 5% 12368 531 12478 532 PD1 533 PD2 534 12379 535 PD3 536 12378 537 12489/12467 533 12389 539	4 8 16 (1) ND (2) ND 16 (2) (1)	5 13 24 5 ND (2) ND 26 3 ND	23 47 98 13 7 12 11 73 19 10	5 8 39 5 ND 7 ND 66 8 5	5 7 19 (2) ND (2) ND 23 3 ND	(1) 3 ND ND ND 7 ND ND	3 6 7 ND ND ND 7 (1) ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	3 3 3 3 3 3 3 3 3 3 3 3 3 3
H6CDDs	124679/124689 540 123468 541 123679/123689 542 123478 563 123678 544 123789 565	10 ND 125 ND 82 11	18 15 269 ND 188 37	90 53 901 ND 437 33	48 ND 617 ND 278 84	24 ND 279 ND 136 32	10 ND 76 ND 58 9	13 ND 92 ND 49 5	ND ND 6 ND 5 ND	ND ND ND - ND ND	4 4 4 4 4 4
H7CDDs	1234679 591 - 2) 1234678 592 - 2	5 9	47 93	81 144	11 21	12 17	24 18	20 25	(2) 5	ND (3)	4 4
1	OCDD 599	ND	38	33	(6)	(5)	8	12	(3)	ND	6
J	% Moisture % Lipid	80.7 6.50	73.3 10.1	72.3 11.0		70.2 11.9	63.4 11.3	74.6	73.7 7.04	80.5 4.24	

ND no peak observed (signal/noise < 2);

() trace level below the minimum detectable concentration

(<MDC, signal/noise between 2 and 3);

TD1 to TD5, PD1 to PD3 are tetra- penta- hexachloro PCDDs.

but their chlorine substitution is unidentified at the present time; UN number of samples in the pool is unknown (it was not recorded). 8 i j

		Ţ	 	
•				
•				

PCDD levels in dungeness crab hepatopancreas, collected in BC, 1987, project 8719. Levels are in ng/kg (wet wt.)

Table 2b

•						
LOCATION		CROFTON	PORT MELLON CFP	PRINCE RUPERT WESTSTAR	WPPL WOODFIBRE	MDC, SIGNAL/NOISE=3
	USOX NO.					
	Specimen No.	FO 12	FO 21	FO 24	FO 17	
	No. in pool	3	5	6	4	
T4CDDs	TD1 500 TD2 50/ 1378 502 TD3 502 TD4 504 TD5 505 2378 506 1278 507	ND ND ND ND ND 76 3	ND ND ND ND ND 662 33	ND ND ND ND ND 487 13	ND ND ND ND ND 356 18	2 2 2 2 2 2 2 2 2 2 2 2
P 5 CD Ds	12479/12468 530 12368 531 12478 532 PD1 533 PD2 534 12379 535 PD3 536 12378 537 12489/12467 538 12389 539	4 7 28 9 ND 7 ND 64 10 6	7 16 60 15 ND 15 ND 130 19 9	12 35 108 15 ND 7 ND 167 14 5	14 23 93 20 ND 13 ND 172 23 9	4 4 4 4 4 4 4 4 4 4 4 4
H6CDDs	124679/124689 560 123468 561 123679/123689562 123478 563 123678 564 123789 565	45 ND 662 ND 308 105	76 ND 1,419 ND 554 173	81 ND 1,470 ND 837 188	223 ND 2,949 ND 1,193 317	6 6 6 6 6 6 6
H7CDD3	1234679 5 8 0 1234678 591	10 18	14 29	23 41	80 90	8 8
	0CDD 599	(7)	15	-22	31	15
	% Moisture % Lipid	80.4 8.61	76.4 7.88	79.4 6.78	75.2 9.72	

ND no peak observed (signal/noise < 2);

trace level below the minimum detectable concentration ()

(< MDC, signal/noise between 2 and 3); TD1 to TD5, PD1 to PD3 are tetra- penta- hexachloro PCDDs. but their chlorine substitution is unidentified at the present time; number of samples in the nool is unknown (it was not recorded).

אט

Contraction of the local distribution of the

A COLUMN TWO IS NOT

ŧ

Table 2c

PCDF levels in dungeness crab hepatopancreas, collected in BC, 1987, project 8719. Levels are in ng/kg (wet wt.)

LOCATION		IONA JETTY, VANCOUVER	M & B, CHEMAINUS	BCFP, VICTORIA	BCFP, CROFTON	M & B, HARMAC	ASSEMBLY WHARF, NANAIMO	SEABOARD TERMINALS	CRESCENT BEACH	WESTERN PULP, PORT ALICE	MDC SIGNAL/NOISE=3
	USOX NO.	38036	38037	38038	38039	38040	38041	38042	38043	38117	
	Specimen No.	PF-29	PF-30	PF-31	PF-33	PF-34	PF-36	PF-37	PF-38		
	No, in pool	9	11	10	8	37	13	4	17	UN	
T4CDFs	TF1 600 TF2 61 2468 600 TF3 604 2368 605 TF4 606 1278 607 2378 606 2367 609	ND 9 7 16 6 50 290 19	ND ND 5 ND ND 24 161 8	7 18 15 15 29 6 17 99 33	ND ND 7 ND 20 14 286 2605 107	ND ND ND 9 ND 42 353 16	ND ND ND ND ND 9 93 4	ND ND ND 6 ND 17 123 7	ND ND ND (1) ND (1) 9 ND	ND ND ND ND ND 2 6 ND	2 2 2 2 2 2 2 2 2 2 2 2 2
PSCDFs	12468 (50 (3) 12478/13479/12368 23468/12469 (32 12378/12348 (33) PF1 (34) 23489 (35) 23478/13489 (36) 12489/23467 (37)	37 14 8 3 ND (2) 9 (2)	4 9 7 4 ND 3 8 3	64 105 52 23 5 14 36 17	ND 3 12 ND (2) 22 4	4 5 (2) 3 ND (1) 4 (1)	6 (2) 5 ND (2) 5 (1)	14 ND 6 ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND S ND	3 3 3 3 3 3 3 3 3 3
H6CDFs	123468 460 124678 661 HF1 462 124689 663 123478 664 123678 665 123469/123689 666 234678 667	8 25 ND 19 (1) (1) ND (1)	6 33 ND 70 5 4 ND 5	73 253 8 318 22 21 4 19	ND (2) ND 7 ND ND ND ND	(3) 14 ND 16 ND ND ND ND	8 27 ND 46 (3) (2) ND (2)	23 49 ND 101 4 (3) ND (3)	ND (2) ND ND ND ND ND	ND ND ND ND ND ND ND	4 4 4 4 4 4 4 4
H7CDFs	1234678 6 ⁴⁰ 1234689 641	5 (3)	49 9	125 80	ND ND	8 6	15 14	24 25	ND ND	ND ND	4 4
/	OCDF 699	ND	ND	(4)	ND	ND	ND	ND	ND	ND	6

ND no peak observed (signal/noise<2);

() trace level below the minimum detectable concentration

(<MDC, signal/noise between 2 and 3); TF1 to TF4, PF1 to HF1 are tetra- penta- hexachloro PCDFs.

but their chlorine substitution is not identified at the present time. number of samples in the pool is unknown (it was not recorded). UN

Supervision of The second Designment of the second ATC: UNDER Construction of the ALC: NOT

in the second

And a state

All and a second

05/04/2007 14:02 FAX 8199975349

EC BIBLIO LIBRARY

ŧ

250

:52

Table 2d PCDF levels in dungeness crab hepatopancreas, collected in BC, 1987, project 8719. Levels are in ng/kg (wet wt.)

	LOCATION		CROFTON	PORT MELLON CFP	PRINCE RUPERT WESTSTAR	WPPL WOODFIBRE	MDC, SIGNAL/NOISE=3
		USOX NO.					
Cat		Specimen No.	FO 12	FO 21	FO 24	FO 17	
Las las		No. in pool	3	5	6	4	
Same 33	T4CDF5	TF1 TF2 2468 TF3 2368 TF4 1278 2378 2367	ND ND ND 7 9 260 2,416 92	ND ND ND 94 132 2,866 24,968 1,196	ND 10 37 18 156 70 1,326 11,890 413	ND ND 38 ND 87 138 2,801 16,547 585	5 5 5 5 5 5 5 5 5 5 5 5
	P 5 CDFs	12468 12478/13479/12368 23468/12469 12378/12348 PF1 23489 23478/13489 12489/23467	ND ND 12 ND 23 (3)	ND 4 12 81 ND 12 149 21	ND 10 11 44 ND 9 75 5	ND 13 17 156 ND 25 253 37	4 4 4 4 4 4 4 4
	H6CDFs	123468 124678 HF1 124689 123478 123678 123469/123689 234678	ND ND (5) ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND 11 ND ND ND ND	6 6 6 6 6 6 6
	H7CDFs	1234678 1234689	ND ND	ND ND	ND ND	10 10	8 8
F		OCDF	ND	ND	ND	ND	15

ND no peak observed (signal/noise < 2);

() trace level below the minimum detectable concentration

(<MDC, signal/noise between 2 and 3);</pre>

TF1 to TF4, PF1 to HF1 are tetra- penta- hexachloro PCDFs.

but their chlorine substitution is not identified at the present time. number of samples in the pool is unknown (it was not recorded). UN

	•																······	BENTN	OSE 1	HORSE	GEODUCK	· · · · ·
	TISSUE		MU	SSEL *		- 1				OYS	TER *			Ì	BUT	ter Cl	AM	CLA		CLAM	CLAM	-
LOCATION	10005	IONA ISLAND	BCFP CROFTON	OSBORNE BAY CROFTON	SHOAL ISLAND CROFTON	CRESCENT BEACH	SHOAL ISLAND CROFTON	TON R	WILLIE ISL. LEASE CROFTON	ASSEMBLY DHARP NANAIMO	CIPA FOREST PROD. NANAIMO	M & B HARMAC HOOKER	M & B HARMAC JACK PT. 2	CRESCENT BEACH	SHOAL ISLAND CROETON	H & B HARMAC JACK PT.2	M & B CHEMAINUS	BCFP VICTORIA	CRESCENT BEACH	M 6 B CHEMAINUS	MAYO FOREST PRODUCTS NANAIMO	SICNAL/NOISE
استبر	JSOX NO.	38114	38028	38029		38113			30833		38120	38110	38109	38112	38034	38108	38118	38115	38111	38119	38121	КDС,
	Specimen No.	PF-1	PF-2	P=-7	PF-9	PF-76	PF-17	PF-18	PF-19	PF-20	PP-22	PF-23	-	PF-74	PF-24	-		PF-54			PF-82	ž
	No. in pool	UN	142	19	אט	NN	UN	UN	UN	หบ	UN	UN	UN	บท	UN	UN	UN	UN	UN	บท	UN	
11	2378 506	ND	Int.	Int.	5	ND	31	14	12	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
P 5CI0D8	12479/12468 530 12368 531 12478 535 PD1 533 12378 537 12378 537 12489/12467 538	עא סיק חא	3 3 ND 4 ND	(1) (2) ND 5 ND	4 3 4 (2) ND ND	ND ND ND ND ND ND	11 16 38 5 25 ND	8 10 13 14 ND	3 6 8 9 ND	(1) ND (2) ND (2) ND	ND ND ND 11 ND	3 4 6 ND 8 (2)	ND ND ND ND ND ND	ND ND ND ND ND ND	(2) ND (2) ND (1) ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	
Hécdus	124679/1246895 123468 541 123679/1236895 123478 543 123678 544 123789 565	ND	16 ND 76 ND 12 5	15 ND 77 ND 21 7	14 ND 80 ND 22 9	ND ND ND ND ND ND	11 52 120 ND 75 17	12 ND 105 ND 46 14	13 ND 110 ND 46 11	(3) (3) 17 ND 9 (1)	30 ND 166 ND 59 ND	4 6 34 ND 20 4	ND ND 4 ND (3) ND	ND ND ND ND ND ND	10 ND 49 ND 12 5	ND ND ND ND ND	ND ND (3) ND ND ND	(3) ND 11 ND 6 ND	ND ND ND ND ND	ND ND (3) ND (2) ND	ND ND 4 ND (2) ND	4 4 4 4 4
K7CDD	1234679 590 1234678 591	ND 5	11 6	1177	4 5	סא מא	ND 4	ND (2)	ND (2)	{}}	21 34	ND ND	ND ND	ND ND	{2 2}	ND ND	(3)	11 17	ND ND	6	(3)	4
-	OCDD 599	ND	15	13	(3)	ND	(3)	ND	ND	ND	ND	ND	ND	DN	ND	ND	(4)	15	ND	7	ND 89.9	+°
	% Moisture	91.2	85.8	85.2	82.8	85.7	79.9	80.8	78.5	76.0	82.8	78.8	89.2	81.8	81.5	90.4	82.0	81.2	81.2			<u>+</u>
	% Lipid	0.66	3 1.3	1.28	0.754	0.46	3 2.44	1.52	2.74	3.00	2.44	3.56	0.981	1.99	5 0.85	10.243	1.03	10.03	5 0.500	10.94	0.1/3	· I

PCDD lavels in mussels, oysters and clams collected from BC in 1987 project 8719 Levels are in ng/kg (wet wt.)

Table 3a

no peak observed (signal/noise<2); trace level below the minimum detectable concentration (<MDC, signal/noise between 2 and 3); number of samples in the pool is unknown (it was not recorded); All mussels and oysters were unpurged; /levels can not be determined because of interferences.) () राज

₫ Int 05/04/2007 14:02 FAX 8199975349

5

EC BIBLIO LIBRARY

015

1 134 • ٦

04/2007	
14:03	
FAX	
8199975349	

國 016

ł

-		

 \sum

Table 3b

PCDF levels in mussels, oysters and clams collected from BC in 1987, project 8719 Levels are in ng/kg (wet wt.)

				ISSEL*						ογετε					BUT	TER CL	.AM	BENTNOSE	CLAH	HORSE CLAM	GEODUCK CLAM	
LOCATION	TISSUE	IONA ISLAND	BCFF CROFTON	OSBORNE BAY CROFTON	SHOAL ISLAND CROFTON	CRESCENT BEACH	SHOAL ISLAND CROFTON	BCFP CROFTON RELF	WILLIE ISLAND LEASE CROFTON		CIPA FOREST PRODUCTS NANAIMO	M & B HARMAC HOCKER	M & B HARMAC JACK PT.2	CRESCENT BEACH	SHOAL ISLAND CROFTON	M & B Harmac Jack PT.2	M & B CHEMAINUS	BCFP VICTORIA	CRESCENT BEACH	M 6 B Chemainus	HAYO FOREST PRODUCTS NANAIMO	MDC, Stuttal/Noise = 3
	USOX NO.	38114	38028			38113	38031		•	38116				38112		38108	38118 PF-26	38115 PF-54	38111	38119 PE-25	38121 PF-82	-1
۱. –	Specimen No.	PF-1	PF-2	PF-7	PF-9	PF-/6	46-i 7	PF-18	PF-13	FF-20				PF -74			UN	UN		UN	10 11	1 1
	No. in pool	บท	142	19	UN	UN	UN	UN	UN	UN	אט	บห	UN	UN	אט ^ו וויי	UN			ND	ND ND	ND	+ ; +
T4CDF8	2368 603 1278 697 2378 604 2367 604	ND ND 6 ND	Int Int Int Int	Int Int Int Int	ND 4 75 3	ND ND ND ND	15 144 604 ND	15 77 313 12	ND 76 317 14	ND 5 23 ND	Int Int 48 ND	ND 16 98 4	ND 2 8 ND	ND ND ND ND	ND 8 36 (1)	ND (1) 4 (1)	ND ND 2 ND	ND ND ND ND	ND ND ND	ND 2 ND	ND 2 ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PSCDFe	12468 630 23478/13489 6 3¢	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4	ND ND	ND ND	ND ND	ND NĐ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3
H6CDF8	124678 1970 661 124689 1997 663	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4	ND 4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 	ND ND	ND (1)	ND 5	4
H7 CDPs	1234678 640 1234689 691	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	6 12	ND ND	(3)	(3) 8	4

1

· -

....

no peak observed (signal/noise <2); trace level below the minimum detectable concentration (<MDC, signal/noise between 2 and 3); number of samples in the pool is unknown (it was not recorded); all mussels and oysters were unpurged; levels can not be determined because of interferences. () (

บัม *

Int

.

Π

ş

Table 4a

PCDD levels in sculpins collected from BC in 1987, project 8719. Levels are in ng/kg (wet wt.)

	TISSUE	PRICE	CLY SCU	JLPIN				STAC	GHORN S	SCULPIN	1			and
LOCATION		FRASER HILLS	DOMTAR	WESTCOAST CELLUFIBRE	IONA JETTY	CRESCENT BEACH	BCFF, VICTORIA	BCFP, CROFTON	M &B CHEMAINUS	M & B HARNAC	MAYO FOREST PRODUCTS	PORT ALBERNI	SEABOARD TERMI NAL	E Kannan N/ 1 Kannan S
	USOX NO.	38035	38044	38045	38046	38047	38048	38049	38050	38051	38 052	38053	38054	
	Specimen No.	PF-28	PF-40	PF-43	PF-44	PF-50	PP-55	PF-58	PF-61	PF-64	PF-67	PF-69	PF-71	Conservation of the second
	No. in pool	49	14	32	10	10	14	7	10	7	5	8	1	Π
T4CDD3	2378 50b	ND	2	2	ND	ND	ND	10	ND	ND	(1)	9	ND	2
P5CDus	12479/12468 590 12368 591 12478 532 PD1 533 12378 537 12489/12467 538	ND ND ND 3 ND	ND ND ND ND ND ND	ND ND ND (2) ND	ND ND ND (2) ND	ND ND ND ND ND ND	ND ND ND (2) ND	ND ND ND 16 ND	ND NL ND ND 4 ND	ND ND ND ND 3 ND	ND ND ND ND 3 ND	ND ND ND 18 ND	ND ND ND ND ND ND	Manual C. Carrier (1, 1997)
H6CDDs	124679/12468956 123468 561 123679/123689562 123478 563 123678 564 123789 565	ND	ND ND ND ND 4 ND	ND ND ND ND 10 ND	ND ND ND (2) ND	ND ND ND ND ND ND	ND ND ND ND 7 ND	ND ND 14 ND 50 ND	ND ND ND 11 ND	ND ND ND (1) 7 ND	ND ND (1) 7 ND	ND ND ND 9 (1)	ND ND ND (2) ND	Concernent Presenter
H7CDDs	1234679 57° 1234678 591	ND (3)	ND ND	ND 10	ND (2)	ND ND	ND 4	ND 5	ND 4	ND (3)	ND 5	ND (3)	ND (3)	
	OCDD 599	ND	ND	8	(3)	ND	ND	(5)	6	16	(4)	(3)	ND	
	% Moisture	77.6	77.0	79.7	78.0	78.6	79.6	77.7	75.9	80.5	75.5			
	% Lipid	1.82	0.993	0.853	1.10	1.48	0.837	0.504	1.01	0.400	0.958			

٩

ND no peak observed (signal/noise <2);

) trace level below the minimum detectable concentration (<MDC, signal/noise between 2 and 3);

PD1 is a penta- hexachloro PCDDs, but its chlorine substitution is unidentified at the present time. -----

.

ŧ

م کرنے

Table 4b

PCDF levels in sculpins collected from BC in 1987, project 8719. Levels are in ng/kg (wet wt.)

	TISSUE	PRICK	LY SCL	JLPIN				STAC	GHORN S	SCULPIN	1			
InviATI v.		FRASER HILLS	DOMTAR	WESTCOAST CELLUFIBRE	IONA JETY	CRESCENT BEACH	BCFP, VICTORIA	BCFP, CROFTON	M & B CHEMAINUS	M & B HARMAC	MAYO FOREST PRODUCTS	PORT ALBERNI	SEABOARD TERMINAL	SIGNAL/NOISE=3
	USOX NO.	38035	38044	38045	38046	38047	38048	38049	38050	38051	38052	38053	38054	MDC, S
	Specimen No.	PF-28	PF-40	PF-43	PF-44	PF-50	PF-55	PF- 58	PF-61	PF-64	PF-67	P69	PF-71	¥
, 	No. in pool	49	14	32	10	10	14	7	10	7	5	8	1	
UDF3	2368 (493 1278 607 378 608 2367 609	ND ND 24 ND	ND ND 21 ND	ND ND 28 ND	ND ND 12 ND	ND ND 2 ND	ND ND 2 ND	ND 4 180 2	ND ND 23 ND	ND ND 14 ND	ND ND 9 ND	ND ND 16 ND	ND ND 4 ND	2 2 2 2 2
PSCors	12468 ^(k 30) 23478/13489(k 36)	ND ND	ND ND	3 3	ND ND	ND ND	ND ND	ND 4	ND ND	ND ND	ND ND	ND ND	ND ND	3 3
DFs	Lett 124678/134678 124689 663	ND ND	ND ND	4 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4 4
H7 Lura	1234678 640 1234689 641	ND ND	ND ND	8 12	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.