UNIVERISITY OF WATERLOO

WATERLOO RESEARCH INSTITUTE

THERMAL ANALYSIS OF TRAPEZOIDAL GROOVED HEAT PIPE WALLS,
BY:/Schneider, G.E. and Yovanovich, M.M.
DSS. Contract No. OSU4-0178
Scientific Authority: V. Wehrle DSM

UNIVERSITY OF WATERLOO

WATERLOO RESEARCH INSTITUTE

by

Thermal Engineering Group
Department of Mechanical Engineering
University of Waterloo
Waterloo, Ontario
Prepared for
Communications Research Centre
CRC 6656-1 (SCS) Program
Supported by
The Department of Communications
under Department of Supply and Services Contract Number OSU4-0178

WRI Project 3061-2

August, 1975

1
I
!
I
I
I
I
I
I
I
I
DD 10519341
I

1
I

The authors wish to express their sincere appreciation to the Communications Research Centre for their financial support under Research Grant CRC 6656-1 (SCS) program.

During the course of the investigation the authors had on several occasions the privilege of discussing various aspects of the problem with Professors J. C. Thompson and G. M. McNeice of the Department of Civil Engineering, University of Waterloo. Conversations with Dr. R. Kosson, Grumman Aerospace Corporation, New York, N.Y. and with Dr. C. C. Roberts, Bell Laboratories, Naperville, Illinois, were also helpful.

Abstract

It has been the purpose of this report to examine the thermal characteristics of heat transfer through a heat pipe wall whose inner surface is grooved with grooves of trapezoidal cross-section. An understanding of the heat transfer characteristics of such a wall is fundamental to the accurate prediction of heat pipe performance characteristics. The cases considered in this report degenerate to grooves of V-shaped cross-section in one 1 imit and to rectangular grooves in the other limit. While results are presented for symmetric groove crosssections only, the analysis and prediction program maintain the flexibility of considering the non-symmetric situation.

It is established that conduction heat transfer is the dominant mode of energy transport within the composite metal/working fluid section of the grooved pipe wall. The composite conduction problem is mathematically formulated and the analytic solution to the governing differential equations is examined. While the functional form of the solution is easily obtained, the many constraints which must simultaneously be satisfied leave the complete analytic solution intractable. It is concluded that a numerical solution procedure must be used to effect the solution and that due to the geometric irregularity of the solution domain, the finite element method will be most appropriate.

A limit study is performed to provide upper and lower bounds for the equivalent groove Nusselt number. The two theorems of Elrod are used to provide these limiting values. Although the limits resulting from such a study can often be used to provide acceptable engineering predictions, this is not the case here. As a result the limit study

here serves to provide a check on the values determined from the finite element prediction program.

A finite element formulation of the heat conduction equation is derived for application to any general orthogonal curvilinear coordinate system. The generalized formulation presented herein bears a strong resemblance to the cartesian form in common usage with only minor modifications required to a cartesian program to reflect the coordinate system generalization. Reduction of the general form is made to the cartesian coordinate system for application to the trapezoidal groove problem.

Although the finite element method maintains the flexibility of considering irregular geometries, application of the method to the trapezoidal groove heat transfer prediction is not direct. Difficulties were experienced in generating a discretization mesh which could adequately describe both the severe local thermal behavior near the meniscus/ metal contact and the conductive region in the remainder of the fin. Description of the above thermal field is subject to the further constraint that the prediction program storage requirement does not exceed that avallable on current computing facilities. After two unsuccessful mesh generators were discarded, a third, acceptable, mesh generation scheme was adopted. The difficulties encountered here reflect the difficulty involved in solving the complete, composite, thermal problem.

With the finite element program functioning correctly, a parametric study was conducted to determine fully the thermal characteristics of the equivalent Nusselt number. Symmetric groove cross-sections only are explicitly considered in this work thus restricting the dependence
to four parameters. These are the liquid/metal conductivity ratio, the groove depth, the metal fin tip land area ratio, and the normalized apparent meniscus contact angle. The dependence of the equivalent groove Nusselt number is fully discussed in the text. A correlation equation, applicable over the range of parameters investigated in this work, is presented and interpolates the numerical data with a maximum error of correlation of seven per cent.

Application of the results of this work $1 s$ made to the prediction of heat pipe surface temperature variations. It is found that in cases where substantial variations exist in the groove equivalent heat transfer coefficient, the variations exhibited by the pipe surface temperacures can be considerably less severe, but that the degree of insensitivity will be application dependent.

Nomenclature

A_{1}	heat pipe internal surface area evaluated at the groove root diameter
$\mathrm{A}_{\mathbf{f}}$	working fluid flow cross-sectional area
A_{1}, A_{2}	constants (defined in text)
$\mathrm{B}_{1}, \mathrm{~B}_{2}$	constants (defined in text)
[B]	coefficient matrix in effective curvilinear field vector
c	geometric constant (defined in text)
$c_{\text {p }}$	specific heat at constant pressure
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$	constants (defined in text)
d	depth of groove section
D_{h}	hydraulic diameter
$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}$	correlation constants (defined in text)
f	friction factor
$\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}$	elements of effective curvilinear property matrix, equation (5-13)
[f]	constant vector in finite element equations
g	metric coefficient, $g=g_{1} \cdot g_{2} \cdot g_{3}$
g_{1}, g_{2}, g_{3}	metric coefficients, equation (5-3)
[G]	curvilinear field vector
h_{a}	pipe to ambient film or attachment heat transfer coefficient
${ }^{\mathrm{h}}$.eq	equivalent heat transfer coefficient
$\mathrm{hfg}_{\mathrm{fg}}$	latent heat of vaporization
H	total wall thickness of typical cell
HLSD	H-d
J	Jacobian of local-global coordinate transformation
k	thermal conductivity

friction factor coefficient or conductance (defined in text)
K (»)
$K^{\prime}(\lambda)$
[K]
$\ell_{1}, \ell_{2}, l_{3}$
$L_{, ~} L_{a}, L_{c}, L_{e}$ length of heat pipe; total, adiabatic, condenser, and evaporator
$\dot{\mathrm{m}}$
rass flow rate
normal to surface
groove pitch (number of grooves/lineal distance)
element shape functions for use in finite element analysis
Nusselt number (defined in text)
wetted flow perimeter
pressure or heat generation rate per unit volume (defined in text)

Prandt1 number
saturation pressure
heat flux
applied evaporator heat: flux
radial coordinate
inner pipe radius
1iquid level in V-groove measured along the groove wall
outer pipe radius
mean inner (groove) pipe radius
universal gas constant or thermal resistance (defined in text)
Reynold's number

R_{0}	groove side wall length for V-groove
ikj	effective curvilinear property matrix
s	groove coordinate, curvilinear distance, or finite element local coordinate (defined in text)
S	surface
t	time or local finite element coordinate (defined in text)
T	temperature
Ta	heat pipe ambient temperature
T ${ }_{\text {v }}$	vapor temperature
T_{fi}	Interface liquid temperature
$\mathrm{T}_{\text {si }}$	Interior pipe surface temperature
$\mathrm{T}_{\text {so }}$	exterior pipe surface temperature
${ }^{1} \mathrm{vi}$	Interface vapor temperature
u_{1}, u_{2}, u_{3}	general orthogonal curvilinear coordinates
v	argument of Jacobian elliptic sine amplitude function
v	volume
w	width of typical groove cell
x	cartesian coordinate
x_{α}	non-dimensional apparent contact angle, $\mathrm{x}_{\alpha}=\alpha /\left(\pi / 2-\theta_{0}\right)$
X	separated component of analytic solution in the x-direction
y	cartesian coordinate
y_{1}	ordinate for interface geometric description
Y	separated component of analytic solution in the y-direction
z	longitudinal coordinate

```
a
\alphao groove entrance apparent contact angle
\mp@subsup{a}{ba}{}
    radius of curvature of liquid free surface
    ratio of specific heats, Y}=\mp@subsup{c}{p}{\prime}/c,\mathrm{ or included angle of liquid
    or metal section in 11mit study (defined in text)
    coupling coefficient, 0< 
    variational operator
    increment in accompanying argument
    groove tip and root area ratio
    oblate spheroidal coordinate
    circumferential or oblate spheroidal coordinate (defined in text)
    geometric parameter or modulus of complete elliptic integral of
    first kind (defined in text)
    separation constant or modulus of complete elliptic integral of
    first kind (defined in text)
    viscosity
    kinematic viscosity, v= / /p
    mass density or radial coordinate in limit study (defined in text)
    surface tension
    cfrcumferential or oblate spheroidal coordinate (defined in text)
    circulation flow velocity in V-grooves
    average groove section velocity
    reference velocity for normalization, \mp@subsup{\omega}{0}{}=(\mp@subsup{r}{0}{2}/\mu\mp@subsup{r}{p}{})\frac{\partialP}{\partial\psi}
```


Subscripts

a	ambient
f	liquid
1	interface
m	metal
0	outer
s	surface
T	total

I sub-region I in Ifit study
II sub-region II in limit study
III sub-region III in limit study
Acknowledgements 1
Abstract 11
Nomenclature v
Chapter 1 - Introduction 1.
Chapter 2 - Background 7
2.1 Introduction 7
2.2 Thermal Analysis 9
2.3 Liquid Re-Circulation Hydrodynamics 14
2.4 The Equivalent: Heat Transfer Coefficient 19
Chapter 3 - The Groove Heat Transfer Problem 23
3.1 Introduction 23
3.2 General Considerations 24
3.2.1 Vapor/Liquid Interface 26
3.2.2 Convective Energy Transport 29

1) Along Groove Length 29
ii) Within Groove Cross-Section 31
3.2.3 Typical Cell for Analysis 31
3.3 Problem Description 32
3.4 Mathematical Statement of the Problem 35
3.5 Analytical Solution 38
3.6 Numerical Solution 40
Chapter 4 - Bounds on the Groove Heat Transfer 43
4.1 Introduction 43
4.2 Maximum Groove Heat Transfer 45
4.2.J. Sub-Region I 45
4.2.2 Sub-Region II 50
4.2.3 Sub-Region III 52
4.2.4 Overall Heat Transfer 52
4.3 Minimum Groove Heat Transfer 53
4.3.1 Sub-Region I 55
4.3.2 Sub-Region II 60
4.3.3 Overall Heat Transfer 62
4.4 Results and Conclusions 63
Chapter 5 - Finite Element Analysis 69
5.1 Introduction 69
5.2 The Finite Element Method 69
5.2.1 Preliminary Remarks 70
5.2.2 Variational Statement 73
5.2.3 Spatial Discretization 77
5.3 Application to Trapezoidal Groove Heat Transfer 80
5.4 Problems in Effecting the Solution 85
5.4.1 Mesh Generation Scheme I 87
5.4.2 Mesh Generation Scheme II 95
5.5 Successful Application of the Method 98
5.5.1 Mesh Generation Scheme III 99
5.5.2 Convergence Characteristics 102
5.5.3 Accuracy of the Results 103
5.6 Comparison with a Limiting Analytical Solution 109
5.7 Conclusions 113
Chapter 6 - Numerical Results 115
6.1 Introduction 115
6.2 Parametric Study 115
6.3 Discussion of the Results 131
6.4 Correlation of the Equivalent Nusselt Number 134
6.5 Conclusions 139
Chapter 7 - Application of the Analysis 141
7.1 Introduction 141
7.2 Case I 142
7.2.1 Pipe Geometry and Thermal Loading 142
7.2.2 Numerical Results 144
7.3 Case II 146
7.3.1 Pipe Geometry and Thermal Loading 151
7.3.2 Numerical Results 151
7.4 Closure 157
Chapter 8 - Discussion and Conclusions 159
8.1 Summary 159
8. 2 Conclusions 163
References 165
Appendix A - Geometric Description of Trapezoidal Groove Section 171
Appendix B - Programs for Heat Transfer Limit Evaluation 175
B. 1 Introduction 175
B. 2 Groove Heat Transfer Lower Limit Program Nomenclature 175
B. 3 Groove Heat Transfer Lower Limit Program Listing 177
B. 4 Groove Heat Transfer Upper Limit Program Nomenclature 181
B. 5 Groove Heat Transfer Upper Limit Program Listing 181
Appendix C - Finite Element Formulation of the Heat Conduction 185 Equation in General Orthogonal Curvilinear Coordinates
C. 1 Introduction 185
C. 2 Preliminary Remarks 187
C. 3 Variational Statement 190
C. 4 Spatial Discretization 195
C. 5 Application of the Results 200
C. 6 Discussion and Conclusions 209
Appendix D -- Finite Element Groove Heat Transfer Prediction 213 Program
D. 1 Introduction 213
D. 2 Input Informetion 214
D. 3 Program Listing 216
Appendix E = Typical Output from Finite Element Groove Heat Transfer Prediction Program 233
E. 1 Introduction 233
E. 2 Sample Output: Description 233
E. 3 Sample Output: 236
Appendix F - Linear Quadrilateral Isoparametric Finite Element 271
F. 1 Introduction 271
F. 2 Geometric Description 271
F. 3 Field Description 273

Chapter 1

Introduction

In recent years it has become increasingly important to develop methods for the efficient transport of thermal energy from one location to another. The use of high component-density electronic circuitry and the operational; inefficiencies of the components used may impose heat transfer requirements on the design which conventional heat transfer devices are unable to maintain. In such applications, the heat pipe may often offer the only practical solution to the themal problem under consideration.

In addition the realization of a limited world supply of conventional forms of energy has led to a search for more efficient methods of energy conversion. Here, heat pipes may find a role in reducing extraneous temperature drops not directly related to the conversion of thermal energy to, say, electrical energy, thus allowing a closer approach of the system conversion efficiency to the limiting Carnot efficiency for the conversion cycle.

Perhaps the most demanding heat transfer requirement at present is the thermal control of spacecraft [1-8]. Due to the large thermal gradients which are commonly experienced in spacecraft applications and the associated high thermal stresses, a device is sought which would serve to 'isothermalize' the spacecraft structure. This is an fmportant consideration in the design of the telemetry, guidance, and orbit stabilization systems of a spacecraft. A second problem of
spacecraft thernal control is related to the efficient utilization of the available space within the spacecraft for the experimental, control, and communications equipment packages. If the heat generated within the spacecraft due to the operational inefficiencies of the onboard equipment is not effectively dissipated from the spacecraft, the resultant temperature rise of the electronic equipment above tolerable operational limits may lead to performance degradiation and/or complete system failure. In view of the consequences of a complete syster faflure in spacecraft applications, these thermal problems warrant considerable attention and here, again, the use of heat pipes may provide the only practical solution. In addition to its favorable thermal characteristics, heat pipes in spacecraft applications also present a low weight penalicy to the spacecraft design as a result of their hollow construction. Since the heat pipe can offer substantial advantages over conventional heat transfer devices in its application to thermal control, its appearance in spacecraft designs is becoming increasingly prevalent.

A definition of a heat pipe has been given in the comprehensive review article by Winter and Barsch [9] as, "A heat pipe is defined as a closed structure containing some working fluid which transfers thermal energy from one part of the structure to another by means of vaporization of a liquid, transport and condensation of the vapor, and the subsequent return of the condensate from the condenser by capillary action to the evaporator". If the working fluid of such a device is free of contaminants, then the temperature within the structure will be very nearly isothermal throughout the region of vapor transport by virtue of the two phases present'within the pipe existing
simultaneously in equilibrium with one another. While the vapor/liquid interaction leads to isothermal behavioral, characteristics, significant overall temperature drops may often occur due to heat transfer within the wicking mechanism and pipe walls. Since the thermal conductivity of typical working fluids for moderate temperature heat pipes is low, considerable effort has been directed towards the development of high conductance wicking mechanisms [7, 10-14]. The present generation of high capacity, high conductance heat pipes is a direct result of this development.

The wide variety of heat pipe designs currently in use can be broadly categorized according to the maximum heat transfer rate they will afford the designer. This heat transfer rate is directly proportional $\pm \subset$ the mass flow of the working fluid which can be circulated within the pipe through the proportionality factor, the latent heat of vaporization. For moderate temperature applications (150-750 ${ }^{\circ} \mathrm{K}$) the maximum rate of circulation is determined primarily by the viscous losses within the liquid whioh must be overcome by the capillary pumping action of the wicking mechanism.

The most primitive wick design consists of simply lining the smooth inner diameter of a pipe with a porous material [15]. Wire mesh screening is commonly used in these designs with the maximum available pumping capability determined by the 'pore size' of the mesh. Due to the small spacing between the screen and pipe inner wall, however, viscous shear stresses arising from this configuration will be large resulting in a relatively low liquid re-circulation capability.

Since this necessarily dictates a relatively low heat transfer capability, such designs are characterized as low capacity heat pipes, Indeed, not only do these designs have a low heat transfer capacity, but also, since the heat addition and extraction must occur through a relatively low conductance liquid/wick matrix, these designs also have a relatively low overall thermal conductance. This is an unavoidable consequence of these designs since the wick mechanism serves not only as a liquid return pach but also to wet the inner pipe wall of the evaporator to maximize the evaporative heat transfer.

In recognition of the disadvantages of the low capacity heat pipes, subsequent efforts were directed at increasing the ratio of flow area to flow perimeter in the liquid return passages. One means of achieving this result is by machining (extruding) longitudinal grooves in the pipe wall. Not only does this reduce the viscous flow losses of the return path but, due to the fin-11ke behaviour of the remadning extended portions of the original pipe wall, the heat transfer characteristics of this design are also improved. Since the passage size is restricted by capillarity considerations, however, the available gains from this design are also limited. Heat pipe designs typified by that described above are characterized as moderate capacity designs and also have moderate performance characteristics.

Attempts to alleviate the 1 imitations associated with the previous two designs have led to the conception of the present generation of high capacity heat pipe designs, with which this work is primarily concerned, although the results may also be applied to certain moderate

It is the object of this study to examine in greater detail the heat fransfer processeg occurring in the 1iquid/metal composite region of grooved heat pipe walls. In addition, this work will extend consideration $t o$ grooves of an arbitrary trapezoidal cross-section including as limiting cases the V-groove section discussed above as well as the rectangular groove section. In the prediction of heat pipe performance, the accurate prediction of the pipe wall and groove conductance is paramount to accurate prediction of the overall pipe conductance since by virtue of its operation, the vapor core of the heat pipe will exhibit near isothermal behaviour. Thus, since the majority of the temperature drop encountered in high capacity, moderate temperature heat pipes will occur in the groove region, accurate prediction of the groove thermal behaviour is fundamental to the accurate prediction of the overall performance of heat pipes of this design.

2.1 Introduction

In a previous report [16], the present authors examined the threc-dimensional thermal analysis of a high capacity heat pipe operating in the steady-state. The heat pipe of interest consisted of a circular tube having circumferential grooves of V-shaped cross-section wound in a tight helix along the length of the pipe. Liquid return transport is afforded by three longitudinal arteries aligned across the diameter of the pipe. The cross-section of the pipe of interest is illustrated schematically in figure 2-1.

The pipe shown in figure $2 \mathbf{- 1}$ is a high capacity heat pipe having the mechanisms of liquid return transport and wall wetting distribution decoupled from each other. The larger diameter artery passages are used to minimize the re-circulation viscous pressure losses in order to obtain a high thermal transport capability while the grooves, used for distribution of the working fluid over the pipe inner wall, can be designed to minimize the temperature drop between the pipe exterior surface and the vapor core over both the evaporator and condenser regions of the pipe. A complete thermal analysis must include, then, the variation of the temperature distribution within the pipe which results from changes in the liquid flow cross-section. These liquid flow cross-sectional changes in turn are the result of the viscous pressure losses associated with the hydrodynamic return path taken by the working fluid as it flows from the condenser back to the evaporator. It is the influence of changes in the liquid flow cross-section on the local heat transfer characteristics of a grooved lieat pipe wall which is under investigation in this work.

Figure 2-1

The purpose of the present chapter is to briefly review the work performed in the previous report. This brief review will serve both as an introduction to and as motivation for the present work.

2.2 Thermal Analysis

Figure 2-2 illustrates schematically a typical heat pipe shell. Due to the tubular nature of the pipe design under consideration the coordinate system best able to describe the temperature field within the pipe will be the circular cylinder coordinate system. The origin of this system and the coordinate directions are indicated in the figure.

The region of heat input on the exterior surface of the pipe, L_{e}, is given the name 'apparent evaporator section' while by a similar definition the region of heat extraction on the exterior surface, L_{c}, is given the name 'apparent condenser section'. The remaining exterior surface area will be adiabatic and is given the name 'apparent adiabatic section', denoted by L_{a}. The regions of actual evaporation and condensation, however, are not restricted to the physical confines of the apparent evaporator and condenser sections respectively. Under suitable conditions [17] there may be no appreciable effective adiabatic section on the inner surface even if there exists an adiabatic section of considerable length on the exterior surface.

In the absence of internal heat generation and in consideration of steady state operation, the differential equation governing the heat transfer within the pipe shell will be Laplace's equation in circular cylinder coordinates,

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \psi^{2}}+\frac{\partial^{2} T}{\partial z^{2}}=0 \tag{2-1}
\end{equation*}
$$

Figure 2-2

The inclusion of all three coordinates, r, ψ, and z, has been made since in general the temperature field must be allowed to vary independently in each of the three principal directions.

The boundary conditions which apply to the solution of equation (2-1) are all well defined with one exception. The exception is the specification of the inner pipe surface thermal interaction with the vapor core.

As shown by the cross-section as illustrated in figure 2-3(a), even the geometric description of the inner pipe boundary will be a tedious and difficult task. To apply the conditions existing at this boundary directly would lead to an unnecessarily complicated analytic solution or require an extremely high degree of detail if numerical methods are used. It becomes apparent, then, that a simplification of this boundary condition is desired to avoid an unduly complicated solution. In addition to the above geometric complications, the heat transfer mechanism at the pipe inner surface may also vary in both the circumferential and longitudinal directions.

To avoid an unduly complicated solution, an equivalent heat transfer coefficient, $h_{e q}$, has been defined to characterize the thermal behavior in the region extending from a hypothetical surface located at the groove root diameter, through the metal 'fin' and the fin/liquid interface, and finally through the liquid within the groove to the vapor core. This is illustrated in figure $2 \mathbf{- 3 (b)}$ for the case of triangular or V-shaped grooves. Once this equivalent heat transfer coefficient has been determined, the inner surface boundary condition application becomes that of a hypothetical inner surface interacting with an environment at the vapor temperature, T_{v}, through a heat transfer coefficient, $h_{e q}$.

The complete set of boundary conditions assumed for this analysis can then be written as

1) $z=0 \quad \frac{\partial T}{\partial z}=0$
2) $z=L \quad \frac{\partial T}{\partial z}=0$
3) $\psi=0 \quad \frac{1}{r} \frac{\partial T}{\partial \psi}=0$
4) $\psi=\pi \quad \frac{1}{r} \frac{\partial T}{\partial \psi}=0$
5) $r=r_{i n} \quad \frac{\partial T}{\partial r}=\frac{h_{e q}(\psi, z)}{k}\left(T_{s 1}(\psi, z)-T_{v}\right)$
6) $r: r_{\text {out }} \quad$ (a) $0 \leqslant z \leqslant L_{e} ; k \frac{\partial T}{\partial r}=q_{e}(\psi, z)$
(b) $L_{e} \leqslant z \leqslant\left(L_{e}+L_{c}\right) ; \frac{\partial T}{\partial r}=0$
(c) $\left(L_{e}+L_{c}\right) \leqslant z \leqslant L ; \frac{\partial T}{\partial r}=\frac{-h_{a}(\psi, z)}{k}\left(T_{s o}-T_{a}\right)$

As can be seen from these conditions, a condition of symmetry about the plane defined by $\psi=0$ and $\psi=\pi$ is assumed, insulated end caps are assumed, and a specified flux distribution is prescribed over the evaporator surface while the condenser interacts with the environment at T_{a} through an attachment coefficient, h_{a}.

The vapor temperature, not known a priori, must further satisfy the relation

$$
\begin{equation*}
T_{v}=\frac{\int_{A_{i}} h_{e q}(\psi z) T_{s i}(\psi, z) d A_{i}}{\int_{A_{1}} h_{e q}(\psi, z) d A_{i}} \tag{2-3}
\end{equation*}
$$

where $\mathrm{T}_{\mathrm{si}}(\psi, z)$ is the temperature distribution over the hypothetical inner surface, A_{i}, located at the groove root diameter.

Figure 2-3

Figure $2-4$

In the previous report [16] a finite difference solution to equation (2-1) subject to the boundary conditions (2-2) and the constraint equation (2-3) was presented. In applying the solution to heat pipe situations, however, the distribution of the equivalent heat transfer coefficient over the pipe inner surface, must be known. Determination of $h_{\text {eq }}$ is not direct, though, since it will depend on the local liquid flow crosssection, which in turn depends on the pipe operating conditions. It was therefore necessary to exainine the hydrodynamics of the heat pipe iiquid flow as the condensate returns from the condenser to the evaporator.

2.3 Liquid Re-circulation Hydrodynamics

There are two separate regions of hydrodynamic consideration in the operation of the high capacity heat pipe. The first of these is the liquid return flow within the arteries and for this case, it was assumed that the viscous pressure drops locally can be determined from friction factor results for flow in a pipe where the mass flow rate is the local arterial one. This analysis, then, and the requirement that the pressure at any given longitudinal position be unique, provides an input to the second hydrodynamic region, the liquid flow within the circumferential grooves. While correlations already exist for the first region above, the second region had not been previously examined and required analysis.

Under the assumption that the groove flow is quasi-fully-
developed at any circumferential station, an analysis was performed to determine the friction factor for laminar flow in a V-groove. With the origin of a circular cylinder coordinate system located as indicated in figure 2-4 the normalized equation and boundary conditions are

$$
\begin{equation*}
\frac{\partial^{2} \omega^{*}}{\partial r^{*}}+\frac{1}{r^{*}} \frac{\partial \omega^{*}}{\partial r^{*}}+\frac{1}{r^{\star 2}} \frac{\partial^{2} \omega^{*}}{\partial \theta^{2}}=1 \tag{2-4}
\end{equation*}
$$

and

1) $\omega^{*}(0, \theta)=0$
2) $\omega^{*}\left(r^{*}, \theta_{0}\right)=0$
3) $\left[\frac{1}{r^{*}} \frac{\partial \omega^{*}}{\partial \theta}\right]_{\theta=0}=0$
4) $\left[\frac{\partial \omega^{*}}{\partial n}\right]_{r}{ }^{*}=r_{s}^{*}(\theta)$
where in the above
and

$$
\begin{align*}
r^{*} & =r / r_{0} \\
\omega^{*} & =\omega / \omega_{0} \tag{2-6}\\
\omega_{0} & =\left(\frac{r_{0}^{2}}{\mu r_{p}}\right) \frac{\partial p}{\partial \psi}
\end{align*}
$$

In their normalized form, the above equation and boundary conditions are identical to the system solved by Ayyaswamy, Catton, and Edwards [18] for a slightly different problem. Nevertheless, their solution is directly applicable here.

By defining a groove friction factor, f, by the relation

$$
\begin{equation*}
\frac{1}{r_{p}} \frac{\partial P}{\partial \psi}=\frac{f}{D_{h}}\left(\frac{1}{2} \rho \bar{\omega}^{-2}\right) \tag{2-7}
\end{equation*}
$$

with D_{h} the hydraulic diameter, r_{p} the groove mean radius from the pipe centerline, ψ, the angular coordinate around the pipe, and $\bar{\omega}$ the average section velocity. By further defining a friction factor coefficient, K, by the equation

$$
\begin{equation*}
f=\frac{K}{R e} \tag{2-8}
\end{equation*}
$$

with $\quad \operatorname{Re}=\frac{D_{h} \bar{\omega}}{v}$
the friction factor was found to be

$$
\begin{equation*}
K=\frac{2 D_{h}^{* 2}}{\vec{\omega}^{*}} \tag{2-10}
\end{equation*}
$$

After completing the analysis to determine $\bar{\omega}^{*}$, the results were correlated by the correlation equation

$$
\begin{align*}
K= & 46.222-14.905 \theta_{0}+26.699 \tan \left(1.014 \theta_{0}\right) \alpha \\
& +4.592 \sqrt{\sin \left(1.8 \theta_{0}\right)} \sin \left(\frac{\pi \alpha}{\pi / 2-\theta_{0}}\right) \tag{2-11}
\end{align*}
$$

with an error of $\pm 2 \%$ for all reported values.
After having determined the friction factor for quasi-fullydeveloped, laminar flow, the results were applied in a one-dimensional analysis along the groove in which the pressure forces due to surface tension are balanced by the viscous, groove wall shear stresses. The flow situation is depicted in figures 2-5(a) and (b). The differential equation governing the contact angle and liquid level recession an darived to be

$$
\begin{equation*}
\frac{\sigma \cos \left(\alpha+\theta_{0}\right)}{r_{0}^{2} \sin \theta_{0}} \frac{d r_{o}}{d s}+\frac{\sigma \sin \left(\alpha+\theta_{0}\right)}{r_{0} \sin \theta_{0}} \frac{d \alpha}{d s}=\frac{-K_{\mu} \dot{m}}{\rho D_{h}^{* 3} r_{0}^{4}} \tag{2-12}
\end{equation*}
$$

Equation (2-12) indicates, in its present form, that both a liquild level recession and a contact angle recession may occur simultaneously. In practice, however, there will be two distinct regions of flow in a V-groove: the first consisting of contact angle recession to a minimum 'break-away' angle and the second consisting of liquid level recession. The basis for arriving at this conclusion is illustrated in figure 2-6.

(b)

$$
\begin{aligned}
& \left\{-\frac{d \dot{m}}{d s}\right.
\end{aligned}
$$

(c)

Figure 2-5

Figure 2-6

Ideally the contact angle exhibited by a solid/liquid/vapor interface will take on a unique value, and when operating under design conditions, the liquid level at the groove inlet will be R_{o}, the maximum value, However, as shown in the figure, due to the practical impossibility of obtaining perfectly sharp groove tips, a rounded edge will occur in actuality. (Noce that since the radius of the rounded edge is small relative to the dimension of R_{0}, any location on the rounded surface can be characterized by R_{0}).

It becomes apparent, then, that for a fixed actual solid/liquid/ vapor contact angle or 'break-away' angle, $\alpha_{b a}$, an infinite number of apparent contact angles can be imagined without appreciable change in R_{0}. Upan recession to the location where the round meets the flat groove side, the apparent and actual contact angles take on the same value, $\alpha_{b a}$. A further pressure drop must then be exhibited by a recession in liquid level with fixed contact angle.

The single differential equation in two unknowns, equation (2-12), can then be reduced to two differential equations, each valid over a single flow region. These are

$$
\begin{equation*}
\frac{\sigma \sin \left(\alpha+\theta_{0}\right)}{R_{0} \sin \theta_{0}} \frac{d \alpha}{d s}=\frac{-K \mu \operatorname{m}}{\rho D_{h}^{* 3} R_{0}^{4}} \tag{2-13}
\end{equation*}
$$

for $\left(\pi / 2 \cdots \theta_{0}\right)>\alpha>\alpha_{b a}$, and

$$
\begin{equation*}
\frac{\sigma \cos \left(\alpha+\theta_{o}\right) \frac{d r_{o}}{r_{o}^{2} \sin \theta_{o}} \frac{-K \mu \dot{m}}{\rho D_{h}^{* 3} r_{o}^{4}}}{\frac{\dot{m}}{4}} \tag{2-14}
\end{equation*}
$$

for $0=\alpha_{b a}$.

It was found that under moderate thermal loading, the contact angle recession is not severe. In consideration of an evaporator groove, whose contact angle at groove entrance is α_{0}, the variation of the apparent contact angle is given by
where

$$
\begin{equation*}
\alpha=\frac{-D_{4}}{D_{3}}+\sqrt{\left(\alpha_{0}+\frac{D_{4}}{D_{3}}\right)^{2}-\frac{2 D_{1}}{D_{3}}\left(s^{*}-\frac{s^{* 2}}{2}\right)} \tag{2-15}
\end{equation*}
$$

$$
\begin{equation*}
D_{1} \equiv\left(\frac{2 v}{\sigma h_{f g}}\right) \cdot(q) \cdot\left(\frac{s_{0}}{R_{0}}\right)^{2} \tag{2-16}
\end{equation*}
$$

and D_{3} and D_{4} are obtained from Table 2-1.
For the condenser grooves the contact angle variation is given by

$$
\begin{equation*}
\alpha=\frac{-D_{4}}{D_{3}}+\sqrt{\left(\alpha_{0}+\frac{D_{4}}{D_{3}}\right)^{2}-\frac{D_{1}}{D_{3}}\left(s^{*}-1\right)^{2}+\frac{D_{1}}{D_{3}}} \tag{2-17}
\end{equation*}
$$

where D_{1}, D_{3}, and D_{4} are obtained as previously indicated.
Although only angle recession has been considered here, the case of level recession is fully considered in the previous report [16] and will not be presented here. Let it suffice, for the purpose intended here, to say that, for grooves of V-shaped cross-section, the variation of the contact angle throughout the pipe may be determined. It remains, therefore, in the thermal analysis to determine the influence that the groove geometric details have on the thermal behavior at the pipe inner surface, and thus on $h_{e q}$.

2.4 The Equivalent Heat Transfer Coefficient

Determination of the equivalent heat transfer coefficient is the final link in the thermal analysis of the heat pipe. Having determined the variation of the liquid cross-section throughout the pipe, if the variation of $h_{e q}$ on this geometry is known, then the final boundary condition for the thermal analysis can be applied.

In the previous report [16], an analysis was presented, for the case of grooves of V-shaped cross-section, which determined the equivalent heat transfer coefficient. This analysis was performed on the assumption that the metal fin, due to its large thermal conductivity relative to the liquid conductivity, was nearly isothermal. The temperature field determined in this work, when applied to the V-groove situation, indicates that this condition of isothermality of the metal fin is not true, in particular near the meniscus contact with the metal groove side.

The remaining chapters of this report are concerned with a more deta:led investigation of the equivalent heat transfer coefficient. In particular, the complete, composite metal/fluid thermal, interaction at their common interface is fully considered. In addition, the investigations are extended to grooves of general trapezoldal cross-section, reducing in one limit to the V-shaped grooves and in the other limit to the rectangular channel grooves. A detailed problem description is presented in the following chapter of this report.

Table 2-1

Correlation Parameters D_{3} and D_{4}

$\stackrel{\theta_{0}}{\text { (degrees) }}$	$\begin{gathered} \alpha \\ \text { (degrees) } \end{gathered}$	D_{3}	D_{4}	Max. Expected Irris (per cont)
5	0-45	. 01109	. 00091	2.1
	45-80	. 00689	. 00441	3.3
10	0-60	. 01903	. 00245	4.9
	60-80	. 01342	. 00782	0.6
20	0-15	. 02485	. 00463	2.0
	15-45	. 03218	. 00258	2.3
	45-70	. 03397	. 00145	0.3
30	0-15	. 02738	. 00485	2.6
	15-35	. 03871	. 00179	2.2
	35-60	. 04982	-. 00500	1.0
40	0-10	. 0246	. 00388	2.2
	10-25	. 03556	. 00184	2.4
	25-50	. 05462	-. 00693	3.7
50	0-10	. 02064	. 00246	3.3
	10-20	. 03083	. 00067	1.9
	20-40	. 04982	-. 00642	4.8
60	0-10	. 01513	. 00120	5.5
	10-20	. 02607	-. 00074	3.3
	20-30	. 04000	-. 00558	1.6

Chapter 3

The Groove Heat Transfer Problem

3.1 Introduction

The mechanism of thermal energy transport across a grooved surface, whose grooves are supplied with a volatile liquid by means of surface tension forces, is an important consideration in the design and analysis of moderate and high capacity heat pipes. This importance arises since the groove surface will in general form part of a direct link between the vapor core of the heat pipe and the heat source or heat sink, depending upon whether it is an evaporator or condenser section of the heat pipe.

Since this thermal link is a direct one, inaccuracies in the estimation of its heat transfer characterisitics are directly reflected as uncertainties in the evaluation of the overall heat pipe temperature drop for a given total heat flow rate through the pipe. Prediction of the heat transfer characteristics for a heat pipe design being a principal goal of heat pipe analysis, it is imperative that the phenomena involved in heat transfer from these grooved surfaces be fully understood and the dependencies of the heat transfer explored.

In the steady-state operation of a heat pipe, the return flow of the condensate from the condenser region to the evaporator region will establish a pressure distribution in the liquid phase throughout the pipe. Since the condensate return flow is governed by surface tension forces, particularly in the case of a zero gravitational
enviromment, the pressure distribution within the liquid throughout the pipe will be manifested as a variation in the liquid free surface radius of curvature. Further, since changes in heat flow geometry will undoubtedly influence the heat transfer characteristics of any system, f.t becomes clear that the heat transfer characteristics of a heat pipe may be expected to vary, in general, both longitudinally and circumferentially throughout the pipe.

The hydrodynamic considerations leading to this variation in the liquid phase cross-section throughout the pipe have been considered elsewhere [16] and will not be repeated here. The present work is directed at examinining the dependence of the equivalent heat transfer coefficient, $h_{e q}$, on the liquid phase cross-section and on the groove geometry.

3.2 General Considerations

The cross-section of a portion of a grooved heat pipe wall is shown in figure 3-1. The vapor within the vapor core is at a temperature T_{v} and over the external surface a uniform heat flux distribution is applied. For the case shown in the figure heat is flowing from an external supply through the pipe wall and fin/1iquid matrix to the vapor core for transport along the pipe. Arguments similar to those which follow also apply to the condenser section with the exception that the additional heat transfer mode of condensation

Figure 3-1
on the exposed land area must be considered. The condensation problem, however, is extremely complex and is beyound the scope of this examination. Consequently the contribution to the heat transfer due to condensation on the exposed land area of the condenser regions will not be considered in this work.

Returning to the problem as illustrated in figure 3-1, in the thermal analysis of grooved heat pipe walls consideration must be given to heat conduction within the pipe wall, heat conduction as well possible convective heat transfer in the liquid contained within the grooves, and the mechanism for heat transfer at the liquid/vapor interface. These considerations follow.

3.2.1 Vapor/Liquid Interface

The behavior of the vapor/1iquid interface in heat pipe operation is important when examining the heat transfer through grooved heat pipe walls since the mechanisms occurring at this interface are directly responsible for the phase change that is fundamental to heat pipe operation. Examination of the interfacial phenomenon, however, is not direct since the process of continued net evaporation or condensation is a non-equilibrium one and the conventional heat and mass transfer equations as well as the constitutive relations no longer apply.

The phase change problem has been previously examined by several authors [19, 20, 21]. Bornhorst [22, 23] used the theory of irreversible thermodynamics and the Onsager reciprocal law to
establish the appropriate governing equations for the phase change problem. These same results can also be obtained from kinetic theory as shown by Kucherov and Rikenglaz [24], and Labunstov [25]. A result of these analyses relates the surface vapor temperature to the liquid temperature at the surface. The relation is given by

$$
\begin{equation*}
T_{v i}=T_{f i}\left[1-\frac{\dot{\mathrm{m}} E}{2\left(\frac{\gamma+1}{\gamma-1}\right) \frac{P_{s}}{\sqrt{2 \pi R T_{f i}}}}\right] \tag{3-1}
\end{equation*}
$$

where $T_{v i}$ is the vapor temperature at the interface, P_{s} is the saturation pressure, $T_{f i}$, the interface liquid temperature, γ is the ratio of specific heats, \dot{m} is the steady-state evaporative mass flux, and E is a coupling coefficient which lies in the interval $0<\gamma_{E} \leqslant 1$. Clearly the difference between the vapor and liquid temperatures at the interface will be a maximum for the case of $\gamma_{E}=1$. Feldman and Berger [26] evaluated equation. (3-1) for the case where water is the working fluid, assuming a value of unity for γ_{E}. They assumed a steady-state evaporative mass flux of $1 \mathrm{kw} / \mathrm{in}^{2}$. The results of their evaluation are presented in figure 3-2. It is seen that the temperature difference between the liquid and the vapor phases at the interface is negligible for operating conditions of practical concern. Similar results are obtained for the other fluids commonly used in moderate temperature heat pipe applications. As a consequence of the above, it will be assumed that the boundary condition at the liquid/vapor interface is

$$
\begin{equation*}
T_{f i}=T_{v} \tag{3-2}
\end{equation*}
$$

Figure 3-2

3.2.2 Convective Energy Transport

There are two basic mechanisms within a single groove of a grooved heat pipe wall by which thermal energy transport by convection may occur.

The first of these is the convection of thermal energy along the groove as a result of the velocity field which supplies liquid to the evaporation sites along the length of the groove. This will be recognized as a conventional convective energy transport mechanism. The second mechanism for convection within the groove is a direct result of the phase change process itself. If, for example, evaporation is occurring at the free surface, then this surface appears to the groove as a sink for fluid mass. Consequently, for steady-state operation, liquid must continuously be supplied to the sink location. This necessarily establishes flows within the plane of the groove cross-section which terminate at the free surface. If these flows originate with a significantly different specific internal energy than that at the vapor temperature and if their velocities are sufficiently large, then a substantial contribution to the heat transfer may result from this convective motion.

The following two sections provide an assessment of the importance of these two effects.

1) Convection along the groove length

Along the length of a single groove, the temperature variation within the working fluid will be very small. This is the direct consequence of the saturation condition existing at the liquid/vapor
interface, with small variations occurring due to changes in the meniscus radius of curvature and the corresponding effect of pressure on temperature for the working fluid. In any case the energy convected along a groove will be small when compared to the evaporation or condensation exchanges occurring at the free surface. This allows a decoupling of the equations of motion from the energy equation.

In support of the neglect of convective energy transport, we consider the energy equation, disregarding expansion work and viscous dissipation, glven in cartesian coordinates:

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{* 2}}+\frac{\partial^{2} T}{\partial y^{* 2}}+\frac{\partial^{2} T}{\partial z^{* 2}}=\operatorname{Pe}\left[u^{*} \frac{\partial T}{\partial x^{*}}+v^{*} \frac{\partial T}{\partial y^{*}}+w^{*} \frac{\partial T}{\partial z^{*}}\right] \tag{3-3}
\end{equation*}
$$

where normalization of the velocity is made with respect to the groove entrance mean longitudinal. velocity and that of the length scale is made with respect to the cross-sectional hydraulic diameter. The Peclet number is then defined by

$$
\begin{equation*}
\operatorname{Pe} \equiv \operatorname{Re} P_{r}=\left(\frac{\bar{W} d_{h}}{v}\right)\left(\frac{\mathbf{k}_{f}}{\mu c_{p}}\right) \tag{3-4}
\end{equation*}
$$

with Re, the Reynold's number, Pr, the Prandtl number, and d_{h}, the hydraulic diameter. Under the quasi-fully-developed flow assumption, we can set the normalized velocities $u^{*}=v^{*} \approx 0$, where z is the coordinate along the groove length. Further, utilizing the isothermality of the free surface in the flow direction permits the specification of $\frac{\partial^{2} T}{\partial z^{* 2}}=\frac{\partial T}{\partial z^{*}}=0$. Using these results, the governing equation
(3-3) becomes

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{*^{2}}}+\frac{\partial^{2} T}{\partial y^{* 2}}=0 \tag{3-5}
\end{equation*}
$$

the heat conduction equation within the groove cross-section:
ii) Convection within the groove cross-section

Determination of the convective energy transport within the groove cross-section resulting from the replenishment of evaporated fluid is performed using the results presented later in this report which are based upon a pure conductive model. The liquid is assumed to be flowing from the groove root to the free surface with an average velocity equal to that required to supply the appropriate evaporative mass flow. Using typical temperature data from the conductive results, the cross-sectional convective energy transport contributes an estimated 0.38 per cent of the conductive transport.

It is therefore concluded that conduction heat transfer is the dominant beat transfer mechanism within the iiquid.
3.2.3 Typical Cell for Analysis

In the geometry of figure $3-1$, we are considering as a therian boundary condition the application of a uniform heat flux disiributica on the external surfice of the pipe wail. In geas=il the theral insa:action of the portion of the pipe wall shown in the figure with the total heat pipe environment may result. in a net conduction of heat along the wall within the metal. Through the use of a grooved surface, however, this effect is minimized since the lateral conductance will be large compared to that along the wall. Further, a net conduction along the wall
will in general result from the variation of the equivalent heat transfer coefficient in this direction providing preferential conductive paths to the evaporation sites. Due to the close proximity of adjacent grooves in typical heat pipes, however, the local liquid cross-sectional variation from groove to groove will indeed be small. It is therefore assumed that for putposes of evaluating the equivalent heat transfer coefficient, there is no thermal interaction between adjacent grooves. Referring to the geometry of figure 3-1, then, this implies that the sections A-A and C-C will be adiabatic surfaces. Thus the typical cell bounded by sections $A-A$ and $C-C$ in the one direction and by the pipe external surface and the vapor/liquid interface in the other can be extracted from the overall geometry for analysis purposes.

A closer examination of this typical cell reveals that a further reduction of the analysis geometry is possible. Due to the geometric symmetry of the groove and liquid about the groove centreline, there is no cause for preferential heat flow on either side of this centerifne, Consequently, not only are the bounding surfaces $A-A$ and $C-C$ adiabatic planes, but in addition the groove centerline, surface $B-B$, will represent a zero net heat flux surface. The net result is that the typical cell for consideration in the thermal analysis is the one shown in ficire 3-3.

3.3 Prublea Description

Using the analysis geomerry of figure 3-3, a cartesian coordinate system is set up with the origin located at the intersection of the groove centerline and the pipe wall external surface. The pipe wall external surface is defined by the line $y=0$ and the groove centerline by the line $x=0$. The coordinate system fis presented in the figure.

Figure 3-3

The geometry presented is representative of a general trapezoidal groove. The exposed land area of the groove section is denoted by ε_{1} while the flat groove root half-width is denoted by ε_{2}. The groove included half-angle is θ_{0} and the liquid free surface meets the groove wall with an apparent contact angle of $a_{\text {. }}$ The groove depth available for fill by the working fluid is d with the total thickness of the wall, extending from the pipe external surface to the innermost portion of the groove sidewall, denoted by H .

The general trapezoidal shape of figure 3-3 readily degenerates to the two limiting cases commonly employed in heat pipe designs. For the case where $\varepsilon_{1}=\varepsilon_{2}=0$, the resulting geometry becomes the sharp V-groove situation commonly employed in high capacity arterial pipes as a mechanism for circumferential wetting of the pipe inner wall. In the other extreme, when $\varepsilon_{1}=\varepsilon_{2}=0.5$, the rectangular channel-1ike shape results which is a common configuration for moderate capacity pipes where the grooves serve both as an evaporative agent and as a longitudinal liquid transport mechanism.

Steady-state heat transfer is considered in this work with the liquid and metal components of the composite problem having thermal conductivities k_{f} and k_{m} respectively. Heat is supplied to or removed from the outer surface of the pipe, $y=0$, at a uniform rate q with the lateral normal gradients of temperature at $x=0$ and $x=w$ being zero. The heat flow is transferred to/from the vapor core through the 1 iquid free surface where the temperature is uniform at Tv. Over the land area exposed to the vapor, it is assumed that an insignificant amount of energy is being transferred in comparison with that transferred at the liquid free surface, so that over this region
a zero normal temperature gradient condition is applied. This results frow the very low vapor thermal conductivity and of course does not consider the contribution to the heat transfer due to condensation on the land area in the condenser regions. At the liquid/metal interface both the temperature and the normal surface heat flux must be continuous in passing from the metal region to the liquid region.

3.4 Mathematical Statement of the Problem

Denoting the temperature distribution within the fluid and metal by T_{f} and T_{m} respectively, and considering steady-state heat transfer, the governing differential equations are Laplace's equation for both regions respectively. In terms of the cartesian coordinates of figure 3-3 these are written as

$$
\begin{equation*}
\frac{\partial^{2} T_{f}}{\partial x^{2}}+\frac{\partial^{2} T_{f}}{\partial y^{2}}=0 \tag{3-6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} T m}{\partial x^{2}}+\frac{\partial^{2} T m}{\partial y^{2}}=0 \tag{3-7}
\end{equation*}
$$

The boundary conditions which the solution to equations (3-6) and (3-7) must satisfy are

1. $y=0,0 \leqslant x \leqslant w, \frac{\partial T_{m}}{\partial y}=\frac{-q}{k_{m}}$
2. $y=H-d, \quad 0 \leqslant x \leqslant \varepsilon_{2}, k_{m} \frac{\partial T_{m}}{\partial y}=k_{f} \frac{\partial T_{f}}{\partial y}$
3. $\mathrm{y}=(\mathrm{H}-\mathrm{d})+\frac{\mathrm{d}\left(\mathrm{x}-\varepsilon_{2}\right)}{\mathrm{w}-\varepsilon_{1}-\varepsilon_{2}}, \varepsilon_{2}<\mathrm{x}<\mathrm{w}-\varepsilon_{1}$,

$$
\begin{equation*}
k_{m} \frac{\partial T_{m}}{\partial n}=k_{f} \frac{\partial T_{f}}{\partial n} \tag{3-10}
\end{equation*}
$$

where n is a vector normal to the 1iquid/metal interface:

$$
\begin{equation*}
\text { 4. } y=H_{0} w-\varepsilon_{1} \leqslant x \leqslant w, \frac{\partial T_{m}}{\partial y}=0 \tag{3-11}
\end{equation*}
$$

$$
\begin{equation*}
\text { 5. } x=0,0 \leqslant y \leqslant H-d, \frac{\partial T}{\partial x}=0 \tag{3-12}
\end{equation*}
$$

$$
\begin{equation*}
\text { 6. } x=0, H-d \leqslant y \leqslant y_{i}(0), \frac{\partial T_{f}}{\partial x}=0 \tag{3-13}
\end{equation*}
$$

where $y_{1}(x)$ is used to denote the description of the liquid free surface.

$$
\begin{align*}
& \text { 7. } j=y_{i}(x), 0 \leqslant x \leqslant w-\varepsilon_{1}, T_{f}\left(x, y_{i}(x)\right)=T_{v} \tag{3-14}\\
& \text { 8. } x=w, \quad 0 \leqslant y \leqslant H, \frac{\partial T_{m}}{\partial x}=0 \tag{3-15}
\end{align*}
$$

To provide greater utility to the results of this heat transfer problem, the equations and boundary conditions above can be nondimensionalized by introducing suitable non-dimensional parameters. This also has the effect of reducing by one the number of nonhomogeneous boundary conditions in equations (3-8)-(3-15).

Defining a temperature excess by the definitions

$$
\begin{equation*}
\mathrm{T}_{\mathrm{f}}^{*}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{v}} \tag{3-16}
\end{equation*}
$$

and

$$
\mathrm{T}_{\mathrm{m}} *=\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{v}}
$$

and normalizing the spatial coordinates by the groove half-width, w, the governing equations become

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{~T}_{\mathrm{f}}{ }^{*}}{\partial \mathrm{x} \star^{2}}+\frac{\partial^{2} \mathrm{~T}_{\mathrm{f}} *}{\partial \mathrm{y} \star^{2}}=0 \tag{3-17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} T_{m}^{*}}{\partial x^{2}}+\frac{\partial^{2} T_{m}^{*}}{\partial y *^{2}}=0 \tag{3-18}
\end{equation*}
$$

where

$$
\begin{equation*}
x^{*} \equiv x / w, y^{*} \equiv y / w \tag{3-19}
\end{equation*}
$$

The boundary condition statements for use with equations (3-17) and (3-18) are

1. $y^{*}=0,0 \leqslant x^{*} \leqslant 1, \frac{\partial T_{m}^{*}}{\partial y^{*}}=\frac{-q w}{k_{m}}$
2. $y^{*}=H *-d^{*}, \alpha \leqslant x^{*} \leqslant E_{2}^{*}, k_{m} \frac{\partial T_{m}^{*}}{\partial y^{*}}=k_{f} \frac{\partial T_{f}{ }^{*}}{\partial y^{*}}$

$$
\begin{equation*}
k_{m} \frac{\partial T_{m} *}{\partial n^{*}}=k_{f} \frac{\partial T_{f} *}{\partial n^{*}} \tag{3-22}
\end{equation*}
$$

4. $y^{*}-H^{*}, 1-\varepsilon_{1}^{*} \leqslant x^{*} \leqslant 1, \frac{\partial T_{m}^{*}}{\partial y^{*}}=0$
5. $x^{*}=0,0 \leqslant y^{*} \leqslant H *-d *, \frac{\partial T_{m}^{*}}{\partial x^{*}}=0$
6. $x^{*}=0, H^{*}-d^{*} \leqslant y^{*} \leqslant y_{i} *(0), \frac{\partial T_{f}{ }^{*}}{\partial x^{*}}=0$
7. $y^{*}=y_{i} *(x), 0 \leqslant x * 1-\varepsilon_{1} *, T_{f}^{*}\left(x^{*}, y_{i} *(x)\right)=0$
8. $x^{*}=1,0 \leqslant y * \leqslant *, \frac{\partial T_{m}^{*}}{\partial x^{*}}=0$

The equations (3-17) and (3-18) together with the boundary conditions (3-19) -(3-27) completely define the mathematical problem
whose solution is required.

3.5 Analytic Solution

If an analytic solution to the problem specified above is pursued, we can follow the classical method of separation of variables []. According to the method, we assume a solution of the form

$$
\begin{equation*}
T^{*}=X\left(x^{*}\right) \cdot Y\left(y^{*}\right) \tag{3-28}
\end{equation*}
$$

for both the liquid and metal temperature distributions. Using equation (3-28) in either of equations (3-17) or (3-18) leads to an equation of the form

$$
\begin{equation*}
\frac{1}{X} \frac{\partial^{2} X}{\partial x^{*^{2}}}+\frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{*^{2}}}=0 \tag{3-29}
\end{equation*}
$$

again for both the liquid and the metal temperature distributions. Separating the x^{*} and y^{*} dependence in such an equation then leads to the separated equations

$$
\begin{equation*}
\frac{\partial^{2} x}{\partial x^{2}}+\lambda^{2} x=0 \tag{3-30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} Y}{\partial y \star^{2}}-\lambda^{2} Y=0 \tag{3-31}
\end{equation*}
$$

where the separation constant was taken as λ^{2}.
The solutions to equations (3-20) and (3-31) are respectively

$$
\begin{align*}
& x\left(x^{*}\right)=C_{1} \sin (\lambda x *)+C_{2} \cos \left(\lambda x^{*}\right) \tag{3-32}\\
& Y(y *)=C_{3} \sinh \left(\lambda y^{*}\right)+C_{4} \cosh \left(\lambda y^{*}\right) \tag{3-33}
\end{align*}
$$

The general solution can then be written as

$$
\begin{gather*}
T_{f}^{*}=\left[C_{1 f} \sin \left(\lambda_{f} x^{*}\right)+C_{2 f} \cos \left(\lambda_{f} x^{*}\right)\right]\left[C_{3 f} \sinh \left(\lambda_{f} y^{*}\right)\right. \\
\left.+C_{4 f} \cosh \left(\lambda_{f} y^{*}\right)\right] \tag{3-34}
\end{gather*}
$$

and

$$
\begin{align*}
T_{m} *=\left[C_{1 m} \sin \left(\lambda_{m} x^{*}\right)+\right. & \left.\left.C_{2 m} \cos \left(\lambda_{m} x^{*}\right)\right]\right] C_{3 m} \sinh \left(\lambda_{m} y *\right) \\
& \left.+C_{4 m} \cosh \left(\lambda_{m} y *\right)\right] \tag{3-35}
\end{align*}
$$

Applying boundary conditions (3-24) and (3-25) simplifies the solution by the requirement that $C_{1 f}=C_{1 m}=0$. The temperature distributions then become

$$
\begin{equation*}
T_{f} *=\sum_{n=1}^{\infty} \cos \left(\lambda_{f} x^{*}\right)\left[C_{\left.3 f^{* \sinh }\left(\lambda_{f} y^{*}\right)+C_{4 f} \cosh \left(\lambda_{f} y^{*}\right)\right]}\right. \tag{3-36}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{m}^{*}=\sum_{n=1}^{\infty} \cos \left(\lambda_{m} x^{*}\right)\left[C_{3 m} \sinh \left(\lambda_{m} y^{*}\right)+C_{4 m} \cosh \left(\lambda_{m} y^{*}\right)\right] \tag{3-37}
\end{equation*}
$$

where further using the condition (3-27) the $\dot{\lambda}_{m}$'s can be determined to be

$$
\begin{equation*}
\lambda_{m}=n \pi, n=1,2,3, \ldots \tag{3-38}
\end{equation*}
$$

while the values for the λ_{f} remain unresolved.
Unfortunately, the development of the solution for either temperature field beyond that presented in equations (3-36) and (3-37) becomes extremely complex as a result of the irregular geometry of
each solution domain and the inherent coupling of the two temperature fields through the condition of equation (3-21) and (3-22). Indeed, it is not clear whether an exact andlytical solution to the complete composite problem can be achieved using present mathematical methods. On the basis of the difficulties involved in overcoming the mathenatical barriers presented by the analytic solution, it was decided to use a numerical method of solution to solve the system of equations and boundary conditions of (3-17) - (3-27).

3.6 Numerical Solution

Having decided to forego further analytical efforts in favor of a numerical method of solution it remains to select an appropriate numerical method for this problem. The two most common aumerical methods in current usage are the finite difference and the finite element wethod. Both methods involve discretizing the spatial domain into discrete regions of finite size, and as consequence the $2=1 \cdot \mathrm{Etin}$ is available in the form of values for the dependent variable at discrete locations throughout space rather than as a continuous analytic solution. In addition, both methods lead to a system of simultaneous algebraic equations which must be solved to yield the correspondfing values at the discretized locations.

The finite difference method has as its basis the same basic
principles as does the differential formulation leading to the differential equation.* That is, an energy balance is applied to each control volume of the discretized continuum [31]. The first law of thermodynamics then provides a relation between the transfer of heat by conduction across the control volume surfaces, the rate of generation of internal energy within the control volume, and the rate of change of the control volume internal energy. Since the control volume dimensions are not of infinitesimal size, however, the concept of a derivative is no longer of direct use for application of Fourier's law of heat conduction since the surface area segments are finite and the gradient will in general vary over the surface. The approximation is usually introduced that for purposes of evaluating the heat conduction terms, a first central different quotient can be used to describe the local gradient. It is usually further assumed that this gradient is uniform over each of the control volume surfaces.

Because of the control volume formulation forming the basis of the method, the grid network usually follows the contours of an orthogonal coordinate system. Although the finite difference coefficients have been derived for any orthogonal curvilinear coordinate system [31, 32], the complex geometric description of the analysis geometry of figure 3-3 does not lend itself readily to any of the available coordinate systems. On this basis, then, and particularly

[^0]in consideration that the finite element method is readily adopted to irregular geometries, the finite difference method was discarded for use in this analysis in favor of the finite element method.

The method of finite elements entails employing a variational principle to minimize a certain functional over the solution domain of interest [33]. Alternatively, where a variational principle does not exist, the method of weighted residuals applied to the goveraing differential equation can also be used [34]. In the former case the functional can be obtained by application of the calculus of variations to the governing differential equation. In this case the associated Euler equation resulting from the minimization of the appropriate functional is identically the governing differential equation. The steady-state conduction of heat has a governing variational principle.

In the method of finite elements it is the governing functional equation, an integral equation, which is approximated in the discretized continuum rather than the governing differential equation as is the case in using finite differences. Through an appropriate choice of the local approximation to the temperature field, the required integration over volume in the functional equation can readily accommodate both irregular solucion domain geometries as well as irregular, non-orthogonal 'finite elements'. It is the flexibility of the finite element method in its ability to readily describe irregular geometries that has led to its selection as the method for use in this analysis. The method and its application will be discussed in greater detail in Chapter 5 of this work where the numerical solution is presented.

Chapter 4

Bounds on the Groove Heat Transfer

4.1 Introduction

In this chapter, limits will be established which provide upper and lower bounds for the equivalent heat transfer coefficient associated with the typical cell presented in the previous chapter of this report. The bounds will be established using the theorems of Elrod [35]. Although its introduction to the heat transfer community by Elrod is recent, the basis of his theorems is not new and has received considerable attention in other disciplines [36]. The theorems and their proofs are valid whenever the pertinent unknown quantity can be expressed in terms of a dependent variable which obeys the equation for a potential field. The two theorems as put forward by Elrod [35] ate piesented below.

Theorem 1 Consider a solid body composed of material which may be both inhomogeneous and anisotropic, but whose properties are independent of temperature. Let the body be isolated from its surroundings except for exposure through space-variable heat-transfer coefficients to two distinct ambient temperatures. If, within some region of this body, the heat conductivity is increased (decreased), then the total heat flow from one exposed surface to the other will either Increase (decrease), or remain the same.

Theorem 2 The actual heat flow taking place under the circumstances described in theorem 1 will be no greater than that calculated when the shapes of the isothermal surfaces within the body are arbitrarily
assumed, and no less than that calculated when the adiabatic surfaces within the body are assumed.

Use will be made in this chapter primarily of the second of the above theorems in order to establish limits on the groove heat transfer characteristics. The reasons for examining limits on the groove heat transfer are twofold and are presented in the following paragraphs.

Firstly, in establishing a system's upper and lower heat transfer limits, it is possible in certain cases that the ifmiting values obtained by such an analysis may be sufficiently close that acceptable accuracy is obtained for the required application. That is, by employing the arithmetic average value of the two extreme values, the error or uncertainty band of the obtained value may be sufficiently small to suffice for use in engineering calculations. This possibility was suggested in the paper by Elrod [35] and was demonstrated in the application considered by Yovanovich, Schneider, and Strong [37] in their examination of the effective thermal conductivity of a composite having square fibers embedded as a square array within a second matrix material. If this objective cannot be achieved for the system under consideration, however, the second motivation for examining the limiting behavior becomes important.

The second motivation for examining limiting values for the groove heat transfer is to provide a check, although it may be crude, on the results of a numerical solution to the problem at hand. Since the application of either of the two theorems leads to maximum and minimum values for the heat transfer associated with a given system, any numerical results must as a consequence lie in the range bounded by the two limits. Numerical results outside this range can then be immedfately discarded and a study initiated to determine the causes for the unreliable numerical results. Unfortunately, however, if the numerical results lie within the range of values allowed by
the limit study, and if the objective of the first reason stated for examining the limits is not achieved, the limit gtudy will be of little further value. Its use as a check on the numerical results will still warrant its consideration in this report.

4.2 Maximum Groove Heat Transfer

As was stated in Theorem 2 above, the heat transfer through the typical cell cannot be greater than that for the case where the shapes of the isotherms are arbitrarily assumed. The result of such an assumption is to yield an upper limit for the groove heat transfer.

To facilitate the computation of this upper limit the typical cell was subdivided into three distinct sub-regions, each of which is bounded on both sides by a thin layer of infinitely conducting material; i.e. the bounding surfaces of the sub-regions are assumed isothermal. The subdivision scheme, designed partly for ease of later computation, is illustrated in figure 4-1. The shaded region seen in the figure is constructed by replacing that portion of the original cell with a material of infinite thermal conductivity. As a result, this portion does not contribute to the thermal resistance of the cell and need not be considered. This is consistent with Theorem 1 in establishing an upper bound for the heat transfer. Consideration of each of the three regions follows.

4.2.1 Sub-Region I

An expanded and detailed view of sub-region I is shown in figure 4-2 where the pertinent geometric parameters are also presented. A circular cylinder coordinate system is set up in the figure with its origin at the free surface center of curvature with the angular coordinate, γ, measured counterclockwise from a line extending from the origin, along the groove

Figure 4-1

centerline, through the composite.
In accordance with Theorem 2 of E1rod, the shapes of the isotherms will be assumed for sub-region I. For convenience they are assumed here to be circumferential lines about the origin and extending through the crosssection of this sub-region. The quantities γ_{f} and γ_{m} are the subtended angles within the liquid and metal parts of the cell respectively. The situation shown is seen to represent radial flow through the composite section with for each differential thickness, a parallel system of the liquid path with the metal path.

Considering a typical strip of differential thickness, d ρ, the associated resistance, dR_{T}, Ls given by

$$
\begin{equation*}
d R_{I}=\left[\frac{1}{k_{f} \gamma_{f}+k_{m} \gamma_{m}}\right] \frac{d \rho}{\rho} \tag{4-1}
\end{equation*}
$$

where γ_{f} and γ_{m} are the angles subtended by the iiquid and metal regions respectively. For aid in the evaluation of γ_{f} and γ_{m}, figure 4-3 is constructed. Applying the sine law [38] to the triangle having vertices A, B, and C, we find

$$
\begin{equation*}
\frac{\kappa \tan \theta_{0}}{\sin \left(\gamma_{f}+\theta_{0}\right)}=\frac{\rho}{\sin \left(\frac{\pi}{2}-\theta_{0}\right)} \tag{4-2}
\end{equation*}
$$

Using (4-2), γ_{f} can be evaluated as a function of its radial position, ρ, and is given by

$$
\begin{equation*}
\gamma_{f}=\sin ^{-1}\left[\frac{\kappa \sin \theta_{o}}{\rho}\right]-\theta_{0} \tag{4-3}
\end{equation*}
$$

frow which γ_{m} is determined to be

$$
\begin{equation*}
\gamma_{\mathrm{m}}=\cos ^{-1}\left[\frac{\kappa-r_{o} \cos \theta_{o}}{\rho}\right]-\gamma_{f} \tag{4-4}
\end{equation*}
$$

The resistance for sub-region I is then found by integration of ($4-1$) over

Figure 4-3
this region,

$$
\begin{equation*}
R_{I}=\int_{\rho_{1}}^{\rho}\left[\frac{1}{k_{f} \gamma_{f}+k_{m} \gamma_{m}}\right] \frac{d \rho}{\rho} \tag{4-5}
\end{equation*}
$$

where $\rho_{1}=\beta$

$$
\begin{equation*}
\rho_{2}=\sqrt{\omega^{2}+\left(\kappa-r_{0} \cos \theta_{0}\right)^{2}} \tag{4-6}
\end{equation*}
$$

and from Appendix A,

$$
\begin{align*}
& \beta=\frac{r_{0} \sin \theta_{0}}{\cos \left(\alpha+\theta_{0}\right)} \tag{4-7}\\
& \kappa=\frac{r_{0} \cos \alpha}{\cos \left(\alpha+\theta_{0}\right)} \\
& r_{0}=\left(\omega-\varepsilon_{1}\right) / \tan \theta_{0}
\end{align*}
$$

and
Integration of (4-5) will be reserved until the three regions are assembled to refora the overall geometry.

4.2.2 Sub-Region II

A detailed view of sub-region II is illustrated in figure 4-4. The coordinate system here is the same as that used for sub-region I and the resistance for a differential strip, dp, is given as before by

$$
\begin{equation*}
d R=\left[\frac{1}{k_{f} \gamma_{f}+k_{m} \gamma_{m}}\right] \frac{d \rho}{\rho} \tag{4-8}
\end{equation*}
$$

where now the contained angles for the liquid and metal portions are given by

$$
\begin{aligned}
\gamma_{f} & =\sin ^{-1}\left[\frac{K \sin \theta_{o}}{\rho}\right]-\theta_{0} \\
\text { and } \quad \gamma_{\mathrm{II}} & =\sin ^{-1}\left(\frac{\omega}{\rho}\right)-\gamma_{f}
\end{aligned}
$$

The total resfstance for sub-region II is again given by integration as

$$
\begin{equation*}
R_{I I}=\int_{\rho_{2}}^{\rho}\left[\frac{1}{k_{f} \gamma_{f}+k_{m} \gamma_{m}}\right] \frac{d \rho}{\rho} \tag{4-10}
\end{equation*}
$$

where ρ_{2} is that determined for the consideration of sub-region I and ρ_{3} is given by

$$
\begin{equation*}
\rho_{3}=k-\frac{\varepsilon_{2}}{\tan \theta_{0}} \tag{4-11}
\end{equation*}
$$

Again, integration is reserved for the assembly of the sub-regions.

4.2.3 Sub-Region III

With the cross-hatched region of figure 4-1 constructed of a material having infinite thermal conductivity, its thermal resistance will be zero. The final region then, sub-region III, is simply a slab of thickness (H-d) and having width w. Consequently, the thermal resistance of sub-region III is simply

$$
\begin{equation*}
R_{I I I}=\frac{(H-d)}{k_{m} W} \tag{4-12}
\end{equation*}
$$

4.2.4 Overall Heat Transfer

The three sub-regions examined in the preceding section form a series thermal circuit for heat transfer between the exterior pipe wall and the vapor core of the heat pipe. As a result the total resistance for this maximum heat transfer case is given by the sum of the individual resistances

$$
\begin{equation*}
R_{T}=R_{I}+R_{I I}+R_{I I I} \tag{4-13}
\end{equation*}
$$

The heat transfer through the typical cell can be given by

$$
\begin{equation*}
Q=\frac{\bar{T}(y=H-d)-T v}{\left(R_{T}{ }^{-R_{I I I}}\right)}=h_{e q} w\left[\bar{T}(y=H-d)-T_{v}\right] \tag{4-14}
\end{equation*}
$$

where $\bar{T}(y=H-d)$ is the average temperature of the groove root surface. Using equation (4-14) it follows that

$$
\begin{equation*}
h_{e q}=\frac{1}{\left(R_{T}-R_{I I I}\right) w} \tag{4-15}
\end{equation*}
$$

Further, for a lateral pitch of N grooves per unit length, the dimensionless group can be formed

$$
\begin{equation*}
N u_{f} \frac{k_{f}}{k_{m}} \equiv \frac{h_{e q}}{N k_{f}} \frac{k_{f}}{k_{m}} \tag{4-16}
\end{equation*}
$$

Using equation (4-15) in (4-16) leads to the result

$$
\begin{equation*}
N u_{f} \frac{k_{f}}{k_{m}}=\frac{2}{\left(R_{T}-R_{I I I}\right) k_{m}} \tag{4-17}
\end{equation*}
$$

This equation together with ($4-13$) and the component resistance definitions (4-5), (4-10), and (4-12) will be used to determine the maximum value for the groove Nusselt number.

The component integrations appearing in equations (4-5) and (4-10) are not readily integrable to obtain the required results. As a result, numerical integration was performed using a modified Simpson's rule algorithm. The program listing is presented in detail in Appendix B with only the results presented here. The results are presented in Table 4-1 for the material combinations and geometries considered here.

4.3 Minimum Groove Heat Transfer

Returning to Theorem 2, the heat transfer through the typical cell cannot be less than that for which the shape of the adiabatic surfaces are arbitrarily assumed. By assuming the shape of the adiabats, then, a lower limit for the groove heat transfer can be established.

To facilitate the computation of this lower limit, the typical cell

Table 4-1
Groove Nusselt Number Upper Limit
$N u_{f} \cdot k_{f} / k_{m}$

d	$k_{f} / k_{\text {m }} \varepsilon_{1}=\varepsilon_{2}$		x_{α}			
			0.05	0.25	0.50	1.00
1.0	0.1	0.01	2.0638	1. 5260	1.5166	0.7996
		0.25	2.1379	1.5584	1.2295	1.0356
		0.49	1.8631	1.2767	1.0068	1.0987
	. 01156	0.01	1.7178	1.1148	. 7754	. 5058
		0.25	1.7100	1.1003	. 8582	. 9244
		0.49	1.4080	0.8371	. 6502	1.0088
	. 001	0.01	1.5574	0.9053	0.6208	0.4352
		0.25	1.5012	0.8400	0.6468	0.9096
		0.49	1.2067	0.6137	0.4670	0.9964
1.5	0.1	0.01	1.2684	0.9631	0.7412	0.5330
		0.25	1.2886	0.9975	0.8125	0.6904
		0.49	1.1190	0.8561	0.7124	0.7327
	0.01156	0.01	1.0727	0.7180	0.5044	0.3372
		0.25	1.0814	0.7513	0.6000	0.6164
		0.49	0.9151	0.6210	0.5040	0.6731
	0.001	0.01	0.9892	0.5993	0.4119	0.2901
		0.25	0.98104	0.6026	0.4730	0.6067
		0.49	0.8230	0.4874	0.3853	0.6652
2.0	0.1	0.01	0.8757	0.6841	0.5391	0.3997
		0.25	0.8824	0.7165	0.6014	0.5178
		0.49	0.7675	0.6304	0.5458	0.5497
	0.01156	0.01	0.7474	0.5173	0.3693	0.2529
		0.25	0.7610	0.5632	0.4616	0.4624
		0.49	0.6516	0.4846	0.4082	0.5050
	0.001	0.01	0.6982	0.4417	0.3065	0.2176
		0.25	0.7053	0.4688	0.3765	0.4552
		0.49	0.6019	0.3984	0.3260	0.4993

is subdivided into two separate sub-regions as illustrated in figure 4-5. 1. : adizbat will be located along the common boundary of the two sub-regions in accordance with the establishment of a lower limit for the heat transfer. Each of the two regions are examined in greater detail in the following two sub-sections of this report.

4.3.1 Sub-Region I

An expanded view of sub-region I is shown in Figure 4-6. The origin of a cartesian coordinate system is located at the intersection of the groove centerline and the extension of the groove sidewall. Within sub-region I, a strip of width dx_{1}, emanating from the liquid free surface is examined. This strip is extended as shown in the figure, terminating at the lower - wifにce with width dx_{4}. The subscripts used in the above refer to the location in figure $4-6$ where evaluation is made. That is, in general $\mathrm{dx}_{4} \neq$ dx_{1} but a relationship between the two can be derived.

Considering first the section of this strip from points 1 to la, the liquid free surface can be described by the equation

$$
\begin{equation*}
x_{1}^{2}+\left(y_{1}-\kappa\right)^{2}=\beta^{2} \tag{4-18}
\end{equation*}
$$

from which the vertical coordinate of the free surface can be found. This is given by

$$
\begin{equation*}
y_{1}=\kappa-\sqrt{\beta^{2}-x_{1}^{2}} \tag{4-19}
\end{equation*}
$$

with K and β as previously defined. The location of point la is given by

$$
\begin{equation*}
y_{1 a}=\varepsilon_{2} \cot \theta_{0} \tag{4-20}
\end{equation*}
$$

and so the component resistance can be determined from

$$
\begin{equation*}
d R_{1-1 a}=\frac{k-\sqrt{\beta 2-x_{1}^{2}}-\varepsilon_{2} \cot \theta_{0}}{k_{f} d x_{1}} \tag{4-21}
\end{equation*}
$$

Figure 4-5

Figure 4-6

The location of point 2 can similarly be found from

$$
\begin{equation*}
y_{2}=x_{2} \cot \theta_{0} \tag{4-22}
\end{equation*}
$$

and the resistance component from la to 2 is given by

$$
\begin{equation*}
d R_{1 a-2}=\frac{\left(\varepsilon_{2}-x_{2}\right) \cot \theta_{0}}{k_{m} d x_{1}} \tag{4-23}
\end{equation*}
$$

where the fact that $d x_{2}=d x_{1}$ has been used.
On exaraining the interval ffom point 2 to point 3, the thickness of this section can be written as

$$
\begin{equation*}
d y_{2}=\cot \theta_{0} \cdot d x_{2} \tag{4-24}
\end{equation*}
$$

and the length is determined from

$$
\begin{equation*}
x_{3}-x_{2}=\frac{\varepsilon_{1} x_{2}}{r_{0} \sin _{0}} \tag{4-25}
\end{equation*}
$$

so that the resistance for this section can be written 8 a

$$
\begin{equation*}
\mathrm{dR}_{2-3}=\frac{\varepsilon_{1} x_{1}}{r_{0} \cos \theta_{0} k_{m} d x_{1}} \tag{4-26}
\end{equation*}
$$

again noeing that $x_{1}=x_{2}, d x_{1}=d x_{2}$
For the final section, the vertical position of point 3 is given by

$$
\begin{equation*}
y_{3}=\left[\frac{r_{0} \cos \theta_{0}}{w}\right] x_{3} \tag{4-27}
\end{equation*}
$$

so that

$$
\begin{equation*}
d y_{3}=\left[\frac{r_{0} \cos \theta_{0}}{w}\right] d x_{3} \tag{4-28}
\end{equation*}
$$

By noting here that $d y_{2}=\cot \theta_{0} d x_{2}$ and that $d y_{3}=d y_{2}, d x_{3}$ is related to dx_{1} by

$$
\begin{equation*}
\mathrm{dx} x_{3}=\left[\frac{\mathrm{w}}{\mathrm{r}_{0} \sin \theta_{0}}\right] \mathrm{dx} x_{1} \tag{4-29}
\end{equation*}
$$

since $d x_{2}=d x_{1}$. Since the length of this segment is given by

$$
\begin{equation*}
y_{3}-y_{4}=x_{2} \cot \theta_{0}+c \tag{4-30}
\end{equation*}
$$

the component resistance is obtained as

$$
\begin{equation*}
\mathrm{dR}_{3-4}=\frac{\mathrm{r}_{0} \sin \theta_{0}\left[x_{2} \cot \theta_{0}+c\right]}{\mathrm{k}_{\mathrm{m}} \mathrm{wdx}_{1}} \tag{4-31}
\end{equation*}
$$

Finally, then, since the four components described above form a series thermal circuit through the typical cell, the total strip resistance is obtained as the sum of the four resistances

$$
\begin{equation*}
\mathrm{dR}_{\mathrm{I}}=\mathrm{dR}_{1-1 a}+\mathrm{dR}_{1 a-2}+\mathrm{dR}_{2-3}+\mathrm{dR}_{3-4} \tag{4-32}
\end{equation*}
$$

Using equations (4-21), (4-23), (4-26), and (4-31) in (1-32), the strip resistance can be written, after algebraic rearrangement, as

$$
\begin{equation*}
\mathrm{dR}_{\mathrm{I}}=\frac{\mathrm{A}_{1}+\mathrm{B}_{1} \mathrm{x}_{1}+\mathrm{C}_{1} \sqrt{\beta^{2}-\mathrm{x}_{1}^{2}}}{\mathrm{k}_{\mathrm{m}} \mathrm{dx}_{1}} \tag{4-33}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{1} \equiv \frac{k-\varepsilon_{2} \cot \theta_{0}}{k_{f} / k_{m}}+\varepsilon_{2} \cot \theta_{0}+\frac{r_{0} c \sin \theta_{0}}{w} \\
& B_{1} \equiv \frac{r_{0} \cos \theta_{0}}{W}+\frac{\varepsilon_{1}}{r_{0} \cos \theta_{0}}-\frac{\cot \theta_{o}}{k_{f} / k_{m}} \tag{4-34}
\end{align*}
$$

$$
\text { and } C_{1} \equiv-k_{m} / k_{f}
$$

Noting that each strip, by virtue of the assumed adiabat locations, forns a thermal link acting in parallel with all other such strips, the total conductance can be found for sub-region I by integration of the inverse of equation (4-33) over the range $0 \leq x_{1} \leq \varepsilon_{2}$. Thus the total conductance for sub-region I becomes

$$
\begin{equation*}
K_{I}=\int_{0}^{\varepsilon} 2 \frac{k_{m} d x_{1}}{A_{1}+B_{1} x_{1} C_{1} \sqrt{\beta^{2}-x_{1}^{2}}} \tag{4-35}
\end{equation*}
$$

with A_{1}, B_{1}, and C_{1} as defined in equations (4-34).

The geometry pertinent to the examination of sub-region II is 1llustrated in figure $4-7$ and as can be seen from this figure, its treatment will be similar to that for sub-region I. Indeed, the major distinction between the two regions is that the special consideration given to point la of figure $4-6$ need not be considered in the treatment of $s u b-$ region II.

Without going through the details, since they are very similar to those for sub-region I, the resistance for the $s t r i p$ of width $d x_{1}$ in the fluid region ia pregented here without the accompanying derlvation. This resistance is given by

$$
\begin{equation*}
d R_{I I}=\frac{A_{2}+B_{2} x_{1}+C_{2} \sqrt{B^{2}-x_{1}^{2}}}{k_{m}^{d x_{1}}} \tag{4-36}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{2} & \equiv \frac{k k_{m}}{k_{f}}+\frac{r_{0} c \sin \theta_{0}}{w} \\
B_{2} & \equiv \frac{r_{0} \cos \theta_{0}}{w}+\frac{\varepsilon_{1}}{r_{0} \cos \theta_{o}}-\frac{\cot \theta_{o}}{k_{f} / k_{m}} \\
C_{2} & =-k_{m} / k_{f}
\end{aligned}
$$

For this region, since again each strip forms a thermal link in parallel with all other such strips, the total conductance is obtained by integration of the reciprocal of equation (4-36) over the interval $\varepsilon_{2} \leq x_{1}<{ }^{W-E} \varepsilon_{1}$. This gields the result that

$$
\begin{equation*}
K_{I I}=\int_{\varepsilon_{2}}^{\frac{W-\varepsilon_{1}}{\left[A_{2}+B_{2} x_{1}+C_{2} \sqrt{B^{2}-x_{1}^{2}}\right]}} \tag{4-38}
\end{equation*}
$$

Figure 4-7
with A_{2}, B_{2}, and C_{2} defined by equations (4-37).

4.3.3 Overall Heat Transfer

The two sub-region conductances given by equations (4-35) and (4-38) themselves act chermally in parallel with each other and as a result their conductances are additive to form the overall conductance.

Thus

$$
K=\int_{0}^{\varepsilon} \frac{k_{m} d x_{1}}{\left[A_{1}+B_{1} x_{1}+C_{1} \sqrt{\beta^{2}-x_{1}^{2}}\right]}+\int_{\varepsilon_{2}}^{w-\varepsilon_{1}} \frac{k_{m} d x_{1}}{\left[A_{2}+B_{2} x_{1}+C_{2} \sqrt{\beta^{2}-x_{1}^{2}}\right]}
$$

To determine $h_{e q}$, the equivalent heat transfer coefficient, the conductance of the wall material lying between the groove root and the extertor wall surface must be discounted, and this is best done using resistances. Defining the resistance as the reciprocal of the conductance, as is usual, by

$$
\begin{equation*}
R=1 / K \tag{4-40}
\end{equation*}
$$

then the resistance associated with the equivalent heat transfer coefficient is glven by

$$
\begin{equation*}
R_{e q}=1 / K-\left(c+\varepsilon_{2} \cot \theta_{o}\right) / k_{m} w \tag{4-41}
\end{equation*}
$$

which leads to the equivalent heat transfer coefficient lower limit

$$
\begin{equation*}
h_{e q}=\frac{w}{K}+\frac{\left(c+\varepsilon_{2} \cot \theta_{o}\right)^{-1}}{k_{m}} \tag{4-42}
\end{equation*}
$$

Defining the Nusselt number as before, then,

$$
\begin{equation*}
N u_{f}=\frac{h_{e q}}{N k_{f}} \tag{4-43}
\end{equation*}
$$

the lower limit for the groove Nusselt number can be determined from.

$$
\begin{equation*}
N u_{f} \frac{k_{f}}{k_{m}}=\left[\frac{k_{m}}{2 K}+\frac{\varepsilon_{2} \cot \theta_{o}+c}{2 w}\right]^{-1} \tag{4-44}
\end{equation*}
$$

The expression, equation (4-44), for the groove Nusselt number lower limit was programmed for evaluation on a digital computer. The integrals entailed in equation (4-39) and required for evaluation of (4-44) were numerically integrated using a modified Simpson's rule algorithm. The program listing appears in Appendix B of this report with only the results presented here. The results are presented in Tabular form in Table 4-2.

Results and Conclusions

As previously mentioned, the results for the heat transfer upper limit are presented in Table 4-1 and those for the lower limit in Table 4-2. To minimize the uncertainty of the actual conductance, the average value of the upper and lower values can be used. This limits the possible inaccuracy of using this value to one half of the difference between the upper and lower values determined earlier. This has been used with some success by Yovanovich, Schneider and Strong [37] in their evaluation of apparent composite conductivities for square fibers in a matrix. Since there is no motivation for using an estimation procedure other than the arithmetic averaging described above, this procedure will be used here.

The arithmetic average value of the product $N u_{f} \cdot k_{f} / k_{m}$ was computed and the range of uncertainty about this mean value established for land area ratios (symmetric grooves) of $0.01,0.10$ and 0.25 , half-groove angles of 20,30 , and 40 degrees, conductivity ratios, k_{f} / k_{m}, of $0.1,0.01156$, and 0.001 , and values of the normalized apparent contact angle, $\alpha /\left(\pi / 2-\theta_{0}\right)$, of $0.05,0.25,0.50$, and 1.00 . These results are presented in Table 4-3.

It is observed that in general the range of uncertainty about the mean value is lowest for a conductivity ratio of 0.1 , with this uncertainty increasing as the land area ratio increases and as the conductivity ratio decreases. While the uncertainty indicated represents the maximum possible

Table 4-2
Groove Nusselt Number Lower Limit
$N u_{f} \cdot k_{f} / k_{m}$

d	$\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$	$\varepsilon_{1}=\varepsilon_{2}$	x_{α}			
			0.05	0.25	0.50	1.00
1.0	0.1	0.01	0.9498	0.7674	0.6382	0.4967
		0.25	0.6027	0.4749	0.3956	0.3150
		0.49	\sim	~ 0	~ 0	\sim
	0.01156	0.01	0.2858	0.1875	0.1409	1.1007
		0.25	0.1404	0.0951	0.0751	0.0578
		0.49	~ 0	~ 0	~ 0	~ 0
	0.001.	0.01	0.0596	0.0290	0.0200	0.0134
		0.25	0.0244	0.0131	0.0098	0.0073
		0.49	~ 0	-0	\sim	\sim
1.5	0.1.	0.01	0.5780	0.4787	0.4096	0.3330
		0.25	0.3480	0.2905	0.2537	0.2142
		0.49	-0	~ 0	- 0	-0
	0.011 .56	0.01	0.1664	0.1136	0.0891	0.0676
		0.25	0.0778	0.0567	0.0474	0.0390
		0.49	-0	~ 0	-0	~ 0
	0.001	0.01	0.0331	0.0171	0.0124	0.0090
		0.25	0.0129	0.0077	0.0061	0.0049
		0.49	~ 0	~ 0	~ 0	~ 0
2.0	0.1	0.01	0.402	0.3402	0.298	0.250
		0.25	0.2384	0.2059	0.1850	0.1619
		0.49	-0	-0	-0	~ 0
	0.01156	0.01	0.114	0.079	0.064	0.051
		0.25	0.0517	0.0396	0.0343	0.0294
		0.49	-0	~ 0	~ 0	-0
	0.001	0.01	0.0213	0.0117	0.0089	0.0067
		0.25	0.0083	0.0053	0.0044	0.0037
		0.49	~ 0	~ 0	-0	~ 0

error that may be incurred, since the limit studies provide the upper and lower bound for the heat transfer, there is no means available to decrease these bounds except to solve the thermal problem described in chapter 3. This is the subject of chapter 5.

With the uncertainty ranging from ± 23 percent to ± 98 percent, the band within which the actual solution lies is not sufficiently narrow to allow use of these results as estimations for the actual heat transfer characteristics. This is particularly true in consideration that the groove mean temperature drop depends inversely upon the equivalent heat transfer coefficient and hence inversely upon the groove Nusselt number. When numbers having an error band approaching +100 percent are inverted, the resulting band, in this case on the thermal resistance, is extremely large indeed. With the mean groove temperature drop directly dependent upon the groove resistance to heat transfer, it is concluded that the limit study will be of little utility for prediction purposes. Its purpose will then be to serve as a check on the validity of the numerical results presented in the next chapter.

Average Groove Nusselt Number

1.5	0.1	0.01	0.05	019232	37.4
			0.25	0.7209	33.6
			0.50	0.5754	28.8
			1.00	0.433	23.1
		0.25	0.05	0.8183	57.5
			0.25	0.644	54.9
			0.50	0.533	52.4
			1.00	0.4523	52.6
		0.49	0.05	0.5595	100
			0.25	0.4281	100
			0.50	0.3562	100
			1.00	0.3664	100
	0.01156	0.01	0.05	0.6196	73.1
			0.25	0.4158	72.7
			0.50	0.2967	70.0
			1.00	0.2024	66.6
		0.25	0.05	0.5796	86.6
			0.25	0.404	86.0
			0.50	0.3237	85.3
			1.00	0.3277	88.1
1.5	0.01156	0.49	0.05	. 4576	100
			0.25	. 3105	100
			0.50	. 2520	100
			1.00	. 3366	100
	0.001	0.01	0.05	0.5112	93.5
			0.25	0.3082	94.5
			0.50	0.2122	94.2
			1.00	0.1496	94.0
		0.25	0.05	0.4970	97.4
			0.25	0.3052	97.5
			0.50	0.2396	97.5
			1.00	0.1496	94.0
		0.49	0.05	0.4115	100
			0.25	0.2437	100
			0.50	0.1927	100
			1.00	0.3326	100
2.0	0.1	0.01	0.05	0.6389	37.1
			0.25	0.5122	33.6
			0.50	0.4186	28.8
			1.00	0.3249	23.0

2.0	0.1	0.25	0.05	0.5604	57.5
			0.25	0.4612	55.4
			0.50	0.3932	53.0
			1.00	0.3399	52.4
		0.49	0.05	0.3838	100
			0.25	0.3152	100
			0.50	0.2729	100
			1.00	0.2749	100
	0.01156	0.01	0.05	0.4294	74.1
			0.25	0.2982	73.5
			0.50	0.2167	70.5
			1.00	0.1520	66.4
		0.25	0.05	0.4064	87.3
			0.25	0.3014	86.9
			0.50	0.2480	86.2
			1.00	0.2459	88.0
		0.49	0.05	0.3258	100
			0.25	0.2423	100
			0.50	0.2041	100
			1.00	0.2525	100
2.0	. 001	0.01	0.05	0.3598	94.1
			0.25	0.2267	94.8
			0.50	0.1577	94.4
			1.00	0.1122	94.0
		0.25	0.05		97.7
			0.25	0.2371	97.7
			0.50	0.1905	97.7
			1.00	0.2295	98.3
		0.49	0.05	0.3009	100
			0.25	0.1992	100
			0.50	0.1630	100
			1.00	0.2497	100

Chapter 5

Finite Element Analysis

5.1 Introduction

The reasons for selecting the finite element method for use in this analysis were briefly discussed in chapter three of this report. The prime motivation for preference of the finite element method over other numerical solution techniques is its flexibility in analysing solution domains of irregular geometry. Recalling the problem geometry of figure 3-3, the solution method used for this problem will certainly require this flexibility.

It is the purpose of this chapter to present briefly the underlying principles governing the application of finite element techniques to heat conduction analysis and to discuss its application to the trapezoidal groove heat transfer problem. Some of the difficulties encountered in applying the method to this particular problem are indicated and the procedure by which these difficulties were surmounted is presented. In concluding the chapter an analysis is presented for estimating the accuracy of the obtained results. This is done using the results of a case study used to examine the convergence characteristics for this problem. It is felt that the combination of parameters used in this study presents a severe test on the method and that the accuracy for all other cases considered will be at least as good as the estimates obtained from this case study.

5.2 The Finite Element Method

The finite element method is a relatively recent numerical
solution technique to be employed in the anlysis of heat conduction problems. First introduced to the solution of field problems in $1965[39,40]$, the finite element method has since been the subject of several investigations [41-44]. While these investigations were concerned with alternate derivations of the governing functional equation and with the treatment of the transient terms appearing in the governing differential equation, application of the method was restricted to the cartesian coordinate system. In a more recent investigation by Schneider [45], extension of the method was made to include fits application to any orthogonal curvilinear coordinate system. This development will be adopted here with the details of the analysis presented in Appendix C. The derivation of the variational statement for application of theifinite element method to heat conduction analysis follows directly.

5.2.1 Prelininary Remarks ${ }^{\circ}$

The development of the governing variational statement will be performed for a general orthogonal curvilinear coordinate system and the results reduced to those corresponding to the cartesian system to be used in this analysis. The general orthogonal coordinate system is illustrated in figure $5-1$ with u_{1}, u_{2}, and u_{3} used to denote the three principal curvilinear coordinate directions. In general, the coordinates of an orthogonal curvilinear coordinate system can be related to the cartesian coordinates, x, y, and

Figure 5-1
z by relations of the form

$$
\begin{align*}
& x=x\left(u_{1}, u_{2}, u_{3}\right) \\
& y=y\left(u_{1}, u_{2}, u_{3}\right) \tag{5-1}\\
& z=z\left(u_{1}, u_{2}, u_{3}\right)
\end{align*}
$$

Using these relations, the magnitude of an arbitrary differential vector in space, $\vec{d} \mathbf{s}$, can be determined from

$$
\begin{equation*}
(d s)^{2}=g_{1}\left(d u_{1}\right)^{2}+g_{2}\left(d u_{2}\right)^{2}+g_{3}\left(d u_{3}\right)^{2} \tag{5-2}
\end{equation*}
$$

- where the metric or Lame coefficients of transformation are defined by [30]

$$
\begin{equation*}
g_{i}=\left(\frac{\partial x}{\partial u_{i}}\right)^{2}+\left(\frac{\partial y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial z}{\partial u_{i}}\right)^{2}, i=1,2,3 \tag{5-3}
\end{equation*}
$$

Clearly for a differential length, say in the u_{i}-direction, the relationship of equation (5-2) becomes simply

$$
\begin{equation*}
d s_{i}=\sqrt{g}_{i} d u_{i} \tag{5-4}
\end{equation*}
$$

Similarly the area and volume elements can be written as

$$
\begin{align*}
& d A_{i}=\sqrt{g_{1} g_{k}} d u_{j} d u_{k}, \quad i=1,2,3 \tag{5-5}\\
& i \neq j \neq k
\end{align*}
$$

and $\quad \mathrm{dV}=\sqrt{\mathrm{g}} \mathrm{du}_{1} \mathrm{du}_{2} \mathrm{du}_{3}$
where the convention has been used that the direction of the area element be taken normal to the surface in an outward sense and the definition has been made that

$$
\begin{equation*}
\sqrt{g}=\sqrt{g_{1} g_{2} g_{3}} \tag{5-7}
\end{equation*}
$$

By applying the first law of thermodynamics to the differential
control volume of figure $5-1$ and by using the above relationships for length, area, and volume, the governing differential equation for heat conduction can be written as [30]

$$
\begin{gather*}
\frac{\partial}{\partial u_{1}}\left[\frac{k_{1} \sqrt{g}}{g_{1}}-\frac{\partial T}{\partial u_{1}}\right]+\frac{\partial}{\partial u_{2}}\left[\frac{k_{2} \sqrt{g}}{g_{2}} \frac{\partial T}{\partial u_{2}}\right]+\frac{\partial}{\partial u_{3}}\left[\frac{k_{3 \sqrt{g}}^{g}}{g_{3}} \frac{\partial T}{\partial u_{3}}\right] \\
+P \sqrt{g}=\sqrt{g} \rho c_{p} \frac{\partial T}{\partial t} \tag{5-8}
\end{gather*}
$$

where Fourfer's Law of heat conduction has been used to describe the local transfer of heat within the continuum.

Boundary conditions to be applied to the solution of equation (5-8) can be written in general (except for non-linearized radiative conditions) as

$$
\begin{equation*}
T=T_{A}\left(u_{1}, u_{2}, u_{3}, t\right) \tag{5-9a}
\end{equation*}
$$

over a portion S_{1} of the boundary sufaces and

$$
\begin{equation*}
k_{n} \frac{\partial T}{\partial n}+h T+C=0 \tag{5-9b}
\end{equation*}
$$

over the remaining surface S_{2}. In equation (5-9b), n is the outward normal to the boundary surface over S_{2}.

The initial condition, in the case of transient solutions, is represented by

$$
\begin{equation*}
T\left(u_{1}, u_{2}, u_{3}, o\right)=T_{0}\left(u_{1}, u_{2}, u_{3}\right) \tag{5-9c}
\end{equation*}
$$

5.2.2 Variational Statement

If the concept of a variational principle is to be applied to the solution of heat conduction problems, then the governing differential equation (5-8) must correspond to the Euler equation for
the corresponding variational problem [46]. Considering a particular instant of time in this development, time derivatives will be treated as prescribed functions of the spatial coordinates, u_{1}, u_{2}, and u_{3}. This approach leads to a quasi-variational statement but rigor is restored with respect to the variational calculus when a steady-state solution is sought and time derivatives are set to zero.

Procseding with the approach taken here and invoking the requixement that the equation (5-8) be the Euler equation corresponding the same, as yet unknown, variational statement, we set

$$
\begin{align*}
\int_{u_{1}} \int_{2} \int_{3} & \left\{\frac{\partial}{\partial u_{1}} f^{k_{1} \sqrt{g}} \frac{\partial T}{g_{1}} \frac{\partial u_{1}}{\partial u_{1}}\right]+\frac{\partial}{\partial u_{2}}\left[\frac{k_{2} \sqrt{g}}{g_{2}} \frac{\partial T}{\partial u_{2}}\right]+\frac{\partial}{\partial u_{3}}\left[\frac{\left.k_{3 \sqrt{g}}^{g_{3}} \frac{\partial T}{\partial u_{3}}\right]}{}\right. \\
& \left.+P \sqrt{g}-\sqrt{g} \rho C_{p} \frac{\partial T}{\partial t}\right\} \delta T \quad d u_{1} d u_{2} d u_{3}=0 \tag{5-10}
\end{align*}
$$

where the first variation of temperature, δT, has been introduced. Denoting by I_{1} the first integral of equation (5-10) and integrating by parts gives

$$
\begin{align*}
& I_{1} \left.=\int_{u_{2}} \int_{3}\left[\frac{k_{1 \sqrt{g}}^{g}}{g_{1}} \frac{\partial T}{\partial u_{1}} \delta T\right] \right\rvert\, d_{2} d u_{3} \\
& u_{1}=u_{1}\left(u_{2}, u_{3}\right) \\
&-\int_{u_{1}} \int_{2} \int_{u_{3}}\left[\frac{k_{1} \sqrt{g}}{g_{1}} \frac{\partial T}{\partial u_{1}}\right] \frac{\partial}{\partial u_{1}}(\delta T) d u_{1} d u_{2} d u_{3} \tag{5-11}
\end{align*}
$$

where $u_{1}\left(u_{2}, u_{3}\right)$ represents the locus of values that the u_{1} coordinate takes on, as a function of the remaining two coordinates, as the
boundary surface of the solution domain is traversed. Employing the comutability property of the differential and variational opertors, equation (5-11) can be wriliten as

$$
\begin{align*}
& I_{1} \left.=\int_{S_{2}}\left[\frac{k_{1}}{\sqrt{g}} \frac{\partial T}{\partial u_{1}} \quad \delta T\right] \right\rvert\, \ell_{1} d s \\
& \text { boundary } \tag{5-12}\\
&-\frac{1}{2} \delta \int_{u_{1} u_{2}} \int_{u_{3}} f_{1}\left(\frac{\partial T}{\partial u_{1}}\right)^{2} d u_{1} d u_{2} d u_{3}
\end{align*}
$$

where the definition has been made that

$$
\begin{equation*}
f_{i}=\frac{k_{i \sqrt{g}}}{g_{i}}, \quad i=1,2,3 \tag{5-13}
\end{equation*}
$$

Further, it has been recognized in writing equation (5-12) that

$$
\begin{equation*}
\sqrt{g_{2} g_{3}} d u_{2} d u_{3}=\ell_{1} d s \tag{5-14}
\end{equation*}
$$

with l_{1} the direction cosine of the bounding surface with respect to the coordinate direction u_{1} and also that the variation of temperature over S_{1} is by definition zero so that there is no contribution to the first integral of equation (5-11) resulting from integration over the portion S_{1} of the boundary. Integrals similar to equation (5-12) arise from consideration of the conduction terms for the other two coordinate directions. Additional details of the derivation are presented in Appendix C.

Determination of the variational form for the remaining two integrals of equation (5-10) follows by a direct application of the calculus of variations. Collecting the components and assembling to provide the quasi-variational equivalent to equation (5-8) yields

$$
\begin{gather*}
\left\{\int _ { u _ { 1 } } u _ { 2 } \int _ { u _ { 3 } } \left\{\frac{f_{1}}{2}\left(\frac{\partial T}{\partial u_{1}}\right)^{2}+\frac{f_{2}}{2}\left(\frac{\partial T}{\partial u_{2}}\right)^{2}+\frac{f_{3}}{2}\left(\frac{\partial T}{\partial u_{3}}\right)^{2}\right.\right. \\
\left.\left.-P \sqrt{g T}+\sqrt{g \rho} C_{p} T\right\} d u_{1} d u_{2} d u_{3}\right\} \\
\quad-\int_{s_{2}}\{h T+C\} \delta T d S_{2}=0 \tag{5-15}
\end{gather*}
$$

where the identity has been used that

$$
\begin{equation*}
\left[\frac{k_{1}}{\sqrt{g_{1}}} \frac{\partial T}{\partial u_{1}} \ell_{1}+\frac{k_{2}}{\sqrt{g_{2}}} \frac{\partial T}{\partial u_{2}} \ell_{2}+\frac{k_{3}}{\sqrt{g_{3}}} \frac{\partial T}{\partial u_{3}} \ell_{3}\right] d S_{2}=k_{n} \frac{\partial T}{\partial n} d S_{2} \tag{5-16}
\end{equation*}
$$

together with the boundary condition statement, equation (5-9b). A final application of the variational calculus to the surface integral of equation (5-15) leads to the result

$$
\begin{align*}
& \delta\left[\int _ { u _ { 1 } u _ { 2 } } \int _ { 3 } \left\{\frac{f_{1}}{2}\left(\frac{\partial T}{\partial u_{1}}\right)^{2}+\frac{f_{2}}{2}\left(\frac{\partial T}{\partial u_{2}}\right)^{2}+\frac{f_{3}}{2}\left(\frac{\partial T}{\partial u_{3}}\right)^{2}\right.\right. \\
& \left.-\mathrm{p} \sqrt{g T}+\sqrt{g \rho C_{p}}\left(\frac{\partial T}{\partial \mathrm{t}}\right) T\right\} d u_{1} d u_{2} d u_{3} \\
& \left.\quad+\iint_{S_{2}}\left\{\frac{\mathrm{hT}^{2}}{2}+C T\right\} d S_{2}\right]=0 \tag{5-17}
\end{align*}
$$

Equation (5-17) is the quasi-variational statement referred to earlier and its satisfaction, within the limits of the treatment of time dependent terms adopted here, is equivalent to satisfying the differential equation (5-8) from which it has been derived.

To enable application of the finite element method to the variational statement of equation (5-17) it will be useful to define the following vectors and matrices. The first, a vector very similar to the gradient field vector of a cartesian frame [33], will be defined by

$$
\begin{equation*}
\{G\}^{T}=\left\{\frac{\partial T}{\partial u_{1}}, \frac{\partial T}{\partial u_{2}}, \frac{\partial T}{\partial u_{3}}\right\} \tag{5-18}
\end{equation*}
$$

This vector will be referred to as the curvilinear field vector, although, since the curvilinear coordinates do not directly reflect physical distances, the components of (5-18) are not physical gradients unless accompanied by their corresponding metric coefficients. The second, a matrix analogous to the property matrix of cartesian system, is defined by

$$
[R]=\left[\begin{array}{ccc}
f_{1}\left(u_{1}, u_{2}, u_{3}\right) & 0 & 0 \tag{5-19}\\
0 & f_{2}\left(u_{1}, u_{2}, u_{3}\right) & 0 \\
0 & 0 & f_{3}\left(u_{1}, u_{2}, u_{3}\right)
\end{array}\right]
$$

This matrix shall be referred to as the effective curvilinear property matrix. The remaining vectors, at this point continuous functions of the spatial curvilinear coordinates, are defined by

$$
\begin{align*}
& \{T\}=\left\{T\left(u_{1}, u_{2}, u_{3}\right)\right\} \\
& \{P\}=\left\{P\left(u_{1}, u_{2}, u_{3}\right)\right\} \\
& \{C\}=\left\{C\left(u_{1}, u_{2}, u_{3}\right)\right\} \tag{5-20}\\
& \{\dot{T}\}=\left\{\frac{\partial T}{\partial t}\right\}
\end{align*}
$$

Using the above defined vectors and matrices, the variational statement (5-17) can be written as

$$
\begin{align*}
& \delta\left[\int_{1} \int_{U_{2}} \int_{3}\left[\frac{1}{2}\{G\}{ }^{T}[R]\{G\}-\sqrt{g}\{T\}^{T}\{P\}+\rho C_{p} \sqrt{g}\{T\}^{T}\{T\}\right] d u_{1} d u_{2} d u_{3}\right. \\
& \left.\quad+\int_{S_{2}}\left[\frac{h_{2}}{2}\{T\}^{T}\{T\}+\{T\}^{T}\{C\}\right] d S_{2}\right]=0 \tag{5-21}
\end{align*}
$$

With the variational statement expressed in vector notation, we now consider the fundamental concept of the finite element method, that the solution domain can be spatially subdivided into a collection of finite elements. Over each of these elements, an approximate solution is assumed which contains a specified number of arbiteary parameters representative of the nodal degrees of $\mathbb{E r e e d o m}$. It is the object of the finite element method to determine the values for these nodal degrees of freedom by the approximate satisfaction of the variational statement ($\mathrm{g}-21$).

Approximating the unknown temperature distribution by the approximation

$$
\left\{T_{\}}=\left[N_{1}, N_{2} \cdots \quad\left\{\begin{array}{c}
T_{1} \tag{5-22}\\
T_{2} \\
\vdots
\end{array}\right\}=\left\{N_{1}\right\}^{T}\left\{T_{1}\right\}\right.\right.
$$

the curvilinear field vector can immediately be written as:

$$
\{G\}=\left[\begin{array}{ccc}
\partial N_{1} / \partial u_{1} & \partial N_{2} / \partial u_{1} \ldots \tag{5-23}\\
\partial N_{1} / \partial u_{2} & \partial N_{2} / \partial u_{2} \ldots \\
& \ldots N_{1} / \partial u_{3} & \partial N_{2} / \partial u_{3} \ldots
\end{array}\right]\left\{\begin{array}{c}
T_{1} \\
T_{2} \\
\vdots
\end{array}\right\}=[B]\left\{T_{i}\right\}
$$

In the above the N_{i} 's are the shape function [] for the element and their form and number will depend on the type of element under consideration. Having made the approximation $\delta \mathbb{f}$ equation (5-22), the approximate functional corresponding to equation (5-21) becomes a function of only the unknown nodal temperatures, $T_{i}, i=1,2,3$, . Finding the stationary value of this functional by taking its first ariation with respect to T then becomes equivalent to simply differentiating the approximate functional with respect to each nodal temperature in turn, and setting the result equal to zero.

Performing the indicated differentiation, and recalling that the instantaneous thermal behavior is considered in this treatment, leads to the matrix-differential equations.

$$
\begin{equation*}
[k]\left\{T_{i}\right\}+\{P\}\left\{\dot{T}_{i}\right\}=\{f\} \tag{5-24}
\end{equation*}
$$

where

$$
\begin{align*}
& {[k]=e^{\sum_{=1}}\left[\iiint_{V_{e}}[B]^{T}[R] \quad[B] d u_{1} d u_{2} d u_{3}\right.} \\
& \left.+\iint_{S_{2}} h\left\{N_{i}\right\}\left\{N_{i}\right\}^{T} d S_{2}\right\} \tag{5-25a}\\
& {[P]=e^{n} \int_{I} \iint_{V_{e}}^{2} \int_{p} \rho C_{p} \sqrt{g} \quad\left\{N_{i}\right\}\left\{N_{1}\right\}^{T} d u_{1} d u_{2} d u_{3}} \tag{5-25b}
\end{align*}
$$

and

$$
\begin{equation*}
\{f\}=e^{\sum_{1}}\left[\iiint_{V} \sqrt{g}\left\{N_{i}\right\}\{P\} d u_{1} d u_{2} d u_{3}+\iint_{S_{2}}\left\{N_{i}\right\}\{C\} d S_{2}\right] \tag{5-25c}
\end{equation*}
$$

In the above, integration of the functional over the solution domain volume has been replaced with a summation of volume integrations,
each integration being local to the element characterized by the index of summation, e. Treatment of the transient terms is presented in Appendix C but for the present purpose of examining the steady state thermal behavior the time derivatives can be set to zero

$$
\begin{equation*}
\left\{\dot{\mathrm{T}}_{1}\right\}=0 \tag{5-26}
\end{equation*}
$$

resulting in the matrix equations

$$
\begin{equation*}
[k]\left\{T_{i}\right\}=\{E\} \tag{5-27}
\end{equation*}
$$

where since we are not considering the case of internal heat generation, the heat generation submatrix appearing in $\{f\}$ can also be set to zero.

$$
\begin{equation*}
\{P\}=0 \tag{5-28}
\end{equation*}
$$

Solving the matrix equationsoof equation (5-27) will then provide the approximate solution for the temperature field by means of determining the temperature at the field node points, $T_{r}, i=1,2,3$,
5.3 Application to Trapezoidal Groove Heat Transfer

We now consider the application of the finite element method as described above to the problem of direct interest in this work, that of determining the heat transfer characteristics for trapezoidal shaped grooves. The problem geometry is repeated in figure 5-2 from figure 3-3 for ease of reference by the reader.

Examination of the figure suggests the due to the complex geometric description of the solution domain and component boundaries, the coordinate system most suitable for use in effecting the solution is the cartesian coordinate system. The transformation equations in reference to the material presented in section 5.2 .1 are given simply by

$$
\begin{equation*}
x=x ; y=y ; z=z \tag{5-29}
\end{equation*}
$$

Figure 5-2
with the metric coefficients each being identially unity, $\mathbf{g}_{1}=\mathbf{g}_{\mathbf{2}}=\mathbf{g}_{\mathbf{3}}=$ $g \Rightarrow 1$. For this case, and considering isotropic materials, the effective curvilinear property matrix becomes the diagonal matrix

$$
[R]=\left[\begin{array}{lll}
k & 0 & 0 \tag{5-30}\\
0 & k & 0 \\
0 & 0 & k
\end{array}\right]
$$

where the conductivity to be used in equation (5-30) will be the 1iquid or solid conductivity respectively depending upon whether the element under consideration is in the liquid or solid region of the solution domain. For accuracy of representation of the thermal behavior for this problem, since the volume integrations of equation (5-25) usually require a numerical integration proeedure, it is important that the solid/liquid interface form a bounding surface for adjacent interface elements rather than to allow a step change in the thermal properties to occur within a single element. The above modification of the effective curvilinear property matrix in the general formulation is all that is required to adapt it for use with the cartesian coordinate system. Further simplifications can be made, however.

Considering the boundary condition specification as indicated in general by equation (5-9b)

$$
\begin{equation*}
k_{\mathfrak{n}} \frac{\partial T}{\partial \mathfrak{n}}+\mathrm{hT}+\mathrm{C}=0 \tag{5-9b}
\end{equation*}
$$

the non-homogeneous term, hT, can be interpreted as part of the specification for boundary conditions of the Cauchy type. Not having Cauchy, or in this application convective, boundary conditions present on any
exterior surface of the solution domain, the surface integral of equation (5-25a) will be identically zero.

The constant term of the boundary condition specification is representative of a Neumann type boundary condition. Having a prescribed flux of q, the constant C will be determined by

$$
\begin{equation*}
C=q \tag{5-31}
\end{equation*}
$$

This specification is applicable over the surface defined by y $=0$ in figure 5-2. In the special case of an adiabatic surface, as for example over the surfaces defined by $x=0, x=w$ for $0 \leq y \leq H$, and for $y=H$ for $w \leq \varepsilon_{1} \leq x \leq w$, the constant C will be zero and its contribution to the surface integral of equation (5-25C) will be zero. These boundaries therefore require no special treatment whatsoever in their implementation and are called natural boundary conditions. As was seen earlier the Dirichlet boundary over the liquid free surface is also a natural boundary condition to the Finite Element Method as developed here.

A program has been developed which, using a compatible data input subroutine, will assemble and solve the matrix equations (5-27) to yield as a solution the temperatures at the discrete nodal points. Using this computed temperature field, the various derived quantities of Interest in this investigation can be computed. The most important derived quantity of interest here is the equivalent heat transfer coefficient to be associated with the heat transfer from the groove root to the vapor core.

The 'finite element' selected for use in the analysis of the
trapezoidal groove heat transfer is the general quadrilateral, linear, isoparametric element. The details of the element shape functions and stiffness matrix will not be discussed here but can be found in finite element texts $[33,34]$ with the details presented very explicitly in the paper by Shah and Kobayashi [47]. This particular element has a general quadrilateral sitmene and maintains the flexibility of degeneration to a triangle by the assignment of two of the four nodes to the same physical location in space. A summary of the derivations pertinent to this element. are, however, presented in Appendix F of this report.

Due to the large degree of detall which would be required to explain fully the internal operation of the solution program, the details of its operation will also not be discussed in this report. Further, these details are of no consequence with respect to the thermal problem under consideration; it must simply be ascertained that the appropriate sub-functions of the program components are being performed correctly. Let it suffice for purposes of this investigation to demonstrate the correct operation of the program components by example. In Appendix C of this report where the finite element formulation of the heat conduction equation is developed for any orthogonal curvilinear coordinate system, two examples are considered for verification of the development; a problem in the polar spherical coordinate system and one in the oblate spheroidal coordinate system. The fact that the solution program used for this investigation is the same as that used for the verification examples, with the exception of the input data
subroutine, and the fact that these examples indicate excellent agreement of the finite element results with known analytic solutions, provides confidence that the solution program is functioning correctly.

The input data subroutine, being unique to each problem tackled using such a program as that developed for this investigation, is an important consideration in applying the finfte element method. Indeed, in this work considerable difficulty was experienced due to a not entirely 'appropriate' input of the nodal locations, element distribution, and element shapes for the initial mesh generation subroutines. These types of difficulty, however, are extremely problem dependent and are often difficult to anticipate and can only be detected during an examination of the convergence characteristics for a particular problem. In this regard, it is the authors' firm opinion that the heat transfer problem tackled in this particular investigation is an extremely difficulty one indeed, by any method of attack. The reasons for arriving at this conclusion are briefly presented below.

In examining the behavior of heat transfer across trapezoidal grooves in the case of moderate temperature heat pipes, the working fluid is typically of low thermal conductivity, eg. water, methanol, ammonia, etc, , while the pipe structure is typically metallic and consequently has a significantly higher themal conductivity, eg., stainless steel, carbon steel, aluminum, copper, etc. The conductivity ratio, k_{f} / k_{m}, for these combinations can therefore range from approximately 0.03 for water/stainless steel pipes to approximately 0.0014 for methanol/copper heat pipes. Numerically enforcing inferface compatibility
for problems having such a severe conductivity ratio is extremely, difficult: except for problems of very simple geometry. The solution to such problems must be able to adequately describe the interfacial heat transfer characteris:ics at component boundaries within the solution domain.

Further, the above problem is compounded by the geometric characteristics of the trapezoidal groove problem. This arises for two reasons. Firstly the liquid free surface geometry is such that it the meniscus attachment point, the liquid thickness vanishes. This results in an extremely local. region over which the bulk of the heat transfer is concentrated. The second, serving to compound the first, is that the metal section extends fully to the vapor core. This affords the heat flow a low resistance path to the meniscus contact region and further concentrates the heat flow in this region. A solution program must then be sufficiently flexible to be able to 'pick up' the large gradients existing near the meniscus contact and blend this region into the remaining portion of the solution domain where the heat flow is less concentrated and gradients are smaller. 5.4 Problems in Effecting the Solution

In effecting the finite element solution to the trapezoidal groove heat transfer problem, several difficulties were encountered which had to be resolved before confidence in the numerical results could be established. These difficulties are related to the spatial discretization of the solution domain and the influence that the method of subdivision has on the finite element solution of the heat transfer
problem. With this application of the finite element method by the authors being the first application in which difficulty of application was experienced, the above named cause of the problem was not immediately obvious and a systemmatic check of the entire solution program was necessitated. Since all of the checks employed that are not directly related to the input data subroutine indicated that the program components were functioning correctly, these will not be discussed here. Indeed, many checks performed directly on the input subroutine also indicated that even the input subroutine was operating correctly; that is, the location, numbering and allocation of the nodes and elements was being performed as intended. Thus the problem is not one of incorrect input of information but rather of the influence that the method of subdivision has on effecting a solution using the finite element method. The difficulties encountered in the solution are discussed briefly in the sections that follow but only to the extent to which they are relevant to the problem area to which the difficulties have been attributed.

5.4.1 Mesh Generation Scheme I

The first mesh generation, arrangment was constructed with the intent that a larger number of small elements be located near the meniscus contact point. In consideration of the anticipated local concentration of the heat faow in this region, this type of element allocation was deemed necessary in order to obtain reliable results while keeping the program storage requirements within the limits
afforded by the available computational facilites. As will be seen, this is indeed a desirable objective of the mesh generator. The problem with this generation scheme, concluded after many tedious verification procedures, is in the method of allocation and in particular in the shape of the elements near the meniscus contact region. A more detailed description of this generator will be given below.

Before discussing the generator, however, we present the testcase used for evaluation of the computational scheme convergence characteristics. It was felt that to examine the convergence characteristics, an extreme computational situation should be used. In this way, when an estimate of the solution accuracy is available, computational results for less severe cases should be at least as accurate as those obtained for the test situation. Feeling,however, that the computations will be relatively insensitive to the groove half-angle, within moderate bounds, a value of twenty degrees was used for the groove half-angle. An exposed land area ratio (symmetric groove configuration) of 25 per cent land area to total apparent area was used since this case will yield a significant degree of heat flow concentration. The extreme case of the conductivity ratio, k_{f} / k_{m}, of 0.001 was also used since this also augments the heat flow concentration. Finally, an apparent contact angle of 2.5 degrees was used, also for the reasons given above. It is felt that any problems configuration and property dependent will become apparent for this combination of parameters. The characteristics of the first mesh generator are given below for this parameter combination.

The first mesh generation scheme used a virtual origin established at the intersection of the groove centerine with the extrapolation of the groove sidewall plane. This is illustrated in figure 5-3. Radial lines emanating from this origin were constructed with the region used ranging from the wall exterior surface to the liquid free surface over the angular range of $0 \leq \theta \leq \theta_{0}$. In order to provide a higher degree of detail near the meniscus contact a finer angular division between the radial lines was used near $\theta=\theta$ of than near $\theta-0$. The details of the actual subdivision scheme used to provide this gradation will not be presented here since they will not add to the problem understanding. Within the metal region extending over $0 \leq \theta \leq \theta_{0}$, horizontal lines were used ti provide the remaining boundaries for the elements. Within the liquid, the radial distance between the groove root and the liquid free surface was further subdivided non-uniformly to provide the snaller elements required near the meniscus contact point. A non-uniform linear scheme was used within the remainder of the metal region of the solution domain. The resulting mesh is illustrated in figure 5-3 for a crude mesh subdivision.

The results of a preliminary examination of the convergence characteristics for the sharp V case, 0.5 land area ratio and conductivity ratio of 0.01156 are presented in figure 5-4. As can be seen from the figure, convergence 'looks' monotone and asymptotic to a limiting value. Calculation indicates, however, that the limit has not been approached. Unfortunately, the last data point presented represents the limit for avallable storage core on the IBM 360/75 computing installation at the University of Waterloo. It was in the search for verifying that the limit was near the last computational

Figure 5-3

Figure 5-4
data point that the problem area associated with this mesh generation scheme was discovered.

To examine the convergence characteristics in greater detail, the I.BM $370 / 158$ 'virtual machine' was used which allows much larger core usage. On this system, additional points computed for the above case departed from the asymptotic nature exhibited in figure 5-4 and fell increasingly far below the anticipated asymptote.

The results for the more severe test case using the $370 / 158$ system are shown in figure 5-5. The results referred to henceforth will apply to the more severe test case parameter combination described earlier. As can be seen from the figure, an initial approach towards a convergence limit is indicated by the results but as the number of nodes is further increased beyond 1600 the results drop off sharply. It is not so much the range of values taken on by the Nusselt number (note the expanded ordinate scale) but the trend of the results which is most disturbing. If these results were accepted, the question would have to be answered, "Where are these results going?", and this is not determinable from the convergence characteristics of figure 5-5.
I.t was concluded therefore that the mesh generation scheme described above will be inadequate to describe the thermal behavior of this problem. The reasons for its inadequacy are attributed to two independent characteristics of this mesh generation scheme and are britefly outlined below.

The first potential cause for the apparent erratic behavior displayed by figure 5-5 is the combination of the variable mesh generation

schemes for the two independent directions used to obtain the total generation pattern. This is best visualized with reference to figure 5-3. In order to obtain greater detail of the solution in the radial direction (from the virtual origin) near the meniscus contact region, the element thickness in that direction is small not only near the meniscus contact, point B, but also at the groove centerline, point A. Conversely, while the variable mesh in travexsing the Iiquid region, from point A to B, provides (finer) subdiviston near point B, the element 'lengths' near point A are large by comparison. The net result of the independent gradation for each direction is a series of elements with aspect ration very much different from unity existing near point A of the figure. Similar effects are obtained near point C, D, and E of figure 5-3. With aspect ratios of 1000:1 and higher in these regions, it is clear that the thermal influence of two nodes on each other in any given 'direction' may be 1000 times more, or less, than that for the other 'direction'. Without expounding on the details of the effects of very large or very small aspect ratios, let it suffice for purposes of this report to say that certain of the inter-nodal influences become diarfed, or indeed lost, upon assembly into the overall stiffness matrix, particularly when computing using single precision arithmetic.

The second deficiency of the first mesh generation scheme is its introduction of highly skewed elements into the solution domain. Unfortunately, predominance of these highly skewed elements is (almost) exclusively in the region near the meniscus contact with the groove wall
and as a result any detrimental behavior resulting from. their skewed character will be markedly reflected in the solution. Due to the general nature of the general quadrilateral finite element used in this work, the volume integration of equation (5-25a) is performed numerically in the solution program using Gauss-point integration. The influence of highly skewed elements on the solution accuracy is reflected through a reduced accuracy of the numerical integration for these elements. It is felt that this skewed character for some of the elements is the second cause for the poor convergence characteristics of the first mesh generation scheme.

While the influence of the second item above would be in the form of a misrepresentation of the thermal problem, the influence of the first item, in addition to contribution to the misrepresentation, is to provide very small and very large diagonal elements in the coefficient matrix (5-25a). The effect of the small diagonal elements was observed In the solution through nodal heat flow imbalances as large as 100 percent of the imposed heat flow rate. Clearly, now, this subdivision scheme is unacceptable for use with this problem.

5.4.2 Mesh Generation Scheme II

A second mesh generation scheme, a modification of the first scheme described above, was also found to be unacceptable for this problem but for different reasons than for those of the first scheme. This second scheme sought to alleviate the problems associated with the first generation scheme while maintaining the same basic mechanism for achieving element size variation throughout the solution domain. The corrective measures that were taken proved to be effective but unfortunately due to the built in safeguard in this scheme to keep the aspect
ratio near unity for all elements, a very large number of elements are required. Indeed, for this scheme even at 2000 nodes within the solution domain, the computational results were far from being near a converged state. The convergence characteristics for the second mesh generation scheme are presented in figure 5-6. A brief discussion of the second mesh generation scheme is given below but the purpose of this discussion does not warrant a detailed description of 1 ts nature.

The prime departure of this scheme from the previous one is that given a prescribed number of nodes, their distribution is rearranged to maintain element aspect ratios near unity. In order to universally achieve this it was also necessary to relax the transition from the coarse regions to the finer regions, and this, of course, necessitates the use of more elements to achieve a prescribed degree of detail near the meniscus contact region. The redistribution of elements mentioned above was effected by imposing a fixed number of elements across the test section thickness, and as the typical cell isitraversed from the outer surface to the inner surface, elements are 'passed' from the metal section to the liquid section in accordance with the respective cross-sectional area changes. In this way a greater degree of aspect ratio uniformity, were achieved using this generation scheme, and while the resultant convergence characteristics exhibited monotonic behavior as illustrated in figure $5-6$, the additional elements required to obtain the required detail near the meniscus contact region makes this generator impractical for use on this problem. Indeed, as can be seen from figure 5-6, when comparing ordinate scales here with that of figure

Figure 5-6

5-5, the last data point from the second generator has not even reached. the starting point of the first generator. In view of this, and the fact that the convergence slope at 2000 nodal degrees of freedom is far from that of a 'near converged' situation, this generator was discarded as being impractical to apply with the available computational facilities. A third generator, which proved to be adequate for the purposes intended, was devised instead and used for the subsequent parametric study. This generation scheme is described in the following section.

5.5 Successful Application of the Method

In this section the third, successful, mesh generation scheme is presented along with the associated convergence characteristics. The third generation scheme was developed entirely as a new and different subdivision scheme and does not incorporate any of the underlying ideas which led to the first two schemes. The object still remains to provide detail near the meniscus contact point, however, but while the former two methods accomplished this, the third enables in addition a more compatible gradation to the coarser elements and is also relatively free from highly skewed elements.

The convergence characteristics for the three conductivity ratios to be considered, $k_{f} / k_{m}=0.1,0.01156$, and 0.001 , are also presented in this section. Finally, an extrapolation technique is utilized to provide an estimate on the solution accuracy. The expected solution accuracy is found to be sufficient for the purpose intended by this investigation.

5.5.1 Mesh Generation Scheme III

In this third mesh generator the virtual origin concept used in the previous two generators is discarded entirely. Instead, a deliberate attempt has been made to orient the elements in a fashion which more closely resembles the anticipated thermal field set up within the solution domain. In effecting this orientation of elements, it is also strived to keep the elements as close as possible to rectangular in shape and to maintain the aspect ratio within a moderate range. A schematic of the spatial subdivision scheme is presented in figure 5-7 for a crude subdivision. The diagram is only representative of the element allocation, however, and is not to scale.

In this subdifision scheme, a single parameter. NEI is used as input. The remaining spatial subdivision is determined from the lengths associated with the appropriate section of the typical cell. One exception to this determination is the subdivision parameter, NF, in the fluid region which is taken as one-half the value of NE1 (to the nearest larger integral value). This is felt to be adequate since over the bulk of the liquid region, little heat is flowing while near the meniscus contact point the coalescence of the element boundaries at a single node at the contact point yields element thicknesses which are here sufficiently small to 'pick-up' the larger gradients in this region. The details of the generation procedure will not be presented here since the algebraic 'bookkeeping' becomes rather messy for this scheme, but a few of the salient features are indicated in the following paragraphs.

Figure 5-7

- 100 -

Firstly, the inter-element boundaries formed by the lines joining the liquid free surface to the groove wall are constructed by providing a transitional development from the near-to-vertical case near the groove root to the case near the meniscus attachment point where those boundaries form the base of an isosceles triangle hinged at the attachment point. This transition scheme provides element boundaries for this direction which are suggestive of the anticipated heat flow lines over the length of the groove wall. In the other direction these lines are subdivided equally to provide the remaining element boundaries. The scheme also provides elements, although rotated with respect to a cartesian set of axes, which are near rectangular in shape, certainly far more so than the elements fesulting from the previous two generators. Further, the use of appropriate dimensions in determining the number of element subdivisions in a particular direction yields elements with an aspect ratio nearer to unity.

The second feature of this subdivision scheme is the use of a transition mesh in the metal 'fin' section of the groove. The mesh in this region has been graded from a uniform one at the groove root plane, where the field is expected to be relatively uniform, to a non-linear one at the metal fin tip providing greater detail near the meniscus attachment point, where the gradients are expected to be large and non-linear. A non-linear spacing has also been employed in the direction along the groove wall as the groove wall is traversed from root to tip. Although in this metal region elements of poor aspect ratio are generated near the upper right side of figure 5-7, these elements are of little consequence with respect to their contribution
to the thexmal behavior. Their use is thus justified in consideration of the gains available in the more consequential region near the meniscus attachment point.

An will be seen in the next section, this third subdivision scheme provides solutions which display a monotone, asymptotic behavior as the number of nodal points in the discretized description of the thermal problem is increased.

5.5.2 Convergence Characteristics

The third mesh generation scheme was used in the solution program and the convergence characteristics obtained for the three conductivity ratios, $\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}: 0.1,0.01156$, and 0.001 . The results of the convergence study are presented for these cases in figures 5-8, $5-9$, and $5-10$ respectively with the remaining solution parameters being those of the test case described earlier. It is clear from examination of these figures that convergence is both monotone and asymptotic for this mesh subdivision scheme. It is also clear from a cross-comparison of the three convergence plots that the conductivity ratio strongly influences the rate of convergence of the results and that the extremely low ratio of 0.001 is indeed a severe test on the solution program. Even for this severe case, however, examination of figure 5-11, where the convergence trends are presented on non-expanded axes, indicates that the computed solution for 1800 nodal points is near its asymptotic value and that the effort and expenditure required to achieve a further improvenent on the accuracy will be prohibitively large.

The above discussion has been concerned with the convergence characteristics of the derived quantity, the groove equivalane Nusselt number. Perhaps a more fundamental indicator of convergence, however,
is the functional of equation (5-17) whose value is being made stationary by the variational statement. Treating the solution for each degree of subdivision as an approximate solution, the better the approximate solution is, the closer this functional will move towards its extreme value, which is obtainable only in the limit where the exact solution is achieved. The rate of convergence of this functional provides, therefore, an additional check on the solution credibility as well as an estimate of the closeness of the solution to its asymptote. The convergence characteristics for the functional are presented in figure 5-11. As seen from the figure the convergence trends of the functional are very similar to those for the derived equivalent Nusselt number. This realization offers further support, then, that the third mesh generation scheme has been successful in providing a spatial subdivision which, in conjunction with the solution program, will yield reliable solutions. The accuracy of these solutions will be estimated in the following section.

5.5.3 Accuracy of the Results

In this section an estimate will be made for the accuracy of the aforementioned results using a hyperbolic extrapolation technique. The data appearing in the previous graphs is presented in tabular form in Table 5-1 for the test case studied.

Table 5-1

NE1
3
5
7
10
12 14 15 16 17 19

No. of Nodes
65
141
276
547
741
1020
1136
1317
1448
1828
$\mathrm{Nu} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$
0.501
0.469
0.445
0.425
0.416
0.407
0.403
0.400
0.396
0.390

Figure 5-11

Anticipating that the convergence curve follows a path displaying an inverse dependence on the number of nodal degrees of freedom, and observing this basic trend in the convergence plots, the hyperbolic conic section appears to be a reasonable candidate for description of the convergence behavior. In addition, an asymptotic limit must be provided by the describing curve since we know the numerical solution asymptotically approaches the exact solution as the number of nodal degrees of freedom becomes infinitely large (excepting machine roundoff errors). Since the hyperbolic curve description provides the above characteristics, it will be used in an extrapolation for purposes of error estination. The estimation is performed in the following fashion. Using the numerical data of Table 5-1, a least squares minimization is performed to fit the data to a general hyperbola of the form

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{f}} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{in}}=\frac{\mathrm{C}_{1}}{\left(\mathrm{~N}-\mathrm{C}_{2}\right)}+\mathrm{C}_{3} \tag{5-32}
\end{equation*}
$$

If an acceptable fit is obtained, extrapolation of the analytical expression describing the curve is made for N becoming infinitely large. Clearly from the above expression (5-32) the approximation of the 1 imiting value is given by

$$
\begin{equation*}
\lim _{\mathrm{N} \rightarrow \infty}\left[\mathrm{Nu}_{\mathrm{f}} \cdot k_{\mathrm{f}} /_{k_{\mathrm{m}}}\right]=\mathrm{C}_{3} \tag{5-33}
\end{equation*}
$$

A program was written which, using the data of Table 5-1, performed a least squares curve fit of the data to the model equation (5-32). Excellent agreement was found between the data and the equation with parameters given by

$$
\begin{equation*}
\mathrm{Nu}_{f} \cdot{k_{f}}_{k_{m}}=\frac{25.80}{\mathrm{~N}+139.5}+0.3820 \tag{5-34}
\end{equation*}
$$

The maximum error incurred over the entire range of data was only 1.4 per cent. Using the approximation for the asymptotic value given by equation (5-33), the estrapolated asymptote is given by

$$
\left[\mathrm{Nu}_{\mathrm{f}} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}\right]_{\mathrm{N} \rightarrow \infty} \underset{\sim}{\sim} 0.382
$$

Comparison of this asymptote with the last computed value yields an expected error in this value of 1.96 per cent. Adding to this value the maximum error incurred by the correlation equation within the range of the data of 1.4 per cent yields a potential error in the last value of 3.36 per cent for this extreme parameter combination.

Based on the good correlation agreement of the model equation with the data, and evaluation of the analytic asymptote of the correlation equation, it is expected that the actual error in the solution will be less than five per cent which provides a safety margin of fifty per cent on the incurred error. Since this test case represents a severe combination of physical and geometric parameters, it is anticipated that the errors incurred for the remaining parameter combinations will be less than five per cent.
5.6 Comparison with a Limiting Analytical Solution

As a further check on the solutions program operation, the solution from the finite element analysis will be zomputed for the case where an anlytic solution is known. This is a very restrictive case but it serves the purpose well of verifying correct operation of the
solution program.
The case study under examination is that for which the conductivity ratio is taken to be unity. In this case the problem is clearly a single component problem and becomes a member of the constriction resistance class of problem. Further, to enable an analytic solution an equivalent full groove condition must be assumed in the groove. The land area ratio (symmetric groove) will be maintained at the former value of 0.25 , and the mesh generation routine developed for the multicomponent problen will be used, even though it may not be an ideal subdivision scheme for this problem.

The problem geometry and boundary conditions for this verification problem are illustrated in figure 5-12. The adiabatic boundaries remain as they vere previously prescribed. The isothermal boundary Is now applied at $y=H$ over the range $0 \leq x \leq 1-\varepsilon_{1}$. Over the lower surface a uniform heat flux is prescribed. It is noted here that the analytical salution to be discussed is applicable to the situation where the lower surface is maintained at a second isothermal temperature but that this very nearly corresponds to a uniform flux condition over this surface for the dimensions considered in this problem. The physical dimensions for the verification example are $H=1.4737, w=1.0$, and $\varepsilon_{1}=\varepsilon_{2}=0.25$, and the conductivity for each region 18 taken to be unity.

The analytical solution to the above described problem, in determining the total thermal resistance, can be expressed in terms of the Jacobian Elliptic functions and Elliptic integrals of the first kind [48]

$$
\begin{equation*}
R_{T}=\frac{K^{\prime}(\lambda)}{K(\lambda)} \tag{5-37}
\end{equation*}
$$

Figure 5-12
where the modulus λ is determined from

$$
\begin{equation*}
\lambda=\kappa \operatorname{sn}\left(\frac{\left(1-\varepsilon_{1}\right)}{w} K(\kappa), \kappa\right) \tag{5-37}
\end{equation*}
$$

where sn denotes the Jacobian Elliptic sine amplitude function, K denotes the complete elliptic integral of the first kind, and κ, a second modulus, is determined from

$$
\begin{equation*}
\frac{K^{V}(\kappa)}{K(\kappa)}=\frac{H}{W} \tag{5-38}
\end{equation*}
$$

Here $H / w=1.4737$ and using equation (5-38) and interpolating from the tables in Abramowitz and Stegun [49] yields a value for the second modulus of

$$
\begin{equation*}
\kappa=0.38027 \tag{5-39}
\end{equation*}
$$

Note the modulus used here is the square root of the Abramowitz and Stegun modulus, m, and is merely a matter of convention. Using this modulus the associated complete elliptic integral of the first kind can be determined to be

$$
\begin{equation*}
K(k)=1.6327 \tag{5-40}
\end{equation*}
$$

The first modulus, λ, is then found using equation (5-37) from

$$
\begin{equation*}
\lambda=0.38027 \mathrm{sn}(1.2246, .38027 \tag{5-41}
\end{equation*}
$$

This determination, however, is not an easy one. Returning to Abramowitz and Stegun [49] for guidance, the Jacobian sine amplitude function can be related to the Jacobian Theta functions, appropriately defined in the reference, by
where

$$
\begin{equation*}
\operatorname{sn}(u, k)=\theta_{s}(v, k) / \theta_{n}(v, k) \tag{5-42}
\end{equation*}
$$

Following the evaluation procedure suggested by Abramowitz and Stegun [49],
\therefore the first modulus can be determined to be

$$
\begin{equation*}
\lambda=0.3530 \tag{5-44}
\end{equation*}
$$

Finally, using this value in the expression for the total resistance, equation (5-36), yields the result

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}_{\text {exact }}}=1.5246 \tag{5-45}
\end{equation*}
$$

for this geometric configuration.
Determination of the total resistance using the finite element program developed for the trapezoidal groove problem, with the appropriate input data of, in particular, $X_{\alpha}=1.0$ and $k_{f} / k_{m}=1.0$, led directly to a value for the total resistance of

$$
\begin{equation*}
\overline{\mathrm{K}}_{\mathrm{T}}^{\mathrm{FEM}} \mid=1.5268 \tag{5-46}
\end{equation*}
$$

which agrees with the 'exact' analytical value to within 0.15 per cent. The remarkable agreement obtained for this verification example suggests, indeed, that reliable operation and accurate solutions can be obtained using the finite element solution program.

5.7 Conclusions

In the foregoing chapter, the basic ideas underlying the application of the finite element method to heat conduction analysis were introduced. The variational statement governing the finite element analysis of the heat conduction phenomenon was developed in a general fashion, so as to be applicable to any general orthogonal curvilinear coordinate system. The generalized results were seen to easily reduce to those corresponding to the cartesian coordinate frame utilized in the analysis of the trapezoidal groove heat transfer problem. Application of the
method was made to the crapezoldal groove problem with its appropriate boundary conditions.

It was found, however, that the application to the trapezoidal groove heat transfer problem is, indeed, not as straight forward as it might at first appear. The problem under examination in this work was found to be very special with respect to both its physical and geometric characteristics. The special character of the problem foiled the attempts made in the development of the first two mesh generation schemes to provide reliable solutions of adequate accuracy.

Finally, after a great deal of effort, a third mesh generation scheme was developed which displays monotone, asymptotic, convergence characteristics. An estimation of the accuracy of the resultant solution indicated chat for the severe test case examined, having a conductivity ration of $k_{f} / k_{m}=0.001$, solutions accurate to within approximately five per cent are expected, with the numerical value being larger than the exact value due to the extremizing nature of the variational sudtement for the problem. Solution accuracy, although this will be presented in a subsequent chapter, is considerably improved as the conductivity ratio is increased towards a value of unity.

Finally, a veriffication example, for which an analytic solution is avallable, was compuced and compared with the analytical value for the particular problem. The conductivity ratio for this example was, in fact, unity. The excellent agreement displayed by the 0.15 per cent error obtained for this example verifies correct program functioniug and also demonstrates that improved accuracy is available for more moderate conductivity ratios.

Chapter 6

Numerical Results

6.1 Introduction

It is the purpose of this chapter to present the numerically predicted values for the equivalent groove Nusselt number which result from applying the finite element analysis developed in the preceding chapter to the problem under consideration in this investigation. Due to the nature of a numerical solution, however, the Nusselt number is available for only a discrete number of combinations of the problem parameters. Parameter combinations were therefore selected in such a fashion as to span a broad range of the variables and yet to be of practical utility. The number of test cases considered within this range is necessarily limited by cost and time considerations for the solution procurement. It is nevertheless felt by the investigators that the combinations presented in this chapter are indeed representative of situations of practical concern and that sufficient cases are presented to allow a meaningful interpolation of the results for situations that are not precisely described by the actual parameter values used in the study.

6.2 Parametric Study

Grooves of symmetric cross-section only are considered here but the program of Appendix D maintains the flexibility of solving the non-symmetric cross-section if it should be required by future investigators. In spite of the restriction to symmetric groove cross-sections, however, there are still four remaining independent solution parameters which must be considered. In view of this four parameter character-
ization, it is clear that the use of an increasing number of values for each of the independent parameters will soon cause the parametric study to become prohibitively expensive and time consuming.

The four parameters upon which the equivalent groove Nusselt number is dependent are given below.

The first is the apparent contact angle that the liquid free surface makes with the metal groove wall. In this study a normalized value is used for this angle and is given by $x_{\alpha}=\alpha /\left(\pi / 2-\theta_{0}\right)$ where θ_{0} is the groove half-angle. Clearly the range of x_{α} is $0 \leqslant x_{\alpha} \leqslant 1$. Four values of this parameter are considered in the study; $x_{\alpha}=0.05,0.25$, 0.50 , and 1.00 . It is ancicipated that due to hydrodynamic considerations of replenishment flow of working fluid to the evaporation sites, a value of $x_{\alpha}=0.0$ cannot: be physically sustained. The smallest value considered for x_{α} is therefore a value of 0.05 . In the other limit, a full groove condition is indicated by a value of $x_{\alpha}=1.00$. The intermediate value of 0.5 lies midway in the x_{α} range. The final value of 0.25 is provided in the region where a marked dependence is expected to occur in order to provide a more complete description of the dependence on this parameter. The expected higher sensitivity in the region of small x_{α} is supported by the numerical results.

The second parameter considered is the groove land area ratio. Due to the assumed symmetry of the geometry this is equal to the groove root area ratio. The groove land area ratio, ε, is defined as the ratio of the exposed land area of the fin tip to the total area of the typical cell. While the minimum value that this parameter can take on is necessarily zero, the maximum value is limited to 0.5 by the symmetry condition
on the cross-section. The three values of ε selected for use in the parametric study are $\varepsilon=0.01,0.25$ and 0.49 with the exclusion of exact values of 0.0 and 0.50 due to the mesh generation requirements of the program. A value of $\varepsilon=0.0$, that is no land area at all, corresponds to a groove profile of sharp ' V ' configuration. In the other extreme, a value of $\varepsilon=0.50$ dictates for a symmetric groove that the projected area is either originating from the groove fin tip or from the groove root. This profile is the rectangular profile common in moderate capacity, longitudinally extruded heat pipes. The intermediate value of $\varepsilon=0.25$ is considered in order to provide a more complete description of the heat transfer dependence on this parameter.

The third parameter, d, is the groove depth in relation to the groove typical cell width and is an important parameter in considering the viscous losses experienced by the working fluid. While there are no physical limits on the range of values that can be considered (excepting unrealistically small values) it was felt by the investigators that the three cases $d=1.0,1.5$, and 2.0 would encompass the range of values typically encountered in heat pipe designs.

The final parameter considered in the heat transfer analysis is the conductivity ratio of the liquid to metal thermal conductivities. The high value considered of 0.1 represents an upper limit on the conductivity ratio while the low value of 0.001 represents an expected lower limit on the conductivity ratio, again considering typical moderate temperature heat pipe applications. The intermediate value was chosen as 0.01156 since it corresponds to a methanol/stainless steel heat pipe materials combination.

The numerical results of the parametric study to determine the equivalent groove Nusselt number are presented in tabular form in Tables 6-1, 6-2, and 6-3 for the conductivity ratios $k_{f} / k_{m}=0.1$, 0.01156 , and 0.001 respectively. The product $\mathrm{Nu}_{\mathrm{f}} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ is treated as the dependent variable since, due to the normalization of the thermal problem with respect to the metal properties, a smaller overall variation results than would result by treating Nu_{f} as the dependent variable.

The numerical results are also presented graphically in figures 6-1 through 6-9. Here the systematic progression is assumed of fixing the conductivity ratio and land area ratio, and plotting the dependence of $\mathrm{Nu}_{f} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ on x_{α} with the groove depth d appearing as the parameter. In the progression, the land area ratio is monotonically increased through its range for a fixed conductivity ratio and then the conductivity ratio incremented to its next value.

A discussion of the results follows.

Table 6-1
$N u \cdot k_{f} / k_{m}$

For Trapezoidal Grooves

			\mathbf{x}_{α}			
k_{f} / k_{m}	d	$\varepsilon_{1}=\varepsilon_{2}$	0.05	0.25	0.50	1.00
0.1	1.0	0.01	1.1336	. 9422	. 2056	. 6628
0.1		0.25	1.0724	. 9069	.7921	. 6938
0.1		0.49	. 8464	. 7085	. 6264	. 5551
0.1	1.5	0.01	. 7519	.6381	. 5538	. 4642
0.1		0.25	. 7262	. 6348	. 5721	. 5098
0.1		0.49	. 5992	. 5287	.4839	. 4419
0.1	2.0	0.01	. 5559	.4793	. 4210	. 3578
0.1		0.25	. 5487	. 4914	. 4511	. 4104
0.1		0.49	. 4694	. 4254	.3963	. 3685

Table 6-2
$\mathrm{Nu} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$
For: Trapezoidal Grooves

$\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$	d	$\varepsilon_{1}=\varepsilon_{2}$	0.05	0.25	x_{α}	
.01156	1.0	0.01	.5392	.4481	.4101	.3807
.01156		0.25	.6144	.5401	.5136	.4946
.01156		0.49	.4745	.4270	.4106	.3993
.01156	1.5	0.01	.3792	.3163	.2901	.2697
.01156		0.25	.4501	.3998	.3816	.3625
.01156		0.49	.3809	.3510	.3405	.3332
.01156	2.0	0.01	.2912	.2479	.2295	.2152
.01156		0.25	.3638	.3333	.3220	.3136
.01156		0.49	.3201	.2990	.2916	.2963

Table 6-3

$\mathrm{Nu} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$

For Trapezoldal Grooves

Figure 6-1

Figure 6-2

Figure 6-4

Figure 6-6

Figure 6-8

6.3 Discussion of the Results

On examining the characteristics of figures 6-1 through 6-9, it becomes clear that in every case the equivalent Nusselt number decreases monotonically with increasing x_{α}. Indeed, this is to be expected since in all cases it is the low thermal conductivity of the liquid working fluid that causes a preferential migration of the heat flow. This migration is through the metal to the location where the escape route through the liquid, in conjunction with the resistance of the metal heat flow path, offers the least resistance to the heat flow. For the cases considered this will invariably result in a concentration of the heat flow lines near the meniscus contact with the groove wall. Clearly, then, the shorter the liquid path that must be traversed in this region, the lower will be the total resistance and consequently the equivalent Nusselt number will be higher for these shorter liquid path cases. Now, the problem geometry dictates that the liquid heat flow path will be reduced as the apparent contact angle, and hence x_{α} for all other parameters fixed, is decreased. Thus, it is to be expected that, as x_{α} is decreased from the full groove condition, $x_{\alpha}=1.0$, to a state of near tangency, $x_{\alpha}=0.05$, the groove equivalent Nusselt number will increase. This expected behavior is consistent with that displayed by the numerical results. It is noted here, however, that the dependence of the groove Nusselt number on x_{α} is a relatively mild one. This is in contrast with the extremely sensitive behavior suggested by a previous solution [16] in which the metal groove wall was assumed isothermal from the root to the fin tip. The relaxed dependence on x_{α} displayed by figures 6-1 through 6-9 111ustrates the importance
that the active participation of the metal section has on the determination of the overall heat transfer for the composite problem. This influence is particularly important in the region near the meniscus contact since the local concentration of the heat flow there results in a rapidly changing groove wall temperature in this region, which is in contradiction to the formerly assumed isothermal condition.

The second trend which is observed in the numerical results is that as the groove depith increases, the groove Nusselt number decreases. This too is consistent with the problem physics. Following the arguments above, it is anticipated that there will be a large adjustment of the thermal filow field fin the region near the meniscus contact, and thus the dominating influence in the determination of the metal/ifquid interaction stems from this region. Consequently, in the remainder of the fin the flow field is quasi-uniform in the sense that local gradients are primarily determined by the total heat flow rate, and the local area, with only small contributions due to the bulk fluid adjacent to these regions, As a result, the influence of increasing d will be to add a section of pure conductive, variable area, metal in addition to that for the case of smaller groove depth. A secondary influence of increasing the depth for a fixed land area ratio is that the problem geometry is necessarily altered. Thus, θ_{0} changes, with the associated influence on $x_{\alpha}=\alpha /\left(\pi / 2-\theta_{0}\right)$, and even the local behavior at the meniscus contact is slightly altered. Here, then, we see that the variation of one parameter has an influence on the interpretation of the trends displayed by another. Taking into account this influence, calculation indicates
that it is primarily the conductive differences in the metal which account for the decreasing Nusselt number dependence with increasing groove depth.

The influence of the conductivity ratio, k_{f} / k_{m}, is to decrease the product $\mathrm{Nu}_{\mathrm{f}} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ as the conductivity ratio is decreased. This also is physically consistent since as the conductivity of the liquid decreases, the heat flow becomes more concentrated within the metal, particularly near the fin tip. This increased heat flow concentration results in a higher resistance within the metal section, and is additive to the higher liquid film resistance due directly to its decreased thermal conductivity. This behavior is consistent with a decreasing $\mathrm{Nu}_{f} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ product with decreasing conductivity ratio.

The influence of changing land area ratio, however, is not monotonic as in the case of the previous three parameters, but rather produces, generally, a maximum value of the product $\mathrm{Nu}_{f} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}$ within the three cases studied for a land area ratio of $\varepsilon=0.25$. Exception to this occurs at small apparent contact angles for a conductivity ratio of $\mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}=0.1$. Considering the range of this land area ratio, $0 \leqslant \varepsilon \leqslant 0.5$, the geometric changes resulting from changes in ε as the full range is traversed, are severe. Indeed, due to the severe geometric changes incurred by the variation of ε, it is difficult to anticipate precisely the influence of this parameter on the overall heat transfer since the resulting geometric changes influence both the liquid and the metal region geometries, and consequently the liquid/ metal thermal interaction. It is felt that the maximum value of the $N u_{f} \cdot k_{f} / k_{m}$ product is the result of a favorable balance between the
changing pure conductive resistance and the changing liquid/metal interaction, each of which is changing at a different rate. This observed behavior is consistent for the combinations of parameters considered in this report.
6.4 Correlations of the Equivalent Nusselt Number

As we have noted earlier, the equivalent groove Nusselt number is dependent upon four parameters. As a consequence correlation efforts become extremely complicated when attempting to maintain acceptable accuracy. For example, if the observed trends are second order in each of the parameters, then three correlation parameters are required to account for the dependence on x_{α}, say, and for each of these parameters, three additional parameters are required to account for the dependence on d, and so on. This yields a total of $3^{4}=81$ correlation parameters and results in a correlation equation of extreme complexity. In contrast, if only a fer parameters are employed, the resulting correlation may be of inadequate accuracy to be of significant practical utility. In this work a compromise has been adopted to yield a correlation of manageable complexity while maintaining adequate accuracy for engineering calculations.

On examination of figures $6-1$ through $6-9$, it was felt that a two parameter correlation of each curve independently of the form

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{f}} \cdot \mathrm{k}_{\mathrm{f}} / \mathrm{k}_{\mathrm{m}}=\mathrm{A} \ln _{\mathrm{n}}\left(\mathrm{x}_{\alpha}\right)+\mathrm{B} \tag{6-1}
\end{equation*}
$$

might provide adequate accuracy for engineering purposes. Indeed application of equation (6-1) to each of the curves independently using a least squares curve-fit subroutine yielded a maximum correlation error
at the data points of four per cent. It is anticipated, however, that with the inclusion of the remaining three parameter dependencies, the obtainable accuracy will become somewhat relaxed.

Incorporating next the dependence of $N u_{f} \cdot k_{f} / k_{m}$ on the land area ratio, ε, a correlation equation of the form

$$
\begin{equation*}
N u_{f} \cdot k_{f} / k_{m}=\left[A_{11} \varepsilon+A_{12}\right] \ln \left(x_{\alpha}\right)+\left[B_{11} \varepsilon^{2}+B_{12} \varepsilon+B_{13}\right] \tag{6-2}
\end{equation*}
$$

was found to relax the obtainable accuracy to approximately five per cent.

A further inclusion of the dependence on the groove depth was made by assuming the above correlation constants to be of the form

$$
\begin{align*}
& A_{11}=A_{111} D+A_{112} \\
& A_{12}=A_{121} D+A_{122} \\
& B_{11}=B_{111} D+B_{112} \tag{6-3}\\
& B_{12}=B_{121} D+B_{122} \\
& B_{13}=B_{131} \exp \left(B_{132} D\right)+B_{133}
\end{align*}
$$

Application of the correlation constants (6-3) in equation (6-2) yielded a further relaxation requirement on the accuracy to approximately six per cent.

Inclusion of the final correlation parameter, the conductivity ratio, k_{f} / k_{m}, was made by considering the influence to be dependent on $\ln \left(k_{f} / k_{m}\right)$ and assuming this influence to be quadratic in $\ln \left(k_{f} / k_{m}\right)$. This yielded a maximum correlation error at the data points of seven per cent, with errors of this order occuring at only a few locations for the case where $k_{f} / k_{m}=0.1$.

The final correlation equation for the equivalent groove Nusselt number is given by

$$
\begin{equation*}
N u_{f} \cdot k_{f} / k_{m}=A \ln \left(x_{\alpha}\right)+B \tag{6-4}
\end{equation*}
$$

where

$$
\begin{align*}
& A= A_{1}[-.389 d+1] \varepsilon+A_{2}[-.376 d+1] \tag{6-5}\\
& B=B_{1}[-.29 d+1] \varepsilon^{2} . \\
&+B_{2}[-.228 d+1] \varepsilon \\
&+B_{3}[5.368 \exp (-1.295 \mathrm{D})+1] \tag{6-6}
\end{align*}
$$

and finally

$$
\begin{align*}
& A_{1}=.0056 \ln 2\left(k_{f} / k_{m}\right)+.1025 \ln \left(k_{f} / k_{m}\right)+.4511 \tag{6-7}\\
& A_{2}=-.0098 \ln ^{2}\left(k_{f} / k_{m}\right)-.1413 \ln \left(k_{f} / k_{m}\right)-.5251 \tag{6-8}\\
& B_{1}=.0336 \ln { }^{2}\left(k_{f} / k_{m}\right)+.4557 \ln \left(k_{f} / k_{m}\right)-1.0821 \tag{6-9}\\
& B_{2}=-.0407 \ln ^{2}\left(k_{f} / k_{m}\right)-.5090 \ln \left(k_{f} / k_{m}\right)-.2668 \tag{6-10}\\
& B_{3}=.0105 \ln ^{2}\left(k_{f} / k_{m}\right)+.1254 \ln \left(k_{f} / k_{m}\right)+0.4986 \tag{6-11}
\end{align*}
$$

A comparison of the correlation values for $N u_{f} \cdot k_{f} / k_{m}$ with the numerical data points is presented in Table 6-4. It is seen from the table that the largest errors, $7.01,6.28,5.77,5.66$, and 5.13 per cent, are confined to the case where $k_{f} / k_{m}=0.1$. All other cases yield errors less than five per cent. Indeed, as the entries for $k_{f} / k_{i n}=0.0116$ are examined, the correlation agreement is within four per cent. The maximum error of correlation for $k_{f} / k_{m}=0.001$ is further reduced to 3.4 per cent. It is felt that a maximum correlation error of seven per cent is adequate for most heat pipe analysis and design
COND KATIO
0.1000 0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
C. 1000
0.1000
C. 1000
0.1000
0. 1000
0.1000
0.1000
0.1000
U. 1000
0.1000
0.1000
0.1000
C. 1000
0.1000
0.1000
0.1000
C. 1000
0.1000
C. 1000
0.1000
0.1000
C. 1000
0. 1000
0.1000
0.1000
0.1000
0.1000
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116
0.0116

1.0000	0.0100	0.0500
1.0000	0.0100	0.2500
1.0000	0.0100	0.5000
1.0000	0.0100	1.0000
1.0000	0.2500	0.0500
1.0000	0.2500	0.2500
1.0000	0.2500	0.5000
1.0000	0.2500	1.0000
1.0000	0.4900	0.0500
1.0000	0.4900	0.2500
1.0000	0.4900	0.5000
1.0000	0.4900	1.0000
1.5000	0.0100	0.0500
1.5000	0.0100	0.2500
1.5000	0.0160	0.5000
1.5000	0.0100	1.0000
1.5000	0.2500	0.0500
1.5000	0.2500	0.2500
1.5000	0.2500	0.5000
1.5000	0.2500	1.0000
1.5000	0.4900	0.0500
1.5000	0.4900	0.2500
1.5000	0.4900	0.5000
1.5000	0.4900	1.0000
2.0000	0.0100	0.0500
2.0000	0.0100	0.2500
2.0000	0.0100	0.5000
2.0000	0.0100	1.0000
2.0000	0.2500	0.0500
2.0000	0.2500	0.2500
2.0000	0.2500	0.5000
2.0000	0.2500	1.0000
2.0000	0.4900	0.0500
2.0000	0.4900	0.2500
2.0000	0.4900	0.5000
2.0000	0.4900	1.0000
1.0000	0.0100	0.0500
1.0000	0.0100	0.2500
1.0000	0.0100	0.5000
1.0000	0.0100	1.0000
1.0000	0.2500	0.0500
1.0000	0.2500	0.2500
1.0000	0.2500	0.5000
1.0000	0.2500	1.0000
1.0000	0.4900	0.0500
1.0000	0.4900	0.2500
1.0000	0.4900	0.5000
1.0000	0.4900	1.0000

0.0500
(KF/KM) * NU(CORR)
(KF/KM) *
XALPHA

1. 1267
0.8766
0.7688
0.6611
1.0611
0.8688
0.7860
0.7860
0.8375
0.7030
0.6450
0.5871
0.7995
0.6248
C. 5495
0.4743
0.7675
0.76322
0.5739
0.5156
0.6108
0.5148
0.4735
0.4322
0.5611
0.4617
0.4189
0.3761
0.5625
0.4842
0.4167
0.4727
0.4154
0.3907
0.3661
0.5387
0.4504
0.4124
0.3744
0.5430
C. 5156
0.4883
0.4761
0.4375
0.4208
0.4042 NU (ACT)

* EPRUA
-0.6125
-7.0162
-4.5625
-0.252)
-1.0567
-4.1994
-1.5174
1.3495
-1.0530
-0.7821
2.9726
5.761;
6.3309
-2.0835
-0.7678
2.1733
5.6843
-0.4167
0.310 B
1.1372
1.9279
-2.6204
-2.140°
-2.1806
0.9365
-3.6664
-0.4923
5.1219
2.5165
$-1.46 y t$
$-0.140 \mathrm{~J}$
1.5300
0.7009
$-2.34 y 0$
-1.4038
-0.0604
-0.0909
0.5228
0.5677
-1.6513
-1.2974 c. 5305
0.3959
-1.2736
0.3420
2.4504
2.4874

1. 2180
0.0116 0.0116 0.0116 0.0116 0.0116 $0 . C 116$ $0 . C 116$ 0.0116 0.0116 $0 . C 116$ 0.0116 0.0116 $0 . C 116$ U. 0116 C. C116 0.0116 0. 0116 0.0116 0.0116 0.0116 0.0116 U. $C 116$ 0.0116 0.0116 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
i. 1010
j. 0010
$0 . C 010$
c. 0010
0.2010
0.0010
C. .0010
0.0010
0.0010
0.0010
$0 . C 010$
0.0010
C. .2010
j. 0010
$0 . C 010$
0.0010
0.0010
3.0010
0.0010
U. CO10
C. 0210
0.0010
0.0010
0.0010
0.0010
C. 0.010
0.0010
$0 . \mathrm{CO} 10$
0.0010
0.0010
2. 5000
1.5000
1.5000
1.5000
1.5000
1.5000
1.5000
1.500 u
1.5000
1.5000
3. 5000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.5000
1.5000
1.5000
1.5000
1.5000
1.50 CO
1.5000
1.5000
1.5000
4. 5000
1.5000
1.5000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
0.0100
0.0100
0.0100
0.0100
0.2500
0.2500
$0.25 C 0$
0.25 C 0
0.4900
0.4900
0.4900
0.0100
0.0100
0.0100
0.0100
0.2500
0.2500
0.2500
0.2500
0.4900
$0.49 C 0$
0.4900
0.0100
0.0100
0.0100
0.0100
0.2500
0.2500
0.2500
$0.25 C 0$
3.4900
0.4900
0.4900
0.0100
0.0110
0.0100
0.0100
0.2500
C. 2500
C. 2500
0.2500
0.4900
0.4900
0.4900
0.0100
0.0100
0.0100
0.010 C
0.2500
0.2500
0.2500
r. 2500
0.4900
0.4900
0.4900
0.4900
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
0.5000
0.0500
0.2500
1.0000
0.0500
0.2500
0.5000
1.0000
0.0500
0.2500
1.0000
$0.05 C 0$
0.5000
1.0000

0.3842	0.3792
0.3226	0.3163
0.2960	0.2961
0.2694	C. 2697
0.4567	c.45C1
0.4119	0.3998
0.3927	0.3810
0.3734	0.3685
0.3730	0.3809
0.3452	0.3510
0.3332	0.3405
0.3212	0.3332
0.2792	C. 2912
0.2441	C. 2479
0.2290	0.2295
0.2139	0.2152
0.3563	0.3638
0.3303	C. 3333
0.3191	0.322 C
0.3078	0.3136
0.3193	0.3201
0.3022	0.2990
0.2949	0.2916
0.2876	0.2063
0.3645	0.3688
0.3500	0.3483
0.3438	0.3424
0.3376	0.3389
0.4874	0.4975
0.4752	0.4745
0.4699	0.4697
0.4647	0.4671
0.3977	0.3953
0.3877	$0.30<8$
0.3834	C. 3802
0.3791	?. 37818
0.262 C	0.2610
0.2519	0.2504
0.2475	l. 2400
0.2432	C. 2464
0.3748	0.3723
0.3663	0.3618
0.3626	C. 3590
0.3589	C. 3581
0.3200	0.3265
0.3130	0.3199
0.3100	C. 3187
0.3069	0.3170
0.2037	c. 20.30
0.1980	0.1957
0. 1955	0.1942
0.1931	0.1427
0.3065	0.3105
O. 3016	$0.304{ }^{\circ}$
0.2995	0. 3028
0.2974	0.3017
0.2867	?.2742
0.2825	0.2752
0.2808	0.2744
0.279 C	0.2737

1. 3277
1.9797
2.033:

- $0.04 n 7$ 1.4021
3.033. 2.8463 1.3237
- 2.076
-1.6641 -2.153.
-3.607
-4.137.
-1.5430
-0.2321
-0.62 3t
-2.054^{\prime}
-0.9053
-0.911
$-0.26,4$ 1.784 1.137 0.451
-1.170 0.444 0.410 -0.3 त्त -2.029 0.140 0.050 -0.517 C.0ing 0.847 0.985 0.305 0.085 - - 172 -1.307 0.078
1.232 0.820 0.218
-1.981
-2.745
-3.424 0.300 1.174 0.684 0.191 -1.274 -0.783 $-1 . c 9 C$ -1.432). 6347 2. 564 2.323 1.93 C
calculations of engineering interest, and that the correlation equations (6-4) - (6-1l) adequately maintain this agreement while keeping the correlation equation manageable.

Conclusions

In the present chapter of this report the results of a parametric study to explore the dependence of the equivalent groove Nusselt number on the four parameters, the apparent contact angle, the groove land area ratio, the groove depth, and the liquid/metal thermal conductivity ratio, were presented. These results were found to be selfconsistent in their behavioral characteristics and to generally display the dependencies that are anticipated from consideration of the physics of the underlying thermal problem under investigation. The displayed trends however, illustrate a somewhat relaxed dependence on the apparent contact angle than that given by a previous approximate solution [16]. This demonstrates the importance of the contribution to the overall thermal problem that is due to the metal fin region and that the problem analysed is truly a composite thermal problem. Both the liquid region, the metal region, and the thermal interaction between the two regions along their common interface, are important contributions to the total problem solution and must all be considered.

Finally, in closing the chapter, a correlation equation has been determined which interpolates the numerical data with a maximum error of seven per cent. It is felt that this correlation equation will be adequate for most engineering applications of heat pipe analysis and design.

Chapter 7

Application of the Results

7.1 Introduction

In the previous chapter a study was conducted to determine the influence of the apparent contact angle, the groove land area ratio, the groove depth, and the liquid/metal thermal conductivity ratio, on the equivalent groove Nusselt number. These factors are all important considerations in designing a heat pipe to meet prescribed operating conditions. In many cases, however, a compromise must often be found, in particular for the geometric details of the grooves, which strikes a balance between counteracting thermal and hydrodynamic influences of a parameter $\approx \mathfrak{c a n} \mathrm{s}=$. For example, if the plpe conductance must not fall below a prescribed minimum value, then parameter changes on the groove cross-section can be effected to provide the required conductance value. However, the design changes made must not sufficiently alter the hydrodynamics of the pipe such that the available capillary forces cannot provide a sufficient recirculation rate to meet the thermal loading requirements of the particular heat pipe application. This balance, however, is not the subject of this report and will not be dealt with further here.

For a given heat pipe design, of the four variable parameters examined in chapter 6 of this report there are three which are fixed by the design, while the fourth remains free to vary as the operational conditions dictate. This fourth parameter is the apparent contact angle, and, having selected a particular set of design parameters, is the only parameter which will lead to heat pipe exterior surface temperature variations within each of the evaporator, adiabatic, and condenser sections of the
heat pipe. Indeed the apparent contact angle variation is itself implicitly dependent upon the operational temperature and pressure, the imposed thermal loading, the groove material and transport fluid properties, the change of working fluid present, and the groove geometry for the particular heat pipe application of interest.

Since an examination of each of the above influences independently would require an investigation of enormous proportions, this chapter is directed at determining the influence that the working contact angle will have on the surface temperature distribution of an operational heat pipe. The results of this analysis can then be used as a basis for evaluating the need for future, more fundamental investigations into the contact angle behavior.

7.2 Case I

7.2.1 Pipe Geometry and Thermal Loading

The computer code developed under the CRC 6656-1 (SCS) program will be used to determine the surface temperature distribution for a heat pipe having the specifications indicated below. The influence of the minimum break-away contact angle on the surface temperature variation will also be examined. The heat pipe specifications follow:

$$
\text { Pipe: } \quad \begin{aligned}
L_{e} & =1.67 \mathrm{ft.} \\
\mathrm{~L}_{\mathrm{a}} & =0.646 \mathrm{ft} . \\
\mathrm{L}_{\mathrm{c}} & =2.33 \mathrm{ft.} \\
\mathrm{~L} & =4.646 \mathrm{ft.} \\
\mathrm{r}_{\text {out }} & =.02083 \mathrm{ft.} \\
\mathrm{r}_{\mathrm{in}} & =.0188 \mathrm{ft} . \\
\text { Material } & =\mathrm{SoS.} \text { type } 304\left(\mathrm{k}_{\mathrm{m}}=10 \frac{\text { Btu }}{\text { hr.ft.OF }}\right. \\
& -142 .
\end{aligned}
$$

V-grooves:	Pitch $=1056$ per foot
	$\text { Depth }=6.67 \times 10^{-4} \mathrm{ft} .$
	$\theta_{0}=35.38^{\circ}$
Arteries:	Number = 3 arteries with 2 sizes
	1) . 120 in. I.D. (2 layers of screen), (1)
	2) . 060 in. I.D. (7 layers of screen), (2)
	Material $=150$ mesh, .003 in. thick type 316 stainless stee 1 screen
	```Configuration = interference fit across a diameter, in-1ine```
Working fluid:	$\begin{aligned} \text { Fluid } & =\text { methanol, laboratory grade } \\ k_{f} & =0.1156 \mathrm{Btu} / \mathrm{hr}_{\mathrm{f}} \mathrm{ft} .^{\circ} \mathrm{F} \end{aligned}$
Thermal   loading:	$\begin{aligned} & \text { Evaporator } \mathrm{Flux}=15,000 \mathrm{Btu} / \mathrm{hr} . \mathrm{ft} .^{2} \\ & \text { (uniform over evaporator) } \end{aligned}$
	Ambient Condenser Temperature $=0^{\circ} \mathrm{F}$
	Condenser External Surface Heat Transfer Coefficient $=$ $1000 \mathrm{Btu} / \mathrm{hr} . \mathrm{ft} .{ }^{2} \mathrm{~F}$ (uniform over condenser)
	Total Heat Transfer Rate $=3280 \mathrm{Btu} / \mathrm{hr}=961$ watts

For the heat pipe specifications described above, two relatively extreme values for the minimum break-away contact angle are examined; $\alpha_{b a}=2^{\circ}$ and $\alpha_{b a}=20^{\circ}$. The determination of the local apparent contact angle will be performed using the hydrodynamic flow model of the previous report [ 16 ]. The effect of varying the minimum break-away contact angle in the analysis is to limit the highest value that the equivalent heat transfer coefficient can attain in the evaporator region. It is assumed in this examination that, once the angular recession has reached the minimum break-away contact angle, the liquid level recession is sufficiently moderate and the sensitivity to liquid level is sufficiently low that the
equivalent heat transfer coefficient will remain constant at its breakaway angle value. This assumption requires verification and indeed, investigation, but for the purposes intended here it will suffice.

### 7.2.2 Numerical Result:s

The heat pipe analysis program was executed for the two test cases described above with the subroutine for the determination of $h_{e q}$ modified to reflect the results of this work. The groove side heat transfer coefficient, $h_{e q}$, and the pipe exterior surface temperature distribution resulting from these two test cases are presented in Tables 7-1 through 7-4.

We will examine first the case where the minimum break-away contact angle is assumed to be $\alpha_{b a}=20^{\circ}$. The equivalent heat transfer coefficient for this case, presented in Table 7-1, varies from a low value of $3422 \mathrm{Btu} /\left(\mathrm{hr} . \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$ ) in the extreme condenser groove region to a high value of $4050 \mathrm{Btu} /\left(\mathrm{hr} . \mathrm{ft}^{2} .{ }^{\mathrm{o}} \mathrm{F}\right)$ in the extreme evaporator region. The over-. all variation for a minimum break-away contact angle of $20^{\circ}$ is 18.4 per cent. Of this variation, there is only a 2.9 per cent variation over the evaporator region while the condenser variation in $h_{\text {eq }}$ is 6.1 per cent.

The relatively large region of uniform $h_{e q}$ in the evaporator is the result of an assumed break-away contact angle of 20 deg. This assumption of a large break-away contact angle results in a condition of full angular recession occurring relatively early in the hydrodynamic development of the return liquid flow. The additional assumption taken here, that the equivalent heat transfer coefficient will not change appreciably with moderate liquid level recession, leads to a large region of uniform
$h_{\text {eq }}$ on the evaporator, and thus a small variation in the equivalent heat transfer coefficient over this region.

The relative uniformity of $h_{\text {eq }}$ over each of the evaporator and condenser sections is reflected in Table 7-2 by a similar uniformity of the surface temperature distribution. Indeed, since the metal conductivity is large relative to the liquid conductivity, $k_{m} / k_{f}=86.5$, heat conduction within the pipe wall tends to reduce the fractional variation of the surface temperature for each section below that exhibited by the equivalent heat transfer coefficient. The evaporator surface temperature variation for this case is only 0.4 per cent while the condenser variation is 1.19 per cent. It is seen that the relative proportion of evaporator to condenser non-uniformity is very close to that for the equivalent heat transfer coefficient but that the magnitudes are greatly reduced. This magnitude reduction is due to the isothermalizing character of the higher conductivity wall material.

Relaxing the value of the minimum break-away contact angle to allow angular recession of the liquid to a contact angle of 2 degrees results in the equivalent heat transfer coefficient distribution presented in Table 7-3. It is seen from Table 7-3 that the initial distribution and development of $h_{e q}$ is identical to the previous case, as it must be. Exception to this occurs, however, in the evaporator section of the pipe since, here, the relaxed limitation on contact angle recession allows additional hydrodynamic development to occur prior to the onset of liquid level recession.

The additional development allowed in the contact angle recession is most visibly displayed in Table $7-3$ by a larger equivalent heat transfer coefficient in the extreme evaporator regions. Indeed in this
example the equivalent heat transfer coefficient exceeds that for the previous case, in the extreme evaporator region, by 32.6 per cent. This is a substantial. increase in $h_{e q}$ and is due to its increased sensitivity. at low contact angles.

The maximum variation of the equivalent heat transfer coefficient is 34.6 per cent over the evaporator region and remains at 6.1 per cent for the condenser region. There is clearly a marked dependence of the evaporator equivalent heat transfer coefficient on the minimum breakaway contact angle.

Examining the surface temperature variation, for this case presented in Table 7-4, the temperature variation over the external surface is again attenuated by the heat conduction within the higher conductivity heat pipe wall. In the evaporator region, the $h_{e q}$ variation of 32.6 per cent is reflected in the surface temperature by a variation of only 4.8 per cent. The variation over the condenser region is unaffected by the change in the value of $\alpha_{b a}$. The influence of this change in the minimum break-away contact angle has been to increase the pipe overall conductance by approximately 8 per cent. Thus although a substantial influence of $\alpha_{b a}$ is felt: on $h_{\text {eq }}$, the resultant effect on the pipe conductance is considerably less pronounced.

### 7.3 Case II

In this section a second example problem is considered and the influence of the minimum break-away contact angle on the pipe exterior surface temperature variation and on the pipe overall conductance is investigated.

## Table 7－1

HEAT PIPE hNALYSIS
GRUNVE SIDE COFFF（ETU／HR－SQ．FT－F）

Z／L
PSI（DEGREES）．
9．e $27.0 \quad 43.0 \quad 63.0 \quad 81.0 \quad 99.0 \quad 117.0 \quad 130.0 \quad 153.0 \quad 171$.

		40			4051		40550.	4じらこ。	4050	
	$4 \sim 56$	4050	40 jc	4050.	4 C 50.	4053.	4050.	4	4050	
c．	455	4050.	40.50	4050	4050.	4050.	405 C ．	4 C	$4 \cap 50$.	
（97	－ 5	405 c ．	4：5r	4050	4050.	4050	4050	4050	405？	
5	4．5？	4050.	4フら0	4050.	4050.	405	4050	4050	4250	
$\therefore 153$	4 C 5	$4 ? 5$ c	40.00	4050	4050.	4050	4050	4（5）	4050	
．． 101	4052.	4050.	4050	405	4050	4050	4050	4050	403	
1．208	475 ？	4050.	4050.	4050.	4050.	4050	4050.	4．50．	4つうC	
？． 236	406	$405 \%$ ．	405 C	4050.	4050.	4050.	4050.	405！）	4050	
r． 204	4250	40．j0	4050	4050.	4050.	4 CSC	405 C ．	4 CSC	4050	
．	4049	4050	4 C 50	4050.	4050.	4050.	405 C	4650	4050	
． 314	3989.	4950	4750.	405？．	4050	405 C ．	4050	4 C5：	4050	
． 347	19.34.	40,0	4050.	4050.	4050.	4 CSO	405 C ．	4（5）	405	
6．37，	3612．	3012 。	3812.	3812.	3812.	3812.	3812.	3812.	3812 。	381
．	3774	3774.	3774.	3774.	3774.	3774.	3774.	3774.	3774.	7
1.431	3734	3735.	3739.	3739.	3739.	3739.	3739.	3789.	3739.	37
C． 450	3767．	3707.	3757.	3707.	3707.	3707.	3707.	$37 \mathrm{C7}$ ．	3707.	
c． 456	3078.	3678.	3678.	3678.	3678.	3678.	3678.	3670.	3078.	
C．514	3632.	3632.	3582.	3569.	3563.	3503.	3569.	3582.	$36 ? 2$.	
C． 5	3609.	3582.	3563.	3551.	3545.	3545.	3551.	3563.	35 －2．	
C．joy	35も\％．	3563.	3546.	3535.	3529.	3529.	3535.	3546.	3563.	5
C． 597	3）70．	3546 ．	3530.	3520.	3514.	351	3520.	3530.	3546.	
0.625	3554.	3531.	3516.	3506.	3501.	3501.	3506.	3516.	3531.	
C．653	3539.	3518.	35？3．	3494.	3489.	3489.	3494.	3503.	3516.	35
0.061	3526.	3506.	3492 ．	3482.	3478.	3478 。	3482.	3492.	35 J 0	
0.70 \％	3514.	3495.	3481．	3473.	3468.	3468.	3473.	34 c 1.	3495.	
C． 736	3504.	3485.	3472.	3464.	3459.	3459.	3464.	3472.	3485.	
C． 704	3495.	3477.	3464 ．	3456.	3452.	3452.	3456.	3404.	3477.	
2．792	3487.	3469.	3457.	3449.	3445.	3445.	3449.	3457.	3469.	
0.819	3480.	3403.	34.51.	3443.	3439.	3439.	3443.	3451.	3463.	
c． 1347	3474.	3457.	3445.	3438.	3434.	3434.	3438.	3445.	3457.	
C． 875	3469.	3453.	3441.	3434.	3430 ．	3430.	3434.	3441.	3453.	
C． 903	3466.	3449 ．	3438 ．	3430 ．	3427.	3427.	3430.	3438.	3449.	
		3447.	3435.	3428.	3424.	3424.	3428.	3435.	3447.	
			3433.	3426.	3423.	3423.	3426.	3433.	3445.	
					3422.				344	

SUKFACE TEMPEKATURES（DEG．PAHR．）
$2 / 1$
PSI（DEGREES）
9．0 $27.0 \quad 43.0 \quad 63.0 \quad 81.0 \quad 99.0 \quad 117.0 \quad 135.0 \quad 153.0 \quad 171$.
.142 C． 09
.$C 97$
． 125
$\begin{array}{ll}.151 & 23.89 \\ .181 & 23.89\end{array}$
c． $208 \quad 23.89$
i． 294
9.319
$2.347 \quad 23.99$
－． 37516.66
$0.4 C 3 \quad 16.66$
C．431
0.450

C． .486 $\stackrel{\square}{2}$
$\because .5$
．56y
C．5y7
J．0．25

$$
10.96
$$

？．から3 23.89

$$
10.97
$$

0.581

$$
10.96
$$

C．7Cd

$$
10.95
$$

$\because .736$

$$
10.94
$$

C． 764
12.93

C． 819
C． 847
C． 575
0.963
0.931
0.450
7.986
10.93
10.92
11.92

1．． 0.2
10.42
10.92
10.92
23.49
23.89 23．89

23.89
23.89
23.89

### 23.89

 23.8923.89 23.89 23.89
23.89
23.89

$$
\begin{array}{ll}
23.89 & 23.89 \\
23.89 & 23.89
\end{array}
$$

$$
23.89 \quad 23.89 \quad 23.89
$$

$$
23.89 \quad 23.89 \quad 23.89
$$

$$
\begin{array}{ll}
23.89 & 23.89 \\
23.89 & 23.89
\end{array}
$$

$$
\begin{array}{lll}
23.89 & 23.89 & 23.89 \\
23.89 & 23.89
\end{array}
$$

$$
23.89 \quad 23.89 \quad 23.89
$$

## $16.66 \quad 16.66 \quad 16.66$

$$
16.66 \quad 16.06
$$



$$
\begin{array}{lll}
23.89 & 23.89 & 23.89 \\
23.89 & 23.89 & 23.89
\end{array}
$$

$$
\begin{array}{lll}
23.89 & 23.89 & 23.89 \\
23.89 & 23.89 & 23.84
\end{array}
$$

$$
23.8 y \quad 23.89 \quad 23.89
$$

$$
16.66 \quad 16.66
$$

$$
16.06 \quad 16.66
$$

$$
16.66 \quad 16.66
$$

$$
\begin{array}{ll}
10.98 & 10.99
\end{array}
$$

$$
10.97
$$

$$
\begin{array}{ll}
10.97 & 10.98 \\
10.96 & 10.97
\end{array}
$$

$$
10.96
$$

$$
10.95 \quad 10.96
$$

$$
\begin{array}{ll}
10.94 & 10.95
\end{array}
$$

$$
10.94 \quad 10.94
$$

$$
10.93 \quad 10.93
$$

$$
10.92 \quad 10.93
$$

$10.92 \quad 10.92$
$10.93 \quad 1 ? .92$
$10.92 \quad 10.91$
$10.92 \quad 10.91$
$\begin{array}{ll}10.92 & 10.91 \\ 10.91 & 10.9 \mathrm{C}\end{array}$
10．91 1气． 90
$\begin{array}{ll}10.91 & 10.9 \mathrm{C} \\ 10.91 & 10.9 \mathrm{C}\end{array}$
10.91 10．90
23.89 23.89 23.89 23.89

$$
23.84
$$

23.89
23.89
$\angle 3.84$ 23.84 23.84 23.89

$$
23.89
$$

$$
23.89
$$

23.89
23.89

$$
23.89
$$

$$
33.89
$$

23.89
23.84

$$
23.8 y
$$

23.84

$$
23.84
$$

23.84

$$
23.89
$$

23.95

$$
16.66
$$

16.66

$$
16.06
$$

16.66

$$
16.66
$$

16.60

$$
16.66
$$

16.66

$$
16.66
$$

16.60

$$
11.00
$$

11.11

$$
1 \mathrm{C} .98
$$

10.99

$$
\begin{aligned}
& 10.97 \\
& 10.96
\end{aligned}
$$

1 1．．98
1C． 97

$$
10.95
$$

$$
16.94
$$

10.96

$$
10.94
$$

10． 95
10.95

$$
10.93
$$

10． 94
10.92
10.93
$10.91 \quad 10.91$
$10.91 \quad 10.91$
10.91

### 10.90

10.90
10.90
10.90
10.89
10.89
10.91
$\begin{array}{lll}10.90 & 10.90 & 10.90 \\ 10.90 & 10.90 & 10.90\end{array}$
$\begin{array}{lll}10.90 & 10.90 & 10.90 \\ 10.90 & 10.90 & 10.90\end{array}$
$10.89 \quad 10.89 \quad 10.90$
$10.89 \quad 10.39 \quad 10.90$
$10.89 \quad 10.89 \quad 10.89$
$\begin{array}{lll}10.89 & 10.89 & 10.89\end{array}$

10.
10.91
10.91
10.90
10.40
10.90
10.93
10.92
10.98
16.90

23．n． 23.0 23.64 23． 34
23.8 23.49
23.8
23.8
23.8
23.14


23． 4

10.00
16.0
$16.0 \%$
11.
$11 .: 1$
$11.0^{\circ}$
10.17


H上：－PlPL ANALYSis


2／L


						5311．	¢ 371.	5371.	¢ 371.	
	$467 \%$ ．	3371．	5311.	5371.	5371.	5371.	勺371．	5371.	3371.	
－	$46<2$ ．	5371.	5371.	5371.	5371.	5371.	¢371．	¢ 371.	＇371．	
C． 91	4555.	5371.	5371.	5371.	5371.	5371.	3 371.	5371.	，371．	
	148 ？	；371．	5371.	5371.	5371.	5371.	5371.	1371．	5，371．	
	445	5371.	5：71．	5，371．	5371.	5371.	5371.	5， 71.	1．371．	
	$+3$	5371	5；71．	5371.	5371.	5371.	5371.	5371.	＇，371．	
0	4＜5こ．	5371.	5371.	5371．	5371.	5371.	b371．	1，371．	；371．	
30	417 y	486 ¢．	5371.	ち371．	5371.	5371.	勺371．	$\leq 371$.	400.	
	4112	566	5371.	5371.	r， 371.	勺371．	5，371．	5371.	「が	
	4.45	4301.	5371.	5371.	5371.	5371.	5371.	5371.	331	
，	118y．	424	47.55.	5371.	371.	5371.	5371.	47t．）．	24）．	
C． 347	1934．	4135.	$44+6$.	516．3．	¢371．	9371．	り1心．	44	4130.	
75	3812.	3412	35：12．	3812.	3 s 12.	3312.		d1．	$3 \times 1$	
C． 46.3	3774.	3774.	3774.	5774.	5774.	3774.	3774.	3774.	1774：	
	3739.	3734	3719.	3789.	3139.	3734.	37.34.	3739.	3739.	
． 453	3707.	37107.	3727.	3707.	$370 \%$	3707.	$37 \sim 7$.	5757．	$37: 7$.	7
－485	3676．	3678.	3676.	3678.	3678.	3078.	3678．	$367 \%$	3678.	
514	3 h 32.	$360<$.	3582.	3569.	35 ¢ 3.	3503.	35	35		
542	3659．	3582.	3503.	3551.	3545.	3545.	3551.	35.6	35	
	3508.	3563.	3546 ．	3535.	3529.	3529.	3535.	3＇J4＇．	$35 \sim 3$.	
97	357）．	3546 ．	3536.	$352 \%$ ．	3514.	3514.	3520.	3」3＊。	3546.	
t＜	35154．	3531.	3516.	3506.	3501.	3501.	35C6．	$3{ }^{\text {a }} 16$.	3531.	
3	353＇	3518.	35？3．	3444.	3489.	3484.	3474.	$33^{3} 3$.	3） $1 \mathrm{l}^{2}$－	
	$\bigcirc 520$	b06．	34 \％	3482．	3478.	3478.	3482．	34y2．	$3 \mathrm{l}, 0$.	
0.703	3514.	3495.	3481.	3473.	3468.	3468.	3473.	34b1．	34.35.	
C．730	3ちう4．	3485.	3472.	3464.	3459.	3459.	3464.	$3+7 \mathrm{~L}$ ．	3485.	
L． 764	34ヶ5．	3477.	3464.	3456.	3452.	3452 ．	3456.	3464.	3471.	
．7y2	3487.	3469.	3457.	3449.	3445.	3445.	$344 \%$ ．	$34 \bigcirc 7$.	3454.	
－819	3486.	3463.	34， 1 。	3443.	3439.	3439.	3443.	345， 1.	$3+03$.	
	3474.	3457.	3445 ．	3438.	3434.	3434.	3438.	3445 ．	3457.	
C． 875	1409．	3453.	3441.	3434.	3430.	3430.	3434.	3441.	3653．	
C．JC3	34 bt ．	3449.	3438.	3430.	3427.	3427.	3430.	3438.	344	
	346 －	3447.	3435.	3428 ．	$34<4$ 。	3424.	3428.	3435.	344	
	3461.		3433.	3426.	3423.	3423.	3420.	3433.		
					3422 ．	3422	3425	3433		


$\therefore 169$
$\therefore .97$

$$
\begin{aligned}
& \therefore 125 \\
& \because 153
\end{aligned}
$$

$\therefore 153$
$\therefore 181$
$\therefore .204$
.236
$\therefore .204$
$\therefore .232$
$21 .<7$

$$
23.84
$$

?. 119
$\because .347$

$$
\begin{aligned}
& 23.91 \\
& 23.97
\end{aligned}
$$

$$
23.97
$$

8.375
$\therefore .40 .1$

$$
\therefore 431
$$

$$
\because+50
$$

$$
\therefore+o n
$$

$\therefore 14$
0.542
3.569
. .569
. .597
!.t.20 1j. 77
$\begin{array}{rr}\therefore .633 & 10.36 \\ .181 & 1 j .96\end{array}$
. .73813 .95
$.730 \quad 12.44$
$=.764$
$\because .792$
-. 519

$$
\therefore .047
$$

$\therefore .47$,

$$
\therefore+\mathcal{O}
$$

$\therefore .331$
C. 450
C. $98:$ 23. 27 43.32 23.37 $23 .+2$
23.47 23.47 23.59 4.3. セと 23.76
16.66
16.66
10.65
11.02
11.01
11.01
11.00
10.43
$1 . .92$
$1 . .92$
$10 . y 2$
1i). 41
12.41
$<2.93$
22.93
22.93
22.94
22.95
22.89

$$
22
$$

22.94

$$
22.90
$$


22.88 22. त8

$$
\begin{aligned}
& 22 . \\
& 22 . \\
& 22 . \\
& 22 . \\
& 22 . \\
& 22 . \\
& 22 . \\
& 22 .
\end{aligned}
$$

$$
22.88
$$

$$
\begin{aligned}
& <20 \\
& <2 \\
& 22 \\
& 22
\end{aligned}
$$

22.86 22. तह 22.88
22.88

$$
\angle 2 \text {. हुo }
$$

$2<.84$
22.34

$$
\begin{array}{ll}
22.88 & \angle 2.40 \\
22.86 & 2 \angle 4 y
\end{array}
$$

22.95
$2<.96$
< 2.34
$<$
<<
2.8
2.5
2. 2.8

## 

$2<.49$

$$
\begin{aligned}
& 23.23 \\
& 23.41
\end{aligned}
$$

<2.92

$$
23.53
$$

2.2.44

$$
23.67
$$

22.96
23.28

$$
23.78
$$

23.5 C
16.66
16.06
16.66
16.56
$\begin{array}{ll}10.60 & 10.66 \\ 16.65 & 16.65\end{array}$
11.C1
10.93
10.98
10.97

## 1C. 99

1c. 98
10.97
16.96
16.95
11.95
11.94
$\begin{array}{ll}10.95 & 10.94 \\ 10.95 & 10.94\end{array}$
10.44
$1 . .93$
$1 . .44 \quad 10.45$
1 r
$r .92$
10.91
1.). 42
10.92
1..91
$\begin{array}{ll}10.91 & 1 . .91 \\ 10.91 & 1\end{array}$
$10.61 \quad 16.96$
$\begin{array}{ll}10.91 & 10.40 \\ 10.91 & 10.90\end{array}$
10.93

1 1.90
$\begin{array}{ll}19.89 & 1.2 .89 \\ 19.89 & 19.84\end{array}$
13.84



### 7.3.1 Pipe Geometry and Thermal Loading

The second example considered in this section is examined for identical pipe, working fluid, and thermal loading characteristics as the previous example, with one exception. The thermal conductivity of the working fluid is taken to be $1.0 \mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft} \mathrm{C}^{\circ} \mathrm{F}\right)$, and, while this is a somewhat ficticious consideration, it is designed to illustrate the dependence of the heat pipe behavior on the fluid/metal thermal conductivity ratio. Further, the case of $k_{f} / k_{m}=0.1$ will serve as an extreme case since it was found in chapter 6 of this report that the sensitivity of $h_{e q}$ on $\alpha_{b a}$ was highest where the conductivity ratio, $k_{f} / k_{m}$, was also the highest, within the range of parameters examined. That is, the more closely the liquid thermal conductivity approaches that of the solid, the more highly dependent the heat transfer becomes on the liquid cross-sectional configuration.

### 7.3.2 Numerical Results

The results of executing the heat pipe prediction program for the case of $k_{f} / k_{m}=0.1$ are presented in Tables 7-5 to 7-6 for an assumed minimum break-away angle of 20 degrees. From Table 7-5, the overall variation of $h_{e q}$ has increased to 25.5 per cent ranging from a low value of 5472 to a maximum value of 7491. This is to be compared with the variation for $k_{f} / k_{m}=0.01156$ of 18.4 per cent. In this case the evaporator variation has increased to 3.9 per cent and the condenser variation to 8.5 per cent. Again a relatively large uniform region over the evaporator surface is present due to the large minimum break-away angle of 20 degrees.

The surface temperature variation, again de-sensitized by the high wall thermal conductivity, is only 0.4 per cent over the evaporator and 1.0 per cent over the condenser surface. The relatively low surface temperature variations exhlbited here may also be in part attributed to the large equivalent heat transfer coefficients in this case which more closely link the wall temperatures to the uniform vapor temperature. For example in the extreme evaporator regions, the value of $h_{e q}$ is 1.85 times its former value while in the extreme condenser region it is 1.75 times its former value. Thus we see that, while the variation of $h_{\text {eq }}$ has increased, the surface temperature variation for this case has decreased. Considering now the case where $\alpha_{b a}=2$ degrees, the additional hydrodynamic development of the liquid return flow has substantially increased the extreme evaporator equivalent heat transfer coefficient to 10,684 , an increase of 42.6 per cent. The evaporator equivalent heat transfer coefficient variation has correspondingly increased to 48.2 per cent with the condenser region again remaining as it was for the 20 degree breakaway angle case.

Once again, the tsothermalizing of the pipe wall, and the close thermal link with the vapor core temperature has limited the surface temperature variation, Table $7-8$, over the evaporator region to 3.67 per cent. The condenser surface temperature variation again remains unchanged from the 20 degree break-away angle case. The overall pipe thermal conductance has increased by the change of $\alpha_{b a}$ by approximately 7 per cent from the 20 degree case. These moderace increases of the overall pipe conductance with relatively severe changes in the equivalent heat transfer coefficient provide an indication that heat pipes of high performance design may often be limited in their performance characteristics by the thermal behavior of the heat pipe

PSI（LFGRF亡．S）

$$
\text { 3. } 27 . r \quad 4 j . C \quad 63.9 \quad 31.0 \quad 99.0 \quad 117.1 \quad 1 j 5.1 \quad 133 .
$$




74；1．74；1。
$7491.74 \dot{1}$
$7491 . \quad 7491$.
$7491 . \quad 7491$.
7491． 7491.
$7+41$ ．
$74 y 1$ 。
7491.

7411 ．
7491.

74；1．
$74 y i$.
74 91． 6416．
6824. か7ヶ」。
0603.

ひらりく。
$0+C 4$ ．
0） 35 。
－ 314.
$6<74$ ．
6238．
いく05．
f） 170 ．
－15 c．
$\bigcirc 1 \angle 6$.
い1碞。
b 687 ．
6 $57<$ 。
60.55.

2048．
$6 ? 30$.
勺う3．3．
6 6． 28.
6.26 ．
7441. 7491.

74 y1．
7471 。
7491.

7411 ．
7431 ．
$74 \rightarrow 1$ 。 Ey16． 6と 24 ． 6740 ． 6003． $653<$ 。 6.359. 6314.
$027 \angle$ ．
$6<34$ ．
b200． 6169. 6141. 6116 ． 6．3＇34． 5075． or 57. もじ42． 6024 ． b 3 ． 6011 ． bi 19． 0001. U 11. 0 25. $6 \div 2$. う99ヶ．
7491. 7451.

7491． $74 \div 1$
7491． 7491.
7491.7491. 7491． 7491. 7491． 7491. 7491.7491. 7491． 7491. 7491． 7491. 7491． 7441 ． 7491． 7441 ．
7491． 7491. 7491． 7441 ． 7491．74 71. fi916．0916：
6824.6824 ．

6740． 674 ？
600．3．666．3．
6592．6592．
6314.6314.

6271．6271．
6232 ．6232．
6197.6197.

6164． 6164.
0135 ． 11.35.
6109.6109.

6C85．6C85．
6．064．6C64．
6045 ．60．45．
6029 ．6C24．
6014．6®14．
6002 －6002．
$5992 . \quad 5992$.
5984.5984.

5y78． 5978.
5974． 5974.
5ч72． $5 y 72$ ．
7441.7491 ． 7491． 7491 ． $7491 . \quad 7491$.
7491.
7441. 7491.7741. 7431 ． 7441 ． 7441
7491 7441． 7491. 74 ジ1。 $74 y 1$. 7491. $7+91$. 7401. $74: 1$. 0910. t．324． 074 i。 6603. 6592. cl32． い $<85$ ． 0245. －2C4．6234． c176．62C？ 614t． $016 \%$ 611צ．万141． 6：クリ3． $6 \div 74$. 6こ5 5 。 6036. $f 024$ ． $6 \div 11$. $b^{n} \mathrm{C} 1$. 5993. らけロ7。 りけをも。 5481．
6110.
0044. がつう。 $0 C 57$. oi42． $603^{n}$ ． 6ily． or 11. 6く0 • 6Cll． by9テ．
7491.
$74 \rightarrow 1$.
7411.

74．31．
74.1 ．

7ム91。
7らり1
7491.71.

1441．74．1．
$7441 . \quad 74.1$ ．
$74: 1$.
7441 。
74．71．
10916.
6524.
： $7+0$ ．
piel．
からする。
い突至。
i） $35 \%$ ．
n314．わ37ッ．
い274．い3：1。
$\because 238$.
いここう。
-170 ．
い1 10 。
6126 ．
c） 105.
6087.
0072.
i．？つッ。
$\mathrm{b}^{2}+8$.
003）．
0 － 23.
4220.

74．1．
7．1．
74.

7：．1．
$74: 1$ ．
7．．．1
74：1。

74．：
$71:$
い11
いい。
t．1－
tr：－
－「い。
1．1．－

$12 \cdot$ ．
い1 1
－171．
（10．
U1：＇。
c 11 i．
$\because \because 7$
$\because$ ？
い：$\quad .$.
0,7 ．

PSF（DEGREES）


$$
\begin{aligned}
& \text { u. } \\
& 0 \\
& 0 \\
& 0 \\
& i
\end{aligned}
$$

． 14
4
0
$0 y 7$
$.12 j$
－ 3
$\because 101$
C．．．．． 3
r．css
c．＜ 64
2
2
2
26
20
20
20 $\therefore$
2
$\therefore$
2
2

$$
\because .34
$$

$$
20
$$

r．

$$
. \angle y \leq
$$

$\because$ 3
$\therefore$

4

$$
.: 17
$$

$$
.: 47
$$

$$
\angle
$$



$$
\because
$$

ל77.
15.

$$
\therefore
$$

$$
\therefore
$$

$$
\begin{array}{r}
4 n \\
14
\end{array}
$$

$$
\begin{aligned}
& 15.24 \\
& 13.24
\end{aligned}
$$

$\because$
$\therefore$ © 11.21
$\begin{array}{ll}.001 & 11.09 \\ .7 r e & 15.99\end{array}$
$.75=16.9 y$

$\begin{array}{lll}\therefore 11) & 10.37 \\ .1547 & 16.97 & 1\end{array}$

$\because 7$,	1.17	1
01	10	1

$\because .31$ 1．．tu
$\because .95$
5． 9190

$$
10 \cdot 4
$$

$$
1 . y 6
$$

253
20.59
20.59
2 .59
.59
20.54 20.59 20.59

20
20
20
2
2
2
$5 \rightarrow$ 57
5.

2 20． 54

$$
1
$$

2
11.59 ？．5y $\therefore$

$$
20
$$

$$
20.24
$$

$$
\begin{aligned}
& 2 i \\
& 2 i \\
& 2 i
\end{aligned}
$$

$$
\begin{array}{ll}
26.54 & 2 \\
23.59 & 2 \\
20.59 & 2 \\
26.53 & 2
\end{array}
$$

$$
\begin{array}{r}
26.59 \\
2 r .59 \\
2059
\end{array}
$$

$$
20.59
$$

＜n． 2？．5\％

$$
\begin{aligned}
& 21 \\
& 2 r \\
& 2 r \\
& 2 r
\end{aligned}
$$

$$
2
$$

$$
20.54
$$

$$
\begin{aligned}
& 20.59 \\
& 20.59
\end{aligned}
$$

20.59

$$
\begin{aligned}
& \dot{i}, 1,4 \\
& \because i, y
\end{aligned}
$$

$$
\begin{aligned}
& 20 \\
& 20 .
\end{aligned}
$$

$$
\begin{aligned}
& 2 C .59 \\
& 2 i . .59
\end{aligned}
$$

$$
2 \mathrm{C}
$$

$$
20.59
$$

$$
\begin{aligned}
& 29 \\
& 20
\end{aligned}
$$

$$
2
$$

$\therefore$
$2^{\circ}$

$$
\begin{aligned}
& 2.59 \\
& 26.59
\end{aligned}
$$

## 11

## 11

1111

$$
15 .
$$

$$
\begin{aligned}
& 20 . \\
& 20 . \\
& 20 .
\end{aligned}
$$

## 2

20.5
$2 C$

$$
\begin{array}{ll}
20.60 & 2 \\
20.60 & 2
\end{array}
$$

$$
2^{r} .5420 .59
$$

＜
$5 y$

$$
\begin{aligned}
& 2 r \\
& 20 \\
& 2 \\
& i
\end{aligned}
$$

$$
\begin{aligned}
& 20.5 \\
& <0.3 \\
& <0, \\
& 20.3 \\
& 20.5
\end{aligned}
$$

$$
<
$$



$$
\begin{aligned}
& \therefore 0 \\
& 20
\end{aligned}
$$

$$
\begin{aligned}
& \therefore . j \\
& 20 . j
\end{aligned}
$$

$$
20.54
$$

$$
<6.59
$$

$$
\begin{aligned}
& 20 . \\
& 20 .
\end{aligned}
$$

$$
\begin{aligned}
& 20 \\
& 15
\end{aligned}
$$

$$
\text { (1). } 59
$$

$$
\begin{aligned}
& 20.62 \\
& 15.24
\end{aligned}
$$

$$
\begin{aligned}
& 2 C .59 \\
& 15.24
\end{aligned}
$$

$$
\begin{aligned}
& 20.59 \\
& 15.24
\end{aligned}
$$

$$
2
$$

$$
\begin{aligned}
& 15 .<4 \\
& 15 .<4
\end{aligned}
$$

1．C． 2

2．0． 5
15.24

$$
\begin{aligned}
& 15 \cdot<4 \\
& 15 \cdot 24
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& 15.24 \\
& 15, .24
\end{aligned}
$$

$$
\begin{array}{lll}
15.24 & 15.24 & 15.24 \\
15.24 & 15.24 & 15.24
\end{array}
$$

$15.24 \quad 15$

$$
\begin{aligned}
& 15.24 \\
& 15.24
\end{aligned}
$$

$$
15,<4
$$

$$
\begin{aligned}
& 15.24 \\
& 15.24
\end{aligned}
$$

$$
\begin{array}{ll}
15.24 & 15.24
\end{array}
$$

$$
15.24
$$

$$
11 .: s
$$

$$
\begin{align*}
& 11 .: 2 \\
& 11.1
\end{align*}
$$

$$
\begin{array}{ll}
11.0 & 11 \\
11.0 & 1
\end{array}
$$

11.00
11.0 C
15.24
15.2
$13 .-4$
13． 24

$$
11
$$

$$
1 . a y
$$

$$
10.99
$$

$$
11.49
$$

$$
\begin{array}{ll}
10.99 & 1 \\
10 \cdot 08 & 1
\end{array}
$$

1.9 .98

1
C．47
10

$$
\begin{array}{ll}
1.9 .98 & 1 . .97 \\
10.97 & 1 r .96
\end{array}
$$

$$
\begin{array}{ll}
10.47 & 11.90
\end{array}
$$

## .90

15． 46

$$
1
$$

$$
1.96
$$

15.40

$$
\begin{aligned}
& 1.45 \\
& 1 \sim 45
\end{aligned}
$$

10．96

$$
17.95
$$

10．M

$$
1 \therefore .15
$$

1）． 95

$$
\begin{array}{ll}
10.95 & 1 \\
10.95 & 1
\end{array}
$$

10.95
12.45

$$
\begin{aligned}
& 10.98 \\
& 10.97
\end{aligned}
$$

$10.96 \quad 10.90 \quad 12.90$
$10.96 \quad 1) .96 \quad 10.96$

$$
13.90 \quad 10.95 \quad 1 \mathrm{C} .75
$$

$$
\begin{array}{lll}
10.95 & 12.75 & 10.45
\end{array}
$$

$$
10.95 \quad 10.95 \quad 1 \therefore .95
$$

10． $\begin{array}{ll}\text { 土＇} & 10.95 \\ 10.95\end{array}$
$10.95 \quad 15.94 \quad 10.94$
$10.94 \quad 10.94 \quad 10.94$
$\begin{array}{lll}10.94 & 11.94 & 110.44\end{array}$
$\begin{array}{lll}10.94 & 11.94 & 10.94 \\ 11 .) .94 & 10.94 & 10.94\end{array}$
$11 . "$
11.

11．（＇i
11.

10．く
11）． 9 ！
10.48
10.47
10.90
10.40

11．Y 9
12.95
119.
10.45
12.45
$1 \% .4$
10.94
15.24

15．24
15． 2
1 1．$\cdot 4$
11.2
11.

11．：
$11 . \therefore$
$15 . j 4$

$$
1
$$

$$
10
$$

10．リ
1C．9：3
10
$1 C . y$
10.9
10
10.
$11 . .45$
10

$$
1.74
$$

17.94


Table 7－7

HEAT PIUE ANALYSIS<br>URUJVE SIDE COREF（BTU／HFーSG．FT－F）

# 2／L 



PSI（DFGREES）



$-14$
（0）シ＇sまo．
． 97 －9714．
$\therefore .125$ 8ラ3＜．
r． 153 － 344.
$\therefore .101$－157．
し．2．jo 797i．

C．$<64$ 7104～．
C．くyく 74＊s．
©． 319 7345．
c． 347 721c． 6． $57, \quad 0 \neq 16$. $\therefore .403$ enzi．「．．431 0741．
. .450 etes．
r．436 4592. C．J14 645C． 1．542 t4で． $\therefore$ ．jog t 37 t ． －．5\％7 6331． 0．6，25 6292． 2． 653 625t． 0．081 0く2う． 0.7 劫 ग140． $\because .73 \mathrm{~b}$ E171． ก． 764 e．14y． C．7う2 130. 0.019 b11ょ． C．047 6Cy9． ［．875 6．580． 9． 9 （13 6べ7も． 4．931 6．72． C． 358 0．．． 07. C． 900 6うtE．

13684 10684. 12684. 10684. 10084. 10084. 10684. 10084. $945 C$. 8730. 3291. 7902. 770 ． 6916. 6824 ． 074 C ． outi． 0592. 0408. 635 。 6314.
6274.
0238. 620 5． 617 t ． 015 ？ 6126. $61 心$ 「． 0ก87． 6072. 6055. 0048. 0039.
6033. 6028. 6026.
106.44

1 Cb34．
10 ers4．
10634． 106ゝ4． 10034. 10 क्s 4. 1Сら14． 10七お4． 10to4． 106.34. 4220 ． $84 \div 8$. 641 t ． 6824. $67+c$ ．
60， 3. －532． 63， 9. 6.314. 6272. 0234. 62 轻。 6159. $61+1$. （1） 110. 6： 34 ． hC． 75. 0057. 6042. कr $3 ?$. b（ 19. 6C11． 6：05． 6） 1 ． 5y9y．

1
10
10
1
1
1
1
1
1
1
1
1
1
1064 10084． 10684. $1,604$. 10684. 10604．1C084． 10004．116684． 10.084. 10684． 10684. 10684．1cied4． 1r6st． 1 cosis． 10～38． 6910.0916. 5824． 6824. 0742.6740 ． 0603.6663. $6592 . \quad$ ن 292. 0329.0314. 62 ©5． 0271. 6245 ． 6232. t2r9． ヶ 176 ． 0146.6135. 6119． 6109. 60955．（0）85． 6ก74．6004． 6つら5．61）45． bก38． 6029. $6024 . \quad 6!14$. bu゙11．م：C2． 6ก01． 5992. 5993．5984． 5987．5978． 2983． 5974. 5981.5972.

10 6910. 6824. 6740. 6063. 6592. 0314. 6271. 6232. － 197. $-104$. 6135． （1） $10 \rightarrow$ ． 6） 185. 6 co 4. 6445 ． $6 C 29$. UC 14. 6002. 5992. 5984. 5978. 5974. 5972.


HEAT PIPE ANALYSIS

SIJFFaCE TEMDEFATURES（DEG．FAHR．）

HEI（DGGEFES）

． $1<.5$
.153
〇．ता
い．くら． 3
i．$\angle \mathrm{j} \mathrm{c}$
C．cot
J． 414
．11
C．： 47
ל7．
$\because .1 \cdot 0$
.431
． 1.311
$\because \rightarrow$（ 10
．， 14
－ .42
－ 0
－ラック
（．i，k）
．． $1: 53$
－．001
－．72ッ
.730
－13．
C．192
（．，1）
$\therefore .041$
．．s7；
$\because 3$
C．931



2．．$<^{n}$ 2．． 22 Cl． 25 20.29

人．． 37
2．． 41
2．． 47
2.52

2：．37
2 ． 01
20.06
15.21
15.23

15．2．3
15.23
$17 .<3$
11．ン
11． 4
11．： 3
11.22

11．． 1
11．．．
$17 .+3$
$10 . y 8$
1i．．yis
1．． 17
1.97
16.47
15.15
$1 . .96$
$1 \div .36$
12・リヶ
13.45
19.93
＜r． $33 \quad 1+.90$
19.93
19.43
14.43
14.93
19.93
19.95 19.35 19.96 11.90 19.97 19.13
$13.31 \quad 13.93$
$22.15 \quad 14.95$
22． 27
23． 36
2．． 45
25．5． 2
15.23

15．23
19.96
14.97
20.18
15.23

15,23
15.23
$1 j, 43$
$15 .<3$
11.24
$11 .{ }^{\prime} .3$
11． 2
11． 1
12.99

1．）．95
$1 i .48$
15.23
1.2 .23
$11 .{ }^{1} 3$
11．（ 2
$11 . .1$
11.2 C
$1: .99$
$1 i .98$
13.97
$10.97 \quad 1 r . y t$
$\begin{array}{ll}10.97 & 10.46 \\ 10.26 & 1 ? .45\end{array}$
$12.90 \quad 16.95$
12． $76 \quad 1 r .45$
$\begin{array}{ll}10.45 & 12.45 \\ 10.45 & 10.45\end{array}$
$\begin{array}{ll}\text { 1）．} 93 & 1 . .44 \\ 10.35 & 1 . .94\end{array}$
19.93
19.93

$$
14.93
$$

$$
19.93 \quad 19.93
$$

$$
19.93 \quad 19.93
$$

$$
\begin{array}{ll}
19.93 & 19.93 \\
17.91 & 19.43
\end{array}
$$

$$
19.93 \quad 11.93
$$

$$
20.05
$$

$$
14
$$

$$
\begin{array}{ll}
19.93 & 19.93 \\
19.93 & 19.73
\end{array}
$$

$$
\begin{array}{ll}
19.93 & 19.73 \\
19.93 & 19.93
\end{array}
$$

$$
\begin{array}{lll}
19.93 & 19.93 & 19.43
\end{array}
$$

$$
\begin{array}{lll}
19.93 & 19.93 & 19.73 \\
19.33 & 14.93 & 19.93
\end{array}
$$

$$
\begin{array}{lll}
19.73 & 14.93 & 19.93 \\
19.75 & 19.93 & 19.43
\end{array}
$$

$$
\begin{aligned}
& 15.23 \\
& 15.23
\end{aligned}
$$

$$
1
$$

$$
\begin{aligned}
& 19.34 \\
& 15.23
\end{aligned}
$$

9.94

$$
15.23
$$

$$
\begin{aligned}
& 15.23 \\
& 15.23
\end{aligned}
$$

$$
15.23 \quad 13.23
$$

$$
15.23
$$

$$
15.23
$$

$$
15.23
$$

$$
15.23
$$

$$
\begin{array}{ll}
11.02 & 11.02 \\
11.01 & 11.01
\end{array}
$$

$$
\begin{aligned}
& 11.06 \\
& 1 r .99
\end{aligned}
$$

$$
1 ก .99
$$

$$
\begin{aligned}
& 11 \\
& 12
\end{aligned}
$$

$$
\begin{aligned}
& 10.99 \\
& 10.98
\end{aligned}
$$

$$
\begin{array}{ll}
110.98 & 1 \\
10.97 &
\end{array}
$$

$$
\begin{aligned}
& 10 . \\
& 10 .
\end{aligned}
$$

$$
10.97
$$

$$
10.46
$$

$$
\begin{aligned}
& 17.96 \\
& 10.95
\end{aligned}
$$

$$
\begin{aligned}
& 10.95 \\
& 10.95
\end{aligned}
$$

$$
\begin{aligned}
& 10.95 \\
& 17.95
\end{aligned}
$$

$$
\begin{aligned}
& 17.95 \\
& 1 ? .94
\end{aligned}
$$

$$
\begin{aligned}
& 10.94 \\
& 11.94
\end{aligned}
$$

$$
\begin{aligned}
& 10.94 \\
& 10.94
\end{aligned}
$$

12.94
$19.41 \quad 11.93$ 19．y．3 14．73 $19.43 \quad 19.43$ $19.33 \quad 19.93$ $19.93 \quad 19.93$ $19.93 \quad 19.93$ $19.93 \quad 14.13$ 19.9314 .43 $14.43 \quad 1 \%$ ．95 $\because 2.5$ 19.9314 .70 $19.43 \quad 1 \% .47$
14.75
13.15

14．35
14.40

19．40
1）． 70
1． 9.97
14．+7
$\therefore .27$
$2 i .4$
14.45
i． 1
20.15

## 

21
15
1
3
15.2

15．23
13．23
15.2

15．2
11.0
11.03
$11 . \vdots$
11.21
11.9
10.44 1
10 ．：
12．il
$1: .97$
19．He
10.46
$\because \because Y 0$
10.70
10.35
10.95

10． 1 ，
1
wall. Substantially more severe changes might be expected if an aluminum or copper pipe wall material were used in place of the stainless steel one considered here. The results are, nevertheless, consistent with the anticipated behavioral characteristics, with the relatively weak dependence of the pipe overall conductance attributable to a pipe wall limited operational mode.

### 7.4 Closure

An examination has been conducted in this chapter to study the effect of the assumed minimum break-away contact angle on heat pipe performance for the two test cases cited in the text. It was found that while the equivalent heat transfer coefficient exhibited substantial variation with the minimum break-away contact angle, the resultant effect on the pipe exterior surface temperature variation is considerably de-sensitized. This de-sensitization is attributable in part to the isothermalizing nature of the high conductivity pipe wall material and also in part to the high magnitude of the equivalent heat transfer coefficient which causes the pipe wall temperature distribution to lie close to the uniform vapor temperature. In interpretting these results, however, and in drawing conclusions regarding the heat pipe thermal behavior, it must be remembered that the observed influences are application and heat pipe design dependent.
$\mathbf{i}$

## Chapter 8

## Discussion and Conclusions

### 8.1 Summary

It has been the object of the investigation presented in this report to determine the heat transfer characteristics of grooved heat pipe walls. In particular this study is directed at determination of the 'equivalent heat transfer coefficient' which provides the thermal link between a hypothetical surface, the groove root surface, and the 1sothermal vapor core. Since the majority of the temperature drop encountered in high capacity, moderate temperature heat pipes will occur In the groove region, accurate prediction of the groove thermal behavior is fundamental to the accurate prediction of the overall performance of heat pipes of this design.

The analyses presented within this report consider the general case of grooves having arbitrary, trapezoidal cross-section with the single exception that symmetric groove configurations are exclusively treated, i.e. the exposed fin tip area is equal to the groove root area. While this restriction must be placed on the interpretation of the results, the problem description and, indeed, the solution program, both maintain the flexibility of applicability to the non-symmetric situation. Two limiting cases of the general trapezoidal groove shape are commonly used in heat pipe applications. These are the case of zero land area, the triangular $V$-groove, and the case of fifty per cent land area, the rectangular groove.

A mathematical description of the groove heat transfer problem was presented in Chapter three of this report. It was concluded in that chapter that the heat transfer problem is primarily one of conductive
heat transport through the metal/liquid composite from the groove root surface to the vapor core. It is assumed, however, that the hydrodynamic analy sis has been performed elsewhere and that the liquid cross-section at any location within the pipe is fully determined. It became clear through the analytical solution development of Chapter three that a complete analytical solution to the equivalent heat transfer coefficient problem is unattainable using current mathematical methods. This realization led to two alternatives for determination of the groove heat transfer characteristics; determination of upper and lower bounds which when averaged yield a band of solution uncertainty which is acceptable for engineering purposes, or a complete numerical solution to the composite heat transfer problem.

Chapter four of this report is devoted to a study which establishes upper and lower limits by which the actual heat transfer is bounded. The theorems of Elrod [ 35 ] were used in this analysis but unfortunately the resultanc range of uncertainty is unacceptably large to alizi. diraet application of the results. The calculated limits still serve as a check, however, on the now required numerical solution since the numerical results must be between the two bounds previously calculated. The numerical results which were computed for the groove heat transfer problem satisfy this requirement.

Convinced that a complete numerical solution is required to provide an acceptable solution, the finite element method was selected as being the most appropriate numerical method for use fr. this problem. The prime motivation for selection of the finite element method over other available computational methods is its capability of providing the geometric flexibility demanded by the problem configuration. Nevertheless, application of the method was not direct.

The thermal problem under consideration here displays a remarkable combination of influences. While there is a very high degree of detail required to adequately describe the thermal field near the meniscus contact point, the remaining bulk of the crosssectional geometry is sufficiently significant in its thermal behavior that it cannot be discounted. This leads to a situation where a relatively large region must be discretized in order to 'pick up' its thermal characteristics, and within this region there exists a sub-region requiring extreme geometric subdivision to adequately describe its thermal behavior. Such a combination foiled the first two attempts at a viable mesh subdivision scheme. Finally, after a critical examination of the first two mesh generators, a third scheme was devised which met the problem requirements. The problems encountered in devising an acceptable solution procedure is in support of the conclusions of Chapter three, that the problem is indeed complex.

The finite element method was described in Chapter five and a derivation presented for application of the method in any general orthogonal curvilinear coordinate system. The very close similarity of the resultant functional to the commonly used cartesian form allows extension of the method to be made to these coordinate systems with a minimum of effort. Application of these generalized results was made to the cartesian coordinate system which is used to describe the trapezoidal groove problem.

Several problems were encountered in the application of the finite element method to the trapezoidal groove problem, with these problems being related exclusively to the spatial subdivision scheme. Briefly, these problem areas resulted from the use of elements having
aspect ratios much different from unity and from the use of skewed diamond-shaped elements. A great deal of effort was expended in overcoming these difficulties with the third, final mesh generation scheme providing acceptable results.

The third mesh generation scheme was applied to the extreme parameter combination case of $k_{f} / k_{m}=0.001, \varepsilon_{1}=\varepsilon_{2}=0.25, x_{\alpha}=0.05$, and $\theta_{0}=20 \mathrm{deg}$. The numerical results exhibited a monotone and asymptotic behavior as the number of degrees of freedom of the solution was increased. Extrapolation of the numerical data suggested that the solution error at the last data point would be less than five per cent. In further support of the numerical results, a second case for which an exact analytic solution is available was computed. In this example, a conductivity ratio of unity and a full groove condition were exarnined, clearly not as severe a test as the previous case. Nevertheless, the excellent agreement displayed by the 0.15 per cent error for this case fully supports correct functioning of the solution program.

A parametric study was conducted in Chapter six to determine the influence of the problem parameters on the equivalent heat transfer coefficient. Four parameters are considered here; the conductivity ratio, $k_{f} / k_{m}$, the groove depth, $d$, the groove land area ratio, $\varepsilon$, and the apparent normalized contact angle, $x_{\alpha}$. Parameter variations were considered that encompass the range of most practical interest. A correlation equation, provided for convenience in application, interpolates the numerical data with a maximum error of correlation of seven per cent. Since the heat transfer is dependent on four independent parameters, improvement in the correlation agreement can only be obtained at the expense of additional complexity. As was found in applying the results in a typical heat pipe application, as demonstrated
by the results of Chapter eight, the surface temperature distribution is relatively insensitive to the variation of the equivalent heat transfer coefficient. This behavior is typical of many heat pipe applications.

### 8.2 Conclusions

It is concluded, based on the arguments presented in Chapter three, that conduction is the prime mode of heat transfer within the metal/liquid composite region of grooved heat pipe walls. Although other modes are definitely present, they are of secondary importance relative to the conductive contribution to the heat transfer. These secondary influences are further de-emphasized by the apparent insensitivity of the pipe external surface temperature variation on variations in the internal equivalent heat transfer coefficients for typical applications.

With a limit study failing to sufficiently narrow the band of uncertainty in its resultant values, the heat conduction equation and boundary conditions were formulated for solution by the finite element method. Indeed, the current finite element formulation of the heat conduction equation was expanded in this report to include its application to any general orthogonal curvilinear coordinate system. With this in hand, reduction to the cartesian coordinate frame is direct.

The finite element method was successfully used to solve the groove heat transfer problem: In effecting the solution, however, several problems were experienced and were exclusively related to the mesh generation scheme used to subdivide the continuum. These problems
reflect directily the complex nature of the problem under consideration in this report. Equally important, however, is the warming that these problem areas offer to the finfte element user. Although the method offers geometric flexibility, care must be exercised when laxge departures from square, orthogonal elements are required if the 1inear isoparametric quadrilateral element is used.

Having finally devised a reliable mesh generation scheme, the equivalent heat transfer coefficient was computed for the combinations of parameters deemed to be of practical import. It was found that the dependence of the heat transfer on the apparent contact angle is relatively weak when compared to the severe dependence displayed by the approximate model presented in a previous report [16]. The trends, however, are consistent with that previous model.

It was found by application of these results that even for variations in the equivalent heat transfer coefficient approaching fifty per cent, the influence on the surface temperature variation was less than ten per cent. This conclusion is extremely application dependent, but for heat pipes operating in the moderate temperature range, it is most probably a typical result. This result is an attractive one in the design of heat pipes. The precise details of the groove flow need not be exactly known a priori in order to obtain an approximate solution since the sensitivity of the pipe surface temperatures on local liquid cross-section is not extremely severe.

## References

1. Katzoff, S., "Heat Pipes and Vapor: Chambers for Thermal Control of Spacecraft", AIAA Progress in Astronalitics and Acronautics: Thermophysics of Spacecraft and Planetary Bodics, edited by G. B. Heller, Vol. 20, Academic Press, New York, 1967.
2. Basiulis, A., Eallondardo, C. M., and Kendall, B. M., "Heat Pipe System for Space Shuttle TWiA", AIAA 8th Thermophysics Conference, July 16-3.8, 1973, AIAA paper 73-755.
3. Roukis, J., Rogovin, J. and Swerdling, B., "Heat Pipe Applications to Space Vehicles", AIAA 6th Thermophysics Conference, April 26-28, 1971, AIAA paper 71-41.0.
4. Tawil, M., Alario, J., Prager, R., and Bullock, R., "Heat Pipe Applications for the Space Shuttle", AlAA 7th Thermophysics Conference, April 10-12, 1972, AIAA paper 72-272.
5. Scallon Jr., T. R., and Robinson, G. A., "Heat Pipe Thermal Control. System Concept for the Space Station", AIAA 7 th ihermophysics Conference, April 10-12, 1972, AIAA paper 72-261.
6. Edestein, F., Swerdilng, B., and Kosson, B., "Developaent of a Self-Priming High-Capacity Heat Pipe for Flight on OAO-C", AIAA 7th Thermophysics Conference, April 10-12, 1972, AIAA paper 72-258.
7. 

Bienert,. W., and Kroliczek, E., "Experimental Higii Performance Heat Pipes for the OAO-C Spacecraft", SiE/ASPI:/ AIAA Life Support and Environmental Control Conference", July 12-14, 1971, ASME paper 71-Av-26.
8.

Mock, P. R., Marcus, B. D., and Edelman, E. A., "Comaunications Technology Satellite: AIAA/ASME. 1974 Thermophysics and Heat Transfer Conference, July 15-17, 1974, AIAA paper 74-749.
9. Winter: E. R. F., and Rargeh, w. O., "The Heat Rise", Aduinces in Heat Transfer, Vol. 7, ediced by T. F. Irvine and J. P. Hartnett, Academic Press, New York, 1971.
10.

Bressler, R. G., and Wyatt, P. Wi, "Surface Wetting Through Capillary Grooves", Trans. ASME, Journal of lleat Transfer, February, 1970.

Kosson, R., Hembach, R., Edelstein, F., and Tawil, M., "A Tunnel Wick 100,000 Watt-inch Heat Fipe", AIAA 7 th Thermophysics Conference, April 10, 1972, ATAA paper 72-273.
12.

Edwards, D. K., Gier, K. D., Ayyaswamy, P. S., and Catton, I., "Evaporation and Condensation in Circumferential Grooves on Horizontal Tubes", ASME/AICHE Heat Transfer Conference, August 5-8, 1973, ASME paper 73-HT-25.

Berger, M. E., and Feldman Jr., K. T., "Analysis of Circumferentially Grooved Heat Pipe Evaporators", ASME Winter Annual Meeting, November 11-15, 1973, ASME paper 73-WA/H2-13.
14. Gier, K. D., and Edwards, D. K., "Flooding and Dry-up Limits of Circumferential V-Grooves", AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, July 15-17, 1974, AIAA paper 74-722.
15. Grover, G. M., Cotter, T. P., and Erickson, G. F., "Structures of Very High Thermal Conductance", appearing in "Heat Pipes", AIAA Selected Reprint Series, Volume 16, ChangLin Tien editor, reprinted from Journal of Applied Physics, American Institute of Physics, New York, N.Y., Volume 35, No. 6, 1964.

Schneider, G. E., and Yovanovich, M. M., "Three-Dimensional Thermal Analysis of a High Capacity Heat Pipe with Circumferential V-Grooves", final report of a study conducted for the Communications Research Centre, CRC 6656-1 (SCS) program.
17. Sun, K. H., and Tien, C. L., "Simple Conduction Model for Steady State Heat Pipe Performance", AIAA Journal, American Institute of Aeronautics and Astronautics, New York, N.Y., Vol. 10, No. 8, August, 1972.

Ayyaswamy, P. S., Catton, I., and Edwards, D. K., "Capillary Flow in Triangular Grooves", ASME Winter Annual Meeting, November 11-15, 1973, ASME paper 73-WA/HT-21.

Knacke, 0., and Stranski, I. N., "The Mechanism of Evaporation", Progress in Metal Physics, Vol. 6, 1956, pp. 181-235.
20.
21.

Bornhorst, W. J., and Hatsopoulos, G. N., "Analysis of a Liquid Vapor Phase Change by the Methods of Irreversible Thermodynamics", Transactions of the ASME, Journal of Applied Mechanics, Vol. 34, No. 4, Dec. 1967, pp. 840-846.

Kucherov, R. Ya., and Rikenglaz, L. E., "On Hydrodynamic
Boundary Conditions for Evaporation and Condensation", Soviet Physics JETP, Vol. 37 (10), No. 1, Jan. 1960, pp. 88-89.

Labunstov, D. A., "An Analysis of Evaporation and Conden-
sation Processes", Teplofizika Vysokikh Temperatur, Vol. 5, No. 4, July-August 1967, pp. 647-654.

Feldman, K. T. Jr., and Berger, M. E., "Analysis of a High-
Heat-Flux Water Heat Pipe Evaporator", Technical Report ME 62 (73) ONR-012-2, September 1973, pp. 91-94.

Ferrell, J. K., and Alleavitch, J., "Vaporization Heat Transfer in Capillary Wick Structures", AIChE Preprint 6, presented at the Eleventh National Heat Transfer Conference AIChE-ASME, Minneapolis, Minn., Aug. 3-6, 1969.

Ferrell, J. K. and Johnson, H. R., "The Mechanism of Heat
Transfer in the Evaporator Zone of a Heat Pipe", ASME Paper No. $70-\mathrm{HT} / \mathrm{SpT}-12$, presented at the ASME Space Technology and Heat Transfer Conference, Los Angeles, California, June 1970.

Kreith, F., Principles of Heat Transfer, 2nd ed., International Textbook Company, Scranton, Penn., 1966.
30. Yovanovich, M. M., Advanced Heat Conduction, Hemisphere
Publishing Corporation, Washington, D.C., (1976).

Yovanovich, M. M., Advanced Heat Conduction, Hemisphere
Publishing Corporation, Washington, D.C., (1976).
31.
32.

Bornhorst, W. J., "Irreversible Thermodynamics of a Phase Change", Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Mass., June 1966.

Kreith, F., Principles of Heat Transfer, 2nd ed., Inter-

Schneider, G. E., Strong, A. B., and Yovanovich, M. M., "A Physical Approach to the Finite Difference Solution of the Conduction Equation in Orthogonal Curvilinear Coordinates", presented at the ASME Winter Annual Meeting, Houston, Texas, Nov. 30 - Dec. 4, 1975, ASME Paper No. 75-WA/HT-94.

Schneider, G. E., Strong, A. B., and Yovanovich, M. M., "Finite Difference Modelling of the Heat Conduction Equation in General Orthogonal Curvilinear Coordinates Using Taylor Series Expansion", proceedings of the AICA Conference on Advances in Computer Methods for Partial Differential Equations,.R. Vichnevetsky (ed.), June 27-29, 1975.

Desai, C. S., and Abel, J. F., Introduction to the Finite Element Method, Van Nostrand Reinhold Company, 1972.
34. Huebner, K. H., The Finite Element Method for Engineers, John Wiley and Sons, Inc., New York, N.Y., 1975.
35. Elrod, H. G., "Two Simple Theorems for Establishing Bounds on the Total Heat Flow in Steady-State HeatConduction Problems with Convective Boundary Conditions", Journal of Heat Transfer, Vol. 96, Series C, No. 1, 1974, pp. 65-70.

Smythe, W. R., Static and Dynamic Electricity, 3rd ed., McGraw-Hill Book Company, New York, N.Y., 1968.

Yovanovich, M. M., Schneider, G. E., and Strong, A. B., "Transverse Apparent Thermal Conductivity of Long Rectangular Fibers in a Matrix', presented at AIChEASME Heat Transfer Conference, San Francisco, Calif., Aug. 11-13, 1975, ASME Paper No. 75-HT-26.

Standard Mathematical Tables, Nineteenth Edition, S. M. Selby ed., The Chemical Rubber Company, Cleveland, Ohio, 1971.

Zienkiewicz, 0. C., and Cheung, Y. K., "Finite Elements in the Solution of Field Problems", The Engineer, Vol. 220, 1965, pp. 507-510.

Visser, W., "A Finite Element Method for Determination of Non-Stationary Temperature Distribution and Thermal Deformat:Lons", Proceedings of the Conference on Matrix Methods in Structural Mechanics, held at the Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 1965, pp. 925-944.

Emery, A. F., "The Use of Singularity Programming in Finite Difference and Finite Element Computations of Temperature", Transactions of the ASME, Journal of Heat Transfer, Vol. 95, Series C, No. 3, August, 1973, pp. 344-351.
42.

Wilson, E. L., and Nickell, R. E., "Application of the Finite Element Method to Heat Conduction Analysis", Nuclear Engineering and Design, Vol. 4, 1966, pp. 276-286.

Warzee, G., "Finite Element Analysis of Transient Heat Conduction - Application of the Weighted Residual Process", Computer Methods in Applied Mechanics and Engineering, Vol. 3, 1974, pp. 255-268.

Zienkiewlcz, O. C., and Parekh, C. J., "Transient Field Problems: Two-Dimensional and Three-Dimensional Analysis by Isoparametric Finite Elements", International Journal for Numerical Methods in Engineering, Vol. 2, 1970, pp. 61-71.

45.	Schneider, G. E., "Finite Element Formulation of the Heat Conduction Equation in General Orthogonal Curvilinear Coordinates", presented at the ASME Winter Annual Meeting, Houston, Texas, Nov. 30 Dec. 4, 1975, ASME Paper No.
46.	Hildebrande, F.B., Methods of Applied Mathematics, 2nd edition, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1965.
47.	Shah, S.N., and Kobayashi, S., "The Matrix Method for the Analysis of Metal Forming Processes," unpublished manuscript.
48.	Costello, F. A., "Heat Flux Through a Strip-Heated Flat Plate", Transactions of the ASME, Journal of Heat Transfer, February, 1971, pp. 124-125.
49.	Abramowitz, M., and Stegun, I. A., "Handbook of Mathematical Functions", Dover Publications, New York, pp. 589-592.
50.	Carslaw, H. S., and Jaeger, J. C., "Conduction of Heat in Solids", Oxford University Press, London, 1959.
51.	Zienkiewicz, O. C., Finite Elements in Engineering Science, McGraw-Hill Book Company, London, 1971.
52.	Gurtin, M. E., "Variational Principles for Linear InitialValue Problems", Quarterly Journal of Applied Mathematics, Vol. 22, 1964, p. 252.
53.	Finlayson, B. A., and Scriven, L. E., "On the Search for Variational Principles", International Journal of Heat and Mass Transfer, Vol. 10, 1967, pp. 799-821.

## 1 1 1 1 1

## Appendix A

Geometric Description of Trapezoidal Groove Section

We are in this section concerned with the geometric description of the heat transfer analysis crossmection for heat transfer from trapezoidal grooves. The groove region is filled with a liquid, the heat pipe working fluid, while the remainder of the section is composed of the heat pipe containment wall material. The analysis geometry is illustrated in figure $A-1$.

Locating the origin of a cartesian coordinate system as shown in the figure, the heat flow symmetry boundaries are defined by the surfaces $x=0$ and $x=\omega$. The pipe external surface is defined by the surface $y=0$. In general the cross-section will not consist of a sharp 'V' configuration so that a land area and groove root area are defined having thicknesses $\varepsilon_{1}$ and $\varepsilon_{2}$ respectively. For symmetric grooves $\varepsilon_{1}=\varepsilon_{2}$. The groove section is further typified by a groove half-angle of $\theta_{o}$ while the second angle characterizing the heat transfer is the apparent contact angle $\alpha$. The remaining parameters to be used in the geometric analysis are indicated in the figure.

The groove root surface is defined by $y=$ HLSD over the domain $0 \leqslant x \leqslant E_{2}$, and the groove land area is deffned by $y=H$ over the domain $\left(\omega-\varepsilon_{1}\right) \leqslant x \leqslant \omega$. The liquid/metal groove interface is given, then, by the relation

$$
\begin{equation*}
(y-H L S D)=\left(x-\varepsilon_{2}\right) \cot \theta_{0} \tag{A-1}
\end{equation*}
$$

over the domain $\varepsilon_{2} \leqslant x \leqslant\left(\omega-\varepsilon_{1}\right)$.

The liquid free surface, circular in cross-section in the absence of gravitational forces, can be characterized by a free surface radius of curvature, $\beta$, where $\beta$ can be determined from [16]
where

$$
\begin{equation*}
r_{0}=\left(\omega-\varepsilon_{1}\right) / \sin \theta_{0} \tag{A-3}
\end{equation*}
$$

and, locating a virtual origin at the intersection of the plane $x=0$ with the groove liquid/surface interface, the separation of the free surface radius of curvature center and then this virtual origin, $\kappa_{1}$, is given by [ 16 ]

$$
\begin{equation*}
k_{1}=\frac{r_{0} \cos \alpha}{\cos \left(\alpha+\theta_{0}\right)} \tag{A-4}
\end{equation*}
$$

Furcher the separation of the virtual origin and the origin of figure A-1 is given by

$$
\begin{equation*}
0(\text { figure } A-1)-0(\text { virtual })=\varepsilon_{2} \cot \theta_{0}-\text { HLSD } \tag{A-5}
\end{equation*}
$$

Defining a parameter, $K$, by

$$
\begin{equation*}
K \equiv \kappa-\left(\varepsilon_{2} \cot \theta_{0}-H L S D\right) \tag{A-6}
\end{equation*}
$$

the equation describing the free surface is

$$
\begin{equation*}
(y-K)^{2}+x^{2}=\beta^{2} \tag{A-7}
\end{equation*}
$$

Expanding and rearranging equation (A-7) leads to

$$
\begin{equation*}
y^{2}-2 k y+\left(k^{2}-\beta^{2}+x^{2}\right)=0 \tag{A-8}
\end{equation*}
$$

from which, solving for the roots of (A-8), the free surface description becomes

$$
\begin{equation*}
y=k-\sqrt{\beta^{2}-x^{2}} \tag{A-9}
\end{equation*}
$$

where only the smallest of the roots is an admissible one. The domain
of applicability of equation (A-9) is the domain $0 \leqslant x \leqslant\left(\omega-\varepsilon_{1}\right)$. For the special case of a full groove condition, the limiting value of equation (A-9) for $\beta \rightarrow \infty$ is not immediately clear. For this case, however, the free surface description is given simply by

$$
\begin{equation*}
y=H \tag{A-10}
\end{equation*}
$$

as is apparent from the figure.


# Appendix B <br> Programs for Heat Transfer Limit Evaluation 

## B. 1 Introduction

In this appendix the program listings for the evaluation of the upper and lower groove heat transfer limits are presented. The programs serve only as mechanism for evaluation of the integrals presented in Chapter 4 of this report and as a result there will be no discussion here of the underlying theory. Both programs use a modified Simpson's Rule algorithm, the subroutine of which is included in the listings. To aid the interested reader, a brief nomenclature is included for the listings.

## B. 2 Groove Heat Transfer Lower Limit Program Nomenclature

The pertinent symbolic Fortran names used in the program for evaluation of the lower limit are presented here with frequent use made of the variables introduced in Chapter 4 of this report. Since duplication of certain mainline variables occurs in subroutine DINTGL, only mainline variables will be included in the nomenclature.

$$
\begin{aligned}
\mathrm{A} 1 & =\mathrm{A}_{1} \\
\mathrm{~A} 2 & =\mathrm{A}_{2} \\
\mathrm{~B} 1 & =\mathrm{B}_{1} \\
\mathrm{~B} 2 & =\mathrm{B}_{2} \\
\mathrm{BETA} & =\mathrm{B} \\
\mathrm{C} & =\mathrm{H}-\mathrm{d} \\
\mathrm{C} 1 & =\mathrm{C}_{1}
\end{aligned}
$$

```
 C2 = C C
 COND1: = km
COND2 = kf
 D = d
DINTGL = subroutine for integral evaluation
DKAPPA = K
 DLIM1 = integration limit
 DLIM2 = integration 1fmit
 DLIM3 = Integration limit
 DNUM = Nu_f
 DNUM = Num}=heq/(N\cdot\mp@subsup{k}{m}{\prime}
 E1 = 的
 E2 = 的2
 FxI = integrand for integral I
 Fx2 = integrand for integral II
 H=H
 HEQ = heq
I,J,K,L = array subscripts to allow parameter variation
 PI == \pi
 Ro = r o
 RTOT = R RT
 REQ = 1/(heq w)
 THETA = 首(in degrees)
 THRAD = 的(In radians)
 UI = 1/R I
```

$$
\begin{aligned}
\mathrm{U} 2 & =1 / \mathrm{R}_{\mathrm{II}} \\
\mathrm{UTOT} & =1 / \mathrm{R}_{\mathrm{T}} \\
\mathrm{~W} & =\mathrm{w} \\
\text { XALPHA } & =\alpha /\left(\pi / 2-\theta_{0}\right)
\end{aligned}
$$

## B. 3 Groove Heat Transfer Lower Limit Program Listing

The program listing for evaluation of the lower groove heat transfer limit is presented on the following three pages.
c
C
c
C
INFIICIT FEAL-8(A-H,C-2)

EXIFFNALEX1,EX2
CCMMCN/CNE/A1,E1,C1, EETA,A2,E2,C2
$C$

C

$\mathrm{C}=\mathrm{C} .1$
CCNLI $=1.0$
$W=1 . \mathrm{C}$
FEAI(E, 1) (E1(ID,L=1, 3)
1 FCkMA(EF10.5)



E FCFMAT(EK10.E)
FEA[(E, 4) (CCAL2(J), J=1,3)
4 FCFMAT(ご10.E)
HEAL(E, ©) (XALEFA(I), I=1,4)
© FCHMAT(4kid.e)
WFITE(E,1) (E1(L), L=1,3)
WEITE(C,2) (E2(I), L=1,3)
WEITE(C, 2 ) (E(E),k=1,3)
HKITE(C,4) (CCNL2(J), J=1,3)
WhITE(c, ©) (XALfEA(I), I=1,4)
LC $2 \mathrm{E} \quad L=1,3$
LC $2 \epsilon \quad K=1,3$
[C $27 \quad J=1,3$
LC $2 E \quad I=1,4$
C
C--------FFELIMIKAFY CALCULAIICNS
©

```
 THFAI = [ATAA((H-E1(L)-E2(L))/D(K))
 IE(XALFEA(I).CE.|gO) XALPHA(I) = 0.g99
 ALFEA= XALFEA(1)*(FI/2.-THEAD)
 H=(W-EI(L))/[TAM(THRAE)
 RC=(M-E1(L))/LSIA(THEAL)
 EFTA=FC:CSIA(THFAC)/LCCS(ALPHA+THEAD)
 LKAFFA = FCNDCCS(ALFHA)/ECOS(ALPHA+THRAC)
 A1 = (IEAFFA-E2(L)/ETAN(THKAI))/(CONL2(J)/CCAE1)
* + F2(L)/ITAM(THFAL) + EC*C#CSIN(THEAD)/K
 H1=F(tDCCS(TAFAL)/W + E1(L)/(NC*LCCS(TRRAE))
* - I./(DIAN(THFAD)*COND2(J)/CCNE1)
 C1 = -C(AD1/CCN[2(J)
 A2 = [AAFFA/(CCNE2(J)/CCNC1) + FC*C*LSIN(THEAL)/W
 E2 = &(*LCCS(TFFAE)/H + E1(L)/(BC*ECCS(1HRAL))
- 1./(CTAA(THFAD)*CONE2(J)/CCNE1)
 C2 = -CCND1/CCNI2(J)
```

LCw ionic LCWOOF
LCNCOC
LCo00040
LCWCOO－
LCWOOO
LCWCCet
LCy 0 OnEs
LCWCOO
LCWOOt
LCHCG11C
LCWOO：
LCuCn！
LC． 00140
1CuOOL
LCWCC
LCWOCr力
LCweelec
LCWOC
1 Curez
LChCC21：
LCW007
LCucre
LCwre24
LCWCO． 25
LCWCO
1cwrnd
ICWCC2sC
LCいC！
LCHCC
1CHCCO10
LChCO．
LCwCo
LCuOnjac
LCyrC3Er
LCuros
LCuCcill
LCwonace
LCwon．
LCWen
LCWOC410
LCWCC
LCWCr
ICWCEA
LCHCO4S（
LCHOU
LCWCO．
LCMCC48C
LCMOO－
LCWOO：
LCWOUsic
LCNOCE2
LCWCOs
LCoovem
1．CWOOSEC


DLIN2＝F2（L）


$\mathrm{LI}=\mathrm{E} 1 \mathrm{ATI}$
U2 $=$ INT2
UTCT $=11+\mathrm{L} 2$
KTCI $=1 . / L T C T$

HFC $=1 . /(\mathrm{HEC})$

INUB＝ENEFCCN［2（J）／CCNII

Wh17F（t，1C）

10 4

FChAA7（＇1＇，／／／／，2CX，＇ESTABIISHING GKCCVE HEAT IKANSFFk＇，
（LCWFELIMIT＇，／／）
THFTA＝THFAE：18C．／PI
WHITH（ $\epsilon$ ，11）THETA

ALFLEC＝ALPEA＊1\＆C．／FJ
MhITF（t．12）ALFEEG

whilk（t，13）
15 FCFHAT（＇，2CX，＇GFCCVECELLEAIF－HIDTH＝1，F7．3．／）
WHITF（ $\boldsymbol{6}, 14$ ）Ef（L）

WKITE（E，15）F2（I）

CICTH $=\mathrm{F}^{+} \mathrm{C}$
W上ITIE，IE）LLGTH

WFITE（E，17）I（k）
17 FCFAAI（＇，2CA，＇ACTUAL GECCVE DEFTH $=1 . F 7.3 .1)$
WhITE（Efif）CCNII

WEITF（E，1C）CCNI2（J）

WEITE（（，2C）INLI

WEITH（E，21）IAC

24 CCNJINLE
27 CCNIINIE

ICNOOS60
1CHOOSTO

LCHCIE！C
LCMOにす。
LCMCe 1 C
LCVOOG2O
LCNETCC
lewolle 4 ？
LGHISREC
lrucrect
lunde7c
L（ulloro
ICHCl．t：C
1CHんri7uO
1く甘1： 71 ．
LCNCO72 C ．
1CWir 730
LCN（：74C
ICNCC75C
1CHCO7f0
ir＊ロロ770
1curo780
lenrcioc
I cunoxali
LCMCres 10
1CHCいと26．
LCHCOWEC
ICMいOからい
1くもく0ふ50
LCWC！
1CめOがす。
Lemoligen
LCncres．c
ICHeOcc
ICN（r．estr
acwrov2r
1CWrCs3C
LCHCOG4C
LCM（OGEC
1CWCCye
lCuOnO70
Lencrsec
ICucogse
LCuriter
ICHC1010
LCHC1：2r
LCHC10こC
ICMC114C
ICMOICEC
LCHC1OCC
lcur107c
LCACIr\＆e
LCHC11SC
LCWO1100

2e CCNTINL
こE CCNTINE
Whtiente，22）
22 FCF\＆A（11）
STCF LN E

SIGBCLIINE LIATGL（A，E，F，YNT）
INEIC1THEAL＊\＆（A－R，O－Z）
$\mathrm{NN}=1 \mathrm{C}$
1C1 CCNTINE
$H=(E-A J / N H$
$S(M=(F(A)+H(E)) / 4 .+(F(A+H / 2 \cdot)+F(B-日 / 2 \cdot)) / 2$ ．
＊$+11 . *(H(A+H)+F(H-H)) / 12$ 。
NAN $=\mathrm{AN}-2$
DC $1 C 2 \quad A=2 g \mathrm{NNN}$
$\operatorname{SCM}=\leq \mathrm{E} M+\mathrm{F}(A+\mathrm{A}+\mathrm{F})$
1C2 CCNTINLE
YAT $=$ STN．H
IF（NA．EC．IO）GC TC 10』
EKk＝LAES（（YM－YNTC）／YAT）
IF（EKK．IT•1。I－04）GC TC 105
10こCCNTANE
$N A=N N * 2$
YNTC＝YAT
II（AN．IE． 400 CL ）GC TC 101
HFITE（E，IC4）
104 FCKMAT（＇， $1,1 C X$, ＇INTEGFAL ACI CCNVEBGENTAT 4OOCO＇， ＋ －S（BDIVISIGNS＇，／）
1GE CCNTINLE
KETLHN
ENL

## C

FUACTICAFX1（X）
IMFLICIIEEAL：E（A－H，C－Z）
CCMMCN／CNF／A1，EL，C1，HFTA，A2，E2，C2

FLILEA
EAC

LCWCIIIC
LCWC1
LCWOL
LCWC1I4
LCWC11．
LCunt
LCWC 1
LCWOIt80
LCWCI
LCMOI
ICWC1211
LCWC 1
LCWC12
LCWC 125
LCWOI
LCWOI
LCWU128
LCMC1
LCWCt
LCWC131
LCO1：
$\operatorname{LCHC}$
LCWC144
LCW 135
LCunt
LCwO1
LCHC138
ICHCT－
LCWry
LCHCtI
ICWOṫ？
LCWOI
LCMC
LCMOIGE
LCWr
LCO日
LCWC148
LCWOL
LCWC
LCWOTB1
LCWOIE？
LCWC
LCOO
LCWC15
LCNO
LCW！
IC＊OEs
LC\＃C159
LCMOT
LCWOM
LCWCIt？
B. 4 Groove Heat Transfer Upper Limit Program Nomenclature
The program nomenclature used for evaluation of the upper limit for the trapezoidal groove heat transfer follows closely that of the lower limit determination program. Where exceptions occur they are either self-explanatory or of no consequence, as for example in the case of localized working variables. As a result of the nomenclature similarities of the two limit prediction programs, a second nomenclature will not be presented here.

## B. 5 Groove Heat Transfer Upper Limit Program Listing

The program listing for evaluation of the upper groove heat transfer limit is presented on the final three pages of this appendix.


## CFCCVE EEAT TRANSEEF LPFER LIMIT

## c

INFIICIT EEAL： $8(A-E, C-2)$
CLNENSICA E1（ こ），E2（3），L（3），XALFHA（4）
EXTEFNAL FX1，EX2
CCMMCN／CNF／DKAPPA，THRAL，CONL1，CCND2（ 3），FC，W，LYAE1，LPAE2，J
C
C－－－－－－－－－INETI DATA
C

$$
P I=3.1415 Q 2 \in \subseteq \leftrightharpoons \varepsilon \varepsilon 7 \subseteq 3
$$

$C=C .1$
CCNEI $=1.0$
$W=1 \cdot C$
hFA［（5，1）（E1（L），L＝1，3）
）FCKMAT（こF10．E）
FFA［（E，2）（E2（L），L＝1，3）
2 FCbNAT（ごFIO．E）
FEAI（E，こ ）（C（k），K＝1，3）
＝FCb＊AT（こF10．E）
FEAL（E，4）（CCNL2（J），J＝1，3）
4 FCbNAT（こE10．E）
HEAL（E，E）（XALFEA（1），I＝1，4）
E FCENAT（4EIU．E）
MFITE（E，1）（EL（L），L＝1，3）
WHITF（E，2）（E2（L），L＝1，3）
WFITE（E，己）（I（E），K＝1，3）
WhITE（E，4）（CCN［2（J），J＝1，3）
WHITE（E，E）（XALFEA（1），I＝1，4）
LC 2E $L=1,3$
DC $26 \quad k=1,3$
LC $27 \quad J=1,3$
LC $28 \quad 1=1,4$
C
C－．．－－－－－FFELIMINAEY CALCUIATICNS
C
TFFAL＝LATAN（（M－E1（L）－E2（L））／D（K））
IF（XAIFFA（1）©（E．1．O）XALFHA（I）$=0.999$
ALFPA＝XALFLA（1）由（EI／2•－THEAD）
$H=[(H)+C$
$F C=(W-E 1(L)) / L S I N(T H E A C)$
EETA＝FC LSIM（1FEAC）／CCCS（AIFHA＋THEAC）
CKAFFA＝FC－DCCS（ALFHA）／ECOS（ALPHA＋THRAL）
CFAbI＝LKAPEA C LSIN（THEAC）
［FAB2 $=$［KAFFA－FC＊LCCS（THFAI）
C
C－－－－－－－－IIDIIS CE INTEGBATICA
c
CLIN11＝EETA
DLIM2＝LSQKT（ע＊＊ $2+($ LKAPPA－KC＊LCOS（THRAL））$\# * 2)$
DLIM12＝DLIM11＋C．CC5＊（LLIM2－DLIM11）
DLIN $3=$ EKAPPA－E2（L）／ETAN（TARAE）

HILOOG10 HILOOF El1nO？ HIINOOAC
HILOCOE

## HILOW

H1LO

## HIIOOR

F1ICC
HIIM，
HIINOTIC
HILOO
HICO
HILOO
HLLOUIE
HILCU
HILCC
HILCOLS
HILCO
FILCO
HILCORSC

> HIICOT
h 11 Cr
H1LOC．
HILOU2
H1LCi
HIICO
HIICO2 6
F1100
HILCU
HIICrSi
HILLIA～
FILCO
HILOO）
HIICN3E
HILOO
HILOG
HILCOBEI
HILCO
HILCR
HILOU－4
HILCO4？
HILC
HILCC
HIICO4E
HIIOU
HILCO
HIICCi481
HILCRA．
hIICC
HILOH
HILnतs
HIIOW
HILOO
H110n5：1

C－－2－－－－INIEGKAI FVAILATICA
C
CALLIJACI（CIIA11，LIIN12，FM1，DINTII）
CALI IINTGL（LIIN12，LLIN2，FX1，DINT12）
CALLIINTCL（LIIN2，LLIM3，FX2，EIN12）

## C

## C－－－－－－－－CCMFITATICN CF REOUIREL EESULTS

E11＝LINT11
ki2＝IINTI2
$k 1=k 11+512$
$\mathrm{k} 2=\mathrm{I} 1 \mathrm{AT} 2$
RE＝（1－L（k））／（CCNL1＊W）
HTCT $=1+\mathrm{H} 2+\mathrm{F}$

ENUH＝IALF CCNL2（J）／CCNII

WHITE（E，10）
＊

11

12

21
$2 \varepsilon$
27
¿t
25
25
22

THFTA $=$ THKAL $18 \mathrm{C} \cdot / \mathrm{PI}$
WFITE（E，11）THETA
FCE\＆ATC＇＇，2CX，＇FAIEG
AIILEC $=A L P E A Y I E C . / F I ~$
WEITE（E，12）ALFEEG
 WhITF（E，13）

WFITE（E，14）E1（I）
14 FCENAT（＇， $20 \%$ ，＇LANI AEEAEATIC $=0, F 7.3,1$ ）
WFITE（E，15）E2（L）
1E FCFMAT＇，2CX，＇GECCVE ECCI VIDIH RATIC $=1, F 7.3,1$ ）
WFITE（E，It）

WトIJE（E，17）I（k）
17 FCFMAT（＇，2C ，＇ACTUAL GFCCVE DEPTH $=0, F 7.3,1$ ）
WFITE（E，1\＆）CCAI

WKITE（E，1世）CCAL2（J）
 WFITE（E，20）IALF
20 FCHNAT（1，2C\％，$\left.{ }^{\circ} \mathrm{NU}(\mathrm{EASELCNSF})=0, F 10.5,1\right)$ －KITE（E，21）IAUy
FCKMAT（＇1＇，／／／／， 2 CX，＇ESTABLISHIAG GRCOVE HFAT TRANSFEK＇，
－IPFEF LIVIT•，／／）


CCNJINTE
CCNJINIE
CCAIINLE
CCNTINIE
WFITE（E，22）
FCEMAT（＇1＇）
STCF
ENL

HILOU56
HILCOㄷ․
HI10n5s
Filonse
h110ner
FIIGNEI
HILCOE 2
H110063
H11CC64
HIIOOGE
HIICNEF
HIICCt
HIICOty
hilCCEE
HILCOTC
HILCOT1．
H11COT2，
HIIOO731
HILCOT4
HIIOOTEI
HIICOTE
H 110077
H11CO7E，
H1100791
H 110 OROC
HILOON11
F1100821
H 1100831
HIICO\＆il
HIION\＆E（
HILOOEG
b110C87
HILCOE8（
h 1100 E8
H11C09C（
FIICO916
H 1100921
お1IOC9 く
H 110094 （
HIICOYEC
H11CC9EC
filcog7
HILCogec
H1ICrect
HILCIOCC
HIICICIC
HIIC102C
H11C10 气C
H 1101040
HIICIOEC
HIIO1060
H110107C
HILCLO\＆C
HIIC10cC
H1101100

```
 SLEFCLIIAF [INTCL(A,F,F,YNT)
```

        IMFLICITEEAL*\&(A-F,O-Z)
        \(\mathrm{NA}=1 \mathrm{C}\)
    1C1 CCNTINTE
        \(\mathrm{H}=(\mathrm{E}-\mathrm{A}) / \mathrm{NN}\)
        SLM = (F(A) +F(E))/4。 + (F(A+H/2•)+F(B-H/2•))/3.
    * \(+110 *(F(A+B)+F(B-H)) / 12\) 。
    \(\mathrm{NNN}=\mathrm{MN}-2\)
    DC 1 C2 \(\mathrm{N}=2, \mathrm{NNN}\)
    SUM \(=\) SLb+F(A+N+E)
    1C2 CCNTINLE
YNT $=$ SL\&NH
IH(M.EC.10) GC TO 103
EFF $=$ IAES( (IMT-YATC)/YAT)
IF(EFK.IT.1.I-04) GC TC 105
10こCCNTINTE
$\mathrm{NA}=\mathrm{NN}+2$
YNTC = YAT
IF(NA.IE.400CC) GC TC 101
WKITE(E, 104)
104 FCEMAT(", /, 1CX, 'INTEGEAL ACT CONVEEGENT AT $400 C 0^{\circ}$,
* * SLEDIVISICNS•, $)$
ICS CCNIINLE
FETLEN
ENC
C
C
C

SLEFCUTIMFEIATCL（A，F，F，YAT）
IMFLICITEEAL＊\＆（A－F，O－Z）
$\mathrm{NA}=1 \mathrm{C}$
1C1 CCNTINTE
$H=(E-A) / N N$
$S I M=(E(A)+F(E)) / 4 \circ+(F(A+B / 2 \cdot)+F(B-H / 2 \cdot)) / 3$ ． $+11 . *(F(A+B)+F(B-H)) / 12$ 。
$\mathrm{NNN}=\mathrm{MN}-2$
DC $1 \mathrm{C} 2 \quad \mathrm{~N}=2, \mathrm{NNN}$
SUS＝SLb＋E（A＋A＋E）
1C2 CCNTINLE
YNT $=$ SL\＆NH
IF（N．EC．10）GC TO 103
EFK＝IAES（（YM－YATC）／YAT）
IF（EEF．IT．1．L－04）GC TC 105
10』 CCNTINE
$N A=N N+2$
YNTC＝YAT
IF（NA．IE．400CC）GC TC 101
MKITE（E，104）
104 FCEMAT（＇$, /, 1 C X,{ }^{\prime} 1$ INTEGEAL ACT CONVEEGENT AT $400 C 0^{\circ}$ ，
ICS CCNTINLE
FETLEN
ENC
C
C
FLNCTICBtXI（x）
IMFIICII KEAL＋\＆（A－H，C－Z）
CCMMCN／CNE／EKAPFA，THRAL，CCNL1，CCND2（3），SO，W，DPAR1，EPAR2，J
GF＝LAbSIN（LFAEI／X）－THRAC
$G N=I A 5 C C S(I F A H 2 / X)-G F$
$F \times 1=1 \cdot /((\operatorname{CCNL} 2(J) * G F+\operatorname{CCNE} 1 * G M) * X)$
FETIFN
END

FINCTICNEX2（x）
IMFIICI］FEAI＊ $8(A-h, C-2)$
CCMACN／CNE／LKAPFA，THRAL，CCNE1，CCND2（3），FO，W，LPAK1，LPAK2，J
GF＝I：AFSIN（LEAFI／X）－THRAE
$G M=L A F S I N(W / X)-G F$
$1 \times 2=1 . /((\operatorname{CCN} 2(J)+G F+\operatorname{CCND} 1 * G M) * X)$
FEITEN
END

HILC1LIC
HILC
HILOI
HIICITAO
HILOI
BILCI
HILOI
HIICIIEC
HIICI
EIICI
FILOL2IC
HILO1
HIICt
HIIC124C
h1LC120
HILOI．
HILCI
HILCLI ع C
H ILC 1
HILOI：
HILOI310
HILCL．${ }^{2}$
HILC
HILCICl
H1LC13Ef
HILOI
HILOL
HILCI3とC
HILOI
HILC：I
HILOI4
HIICIA～
－IICI
b1LC1
HILO 1450
HILCi
HILOI
HILClace
HILOI
HILC1
HILO）कic
HILCTS？
H 1101
HILO
H11C15
HILOI
HIIT：
HIIU1EとC
HILCI
HILOt．

Appendix C<br>Finite Element Formulation of the Heat Conduction Equation in General Orthogonal Curvilinear Coordinates

## C. 1 Introduction

In the analytic solution of heat conduction and other potential field problems, the governing differential equation is conventionally formulated in one of the three coordinate systems; cartesian, circular cylinder, or spherical. Since the governing differential equation results from the application of the first law of thermodynamics, in the case of heat conduction, to a control volume of differential dimensions, this is always possible. Where the bounding surfaces of the solution domain lend themselves to one of these coordinate system, many solutions are available [50]. Considerable difficulty is experienced, however, when such geometric compatibility is not present.

It is sometimes possible in these cases to set up a system of coordinates which are 'more natural' to the field of interest, in this work that of heat conduction [30], such that the coordinate surfaces conform to the lines of flow and potential surfaces, and moreover that they offer geometric conformity with the bounding surfaces. The nature of such a coordinate system is determined by the geometry of the bounding surfaces, by the field behavior at the boundaries, by specifying the nature and position of field singularities, or by a combination of the above influences. In many instances these more natural coordinates allow a simple and tractable solution where use of the conventional three systems leaves the solution unmanageable.

For the above reasons, it is important that the heat conduction analyst be proficient in the use of orthogonal curvilinear coordinate systems. Unfortunately, however, while multi-directional problems can be reduced through their use to problems dependent upon a single curvilinear coordinate, there remains a large number of problems for which this is not the case, but for which the heat flow is predominantly unidirectional in nature. For these problems, where a numerical solution may be required, the advantages gained analytically through the use of curvilinear coordinates may be available through their use in the numerical solution of the problem.

In this work the numerical solution procedure of interest is the finite element method, First introduced to the solution of field problems in 1965 [39, 40], the finite element method as applied to field problems has since been the subject of several investigations [41-44]. In many of these investigations the work has been directed at alternate derf.vations of the governing functional equation and at examining the treatment of transient terms appearing in the differential equation. In all cases, however, where application of the method is made, the cartesian coordinate system has been used.

It is the intent of this paper, therefore, to introduce to the finite element method as applied to conduction heat transfer the use of general orthogonal curvilinear coordinate systems. This will be accomplished by developing the governing functional equation with appropriate boundary condftions in a general orthogonal curvilinear frame. The resultant functional equation is well suited for solutions using the finite element method. Due to the nature of orthogonal curvilinear coordinate systems when appropriately chosen, their use in the finite element method
serves to automatically provide a variable mesh subdivision in accordance with the problem requirements. This is a result of the transformation behavior near field singularities or geometric boundaries. This behavior leads to a finer or coarser curvilinear coordinate spacing, in terms of physical distances, as is appropriate to the local features it must describe. As a consequence, a simple uniform subdivision scheme in the curvilinear frame, very simple to implement in an automatic mesh generation routine, may result in a highly complex or distorted physical subdivision which may be more appropriate for the problem analysis. Appropriate choice of coordinate system is, of course, prerequisite to obtaining this advantage. For the class of problems in which the bounding surfaces form part of an orthogonal curvilinear net, this advantage can provide substantial savings both in computational time for solution and in programming effort. Two examples are presented to demonstrate the application of these results. The coordinate systems considered are the spherical and the oblate spheroidal coordinate systems.

## C. 2 Preliminary Remarks

Before proceeding with the development of the governing functional equation, it will be instrumental to consider a general orthogonal curvilinear coordinate system as illustrated in Figure C-l. Here $u_{1}$, $u_{2}$, and $u_{3}$ are used to denote the three principal directions in the curvilinear frame with $x, y$, and $z$ denoting those of the corresponding cartesian system. In general, the cartesian coordinates can be related to the curvilinear ones through relations of the general form [30]

$$
\begin{align*}
& x=x\left(u_{1}, u_{2}, u_{3}\right) \\
& y=y\left(u_{1}, u_{2}, u_{3}\right)  \tag{C-1}\\
& z=z\left(u_{1}, u_{2}, u_{3}\right)
\end{align*}
$$



Figure C-1

In curvilinear space, a differential line element, $d \vec{d}$, can in turn be related back to the cartesian coordinates and is given by

$$
\begin{equation*}
\overrightarrow{d \vec{s}}=\hat{i} d x+\hat{j} d y+\hat{k} d z \tag{c-2}
\end{equation*}
$$

By using the transformation relations (1), and the orthogonality properties of the coordinate directions, the magnitude of the vector $\vec{d} \overrightarrow{\mathbf{s}}$ can be given simply by

$$
\begin{equation*}
(d s)^{2}=g_{1}\left(d u_{1}\right)^{2}+g_{2}\left(d u_{2}\right)^{2}+g_{3}\left(d u_{3}\right)^{2} \tag{C-3}
\end{equation*}
$$

where the metric or Lame coefficients of transformation are defined by [30]

$$
\begin{equation*}
g_{i}=\left(\frac{\partial x}{\partial u_{i}}\right)^{2}+\left(\frac{\partial y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial z}{\partial u_{i}}\right)^{2}, i=1,2,3 \tag{c-4}
\end{equation*}
$$

These metric coefficients relate the curvilinear frame to the cartesian one from which it was derived.

Clearly for a length in the $u_{i}$ direction where $d u_{j}=d u_{k}=0$ the relationship is simply

$$
\begin{equation*}
d s_{i}=\sqrt{g_{i}} d u_{i} \tag{c-5}
\end{equation*}
$$

In a similar fashion the area element can be formed by

$$
\begin{equation*}
\left.d A_{i}=\sqrt{g_{j} g_{k}} d u_{j} d u_{k}, \quad i=1,2,3\right\} \tag{c-6}
\end{equation*}
$$

where the convention has been used that the direction of the area element be taken normal to the surface in an outward sense. Finally, the volume element in curvilinear space is given by

$$
\begin{equation*}
\mathrm{dv}=\sqrt{\mathrm{g}} \mathrm{du} \mathrm{u}_{1} \mathrm{du}_{2} \mathrm{du}_{3} \tag{C-7}
\end{equation*}
$$

where by definition

$$
\begin{equation*}
\sqrt{g} \equiv \sqrt{g_{1} g_{2} g_{3}} \tag{C-8}
\end{equation*}
$$

By using the above relationships for length, area, and volume In an orthogonal curvilinear coordinate system, and by applying the first law of thermodynamics to the differential volume element of Fig. C-1, the governing differential equation can be written as [30]

$$
\begin{gather*}
\frac{\partial}{\partial u_{1}}\left[\frac{k_{1} \sqrt{g}}{g_{1}} \frac{\partial T}{\partial u_{1}}\right]+\frac{\partial}{\partial u_{2}}\left[\frac{k_{2} \sqrt{g}}{g_{2}} \frac{\partial T}{\partial u_{2}}\right]+\frac{\partial}{\partial u_{3}}\left[\frac{k_{3} \sqrt{g}}{g_{3}} \frac{\partial T}{\partial u_{3}}\right]+P \sqrt{g} \\
=\sqrt{g} \rho C p \frac{\partial T}{\partial t} \tag{C-9}
\end{gather*}
$$

where Fourier's law of heat conduction has been used to describe the local transfer of heat wichin the continuum.

The boundary conditions to be applied at the bounding surfaces of the solution domain (excepting non-1inearized radiative conditions) will in general be given by

$$
\begin{equation*}
T=T_{A}\left(u_{1}, u_{2}, u_{3}, t\right) \tag{C-10a}
\end{equation*}
$$

over $S_{1}$, and

$$
\begin{equation*}
\frac{k_{1}}{\sqrt{g}} \frac{\partial T}{\partial u_{1}} \ell_{1}+\frac{k_{2}}{\sqrt{g}} \frac{\partial T}{\partial u_{2}} \ell_{2}+\frac{k_{3}}{\sqrt{g}} \frac{\partial T}{\partial u_{3}} \ell_{3}+h T+C=0 \tag{C-10b}
\end{equation*}
$$

over $S_{2}$ where $\ell_{1}, \ell_{2}$, and $\ell_{3}$ are the direction cosines of the bounding surfaces with respect to the curvilinear coordinates $u_{1}, u_{2}$, and $u_{3}$ respectively. Alternatively, condition (C-1.0b) can be stated as

$$
\begin{equation*}
k_{n} \frac{\partial T}{\partial n}+h T+c=0 \text { over } S_{2} \tag{C-10c}
\end{equation*}
$$

where n is taken as the outward normal to the bounding surface over $\mathrm{S}_{2}$.
The initial condition is represented simply by

$$
\begin{equation*}
T\left(u_{1}, u_{2}, u_{3}, 0\right)=T_{0}\left(u_{1}, u_{2}, u_{3}\right) \tag{C-10d}
\end{equation*}
$$

## C. 3 Variational Statement

If the concept of a variational principle is to be applied to the solution of heat conduction problems, then the governing differential equation (C-9) must correspond to the Euler equation for the corresponding variational problem. In this treatment we shall for simplicity of presentation and application follow the approach taken by Visser [40], Zienkiewicz and Parekh [44], and Zienkiewicz [51] where a particular instant of time is considered. In this way, time
derivatives of temperature and of physical parameters can be treated as prescribed functions of the spatial coordinates $u_{1}, u_{2}$, and $u_{3}$. This is in contrast to the use of convolution integrals in time put forward by Gurtin [52] in establishing a true variational principle. The instantaneous considerations adopted here lead to a quasivariational statement and can readily be converted to a restricted variational statement as indicated by Finlayson and Scriven [53]. The true variational approach, however, has been applied by Wilson and Nickell [42] in a cartesian coordinate frame and could also be extended to a general orthogonal curvilinear system by following arguments similar to those presented in this work.

Proceeding with the approach adopted here, and invoking the above requirement, we set

$$
\begin{gather*}
\int_{u_{1}} \int_{u_{2}} \int_{u_{3}}\left\{\frac{\partial}{\partial u_{1}}\left[\frac{k_{1} \sqrt{g}}{g_{1}} \frac{\partial T}{\partial u_{1}}\right]+\frac{\partial}{\partial u_{2}}\left[\frac{k_{2} \sqrt{g}}{g_{2}} \frac{\partial T}{\partial u_{2}}\right]+\frac{\partial}{\partial u_{3}}\left[\frac{k_{3} \sqrt{g}}{g_{3}} \frac{\partial T}{\partial u_{3}}\right]\right. \\
\left.+P \sqrt{g}-\sqrt{g} \rho C_{p} \frac{\partial T}{\partial t}\right\} \delta T d u_{1} d u_{2} d u_{3}=0 \tag{C-11}
\end{gather*}
$$

where we have introduced the first variation of temperature, $\delta T$. Considering now the first integral of equation ( $C-11$ ) and denoting it by $I_{1}$, we have

$$
\begin{equation*}
I_{1}=\int_{u_{2}} \int_{u_{3}}\left[\int_{u_{1}} \frac{\partial}{\partial u_{1}}\left[\frac{k_{1} \sqrt{g}}{g_{1}} \frac{\partial T}{\partial u_{1}}\right] \delta T d u_{1}\right] d u_{2} d u_{3} \tag{C-12}
\end{equation*}
$$

Integrating (C-12) by parts and using the commutative property of the differential and variational operators yields

$$
\begin{align*}
I_{1}= & \left.\int_{u_{2}} \int_{u_{3}}\left[\frac{k_{1} \sqrt{g}}{g_{1}} \frac{\partial T}{\partial u_{1}} \delta T\right]\right|_{u_{1}=u_{1}\left(u_{2}, u_{3}\right)} d u_{2} d u_{3} \\
& -\int_{u_{1}} \int_{u_{2}} \int_{u_{3}}\left[\frac{k_{1} \sqrt{g}}{g_{1}} \frac{\partial T}{\partial u_{1}}\right] \frac{\partial}{\partial u_{1}}(\delta T) d u_{1} d u_{2} d u_{3} \tag{c-13}
\end{align*}
$$

where $u_{1}\left(u_{2}, u_{3}\right)$ represents the locus of values that the $u_{1}$ coordinate takes on, as a function of the remaining two coordinates, as the bounding surface of the solution domain is traversed. Again using the commutability of the differential and variational operators, namely here that

$$
\begin{equation*}
\frac{\partial T}{\partial u_{1}} \frac{\partial}{\partial u_{1}}(\delta T)=\frac{\partial T}{\partial u_{1}} \delta\left(\frac{\partial T}{\partial u_{1}}\right)=\frac{1}{2} \delta\left[\left(\frac{\partial T}{\partial u_{1}}\right)^{2}\right] \tag{c-14}
\end{equation*}
$$

and simultaneously rearranging the integrand of the first integral of (C-13) we can write

$$
\begin{align*}
& I_{1 .}=\int_{u_{2}} \int_{u_{3}}\left[\begin{array}{ll}
{\left[\frac{k_{1}}{\sqrt{g}} \frac{\partial T}{\partial u_{1}} \delta T\right]} & \left.\sqrt{g_{2} g_{3}}\right]\left.\right|_{u_{1}}=u_{1}\left(u_{2}, u_{3}\right) \\
d u_{2} d u_{3}
\end{array}\right. \\
&-\frac{1}{2} \iint_{u_{1}} \int_{u_{2}}\left[\frac{k_{1} \sqrt{g}}{g_{1}}\right]\left(\frac{\partial T}{\partial u_{1}}\right)^{2} d u_{1} d u_{2} d u_{3} \tag{C-15}
\end{align*}
$$

Finally, we recognize that $\sqrt{g_{2} g_{3}} d u_{2} \mathrm{du}_{3}$ when evaluated over $u_{1}=u_{1}\left(u_{2}, u_{3}\right)$ on the boundary is simply the projection of the surface element $d S$ on the $u_{2}-u_{3}$ plane and can be represented by

$$
\begin{align*}
\left.\sqrt{g_{2} g_{3}}\right|_{u_{1}} d u_{2} d u_{3}=\ell_{1} d S  \tag{c-16}\\
u_{1}\left(u_{2}, u_{3}\right)
\end{align*}
$$

This leads to the result that

$$
\begin{align*}
I_{1}= & \left.\iint_{S_{1}}\left[\frac{k_{1}}{k_{2}} \frac{\partial T}{\sqrt{g}} \frac{\partial u_{1}}{} \delta T\right]\right|_{\text {boundary }} ^{\ell_{1} d S} \\
& -\frac{1}{2} \int_{u_{1}} \int_{u_{2}} \int_{u_{3}} f_{1}\left(\frac{\partial T}{\partial u_{1}}\right)^{2} d u_{1} d u_{2} d u_{3} \tag{C-17}
\end{align*}
$$

where the definition has been made that

$$
\begin{equation*}
f_{i}=\frac{k_{i} \sqrt{g}}{g_{i}} ; \quad 1=1,2,3 \tag{C-18}
\end{equation*}
$$

Further, by virtue of the specified temperature condition over the surface $S_{1}$ (by definition, the surface variation in temperature over $S_{1}$ will be zero), equation ( $C-17$ ) reduces to the final result for this term

$$
\begin{align*}
I_{1}=\int & \left.\int_{S_{2}}\left[\frac{k_{1}}{\sqrt{g_{1}}} \frac{\partial T}{\partial u_{1}} \delta T\right]\right|_{\text {boundary }} \ell_{1} d S_{2} \\
& \quad-\frac{1}{2} \delta \int_{u_{1}}^{i} \int_{u_{2}} \int_{u_{3}} f_{1}\left(\frac{\partial T}{\partial u_{1}}\right)^{2} d u_{1} d u_{2} d u_{3} \tag{C-19}
\end{align*}
$$

Expressions similar to equation ( $(-19)$ can readily be derived for the other two coordinate directions by following the procedure illustrated above. Only a systematic rotation of the subscripts in equation (C-19) is required for its adaptation to the other coordinate directions.

For the heat generation term of equation ( $\mathrm{C}-11$ ), considering only a spatial dependence of the generation rate, a direct application
of the calculus of variations allows the heat generation term to be written as

$$
\begin{equation*}
\int_{u_{1}} \int_{u_{2}} \int_{u_{3}} P \sqrt{g} \delta T d u_{1} d u_{2} d u_{3}=\delta \int_{u_{1}} \int_{u_{2}} \int_{u_{3}}[P \sqrt{g} T] d u_{1} d u_{2} d u_{3} \tag{C-20}
\end{equation*}
$$

and similarly for the transient term, recalling that time derivatives are treated as being spatlally prescribed, we have
$\int_{u_{1}} \int_{u_{2}} \int_{u_{3}} \sqrt{g} \delta C_{p} \frac{\partial T}{\partial t} \delta T d u_{1} d u_{2} d u_{3}=\delta \int_{u_{1}} \int_{u_{2}} \int_{u_{2}}\left[\sqrt{g} \rho C_{p}\left(\frac{\partial T}{\partial t}\right) T\right] d u_{1} d u_{2} d u_{3}$
Collecting the component equations (C-19), (C-20) and (C-21) to reforn equation (c-11) we have

$$
\begin{align*}
& \delta\left\{\int_{u_{1}} \int_{u_{2}}\left\{\frac{\mathrm{f}_{1}}{2} \frac{\partial T}{\partial u_{1}}\right)^{2}+\frac{\mathrm{f}_{2}}{2}\left(\frac{\partial \mathrm{~T}}{\partial u_{2}}\right)_{2}^{2}+\frac{\mathrm{f}_{3}}{2}\left(\frac{\partial T}{\partial u_{3}}\right)^{2}-\mathrm{P} \sqrt{g} \mathrm{~T}\right. \\
& \left.\left.\quad+\sqrt{g} \rho C_{p}\left(\frac{\partial T}{\partial t}\right) \mathrm{T}\right\} d u_{1} d u_{2} d u_{3}\right\} \\
& -\iint_{S_{2}}\left\{\frac{k_{1}}{\sqrt{g_{1}}} \frac{\partial T}{\partial u_{1}} \ell_{1}+\frac{k_{2}}{\sqrt{g_{2}}} \frac{\partial T}{\partial u_{2}} \ell_{2}+\frac{k_{3}}{\sqrt{g}} \frac{\partial T}{\partial u_{3}} \ell_{3}\right\} \delta T d S_{2}=0 . \tag{C-22}
\end{align*}
$$

which can more conveniently be written, using boundary condition statements ( $c-10 b$ ) and ( $c-10 c$ ), as

$$
\begin{gather*}
\delta\left\{\int _ { u _ { 1 } } \int _ { u _ { 2 } } \int _ { u _ { 3 } } \left\{\frac{f_{1}}{2}\left(\frac{\partial T}{\partial u_{1}}\right)^{2}+\frac{f_{2}}{2}\left(\frac{\partial T}{\partial u_{2}}\right)^{2}+\frac{f_{3}}{2}\left(\frac{\partial T}{\partial u_{3}}\right)^{2}-p \sqrt{g} T\right.\right. \\
\left.\left.\quad+\sqrt{g} \rho C_{p}\left(\frac{\partial T}{\partial t}\right) T\right\} d u_{1} d u_{2} d u_{3}\right\} \\
\quad+\iint_{S_{2}}[h T+C] \delta T d S_{2}=0 \tag{C-23}
\end{gather*}
$$

Finally, a further application of the variational calculus to the surface integral yields the variational statement

$$
\begin{gather*}
\delta\left\{\int _ { u _ { 1 } } \int _ { u _ { 2 } } \int _ { u _ { 3 } } \left\{\frac{f_{1}}{2}\left(\frac{\partial T}{\partial u_{1}}\right)^{2}+\frac{f_{2}}{2}\left(\frac{\partial T}{\partial u_{2}}\right)^{2}+\frac{f_{3}}{2}\left(\frac{\partial T}{\partial u_{3}}\right)^{2}-P \sqrt{g T}\right.\right. \\
\left.+\sqrt{g} \rho C_{p}\left(\frac{\partial T}{\partial t}\right) T\right\} d u_{1} d u_{2} d u_{3} \\
\left.+\iint_{S_{2}}\left[\frac{h T}{2}+C T\right] d S_{2}\right\}=0 \tag{C-24}
\end{gather*}
$$

Equation ( $C-24$ ) above is the quasi-variational principle referred to earlier in this section, and its satisfaction, within the limits of the treatment of time dependent terms adopted here, is equivalent to satisfying the differential equation (C-9) from which it was derived.

## C. 4 Spatial Discretization

Before proceeding directly to the spatial discretization of the solution domain for application of the finite element method, it will be useful to define the following vectors and matrices. The first is a vector very similar to the gradient field vector [33] of a cartesian frame and will be defined by

$$
\begin{equation*}
\{G\}^{T}=\left\{\frac{\partial T}{\partial u_{1}}, \frac{\partial T}{\partial u_{2}}, \frac{\partial T}{\partial u_{3}}\right\} \tag{C-25}
\end{equation*}
$$

This vector will be henceforth referred to as the curvilinear field vector, although, since the curvilinear coordinates do not directly reflect physical distances, the components of (C-25) are not physical gradients unless accompanied by their corresponding metric coefficients. The second,
a matrix analogous to the property matrix of a cartesian system, is defined by

$$
[R]=\left[\begin{array}{ccc}
f_{1}\left(u_{1}, u_{2}, u_{3}\right) & o & o  \tag{C-26}\\
0 & f_{2}\left(u_{1}, u_{2}, u_{3}\right) & \circ \\
0 & \circ & f_{3}\left(u_{1}, u_{2}, u_{3}\right)
\end{array}\right]
$$

This matrix shall be referred to as the effective curvilinear property matrix. For completeness, the remaining vectors requiring definition are

$$
\begin{align*}
& \{T\}=\left\{T\left(u_{1}, u_{2}, u_{3}\right)\right\} \\
& \{P\}=\left\{P\left(u_{1}, u_{2}, u_{3}\right)\right\}  \tag{C-27}\\
& \{C\}=\left\{C\left(u_{1}, u_{2}, u_{3}\right)\right\}
\end{align*}
$$

and

$$
\{\dot{T}\}=\left\{\frac{\partial T}{\partial t}\right\}
$$

It must be remembered that the vectors defined above at this stage remain continuous functions of the spatial coordinates in the curvilinear frame. Using their definitions, equations (C-25), (C-26) and ( $C-27$ ), the variational statement ( $C-24$ ) can be written in vector notation as
$\delta\left\{\int_{\mathbf{u}_{1}} \int_{u_{2}} \int_{u_{3}}\left\{\frac{1}{2}\{G\}^{T}[R]\{G\}-\sqrt{g}\{T\}^{T}\{P\}+\sqrt{g} \rho C_{p}\{T\}^{T}\{\dot{T}\}\right\} d u_{1} d u_{2} \mathrm{du}_{3}\right.$

$$
\begin{equation*}
\left.+\iint_{S_{2}}\left\{\frac{\mathrm{~h}}{2}\{\mathrm{~T}\}^{\mathrm{T}}\{\mathrm{~T}\}+\{\mathrm{T}\}^{\mathrm{T}}\{\mathrm{C}\}\right\} \mathrm{dS}_{2}\right\}=0 \tag{C-28}
\end{equation*}
$$

Having expressed the variational statement in vector notation, we now consider the fundamental concept of the finite element method, that the solution domain can be spatially sub-divided into a collection
of finite elements, for each of which an approximate solution is assumed. This approximate solution will contain a specified number of arbitrary parameters, representative of the nodal degrees of freedom, whose determination is the object of the method. The determination of these nodal values for the independent variable is performed by the approximate satisfaction of the variational statement (C-28).

Approximating the unknown temperature distribution within a single element by the approximation

$$
\{\mathrm{T}\}=\left[\mathrm{N}_{1}, \mathrm{~N}_{2}, \ldots\right]\left\{\left.\begin{array}{c}
\mathrm{T}_{1}  \tag{C-29}\\
\mathrm{~T}_{2} \\
\bullet \\
\bullet \\
\cdot
\end{array} \right\rvert\,\right.
$$

the curvilinear field vector can immediately be written as

In the above, the $N_{i}$ 's are the shape functions [33] for the element under consideration and their form and number will depend on the type of element selected for the problem at hand.

By using the equations $(C-29)$ and $(C-30)$ in $(C-28)$, the variational statement for the approximate solution becomes

$$
\begin{align*}
& \delta\left\{\sum _ { i = 1 } ^ { n } \left\{\sum _ { V _ { e } } ^ { n } \left[\frac{1}{2}\left\{T_{i}\right\}^{T}[B]{ }^{T}[R][B]\left\{T_{i}\right\}-\sqrt{g}\left\{T_{i}\right\}^{T}\left\{N_{i}\right\}\{P\}\right.\right.\right. \\
& \left.+\rho c_{p} \sqrt{g}\left\{T_{i}\right\}^{T}\left\{N_{i}\right\}\left\{N_{i}\right\}^{T}\left\{\dot{T}_{i}\right\}\right] d u_{1} d u_{2} d u_{3} \\
& +\int_{2}\left[\frac{h}{2}\left\{T_{i}\right\}^{T}\left\{N_{i}\right\}\left\{N_{i}\right\}^{T}\left\{T_{i}\right\}+\left\{T_{i}\right\}^{T}\left\{N_{i}\right\}\{C\} ; S_{2_{2}}\right. \\
& =0 \tag{c-31}
\end{align*}
$$

where the global integration over the entire field has been replaced by a summation of integrals, each integral being local to the element characterized by the summation Index, e.

The approximate variational statement (C-31) can be written more compactly by

$$
\begin{equation*}
\delta F=0 \tag{C-32}
\end{equation*}
$$

where $F$, the approximate functional, denotes the expression within the outermost parentheses of (C-31). The approximate functional F , however, is a function only of the unknown nodal temperatures, $T_{i}, 1=1,2,3, \ldots$. Finding the stationary value of this functional by taking its first variation with respect to $T$ then becomes equivalent to simply differentiating $F$ with respect to each nodal temperature in turn, and setting the result equal to zero.

Performing the indicated differentiation, and recalling that the instantaneous thermal behavior is considered in this treatment, leads to the matrix-differential equations

$$
\begin{equation*}
[\mathrm{K}] \mathrm{T}_{i}+[\mathrm{P}] \dot{\mathrm{T}}_{i}=\mathrm{f} \tag{c-33}
\end{equation*}
$$

where

$$
\begin{align*}
& {[P]=\sum_{e=1}^{n} V_{e} \quad \rho c_{p} \sqrt{g}\left\{N_{i}\right\}^{T}\left\{N_{1}\right\} d u_{1} d u_{2} d u_{3}} \tag{C-34b}
\end{align*}
$$

$$
\begin{aligned}
& \text { (C-34c }
\end{aligned}
$$

Solving the matrix-differential equations, (C-33), will provide the approximate solution for the temperature field. This is the ultimate objective of the analysis in applying the method. To effect the solution to ( $\mathrm{C}-33$ ), however, additional information is required to accommodate the time dependence of the equations. Following Zienkiewicz and Parekh [ $4 \therefore$ ], this time dependence is approximated here by finite differences over the time interval from $t$ to $t+\Delta t$.

Evaluating ( $C-33$ ) at time $t+\Delta t / 2$ and using the first central difference quotient to approximate the first time derivative, we have

$$
\begin{equation*}
[K]\left\{T_{i}\right\}_{t+\frac{\Delta t}{2}}+[P]\left[\left\{T_{i}\right\}_{t+\Delta t}-\left\{T_{i}\right\}_{t}\right] / \Delta t=\{f\} \tag{C-35}
\end{equation*}
$$

where $[K],[P]$, and $\{f\}$, if time dependent are assigned their mid-interval values. Noting that for this approximation scheme

$$
\begin{equation*}
\left\{T_{i}\right\}_{t+\frac{\Delta t}{2}}=\left[\left\{T_{i}\right\}_{t+\Delta t}+\left\{T_{i}\right\}_{t}\right] / 2 \tag{c-36}
\end{equation*}
$$

we have

$$
\begin{equation*}
([K]+2[P] / \Delta t)\left\{T_{i}\right\}_{t+\frac{\Delta t}{2}}=\frac{2[P]}{\Delta t}\left\{T_{i}\right\}_{t}+\{f\} \tag{C-37}
\end{equation*}
$$

with $\left\{T_{i}\right\}_{t+\Delta t}=2\left\{T_{i}\right\}_{t}+\frac{\Delta t}{2}-\left\{T_{i}\right\}_{t}$

These last two equations, $(C-37)$ and (C-38), provide a convenient scheme to complete the integration. Other alternatives, however, are also available for the treatment of the time dependence [51]. The algebraic equations (C-37) with ( $C-38$ ) and the coefficient matrix definitions (C-34) define the approximate solution using the finite element
method in general orthogonal curvilinear coordinates. It can easily be demonstrated that these equations reduce to those for the cartesian case. In fact for a cartesian coordinate system where $g_{1}=g_{2}=g_{3}=g=1$ the analogy between the gradient field vector and the curvilinear field vector, and between the property matrix and the effective curvilinear property matrix, is complete, and becomes an equivalence. Thus the limiting behavior of these expressions is in accordance with our experience.

## C. 5 Application of the Results

The utility of the expressions derived in this work will be demonstrated here by means of two examples. However, since the treatment of heat generation and time dependent terms appearing in the governing differential equation is straightforward and follows accepted procedures, the examples presented will be restricted to the case of steady-state heat conduction. In both cases, linear isoparametric quadrilateral elements are used with the shape functions applied in the curvilinesr coordirate frame.

The first example considers heat conduction through a spherical shell of inner radius $r_{1}$ and outer radius $r_{0}$. The curvilinear (spherical) plane defined by $\theta=\alpha$ has a flux distribution prescribed while that defined by $\theta=\pi / 2$ is maintained at a uniform temperature, $T=0$. The remaining two boundaries have a zero normal gradient prescribed. The problem geometry is that illustrated in Fig. C-2 and axisymmetric heat transfer is considered. The case of $\alpha=5.0$ degrees is examined.

Denoting the curvilinear (spherical) coordinates by

$$
\begin{equation*}
u_{1}=r, u_{2}=\theta, u_{3}=\psi \tag{C-39}
\end{equation*}
$$

The metric coefficients are derived from equation (C-4):

$$
\begin{align*}
& g_{1}=1 \\
& g_{2}=r^{2}  \tag{c-40}\\
& g_{3}=r^{2} \sin ^{2} \theta \\
& \sqrt{g}=r^{2} \sin \theta
\end{align*}
$$

and


Figure C-2

From the above, the elements of the effective curvilinear property matrix can be found. Considering the axi-symmetric nature of the problem, the effective curvilinear property matrix becomes simply

$$
\left.[R]=\begin{array}{l}
\Gamma^{k r^{2}} \sin \theta
\end{array} \quad 0 \quad \begin{array}{ll} 
 \tag{c-41}\\
-\quad 0 & k \sin \theta
\end{array}\right]
$$

Excepting boundary condition specification, then, this is the only modification required to allow a standard finite element program to treat this problem. Boundary condition specification for the flux prescribed cases to be considered are treated in the usual fashion by applying equivalent nodal heat flow rates at the appropriate nodes.

When the flux distribution applied over the conical section, $\theta=\alpha$, is equivalent to prescribing an isothermal boundary there, an exact solution is available [30]. For this case the flux distribution varies inversely with the radial coordinate

$$
\begin{equation*}
q=\frac{c}{r} \tag{C-42}
\end{equation*}
$$

and a non-dimensional thermal resistance can be determined to be

$$
\begin{equation*}
\operatorname{Rk} r_{0}=\frac{1}{2 \pi(1<\varepsilon)} \ln \left[\frac{1}{\tan (\alpha / 2)}\right] \tag{C-43}
\end{equation*}
$$

where $\varepsilon \equiv r_{i} / r_{0}$. Application of the flux distribution (C-42) to the problem at hand ylelds results which compare favorably with the exact solution. The comparison is presented in Table C-1 for three values of the parameter $\varepsilon$.

Since the method of subdivision used for the case of an isothermal cone is adequate to describe the thermal behavior of this problem, a further extension was made to consideration of a unfform flux boundary condition for $\theta=\alpha$. The convergence characteristics for this problem are shown in Fig. C-3 where the non-dimensional thermal resistance obtained from the finite element solution is presented as a function of the number of nodal points, NNP, used in the spatial discretization.


Figure C-3

The figure indicates a rapid and stable convergence to the limiting value.

Table 1
Comparison of FEM and Exact Solutions for Spherical Problem

$\alpha$	$\varepsilon$	No. of Nodes	$\begin{gathered} \mathrm{Rkr}_{\mathrm{o}} \\ \text { (ref. } 14 \text { ) } \end{gathered}$	$\begin{gathered} \text { Rkr }_{\mathrm{O}} \\ \text { (present) } \end{gathered}$	\% Difference
5 degrees	. 1	800	0.5537	0.5511	-0.47
5 degrees	. 5	400	0.9967	0.9942	-0.25
5 degrees	. 9	200	4.9836	4.9717	-0.24

To indicate the effect of the two different boundary conditions on the thermal resistance, Fig. C-4 was constructed. Here the ratio of resistances, that due to a uniform flux and that due to an isothermal boundary at $\theta=\alpha$, is plocted versus the radil ratio, $\varepsilon$. It can be seen from the figure that for $\varepsilon$ approaching unity, the difference between the results for the two boundary conditions vanishes, as it should. However, for small $\varepsilon$ the resistance resulting from a uniform flux over $9=\alpha$ exceeds that due to an isothermal specification by as much as 15 per cent. Higher deviations are expected for $\varepsilon<0.1$. This example provides another illustration of the importance that boundary condition specification plays in determining the thermal resistance of any system. As was intended, however, this example also serves to illustrate the ease of application of the results presented in this paper.


Figure C-4

The second example presented here considers the flow of heat from a thin circular disk located on a semi-infinite solid. Over the disk surface a prescribed flux distribution will be assumed while over the remaining free surface of the half-space the boundary is taken to be impervious to heat transfer. Again axi-symmetric heat transfer will be considered. The cross-section of the problem geometry is illustrated in Fig. C-5. The boundary at infinity has a prescribed temperature ( $T=0$ ) boundary specification.

In the case of an isothermal condition over the disk, the resultant temperature field becomes one dimensional in the oblate spheroidal coordinate, $\eta$, and a solution is readily obtained [30]. For other boundary conditions, however, this is not the case but departures from this one-


Figure C-5
dimensionality are expected to be small when compared with those expertinced when using a cartesian, circular cylinder, or spherical coordinate system. This then suggests that the oblate spheroidal coordinate system is a 'natural' one to use for analysis purposes when considering the geometry of Fig. C-5.

The oblate spheroidal coordinate system is defined by the transformation equations

$$
\begin{align*}
& x=a \cosh \eta \sin \theta \cos \psi \\
& y=a \cosh \eta \sin \theta \sin \psi  \tag{c-44}\\
& z=a \sinh \eta \cos \theta
\end{align*}
$$

where a is the generating disk radius. Using the transformation equations (C-44) the metric coefficients can easily be determined to be
and $\quad \sqrt{g}=a^{3}\left(\cosh ^{2} \eta-\sin ^{2} \theta\right) \cosh \eta \sin \theta$
where the coordinates $\eta, \theta$, and $\psi$ are those indicated in figure C-5. Surfaces corresponding to lines of constant $\eta$ and lines of constant $\theta$ describe ellipsoids and hyperbololds of revolution respectively when represented on a cartesian set of axes. The coordinate $\psi$ represents the angular measure about the oz axis. It was found numerically and can be demonstrated analytically that $\eta_{\infty} \approx 10$ will suffice for the location of the boundary at infinity for heat transfer purposes.

Having found the metric coefficient of transformation, the effective curvilinear property matrix for this problem is given by

$$
[R]=\left[\begin{array}{cc}
{[a k \cosh \eta \sin \theta} & 0  \tag{C-46}\\
0 & \text { ak } \cosh \eta \sin \theta
\end{array}\right]
$$

With the effective curvilinear property matrix defined and the flux prescribed boundary then treated in the usual fashion, the problem solution is now possible. In this example, a uniform flux distribution over the disk surface will be considered.

The dimensionless constriction resistance defined by $R^{*} \equiv R k a$, where $R$ is the total thermal resistance based upon the mean disk surface temperature, is shown in Fig. C-6 plotted versus the number of nodal points used to effect the solution. Again the convergence characteristics
indicate a rapld and stable approach toward its limiting value. The value of 0.269 obtained using 800 nodes compares favorably with the exact solution for this problem of 0.27019 [50].


Figure C-6

Examining the solution behavior still further, a plot of the solution error in per cent is presented in Fig. C-7 as a function of the number of nodal points used in the mesh subdivisions. Indeed, from the figure it is seen that an error of less than 2 per cent is incurred when only 200 nodes are used to represent the continuum. Both the ease of application and the accuracy of the results indicate the utility of this work in analysing problems having a convenient 'natural' coordinate system.

## C. 6 Discussion and Conclusions

A quasi-variational 'principle' has been derived in this paper which describes the conduction of heat within a continum. The derivation presented herein extends those currently available by its explicit consideration of general orthogonal curvilinear coordinate systems in the formulation of the governing variational statement for the heat conduction problem. This is of considerable utility since many problems have associated with them a natural or quasi-natural coordinate system.

Using this variational statement, a function equation, application of the finite element method is made by subdividing the solution domain. into a collection of finite curvilinear elements, as is fundamental to the method. Over each of these elements an approximate solution is assumed, following the usual procedures, and a system of simultaneous equations results. After application of boundary conditions, solution of this system of equations leads to the required approximate solution for the temperature field by means of determining the temperature at each of the nodes used in the discretized curvilinear solution domain.

It was found convenient when using matrix notation to represent the governing functional equations, to define a 'curvilinear field vector' and an 'effective curvilinear property matrix' as these arise naturally


Figure C-7

In the derivation. With these definitions, the matrix form of the variational statement bears a strong resemblance to the cartesian form in popular usage. This fact makes application of the results extremely easy and straightforward requiring minimal modification to existing finite element programs. Indeed, the results of this work reduce identically to those for the cartesian case when the appropriate metric coefficients defining the cartesian coordinate system are used.

Two examples have been presented which illustrate the ease of application of the results to other than the cartesian coordinate system. The spherical coordinate system and the oblate spheroidal coordinate system are the two systems used in the examples. In both cases the solution converged rapidly and monotonically to its limiting value. In particular by the second example, where only 800 nodes were used to represent a semiinfinite body and approximately 0.5 per cent accuracy was obtained, the utility of formulating the variational problem in the appropriate coordinate frame becomes clear.

These results will find application to contact problems, problems involving semi-infinite or infinite domains, and generally to problems where a coordinate system, more natural than the cartesian one, exists to describe the problem geometry and field behavior. The nature of these coordinate systems is to provide an automatic mesh generation, for uniform subdivision in the curvilinear coordinates, which locates smaller and larger elements (in terms of real physical size) throughout the domain as appropriate to the problem. These systems can also be used locally within larger systems and matched along common boundaries or foined using a relatively crude transition mesh. The net result in problems where there exists a more appropriate coordinate system will be a savings in both storage requirements and computational time to achieve a prescribed accuracy of solution.

## Appendix D

## Finite Element Groove Heat Transfer Prediction Program

## D. 1 Introduction

In this section the prediction program used for determination of the heat transfer characteristics of heat pipe walls having trapezoidal shaped grooves is presented. The program utilizes the finite element method for providing an approximate, numerical solution of Laplace's equation within the two component groove section discussed in Chapter 3 of this report. Due to its bookkeeping and manipulation complexity, however, the details of implementation of the method will not be presented here since the necessary discussion would be unduly lengthy and is not warranted in consideration of the objectives of this research. Sufficient proof has been presented earlier, in Chapter 5 of this report, that the program components are functioning correctly.

It was also brought forward in the discussions of Chapter 5 that large amounts of computer core were required to effect an accurate solution. As a result, the current program cannot be effectively run on the IBM $360 / 75$ computing installation, which, until recently was the single installation available at the University of Waterloo. Instead, the program presented in this appendix is designed for use with the IBM 370/158 'virtual machine' installation now available at this University. As a result, a great deal of caution must be exercized if utilization of this program is attempted with other computational facilities, and even then the accuracy of the resulting
output, unless sufficient core is available, may be questionable. The large core required by the solution program to provide a solution of acceptable accuracy is a reflection of the complex nature of the problem being investigated in this research.

## D. 2 Input Information

The program as presented in the final pages of this chapter utilizes an automatic mesh generation routine developed specifically for the trapezoidal groove problem. As a result only the parametric infornation necessary to characterize the groove geometry, materials combination, and the mesh refinement are required in the form of input data.

The solution program is directed at the eolution of the normalized equations and boundary conditions (3-17) - (3-27). As a result the typical cell width, w, is assigned a value of unity automatically within the program. Further, the boundary condition at the liquid/vapor interface is a Dirichlet condition with a normalized magnitude here of zero. Since the problem is linear in temperature throughout the entire solution field, the further internal assignment has been made that the metal conductivity be unity. This results in a normalization of the temperature field with respect to the metal conductivity. Finally, the thickness of the pipe wall between the groove lower surface and the pipe exterior surface has been given a value of 0.1 . The one-dimensional resistance of this thickness is later discounted in order to establish the 'equivalent' groove
resistance and hence determine the groove equivalent heat transfer coefficient.

The remaining information required as input data to completely characterize the problem consists of, NE1, the number of lateral subdivisions within the metal fin section, IPRINT, a printing code parameter, THETA, the groove half-angle, XALPHA, the normalized apparent contact angle, $\operatorname{COND}(2)$, the fluid conductivity or in the normalized case the conductivity ratio $\mathrm{kf} / \mathrm{km}, \mathrm{El}$, the fin tip land area ratio, and $E 2$, the groove root land area ratio. This information is fed into the program via two data cards.

The first data card consists of the parameters NE1 and IPRINT punched according to a $2 I 5$ format. A value for NE1 of 19 was found acceptable in the convergence studies of Chapter 5 for the third mesh generation routine. A non-zero value for the IPRINT code parameter will cause the mesh generation details to be printed. This includes the $x$ and $y$ coordinates for each nodal point as well as a listing by element number of the element associated nodes and the material type for the element. Material type one indicates metal element while material type two indicates an element within the liquid region of the solution domain. If the value of IPRINT is not supplied on this first data card, a value of zero will be assigned by most computing Installations.

The second data card contains the remaining parameters specifications in the following order; THETA, XALPHA, COND (2), E1, E2. This information is supplied according to a SF10.5 format.

THETA is the groove half-angle and is supplied in units of degrees. The second parameter, XALPHA $\equiv \alpha /\left(\pi / 2-\theta_{0}\right)$, is the normalized apparent and takes on values ranging from 0.0 to 1.0 . The third parameter, $\operatorname{COND}(2)$, due to the internal specification that $\operatorname{COND}(1)=1.0$, is the fluid/metal thermal conductivity ratio, $k_{f} / k_{m}$. The final two parameters, E1 and E2 are the fin tip and groove root land area ratios respectively and can take on values in the range $0 \leq\left\{\frac{E 1}{E 2}\right\} \leq 1.0$.

## D. 3 Program Risting

With the above input information the problem specification is complete. The prediction program listing is presented in the remaining pages of this chapter.

CCMMCN／CNE／NLCAS，X（200C），Y（2COO），IE（2000，5），NFI（75），NEJ（75）， ＊SLトFIX（ 5,2$), 1 \leq E 1, F(2000), 2(2009), A(2000, E 0), N S F L X C$ 。

CCNSCN／TVC／CCA［（2），U，C，JAYG，FES，DNU，HLSE，FLCW，F CCMNCN／JHKEE／AC（4，4）

## MAIN COMTROL FRCGEAK

## HINIMII

CAIL INELT
CAIL SCIWK
CAIICLIFLI
STC $F$
EAL

## INFCRMATICN INPUT

E！ECT？！：INFLT
INFIT OF GECNEIFIC AAI NCIAL DATA，MATEFIAI EFCEEFIIFS ANI ECLMLASYCCALIMICAS

CCNMCN／（NI／NECNE，ג（2（10），Y（2000），IE（2000，E），NFI（75），AFJ（75），
＝SLHILX（7E，2），1SEF1， $5(2 C O U), 2(2000), A(2000,50), N S F L X C$,
$\Rightarrow T \leq E I C(: \in), N P B($ EE），NEL，NTSPEC
CCNMCN，JVC／CCAI（2），\＃，C，TAVG，EES，DNU，HLSD，FLOU，F
CCMNCN／FILLL／IFEJNT
F1＝こ．1415！2もE4
FLAI（E，ICC1）AE1，IFKIAT
ICCI HCMMI（21E）

1（C）FCKAAT（NFI＝•IE）
HEAL（E，ICC3）I，XALFHA，CCND（2），E1，E2
J（مきFCWMT1EE10．E）
WFIJE（E，1C03）L，XALFHA，CCNL（2），E1，E2
$n=1 . C$
CCNIT）$=1.0$
HIEI＝C．I
T1．17A $=A T A N(M-E 1-E 2) / E)$
AIFIA＝XALFEA＊（T1／2。－TBETA）
$H=1 L \leq I+L$
NNEI＝NEI＋ 1
UCbK $=20^{+} \mathrm{D} /(E 1+\mathrm{H}-\mathrm{F} 2)$
NL＝IFIM（MOKA＊FIOAT（NEI））
ANL $=\mathrm{AL}+\mathrm{I}$
WCKy $=12 /(M-12)$

GhCOOOSn
creconec GHCOOO 70 GRCCOOEC CRCCCOEC GRODU1CC GkCCr11C GRCCC12C GFCON130 GRCCO14C GFCOU1EO GRCON1 $C$ G\＆COn 170 ckccelfc GFicon 190 CRCCU2CC C＋COO210 CHCCI：22r GमCOO230 GkCCO24C GFCOO250 GRCOO2 6 C GF（On270 GRCCC2 \＆C CRCOO2：0 GFCOOB（1G GRCCO31C CKCOC1220 GRCOO32C GRCCOz4C GhCOO3 G5CCr．3EC GKCCO37C GRCCC3EC CKCCO3 C GRCEIACO GKCOO410 CRCCO42C GRCCO42C CRCCO44C GhCOO450） GhCOC4tC GHCOO47C GFCOU4EC GFCCO4EC GFCCOSCC CRCOOS1C GKCOOS20 GFCOO530 GFCOC54C GFCOOSEO

$T h=(1-1) * D T H$
IF（（AIIFA＋IFEJA）．GT．（0．999＊P1／2．））GO TC 35

 （CCS（ALPHA＋THETA）
GC TC ミフ
：CCNTINLI
$\mathrm{KS}=\mathrm{FC}=\operatorname{COS}(T H E T A) / \operatorname{COS}(T H)$
$\therefore$ CCNTINIF
XAAX $=\mathrm{F}$ にTSIA（IF）
YMA）$=$ bEKTEA + ESTCCS（Th）
XNIA $=(1-1)+E 2 / F I C A T(A E 2)$
YMIN $=1 L S L$
DX＝（XMAX－XNIN）／FLCAT（NF）
IY $=$（YBAX－YMIN）／FICAT（NF）
f．c． $4 C J=1, N M 1$
$k=k+1$
$x \in 1=x \geqslant A X-(J-1) * E x$
$Y(\ldots)=Y$ NAX－（J－1）＊LY
CCNJINLF
LIE＝NME2－I
1F（LIN．EC．O）GC TC 47
Ly＝YAJN／LICAJ（NELSI）
IC $4 \hat{2} d=1,11 \%$
$k=b+i$
$x(1)=x: 10$
$Y(A)=Y \& I N-J+I Y$
く2CCATJNLE
IA＝FE／ELCAI（AE2）
［C 4E J＝1，LIN
$h=n+1$
$x(x:=x(A-1)+I x$
$Y(k)=1(k-1)$
CCNTINLE
47 CCNTINE
DX $=(V- \pm 2) / F L C A T(N E 1)$
IC $4 C J=1, N F 1$
$k=n+1$
$X(k)=X(k-1)+I X$
$Y(b)=Y(k-1)$
CE CCATINLE
ECCCNTINIE
E1 CCNIINE

DFLTH＝THETA－THMAX
XIIF＝EC SIA（JFFTA）
YTIF＝DEFIFX＋FOACCE（THEIA）
MILEI $=A L-1$
LC CC $\quad 1=1, N I I \leq 1$

IH：＝TFDAX＋IEITF\＃（SIM（AAGIE1））＊＊1．00
1H（（AIIFA＋IEETA）。GTo（0．999＊FI／2•））GO TC E2
$\boldsymbol{k S}=\mathrm{HC} \because(C C S(A \perp F L A) * C C S(T B)$－

GFCO1110
GFCC1120
GFCC113C
GFCN1140
GFCO1150
GFCO11 $\boldsymbol{C}$
GRCC117C
GECO1180
GFCO11：0
GRCC12CC
GRCO121C
CRCO122C
CRCC12
GKCO124n
GमCC12：C
CFCC12fC
GFCC1270
GFCO12 \＆C
GHCC12
GFCC13CC
GRCC131C
GFCN1320
CRCC．133C
GFCC134C
GFCC13EC
GFCC13＋C
GFCC137C
GhCC138C
GRCC13EC
GRCC14CC
GECO1410
GमCO142G
GHCO1430
GhCr144C
GRCO14EC
CFCO1460
GFCC147C
GFCC14EC
GHCC14EC
GFCE15CC
GFCC1S1C
GRCC152C
GHCO153n
GRCC154C
GHCO1550
GRCO15tC
CFCO1570
GFCC15FC
GKCN1590
GFCC16CO
GमCC1E1C
GhCC162r
CFCC163C
GFCC164C
GFCC16EC

FILE：UFCCIE $\quad$ OFIFAN A UNIVEESITY OF WATEELCC CCNVEESATICAAE MCNITCE SYSTEM

```
 SCHT(SIN(THETA)**2-(COS(ALPFA)*SIN(TB))**2))
 /CCS(ALPHA+1HETA)
 GC TC E巳
 E2 CCNTINLE
 HS = HC CCS(IHFIA)/CCS(TH)
 E:CCNTINLF
 X&AX=LS:SIN(TE)
 IMA) = VFFTEX + EE*CCS(TH)
 #CGS = SCKT((\IIP-XMAX)**2 +(YTIP-YMAX)**2)
 FHC=(EI-NCF&)-(1./3. + 4.*ANGLEI/(3.*PI)) + (RO-RI)
 XVIA = EFC SIM(TFETA)
 YMIN = VEKIEX + FFC*COS(THETA)
 D\lambda = (XVAX-XNIN)/FLCAT(NF)
 CY = (INAX-YMIN)/FLCAT(NE)
 LCEE J=1,NAE
 h}=k+
 X(K)= MMAX-(J-1)* CX
 Y(k; = 1*AX-(J-1)* CY
 CCNJINLE
 LELX=W-xM1N
 DC ET J=1,NEI
 ANGIEZ = (FICAT(J)/HLCAI(AE1))*EI/2.
 h=k+1
 X(b)= XbIN + [EIX%(1.-CCS(ANGLE2))*(FLCAT(1)/EFCAT(AC)) +
 *
 (1.-FLCAT(1)/FLCAT(NL))*CELX*FLCAT(J)/FLCAT(NEL)
 Y(:)= YBIN
 E% CCNTINLE
 fC CCNTINTE
C
C
 4. IAST EC\
 *
 *
```

        \(k=k+1\)
        \(X(x)=>71 P\)
        \(Y(K)=111 F\)
        EEIX=E1
        [C \(\in E \quad J=1, N \in 1\)
        ANGLEZ \(=(\) FLCAT(J)/FLCAI(AE1))*FI/2.
        \(k=n+1\)
        \(x(x)=x 1 I t+[E I X=(10-C C S(A N G L E 2))\)
        Y(K) \(=\) Y1IF
    CE CCNTINLE
    ```
 HLFMENT ASSCCIATEL INLICES-CICCBWISF HCTATICNAI ALMHEEING
```

```
\(N=C\)
 iec. \(7 C \quad J=1, N M\)
 \(v=t+1\)
 \(I F(1,1)=J\)
 \(I F(M, 2)=N A W+N E+N F 2+J\)
 \(I F(b, \check{C} ; N M+N F+N E 2+J+1\)
 \(\operatorname{IF}(n, 4)=J+1\)
 1E(N, E) =
 CCNIIALE
 \(L=C\)
```

    \(i r\)
    GFCOIfto GFCO1674 crCOI 68 F GRCCIEEE
GbCO17022
GECO1711
GRCC172C
GRCC17』G
GRCO1741
GRCC17E GRCC17EC
GRCC $177^{\prime}$
GRC0178． GRCC 17E
GRCCIsrd
GbCOIM11
GFCO1824
GECC1×3
GFCCI：4
GRCC185
GFCOI8t
GECC18\％
GFCC188
GECR1EE
chcciecd
GECOIG1
GECC192．
GRCC19？ GFCO194 GKCCIES GhCU196 GKCC197 GisO198 GFCCIGE GFCC20C
GFCCOT1 GFCC2の2 GFCC2U3 GkCC204 GFCO205 GECC2Ct GRCC207 GFCO2OF GKCC2re GFCO2to GECC211 GbCO212 GECC213 GFCC． 210 GFCC215： GhCC21E GhCC217 GhCe21s C5CC21： GRCC22C

```
 IF(AE2.EC.C) GC TC \& 6
 LC \& \(\quad 1=1, \mathrm{NE}\)
 \(\mathbf{L}=\mathbf{L}+1\)
 \(\omega=\omega+1\)
 IF \((N, 1)=1 E(b-1,4)+2\)
 \(1 F(A, 2)=1 E(b-1,4)+1\)
 IL(A, さ) = 1H(1,2) + NF + 2~(NF2-I+1) + NE1 +
 II(1, 4) = IE(b, 玉) +
 1F(M, E) = 2
 NFB(t) = JE (m,2)
 LC アた \(J=2, N F\)
 \(m=k+1\)
 \(11(1,1)=\operatorname{IE}(n-1,1)+1\)
 11(1,2\()=1 E(1,-1,1)\)
 1上(A, () = 1F(b-1,4)
 \(11(s, 4)=1 E(1,-1,4)+1\)
 1F(D, 5) = 2
○CCCNIMLE
 LIN = NE2-1
 IF(IIM.EC.O) GC TC 76
 IC is \(J=1,1\) Ih
 \(N=N+1\)
 \(\operatorname{IF}(k, 1)=1 E(b-1,1)+1\)
 1H(N,2) \(=1 E(1,1,1)\)
 1F(1, с) \(=\operatorname{IE}(1-1,4)\)
 IH(b,4) = \(1 E(1\), © \()+1\)
 1E(1, E) =
 CCN1コしに
if CCATINIE
\(M=n+1\)
\(11(M, 1:=1 E(y-1,1)+1\)
\(11 \cdot(M, 2)=1 F(M-1,1)\)
1F(1, © \()=1 E(1,-1,4)\)
11(D,4) = JF(1,1) +1
1F(1, E) =
11) = ME2-1
 1月(11月.E(0) CC TC 80
 LC \(77 \mathrm{~J}=1,11 \mathrm{M}\)
\(N=N+1\)
\(1 F(N, 1)=1 F(N-1,4)\)
IE (1,2\()=1 E(1,-1,3)\)
1上(N, ミ) \(=1 H(D, 2)+1\)
\(1 H(1,4)=1 E(1,1)+1\)
1ト(1, E) =
77CCMIIALE
EC CCNJINIt
UC \& \(2 \mathrm{~J}=1\), NE 1
\(k=\omega+1\)
11(1,1) \(=1 E(1)-1,4)\)
IE(1,2) \(=1 E(\Delta-1,3)\)
\(1 上(\mathrm{~B}, \mathrm{C})=1 \mathrm{E}(\mathrm{k}-1,3)+1\)
\(11(b, 4)=1 E(b-1,4)+1\)
1F(B,E) =
CCATIALI
とECCNTINLE
```

GFCO2210
GFCR222C
GbCC223C
GFCC224C
GFCr22EC
GFCC22 C C
GHCC2270
GFCO22\＆C
GhCC22！C
GHCC23CC
GFCr231C
GHCC2．32C
GFCC233C
GFCC2．34C
GFC（23EC
GFCC2JEC
GFCC237\％
GFCC23E
GFCC23CC
GHC02400
GRCC241C
G1CC242C
GFCC243C
GFCC244C
GFCC24EC
GHCC24EC
GFC？247
GECC24\＆C
GRCC24EC
GFCN2500
GHCO251C
GFCO2520
GSCC253C
GFC 0254 C
GHCC2EEC
GFCO25EC
GHCC257C
GRCC25t
GHCC2596
GFCO26C0
GFCC261C
GFCC2 2 C
GFCC2 $\mathcal{C H C}$
GHCC264C
GFCC26EC
GRCC26tC
GHCO2670
GमCC26EC
GFCC2EEC
GFCO27CC
GFCO271C
GमCC272C
GHCO273C
GKCC2 740
GRCO2750

EE CCNIINE
rC © $\quad 1=1, N[L \leq 1$
$t=1+1$
$v=1+1$
$1+(A, 1)=1 t(1,-1,4)+1$
1F（B，2）＝IE（B－1，4）＋NMF＋NNE1
II（N，：）$=1+(1,2)+1$
II（N，4）$=1 E(B, 1)+1$
IF（ ），E）$=2$
NFH（I）＝IE（M，1）
CC とう $J=2, \mathrm{M}$
$v=n+1$
$1 E(n, 1)=1 E(1-1,4)$
IF $(3,2)=1 E(1,-1,3)$
$\operatorname{IE}(A$, こ）$=1 E(b, 2)+1$
$11(h, 4)=1 E(h, 1)+1$
IE（h，E）＝ 2
\＆CCNIINLE
$\angle C \leq C \quad J=1, N E 1$
$\omega=N+1$
$\operatorname{IE}(N, 1 ;=\operatorname{IF}(y-1,4)$
1E（N，2；$=1 E(k-1,2)$
IE（ 1, （ ）$=1 E(!, 2)+1$
$11(1,4)=1+(1,1)+1$
1上（b，ミ）＝
：C CCNTINLE
© CCATINIE
$L=L+1$
$u=n+1$
$\operatorname{IL}(v, 1)=\operatorname{IE}(v-1,4)+1$
IE $(v, 2)=\operatorname{IF}(v-1,4)+$ NNF＋NNEI
IF（ $, \ldots, 2$ ：$=1 E(N, 2)$
$\operatorname{IE}(1,4)=1 F(1,1)+1$
If（N，E：＝ 2
NHR（I）$=1+(1,1)$
NFM（L＋1；＝1E（N，2）
LC EE J＝2，ME
$n=k+1$
$\operatorname{IE}(N, 1)=\operatorname{IE}(n-1,4)$
IF（ 1,2$)=\operatorname{IF}(N-1,2)$
$11(n, 2)=1 E(n-1,3)$
$I F(N, 4)=I+(N, 1)+1$
1！（b，E）＝2
\｛G CCNTINLE
CC．〔T J＝1，NF1
$N=N+1$
$\operatorname{IF}(N, 1 ;=\operatorname{IE}(n-1,4)$
IE（ 1,2 ）$=$ JE（ $n-1,2)$
$11(N, \leq)=1 E(N, 2)+1$
IF（ $n, 4:=1 F(n, 1)+1$
IF（H，E）＝ 1
：TCCNIALE

GमCU27
GhCr 27
GhC1278
GbC27！ GhCL2＊i GFCC2 CFCC2 2 2
GECR．2 GECC2FA GFCC28E
GHCC2\＆e GFCC2 27
GhCC2とか
GFCr28c
GFCC2！C
GFCC291
GFCC292
GFCr． 293
GkCC2y4 GHC02．9
GFCO2GEC GFCC2 971
GFCC2S84
GHCC2ys GFCO3nt
GbCrijoil
GRCC3C2C
Gbrr3n 30
GFCO304r
GFrn30 50
GF（0306．1）
GbCの307n
GhCr．30\＆C
GFCC3n！C
GमCC31CC
GFCC．311C
GFCC312C
GhCC313C
GhCD314C
G\＆CO31 EC
GFCC31 $\boldsymbol{f}$ C
GFCr．317C
GFCC31とC
GECC31〔C
GRCC32CC
GFCO3210
GFCOJ220
GमCC3230
GbCC324C
G5CC32 EC
GhCC， $32 \in \mathrm{C}$
G5C0327C
GRCC328C
GFCN3290
FCENEAFY CONDITICNS


## 1. SPECIFIELFIUX

## 2. SPECIFIEL TEMPESATLEE NCEES

## EVALUATE SEMI-EAATVIITE

MAXCIF $=0$
LC 1 (E $\quad 1$ = NEL
[C $J[E J=1,4$
LC $1 C 6 \quad 1=1,4$
$11=1 A F S(1 F(1,1)-1 F(M, J))$
1H(II.CT.MAXIIF) MAXIF=11
ICECCNTJMLE
ISEMI = NAXIII +1

IISPLAY FAFIS CPINPUI
WKITF(G, IC1O)

WFIJF(e, 1C11)

DFITF( E , 1C12)
 WFIJE( (1C13)

Wh1JF( (1C14) ANF


- FiJE(E,101E) AEL
 MHIJF(E,ICIE) CCNE(1)
 * $\quad$ (RTU/(BE-FT-F) $\left.{ }^{\circ}\right)$

WHITE(E,1017) CCNL(2)
 *

ETU/( HE -FT-F) ')
\#HIJF(E, 1C18)
 UHITE(E,ICIC) E
 UFIJF(E,1020) I


C5C03310
G\&CO3320
CRCC332C
GFC03340
GFCC33 50
GFC0.3 C C
GFCO3370
GFCO33 \& C
GhCC33C
GFCC34C
GRCC341C
GFC03420
CRCC34 20
G\&CO3440
GhC03450
G\&CC34EC
GECC3470
GFC.O34EC
GFC03490
GRCC35CO
GFC03510
GFCO352C
GFCC3530
GECC354C
GHCC35EC
GECC35EO
GFCU357C
GRCC35\&C
GFCO3590
GRCC36CC
GFC03610
GRGC362C
GRCC362C
GRCC $364 C$
GKCC3tEC
GRCC36EC
GRCC367C
GRCC368C
GRCC36:C
GRCO370C
GRC0371C
GRCC372C
GRC0372C
GRC0374C
GRC037EC
GRCC37EC
GRC03770
GRCO37とC
GRCO37EC
GKC03800
GRCC3810
GRCC382C
GRC03820
GRC0384C
GRCC3850

```
 * 1111e.11<1) |1
```



```
 *111!,|11
```




```
 WII|IC,IIJ:! IHFIAN
```



```
 ALIIAV = ALHEA*IEC./FI
 WFITH(E,1024) AIPHAW
```





```
 WhITE(E,&CO2) NF2
```



```
 |FITF(E,2C!?) NT
```



```
 WKIIE(E,己心04) AN
```



```
 WFTTF(E,2COE) N!
```



```
 WFITE(E,102E)
 1C2E FCFBAT(", //, S(%,'HCUNEAbY CCNEITICAS',//)
 #F17E(E,1C2E)
```



```
 MFITF(E,1r,27)
 1C27 HC&NAT(' ',IEX,'N(CES',3Eג,'FLLX',/)
 LC 1IC L=1,NSELXC
 MFITE(E,102&) MFI(L),NPJ(L),SCFFLX(L, 1),SU&FLX(1, 2)
```



```
 110 CCNTINEE
 Wh17E(E,1C2C)
```



```
 MFITF(E,IC3C)
 1Cご F(ん*AT(", 1&), 'NCLE',32X,'TFMFEKATCFE', /)
 LC 115 b=1,ATSEEC
 WhITH(E,IGO1) NHE(K),TSPEC(K)
 1(こ1 FCんMAT(' ', 1EX, IE,35X,F7.3)
 IIE CCNTINIF
 M+I]F(f,1032)
 1rこ2 FCh\AL(01')
CFECh
 IF(IFFINIOEC.C) GC TO 12E
 ICC 12C I=1,MNE
 mk11E(E,1〕ここ) J,X(1),Y(I)
 1CE己 HC&NAT(' ',1C),IE,1CX,FE.4,1(CX,F&.4)
 ま゙いCCNIINIF
 #मITF(E,1C32)
 CC 125 m=1,MEL
 WkITI(E,1C24) b,IF(M,1),IF(N,2),IE(M,3),IE(M,4),IE(v, E)
 IC`4 FCKMAT(" 0,3X,IE,3x,15,3X,IE,3x,I5,3X,IE,3x,IE)
 1こE CCNTIAIE
 12t CCNJINLE
CEFCK
 EETIHN
 ENL
```

Cike 1.14 F
CH： $1 \cdot 107$
－n！•1sca
HAn！Jor
h．Hicli．3be
GbC03y 1
GRCCH 2
GRCC3 ？
G sc 03.94
GKCC3！
GRCC3Yt
GRC．C3：
CHCC3．98
GHCC3s！
CRCO40）：
GRCO4n 1
GRCC，402
GRCC40？
GRCC404
GRCO4T！
GHCO4CE
GRCก41）7
CRCC4DF
GRCC40S
CRCO41C．
GRC．U411
GKCO41
GF（0） 0413
GRCL414
CRCR415
GFrO416
GKC0417
GRCO41と
GRCC41S
GRCC42C
CFCO421
GKCr42：
GRCC423
GFCO424
CRCC425
CRCC42
G F CO427．
CRCC42 \＆
GFCC42s
GRCC．430
CRCC43：
GFCO432
GRC．C． 433
GbCC43
CRCC．435
CRCC43E
Gbr0437
GRCC43
GFCO4．3S
GRCC44C

## SIFPCITIN CCIVFK

## MATRIX ASSEMEIY AND SCIUIICA

CHCO4410
GFCO4420
GRCC442C
GFCO4440
GRCC4AEO EVALLATES ELINENT MATHICES ANL ASSEMELES TC FCFM GLCRAL SYSTFNGFCO44EO JAFIENENTATCACF ECINDAFY CCNDITICNE IFIANGCLAFIZATICN ANE SCIUTION

CCMNCN／CNF／NECAS，X（ ZOOC），Y（ ZCCO），IE（2000，5），MFI（75），AFJ（75），
－SLFIIX（5E，2），JSEA1，F（2000），2（2000），A（2000，EO），NSFLXC，

CALL NAJHIX
CALLECLUE（1）
CAII SCIVF（2）
bl 11 kN
END
SLEFCUJJNE MATEJX

SIIFFNLSS MAIFIX FCKMEC ANL MOLIFIEL TO INCCRPCRATE BOC． LCAL VECTCF FONMEL ANI MCIJFIEI TC INCCRECKAIEEOC．
（f．vセCN／CNI／NFCNE，X（20）C），Y（2CCC），IE（2000，E），NFI（7E），NPJ（7E），
－
－TEFFC（ T€），NPは（TE），NEI，MISFEC
CCNHCN／THC／CCNC（2），H，C，TAVG，FES，DNU，HLED，FLCW，F
CCNCN／7：EFF／AC（4，4）

GKCC447C
GFCO4480
CFCC44EC
GFCO4500
GRCC4E1C
CRCC4520
GFCC．452C
G H CO4540
CRCC4ESC
GRGC45EC
GFCO4570
CFC（45とC
GhCO4590
CRCC46CC
GHCO4610
GECC4620
GRC0463C
GRCO464C
GRCC4EEC
GRCC46EC
GRCC467C
GRCP468C
INITIALIZE GLCBAL STIFENESS AAE LCAD VECTCEGECO469C
GRCC47Cr
GFC04710
GFCC472C
GFCC473C
GFCO474C
GFCC47EC
GRCC47t 0
GFCO4770
GRC047EC
GFC04790
GhCC4ECC
CRCO481C
GFCO4820
GRCC4830
GRCO4世40
GFCO4850
GHCC4女f0
GFCC4870
GRCC4880
GRCC4REC
GFCN4900
GRCC491C
GhCO4920
GECC4930
GFCC494C
GECC4950
H(J.LF.C) GC IC 2
$A(1, J)=A(I, J)+A C(I N, J \|)$
= CCNTINLE
- CCNTINIE
由 M 17F(1) ( (A( $1, J), J=1,1 S E y I), I=1, N E C N S)$
CCNVERT LINEAELY VAHYIAG SCFFACE FLCXES
TC ECLIVALENT NCDAL FLCW FATES ANC AIC
TO GLCEAL LCAE VECTCE
IF(NSFLXC.EG.C) GC TO E
LC $4 \quad 1=1, N \leq I I \times C$
$I=N E I(I)$
$J=N F J(L)$
$[\boldsymbol{X}=X(J)-X(I)$
$[Y=Y(J)-Y(1)$


CCNTINLE
CCNTIALE

INTHCELCE EINEMATIC CCNSTHAINTS （GEOMETRIC ECUNLAEY CCAEITICAS）

IH（ATSFEC．EQ．C）GC TC 7
LC $\quad b=1, N I S E E C$
CALI GECMEC（TSEEC（S），NEB（E））
CCNJINLE
CCNTINLE
HEICFA
END
SLEFCLIJAE GECBEC（I，N）
c
C－－－－－MCLIFIES ASSEMELAGE STIFENESS FCR T PEESCRIEEL AT NCDE N C

CCMMCN／CNE／NLCNS，X（2000），Y（2COO），IE（2000，5），NFI（75），NPJ（75），
＊SUFELX（ 5 E，2），1SEM1，E（2000），2（2000），A（2000，50），NSFLXC，
＊TSFEC（TE），NPB（TE），AEL，MSFEC
LC $\quad k=2, I \leq E V 1$
$K=N-N+1$
IF（x，LE，C）GC IC 1
$H(K)=b(k)-A(k, k) * T$
$A(R, W)=C$ ．
1 CCNTINLE
$K=N+N-1$
IF（K．GT．NHCNS）GC IC 2
F（A）：$=F(\Sigma)-A(N, *) * 1$
$A(N, N)=C$ ．
＝CCNIINTE
$A(N, 1)=1$ ．
$K(N)=T$
h上TLEN
ENL
SLEECLIINE SCLVE（ICNTRL）
C

GHC04960 GkCC497r GkCC49と！ GFCO4日9d GRCCEOCC． GRCCSO 1 GFCOSO2？ GRCCSO2d GFCOSO 46 GRC0505 GFCOSOEU GRCC507C Gbcosoc． GFCC50： GbCCEICC GFCOEII GhCCSI2 GFCC513d GECCS14r CRCC51E GFCUSI 61 GECOS17C GFCOS18． GRCCEIE GECOS2Od GRCC521－ GECC522 GRCOE2 GFCOS24R GRCCE2E GFCOS2t GRCCE27， GKCOS2E GbCOS2 GRCCE3C GFC0531 checs32 CRCCE3 CRCCS34！ GFCOS35： Gbros36． GRCGE37 GFCCE．3と GFCrs3E GRCCE4C G5C0541 CRCCS42 GRCOE4 GHCC544 G5C0545 GECCE4 GFCOS47 GRCCE48 G5C054！ GxCCSEC

SCLUESA SET CFLINLAR，SYMMETKIC，＇EANEEI＇，SIMTITANECUS ICLATICASCFTHEFCHM A＊X＝K USING GAUSS－ICCIITILE DECCNP。 CPIY IIACCAII AND FIGHT－CF－LIAGCNAI ELEMEATE AEE INPUT IA A TFANSFCEMATICA：J（EANDEL）$=\mathbf{J}-\mathbf{I}+1$ AND $1=1$ ICAThL＝CCNIFCL VARIAEIE

ICNTEL＝1；TKIANGULAFIZAIICA CAIY
ICNTEL＝2：SCLVESPCER•H．S．
SCILTICA EETLENS IN＇F＇CCASTANT IECTOK
CCMNCN／CNE／NFCNS，X（2000），Y（2COC），1E（2000，5），AFI（75），APJ（75），


CC JCC $1=1, \mathrm{ICA}$
（I）＝F（I）
ICC CCNTINLE
NIESSI＝NECAS－1
It（ICNILL．FG．2）GC TO a

TRIANGULARIZATICN

DC $2 \mathrm{~A}=1$ ，NLESSI
$v=N-1$
LIN＝MNR（ISEMJ，MFCNE－M）
PIVCI $=A(N, 1)$
LC ：I＝2，IIn
$C F=A(A, L) / E J V C)$
$1=k+1$
$J=($
IC $1 \quad 1=1$ ，IIM
$J=J+1$
$A(1, J)=A(I, J)-C E=A(N, E)$
1 CCMIJNLF
$A(N, L)=C H$
－CCNTINIF
GC 1C 6
：CCNTINLE
ECIVING FCLEABE．
LC $4 B=1$ ，MLESSI
$M=N-1$

$C F=E(A)$
K（A）$=C F / A(N, 1)$
IC $41=2,1$ IM
$I=1+I$
E（1）$=E(I)-A(N, I) * C P$
4 CCNTINLE
R（MFCNE）$=$ K（AECNS）／A（NECNS，1）
CC E $1=1, \mathrm{MLESE}$
$N=$ NFCNS－I
$N=N-1$
IIM＝JNO（ISLMJ，NECNS－M）
IC E $b=2, I 14$
$L=b+B$

GFC05510
GFCO5520
GhCCES3C GRCTS54C GRCOS5EC GFC05560 GFCRESTO GFCCESEC GFCOS5EC GFCO5600 GRCCEEIC GRCOS62C GRCCSE2C GFCOS640 GFCC56：C GRCCEE -0
GFC05670 GFCC5EEC GFC05690 GRCCETCO GEC05710 GHCCE72C GFCCET3C GHCCE74C GFCC57E0 GFCCSTEO G5C0577C GECC57とC GFCC57\＆ GFCCERCC GFCC5810 GFCC5\＄20 GRCCE82C GRCCE840 GFC05850 GRCC5ECC G5C05870 GRCCS8\＆C GFC05890 GRCCE9CO GFCO59 10 G5CCSQ20 G5CC5930 GFCC594C GHCC59EC GHCCSOEC GbCC597C GECC5日\＆ GRCCE9EC GRCOEOCC GFCOGO10 GFCC602C GFCC6030 GFC06040 GSCOEOEC

```
 h(N: = b(N)-A(N,K)=R(L)
 E CCNTINLE
 * CCNTINIE
 HETItN
 EAL
C
C
C
SLEECUTINL CLJ&IT
C
C--------- CAICULATEE CEFIVEL CLAATITIES AND FRINTS RESULTS
C
CCMMCN/CNE/NECNS, (2000), (2 20nの),IF(2000,5),NPI(75),APJ(75),
 *SLFFI>(í, 2), ISE&1,b(2CCC),2(2CCO),A(2CCO, SO),NSFLXC,
 *TSHF(T í),NH&(it),NEL,NTSPEC
 CCN#CN/IWC/CCD[(2),W,C,1AVG,5ES,DNU,HLSD,FLC\,F
 CALI CALCNS
 CALL FCLEkM(FLCD)
 CALL FN(TAL(F)
 CALL EFINT
 F&1tbN
 EAL
 SIRFCLIINF CALCNS
C
C-..------ FEbFCNMS NISCELLANECUS CALCULATIONS
C
 CCM&CN/CNE/NECNS,X(2OOC),Y(2CCC),IE(2000,5),NP1(75),NPJ(75),
 = SINFI\(7E,2), ISEMI,K(2CCC),Z(2OCO),A(2CCC,5C),NSFLXC,
 *TSFEC(TE),NP&(TE),NFL,NTSFEC
 CCM&CN/JVC/CCN[(2),N,C,]AVG,HES,DNC,HLSD,FLCN,F
C
C SUEFACE EEAT FLCWS
C
 C = C.
 1E(NSFIXCOECOC) CC TC 2
 LC I L=1,ASFIXC
 I=NFI(L)
 J= NFJ(1)
 LX = X(J)-X(1)
 CY=Y(J)-Y(1)
 C=C+IX=(SLEFLX(L,1)/2.+SLFELX(L, 2)/6.)
 C=(+IX:(SLFFIM(L,1)/6.+SIFFL)(LL,2)/3.)
 1 CCNTINLE
 & CCNTINLE
C
C AVEKAGE SUKFACF TEMPEFATLRE
```

```
 TAVC=C.
```

        TAVC=C.
        UC J J=1,NSFIXC
        UC J J=1,NSFIXC
        [\lambda=x(J+1)-x(J)
        [\lambda=x(J+1)-x(J)
        TAVC= IAVC+IX=(b(J)+R(J+1))
        TAVC= IAVC+IX=(b(J)+R(J+1))
    : CCNTINLE
    : CCNTINLE
    TAVC= = AVG/(2.tv)
    TAVC= = AVG/(2.tv)
    k） $5=(7$ AVG－ISFEC（1））／C
bIEz＝FLS－h1SI／（CCNL（1）＊⿴）
DNL＝己。／（FESえて（CNL（2））
HIIFA
ENT．
SLEFCLIJAF F\＆IAT
CCMDCA／CNE／NFCNS，X（200C），Y（2COC），IE（2000，5），NFI（75），AFJ（75），

－TSFEC（ it ），NPK（TE），NEL，ATSFEC

CCNMCN／FIELI／JFEINI
MhIJE（E，2C1）
 WF1TF（E，2C2）

LC $2 C 4 \quad N=1$, NECAS
WhITF（ $\in, 203$ ）$N, X(N), Y(N), R(N), Z(N)$

¿C4CCNJINIE
UFITF（6，205）
ECE ECKDAT（1＇）


VKIJF（6，2C7）FICW

Wh1TF（e，2CE）

जFIJF（E，214）TAVC
 जमIE（E，21E）C
 －hlif（t，21t）FES
 INLE＝LNL＝CCNI（2）／CCNL（1）
WFIJE（f，217）INL，LNU2
GRCCEEAC
GRCOEE2C
GKCCEGAC
GRCOE64C
GRCCEGEC
GFC06660
GRCC667C
GFCO66R0
GFC06690
GRCC67CC
GRCC671C
CRCCE720
GFCO6730
GECCET4C
CkCOt7EC
GRCCETEC
GRCO6770
GbCN6780
GKCC67EC
GFCCEECO
G）CO6810
GRCCEE2C
CRCOE\＆
GRCC684C
GRCCEEEO
GRCF68EC
GRCCEF70
GRCCEZEO
CRCC6E9C
CRCCESCC
GRCCES10
GRCCE92C
GRCC692C
GKCC694C
GRCC695C
GRCCESEC

 WH1JE（E，21E）
© 1F FCbVAT（1＇）
EFTILN
END
SLEHCLTINE ECIEFB（FICW）
CCNMCN／CNE／NLCNS，X（2UOC），Y（2COC），IE（2000，5），NPI（75），NPJ（75），
\＃SLFFLX（TE，2），ISEMJ，F（2CCC），Z（20CO），A（2000，50），NSFLXC，
＊TSFEC（TE），NPE（Tf），NEL，NTEPEC
FLCV $=\mathbf{C . O}$
E！IINEI
REAI（1）（（A）1，d），d＝1，ISEMI），I＝1，NECNS）
IC 1 CC $11=1$ ，AECNS
HIUX＝C．f．
1 E $=$ C
LIV $=1 S E V I+11-1$
IH（IIM．CI．AFCAS）IIM＝NECNS
IC $2 C C$ 12＝11，111
GFCOEYCC

GRCC7OCC
GRCC7010
GFC 07020
GRCO7C2C
GRCO7040
GRCC70：C
GRCCTOEC
CRCC707C
GFCO70R0
GNCCTOEC
GRCOT1CO
GFCC7110
GFCC712C
GFCC713C
GFCC714C
GमCC715C

```
 L3=L`+1
```


IFIII.EC.I) CC TC 1ر」?
$11 \mathrm{H}=11$
II(LI.GT.ISFMI) ITM=ISENI
LC
1 ( $=11-12+1$
ECCFLLX $=F L L X+A(12,[2) * 5(13)$
$Z(11)=11 t X$
1CCHLCW = ELCW + ELCX
HETIEA
EA C
SEESCLIINE FACTNL(F)

*SLFFL)(7E, 2), ISEMI, R(2OCC), Z(2CCO), A(2 (CC, EC), NSFLXC,
*TSFEC( it), NPK(TE), MEL, MISFEC
$F=0 . C$
DC ILC $I=1$, NECNS
$F=r+b(1) \neq 2(1)$
ICC CCNIINLE
$F=-C . E=1$
HETILN
ENL
SIEFCLIINE OLAL(M,C11, C12,C21,C22)
C
C------ CCNFLTES FLEMENT STIFEAESS FOF WTH ELENINT
кEAI* と E(2,4), C(2,2), ETCE(4,4), (E(2,4), WAO(4,4)
KEAL F E LAES, LETJ,GALSE,PI,KAL,S,T, LEIE


rSUEELX (7E, 2), ISEy1, F(2000), 2(200U), A(2000, 50),NSFLXC,

CCMyCN/IEKEE/AC(4,4)
C(1,1) $=\operatorname{CELE}(\mathbf{C 1 1})$
C(1,2) $=$ LELE(C12)
$C(2,1)=L E L E(C 21)$
$C(2,2)=$ LELE(C22)
$1=1 F(1,1)$
$J=1 E(M, 2)$
$K=1 E(N, 2)$
$L=1 F(N, 4)$
X12 = IELE(X(1))-LELE(X(J))
$\times 12=$ LFLE(X(1))-LELF(X(E))
X14 $=$ IELF(X(1))-LELF(X(I))
X2今 $=$ LELF(X(J))-LELI(X(E))
$\times 24=$ [ELI(X( ) ) )-[ELE(X(L))
$x$ © $4=$ LFLF(X(*))-LELF(X(I))
$Y 12=[E L F(Y(1)\}-\operatorname{LPLF}(Y(J))$
Y12 = IELE(Y(1))-LELF(Y(X))
Y14 = LELE(Y(1) J-LHIF(Y(I))
YZ 人 $=$ LELE(Y(J))-LELE(Y(K))
$Y 24=$ LELF(Y(J))-L世LE(Y(1))
$Y ミ 4=$ [ELE(Y(D))-LELE(Y(I))

c

GFCOT160 GFCC717 GhCC71F 11 CRCC71：0 GECO72r GFCr 721 arcc－2220 G5Cn723it GFCC724 GECC72 G5CO72 6 CRCC72\％ GFCN72ध） GRCC72心G GKCO736 GRCC731 GKCC7326 GFC0733！ GFCC 7.34 GbC07．3E CRCC73f GFC07．37 GKC073\＆ GFC073．9？ GRCC74C CECO741 CkCC7＋2 GRCO74 GFCOT44 G\＆C07＋5 1 CbC074 GFC07 47 GRCก748 GRCC74SG GRCC75C GRCC751 GKC0752 CkCrフミะ GKCC7E4 GKC075 CRCC75E GRCC7E7 GRCTフEx CRCC75c GkCC76 GRCC7E1 CRCC7E GRCC7t？ GRCC7＊ GRCC7t GRCCTEEG GRCC7f7 GRCC7E CKCC7ESC GRCC77C

INITIALILE AC MATEIX

TFFMS OF INTGRL（E＊＊T）＊C＊E CFEF VCLIME

```
NN=2
GALSE=.E77CECZEC1ESE2E
IC 1C JGALSS=1,4
GC TC (z,3,4,5),1CALSS
s = GAISS
T = GAISS
GC 1C f
S = -CALSS
T = GALSS
GC IC E
S = CALSS
I=-GALSS
GC ict
s=-GAtss
T=-GALSS
```

CCNTINLI

## FOYM ELENENTS CF E MAIFIX

 UETJ＝IETJ／\＆．



$E(1,4)=(Y 13-Y 12 * \leq+Y 23 * 1) /(8 * *$（ETJ）
$E(\Sigma, 1)=(-x 24+x 24 * \leq+x 22 * 1) /(8$ •＊ETJ）

E（2，さ）$=(\times 24-\times 12 * \leq+x 14 * 1) /(8$ •＊IETJ）
$E(2,4)=(-\times 1 ๕+ \pm 12 * \leq-\times 23 * 1) /(8$＊＊DETJ）

CCMPEIE MATRIX FACDLCT C＊

```
LC \(\quad 1 \Delta=1,2\)
DC \(J J V=1,4\)
CE(IW, du) = 0 。
LC \(\quad\|\|=1,2\)
```



```
CCATIALE
```


LC $\quad 1 \nabla=1,4$
DC \＆$J V=1,4$
EICE（IN，Jw）＝C．
LC $E \quad b=1,2$

GRCC771C
GFCO7720
GRCO772C
GHCOT740
GFCC77EC
GECCT7EC
GbC0777C
GRCC778C
GFC077 9C
GFCC7とC
GRCC7E1C
GFCO7820
GFCC783C
GFCC7E4C
GRCC7EEC
GFCO7ne0
GhCC7\＆7C
GRCC7とと 0
GFCO7880
GFCC79CC
GkCC791C
GFC07920
GFCC793C
CKCC7气4C
G5CO7950
GFCC79＋C
CHCC7\％ 7 C
GFCO798C GRCC79CC
GमCORU00
GbCORO 10
GECCAO2C
GFCCEC3C
GFCCNO40
GFCCEOEC
GbCCeO6C
GbCCEOTC
GमCCEOEO
Ghr080：C
GFCOE1CC
GRCO甘110
GbCOR120
GRCCと1 2
GFCOR 140
GFCCE1EC
GFCC81 0
GECCE17C
GFCCE1\＆C
GRCCE1EC
GFCOR200
GECCH21C
CRCCN22C
GFCO8230
GFCCE24C GFCrE25C

HICE（IW，JW）＝ETCE（IW，JW）＋E（YW，IW）\＃CE（KW，JW）
＋CCNTINEE
$C$
C FOM PLANAR PBCBLEMS
c

```
H1= こ.1415G2t52589793
NAE = 1./(2.*PI)
LC & IN=1,4
CC & N|=1,4
```

$W A C(I W, J V)=W A C(I W, J D)+2$ 。*FI*GAL*DAES(IEIJ)*ETCE(IW,JW)*4•/(MM**2)
© CCNTINEE
ll CCNJINEE
DC. $11 \quad 1 V=1,4$
CC $11 \mathrm{~J} v=1,4$
$A C(1 *, d *)=\leq M C[(\| A C(1 *, d n))$

11 CCMIIALE
FHITEN
FAL $W A C(I W, J V)=W A C(I W, J D)+2 \bullet * F I *$ bAL＊DAES（CEIJ）＊ETCE（IW，JW）＝4•／（MM＊＊2）GFCC\＆3E
© CCNTIAEE
UCCNIINE
DC． $11 \quad 1 V=1,4$
CC $11 \quad J W=1,4$
$A C(1 \omega, d *)=\leq M C[(\| A C(1 *, d n))$

GFCO8260 GFC0827 GRCC828 GRCO829～ G \＆C0830
GRCC831 GEC0832
GFCO\＆330 GFCC834
GमCC836
CHCCE37
G5CO8．18
GFCC\＆3－
GECC\＆4C
GFCCと41
GRCC842
GFCO843

## Appendix E

Typical Output from Finite Element Groove
Heat Transfer Prediction Program

## E. 1 Introduction

In this appendix a typical output from the finite element prediction program is presented. A value of zero was used for the code parameter IPRINT since the use of a non-zero value is useful primarily during the debugging stage of the mesh generator development. This having been completed and verification made that the mesh generator is functioning correctly, it is unnecessary to display this information with every output.
E. 2 Sample Output Description

On the final pages of this appendix a typical output from the groove heat transfer prediction program is presented with a brief description of the output given below. Due to the brevity of the following discussion frequent reference by the reader to the sample output will be helpful.

On the first page of output the 'Basic Parameters' describing the particular case under examination are displayed. This display includes material properties, problem characterization parameters, and various other pertinent geometric parameters. In addition to the above, information relevant to the spatial discretization of the problem solution domain are also presented. For an explanation of these parameters the reader is referred to figure 5-7 of Chapter 5 of this report.

Immediately following the display of the basic parameters, the boundary condition information is displayed. The specified flux boundary conditions over the pipe exterior surface are presented firstly. This information is presented in the form of an assumed 1inearly varying distribution between two successive nodes ranging from the first flux value reported at the first node number reported to the second value reported at the second node number reported. This is performed for each element having a surface on the pipe external surface. A uniform distribution of magnitude 100 (British units) is assumed internally within the program. Following directly the Neuman boundary condition presentation is the Dirichlet boundary condition specification over the liquid/ vapor interface. The interpretation of the output for this condition is direct with an assumed relative value of zero for these nodes.

Where a non-zero value for the code parameter IPRINT is used, two tables, additional to those in the sample output, will be present. The first of these contains a listing of the node number, its global $x$ coordinate, and its global y-coordinate, in the order mentioned. This will be repeated for each node in the finite element model.

Again for the case of a non-zero value for IPRINT, a six column table will be presented following the table described in the previous paragraph. The horizontal entires of this table are respectively the element number, its associated nodal indices in the order of node one to node four, and the material type for the element. A material type of 1 indicates an element located in the solid region of the solution domain while a material type of 2 indicates an element in the liquid region of the cross-section.

The next portion of the output serves to report the node number, its $x$ and $y$ coordinate value in the global system, the nodal temperature as determined by the solution program and the net nodal heat flow rate imbalance. The net nodal heat flow imbalances reported here can serve as a useful check on the solver accuracy for the system of equations. For all internal nodes these nodal heat flow rate imbalances should all be zero (within the solver accuracy). Experience with the finite element method indicates that relatively large internal net heat flow imbalances result near highly skewed or poor aspect ratio elements. Thus this column also serves as an indicator for the acceptability of the mesh generation scheme. For external nodes, the net nodal heat flow rate imbalances over a given surface must sum to the total heat flow occurring across that particular surface. This also provides a check on the solution since the total heat entering the solution domain must, in the steady state, exit from the solution domain. Thus, for steady-state problems, all of the net nodal heat flow rates should algebraically sum to zero.

The final page of output presents a summary of the pertinent heat transfer data including both the computed and derived quantities of interest. The 'SUM OF NODAL FLOWS' is the quantity mentioned in the preceding paragraph which should sum to zero. This is, of course, relative to the total heat flow rate through the system. The number appearing on ( the sample output indicates approximately a 0.85 per cent cumulative round-off error when the 1828 nodes as used in this example are employed In discretizing the solution domain. The second entry of the summary is the computed value for the functional being extremized and is of importance when performing convergence studies. The 'AVG. SURFACE TEMP.' is
the average computed external pipe surface temperature. The 'EQUIV. NUSSELT NO.' is the computed groove equivalent Nusselt number based upon the liquid thermal conductivity. The remaining entries of the sumary are self-evidenc and relate to the derived quantities of Chapter 3.

## E. 3 Sample Out:put

The sample output described in the above section is included in the final pages of this appendix.

## LAEIC Patiameteñ



Bulivaiy こuaditicis

1. SPACIFIED FIUX




| NuIE | $\chi$ | Y | TEAこ． | ごじ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\therefore$－ | $\cdots \cdot$ | 474．：60 | 2． $4: 3$ |
| i | －．41607E－： 1 | 0． | 1：73．84y | 4． 10 E |
| 3 | ＇．63333E－ 1 | $\because$ | 47：．7ッ7 | 4．1n ${ }^{\text {c }}$ |
| $t$ | $\therefore 1<5^{\circ} \mathrm{i}$ E $+^{\circ}$ |  | 林．72y | 4.1501 |
| 5 | $\bigcirc 10607 E+\cdots$ | $\bigcirc$ | Le1．12s | － 16 |
| 6 | $\because 2 \mathrm{c}-3 \mathrm{FF}+1 \mathrm{r}$ | ？． | 4ちt．2． | 1.101 |
| 7 | $\cdots 5^{-1}-+^{\prime} 1$ | $\cdots$ ， | 14．6． 3.35 | 4．iju |
| 5 |  | ？．＂ | 4ん・•27t | 3.4 |
| c | $\bigcirc 32 \pm 555^{\circ} \mathrm{C}$ | $\therefore .17$ | 4うし．jヶ， | j． 56 |
| $1 \cdot$ | －30042－＋ 1 | $\therefore 1$ | いこと． 3 － | こ．－¢ |
| 11 | － $1.75^{\text {cta }}$ | － | 426.771 | $\therefore$－－${ }^{\text {c }}$ |
| 12 | －6473754＊ | 1. | 42！．しい | 3．－－¢ |
| 13 |  | $\bigcirc{ }^{\circ}$ | 417.30 | 5． 44 t |
| 15 | －52635－ | 1.9 | 414.32 | 3． 4 ¢ $=$ |
| 15 | －565702＋ | $\because \bullet$ | 411.566 | 3.414 |
| 16 | $\because 6^{\circ} 5 \angle 6 F+$ | $\bigcirc$ | 40.137 |  |
| 17 | －E4U74：+ ： | $r . ?$ | 4．t．ご化 | 3． 5 － 5 |
| 1 1 | $\because .68+212+1 i$ | $\cdots$ ！ | 4． $5.1{ }^{\circ}$ | ミ．－Lt 1 |
| 15 | ． $72368 こ+^{+}$c | $\therefore$ ， | 4－3．4t； | ミ．$=4$ く |
| ＜ | －7t510こ＋ | $\because n$ | 4．．．1 ご |  |
| 21 | －ぐ $263 \mathrm{I}+$ ： 6 | n． 9 | 4 1．tec | 3．与Lし！ |
| 22 |  | n？： | $3 ヶ$ ¢．$=2$ r | j．ご相， |
| ＜ 3 |  | ． | $3 y \leq .1{ }^{-1}$ | $\therefore$－4： |
| 24 | －．921 5 $5^{\text {F }}$－ | $\cdots$ | $358.0 t 7$ | 3．：4l2 |
| ＜ 5 | －SE E35 + ： | － | ごせ．sっは | －－峘し |
| 26 | －1 $0 \cdot n=+r 1$ | － | 3¢h．＜ 1 |  |
| 27 | － | $\cdots 72^{\prime} 2 E+\cdots$ | －$\because$ | －－tr |
| 28 | － | $\cdots$－ $5 \leq 382 \mathrm{E}+\cdots$ | 75.92 |  |
| 29 | ， | ？． $81501 \ddot{\text { a }}$＋ | 130．30 | －．．${ }^{-}$ |
| $3 *$ | － | ？．717L1E＋？ | 1：5．075 | ． |
| 31 | － | $\therefore 62921 \mathrm{E}+: 9$ | 21．4．9． | ． |
| 32 | － | $\because 5411$＋～＂ | ことフ．こく1 | －．．． |
| 33 |  | $\therefore$ ¢ $45<81 \mathrm{E}+31)$ | 3くt．．ct | －．f．r |
| 34 |  | r． $364013+\cdots$ r | $3 \mathrm{cr.g} 00$ | －．．．r． |
| 35 | － | 1．276415＋＂ | 394.014 | －． 11 |
| 36 | － | $\therefore 18820 \mathrm{E}+\%$ | 4くら．うご | － |
| 37 |  |  | いど．7＝1 | － 11 |
| 30 |  | c． $35714 \mathrm{E}-1$ | 4.60 .98 | ． 1 |
| 39 |  | ก．71429E－11 | ＋05．3＜0 | － 2 |
| 4＊ |  | $\therefore 57143 \mathrm{E}-11$ | 409．0y： | ．．． 1 － |
| 41 |  | 9．428ら7E－71 | $47 r . t 45$ | ＿．113 |
| 42 | － | 6．2E571E－11 | 471.543 | －．1） 5 |
| 43 | － | －14200E－71 | 472.734 | －．cr 15 |
| 44 | －ム1ち¢7：－－ | ？．14206E－11 | 471.310 | $\therefore$ ．$\because$ |
| 45 | －¢ 3333 E゙ー－ 1 | J．14286E－）1 | $110 y .465$ | $0: 7$ |
| 116 |  | $0.14286 \mathrm{E}-{ }^{\text {－}} 1$ | 4t $5.3 y$ j | $\square^{\prime}$ |
| 4 | －． $100 \times 7 \mathrm{E}+$ 「 C | $\because 14286 シ ゙-71$ | 45 ¢．772 | －．！ |
| 45 |  | ？．1426EE－： 1 | $45 \% .095$ | ど「ごく |
| 49 | n． $25 \begin{aligned} & \text { nrlizitir }\end{aligned}$ | ก．14286E－ 1 | $445.46 \%$ | 7．1：10 |


| 5．$\quad \therefore$ 2コロヒ7シ |  |
| :---: | :---: |
| 51 －32jう5E＋！ |  |
| 52 U达 $25+C 6$ |  |
| E？ |  |
|  |  |
| 55 －けもうごご |  |
| ¢t $57 \quad \cup 06 \leq 73 \mathrm{O}+\mathrm{C}$ |  |
|  |  |
|  |  |
|  |  |
| 6r | $\therefore$ ．00421E＋ir |
| $\mathrm{tr}_{61} \quad \because 72368 \mathrm{E}+\mathrm{C}$ |  |
| 62 （ $\quad \because 763165+\ldots$ |  |
| －3－ 3 － $26.5{ }^{\circ}$ |  |
|  |  |
|  |  |
| 6t $\quad .2215 \mathrm{F+}$－ |  |
| 勺7 $\quad$－y6i．33＋ |  |
|  |  |
| 69 － $63331 \mathrm{E}-1$ |  |
| $7 \quad \because 1015450$ |  |
|  |  |
| 72 －21ะ31：－： |  |
|  |  |
| 7 u （ $\quad 276.99 \mathrm{~L}-\cdots$ |  |
| 75 － 3 ＊ 332 E － 1 |  |
| 76 － $33166 E-$ ¢ 1 |  |
|  |  |
| 70 － 3 C 333 － |  |
| $79 \quad .41067 \sum_{i-1}$ |  |
|  |  |
| －1－41067E－－ 1 |  |
| d2 ．41007－ 1 |  |
| 33 ． 31657 －－ 1 |  |
| $=4 \quad \because 41007 \mathrm{E}-$－ 1 |  |
| －，\＆ $33335-$－ 1 |  |
| 36 － $125{ }^{\circ} \mathrm{E}+{ }^{\prime}$ |  |
| －7－つったがこ＋ |  |
|  |  |
|  |  |
|  |  |
| $\because 1$－2 23j5E＋－「 |  |
| $\therefore 2.30342 E+1$ c |  |
|  |  |
| －－＋1737ミ＋ |  |
| \％－－ 5 5\％－＋ |  |
| ¢cise |  |
|  |  |
| \％o－ビうくṫ＋ |  |
|  |  |
| 1 ， | －6cり215＋1 |
| 11 | ． 723 と旲 +1 ？ |
| 12 | －76315シャ＊ |
| 13 | －${ }^{\text {¢ }} 2 \mathrm{t}$－3E＋ |
| $1-4$ |  |
| $1 \cdot 5$ | ．3815y：＋？ |
| 110 | ． 2215 5＋＊ |
| 1！ 7 | －¢6． 3 F＊＊ |
| 12 |  |
| $1{ }^{1} 2$ | 吹つ拒 |




$71 .<1$ 139．53日 1ヶt． $41 \%$ ＜45．777 ＜ut．7e： 3ct．j 1 3と 1．$=42$ 394.243 427．6
4i5．4ヶ7
$4 \div 5 .+77$
40f．： 47
＂t．e．c． 12
407．572
459.022 $457.56^{\prime}$
$45^{\circ} .327$
44＜．379 $435.47=$
$425.6^{\circ} 3$

427.104

1：11．くら3
412.067

4？．516
4：－7．1
 4 く．しう
4．．し71
3！5．2 3夕7．t34 sまも．iot 355． 514 294．776 $354.25 t$ 393.944 393．042

74． $5=1$ 10． 2 2く0
157．3：3
240．3コ？
2引と．ヒ7ら
$327.7<7$
301.532
sc3．tく4
a＜5．y 1
401．3ヶ 1
$4 \in 1.245$
$4 \in 1.43$
402.512

45t．731
444.190

44：．073
$433 . t^{\circ}:$
$427.0^{\circ} 2$
422．63：
41t．4y7
414.605
411.262

－1．13t 3

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $17 \%$ | ． 52032 \＃＊＊ |
| :---: | :---: |
| 171 | ．50ミフyz＊＊ |
| 17. | －6is26：＋ |
| 173 | ， 0 －i $+7+$＋+ C |
| 17. | －03：21こ＋ |
| 175 | －T2jceit |
| 176 | ． 70 1 $1 \mathrm{c}=+$＋ |
| 177 | － $5^{\prime \prime} 2635+r \cdot{ }^{\text {a }}$ |
| 170 | ．．5421゙E＋？ |
| 179 | －． 6 P1505＋${ }^{\text {c }}$ |
| 1 － |  |
| 181 | －90＂シ3E＋？ |
| 1 ¢2 | －1．，「－＋ 1 |
| $1 \pm 3$ | －533．97：－ 1 |
| 1 P 4 | － $647 \times 4 \mathrm{Cl} 1$ |
| 10.5 | $\because$ 〇o 51上－ 1 |
| 106 | ．$=7$ 7995－ 1 |
| 1）7 | －．¢ 7 5¢－＊ |
| $18 \cdot 8$ | － $11^{\circ} 3 \equiv+r i$ |
| 19\％ | －121د6i＋－ |
| 1 ir | －13263こ＋1： |
| 191 | －165 1E＋ |
| 172 | －15 $534 \mathrm{E}+$ co |
| $1: 3$ | ． $10067 \mathrm{c}+{ }^{\prime}$ J |
| 194 |  |
| 195 |  |
| 196 | －ぐところさ＋！ |
| $1 \ni 7$ | －ぐ＂$=+1$ ！ |
| 130 | － $20.175+\cdots$ |
| 199 | － 320 5 $=+{ }^{\text {a }}$ |
| $2^{-1}$ | －jrstas＋はの |
| $2 \cdot 1$ |  |
| $2 \cdot 2$ | － 147278 － |
| 23 |  |
| ご 4 | －う ¢ ¢ 32：＋ |
| 25 |  |
| 2 O | －${ }^{\prime}$ S近こ＋ |
| $2 \cdot 7$ | －¢6， |
| 20 |  |
| $\because 9$ | －7236ここ＋＊ |
| 21： | ．7も31ヒこ＋ |
| 211 | －$=20$ ？$=+$ |
| 212 |  |
| 21. |  |
| $<16$ | －$\ddagger$ ？${ }^{\text {？}}$ ， |
| 215 | －こ，J？$+\cdots$ |
| 21t | － 1 －－+1 |
| 217 |  |
| 216 | － $0 \times \pm \pm 0-1$ |
| 21： | －$=1$ jiL－1 |
| ＂${ }^{\prime \prime}$ |  |
| 221 | －12342E＋． |
| 22. | －137575＋ |
| 2＜3 | －15172ฐ＋゙ |
| 2：4 | －165¢7－tir |
| 225 |  |
| 22t： | －1， $180 \mathrm{t}+$＇ |
| 227 | － $2+33 \mathrm{E}+$＇． |
| 220 | －2）＋3 3i＋+ ¢ |
| 28 | $\because \quad!+r r$ |

． $57143 \mathrm{E}-11$
57143E－91
.57143 こ－n 1
$.57143 \mathrm{E}-$－ 1
． $57143 \mathrm{E}=1$
． 57143 Eー？ 1
C． $57143 \mathrm{E}^{-\infty} 1$
（．．57143 $\left.{ }^{2}-1\right) 1$
． $57143 \mathrm{E}-$ ？ 1
． 5714 3E－： 1
$.57143 \mathrm{E}-\mathrm{Cl}_{1}$
$.57143 \mathrm{E}-71$
$.57143 \mathrm{E}-11$
－ 9837 七こ $+\cdots$
－ $0653 y z+1$ ，
－ 8.7 C15．＋？？
． 71 Y० $3 E+1$ ！
－ 0 3＂ 46 とが
－541eez＋10
－． $4535^{n}$ ？ $2+n$ ？
－3i513z＋ㅁ
－ 27675 ご？

$\therefore 16905+1$ ？
－8 こ 7 14ご・1
． 7142 うご－ 1
ก． $71429 \mathrm{E}-11$
$.71+29 E-1$
． $71+29 \mathrm{E}=-1$
． 7 1429Eー？ 1
．71429 $5-1$
． $71+25 \Xi-71$
． 7142 ど ご 1
．7112与E－71
－ $71122 \mathrm{E}^{-1} 1$
$\therefore 71$ とこごーフ1
－ 711729 Ëー？ 1
． 7112 g E － 1
． 7112 多こ－ 1
1．714えうシー？ 1
． $71+25 \mathrm{E}-1$
－ $71429 \mathrm{E}-1$
1． $7142 y \mathrm{E}_{2}-1$
「．7142まE－） 1
714くこの－•1
$.714<3$ cー 1
ค． $71+2=3-1$
＂．のとい7ご．+
－． 3962 E + －－
$.37 E$ E＋
$-713 \leq 3 z+9 ;$「．63：．4うご＋
$\because 542 j 8 E+{ }^{-1}$
$\because 453 y^{\circ}$ 三
－ 36543 E
9． $275552+$ ？

． 1 ••



4 と．c 32
4．5．ころ1
46 $3.1<9$
（4） $1 . \circ 1$
395.129
357.5

39t．1： 5
394．y35
393.985

34う．こう1
3ч2．7s？
392.417
$352 . j 17$
75．11 7
141．1ヶ4
1ニと．こう！
く4E．د七つ
＜$=1.414$
329．＂： 1
3cく．ジロ～
3：3．3．
1．＜こ．くら
4こ5．4． 37
45った．72
456．12
41と．くー0
43 c .750
4 51.5
4くモ．！ 2
421.32

ム1є．7う
412.975
43.07

4：t．e． 4
43.523

4：1．53j

3ب7．554
3：うこ．りま 2
3）4．56：1
$3 シ 9 . ミ 7 \dot{~}$
教く．420
コン 1 ．も゙ 6 3） 1.170
$3=$ ．r．te
3ヶ．．76
$75.0 \cdot 4$
142．445
2••3 3
$25: 322$
そら的に
s3．7t3
ゴう．よた 7
3y $2 . \div 54$
$414 . \dot{7}$ ；
47．3．4
447．乚㇒
430．413


| $230^{\circ}$ | －249．7E＋： | 14 E － |
| :---: | :---: | :---: |
| 231 | ． $3 \pm 3 \pm 5$－ | $\because 65714 \mathrm{E}-$ |
| 232 | － 0 ceucictc | $\cdots 5714 \mathrm{E}$－ 1 |
| 233 | －＂ $70 \neq+$ ¢ | $\therefore$ ． $65714-31$ |
| 234 | －＂4．757\％ | － － 5714 － |
| $2 \%$ |  | $\because$－ 05714 E －？ 1 |
| 236 | －52f | 二．$E 5714 \mathrm{E}-\mathrm{C} 1$ |
| 257 | －565フィ：＋7 | 1． $0 \leq 714 \mathrm{E}-1$ |
| ＜36 | － $6.5 \angle E 5^{+}$ | $\therefore$－ $35714 \mathrm{~B}-1$ |
| 2.39 | －t1547\％ | $\therefore 85714$ ご？ |
| $24^{\circ}$ | －ce421：＋ir | ก．0こ714E－？ 1 |
| 26，1 |  | ก．85714シー）1 |
| 242 | －To310：＋1． |  |
| 243 | － $62035{ }^{\circ}$ | 「．8う714E－＾1 |
| 244 | ． $2421 r_{\text {2 }}+$－ |  |
| 2：5 | －¢¢ $1535+\cdots$ | ¢． 05714 －－ 1 |
| 240 | ． 215 5こ＋ | $\because 8571 \mathrm{E}-11$ |
| ぐ 7 | －¢ ¢ ミ3－＋ | $\because 8$－ 714 ご－ 1 |
| 2＂\％ | －1この－r！＋ 1 | ¢． 65714 E－？ 1 |
| 2．9 | －ヒごくすスー・1 | ？．98590 ${ }^{\text {＋}}$ |
| 25. | ． 572 こここ－ 1 | －84737E＊＊ |
| 251 | ． $11112{ }^{\text {＋}}$ | －－ $477 \mathrm{~T}+$ ？ |
| $25 \%$ | ． 131170 | $\therefore$－72．17E＋？ |
| 253 | －14． 15 \％＋＇ | $\because 03158 \mathrm{E}+$ r |
| 254 | － $15512{ }^{-}+{ }^{+}$ | $\cdots$－ 54298 E ＋$^{\text {n }}$ |
| 255 | 1．18219 ${ }^{\circ}+{ }^{\circ}$ ？ |  |
| 250 | $\therefore 1 \leq 5: 7$＋$^{\text {－}}$ | ค．36570＋？ |
| 257 | $\because 1$ c $\because$ b + ＋r | $\therefore 27715 \mathrm{E}+{ }^{\text {r }}$ |
| 258 | ． $2332 \Gamma+1$. | $\cdots 1806{ }^{\circ} \mathrm{E}+{ }^{\circ}$ |
| － | ． $25.0{ }^{-\cdots+}$ |  |
| ご | $\therefore$－ $289470+$ ¢ |  |
| 2t1 | －320．55：4 | ก．11．n USE＋へ． |
| 232 | － $3631.2=+1$ ： | $\bigcirc 1.101 \mathrm{Etrn}$ |
| 263 |  | $\therefore$ 1）ccet $\%$ |
| 204 | － $447575+r 0$ | C．1CNCいEtへ） |
| 205 | －$¢ 0$ 比リ上＋1 | r．frscietno |
| 266 | －¢ $2032 \mathrm{~F}+{ }^{\text {a }}$ |  |
| 2 c 7 | －j0579＋${ }^{\text {a }}$ | n．foore E ＋ |
| 205 | $\because t-520!+i r$ |  |
| 204 | $\bigcirc 6447 \pm \overline{+c}$ |  |
| 27 | ． $684 \angle 1 \equiv+$ ？ | －10\％） |
| 271 | ． 723 ¢ 8 St＋r | $\cdots{ }^{1} \cdot \cdots \mathrm{E}+\cdots$ |
| 272 | $\because T 0316=+$ C | （．1：） 0 （e $\mathrm{E}+3$ ） |
| 273 | －ci203E＋${ }^{\text {c }}$ | C． $10.305 .3+19$ |
| 274 | －勺629n？ | $\cdots 1$ jn Etin |
| －75 | －0－158 $0+1$ |  |
| 27 t | －$\leq 1515+1$ c | $\therefore 1$ 1rjorijar |
| 277 | －Se s 3 Etr | － $10 \sim()^{(1)}$ |
| 278 | － 1 ir $\mathrm{F}+1$ | － $10 \%$ E＋1 |
| 279 |  | 9． $9875^{\circ} \mathrm{E}+7$ ？ |
| $26^{\circ}$ | － $11678 \pm+1 r$ | $\therefore 91714 E+n$ ； |
| $2 \div 1$ | $\because 13 E: 2 i+r$ | $0.84678 \mathrm{E}+$ ？${ }^{\text {¢ }}$ |
| 20.2 | $\because 161265+\cdots$ | 9．77642E＋j） |
| 203 | $\because 1035^{-E+1}$ | C． $7^{\prime} 6^{\wedge} 6 \mathrm{E}+1$ ？ |
| $2=4$ |  | ）．6357CE＋nの |
| 245 | ． $227=85+{ }^{\text {r }}$ | ก．5653UE＋7） |
| 2F6． | － $25.225+0$ | 9． $49498 \mathrm{E}+$ ， |
| ＜e7 | － $27245 \mathrm{E}+\mathrm{r}$ | ก．42462E＋${ }^{\text {？}}$ ？ |
| 2＊8 |  | ？．35426E＋${ }^{\text {a }}$ |
| 205 | ？． $31093 \dot{5}+\cdots$ | ט．2839rEtin |


| 425．336 | $\therefore .1032$ |
| :---: | :---: |
| 423．993 | －1： |
| 419.140 | $\therefore$ i：25 |
| 414.55 | $\because \cap<4$ |
| 411． $23{ }^{\text {a }}$ | 23 |
| 4．7．916 | －ir ${ }^{\text {c }}$ |
| 4．4．933 | ．${ }^{\text {c }}$ |
| 4？ 2.275 | ．！ 31 |
| 3¢9．9＇ | r．rn－9 |
| $357.86^{\circ}$ | ．．．－31 |
| 305．947 | ○．1－${ }^{\text {a }}$ |
| 2 |  |
| $35<0.4$ | L．$\therefore$ ¢ 11 |
| ） | ．．． 7 |
| 340. セ4く | －．．．127 |
| ser． 111 | C．rerry |
| $3 E ¢ .5 y+$ | ○僠 |
| 3tさ．くくら | $\therefore .1510$ |
| ز¢ | ．189 |
| 1.1 | ． 1514 |
| 7t．lSE | L． 3 |
| 16s．St3 | －1．n¢： |
| 2＇2．442 | －－مin |
| 25＜．73： | －i．i：50 |
| くらミ．0ヶう | －－¢ ¢（\％ |
| 33\％．6 5 | －1．irir |
| 354.005 | －r．i： 11 |
| $39<50$ | －r．err： |
| 41 c .143 | －i） 5 ¢ |
| 433.101 | －－ 357 |
| 427.15 | －i．$\because 01$ |
| $4<1.812$ | －1．c「31 |
| 417.160 |  |
| 413.085 | $\bigcirc 11$ |
| 4.9 .432 | 41 |
| L：6．150 | $r$ ¢ 1 |
| 4＊3．219 | ．r 54 |
| 4 －．589 | －：＂ 37 |
| うyt．え3s | －－ 0 O 5 |
| 39と．149 | －r．onte |
| 394．3：7 | ． 2 ？ 43 |
| $39<.7 r 1$ | －1．1） 13 |
| 391．323 | －．．104 |
| 39 r .160 | －－（n5． |
| 30と． 226 | －．CCS0 |
| 366.409 |  |
| د87． 903 | －L．．．4C |
| 307.070 | －1．．f17 |
| 307.570 | ¢． 6.74 |
| ¢．${ }^{\circ}$ | － 1.1407 |
| 62.085 | $\because$ •日̇\％ |
| 12i．5．9 | L．＇ron |
| 172.343 | c．enor |
| 218.473 | 1．1．19 |
| 254．095 | －1．11 |
| 26．4．539 | costa |
| 325.140 | ronniz |
| 351.194 | ¢．6．12 |
| 37 ¢．703 | corns |
| 389.484 | O．r．r．1t |




3と7．コュ2 3 30． $1=$ 3ヶ4． 5
301．と́に － 7 シ．とぽ 377．9．3 37t．： 1 374．236 372.554 371． 31 3tと．736
368.332
jと7．4ヵ4
3とも．こど
3たく．00：1
3 c5． 495
30れ。うどy
紙比
3eb．こ0j


| 35 ¢ | － 3 231：＋ | ． $31576 \mathrm{E}+7$ \％ | 342． 117 |  |
| :---: | :---: | :---: | :---: | :---: |
| 351 | － $295 \pm$－ | $\because 31075$ E＋？ | 380.305 |  |
| 35.2 | －42933：＋ | $\therefore 31676 \ddot{z}+79$ | 37e．404 | － |
| 35. | －－－13\％＋－ | ก31076E＋フ） | $37 \epsilon .572$ | ¢0f 0 ¢ |
| 3511 |  | $\because 31070 \mathrm{E}+$ ？ | 374.074 | U．rras |
| 355 | －53．320．＋ | $\because 31676 z+l)$ | 372.026 | U．rr29 |
| 35 t | －－oc 1E．．．+ r | －．31076E＋） | 371．入うt | ¢．0¢12 |
| こミ7 | $\cdots$－t 3 y $3 i+1.1$ | ก． $31076 \mathrm{E}+\mathrm{n}$ ？ | 309.3 é 3 | loli ${ }_{\text {cor }}$ |
| 3ミ8 | － 6 － 5 cestr | － $31076 \mathrm{E}+\mathrm{7}$ 1 | 307.819 |  |
| 359 | －ヒブごご＋ | －31076E＋71 | 3́t．378 |  |
| $30^{\circ} \mathrm{r}$ |  | －． $31076 \mathrm{E}+$ ？ 7 | 365.00 | \％íc |
| 361 | $\because 7458115+{ }^{-1}$ | $\therefore 31070 \mathrm{E}+$ ？ ？ | 303.698 | C．1－13 |
| 302 | － $731 \pm 7$ \％＊ | －3107tE＋n | 362.674 | c． 6.113 |
| 363 | ． $61030+$ | $\therefore 31676 \mathrm{E}+17$ | $301.09 y$ | ¢．0！？ 0 |
| 36.4 |  | 9．31076E＋？ | $301 .<77$ | 0．102 |
| 305 | $\because \mathrm{C}={ }^{\text {a }} 045+$ r | J． $31676 \mathrm{E}+1)=$ | 30 ¢． 717 | $\begin{aligned} & 1 .!i j \\ & r .1 r<2 \end{aligned}$ |
| 360 |  | $\cdots 31576 \mathrm{E}+{ }^{\text {？}}$ | $36 \cap .315$ |  |
| 367 |  | $\because 3167$ E $+\cdots$ ？ | 36． 974 | $\because r-1$ |
| $36{ }^{\circ}$ | －1．${ }^{\text {－}} \mathrm{L}+1$ | － $31076 \mathrm{E}+0 \%$ | S59．9y7 | $\cdots$ |
| 309 | －13771－ 6 | $\because 95360 \mathrm{E}+$ ） | 3） | $\because 0.25$ |
| $37^{\circ}$ | $\bullet 15714={ }^{+}$？ | $\because 9<760 \mathrm{E}+\mathrm{C}$ | 0 0． 035 | －15t5 |
| 371 | ． 17717 －$^{-1}$ | $\cdots$－ 8 ¢106 ${ }^{\text {＋}}$ ， | 110.501 | －crir |
| 372 | －1y0g？ | ？． $79565 \mathrm{E}+$ ？？ | 10．6．633 | ¢ ¢ir |
| 373 | ． $210635+4{ }^{\text {a }}$ | － $7 \times 304 \mathrm{E}+$ ？ | 211.650 | －－crir |
| 374 | － 2 ミe $361+1 \%$ | $\because 6 \in 3 \in 2 E+\cdots$ | ＜11．650 | －Ulir |
| 375 | T．．5t y5＋i | $\cdots 50761 \mathrm{E}+$－ | 205.064 |  |
| 37 t | $\because$－ 7 こうごかの | r．53159E＋nr | 315.933 | － |
| 377 | －＜ 5 555＋${ }^{\text {cr }}$ | － 4 t558E＋？ | $341 . t \geq 1$ | －$-1 i^{\prime}$ |
| 370 | － $315275+^{\prime}$ ¢ | $\therefore 39556 E+{ }^{\circ}$ | 303.304 | －inct |
| $37 \%$ | － $333 \mathrm{~J}^{\text {a }} \mathrm{E}+{ }^{+\cdots}$ | － 3 3355E＋－ | 301．${ }^{\text {c }}$ | 1．：33 |
| 5¢， | － $6707 \mathrm{j}+10$ | r． $33355 \mathrm{E}+\mathrm{r}_{\text {？}}$ | $375 .<06$ | $\because \cdot r 1$ |
| $3 \div 9$ | －6－93－＋ril | $r .33355 E+$ ？ | 377．4ど | ソ．rs |
| 302 | －人う3゙いご＋ | $\because 33355 \mathrm{E}+$－ | 375．654 |  |
| 3 cs | ．1し7：1ご＋ | －．33355E＋\％ | j73．É ${ }^{\prime}$ | H：r ${ }^{\text {r }} 18$ |
| 351 |  | $\bigcirc .33355 \mathrm{E}+\mathrm{C}^{-}$： | 371.901 | ¢．n16 |
| 3¢5 | －535－19＋： | －．33355E＋2： | 375． 190 | － 0 or 12 |
| 356 | －5cysyこ＋ | r． $33355 \mathrm{E}+\mathrm{r}$ ， 9 | 508．403 | C．rrin |
| 367 | －¢へ ¢ 25ご＋ | $\because 33355$ E＋${ }^{\text {－}}$ ， | 3tt．Ebe | （1anza |
| $3 \mathrm{E} \mathrm{\varepsilon}$ | －t3ごく9ジ＋6 | $\bigcirc 33355$＋${ }^{\text {¢ }}$ | $36 t .850$ 305.350 |  |
| 3 Ec | －674．09 $\mathrm{S}_{2}+\cdots$ | －．33355E＋n？ | 305.35 303.516 | ！$\because$ ¢ |
| 390 | ． $71.12 \%+\cdots$ | $\therefore 33355 \mathrm{E}+\cdots$ ？ | 362.631 | C．CS14 |
| 351 | －7ッフ์ブッ＋＊ | $\because 33355 \mathrm{E}+\cdots$－ | 301.477 | 1.106 |
| 392 | － 7 － $19.9+$ r | n． $33355 \mathrm{E}+\mathrm{Cl}$ r | 30 r．404 |  |
| $3 \stackrel{3}{ }$ | －－17－1ジ＋ |  | 359．539 |  |
| 394 | C．854105＋＇r | P1． $33355 \mathrm{E}+\cdots$ a | 356.684 |  |
| 395 | －ES－5？＋${ }^{\text {－}}$ | －． $33355 \mathrm{E}+\cdots$ | $35 t .325$ | $\begin{array}{r}\therefore \text { rr } 15 \\ \hdashline \therefore 15\end{array}$ |
| 396 | － $20950+10$ | （．33355E＋9） | 357． 425 | ，隹15 |
| 397 | －シe ju7E＋（1） | ก． $33355 \mathrm{E}+1)$ ？ | 357．007 | $\because \square$ |
| 398 | －1：～－${ }^{\text {－}} 1$ | ？ $33355 \mathrm{E}+\cdots$ | 357．6．： 9 | r．ir 20 |
| 359 | －15213－ 4 \％ | $\because 9963^{\circ} \mathrm{E}+\cdots$ |  | －i．1590 |
| 4 ！ | ． $171 r$ ezar | $\therefore$ ¢3173E＋ni． | 6r．159 | $\because \cdot 6$ |
| 41 | －16ynciatíu | T． $86710 \mathrm{E}+\mathrm{C}$ | 115．259 | －cor |
| $4{ }^{10}$ | － 2 － 0 cy $=+1$ | $\because 8$－ $258 \mathrm{E}+{ }^{\text {c }}$ | 1611．991 | －r．ecrin |
| $4 \cdot 3$ | －＜27791＋r | －． 730 C1E＋${ }^{\text {－}}$ | ＜． 9.305 | －i． |
| $4{ }^{\text {－}}$ |  | $\therefore .67344 E+1$ ： | 248．5En | r．fre． |
| 45 | $\because 205597+$ ¢ 1 | ก．6く887E＋1？ | 202．9j5 | cirr |
| 4.6 |  | －5443：E + ？ | $312 . E 2^{\prime}$ | $1 . C$－ |
| 4,7 | － 3 － 3 E $\mathrm{E}+$ r | C．47973E＋j | 338.4 E1 | －1．u． |
| 4.0 | －3223nEtr | n．41b15Etrin | j6f． 175 |  |
| $6^{\prime}$ | ＇． $3412 \begin{gathered}\text {－}+ \text {＇}\end{gathered}$ | $\because 35^{\wedge} 56 E+7$ ？ | 378. | O．rcis |

415
411
412
1：13
$+14$
1；1
t．ic
L． 17
418
414
${ }^{4}{ }^{2}$
421
422
$4<3$
424
$4<5$
： 25
427
$42 \varepsilon$
+2 C
43.

4； 31
432
433
434
435
430
437
638
－ 3
$44^{\wedge}$
4－1
4－2
443
4414
4115
4.46

447
448
$1 ; 5$
$45^{\circ}$
451
452
にも
しました
$4 ; 5$
$15=5$
$\therefore$ ？
ムこと
«う戸
$46^{\circ}$
tat
45
403
46,4
165
$+56$
467
668
L6S

$$
.530^{24}-1
$$

$$
\therefore 7 \quad j r_{2}+c
$$

$$
\cdot \varepsilon \equiv<E \dot{L}+
$$

$$
\text { -t } 15+
$$

$$
.67 j_{4}
$$

$$
\text { i1 34t. }+10
$$

$$
.7+5+45+61
$$

$$
.7 \text { 外1」12+ }
$$

.c170n:

$$
\cdot c 51: 75+i c
$$

$$
\cdots \geq+3 r+\cdots
$$

C白n-:+

$$
\text { . lobuc }+i
$$

$$
\text { . } 151+76:+
$$

$$
\cdot-284=+
$$

$$
-2-93 i+1
$$

$$
\text { - < } 3 \operatorname{Pr} 1=+
$$

$$
\text { - } \angle 57 \cdot 9=+;
$$

$$
.<7517 \%+
$$

$$
\text { - } 27325=+18
$$

$$
.31133 i+r
$$

$$
.32341 F+
$$

$$
-34749=+
$$

$$
-27 \pm 131+r
$$

$$
\text { - } 9.8=+i c
$$

$$
.114-94-+
$$

$$
\text { - } 73 \text { 泣+: ? }
$$

$$
-5735+r 1
$$

$$
\text { - } 3 \operatorname{ccc} 55+c
$$

$$
.57249=+1
$$

etjje-c

$$
1172-
$$

$$
\text { - } 7:, 610:+
$$

$$
\text { . } 7810 \mathrm{~g}:+1
$$

$$
\text { - } 17 \text { yb }=+2
$$

$$
\text { - } 55 \tan ^{-} j E+
$$

$$
0 \cdot 3 \cdot 39=+\cdots
$$

$$
\text { . } 2<085=+r c
$$

-5bj4c+1

$$
\text { - } 19122 \overline{5}+
$$

－ 19 i2482＋1C
$.21575 E+i r$
，231 28＋1：

－ 267 う5E＋C $ا$
$.284812+6$ ？
－ $3^{-}<^{n} 3^{2+1 t}$
－ 31934 E＋1 ：
－ $330015+C 1$
35 部关＋1
376.3 こ 7
374.553
372.777
$37 \% .697$
30ヶ． 2.33
3c7．5：－
$36 \vdots .046$
364． 201
362.771

3 c 1.380
$30^{\circ} .121$
3ミข． 904
3ラ7．こと 357．1＜0
sE0．1，17
355．t．o2
355．405
るとミ．くく7
3う5．1＝
59．～0＝
113．yt3
1t3． 14 ，
$\therefore 7.0^{6} 5$
245.92

28：b
j9．000
3j5．＜4－y
30ヶ．5．js
374.27

373．くと 1
371.572

365．0．0
3 दc． 13 4
30t．W～0
30t．750
303.1 ． 2
$361.5=5$
3んi． 142
35 c .754
357．勺．＂
35t．id 1 y
35ち．4くり
354.501
353.078
353.327

352．952
$352.0 \div 0$
$35<.61$ ）
1.1

うと． 6 ：
112．075
1し1．j\％
24.7 c

263．24
277.052

3 t． $53 r$
311．ç8．
153．ロッう
371.042


$$
\begin{aligned}
& \text { - } 27<76 \text { E }+ \\
& \text {-6.4ラ5ミ+ } \\
& \text {. } 43716 i+r i
\end{aligned}
$$

$$
\begin{aligned}
& \text {-5 324:- }
\end{aligned}
$$

| $0^{\prime \prime}$ | $\because 3 ¢ 36^{\circ} \mathrm{E}+{ }^{+}$ |
| :---: | :---: |
| 471 | －＂1 1392 $\ddot{C l}_{+}$？ |
| 1172 | － $44 \%$ czas＋ic |
| 475 | ． $1703^{2} 5+1$ |
| 1176 | －5 3－＋ |
| 4 「こ | － $1 .+35+r$ |
| 476 | －574 ${ }^{\text {¢ }}$－＋ |
| t：77 |  |
| －7c | －cli $1725 .{ }^{\text {c }}$ |
| 475 | －076335＊＊ |
| ：38： | － $71115 \div$＋i |
| Lel | －74t＋31－ 7 |
| $4 \div 2$ | ．．フレ2 3ミ＋ |
| 4Mj | － $177 \div 2$ ¢＋： |
| 401 |  |
| 45 5 | －c9． $3 t^{\circ}+1$ ？ |
| 4r．t |  |
| 4 7 |  |
| 4ev | －1．－$\because+1$ |
| 隹を | －1！57i $+r i$ |
| し ¢ ！ | － 12 边 ${ }^{\text {c＊}}$ |
| 491 | －＜＜ップ「． |
| $4 C \%$ | －$<4515$ ¢ |
| 1；3 | －＜t101？+ ， |
| 495 | － 2 ファ 7－ |
| 405 | －＜yis） |
|  | － 31 ¢ |
| 1． 67 | － $22744 \mathrm{E}+1$ |
| ¢ \％ | －3ヵ3うy |
| やら6 | －3¢ $355+$ ？ |
| $5 \cdot 9$ | －3と517E＋\％ |
| $5-1$ |  |
| $5: 2$ | －＋4302こ＋＊ |
| $5{ }^{\circ} \mathrm{j}$ | ． $1170 \cdot 35+$ |
| $5{ }^{\prime}$ t | －E11－7E＋1r |
| 5 E | －ミ4，13E：＋1 |
| $5^{9} \mathrm{t}$ | －57ン7ビ＋ |
| 5．7 | －6． $3 \boldsymbol{y}$ y $5+$＋ |
| ごE | －． $04<75 \pm+i \cdot r$ |
| 5＇9 | －67ec7io＋ic |
| $51^{-}$ |  |
| 511 | －7！577ミ4＇r |
| 512 |  |
| 513 | $\because$－ 10 o $4 \mathrm{~L}+$＋ |
| 514 | $\cdots 85+1.5+\cdots$ |
| 515 | － 39 ，305＋ |
| $51 t$ | －S＜Oo3E＋C |
| 517 | －¢́n 3 g |
| 510 |  |
| 515 | －こ1．375＋i． |
| $52^{\prime}$ | $\therefore 22 t^{\circ} 3 E+\therefore 0$ |
| 521 | －241052＋00 |
| 522 | － $2.7345+1$ r |
| 523 | ． $27293 \mathrm{~F}+$－ |
| 524 | －28ec5z＋r |
| 525 | $\therefore 3^{n} 43^{-T}+r i$ |
| 526 | $\because 31995$＋． |
| 527 | －33561E4＊r |
| 526 | －35126L＋i， |
| 529 | － $360 ¢ 2 \mathrm{E}$＋（\％ |


| $\because 3654$ Cr＋ | 370．2！5 | O．rra゙ |
| :---: | :---: | :---: |
| そ－3854＊${ }^{\text {＋}}$－ | $360.55{ }^{\text {－}}$ | ．．．：19 |
| $\therefore 3654 \%$＋ 6 | 366.884 | －1913 |
| C． 3654 － | 305.217 | －5：26 |
| $\therefore 3854$ E＋ | 363.544 | ¢．ir 16 |
| $\bigcirc 3654{ }^{\circ} \mathrm{E}+^{\text {－}}$ | $3 \mathrm{t1.946}$ | －14 |
| $\because 3 t 54 \cdot E+\cdots)$ | 301.372 | －！ |
| C．3654 $\begin{gathered}\text { cti？}\end{gathered}$ | 358.065 | … 1 |
| $\therefore 3854 . \mathrm{E}+\cdots$ | $357.44^{\text {？}}$ | ¢0ヶ\％ |
|  | 35t．1： | $\cdots 15$ |
| $\hat{\therefore} 3654^{\circ} \mathrm{E}+\cdots$ | 354.885 | $\therefore 11$ |
| ？．3054： $2+?$ | $353.77 \%$ | C．．． 1 |
| － $3654^{\circ} \mathrm{E}+$ | 352．e？ 2 | － 21 |
| $\therefore 3654 . E+$ | 351．－n 1 | ：7 |
| $\bigcirc .3654 n \mathrm{E}+\cdots$ | 351． 2 ¢ 4 | ！ |
| $\therefore 3654 \% \mathrm{E}+\cdots$ | $35 i . .717$ |  |
| － $3854^{\circ} \mathrm{E}+\cdots$ | 350．3\％ | 11 |
| －3654＊E＋？ | 356．10\％ | － 12 |
| ？．3654n玉＋？？ | 351.613 | ＜ 3 |
| ？．16158 $3+71$ | ¢． | ． 128 |
| －945532＋ | 50．160 | ．1 i |
| $\therefore 38527 \mathrm{E}+\cdots 1$ | 111． 1 | $\cdots$ |
|  | 15¢．407 |  |
| へ．76い75E＋？ | $2 \% 2.446$ |  |
| ○7．449E＋ | $26 \div 54 t$ |  |
| 1．64：423E＋7 | $276.87 \%$ | －1．：i，； |
| $\therefore 50397 E+$－ | 313.349 | ： |
| 9．5＜371E＋－」 | 325.712 | －r．0 |
| $\because 4 \mathrm{~L} 345 \mathrm{E}+$ ？ | 351.4 | ． Or － |
| ？．4：319E＋ | $300.00^{\prime}$ | 2t |
| こ．4631 y5t ） | 367.17 | $3:$ |
| $\therefore 4$ ？31ẏt？ | 305.47 ？ | ．． 2 |
| $\because 4 i 319 \mathrm{E}+\cdots$ | $3 \mathrm{C3.0}$ ¢ | ．． $2<$ |
| －サこ 319ジ＋＊） | $302 .<42$ | $\therefore$－ 1 |
| － 46.31 yz + C ： | 30f．t． 38 | － r （ |
| 个．4C319E＋n | 359.05 | L．： 13 |
| 1．4．319E＋1） | 357.532 | L．cnit |
| ＇．6－315E4） | 350.161 | 1．0．1j |
|  | 354.005 | －1－12 |
| ن．4．319E＋～． | 35j． 355 | ， |
| $\because 4^{\text {¢ }}$－ $19 E+\cdots$ | $35<.15$－ | ¢0， |
| －4：319E＋ | j51．LE3 | －1．13 |
| v．4C31yE＋j） | 35r． 07 | と．0n： |
| 0．4「319E4？ | 345.205 |  |
| $\because 319 \mathrm{E}+\mathrm{\prime}$ | 348.573 | －Cut |
| $\because 4$－ $3158+\cdots$ | 34と． 3 ； | －！： 5 |
| $\because 45319 E+7)$ | 347．し | $\square 11$ |
| C．4斤319E＋nn | 347．4．0 | i． 11 |
| －4！ 31 yE＋17 | 347．33\％ | $\therefore$－ 010 |
|  | $\therefore \mathrm{O}$ | －．．1715 |
| 1．95（71st＋） | 57.514 |  |
| ． $.85188 \mathrm{E}+(1$. | 11ヶ． 114 | u．cri－ |
| －833＇5E＋＂ | 157．t＜ 7 | － 1 rió |
| －77422E＋－＊ | $26^{\circ} \cdot 127$ | ． 1 － |
| r．71）305＋1n | 257．034 |  |
| 9－6505 5 E＋7： | 271.10 co | ． $0 \cdot 0$ |
| $\bigcirc 55772 \mathrm{E}+\mathrm{i}^{\circ}$ | 3：${ }^{1}$ ． 143 | cotrir |
| －5ゴらとこE＋． | jくこ。384 | ijobrr |
| 0．40．000＋n－1 | $34 \%$－06 | －itrer |
| $\begin{aligned} & 4212 \mathrm{E}+\mathrm{IC7} \\ & -247- \end{aligned}$ | 365.126 | C．0 30 |


| $53^{r}$ | －39405Eャ＊ |
| :---: | :---: |
| こう1 | ．Hく3ら2Et？ |
| 532 | ． $45<593 \pm+$ ¢ 6 |
| 533 | ．443．70＋ 4 c |
| 534 | ． $513>1$＋1 |
| 535 |  |
| 536 | －¢776コごべく |
| 537 | － $61^{1 / 45}+{ }^{\text {a }}$ |
| 536 |  |
| 539 | $\checkmark$－ $67731 \stackrel{+}{+0}$ |
| ¢40 | ．．．71227i＋ C $C$ |
| 541 | $9.7472 r s+r 1$ |
| 542 |  |
| 563 | $\because=1 \pm 22 \mathrm{E}$＋ |
| 544 | － $45421 E+C$ ？ |
| 54.5 |  |
| 546 | ．．t26らうを＋${ }^{\text {r }}$ |
| 547 | － $034 . \mathrm{E}+$－ |
| 5 ¢ \％ |  |
| 549 |  |
| 5 SC | $\because 23 ; 945$ |
| 551 | ． $5.87^{\circ}={ }^{-}$ |
| 552 | － $26.596 \mathrm{E}+\mathrm{i}$ |
| 553 | －くdu42E＋「； |
| 554 | －20，ことご |
| $5 ¢ 5$ | ． $310145+$－ |
| 5 － 6 | －jis ${ }_{\text {－}}+$ |
| 507 | －31，」！¢ ¢＋ |
| 5¢0 | －35\％72＋ |
| ¢こと | ． 37 55，5：－＊ |
| Et | $\therefore 0^{\prime \prime} 625+1$ |
| 5 ¢ 1 | ． $423405+1$ |
| 502 | ． 45715 ＋＋ |
| 503 |  |
| c． 6 | －ப1ヶうご＋－ |
| $5 \bigcirc 5$ | ． $5 t$ 7¢8．+ ？ |
| $50 t$ |  |
| 507 | －¢．1＜2－＊ |
| $5 ¢ \mathrm{c}$ | － $6.510+1$ |
| 5っう | ． 67 ¢ $752+5$ ． |
| c．7＊ |  |
| 571 | ． $7 \rightarrow 771 .+=$ |
| 572 |  |
| 573 | ，＋10．ciot |
| 574 | －$=5 \cdots 37 .+$－ |
| 575 | －¢＊5－ |
| $57 t$ | ． 20 こ1：＋ |
| 577 | －こちルぐ＋ |
| くフィ | ． $1^{\text {r }}$＋+1 |
| 57\％ | －23）01i＋ |
| 54 |  |
| 5－1 | －$\dot{6}$ ， $775 \mathrm{c}+11$ |
| 52.2 | －＜ $4613^{\circ}+$＋ |
| 503 | －くyうう「「＋ |
| 584 |  |
| ご5 | － $324^{n} 5$ E + ＋ |
| 536 | －3」013E＋${ }^{\text {－}}$ |
| ¢¢7 | － $3522^{\circ} \mathrm{C}+{ }^{\text {－}}$ |
| 508 | $\bigcirc 36027 \%$ |
| 59 | $\because 3 e^{\prime} 35 \cdots+1$ ？ |


|  |  |
| :---: | :---: |
|  | 1．$+21<3 \mathrm{E}+$ ？ ？ |
|  | $421{ }^{1}$ |
|  | －1－3 |
|  |  |
|  | 42 |
|  | 2123 |
|  | C123E |
|  | 2123 |
|  |  |
|  | $421233+9$ ， |
|  | 212 |
|  | $4<1235$ |
|  | 21235 |
|  | 412 |
|  | $42123 \mathrm{E}+9$－ |
|  | 12123 |
|  | $4<1<3 \mathrm{E}+\mathrm{C}_{\text {，}}$ |
|  | 1C13とE＋？ 1 |
|  | 561 |
|  | 393763＋い |
|  | 341 |
|  | 783 y6E |
|  | $7<65$ É＋ |
|  | － 6916 |
|  | 1 |
|  | － |
|  | 4うす¢5E＋1＊ |
|  | ご |
|  | 1335 ¢ $3+\cdots 7$ |
|  | ＋3，5ご + |
|  | ＋395 |
|  | 4355 |
|  | 3 35ご |
|  | － |
|  | $3 j 5$ |
|  | $3 \rightarrow$ |
|  | 355 |
|  | 3355 |
|  | 3＇3 5 |
|  | 13， 5 |
|  | 13955E |
|  | 355 |
|  | 43.15 |
|  | $13+55$ |
|  | 37 |
|  | 35 |
|  | 3， |
|  | 179 |
|  | 6193 |
|  | cir．as |
|  | 811997 |
|  | 79394E＋＊ |
|  | 78¢C2E |
|  | 5 ¢．2C4E |
|  | ○くぢ。 |
|  | 57：： |
|  | － |
|  |  |
|  |  |

363.093
362.34 ？
301.773
$359.2^{\prime} 0$
357.649

356．115
354． 622
353． 184
351.616

350． 532
349． $340^{\circ}$
$348.27!$
347.315
346.4 yr ．
$345.8!5$
345．2tb
344.078
344.045
344.504
$5 c .671$
1：8．844 4
155．73～
197．e？ 3
235．119
260．： 45 2G0．S1
122．： 32
3L3．055
3t2．134
Jei．e52
3巳9．147
357．02
356．1：0
304．こ 21 353 とット j51．631
」まし．く32
$34 \varepsilon$.
347．020
346.459

345．」と6
j44．452
343.036
342.050
$342.42 \%$
$34<0.55$
$341 . \varepsilon$ ： 3
341.72 s
50.43

1r7．シ7y
153．5．5
195.473

232．30
265．：： 1
243．64
318.645

34．．27u
j5と．7』4



350.552
349.183 347.793 $346.3 \%$ 344．5y 343.546 342．23n 340．9？ 2 339.629 338.424 337.3 ？ 2 $336.270^{\circ}$ 335.300 334.565 333.9 .2 333． 370 33.95 y i32．772 332.698 C．
54．34y
13.816
148.45 ，

18．
224．1＂；
255.737
285.079

3＇$\varepsilon .<42$
$32 y .714$
346．34，
j47．＂43
345.72

346．：5́
$j+3 . \quad 2$
341.633

34C． 471
336.931
337.620
336.373

335． 184 $334 . \therefore 7$ 333．： 62
332． 154
331.300

331．7：7
33＂． 180
$329.81^{r}$
329.505
329.511
53.729

1＇2．571
140.016

18t．く90
221． 314
25こ．しい
2 ご．くも 7
3．4．tも5
1＜0．179
344.719


| 718 | －43115Eャ：r | － $5352.3 \pm+i^{r}$ |
| :---: | :---: | :---: |
| 711 | －L25う5「＋i | －53うくら54＊ |
| 712 | － $48: 9^{\text {CT T＋＋C }}$ | 1．5352，54．． |
| 713 | －5n $62 C L+{ }^{\text {a }}$ | －． 535 边 $\overline{\mathrm{r}}+\cdots$ |
| 715 | － $5335 \dot{c}$－${ }^{\text {co＇}}$ |  |
| 715 | －らも $1 \div 12$＋ | ． $535{ }^{\circ} 3$ cit？$^{\circ}$ |
| 716 | － 591 くヒミ＋＋i | 1． 53523 E ＋${ }^{\text {a }}$＋ |
| 717 | －$\in<163 \mathrm{~L}+\mathrm{r}$ | r．53Eこ3E＋rn |
| 718 |  | r． $53523 \mathrm{E}+\mathrm{C}$ |
| 719 | ． $655^{\circ} 354^{\circ}$ | $\because 535235+i n$ |
| 721 | － $717 \div 5:+r$ | ก． $53523 \mathrm{E}+$ ？ |
| 721 | －フシ158－． | － 53525 E＋ |
| 722 | －78う¢5シ4． | － 535 こうE＋． |
| 7＜3 |  | $\because 535<3$－${ }^{\circ}$ |
| 724 | －とうこら75－C | $\because 535235+9$ ， |
| 725 | －Ey $10: 3+i$ | － 5 こ23 |
| 726 | － $0=27 \mathrm{C}$ | －53523E＋ir |
| $7<7$ | － 6 －75．$+^{+}$ | －う3523 |
| $72!$ | －1． $2+r 1$ | ？．53523 $3+i$ |
| 725 | － $31245 i+16$ | r．1：442E＋31 |
| $73^{\circ}$ | － 3 ¢314天＋ |  |
| 7.31 | － $333425+r$ | －j404＜E＋．．． |
| 732 | －3437r－＊＊ | －¢975 ${ }^{\text {－}}$ |
| 733 | － 3534 c．$\because+1$ |  |
| 7.34 | － $30.4<7$ T．${ }^{\text {c }}$ | $\because 76972 E+1$ |
| 735 | － 374 5 $5+$ ！ | － $75^{\circ}$ ヒ $2 \mathrm{E}+$ ？$^{-}$ |
| 736 |  | r．7．1 y $2 E+1$ ： |
| 757 | － $3 ら 51<^{-}+$！ | $\therefore 05,3^{\prime},<\ddot{+}$ ？ |
| 7 76 | － $5^{\prime \prime}$＝ | －6＋12E＋－ |
| ¢ 7 \％ | －L15．5－${ }^{\text {＋}}$ | － $555225+\cdots$ |
| 76－ | ．． 3 375\％ $5+\cdots$ | ？． $55522 \mathrm{E}+\mathrm{C}$ ？ |
| 741 | －－－ $2=+i 1$ | $\bigcirc 55522 \mathrm{E}+$ ） |
| 742 |  | ． 5 5522＋－ |
| $7+3$ | － 1 5y－＋ | － $55522 \mathrm{E}+$－ |
| 744 | － 5372 と！＋ | 6．55522E＋9？ |
| 7！5 | －よも 1 ¢＋－ | －．55522E＋）＇ |
| 7：6 | －「9＂－＋ | ？．55522E＋ 1 |
| 747 |  | $\because 55522 \mathrm{E}+9$ ． |
| 71\％ | －t54t2v＋n！ | ก． $55522 \mathrm{E}+9 \mathrm{n}$ |
| 745 | －6tEv2こ＋r． | ๆ． $55522 \mathrm{E}+3$ ？ |
| 751 | － 713 こうこ＋ | －． $55522 \mathrm{E}+$ १． |
| 751 | －75ぐ3玉＋＊ | 7．55うこ2E＋，， |
| 752 | $\therefore 786=95+r$ | r．55522E＋） |
| 753 | ．．勺21335＋rc | ？．55522E＋7？ |
| 754 | 1．850：6E＋？ | －． $555225+i$ ） |
| 755 | $\therefore$ EG1こらEt | －55522E＋31 |
| 756 | －． 27 － $35+r 1$ | ค．5E5こ2E＋1）？ |
| 757 | －． 66 دல் | 3． $55522 \mathrm{~L}+$ ？ |
| 758 | －1～$\because$－ 1 | －． $55522 \mathrm{E}+\mathrm{i}$ |
| $75 \%$ | －327E1 + ＋． | $\therefore 105 ? 5 E+? 1$ |
| $70^{\circ}$ | $\because 3375 E+r 1$ | －．1003\％ $\mathrm{E}+$－ 1 |
| 761 | $\because 34661 \bar{r}+r$ | $\because 95540 E^{+}+31$ |
| 70 | －35E17＊＋「 | $\therefore 9^{r} 797 \mathrm{E}+3$ |
| 7 ¢ 3 | － 36573 E＋＇r | 3． $86^{\wedge} 46 \mathrm{E}+\mathrm{ran}^{\text {a }}$ |
| 764 | r． $375285+r$ r | f． 81298 ¢＋？ |
| 705 | － $384845+r r$ | 9．7654yE＋） |
| 700 | $\because 39419$ E＊＊ | $\therefore 71799 \mathrm{E}+$ の？ |
| 767 | －4： 396 Et ＋$^{\text {？}}$ | －67r5．＇E＋？ |
| 768 | － $41351 \mathrm{E}+\mathrm{C}$ | 9．623（1E＋） |
| 769 | $\because 1123^{\text {r }} 7 \mathrm{E}+$＋ C | ？．57j51E＋へ！ |
|  |  | － $251-$ |


| $\begin{aligned} & 343.400 \\ & 34 \ldots 1 t \end{aligned}$ | ¢r．25 $\therefore 1-15$ |
| :---: | :---: |
| $34 i .000$ |  |
| 3 3¢． 53 | $\therefore 16$ |
| 33 c .19 n | Or 14 |
| $33 \mathrm{t} .06^{\circ}$ | －rn9 |
| 335． 545 | $\therefore .1517$ |
| 334．ct 2 | ¢．$: 11$ |
| 333．127 | 6． il 14 |
| 331.055 | －こご |
| 33．7t， | －1く3 |
| － 29.75 | ， |
| $328.6=3$ | 1 |
| 320.74 | － 1 ， |
| 3＜7．1－ | ．${ }^{\text {a }} 1{ }^{1}$ |
| 3＜t．0゙2 | ．15\％ |
| 326.520 | 1．tr． |
| ごくt．3．is | 1 |
| 32t．．．31 | －$\stackrel{3}{ }$ |
| ． | － |
| 53.115 | $\cdots \cdot 1$ |
| $11.3<$ E | －． |
| 144．702 | －．． |
| 103．73L | －1．${ }^{\text {a }}$ |
| 21r．5＊7 | －． 1 |
| 44．437 |  |
| く7ヒ．0ぢ | －＇．＇${ }^{\prime}$ |
| 3：1．977 | －． |
| 322.38 | －．． |
| 341．010 | $\therefore$ |
| 33 s 比0 |  |
| 3うと．5シャ | － |
| $337.20^{\circ}$ | ． 11 |
| 335．y |  |
| $336.07^{\circ}$ | ， |
| 333．302 |  |
| 332．7 | －＂17 |
| 33．．6\％ 7 | 16 |
| 325．509 | $\therefore 10$ |
| 328.4 .31 | $\therefore 17$ |
| 327．314 | －r 2 |
| 3くし．35． | 11. |
| 325.402 |  |
| 324.147 |  |
| 321． 37 |  |
| s＜3．522 |  |
| 323．151 |  |
| 3＜＜．ちく7 |  |
| $322 . t 55$ | ご |
| r．i | －$\because 2143$ |
| E2．5？ 1 | －．．r |
| 1－9．fou | －i．nrir |
| 142.943 | $\therefore$ ¢ |
| 141.303 |  |
| 215.681 | －1．0． |
| 24t．c゙ut | ${ }^{\text {r }}$ |
| 273.300 | －「10 |
| 297.410 |  |
| 318．614 | i 1 |
| 337．22d | ！ |

$.44415 \mathrm{E}+{ }^{-n}$
－605S2E＋？
． $4 y^{-16 E+1 r}$
－ $515: 4 E+C C$
－ 54115 E．＋
－「う3：3ミ＋
－5y6e5に
－． 2634 上゙＋ 16
－C5586E゙が
－cid832
$\therefore .72: 65=+r($
$.753782+06$

$.8225 E+$ C
－c57：1E＋1c
－ $54239 \mathrm{~L}+$ r？
－92女 8E＋！？
－963りyシャー－
（1：． $2 E+$＋ 1
－ $342125+(9$
－ $35!37 E+$＋
－359ま1ビ＋゙．
－ $30266 \mathrm{c}+\mathrm{CC}$
－37759E＋1
－38t－15E＋－
－ 39 j19E＋+ n
$\therefore 4043 i+$ ？ 0
$.412005+5$
－42172ご＋1
．43．57こ＋
$\therefore 45 \mathrm{CO} 4 \mathrm{z}+$＋
－． $472 \mathrm{LE} 5 \mathrm{~F}+\mathrm{Cr}$
．495j9E＋${ }^{\text {n }}$
－51353I＋1！
． $54515 \mathrm{E}+1 \mathrm{C}$
$.5715 \cap \mathrm{E}+6 \mathrm{C}$

．623：：－＋
． 65 Э゙： $2 \ddot{Z}+$＋
． 69 ＂14E＋1 1．
$.72217 \mathrm{c}+{ }^{-11}$
．755゙2ミ＋
－．7eeblz＋r
－も 2 えे4E＋！C
－057＝1F＋
．
－． $22836 \underline{2}+i c$
－96413E＋1し
－13～ $2+1$
－ $356732+$＋
－ $30187 \mathrm{E}+\mathrm{r}$ r
－．j73：2E＋Cr
－． 33116 E＋
－3j931E＋r
－．39745＋＋ 6 r
$.4: 50.3 \mathrm{t}+$ 「5
－ $41374 \mathrm{E}+\mathrm{C}$ ．
．．42939 +1 ．
$.43^{\wedge} \times 3 \dot{z}+r$ r

？． $57551 \mathrm{E}+\cdots$
－． $7551 \mathrm{E}+1$ ？
1．57551E＋1．
「． $575 \mathrm{~S} 1 \mathrm{E}+\cdots$
． $575512+$＋
－． $57551 \mathrm{E}+$ i
$\because 57551$ E＋？
－． $57551 \mathrm{E}+$ の ？
－ $57551 \mathrm{E}+$ ？？
－． $57551 \mathrm{E}+\cdots$
1． $57551 \mathrm{E}+1$ ？
ก． $57551 \mathrm{E}+\mathrm{n}$ i

－． $57551 \mathrm{E}+\mathrm{r}_{1}$ ．
ก． $575512+12$
（1． $57551 \mathrm{E}+$ ）？
‘．57251E＋＂
1．57551E＋9．
ค．57551E＋～の
9．1．57CE＋へ1
－1＂1ryE＋11
－ヨヒ山ठうE＋へへ
$\therefore 31074 \overline{\mathrm{E}+\text {＋}}$ の
$\because .07265 \mathrm{E}+19$

$\because 70^{\circ} 47 \mathrm{E}+\cdots$

？．5とさえりま゙＋？
． $6422 . \Xi+$ ？
－5ご 11 E＋－：
「．590112＋？
$\because 5 \varsigma_{2} 112+$ ？
． $59611 E+{ }^{-1}$
－ $59611 \mathrm{E}+$ ？？

－． $596112+7 n$
$\because 59611 \mathrm{E}+17$
－5So11玉＋～つ
1）． 59611 ＋？？
C． $59.11 \mathrm{E}+\mathrm{T}^{9}$
－． 59611 E＋1＂
T． $596112+\cdots$
n． $59.511 \mathrm{E}+\mathrm{T}^{n}$
9． 59011 E＋）
－． $59611 \mathrm{E}+\mathrm{j}^{-}$
9． $546112+1$ ：
？． $59611 \ddot{3}+n^{2}$－
$\therefore 54611$ ジ +11
－59011シャッ＂
$\because 1$ © 3 е E＋？ 1
1）1（192E＋？ 1
？． $07454 \mathrm{E}+$ う；
१． $92985 \mathrm{E}+7$ ？
2． 88515 Et ＋！？
1）． 84 j4 $4 \mathrm{E}+$ ？？
ก． $755773+0$ ？
\％．751r $\varepsilon$ E＋1？
$\therefore 7639 \mathrm{E}+\cdots$
3． 60171 它＋！ 2 ？
？．61701シ＋？？

336．06？
334.851

3j3． $6^{\prime} 6$
332． 137
311．055
3＜9．772
32と．5is
327． 257
32t．C55
324．912
$32 \mathrm{~J} .4^{4}$
322.855
321.571

3＜1．＜1 1
32：．535
321．．544
319.675
319.652
319.379
r．
51.888
9.843

141．1\％2
178．y8）
212.836
243.221
$<09.672$
2ヶ3．も 38
314.776
333.351

322． 224
131．」5 51
324.84
328.061
327.340

326．986
324.830
323.6
322.423

321． $2 \rightarrow 1$
$32.23^{1}$
315.254
310.177
317.013
j16．：37
31 c .404 316.190
315.07 i
315.6 ？ 2
51.276
y7．5ン日
139．く52
176.5 c 5
＜9． 908
239．70
266．312
＂69．y2
31r．と०2
$3<y .383$

9．0＾13
2．：012
0.0 .023

C．C؟ 17
0.0115

| 0 |
| :---: |
| 0.14 |

－． 2011
3．© $\cap 1 \mathrm{C}$
j．in24
4．＇r13
Cobers
6． 5711
c．rait
li．Cr 14
0.6 .21

C．Cril
1．cer 7
-0.050
$-0.222 i$
-0.0
0．tnir
c．erere
g．rrie
jorner
－corrar
－i．ierin
－i． $\operatorname{cin}^{n}(r$

气．l $\begin{gathered}\text { ür }\end{gathered}$
？．（：） 15
$\because:^{\wedge} 14$
a． 1212
$\because \cdot \operatorname{cn}^{10}$
i．こn16
c．！lico
con 10
$\begin{array}{r}\text { •！} 10 \\ \hdashline . C 17\end{array}$
$\therefore$ ricis
C．Cr10
$\therefore .0313$
$\therefore$－$\because<16$ r．cn2s
$-1 . i 6!$
$-2.0 く 6 ?$
－－．．．cくに
ioners

－i．irir
－i．rre
－cire
 $\therefore$ ．？ 10 $\therefore \cap^{\wedge} 18$
n．rn 25
－1．0．23： 4



320.131
$319 .{ }^{\circ} 03$
317.945
316.789
$315.6: 7$
314.411
313.217

312．0゙39
311.892
369.795
368.762
$307.81^{n}$
3： 6.952
306.203

3 3． 5.574
3C 5．：774
3：4．713
3C． 4.494
3C．4．423
ก． c
$4 \dot{4} .4<1$
73.827
153.63 d

169．$\angle 91$
2（1）． $2^{n} 4$
229.704
255.32 ？

278．1ヶ1
29と． 617
316.858
315.807
314.852
313.754
314.634
311.474
$310.29 \%$
3． 9.121
317.958

3 0.025
3： 5.731.
3：4．713
jr 3.76
3n 2.910
30＜． 172
3． 1.547
3：1．r 51
3ir． $6 \div 1$
$3!!.474$
ぶッ．4゙2
1． 1
48.780
y2． 547
131.734
106.812
$198 .<16$
220． 341
251．53，
274.119

294． 349
312.461

C．ペ～4

r．${ }^{-10} 10$ $\therefore . \therefore 15$ C．ce14 （．）． $5: 13$ － $1: 111$ し．er16 0．c：13 J．CCrg l． | fnct |
| ---: | :--- | －oncror r．col2 c．ror 2 c．erf7 L．ar 11 $0.1 .2(5$ －． 2019 ก．0ำ r． $1: 27$

－2．26：
-1 cco
$-10 \sim$
－i．rner
$\because$ irn
inn
． 1 rr：
－0．6．0
－ $0 \cdot!$ ！
－．：n 22
－••＇34
－・゚（25
$\therefore$ ．＂15

| . .5112 |
| :--- |
| .$i 11$ |

$\therefore r^{2}$
$\therefore 6 \cdot 17$
$\therefore 1 \cdot 19$
©．．： 11
$\therefore$ cres
Corchas
C． $6: 15$
0． $2 \wedge 13$
C．r： 17
$0 .(111$
1－3243
Crers
Circt
－ .2729
－v．icce
－linern
－1．renc

## i．．）

Corccr
－？ercn
－0．coc．i
$-\mathrm{C} . \operatorname{con} 4$



I


| $95{ }^{\circ}$ | $9.48013 \mathrm{E}+\mathrm{C}$ | －75379E＋9？ | 311.520 | 0.0047 |
| :---: | :---: | :---: | :---: | :---: |
| y51 | －．5r．4：9E＋C： | $\because 7: 379 \mathrm{E}+0 n$ | 318.523 | い．cico |
| 952 | ． $52 . j 63 \mathrm{E}+\mathrm{CC}$ | $0.70379 \mathrm{E}+10$ | $3 C y .464$ | C．rcis |
| 953 | ก． $54472 \mathrm{E}+\mathrm{CC}$ | $0.7(379 E+)(5$ | 3 C 8.360 | $\therefore$ ¢cre |
| $951 ;$ | －． $56733 \mathrm{E}+\mathrm{C}$ | T． $7 \times 379 \mathrm{E}+7 n$ | 307.223 | C．CCO |
| 955 | －． $59141 \mathrm{E}+\mathrm{CL}$ | －．76379E＋？9 | 3re． 6.67 | j．CC15 |
| 956 | $0.61690 E+C U$ | $0.70379 \mathrm{E}+3 \mathrm{n}$ | 364.906 | c．cocr 7 |
| 957 | ）． $64372 \mathrm{E}+00$ | $0.76379 \mathrm{E}+\mathrm{n}$（ | 303.756 | C． 0019 |
| 958 | ． $.67132 \mathrm{E}+$ ！ ． ？ | ก．7637YE＋？${ }^{\text {¢ }}$ | 312.634 | U．cor 7 |
| 959 | $\therefore 7: 195+? C$ | $\therefore$ 7：379E＋J？ | 3 3．1．5ら7 | 0．cior． 9 |
| 96 C | 1． $73144 \mathrm{E}+\mathrm{CC}$ | $0.76 .379 E+n 1$ | 300.542 | O．ur13 |
| 561 | ？．76278E + C0 | $0.70379 E+0$ ？ | 299.674 | $0 . \mathrm{ccra}$ |
| 9 Cz | －．795～J上tic | －． 7 ¢ $379 \mathrm{E}+$ nn | 298.767 | coorco |
| 903 | ？． $62797 \mathrm{E}+\mathrm{C}$ | n．7L379E＋N） | 298．1．20 | G．（crit |
| 964 | － $66159 \mathrm{E}+0 \mathrm{C}$ | $0.7(379 E+90$ | 297．400 | 0 －（r） 12 |
| 305 | ）． $89574 \mathrm{E}+\mathrm{CO}$ | C．70379E＋9n | 296.957 | c．r？ 15 |
| 966 | J．93n27E＋Cn | の．7i379E＋7） | 296.549 | 0.0 C． 12 |
| 967 | $\because .965^{\circ} 7 \mathrm{E}+\sim 0$ | ヘ．7＾379E＋） | 29 t． 333 | U．CC12 |
| 908 | $\cdots 10000 \mathrm{E}+\mathrm{C} 1$ | ก． $78379 \mathrm{E}+70$ | 296.261 | ¢． $0: 13$ |
| 969 | $\therefore .42924 E+C \cdot C$ | $0.11137 \mathrm{E}+21$ | r．or | －－． 2863 |
| 97： | －． $43411 \mathrm{E}+\mathrm{C}$ C | 9．1066： $\mathrm{E}+11$ | 44.150 | － C ．UCCr |
| －71 | ． $43838 \mathrm{E}+$ ¢ 6 | － $1: 282 \mathrm{E}+$ ？ 1 | 91.251 | －r．eserer |
| 972 | ก． $44386 E+00$ | 0．9y949E＋3！ | 129.007 | －b．rsen |
| 573 | $\therefore 44873 \mathrm{E}+\mathrm{CL}$ | $0.95275 \mathrm{E}+00$ | 164.353 | －C．crir |
| 974 | r． $45360 \mathrm{E}+\mathrm{i}$ |  | 195．109 | －G．ines |
| 975 | $9.45847 \mathrm{E}+$ C | ค．87727E＋？n | 222．006 | d．cere |
| 976 | ก． $46334 \mathrm{E}+$ no | $0.83953 \mathrm{E}+\mathrm{C}$ | 247．ヒソ1 | －C．oor．a |
| 977 | $\bigcirc .46822 \mathrm{~F}+\mathrm{CC}$ | 0．8さ179E＋2） | 269.973 | －0．cicra |
| 978 | －． $473^{n} 9 \mathrm{E}+\mathrm{n}$ ？ | n． $764 \mathrm{C} 5 \mathrm{E}+1)^{\text {n }}$ | 289.979 | －C．）n¢ 1 |
| 979 | （． $47796 \mathrm{E}+30$ | 3．72631E＋？n | 367.940 | －0．00223 |
| 980 | 5．49358E＋CO | 0． $72631 \mathrm{E}+00$ | 307.042 | U．0．j54 |
| 981 | ก．51n $83 E+C C$ | 9．72631E＋C） | 3 n 6.372 | 0．c＾23 |
| 982 | 1．52972E＋C | $\therefore 72631 \mathrm{E}+$ ？ 7 | $3 \cap 5.042$ | O．C．C32 |
| yo3 | i）55n19E＋～0 | n． $72631 \mathrm{E}+$ On | 30． 3.963 | O．er 13 |
| 984 | $0.57223 E+\cap C$ | 9．72631E＋Cr | $3^{\circ} 2.848$ | C．C．C． 25 |
| 985 | 2．59577E＋ CO | $0.72631 \mathrm{E}+0 \mathrm{C}_{1}$ | 36：1．712 | 0.0014 |
| 980 | O． $62 \mathrm{r} 76 \mathrm{~F}+\mathrm{Ol}$ | n． $72631 \mathrm{E}+0 \mathrm{C}$ | 3：C．565 | O．C． 15 |
| 967 | H．64712E＋7\％ | ？． $72631 \mathrm{E}+$ ） | 299.429 | C．Coic |
| 928 | n．67479E＋CG | n． $72631 \mathrm{E}+9 n$ | 256.319 | uorr 11 |
| 984 | r． $7^{\wedge} 366 \mathrm{E}+\mathrm{CO}$ | C． $72631 \mathrm{E}+00$ | 297.253 | O．C） 14 |
| 979 | $\bigcirc .73365 \mathrm{E}+\mathrm{r} . \mathrm{C}$ | ）． $72631 \mathrm{E}+\mathrm{T}^{\text {n }}$ | $296.240^{\circ}$ | －－icciz |
| 991 | J． $76465 E+5 i$ | の． $72631 \mathrm{E}+\mathrm{C}$ ？ | 295.316 | C．ific |
| 992 | －）． $79656 \mathrm{E}+\mathrm{CCO}$ | $0.72631 \mathrm{E}+$ ก0 | 294.478 | L．LC10 |
| 993 | （1． $62924 \mathrm{E}+\mathrm{CC}$ | $0.72531 \mathrm{E}+$ ？ 0 | 293.744 | cionr 5 |
| 994 | $\therefore .86259 \mathrm{E}+\mathrm{C}$ C | ก． $72631 \mathrm{E}+0$ ？ | 293.127 | c．orrio |
| 995 | 9．896117E＋1C | 0.72631 E －） 9 | 292.637 | －Colcicr |
| 996 | 7．93275E＋CC | $0.726318+$ ¢ 0 | $292 .<82$ | L．rrár |
| 997 | －．90531E＋CC | 2．72631E＋ 90 | 292.068 | nopoy |
| 998 | 9．1njonetr 1 | n． $72631 \mathrm{E}+30$ | 291.998 | c．rill |
| 999 | $\therefore .44359 E+$ Co | 2． $11128 \mathrm{E}+01$ | C． $0^{0}$ | － 0.3 c 1 C |
| 10n！ | ก． $44780 \mathrm{~F}+10$ | $0.10764 \mathrm{E}+01$ | 47.499 | －C．cecr |
| 1 Cr 1 | －． $45213 \mathrm{~F}+\mathrm{CC}$ | $0.16406 E+01$ | 69.937 | －0．c．crn |
| $1 \mathrm{l}: 2$ | －4564？Etr $\%$ | n．1Cก37E＋？1 | 127.654 | －c．0urs |
| 10゙っ3 | ？．46．66E＋［ 0 | 2．96733E＋29 | 161.769 | －v．gecr |
| 10.4 | $\therefore .46493 E+00$ | $0.93 \cap 97 \mathrm{E}+9$ O | 192.117 | －7．crer |
| $10 \cdot 5$ | O．46920E＋ C C | $0.89461 \mathrm{E}+0$ J | 219.335 | c．erer |
| $10 \cdot 6$ |  | $0.85825 \mathrm{E}+$ ？ ？ | 243.773 | －riceco |
| 10¢ 7 | C． $47774 \mathrm{E}+\mathrm{C}$ | $3.82189 \mathrm{E}+0$ ？ | 265.740 | －cocere |
| $1{ }_{10} \sim_{0} 8$ | $\therefore .48<01 E+C \cdot C$ | $0.78553 \mathrm{E}+00$ | 285． 503 | －0．c0co |
| 10＾9 | ค． $48628 \mathrm{E}+\mathrm{CC}$ | $0.74917 \mathrm{E}+00$ | 303． 289 | －0．0046 |


| 1：1： | － $5.116 \mathrm{E} \mathrm{c}^{\wedge} \mathrm{C}$ |
| :---: | :---: |
| 1011 | ． $51773 \mathrm{~F}+\mathrm{C}$ j |
| 1 l 12 | －53うら5E＋ic |
| $1 \cdot 13$ | －． $25532 \mathrm{t}+\mathrm{Cf}$ |
| 1.16 | $\because .577$－ 6 E＋${ }^{\text {¢ }}$ |
| 115 | －6r－$-0.0{ }^{+}$ |
| 1．1e | － $6-1775+c$ |
| 1.17 |  |
| 1.18 | $\cdots .6779$ ）+ －${ }^{\text {C }}$ |
| 1014 | $\therefore 70637 \mathrm{E}+\mathrm{C}$ |
| $1 \times$ | $\therefore 73559 E+$ C 0 |
| 10.21 |  |
| 1.22 | $\therefore .79822 \mathrm{E}+\mathrm{C}$ C |
| 1 c 2 | －． $83.59 \mathrm{r}+\mathrm{r}$－ |
| $1{ }_{1} 2^{4}$ | 9． $86305 \mathrm{~L}+\mathrm{CO}$ |
| 125 | ค．09725 + c．c |
| 120 | ．y $3127 \overline{\text { a }}+1$ |
| $1 \cdot 27$ | ． 96557 E＋ |
| 1：28 | ．．102ratiol |
| $1 \times 29$ | ？．45787E＋ 0 |
| $1{ }^{1}$ | $\because 46155 \mathrm{E}+{ }^{\circ} \mathrm{C}$ |
| 1.31 | ． $.46524 \ddot{i}+$＋ |
| 1 r 32 | $\cdots$－ $40992 \mathrm{~L}+\mathrm{C}$ |
| 1.33 | $3.47201 \mathrm{E}+\mathrm{Cc}$ |
| 1034 | $\bigcirc .4753$ ？ $\mathrm{E}+\cdots$ |
| 1．35 | －． $17998 \mathrm{E}+$ C 0 |
| 1． 36 | $\bigcirc .48307 \mathrm{E}+$ C0 |
| 1．37 | －．40735 + ＋C C |
| $1^{\wedge} 38$ | ．． $491^{\circ} 4 \mathrm{E}+$ ？ |
| 1.39 | －$\% 9+72 \mathrm{~F}+{ }^{\circ}$ |
| 1： 4 \％ |  |
| 1 － 1 | － $54476{ }_{\text {F }}+0 \mathrm{C}$ |
| 1042 | － $44235 \mathrm{E}+{ }^{-r}$ |
| $1 \therefore .43$ | $\because \leq 015 \cdot \dot{L+r}$ |
| 1.44 | －．$E$ E $<4 y \mathrm{~F}+\mathrm{rc}$ |
| 1i45 | $\because 00495 \mathrm{c}+\mathrm{C}$ |
| 106 | － 6 く3945＋${ }^{\text {a }}$ |
| 11147 | ？． $05437 \mathrm{E}+$－ 0 |
| 104y | －tel16＋ C |
| $1 \begin{gathered}\text { 1）} \\ \text { c }\end{gathered}$ | $\therefore$ 7＇9320＋し |
| 1＾5： | －733：5 \％＋ |
| 1 1＇51 | －．76074 |
| $1 \sim 52$ | 「．79y98\％+00 |
| 1 1 53 | $\cdots$－ $032^{\prime} 3 \mathrm{E}+\mathrm{C}$ |
| 1．5i | －ouc 78 ごご |
| 155 | －¢子が9シャ， |
| 1 1） | －¢31622＋ic |
| 157 | 1．50 5 ¢5E＋Ci |
| 1． 59 |  |
| 1 1\％ | － $1772 \times 7 \times 10$ |
| $1 \div 0$ | ． 4751 GE＋CC |
| $1 \cdot \mathrm{~h} 1$ | $\bigcirc .47$ cilt + C |
| 1102 | ． $481445+$－1 |
| 1.03 |  |
| 1． 64 | r．4d708－+ cl |
| 1． 05 | そ．49こもミ＋く0 |
| 1． 66 | － $49393=+1$ |
| $1: 07$ | $\bigcirc$－6．37 5ごが9 |
| 10.58 | $\bigcirc 5 \cap) 17 \mathrm{E}+$ C |
| 145 | － $5^{-} 13 \cdots 2+0$ c |


|  |  |
| :---: | :---: |
|  | ． $74917 \mathrm{E}+3 \mathrm{i}$ |
|  |  |
|  |  |
|  |  |
|  | ．74917 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  | 7417 |
|  | 749 |
|  | ． $76917 \mathrm{E}+$ ？？ |
|  | 76 |
|  | ． 74 y |
|  | ． 749 |
|  | ． $74917 \mathrm{E}+30$ |
|  | ． 11222 |
|  |  |
|  |  |
|  | －117 |
|  |  |
|  |  |
|  |  |
|  | ． 8773 |
|  |  |
|  | 8r． 73 |
|  | 7723 |
|  |  |
|  | ， |
|  | 72 |
|  | 72 |
|  | 772 |
|  | 772 |
|  | $7 .$ |
|  | 77 |
|  | ． 7723 |
|  | 7723 |
|  | 72 |
|  | 772 |
|  | ． 7723 |
|  | 7723 |
|  | 772 |
|  | 772 |
|  |  |
|  | 77 |
|  | $77<3$ |
|  | 1132 |
|  | 11.98 |
|  | 1 1．6 |
|  | 1－312E＋11 |
|  | 99758 |
|  | 96 |
|  | 3. |
|  | 90 |
|  |  |
|  | 2954 E |
|  | 7yうy3z＋＇） |
|  |  |

3n2．420
3i：1．49？
300.488
299.435
298.341
297.222
296.094
294.971
293.873
292.817
291.819
290.897
$290 . C 65$
289.337
288.720

208．24）
287. ひと
267.670

287．61．6 0．$\because$
40.034

ロと．5ч゙
125．80y
159.175
188.994
$215.74^{\prime \prime}$
239.776

之E1．412
2ヶC． 913
＜90．5？ 4
297.677
296.771

2ヶよ．7ヶッ
294．77）
293.698
292.59 y

2 294．4．4 29r． $270^{\circ}$
289.23 ？
288.244

287．〈う
$28 t .342$
285．517
284．7ダフ
284.19.

283．7．， 9
263． 161
283.151

283．C82
？．（1
46.153
57.232
123.840
$15 t .545$
165.014
212.077
235.697
256.984

276．21： 3
293.578



|  |  |
| :---: | :---: |
|  | 95 |
|  | S5 |
|  |  |
|  | $\therefore 74593 \mathrm{E}$ |
|  |  |
|  |  |
|  | ．79593E＋） |
|  |  |
|  |  |
|  |  |
|  |  |
|  | 95 |
|  |  |
|  | 795 |
|  |  |
|  |  |
|  | ． 7959 |
|  | 14 |
|  |  |
|  |  |
|  | ．12455 |
|  | ． 1 C133 |
|  | 981 |
|  | －． 94879 |
|  | 0.910 |
|  | －43 |
|  | 5 |
|  | 819 |
|  | ． 8198 |
|  | ．${ }^{1} 198$ |
|  | ． 8198 |
|  | ． 198 |
|  | ． $81364 \mathrm{E}+\mathrm{C}=$ |
|  | 198 |
|  |  |
|  | \％19 |
|  | 9 |
|  | 8198 |
|  | 19 |
|  | ． 813 |
|  | ． $81984 \mathrm{E}+$ の7 |
|  | 81984 |
|  | 198 |
|  |  |
|  | ． 3198 |
|  | 3198 |
|  | 198 |
|  | 152 |
|  | 121 |
|  | r911E＋ |
|  | 6 |
|  | （ 29 |
|  | 9346 |
|  | 96759 |
|  | 3672 |
|  | 585 |
|  |  |
|  |  |
|  |  |

25\％．764
2与1．与1，
29C． 960
209．502
200.912
$267.83^{\prime \prime}$
286.733
285.638
284.564
283.528

でもじっちゃ
$281 . t .45$
20\％．．82＇s
co＇． 110
27y． 510
279．：41
ごと．6乌7
$2.76 .49^{\prime}$
27t．4く1
－•
45． 453
85.635
121.761

153． 061
$182.57!$
く＇ 6.337
231.526

252．440
271．36e
280．．5：1
267.743
$286 . \mathrm{gin}^{\mathrm{r}}$
205．与E4
285．！ 14
283． 974
28 2．91…
2E1．829
28：． 749
27y．004
27t． 664
277．tヶ9
27t．0？2
275．995
275．＜ 41
274．659
274．23＂；
273．8．8
273.637
$273.62^{6}$
1.1
44.734

44．422
115．bt9
151．119
179.250

2．4．514
227.257
247.750

2tt． 393
2Ej．209
u．irr？
－1：0ir25
6．6ilo
$\because$ © CO13
C．e．c．10
\％．$: 017$
i．fr19
C．1～16
$\therefore$ n 12
$\because: O_{0}<$
．．． 1 1：14
$\therefore$ ©re
j．i＾13
u．？！ 13
－C．：Cr
r．cr！ 4
－úlir
$\because$
－．．． 3552
－i．cric
－．olife
－シ̈．
－s． tiota
－roper
－ 5.181
－－－rin
－ícors
－Congr
－－．$\because$ © 5
－1．1．1
$-1.0 \div 2$
$\because \cdot 1-14$
C．0：115
i． $\mathfrak{C} 15$
©．～～11
ひしだ？
い．．．！
い．••1＝
3． $1 . \%$ n
－．） 3
$1 . \because r$
1．．ines
J．C C 12
.1 cir
．．．irr 3
$\therefore$（i） 7
$\because$ ralr
$\therefore: \therefore 22$
$-\therefore 3775$
－$-\quad$ rrr
－e．irlí
－cicrar
－．．ifr
－．ocie

－r．ler 1
－．•・のこも
$113 r$ 1131
1132
1133
1134
1135
1136
1137
1136
1139
114：
11＂：
1142
1143
1144
1145
1140
1147
1146
1149
115＂
1151
1152
1153
1154
1155
1156
1157
$115 \%$
1159
11ヶ：
1151
1162
$11 \in 3$
1164
11 ćs
1166
1167
1108
1169
$1170^{\circ}$
1171
1172
1173
1174
1175
1176
1177
1178
1179
11 sr
11ヵ1
1182
1103
1184
1195
1106
1187
1188
1189
$.5320^{\circ}$ ジ + C
－ 54 の 7 だが C
－ $56248 \mathrm{z}+$ 「 G
． $57993 \mathrm{E}+\mathrm{i} \mathrm{C}$

－61997E＋i
－64243E＋－r
$1.66642 \Sigma+C . C$
－Eら105E＋て
－714625＋r？
74063i＋ 1 C
$.77 \pm 76=+5 C$
－どう．39をャッ
． 83648 E＋？
1．86ebl +1 ＋
－$y^{\text {P } ~ 54 E+1.0 ~}$
1． $93371 \mathrm{~F}+\mathrm{C}^{-r}$
－ $90678 \mathrm{z}+$ r 6
1］． $16 \operatorname{ran}^{2 n z+1}$
$.51416 \mathrm{E}+\mathrm{C} \mathrm{C}$
－ $515675+$－
． $51726 \mathrm{~F}+\mathrm{C} \mathrm{C}$
$.51831 \mathrm{E}+\mathrm{C}$ C
j． $54^{\prime} \cdot 38 E+C C$
－． $52175 \mathrm{E}+\mathrm{Ci}$ ．
－ $5<352 z+r$ ？
－ 22 ミjヶE＋1
－j20EOE＋？
－ $52363 \mathrm{~B}+$ ？？

$.5412 n-+r i$
－ 5544 6E＋+ C
$\cdots 50>517+\cdots$
－． 58638 Ftr
－6？micetrr
－ $6253 \angle \ddot{E}+0 \mathrm{C}$
－647こもごが・

$\because 6 y \leq 7<\varepsilon+C r$
－． 722 2． $4 E+C$ C
r． $743625+r$＂
． $7783 \mathrm{BLE}+$ C
「． $0 \cdot 1807 E+1 C$
$\therefore$ ． $83808 \mathrm{E}+\mathrm{CO}$

－勺＇ぐ＂戸t：
n． $53441 \mathrm{E}+\mathrm{Co}$
$\therefore 56713 \vdots+r$ ？
$\because 1: n n \cdots$－+ － 1

2． $52098 \mathrm{E}+\mathrm{Cr}$
n． 530 CYE + C $_{i}$
－．53119E＋i：
－ $53<292+$ ？
ก． $53339 \mathrm{E}+\mathrm{C} \mathrm{C}$
१． $53449 E+C C$
$\because 5356 i E+$ C $i$
－． $5367^{\circ} \mathrm{E}+\mathrm{i}_{\text {？}}$ ？
？． $5378 \mathrm{CE}+\mathrm{OR}$
$.53090 \mathrm{E}+\mathrm{C}$
－． $94411 \mathrm{E}+7$ ？
$.84411 E+1$ ？
$0.44+11 z+3 ?$
$0.04411 E+1)$.
$-.84411 \mathrm{E}+1 \%$
2． $85411 E+3 n$
$0.84411 E+7 n$
？． $84411 E+?$ ？
$\therefore .84411 \mathrm{E}+17$
？． $84411 \mathrm{E}+\frac{7}{7}$
$0.84411 \mathrm{E}+0$ ？
$0.34411 E+71$
． $84411 E+3$ ？
－． $84411 \mathrm{E}+5$ ？
ก． $844115+$ ？ 19
？． $84411 E+1$ ？
$9.94411 E+3 \%$
ก． $844112+9$ ？
$0.84411 E+n n$
0． $11038 \mathrm{E}+31$
？． $11343 \mathrm{E}+11$
－． $11: 48 \mathrm{E}+.11$
$0.1(753 \mathrm{E}+71$
J． $1: 453 \mathrm{E}+71$
？．1：163E＋11
－． $98677 \mathrm{E}+7.7$
？．95720E＋？ 1
$0.92776 E+C$ ！
1．89825E＋？）
9．86875E＋7
0． $26875 E+20$
？． $80075 E+$.$) ）$
1． $86875 \mathrm{E}+n$ ：
ก． $96875 \mathrm{E}+1$ ？
$1.86875 E+20$
C． $86875 \mathrm{E}+1 \mathrm{~J}$
－．86875E＋？
－ $80075 \mathrm{E}+9$ ？
1． $.60875 E+0$ ？
0． $8 t-875 x+20$
ค． $86875 \mathrm{E}+$ n？
n． $869753+)^{n}$
$0.86875 E+\cdots C$
ก． $86375 \mathcal{J}+n$ ？
－． $86875 \mathrm{E}+\mathrm{n}^{n}$
ค． $86875 E+?$ ？
ก． $86375 E+10$
ก． $80075 \mathrm{E}+j$ ？
1．86075E＋？？
ค． $11752 \mathrm{E}+11$
－． $11471 E+$ ？ 1
C． 111 もgE + ？ 1
1． $11958 \mathrm{E}+11$
1． $1 \mathrm{i} 62 \mathrm{EE} \mathrm{E}+\mathrm{F} 1$
D． $1 \times 345 E+71$
$0.10463 \mathrm{E}+$ ？ 1
？． $37819 \mathrm{E}+17$
7． $95 . i 448+79$
$0.9219(E+0 C$
0.8 勺375E＋0？
282.545
281.732
280.843
279.887

278．87d
277.833

276． 709
275．7．4 3
274.655
273.644

272．089
271.8 ns

271．：10
27．． 15
269.733
269.472

260．939
20と． 739
208.072

$$
c . c
$$

43.989
82.927
117.5 ？1

148．3？9
175.063

2ヶก． 597
222．06
243.19
261.270

277．809
277.178

270． 390
275．533
274．EC 2
273.615
272.569
271.542

271．492
269．458
258.461
267.519
260.049
265.866

265．184
264.013
204.102
263.036
$263.04 \%$
26 3.576 ぞ・
43.222

81．4．）$\rightarrow$
115.274
145.425
172.362

218．3ò6
238．1n9
256．605
272.294


1．5i
1251
－ラッっく 9 ご
1252
1253
1254
1455
1250
1257
1258
12.59

12 年
1261
12́62
1263
1204
1265
1266
1207
1268
1209
127．
1271
1272
1273
1274
1275
$1 \angle 76$
1277
1278
1279
129：
1251
1232
1233
1254
$12 ; 5$
$1<6$
$1<07$
1238
12天チ
12\％
12；1
1242
$1<3$
129：4
12．5
12；0
1297
$12 ; 4$
1く\％
13
$13^{-1}$
132
$13^{-3}$
$13^{\prime} 4$
$13^{\circ} 5$
136
13． 7
$13^{n} 8$
1 ？ 9
－ 57 ナ3 $7^{-+}$＋－
－ $5 \div 164 \equiv+C$ ，
－$\epsilon^{\circ}$ c $77 \%+i$
－ $5<371 \mathrm{E}+$＾
－6 1 2 42：＋＋
－toううに + －
－．ヒラム゙ちi：＋+ し
$\because 7 r 8315+\cdots$
$.733235+\cdots{ }^{\circ}$
$.75945 z+C i$
． 7068 万E +00
$.015295+$
－84 $4+65$ E＋
$.07479 \mathrm{E}+10$
－9：うごら＋é＋i
． 9367 ロビャ
－9Eう3．
－1？？：：
－ $5034 \therefore 2+r$
－Ded26：－1＂：
－ $560^{1} \angle 2+$
－ $207592+1$ ．

- Su76j上＋ic
- うっ771上＋1－
－こロブミロ＋
－シ074ちだう
－ $50731 E+$ ？
－ミビフ17ミが，
－507 $7^{\circ}+{ }^{\circ}+$
． 57 E0y2＋+1

－5yま 36 ごャ゙
－ $61 \mathrm{j}=2 \mathrm{~F}+\mathrm{n}$
－ 63 － $325+$ C
－． $64048 E+C$
． 66335 E
－もJりま」二

$.737 \angle 7 \mathrm{E}+$ な
$.763^{\circ} 2 F+4$
ソ．78905＿，
－ $817,3=+\infty$
1． $340 c+L+C$
－ $87 \dot{5} 53$ ．
－ぎにみス＋
－$Y=7 E=E+1$ ？
－ $56,73 E+$＋：
$1.1 \% E+1$
－5d15：t．t．n
．561

－よ7762ミャ＊
$.5751 . j e+r r$
.57 ひっ愔 + な

． $577: 17 \%+r$
－ $57716 \mathrm{~L}+i \boldsymbol{1}$

－94491 $5+11$
－ $34^{\prime}+9^{\circ}: E+1$
$\therefore y(4+y(z+2)$
？． $34: 49 \therefore E+n$ i
－ $3449^{-} \mathrm{E}+\cdot$
－3Lity $z+{ }^{\prime}$＇
？．yL．．gre $E+i n$
C． $94+51 E+$ ？
1． $9449^{\prime} E+\cdots$ ？
－ $94.49^{\prime} E+7$ ？
ก． $344 y r E+$ ？
ค． $944 y=3+76$
－9419： $5+:$
1． $34!49 \mathrm{E}+1$ ？
$\div 544 y!z+7!$
－ $9649: 8+\cdots r$
－ $944 \mathrm{G} . \mathrm{E}+1$
－94ん9 Et？ 9

－．12110E＋こ 1
－11077E＋71
－ $11537 \mathrm{E}+{ }^{-1} 1$
j． $11396=+11$
2． 11155 E＋ 11
－1．314 $5+11$
－1：う74E＋71
ก． $11433 E+11$
$\therefore 1$ 1 1y2 $E+11$
$\therefore 95512 \mathrm{E}+\mathrm{S}$
－ $371^{\prime \prime} 4 \mathrm{E}+\cdot$
$.971 C 4 E+\cdots$ ？
－ 771 ごら
－ $971: 4$ E＋••
$.771 .4 \mathrm{E}+\mathrm{i}$
$0.971: 42+1 \%$
C． $7154 \mathrm{E}+\mathrm{ju}$
． 971 ＋ $\mathrm{E}+{ }^{\circ}$
－ $971^{\circ}$ は $\mathrm{E}+$
J． $971<t E+i r$
－971r＋E＋．
－． $371^{\text {r }} 4 \mathrm{E}+$
－971：44E＋

ค． 971 1\％
－． 971 1！＋E＋
.971 ．．，E＋？
$\because 571(48+) 7$
－ 971 （4ジャー）
－$>71.4 \mathrm{E}+$
－12249E＋－1
－12．21E＋71
． 11794 E．＋ 11
－11567z＋＇1
－11」392＋•1
$\therefore 11112 \mathrm{E}+{ }^{\circ} 1$

－1 65еま＋？ 1
$\therefore 1: 43^{\circ} \dot{E}+1$
ก． $11 \cdot 2 i+7+j 1$
ग．$\cdot 9757 上+1$ ？
＜59．G00
259． 292
25ع． $5 \div 9$
257.057

25t．72 7
く5E．703
$<54.772$
253.776
＜52．797
$<51.854$
25\％． 967
$25 r .153$
$249.4<7$
ट4E．か：
＜4E．－と
247．と73
247.5 c 1
＜47．4：7
247．j4 3


1？ .73 ：
Tt．jes
1と．1コ＝
136．243
1c 1．31：；
103．0 11
く．4．＇1
222．45？
¿3ヶ．162
254．41
＜Ej． 0 ）
2ちJ． 1 と $=$
25：．43
＜ 1.3 j
〈ら．0ヶ7
24y．753
2＂と．？¢
447．c11
ぐも．ctu
くれう．う3！
ぐう．．．7ら
44．＜07
$2430.00:$
＜42．93）
－ 12.6
＜4＜． 11
$<41.635$
こ． 1.071
241．018

$$
74.77
$$

1 5．し11
13く．y7a
157.303

17y． 211
$19 \neq . .14$
21t．09：
23こ．15
448．5． 17

$-r: 10$
$\therefore \because$
： 17
b． 0015
2．$\because 11$
6． 114
1．$\because 1:$
i．1．1r

$\therefore$ ••••
$\because 11$

$-63: 5$
-0.


| 1318. |  | $\because 99757 E+\%$ へ | 247.45 ？ | －6．1－32 |
| :---: | :---: | :---: | :---: | :---: |
| 1311 |  | $\because 95757 \mathrm{E}+)$ ， | $246.05 t$ | － 0.6130 |
| 1：12 | $\bigcirc t^{\prime} 7$ 7tI＋in | T． 5 ¢ $757 \pm+9 n$ | ＜4t． 127 | －－－ 0 － |
| 1319， | －t212uEt： | －9¢7E7E＋べ | 245．315 |  |
| 1316 | －63710＋＋ | － $997578+?$ ， | 24.4 .442 | － 0 in |
| 139 t | －c7－73－4 | － $3 ¢ 757 \mathrm{E}+\wedge$ | くい3．5こ3 | $\therefore 1 \therefore 9$ |
| 1317 |  | 9．997572＋an | 242． 577 | －ivijr |
| 1310 | ． $7175 \mathrm{az}+$－ | $\because 99757 \mathrm{E}+17$ | 241.629 | U．ind3 |
| 1319 | －7！1゙7E＋゙へ | －． $99757 \mathrm{E}+\sim 1$ | $<39.81$ ： | －n？： |
| $13{ }^{\circ}$ | ． 760 フjE＋r | 0．997570＋ 9 | 236.979 |  |
| 1321 | －T．） $310 \underline{\text { c }}$＋ C | －．99757E＋io | 230.220 |  |
| 1322 |  | $\therefore$－Y ¢ E $7 E+: 7$ | 237.501 | ，ior？ |
| $13<3$ | －06こ13E＋ | 1．99757E＋11 | 23t．y90 | ．ri 1： |
| 1224 | －E7e3Eと＋ | 「． $99757 \mathrm{E}+9 \sim$ | ＜30． 533 | 1.104 |
| 1：25 | － 5 2ry＋i | $\therefore .95757 E+29$ | 236．17 | －crar |
| $13<6$ | － 3 うこa！＋ | ． $95757 \mathrm{E}+7$ ？ | 235.922 | 1．n＇t． |
| 13＜7 | －Su3132＋： | $\because .95757 \mathrm{E}+\bigcirc \bigcirc$ | ＜35．77 | $\cdots 10 \mathrm{c}$ |
| 132 |  | 介．y $0757 \mathrm{E}+$ ¢ ¢ | 235．7i3 | ．$\because 17$ |
| 132\％ | －by： elelir $^{\text {a }}$ | \％．12383E＋！11 | f．i | － $3.642^{\circ}$ |
| 133＇ | －5） 374 | $\because 1216 ¢_{c}+$ ？ 1 | $36 . c y 1$ | －i．p．－1 |
| 1331 | －59＜Sor＋ | ？．11955E＋？ 1 | 72．りまし | －－iri： |
| 1234 | $\because 59<15 E+\therefore 1$ | $\because 1174<E+$ 1 | 12.973 | －jormi |
| 1333 | － $55134 \mathrm{z}+$ ？ | 2．11うこロE゙＋？ | 129．亡04 | －1．1ir |
| 1334 | －－9＊53ミ4． | －11314E＋－1 | 153．3＇：9 | －．rri： |
| 1355 | $\therefore=8=72 \mathrm{E}+$ | －111「＊Eか1 | 174．5t3 | U．：$n$ ¢ 1 |
| 1356 |  | j．1「086E＋？ 1 | 143.757 | volry |
| 133 |  | －16っ7く3＋r！ | 211．120 | Corrl |
| 1335 | － $587.95+\cdots$ | －1450E＋11 | 226．533 | －c．in！r |
| 13 | －$=410 \mathrm{E}+\mathrm{r}$ ？ | －1．245E＋？ 1 | 241.303 | － 1.1 .67 |
| 13！ | －$t$ ：$=70 \bar{F}+6$ ？ |  | ＜4：．08y | －01！31 |
| 1342 | －し1才33E＋ | $\because 1.24 \pm E+71$ | 240.205 | －$\quad$ r－ 7 |
| 1342 | $\because$－t2－70F＋${ }^{-}$ | －1．245E＋j1 | 236．75 ${ }^{23}$ | －．． 020 |
| 1.346 |  | $0.16245 E+11$ | 237．55： | 二⿺： |
| 1345 | $\because 601175+$ O | －1し245E＋；1 | 237．1．5 | －$\because$－irrs |
| 1346 | －¢7938ご＋ | －1． $145 \mathrm{E}+7$ | 236.1 jo | $\because \quad 1$ |
| 1347 | ． $7^{7} 1.25+$ | －1＇245E＋11 | －35．210 | $\because \cdot 119$ |
| 13！E | －ブぐ！$=+$－ | $\bigcirc .11245 \ddot{\#+-1}$ | 234．32： | $\because 12$ |
| 136 | －7Lミニムニ＋， | 2．11．245E＋？1 | 233．40 | $\because 1$ |
| $135^{\circ}$ |  |  | 232.073 | ORe |
| 1351 |  | $\because 124 \pm E+$ ？ 1 | 231．ヶら゙） | 亿．$\because$ |
| 1352 |  |  | 231.357 | $\because \therefore 1$ |
| 1353 | －もう | 1．1（245 + ） 1 | ＜36．013 | ¢rits |
| 1354 | －セ0． $26^{\text {T}}$＋ | －1245E＋i1 | 23？．361 | ，ran 1 ？ |
| 1355 | －y＂才o3r＋＂ | －1．245E＋－1 | ＜31．600 | ：．1：${ }^{\text {f }}$ |
| 1356 | －S3jug！＋1． | $\therefore 1 r .245 E+31$ | く＜り． 421 |  |
| 1350 | －9lstor＊！ | i．1r245zi＋ 11 | 229．7＊ | $\cdots 1_{2}$ |
| $135 \%$ | －1 $727+1$ | $\because 1124 E z+\therefore 1$ | 229.065 | 1．A10 |
| $136^{\circ}$ |  | －12522Eかへ | ¢ $0^{\text {C }}$ | －．．7ibs |
| 1361 | － $6^{\circ} 510^{\circ}+$ C | O．12321E＋71 $\because 12121 E+$ 1 | 37．9＂6 | －－vic！ |
| $13+2$ | $\because$－6： $48 \pm+\cdots$ | $\bigcirc 11921 \mathrm{E}+71$ | 71.052 | －- ¢r |
| 1353 | －0－299：＋． | $\bigcirc 1172$－ $2+11$ | 12 t ¢t？ | ， |
| 135 L |  | $\therefore 11$ 2，E＋Cl | 12t．lt |  |
| 1305 | 1．0： 0 0．L＋？ | 9.1131 ¢E゙＋91 | 169.712 | Or |
| 1366 | －－¢ $710+$＋ | －1111！E＋1 | 108.3 \％ 4 |  |
| 1307 |  | －1r91上Eが1 | 2.3 .124 |  |
| 1308 | －5y7う2．＋！． | －11716玉＋？1 | $22 i .474$ | luermi |
| $13+5$ |  | $\because 1 r 510)^{+-1}$ | －34．491 | －1： 0 ¢ |

$1377^{\circ}$

－1r ： $2+\cdots$
－ 51 194 $4 \mathrm{E}+$ r
． $6150^{\circ}$ ミ＋
． $017<5$ 5：
？． 615 y 1 －+ i
－$\in 14572$
．013225＋
． $2113 \mathrm{C}=$

－ 70 ． $70=+\pi^{\circ}$
－ $6=5$ ミ＋
$.61 \mathrm{~s} t$
－tく15う
－ 632 3i－


－t 7 unu2：＋：
－切を3ごー
． 7117 ＋2 ${ }^{+}$
－ $7 \mathrm{scoy}+\mathrm{c}_{2}=$
－75ご c －＋1。
． 77977 ＋

－$E \angle E \in \square=11$
－cミuc 1：＋i

－＇21200：－
. .41 に̈
－ร7： 20 ．
－1．
－t．iくこの ：
－ヒ3： $7 \mathrm{~F}_{2}+\mathrm{t}$
－ $\mathrm{t}<\boldsymbol{y} \boldsymbol{y}_{17}+\ldots$
．E27j1i＋

－じ－いと，－＋＋1
－62く＝5ジ＋
．t2139：

－c1とえが + C
－ヒ1u73＋r！

$\therefore 1!う 16 E+11$
J．16 $16 \mathrm{E}+51$
－1： 100 ＋ 1
－ 1 S1日E＋： 1

．． $1<004 E+う 1$
－12477E＋？1
－1こ2与1E＋゙1
$\because 121(4 \mathrm{E}+71$
－11才17E＋ 1
－ 117 3 $^{\text {E }}+$－ 1
－ $11543 \ddot{3}+1$
へ． $11356 \pm+111$
－ 1116 馬 + ： 1
－1゙yとくる＋1
－1： 7 ソ5 $5+11$
j．117Yうet 11
1．1く79ちE＋へ1

－1r795玉＋ㄱ
－．1r795シ＋i． 1

－ 1 rフyうE +1
－1i．79うこれ11
－1r7yうこさ～1
－．1r $7 y_{5}^{5} \mathrm{~s}+71$
－1！795E＋71

－ $1<75=\Sigma+; 1$

－ 1 ： $7555+1$


$\because 1: 7 y j \ldots+1$
－ $117 y-\dot{c}+1$
－ 1 くत 11 ※̈＋ 1
$\because 1203$ こと $+\cdots 1$
$\because 1<4 t \cdot z+n 1$
$\because 12291 \mathrm{E}+$ ： 1
－ $12117 \mathrm{E}+: 1$
ค． $11944 \mathrm{E}+\mathrm{C} 1$
$\therefore 1177 \div 5+11$
－ $11596 \mathrm{E}+1$
－ $11423 E+1$
1．1124yz＋； 1
$\therefore 11.70=+1$

234．
233.455

232．782
232．？ 25
231.273

23r． 138
＜่ど． 451
22t． 56 i
227.79
$226.099^{\circ}$
226． 144
2＜5．4と 1
2くん．ち 11
424.44

くらい。＂ 7
223．78 8
2く3．より5
223．1．03
223．447
i．
36.872

05． 5 y
47.253
122.300

144．E7r．
1c4．6．＋3
102．032
158．b2t
く13．7ミう
247．31
¿くt．0y
220．347
225．75 3
くむい．り7う
244.182
223.343

22．0．5：
221．640
ど．じう2
226． 0 ，
z1ヶ．se 1
$<16.70$ i
218.278

217．いす＊
く17．ミらふ
217.335
＜17．18y
417．1． 6
＜17． 177
35．7 70
c0．672
$44.3,1$
110．j 1
14．．r 3
15c．ju 2
17ヒ．723
1さえ。しく。
2．t． 750
く1！．の4ち


－11’7tE＋～1
$\therefore 11$ 「7ロ + ＋゙ク1
〔．11：70ビ＋？1
－．11こ76シ＋「1
－117765＋1
－ $11762+1$
ร． $11: 70 \Xi+11$
C．11：70 1 ＋ 11
－11．76E゙＋へ1
－11：7七E＋ㄱ
（．11）70F＋11
3．11轮E＋71
－．11）7万E＋71
－11：76E＋31
－．11：175E＋j1
C． $11076 E+91$

$\therefore 11776 E+$＾1
C． $11076 E+n 1$
G．12y62E＋？ 1
－12ら（2E゙ざ1
－ $12042 \mathrm{E}+71$
0． 124 E2E＋の1
$0.12321 E+? 1$
－ $12161 \mathrm{EtN1}$
－1ご「1E＋？ 1
＇J． $11341 \mathrm{E}+91$
「．116t1E＋ 11
．11521E＋11
－ $1136^{\circ} \dot{E}+11$
（． $1136 \vdots$ E + ？ 1
C． $1130: E+21$
－ $1136^{\circ} \mathrm{E}+11$
－ $1136 \div$ E＋． 1
－1． 1136 ？$E+$ ？ 1
2． $1136(E+$ ？ 1
－ $1130^{\circ} \mathrm{E}+$＋ 1
－ 1130 E $E$ ¹ 1
ก．113E：E＋？1
r． $1136 \mathrm{E}+$ ？ 1
－ $1136^{\circ} \mathrm{E} \mathrm{t}^{-} 1$
－ $1136^{\text {a }} \mathrm{E}+\mathrm{C} 1$
0.1136 ？$E+\cdot 11$

「．1136 E $\mathrm{E}+91$
＂．113t $E+11$
－ $1130^{\circ} \mathrm{E}+{ }^{-1}$
$\because 1130$ CE＋？ 1
$\because 113 \mathrm{E} \cdot \mathrm{E}+\mathrm{C} 1$
©． $1136^{\circ} \mathrm{E}+\mathrm{i} 1$
． $13117 E+1$
）． $1297(E+$ ？ 1
$\because 12623 E+21$
－12677
$\because 1253^{\prime} E+1$
r． $12383 \mathrm{E}+11$
C． $12236 E+$ ？ 1
$\because 12$＇8yE＋？1
－ 11 y $42 E+$ i 1
C． $1179 \mathrm{tE}+\mathrm{C}_{1} 1$
〇． $1164 \mathrm{y} \mathrm{E}+\mathrm{C}_{1} 1$
215.448
＜10．530
216．3．2
217． 225
29t．065
216.15
215.252
214.451
213.695
212.951
＜12．375
211.655
211.43 t
＜11．115
21．．©と 5
21）． 729
21．．cis 3
21． 543
く1！．とも
．．
36．t6
tU． 776
与1．ぶ 1
114.53 .3
125.27 e

153．061
17．しら1
1E5．070
194.446

212．． 30
211.673
211.1 y 2
210.0 ．

2．9．9ヶ4
＜． $9 .<1$ y
＜． 0.459
2 7．ty3
2 t．95
－t．えまし
－ 5.036
2． $5.11 \%$
4．6．45
24．35s
－4． 171
2． $4 .!62$
く．3． 975
＜3． 3
3． 51.
3．54 $\therefore$ ．
$33.4-4$
－2．45
c7．061
11． 1 y
1ま＂．＜3
148．：～s
1t6．0．
17ヒ． 367
1：1．7こ7
2．3． 5.50
－n．rer．2y
－－．1．22
－：． $1 \cdot 3$
－•・への 27
－－．「．${ }^{\prime \prime}$
－．1015
－1！́s
iorinf 5
！． 1 rr 7
－．res
－$\because$ orr
．．1․
－． 012
$0.1!15$
i．：：！ 3
－ 1 an 8
－．1915
－－． $983 \%$
$\therefore$ •品er
－r．ers
$\because$ しちゃt
$\because 111$
－•r！
．．．ir：
Orereq
－rrs．
－．．．13
－－いい2
－ir． $2 i$
－．．er 2 ？
－．．．バる
－u．：r $2 \epsilon$
－－r त2y
－r．r？
．．が？
．．．．：！
$\therefore 61:-1$
－．． rr＇$^{\prime} 1$
－－．．． 1
$\therefore . .1$
$\vdots . i n$
$\therefore$
1．＇！ro
$\because \because \prime=$
－1＂16
－ic14
－cer：
orrer
y－rer
！！！

．．．ir
i．© © 1 1

－n．i＂15

145
$14 y 1$
$14 \div 2$
163
1456
$14 \div 5$
10： 0 1497 14ヶ\％
 15： $15^{\prime} 1$ 15： 2 $15: 3$ $15 \cdot 4$ $1 \equiv-5$ $1)^{\circ} \epsilon$ 1よ＂ 7 15 ＂ 15ヶ 151i
1 J 11
1512
1513
1514
1515
151\％
1317
1510
1519
$132^{5}$
$13<1$
15， 12
15く3
$15: 4$
$15 \div 5$
15.6

1527
15 ¿モ
15～’
153
1531
1532
1533
15；4
1535
1536
15：7
1ン3ロ
1まこう
154：
$15 \% 1$
15,2
1：1゚3
1 154
1545
$15 . .6$
1547
1548
1545
－としくも！＋
．64355シャ＊
－ 05 とん4ジ +16

－tッ1゚3ご－
－f＇うこうこの
$-71<3 \dot{c} \tilde{r}^{+1} 0$
－73＂125＋78
$.749 \mathrm{~L} 2 \mathrm{E}+^{-}$
． $77^{\circ} 15 \div$＋$^{+}$
－79゙くぐミ＋
－\＆ $15470+1$ ．
－9うう7ヶき
－at づせこ＋́：
－ $0>1: 0=+t r$
－$=1775-+$ ！
－ $\mathrm{yt}_{4} 13^{2+5+-}$
－ 37237 E＋

－ 00707 －
． 66573 ：－
． 65370 i．
－tulduz＋（l
－ロうy89上．＋－
． $65735 \mathrm{E}^{+ \text {＋}}$
． $620^{\circ} 0^{\circ}+$
． $65+$＋ $5:-+1$
． $05<11 \mathrm{~L}+\mathrm{l}$ ！
－65＇16：．．！
－151222：
$.65<7, \ldots+$
－ヒつけく1：＋
－00753＋
－ 67750 －+

- t月女yう．：
- 7538」どがし
． 71911 ＋1：

－75こまこ！－ 1
． 77 5ンぐャ
.737
－ 1 1307：＋••
－c4341：＋1：
－Ébs oe to ！
－？子35＂－
$\because 1957-$
$\cdot y+011 \div+c$
－$C 7$ ぐかこ $+\therefore$ C
－1：－ㅌ․ 1
． $67 \div 95 .+$
－67ヒヒロ́ + ＋：
．074ひとi＋－
1．672190．
． $67^{\prime} 9$ ie＋
.60091 ．．．．．


－ヒヒビ2うち
－60＂56E＋

－1154コビ 11
－ 1104 E E＋ 1
－ $1154=$ E＋-1
$\therefore 1164^{\prime j}$ モ＋ 11
－11ヒ姩を゙が1
－11つムラさ＋－1
？． $11649 \mathrm{E}+11$
0.1104 get 1
－11っ49E＋11
－ 11 万549E＋． 1
$\bigcirc 11049 \mathrm{E}+\mathrm{i} 1$
U． 1164 g E＋ 1
$\because 11049 \mathrm{E}+11$
－ $1154 \dot{4} \mathrm{E}+1$
$\therefore 11049 E+n 1$
5． $11649 \mathrm{E}+31$
$\because 11649 \mathrm{E}+{ }^{-1} 1$
．1104yE＋1
ก． $11049 ?+61$
ก． $13<76 \Xi+111$
．．13142上＋11
－130．9E＋11
i． $1<3752+i 1$
$\therefore .12742 \pm+$ 「 1

－12．775E＋ 1
〔．12341E＋i1
1． $12<$ Ub +71
－ $12 \cdot 74 \mathrm{E}+71$
－11341E＋1
$.11+412+i 1$
－11ヶ41き＋： 1
－ 11 － 41 ※＋1
． $11 \pm 41 z+11$
．11y41z＋：11
． $11941=+1$
－11341シャ1
－113し1を＋へ1
$.119412+11$
$.119412+01$
－11： $11 \mathrm{E}+? 1$
－ 11941 ＋+1
$\because 11 y 41 E+11$
$\therefore 11941 \dot{c}+; 1$
－ $113418+11$
－11ヶん1E＋i1
$\therefore 11941 \mathrm{E}+71$
－11941E＋－ 1
－ $11941 \mathrm{E}+1$
－13433E＋ 11
$\therefore 133102+1$
$\therefore 13197 E+? 1$
$\because 13: 77 \mathrm{E}+\mathrm{r} 1$
－12yb7e＋11
． $129375+71$
？．12717E＋の1
－12557E＋ㄱ
？－1之＋77E＋11
$\therefore 12357$ を +1
$\because 12237 E+n 1$


$\therefore 12237 E+\uparrow 1$
$\because 12237 E+\therefore 1$
－．122s7E＋j 1
ก．12237 $\mathrm{E}+11$
？．1こ237E＋1
－12237E＋； 1
－）1：237E＋へ 1
ก． $12237 \mathrm{E}+\mathrm{i} 1$
－12237E＋91
－ $1<237 E+; 1$
－．12237E＋r 1
「． $12237 \mathrm{E}+\mathrm{f} 1$
－ $12237 E+{ }^{-1} 1$
－122，7E＋1
ก．12237E＋01
n．1く237E＋゚ 1
$\therefore 12237 E+$ ． 1
－12237E＋？1
$1.12257 \mathrm{E}+1 \mathrm{j} 1$
C． 130 C3E＋た1
－ $13496 E+11$
－ $13389 E+91$
？． $13283 E+71$
$\therefore 13176 E+01$
－．13＇69E＋11
－12962E＋11
$\therefore 1<356 E+$ ？ 1
フ． $12749 \mathrm{E}+\mathrm{J} 1$
－ $12642 E+n 1$
J． $12535 \mathrm{E}+11$
2．12ち35E＋？ 1
0． $125355+\cdots 1$
－． $12535 \mathrm{E}+71$
․ $12535 \mathrm{E}+{ }^{-1}$
$0.12535 E+n 1$
「．1く53うませへ1
－ 12535 E゙＋－ 1

ก．1253うE＋ 11
へ． $12535 \mathrm{E}+\mathrm{i} 1$
$\because 12535 \mathrm{E}+11$
－ $12535 \mathrm{E}+\cdots 1$
？． $12535 \mathrm{E}+\mathrm{r} 1$
$\therefore .12535 \mathrm{E}+\mathrm{C} 1$
－ $12535 \mathrm{E}+11$
－1253ちE＋ 1
． $12535 \mathrm{~F}+11$
〔．12535E＋う1
－12535 $\mathrm{E}+11$
$\therefore 13771 \mathrm{E}+$ の1
C． $13676 E+$ ？ 1
$0.13584 E+31$
？． $13441 E+i 1$
＂． $13397 \mathrm{E}+11$
ก．133CLE＋？ 1
$\therefore 1321$ E＋の1
n． $13117 \mathrm{E}+$ r $^{\text {！}}$
＇．13r $23 E+1$
C． $1293^{n} E+$ ？ 1
C． $12037 \mathrm{E}+$ ） 1

1と5．5：～
185．519
1ヒ5．いて：
104.492

103． 5
103.319

102． 771
102．3＇． 4
161.554
181.75 ：

1ヒ1．7レ4
1e1．015
1cz．． 50
1＋2．3yo
1どく． 777
1－3．140
103.452

1e3．65，
183．724
29.275
$54.570^{\circ}$
7t．el：
yt．．${ }^{\text {co }}$
112．235
1\＆t．ちも5
14く．375
151.04

10t．1．y
17t． 217
17し． 2 も
175．928
175．409
174．yy 1
174． 471
173．-72
173．5」
173.254
$173.18^{\circ}$
173.110
173.34 d
173.702

174．31t
174．955
175．611
176．く． 0
176．ee 4
17t．9y
177．勺 b
－i
27． 441
51．51ヶ
72.325
98.569

1．0．731
121．168
134.110
145.025

156．455
166.160


161
1011
1c 12
1． 13
1614
1し15
1E1t
1017
1018
1619
$162^{\circ}$
$16<1$
1622
1623
$10<4$
$1+25$
1626
1027
1628
102 ？
103.

16？ 1
16s5
1433
1634
1もjミ
1635
1637
1638
1634
16ur．
16＇」 1
$10: 2$
1065
$10: 14$
1c：15
1c4e
$16+7$
1，69
$15+5$
1i5
16j1
1052
10： 3
1 もら4
1しこ5
1ヶジ
10.7

1658
105
1：h：
160， 1
16 t 2
1003
16ts
1ヒヒ
1E6t
$16 ヵ 7$
1654 15：\％
－大ril 2－＋

$.69 \mathrm{~F} . \mathrm{F}^{\circ} \mathrm{C}$

． 71539 ：＋
$.727 \mathrm{Ec}!+$
$.76102=+1$ ！
$.75715 i+i n$
－77＇17シ＋
． 7 ＇ $257 \mathrm{~F}+\cdots$
－ $1225 \mathrm{E}+\mathrm{C}$

－$\varepsilon$ う） 37 ：
． $67776 \dot{\text { i }}$

－95 1 1 ＋
－ 27493 ＋＂•
－10 $\because=+1$
．71： $72+\cdots$
． 7 ＋225E＋？
$\because つ$ 行 3 ＋
－7：401r＋6
－7：27＇s』．+ に

．$\because 914$ ：＋
－u5732L＋i．
－ $5 \subseteq 5$ うni＋ 2

－ry1こ5：＋
－ts 40 t上 + ！$C$

． 7 「5さ1ビ＋
－ $71+11$ ：－
．72417－̈


－7e：3．－


－ $170^{\prime \prime} \approx+$
－ヒざも1ご＋
－ $6 \times y \cdot 3=+1$ ，
－とollar ${ }^{+\prime}$
－927ィ7ジ
． 551 子？－．＋
－$y 7=c 2 F+1$
－ 1
－713：＋：＋
－ 711 ²．．．＋r
$.71 c 21:+c$
－7145う ：－
． $71 \angle 89 .-$
$.7112<\mathrm{E}+1$（

$.7: 79.1 \mathrm{E}+$
－ $7.623 \mathrm{~F}+$

．7！ごう1゙̈＋ic
－12と37え̈＋「 1
－．12d37E＋ 1
$\because .1<037 \Xi+$ ？ 1
－． $12537 \mathrm{~F}+91$
－12月37E＋～1
－1＜337E＋11
$\therefore 1<037 E+11$
C．120379＋11
－ $12037 \mathrm{E}+11$
－12437E＋： 1
－12E37E＋11
$\therefore 12037 \bar{i}+11$
$\because 12037 \mathrm{E}+1$
－12837E＋： 1
－．1＜ $8375+11$
$\therefore .12 y 37 E+: 1$
－12837E＋ 1
－12037E＋•1
－12537Eが1
$\therefore 1 \overline{15} 41$＋ 11
－1j361 е＋＇ 1
－1د781E＋｀1
「1s7も1E＋？
）． $1302 i=E+\cdots 1$

－13＋0 E＋ㄱ
－1330． $\mathbf{1}+{ }^{-1} 1$
～． $1336: E+: 1$
－ 132 E E＋1
－ $1314^{\prime} E+1$
－．1314EE＋？ 1
C． 1315 C 玉＋ 1 1
－ $1314^{\circ}$ c＋1
－ $1314 \mathrm{E}+\cdots$
$\because 1514 \mathrm{E}+1$
$\because 1314^{n} \mathrm{E}+11$
$\because 1 \leq 14$ E $+\cdots 1$
－131L $2+1$
$\therefore 1314=2+1$
$\therefore 1314 E+j 1$
－1」14＂E＋1
－1314 $\because+1$
－1314r「＋． 1
－131：リビ？？
－131＇E＋＇ 1
－ 1314 E +1
－1514．
$\therefore 1314!5+: 1$
－ $1314^{\circ} \mathrm{E}+1$
－ $14111 \mathrm{E}+{ }^{-1}$
$\therefore 14-44 E+\sim 1$
？ 13 970.+11
－ $13 \rightarrow 11$＋＋ 1
－ $13544 \leq+1$
－． $13777 \mathrm{i}+11$
． 13711 过 1
－ 1356 なく＋ 1
－13j77 ட＋： 1
$\therefore 13511 . シ ゙+?$
$\therefore 13443 \mathrm{E}+$ ？ 1
165.556

1 t ． $0.04<$
1ヒ5．249
16じと 11
1t4． 371
1cz． 0 」
163．7：7
1し3．632
1ヒ3．757
164．129
10L．74）
165．57，
1とも．ゔ～
1c7．50y
1cb．50c
109.442

17．． 123
17\％．5う：
$17 . .72$
$2 E \cdot e^{2}$
$4 \mathrm{E} \cdot-2$
7
t7． 713
c4． 293
ど．じゥ
113.113

125． 144
120.810

11． $5 . \div 11$
154．jま 2
1£4．757
154.401

136． 137
1こう． 774
1うこ．45
$1 \div 3 .<30$
15う．く．4
1ご． 4 え
153．95
154.01 1

155．ybo
1ミ7．354
1うと．ロ7．
1しい． $3 y 5$
1c． 1.011
103．－ 17
4 4
164．5：7
106．7：．2
Cき． 1 1）

と，2．．．61
77．744
1．47
1．6． 1.7
115．＜c
125．211
134．241
1月こ．54．

－2．0．5t3
－1．0゙く
－1．．．：
$-6.1: \cdot 1$
－－•保1
－0．1：r9

$$
-1
$$

$$
\begin{aligned}
& -i r r 12 \\
& -0 \cdot 1.2
\end{aligned}
$$

$$
-3.0 y
$$

$$
-1
$$

| $\begin{aligned} & 1677^{\circ} \\ & 1671 \end{aligned}$ | $\begin{aligned} & 75335+\cdots ? \\ & \rightarrow 4535+? \end{aligned}$ | $\begin{aligned} & \because 13443 E+\cap 1 \\ & \because 13443 E+\because 1 \end{aligned}$ |
| :---: | :---: | :---: |
| 1ヶ7？ | ． $71503 \dot{+}+0$ | $\therefore 13443 E+11$ |
| $1 \mathrm{n}^{7}$ ¢ | －7aju7m＋il | $0.13443 E+C 1$ |
| 1＊73 | － $73.1{ }^{\text {c }}+{ }^{+\prime}$ ？ | $\therefore 13443 E+? 1$ |
| 1675 | ． $74+2 \mathrm{~S}$＿＋ | ？． $13443 \mathrm{E}+71$ |
| 167\％ | ． 75716 | $\therefore 1 j 443 E+11$ |
| 1677 | ． $771562+$（ | j． $13443 \mathrm{E}+\mathrm{C} 1$ |
| 1．76 | ． $787{ }^{9} \mathrm{~F}+$＋ | $\therefore 13443 E+$ ？ 1 |
| $1 \in 75$ | ． 6 ＊4この | $\because 15443 E+$ ？ 1 |
| $1 \mathrm{t}=$ ¢ |  | $\bigcirc 13: 44 \mathrm{E}+\cdots 1$ |
| $16 \pm 1$ | －tんくらごさ＋いし | $9.13443 E+$ ก 1 |
| 1042 | ．とo 317 L ＋ | ？． $13443 \mathrm{E}+{ }^{\text {P }} 1$ |
| 1065 |  | $\because 13443 上+? 1$ |
| $16: 5$ | ？．Yuoiz＋r | 2． $13443 \mathrm{E}+$ ？ 1 |
| 16t5 | $\cdots$－Vくこと7－＋ | －． $13443 E+21$ |
| 16 ¢¢ | －¢ち．79＊＋ | － $13+43$ E＋i1 |
| 1 ¢と 7 | － 77.32 i ＋ | ． $13443 \mathrm{E}+11$ |
| 156も |  | $\therefore 134435+$ ？ 1 |
| $166 y$ | －7＜c37t＋ric | ก．14279E＋？ 1 |
| 109\％ |  | $\because 1422 E E+11$ |
| $16 \div 1$ | ． 7 \％ $5!3 \%{ }^{\text {\％}}$ | $\because 14173 \mathrm{E}+1$ |
| 1092 |  | $\therefore 14119 \mathrm{E}+1$ |
| 16：3 |  | C． $1400608 \mathrm{E}+1$ |
| 1694 | －7＜113E＋ | $\because 14,12 \mathrm{E}+1$ |
| 1645 |  | － $13959 \mathrm{E}+1$ |
| 1もヒら | ． $71623 \mathrm{~L}+$ ！ 6 | 0.13965 E＋i 1 |
| $1 t y 7$ | ． $71079 \%$＋： | －．13852亡＋ 1 |
| 16）8 | －．715345＋．1 | $\ldots 13759 \mathrm{E}+71$ |
| 165\％ | $\because 713.3 y+$ ： | $\because 13745 E+1$ |
| $17^{\circ}$ | ． 71 ¢tı + － 1 | －．1374らE゙＋ 1 |
| 17＊ 1 | － $11=01 亡+$ C | U．137452＋0 1 |
| 17.2 | －725ッらE＋1？ | $\cdots 13745 E+11$ |
| 17.3 | ． $732335+$ ． | $\therefore 13745 E+11$ |
| 17．4 | ． $7+155=+i 6$ | ）． $13745 \mathrm{E}+$ ？ 1 |
| $17 \cdot 5$ | －75267゙い＋i！ | $\therefore 13745 E+j 1$ |
| 17\％ |  | $\bigcirc 13745 E+11$ |
| 17：7 |  | $\because 13745 E+$ 1 |
| 17：8 | $\bigcirc 79411 \mathrm{E}+$ ？ | $\because 13745 \mathrm{E}+71$ |
| 17\％y | － $1770 \pm+0$ | $0.13745 E+71$ |
| $171^{\text { }}$ | － －25525＋ | ？． $13745 \mathrm{E}+j 1$ |
| 1711 |  | $\therefore 13745 \mathrm{E}+\mathrm{C} 1$ |
| 1712 | $\therefore$－ $66735 \mathrm{E}+1$ | ค．137452＋31 |
| 1713 | ． $000125+5$ ¢ | 9．13745E＋？ 1 |
| 1714 |  | $\because 13745 E+11$ |
| 1715 | $\therefore$－ $31695+r$ | $\bigcirc 13745 \mathrm{E}+1$ |
| $17^{9} \mathrm{t}$ | $\because$ ． $55421 \mathrm{~L}+\mathrm{i}$ | ？． $13745 E+$ 1 1 |
| 1717 | $\therefore$－ 77 ？ $3 \mathrm{E}+{ }^{\text {c }}$ | C． $13745 \mathrm{E}+$－ 1 |
| 1718 | －1\％OFF 1 | ค． $13745 \mathrm{E}+{ }^{\text {¹ }} 1$ |
| 1719 | －73天39上゙ | $\because 1444$ 1E＋？ 1 |
| 172. | $\because 73521 \mathrm{~L}+$ C C | n． $144018+? 1$ |
| 1721 |  | 0．143E1E＋ri |
| 1722 | －．73285F＋r | T． $14321 \mathrm{E}+71$ |
| 1723 | ． $73163 \mathrm{t}+{ }^{\text {r }}$ | $\cdots$－14281E＋ 11 |
| 1724 | ＂ $73: 51 E+6$ C | 0．1424？ $\mathrm{E}+71$ |
| 1725 | $\because 72933 \mathrm{E}+\mathrm{CO}$ | 3．142COE＋91 |
| 17 Lt | $\because 72016 \mathrm{E} 4^{\prime}$ | ○1416：E＋11 |
| 17.7 |  | i． $1412 \cdot E+$ ？ |
| 1720 |  | C． 1408 CJ＋ 1 |
| 1729 | ． $724635+$ C | O．1434 $\mathrm{E}+$ م 1 |


| $\begin{aligned} & 1 L<.3 E 8 \\ & 14<.152 \end{aligned}$ |  |
| :---: | :---: |
| $141.0 \pm 3$ | 13 |
| 14．1．02．5 | $-\mathrm{i}, \mathrm{n}-1 \mathrm{c}$ |
| 1ヶ1．らし） | 2． |
| 141．4＝ | －． 15 |
| 1ん9．tくを | －． 22 |
| 1んく．5L2 | －．．． 17 |
| 143．69） | －．．．： $2 r$ |
| 1ヶ5．ぐもっ | －． 11 |
| 147．1ヶ7 |  |
| 165．jら？ |  |
| 151．5tt |  |
| 1ミ3．49 | 11 |
| 15．．jeic． |  |
| 1ヶフ。1ヶ1 |  |
| 15と．332 |  |
| 1とり．i 5 こ |  |
| 1ذこ．．ニt |  |
|  | －i． |
| －1．とく2 | C |
| 4．${ }^{\text {c }}$ | －． 1.1 |
| 56． 11 | －$\cdot$ |
| 71.112 | －． |
| 0 c．4t 1 | － |
| 5 E．5t， | －．$\cdot 1$ |
| 1：3．057 | －．．．rip |
| 112.034 | －．0ヶm |
| 121．13j | －．．＇！ |
| 126．． 2 | －．${ }^{\prime}$ ¢ |
| 128．42s |  |
| 12t．26？ |  |
| 1ぐ．．！ 3 | ， |
| 1＜7． 10 | ．${ }^{1} 1$ |
| 120．：33 | －． 40 |
| 124．5゙， | －．ir ${ }^{\text {c }}$ |
| 125．4178 | ．1725 |
| 131.970 | 1 |
| 1i3．1i3 | －．． 11 |
| 135．62j | －1．． 6 ¢ |
| 136.050 |  |
| 141．とり7 |  |
| 145．1．42 | ！ |
| 147．c23 |  |
| 15＂．＜＜2 |  |
| 15＜．154 |  |
| 153．507 |  |
| 154.447 |  |
| 154.710 | $\therefore 11$ |
| － | 530 |
| 14．b33 | －． 019 |
| 36.125 | －1．0．－9 |
| 5t． 271 | －．©：19 |
| 62．4： | －1．0． |
| 72．910 | －．．．1． 1 |
| 82.155 | －．．： |
| cr．423 | c |
| 90．1 1 is |  |
| 1 1． 191 |  |
| 112．170 | －¢ ¢－ |


| 173 | ． 720350 |
| :---: | :---: |
| 1731 | $\because 7 \mathrm{ij94} \%+9 r$ |
| 173 |  |
| 1733 | － 742 ： $3 E+C i$ |
| 1734 | －．75 j6こ＊－～ |
| 1735 | ． 70 ； 2 \＃＊ |
| 1720 | $\cdots 77<73=+r$ |
| 1731 | $\therefore 700 \cdot 3-+c i$ |
| 1730 |  |
| 173y | － $81673 \mathrm{E}+\mathrm{C}$ ． |
| 176 ． | $\therefore .83 y 3 F+r 6$ |
| 17 il | $\because$－ $62<2 z+r C$ |
| 1744 | ． $07148 \mathrm{C}+1 \mathrm{r}$ |
| 1743 | －ど9158＝4？ |
| 17ヶ6 | － $3<4,0+$ ？ |
| 17：5 | －y337yr．${ }^{\text {c }}$ |
| 17－6 |  |
| 17：7 | ． $9777 \%^{\circ}+$ i |
| 17．4 | －12＾ri： $\mathrm{A}+\mathrm{r} 1$ |
| 17í | ． $74321 \mathrm{~L}+\ldots$ |
| 17ょ゙ | －74237 + － |
| 1751 | －7415？ |
| 17ミ2 |  |
| 17：3 | －．73304：＋íc |
| 1754 | －73才995＋ |
| 1755 | － 73 ¢15こ＋r |
| 1756 | $\wedge 7373 \hat{*}$ |
| 17こ7 | －7actoistre |
| 1758． | －735615＋． |
| 175 | － $73477-+1$ ？ |
| 17．． | －izt $1 e^{z+}+$ i |
| 17：1 |  |
| 176 | －T6．185＋ |
| 17：j | － $7 j$ ：71． ⿺ ＋1 |
| 17 ch | －7jecy jo＋1 |
| 17こ5 | －70こ7域＋： |
| 17もt | － $70 \cdot 5$－ 5 ＋ |
| 17ヶ7 | －7夕ごいき＋ |
| $170=$ |  |
| 17．5． | － $5.24^{14} \dot{+}$ |
| 177. |  |
| 1771 | －とうぃフうごャ＊ |
| 1772 | －． $7 \leq 40 \dot{5}+i C$ |
| 177： | －．Ey407E＋C L |
| 1774 |  |
| 177 | ． 93 ， $735+i:$ |
| 1776 |  |
| 1777 |  |
| 1770 | 1．1．11E＋1 |
| 1776 | 1．74\％13E＋．． |
| 1－20 | －7476とこ＋1 |
| 17－1 | － 747 ごら＋ |
| 17とく | －フぃヶ775＋＇。 |
| 17心 | －74032？＋ |
| 17 e |  |
| 170 | ． $745422+r i$ |
| 1706 | －74゙ラフラ＋！ |
| 1767 | ； 74.51 － |
| 1758 | －．744rczorn |
| 17 c ？ | ． $743612+i$ |


111.975 111．00 0 112.116 112．722 113．$\because 7$ 116．© 11צ． $11 /$
123．15： 127．3．4 131．76 13t．i！ 1
13ะ．とく с 14」．く＂み 140．i．7； 1．0．29？ $14 y . y^{\prime} 1$ 151． $1=$ 15.3 .0 Oー う1．6＂） c！． 1 1c $0 y .427$ 7 と．ヶyy －2̈．51 07．51： $\div 1.50 j$ ب－0． 1 ！ 92.52
92． 10 － 2.7 ． シ4．くらす 97.731 －0．！ 115．こう4 121．30； 127．200 1うえ． 1 と 13と．うぐも 141．3c： 16：3．434 145.02 C $147.5<4$ 140．54＇4 1\％0．004

$$
7.7: 7
$$ 15．17．

2.377
4．0．24
ふ． 1
4と．して！
いと．．う．
52.260
c1． 243
0.7 .125



| $t 5 . j 12$ | $\therefore 1 L t$ |
| :---: | :---: |
| b30： 1 | －． 11 |
| 4．7．052 | －ir 11 |
| 70.1 | －$\quad$ r 12 |
| c5．0．73 | －＂： 1 |
| S5． 244 | －．．．1＇3 |
| 1：L． 112 | or：e |
| 112．19 | そ |
| 119． 16 | ．ir 7 |
| 1＜5．37i | 1 |
| 13：．75う | ．： 18 |
| 125．3う2 | － |
| 134．195 | $\therefore 1$ |
|  | －1：17 |
| 146． 71. | －11 |
| 1L6．4ぐ | ． －$^{-1}$ |
| 167．441 | ．$: 4$ |
| 147．7ど1 | ． 13 |
| i．${ }^{\text {c }}$ | －45．902 |
| t．47i | $\therefore$ rct |
| $\ll 01=y$ | －cris |
| 41．i13 | L．1．＇ |
| $5 t \cdot c^{r} 1$ | 1．fr： |
| $73.2 y=$ | － c |
| 05.462 | ．＇1 |
| 35．01＂ | $: 7$ |
| 14.614 | $\because r$ rer |
| 11＜．716 | $1^{\prime}=$ |
| 11ヶ．tう1 | $\because$ |
| 1＜゙っフレヒ | y |
| $13^{\prime} .55 i$ | ，r |
| 135．424 | ir！ |
| 13¢． 172 | r． 12 |
| 142．こ S | r－11 |
| 144．2） | 1. |
| 140． 13 | r： |
| 147．－\％ | 17：1 |
| 147． 53 | $\therefore$ |

## S6.:02:



## Appendix $F$

## Linear Quadrilateral Isoparametric Finite Element

## F. 1 Introduction

In this appendix, the element 'shape functions' are determined for a linear quadrilateral isoparametric finite element. The word 'isoparametric' is used to describe the element since the approximation for the dependent variable, in this case the temperature, is taken to the same degree of polynomial as is the coordinate description. The element is linear since the geometric discription of the local coordinate values between any two nodes is a linear function of the global coordinate values. The element under consideration is a general quadrilateral, a four-sided geometric configuration for which there is no a priori fixed relationship between the four sides. That is, the opposite sides are not required to be parallel or have any prescribed orientation and adjacent sides need not meet at any specific angle.

## F. 2 Geometric Description

The general quadrilateral element is illustrated in figure F-1. A 'natural' or 'local' coordinate system is established with the origin located at the center of the quadrilateral. This coordinate system, in general non-orthogonal, is characterized by the coordinate pairs ( $t, s$ ) with the coordinates $t$ and $s$ as shown in the figure. The element nodes are numbered consecutively in the local system as nodes 1 through 4 , in a clockwise sense. The natural coordinate system also Is defined to have the property that $s=-1$ and +1 over the surfaces

4-1 and 2-3 respectively and that $t=-1$ and +1 over the surfaces 1-2 and 3-4 respectively.

The global coordinates throughout the element can be related to the natural coordinates through the transformation equations, expressed in parametric form as

$$
u_{1}(t, s)=\frac{1}{4}\left[(1-s)(1-t),(1+s)(1-t),(1+s)(1+t),(1-s)(1+t)\left[\begin{array}{l}
u_{1} \\
1 \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{1} \\
4
\end{array}\right]\right.
$$

$$
u_{2}(t, s)=\frac{1}{4}[(1 \cdots)(1-t),(1+s)(1-t),(1+s)(1+t),(1-s)(1+t)]\left[\begin{array}{l}
u_{2} \\
u_{2} \\
u_{2} \\
u_{2} \\
3 \\
u_{2}
\end{array}\right]
$$

From these relations it can be easily verified that for the appropriate combinations of $t= \pm 1$ and $s= \pm 1$, that both $x$ and $y$ take on their respective nodal point values and that the coordinate description is continuous within the element, the variation of both $u_{1}$ and $u_{2}$ being Iinear in both $t$ and $s$. The equations ( $F-1$ ) and ( $F-2$ ), can be written in abbreviated functions by the definitions

$$
\begin{align*}
& u_{1}(t, s)=\left\{N_{n}\right\}^{T}\left\{u_{1_{n}}\right\} \\
& u_{2}(t, s)=\left\{N_{n}\right\}^{T}\left\{u_{2_{n}}\right\} \tag{F-3}
\end{align*}
$$

where the elements of the transpose vector, $\left\{\mathrm{N}_{\mathrm{n}}\right\}^{T}$, are called the dement shape functions.

## F. 3 <br> Field Description

In a manner directly analogous to the above geometric description, the temperature field can be approximated within each element by a linear interpolation. Thus we have for the temperature field approximation the relation

$$
T(t, s)=\frac{1}{4}[(1-s)(1-t),(1+s)(1-t),(1+s)(1+t),(1-s)(1+t)]\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T \\
4
\end{array}\right](F-4)
$$

which can be also written more compactly as

$$
\begin{equation*}
T(t, s)=\left\{N_{n}\right\} T\left\{T_{n}\right\} \tag{F-5}
\end{equation*}
$$

where the $N_{n}$ are the identical shape functions (for isoparametric elements) to those used in the coordinate description.

The above defining equation ( $F-5$ ), then, completes, the description of the temperature field throughout the element. However, in order to utilize this description, the 'effective curvilinear field vector' defined in Chapter 5 and Appendix $C$ of this report must be determined.

The derivative operators with respect to the local coordinates can be expressed by

$$
\left[\begin{array}{c}
\frac{\partial}{\partial s}  \tag{F-6}\\
\vdots \\
\frac{\partial}{\partial t}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial u_{1}}{\partial u_{2}} & \frac{\partial u_{2}}{\partial s} \\
\frac{\partial u_{1}}{\partial t} & \frac{\partial u_{2}}{\partial t}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial}{\partial u_{1}} \\
\frac{\partial}{\partial u_{2}}
\end{array}\right]
$$

Inverting ( $F-6$ ) to solve for the global derivatives yields

$$
\left[\begin{array}{l}
\frac{\partial}{\partial u_{1}}  \tag{F-7}\\
\frac{\partial}{\partial u_{2}}
\end{array}\right]=\frac{1}{|J|}\left[\begin{array}{cc}
\frac{\partial u_{2}}{\partial t} & -\frac{\partial u_{2}}{\partial s} \\
-\frac{\partial u_{1}}{\partial t} & \frac{\partial u_{1}}{\partial s}
\end{array}\right]\left[\begin{array}{l}
\frac{\partial}{\partial s} \\
\frac{\partial}{\partial t}
\end{array}\right]
$$

where the determinant of the Jacobian transformation is given by

$$
\begin{equation*}
|J|=\left|\left(\frac{\partial u_{1}}{\partial s} \frac{\partial u_{2}}{\partial t}-\frac{\partial u_{2}}{\partial s} \frac{\partial u_{1}}{\partial t}\right)\right| \tag{F-8}
\end{equation*}
$$

and where the derivatives with respect to the natural coordinates, of say the element shape functions, can readily be found. Global derivatives are then found from

$$
\left[\begin{array}{c}
\frac{\partial T}{\partial u_{1}}  \tag{F-9}\\
\frac{\partial T}{\partial u_{2}}
\end{array}=\frac{1}{\partial J}\left[\begin{array}{ccc}
\frac{\partial u_{2}}{\partial s} & \frac{-\partial u_{2}}{\partial s} & \frac{\partial\left\{N_{n}\right\}^{T}}{\partial s} \\
\frac{-\partial u_{1}}{\partial t} & \frac{-\partial u_{1}}{\partial s} & \frac{\partial\left\{N_{n}\right\}^{T}}{\partial t}
\end{array}\right]\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right]\right.
$$

Performing the indicated operations, and after excessive tedious algebraic manipulation, equation (F-9) can be written as

$$
\left[\begin{array}{l}
\frac{\partial T}{\partial u_{1}}  \tag{F-10}\\
\frac{\partial T}{\partial u_{2}}
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{u}_{2_{1}} & u_{2_{2}} & u_{2_{3}} & u_{2_{4}} \\
u_{1} & u_{1} & u_{1} & u_{1}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right]
$$

where

$$
\begin{align*}
& {\left[\begin{array}{l}
u_{2_{1}} \\
u_{2_{2}} \\
u_{2_{3}} \\
u_{24}
\end{array}\right]=\frac{1}{8|J|}\left[\begin{array}{l}
u_{2_{24}}-u_{2_{34}} s-u_{2_{23}} t \\
-u_{2_{13}}+u_{2_{34}} s+u_{2_{14}} t \\
-u_{2_{24}}+u_{2_{12}} s-u_{2_{14}} t \\
u_{2_{13}}-u_{2_{12}} s+u_{2_{23}} t
\end{array}\right]} \tag{F-11}
\end{align*}
$$

with the factor $8|\mathrm{~J}|$ given by

$$
\begin{align*}
8|J| & =\left(u_{1_{13}} u_{2_{24}}-u_{2_{13}} u_{1_{34}}\right) \\
& +\left(u_{1_{34}} u_{2_{12}}-u_{2_{34}} u_{1_{12}}\right) S \\
& +\left(u_{1_{23}} u_{2_{14}}-u_{2_{23}} u_{14}\right) t \tag{F-13}
\end{align*}
$$

In the above the differencing notation has been used, for example for $u_{1}$, that

$$
\begin{equation*}
u_{1_{i j}} \equiv u_{1_{i}}-u_{1_{j}} \tag{F-14}
\end{equation*}
$$

In the case of a cartesian global coordinate system, as is used for the problem under examination in this report, the $u_{1}$-direction is identified with $x$ and $y$ the $u_{2}$ - direction is identified with $y$.

It can also be shown, in conclusion of this appendix, that by forming the necessary cross-products for the integration, $d u_{1} \times d u_{2}$, an area element in the $u_{1}-u_{2}$ plane, that

$$
\begin{equation*}
d u_{1} \times d u_{2}=|J| d s d t \tag{F-15}
\end{equation*}
$$

which is the final relation necessary to perform the integrations of Chapter 5 .

It is due to the complex algebraic form of the resulting integrand that, orthogonal local coordinate systems excepted, numerical Integration procedures are generally required for evaluation of the elements of the stiffness matrix [K] of chapter 5. The solution program of Appendix $D$ uses a four point Chebyshev quadrature numerical integration procedure for this purpose. Higher order formulae did not detectibly alter the results obtained for theilinear quadrilateral element when applied to the groove problem, or to either of the two example problems cited in Appendix $C$ of this report.



Figure $F-1$



[^0]:    *Alternatively, some investigators prefer to use as a basis for the method, a Taylor series expansion approximation to the original differential equation. While there are subtle differences between the two approaches, either can be used.

