Environment Canada Environmental Protection Service Pacific Region Yukon Branch

AN OVERVIEW OF BACTERIOLOGICAL AND WATER CHEMISTRY CONDITIONS IN THE YUKON RIVER NEAR THE DAWSON CITY MUNICIPAL SEWAGE OUTFALL, 1984-1985

by

D. Davidge

December, 1985

TD 763 .D38 1985

TD	An overview of bacteriological
763	and water chemistry conditions
.D38	in the Yukon River near the
1985	Dawson City municipal sewage
	outfall, 1984-1985.

A constraint of the second sec

.

•

TD	An overview of bacteriological
763	and water chemistry conditions
.D38	in the Yukon River near the
1985	Dawson City municipal sewage
	outfall, 1984-1985.

DATE	ISSUED TO
	2 - 2000 - 197 - 197 - 1
	· · · · · · · · · · · · · · · · · · ·
and the type Wildow Commit of	
BRO	CAT. No. 23-115 PRINTED IN U.S.A.

DATE	ISSUED TO
	
·	
	
<u></u>	

TD 763 . 038 1985

Environment Canada Environmental Protection Service Pacific Region Yukon Branch

AN OVERVIEW OF BACTERIOLOGICAL AND WATER CHEMISTRY CONDITIONS IN THE YUKON RIVER NEAR THE DAWSON CITY MUNICIPAL SEWAGE OUTFALL, 1984-1985

by

D. Davidge

LIBRARY DEPT. OF THE ENVIRONMENT ENVIRONMENTAL PROTECTION SERVICE PACIFIC REGION

December, 1985

ABSTRACT

A water quality and bacteriological survey was conducted on the Yukon River at Dawson City in July, September 1984 and March 1985. The purpose of the surveys was to measure and evaluate receiving water conditions in the vicinity of the municipal sewage outfall. The parameters measured included water chemistry and coliform bacteria levels upstream and downstream of the outfall.

The results of the water chemistry analysis show that, except for turbidity, total hardness, iron, manganese and lead levels at certain times and locations, the receiving water quality meets the criteria recommended for drinking water and aquatic life. No pattern relative to the sewage outfall location could be noted for the parameters which did not meet the recommended criteria for drinking water and aquatic life.

Fecal coliform levels indicate an increase in fecal coliforms along the right (east) bank of the Yukon River downstream of Dawson City at certain times. Background levels of fecal coliforms upstream of Dawson City averaged 17/100 ml when sampled in July 1984. Fecal coliform levels 1 km downstream of the sewage outfall ranged from 674/100 ml on July 10, 1984 to 250/100 ml on July 12, 1984 to 140/100 ml on September 13, 1984 to 0/100 ml on March 12, 1985. Elevated levels of fecal coliforms (123/100 ml) were detected at a sample station 12 km downstream of Dawson City on July 10, 1984.

TABLE OF CONTENTS

ABSTRACT TABLE OF			Page i ii ii
	LIST	of Figures	111
1	INTROD	DUCTION	1
2.	STUDY	AREA	3
3	METHOD	DS	4
4	RESULT	TS AND DISCUSSION	7
4.1	Bacter	riology	7
4.2		Quality .	9
5	CONCLU	JSIONS	11
REFERENCE	:S		12
ACKNOWLED	GEMENTS	5	13
APPENDIX	I	COLLECTION, PREPARATION AND ANALYSIS METHODS FOR WATER SAMPLES AND WATER QUALITY CRITERIA	
		FOR DRINKING WATER AND AQUATIC LIFE	17
APPENDIX	II	SAMPLE STATION LOCATION	21
APPENDIX	III	BACTERIOLOGICAL AND WATER QUALITY RESULTS	23
APPENDIX	IV	WATER QUALITY CRITERIA RECOMMENDED FOR DRINKING WATER AND AQUATIC LIFE	37

- iii -

,

.

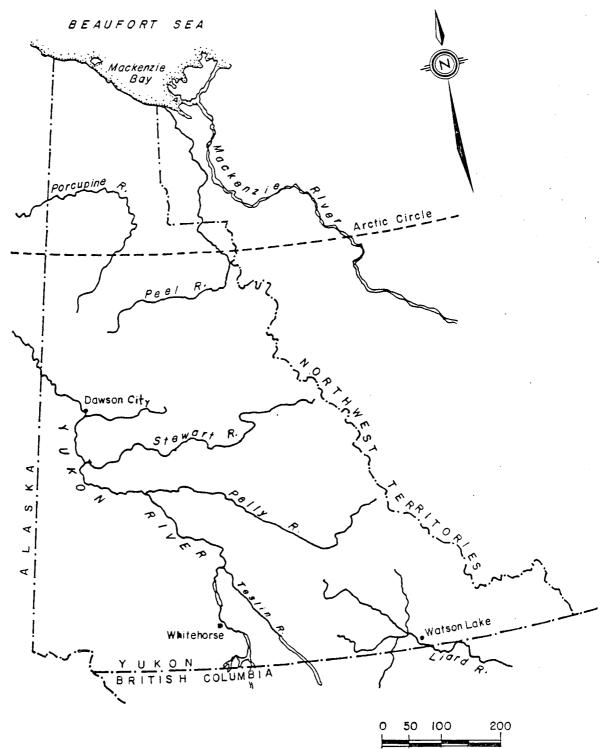

LIST OF FIGURES

Figure		Page
1	STUDY AREA LOCATION	2
2	SAMPLE STATION LOCATION	5

1 INTRODUCTION

During the months of July and September, 1984 and March, 1985 the Environmental Protection Service - Yukon Branch conducted field surveys on the Yukon River in the vicinity of the Dawson City municipal sewage outfall. The purpose of the investigation was to: 1) determine the coliform bacteria concentrations downstream of the sewage outfall; 2) determine the extent of lateral mixing immediately downstream of the outfall, and; 3) assess the water quality downstream of the outfall. In situ measurements and water sampling were carried out immediately upstream of the mouth of the Klondike River and up to 12 kilometres downstream of the outfall.

Э

Scale in Kilometres

FIGURE 1 : STUDY AREA LOCATION

STUDY AREA

2

Dawson City has a population of approximately 900 and is located along the Yukon River at 64°04' Lat. and 139°26' Long. (refer to Figure 1 for study area location). The present municipal sewage disposal system was installed in the late 1970's. Raw sewage is screened at the wet well complex to remove solids and is then pumped directly to the Yukon River through an underground pipeline. The discharge pipe is about 1 meter above the river bed at the deepest part of the Yukon River in line with Church Street in Dawson City. The raw sewage is pumped to the point of discharge at a rate determined by the incoming flow. Incoming flows can vary from an average of 15 litres per second during the summer months to 40 litres per second during the winter. Discharges during the summer months occur approximately every 10 minutes while during the winter they occur every 2 to 3 minutes (Taylor, 1984 - Personal Comm.). The increased water usage during the winter months is due to the continuous use of water bleeder systems in most residential and commercial buildings to prevent water pipes from freezing. The reader should note that because the discharge was not continuous, but occurs in pulses, the bacteria and water chemistry results obtained may not reflect the true nature of the Yukon River downstream of the outfall.

- 3 -

3 METHODS

A total of 18 sample stations were established along the Yukon River. Of these, Stations 1, 2 and 3 are located 1 kilometer upstream of the sewage outfall and Stations 5 through 19 are located downstream at 5 cross sectional locations. The cross sections are located at 100 meters and 1, 3, 6 and 12 kilometers downstream from the outfall. Station 4 is located on the Klondike River immediately upstream of it's confluence with the Yukon River. See Figure 2 for station location and refer to Appendix II, Table 1 for station description.

Sample stations referred to in the Results and Discussion section which are succeeded by the letters a, b or c indicate "surface sample", " $\frac{1}{2}$ depth" and "near bottom (approximately 0.5 meters from bottom)", respectively.

Water sample collection and in situ measurements in July and September, 1984, were conducted from a boat. In March, 1985 the survey was conducted on the river ice using snowmobiles for transportation and a gas powered ice auger to drill the sampling holes. Temperature and conductivity were measured using a YSI Model 33 Temperature-Conductivity-Salinity Meter and dissolved oxygen was measured using a YSI Model 57 Dissolved Oxygen Meter. pH was measured using a Fisher Accumet Model 640 Field pH Meter.

Water samples for coliform bacteria, extractable metals, nutrients and total inorganic and organic carbons (T.I.C. T.O.C.) were collected from the surface, at half depth and near river bottom at selected stations. During the summer and fall months surface samples were collected by submersing the sample container below the water surface from the boat. A microbiological bulb sampler (manufactured by Research Instruments Company Limited, Guelph, Ontario) was used to collect water samples at depth for bacteria analysis and a 2.5 litre Niskin Water Sampler was used to collect water samples at depth for metals, nutrients and T.I.C. T.O.C. analysis.

Samples collected for coliform bacteria testing were analysed within 24 hours of collection using the membrane filtration technique

- 4 -

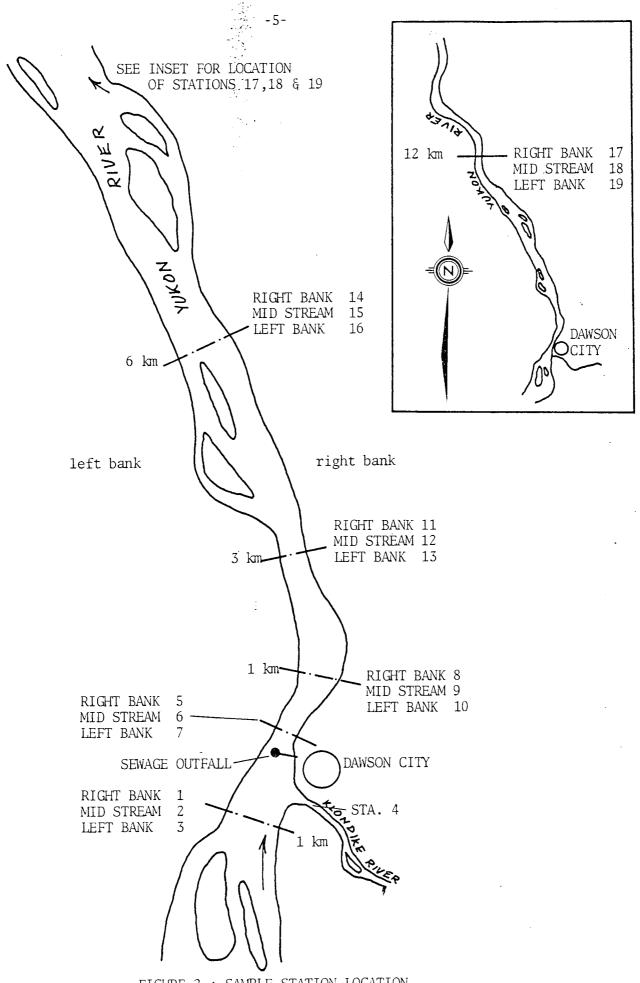


FIGURE 2 : SAMPLE STATION LOCATION

as described in Appendix I. Total and fecal coliform plate counts were conducted after the 24 hour incubation period. Appendix I provides a summary of water sample collection, preservation and analytical techniques for each parameter sampled.

In July, 1984 the sampling for coliform bacteria was carried out twice, once on July 10 and again on July 12 because of laboratory problems in obtaining consistant total coliform results. As a result, for fecal coliforms, two sets of data, July 10 and 12, are reported.

4 RESULTS AND DISCUSSION

4.1 Bacteriology

The results of coliform bacteria analysis for July and September, 1984 and March, 1985 sampling dates are presented in Appendix III, Table 1. Total coliform bacteria counts are not available for July and September, 1984 due to the presence of suspended sediments (up to 612 mg/L in July) in the samples collected. In using the membrane filtration technique suspended material present in the sample becomes trapped on the filter and disrupts individual bacteria colony growth during the incubation period. The bacteria colonies tend to join together making it difficult or impossible to count them.

Fecal coliform colony development did not appear to be inhibited by the sediments trapped on the filter as colonies were discernible therefore the counts obtained were considered valid. Suspended sediment loading in the Yukon River in March, 1985 (less than 5 mg/L) did not disrupt total or fecal coliform colony development during incubation and therefore accurate results were obtained for both coliforms.

Guidelines for drinking water prepared by Health and Welfare Canada (1978) recommend that: "no sample should contain more than 10 total coliform organisms per 100 ml" and "none of the coliform organisms detected should be fecal coliforms". Water quality guidelines for bathing and swimming published by Yukon and Northwest Territory Water Boards (1977) suggest that "if fecal coliform levels are in excess of 200 organisms/100 ml.....further investigations of the health risks associated with the water should be conducted". Although bathing and swimming do not often occur in the Yukon River, these recommendations were used as guidelines for assessing results obtained during the surveys.

Background fecal coliform numbers in July which are reflected by Stations 1, 2a, 2b and 3 on the Yukon River and Station 4 on the Klondike River averaged 17/100 ml, ranging from 0 to 86/100 ml from the

- 7 -

12 samples collected. There were no fecal coliforms found at Station 2a in March, 1985. The background levels for fecal coliform bacteria are noted and have to be considered when looking at levels observed downstream of the municipal outfall. Samples collected at Stations 5, 6 and 7 on July 10 and 12, 1984 show fecal coliform levels similar to those background levels found upstream.

The first indication of municipal sewage, based on fecal coliform levels, was found approximately 1.0 kilometre downstream of the outfall along the right bank at Station 8. The fecal coliform counts in surface waters at this station were elevated above or were near the recommended levels for recreational waters. The levels ranged from 674/100 ml on July 10, 250/100 ml on July 12 to 140/100 ml on September 13, 1984. Samples collected at Station 8 on September 13 at 2 and 4 meters depth showed a fecal coliform count of 290 and 520/100 ml, respectively. Samples collected from the surface and near bottom on March 12, 1985 revealed no fecal coliforms. This could be due to the high dilution factor characteristic of winter discharges or the sample may have been collected during the interval between discharges. Total coliforms ranged from 50/100 ml at the surface to 20/100 ml near bottom at Station 8 on March 12, 1985.

At Station 9 (midstream) and Station 10 (left bank) fecal coliform counts ranged from 0 to 34 over the three sample periods. On September 13, 1984 no fecal coliforms were found at Station 9 at surface or at 3.0 and 6.0 meters depth. On the same day fecal coliform counts at Station 10 were 20/100 ml at the surface, 0/100 ml at 2.0 meters depth and 30/100 ml at 4.5 meters depths. In March of 1985 fecal coliforms were detected only at near bottom of Station 9 (8/100 ml). Total coliform counts ranged from 0 to 14/100 ml on the same day.

Samples collected at Station 11, approximately 3 kilometres downstream of the outfall along the right bank, show elevated numbers of fecal coliforms on September 13, 1984 ranging from 410/100 ml at the surface to 110/100 ml at near bottom. Samples collected the same day at Station 12 (midstream) and Station 13 (left bank) showed no fecal coliforms. Surface samples collected on July 10 and 12, 1984 at Station 12 show fecal coliform levels similar to those found upstream of the outfall. On March 13, 1985 the fecal coliform count at Station 12, surface, was 92/100 ml while the total coliform count was 172/100 ml.

Samples collected at 6 and 12 kilometres downstream from the outfall on July 10/12 and September 13, 1984 show low levels of fecal coliforms except at Station 15 (midstream) where the count was 123/100 ml.

The coliform bacteria results suggest that there is lateral mixing from the outfall pipe toward the right bank and downstream of the community but very little mixing toward the left bank downstream of the outfall.

4.2 Water Quality

Water quality data for the three sample periods are presented in Appendix III, Table 2. Appendix IV, Table 1 shows water quality criteria recommended for drinking water and aquatic life.

In situ temperatures during the three sample periods varied seasonally with July averaging 14.0° C, September averaging 7.5° C and March averaging 1.9° C. The pH of the Yukon River averaged 8.17 in July, 7.76 in September and 7.70 in March. In situ pH of the Klondike River on July 10, 1984 was 7.97

All parameters were found to be below the accepted levels shown in Appendix IV, Table 1, except for turbidity, total hardness, iron, manganese and lead.

Water hardness exceeded the recommended 100 mg/L level for drinking water in July, 1984 at all stations except Station 4, the Klondike River, and Station 5 which is immediately downstream of the Klondike River confluence. Similarly water hardness was near or exceeded the recommended level in September, 1984 and in March, 1985.

Iron exceeded the recommended level for drinking water of 0.3 mg/L at all Stations in July, 1984. The levels ranged from 1.26 mg/L in the Klondike River to as much as 11 mg/L at Station 3 in the Yukon

River. These levels also exceed those recommended for aquatic life (1.0 mg/L). During the sample period in September, 1984 iron exceeded the recommended levels for drinking water at all stations except at Station 4, the Klondike River, but were considerably lower than levels found in July. Those samples collected at Stations 2a, 9a, 10a, 15, 16 and 19 exceeded the 1.0 mg/L recommended for aquatic life. All other stations except Station 4 were slightly less than the 1.0 mg/L level. In March, 1985 iron was below the recommended level for drinking water at all stations.

Manganese exceeded the recommended level for drinking water (0.05 mg/L) at all stations in July, 1984 but was below the recommended level in September, 1984 and March, 1985.

Lead concentrations at Station 9c, 10c and 16 on September 13, 1984 and at Station 12a on March 12, 1985 exceeded levels recommended for drinking water (0.05 mg/L) and aquatic life (0.01 mg/L for hard water). The maximum value observed was 0.11 mg/L at Station 10c.

5 CONCLUSIONS

Background levels of fecal coliform bacteria in excess of the drinking water guidelines were observed at upstream stations in the Yukon and Klondike Rivers during sampling in July 1984. Fecal coliform numbers exceeded the recommended drinking water standard and the recommended recreational (swimming) use guideline of 200/100 ml between 1 and 3 kilometers downstream of the sewage outfall, primarily along the right bank and during the summer and fall periods. The bacteria results suggest there is lateral mixing occurring toward the right bank between 1 and 3 kilometers downstream of the outfall however little laterial mixing toward the left bank.

Results from samples collected further downstream are not conclusive but suggest there is lateral mixing toward the right bank up to 6 and 12 kilometers downstream of the outfall. Fecal coliform bacteria were detected up to 12 km downstream of Dawson City during the sampling periods. Samples collected along the right bank (Stations 14 and 17) generally had higher numbers of fecal coliforms than those found at midstream or along the left bank.

No specific changes or patterns in water chemistry parameters were observed in the present study which could be attributed to the discharge of municipal sewage. Turbidity, iron, manganese and hardness exceeded drinking water standards during July, 1984 and partially in September, 1984 but are characteristic of the Yukon River water upstream of Dawson City and therefore these high levels do not originate at the sewage outfall. Levels of lead exceeding those recommended for drinking water and aquatic life are found at some of the stations downstream of the outfall during September, 1984 and March, 1985 but there is insufficient information available to suggest they originate at Dawson City.

- 11 -

REFERENCES

- Anonymous, <u>The Milepost Travel Guide</u>. 37th Edition, Alaska Northwest Publishing Company, 1985, 498 pages.
- Health and Welfare Canada, Guidelines for Canadian Drinking Water Quality. Federal-Provincial Advisory Committee on Environmental and Occupational Health. 1978. 79pp.
- Stanley and Associates Engineering Ltd., <u>Dawson City</u>, <u>Yukon</u> <u>Utilities</u> Pre-design Report, January 1977.
- Taylor, Frank, personal communication, Dawson City, Public Works Department, May, 1985.
- Yukon and Northwest Territories Water Boards, <u>Guidelines for Estab-</u> <u>lishing Water Quality Objectives for the Territorial Waters of the</u> <u>Yukon and Northwest Territories</u>. Report of the Working Group on Water Quality Objectives to the Chairman, Water Boards, Yukon and Northwest Territories, July (1977). 47pp.

ACKNOWLEDGEMENTS

The author would like to acknowledge the assistance of fellow EPS staff members in the planning, design and completion of this survey. In addition, the field and laboratory assistance of Mr. Dan Cornett of DIAND Water Resources is gratefully acknowledged. Parks Canada, Dawson City Historic Sites, is thanked for providing indoor laboratory working space in the "Black's House" during sampling in March 1985. APPENDICES

.1

APPENDIX I

COLLECTION, PREPERATION AND ANALYSIS METHODS FOR WATER SAMPLES AND WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE

/

PARAMETER	DETECTION COLLECTION AND PREF PARAMETER LIMIT PROCEDURE ¹		ANALYTICAL PROCEDURE	ME THOD SECT I ON ²
Temperature	0•1°C	<u>In situ</u> measurement.	YSI Model 33 Conductivity Meter	
Conductivity	0.2 umhos/cm	<u>In situ</u> measurement. Lab measure- ment was taken from the same sample as NH ₃ below.	YSI Model 33 Conductivity Meter Radiometer Conductivity Meter (CDMC)	044
Dissotved Oxygen	1.0 mg/1	<u>In situ</u> measurement. The instru- ment was calibrated in the field under water saturated air condi- tions.	YSI Model 57 Dissolved Oxygen Meter	
рН		Small aliquots of sample were measured soon after collection. Instrument was calibrated using 7.0 buffering solution.	<u>Potentiometric</u>	080
Non-Filterable Residue (NFR)	5•0 mg∕l	Sample was filtered through a pre- weighed glass fibre filter with a 1.5 um pore size.	Filtration, Drying And Weighing Of Residue On Filter	104
Filterable Residue (FR)	10•0 mg/l	Same sample as NHz.	Filtration, Drying And Weighing Of Filtrate	100

APPENDIX I TABLE 1 WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS

PARAMETER LIMIT Ammonia 0.005 mg/1 Si NH ₃ -N Ii Ea wi		COLLECTION AND PRESERVATION PROCEDURE ¹	ANALYTICAL PROCEDURE	ME THOD SECT I ON ² 058	
		Single samples collected in 2 litre linear polyethylene containers. Each container was rinsed 3 times with sample before it was filled. No preservatives. Stores at 4°C.	<u>Phenol Hypochlorite-Colori-</u> metric-Automated		
Colour	5 (colour units)	Same sample as NH3.	Platinum-Cobalt Visual Compar- ison	040	
Turbidity	0.1 (FTU)	Same sample as NH ₃ .	Nephelometric Turbidity	130	
Total Alkalinity	1.0 mg/l as CaCO ₃	Same sample as NH3.	Potentiometric Titration	006	
Total Phosphate T P0 ₄ -P	0∙005 mg/∣	Same sample as NH3.	Acid-persulphate, Autoclave Digestion	086	
Nitrite NO ₂ -N	0•005 mg∕l	Same sample as NH3•	Diazotization-Colorimetric- Automated	070	
Nitrate NO ₃ -N	0.01 mg/1	Same sample as NH ₃ •	Cadmium Copper Reduction Colorimetric Automated	072	
Sulphate SO ₄	1.0 mg/1	Same sample as NH ₃ .	Barium Chloranilate -UV Spectrophotometric	122	
Chloride Cl	0•5 mg/l	Same sample as NH ₃ .	Thiocyanate-Combined Reagent- Colorimetric	024	
Total and Fecal Coliform		Surface samples collected in 125 ml wide mouth sterilized glass jars, samples at depth collected with a Micribiological Sampler utilizing sterilized rubber bulbs.	Membrane Filtration Technique	902	

APPENDIX I TABLE 1 WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS (continued)

DETECTION PARAMETER LIMIT		COLLECTION AND PRESERVATION PROCEDURE ¹	ANALYTICAL PROCEDURE	METHOD SECTION ²	
Extractable	mg/1	Single samples collected in 200	Inductively Coupled Argon Plasma (ICAP) combined with		
Metals		ml linear polyethylene bottles. Each bottle was rinsed 3 times	Optical Emission Spectrometer	300	
AI	0.05	with sample before filling.	(OES)	200	
As	0.05	Preserved to a pH <1.5 using			
B	0.001	2.0 ml concentrated HNO3.			
Ba	0.001	2.0 m concentrated moz-			
Be	0.001				
Ca	0.001				
Cd	0.002				
Co	0.005				
Cr	0.005				
Cu	0.005				
Fe	0.005				
Mg	0.10				
Mn	0.001				
Mo	0.005				
Na	0.5				
Nİ	0.02			-4	
Р	0.05				
РЪ	0.02				
Sb	0.05				
Se	0.05				
SI	0.1				
Sn	0.01				
Sn	0.001				
Ti	0.002				
V	0.01				
Zn	0.002				

APPENDIX I TABLE 1 WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS (continued)

APPENDIX II

SAMPLE STATION LOCATION

.

APPENDIX II TABLE 1 - STATION LOCATION

STATION	DESCRIPTION OF SAMPLE COLLECTION
1	R. bank; surface; 1.3 km upstream of outfall
2 a	Mid-stream; surface; 1.3 km upstream of outfall
2 b	Mid-stream; bottom; 1.3 km upstream of outfall
3	L. bank; surface; 1.3 km upstream of outfall
4	Klondike River
5 a	R. bank; surface; 100 m downstream of outfall
5 b	R. bank; 1/2 depth; 11 m downstream of outfall
5c	R. bank; bottom; 100 m downstream of outfall
ба	Mid-stream; surface; 100 m downstream of outfall
6b	Mid-stream; 1/2 depth; 100 m downstream of outfall
6c	Mid-stream; bottom; 100 m downstream of outfall
7a	L. bank; surface; 100 m downstream of outfall
7b 7-	L. bank; 1/2 depth; 100 m downstream of outfall L. bank: bottom: 100 m downstream of outfall
7c	R. bank; surface; 1.0 km downstream of outfail
8a	R. bank; 1/2 depth; 1.0 km downstream of outfall
8b 8c	R. bank; bottom; 1.0 km downstream of outfall
ос 9а	Mid-stream; surface; 1.0 km downstream of outfall
9b	Mid-stream; 1/2 depth; 1.0 km downstream of outfall
9c	Mid-stream; bottom; 1.0 km downstream of outfall
10a	L. bank; surface; 1.0 km downstream of outfall
10b	L. bank; 1/2 depth; 1.0 km downstream of outfall
10c	L. bank; bottom; 1.0 km downstream of outfall
11a	R. bank; surface; 3.0 km downstream of outfall
11c	R. bank; bottom; 3.0 km downstream of outfail
12a	Mid-stream; surface; 3.0 km downstream of outfall
12c	Mid-stream; bottom; 3.0 km downstream of outfall
13a	L. bank; surface; 3.0 km downstream of outfall
13c	L. bank; bottom; 3.0 km downstream of outfall
14	R. bank; surface; 6.0 km downstream of outfall
15	Mid-stream; surface; 6.0 km downstream of outfall
16	L. bank; surface; 6.0 km downstream of outfall
17	R. bank; surface; 12.0 km downstream of outfall
18	Mid-stream; surface; 12.0 km downstream of outfall
19	L. bank; surface; 12.0 km downstream of outfall

APPENDIX III

.

BACTERIOLOGICAL AND WATER QUALITY RESULTS

.

		······································			TOTAL COLIFORM
	F	ECAL COLIF	ORM COUNT	100/ml	COUNT 100/ml
STATION					
	July 10	July 12	Sept. 13	March 12-13	March 12-13
	1984	1984	1984	1985	1985
1	18	24	0	0	2
2a	4	86	NS	NS	NS
2b	10	NS	NS	NS	NS
3	24	24	NS	NS	NS
4	10	4	0	NS	NS
5a	8	6	NS	NS	NS
6a	18	58	NS	NS	NS
7a	28	58	NS	NS	NS
8a	674	250	140	0	50
85	NS ·	NS	290	NS	NS
8c	NS	NS	520	0	. 20
9a	20	34	0	0	2
9Ь	NS	NS	0	NS	NS
9c	NS	NS	0	8	14
10a	16	34	20	0	6
105	NS	NS	0	NS	NS
10c	NS	NS	30	0	0
11a	NS	NS	410	92	172
11c	NS	NS	110	N S	NS
12a	26	14	0	0	0
12c	NS	NS	0	NS	NS
13a	NS	NS	0	2	4
13c	NS	NS	0	NS	NS
14	NS	NS	30	NS	NS
15	6	123	10	NS	NS
16	NS	NS	0	N S	NS
17	NS	NS	30	NS	NS
18	NS	NS	10	NS	NS
19	NS	NS	0	NS	NS
:	1				

APPENDIX III TABLE 1 - FECAL AND TOTAL COLIFORM COUNTS IN THE YUKON RIVER AT DAWSON CITY, YUKON - COUNT/100 ml

NS - No sample collected.

- 24 -

APPENDIX III	TABLE 2	WATER QUALITY	OF	YUKON RIVER	AT	DAWSON CITY.	YUKON FOR	JULY 10.	. 1984

STATION NUMBER	DEPTH (m)	TEMP (°C)	IN SITU pH	LAB pH	IN SITU COND• (umhos/cm)	LAB COND• (umhos/cm)	D I S SOL VED OXYGEN	COLOUR (colour units)	TURBIDITY (FTU)	T• ALK• (as CaCO ₃) (mg/L)	T• HARD• (as CaCO ₃) (mg/L)
1	3.5	N/A	8.20	8.0	N/A	187	9•6	80	300	79•0	181.0
2a	5.5	N/A	8.15	8•0	N/A	186	9.6	55	370	79.0	201.0
2b	N/A	N/A	N/A	8.0	N/A	190	N/A	60	400	79.0	215.0
3	5.0	13.5	8.18	8.0	N/A	192	9•2	70	420	81.0	271.0
4	1.0	10.5	7.97	7.7	N/A	202	10•4	10	20	63.0	98•2
5a	5.0	10.5	8.05	7.7	N/A	202	10•2	5	24	65.0	97•3
6a	12.5	14.0	8.18	8.0	N/A	185	9.5	65	360	76.0	213.0
7a	10.0	14.0	8.15	8.0	N/A	188	9.5	80	550	85.0	240.0
8a	7•3	14.0	8.15	8.0	N/A	187	9.2	60	280	75.0	181.0
9a	6.7	14.0	8.19	8.0	N/A	187	9•6	55	410	81.0	256.0
10a	7.0	14.0	8.20	8.0	N/A	187	9.4	70	450	82.0	262•0
11a	11.2	14.0	8.20	8•0	N/A	187	9.5	70	300	77.0	234.0
12a	4.0	14.0	8.20	8•0	N/A	188	9•6	60	440	80.0	279.0
12b	N/A	14.0	N/A	8.0	N/A	186	N/A	65	270	77.0	258.0

•

N/A - Not measured.

STATION NUMBER	TOTAL PHOSPHATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/l)	FR (mg/L)	T.O.C. (mg/L)	T.I.C. (mg/L)
1	0.45	0.005	0.04	0.013	221	121	8.0	18.0
2a	0.62	0.008	0.02	0.013	419	114	9.0	18.0
2b	0.62	0.008	0.03	0.012	507	111	9.0	18.0
3	0.64	0.018	0.02	0.017	612	118	10.0	18.0
4	0.11	0.006	0.03	0.037	140	117	7.0	14.0
5a	0.11	<0.005	0.03	0.038	126	135	7.0	14.0
6a	0.65	0.015	0.04	0.016	473	138	9.0	18.0
7a	0.64	0.108	0.03	0.015	601	133	12.0	20.0
8a	0.36	0.008	0.03	0.009	358	129	6.0	18.0
9a	0.75	0.009	0.04	0.016	517	136	8.0	18.0
10a	0.60	0.009	0.03	0.015	558	141	8.7	19.0
11a	0.52	0.007	0.04	0.014	475	126	7.0	18.0
12a	0.60	0.010	0.02	0.017	542	145	12.0	18.0
12b	0.44	0.010	0.02	0.021	462	123	7.0	18.0

APPENDIX III TABLE 2 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR JULY 10, 1985 (continued)

í

STATION NUMBER	A] (mg/L)	As (mg/L)	Ba (mg/L)	Be (mg/L)	Ca (mg/L)	Cd (mg/L)	Co (mg/L)	Cr (mg/L)	Cu (mg/l)	Fe (mg/L)	Mg (mg/L)	Mn (mg/L)	Mo (mg/L)	Na (mg/L)
1	3.69	<0.05	0.114	<0.001	44.2	<0.002	0.023	0.006	0.011	5.87	9.5	0.217	<0.005	2.2
2a	3.68	<0.05	0.117	<0.001	50.3	<0.002	0.028	0.006	0.013	6.53	10.3	0.257	<0.005	2.4
2ь	4.82	<0.05	0.128	<0.001	51.7	<0.002	0.035	0.007	0.017	7.94	10.6	0.288	<0.005	2.7
3	6.50	<0.05	0.156	<0.001	65.1	<0.002	0.048	0.014	0.025	10.80	12.7	0.398	<0.005	3.2
4	0.51	<0.05	0.098	<0.001	26.4	<0.002	0.005	<0.005	0.006	1.26	6.5	0.058	<0.005	1.7
5a	0.67	<0.05	0.099	<0.001	25.9	<0.002	<0.005	<0.005	<0.005	1.42	6.4	0.056	<0.005	1.6
ба	5.04	<0.05	0.130	<0.001	50.8	<0.002	0.034	0.010	0.015	7.92	10.6	0.279	<0.005	2.7
7a	4.32	<0.05	0.131	<0.001	60.9	<0.002	0.037	0.009	0.018	8.39	11.5	0.345	<0.005	2.5
8a	3.67	<0.05	0.113	<0.001	44.3	<0.002	0.023	0.006	0.011	5.84	9.5	0.212	<0.005	2.2
9a	5.79	<0.05	0.144	<0.001	62.1	<0.002	0.041	0.011	0.018	9.86	12.2	0.363	<0.005	2.7
10a	6.00	<0.05	0.148	<0.001	63.3	<0.002	0.042	0.010	0.019	10.30	12.4	0.377	<0.005	2.9
11a	5.52	<0.05	0.140	<0.001	55.8	<0.002	0.036	0.010	0.016	8.78	11.4	0.313	<0.005	2.7
12a	6.65	<0.05	0.167	<0.001	66.2	<0.002	0.042	0.011	0.019	10.70	13.6	0.395	<0.005	3.3
12b	10.10	<0.05	0.153	<0.001	61.4	<0.002	<0.005	0.012	0.020	10.10	12.4	0.361	<0.005	3.0

APPENDIX III TABLE 2 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR JULY 10, 1984 - EXTRACTABLE METALS (continued)

.

1

STATION NUMBER	NI (mg/L)	ዋ (mg/L)	Pb (mg/L)	Sb (mg/L)	Sə (mg/Ľ)	S1 (mg/L)	Sn (mg/L)	Sr (mg/L)	Ti (mg/Ľ)	۷ (mg/i_)	Zn (mg/L)
1	<0.02	0.46	<0.02	<0.05	<0.05	10.8	<0.01	0.145	• 0•167	0.01	0.023
2a	<0.02	0.58	<0.02	<0.05	<0.05	9.7	<0.01	0.156	0.135	0.01	0.026
2b	<0.02	0.59	<0.02	<0.05	<0.05	12.4	<0.01	0.159	0.202	0.02	0.035
3	<0.02	0.80	<0.02	<0.05	<0.05	16.3	0.02	0.185	0.269	0.02	0.039
4	<0.02	0.12	<0.02	<0.05	<0.05	3.2	<0.01	0.146	0.011	<0.01	0.156
5a	<0.02	0.14	<0.02	<0.05	<0.05	3.5	<0.01	0.144	0.022	<0.01	0.011
ба	<0.02	0.59	<0.02	<0.05	<0.05	13.8	<0.01	0.157	0.245	0.02	0.032
7a	<0.02	0.76	<0.02	<0.05	<0.05	9.5	0.02	0.172	0.125	0.02	0.032
8a	<0.02	0.45	<0.02	<0.05	<0.05	10.5	<0.01	0.151	0.161	0.01	0.024
9a	<0.02	0.79	<0.02	<0.05	<0.05	14.3	<0.01	0.178	0.232	0.02	0.036
10a	<0.02	0.81	<0.02	<0.05	<0.05	14.6	0.03	0.180	0.246	0.02	0.037
11a	<0.02	0.68	<0.02	<0.05	<0.05	14.4	<0.01	0.168	0.262	0.02	0.037
12a	<0.02	0.84	<0.02	<0.05	<0.05	16.8	<0.01	0.200	0.293	0.02	0.039
12b	<0.02	0.76	<0.02	<0.05	<0.05	15.9	<0.01	0.181	0.297	0.02	0.038

APPENDIX III TABLE 2 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR JULY 10, 1984 - EXTRACTABLE METALS (Continued)

·

.

STATION NUMBER	DEPTH (m)	TEMP (°C)	IN SITU pH	LAB pH	IN SITU COND. (umhos/cm)	LAB COND. (umhos/cm)	DISSOLVED OXYGEN	COLOUR (cotour units)	TURBIDITY (FTU)	T. ALK. (as CaCO ₃) (mg/L)	T. HARD. (as CaCO ₃) (mg/L)
2a	5.0	7•2	7.83	7.9	121	194	10.4	20	14.0	75.0	102.0
4	N/S	N/S	N/S	7•9	N/S	236	N/S	5	2•1	76.0	105.0
8a	4.5	9.0	7.80	7•9	122	205	10.5	10	10.7	73.0	98•1
8c	4.5	7.2	7.87	7.9	122	206	10.6	10	13.0	73.0	97•5
9a	6.5	8.0	7.50	7•9	121	196	10.6	20	16•5	72.0	98.3
9c	6 •5	8.1	7.75	7•9	122	198	10.5	20	13.0	72.0	92•9
10a	5.0	7.5	7.66	7.9	120	196	10.4	20	11.5	72.0	98•1
10c	5.0	7.3	7.71	7.9	120	198	10.5	20	11.5	71.0	92•7
11a	7.5	7.0	7.90	N/S	120	N/S	10.7	N/S	N/S	N/S	N/S
12a	9•0	7.8	7•90	N∕S	120	N/S	10.7	N/S	N/S	N/S	N/S
13a	9.0	7.8	7.70	N/S	118	N/S	10.8	N/S	N/S	N/S	N/S
14	3.5	7•2	7.80	7.9	119	200	11.0	10	11.0	73.0	98•6
15	2•5	7•6	7.80	8.0	118	199	11.0	20	11.0	72.0	101.0
16	2•5	7•2	7.70	7.9	117	198	10.8	20	11.5	73.0	101.0
17	2.5	8.0	7.80	7.9	121	200	11.1	20	11.5	72.0	98•2
18	7•5	7.8	7.70	7•9	119	198	11.1	20	12.0	72.0	99•5
19	4.5	7•5	7.80	8•0	118	195	11.1	20	16.0	72.0	99.7

4

•

APPENDIX III TABLE 3 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR SEPTEMBER 13, 1984

N/A - Not sampled.

- 29 -

STATION NUMBER	SULPHATE	TOTAL PHOSPHATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/L)	FR (mg/L)	T.O.C. (mg/L)		
		····g/ 2 /	·····g/ 2.7						·····	
2a	21	0.067	<0.005	0.13	0.014	63	137	7.0	17.0	
4	37	0.008	<0.005	0.03	0.005	<5	153	4.0	18.0	
8a	25	0.053	<0.005	0.02	0.014	42	140	7.0	17.0	
8c	25	0.045	<0.005	0.02	0.027	34	143	6.0	17.0	
9a	22	0.070	<0.005	0.02	0.010	50	134	8.0	16.0	
9c	22	0.067	<0.005	0.02	0.034	51 ·	132	7.0	17.0	
10a	23	0.071	<0.005	0.02	0.012	52	138	7.0	17.0	
10c	20	0.071	<0.005	0.03	0.040	50	134	7.0	17.0	
11a	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	
12a	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	
13a	N/S	Ņ/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	
14	23	0.062	<0.005	0.02	0.010	44	139	6.0	17.0	
15	22	0.068	<0.005	0.02	0.027	55	137	8.0	16.0	
16	21	0.070	<0.005	0.03	0.031	63	139	8.0	16.0	
17	23	0.058	<0.005	0.02	0.012	38	136	N/S	N/S	
18	22	0.069	<0.005	0.02	0.012	47	140	N/S	N/S	
19	22	0.074	<0.005	0.03	0.011	58	139	N/S	N/S	

APPENDIX III TABLE 3 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR SEPTEMBER 13, 1984 (continued)

N/S - Not sampled.

STATION NUMBER	A) (mg/L)	As (mg/L)	B (mg/L)	Ba (mg/L)	Be (mg/L)	Ca (mg/L)	Cd (mg/L)	Co (mg/L)	Cr (mg/L)	Cu (mg/L)	Fe (mg/L)	Mg (mg/L)
2a	0.73	<0.05	0.025	0.052	<0.001	26.8	<0.002	<0.005	<0.005	<0.005	1.230	7.0
4	0.07	<0.05	0.105	0.054	<0.001	28.5	<0.002	<0.005	<0.005	<0.005	0.191	7.9
8a	0.50	<0.05	0.155	0.049	<0.001	26.0	<0.002	<0.005	<0.005	<0.005	0.866	7.0
8c	0.45	<0.05	0.145	0.048	<0.001	25.9	<0.002	<0.005	<0.005	<0.005	0.752	7.0
9a	0.66	<0.05	0.115	0.046	<0.001	25.8	<0.002	<0.005	<0.005	<0.005	1.110	6.8
9c	0.47	<0.05	0.035	0.048	<0.001	24.7	<0. 002	<0.005	<0.005	<0.005	0.789	6.6
10a	0.65	<0.05	<0.001	0.047	<0.001	25.8	<0.002	<0.005	<0.005	<0.005	1.080	6.8
10c	0.51	<0.05	0.015	0.044	<0.001	24.5	<0.002	<0.005	<0.005	<0.005	0.826	6.5
11a	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
12a	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
13a	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
14	0.54	<0.05	<0.001	0.048	<0.001	26.1	<0.002	<0.005	<0.005	<0.005	0.899	7.0
15	0.68	<0.05	<0.001	0.048	<0.001	26.5	<0.002	<0.005	<0.005	<0.005	1.150	6.9
16	0.72	<0.05	<0.001	0.048	<0.001	26.4	<0.002	<0.005	<0.005	<0.005	1.200	6.9
17	0.55	<0.05	0.025	0.050	<0.001	25.9	<0.002	<0.005	<0.005	<0.005	0.948	7.0
18	0.59	<0.05	0.035	0.048	<0.001	26.3	<0.002	<0.005	<0.005	<0.005	0.995	7.0
19	0.62	<0.05	0.025	0.048	<0.001	26.3	<0.002	<0.005	<0.005	<0.005	1.090	6.9

APPENDIX III TABLE 3 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR SEPTEMBER 13, 1984 - EXTRACTABLE METALS (Continued)

- 31 -

STATION NUMBER	Mn (mg/L)	Mo (mg/L)	Na (mg/L)	Ni (mg/L)	P (mg/L)	Pb (mg/L)	Sb (mg/L)	Se (mg/L)	Si (mg/L)	Sn (mg/L)	Sr (mg/L)	Ti (mg/L)	V (mg/L)	Zn (mg/L
2a	0.044	<0.005	2•1	<0.02	0.09	<0.02	<0.05	<0.05	4.3	0.09	0.118	0.021	<0.01	0.008
4	0.012	<0.005	1.7	<0.02	<0.05	<0.02	<0.05	<0.05	2.9	0.16	0.160	<0.002	<0.01	0.004
8b	0•032	<0.005	1.9	<0.02	0.07	<0.02	<0.05	<0.05	3.8	0.24	0.119	0.015	<0.01	0.00
8	0.029	<0.005	2.0	<0.02	0.08	<0.02	<0.05	<0.05	3.7	0.13	0.120	0.012	<0.01	0.01
9	0.040	<0.005	2•1	<0.02	0.09	<0.02	<0.05	<0.05	4.0	0.11	0.113	0.019	<0.01	0.00
9	0.030	<0.005	2•1	<0.02	0.05	0.05	<0.05	<0.05	3.8	0.11	0.111	0.013	<0.01	0.01
10	0.039	<0.005	2•1	<0.02	0.06	<0.02	<0.05	<0.05	4.1	0.05	0.114	0.017	<0.01	0.00
10	0.031	<0.005	2•2	<0.02	0.06	0.11	<0.05	<0.05	3.9	0.16	0.111	0.014	<0.01	0.01
11	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
12	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
13	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S	N/S
14	0•034	<0.005	2.0	<0.02	0.06	<0.02	<0.05	<0.05	3.9	0•20	0.119	0.015	<0•01	0.00
15	0.043	<0.005	2.1	<0.02	0.10	<0.02	<0.05	<0.05	4•2	0.23	0.116	0.020	<0.01	0.00
16	0.045	<0.005	2•2	<0.02	0•08	0.06	<0.05	<0.05	4.4	0•22	0.116	0.023	<0.01	0.00
17	0.035	<0.005	2.1	<0.02	0.06	<0.02	<0.05	<0.05	3.9	0.11	0.118	0.015	<0.01	0.00
18	0.036	<0.005	2.1	<0.02	0.06	<0.02	<0.05	<0.05	4.1	0.12	0.118	0.018	<0.01	0.00
19	0.039	<0.005	2•2	<0.02	0.07	<0.02	<0.05	<0.05	4.3	0.17	0.117	0.020	<0.01	0.00

APPENDIX III TABLE 3 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR SEPTEMBER 13, 1984 - EXTRACTABLE METALS (Continued)

STATION NUMBER	TEMP (°C)	IN SITU pH	LAB pH	IN SITU COND• (umhos/cm)	LAB COND• (umhos/cm)	DISSOLVED OXYGEN	COLOUR (colour units)	TURBIDITY (FTU)	T. HARD. (as CaCO ₃) (mg/L)	SULPHATE) (mg/L)	CHLORIDE (mg/L)
2a	1	7.69	7.6	90	228	10	<5	0•7	108	21	0.8
8a	1	7.67	7•6	110	240	10	<5	0.5	111	22	0.6
8b	N/A	N/A	N/A	N/A	240	N/A	<5	0.5	110	22	0.5
9c	1	7.74	7.8	100	235	10	<5	0.6	108	22	0.6
9a	N/A	N/A	N/A	N/A	230	N/A	<5	0.6	109	21	0.7
10a	1	7•72	7.7	130	232	10	<5	0.6	107	21	0.7
10b	N/A	N/A	N/A	N/A	232	N/A	<5	0.6	109	21	0.6
11a	1	7.60	7.6	119	238	N/A	<5	0.6	110	24	0.7
12a	1	7.76	7.6	90	240	N/A	<5	0.6	112	23	0.7
13a	1	7.70	7•6	115	235	N/A	<5	0.7	109	22	0.8
					• •						

APPENDIX III TABLE 4 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR MARCH 13, 1985

1 З 1

APPENDIX 111	TABLE 4	WATER QUALITY OF	YUKON RIVER AT DA	WSON CITY YU	KON FOR MARCH 13	1985 (continued)
		WATER QUALTER OF	TORON NITEL AT DA	WOON CITT, TO	NON FOR MARCH 13,	1902 (CONTINUED)

STATION NUMBER	TOTAL PHOSPHATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/l)	FR (mg/L)		T. .C. (mg/∟)
2a	0.021	<0.005	0.09	<0.005	<5	144	6.0	21.0
8a	0.034	<0.005	0.10	<0.005	<5	150	8.0	18.0
8b	0.004	<0.005	0.10	<0.005	<5	145	6.0	20.0
9a	0.002	<0.005	0.10	<0.005	<5	151	7.0	18.0
9b	0.004	<0.005	0.09	<0.005	<5	143	6.0	19.0
10a	0.004	<0.005	0.09	<0.005	<5	145	5.0	20.0
1 0b	0.003	<0.005	0.10	<0.005	<5	141	8.0	18.0
11a	0.005	<0.005	0.12	<0.005	<5	148	6.0	16.0
12a	0.007	<0.005	0.11	<0.005	<5	146	7.0	17.0
13a	0.004	<0.005	0.10	<0.005	<5	146	7.0	17.0

- 34 -

STATION NUMBER	Al (mg/L)	As (mg/L)	B (mg/L)	Ba (mg/L)	Be (mg/L)	Ca (mg/L)	Cđ (mg/L)	Co (mg/L)	Cr (mg/L)	Cu (mg/L)	Fe (mg/L)	Mg (mg/L)
2a	<0.05	<0.05	<0.001	0.050	<0.001	30.1	<0.002	<0.005	<0.005	<0.005	0.049	8.0
8a	<0.05	<0.05	<0.001	0.053	<0.001	30.8	<0.002	<0.005	<0.005	<0.005	0.045	8.2
8b	<0.05	<0.05	<0.001	0.052	<0.001	30.4	<0.002	<0.005	<0.005	<0.005	0.047	8.2
9a	<0.05	<0.05	<0.001	0.050	<0.001	29.8	<0.002	<0.005	<0.005	<0.005	0.041	8.0
9b	<0.05	<0.05	<0.001	0.050	<0.001	30.1	<0.002	<0.005	<0.005	<0.005	0.040	8.1
10a	<0.05	<0.05	<0.001	0.050	<0.001	29.6	<0.002	<0.005	<0.005	<0.005	0.033	8.1
10ь	<0.05	<0.05	<0.001	0.050	<0.001	30.1	<0.002	<0.005	<0.005	<0.005	0.038	8.2
11a	<0.05	<0.05	<0.001	0.055	<0.001	30.2	<0.002	<0.005	<0.005	<0.005	0.044	8.4
12a	<0.05	<0.05	<0.001	0.053	<0.001	30.8	<0.002	<0.005	<0.005	<0.005	0.089	8.4
13a	<0.05	<0.05	<0.001	0.050	<0.001	30.3	<0.002	<0.005	<0.005	<0.005	0.041	8.1
									-			

APPENDIX III TABLE 4 WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR MARCH 13, 1985 - EXTRACTABLE METALS (Continued)

APPENDIX III	TABLE 4	WATER QUALITY OF YUKON RIVER AT DAWSON CITY, YUKON FOR MARCH 13, 1985	
		- EXTRACTABLE METALS (Continued)	

Zn) (mg/L)	V (mg/L)	TI (mg/L)	Sr (mg/L)	Sn (mg/L)	Si (mg/L)	Se (mg/L)	Sb (mg/L)	Pb (mg/L)	P (mg/L)	Ni (mg/∟)	Na (mg/L)	Mo (mg/L)	Mn (mg/L)	STATION NUMBER
5 0.011	<0.005	<0.002	0.141	<0.01	3.3	<0.05	<0.05	<0.02	<0.05	<0.02	2.8	<0.005	0.005	2a
5 0.008	<0.005	<0.002	0.144	<0.01	3.2	<0.05	<0.05	0.03	<0.05	<0.02	2.5	<0.005	0.005	8a
5 0.006	<0.005	<0.002	0•144	<0.01	3.2	<0.05	<0.05	<0.02	<0.05	<0.02	2.5	<0.005	0.005	8b
5 0.008	<0.005	<0.002	0.141	<0.01	3.3	<0.05	<0.05	<0.02	<0.05	<0.02	2.7	<0.005	0.004	9a
5 0.007	<0.005	<0.002	0•142	<0.01	3.3	<0.05	<0.05	0.03	<0.05	<0.02	2.7	<0.005	0.005	9b
5 0.006	<0.005	<0.002	0.143	<0.01	3.3	<0.05	<0.05	<0.02	<0.05	<0.02	2•8	<0.005	0.004	10a
5 0.006	<0.005	<0.002	0.143	<0.01	3.3	<0.05	<0.05	<0.02	<0.05	<0.02	2.8	<0.005	0.004	10b
5 0.006	<0.005	<0.002	0.149	<0.01	3.2	<0.05	<0.05	<0.02	<0.05	<0.02	2.6	<0.005	0.005	11a
5 0.008	<0.005	<0.002	0•145	<0.01	3.3	<0.05	<0.05	0.09	<0.05	<0.02	2•7	<0.005	0.008	12a
5 0.008	<0.005	<0.002	0.141	<0.01	3.3	<0.05	<0.05	<0.02	<0.05	<0.02	2•7	<0.005	0.004	13a
2:	<0.00	<0.002	0.141	<0.01	3.3	<0.05	<0.05	<0.02	<0.05	<0.02	2•7	<0.005	0.004	13a

APPENDIX IV

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE

-

SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCE(S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE(S)
Alkalinity mg/1	Not considered a public			
(Total)	health problem	4	>20	3
Aluminum (Al) mg/l	Not considered a public	·		2
	health problem	7	0.1	5
Ammonia (NH3-N) mg/l	0.5	4	0.02	3
Arsenic (As) mg/l	0.05	1	0.05	2
Barium (Ba) mg/1	1.0	1	5.0	7
Cadmium (Cd) mg/l	0.005	1	0.0002	2
Calcium (Ca) mg/1	75-200	7		~
Chloride (Cl)mg/1	250	1		
Chromium (Cr) mg/1	0.05	1	0.04	2
Colour Pt. Counts	15	1		-
Conductivity @ 25°C	Depends on dissolved			
(umhos/cm)	salts	7	150-500	6
Copper (Cu) mg/1	1.0	1	0.005	5
Dissolved oxygen				-
(% saturation)	Near 100%	4	>5.0 mg/1	3
Hardness (Total)				2
as mg/l CaCOz	80-100	1		
Iron (Fe) mg/1	0.3	1	1.0	3
Lead (Pb) mg/1	0.05	1	0.005 (soft H ₂ 0*)	2
-			0.01 (hard H ₂ O*)	2
Magnesium (Mg) mg/l	50	4	۷.	
Manganese (Mn) mg/l	0.05	1	1.0	7
Nickel (NI) mg/1	0.25	. 2	0.025 (soft H ₂ 0*)	2
			0.25 (hard H ₂ O*)	2
Nitrate (NO3-N) mg/l	10	1	2	
Nitrite (NO ₂ -N) mg/1	0.001	1		
pH units	6.5 - 8.5	1	6.5 - 9.0	3
Phosphorus (P) mg/l				
(Total)			0.020 to prevent algae	5

APPENDIX IV TABLE 1 WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE

	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCE (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE (S)
esidue: Filterable mg/l			70 - 400 with a maximum	
Total dissolved solids)	1000	4	of 2000	6
elenium (Se) mg/l	0.01	1	0.01	2
ilver (Ag) mg/l	0.05	1	0.0001	2
odium (Na) mg/l	20	1		
trontium (Sr) mg/l	10	1		
ulphate (SO ₄) mg/l	500	1		
in (Sn) mg/l	Not present in natural			
	waters	7		
urbidity J.T.U.	5	1		
inc (Zn) mg/]	5.0	1	0.030	5
Soft water has a total h 95 mg/l as CaCOz (Refere	ardness less than 95 mg/l as nce 6).	CaW3. Hard water	r has a total hardness of mc	re than

APPENDIX IV TABLE 1 WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE (continued)

APPENDIX IV TABLE 1 WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE (continued)

	SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCE (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE(S)
•	Northwest	s for Establishing Water Quali Territories. Report of the Wor ds, Yukon and Northwest Territo	rking Group on Water	ne Territorial Waters of the r Quality Objectives to the	e Yukon and Chalrmen,
•	Ontario Ministry of of the Min	the Environment, <u>Water Manageme</u> Istry of the Environment. (197	ent - Goals, Policie 78).	es, Objectives and implement	tation Procedures
•	Environment Canada, <u>F</u> Environmen	Pollution Sampling Handbook. F tal Protection Service, West Va	Pacific Region Labo ancouver, B.C. (193	ratory Services, Fisheries (76).	Operations and
•	California State Wate McKee and N	ər Resources Control Board, <u>Wat</u> Wolf. (1963)	ter Quality Criteria	a. Publication No. 3-A Sec	ond Edition by