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Abstract

It has been the purpose of this report to examine the thermal
characteristica of heat transfer through a heat pipe wall whose inner
surface 18 grooved with grooves of trapezoidal cross-section. An under-
standing of the heat transfer characteristics of such a wall is' funda-
mental to the accurate prediction of heat pipe performance character-
istics. The cases considered in this report degenerateAto grooves of
V-shaped cross-section in one 1limit and to rectangular grooves in the
other limit, While results are presented for symmetric groove cross—
sections only, the analysis and prediction program maintain the fléxi—
bility of considering the non-symmetric situation.

It is established that conduction heat transfer is the dominant
mode of energy transport within the composite metal/working fluid section
of the grooved pipe wall. The composite conduction problem is mathe-
matically formulated and the analytic solution to the governing differ-
ential equations is examined. While the functional form of the solution
is easily obtained, the many constraints which must simultaneously be
satisfied leave the c&mplete analytic solution intractable. It is con-
cluded that a numerical solution procedure must be used to effect the
solution and that due to the geometric irregularity of the solution
domain, the finite element method will be most appropriate.

A limit study is performed to provide upper and lower bounds
for the equivalent groove Nusselt number. The two theorems of LElrod
are used to provide these limiting values. Although the limits result-
ing from such a study can often be used to provide acceptable engiueering

predictions, this is not the case here. As a result the limit study

- i1 -

!

' .



. SRR W e e -

here serves to provide a check on the values determined from the finite
elenent prediction program.

A finite element formulation of the heat conduction equation
is derived for application to any general orthogonal curvilinear co-
ordinate system. The generalized formulation presented herein bears
a strong resemblance to the cartesian form in common usage with only
minor modifications required to a cartesian program to reflect the co-
ordinate system generalization. Reduction of the general form is made
to the cartesian coordinate system for application to the trapezoidal
groove problem, |

Although the finite element method maintains the flexibility
of considering irregular geometries, application of the method to the
trapezoidal groove heat transfer prediction is not direct. Difficulties
were experienced in generating aAdiscretization mesh which could ade-
quately describe both the severe local thermal behavior near the meniscus/
metal contact and the conductive region in the remainder of the fin.
Description of the above thermal field is subject to the further con-
straint that the prediction program storaée requirement does not exceed
that available on current computing facilities. After two unsuccessful
mesh generators were discarded, a third, acceptable, mesh generation'
scheme was adopted. The difficulties encountered here reflect the diffi-
culty involved in solving the complete, composite, thermal problem.

With the finite element program functioning correctly, a para-
metric study was conducted to determine fully the thermal characteristics
of the equivalent Nusselt number. Symmetrie groove erossfsections only

are explicitly considered in this work thus restricting the dependence
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to four parameters. These are the liquid/metal conductivity ratio,

the groove depth, the metal fin tip land area ratio, aﬁd the normalized
apparent meniscus contact angle. The dependence of the equivalent
groove Nusselt number is fully discussed in the text. A correlation
equation, applicable over the range of parameters investigated in this:
work, is presented and interpolates the numerical data with a maximum -
error of correlation of seven per cent.

Application of the results of this work is made to the pre-
diction of heat pipe surface temperature variations. It is found'that'
in cases where substantial variations exist in the éroove equivalent
heat transfer coefficignt, the variations exhibited by the pipe surface
temperatures can be considerably less sgsevere, but that the degree of

insensitivity will be application dependent.
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- Nomenclature

Ai heat pipe internal surface area evaluated at the groove
root diameter

Af working fluid flow cross-sectional area

Al’A2 constants (defined in text)

Bi,B2 constants (defined in text)

[B] coefficient matrix in effective curvilinear field vector

c geometric constant (defined in text)

cp specific'heat at constant pressure

Cl’CZ'CB’CQ constants (defined in text)

d depth of groove section

Dh hydraulic diameter

Dl’DZ’DB’D4 correlation constants (defined in text)

£ friction factor

fl’f2’f3 elements of effective curvilinear property matrix,
equation (5-13)

[£] constant vector in finite element equations

g metric coefficient, g = gl-éz-g3

81289181 metric coefficients, equation (5-3)

[G] curvilinear field vector

ha pipe to ambient film or attachment heat transfer coefficient

heq equivalent heat transfer coefficient

hfg latent heat of vaporization

H total wall thickness of typical cell

HLSD H-d

J Jacobian of local-global coordinate transformation

k thermal conductivity




(K]

Uyrtgoty

L,L_,L L,

Be

Nu

per

Re

" mean inner (groove) pipe radius

friction factor coefficlent or conductance (defined in'text)
complete elliptic integral of the first kind with modulus A

complementary complete elliptic integral of the first kind,
K'(A) = K(/T = 1%)

coefficlent matrix in finite element equations

direction cosines of surface with the three principal co-
ordinates

length of heat pipej total, édiabatic, condenser, and evaporator
lengths

mass flow rate

normal to'surface

groove pitch (number of grooves/lineal distance)

element shape functions for use in finite element analysis
Nusselt number (defined in text)

wetted flow perimeter |

pressure or heat generation rate per unit volume (defined in
text) '

Prandtl number

saturation pressure

heat flux

applied evaporator heat flux

radial coordinate

inner pipe radius

liquid level in V-groove measured along the groove wall

outer pipe radius

universal gas constant or thermal resistance (defined in text)

Reynold's number
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ul,uz,u3

groove side wall length for V-groove
effective curvilinear property matrix

groove coordinate, curvilinear distance, or finite element
local coordinate (defined in text)

surface

time or local finite element coordinate (defined in text)
temperature

heat pipe ambient temperature

vapor temperature

interface liquid temperature

interior pipe surface temperature

exterior pipe surféce temperature

interface vapor temperature

general orthogonal curvilinear coordinates

argument of Jacobian elliptic sine amplitude function
volume |

width of typical groove cell

cartesian coordinate

non~-dimensional apparent contact angle, x = a/(n/2 - 60)
separated component of analytic solution in the x~direction
cartesian coordinate

ordinate for interface geometric description

separated component of analytic solution in the y-direction

longitudinal coordinate
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Greek Letters

a

apparent liquid/metal contact angle

groove entrance apparent contact angle
minimum break-away contact angle

radius of curvature of liquid free surface

ratio of specific heats, vy = ¢ /e , or included angle of liquid
or metal section in limit studg (Hefined in text)

coupling coefficient, 0 < Yg < 1

variational operator

increment in accompanying argument

groove tip and root area ratio

oblate spheroidal coordinate

circumferential or oblate spheroidal coordinate (defined in text)

geometric parameter or modulus of complete elliptic integral of
first kind (defined in text) '

separation constant or modulus of complete elliptic integral of
first kind (defined in text)

viscosity

kinematic viscosity, v = u/p

mass density or radial coordinate in limit study (defined in text)
surface tension

circumferential or oblate spheroidal coordinate (defined in text)
circulation flow velocity in V-grooves

average groove section velocity

reference velocity for normalization, w, = (rg/urp) %%
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Subscripts

a ambient

£ liquid

i interface

m metal

o outer

s surface

T total

I sub-region I in limit study
II sub-region II in limit study
III sub-region III in limit study
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Chapter 1

Introduction

In recent years it has become increasingly important to develop
methods for the efficient transport of thermal energy from one location
to another. The use of high component-density electroniq circuitry
and the operational, inefficiencies of the components used may impose
heat transfer requirements on the design which conventional heat
transfer devices are unable to maintain. In such applications, the
heat: pipe may often offer the only practical solution to the tﬁermal
problem under consideration,.

In addition the realization of a limited world supply of con-
ventional forms of energy has led.to a search for more efficient methods
of énergy conversion. Here, heat pipes may find a role in reducing
extraneous temperature drops not directly related to the conversion
of thermal energy to, say, electrical eﬁergy, thus allowing a closer
approach of the system conversion efficiency to the limiting Carnot
efficiency for the conversion cycle.

Perhaps the most demanding heat transfer requirement at present

is the thermal control of spacecraft [1 - 8]. Due to the large thermal

gradients which are commonly experienced in spacecraft.applications .
and the associated high thermal stresses, a device is sought which

would serve to 'isothermalize' the spacecraft structure. This is an

important considération in the design of the telemetry, guidance, and

orbit stabilization systems of a spacecraft. A second problem of



Spécecraft thermal control is related to the efficient utilization
of the available space within the spacecraft for the experimental,
control, and communications equipment packages. If the heat generated
within the spacecraft due t.o the operational inefficiencies of the
onboard equipment is not effectively dissipated from the spacecraft,
the resultant temperature rise of the electronic equipment above
tolerable operational limits may lead to performance degradiation and/or
complete system failure. In view of the consequences of a complete
system faillure in spacecraft applications,'these thermal problems
warrant consi&erable attention and here, again, the use of heat pipes
may provide the only practical solution. In addition to its favorable
thermal characteristics, heat pipes in spacecraft applications also
present a low weight penalty to the spacecraft design as a result of
their hollow construction. Since the heat pipe can offer substantial
advantages over conventional heat transfer devices in its application
to thermal control, its appearance in spacecraft designs is becoming
increasingly prevalent,

A definition of a heat pipe has been given in the comprehensive
review article by Winter and Barsch [ 9] as, "A heat pipe is defined
as a closed structure containing some working fluid which transfers
thermal energy from one part of the structure to another by means
of vaporization of a liquid, tranSpdrt and condensation of the vapor,
and the subsequent return of the condensate from the condenser by
capillary action to the evaporator". If the working fluid of such
a device 18 free of contaminahts, then the temperature within the
structure will be very nearly isothermal throughout the region of vapor

transport by virtue of the two phases present'within the pipe exiating
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simultaneously in equilibrium with one another. While the vapor/liquid
interaction leads to isothermal behavioral, characteristics, significant
bverall temperature drops may often occur due to heat transfer within
the wicking mechanism and pipe walls. Since the thermal cbnductivity
of typical working fluids for moderate temperature heat pipes is low,
considerable effort has been directed towards the development of high
conductance wicking mechanisms [7, 10-14]. The present generation of high
capacity, high conductance heat pipes is a direct result of this develop-
ment. |

The wide variety of heat pipe designs currently in use can be
broadly categorized according to the maximum heat transfer rate they
will afford the designer. This heat transfer rate is directly propor-
tional tc the mass flow of the working fluid which can be circulated
within the pipe through the proportionality factor, the latent heat
of vaporization. For moderate temperature applications (150—750°K)
the maximum rate of circulation is determined primarily by the viscous
losses within the liquid whigh must be o§ercome by the capillary pumping
action of the wicking mechanism.

The most primitive wick design consists of simply lining the
smooth inner diameter of a pipe with a porous material [15]. Wire
mesh screening is commonly used in these designs with the maximum
available pumping capability determined by the 'pore size' of the mesh.
Due to the small spacing between the screén and pipe inner wall,
however, viscous shear streéses arising from this configuration will

be large resulting in a relatively low liquid re-circulation capability.



Since this necessarily dictates a relatively low heat transfer capability,

such designs are characterized as low capacity heat pipes, TIndeed,
not only do these designs have a low heat transfer capacity, but alsd,
gsince the heat addition and extraction must occur through a relativeiy
low conductance liquid/wick matrix, these designs also have a relatively
low overall thermal conductance. This is an unavoidable consequence
of these designs since the wick mechanism serves not only as a liquid
return path but also ta wet the inner pipe wall of the evaporator
to maximize the evaporative heat transfer.

In recognition of the disadvantages of the low capacity heat
pipes, subsequent efforts were directed at increasing the ratio of
flow area to flow perimefer in the liquid return passages., One means
of achieving this result is by machining (extruding) longitudinal
grooves ia the piﬁe wall. Not only does this reduce the viscous flow
losses of the return path but, due to the fin-like behaviour of the
remaining extended portions of the original pipe wall, the hegt transfer
characteristics of this design are also improved. Since the passage
size is restricted by capillarity considerations, however, the available
gaing from this design are also limited, Heat pipe designs typified
by that described above are characterized as moderate capacity designs
and also have moderate performance characteristics.

Attempts to alleviate the limitations associated with the

previous two designs have led to the conception of the present genera-

tion of high capacity heat pipe designs, with which this work is primarily

concerned, although the results may also be applied to certain moderate
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It is the object of this study to examiﬁe in éreatef detail
the héat transfer processes occurring in the liquid/metal composite
region of grooved heat pipe walls. In addition, this work
will extend consideration to grooves of an arbitrary trapezoidal
cross—-section including as limiting cases the V-groove section discussed
above as well as the rectangular groove section, In the prediction
of heat plpe performance, the accurate prediction of the pipe wall
and groove conductance is paramount to accurate prediction of the
overall pipe conductance since by virtue of its operation, the vapor
core of the heat pipe will exhibit near isothermal behaviour., Thus,
since the majority of the'temperature drop encountered in high capacity,
moderate temperature heat pipes will occur in the groove region,
accurate prediction of the groove thermal behaviour is fundamental to

the accurate prediction of the overall performance of heat pipes of

this design,

l1
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Chapter 2

Background

Introduction

In a previous report [16], the present authors examined the
three-dimensional thermal analysis of a high capacity heat pipe operating
in the steady-state. The heat pipe of interest consisted of a circular
tube having circumferential grooves of V-shaped cross-section wound in a
tight helix along the length of the pipe. Liquid return transport.is
afforded by three 1ongitﬁdina1 arteries aligned across the diameter of the
pipe. The cross-section of the pipe of interest is illustrated schemati-
cally in figure 2-1.

The pipe shown in figure 2-1 is a high capacity heat pipe
having the mechanisms of liquid return transport and wall wetting distri-
bution decoupled from each other. The larger diameter artery passages
are used to minimize the rejcirculation viscous pressure losses in order
to obtain a high thermal transpoft capability while the grooves, used for
distribution of the working fluid over the pipe inner wall, can be designed
to minimize the temperature drop between the pipe exterior surface and the
vapor core over both the evaporator and condenser regions of the pipe. A
complete thermal analysis must include, then, the variation of the temper-—
ature distribution within the pipe which results from changes in the
liquid flow cross-section, These liquid flow cross-sectional changes in
turn are the result of the viscous pressure losses associated with the
hydrodynamic return path taken by the working fluid as it flows from the
condenser back to the eVaporator.. It is the influence of changes in the
liquid flow cross-section on the local heat transfer characteristics of a

grooved heat pipe wall which is under investigation in this work.

-7 -
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2.2

The purpose of the present chapter is to briefly review the
work performed in the previous report. This brief review will serve

both as an introduction to and as motivation for the present work.

Thermal Analysis

Figure 2-2 illustrates schematically a typical heat pipe shell,
Due to the tubular nature of the pipe design under consideration the co-
ordinate system best able to describe the temperature field within the
pipe will be the circular cylinder coordinate system. The origin of
this system and the coordinate directions are indicated in the figure.

The region of heat input on the exterior surface of the pipe,
Le, is given the name 'apparent evaporator section' while by a similar
definition the region of heat extraction on the exterior surface, Lc, is
given the name 'apparent condenser section'. The remaining exterior sur-
face area will be adiabatic and is given the name 'apparent adiabhatic
section', denoted by La' The regions of actual evaporation and conden-
sation, however, are not restricted to theﬂphysical confines of the ap-
parent evaporator and condenser sections respectively. Under suiltable
conditions [17] there may be no appreciable effective adiabatic section
on the inner surfacg even 1f there exists an adiabatic section of consid-
erablg length on the exterior surface.

In the absence of internal heat generation and in consideration
of steady state operation, the differential equation governing the heat
transfer within the pipe shell will be Laplace's equation in circular

cylinder coordinates,

2 a2 2

3—-'-f2-+%-§§+153—.-§+§——§=0 (2-1)
or r- oy 9z
-9 -
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The inclusion of all three coordinates, r, ¥, and z, has been made since
in general the temperature field must be allowed to vary indefendently
in each of the three principal directions.

The boundary conditions which apply to the solution of equation
(2-1) are all well defined with one exception. The exception is the speci-
fication of the inner pipe surface thermal interaction with the vapor core.

As shown by the cross-section as illustrated in figure 2-3(a),

even the geometric description of the inner pipe boundary will be a tedious and

difficult task. To apply the conditions existing at this boundary directly would

lead to an unnecessarily complicated analytic solution or require an ex-
tremely high degree of detéil if numerical methods are used. It becomes
apparent, then, that a simplification of this boundary condition is desired

to avoid an unduly complicated solution. In addition to the above geometric
complications, the heat transfer mechanism at the pipe inner surface may
also vary in both the circumferential and longitudinal directions.

To avoid an unduly complicated solution, an equivalent heat trans-
fer coefficient, heq’ has been defined to characterize the thermal behavior
in the region extending from a hypotheticai surface located at the groove
root diameter, through the metal 'fin' and the fin/liquid interface, and
finally through the liquid within the groove to the vapor core. This is
illustrated in figure 2-3(b) for the case of triangular or V-shaped grooves.
Once this equivalent heat transfer coefficient has been determined, the
inner surface boundary condition application becomes that of a hypothetical
inner surface interacting with an enviromnment at the vapor temperature,

Tv’ through a heat transfer coefficient, heq'

- 11 -



"The complete set of boundary conditions assumed for this analy-

sis can then be written as

1) z=20 32- 0
3T
2) z=1 52 0
1 9T
3) ¢y=0 T 5% 0
(2-2)
13T
h, (b,2)
o 9T _ _eq ’ _
5) = e ™ (T, (Ws2) = T)
6) rwerx (a) O0s =z L-k-ﬂ--q(q,z)
Out ~ ~ e’ ar e b}
. 3T
(b) L,szsg (L +L);3-=0
aT —h (‘1”2)
(@ (Mg L) s zsly o= —p— (T = T)

As can be seen from these conditions, a condition of symmetry about the
plane defined by ¢ = 0 and ¢ = 7 18 assumed, insulated end caps are
assumed, and a specified flux distribution 1s prescribed cver the evapor-
ator gsurface while the condenser interacts with the environment at Ta
through an attachment coefficient, ha'

The vapor temperature, not known a priori, must further satisfy

the relation '
JA heq W 2) Ty (4,2) day
i

Tv - (2-3)
IA-i heq ('b) z) dAi

where Tsi(¢,z) is the temperature distribution over the hypothetical inner

surface, Ai’ located at the groove root diameter.

-12 -
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2.3

In the previous report [16] a finite difference solution to
equation (2-1) subject to the boundary conditions (2-2) and the constraint
equation (2-3) was preséntgd. In applying'the gsolution to heat pipe situ~
ations, however, the distribution of the equlivalent heat transfer coeffi-
cient over the pipe inner surface, must be known, Determination of heq
is not direct, though, since it will depend on the local liquid flow cross-
section, which in turn depends on the pipe operating conditions. It was
therefore necessary to examine the hydrodynamics of the heat pipe liquid

flow as the condensate returns from the condenser to the evaporator,

Liquid Re=-circulation Hydrodynamics

There are two separate regiong of hydrodynamic consideration in
the operation of the high capacity heat pipe. The first of these 1is the
liquid return flow within the arteries and for this case, it was assumed
that the viscous pressure drops locally can be determined from friction
factor results for flow in a pipe where the mass flow rate is the local
arterial one, This analysis, then, and the requirement that the pressure
at any given longitudinal position be unlque, provides an input to the
second hydrodynamic region, the liquid flow within the circumferential
grooves, While correlations already exist for the first region above,
the second region had not been previously examined and required analysis,

Under the assumption that the groove flow is quasi-fully-
developed at any circumferential station, an analysis was performed to
determine the friction factor for laminar flow in a V-groove. With the
origin of a circular cylinder coordinate system located as indicated in

figure 2-4 the normalized equation and boundary conditions are

- 14 -
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82 * 1 2 *o 1 82 *

w w w

%3 + = =t %2 2 =1 . (2-4)
aor r or r a8

and
1) ' (0,6) =0

*
2) w (r*,eo) =0

* (2-5)
3 B -0
r 6=0
5 *
w
4) [31’7—]*_*)
r = S(9
where in the above
*
r = r/ro
* e w/
w w/w, (2-6)
r2
= (0y 9P
and w, = (urp) 30

In their normalized form, the above equation and boundary
conditions are identical to the system solved by Ayyaswamy, Catton, and
Edwards [18] for a slightly different problem. Nevertheless, their solu-

tion is directly applicable here.

By defining a groove friction factor, f, by the relation

-1 9P £ 1 =2
— o= (G ew) 2-7)
rp oy Dh 2
with Dh the hydraulie diameter, rp the groove mean radius from the pipe

centerline, ¥y, the angular coordinate around the pipe, and ®» the average
section velocity, By further defining a friction factor coefficient, K,
by the equation

K
f= Re (2-8)

- 15 -



D, w
with Re = (2-9)
the friction factor was found to be
*
2Dh 2 .
K = -~y (2“10)

w
-k
After completing the analysis to determine w , the results were corre-

lated by the correlation equation

K = 46,222 - 14.905 66 + 26.699 tan (1,014 Go)a

ma
+ 4,592 vVsin (1.8 eo) sin (';r7~2—-_——é—;) (2-11)

with an error of + 27 for all reported values.

After having determined the friction factor for quasi-fully-
developed, laminar flow, the resultsg were applied in a one-dimensional
analysis along the groove in which the pressure forces due to surface
tension are balanced by the viscous, groove wall shear stresses. The
flow situation is depicted in figures 2-5(a) and (b), The differential
equation governing the contact angle and liquid level recessicn was do-

rived to be

0 coslhdy) dr, 0 sIn(w8) 4y _wym (2-12)
2 ds r sin @ ds *3 4

r_ sing o o eD r
(o] o B °

Equation (2-12) indicates, in its present form, that both a
liquid level recession and a contact angle recession may occur simultane-

ously. In practice, however, there will be two distinct regions of flow

in a V-groove: the first consisting of contact angle recession to a mini-

mum 'break-away’ angle and the second consisting of liquid level recession.

The basis for arriving at this conclusion is i1llustrated in figure 2-6.
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Ideally the contact angle exhibited by a solid/liquid/vapor
interface will take on a unique value, and when operating under design
conditiong, the liquid level at the groove inlet will be Ro’ the maximum
value, However, as shown in the figure, due to the practical impossibility
of obtaining perfectly sharp groove tips, a rounded edge will occur in
actuality. (Note that since the radius of the rounded edge is small rela-
tive to the dimension of Ro’ any location. on the rounded surface can be
characterized by Ro)'

It becomes apparent, then, that for a fixed actual solid/1liquid/
vapor contact angle or 'break-away' angle, @40 an infinite number of
apparent contact angles can be imagined without appreciable change in Ro'
Upon recession to the location where the round meets the flat groove side,
the apparent and actual contact angles take on the same value, e A
further pressure drop must then be exhibited by a recession in liquid level
with fixed contact angle,

The single differential equation in two unknowns, equation (2-12),
can then be reduced to two differential equations, each valid over a single

flow region, These are

o sin (a+8 ) 44 _ Ky @ (213}
R sing ds *3 _ 4
o Q pD R
h o]
for (/2 - eo) >a >, and

!

g cos (a+8 ) dr .
o0 ..z fum (2-14)
2 ds *3 4
r_ sing pD r :
Q o] _ h o]
for a = aba'
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It was found that under moderate thermal 1oading, the contact

‘!l : angle recession is not severe. 1In consideration of an evaporator groove,
" whose contact angle at groove entrance is ao, the variation of the apparent -
'l contact angle is given by
l -D D 2>, %2
| . VRS L HE i o (2-15)

3 3 73

2V 8.2 :

where Dl S ('E;—fl-;;) * (q) ~ (E;) _ (2-16)

3 4

For the condenser grooves the contact angle variation is given by

s, aon e vu ea s mme s smem e e e e veva——e v st

-p, - D D D
a=—5‘-‘+\/(ao+§‘-)2--n—l(s*-1)2+n—l (2-17)
3 3 3 3

2: and D, and D, are obtained from Table 2-1,
)
.*‘I

, are obtained as previously indicated.

Although only angle recession has been considered here, the

I where Dl, D3, and D

case of level recession is fully considered in the previous report [16]

and will not be presented here; Let it suffice, for the purpose intended
here, to say that, for grooves of V-shaped cross-section, the variation
of the contact angle throughout the pipe may be determined. It remains,
therefore, in the thermal analysis to determine the influence that the

groove geometric details have on the thermal behavior at the pipe inner

surface, and thus on heq'

Determination of the equivalent heat transfer coefficient is
the final link in the thermal analysis of the heat pipe. Having deter-
mined the variation of the liquid cross-section throughout the pipe, if
‘the variation of heq on this geometry is known, then the final poun(lary

condition for the thermal analysis can be applied.
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" In the previous report [16], an analysis was presented, for

the case of grooves of V-sﬁaped cross—-section, which determined the
equivalent heat transfer coefficient, This analysis was performed on
the assumption that the metal fin, due to its large thermal conductivity
felative to the liquid conductivity, was nearly isothermal. The temper-
ature field determined in this work, when applied to the V-groove situa-
tion, indicates that this condition of isothermality of the metal fin is
not true, in particular near the meniscus contact with the metal groove
side,

The remaining chapters of this report are concerned with a more
detalled investigation of the equivalent heat transfer coefficient. 1In
particular, the complete, composite metal/fluid thermal, interaction at
their common interface is fully considered. 1In addition, the investi-
gations are extended to grooves of general trapezoidal cross-section, re-
ducing in one limit to the V-shaped grooves and in the other limit to the
rectangular channel grooves. A detailed problem description is presented

in the following chapter of this report.
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Table 2-1

Correlation Parameters D, and D

3 4
60 a : D3 D& Max. Expected Irrer
(degrees) (degrees) , (per cent)
5 0 - 45 ' .01109 .00091 2.1
45 - 80 .00689 . 00441 3.3
10 0 - 60 .01903 .00245 4.9
60 - 80 . 01342 . 00782 0.6
20 0-15 - . 02485 .00463 2.0
15 - 45 .03218 .00258
45 - 70 . 03397 .00145 0.3
30 0 - 15 .02738 . 00485 2.6
15 - 35 .03871 .00179 2.2
35 - 60 . 04982 -.00500 1.0
40 . 0 =10 . 0246 .00388 2.2
10 - 25 . 03556 . 00184 2.4
25 - 50 .05462 -.00693 . 3.7
50 0 - 10 . 02064 | .00246 3.3
10 - 20 : .03083 . 00067 1.9
20 - 40 .04982 . -. 00642 4.8
60 0 - 10 .01513 .00120 5.5
10 - 20 - .02607 -.00074 3.3
20 - 30 .04000 ~.00558 1.6
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Chapter 3

The Groove Heat Transfer Problem

3.1 Introduction

. | The mechanism of thermal energy tramsport across a grooved

‘I surface, whose grooves are supplied with a volatile liquid by means of
surface tension forces, is an important consideration in the design

and analysis of moderate and high capacity heat pipes. This importance
arises since the groove surface will in general form part of a direct

link between the vapor core of the heat pipe and the heat source or

heat sink, depending upon whether it is an evaporator or condenser

section of the heat pipe.

Since this thermal link is a direct omne, inaccuraciles in the
estimation of its heat transfer characterisitics are directly reflected
as uncertainties in ‘the evaluation of the overall heat pipe temperéture
drop for a given total heat flow rate through the pipe. Prediction
of the heat transfer characteristics for a heat pipe design being a

principal goal of heat pipe analysis, it is imperative that the phenomena

stood and the dependencies of the heat transfer explored.

In the steady—state operation of a heat pipe, the return
flow of the condensate from the condenser region to the evaporator
region will establish a pressure distribution in the liquid phase.
throughbut the pipe. Since the condensate return flow is govermed

by surface tension forces, particularly in the case of a zero gravitational
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environmént, the pressure distribution within the liquid throughout
the pipe will be manifested as a variation in the liquid free surface
radius of curvature. Further, since changes in heat flow geometry
will undoubtedly influeﬁce the heat transfer characteristics of any
system, it becomes clear that the heat transfer characteristics of a
heat pipe may be expected to vary, in general, both longitudinally and

circumferentially throughout the pipe.

The'hydrodynamic considerations leading to this variation in
the liquid phase cross-section throughout the pipe have been considered
elsewhere [16] and will not be repeated here. The present work is
directed at examinining the dependence of the equivalent heat transfer
coefficient, heq’ on the liquid phase cross-section and on the groove

geometry.,

General Considerations

The cross-section of a portion of a grooved heat pipe wall
is shown in figure 3-1. The vapor within the vapor core is at a
temperature Tv and over the external surface a uniform heat flux
distribution is applied. For the case shown in the figure heat is
flowing from an external supply through the pipe wall and fin/liquid
matrix to the vapor core for transport along the pipe. Arguments
similar to those which follow also apply to the condenser section

with the exception that the additional heat transfer mode of condensation
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on the exposed land area must be considered, The condensation problem,
however, 1s extremely complex and is'beyound the scope of this examin-
ation. Consequently the contribution to the heat transfer due to
condensatlion on the exposed land area of the condenser regions will
not be considered in this work.

Returning to the problem as. illustrated in figure 3-1, in
the thermal analysis of grooved heat pipe walls consideration must be
given to heat conduction within the pipe wall, heat conduction as well
possible convective heat transfer in the liquid contained within the
grooves, and the mechanism for heat transfer at the liquid/vapor inter-

face, These considerations foklow.

Vapor/Liquid Interface

The behavior of the vapor/liquid interface in heat pipe .
operation is important when examining the heat transfer through grooved
heat pipe walls since the mechanisms occurring at this interface
are directly responsible for the phase change that is fundamental to
heat pipe operation. Examination of the interfacial phenomenon,
however, is not direct siﬁce the process of continued net evaporation
or condensation is a non-equilibrium one and the conventional heat
and mass transfer equations as well as the constitutive relations no
longer apply.

The phase change problem has been previously examined by
several authors [19, 20, 21].. Bornhorst [22, 23] used the theory

of irreversible thermodynamics and the Onsager reciprocal law to
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establish the appropriate governing equations for the phase change
problem., These same results can also be obtained from kinetic theory
as shown by Kucherov and Rikenglaz [ 24 ], and Labunstov [ 25 ]. A
result of these analyses relates the surface vapor temperature to the

liquid temperature at the surface. The relation is given by

& g A
Ty = Tey [1 - 3 ] (3-1)
2(3'4-;..) 8__
Y= JZﬂRTfi

where Tvi is the vapor temperature at the interface, Ps is the saturation

pressure, the interface liquid temperature, y is the ratio of speci-

Teyo
fic heats, m is the steady-state evaporative mass flux, and E is a coupling
coefficient which lies in the interval 0 < Yg € 1. Clearly the difference
between the vapor and liquid temperatures at the interface will be a maxi-
mum for the case of Yg = 1. Feldman and Berger [ 26 ] evaluated equation-
(3-1) for the case where water is the working fluid, assuming a value of
unity for Yg* They assumed a steady-state evaporative mass flux of

ikw/inz. The results of their evaluation are presented in figure 3-2.

It is seen that the temperature difference between the liquid and the

vapor phases at the interface is negligible for operating conditions of
practical concern. Similar results are obtained for the other fluids
commonly used in moderate temperature heat pipe applications. As a

consequence of the above, it will be assumed that the boundary condition

at the liquid/vapor interface is

Tfi =T, (3-2)
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3.2.2

Convective Energy Transport

There are two basic mechanisms within a single groove of a grooved
heat pipe wall by which thermal energj transport by convection may occur.

The first of these is the convection of thermal energy along the
groove as a result of the velocity field which supplies liquid to the
evaporation sites along the length of the groove. This will be recqgnized
as a conventional convective energy transport mechanism. The aepond mechan-
ism for convection within the groove is a direct result of the ﬁhase change
process itself. if, for example, evaporation is occurring at the free
surface, then this surface appears to the groove as a sink for fluid mass.
Consequently, for steady-state operation, liquid must continuously be supplied
to the sink location. This necessarily establishes flows within thg Plane
of the groove cross-section which terminate at the free surface. If these
flows originate with a significantly different specific internal energy
than that at the vapor temperature and ifAtheir velocities are sufficiently
large, then a substantial contribution to tﬁe heat transfer may result from

this convective motion.

The following two sections provide an assessment of the

importance of these two effects.

1) Convection along the groove length
Along the length of a single groove, the temperature vari-
 ation within the working fluid will be very small. This is the direct

consequence of the saturation condition existing at the liquid/vapor
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interface, with small variations occurring due to changes in the meniscus
radius of curvature and the corresponding effect'of pressure on temper-
ature for the working fluid. In any case the energy convected along a
groove will be small when compared to the evaporation or condensation
exchanges occurring at the free surface, This allows a decoupling of
the equations of motion from the energy equation.

In support of the neglect of convective energy transport, we
consider the energy equation, disregarding expansion work and viscous

dissipation, given in cartesian coordinates:

2 2 2

* * *
3 '1‘2 + 2 T2+3 '1'2_ Pe[u ~—3T*+v L —-aT*] (3-3)
ax* 3y* 3z* 3x 3y 3z

where normalization of the velocity is made with respect to the groove
entrance mean longitudinal veloclity and that of the length scale 1is
made with respect to the cross-sectional hydraulic diameter. The
Peclet number 13 then defined by

wd k

Pe = Re Pr = 61;15 (Ll Z ) (3-4)

P

with Re, the Reynold's number, Pr, the Prandtl number, and dh’ the
hydraulic diameter. Under the quasi—fully—develoﬁed flow assumption,
we can set the normaiized velocities u* = v* *® 0, where z 1s the
coordinate along the groove length. Further, utilizing the isotherm-

ality of the free surface in the flow direction permits the specifi-

2
cation of 3 :2 = QI; * 0. Using these results, the governing equation
3z 3z
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(3-3) becomes

2 2
8 L+ -0 (3-5)
ax* ay*

the heat conduction equation within the groove cross-section.

ii) Convection within the groove cross-section

Determination of the convective energy transport withiﬁ the
groove cross-section resulting from the replenishment of evaporated
fluid is performed using the results presented later in this report
which are Sased upon a pure conductive model. The liquid is assumed
to be flowing from the groove root to the free surface with an average
velocity equal to that required to supply the appropriate evaporative
mass flow.v Using typical temperature data from the conductive results,
the cross-sectional convective energy transport contributes an esti-
mated 0,38 per cent of the conductive transport.

It 1is therefore concluded that conduction heat transfer is

‘the dominant heat transfer mechanism within the liquid.

3.2.3 Typical Cell for Analysis

" In the geometry of figure 3-1, we are considering as a therzal
boundary condition the application of a uniform heat flux disctributicn
on the external surf:=ce of the pipe wall. In gex2r:l the thermal intar-
action of the portion of the pipe wall shown in the figure with the
total heat pipe environment may result in a net conduction of heat along
the wall within the metal., Through the use of a grooved surface, however,
this effect is minimized since the lateral conductance will be large com-

pared to that along the wall., Further, a net conduction along the wall
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will in general result from the variation of the equivalent heat ttansfer

coefficient in this direction providing preferential conductive paths
to the evaporation sites, Due to the close proximity of adjacent grooves

in typical heat pipes, however, the local liquid cross-sectional vari-

ation from groove to groove will indeed be small. It is therefore assumed

that for purposes of evaluating the equivalent heat transfer coefficient,

there is no thermal interaction between adjacent grooves, Referring to
the geometry ofifigure 3-1, then, this implies that the section; A-A and
C-C will be adiabatic surfaces, Thus‘the;typical cell bounded by sections
A-A and C-C in the one direction and by the‘pipe external surface and the
vapor/liquid interface in the other can be extracted from tﬁe overall
geometry for analysis purposes.

A closer examination ;f this typical cell reveals that a further
reduction of the analysis geometry 1s possible., Due to the geometric
symmetry of the groove and liquid about the groove centreline, there is
no cause for preferential heat flow on elther side of this centerline,
Consequently, not only are the bounding surfacés A-A and C-C adiabatic
planes, but in addition the groove centerline, surface B-B, will represent
a zero net heat flux surface. The net result is that the typical cell

for consideration in the thermal analysis 1s the one shown in figure 3-3.

?roblenm Description

Using thg analysis geomecry of figure 3~3, a cartesian coordinate
system 1s set up with the origin located at the intersection of the groove
centerline and the pipe wall external surface. The plpe wall external
surface i3 defined by the line y = 0 and fhe groove centerline by the line

x = 0. The coordinate system is presented in the figure,
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The geometry presented 18 representative of a general trapezoidal

groove. The exposed land area of the groove gsection i1s denoted by €1

while the flat groove root half-width is denoted by €ye

half-angle 1is 60 and the liquid free surface meets the groove wall with an

apparent contact angle of a., The groove depth available for £i11 by the

working fluid is d with the total thickness of the wall, extending from the

pipe external surface to the innermost portion of the groove sidewall,

denoted by H,

The general trapezoidal shape of figure 3-3 readily degenerates
to the two limiting cases commonly employed in heat pipe designs. For
the case where €, = €y = 0, the resulting geometry becomes the sharp
V-groove situatlon commonly employed in high capacity arterial pipes
as a mechanism for circumferential wetting of the pipe inner wall,

In the other extreme, when €) = €y = 0.5, the rectangular

channel-1like shape results which is a common configuration for ﬁoderate
capacity pipes where the groovés gserve both as an evaporative agent

and as a longitudinal liquid transport mechanism.

Steady-state heat transfer is éonsideted in this work with
the liquid and metal components of the composite problem having
thermal conductivities kf and km respectively. Heat is supplied to
or removed from the outer surface of the pipe, y=0, at a uniform raté
q with the lateral normal gradients of temperature at x = 0 and x = w
being zero, The heat flow is transferred to/from the vapor core
through the. liquid free surface where the temperature is uniform at
Tv' Over the land area expogsed to the vapor, it 1s assumed that an
ingignificant amount of energy is being transferred in comparison with

that transferred at the liquid free surface, so that over this region
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a zerc normal temperature gradient condition is applied. This results
from the very low vapor thermal conductivity and of course does not |
consider the contribution to the heat transfer due to condensation
on the land area in the condenser regions. At the liquid/metal inter-
face both the temperature and the normal surface heat flux must be

continuous in passing from the metal region to the liquid region.

Mathematical Statement of the Problem
Denoting the temperature distribution within the fluid and

metal by T_ and Tm respectively, and considering steady-state heat

f
transfer, the governing differential equations are Laplace's equation

for both regions respectively. In terms of the cartesian coordinates

of figure 3-3 these are written as

asz asz
—3 t—3 =0 (3-6)
ox ay
and
82Tm asz
oxX oy

The boundary conditions which the solution to equations

(3-6) and (3-7) must satisfy are

oT
- ) & __.-n—l = :g- -
1. y=0, O<x<w, 3y i | ) | (3-8)
BTm an
2. y=H-d, Osxssz, ko 3y - kf 3y (3-9)
d(x-sz)
3. y=(H-d) + T 0 Ep<X <W-gg,
1 72
BTm an
o (3-10)
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where n is a vector normal to the liquid/metal interface.

T
4, y=H, w-elsxsw, 5;9-- 0 (3-11)
3Tm
5. x=0, OgysH-d, 3= - 0 (3-12)
an
| 6. x=0, H—dSYSYi(O), el 0 (3-13)

where yi(x) 13 used to denote the description of the liquid free

surface,
7. y-yi(x), Osxswnel,Tf(x,yi(x)) = Tv (3-14)
aT
8, x=w, Osys<H, 5§2-= 0 (3-15)

To provide greater utility to the results of this heat transfer

problem, the equations and boundafy conditions above can be non-

dimensionalized by introducing suitable non-dimensional parameters.

This also has the effect of reducing by one the number of nonhomo-
geneous boundary conditions in equations (3-8)-(3-15).

Defining a temperature excess by the definitions

and (3-16)

T*#=T =-T
m n v

and normalizing the spatial coordinates by the groove half-width,

w, the governing equations become
olTx  alTx
dy*

ax*
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and

93T * 3T *

%)

JR* ay*

where

x* = x/w, y* = y/w

(3-18)

(3-19)

The boundary condition statements for use with equations

(3-17) and (3-18) are

l. y* =0, 0g xkxg 1 (3~20)
BTf*
* = Hh-d* *cp ® —— —_ -

2.y Bé-d*, Qsx*<e km kf By (3-21)

. d*(x*—ez*)

= - — e %] -
3, y* = (H*-d*) + Toe % = 2 <x*<]l cl*,

1 "2
BTf*
= kf —B—n—*_ (3-22)

4, yk - p*, l-el*Sx*Sl, (3-23)
5. x* = 0, y*sH*-d*, (3-24)
6, x% =0, H*-d*Sy*Syi*(O), P 0 (3-25)
7. y* = yi*(x), OSx*< 1-g. % Tf*(x*,yi*(x)) = 0 (3-26)

8, x*

1, Gsy¥ch*

(3-27)

The equations (3-17) and (3-18) together with the boundary

conditions (3-19) -(3-27) completely define the mathematical problem
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whose solution is required.

Analytic Solution

If an analytic solution to the problem specified above is
pursued, we can follow the classical method of separation of variables

[ 1. According to the method, we assume a solution of the form

T* = X(x*) - Y(y*) (3-28)

for both the liquid and metal temperature distributions. Using
equation (3-28) in either of equations (3-17) or (3-18) leads to
an equation of the form

2% . 1 23%

4
sx*z Y ay*Z

1
X 0 (3-29)
again for both the liquid and the metal temperature distributions.

Separating the x* and y* dependence in such an equation then leads

to the separated equations

2
3—52 + %% = 0 (3-30)
dx*
and
2
2x - A%y = 0 (3-31)
dy*

where the separation constant was taken as Az.

The solutions to equations (3-20) and (3-31) are respectively

- 38 -

!
I
i
i
|
|
i
¥
y
)
;
'
y
I
!
|
|



[T
5

X(x*) = Clsin(ix*) + C,cos (Ax*) (3-32)

2
Y(y%) = C,sinh(iy*) + C,cosh(iy*) (3-33) -

The general solution can then be written as

= . " gk
Tf* [lesin(kfx*) +C fcos(Afx )][Cstsinh(kfy*)

2

+C cosh(kfy*)] (3-34)

4f

and

x = * * *
Tm [Clmsin(xmx )+ C cos(kmx )] ]C3msinh(kmy )

2m

+ Camcosh(xmy*)] - (3-35)

Applying boundary conditions (3-24) and (3-25) simplifies
the solution by the requirement that le- C1m = 0, The temperature

distributions then become

Tex = L cos (Ax*) [Cyesinh (A y*) + C

cosh(A _y*)] (3-36)
£ n=1 £

4f

and

<

* = * * ' * -
Tm n; cos (Amx ) [C3msinh(kmy )+ ¢C cosh(Amy )] (3-37)

1l 4m

where further using the condition (3-27) the Am's can be determined

to be

Am =nm, n=1,2,3,... (3-38)

while the values for the kf remain unresolved.
Unfortunately, the development of the solution for either
temperature field beyond that presented in equations (3-36) and (3-37)

becomes extremely complex as a result of the irregular geometry of
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each solution domain and the inherent coupling of the two temperature fields

through the condition ofvequation (3-21) and (3-22)., 1Indeed, it is not
clear whether an exact andlytical solution to the complete composite
problem can be achieved using present mathematical methods, On the
basis of the difficulties involved in overcoming the mathematical
barriers presented by the analytic solution, it was decided to use

a numerical method of solution to solve the system of equations and

boundary conditions of (3-17) - (3-27).

Numerical Solution

Having decided to forego further analytical efforts in favor
of a numerical method of soludon 1t remains to select an appropriate
numerical method for this problem. The two most common numer%cal
methods in current usage are the finite difference and the finite
element method. Both methods involve discretizing the spatial domain
into discrete reglons of finite size, and as a consequence the scluticn
is available in the form of values for the dependent variable at
discrete locations throughout space rather than as a continuous
analytic solution. In addition, both methods lead to a system of
simultaneous algebraic equations which must be solved to yield the
cbrresponding values at the discretized locations.

The finite difference method has as its basis the same basic
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principles as does the differential formulation leading to the differ-
ential equation.* That is, an energy balance is applied to each
control volume of the discretized continuum [31]. The first law of
thermodynamics then provides a relation between the transfer of heat
by conduction across the control wolume surfaces, the rate of gener-
ation of internal enmergy within fhe control voiume, and the rate of
change of the control volume internal energy. Since the control
volume dimensions are not of infinitesimal size, however, the concept
of a derivative is no longer of direct use for application of Fourier's
law of heat condu;tion since the surface area segments are finite
and the gradient will in general vary over the surface. The approximation-
is usually introduced that for purposes of evaluating the heat con-
duction terms, a first central different quotient can be used to
describe the local gradient., It is usually further assumed that this
gradient is uniform over each of the control volume surfaces.

Because of the control volume formu;ation forming the basis
of the method, the grid network asually follows the contours of an
orthogonal coordinate system. Although the finite difference coeffi-

cients have been derived for any orthogonal curvilinear coordinate

system [31, 32], the complex geometric description of the analysis
geometry of figure 3-3 does not lend itself readily to any of the

available coordinate systems. On this basis, then, and particularly

*Alternatively, some investigators prefer to use as a basis for the
method, a Taylor series expansion approximation to the original
differential equation, While there are subtle differences between
the two approaches, either can be used.
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in consideration that the finite element method is readily adopted
to irregular geometries, the finite difference method wad discarded
for use ia this analysis in favor of the finite element method.

The method of finite elements entails employing a variational
principle to minimize a certain functional over the solution domain
of interest [33]. Alternatively, where a variational principle does
not exist, the method of weighted residuals applied to the governing
differential equation can also be used [34]. In the former case the
functional can be obtained by application of the calculus of variations
to the governing differential equation. In this case the agsociated
Euler equation resulting from the minimization of the appropriate
functional is identically the governing differential equation. The
steady-state conduction of heat has a governing variatiomal principle.

In.the method of finite elements it is the governing functional
equation, an integral equation, which s approximated in the discretized
continuum rather than the governing differential equation as is the
case in using finite differences. Through an appropriate choice of
the local approximation to the temperature field, the required inte-
gration over volume in the functional equation can readily accommodate both
irregular solution domain geometries as well as irregular, non-orthogonal
'finite elements'., It 1s the flexibility of the finite element method
in its ability to readily describe irregular geometries that has led
to its selection as the method for use in this analysis. The method
and its application will be discussed in greater detail in Chapter 5

of this work where the numerical solution 1s presented.
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Chapter 4

Bounds on the Groove Heat Transfer

Introduction

In this chapter, limits will be established which provide upper

and lower bounds for the equivalent heat transfer coefficient associated with

the typical cell presented in the previous chapter of this report.

The bounds

will be established using the theorems of Elrod [35]. ' Although its intro-

duction to the heat transfer community by Elrod is recent, the basis of his

theorems is not new and has received considerable attention in other disciplines

[36].

The theorems and their proofs are valid whenever the pertinent unknown

quantity can be expressed in terms of a dependent variable which obeys the

equation for a potential field.

arc presented below,

Theorem 1 Consider a solid body compesed of material

which may be both inhomogeneous and anisotropic, but
whose properties are independent of temperature. Let
the body be isolated from its surroundings except for
exposure through space-variable heat-transfer coef-
ficients to two distinct ambient temperatures. If,
within some region of this body, the heat conductivity
is increased (decreased), then the total heat flow
from oﬁe exposed surface to the other will either

increase (decrease), or remain the same.

Theorem 2 The actual heat flow taking place under
the circumstances described in theorem 1 will be no
greater than that calculated when the shapes of the

isothermal surfaces within the body are arbitrarily
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agsumed, and no less than that calculated when the

adiabatic surfaces within the body are assumed.

Use will be made in this chapter primarily of the second of the above
theorems in order to establish limits on the groove heat transfer character-
istics. The reasons for examining limits on the groove heat transfer are
twofold and are presented in the following paragraphs.

Firstly, in establishing a system's upper and lower heat transfer
limits, 1t 18 possible in certain cases that the limiting values obtained by
such an analysis may be sufficiently close that acceptable accuracy 1s
obtained for the required application. That 1is, by employing the arithmetic

average value of the two extreme values, the error or uncertainty band of

the obtained value may be'sufficiently small to suffice for use in engineering

calculations. This possiﬁility was suggested in the paper by Elrod [33] and
was demonstrated in the application considered by Yovanovich, Schneider, and
Strong [37] in their examination of the effective thermal conductivity of a
composite having square fibers embedded as a square array within a second
matrix material. If this objective cannot be achleved for the system under
consideration, however, the second motivation for examining the limicing
behavior becomes important.

The second motivation for examining limiting values for the groove
heat transfer 1s.to provide a check, although it may be crude.on the results
of a numerical solution‘to the problem at hand. Since the application of
either of the two theorems leads to maximum and minimum values for the heat
transfer associaﬁed with a given system, any numerical results must as a
consequence lie in the range bounded by the two limits. Numerical results
outside this range can then be immedjately discarded and a study initiated to
determine the causes for the unreliable numerical results. Unfortunately,

however, if the numerical results lie within the range of values allowed by
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the limit study, and if the objective of the first reason stated for
examining the limits.is not achieved, the limit study will be of little
further value. Its use as a check on the numerical results will still

warrant its consideration in this report.

Maximum Groove Heat Transfer

As was stated in Theorem 2 above, the heat transfer through the
typical cell cannot be greater than that for the case where the shapes of
the isotherms are arbitrarily assumed., The result of such an assumption
is to yield an upper limit for the groove heat transfer.

To facilitate the computation of this upper limit the typical cell
was subdivided into three distinct sub-regions, each of which is bounded
on both sides by a thin layer of infinitely conducting material; i.e. the
bounding surfaces of the sub-regions are assumed isothermal. The sub-
division scheme, designed partly for ease of later computation, is illus-
trated in figure 4-1. The shaded region seen in the figure is constructed
by replacing ;hat portion of the original cell with a material of infinite
thermal conductivity. As a result, this portion does not contribute to
the thermal resistance of the cell and need not be considered. This is
consistent with Theorem 1 in establishiué an upper bound for the heat.

transfer. Consideration of each of the three regions follows.

Sub-Region 1

An expanded and detailed view of Sub—regioﬁ I is shown in figure 4-2
where the pertinent geometric parameters are also presented. A circular
cylinder coordinate system is set up in the figure with its origin at the
free surface center of curvature with the angular coordinate, Y, measured

counterclockwise from a line extending from the origin, along the groove
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centerline, through the composite,

In accordance with Theorem 2 of Elrod, the shapes of the isotherms

will be assumed for sub—fegion'I.Fbr convenlence they are assumed here to

be circumferential lines about the origin and extending through the cross-

section of this sub~region, The qgantities Ye and Ym are the subtended
~angles within thelliquid and metal parts of the cell respectively. The
situation shown 18 seen to represent radial flow through the composite
section with for each differential thickness, a parallel system.of the
liquid path with the metal path.
Considering a typlcal strip of differential thickness, dp, the

assoclated resistance, dRI’ is given by

- e % e
where Ye and Yy are the angles subtended by the 1liquid and metal regions

respectively. For aid in the evaluation of Ye and Ym,'figure 4-3 1s

constructed. Applying the sine law [38)] to the triangle having vertices

A,B, and C, we find

K tan eo 0
= (4-2)
sin(yf+eo)

sin(% - 8,)

Using (4-2), Yg can be evaluated as a function of its radial position, p,

and 1s given by

-1 Ksineo]
Y; = sin [——-p-— - o, (4-3)
from which Ym is determined to be
-1 K - ro cos O
Yo = cos”t[ - ] -+, (4-4)

The resistance for sub-region I 18 then found by integration of (4-1) over

- 48 -

]
'
/
y
y
llt




-

Figure 4-3

- 49 -




4,2.2

this region,.

P
2
L do. (4-5)
R ™
t J [kfyf-‘kmym] o

(4-6)
2 2
Py /vm + (kK - r  cos eo)
and from Appendix A,
r sin ©
B = -2 o
cos(a+eo)
(4-7)

r cos a
0

K = e
cos(a+9°)
and r, = (v - el)/tan eo

Integration of (4-5) will be reserved until the three regions are assembled

to reform the overall geometry.

Sub-Region 11
A detalled view of sub-region II 18 1llustrated in figure 4-4, The
coordinate system here is the same as that used for sub-region I and the

registance for a differential strip, dp, 1s given as before by

[kaf - kv, ] g% (4-8)

dR =
where now the contained angles for the liquid and metal portions are given
by

Kk s8in ©
o

o= o [Z52] o,

-1
and 'Ym sin (p) - Yf

The total resistance for sub-region II is again given by integration as
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o}
3
1 dp .
- —_— (4-10)
RI; _[p [kfvf + kmvm] P ’
2

where P, is that determined for the consideration of sub-region I and Pq

is given by
€

€ -

p3 = taneo' (4-11)

Again, integration is reserved for the assembly of the sub-regions.

Sub=-Region III

With the cross-hatched region of figure 4-1 constructed of a material
having infinite thermal conductivity, its thermal resistance will be zero.
The final region then, ;ub-region III, is simply a slab of thickness (H-d)
and having width w. Consequently, the thermal resistance of sub-region III

is simply

o ()

III k w (4-12)
m

Overall Heat Transfer

The three sub-regions examined in the preceding section form a
series thermal circuit for heat transfer between the exterior pipe wall
and the vapor core of the heat pipe. As a result the total resistance

for this maximum heat transfer case is given by the sum of the individual

resistances
Rp = Ry + Rpp + Ryqyq (4-13)
The heat transfer through the typical cell can be given by

T(y = H~d) - T
= v E T = -, - —
Q ®; _'RIH) heq w[T(y = H-d) Tv] (4-14)
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Qhere T-(y = H-d) is the average temperature of the groove root surface.

Using equation (4-14) it follows that

h = 1
eq  (Rp = Rypp)w

Further, for a lateral pitch of N grooves per unit length, the dimensionless

(4-15)

group can be formed

ke oo Ky
Nuf P v (4-16)
m fm

Using equation (4-15) in (4-16) leads to the result

k
Nu, — = 2 (4-17)

fr Ry - Rk

This equation together with (4-13) and the component resistance definitions

(4-5), (4-10), and (4-12) will be used to determine the maximum value for
the groove Nusselt number. .

The component integrations appearing in equations (4-5) and (4-10)
are not readily integrable to obtain the required results. As a result,
numerical integration was performed using & modified Simpson's rule
algorithm. The program listing is presenﬁed in detail in Appendix B with
only the résults presented here. The results are presented in Table 4-1

for the material combinations and geometries considered here.

Minimum Groove Heat Transfer

Returning to Theorem 2, the heat transfer through the typical cell
cannot be less than that for which the shape of the adiabatic surfaces are
arbitrarily assumed. By assuming the shape of the adiabats, then, a
lower limit for the groove heat transfer can be established.

To facilitate the computation of this lower limit, the typical cell
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Table 4-1

Groove Nusselt Number Upper Limit

Nuf-k.f/k.ln
X
a

d kelk €y = €, 0.05 0.25
1.0 0.1 0.01 2.0638 1.5260
0.25 2.1379 1.5584

0.49 1.8631 1.2767
,01156 0.01 1.7178 1.1148
0.25 1.7100 1.1003
0.49 1.4080 0.8371
.001 0.01 1.5574 0.9053
0.25 1.5012 0.8400
0.49 1.2067 0.6137
1.5 0.1 0.01 1.2684 0.9631
0.25 1.2886 0.9975
0.49 1.1190 0.8561
0.01156 0.0l 1.0727 0.7180
0.25 1.0814 0.7513
0.49 0.9151 0.6210
0.001 0.01 0.9892 0.5993
0.25 0.98104  0.6026
0. 49 0.8230 0.4874
2.0 0.1 0.01 0.8757 0.6841
0.25 0.8824 0.7165
0.49 0.7675 . 0.6304
0.01156 0.01 0.7474 0.5173
0.25 0.7610 0.5632
0.49 0.6516 0.4846
0.001  .0.01 0.6982 0.4417
0.25 0.7053 0.4688
0.49 0.6019 0.3984
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0.50 -

1.5166
1.2295
1.0068

. 7754
.8582
.6502

0.6208
0.6468
0.4670

0.,7412
0.8125
0.7124

0.5044
0.6000
0.5040

-0.4119

0.4730
0.3853

0.5391
0.6014
0.5458

0.3693
0.4616
0.4082

0.3065
0.3765
0.3260

- 1.00

0.7996
1.0356
1.0987

. 5058
. 9244
1.0088

0.4352
0.9096
0.9964

0.5330
0.6904
0.7327

0.3372
0.6164
0.6731

0.2901

0.6067

0.6652

0.3997
0.5178
0.5497

0.2529
0.4624
0.5050

0.2176
0.4552
0.4993

e e R B L R R N R




- m- w

4'3.1

is.subdivided into two separate sub-regions as illustrated in figure 4-5,

An 22%2bat will be located along the common boundary of the two sub-regions
in accordance with the establishment of a lower limit for the heat transfer.
Each of the two regions are examined in greater detail in the following two

sub~-sections of this report.

Sub-Region I

An expanded view of sub-region I is shown in Figure 4-6. The origin
of a cartesian coordinate system is located at the intersection of the groove
centerline and the extension of the groove sidewall. Within sub-region I,
a strip of width«bﬁf emanating from the liquid free surface is exaﬁined.
This strip is exten§ed as shown in the figure, terminating at the lower
cwifcce with width dxA. The subscripts used in the above refer to the
location in figure 4-6 where evaluation is made.That 1is, in general dx4 #

dx, but a relationship between the two can be derived.

1
Considering first the section of this strip from points 1 to 1la,

the liquid free surface can be described by the equation

2 2

2 .
x; + (v =8 (4-18)

from which the vertical coordinate of the free surface can be found. This

is given by

Yy = K- 82 - xi (4-19)

with ¥ and B as previously defined. The location of point la is given by

y1a = ez cot 60 (4=-20)

and so the component resistance can be determined from

K —‘[82 - xl - ez cot eo

AR, . = . (4-21)
1-la k. dx;
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The location of point 2 can similarly be found from

y, = X, cot 8 (4-22)

and the resistance component from la to 2 is given by
(e2 - xz) cot; O

1a-2 k_dx (4-23)
m

dr
1

vwhere the fact that dx, = dx, has been used.
On examining the interval ftom point 2 to point 3, the thickness of

this section can be written as

dy, = cot 8 .dx, , (4-24)

and the length 1s determined from

€, X
-y wr 2 ' (4-25)

X
_ 3 2 ro 8in 60

so that the resistance for this section can be written as

€, X

171
ARy 3™ T cos 6 K dx 4 (4-26)
o o m 1
again noting that X, = Xy, dx1 = dxz.

For the final section, the vertical position of point 3 is gived by

ro cos eo ..
I3 ’[ w ]"3 (4-27)
ro cos 96 :
so that dy3 =[ ]dx3 (4-28)

By noting here that dy2 = cot 90 dx2 and that dy3 = dyz, dx3 is related to

dxl by
dx, = —-«-——-‘-’——-—-—] dx (4-29)
3 [r sin 6 1
o o
since dxz - dxl. Since the length of this segment is given by
Yy = ¥, = %, cot 8 + ¢ (4-30)
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the component resistance is obtained as

r sin Bo[x2 cot Bo + ¢]

dRy_y = I w dx (4-31)
m 1

Finally, then, since the four components described above form a
series thermal circuit through the typical cell, the total strip resistance
is obtained as the sum of the four resistances

dR; = dR)_, + dR . +dR, .+ dRg , (4-32)

Using equations (4-21), (4-23), (4-26), and (4-31) in (1-32), the strip

resistance can be written, after algebraic rearrangement, as

AL +B.x, +C \182 - x2
drR, = 4 11 1 1 (4-33)
1 k dx
m 1
: K - €, cot O r ¢ sin ©
where A = 2 0
1 K_/K + E2 cot Bo +
f'm
ro cos 90 El cot Bo
B1 = w + r cos 6 k./k (4-34)
o o f'm

and c, = --km/kf

Noting that each strip, by virtue of the assumed adiabat locations, forms
a thermal 1link acting in parallel with all other such strips, the total
conductance can be found for sub-region I by integration of the inverse
of equation (4-33) over the range 0 < x L€, Thus the total conductance

for sub-region 1 becomes

E

2 k dx
K = J' (4-35)

A + lel ClvB

with A, Bl, and C

1 as defined in equations (4-34).

1
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4,3.2 Sub-Region IIX

The geometry pertinent to the examination of sub-region II is
{1lustrated in figure 4-~7 and as can be seen from this figure, its treat-
ment will be similar to that for sub-region I, Indeed, the major dis-
tinction between the two regions is that the special consideration given
to point la of figure 4-6 need not be considered in the treatment of sub-
region II.

Without‘going through the details, since they are very gimilar to
those for sub-region I, the resistance for the strip of width dxl in the
fluid region is presented here without the accompanying derivation. This

resistance is given by

2 2
+ -
R - A2 B2 Xy + 02 B Xy (4-36)
11 k dx
m 1
where
Kkm roc sin eo
A, = +
2 kf w
r, cos 60 el cot 90
B2 = w + r cos 68 k_/k (4-37)
o) o f ' m
02 = - k.m/k.f

For this region, since again each strip forms a thermal link in
parallel with all other such strips, the total conductance is obtained by

integration of the reciprocal of equation (4-36) over the interval

€, £ Xy < W-Ej. This yields the result that
w-e,
*n 4%
Kizp = (4-38)
[A, +B, x .+Cv’62-x2]'
2 271 2 1
€
2
- 60 -
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4.3.3

with AZ, B,, and C

defined by equations (4-37).

2 2

Overall Heat Transfer
The two sub-region conductances given by equations (4-35) and (4-38)
themselves act thermally in parallel with each other and as a result their

conductances are additive to form the overall conductance.

Thus
€ w-el
2 k dx k dx
K = J( m ], + m 1
.2 2 e 2 2
o [A +Bx + c1/s - %] 2 [A,+B,x + czv’s - xll

To determine heq’ the equivalent heat transfer céefficient, the
conductance of the wall material lying between the groove root and the
exterior wall surface must be discounted, and this is best done using
resistances. Deflning the resistance as the reciprocal of the conductance,
as is usual, by

R = 1/K (4-40)

then the resistance associated with the equivalent heat transfer coefficient

is glven by

Req = 1/K - (¢ + €, cot Bo)/kmw (4-41)

which leads to the equivalent heat transfer coefficient lower limit
' -1
(c + €, cot 8 )

- ¥
= xt—= (4-42)
m

heq

Defining the Nusselt number as before, then,
h
= e -
Nug ﬁiﬂ (4-43)
£
the lower limit for the groove Nusselt number can be determined from -
.-l

- 52 cot 60 + c
“lx?t 2w (4-44)
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4.4

The expression, equation (4-44), for the groove Nusselt number
lover limit was programmed for evaluation on a digital computer. 'The
integrals entailled in equation (4-39) and required for evaluation of (4-44)
were numerically integrated using a modified Simpson's rule algorithm. The
program listing appears in Appendix B of this reﬁort with only the résults

presented here. The results are presented in Tabular form in Table 4-2.

Results and Conclusions

As previously mentioned, the results for the heat transfer upper.

" limit are presented in Table 4-1 and those for the lower limit in Table 4-~2.

To minimize the uncertainty of the actual conductance, the average value of
the upper and lower values can-be used. This limits the possible inaccuracy
of using this value to one half of the difference between the upper and
lower values determined earlier. This has been used with some success by
Yovanovich, Schneider and Strong [37] in their evaluation of apparent com-
posite conductivities for sduare fibers in a matrix. Since there is no
motivation for using an estimation procedure other than the arithmetic
averaging described above, this procedure will be used here.

The arithmetic average value of the productNuf-kf/km was computed
and the range o uncertainty about this mean value established for land
area fatios (symmetric grooves) of 0.01, 0.10 and 0.25, half-groove angles
of 20, 30, and 40 degrees, conductivity ratios, kf/km, of 0.1, 0,01156, and
0.001, and values of the normalized apparent contact angle, a/(n/2 - 00), of
0.05, 0.25, 0.50, and 1.00. These results are presented in Table 4-3.

It is observed ;hat in general the range of uncertainty about the
ﬁean value is lowest for a conductivity ratio of 0.1, with this uncertainty
increasing as the land area ratio increases aﬂd as the conductivity ratio

decreases. While the uncertainty indicated represents the maximum possible
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d k /k,ml

1.0 0.1

0.01156

0.001L

0.01156

0.001

2.0 0.1

0.01156

0.001

Groove Nusselt Number Lower Limit

Table 4-2

Nuf'kf/km

0.05

0.9498
0.6027
~0

0.2858
0.1404
~0

0.0596
0.0244
~0

0.5780
0.3480
~0

0.1664
0.0778
-0

0.0331
0.0129
~0

0.402
0.2384
~0

0.114
0.0517
~0

0.0213

0.0083
~0
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0.25

0.7674
0.4749
~0

0.1875
0.0951
~0

0.0290
0.0131
~0

0.4787
0.2905
~0

0.1136
0.0567
~0

0.0171
0.0077
~0

0.3402
0.2059
~0

0.079
0.0396
~0

0.0117
0.0053
~0

0.50

0.6382
0.3956
~0

0.1409
0.0751
~0

0.0200
0.0098
-0

0.4096
0.2537
~0

0.0891
0.0474
~0

0.0124
0.0061
~0
0.298
0.1850
~0

0.064

0.0343

~0

0.0089
0.0044
~0

1.00

0.4967
0.3150
~0

1.1007
0.0578
~0

0.0134
0.0073
~0

0.3330
0.2142
~0

0.0676
0.0390
~0

0.0090
0.0049
~0

0.250

0.1619 .

~0
0.051
0.0294

~0

0.0067

 0.0037

~0

L
Ij

.




error that may be incurred,sincé tﬂe limit studies provide the upper and
lower bqund for the heat transfer, there is no means available to decrease
these bounds except to solve the thermal problem described in chapter 3.
This is the subject of chapter 5.

With the uncertainty ranging from +23 percent to i98 percent, the
band within which the actual solution lies is not sufficiently narrow to
allow use of these results as estimations for the actual heat transfer
characteristics. This is particularly true in consideration that the
groove mean temperature drop depends inversely upon the equivalent heat
transfer coefficient and hence inversely upon the groove Nusselt number.
When numbers having an error band approaching +100 percent are inverted,
the resulting band, in this case on the thefmal resistance, is extremely
large indeed. With the mean groove temperature drop directly dependent
upon the groove resistance to heat transfer, it is concluded that the 1limit
study will be of little utility for prediction purposes. Its purpose will
then be to serve as a check oﬁ the validity of the numerical results pre-

sented in the next chapter.

- 65 -




Table 4-3

Average Groove Nugselt Number

Nuf-kf/k.ln

d kf/km €, = ¢

1.0 0.1 0.01 0.05

0.25 0.05

0.49 0.05

0,01156 0.05

1.0 0,01156 0.25 0.05

0.49 0.05

0.001 0.01 0.05

0.25 0.05

0.49 0.05

Nuf°kf/km

1.5068
1.1467
1.0774
0.6482

1.3703
1.0167
0.8126
0.6753

0.9315
0.6384
0.5034
0.5494

1.0018
0.6512
0.4582
0.3033

0.925Z%
0.5977
0.4667
0.4911

0.704

0.4186
0.3251
0.5044

0.8085
0.4672
0.3204
0.2243

0.7628
0.4265
0.3283
0.4585

0.6034
0.3069
0.2335
0.4982

Uncertainty
+ 7

—

—— —
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019232
0.7209
0.5754
0.433

0.8183
0.644
0.533
0.4523

0.5595
0.4281
0.3562
0.3664

0.6196
0.4158
0.2967
0.2024

0.5796
0.404

0.3237
0.3277

4576
. 3105
«2520
«3366

0.5112

- 0.3082

0,2122

. 0.1496

0.4970
0.3052
0.2396
0.1496

0.4115
0.2437
0.1927
0.3326

0.6389
0.5122
0.4186
0.3249

100
100
100
100

93.5
94.5
94.2
94.0

97.4
97.5
97.5
94.0

100
100
100
100

37.1
33.6
28.8
23.0




2.0 0.1 0.25

0.49

0.01156 0.01
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Chapter 5
Finite Element Analyéis

Introduction

The reasons for selecting thé finite element method for
use in this analysis were briefly discussed in chapter three of
this report. The prime motivation for preference of the finite
element method over other numérical solution techniques is its flexi-
bility in analysing solution domains of irregular geometry. Recalling
the problem geometry of figure 3-3, the solution method used for
this problem will certainly fequire this flexibility,

It is the purpose of this chapfer to present briefly the
underlying principles governing the application of finite element
techniques to heat conduction analysis and to discuss its application
to the‘trapezoidal groove heat transfer problem. Soﬁe of the diffi-
culties encountered in applying the method to thié particular problem
are indicated and the procedure by which these difficulties were
surmounted is presented. In concluding the chapter an analysis is
presented for estimating the accuracy of the obtained results. This
is done using the results of a case stuﬂy used to examine the con-
vergence characteristics for this problem., It is felt that the com—
bination of parameters used in this study presents a severe test on the
method and that the accuracy for all other cases considered will be

at least as good as the estimates obtained from this case study.

The Finite Element Method

The finite element method is a relatively recent numerical
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solution technique to be employed in the anlysis of heat conduction
problems. First introduced to the solution of field problems in
1965 [39,40], the finite element method has since been the subject
of several investigations [41-44]. While these investigations were
concerned with alternate derivations of the governing functional
equation and with the treatment of the transient terms appeéring

in the governing differential equation, application of the method
was restricted go the cartesian coordinate system. In a more recent
investigation by Schneider [45], extension of the method waé made
to include its application to any orthogonal curvilinear coordinate
g ystem, This development will be adopted here with the details of
the analysis presented in Appendix C, The derivation of the varia-
tional statement for application of thetffinite element method to

heat conduction analysis follows directly.

Prelininary Remarkg -

The developmentjof the governing variational statement will
be performed for a general orthogonal curvilinear coordinate system
ad the results reduced to those correSpopding to the cartesian system
to be used in this analysis. The general orthogonal coordinate
system 1s illustrated in figure 5-1 with Uy, U, and u3 used to
denote the three principal curvilinear coordinate directions. In

general, the coordinates of an orthogonal curvilinear coordinate

system can be related to the cartesian coordinates, x, y, and
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Zz by relations of the form
X = X (ul, Uy u3) .
y - y (ul! uz! u3) (S_l)

zm g (“1’ Uy, u3)

Using these relations, the magnitude of an arbitrary differ-
ential vector in space, d;, can be determined from
2 2 2 2 )
(ds)” = gl(dul) + gz(duz) + g3(du3) (5-2)
- where the metric or Lamé€ coefficients of transformation are defined
by ([30]

9K )2 + (%E )2 + (az 2 , 1= 1'2’3 (5-3)
' i

g, = (- - )
i aui aui

Clearly for a differential length, say in the ui—direction, the

relationship of equation (5-2) becomes simply
ds, = /gi duy (5-4)

Similarly the area and volume elements can be written as

dAi = Ygigk duj duk, i=1,2,3 (5-5
1434k

and dv = /g’ du duzdu (5-6)

1 3

where the convention has been used that the direction of the area
element be taken normal to the surface in an outward sense and the

définition has been made that

/g = Vg,8,8, (5-7)

By applying the first law of thermodynamics to the differential
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control volume of figure 5-1 and by using the above relationships for
length, area, and volume, the governing differential equation for

heat conduction can be written as [30]

FI %1/ ar ] 42 [kz/g BT 4 4 2 [ka/ﬁi cudl
Bul g1 aul au2 8y auz au3 g5 au3
~ 3T '
+ PYg = Vg pcp Y (5-8)

where Fourier's Law of heat conduction has been used to describe
the local transfer of heat within the continuum.

Boundary conditions to be applied to the solution of equation
(5-8) can be written in general (except for non-linearized radiative

conditions) as

T =‘TA(u1,u2,u3,t) (5-9a)
over a portion S1 of the boundary sufaces and
oT _ _
kn o +hT +C =0 (5-9b)

over the remaining surface SZ' In equation (5-9b), n is the outward
normal to the boundary surface over SZ'

The initial condition, in the case of transient solutions,
is represented by

T(ul,uz,u3,o) = To(ul’uZ’uB) (5-9¢)

5.2.2 Variational Statement
If the concept of a variational principle is to be applied
to the solution of heat conduction problems, then the governing

differential equation (5-8) must correspond to the Euler equation for
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the corresponding variational problem [46]. Considering a particular

instant of time in this development, time derivatives will be treated

as prescribed functions of the spatial coordinates, Uysly, and Uge

This approach leads to a quasi-variational statement but rigor is

restored with respect to the variational calculus when a steady-state

solution is sought and time derivatives are set to zero.
Proczeding with the approach taken here and invoking the
requirement that the equation (5-8) be the Euler equation corres-

ponding the same, as yet'unknown, variational statement, we set

k, ~ k k
| JJJ {27{1@.8T]+8 [zfgaT]+a [3@£]
1 8
17273

Bul Buz 89 8u2 BQB g3 8u3

— aT =
+ P/g - Vg pCP at} ST dulduzdu3 =0 (5-10)

where the first variation of temperature, 6T, has been introduced.

Denoting by I, the first integral of equation (5-10) and

1
integrating by parts gilves

K
I, = f[[-‘l-’—/gﬂarll du,du,
ur, U

gl Bul
23 u,=u, (u,,u.)
171V2°73
- [__..Ekl"_ 3T 1 2_ (§T)du.du.d (5-11)
j j j 5 Bul Bul 1992943
u ulu
1723

where ul(uz,u

takes on, as a function of the remaining two coordinates, as the
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boundary surface of the solution domain is traversed. Employing the
commutability property of the differemtial and variational opertors,

equation (5-11) can be wriiten as

k
I, = J[—}-i’l 6T]|%.ds
1 S Bul 1
2 "81 boundary
1 3T 2 _
-56 J ] I fl(aul) du, du,du, | (5-12)
b R ‘
where the definition has been made that
k5
£, =—5  i=1,2,3, (5-13)
i gi

Further, it has been recognized in writing equation (5-12) that

/g2g3 duzdu3 = Rlds (5-14)

with 2, the direction cosine of the bounding surface with respect to

1
the coordinate direction uy and also that the variation of tempera-
ture over S1 is by definition zero so that there is no contribution
to the first integral of equation (5-11) resulting from integration
over the portion Sl
arise from consideration of the conduction terms for the other two
coordinate directions. Additional details of the derivation are
presented in Appendix C.

Determination of the variational form for the remaining two
integrals of equation (5-10) follows by a direct application of the

calculus of variations. Collecting the components and assembling

to provide the quasi-variational equivalent to equation (5-8) yields
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£ £
£, T 2, 2 AT y2 3.7 2
K [ I GG+ Gag *7 %)
ujuyuy
-P/gT + /Epcp'r} du, du,du,}
- ”{hT + C}6T ds, = 0 (5-15)
85 :
where the identity has been used that
k k ‘
1 3T 2 ar %3 o I | _
55 -5— 21 /E ™ 22 +J§ 3u3 23] d82 kn 5n d82 (5-16)

3
together with the boundary condition statement, equation (5-9b).
A final application of the variational calculus to the surface
integral of equation (5-15) leads to the result

£
a[JU-(Q-T—)Z (aT 2e 3B
3

— oT :
- P/gT + /ngp(at)T} dulduzdu3

2 |
II{ EE—‘+ cT} ds,] = 0 (5-17)

59

Equation (5-17) is the quasi-variational statement referred
to earlier and its satisfaction, within the limits of the treatment
of time dependent terms adopted here, is equivalent to satisfying

the differential equation (5-8) from which it has been derived.
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5.2.3 Spatial Discretization

To enable application of the finite element method to the
variational statement of equation (5-17) it will be useful to define
the following vectors and matrices. The first, a vector very similar

to the gradient field vector of & cartesian frame [33], will be defined

by
T AT aT T
{G} = {——" ’ } (5”18)
Bul au2 8u3

This vector will be referred to as the curvilinear field vector,
although, since the curvilinear coordinates do not directly reflect
physical distances, the components of (5-18) are not physical gradients
unless accompanied by their corresponding metric coefficients. The
second, a matrix analogous to the property matrix of cartesian system,

is defined by

fl(ul’uZ’uB) o o
[R] = o fz(ul,uz,us) o (5-19)
o o f3(u1,u2,u3)

This matrix shall be referred to as thé effective curvilinear pro-

perty matrix. The remaining vectors, at this point continuous

functions of the spatial curvilinear coordinates, are defined by
{r} = {P(u;,uy,uy)}

{9} = {Cégl'uz’us)}
{t} = { 3t }

(5-20)

Using the above defined vectors and matrices, the variational

statement (5-17) can be written as
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J f f 5 (6} R €6} - BT (2} + pc /RITYT(T)Idu,duu
1"2"3

+ I (3tr3trd + (117 (c}ids,] = 0 (5-21)

52

Wich the variational statement expressed in vector notationm,
we now consider the fundamental concept of the finite element method,
that the solution domain can be spatiélly subdivided into a collection
of finite elements. Over each of these elements, an approximate
solution 1s assumed which contains a specified number of arbitzary
parameters representative of the nodal degrees of freedom, It is
the object of the finite element method to determine the values
for these nodal degrees of freedom by the approximate satisfaction
of the variational staﬁement (8-21).

Approximating the unknown temperature distribution by the
approximation

Ty = [N,N,.. ] Tl‘ = {Ni}T {1} (5-22)

the curvilinear field vector can immediately be written as:

— . .
aNl/aul aN2/3u1 voe le

{G} =

aNl/au2 , aNz/au2 ee]d o f = [B] {Ti} (5-23)
_aNl/a_uB aN2/3u3 ces L)
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In the above the N,'s are the shape function [ ] for the

i
element and their form and number will depend on the type of element
under consideration. Having made the appfoximation 6f equation (5-22),
the approximate functional corresponding to equation (5-21) becomes

a function of only the unknown nodal temperatures, Ti’ i=1,2,3, .

Finding the stationary value of this functional by taking its first

ariation with respect to T then becomes equivalent to simply different-

iating the approximate functional with respect to each nodal temperature

in turn, and setting the result equal to zero.
Performing the indicated differentiation, and recalling that
the instantaneous thermal behavior is considered in this treatment,

leads to the matrix-differential equatioms.

[k] {T;} + (P} {Ti} = {f} (5-24)
where .
2]
[k] = eél[ [B] [R] [B]dulduzclu‘.3
Ve
T
+ ij h {Ni} {Ni} dSZ] : (5-25a)
2
e
sl e T ‘
[Pl = Z; ; pC, 78 {N,} {N;}" du;du,du, (5-25b) \
. A ‘
and |

sl vy ||
{£} = egl[v /g {N,} {P} du du,du, + (N} {c} ds,] (5-25¢)
‘ e 2e

In the above, integration of the functional over the solution

domain volume has been replaced with a summation of volume integratioms,
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each jntegration being local to the element characterized by the index
of summation, e. Treatment of the transient terms is presented in
Appendix C but for the present purpose of examining the steady state

thermal behavior the time derivatives can be set to zero

{Ti} = 0 (5-26)
resulting 1n the matrix equations

[k] {Ti} = {f} (5-27)

where since we are not consildering the case of internal heat generation,

the heat generation submatrix appearing in {f} can also be set to zero.
{P} =0 (5-28)
Solving the matrix equationsoof equation (5-27) will then

provide the approximate solution for the temperature field by means

of determining the temperature at the field node points, TI’ i=1,2,3,

Application to Trapezoidal Groove Heat Transfer

We now consi&er the application of the finite element method
as described above to the problem of direct interest in this work,
that of determiﬁing the heat transfer characteristics for trapezoidal
shaped grooves, The problem geometry is repéated in figure 5-2
from figure 3-3 for ease of reference by the reader.

Examination of the figure suggests tht due to the complex
geometric description of the solution domain and component boundaries,
the coprdinate system most suitable for use in effecting the solution
is the cartesian coordinate system., The transformation equations in
reference to the material presented in section 5,2.1 are'given simply
by

X=X} y=Y; 2=2 ' (5-29)
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with the metric coefficients each being identially unity, 8 =8, =83 "
g = 1. For this case, and considering isotropic materials, the effec-

tive curvilinear property matrix becomes the diagonal matrix

k 5 o
[R] =] 0 k o (5-30)
o o

where the conductivity to be used in equation (5-30) will be the
liquid or solid conductivity respectively depending upon whether the
element under eonsideration is in the liquid or solild region of the
solution domaln. For accuracy of representation of the thermal behavior
for this problem, since the volume integrations of equation (5-25)
usually require a numerical integration proeedure, it is important
that the solid/liquid interface form a bounding surface for adjacent
interface elements rather than to allow a step change in the thermal
properties to occur within a single element. The above modification
of the effective curvilinear property matrix in the general formulation
is all that is required to adapt it for use with the cartesian coordi-
nate system. Further simplifications can be made, however,

Considering the boundary condition specification as indicated

in general by equation (5-9b)

oT
kn ™ +hT +C =0 (5-9b)

the non-homogenebus term, hT, can be interpreted as part of the speci-
fication for boundary conditions of the Cauchy type. Not having Cauchy,

or in this application convective, boundary conditions present on any
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exterior surface of the solution domain, the surface integral of
equation (5—255) will be identically zero.

The constant term of the boundary condition specification is

representative of a Neumann type boundary condition. Having a prescribed

flux of q, the conmstant C will be determined by

C=gq | \ (5-31)
This specification is applicable over the surface defined by y = 0 in
figure 5-2, in the special case of an adiabatic surface, as for

example over the surfaces defined by x = 0, x = w for 0 2 y z H, and
1 Sxs w, the constant C will be zero and its

contribution to the surface integral of equation (5-25C) will be zero.

for y = H for w S

These boundaries therefore require no special treatment whatsoever
in their implementation and are called natural boundary conditions.
As was seen earlier the Dirichlet boundary over the liquid free
surface is also a natural boundary condition to the Finite Element
Method as developed here,

A program has been developed which, using a compatible data
input subroutine; will assemble and solve the matrix eguations (5-27)
to yield as a solution the temperatures at the discrete nodal points{
Using this computed temperature field, the various derived quantities
of Interest in this investigation can be computed. The most important
derived quantity of interest here is the equivalent heat transfer
coefficient to be assoclated with the heat transfer from the groove
root to the vapor core.

The 'finite element' selected for use in the analysis of the
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trapezoidal groove heat transfer 1s the general quadrilateral, linear,
isoparametric element. The details of the element shape functions and
stiffness matrix will not be discussed here but can be found in finite
element texts [33,34] with the details presented very explicitly in the
paper by Shah and Kobayashi [47]. This particular element has a general
quadrilateral shape and wmaintains the fiexibility of degeneratioﬁ to
a triangle by the assignment of two of the four nodes to the same
physical location in space. A summary of the derivations pertinent
to this element. are, however, presented in Appendix F of this report.
Due to the large degres of detall which would be required to
explaiﬁ fully the internal operation of the solution program, the detalls
of its operation will also not be discussed in this report. Further,
these detalls are of no consequence with respect to the thermal pro-
blem under consideration; 1t must simply be ascertained.that the
approprilate sub-functions of the program components are being performed
cofrectly. Let it suffice for purpsses of this investigation to demon-
strate the correct operation of the program components by éxample.
In Appendix C of this report where the finite element formulation of
the heat conduction equation is developed for any orthogonal curvilinear
coordinate system, two examples are considered for verification of the
development; a problem in the polar spherical coordinate system and
one in the oblate spheroldal coordinate system. The fact that the
solution program used for this 1nvestig§tion 1s the same as that used

for the verification examples, with the exception of the input data
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subroutine, and the fact that these examples indicate excellent agree-
ment of the finite elément results with known analytic solutions,
provides confidence that the solution program is functioning correctly.
The input data subroutine, being unique to each problem tackled
using such a program as that develope& for this investigation, is an
important cohsideration in applying the finite element method. Indeed,
in this work considerable difficulty was experienced due to a not
entirely 'appropriate' input of the nodal 16cations, element distri-
bution, and element shapes for the initial mesh generation subroutines.
These types of difficulty, however, are extremely problem dependent
and are often difficult to anticipate and can only be detected
during an examination of the convergence characteristics for a parti-
cular problem. In this regard, it is the authors' firm opinion that
the heat transfer problem tackled in this particular investigation is
an extremely difficulty one indeed, by any method of attack. The
reasons for arriving at this conclusion are briefly presented below,
In examining the behavior of heat transfer across trapezoidal
grooves in the case of moderate temperature heat pipes, the working
fluid is typically of low thermal conductivity, eg. water, methanol,
ammonia, etc,, while the pipe structure is typically metallic and conse-

quently has a significantly higher themmal conductivity, eg., stainless

steel, carbon steel, aluminum, copper, etc. The conductivity ratio,

kf/km, for these combinations can therefore range from approximately
0.03 for water/stainless steel pipes to approximately 0,0014 for

methanol/copper heat pipes. Numerically enforcing inferface compatibility
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for problems having such a severe conductivity ratio is extremely,
difficult except for problems of very simple geometry. The solution
to such problems must be able to adequately describe the interfacial
heat transfer characteristics at component boundaries within thg
solution domain. |

Further, the above problem is compounded by the geometric
characteristics of the trapezoidal groove problem. This arises for'
two reasons. Firstly the liquid free surface geometry is such that
it the meniscus attachment point, the liquid thickness vanishes. This
results in an extremely local region over which the bulk of the heat
transfer is concentrated. The second, serving to compound the first,
is that the metal section extends fully to the vapor core, This"
affords the heat flow a low resistance path to the meniscus contact
region and further concentrates the heat flow in this region. A
solution program must then be sufficiently flexible to be able to
"pick up' the large gradients existing near the meniscus contact and
blend this region into the remaining portion of the solution domain
where the heat flow is less concentrated and gradients are smaller.
Problems in Effecting the Solution

In effecting the finite element solution to the trapezoidal
groove heat transfer problem, several difficulties were encountered
which had to be resolved before confidence in the numerical results
could be established. These difficulties are related to the spatial
discretization of the solution domain and the influence that the method

of subdivision has on the finite element solution of the heat transfer
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probiem. Witﬁ this application of the finite element method by the
authors being the first application in which difficulty of application
was gxperienced, the above named cause of the problem was not immediately
obvious and a systemmatic check of the entire solution program was
necessitated. Since all of the checks employed that are not directly
related to the input data subrqutine indicated that the program com-
ponents were functioning correctly, these will not be discussed here.
Indeed, many checks performed directly on the input subroutine also
indicated that even the input subroutine was operating correctly;

that is, the location, numbering and allocation of the nodes and
elements was being performed as intended. Thus the problem is not
one of incorrect input of information but rather of the influence
that the method of subdivision has on effecting a solution using the
finite element method. The difficuitieé enéounﬁered in the solution
are discussed briefly in the sections that follow but only to the
extent to which tpey are relevant to the problem area to which the

difficulties have been attributed.

Mesh Generation Scheme T

The first mesh generation.érrangment was constructed with the
int;nt that a larger number of small elements be located near the
meniscus contact point., In consideration of the anticipated local
concentration of the heat fiow in ;his region, this type of element

allocation was deemed necessary in order to obtain reliable results

while keeping the program storage requirements within the limits
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afforded by the available computational facilites. As will be seen,
this is indeed a desirable objective of the mesh generator., The pro-
blem with this generation scheme, concluded after mény tedious veri-
fication procedures, is in the method of allocation and in particular
in the shape of the elements near the meniscus contact region. A more
detailed description of this generator will be given below. .

Before discussing the generator, however, we present the test-
‘case used for evaluation of the computational scheme convergence
characteristics. It was felt that to examine the éonvergence character-
istics, an extreme4computational gsituation should be. used. Iﬁ this
way, when an estimate of the solution accuracy is available, computational
results for less severe cases should be at least as accufate as those
obtained for the test situation. Feeling,however, that the copputations
will be relatively insensitive to the groove half-angle, within moderate
bounds, a value of twenty degrees was used for the groove half-angle,.
An exposed land area ratio (symmetric groove configuration) of 25
per cent land area to total apparent area was used since this case
will yield a significant degree of heat flow concentration. The
extreme case of the conductivity ratio, kf/km, of 0,001 was alsq used
since this also augments the heat flow concentration, Finally, an
apparent contact angle of 2,5 degrees was used, also for the reasons
given above. It 1s felt that any problems configuration and property
dependent will become apparent for this combination of parameters.
The characteristics of the first mesh generator are given below for

this parameter combination.
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The first mesh generation scheme used a virtual origin established

at the intersection of the groove centerline with the extrapolation
of the groove sidewall plane. This is illustrated in figure 5-3,
Radial lines emanating from this origin were constructed with the region
used ranging from the wall exterior surface to the liqpid free surface
over the angular range of 059560.In order to provide a higher degree
of detail near the meniscus contact a finer angular division between
the radial lines was used near 6=6° than near 6-o. The details of the
actual subdivision scheme used to provide this gradation will not be
presented here since they will not add to the problem understanding.
Within the metal region extending over 059590, horizontal lines were
used t5 provide the remaining boundgries for the.elements. Within the
liquid, the radial distance between the groove root and the liquid
free surface was further subdivided non¥uniformly to provide the
maller elements required near the meniscus contact point. A non-uniform
linear scheme was used within the remainder of the metal region of
the solution domain., The resulting mesh is illustrated in figure 5-3
for a crude mesh subdivision, |
The results of a preliminary examination of the convergence
characteristics for the sharp V case, 0.5 land area ratio and conduct-
ivity ratio of 0.01156 are presented in figure 5-4, As can be seen
from the figure, convergence 'looks' monotone and asymptotic to a
limiting value., Calculation indicates, however, that the limit has
not been approached. Unfortunately, the last data point presented
represents the limit for available storage core on the IBM 360/75
computing installation at the University'of Waterloo. It was in the

search for verifying that the limit was near the last computational
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data point that the problem area associated with this meéh generation
scheme was discovered,

To examine the convergence characteristics in greater detail,
the IBM 370/158 'virtual machine' was used which allows much largét
core usage. On this system, additional points computed for the above
case departed from'the asymptotic‘nature exhibited iﬁ figﬁre 5-4 and
fell increasingly far below the anticipated asymptote,

The results for the more severe test case using the 370/158
system are shown in figure 5~5, The results referred to henceforth

will apply to the more severe test case parameter combination described
’earlier. As can be seen from the figure, an initial approach towards a
convergence limit is indicated by the results but as the number of nodes
is further increased beyond 1600 the results drop off sharply. It is
not so much the range of values taken on by the Nusselt number (note

the expanded ordinate scale) but the trend of the regults which is most
digturbing. If these results were accepted, the question would have to
be answered, '"Where are these results going?", and this is not deter-
minable from the convergence characteristics of figure 5-5.

It was concluded therefore that the mesh generation scheme
described above will be inadequate to describe the thermal behavior
of this problem. The reasons for its inadequacy are attributed to
t&o independent characteristics of this mesh generation scheme and
are briefly outlined below.

The first potential cause for the apparent erratic behavior

displayed by figure 5-5 is the combination of the variable mesh generation
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schemes for the two independent directions used to obtain the total generation
pattern. This is best visualized with reference to figure 5-~3, 1In order to
obtain greater detail of the solution in the radial direction (from the virtual
origin) near the meniscus contact region, the element thickness in that direction
is small not only near the meqiscus contact, point B, but also at the |
groove centerline, point A. Conversely, while the variable mesh in
traversing the liquid region, from point A to B, provides (finer) sub-
division near point B, the element 'lengths' near point A are large
by comparison. The‘net resilt of the independent gradation for each
direction is a series of elements with aspect ratioa very much different
from unity existing near point A of the figure. Similar effects are
obtained near point C, D, and E of figure 5-3. With aspect ratios
of 1000:1 and higher in these regions, it is clear that the thermal
influence of two nodes on each other in any given 'direction' méy be
1000 times more, or less, than that for the other 'direction'. Without
expounding on the details of the effects of very large or very small
aspect ratios, let it suffice for purposes of this report to say that
certain of the inter-nodal influences become dwarfed, or indeed lost,
upon assembly into the overall stiffness matrix, particularly when
computing using single precision arithmetic,

The second deficiency of the first mesh generation scheme is
its introduction of Highly skewed elements into the golution domain.
Unfortunately, predominance of these highly skewed elements 1s (almost)

exclusively in the region near the meniscus contact with the groove wall
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and as a result any detrimental behavior resulting from. their skewed
character will be markedly reflected in the solution. Due to the general
nature of the general quadrilateral finite &lement used in this work,

the volume integration of equation (5-25a) is performed numerically

in the solution program using Gauss-point integration. The influence

of highly skewed elements on the solution accuracy is reflected through

a reduced accuracy of the numerical integration for these elements. It

is felt that this skewed character for some of the elements is the second
cause for the poor convergence characteristics of the first mesh generation
scheme,

While the influence of the second item above would be in the
form of a misrepresentation of the thermal problem, the influence of the
first item, in addition to contribution to the misrepresentation, is
to provide very small and very large diagonal elements in the coefficient
matrix (5-25a). The effect of the small diagonal elements was observed
in the solution through nodal heat flow imbalances as large as 100
percent of the imposed heat flow rate. Clearly, now, this subdivision

scheme is unacceptable for use with this problem.

Mesh Generation Scheme II

A second mesh generation scheme, a modification of the first
scheme described above, was also found to be unacceptable for this
problem but for different reasons than for those of the first scheme.
This second scheme sought to alleviate the problems associated with the
first generation scheme while maintaining the same basic mechanism for
achieving element size variation throughout the solution domain., The
corrective measures that were taken proved to be effective but unfortun-

ately due to the built in safeguard in this scheme to keep the aspect
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ratio near unity for all elements, & very large number of elements are
required. Indeed, for this scheme even at 2000 nodes within the solution
domain, the computational results were far from being near a converged
state, The convergence characteristics for the second mesh generation
scheme are presented in figure 5-6. A brief discussion 6f the second
mesh generation ascheme 1is given below but the purpose of this discussion
does not warrant a detailed descriptién of 1ts nature.

The prime departure of this scheme from the previous one is

that given a prescribed number of nodes, their distribution 1s rearranged.

to maintain element aspect ratlos near unity. In order to universally
achieve this it was also necessary to relax the transition from the
coarse regions to the finer regions, and this, of course, necessitates
the use of more elements to achieve a prescribed degree of detail near
the meniscue contact region. The redistribution of elements mentioned
above was effected by imposing a fixed number of elements across the
test section thickness, and as the typical cell isitraversed from the
outer surface to ;he inner surface, elements are 'passed'! from the
metal section to the liquid section in accordance Qith the respective
cross-sectional area changes., In this way a greater degree of aspect
ratio uniformity, were achieved using this generation scheme, and while
the resultant convergence characteristics exhibited monotonic behavior
as 1llustrated in figure 5-6, the additional elements required to
obtain the required detail near the meniscus contact region makes this
generator Impractical for use on this proElem. Indeed, as can be seen

from figure 5-6, when comparing ordinate scales here with that of figure
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5.5

5-5, the last data point from the second generator has not even reached
the starting polnt of the first generator. In view'of this, and the

fact that the convergence slope at 2000 nodal degrees of freedom is far
from that of a "mear converged' situation, this generator was discarded
as being impractical to apply with the available computational facilities.
A third generator, which proved to be adequate for the purposes intended,
was devised instead and used for the subsequent parametric study. This

generation scheme is described in the following section.

Successful Application of the Method

In this section the third, successful, mesh generation scheme
B presented along with the associated convergence characteristics. The
third generation scheme was developed entirely as a new and different
subdivision scheme and does not incorporate any of the underlying ideas
which led to the first two schemes. The object still remains to provide
detail near the meniscus contact point, however, but while the former
two methods accomplished this, the third enables in addition a more
compatible gradation to the coarser elements and is also relatively
free from highly skewed elemeﬁts.

The convergence characteristics for the three conductivity
ratios to be considered, kf/km = 0,1, 0.01156, and 0.001, are also
presented in this section. Finally, an extrapolation technique is
utilized to provide an estimate on the solution accuracy. The expected

solution accuracy 1is found to be sufficient for the purpose intended

by this investigation.
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5.5.1 Mesh Generation Scheme III

In this third mesh generator the virtual origin concept
used in the previous two generators is discarded entirely. Instead,
a deliberate attempt has been made to orient the elements in a

fashion which more closely resembles the anticipated thermal field set

up within the solution domain. In effecting this orientation of elements,

it is also strived to keep the elements as close as possiblé to rectan-
gular in shape and to maintain the aspect ratio within a moderate
range. A schematic.of the spatial subdivision scheme 1is presented in
figure 5-7 for a crude subdivision. The diagram is only representative
of the element allocation,.however, and is not to scale. |

In this subdivision scheme, a single parameter. NEl is used
as input. The remaining spatial subdivision is determined from the
lengths associated with the appropfiate section of the typical cell,
One exception to this determination is the subdivision parameter, NF,
in the fluid region which is taken as one-half the value of NE1l (to
the nearest larger integral value). This is felt to be adequate since
over the bulk of the liquid region, little heat is flowing while near
the meniscus contact poiﬁt the coalescence of the element boundaries at
a single node at the contact point yields element thicknesses which

are here sufficiently small to 'pick-up' the larger gradients in this

region. The details of the generation procedure will not be presented

here since the algebraic 'bookkeeping' becomes rather meésy for this

scheme, but a few of the salient features are indicated in the following

paragraphs,
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Firstly, the inter~element boundaries formed by the lines
joining the liquid free surface to the groove wall are constructed by
providing a transitional development fwom the near-to-vertical case
near the groove root to the case near the meniscus attachment point
where thosg boundaries form the base of an isosceles triangle hinged
at the attachment point. This transition scheme provides element
boundaries for this direction which are suggestive of the anticipated
heat filow lines over the length of the groove wall. 1In the other
direction these lines are subdivided equally to provide the remaining
element boundaries. The scheme also provides elements, although rotated
with respect to a cartesian set of axes, which are near rectangular in shape,
certainly far mofe so than the elements fesulting from the previous
two generators., Further, the use of appropriate dimensions in deter-
mining the number of element subdivisions in a particular direction
yields elements with an aspect ratio nearer to unity.

The second feature of this subdivision scheme is the use of
a transition mesh in the metal 'fin' section of the groove. The mesh
in this region has been graded from a unifogm one at the groove root
plane, where the field is expected to be relatively uniform, to a
non-linear one at the metal fin tip providing greater detail near the
meniscus attachment point, where the gradients are expected to be large
and non-linear, A non-~linear spacing has also been employed in the
direection along the groove wall as the groove wall is traversed from
root to tip. Although in this metal region elements of poor aspect
ratio are generated near the upper right side of figure 5-7, these

elements are of little consequence with respect to their contribution
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to the thermal behavior, Their use is thus justified in consideration

of the gains available in the more consequential region near the meniscus

attachment point.

As wiil be seen in the next section, this third subdivision
scheme provides solutions which display a monotone, asymptotic behavior
as the number of nodal points in the discretized description of the

thermal problem is increased,

Convergence Characteristics

The third mesh generation scheme was used in the solution
program and the convergence characteristics obﬁaiﬁed for the three
conductivity ratios, kf/km = 0.1, 0.01156, and 0.00l. The results of
the convergence study are presented for these cases in figures 5-8,
5-9, and 5~-10 respectively with the remaining solution parameters being
thoge of the test case described earlier. It is clear from examination
of these figures that convergence is both monotone and asymptotic for
this mesh subdivision scheme, If is also clear from a cross—~comparison
of the three convergence plots that the conductivity ratio strongly
influences the rate of convergence of the results and that the extremely
low ratio of 0.001 is indeed a severe test on the solution program,
Even for this severe case, however, examination of figure 5-11, where
the convergence trends are presented on non-expanded axes, indicates
that the computed solutiog for 1800 nodal points is near its asymptotic
value and that the effort and expenditure required to achiewve a further
improvement on the accuracy will be prohibitively large.

The above discussion has been concerned with the convergence
characteristics of the derived quantity, the groove equivalane Nusselt

number. Perhaps a more fundamental indicator of convergence, however,
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is the functional of equation (5-17) whose value is being made stationary
by the variational statement. Treating the solution for each degree

of subdivision as an approximate solution, the better the approximate
solution is, the closer this functional will move towards its extreme
value,which is obtainable only in the limit where the exact solution is
achieved. The rate of convergence of this functional provides, therefore,
an additional check on the solution credibility as well as an estimate

of the closeness of the solution to its asymptote. The convergence
characteristics for the functional are presented in figure 5-11. As

seen from the figure the convergence trends of the functional are very
similar to those for the derived equivalent Nusselt number, This
realization offers further support, then, that the third mesh generation
scheme has been successful in providing a spatial subdivision which,

in conjunction with the solution program, will yield reliable solutions.

The accuracy of these solutions will be estimated in the following section.

Accuracy of the Results

In this section an estimate will be made for the accuracy
of the aforementioned results using a hyperbolic extrapolation technique.
The data appearing in the previous graphs is presented in tabular form

in Table 5-1 for the test case studied.

Table 5-1
NE1 No. of Nodes Nu* kf/km

3 65 0.501
5 141 0.469
7 276 0.445
10 | 547 0.425
12 741 0.416
14 1020 0.407
15 | 1136 ' 0.403
16 1317 . 0.400
17 1448 0.396
19 : 1828 " 0.390
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Aaticipating that the convergence curve follows a path displaying
an inverse dependence on the number of nodal degrees of freedoﬁ, and
observing this hasic trend in the convergence plots, the hyperbolic
conic section appears to be a reasonable candid;te-for description of
the convergence behavior . In additiom, én asymptotic limit must be
provided by the describing curve since we know the numerical solution
asymptotically approaches the exact solution as the number of nodal
degrees of freedom becomes infinitely large (excepting machine round-
off errors). Since the hyperbolic curve description provides the above
characteristics, it will be used in an extrapolation for purposes of
error esfimation. The estimation is performed in the following fashion.

Using the numerical data of Table 5-1, a least squares minimi-

zation is performed to fit the data to a general hyperbola of the form

c
1
Nugke/k = &) + ¢, (5-32)

If an acceptable fit i3 obtained, extrapolation of the analytical expres-

sion describing the curve is made for N becoming infinitely large. Clearly

from the above expression (5-32) the approximation of the limiting

value 1s given by

L1im . %
Noreo [Nuf kf/km] C3 (5-33)

A program was written which, using the data of Table 5-1,
performed a least squares curve fit of the data to the model equation

(5-32). Excellent agreement was found between the data and the equation

with parameters given by

—.108 =

a

1 « . .




25.80

Nug. kf/km = N4139.5

+ 0.3820 (5-34)

The maximum error incurred over the entire range of data was only l.4
per cent, Using the approximation for the asymptotic value given by

equation (5-33), the estrapolated asymbtote is given by

[Nuf' 1~ 0.38

N

kely
m

Comparison of this asymptote with the last computed value yields an
expected error in this value of 1.96 per cent, Adding to this value
the maximum error incurred by the correlation equation within the
range of the dafa of 1.4 per cent yields a potential error in the last
value of 3,36 per cent for this extreme parameter combination,

Based on the good correlation agreement of the model equation
with the data, and evaluation of the analytic asymptote of the correlation
equation, it is expected that the actual error in the solution will be
less than five per cent which provides a safety margin of fifty per
cent on the incurred error. Since this test case represents a severe
combination of physical and geometric parameters, it is anticipated
that the errors incurred for the remaining parameter combinations will

be less than five per cent.

5.6 Comparison with a Limiting>Ana1y;ical Solution
As a further check on the solutions program operation, the
solutioﬁ from the finite element analysis wili beteomputed for ;he case
where an anlytic éolution is known. This is a very restrictive case

but it serves the purpose well of verifyimng correct operation of the
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solution program.,

The case study under examination is that for which thé'conduc—
tivity ratio 1s taken to be unity., In this case the problem is clearly
a single component problem and becomes a member of the constriction
resistance class of problem; Further, to enable an analytic solution

an equlvalent full groove condition must be assumed in the groove.

The land area ratio (symmetric groove) will be maintained at the former
value of 0.25, and the mesh generation routine developed for the multi-
component problem will be used, even though it may not be an ideal
subdivision scheme for this problem.

The problem geometry and boundary conditions for this verifi-
cation problem are illustrated in figure 5-12. The adiabatic boundaries
remain as they wre previously prescribed. The isothermal boundary

1s now applied at y = H over the range Osxgl-~e Over the lower surface

1°
a uniform heat flux is prescribed. It is noted here that the analytical
sdution to be discussed i1s applicable to the situation where the lower
surface 1s maintained at a second isothermal temperature but that this
very neafly corresponds to a uniform flux condition over thils surface

for the dimensions considered in this problem. The physical dimensions

for the verification example are H = 1,4737, w = 1.0, and € = €y

= 0,25,
and the conductivity for each reglon is taken to be unity.

| The analytical solution to the above described problem, in
determining the total thermal resistance, can be expressed in terms of

the Jacoblan Elljiptic functions and Elliptic integrals of the first kind [48]

R, = ""‘“E(A(_;) N (5-37)
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where the modulus X is determined from

(1-¢.)
A=k sn ( L

K(k), ) (5-37)

where sn denotes the Jacobian Elliptic sine amplitude function, K denotes
the complete elliptic integral of the first kind, and ¥, a second

modulus, is determined from

4 -
K<) - w (5-38)

Here H/w = 1.4737 and using equation (5-38) and interpolating from the
tables in Abramowitz and Stegun [49] yields a value for the second modulus
of

k = 0,38027 (5-39)
Note the modulus used here 1s the square root of the Abramowitz and
Stegun modulus, m, and is merely a matter of convention. Using this
modulus the aséociated complete elliptic integral of the first kind
can be determined to be

K(x) = 1.6327 | (5-40)

The first modulus, A, is then found using equation (5-37) from

A = 0.38027 sn (1.2246, .38027 (5-41)
This deterﬁination, however, is not au easy one, Returning to-Abramowitz
and Stegun [49] for guidance, the Jacobian sine amplitude function can be
felated to the Jacobian Theta functions, appropriately defined iﬁ the

reference, by

sn(u,k) = OS(V,K)/Gn(V,K) (5-42)

where v

8

mu/2K () , (5-43)

Following the evaluation procedure guggested by Abramowitz and Stegun [49],
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5.7

the first modulus can be determined to be

A= 0.3536 (5-44)
Finally, using this value in the expréssion for thé total resistance,
equation (5~36), yields the result

= 1.5246 (5-45)
exact

for this geometric configuration.

Determination of the total resistance using the finite element
program developed for the trapezoidal groove problem, with the appropriate
input data of, in particular, X, = 1.0 and kf/km = 1,0, led directly
to a value for the total resistance of

R = 1,5268 (5-46)
l‘TFEM

‘which agrees with the 'exact' analytical value to within 0.15 per cent.

The remarkable agreement obtained for this verification example suggests,
indeed, that reliable operation and accurate solutions can be obtained

using the finite element solution program.

Conclusions

In the foregoing chapter, the basic ideas underlying the appli-
cation of the finite element method to heat conduction analysis were
introduced. The variational statement governing the finite element analysis
of the heat conduction phenomenon was developed in a general fashion,
g0 as to be applicable to any general orthogomal curvilinear coordinate
system, The generalized results were seen to easily reduce to those cor-
responding to the cartesian coordinate frame utilized in the analysis

of the trapezoidal groove heat transfer problem. Application of the
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method was made to the trapezoldal groove problem with its approPriéte
boundary conditions.

It was found, however, that the application to the trapezoidal
groove heat transfer problem is, indeed, not as straight forward as
it might at first appéar. The problem under examination in this work
was found to be very special with respect to both its physical and
geometric characteristics. The special character of the problem foiled
the attempts made in'the devgloPment of the first two mesh generation
schemes to provide reliable solutions of adequate accuracy.

Finally, after a great deal of effort, a third mesh generation
scheme was developed which displays monotone, asymptotic, convergence
characteristics. An estimation of the accuracy of the resultant solution
indicated that for the sevefe test’case examined, having a conductivity
ration of kf/km = 0,001, solutions accurate to within approximately
five per cent are expected, with the numerical value being larger than
the exact value due to the extrémiiing'nature of the variational siace-
ment for the problem. Solution accuracy, although this will be presented
in a subsequent chapter, is considerably improved as the cénductivity
ratio 1s increased towards a value of unity.

Finally, a verification example, for which an analytic solution
is avallable, was computed and compared with the analytical value for
the particular problem. The conductivity ratio for this example was,
in fact, unity. The excellent agreement displayed by the 0.15 per cent
error obtained for this example verifies correct program functioniug
and also demonstrates that improved accuracy is available for more

moderate conductivity ratios.
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Chapter 6

Numerical Results

Introduction

It is the purpose of this chapter to présent the numerically
predicted values for the equivalent groove Nusselt number which result
from applying the finite element analysis developed in the preceding
chapter to the problem under consideration in this investigation. Due
to the nature of a numerical solution, however, the Nusselt number is
available for only a discrete number of combinations of the problem para-
meters. Parameter combinations were therefore selected in such a fashion
as to span a broad range of the variables and yet to be of practical
utility. The number of test cases considered within this range is neces-
sarily limited by cost and time considerations for the solution procure—'
ment. It is nevertheless felt by the investigators that the combinations
presented in this chaptgr are indeed representative of situations of
practical concern and that sufficient cases are presented to allow a
meaningful interpolation of the results for situations that are not pre-

cisely described by the actual parameter values used in the study.

Parametric Study

Grooves of symmetric cross-section only are considered here
but the program of Appendix D maintains the flexibility of solving the
non-symmetric cross-section 1f it should be required by future investi-
gators. In spite of the restriction to symmetric groove cross-sections,
however, there are still four remaining independent solution parameters

which must be considered. In view of this four parameter character-
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ization, it is clear that the use of an increasing number of values
for each of the independent parameters will soon cause the parametric
study to become prohibitively expensive and time consuming.

The four parameters upon which the equivalent groove Nusselt
number is dependent are glven below.

The first is the apparent contact angle that the liquid free
surface makes with the metal groove wall. In this study a normalized
value is used for this angle and is given by x, = a/(n/2 - eo) where eo
igs the groove half-angle. Clearly the range of X, is 0 g X, € 1. Fourv
values of this parameter are considered in the study; X, = 0.05, 0.25,
0.50, and 1.00. It is aniicipated that due to hydrodynamic consider-
ations of replenishment flow of working fluid to the evaporation sites,
a value of X, = 0.0 cannof: be physically sustained. The smallest vaiue
considered for X is therefore a value of 0.05. 1In the other limit, a
full groove condition is indicated by a value of x, = 1.00. The inter-
mediate value of 0.5 lies midway in the x, range. The final value of
0.25 is provided in the region wﬁere a marked dependence is expected to

occur in order to provide a more complete description of the dependence

on thils parameter. The expected higher sensitivity in the region of small

X, is supported by the numerical results,

The second parameter considered is the groove land area ratio.
Due to the assumed symmetry of the geometry this is equal to the groove
root area ratio. The groove land area ratio, €, is defined as the ratio
of the exposed land area of the fin tip to the total area of the typical

cell. While the minimum value that this parameter can take on is neces-

sarily zero, the maximum value is limited to 0.5 by the symmetry condition
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on the cross-section. The three values of & selected for use in the
parametric sfudy‘afe e = 0.01, 0.25 and 0,49 with the exclusion of exact
values of 0.0 and 0.50 due to the mesh generation requirements of the
program. A value of ¢ =.0.0, that is no land area at all, corresponds
to a groove prqfile of sharp 'V' configuration. In the other extreme,
a value of € = 0.50 dictates for a symmetric groove that the projected
area is gither originating from the groove fin tip or from the groove
root. This profile is the rectangular profile common in moderate
capacity, longitudinally extruded heat pipes. The intermediate value
of ¢ = 0,25 is considered in order to provide a more complete descrip-
tion of the heat transfer dependence on this parameter.

The third parameter, d, is the groove depth in relation to the
groove typical cell width and is an important parameter in considering
the viscous losses experienced by the working fluid. While there are
no physical limits on the range of values that can be considered (ex-
cepting unrealistically ;mall values) it was felt by the investigators
that the three cases d = 1.0, 1.5, and 2.0 would encompass the range
of values typically encountered in heat ﬁipe designs,

The final parametef considered in the heat transfer analysis
is the conductivity ratio of the liquid to metal thermal conductivities.
The high value considered of 0.1l represents an upper limit on the con-
ducﬁivity ratio while the low value of 0.001 represents an expected
lower 1limit on the conductivity ratio, again considering typical moder-
ate temperature heat pipe applications. The intermediate value was
chosen as 0.01156 since it corresponds to a methanol/stainless steel

heat pipe materials combinatiom.
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The numerical results of the parametric study to determine
the equivalent groove Nusselt number are presented in tabular form in
Tables 6-1, 6-2, and 6-3 for the conductivity ratios kf/km = 0.1,
0.01156, and 0.001 respectively. The p_roduct'Nuf-kf/km is treated as
the dependent variable since, due to the normélization of the thermal
problem with respect to the metal properties, a smaller overall vari-
ation results than would result by treating Nuf as the dependent vari-
able,

The numerical results are also presented graphically in
figures 6-1 through 6-9. Here the systematic progression is assumed

of fixing the conductivity ratio and land area ratio, and plotting the

dependence of Nuf-kf/km on X with the groove depth d appearing as the

parameter. In the progression, the land area ratio is monotonically

increased through its range for a fixed conductivity ratio and then the

conductivity ratio incremented to its next value.

A discussion of the results follows.
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Table 6-1
Nu'kf/km

For Trapezoidal Grooves

Co xor.
d g = €, 0.05 0.25  0.50 1.00
1.0 0.01 1.1336 9422 .2056 .6628
0.25 1.0724 .9069 .7921 .6938
0.49 . 8464 .7085' .6264 .5551
1.5 0.01 .7519 .6381 .5538 L4642
0.25 .7262 .6348 .5721 .5098
0.49 .5992 .5287 .4839 L4419
2.0 0.01 .5559 <4793 .4210 .3578
0.25 .5487 <4914 J4511 L4104
0.49 <4694 4254 .3963 .3685
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. 01156

.01156

,01156
.01156

- .01156

.01156
.01156

.01156
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1.5
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Table 6-2

Nu-kf/km

For Trapezoldal Grooves

0.01
0.25

0.49

0.01
0.25

0.49

0.05

«5392
6144
4745

«3792

. 3809

.2912
.3638

.3201
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0.25
L4481
. 5401

.4270

. 3163
.3998

«3510

.2479
»3333

«2990

0.50
.4101
«5136

.4106

.2901
. 3816

. 3405

.2295
3220

.2916

1.00
. 3807
. 4946

.3993

.2697
.3625

.3332

+2152
. 3136

. 2963

C o o



-001 1.5
« 001

.001

. 001 2,0
.001
. 001

Table g3

Nu-kf/kh

For Trapezoidal Grooveg

0.01
0.25
0.49

0.01
0.25
0.49

0.01
0.25
0.49

0.05
« 3688
«4975
«3953

«2610
«3723
«3265

«2030
» 3105
+2793
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0.25
« 3483
«4745
.3828

. 2504
.3618

<3199

«1957
« 3040

2752

0.50
+3421
+4697

« 3802

<2480
+3596
«3127

«1942
«3022°
<2744

1.00
3389
<4671

.3788

<2464
3581

-2178

<1907
+3017
»2737
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6.3

Discussion of ﬁhe Results

On examining the characteristics of figures 6-1 through 6~9,
it becomes clear that in every case the equivalent Nusselt number de-
creases monotonically with increasing X, Indeed, this is to be ex-
pected since in all cases it is the low thermal conductivity of the
1liquid working fluid that causes a preferential migration of the heat
flow. This migration is through the metal to the location where the
escape route through the liquid, in conjunction with the resisténce of
the metal heat flow ﬁath, offers the least resistance to the heat flow.
For the cases considered this will invariably result in a concentration
of the heat flow lines near the meniscus contact with the groove wall.
Clearly, then, the shorter the liquid path that must be traversed in
this region, the lower will be the total resistance and consequently
the equivalent Nusselt number will be higher for these shorter liquid
path cases. Now, the problem geometry dictates that the liquid heat
flow path will be reduced as the apparent contact angle, and hence X,
for all other parameters fixed, is decreased. Thus, it is to be expect-
ed that, as x, i1s decreased from the full groove conditionm, X, = 1.0,
to a state of near tangency, x, = 0.05, the groove equivalent Nusselt
number will increasé. This expected behavior 1s consistent with that
displayed by the numerical results. It is noted here, however, that
the dependence of the groove Nusselt number on X, is a relatively mild
one. This is in.contrast with the extremely sensitive behavior sug-
gested by a previous solution [16] in which the metal groove wall was
assumed isothermal from the root to the fin tip. The relaxed dependence

on x_ displayed by figures 6~1 through 6-9 illustrates the importance
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that the active participation of the metgl section has on the deter-
mination of the overall heat transfer for the composite problem., This
influence is particularly important in the reglon near the meniscus
contact gince the local concentration of the heat flow there results in
a rapldly changing groove wall temperature in tﬁis region, which is in
contradiction to the formerly assumed isothermal conddition.

The second trend which is observed in the numerical results

is that as the groove depth lncreases, the groove Nusselt number decreases.

‘This too is consistent with the problem physics. Following the arguments
above, it is anticipated that there will be a large adjustment of the
thermal flow field in the region near the meniscus contact, and thus the
dominating influence im the determination of the metal/liquid inter-
action stems from this reglon. Conseduently, in the remainder of the fin
the flow field is quasi-uniform in the sense that local gradients are
primarily determined by tiie total heat flow rate, and the local area,
with only small contributions due to the bulk fluid adjacent to these
regions. As a result, the influence of increasing d will be to add a
section of pure conductiwve, wariable area, metal in addition to that for
the case of smaller groove depth. A secondary influence of increasing
the depth for a fixed land area ratio is that the problem geometry is
necessarily altered. Thus, 60 changes, with the associated influence

on x = of/ (v/2 - 60), and even the local behavior at the meniscus con-
tact is slightly altered, Here, then, we see that the variation of ome
parameter has an influence on the interpretation of the trends displayed

by another, Taking into account this influence, calculation indicates
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that it is primarily the conductive differences in the metal which
account for the decreasing Nusselt number dependence with increasing
groove depth,

The influence of the condugtivity ratio, kf/km, is to decrease
the product Nuf-kf/km as the conductivity ratio is decreased. This also
is physically consistent since as the conductivity of the liquid de-

creases, the heat flow becomes more concentrated within the metal, particu-

* larly near the fin tip. This increased heat flow concentration results

in a higher resistance within the metal section, and is additive to the
higher liquid film resistance due directly to its decreased thermal con-
ductivity., This behavior is consistent with a decreasing Nuf'kf/km
product with decreasing conductivity ratio.

The influence of changing land area ratio, however, is not
monotonic as in the case of the previous three parameters, but rather
produces, generally, a maximum value of the product Nu -k /k_ within

f £f''m

the three cases studied for a land area ratio of € = 0.25. Exception

" to this occurs at small apparent contact angles for a conductivity ratio

of kf/km = 0.1. Considering the range of this land area ratio,

0 < € ¢ 0.5, the geometric changes resulting from changes in € as the
full range is traversed, are severe. Indeed, due to the severe geo-
metric changes incurred by the variation of €, it is difficult to
anticipate precisely the influence of this parameter on the overall
heat transfer since the resulting geometric changes influence both the
liquid and the metal region geometries, and consequently the liquid/
metal thermal interaction. It is felt that the maximum value of the

Nuf-kf/km product is the result of a favorable balance between the
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changing pure conductive resistance and the changing liquid/metal
interaction, each of which 1s changing at a different rate. This
observed behavior 1s consistent for the combinationa of parameteré

considered in this report.

Correlations of the Equivalent Nusselt Number

As we have noted earlier, the equivalent groove Ngsselt
number is dependent upon four parameters. As a consequence correlation
efforts become exﬁremely complicated when attempting to maintain accept-
able accuracy. For example, if the observed trends are second order in
each of the parameters, then three cbrrelation pérameters are required
to account for the dependence on X,s Say, and for each of these para-
meters, three additional parameters are required to account for the de-
pendence on d, and so on. This yields a total of 34 = 81 correlation
parameters and results in a correlation equation of extreme complexit&.
In contrast, if only a few parameters are employed, the resulting cor-
relation may be of inadequate accuracy to be of significant practical
utility., In this work a compromise has been adopted to yield a correl-
ation of manageable complexity while maintaining adequate accuracy for
engineering calculations.

| On examination of figures 6-~1 through 6-9, it was felt that

a two parameter correlation of each curve independently of the form
Nuf-kf/km = A 1ln (xa) + B (6~1)

might provide adequate accuracy for engineering purposes. Indeed appli-
cation of equation (6—1) to each of the curves independently using a

least squares curve-fit subroutine ylelded a maximum correlation error
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at the data points of four per cent. It is anticipated, however, that
with the inclusion of the remaining three pérameter dependencies, the
obtainable accuracy will become somewhat relaxed.

| Incorporatiné next the dependence of Nuf’kf/km on the land

area ratio, €, a correlation equation of the form

. 2
Nuf kf/km = [Alla + A12] ln(xa) + [Bll e + Blze + 313] (6-2)

was found to relax the obtainable accuracy to approximately five per
cent,
A further inclusion of the dependence on the groove depth

was made by assuming the above correlation constants to be of the form

A1 = A1 D+ 4y,

Apg = 101 D ¥ Ay,

Big = Byy1 D * By (6-3)

Big = Bypy D+ By

B D) + B

13 = Bygy exp (By4, 133

Application of the correlation constants (6-3) in equation (6-2)
yielded a further relaxation requirement on the accuracy to approxi-
mately six per cent.

Inclusion of the final correlation parameter, the conductivity
ratio, kf/km’ was made by considering the influence to be dependent on
1n(kf/km) and assuming this influence to be quadratic in 1n(kf/km). This
yielded a maximum correlation error at the data points of seven‘per cent,
with errors of this order occuring at only a few locations for the case

where kf/km = 0.1,
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The final correlation equation for the equivalent groove

Nusselt number 1s given by

Nuf-kf/km = A 1n(xa) + B (6-4)
where
A=A [-.389d+1]e + A, [-.376 d + 1] (6-5)
2
B = By [-.29 d + 1]¢
+ B2 [-0228 d + 1]€
+ B, [5.368 exp (-1.295 D) + 1] (6-6)
and finally
2 .
A; = .0056 1n"(k;/k ) + .1025 In(k./k ) + .4511 (6=7)
2
A, = -.0098 1n (kf/km) - .1413 1n(kf/km) - .5251 (6-8)
2
By = .0336 In"(leg/k ) + .4557 In(kg/k ) - 1.0821 (6-9)
2
B, = =.0407 1n"(k/k ) - .5090 In(k ./k ) - .2668 (6-10)
2 o ~
By = 0105 In"(k./k ) + .1254 In(k./k ) + 0.4986 (6-11)

A comparison of the correlation values for Nuf'kf/km withA
the numerical data points 1s presented in Table 6-4, It is seen from
the table that the largest errors, 7.01, 6.28, 5.77, 5.66, and 5.13 per
cent, are confined to the case where kf/km = 0.1, All other cases
yield errors less than five per cent. Indeed, as the entries for
kf/km = 0.0116 are examined, the correlation agreement is within four -
per cent, The maximum error of correlation for kf/km = 0.001 is further,.
reduced to 3.4 per cent. It 1s felt that a maximum correlation error

of seven per cent 1s adequate for most heat pipe analysis and design
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6.5

calculations of engineering interest, and that the correlation equa-
tions (6~4) - (6-11) adequately maintain this agreement while keeping

the correlation equation manageable.

Conclusions

In the present chapter of this report the results of a para-
metric study to explore the dependence of the equivalent groove Nusselt
number on the four parameters, the apparent contact angle, the groove
land area ratio, the groove depth, and the liquid/metal thermal conducti-
vity ratio, were presented. These results were found to be self-
consistent in their behavioral characteristics and to generally display
the dependencies that ére anticipated from consideration of the physics
of the underlying thermal problem under investigation., The displayed
trends however, illustrate a somewhat relaxed dependence on the apparent
contact angle than that given by a previous approximate solution [16].
This demonstrates the importance of the contribution to the overall
thermal problem that is due to the metal fin region and that- the problem
analysed is truly a composite thermal problem. Both the liquid region,
the metal region, and the thermal interaction between the two regioms
along their common interface, are important contributions to the total
problem solution and must all be considered.

Finally, in closing the chapter, a correlation equation has
been determined which interpolates the numerical data with a maximum
error of seven per cent. It is felt that this correlation equatioﬂ
will be alequate for most engineering applications of heat pipe analysis

and design.
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7.1

Chapter 7

Application of the Results

Introduction

| In the previous chapter a study was conducted to determine the
influence of the apparent contact angle, the groove land area ratio, the
groove depth, and the liquid/metal thermal conductivity ratio, on the
equivalent groove Nusselt number, These factors are all important con-
siderations in designing a heat pipe to meet prescribed operating condi-~
tions. In many cases, however, a compromise must often be found, in parti-
cular for the geometric details of the grooves, which strikes a balance
between counteracting thermal and hydrodynamic influences of a parameter
change. For example, if the pipe conductance must not fall below a pre-
scribed minimum value, then parameter changes on the groove cross—section
can be effected to provide the required conductance value. However, the
design changes made must not sufficiently alter the hydrodynamics of the
pipe such that the available capillary forces cannot provide a sufficient
recirculation rate to meet the thermal loading requirements of the parti-
cular heat pipe application. This balance, however, is not the subject
of this report and will not be dealt with further here.

For a given heat pipe design, of the four variable parameters
examined in chapter 6 of this report there are three which are fixed by
the design, while the fourth remains free to vary as the operational con-
ditions dictate. This fourth parameter is the apparent contact angle, and,
having selected a particular set of design parameters, is the only para-
meter which will lead to heat pipe exterior surface temperature variations

within each of the evaporator, adiabatic, and condenser sections of the
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heat pipe; Indeed the apparent contact angle variation is itself impli-
citly dependent upon the operational temperature and pressure, the imposed
thermal loading, the groove material and transport fluid properties, the
change of working fluid present, and the groove geometry for the particu-
lar heat pipe application of interest.

Since an_examination of each of the above influences independently
would require an investigation of enormous prbportions, this chapter is
directed at determining the influence that the working contact angle will
have on the surface temperature distribution oﬁ an operational heat pipe.
The results of this analysis can then be used as a basis for evaluating

the need for future, more fundamental investigations into the contact angle

behavior.

7.2 Case 1
7.2.,1 Pipe Geometry and Thermal Loading
The computer code developed under the CRC 6656-1 (SCS) program
will be used to determine the surface temperature distribution for a heat
pipe having the specifications indicated below, The influence of the mini-

mum break-away contact angle on the surface temperature variation will

also be examined, The heat pipe specifications follow:

Pipe: Le = 1,67 ft.
L = 0.646 ft.
a
L = 2,33 ft.
c
L = 4,646 ft.
r =2 ,02083 ft.
out
Tin ° .0188 ft.

_ Btu
Material = §.5. type 304 (ki = 10 ;—rr 5z
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V-grooves: Pitch = 1056 per foot
Depth = 6.67 x 1074 fe.
6 = 35,38°
o]

Arteries: Number = 3 arteries with 2 sizes

1) .120 in. I.D, (2 layers of screen), (1)
2) .060 in. I.D, (7 layers of screen), (2)

Material = 150 mesh, .003 in. thick

type 316 stainless steel screen

Configuration = interference fit across a diameter,

in-line
Working Fluid = methandl, laboratory grade
fluid: kg = 0.1156 Btu/hr.ft.°F
Thermal Evaporator Flux = 15,000 Btu/hr.ft,2
loading:

(uniform over evaporator)

Ambient Condenser Temperature = 0OF

Condenser External Surface Heat Transfer Coefficient =

1000 Btu/hr.ft.2F (uniform over condenser)

Total Heat Transfer Rate = 3280 Btu/hr = 961 watts

For the heat pipe specifications described above, two relatively

extreme values for the minimum break-away contact angle are examined;

o _ o
aba 2”7 and aba = 20",

angle will be performed using the hydrodynamic flow model of the previous

The determination of the local apparent contact

report [ 16 ]. The effect of varying the minimum break-away contact angle
in the analysis is to limit the highest value that the equivalent heat
transfer coefficient can attain in the evaporator region. It is assumed
in this examination that, once the angular recession has reached the mini-
mum break-away contact angle, the liquid level recession is sufficiently

moderate and the sensitivity to liquid level is sufficiently low that the
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7.2.2

equivalent heat transfer coefficient will remain constant at its break~
away angie value., This assumption requires verification and indeed, in-

vestigation, but for the purposes intended here it will suffice.

Numerical Results

The heat pipe analysis program was executed for the two test
cases described above with the subroutine for the determination of he
modified to reflect ‘the regults of this work. The groove side'heat trang-
fer coefficient, heq’ and the pipe exterior surface temperature distribu-
tion resulting from these two test cases are presented in Tables 7-1
through 7-4.

We will examine first the case where the minimuh break—-away

contact angle i3 assumed to be Oy, = 20°. The equivalent heat transfer

-coefficient for this case, presented in Table 7-1, varies from a low value

of 3422 Btu/(hr.ftZ.OF) in the extreme condenser groove region to a high
value of 4050 Btu/(hr.ft2 0
all variation for a minimum break-away contact angle of 20° is 18.4 per
cent. Of this variation, there 1s only a 2.9Vper cent variation over the
evaporator region while the condenser variation in heq is 6.1 per cent.
The relatively large region of uniform heq in the evaporator is
the result of an assumed break-away contact angle of 20 deg. This assump-—
tion of a large break-away contact angle results in a condition of full
angular recession occurring relatively early in the hydrodynamic develop-
ment of the return liquid flow. The additional assumption taken here,

that the equivalent heat transfer coefficient will not change appreciably

with moderate liquid level recession, leads to a large region of uniform
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: heq on the evaporator, and thus a small variation in the equivalent heat

transfer coefficient over this region.

The relative uniformity of heq over each of the evaporator and
condenser sections is reflected in Table 7-2 by a similar uniformity of
the surface temperature distribution. Indeed, since the metal conducti-
vity is large relative to the liquid conductivity, km/kf = 86.5, heat con-
duction within the pipe wall tends to reduce the fractional variation of
the surface temperature for each section below that exhibited by.the
equivalent heat transfer coefficient. The evaporator surface temperature
variation for this case isvonly 0.4 per cent while the condenser variatiom
is 1.19 per cent. It is seen that the relative proportion of evaporator
to condenser non-uniformity is very close to that for the equivalent heat
transfer coefficient but that the magnitudes are greatly reduced. This
magnitude reduction is due to the isothermalizing character of the higher
conductivity wall material,

Relaxing the value of the minimum break-away contact angle to
allow angular recession of the liquid to a\contact angle of 2 degrees re-
sults in the equivalent heat transfer coefficient distribution presented
in Table 7-3. It is seen from Table 7~3 that the initial distribution
and developmeﬁt of heq ig identical to the previous case, aé it must be,
Exception to this occurs, however, in the evaporator section of the pipe
Eince, here, the relaxed limitation on contact angle recession allows ad-
ditional hydrodynamic development to occur prior to the omset of liquid
level recession.

The additional development allowed in the contact angle reces-

~sion is most visibly displayed in Table 7-3 by a larger equivalent heat

transfer coefficient in the extreme evaporator regions., Indeed in this
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7.3

example the equivalent heat transfer coefficient exceeds that for the
previous case, in the extreme evaporator region, by 32.6 per cent. This
is a substantial increase in heq and is due to its increased sensitivity
at low contact angles.

The maximum variation of the equivalent heat transfer coefﬁi—
cient 1s 34.6 per cent over thé evaporator region aﬁd remains at 6.1 per
cent for the condenser region. There is clearly a marked dependence of
the evaporator equivalent heat transfer coefficient on the minimum break-
away contact angle.

Examining the surface temperature variation, for this case pre-
sented in Table 7-4, the temperature varilation over the external surface
is agaln attenuated by the heat conduction within the higher conductivity -
heat pipe wall. In the evaporator region, the heq varlation of 32.6 per
cent is reflected in the surface temperature by a variation of only 4.8
per cent. The variation over the condenser reglon 1s unaffected by the

change in the value of o The influence of this change in the minimum

ba®
break-away contact angle has been to increase the pipe overall conductance

ba

is felt on heq’ the resultant effect on the plpe conductance is consider-

by approximately 8 per cent. Thus although a substantial influence of o
ably less pronounced.

Case IT
In this section a second example problem is considered and the
influence of the minimum break-away contact angle on the pipe exterlor sur-

face temperature variation and on the pipe overall conductance is investi-

gated.
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7.3.1 Pipe Geometry and Thermal Loading

7.3.2

The second example considered in this section is examined for
identical pipe, working fluid, and thermal loading characteristics as the
previous example, with one exception. The thermal conductivity of the work-
ing fluid is taken to be 1.0 Btu/(hr-ft-°F), and, while this is a somewhat
ficticious consideration, it is designed to illustrate the dependence of
the heat pipe behavior oﬁ the fluid/metal thermal conductivity ratio.
Further, the case of kf/km = 0,1 will serve as an extreme case since it
was found in chapter 6 of this report that the sensitivity of heq on o
was highest where the conductivity ratio, kf/km, was also the highest,
within the range of parameters examined. That 1s, the more closely the
liquid thermal conductivity approaches that of the solid, the mdre highly

dependent the heat transfer becomes on the liquid cross-sectional configur-

ation,

Numerical Results

The results of executing the heat pipe prediction program for the
case of kf/km = 0.1 are presented in Tables 7-5 to 7-6 for an assumed mini-
mum break—away angle of 20 degrees. From Table 7~5, the overall variation
of heq has increased to 25.5 per cen£ ranging from a low value of 5472 to a
maximum value of 7491, This is to be compared with the variation for

kf/km = 0,01156 of 18.4 per cent. In this case the evaporator variation

"has increased to 3.9 per cent and the condenser variation to 8.5 per cent.

Again a relatively large uniform region over the evaporator surface is

present due to the large minimum break-away angle of 20 degrees.
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The surface temperature variation, again de-sensitized by the
high wall thermal conductivity, is only 0.4 per cent over the evaporator
and 1.0 per cent over the condenser surface. The relatively low surface
temperature variations exhlbited here may also be in part attributed to
the large equivalent heat transfer coefficients in this case which more
closely link the wall temperatures to the uniform vapor temperature. For
example in the extreme evaporator regions, the value of heq is 1.85 times
its former value while in the extreme condenser region it is 1.75 times
its former value, Thus we see that, while the variation of heq has in-
creased, the surface tempéerature varlation for this case has de-

creased. Considering now the case where a = 2 degrees, the additional

ba
hydrodynamic development of the liquid return flow has substantially in-
creased the extreme evaporator equivalent heat transfer coefficient to
10,684, an increase of 42.6 per cent. The evaporator equivalent heat trans-
fer coefficient variation has correspondingly increased to 48.2 per cent
with the condenser region again remaining as it was for the 20 degree break-
away angle case,

Once again, the lsothermalizing of the pipe wall, and the close
thermal link with the vapor core temperature has limited the surface temper-
ature variation, Table 7-8, over the evaporator region to 3.67 per cent.

The condenser surface temperature variation again remains unchanged from

the 20 degree break-away angle case. The overall pipe thermal conductance

. has increased by the change of oy a by approximately 7 per cent from the 20
degree case. These moderate increases of the overall pipe conductance with
relatively severe changes in the equivalent heat transfer coefficient provide

an indication that heat pipes of high performance design may often be limited

in their performance characteristics by the thermal behavior of the heat pipe
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wall, lSubstantially more severe changes might be expected if an aluminum
or copper pipe wall material were used in place of the stainless steel

one considered here. The results are, nevertheless, consistent with the
anticipated behavioral characteristics, with the relatively weak dependence
of the pipe overall conductance attributable to a pipe wall limited oper-

ational mode,

Closure

An examination has been conducted in this chapter to study the
effect of the assumed minimum break-away contact angle on heat‘pipe per-
formance for the two test cases cited in the text. It was found that while
the eauivalent heat tfansfer coefficient exhibited substantial variation
with the minimum break-away contact angle, the resultant effect on the pipe
exterior surface temperature variation is considerably de-semsitized. This
de-sensitization is attributable in part to the isothermalizing nature of
the high conductivity pipe wall material and also in part to the high'
magnitude of the equivalent heat transfer coefficient which causes the pipe
wall temperature distribution to lie close to the uniform vapor temperature.
In interpretting these results, hbwever, and in drawing conclusions regard-
ing the heat pipe thermal behavior, it must be remembered that the observed

influences are application and heat pipe design dependent.
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8.1

Chapter 8
Discussion and Conclusions

Summary

It has been the object of the investigation presented in this
report to determine the heat transfer charac;eristics of grooved heét
pipe walls. In particular this study is dirécted at determination of
the 'equivalent heat transfer coefficient' which provides the thermal link
between a hypothetical surface, the groove root surface, and the
isothermal vapor core. Since the majority of the temperature drop
encountered in high capacity, moderate temperature heat pipes will occur
in the groove region, accurate prediction of the groove thermal behavior
is fundamental té the accurate prediction of the overall performance of
heat pipes of this design. |

The analyses presented within this report consider the genéral
case of gr;oves Having'arbitrary, trapezoidal cross-section with the
single exception that symmetric groove configurations are exclusive}y
treated, i.e. the exposed fin tip area is equal to the groove root area.
Whiie this restriction must be placed on the interpretation of the
results, the problem description and, indeed, the solution program, both
maintain the flexibility of applicability to the non-symmetric situation.
Two limiting cases of the general trapezdidal groove shape are commonly
used in heat pipe applications. These are the case of zero land area,
the triangular V-groove, and the case of fifty per cent land area, the
rectangular groove.

A mathematical description of the groove heat transfer problem
was presented in Chapter three of this report. It was concluded in that

chapter that the heat transfer problem is primarily one of conductive

- 159 -




n«

heat transport through the metal/liquid composite from the groove root

surface to the vapor core. It is assumed, however, that the hydrodynamic anal)jig .

sis has been performed elsewhere and that the liquid cross—section at any
location within the pipe is fully determined. It became clear through
the analytical solution development of Chapter three that a complete
analytical solution to the equivalent heat transfer coefficient problem
is unattainable using current mathematical methods. This realization
led to two alternatives for determination of the groove heat transfer
characteristics; determination of upper and lower bounds which when averaged
yield a band of solution uncertainty which is acceptable for engineering
purposes, or a complete numerical solution to the composite heat transfer
problem.

Chapter four of this report is devoted to a study which establishes

upper and lower limits by which the actual heat transfer is bounded. The

theorems of Elrod [ 35 ] were used in this analysis but unfortunately

the resultant range of uncertainty is unacceptably large to allc. Jdirccet
application of the results. The calculated limits still serve as a

check, however, on the now required numerical solution since the numerical

results must be between the two bounds previously calculated. The

numerical results which were computed for the groove heat transfer

—

problem satisfy this requirement.

Convinced that a complete numerical solution 1s required

e

to provide an acceptable solution, the finite element method was

selected as being the most 'appropriate numerical method for use in l!

this problem. The prime motivation for selection of the finite element

method over other available computational methods is its capability of ll{ ‘
\

providing the geometric flexibility demanded by the problem configuration.

Nevertheless, application of the method was not direct. l] ;
\
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The thermal problem under consideration here displays a
remarkable combination of influences. While there is a very high
degree of detail required to adequately describe the thermal field
near the meniscus contact point, the remaining bulk of the cross-
sectional geometry is sufficiently significant in its thermal behavior
that it cannot be discounted. This leads to a situation where a
relatively lafge region must be discretized in order to 'pick up'
its thermal characteristics, and within this region there exists a
sub-region requiring extreme geometric subdivision to adequately
describe its thermal behavior. Such a combination foiled the first
tyo attempts at a viable mesh subdivision scheme, Finally, after
a critical examination of the first two mesh generators, a third
scheme was devised which met the problem requirements. The problems
encountered in devising an acceptable solution procedure is in support
of the conclusions of Chapter three, that the problem is indeed complex.

The finite element method was described in Chapter five and
a derivation presented for application of the method in.any general
orthogonal curvilinear coordinate system. The very close similarity
of the resultant functional to the commonly used cartesian form allows
extension of the method to be ﬁade to these coordinate systems with a
minimum of effort. Application of these generalized results was made
to tbe cartesian coordinate system which is used to describe the |
trapezoidal groove problem.,

Several problems were encountered in the application of the
finite element method to the trapezoidal groove problem, with these
problems being related exclusively to the spatial subdivision scheme.

Briefly, these problem areas resulted from the use of elements having
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aspect ratios much different from unity and from the use of skewed
diamond-shaped elements. A great deal of effort was expended in
overcoming these difficulties with the third, final mesh generation
scheme providing acceptable results.

The third mesh generation scheme was applied to the extreme
parameter combination case of kf/kfn = 0,001, € =€, = 0.25, xa = 0,05,

and 90 = 20 deg. The numerical results exhibited a monotone and

asymptotic behavior as the number of degrees of freedom of the solution

was increased, Extrapolation of the numerical data suggested that

the solution error at the last data point would be less than fi&e per
cent. In further support of the numerical results, a second case for
which an exact analytic solution is available was computed. In this

example, a conductivity ratio of unity and a full groove condition were

examined, clearly not as severe a test as the previous case. Nevertheless,

the excellent agreement displayed by the 0.15 per cent error for this
case fully supports correct functioning of the solution program.

A parametric study was conducted in Chapter six to determine
the influence of the problem parameters on the equivalent heat transfer
coefficient. Four parameters are considered here; the conductivity
ratio, kflgn, the groove depth, d, the groove land area ratio, €, and
the apparent normalized contact angle, X, Parameter variations werg
considered that encompass the range of most practical interest. A
correlation equation, provided for convenience in application, inter-
polates the numerical data with a maximum error of correlation of
seven per cent. Since the heat transfer is dependent on four indepen-
dent parameters, improvement in the correlation agreement can only be
obtained at the expense of additional complexity. As was found in

applying the results in a typical heat pipe application, as demonstrated
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8.2

by the results of Chapter eight, the surface temperature distribution
is relatively insensitive to the variation of the equivalent heat
transfer coefficient., This behavior is typical of many heat pipe

applications.

Conclusions

It is concluded, based on the arguments presented in Chapter
three, that conduction is the prime mode of heat transfer within
the metal/liquid composite region of grooved heat pipe walls. Although
other modes are definitely present, they are of secondary impoftance
relative to the conductive contribution to the heat transfer. These
secondary influences are further de-emphasized by the apparent insensi-
tivity of the pipe external surface temperature variation on variations
in the internal equivalent heat tranafer-coefficients for typical
applications.

With a limit study failing to sufficiently narrow the
band of uncertainty in its resultant values, the heat conduction |
equation and boundary conditions were formulated for solution by the-
finite element method. Indeed, the current finite-element formulation
of the heat conduction equation was expanded in this report to include
its application to any general orthogonal curvilinear coordinate system.
With this in hand, reduction to the cartesian coordinate frame is
direqt.

The finite element method was successfully used to solve
the groove heat transfer pfoblem; In effecting the solution, however,
several problems were experienced and were exclusively related to the

mesh generation scheme used to subdivide the continuum. These problems
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reflect directly the complex nature of the problem under consideration
in this report. Equally important, however, is the warning that

these problem areas offer to the finite element user., Although the
method offers geometric flexibility, care must be exercised when

large departures from square, orthogonal elements are required if the
linear isoparametric quadrilateral element is used.

Having finally devised a reliable mesh generation scheme,
the equivalent heat transfer coefficient was computed for the cémbina—
tions of parameters deemed to be of practical import. It was found
that the dependence of the heat transfer on the apparent contact angle
is relatively weak when compared to the severe dependence displayed
by the approximate model presented in a previous report [16 ]. The
trends, however, are consistent with that previous model,

It was found by application of these results that even for
variations in the equivalent heat transfer coefficient approaching
fifty per cent, the influence on the surface temperature variation was
less than ten per cent. This conclusion is extremely application
dependent, but for heat pipes operating in the moderate temperature
range, it is most probably a typical result. This result is an
attractive one in the design of heat pipes. The precise details of
the groove flow need not be exactly known a priori in order to obtain
an approximate solution since the sensitivity of the pipe surface

temperatures on local liquid cross-section is not extremely severe,
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Appendix A

Geometric Description of Trapezoidal Groove Section

We are in this section concerned with the geometric description
of the heat transfer analySis.cross—séction for heat transfer from trape-
zoidal grooves, The groove region is filled with a liquid, the heat
pPipe working fluid, while the remainder of the section is composed of
the heat pipe containment wall material. The analysis geometry is illus-
trated in figure A—i.

Locating the origin of a cartesian coordinate system as shown
in the figure, the heat flow symmetry boundaries are defined by the sur-
faces x = 0 and x = w. The pipe external surface is defined by the sur-
face y = 0. 1In general the cross~section will not consist of a sharp
'V' configuration so that a land area and groove root area are defined
having thicknesses €1 and €y respectively. TFor symmetric grooves
€

= g The groove section is further typified by a groove half-angle

1 2°
of 90 while the second angle characterizing the heat transfer is the
apparent contact angle a. The remaining parameters to be used in the
geometric analysis are indicated in the figure.

The groove root surface is defined by y = HLSD over the domain
0 ¢<x¢g €99 and the groove land area is defined by y = H over the domain '
(w - el) € X € w. The liquid/metal groove interface is given, then, by

the relation

(y - HLSD) = (x - ¢,) cot6_ ' (A-1)

over the domain €y € X & (w - el).
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The 1liquid free surface, clrcular in cross-section in the
absence of gravitational forces, can be characterized by a free surface

radius of curvature, B8, where B can be determined from [16]

r, shﬁo
B = oSG F o) (8-2)
where r, = w - el)/sineo . (A-3)

and, locating a virtual origin at the intersection of the plane x = 0
with the groove liquid/surface interface, the separation of the free
surface radius of curvature center and then this virtual origin, K 1’

igs given by [16 ]
r, coso

“17 Sos@@ ¥ 0 (h=t)

Further the separation of the virtual origin and the origin of figure

A-1 is given by

0(figure A-1) - O(virtual) = €, cot9o - HLSD (A-5)
Defining a parameter, K, by
K =g - (e2 coteo - HLSD) (A-6)

the equation describing the free surface 1s
2 2
(v - )% +x% = g? (A-7)
Expanding and rearranging equation (A-7) leads to

2
2 - 2K y+ R -2 4+xD) =0 (A-8)

from which, solving for the roots of (A-8), the free surface description
becomes

y=K -¥g8" -x (A-9)

where only the smallest of the roots i3 an admissible one. The domain
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of applicability of equation (A-9) is the domain 0 £ x £ (w - el).
For the special case of a full groove condition, the limiting value
of equation (A-9) for 8 + = is not immediately clear. For this case,
however, the free surface description is given simply by
y=H | (A-10)

as is apparent from the figure.
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' B.2

Appendix B
Programs for Heat Transfer Limit Evaluation

Introduction

In this appendix the program listings for the evaluation
of the upper and lower grbove heat transfer limits are presented. The
programs serve only as mechanism‘for evaluation of the integrals pre-
sente& in Chapter 4 of this report and as a result there will be no
discussion here of the underlying theory. Both programs use a modi-
fied Simpson's Rule algorithm, the subroutine of which is included
in the listings. To aid the interested reader, a brief nomenclature

is included for the listings.

Groove Heat Transfer Lower Limit Program Nomenclature

The pertinent symbolic Fortran names used in the program
for evaluation of the lower limit are presented here with frequent
use made of the variables introduced in Chapter 4 of this report.
Since duplication of ‘certain mainline variables occurs in subroutine
DINTGL, only mainline variables will be inéluded in the nomenclature.

Al = A

1
A2 = A2
31 = B1
B2 = B2
BETA = B
cC=H-4d
Cl = C1
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C2 =C
CONDL = k
COND2 = k

D=4d

DINTGL = subroutine for integral evaluation
DKAPPA = K

DLIM1 = integration 1limit

DLIM2 = integration limit

DLIM3 = integration limit

DNUM = Nu. = heq/(N-k,)
DNUM = Num = heq/(N'km)
El = el
E2 = €y

Fx1l = integrand for integral I

Fx2 = integrand for integral II
H=H
HEQ = heq

I,J,K,L = array subscripts to allow parameter variation

PL =1
Ro =r
(e}

RTOT = Ry lv

REQ = 1/(heq w)

THETA = eo(in degrees)

err——

THRAD = eo(in radians)

e

Ul = l/RI

et
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U2 =A1/RII
UTOT = 1/R,
We=w
XALPHA = of(n/2 - 6,)

B.3 Groove Heat Transfer Lower Limit Program Listing

The program listing for evaluation of the lower groove heat

transfer limit is presented on the following three pages.
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FILE: LCWLIN FCRTEAM A UNIVEKSITY OF SATEKLOC CONVERSATIONAL MONITGOR SYST‘F

- - - -

%]

N

‘n

#

*

&

INFLICIT REAL*E(A-EK,C~2)

DINENSICN E1(Z)4E2(J)9E(3)HyCCND2( 3 )y XALFHA(4)
EXTEENAL EX1,EX2Z
CCMNCN/CNE/AI4E13C1,BETA,A2,E2,C2

~~-==INFUT DATA

C = Cal
CCMNL1 = 1.0
w = leC

EEAL(SE,1) (E1(L)y30=1,43)
FCrMAT(ZE10.5)

FEAI(S,2) (E2(L)41=1,3)
FCEMAT(JE10L.E)

EEAL(S,3) (L(K),k=1,3)
FCRMAT(IF1Q.E)

REAL(E,44) (CCMLZ2(J),4d=1,3)
FCRWAT(ZE10.E)

KEAL(E,4€)  (XALFFA(Y1),1=144)
FCkMAT(4F10,.8)

“F[’]E(S']) (El(l.)'[.=1,3,
!FI'H:(E,G) ([(l),k=1,3)
WEKITE(S,4) (CCNL2(J)4Jd=1,3)
WKITE(E,E) (XALFEACY),,I=1,4)

LC 2€ £=1,3
EC 2€ K=1,3
EC 27 J=1,3
EC & ’3114
~~=<«~FRELIMNINAEFY CALCULATICNS

THRAL = TATAM (W-E1(L)-E2(L))/D(K))

[TECXALEEA( 1)aCEea1a0) XALFHA(TI) = 00999

ALEEA = XALEEA(I)#*( FI/2.~1THEAD)

B = (W=—EI(L))/LCTANM  THRAL)

RC = (W=E1(L))/LESIN(THEAL)

EFTA = FC:LSIM(TERAL)/LCCS( ATPHA+THEAL)

CLKAFFA = RC*DCCSE(ALFHA)/LCOSC ALPHA+THRAL)

Al = (LEBAFFA-FZ(L)/CTIAN(THKAL))/(CONE2(J)/CCAL1)

+ F2(L)/ITAM THRAL) + BC*CH*LSIN(THEAD)/W
B1 = FCHDCCS(TRFAL)/W + E1(L)/(KC*LCCS(THRAL))
- 1e/(CTAM THEKAD)*CONL2(J)/CCNEL1)
Cl = «CCADL1/CCNLC2{J)
A2 = LBAFFA/(CCML2(J)/CCANLC1) + FC*CH*LSIN(THERAL)/W
B2 = BCHECCS(TEFFAL)/W + E1(L)/( BCXLCCS{ THRAL))
- 1e/UCTAMTHEAD)*CCNEZ(J)/CCNEL1)
C2 = =CCAMD1/CCNLZ(J)
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B.4

B.5

Groove Heat Transfer Upper Limit Program Nomenclature

The program nomenclature used for evaluation of the upper
limit for the trapezoidal groove heat transfer follows closely that
of the lower limit determination program. Where exceptions occur
they are either self-explanatory or of no consequence, as for example
in the case of localized working variables, As a result of the nomen-
clature similarities of the two limit prediction programs, a seqond

nomenclature will not be presented here.

Groove Heat Transfer Upper Limit Program Listing

The program listing for evaluation of the upper groove heat

transfer limit is presented on the final three pages of this appendix,
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c.1

Appendix C

Finite Element Formulation of the Heat Conduction Equation

in General Orthogonal Curvilinear Coordinates

Introduction

In the analytic solution of heat conduction and other potential
field problems, the governing'differential equation is conventionally for-
mulated in one of the three coordinate systems; cartesian, circular cylin-
der, or spherical. Since the governing differential equation results from
the application of the first law of thermodynamics, in the case of heat
conduction, to a control volume of differential dimensions, this is always
possible. Where the bounding surfaces of the solution domain lend them-
selves to one of these coordinate system, many solutions are available [50].
Considerable difficulty is experienced, however, when such geometric com-
patibility is not present.

It 1is sometimes possible in these cases to set up a system of
coordinates which are 'more natural' to the field of interest, in this
work that of heat conduction [30], such that the coordinate surfaces con-
form_to the lines of flow and potential surfaces, and moreover that they
offer geometric conformity with the bounding surfaces. The nature of suéh
a coordinate system 1s determined by the geometry of the bounding surfaces,
by the field behavior at the boundaries, by specifying the nature and
position of field singularities, or bf a combination of the above influences.
In many instances these more natural coordinates allow a simple and tract-
able solution where use of the conventional three systems leaves the solu-

tion unmanageable,
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For the above reasons, it is important that the heét conduction
analyst be proficient in the use of orthogonal curvilinear coordinate
systems. Unfortunately, however, while multi-directional problems can
be reduced through their use to problems dependent upon a single curvi-
linear coordinate, there remains a large number of problems for which
this 1s not the case, but for which the heat flow is predominantly uni=-
directional in nature. For these problems, where a numerigal solution
.may be required, the advantages gained analytically through the use of
curvilinear coordinates may be available through their use in the numéri—
cal solution of the problem. |

In this work thé numerical solution procedure of interest is
the finite element method; First introduced to the solution of field

problems in 1965 [39,40], the finite element method as applied to field

problems has since been theAsubject of several investigations [41-44]. 1In

many of these investigations the work has been di;ected at alternate
derivations of the governing functional equation and at examining the
treatment of transient terms appearing in the differential equation.
In all cases, however, where application of the method is made, the
cartesian coordinate system has been used.

It is the intent of this paper, therefore, to introduce to the
finite element method as applied to conduction heat transfer the use of
general orthogonal curvilinear coordinate systems. This will be accom-
plished by developing the governing functional equation with appropriate
boundary conditions in a general orthogonal curvilinear frame. The re-
sultant functional‘equation i3 well suited for solutions using the finite
element method. Due to the nature of orthogonal curvilinear coordinate

systems when appropriately chosen, their use in the finite element method
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serves to automatically provide a variable mesh subdivision in accordance
with the problem requirements. This is a reéult of the transformation
behavior near field singularities or geometrie boundaries. This behavior
leads to a finer or coarser curvilinear coordinate spacing, in terms of
physieal distances, as is appropriate to the local features it must
describe. As a consequence, a simple uniform subdivision scheme in the
curvilinear frame, very simple to implement in an automatie mesh gener-
ation routine, may result in a highly complex or distorted physical sub-
division which may be more appropriate for the problem analysis. Appro-
priate choice of coordinate system is, of course, prerequisite to obtain-
ing this advantage. For the class of problems in which the bounding
surfaces form part of an orthogonal curvilinear net, this advantage can
provide substantial éavings both in éomputational time for solution and
in progrémming effort. Two examples are presented to demonstrate the
application of these results. The coordinate systems considered are

the spherical and the oblate spheroidal coordinate systems.

C.2 Preliminary Remarks

Before proceeding with the development of the governing func-
tional equation, it will be instrumental to consider a general orthogonél
curvilinear coordinate system as illustrated in Figure C-1. Here ug,

u,» and u, are used to denote the three principal directions in the curvi-

3
linear frame with x, y, and z denoting those of the corresponding cartesian
system. In general, the cartesian coordinates can be related to the

curvilinear ones through relations of the general form [30]
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X = x(ul, Uy, u3)
y = Y(ul’ u2’ U.3) (C_l)

Z = z(ul, u2, u3)

Z .
‘ /'y us
O X

(13:3

(iS;EN““‘~1>7/’ dSSz

Figure C-1

Uy

In curvilinear space, a differential line element, dg, can in turn be
related back to the carteslan coordinates and is given by

ds =1 dx + 3§ dy + k dz (C-2)

By using the transformation relations (1), and the orthogonality proper-
ties of the coordinate directions, the magnitude of the vector ds can
be given simply by

s)? = g (au)? + g,y (duy)? + gyduy)? (c-3)
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where the metric or Lame coefficients of transformation are defined
by [30]
=2+ @24 8%, 5-1,2,3 @
duy duy duy

&y
These metric coefficients relate the curvilinear frame to the cartesian
one from which it was derived.
Clearly for a length in the ug direction where duj = duk =0
the relationship is simply

dsy = JE; duy (C-5)

In a similar fashion the area element can be formed by

dAi = nggk duj duk, i=1, 2, 3
i34k

(C-6)

where the convention has been used that the ‘direction of the area element
be taken normal to the surface in an outward sense. Finally, the volume

element in curvilinear space is given by

av = Vg du; du, dug (c-7)
where by definition
e = Vgi8,8, (c-8)

By using the above relationships for length, area, and volume
in an orthogonal curvilinear coordinate system, and by applying the
first law of therﬁodynamics to the differential volume element of

Fig. C-1, the governing differential equation can be written as [30]

5 KB 5 kB, ky'8 5p -
du; U5 vl *ou, Ugy ou) tom, gr sul T PR
1 8 Y 2 2 2 3 8j 3
9T
= /g oCp 3} (c-9)
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C.3

where Fourier's law of heat conduction has been used to describe the
local transfer of heat within the continuumn.

The boundary conditions to be applied at the bounding surfaces
of the solution domain (excepting non-linearized radiative conditions)

will in general be given by

T = TA(ul, Uy, Ugs t) (C~10a)
over Sl’ and
k k k
—%2—1 1+-«%-g-'£ 22-»——3-—3-—"3 24+ hT+C=0 (C~10b)
/glul ‘ @2“2 /53“3

over 82 where zl, 22, and 23 are the direction cosines of the bounding
surfaces with respect to the curvilinear coordinates U, Uy, and ug
respectively. Alternatively, condition (C-10b) can be stated as

3T _ _
kn Py + hT + C = 0 over 82 (C~10c)

where n is taken as the outward normal to the bounding surface over 82'
The initial condition is represented simply by

T(ul, Uy, Ug, 0) = To(ul, u,, u3) (C~104d)

Variational Statement

1f the concept of a variational principle is to be applied to
the solution of heat conduction problems, then the governing differ-
ential equation (C~9) must correspond to the Euler equation for the
corresponding variational prpblem. In this treaﬁment‘we shall for
simplicity of presentation and application follow the approach taken
by Visser [40], Zienkiewicz and Parekh [44], and Zienkiewicz [51]

where a particular instant of time is considered. 1In this way, time
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derivatives of temperature and of physical parameters can be treated
as prescribed functions of the spatial coordinates Uy, Ugs and ug.
This is in contrast to ;he use of convolution integrals in time put
forward by Gurtin [52] in establishing a true vayiational principle.
The instantaneous considerations adopted here lead to a quasi-
variational statement and can readily be converted ‘to a restricted
variational statement as indicated by Finlayson and Scriven [53].
The true variational approach, however, has been applied by Wilson
and Nickell [42] in a cartesian cobrdinate frame and could also be

extended to a general orthogonal curvilinear system by following argu-

ments similar to those presented in this work.

Proceeding with the approach adopted here, and invoking the

above requirement, we set

3 kl/g 3T 3 kz’/g T d k3’/g T
ot e % el e Bul Tl m 3
uZu?u 1 & M 2 82 2 3 83 3
1723
+ P/g - Yg poC 3Ly sTdu,du,du, = 0 (C~11)
p ot 172773

where we have introduced the first variation of temperature, 8T. Con-
sidering now the first integral of equation (C-11) and denoting it by

Il’ we have

k,"g " )
8 [.1° 3T

I, f f [ f sa. 75 5u, (ST dupldujduy (c-12)
u, < ugl Ju, 1 "l 1

Integrating (C-12) by parts and using the commutative property

of the differential and variational operators yields
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oo k'8

L [ BT sTI|  duydu,
. B 9N :

3 u, = ul(uz,uB)

[ kl/g )
Jr [ . -—2 5;— (6T)du duzdu3 (c-13)
)

J[
1

J 1 ¢
Y3

where ul(u2’u3) represents the locus of values that the uy coordinate
takes on, as a function of the remalning two coordinates, as the bounding

surface of the solution domain is traversed. Again using the commutability

of the differential and variational operators, namely here that

aT 39 aT 9T, 2
2w, 2,0 ", e > [(5;; ] (c-14)

and simultaneously rearranging the integrand of the first integral of

(C~13) we can write

k
_ 1 3T o0
Il-—J[ Jf [[/_ = §T] /g2g3] du,du,

p = vy (uy,u,)

k,{g
1 9T. 2
J( [ 5 ] (aui du, du,du, (C-15)
u

Finally, we recognilze that /g2g3 duzdu3 when evaluated over

u u3) on the boundary 1s simply the projection of the surface

1 = up(uy,

element dS on the uy=uq plane and can be represented by

¢g2g3 du2 du3 = ll ds

1 = up (uyruy)

(C-16)
u
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This leads to the result that

k
1 9T
Il j'f [ - aul 8T] 21 ds
S1 + SZ 1 boundary
21 f f f aT 2 c-17
> ) dulduzdu3 ( )
Up Y2 Y3

where the definition has been made that
£, =—3; 1=1, 2, 3 (C-18)

Further, by virtue of the specified temperature condition over
the surface Sl (by definition, the surface variation in temperature over

S, will be zero), equation (C-17) reduces to the final result for this

jj [—— -——ST]lJL d82

boundary

-1 aj f f BT )zdu du, du, (C-19)

1

term

Expressions similar to equation (C~19) can readily be derived for the

. other two coordinate directions by following the procedure illustrated

above. Only a systematic rotation of the subscripts in equation (C-19)
is required for its adaptation to the other coordinate directions.
For the heat generation term of equation (C-11), considering

only a spatial dependence of the generation rate, a direct application
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of the calculus of variations allows the heat generation term to be

written as

fff GTﬂududu = f[f[? T] dududu (C-20)

Y1 Y2 Y b M e
and similarly for the transient term, recalling that time derivatives

are treated as being spatlally prescribed, we have

r oo
Ji f Jl /g 6 c, %“ti 8T du, du, duy = f f f (/g o Cp(-g-'{-)T]dulduzduS (c-21)
ul l.l.2 u3 ul uz u2

Collecting the component equations (C-19), (C-20) and (C-21)

to reform equation (C-1l) we have

£ . £
“lj[j{“l‘ 93._)2+ 3T2+23(3T)2 B/ T

()
d ) 2 2 aul 2 3u2 3u3
12 73
+ /g c (——) T }dulduzdu3 }
k k k
-ff—l- By +2 By +2 2 emas, =0 (c-22)
SRR RNTAE RN

which can more conveniently be written, using boundary condition state-

ments (C-10b) and (C-10c), as

f f
l aT 2 -2 3T.2 3T 2
G{Jf Jr Jr {z= 2 ( ; + E- -P/g T

Y1 Y2 Y3

+ /g o C ( )T}du duzduB}

+ff[h’]? + C]8T ds, = 0 (C-23)
s, 2
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Finally, a further application of the variational calculus to the surface

integral yields the variational statement

£
54 Jf Jf Jf L__(BT)Z (33)2 N 3(8T)2 p/gT
k 2

192

1772773

|
jf[“‘ + CT]ds, l(= 0 (C-24)

J

oT
+ /E-pcp(at)\T}du du,du

Equation (C-24) above is the quasi-variational principle referred
to earlier in this section, and its satisfaction, within the limits of the
treatment of time dependent terms adopted hére, is equivalent to satisfying

the differential equation (C-9) from which it was derived.

Spatial Discretization

Before proceeding directly to the spatial discretization of the
solution domain for application of the finite element method, it will be
useful to define the following vectors and matrices. The first is a
vector very similar to the gradient field vector {[33] of a cartesian frame

and will be defined by

3T 9T T
{G} { ’ » AL } (C-25)
Bul auz Bu3

This vector will be henceforth referred to as the curvilinear field
vector, although, since the curvilinear coordinates do not directly reflect
physical distances, the components of (C-25) are not physical gradients

unless accompanied by their corresponding metric coefficients.’ The second,
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a matrix analogous to the property matrix of a cartesian system, is

defined by
;"‘ -
ifl(ul’uz’UB) o o g
[R] = ; o fz(ul,uz,u3) o ; (C~26)
2 o o f3(ul,u2,u3)

This matrix shall be referred to as the effective curvilinear property

matrix. For completeness, the remaining vectors requiring definition are

{1} = {T(ul,uz,ua)}

{P} = {P(ul,uz,ua)}

(C~-27)
{c} = {C(Ql,uz,ua)}
and {T} = {%%}

It must be remembered that the vectors defined above at this
stage remain continuous functions of the spatial coordinates in the curvi-
linear frame. Using their definitions, equations (C-25), (C-26) and
(C-27), the variational statement (C-24) can be written in vector notation

as

e 1 .
§ f J/ f{f (e}t [r1tG} - V3 {T}Y(P} + V& oC, {T}T{T}}dulduzdu3
U Uy Yy

B
o

+ff{f‘2— (Trtery + (7} (e} }as, (c-28)
; .
2 |

Having expressed the variational statement in vector notation,
we now consider the fundamental concept of the finite element method,

that the solution domain can be spatially sub-divided into a collection
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of finite elements, for each of which an approximate solution is assumed.
This approximate solution will contain a specified number of arbitrary
parameters, representative of the nodal degrees of freedom, whose deter-
mination is the object of the method. The determination of these nodal
values for the independent variable is performed by the approximate satis-
faction of the variational statement (C-28).

Approximating ihe unknown temperature distribution within a

single element by the approximation

. ‘Y e T ™
{1} = [Nl,Nz,...] ili = {Ni} {Ti} (c-29)

2

the curvilinear field vector can immediately be written as

— _
)
BNl/Bul BNZ/Bul cee gll

_ ; 20 _ g

{G} = !3N;/8u, ON,/3u, ... | ;= [B} {T,} (c-30)
: N
BNl/Bu3 BN2/8u2 e : -i
L . - l J

In the above, the N,'s are the shape functions [33] for the element under

i
consideration and their form and number will depend on the type of
element selected for the problem at hand.

By using the equations (C-29) and (C-30) in (C-28), the vari-

ational statement for the approximate solution becomes
n 1 T (T T

6{.2 - [—-{T }> [B]” [R] [B] {T,} - /g {1,}" {N }{P}
e=l " §~

{T }T {N, H{N }T {i i}d du, d
i 174 17191 T2 Y3

-+
©
[¢]
=1

~ -

h T o 1T T !
7 T3 N HN {1} + {1} {Ni}{C};dSZe

= 0 (C"31)
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where the global integration over the entire field has been replaced by a - ll

summation of integrals, each lntegral being local to the element character- m

ized by the summation 1ndex, e.

The approxlmate variational statement (C-31) can be written more

compactly by

§F =0

where F, the approximate functional, denotes the expression within the
outermost parentheses of (C-31). The approximate functional F, however,

is a function only of the unknown nodal temperatﬁres, Ti' 1t=1, 2, 3, ... .
Finding the stationary value of this functional by taking its first vari-
ation with respect to T then becomes equivalent to simply differentiating

F with respect to each nodal temperature in turn, and setting the result

equal to zero.

Performing the indicated differentiation, and recalling

instantaneous thermal behavior is considered in this treatment, leads to

the matrix-differential equations

(€-32)

that the

kK] T, +([P] T, = f (c-33)
where
n r T oo T
[K] = eil Ny [B] [R] [B] du1 clu2 du3 + o h {Ni} {Ni} cls2 (C-34al
e SZ .
e
n T e T , !".
[P] = E - pe, VB {Ni} {Ni} du1 du2 du3 (C-34b
e=]
' |
e
n - ‘&_ T rr T _
and £} = T BN) () dup duy dug k] | oy ged as, (c-az.cl
Ve 52 :
e
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Solving the matrix-differential equations, (C-33), will pro-
vide the approximate solution for the temperature field. This is the
ultimate objective of the analysis in applying the method. To effect
the solution to (C~33), however, additional information is required to
accommodate the time dependence of the equations. Following Zienkiewicz
and Parekh [+'], this time dependence is approximated here by finite
differences over the time interval from t to t + At.

Evaluating (C-33) at time t + At/2 and using the first central

difference quotient to approximate the first time derivative, we have

K] (1.}, + [P] [{1}} - (/ae = gE) (e-35)

t+'—§ t + At t

where [K], [P], and {f}, if time dependent are assigned their mid-interval

values. Noting that for this approximation scheme

{T,} = |1 {T,} + {T,} {/2 : (C~36)
it+%.[it+At it} : :
we have
(K] + 2010 (1}, = ALy 4+ (e (c-37)
t + — t
2
with {T.} = 2 {T,} - {T,} (C-38)
¢ + ac e s % e . ‘

These last two equations, (C-37) and (C-38), provide a con-
venient scheme to complete the integration. Other alternatives, however,
are also available for the treatment of the time dependence [51]. The
algebraic equations (C-37) with (C-38) and the coefficient matrix defini-

tions (C-34) define the approximate solution using the finite element
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method in general orthogonal curvilinear coordinates, It can eaéily be
demonstrated that these equations reduce to those for the cartesian case.
In fact for a cartesian coordinate system where g, "8, " 83" 8" 1 the
analogy between the gradient field vector and the curvilinear field
vector, and between the property matrix and the effective curvilinear
property matrix, 1s complete, and becomes an equivalence, Thus the limit—

ing behavior of these expressions 1is in accordance with our experience.

Application of the Results

The utility of the expressions derived in this work will be
demonstrated here by means of two examples., However, since the treatment
of heat generation and time dependent terms appearing in the governing
differential equation is straightforward and follows accepted procedures,
the examples presented will be restricted to the case of steady-state
heat conduction., In both cases, linear isoparametric quadrilateral elements
are used with the shape functions applied in the curvilinear ccordinate
frame.

The first example considers heat conduction through a spherical
shell of inner radius ri and outer radius ro. The curvilinear (spherical)
plane defined by 8 = o has a flux distribution prescribed while that de-
fined by 8 = 7/2 is maintained at a uniform temperature, T = 0. The re-
maining two boundaries have a zero normal gradient prescribed. The problem
geometry is that illustrated in Fig., C-2 and axisymmetric heat transfer is
considered, The case of o = 5,0 degrees is examined.

Denoting the curvilinear (spherical) coordinates by

u =T, u, = a, u, = ] (C-39)

2
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i The metric coefficients are derived from equation (C-4):

g =1

(C~-40)

and /E = r2 sind

[ [~ Samtasy I— [T, [

6=m/2

120

Bl ek @ Anal Ao
-

Figure C-2

From the above, the elements of the effective curvilinear property matrix
can be found. Considering the axi-symmetric nature of the problem, the

effective curvilinear property matrix becomes simply
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fk r2 sin6 0
[R] = , (C-41)
. 0 k sin® '

Excepting boundary condition specification, then, this is the only
modification required to allow a standard finite element program to
treat this problem. Boundary condition specification for the flux pre-
scribed cases to be considered are treated in the usual fashion by apply-
ing equivalent nodal heat flow rates at the apprgpriate nodes.

When the flux distribution applied over the conical sectionm,
9 = a, ig equivalent to prescribing an isothermal boundary there, an exact
solution is available [30]. For this case the flux distribution varies

inversely with the radial coordinate

Q=% : (C-42)

and a non-dimensional thermal resistance can be determined to be

1 1
Rk £, = 5o <o) * s/ (C-43)

where ¢ = T, /T Aﬁplication of the flux digtribution (C-42) to the

problem at hand ylelds results which compare favorably with the exact
solution. The comparison is presented in Table C-1 for three values

of the parameter .

Since the method of subdivision used for the case of an iso-
thermal cone is adequate to describe the thermal behavior of this problem,
a further extension was made to consideration of a uniform flux boundary
condition for 8 = a. The convergence characteristics for this problem
are shown in Fig. C-3 where the non~dimensional thermal resistance ob-
tained from the finite element solution is presented as a function of

the number of nodal points, NNP, used in the spatial discretization.
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The figure indicates a rapid and stable convergence to the limiting

value.

Table 1

Comparison of FEM and Exact Solutions for Spherical Problem

°‘ € Hodes (re?lftia) (p?ec:gnt) % Difference
5 degrees .1 800 0.5537 0.5511 -0.47
5 degrees .5 400 0.9967 0.9942 -0.25
S degrees .9 200 4,9836 4,9717 -0.24

To indicate tﬁe effect of the two different boundary conditions
on the thermal resistance, Fig. C-4 was constructed. Here the ratio of
resistanceg, that due to a uniform flux and that due to an isothermal
boundary at 8 = a, is plotted versus the radii ratio, €. It can be seen
from the figure that for ¢ approaching unity, the difference between the
results for the two boundary conditions vanishes, as it should. However,
for small € the resistance resulting from a uniform flux over 8 = ¢ exceeds
that due to an isothermal specification by ‘as much as 15 per cent. Higher \
deviations are expected for € < 0.1. This example provides another illus-
tration of the importance that boundary condition specification plays in
determining the thermal resistance of any system. As was intended, however,
this example also serves to illustrate the ease of applicafion of the results

Presented in this paper.
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The second example presented here considers the flow of heat
from a thin circular disk located on a semi-infinite solid. Over the
disk surf#ce a prescribed flux distribution will be assumed while over
the remaining free surface of‘the half-space the boundary is taken to
be impervious to heat transfer. Again axi-symmetric heat transfer will
be considered. The cross-section of the problem geometry is illustrated
in Fig. C-5. The boundary at infinity has a prescribed temperature
(T = 0) boundary specification.

In the case of an isothermal condition over the disk, the re-
sultant temperature field becomes one dimensional in the oblate spheroidal
coordinate, n, and a solution is readily obtained [30]. For other boundary

conditions, however, this is not the case but departures from this one-
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dimensionality are expected to be small when compared with those experi-
enced when using a cartesilan, circular cylinder, or spherical coordinate
system. This then suggests that the oblate gpheroidal coordinate system
is a 'natural' one to use for analysis purposes when considering the
geometry of Fig. C-5.

The oblate spheroidal coordinate system is defined by the trans-
formation equations

X = a coshn sind cosy

y = a coshn sin® siny (C-44)

a sinhn cosd

N
i
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where a is the generating disk radius. Using the transformation equations

(C-44) the metric coefficients can easily be determined to be

B, = 8y = a2 (coshzn - sinze)

n
g, = a2 coshzn sin26 ‘ (C-45)
and Vg = a3 (coshzn - sinze) coshn sind

where the coordinates n, 6, and ¢ are those indicated in figure C-5.
Surfaces corresponding to lines of constant n and lines of constant 6
describe ellipsoids and hyperboloids of revolution respectively when re-
presented on a cartesian set of axes. The coordinate Yy represents the
angular measure about the oz axis. It was found numerically and can be
demonstrated analytically that n_ ¥ 10 will suffice for the location of
the boundary at infinity for heat traﬁsfer purposes.

ﬂaving found the metric coefficient of transformation, the

effective curvilinear property matrix for this problem is given by

Fak coshn s8ind 0
[R] =: (C~-46)
' 0 ak coshn sind

L
With the effective curvilinear property matrix defined and the flux pre-
scribed boundary then treated in the usual fashion, the problem solution
is now possible. In this example, a uniform flui distribution over the
disk surface will be considered.
The dimensionless constriction resistance defined by R* = Rka,
where R is the total thermal resistance based upon the mean disk surface

temperature, is shown in Fig. C-6 plotted versus the number of nodal

points used to effect the solution. Again the convergence characteristics
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indicate a rapld and stable approach toward its limiting value. The
value of 0.269 obtained using 800 nodes compares favorably with the

exact solution for this problem of 0.27019 [50].
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C.6

Examining the solution behavior still further, a plot of the
solution error in per cent is presented in Fig. C-7 as a function of the
number of nodal points used in the mesh subdivisions. Indeed, from the
figure it is seen that an error of less than 2 per cent is incurred when
only 200 nodes are used to represent the continuum. Both the ease of
application and the accuracy of the results indicate the utility of this

work in analysing problems having a convenient 'natural' coordinate system.

Discussion and Conclusions

A quasi-variational 'principle' has been derived in this paper
which describes the conduction of heat within a continuum. The derivation
presented herein extends those currently available by its explicit consider-
ation of general orthogonal curvilinear coordinate systems in the formu-
lation of the governing variational statement for the heat conduction pro-
blem. This is of considerable ptility since many problems have associated
with them a natural or quasi-natural coordinate system.

Using this variational statement, a function equation, application

of the finite element method is made by subdividing the solution domain into

a collection of finite curvilinear elements, as is fundamental to the method.

Over each of these elements an approximate solution is assumed, following
the usual procedures, and a system of simultaneous equations results. After
application of boundary conditions, solution of this system of equations
leads to the required approximate solution for the temperature field by
means of determining the temperature at each of the nodes used in the dis-
cretized curvilinear solution domain.

It was found convenient when using matrix notation to represeﬁt
the governing functional equations, to define a 'curvilinear field vector'

and an 'effective curvilinear property matrix' as these arise naturally
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in the derivation. With these definitions, the matrix form of the vari-
ational statement bears a strong resemblance to the cartesian form in
popular usage. This fact makes application of the results extremely eaéy
and stralghtforward requiring minimal modification to existing finite
element.progréms. Indeed, the results of this work reduce ldentically to
those for the cartesian case when the appropriate metric coefficients
defining the cartesian coordinate system are used.

Two examples have been presented which illustrate the ease of
application of the results to other than the cartesian coordinate system.
The spherical coordinate system and the oblate spheroidal coordinate system
are the two systems used in the examples. In both cases the solution con-
verged rapidly and monotonically to its limiting value. In particular by
the second example, where only 800 nodes were used to represent a semi-
infinite body and approximately 0.5 per cent accuracy was obtained, the
utility of formulating the variational probleﬁ in the appropriate co-
ordinate frame becomes clear.

These results will find application to contact problems, problems
involving semi-infinite or infinite domains, and generally to problems
where a coordinate system, more natural th;n the cartesian one, exists to
describe the problem geometry and field behavior. The nature of thesé co-
ordinate systems is to provide an automatic mesh generation, for uniform
subdivision in the curvilinear coordinates, which locates smaller and
larger elements (in terms éf real physical size) throughout the domain
as appropriate to the problem, These systems can also be used locally
within larger systems and matched along common boundaries or joined using
a relatively crude transition mesh. The net result in problems where
there exists a more appropriate coordinate system will be a savings in
both storage requirements and computational time to achieve a prescribed

accuracy of solution.
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Appendix D

Finite Element Groove Heat Transfer Prediction Program

D.1 1Introduction

In this section the prediction program used for determin-
ation of the heat transfer characteristics of heat pipe walls having
trapezoidal shaped grooves is presented. The program utilizes the
finite element method for providing an approximate, numerical solu-
tion of Laplace's equation within the two component groove section
discussed in Chapter 3 of this report. Due to its bookkeeping and
manipulation complexity, however, the details of implementation of |
the method will not be presented here since the necessary discussion
would be unduly lengthy and is not warranted in consideration of thé
objectives of this research. Sufficient proof has been presented
earlier, in Chapter 5 of this report, that the program components
are functioning correctly.

It was also brought forw#rd in the discussions of Chapter 5
that large amounts of computer core were requi;ed to effect an accurate
solution. As a result, the current program cannot be effectively
run on the IBM 360/75 computing installation, which, until recently
was the single installation available at the University of Waterloo.
Instead, the program presented in this appendix 1is designed for use
with the IBM 370/158 'virtual machine' installation now available
at this Univeréity. As a result, a great deal of caution must be
exercized 1if utilization of this program is attempted with other

computational facilities, and even then the accuracy of the resulting
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output, uanless sufficient core is available, may be quéstionable.
The large core required by the solution program to provide a solution
of acceptable accuracy 1s a reflection of the complex nature of the

problem being investigated in this research.

Input Information

The program as presented in the final pages of this chapter
utilizes an automatic mesh generation routine developed specifically
for the trapezoidal groove problem., As a result only the parametric
information necessary to characterize the groove geometry, materials
combination, and the mesh refinement are required in the form of
input data.

The solution program 1is directed at the eolution of the
normalized equations and boundary conditions (3-17) ~ (3~27). As
a result the typical cell width, w, 1s assigned a value of unity
automatically within the program. Further, the boundary condition

at the liquid/vapor interface is a Dirichlet condition with a norma-

lized magnitude here of zero. Since the problem is linear in tempera-

ture throughout the entire solution field, the further internal
assignment has been made that the metal conductivity be unity. This
results in a normalization of the temperature field with respect-to
the metal conductivity. Finally, the thickness of the pipe wall bet-

ween the groove lower surface and the pipe exterior surface has been

glven a value of 0.1. The one-dimensicnal resistance of this thickness

is later discounted in order to establish the 'equivalent' groove
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resistance and hence determine the groove equivalent heat transfer

coefficient,

The remaining information required as input data to completely

characterize the problem consists of, NE1, the number of lateral sub-
divisions within the metal fin section; IPRINT, a printing‘code para-
meter, THETA, the groove half-angle, XALPHA, the normalized apparent
contact'angle, COND(2), the fluid conductivity or in the normalized
case the conductivity ratio kf/km, El, the fin tip land area ratio,
and E2, the groove root land area ratio. This information is fed
into the program via two data cards.

The first data card consists of the parameters NE1l and IPRINT
punched according to a 215 format. A value for NEL of 19 was found
acceptable in the convergence studies of Chapter 5 for the third mesh
generation routine. A non-zero value for the IPRINT code parameter
will cause the mesh generation details to be printed. This includes
the x and y coordinates for each nodal pdiﬁt as well as a listing by
element number of the element associated podes and the material type
for the element.‘ Material type one indicates a metal element while
material_type two indicates an element within the liquid region of
the solution domain. If the value of IPRINT is not supplied on this
first data card, a value of zero will be assigned by most computing
installations.

The second data card contains the remaining parameters
.apecifications in the.following order; THETA, XALPHA, COND(2), El,

E2., This information is supplied according to a 5F10.5 format.
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THETA is the groove half-angle and 1s supplied in units of degrees.

The second parameter, XALPHA = af(w/2 -‘90), is the normalized apparent
and takes on values ranging from 0,0 to 1.0, The third parameter,
COND(2), due to the internal specification that COND(1l) = 1.0, is

the fluid/metal thermal conductivity ratio, kf/km. The final two
parameters, El and E2 are the fin tip and groove root land area ratios

respectively and can take on values in the range 0 < {g;} < 1.0,

Program Listing
With the above input information the problem specification

is complete. The prediction program listing 1s presented in the

remaining pages of this chapter,
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Appendix E
Typical Output from Finite Element Groove

Heat Transfer Prediction Program

E.1 Introduction

E.2

In this appendix a typical output from the finite element pre-
diction program is preéented. A value of zero was‘used for the code
parameter IPRINT since the use of a non-zero value is useful primarily
during the debugging stage of the mesh generator development5 This having
been completed and verification made that ﬁﬁe meéh generator is function-
ing éorrectly, it is unnecessary to display this information with every

output.’

Sample Output Description

On the final pages of this appendix a typical output from the
groove heat transfer prediction program is presented with a brief descrip-
tion of the output given below. Due to the brevity of the following dis-
cussion frequent reference by theAgeader to the sample output will be
helpful.

On the first page of output the 'Basic Parameters' describing
the particular case under examination are displayed. This display includes
material properties, problem characterization parameters, and various
other pertinent geometric parameters. In addition to the above, inform-
ation. relevant to the spatial discretization of the problem solution
domain are also presented. For an explanation of these parameters the

reader is referred to figure 5-7 of Chapter 5 of this report.
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Immediately following the display of the basic parameters,
the boundary condition information is displayed. ‘The gspecified flux
boundary conditions over the pipe exteriqr sufface are presented firstly.
This informafion is presented in ﬁhe form of an assumed linearly varying
distribution between two successive nodes ranging from the first flux
value reported at the first node number reported to the second value
reported at the second node number reported. This is performed for each
"element having a surface on the pipe external surface. A uniform distri-
bution of magnitude 100 (British units) 1s assumed internally within

the program. Following directly the Neuman boundary condition presenta-
tion is the Dirichlet boundary condition specification over the liduid/
vapor interface. The interpretation of the output for this condition is
direct with an assumed relative value of zero for these nodes.

Where a non-zero value for the code parameter IPRINT is used,
two tables, additional to those in the sample output, will be presenf.
The first of these contains a listing of the node number, its global x-
coordinate, and its global y-coordinate, in the order mentioned. This

will be repeated for each node in the finite element model,

Again for the case of a non-zero value for IPRINT, a six column

table will be presented following the table described in the previous
paragraph., The horizontal entires of this table are respectively the
element number, its associated nodal indices in the order of node one
to node four, and the material type for the element. A material type
of 1 indicates an element located in the solid region of the solution
domain while a material type of 2 indicates an element in the liquid

region of the cross-section.
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The next portion of the output serves to report the node
number, its x and y coordinate value in the global system, the nodal
temperature as determined by the solution program and the net nodal
heat flow rate imbalance. The net nodal heat flow imbalances reported
here can serve as a useful check on the solver accuracy for the system
of equations, For all internal nodes these nodal heat flow rate im-
balances should all be zero (within the solver accuracy). Experience
with the finite element method indicates that relatively large internal
net heat flow imbalances result near highly skewed or poor aspect ratio
elements. Thus this column also serves as an indicator for the accepta-
bility of the mesh generation scheme. For external nodes, the net nodal
haat flow rate imbalances over a given surface must sum to the total
heat flow occurring across that particular surface, This also provides
a check on the solution since the total heat entering the solution domain
must, in the steady state, exit from the solution domain. Thus, for
steady-state problems, all of the net nodal heat flow rates should alge-
braically sum to zero.

The final page of output presents a summary of the pertinent
heat transfer data including both the computed and derived quantities of
intefest. The 'SUM OF NODAL FLOWS' is the quantity mentioned in the pre-
ceding paragraph which should sum to zero. This is, of course, relative
to the total heat flow rate through the system. The number appearing on
ihe sample output indicates approximately a 0.85 per cent cumulative
round-off error when the 1828 nodes as used in this example are employed
in discretizing the solution domain, The second entry of the summary 1is
the computed value for the functional being extremized and is of import-

ance when performing convergence studies. The 'AVG, SURFACE TEMP.' is
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the average computed external pipe surface temperature, The 'EQUIV,
NUSSELT NO,' 18 the computed groove equivalent Nusselt number based upon
the liquid thermal conductivity. The remaining entries of the summary

are self-evident and relate to the derived quantities of Chapter 3.

Sample Output

The sample output described in the above section 1s included

in the final pages of this appendix.
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Appendix F
Linear Quadrilateral Isoparametric Finite Element

Introduction

In this appendix, the element 'shape functions' are deter-
mined for a linear quadrilateral isoparametric finite element. The
word 'isoparametric' is used to describe the element since the approx-
imation for the dependent variable, in this case the temperature, is
taken to the same deg?ee of polynomial as is the coordinate descriptiom.
The element is linear since the geometric discription of the local
coordinate values between any two nodes is a linear function of the
global coordinate values, The element under consideration is a
general quadrilateral, a four-sided geometric configuration for which
there is no a priori fixed relationéhip between the four sides. That
is, the opposite sides are not required to be parallel or have any

prescribed orientation and adjacent sides need not meet at any specific

angle,

Geometric Description

The general quadrilatgral element is illustrated in figure
F-1. A 'natural' or 'local' coordinate system is established with the
origin located at the center of the quadrilateral, This coordinate
system, in general non-orthogonal, is characterized by the coordinate
pairs (t,s) with the coordinates t and s as shown in the figure. The
element nodes are numbered consecutively in the local system as nodes
1 through 4, in a clockwise sense. The natural coordinate system also

is defined to have the property that 8 = -1 and +1 over the surfaces
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4-1 and 2-3 respectively and that t = -1 and +1 over the surfaces

1-2 and 3-4 respectively,

The global coordinates throughout the element can be related
to the natural coordinates through the transformation equations,

expressed in parametric form as

u, (£,8) = F{(1-5) (1-0),, (1+8) (1-£), (1+8) (1+£) , (1-8) () Y, |
1
u
1
2
u (-1
u13 '
td

(F-2) ~

From these relations it can be easily verified that for the appropriate
combinations of t=+1 and s=+1, that both x and y take on their res-
pective nodal point values and that the coordinate description is

continuous within the element, the variation of both u, and u, being

1
linear in both t and s. The equations (F-1) and (F-2), can be

written in abbreviated functions by the definitions

u (t,8) = e {uln}

}(F-3)

uz(t,s) = {Nn}T {uzn}

. gn -—— .

E A A A A a Uy as
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where the elements of the transpose vector, {Nn}T, are called the

dement shape functions.

Field Description

In a manner directly analogous to the above geometric des-
cription, the temperature field can be approximated within each element
by a linear ;nterpo}ation. Thus we have for the temperature field

approximation the relation

T(t,s) = %{(l-s)(l-t),(l+s)(l-t).(1+s)(1+t),(l-s)(l+t)]

2
3| (F-4)
4

which can be also written more compactly as

T(t,s) = {8} {1} (F-5)

where the Nn are the identical ahapg functions (for isoparametric
elements) to those used in the coordinate description.

The above defining equation (F-5), then, completes, the
description of the temperature field throughout the element. However,
in order to utilize this description, the '‘effective curvilinear
field vector' defined in Chapter 5 and Appendix C of this report must
be determined.

The derivative operators with respect to the local coordinates

can be expressed by

rLj 8u1 3!12 P

i 98 os 08 aul
| = (F-6)
la_ | 1291 %2 l0s
|2t 3t ot ||du,
- 273 -



Inverting (F-6) to solve for the global derivatives yields

2 i Y (EN
e \ T 3s || 3s
1| (F-7)
& [J‘ du du, |
- _ 13
ot 3s La:

where the determinant of the Jacobian transformation 1s given by

du, du Ju Ju
1 2 2 l)l (F-8)

3] = I(aa ot 3s ot

and where the derivatives with respect to the natural coordinates,
of say the element shape functions, can readily be found. Global

derivatives are then found from

l T Jdu,  -du, 3N 3T 7 T

¢+ Qu ; | ot as : 1

. l! ' i TZ

| in 1 ‘ l T (r-9)
IR _ Ti{ .3

ar ! T e T } J T,

LUy, KB as ]

Performing the indicated operations, and after excessive tedious

algebraic manipulation, equation (F-9) can be written as

[T ] o
i 9u — T
: ol Y2, %2, Y25 % -
u u u u 2 (F-10)

‘gi T P T T,
{952 T

L 4]
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where

B [ u - u S -u. t]
2y 2,0, %34 %23
Uy 1
2 = -u 4+ u S+u t
v, 8131 213 234 234
3 (F-11)
U -u +u S§=-u, t
= 206 %12 214
| u -u, S+uy, t|
213 2 255
—"17 -“1 +“1 s+“1 t]
1 24 34 23
U, 1 -
2 = u -u S -u t v
0, K] 1,5, "1y, 1, (F-12)
3
U u - u S 4+u t
| 14 | Ly h2 o 1
-u . +u S=-1u t
| L3l a3
with the factor SIJI given by
8|J| = (u u —u a ) |
Lig 25, 233 13
+ (u u -u u, )S
13, 230 234 132
+ (u u -u u )t (F-13)
g 234 223 134

In the abowe the differencing notation has been.used, for example

for ul, that

ul Zu -u (F-14) .
i]
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In the case of a carteslan global coordinate system, as 1is used for

the problem under examinat;on in this report, the ul—direction
is identified with x and y the u, = direction is identified with y.
It can also be shown, in conclusion of this appendix, that
by forming the necessary cross—products for the integration, dﬁl x 452.

an area element in the u, - u, plane, that

du, x da, = |J| ds 4t (F-15)
which is the final relation necessary to perform the integrations of
Chapter 5.

It is due to the complex algebraic form of the resulting
integrand that, orthogonal local coordinate systems excepted, numerical
integratlion procedures are generally required for evaluation of the
elements of the stiffness matrix [K] of chapter 5. The solution
program of Appendix D uses a four point Chebyshev quadrature numerical
integration procedure for this purpose. Higher order formulae did
not detectibly alter the results obtained for thel linear quadrilateral
element when applied to the groove problem, or to elther of the two

example problems cited in Appendix C of this report.

Uz
2 ' S =+
=u,
t=-1
—

| s ==|

Figure F-1
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