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Abstract 

It has been the purpose of this report to examine the thermal 

characteristics of heat transfer through a heat pipe wall whose inner 

surface is grooved with grooves of trapezoidal cross-section. An under-

standing of the heat transfer characteristics of such a wall is . funda-

mental to the accurate prediction of heat pipe performance character-

istics. The cases considered in this report degenerate to grooves of 

V-shaped cross-section in one limit and to rectangular grooves in the 

other limit. While results are presented for symmetric groove cross-

sections only, the analysis and prediction program maintain the flexi-

bility of considering the non-symmetric situation. 

It is established that conduction heat transfer is the dominant 

mode of energy transport within the composite metal/working fluid section 

of the grooved pipe wall. The composite conduction problem is mathe-

matically formulated and the analytic solution to the governing differ-

ential equations is examined. While the functional form of the solution 

is easily obtained, the many constraints which  must  simultaneously be 

satisfied leave the complete analytic solution intractable. It is con-

cluded that a numerical solution procedure must be used to effect the 

solution and that due to the geometric irregularity of the solution 

domain, the finite element method will be most appropriate. 

A limit study is performed to provide upper and lower bounds 

for the equivalent groove Nusselt number. The two theorems of Elrod 

are used to provide these limiting values. Although the limits result- 

ing from such a study can often be used to provide acceptable engineering 

predictions, this is not the case here. As a result the limit study 

- 



here serves to provide a check on the values determined from the finite 

elenent prediction program. 

A finite element formulation of the heat conduction equation 

is derived for application to any general orthogonal curvilinear co-

ordinate system. The generalized formulation presented herein bears 

a strong reSemblance to the cartesian form in common usage with only 

minor modifications required to a cartesian program to reflect the co-

ordinate system generalization. Reduction of the general form is made 

to the cartesian coordinate system for application to the trapezoidal 

groove problem. 

Although the finite element method maintains the flexibility 

of considering irregular geometries, application of the method to the 

trapezoidal groove heat transfer prediction is not direct. Difficulties 

were experienced in generating a discretization mesh which could ade- 

quately describe both the severe local thermal behavior near the meniscus/ 

metal contact and the conductive region in the remainder of the fin. 

Description of the above thermal field is subject to the further con-

straint that the prediction program storage requirement does not exceed 

that available on current computing facilities. After two unsuccessful 

mesh generators were discarded, a third, acceptable, mesh generation • 

 scheme was adopted. The difficulties encountered here reflect the diffi-

culty involved in solving the complete, composite, thermal problem. 

With  the finite element program functioning correctly, a para-

metric study was conducted to determine fully the thermal characteristics 

of the equivalent Nusselt number. Symmetric groove cross-sections only 

are explicitly considered in this work thus restricting the dependence 



to four parameters. These are the liquid/metal conductivity ratio, 

the groove depth, the metal fin tip land area ratio, and the normalized 

apparent meniscus contact angle. The dependence of the equivalent 

groove Nusselt number is fully discussed in the text. A correlation 

equation, applicable over the range of parameters investigated in this 

work, is presented and interpolates the numerical data with a maximum " 

error of correlation of seven per cent. 

Application of the results of this work is made to the pre-

diction of heat pipe surface temperature variations. It is found that 

in cases where substantial variations exist in the groove equivalent 

heat transfer coefficient, the variations exhibited by the pipe surface 

temperatures can be considerably less severe, but that the degree of 

insensitivity will be application dependent. 
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 ki Ai 
heat pipe internal surface area evaluated at the groove 

ill 

root diameter 

lii 

Af 
working fluid flow cross-seciional area 

til 

A1'A2 constants (defined in text) 

Ill 

B1 ,B 2 constants (defined in text) 

[B] coefficient matrix in effective curvilinear field vector 

111/ 

c geometric constant (defined in text) 

I 
c 
P 

specific heat at constant pressure 

III d 

C1' C2' C3' C4 constants (defined in text)  . 

depth of groove section 

Ill Dh 
hydraulic diameter 

III D1' D2' D 3' D4 
correlation constants (defined in text) 

ill  
1 

f friction factor 

Ill

f1' f 2' f 3 
elements of effective curvilinear property matrix, 
equation (5-13) 

I: 
g1 ,g2 pg 3 

[f] constant vector in finite element equations 

metric coefficient, g = gl.grg3  

metric coefficients, equation (5-3) 

g 

 

1 [G] curvilinear field vector 

? 
. ha pipe to ambient film or attachment heat transfer coefficient 

I! 

h .eq 
equivalent heat transfer coefficient 

)111

hfg  latent heat of vaporization 

H total wall thickness of typical cell 

Il 
HLSD H-d . 

II J Jacobian of local-global coordinate transformation 

11. k , thermal conductivity 

ill  

lil

Nomenclature 

I- 
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l'2'
2,
3 

L,La ,Lc ,Le  

mass flow rate 

direction cosines of surface with the three principal co-
ordinates 

length of heat pipe; total, adiabatic, condenser, and evaporator 

lengths 

1 
1 
1 
il 

e 

1 
1 friction factor coefficient or conductance (defined in text) 

KU) complete elliptic integral of the first kind with modulus X 

K' (X) complementary complete elliptic integral of the first kind, 

K'(X) = K(eil - XZ) 

[K] coefficient matrix in finite element equations 

normal to surface 

groove pitch (number of grooves/lineal distance) 

Ni 
element shape functions for use in finite element analysis 

Nu Nusselt number (defined in text) 

per wetted flow perimeter 

pressure or heat generation rate per unit volume (defined in 
text) 

Pr Prandtl number 

saturation pressure 

heat flux 

applied evaporator heat flux 

radial coordinate 

rin inner pipe radius 

ro 
liquid level in V-groove measured along the groove wall 

rout outer pipe radius 

mean inner (groove) pipe radius 

universal gas constant or thermal resistance (defined in text) 

Re Reynold's number 
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R
o groove side wall length for V-groove 

- 
lei effective curvilinear property matrix 

groove coordinate, curvilinear distance, or finite element 
local coordinate (defined in text) 

surface • 

time or local finite element coordinate (defined in text) 

temperature 

T
a heat pipe ambient temperature 

Tv vapor temperature 

Tfi interface liquid temperature 

Tsi interior pipe surface temperature 

so exterior pipe surface temperature 

1vi interface vapor temperature 

u1 ,u2 ,u 3 general orthogonal curvilinear coordinates 

argument of Jacobian elliptic sine amplitude function 

V volume 

width of typical groove cell 

cartesian coordinate 

xa non-dimensional apparent contact angle, x a/(r/2 - 8 o ) 

X separated component of analytic solution in the x-direction 

y cartesian coordinate 

Yi ordinate for interface geometric description 

separated component of analytic solution in the y-direction 

longitudinal coordinate 



Greek Letters 

a 

a
o 

a
ba 

y 

YE 

o 

ri 

E l eE 2 

0 

V 

a 

11) 

- 
w 

wo 

apparent liquid/metal contact angle 

groove entrance apparent contact angle 

minimum break-away contact angle 

radius of curvature of liquid free surface 

ratio of specific heats, y = c /c , or included angle of liquid 
or metal section in limit stude (efined in text) 

coupling coefficient, 0 < yE  < 1 

variational operator 

increment in accompanying argument 

groove tip and root area ratio 

oblate spheroidal coordinate 

circumferential or oblate spheroidal coordinate (defined in text) 

geometric parameter or 
first kind (defined in 

separation constant or 
first kind (defined in 

viscosity 

kinematic viscosity, y = p/p 

mass density or radial coordinate in limit study (defined in text) 

surface tension 

circumferential or oblate spheroidal coordinate (defined in text) 

circulation flow velocity in V-grooves . 

average groove section velocity 

3P 
reference velocity for normalization, wo = (r

2/pr ) -- 0  p 

modulus of complete elliptic integral of 
text) 

modulus of complete elliptic integral of 
text) 



Subscripts 

a ambient 

liquid 

interface 

ni metal 

o outer 

surface 

total 

sub-region I in limit study 

II sub-region II in limit study 

III sub-region III in limit study 
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Chapter 1 

Introduction 

In recent years it has become increasingly important to develop 

methods for the efficient transport of thermal energy  frein one location 

to another. The use of high component-density electronic circuitry 

and the operational, inefficiencies of the components used may impose 

heat transfer requirements on the design which conventional heat 

transfer devices are unable to maintain. In such applications, the 

heat pipe may often offer the only practical solution to the thermal 

problem under consideration. 

In addition the realization of a limited world supply of con-

ventional forms of energy has led to a search for more efficient methods 

of energy conversion. Here, heat pipes may find a role in reducing 

extraneous temperature drops not directly related to the conversion 

of thermal energy to, say, electrical energy, thus allowing a closer 

approach of the system conversion efficiency to the limiting Carnot 

efficiency for the conversion cycle. 

Perhaps the most demanding heat transfer requirement at present 

is the thermal control of spacecraft [1 - 8]. Due to the large thermal 

gradients which are commonly experienced in spacecraft.  applications 

and the associated high thermal stresses, a device is sought which 

would serve to l isothermalize' the spacecraft structure. This is an 

important consideration in the design of the telemetry, guidance, and 

orbit stabilization systems of a spacecraft. A second problem of 
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spacecraft thermal control is related to the efficient utilization 

of the available space within the spacecraft for the experimental, 

control, and communications equipment'packages. If the heat generated 

within the spacecraft due to the operational inefficiencies of the 

onboard equipment is not effectively dissipated from the spacecraft, 

the resultan't temperature rise of the electronic equipment above 

tolerable operational limits may lead to performance degradiation and/or 

complete system failure. In view of the consequences of a complete 

system failure in spacecraft applications, these thermal problems 

warrant considerable attention and here, again, the use of heat pipes 

may provide the only practical solution. In addition to its favorable 

thermal characteristics, heat pipes in spacecraft applications also 

present a low weight penalty to the spacecraft design as a result of 

their hollow construction. Since the heat pipe can offer substantial 

advantages over conventional heat transfer devices in its application 

to thermal control, its appearance in spacecraft designs is becoming 

increasingly prevalent. 

A definition of a heat pipe has been given in the comprehensive 

review article by Winter and Barsch [9] as, "A heat pipe is defined 

as a closed structure containing some working fluid which transfers 

thermal energy from one part of the structure to another by means 

of vaporization of a liquid, transport and condensation of the vapor, 

and the subsequent return of the condensate from the condenser by 

capillary action to the evaporator". If the working fluid of such 

a device is free of contaminants, then the temperature within the 

structure will be very nearly isothermal throughout the region of vapor 

transport by virtue of the two phases present'within the pipe existing .  

- 2 - 
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simultaneously in equilibrium with one another. While the vapor/liquid 

interaction leads to isothermal behavioral, characteristics, significant 

overall temperature drops may often occur due to heat transfer within 

the wicking mechanism and pipe walls. Since the thermal conductivity 

of typical working fluids for moderate temperature heat pipes is low, 

considerable effort has been directed towards the development of high 

conductance wicking mechanisms [7, 10-14]. The present generation of high 

capacity, high conductance heat pipes is a direct result of this develop-

ment. 

The wide variety of heat pipe designs currently in use can be 

broadly categorized according to the maximum heat transfer rate they 

will afford the designer. This heat transfer rate is directly propor-

tional to the mass flow of the working fluid which can be circulated 

within the pipe through the proportionality factor, the latent heat 

of vaporization. For moderate temperature applications (150-750°K) 

the maximum rate of circulation is determined primarily by the viscous 

losses within the liquid which must be overcome by the capillary pumping 

action of the wicking mechanism. 

The most primitive wick design consists of simply lining the 

smooth inner diameter of a pipe with a porous material [15]. Wire 

mesh screening is commonly used in these designs with the maximum 

available pumping capability determined by the 'pore size' of the mesh. 

Due to the small spacing between the screen and pipe inner wall, 

however, viscous shear stresses arising from this configuration will 

be large resulting in a relatively low liquid re-circulation capability. 

3 
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Since this necessarily dictates a relatively low heat transfer capability, 

such designs are characterized as low capacity heat pipes. Indeed, 

not only do these designs have a low heat transfer capacity, but also, 

since the heat addition and extraction must occur through a relatively 

low conductance liquid/wick matrix, these designs also have a relatively • 

low overall thermal conductance. This is an unavoidable consequence 

of these designs since the wick mechanism serves not only as a liquid 

return path but also to wet the inner pipe wall of the evaporator 

to maximize the evaporative heat transfer. 

In recognition of the disadvantages of the low capacity heat 

pipes, subsequent efforts were directed at increasing the ratio of 

flow area to flow perimeter in the liquid return passages. One means 

of achieving this result is by machining (extruding) longitudinal 

grooves in the pipe wall. Not only does this reduce the viscous flow 

losses of the return path but, due to the fin-like behaviour of the 

remaining extended portions of the original pipe wall, the heat transfer 

characteristics of this design are also improved. Since the passage 

size is restricted by capillarity considerations, however, the available 

gains from this design are also limited. Heat pipe designs typified 

by that described above are characterized as moderate capacity designs 

and also have moderate performance characteristics. 

Attempts to alleviate the limitations associated with the 

previous two designs have led to the conception of the present genera- 

tion of high capacity heat pipe designs, With which this work is primarily 

concerned, although the results may also be applied to certain moderate 
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It is the object of this study to examine in greater detail 

the heat transfer processes occurring in the liquid/metal composite 

region of grooved heat pipe walls. In addition, this work 

will extend consideration to grooves of an arbitrary trapezoidal 

cross-section including as limiting cases the V-groove section discussed 

above as well as the rectangular groove section. In the prediction 

of heat pipe performance, the accurate prediction of the pipe wall 

and groove conductance is paramount to accurate prediction of the 

overall pipe conductance since by virtue of its operation, the vapor 

core of the heat pipe will exhibit near isothermal behaviour. Thus, 

since the majority of the temperature drop encountered in high capacity, 

moderate temperature heat pipes will occur in the groove region, 

accurate prediction of the groove thermal behaviour is fundamental to 

the accurate prediction of the overall performance of heat pipes of 

this design. 

6 



Chapter 2 

Background 

2.1 Introduction 

In a previous report [16], the present authors examined the 

three-dimensional thermal analysis of a high capacity heat pipe operating 

in the steady-state. The heat pipe of interest consisted of a circular 

tube having circumferential grooves of V-shaped cross-section wound in a 

tight helix along the length of the pipe. Liquid return transport is 

afforded by three longitudinal arteries aligned across the diameter of the 

pipe. The cross-section of the pipe of interest is illustrated schemati-

cally in figure 2-1. 

The pipe shown in figure 2-1 is a high capacity heat pipe 

having the mechanisms of liquid return transport and wall wetting distri- 

bution decoupled from each other. The larger diameter artery passages 

are used to minimize the re-circulation viscous pressure losses in order 

to obtain a high thermal transport capability while the grooves, used for 

distribution of the working fluid over the pipe inner wall, can be designed 

to minimize the temperature drop between the pipe exterior surface and the 

vapor core over both the evaporator and condenser regions of the pipe. A 

complete thermal analysis must include, then, the variation of the temper-

ature distribution within the pipe which results from changes in the 

liquid flow cross-section. These liquid flow cross-sectional changes in 

turn are the result of the viscous pressure losses associated with the 

hydrodynamic return path taken by the working fluid as it flows from the 

condenser back to the evaporator. It is the influence of changes in the 

liquid flow cross-section on the local heat transfer characteristics of a 

grooved heat pipe wall which is under investigation in this work. 

-7- 



Figure 2-1 
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The purpose of the present chapter is to briefly review the 

work performed in the previous report. This brief review will serve 

both as an introduction to and as motivation for the present work. 

2.2 Thermal Analysis 

Figure 2-2 illustrates schematically a typical heat pipe shell. 

Due to the tubular nature of the pipe design under consideration the co-

ordinate system best able to describe the temperature field within the 

pipe will be the circular cylinder coordinate system. The origin of 

this system apd the coordinate directions are indicated in the figure. 

The region of heat input on the exterior surface of the pipe, 

Le , is given the name 'apparent evaporator section' while by a similar 

definition the region of heat extraction on the exterior surface, Lc , is 

given the name 'apparent condenser section'. The remaining exterior sur- 

face area will be adiabatic and is given the name 'apparent adiabatic 

section', denoted by  L. The regions of actual evaporation and conden-

sation, however, are not restricted to the physical confines of the ap-

parent evaporator and condenser sections respectively. Under suitable 

conditions [17] there may be no appreciable effective adiabatic section 

on the inner surface even if there exists an adiabatic section of consid-

erable length on the exterior surface. 

In the absence of internal heat generation and in consideration 

of steady state operation, the differential equation governing the heat 

transfer within the pipe shell will be Laplace's equation in circular 

cylinder coordinates, 

(2-1) 



Figure 2-2 
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The inclusion of all three coordinates, r, 11), and z, has been made since 

in general the temperature field must be allowed to vary independently 

in each of the three principal directions. 

The boundary conditions which apply to the solution of equation 

(2-1) are all well defined with one exception. The exception is the speci-

fication of the inner pipe surface thermal interaction with the vapor core. 

As shown by the cross-section as illustrated in figure 2-3(a), 

even the geometric description of the inner pipe boundary will be a tedious and 

difficult task. To apply the conditions existing at this boundary directly would 

lead to an unnecessarily complicated analytic solution or require an ex- 

tremely high degree of detail if numerical methods are used. It becomes 

apparent,then,that a simplification of this boundary condition is desired 

to avoid an unduly complicated solution. In addition to the above geometric 

complications, the heat transfer mechanism at the pipe inner surface may 

also vary in both the circumferential and longitudinal directions. 

To avoid an unduly complicated solution, an equivalent heat trans-

fer coefficient, heq' 
has been defined to characterize the thermal behavior 

in the region extending from a hypothetical surface located at the groove 

root diameter, through the metal 'fin' and the fin/liquid interface, and 

finally through the liquid within the groove to the vapor core. This is 

illustrated in figure 2-3(b) for the case of triangular or V-shaped grooves. 

Once this equivalent heat transfer coefficient has been determined, the 

inner surface boundary condition application becomes that of a hypothetical 

inner surface interacting with an environment at the vapor temperature, 

T, through a heat transfer coefficient, h v eq . 



2) z 

3) 11J in 0 

4) lp = n 

5) r = rin 

6) rIir out 

3T = 0 

21 0 
 az 

aT o 

1 DT r o 

h (1),z) aT 
ar k 

(Tsi (1z) - Ty) 

(2-2) 
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II 
il 

il 
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II  

The complete set of boundary conditions assumed for this analy- 

sis can then be written as 

1)  z0  

aT (a) 0.5.zeLe ar e;k—=q(tli,z) 

aT 
(h) L z (Le  + L c); = 0 • Dr 

(11,,z) 
(c) (Le Lc) z L; 2-1-* = a

k 
(Tso - Ta) ar 

As can be seen from these conditions, a condition of symmetry about the 

plane defined by ip = 0 and 4i  = n is assumed, insulated end caps are 

assumed, and a specified flux distribution is prescribed over the evapor-

ator surface while the condenser interacts with the environment at Ta 

through an attachment coefficient, ha . 

The vapor temperature, not known a priori, must further satisfy 

I heq (11, z) T81 (41 ' z) dA Ai  

Ai 
h eq (1),z) dA 

where Tsi (1),z) is the temperature distribution over the hypothetical inner 

surface, Ai' located at the groove root diameter. 

-12-- 
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(b) 
(a) 

Figure 2-3 

Figure . 2 -4 
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In the previous report [16] a finite difference solution to 

equation (2-1) subject to the boundary conditions (2-2) and the constraint 

equation (2-3) was presented. In applying the solution to heat pipe situ-

ations, however, the distribution of the equivalent heat transfer coeffi-

cient over the pipe inner surface, must be known. Determination of heq 

is not direct, though, since it will depend on the local liquid flow cross-

section, which in turn depends on the pipe operating conditions. It was 

therefore necessary to examine the hydrodynamics of the heat pipe liquid 

flow as the condensate returns from the condenser to the evaporator. 

2.3 Liquid Re-circulation Hydrodynamics 

There are two separate regions of hydrodynamic consideration in 

the operation of the high capacity heat pipe. The first of these is the 

liquid return flow within the arteries and for this case, it was assumed 

that the viscous pressure drops locally can be determined from friction 

factor results for flow in a pipe where the mass flow rate is the local 

arterial one. This analysis, then, and the requirement that the pressure 

at any given longitudinal position be unique, provides an input to the 

second hydrodynamic region, the liquid flow within the circumferential 

grooves. While correlations already exist for the first region above, 

the second region had not been previously examined and required analysis. 

Under the assumption that the groove flow is quasi-fully- 

developed at any circumferential station, an analysis was performed to 

determine the friction factor for laminar flow in a V-groove. With the 

origin of a circular cylinder coordinate system located as indicated in 

figure 2-4 the normalized equation and boundary conditions are 

-  14  - 



w o 
2 ro DP 

w — o pr DIP and 

(2-6) 

D 2w* 1 D
* 1 D 2w* w 

 

r
* Dr * r*2 ae

2 = 1  

and 

1) w • (0,6) = 0 

* * 
2) w (r ,0 o ) 0 

1 Dw 3) 7à--1 0  
6=0 

aw 
4) U---] an * * 

r =rs (6) 

where in the above 

r = r/ro 

(2-4) 

(2-5) 

In their normalized form, the above equation and boundary 

conditions are identical to the system solved by Ayyaswamy, Catton, and 

Edwards [18] for a slightly different problem. Nevertheless, their solu- 

tion is directly applicable here. 

By defining a groove friction factor, f, by the relation 

• 1 DP f 
h 2

p7)2) 
3 11) D 

(2-7) 

wdth Dh the 
hydraulic diameter, r the groove mean radius from the pipe 

centerline, the angular coordinate around the pipe, and(7) the average 

section velocity. By further defining a friction factor coefficient, K, 

by the equation 
f  K 

= Re 
(2-8) 
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(2-9) 

(2-10) 

- Dh w Re = 

the friction factor was found to be 

*2 2D
h  K = 

-* 
After completing the analysis to determine w , the results were corre- 

lated by the correlation equation 

1(=46.222-14.9050+26.699 tan (1.014 O )a 

+ 4.592 /717 (1.8 B) sin (7112nc.4. 0_ ) o   

with an error of + 27 for all reported values. 

After having determined the friction factor for quasi-fully-

developed, laminar flow, the results were applied in a one-dimensional 

analysis along the groove in which the pressure forces due to surface 

tension are balanced by the viscous, groove wall shear stresses. The 

flow situation is depicted in figures 2-5(a) and (b). The differential 

equation governing the contact angle and liquid level recessicn waz 

rived to be 

a cos(a+0 ) dr a sin(a+0 o ) da - Ku Tn  o o (2-12) 2 sine ds ro sin 0o ds *3 4 ro o pDh ro 

Equation (2-12) indicates, in its present form, that both a 

liquid level recession and a contact angle recession may occur simultane-

ously. In practice, however, there will be two distinct regions of flow 

in a V-groove: the first consisting of contact angle recession to a mini-

mum 'break-away° angle and the second consisting of liquid level recession. 

The basis for arriving at this conclusion is illustrated in figure 2-6. 

with 

(2-11) 
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Ideally the contact angle exhibited by a solid/liquid/vapor 

interface will take on a unique value, and when operating under design 

conditions, the liquid level at the groove inlet will be Ro , the maximum 

value. However, as shown in the figure, due to the practical impossibility 

of obtaining perfectly sharp groove tips, a rounded edge will occur in 

actuality. (Note that since the radius of the rounded edge is small rela-

tive to the dimension of R
o

, any location on the rounded surface can be 

characterized by R0). 

It becomes apparent, then, that for a fixed actual solid/liquid/ 

vapor contact angle or 'break-away' angle,aba  an infinite number of ' 

apparent contact angles can be imagined without appreciable change in Ro . 

Upon recession to the location where the round meets the flat groove side, 

the apparent and actual contact angles take on the same value, aba• A  

further pressure drop must then be exhibited by a recession in liquid level 

with fixed contact angle. 

The single differential equation in two unknowns, equation (2-12), 

can then be reduced to two differential equations, each valid over a single 

flow region. These are 

a sin (a-i-e n ) 
d
a 

-Kp m  
R
o 

sine o ds 
pD

h
*3 Ro

4 

for (71/2 -
o
) > a >

be 
and 

(2-13) 

a cos (a+00) dro Ku  

2 ds *3 4 (2-14) 
pp

h r ro sineo 

for a .., aba 
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It was found that under moderate thermal loading, the contact 

angle recession is not severe. In consideration of an evaporator groove, 

whose contact angle at groove entrance is  ci, the variation of the apparent 

contact angle is given by 

where 

a -D4 + ta D4\2 
2D
1 , * s*2 

D3 o D3' 3 
2 ' 

s,,  
D E (-2 V • (CI) • (•-•

R
ea) 1 a h o 

(2-15) 

(2-1.6) 

and D3 and D4 are obtained from Table 2-1. 

For the condenser grooves the contact angle variation is given by 

-D 
a  . 4+-1.12 

D1 (s* 1)2 D1 
ta D3 o D3' D

3 
D
3 

(2-17) 

where D D3' and D4 
are obtained as previously indicated. 

Although only angle recession has been considered here, the 

case of level recession is fully considered in the previous report [16] 

and will not be presented here. Let it suffice, for the purpose intended 

here, to say that, for grooves of V-shaped cross-section, the variation 

of the contact angle throughout the pipe may be determined. It remains, 

therefore, in the thermal analysis to determinettle influence that the 

groove geometric details have on the thermal behavior at the pipe inner 

surface, and thus on heq . 

2.4 The Equivalent Heat Transfer Coefficient 

Determination of the equivalent heat transfer coefficient is 

the final link in the thermal analysis of the heat pipe. Having deter-

mined the variation of the liquid cross-section throughout the pipe, if 

the variation of heq on 
this geometry is known, then the final boundary 

condition for the thermal analysis can be applied. 
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In the previous report [16], an analysis was presented, for 

the case of grooves of V-shaped cross-section, which determined the 

equivalent heat transfer coefficient. This analysis was performed on 

the assumption that the metal fin, due to its large thermal conductivity 

relative to the liquid conductivity, was nearly isothermal. The temper-

ature field determined in this work, when applied to the V-groove situa-

tion, indicates that this condition of isothermality of the metal fin is 

not true, in particular near the meniscus contact with the metal groove 

side. 

The remaining chapters of this report are concerned with a more 

detailed investigation of the equivalent heat transfer coefficient. In 

particular, the complete, composite metal/fluid thermal, interaction at 

their common interface is fully considered. In addition, the investi-

gations are extended to grooves of general trapezoidal cross-section, re-

ducing in one limit to the V-shaped grooves and in the other limit to the 

rectangular channel grooves. A detailed problem description is presented 

in the following chapter of this report. 



Table 2-1 

Correlation Parameters D3 and D4 

o D 3 D4 Max. Expected Errer 

(degrees) (degrees) (per ccnt)  

5 0 - 45 .01109 .00091 2.1 
45 - 80 .00689 .00441 3.3 

10 0 - 60 .01903 .00245 4.9 
60 - 80 .01342 .00782 0.6 

20 0 - 15 .02485 .00463 2.0 
15 - 45 .03218 .00258 2.3 

45 - 70 .03397 .00145 0.3 

30 0 - 15 .02738 .00485 2.6 

15 - 35 .03871 .00179 2.2 

35 - 60 .04982 -.00500 l.0 

40 0 - 10 .0246 .00388 2.2 

10 - 25 .03556 .00184 2.4 

25 - 50 .05462 -.00693 3.7 

50 0 - 10 .02064 .00246 3.3 
10 - 20 .03083 .00067 1.9 
20 - 40 .04982 -.00642 4.8 

60 0 - 10 .01513 .00120 5.5 

10 - 20 .02607 -.00074 3.3 

20 - 30 .04000 -.00558 1.6 
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Chapter 3 

The Groove Heat Transfer Problem 

3.1 Introduction 

The mechanism of thermal energy transport across a grooved 

surface, whose grooves are supplied with a volatile liquid by means of 

surface tension forces, is an important consideration in the design . 

and analysis of moderate and high capacity heat pipes. This importance 

arises since the groove surface will in general form part of a direct 
.• 

link between the vapor core of the heat pipe and the heat source or 

heat sink, depending upon whether it is an evaporator or condenser 

section of the heat pipe. 

Since this thermal link is a direct one, inaccuracies in the 

estimation of its heat transfer characterisitics are directly reflected 

as uncertainties in the evaluation of the overall heat pipe temperature 

drop for a given total heat flow rate through the pipe. Prediction 

of the heat transfer characteristics for a heat pipe design being a 

principal goal of heat pipe analysis, it is imperative that the phenomena 

involved in heat transfer from these grooved surfaces be fully urider-

stood and the dependencies of the heat transfer explored. 

In the steady-state operation of a heat pipe, the return 

flow of the condensate from the condenser region to the evaporator 

region will establish a pressure distribution in the liquid phase 

throughout the pipe. Since the condensate return flow is governed 

by surface tension forces, particularly in the case of a zero gravitational 



environment, the pressure distribution within the liquid throughout 

the pipe will be manifested as a variation in the liquid free surface 

radius of curvature. Further, since changes in heat flow geometry 

will undoubtedly influence the heat transfer characteristics of any 

system, it becomes clear that the heat transfer characteristics of a 

heat pipe may be expected to vary, in general, both longitudinally and 

circumferentially throughout the pipe. 

The hydrodynamic considerations leading to this variation in 

the liquid phase cross-section throughout the pipe have been considered 

elsewhere [16] and will not be repeated here. The present work is 

directed at examinining the dependence of the equivalent heat transfer 

coefficient, heq , on the liquid phase cross-section and on the groove . 

geometry. 

3.2 General Considerations 

The cross-section of a portion of a grooved heat pipe wall 

is shown in figure 3-1. The vapor within the vapor core is at a 

temperature  T
V  and over the external surface a uniform heat flux 

distribution is applied. For the case shown in the figure heat is 

flowing from an external supply through the pipe wall and fin/liquid 

matrix to the vapor core for transport along the pipe. Arguments 

similar to those which follow also apply to the condenser section 

with the exception that the additional heat transfer mode of condensation 
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on the exposed land area must be considered. The condensation problem, 

however, Is extremely complex and is beyound the scope of this examin- 

ation. Consequently the contribution to the heat transfer due to 

condensation on the exposed land area of the condenser regions will 

not be considered in this work. 

Returning to the problem as illustrated in figure 3-1, in 

the thermal analysis of grooved heat pipe walls consideration must be 

given to heat conduction within the pipe wall, heat conduction as well 

possible convective heat transfer in the liquid contained within the 

grooves, and the mechanism for heat transfer at the liquid/vapor inter-

face. These considerations follow. 

3.2.1 Vapor/Liquid Interface 

The behavior of the vapor/liquid interface in heat pipe . 

operation is importmitwhan examining the heat transfer through grooved 

heat pipe walls since the mechanisms occurring at this interface 

are directly responsible for the phase change that is fundamental to 

heat pipe operation. Examination of the interfacial phenomenon, 

however, is not direct since the process of continued net evaporation 

or condensation is a non-equilibrium one and the conventional heat 

and mass transfer equations as well as the constitutive relations no 

longer apply. 

The phase change problem has been previously examined by 

several authors [19, 20, 21]- Bornhorst [22, 23] used the theory 

of irreversible thermodynamics and the Onsager reciprocal law to 
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establish the appropriate governing equations for the phase change 

problem. These same results can also be obtained from kinetic theory 

as shown by Kucherov and Rikenglaz [ 24 ], and Labunstov [ 25 1. A 

result of these analyses relates the surface vapor temperature to the 

liquid temperature at the surface. The relation is given by 

-  Tvi = Tfi [1 

2(124) s  
Y--  

(3-1) 

where Tvi is the vapor temperature at 
the interface, Ps is the saturation 

pressure, Tfi , the interface liquid temperature, y is the ratio of speci-

fic heats, M is the steady-state evaporative mass flux, and E  is a coupling 

coefficient which lies in the interval 0 < yE  $ 1. Clearly the difference 

between the vapor and liquid temperatures at the interface will be a maxi-

mum for the case of yE  1. Feldman and Berger [26 ] evaluated equation -

(3-1) for the case where water is the working fluid, assuming a value of 

unity for yE •  They assumed a 
steady-state evaporative mass flux of 

lkw/in2 . The results of their evaluation are presented in figure 3-2. 

It is seen that the temperature difference between the liquid and the 

vapor phases at the interface is negligible for operating conditions of 

practical concern. Similar results are obtained for the other fluids 

commonly used in moderate temperature heat pipe applications. As a 

consequence of the above, it will be assumed that the boundary condition 

at the liquid/vapor interface is 

(3-2) 



100  200  300 400  

Tf (° F)  
500 600  

Figure 3-2 

00.1% 

o 

••01-M• 

1:17 

-  28  - 



111 3.2.2 Convective Energy Transport 

There are two basic mechanisms within a single groove of a grooved 

heat pipe wall by which thermal energy transport by convection may occur. 

The first of these is the convection of thermal energy along the 

groove as a result of the velocity field which supplies liquid to the 

evaporation sites along the length of the groove. This will be recognized 

as a conventional convective energy transport mechanism. The second mechan-

ism for convection within the groove is a direct result of the phase change 

process itself. If, for example, evaporation is occurring at the free 

surface, then this surface appears to the groove as a sink for fluid mass. 

Consequently, for steady-state operation, liquid must continuously be supplied 

to the sink location. This necessarily establishes flows within the plane 

of the groove cross-section which terminate at the free surface. If these 

flows originate with a significantly different specific internal energy 

than that at the vapor temperature and if their velocities are sufficiently 

large, then a substantial contribution to the heat transfer may result from 

this convective motion. 

The following two sections provide an assessment of the 

importance of these two effects. 

i) Convection along the groove length 

Along the length of a single groove, the temperature vari-

ation within the working fluid will be very small. This is the direct 

consequence of the saturation condition existing at the liquid/vapor 



interface, with small variations occurring due to changes in the meniscus 

radius of curvature and the corresponding effect of pressure on temper- li 
ature for the working fluid. In any case the energy convected along a 
groove will be small when compared to the evaporation or condensation li 
exchanges occurring at the free surface. This allows a decoupling of 

II the equations of motion from the energy equation. 

In support of the neglect of convective energy transport, we 
li 

consider the energy equation, disregarding expansion work and viscous 

dissipation, given in cartesian coordinates: li 

a 
ii 3 2T 3 2 12  . 3 212 * DT . * 312 . * + -r — mo Pe [1.1 — -r 31 — -r W -aLr-- ] (3-3) Il ax*2 y* 2 Dz*2 Dx*  3y

*  
3z

*  
a  

where normalization of the velocity is made with respect to the groove li 
entrance mean longitudinal velocity and that of the length scale is 

li made with respect to the cross-sectional hydraulic diameter. The 
f 

Peclet number Is then defined by 
II - w dh kf Pe :-E Re Pr •,1 (--v---) (-----) (3-4) 
li  la c p 

with Re, the Reynold's number, Pr, the Prandtl number, and dh , the 

li hydraulic diameter. Under the quasi-fully-developed flow assumption, 
* * 

we can set the normalized velocities u ao v e  0, where z is the 
II 

coordinate along the groove length. Further, utilizing the isotherm- 

ality of the free surface in the flow direction permits the specifi- li 
D 2T aT cation of — ..r — : O. Using these results, the governing equation 

az*  az*2 li 

li , 
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(3-3) becomes 

82T 82T 0  
ax*2 ay*2 

the heat conduction equation within the groove cross-section'. 

(3-5) 

ii) Convection within the groove cross-section 

Determination of the convective energy transport within the 

groove cross-section resulting from the replenishment of evaporated 

fluid is performed using the results presented later in this report 

which are based upon a pure conductive model. The liquid is assumed 

to be flowing from the groove root to the free surface with an average 

velocity equal to that required to supply the appropriate evaporative 

mass flow. Using typical temperature data from the conductive results, 

the cross-sectional convective energy transport contributes an esti-

mated 0.38 per cent of the conductive transport. 

It is therefore concluded that conduction heat transfer is 

the dominant heat transfer mechanism within the liquid. 

3.2.3 Typical Cell for Analysis 

In the geometry of figure 3-1, we are considering as a thermni 

boundary condition the application of a uniform heat flux distribution 

on the external surce of the pipe wall. In genar.0 the thermal intzr- 

action of the portion of the pipe wall shown in the figure with the 

total heat pipe environment may result in a net conduction of heat along 

the wall within the metal. Through the use of a grooved surface, however, 

this effect is minimized since the lateral conductance will be large com-

pared to that along the wall. Further, a net conduction along the wall 



will in general result from the variation of the equivalent heat transfer 

coefficient in this direction providing preferential conductive paths 

to the evaporation sites. Due to the close proximity of adjacent grooves 

in typical heat pipes, however, the local liquid cross-sectional vari-

ation from groove to groove will indeed be small. It is therefore assumed 

that for - purposes of evaluating the equivalent heat transfer coefficient, 

there is no thermal interaction between adjacent grooves. Referring to 

the geometry of figure 3-1, then, this implies that the sections  A-A and 

C-C will be adiabatic surfaces. Thus the . typical cell bounded by sections 

A-A and C-C in the one direction and by the pipe external surface and the 

vapor/liquid interface in the other can be extracted from the overall 

geometry for analysis purposes. 

A closer examination of this typical cell reveals that a further 

reduction of the analysis geometry is possible. Due to the geometric 

symmetry of the groove and liquid about the grdove centreline, there is 

no cause for preferential heat flow on either side of this centerline. 

Consequently, not only are the bounding surfaces A-A and C-C adiabatic 

planes, but in addition the groove centerline, surface B-B, will represent 

a zero net heat flux surface. The net result is that the typical cell 

for consideration in the thermal analysis is the one shown in fire 3-3. 

3.3 Problem Description 

Using the analysis geometry of figure 3-3, a cartesian coordinate 

system is set up with the origin located at the intersection of the groove 

centerline and the pipe wall external surface. The pipe wall external 

surface is defined by the line y 0 and the groove centerline by the line 

x O. The coordinate system Is presented in the figure. 
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The geometry presented is representative of a general trapezoidal 

groove. The exposed land area of the groove section is denoted by e l  

while the flat groove root half-width is denoted by e 2. 
The groove included 

half-angle is 00  and the liquid free surface meets the groove wall with an 

apparent contact angle of a. The groove depth available for fill by the 

working fluid is d with the total thickness of the wall, extending from the 

pipe external surface to the innermost portion of the groove sidewall, 

denoted by H. 

The general trapezoidal shape of figure 3-3 readily degenerates 

to the two limiting cases'commonly employed in heat pipe designs. For 

the case where 1 
= e 2 

= 0, the resulting geometry becomes the sharp 

V-groove situation commonly employed in high capacity arterial pipes 

as a mechanism for circumferential wetting of the pipe inner wall. 

In the other extreme, when e l  = e 2  = 0.5, the rectangular 

channel-like shape results which is a common configuration for moderate 

capacity pipes where the grooves serve both as an evaporative agent 

and as a longitudinal liquid transport mechanism. 

Steady-state heat transfer is considered in this work with 

the liquid and metal components of the composite problem having 

thermal conductivities kf 
and km 

respectively. Heat is supplied to 

or removed from the outer surface of the pipe, y=0, at a uniform rate 

q with the lateral normal gradients of temperature at x = 0 and x = w 

being zero. The heat flow is transferred to/from the vapor core 

through the. liquid free surface where the temperature is uniform at 

T.  Over the land area exposed to the vapor, it is assumed that an 

insignificant amount of energy is being transferred in comparison with 

that transferred at the liquid free surface, so that over this region 
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(3-8) 

(3-9) 

a zero normal temperature gradient condition is applied. This results 

from the very low vapor thermal conductivity and of course does not 

consider the contribution to the heat transfer due to condensation 

on the land area in the condenser regions. At the liquid/metal inter- 

face both the temperature and the normal surface heat flux must be 

continuous in passing from the metal region to the liquid region. 

3.4 Mathematical Statement of the Problem 

Denoting the temperature distribution within the fluid and 

metal by Tf and 
Tm respectively, 

and considering steady-state heat 

transfer, the governing differential equations are Laplace's equation 

for both regions respectively. In terms of the cartesian coordinates 

of figure 3-3 these are written as 

a 2Tf D 2T f 
2 ' 2 = 

(3-6) 
Dx Dy 

and 

a2T a2T 
m m 

2 " ax Dy 

The boundary conditions which the solution to equations 

(3-6) and (3-7) must satisfy are 
aTm  

1. y..0, Oe.xew, = 

BT
m , 

aTf 
2. y=H-d, Dexec 2 , km n.f a y  

(3-7) 

d(x-c 2 ) 
3. y=(H-d) +  ' e icx  w-tl-c 2 

aT DT 
m f k -k  --- m an f an (3-10) 
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where n is a vector normal to the liquid/metal interface: 

3T
m 4. y=H, w-c1.1xey, = 0 (3-11) 

aTm 5. x=0, 0.1y$H-d, 3x —= 0 (3-12) 

- 6. x=0, H-cLey$Yi(0), 
aTf (313) v 

where y(x) is used to denote the description of the liquid free 

surface. 

7. y=yi (x), 0$xew-e 19Tf (x,yi (x)) = Tv (3-r14) 

aT 
m = n (3-15) g o  x=w, (15.Y.en, ax  

To provide greater utility to the results of this heat transfer 

problem, the equations and boundary conditions above can be non-

dimensionalized by introducing suitable non-dimensional parameters. 

This also has the effect of reducing by one the number of nonhomo-

geneous boundary conditions in equations (3-8)-(3-15). 

Defining a temperature excess bythe definitions 

T * = T
f 
-T 

v 

and (3-16) 

T* = T T 
m 

 
DI y 

and normalizing the spatial coordinates by the groove half-width, 

w, the governing equations become 

3 2Tf* 3
2
Tf* . 0 

ax*2 ay*
2 (3-17) 
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and 

a 2T * a 2T * 
 + = 0 ,2 2 ay* 

(3-18) 

0 
aTm* 

8. x* 1,  CEyle H*, (3-27) 

where 

x* a x/w, y* E y/w (3-19)• 

The boundary condition statements for use with equations 

(3-17) and (3-18) are 

aT * m -qw  1. y* = 0 , 0  x* e 1, -à77;---C km  

DT * DTf* 2. y* = H*-d*, lex*I5E 2*, km = kf ay* 

d*(x*-E 2*) 3. y* = (H*-d*) + 1-E
1
* E

2
* '  

aTm* aTf* k -kf  ---- m an* an* 

(3-20) 

(3-21) 

(3-22) 

aTm* (3-23) 4. y* - H*, 1-c i*ex*el, = 0 

aTm* 5. x* = 0, Oey*eH*-d*, = 0 (3-24) 

DTf* 6 x* = 0,  H*-dece y*eyi* (0) e 0 (3-25) 

7. y* = yi*(x), 05.x*.51-E 1*, Tf*(x*,yi*(x)) = 0 (3-26) 

The equations (3-17) and (3-18) together with the boundary 

conditions (3-19) -(3-27) completely define the mathematical problem 
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and 

a 2x + X 2X = 0 
a x* 2 

a 2Y 

(3-30) 

(3-31) 

whose solution is required. 

3.5 Analytic Solution 

If an analytic solution to the problem specified above is 

pursued, we can follow the classical method of separation of variables 

[ ]. According to the method, we assume a solution of the form 

T* = X(x*) • Y(y*) (3-28) 

for both the. liquid and metal temperature distributions. Using 

equation (3-28) in either of equations (3-17) or (3-18) leads to 

an equation of the form 

1 a 2X 1 a 2Y — +— Ti2 Y 2 = ax*  ay*  
(3-29) 

again for both the liquid and the metal temperature distributions. 

Separating the x* and y* dependence in such an equation then leads 

to the separated equations 

where the separation constant was taken as X 2 . 

The solutions to equations (3-20) and (3-31) are respectively 



X = nit,  n = 1,2,3,... 
ni 

(3-38) 

X(x*) = Cisin(Xx*) + C2cos(Xx*) (3-32) 

Y(y*) = Ceinh(Xy*) + C 4cosh(Xy*) (3-33) 

The general solution can then be written as 

T * = [Clf
sin(X

f
x*) + C2fcos(X x*)][C3t

sinh(X y*) 

+C4fcosh(X fy*)] 
(3-34) 

and 

T
m
* = [C

lm
sin(Xlmx*) + C2mcos(Xmx*)] )C3msinh(Xmy*) 

+ C 4mcosh(Xmy*)] (3-35) 

Applying boundary conditions (3-24) and (3-25) simplifies 

the solution by the requirement that Cif= Chi  = O.  The  temperature 

distributions then become 

Tf* = E cos (Xix*) [C3fsinh(X fy*) + C4fcosh(X fY*)] 
n=1 

(3-36) 

and 
• 

T * = E cos (A x*)  [C  3m m 4m lm  sinh(Xy*) + Ccosh(Xy*)] (3-37) 
m n=1 m  

where further using the condition (3-27) the Xm 's can be deterrilined 

to be 

while the values for the Xf remain unresolved. 

Unfortunately, the development of the solution for either 

temperature field beyond that presented in equations (3-36) and (3-37) 

becomes extremely complex as a result of the irregular geometry of 
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each solution domain and the inherent coupling of the two temperature fields 

through the condition of equation (3-21) and (3-22). Indeed, it is not 

clear whether an exact anàlytical solution to the complete composite 

problem can be achieved using present mathematical methods. On the 

basis of the difficulties involved in overcoming the mathematical 

barriers presented by the analytic solution, it was decided to  use  

a numerical method of solution to solve the system of equations and . 

boundary conditions of (3-17) - (3-27). 

3.6 Numerical Solution 

Having decided to forego further analytical efforts in favor 

of a mumerical method of solution  it remains to select an appropriate 

numerical method for this problem. The two most common numerical 

methods in current usage are the finite difference and the finite . 

element method. Both methods involve discretizing the spatial domain 

into discrete regions of finite size, and as a consequence the scluticn 

is available in the form of values for the dependent variable at 

discrete locations throughout space rather than as a continuous 

analytic solution. In addition, both methods lead to a system of 

simultaneous algebraic equations which must be solved to yield the 

corresponding values at the discretized locations. 

The finite difference method has as its basis the same basic 
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principles as does the differential formulation leading to the differ-

ential equation.* That is, an energy balance is applied to each 

control volume of the discretized continuum [311. The first law of 

thermodynamics then provides a relation between the transfer of heat 

by conduction across the control volume surfaces, the rate of gener-

ation of internal energy within the control volume, and the rate of 

change of the control volume internal energy. Since the control 

volume dimensions are not of infinitesimal size, however, the concept 

of a derivative is no longer of direct use for application of Fourier's 

law of heat conduction since the surface area segments are finite 

and the gradient will in general vary over the surface. The approximation 

is usually introduced that for purposes of evaluating the heat con-

duction terms, a first central different quotient can be used to 

describe the local gradient. It is usually further assumed that this 

gradient is uniform over each of the control volume surfaces. 

Because of the control volume formulation forming the basis 

of the method, the grid network usually follows the contours of an 

orthogonal coordinate system. Although the finite difference coeffi-

cients have been derived for any orthogonal curvilinear coordinate 

system [31, 32], the complex geometric description of the analysis 

geometry of figure 3-3 does not lend itself readily to any of the 

available coordinate systems. On this basis, then, and particularly 

*Alternatively, some investigators prefer to use as a basis for the 
method, a Taylor series expansion approximation to the original 
differential equation. While there are subtle differences between 
the two approaches, either can be used. 
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in consideration that the finite element method is readily adopted 

to irregular geometries, the finite difference method wad discarded 

for use in this analysis in favor of the finite element method. 

The method of finite elements entails employing a variational 

principle to minimize a certain functional over the solution damain 

of interest [33]. Alternatively, where a variational principle does 

not exist, the method of weighted residuals applied to the governing 

differential equation can also be used [34]. In the former case the 

functional can be obtained by application of the calculus of variations 

to the governing differential equation. In this case the associated 

Euler equation resulting from the minimization of the appropriate 

functional is Identically the governing differential equation. The . 

steady-state conduction of heat has a governing variational principle. 

In the method of finite elements it is the governing functional 

equation, an integral equation, which is approximated in the discretized 

continuum rather than the governing differenftal equation as is the 

case in using finite differences. Through an appropriate choice of 

the local approximation to the temperature field, the required inte- 

gration over volume in the functional equation can readily accommodate both 

irregular solution domain geometries as well as irregular, non-orthogonal 

'finite elements'. It is the flexibility of the finite element method 

in its ability to readily describe irregular geometries that has led 

to its selection as the method for use in this analysis. The method 

and its application will be discussed in greater detail in Chapter 5 

of this work where the numerical solution is presented. 
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Chapter 4  

Bounds on the Groove Heat Transfer  

4.1 Introduction 

In this chapter, limits will be established which provide upper 

and lower bounds for the equivalent heat transfer coefficient associated with 

the typical cell presented in the previous chapter of this report. The bounds 

will be established using the theorems of Elrod [35]. . Although its intro- 

duction to the heat transfer community by Elrod is recent, the basis of his 

theorems is not new and has received considerable attention in other disciplines 

[36]. The theorems and their proofs are valid whenever the pertinent unknown 

quantity can be expressed in terms of a dependent variable which obeys the 

equation for a potential field. The two theorems as put forward by Elrod [35] 

pleented below. 

Theorem I Consider a solid body composed of material 

which may be both inhomogeneous and anisotropic, but 

whose properties are independent of temperature. Let 

the body be isolated from its surroundings except for 

exposure through space-variable  heat-trans  fer  coef-

ficients to two distinct ambient temperatures. If, 

within some region of this body, the heat conductivity 

is increased (decreased), then the total heat flow 

from one exposed surface to the other will either 

increase (decrease), or remain the same. 

Theorem 2  The actual heat flow taking place under 

the circumstances described in theorem I will be no 

greater than that calculated when the shapes of the 

isothermal surfaces within the body are arbitrarily 
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assumed, and no less than that calculated when the 

adiabatic surfaces within the body are assumed. 

Use will be made in this chapter primarily of the second of the above 

theorems in order to establish  limita on the groove heat transfer character-

istics. The reasons for examining limits on the groove heat transfer are 

twofold and are presented in the following paragraphs. 

Firstly, in establishing a system's upper and lower heat transfer 

limits, it is possible in certain cases that the limiting values obtained by 

such an analysis may be sufficiently close that acceptable accuracy is 

obtained for the required application. That is, by employing the arithmetic 

average value of the two extreme values, the error or uncertainty band of 

the obtained value may be sufficiently small to suffice for use in engineering 

calculations. This possibility was suggested in the paper by Elrod [35] and 

was demonstrated in the application considered by Yovanovich, Schneider, and 

Strong [37] in their examination of the effective thermal conductivity of a 

composite having square fibers embedded as a square array within a second 

matrix material. If this objective cannot be achieved for the system under 

consideration, however, the second motivation for examining the limiting 

behavior becomes important. 

The second motivation for examining limiting values for the groove 

heat transfer is to provide a check, although it may be crude,on the results 

of a numerical solution to the problem at hand. Since the application of 

either of the two theorems leads to maximum and minimum values for the heat 

transfer associated with a given system, any numerical results must as a 

consequence lie in the range bounded by the two limits. Numerical results 

outside this range can then be immediately discarded and a study initiated to 

determine the causes for the unreliable numerical results. Unfortunately, 

however, if the numerical results lie within the range of values allowed by 
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the limit study, and if the objective of the first reason stated for 

examining the limits.is not achieved, the limit Btudy will be of little 

further value. Its use as a check on the numerical results will still 

warrant its consideration in this report. 

4.2 Maximum Groove Heat Transfer 

As was stated in Theorem 2 above, the heat transfer through the 

typical cell cannot be greater than that for the case where the shapes of 

the isotherms are arbitrarily assumed. The result of such an assumption 

is to yield an upper limit for the groove heat transfer. 

To facilitate the computation of this upper limit the typical cell 

was subdivided into three distinct sub-regions, each of which is bounded 

on both sides by a thin layer of infinitely conducting material; i.e. the 

bounding surfaces of the sub-regions are assumed isothermal. The sub-

division scheme, designed partly for ease of later computation, is illus-

trated in figure 4-1. The shaded region seen in the figure is constructed 

by replacing that portion of the original cell with a material of infinite 

thermal conductivity. As a result, this portion does not contribute to 

the thermal resistance of the cell and need not be considered. This is 

consistent with Theorem 1 in establishing an upper bound for the heat 

transfer. Consideration of each of the three regions follows. 

4.2.1 Sub-Region I 

An expanded and detailed view of sub-region I is shown in figure 4-2 

where the pertinent geometric parameters are also presented. A circular 

cylinder coordinate system is set up in the figure with its origin at the 

free surface center of curvature with the angular coordinate, y, measured 

counterclockwise from a line extending from the origin, along the groove 
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Figure 4-2 
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centerline, through the composite. 

In accordance with Theorem 2 of Elrod, the shapes of the isotherms 

will be assumed for sub-region I.  For  convenience they are assumed here to 

be circumferential lines about the origin and extending through the cross-

section of this sub-region. The quantities y f  and ym  are the subtended 

angles within the liquid and metal parts of the cell respectively. The 

situation shown is seen to represent radial flow through the composite 

section with for each differential thickness, a parallel system of the 

liquid path with the metal path. 

Considering a typical strip of differential thickness, dp, the 

associated resistance, dRI , is given by 

1  
dRI nn

fy f km P 
(4-l) 

where y f  and ym  are the angles subtended by the liquid and metal regions 

respectively. For aid in the evaluation of yf and ym
, figure 4-3 is 

constructed. Applying the sine law [38] to the triangle having vertices 

A,B, and C, we find 

K tan 0o  
sin(Yee) sin(i 

- 60 ) 

(4-2) 

Using (4-2), y f  can be evaluated as a function of its radial position, p, 

and is given by 

[ K sine()  
Y f 3« sin 0 

from which ym  is determined to be 

K - r
o  

m 

cos
o  I 

Y f 
y .1 cos 

A 

(4-3) 

(4-4) 

The resistance for sub-region I is then found by integration of (4-l) over 
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this region,. 

R
I 

d• 

where  p1  

r 2 

[ 

1 

1  12  
k
f
y
f 
+ ky

m 
p d (4-5) 

p
2 
= w (K - r

o 
cos 0

o
) d (4-6) 

d 
d 
I 

(4-7) 

y
f 

K sin O
o] 

= sin  -1  r 0 
L p o • 

by il 
(4-9) 

and from Appendix A, 

and 

ro sin o 
cos(a+0

o
) 

ro cos a 

cos(a+0
o
) 

ro (w - s 1)/tan 0o 

Integration of (4-5) will be reserved until the three regions are assembled 

to reform the overall geometry. 

4.2.2 Sub-Region II 

A detailed view of sub-region II is illustrated in figure 4-4. The 

coordinate system here is the same as that used for sub-region  I and the 

resistance for a differential strip, dp, is given as before by 

dR = [
ky +ky 

1 1 de_ 

f f mm  
(4-8) 

where now the contained angles for the liquid and metal portions are given 

-1 ,w, and Ym  ' sin 1ff 

The total resistance for sub-region II is again given by integration as 
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c 2 
P
3 

n K taneo 
(4-11) 

R (H-d) 
n - III k w 

in 
(4-12) 

(4-10) 

where p 2 
is that determined for the consideration of sub-region I and p

3 

is given by 

Again, integration is reserved for the assembly of the sub-regions. 

4.2.3 Sub-Region III 

With the cross-hatched region of figure 4-1 constructed of a material 

having infinite thermal conductivity, its thermal resistance will be zero. 

The final region then, sub-region III, is simply a slab of thickness (H-d) 

and having width w. Consequently, the thermal resistance of sub-region III 

is simply 

4.2.4 Overall Heat Transfer 

The three sub-regions examined in the preceding section form a 

series thermal circuit for heat transfer between the exterior pipe wall 

and the vapor core of the heat pipe. As a result the total resistance 

for this maximum heat transfer case is given by the sum of the individual 

resistances 

RT = RI RII RIII (4-13) 

The heat transfer through the typical cell can be given by 

7f(y = H-d) - Tv  

(RT -RITT)  
= h

eq w[1(y = H-d) - Ty ] (4-14) 
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where i (y = H-d) is the average temperature of the groove root surface. 

Using equation (4-14) it follows that 

1  
h .= 
eq (RT RIII)w 

(4-15) 

Further, for a lateral pitch of N grooves per unit length, the dimensionless 

group can be formed 

kf !l  k eg  f 
Nu — f km Nkf km 

Using equation (4-15) in (4-16) leads to the result 

kf 2  
Nuf =  

M s 
(ST  - n lk 

(4-16) 

(4-17) 

This equation together with (4-13) and the component resistance definitions 

(4-5), (4-10), and (4-12) will be used to determine the maximum value for 

the groove Nusselt number. 

The component integrations appearing in equations (4-5) and (4-10) 

are not readily integrable to obtain the required results. As a result, 

numerical integration was performed using a modified Simpson's rule 

algorithm. The program listing is presented in detail in Appendix B with 

only the results presented here. The results are presented in Table 4-1 

for the material combinations and geometries considered here. 

4.3 Minimum Groove Heat Transfer 

Returning to Theorem 2, the heat transfer through the typical cell 

cannot be less than that for which the shape of the adiabatic surfaces are 

arbitrarily assumed. By assuming the shape of the adiabats, then, a 

lower limit for the groove heat transfer can be established. 

To facilitate the computation of this lower limit, the typical cell 
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xa 

0.25 kf/kM e 1 Je e 2 

d 

0.01156 0.01 
0.25 
0.49 

0.01 
0.25 
0.49 

0.001 

Table 4-1 

Groove Nuaselt Number Upper Limit 

Nuf .kf/kM 

1.0 0.1 0.01 2.0638 1.5260 1.5166 0.7996 
0.25 2.1379 1.5584 1.2295 1.0356 
0.49 1.8631 1.2767 1.0068 1.0987 

1.7178 1.1148 .7754 .5058 
1.7100 1.1003 .8582 .9244 
1.4080 0.8371 .6502 1.0088 

.001 0.01 1.5574 0.9053 0.6208 0.4352 
0.25 1.5012 0.8400 0.6468 0.9096 
0.49 1.2067 0.6137 0.4670 0.9964 

1.5 0.1 0.01 1.2684 0.9631 0.7412 0.5330 
0.25 1.2886 0.9975 0.8125 0.6904 
0.49 1.1190 0.8561 0.7124 0.7327 

0.01156 0.01 1.0727 0.7180 0.5044 0.3372 
il  0.25 1.0814 0.7513 0.6000 0.6164 

0.49 0.9151 0.6210 0.5040 0.6731 

0.001 0.01 0.9892 0.5993 0.4119 0.2901 II  
0.25 0.98104 0.6026 0.4730 0.6067 

Ill  
0.49 0.8230 0.4874 0.3853 0.6652 

.01156 0.01 
0.25 
0.49 

2.0 0.1 0.01 
0.25 
0.49 

0.8757 
0.8824 
0.7675 

A Al A 0/C7 A 40A1 n M101 h 1007 0.6841 
0.7165 
0.6304 

0.5391 
0.6014 
0.5458 

0.3997 

0 
0.5178
.5497 

0.7474 
0.7610 
0.6516 

0.6982 
0.7053 
0.6019 

0.5173 
0.5632 
0.4846 

0.4417 
0.4688 
0.3984 

0.3693 
0.4616 
0.4082 

0.3065 
0.3765 
0.3260 

0.2529 
0.4624 MI 0.5050 MI 
0.2176 III0.4552 

111 0.4993 

II  
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2 
Y1 K 

2 
xl (4-19) 

is subdivided into two separate sub-regions as illustrated in figure 4-5. 

- 4 -s 1'at will be located along the common boundary of the two sub-regions 

in accordance with the establishment of a lower limit for the heat transfer. 

Each of the two regions are examined in greater detail in the following two 

sub-sections of this report. 

4.3.1 Sub-Region I 

An expanded view of sub-region I is shown in Figure 4-6. The origin 

of a cartesian coordinate system is located at the intersection of the groove 

centerline and the extension of the groove sidewall. Within sub-region I, 

a strip of width dxi , emanating from the liquid free surface is examined. 

This strip is extended as shown in the figure, terminating at the lower 

fe with width dx
4' 

The subscripts used in the above refer to the 

location in figure 4-6 where evaluation is made.That is, in general dx4 

 dx1 but a 
relationship between the two can be derived. 

Considering first the section of this strip from points 1 to la, 

the liquid free surface can be described by the equation 

x2 2 
+ (y

1 
 -K)

2 = e 
1  

(4-18) 

from which the vertical coordinate of the free surface can be found. This 

is given by 

with K and e as previously defined. The location of point la is given by 

(4-20) 
'la £2  cot 0

o 

and so the component resistance can be determined from 

2 
K \42 - x

1 
- c

2 
cot 0 

dRl-la k
f 
dx

1 
(4-21) 
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dRla-2 = - k
m 
dx1 

(e2 - x2) c°t;  

E
1  X1  dR = 2-3 ro 

cos A
o dx1 

(4-26) 

y3 4

r cos 00 I x3 
(4-27) 

so that 
r ro  cos A 1 

dY3 w i dx3 ( 4-2 8 ) 

The location of point 2 can similarly be found from 

(4-22) y2  = x2  cot 00  

and the resistance component from la to 2 is given by 

(4-23) 

where the fact that dx2 = dx1 has been used. 

On examining the interval ftom point 2 to point 3, the thickness of 

this section can be written as 

dy2  = cot 00.dx2 (4-24) 

and the length is determined from 

x3 '2 

E X
2 

 r
o 

sin o 
(4-25) 

so that the resistance fou this section can be written as 

again noting that xl  = x2 , dx, = dx2 . 

For the final section, the vertical position of point 3 is given by 

By noting here that dy2  = cot Ao  dx2  and that dy3  = dy2 , dx3  is related to 

dx1 
 by 

dx3 = [ro sin Ao I dxl 

since dx = dx1. Since the length of this segment is given by 

(4-29) 

Y3 - Y4  = x2  cot e ta (4-30) 
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[x2 cot 0 o + dR3-4 =  km w dx 1 
(4-31) 

2 kdx m1 
K'1  (4-35) 

the component resistance is obtained as 

Finally, then, since the four components described above form a 

series thermal circuit through the typical cell, the total strip resistance 

is obtained as the sum of the four resistances 

dRI = dR + dR1a-2 + dR2-3 + dR3-4 
(4-32) 

. 1-la  

Using equations (4-21), (4-23), (4-26), and (4-31) in (1-32), the strip 

resistance can be written, after algebraic rearrangement, as 

2 
A
l 
+ Blxl + Cl  %/8

2 - x1  dRI = km dx1 
(4-33) 

where A
1  

_ K - E
2 

cot 8o roc sin e o =  
E
2 

cot
o 
+ kf /km 

B 
ro cos 8 o e 1 cot o 

1 w ro cos 8 o kf /km 
(4-34) 

and C1 E -km
/k

f 

Noting that each strip, by virtue of the assumed adiabat locations, forms 

a thermal link acting in parallel with all other such strips, the total 

conductance can be found for sub-region I by integration of the inverse 

of equation (4-33) over the range 0 < xl  <  c.  Thus the total conductance — 2 

for sub-region I becomes 

Al + B1x1 C1/62 - x
2 
1 

with Al' 
B1, and C1  as defined in 

equations (4-34) 
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k dx ml  

[A + B2 x1 4. C2'42  - x2 ] 1 

w- e  1 

e 2 

(4-38) 
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4.3.2 Sub-Region II 

The geometry pertinent to the examination of sub-region. II is 

illustrated in figure 4-7 and as can be seen from this figure, iis treat-

ment will be similar to that for sub-region I. Indeed, the major dis-

tinction between the two regions is that the special consideration given 

to point la of figure 4-6 need not be considered in the treatment of sub- 

region II. 

Without going through the details, since they are very similar to 

those for sub-region I, the resistance for the strip of width dx1  in the 

111 
fluid region is presented here without the accompanying dœlvation. This 

resistance is given by - II 
A
2 
 +B

2  x1 + C2  dRII = kix (4-36) 
m   

where 
Kkm roc sin Oo Ill 

A = --- + 2 - kf w  
ro cos 0 e 1 cote  

o 
111 

B
2 

: + o (4-37) 
w ro cos 0 o kf/km 

I 

C2 .. - km/kf . 

For this region, since again each strip forms a thermal link in Ill 

parallel with all other such strips, the total conductance is obtained by 
II 

integration of the reciprocal of equation (4-36) over the interval 

E 2  < x < w-e is yields the result that 2 - 1 le Th III 
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II 
il 

Req = 1/K (c + e 2 cot 8 )/k w o m 
which leads to the equivalent heat transfer coefficient lower limit 

(4-41) 

I. (4-44) 

With A
2' 

B2' and C2 defined by equations (4-37). 

4.3.3 Overall Heat Transfer 

The two sub-region conductances given by equations (4-35) and (4-38) 

themselves act thermally in parallel with - each other and as a result their 

conductances are additive to form the overall conductance. 

Thus 

E
2 w-el km  dx1 k m dx1  K = jr +. jr   (4111 

2, /2 2 o [A
1 
+ Blxl + Cl)15

Z-2 
 -  x i e2 [A

2 
+ B2 x1 + C2v8 - x 1 1 

11 
To determine heq the equivalent heat transfer coefficient, the 

conductance of the wall material lying between the groove root and the 

exterior wall surface must be discounted, and this is best done using 

111 resistances. Defining the resistance as the reciprocal of the conductance, 

as is usual, by iL  
R = 1/K (4-40) 

then the resistance associated with the equivalent heat transfer coefficient 111 
is given by 

11 

eq K km 
\Y-Y4/ 1 1  

(c + e 2 cot e ) h = + 

-1 

(4-42) 

Defining the Nusselt number as before, then, 
h 

Nu - f Nkf 
(4-43) 

the lower limit for the groove Nusselt number can be determined from» 
-1 

= u:  
kf  r km  E

2 
coteo  Nuf. 

+ c 
2w 
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The expression, equation (4-44), for the groove Nusselt number 

lower limit was programmed for evaluation on a digital computer. The 

integrals entailed in equation (4-39) and required for evaluation of (4-44) 

were numerically integrated using a modified Simpson's rule algorithm. The 

program listing appears in Appendix B of this report with only the results 

presented here. The results are presented in Tabular form in Table 4-2. 

4.4 Results and Conclusions 

As previously mentioned, the results for the heat transfer upper 

limit are presented in Table 4-1 and those for the lower limit in Table 4-2. 

To minimize the uncertainty of the actual conductance, the average value of 

the upper and lower values can be used. This limits the possible inaccuracy 

of using this value to one half of the difference between the upper and 

lower values determined earlier. This has been used with some success by 

Yovanovich, Schneider and Strong [37] in their evaluation of apparent com-

posite conductivities for square fibers in a matrix. Since there is no 

motivation for using an estimation procedure other than the arithmetic 

averaging described above, this procedure will be used here. 

The arithmetic average value of the productNu f • k..t /k 
was computed 

 m 

and the range of uncertainty about this mean value established for land 

area ratios (symmetric grooves) of 0.01, 0.10 and 0.25, half-groove angles 

of 20, 30, and 40 degrees, conductivity ratios, kf/km' of 0.1,0.01156, and 

0.001, and values of the normalized apparent contact angle, a/(w/2 - 0o
), of 

0.05, 0.25, 0.50, and 1.00. These results are presented in Table 4-3. 

It is observed that in general the range of uncertainty about the 

mean value is lowest for a conductivity ratio of 0.1, with this uncertainty 

increasing as the land area ratio increases and as the conductivity ratio 

decreases. While the uncertainty indicated represents the maximum possible 
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0.1136 
0.0567 

0.01156 

0.001 

1.5 0.1 

0.01156 

0.001 

2.0 

0.01156 

0.001 

1 

Table 4-2 

Groove Nusselt Number tower Limit 

Nuff/km 

3c
a 

d k
f
/lc e

1 
e
2 

0.05 0.25 0.50 1.00 

1.0 0.1 0.01 0.9498 0.7674 0.6382 0.4967 
0.25 0.6027 0.4749 0.3956 0.3150 
0.49 -0 - 0 -0 -0 

0.01 0.2858 0.1875 0.1409 1.1007 
0.25 0.1404 0.0951 0.0751 0.0578 
0.49 - 0 -0 -0 -0 

0.01 0.0596 0.0290 0.0200 0.0134 
0.25 0.0244 0.0131 0.0098 0.0073 
0.49 - 0 -0 - 0 -0 

0.01 0.5780 0.4787 0.4096 0.3330 
0.25 0.3480 0.2905 0.2537 0.2142 
0.49 - 0 -0 -0 -0 

0.0891 0.0676 
0.0474 0.0390 

-0 - 0 -0 

0.01 0.1664 
0.25 0.0778 
0.49 - 0 

il 
ii 
il 
1 1  
il 

II 
0.01 0.0331 0.0171 0.0124 0.0090 
0.25 0.0129 0.0077 0.0061 0.0049 
0.49 -0 -0 -0 -0 

0.01 0.402 0.3402 0.298 0.250 
0.25 0.2384 0.2059 0.1850 0.1619 
0.49 - 0 -0 - 0 -0 

0.01 0.114 0.079 0.064 0.051 
0.25 0.0517 0.0396 0.0343 0.0294 
0.49 - 0 -0 - 0 -0 

0.01 0.0213 0.0117 0.0089 0.0067 
0.25 0.0083 0.0053 0.0044 0.0037 
0.49 - 0 -0 -0 -0 

- 64 - 



error that may be incurred I since the limit studies provide the upper and 

lower bound for the heat transfer, there is no means available to decrease 

these bounds except to solve the thermal problem described in chapter 3. 

This is the subject of chapter 5. 

With the uncertainty ranging from +23 percent to +98 percent, the 

band within which the actual solution lies is  flot  sufficiently narrow to 

allow use of these results as estimations for the actual heat transfer 

characteristics. This is particularly true in consideration that the 

groove mean temperature drop depends inversely upon the equivalent heat 

transfer coefficient and hence inversely upon the groove Nusselt number. 

When numbers having an error band approaching +100 percent are inverted, 

the resulting band, in this case on the thermal resistance, is extremely 

large indeed. With the mean groove temperature drop directly dependent 

upon the groove resistance to heat transfer, it is concluded that the limit 

study will be of little utility for prediction purposes. Its purpose will 

then be to serve as a check on the validity of the numerical results pre- 

sented in the next chapter. 



Table 4-3 

Average Groove Nusselt Number 

Nuf
•le

f
/k
M 

d kf
/km 

1.0 0.1 

k • 
£2 xa 

N 
Uncertainty 

uf  f/km + % 

0.01 0.05 1.5068 37.0 
0.25 1.1467 33.1 
0.50 1.0774 40.8 
1.00 0.6482 23.4 

0.25 0.05 1.3703 56.0 
0.25 1.0167 53.3 
0.50 0.8126 51.3 
1.00 0.6753 53.4 

0.49 0.05 0.9315 100 
0.25 0.6384 100 
0.50 0.5034 100 
1.00 0.5494 100 

0.01156 0.05 1.0018 71.5 
0.25 0.6512 71.2 
0.50 0.4582 69.2 
1.00 0.3033 66.8 

1.0 0.01156 0.25 0.05 0.925Z 84.8 
• 0.25 0.5977 84.1 

0.50 0.4667 83.9 
1.00 0.4911 88.2 

0.49 0.05 0.704 100 
0.25 0.4186 100 
0.50 0.3251 100 
1.00 0.5044 100 

0.001 0.01 0.05 0.8085 92.6 
0.25 0.4672 93.8 
0.50 0.3204 93.8 
1.00 0.2243 94.0 

0.25 0.05 0.7628 96.8 
0.25 0.4265 97.0 
0.50 0.3283 97.0 
1.00 0.4585 98.4 

0.49 0.05 0.6034 100 
0.25 0.3069 100 
0.50 0.2335 100 
1.00 0.4982 100 

-  66 - 



1.5 0.1 0.01 0.05 019232 37.4 
0.25 0.7209 33.6 
0.50 0.5754 28.8 
1.00 0.433 23.1 

0.05 0.8183 57.5 
0.25 0.644 54.9 
0.50 0.533 52.4 
1.00 0.4523 52.6 

0.49 0.05 0.5595 100 
0.25 0.4281 100 
0.50 0.3562 100 
1.00 0.3664 100 

0.25 

0.01156 0.01 0.05 0.6196 73.1 
0.25 0.4158 72.7 
0.50 0.2967 70.0 
1.00 0.2024 66.6 

0.25 0.05 0.5796 86.6 
0.25 0.404 86.0 
0.50 0.3237 85.3 
1.00 0.3277 88.1 

1.5 0.01156 0.49 0.05 .4576 100 
0.25 .3105 100 
0.50 .2520 100 
1.00 .3366 100 

0.001 0.01 0.05 0.5112 93.5 
0.25 0.3082 94.5 
0.50 0.2122 94.2 
1.00 0.1496 94.0 

0.25 0.05 0.4970 97.4 
0.25 0.3052 97.5 
0.50 0.2396 97.5 
1.00 0.1496 94.0 

0.49 0.05 0.4115 100 
0.25 0.2437 100 
0.50 0.1927 100 
1.00 0.3326 100 

2.0 0.1 0.01 0.05 0.6389 37.1 
0.25 0.5122 33.6 
0.50 0.4186 28.8 
1.00 0.3249 23.0 



2.0 0.1 0.25 0.05 0.5604 57.5 
0.25 0.4612 55.4 
0.50 0,3932 53.0 
1.00 0.3399 52.4 

0.01156 

0.49 0.05 0.3838 100 
0.25 0.3152 100 
0.50 0.2729 100 
1.00 0.2749 100 

0.01 0.05 0.4294 74.1 
0.25 0.2982 73.5 
0.50 0.2167 70.5 
1.00 0.1520 66.4 

0.25 0.05 0.4064 87.3 
0.25 0.3014 86.9 
0.50 0.2480 86.2 
1.00 0.2459 88.0 

0.49 0.05 0.3258 100 
0.25 0.2423 100 
0.50 0.2041 100 
1.00 0.2525 100 

2.0 .001 0.01 0.05 0.3598 94.1 
0.25 0.2267 94.8 
0.50 0.1577 94.4 
1.00 0.1122 94.0 

0.05 0.3568 97.7 
0.25 0.2371 97.7 
0.50 0.1905 97.7 
1.00 0.2295 98.3 

0.49 0.05 0.3009 100 
0.25 0.1992 100 
0.50 0.1630 100 
1.00 0.2497 100 

0.25 



Chapter 5 

Finite Element AnalySis 

5.1 Introduction 

The reasons for selecting the finite element method for 

use in this analysis were briefly discussed in chapter three of 

this report. The prime motivation for preference of the finite 

element method over other numerical solution techniques is its flexi- . 

bility in analysing solution domains of irregular geometry. Recalling 

the problem geometry of figure 3-3, the solution method used for 

this problem will certainly require this flexibility. 

It is the purpose of this chapter to present briefly the 

underlying principles governing the application of finite element 

techniques to heat conduction analysis and to discuss its application 

to the trapezoidal groove heat transfer problem. Some of the diffi-

culties encountered in applying the method to this particular problem 

are indicated and the procedure by which these difficulties were 

surmounted is presented. In concluding the chapter an analysis is 

presented for estimating the accuracy of the obtained results. This 

is done using  the  results of a case study used to examine the con-

vergence characteristics for this problem. It is felt that the com-

bination of parameters used in this study presents a severe test on the 

method and that the accuracy for all other cases considered will be 

at least as good as the estimates obtained from this case study. 

5.2 The Finite Element Method 

The finite element method is a relatively recent numerical 

-  69  - 



solution technique to be employed in the anlysis of heat conduction 

problems. First introduced to the solution of field problems in 

1965 [39,40], the finite element method has since been the subject , 

of several investigations [41-44]. While these investigations were 

concerned with alternate derivations of the governing functional 

equation and with the treatment of the transient terms appearing 

in the governing differential equation, application of the method 

was restricted to the cartesian coordinate system. In a more recent 

investigation by Schneider [45]. extension of the method was made 

to include its applicatio n.  to any orthogonal curvilinear coordinate 

system. This development will be adopted here with the details of 

the analysis presented in Appendix C. The derivation of the varia-. 

tional statement for application of thefinite element method to 

heat conduction analysis follows directly. 

5.2.1 Preliminary Remarks ' 

The development of the governing variational statement will 

be performed for a general orthogonal curvilinear coordinate system 

ald the results reduced to those corresponding to the cartesian system 

to be used in this analysis. The general orthogonal coordinate 

system is illustrated in figure 5-1 with u u2' and u3 used to 

denote the three principal curvilinear coordinate directions. In 

general, the coordinates of an orthogonal curvilinear coordinate 

system can be related to the cartesian coordinates, x, y, and 
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Figure 5-1 



(5-7) 

z by relations of the form 

x x (ul , u21  u3) 

y 7.  y  (u1, 2 u
3
) 

z = z (u u
2
, u

3
) 

(5-1) 

Using these relations, - the magnitude of an arbitrary differ-

ential vector in space,  d ,  can be determined from 

(ds)
2 

= g
1
(du

1
) 2 + g

2
(du

2
) 2 + g

3
(du3 ) 2 . (5-2) 

where the metric or tale coefficients of transformation are defined 

by [30] 

,3x 2 2 âz 2 
g = ) + t ) + ) 1,2,3 (53) 
i au ui 311 ' 

Clearly for a differential length, say in the ui-direction, the 

relationship of equation (5-2) becames simply 

ds i dui (5-4) 

Similarly the areà and volume  elements can be written as 

dhi  = duj  duk , j.• 1,2,3 

i j k 

and dV du.du du 2 3 

(5-5) 

(5-6) 

where the convention has been used that the direction of the area 

element be taken normal to the surface in an outward sense and the 

definition has been made that 

By applying the first law of thermodynamics to the differential 
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over a portion S 1  of the boundary sufaces and 1 
1 
•  

aT k + hT + C = 0 n Dn (5 -9b) 

1 

II  

control volume of figure 5-1 and by using the above relationships for 

length, area, and volume, the governing differential equation for 

heat conduction can be written as [30] 

r  1Y8_ DT D r.22,J1 DT 4. r k34- 22L1  

111 L  gl Du
1 Du2 g2u2 Du3  L  83  Du3 ' 

Pig7 = i •  n c  

where Fourier's Law of heat conduction bas  been used to describe 

the local transfer of heat within the continuum. 

Boundary conditions to be applied to the solution of equation 

(5-8) c:an be written in general (except for non-linearized radiative 

conditions) as 

T = TA(uu2'u3'0 

(5-8) 

(5-9a) 

over the remaining surface S 2 . In equation (5-9b),n is the outward 

normal to the boundary surface over S2 . 

The initial condition, in the case of transient solutions, 

is represented by 

T(uu2'u3'o) = T(uu2'u3 ) (5-9c) 

5.2.2 Variational Statement 

If the concept of a variational principle is to be applied 

to the solution of heat conduction problems, then the governing 

differential equation (5-8) must correspond to the Euler equation for 
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2 3 
g2 a u2 

k r- DT + a 3vg  DT 
[ au2 au3 g3 au3 

air  ..E1, 
aul gl 

the corresponding variational problem [46]. Considering a particular 

instant of time in this development, time derivatives will be treated 

as prescribed functions of the spatial coordinates, u1 ,u2 , and u3 . 

This approach leads to a quasi-variational statement but rigor is 

restored with respect to the variational calculus when a steady-state 

solution is sought and time derivatives are set to zero. 

Procaeding with the approach taken here and invoking the • 

requirement that the equation (5-8) be the Euler equation corres-

ponding the same, as yet'unknown, variational statement, we set 

+ - Ç pC 224 6T du1du2du3 = 0 
(5-10) 

p 

where the first variation of temperature, 6T, has been introduced. 

Denoting by I1 the first integral of equation (5-10) and 

integrating by parts gives 

k T  

el II 
6T1I 

1 j g1 au1 "I u211-3  
du du 2 - 3 

u1=u1 (u2 ,u3 ) 

k
1V--iL 2-- (ST)du1du2du3  f f .1J aul  

u1u2u3 

(5-11) 

where u1(u2'u3)  represents the locus of values that the u1 coordinate 

takes on, as a function of the remaining two coordinates.,  as the 



boundary surface of the solution domain is traversed. Employing the 

commutability property of the differential and variational opertors, 

equation (5-11) can be wriiten as 

1 DT 
I = f [—k 

u 1 — 611£ ds 
1 S a l 2 -1 boundary 

fff f 1 
aT 2 
(—)D 

du1du2du3 u1 
(5-12) 

ulu2u3  

where the definition has been made that 
f  

, i= l,2,3, i gi  
(5-13) 

Further, it has been recognized in writing equation (5-12) that 

ig2g3  du2du3  = kids (5-14) 

with £1 the direction cosine of the bounding surface with respect 
to 

the coordinate direction u1 and also that the variation of tempera-

ture over S1 is by definition zero so that there is no contribution  

to the first integral of equation (5-11) resulting from integration 

over the portion Si  of the boundary. Integrals similar to equation (5-12) 

arise from consideration of the conduction terms for the other two 

coordinate directions.' Additional details of the derivation are 

presented in Appendix C. 

Determination of the variational form for the remaining two 

integrals of equation (5-10) follows by a direct application of the 

calculus of variations. Collecting the components and assembling 

to provide the quasi-variational equivalent to equation (5-8) yields 



.{ III   f1 9T 2 
f2 aT 2 f3 DT 2 

2 a ul 2 Du2. 
2 au3 

ulu2u3 

-Piii + ig-pC Tl du1du2du3 1 
P 

- IffhT + C}6T dS 2  m. 0 
s 2 

where the identity has been used that 

(5-15) 

k1 aT k2 aT 
k
3 aT aT dS k — dS (5-16) 

r- 1 r- Du 2 5- aU 3 2 n an 2 
vg 1 Yg

2 
2 vg

3 
3 

1 

together with the boundary condition statement, equation (5-9b). 

A final application of the variational calculus to the surface 

integral of equation (5-15) leads to the result 

f1 DT 2 f2 DT 2 f3 DT 2 I  f “u 1
{-7ea— ) + -2 (712 )  + ) ul u3 

1u  2u3 

- P/ii + iii-pCp (*T1 du1du2du3  

2 Ir{  hT +  CT}  dS2 ] = 0 j 2 
s 2 

(5-17) 

Equation (5-17) is the quasi-variational statement referred 

to earlier and its satisfaction, within the limits of the treatment 

of time dependent terms adopted here, is equivalent to satisfying 

the differential equation (5-8) from which it has been derived. 



5.2.3 Spatial Discretization 

To enable application of the finite element method to the 

variational statement of equation (5-17) it will be useful to define 

the following vectors and matrices. The first, a vector very similar 

to the gradient field vector of a cartesian frame [33], will be defined 

by 

{G} T = DT DT DT  {— 
Du1 ' aU2 ' Du3 

(5-18) 

This vector will be referred to as the curvilinear field vector, 

although, since the curvilinear coordinates do not directly reflect 

physical distances, the components of (5-18) are not physical gradients 

unless accompanied by their corresponding metric coefficients. The 

second, a matrix analogous to the property matrix of cartesian system, 

is defined by 

f1 (u1'u2'u3 ) 
 [R] = o f2 (uu2'u3 ) 

f3 (uu2' u3 

(5-19) 

This matrix shall be referred to as the effective curvilinear pro-

perty matrix. The remaining vectors, at this point continuous 

functions of the spatial curvilinear coordinates, are defined by 

{T} = {T(u1 ,u2 ,u3 )} 

{P}  = {P(u1' u2'u3)} 
 {c} = {c(u

1 ,u2 ,u-)} 8T  
CI { 1 D t 

(5-20) 

Using the above defined vectors and matrices, the variational 

statement (5-17) can be written as 



(S I f f f[4" {0 }  T [R] {G} ii{T}T  {P} + pCp/RT1T{}i duldu9du3  

ulu2u3 

h T + {T} + {T}T{C}lds2 = 0 2 

2 

(5-21) 

With the variational statement expressed in vector notation, 

we now consider the fundamental concept of the finite element method, 

that the solution domain can be spatially subdivided into a collection 

of finite elements. Over each of these elements, an approximate 

solution is assumed which contains a specified number of arbitrary 

parameters representative of the nodal degrees of dreedom. It is 

the object of the finite element method to determine the values 

for these nodal degrees of freedom by the approximate satisfaction 

of the variational statement (5-21). 

Approximating the unknown temperature distribution by the 

approximation 

iT1 = [N1 ,N2 .. ] T1 = {Ni }T  {Ti } (5-22) 

T2 

the curvilinear field vector can immediately be written as: 

= [B] {Ti } (5-23) 



(5-25a) 

(5-25b)  

where 

and 

In the above the N i I s are the shape function [ ] for the 

element and their form and number will depend on the type of element 

under consideration. Having made the approximation 6f equation (5-22), 

the approximate functional corresponding to equation (5-21) becomes 

a function of only the unknown nodal temperatures, Ti , i = 1,2,3, 

Finding the stationary value of this functional by taking its first 

ariation with respect to T then becomes equivalent to simply different-

iating the approximate functional with respect to each nodal temperature 

in turn, and setting the result equal to zero. 

Performing the indicated differentiation, and recalling that 

the instantaneous thermal behavior is considered in this treatment, 

leads to the matrix-differential equations. 

[k] {Ti}  + JP} fiil = if} (5-24) 

iff[k] = E L [B] T [R] [B]du1du2du3 e=1 V 

+ ff h {N} fNi }TdS2 ] 

2e  

= Iff oC  /i  {Ni} {NJ? T du1 du2 du3  e=1  Ve 

n f 
Ç {Ni  } {P} du1du2du3 S2 

+ if {NiJ {C} dS2 ] (5-25c) 
e=1 

Ve e 

In the above, integration of the functional over the solution 

domain volume has been replaced with a summation of volume integrations, 



{P} - 0 (5-28) 

X  = x; y  =  y; z (5-29) 

each integration being local to the element characterized by the index 

of summation, e. Treatment of the transient terms is presented in 

Appendix C but for the present purpose of examining the steady state , 

thermal behavior the time derivatives can be set to zero 

(5-26) {T1 0 

resulting in the matrix equations 

[lc] {Ti } {f} (5-27) 

where since we are not considering the case of internal heat generation, 

the heat generation submatrix appearing in {f} can also be set to zero. 

Solving the matrix equationsoof equation (5-27) will then 

provide the approximate solution for the temperature field by means 

of determining the temperature at the field node points, T I ,  I  = 1,2,3, 

5.3 Application to Trapezoidal Groove Heat Transfer 

We now consider the application of the finite element method 

as described above to the problem of direct interest in this work, 

that of determining the heat transfer characteristics for trapezoidal 

shaped grooves. The problem geometry is repeated in figure 5-2 

from figure 3-3 for ease of reference by the reader. 

Examination of the figure suggests tht due to the complex 

geometric description of the solution domain and component boundaries, 

the coordinate system most suitable for use in effecting the solution 

is the cartesian coordinate system. The transformation equations in 

reference to the material presented in section 5.2.1 are given simply 

by 
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[R] 

k ô o] 

o k o 

o o k 

(5-30) 

DT k + hT + C = 0 
n Dn 

(5-9b) 

with the metric coefficients each being identially unity, 13 1  = g2  = g3  

g 1. For this case, and considering isotropic materials, the effec-

tive curvilinear property matrix becomes the diagonal matrix 

where the conductivity to be used in equation (5-30) will be the 

liquid or solid conductivity respectively depending upon whether the 

element under consideration is in the liquid or solid region of the 

solution domain. For accuracy of representation of the thermal behavior 

for this problem, since the volume integrations of equation (5-25) 

usually require a numericarintegration proeedure, it is important 

that the solid/liquid interface form a bounding surface for adjacent 

interface elements rather than to allow a step change in the thermal 

properties to occur within a single element. The above modification 

of the effective curvilinear property matrix in the general formulation 

is all that is required to adapt it for use with the cartesian coordi-

nate system. Further simplifications can be made, however. 

Considering the boundary condition specification as indicated 

in general by equation (5-9b) 

the non-homogeneous term, hT, can be interpreted as part of the speci- 

fication for boundary conditions of the Caucily type. Not having Cauchy, 

or in this application convective, boundary conditions present on any 



II 

II 
il 

il 

il  

exterior surface of the solution domain, the surface integral of 

equation (5-25a) will be identically zero. 

The constant term of the boundary condition specification is 

representative of a Neuman.n type boundary condition. Having a prescribed 

flux of q, the constant C will be determined by 

C = q (5-31) 

This specification is applicable over the surface defined by y = 0 in 

figure 5-2. In the special case of an adiabatic surface, as for 

< < example over the surfaces defined by x = 0, x = w for 0 - y - H, and 

I  

II  

< < 
for y = H for w-E

l - X- w, the constant C will be zero and its 

contribution to the surface integral of equation (5-25C) will be zero. 

These boundaries therefore require no special treatment whatsoever 

in thèir implementation and are called natural boundary conditions. 

As was seen earlier the Dirichlet boundary over the liquid free 

surface is also a natural boundary condition to the Finite Element 

Method as developed here. 

A program has been developed which, using a compatible data 

input subroutine, will assemble and solve the matrix equations (5-27) 

to yield as a solution the temperatures at the discrete nodal points. 

Using this computed temperature field, the various derived quantities 

of interest in this investigation can be computed. The most important 

derived quantity of interest here is the equivalent heat transfer 

coefficient to be associated with the heat transfer from the groove 

root to the vapor core. 

The 'finite element' selected for use in the analysis of the 
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trapezoidal groove heat transfer is the general quadrilateral, linear, 

isoparametric element. The details of the element shape functions and 

stiffness matrix will not be discussed here but can be found in finite 

element texts [33,34] with the details presented very explicitly in the 

paper by Shah and Kobayashi [47]. This particular element has a general 

quadrilateral shame and maintains the flexibility of degeneration to 

a triangle by the assignment of two of the four nodes to the same 

physical location in space. A summary of the derivations pertinent 

to this element are, however, presented in Appendix F of this report. 

Due te the large degree cif detail which would be required to 

explain fully the internal operation of the solution program, the details 

of its operation will also not be discussed in this report. Further, 

these details are of no consequence with respect to the thermal pro- 

blem under consideration; it must simply be ascertained that the 

appropriate sub-functions of the program components are being performed 

correctly. Let it suffice for purpuses of this investigation to demon-

strate the correct operation of the program components by example. 

In Appendix C of this report where the finite element formulation of 

the heat conduction equation is developed for any orthogonal curvilinear 

coordinate system, two examples are considered for verification of the 

development; a problem in the polar spherical coordinate system and 

one in the oblate spheroidal coordinate system. The fact that the 

solution program used for this investigation is the same as that used 

for the verification exampleq, with the exception of the input data 

I 
I 



subroutine, and the fact that these examples indicate excellent agree-

ment of the finite element results with known analytic solutions, 

provides confidence that the solution program is functioning correctly. 

The input data subroutine, being unique to each problem tackled 

using such a program as that developed for this investigation, is an 

important consideration in applying the finite element method. Indeed, 

in this work considerable difficulty was experienced due to a not 

entirely 'appropriate' input of the nodal locations, element distri-

bution, and element shapes for the initial mesh generation subroutines. 

These types of difficulty, however, are extremely problem dependent 

and are often difficult to anticipate and can only be detected 

during an examination of the convergence characteristics for a parti-

cular problem. In this regard, it is the authors' firm opinion that 

the heat transfer problem tackled in this particular investigation is 

an extremely difficulty one indeed, by any method of attack. The 

reasons for arriving at this conclusion are briefly presented below. 

In examining the behavior of heat transfer across trapezoidal 

grooves in the case of moderate temperature heat pipes, the working 

fluid is typically of low thermal conductivity, eg. water, methanol, 

ammonia, etc„ while the pipe structure is typically metallic and conse-

quently has a significantly higher thermal conductivity, eg., stainless 

steel, carbon steel, aluminum, copper, etc. The conductivity ratio, 

kf/km' for 
these combinations can therefore range from approximately 

0.03 for water/stainless steel pipes to approximately 0.0014 for 

methanol/copper heat pipes. Numerically enforcing interface compatibility 



for problems having such a severe conductivity ratio is extremely, 

difficult except for problems of very simple geometry. The solution 

to such problems must be able to adequately describe the interfaial 

heat transfer characteristics at component boundaries within the 

solution domain. 

Further, the above problem is compounded by the geometric 

characteristics of the trapezoidal groove problem. This arises for 

two reasons. Firstly the liquid free surface geometry is such that 

it the meniscus attachment point, the liquid thickness vanishes. This 

results in an extremely local region over which the bulk of the heat 

transfer is concentrated. The second, serving to compound the first, 

is that the metal section extends fully to the vapor core. This " 

affords the heat flow a low resistance path to the meniscus contact 

region and further concentrates the heat flow in this region. A 

solution program must then be sufficiently flexible to be able to 

'pick up' the large gradients existing near the meniscus contact and 

blend this region into the remaining portion of the solution domain 

where the heat flow is less concentrated and gradients are smaller. 

5.4 Problems in Effecting the Solution 

In effecting the finite element solution to the trapezoidal 

groove heat transfer problem, several difficulties were encountered 

which had to be resolved before confidence in the numerical results 

could be established 

discretization of the 

of subdivision has on 

These difficulties are related to the spatial 

solution domain and the influence that the method 

the finite element solution of the heat transfer 
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problem. With this application of the finite element method by the 

authors being the first application in which difficulty of application 

was experienced, the above named cause of the problem was not immediately 

obvious and a systemmatic check of the entire solution program was 

necessitated. Since all of the checks employed that are not directly 

related to the input data subroutine indicated that the program com-

ponents were functioning correctly, these will not be discussed here. 

Indeed, many checks performed directly on the input subroutine also 

indicated that even the input subroutine was operating correctly; 

that is, the location, numbering and allocation of the nodes and 

elements was being performed as intended. Thus the problem is not 

one of incorrect input of information but rather of the influence 

that the method of subdivision has on effecting a solution using the 

finite element method. The difficulties enCountered in the solution 

are discussed briefly in the sections that follow but only to the 

extent to which they are relevant to the problem area to which the 

difficulties have been attributed. 

5.4.1 Mesh Generation Scheme I 

The first mesh generation,arrangment was constructed with the 

intent that a larger number of small elements be located near the 

meniscus contact point. In consideration of the anticipated local 

concentration of the heat flow in this region, this type of element 

allocation was deemed necessary in order to obtain reliable results 

while keeping the program stogage requirements within the limits 



afforded by the available computational facilites. As will be seen, 

this is indeed a desirable objective of the mesh generator. The pro-

blem with this generation scheme, concluded after many tedious veri-

fication procedures, is in the method of allocation and in particular 

in the shape of the elements near the meniscus contact region. A more 

detailed description of this generator will be given below. 

Before discussing the generator, however, we present the test-

case used for evaluation of the computational scheme convergence 

characteristics. It was felt that to examine the convergence character-

istics, an extreme computational situation should be used. In this 

way, when an estimate of the solution accuracy is available, computational 

results for less severe cases should be at least as accurate as those 

obtained for the test situation. Feeling,however, that the computations 

will be relatively insensitive to the groove half-angle, within moderate 

bounds, a value of twenty degrees was used for the groove half-angle. 

An exposed land area ratio (symmetric groove configuration) of 25 

per cent land area to total apparent area was used since this case 

will yield a significant degree of heat fpw concentration. The 

extreme case of the conductivity ratio, kf/km' of 0.001 was also used 

since this also augments the heat flow concentration. Finally, an 

apparent contact angle of 2.5 degrees was used, also for the reasons 

given above. It is felt that any problems configuration and property 

dependent will become apparent for this combination of parameters. 

The characteristics of the first mesh generator are given below for 

this parameter combination. 
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The first mesh generation scheme used a virtual origin established 

at the intersection of the groove centerline with the extrapolation 

of the groove sidewall plane. This is illustrated in figure 5-3. 

Radial lines emanating from this origin were constructed with the region 

used ranging from tle wall exterior surface to the liquid free surface 

over the angular range of 0<0<00  In  order to provide a higher degree 

of detail near the meniscus contact a finer angular division between 

the radial lines was used near 8=8
o 

than near 8-o. The details of the 

actual subdivision scheme used to provide this gradation will not be 

presented here since they will not add to the problem understanding. 

Within the metal region extending over  0<0<0, horizontal lines were - - o 

used tc, provide the remaining boundaries for the elements. Within the 

liquid, the radial distance between the groove root and the liquid 

free surface was further subdivided non-uniformly to provide the 

maller  elements required near the meniscus contact point. A non-uniform 

linear scheme was used within the remainder of the metal region of 

the solution domain. The resulting mesh is illustrated in figure 5-3 

for a crude mesh subdivision. 

The results of a preliminary examination of the convergence 

characteristics for the sharp V case, 0.5 land area ratio and conduct-

ivity ratio of 0.01156 are presented in figure 5-4. As can be seen 

from the figure, convergence 'looks' monotone and asymptotic to a 

limiting value. Calculation indicates, however, that the limit has 

not been approached. Unfortunately, the last data point presented 

represents the limit for available storage core on the IRK 360/75 

computing installation at the University of Waterloo. It was in the 

search for verifying that the limit was near the last computational 
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data point that the problem area associated with this mesh generation 11/ 
scheme was discovered. 

To examine the convergence characteristics in greater detail, 111  

the IBM 370/158 'virtual machine' was used which allows much larger 

core usage. On this system, additional points computed for the above 

case departed fromthe asymptotic nature exhibited in figure 5-4 and 

fell increasingly far below the anticipated asymptote. 

The results for the more severe test case using the 370/158 

system are shown in figure 5-5. The results referred to henceforth 

11 
will apply to the more severe test case parameter combination described 

earlier. As can be seen from thefigure, an initial approach towards a 
I/ 

convergence limit is indicated by the results but as the number of nodes 

is further increased beyond 1600 the results drop off sharply. It is 

not so much the range of values taken on by the Nusselt number (note 

11 
the expanded ordinate scale) but the trend of the results which is most 

disturbing. If these results were accepted, the question would have to 

be answered, "Where are these results going?", and this is not deter-

minable from the convergence characteristics of figure 5-5. 

It was concluded therefore that the mesh generation scheme 

described above will be inadequate to describe the thermal behavior 

of this problem. The reasons for its inadequacy are attributed to 

two independent characteristics of this mesh generation scheme and 

are briefly outlined below. 1I 
The first potential cause for the apparent erratic behavior 

displayed by figure 5-5 is the combination of the variable mesh generation 

- 92 - 



\o 

0.36 

0.35 

0.34 

0 •33 

• 0.32 
9- 

àc 

.14.• 0 •31 

0.30 

o  
DATA  

k f  /k m  = 0.01156 

00 = 20° 
N a  = 0.05 
E1 0.5 
E 2  =00  • 

• • 
cL. 

• 
\o 

• 
029 

o  

0-28 1 1 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2201 

No. of NODES 



II 
schemes for the two independent directions used to obtain the total generation 

pattern. This Is best visualized with reference to figure 5-3. In order to 

obtain greater detail of the solution in the radial direction (from the virtual 

origin) near the meniscus contact region, the element thickness in that direction 

is small not only near the meniscus contact, point B, but also at the 

groove centerline, point A. Conversely, while the variable mesh in 

traversing the liquid region, from point A to B, provides (finer) sub-

division near point B, the element 'lengths' near point A are large 

by comparison. The net result of the independent gradation for each 

direction is a series of elements with aspect ratios very much different 

If 
from unity existing near point A of the figure. Similar effects are 

obtained near point C, D, and E of figure 5-3. With aspect ratios 

of 1000:1 and higher in these regions, it is clear that the thermal 

influence of two nodes on each other in any given 'direction' may be 

1000 times more, or less, than that for the other 'direction'. Without 

expounding on the details of the effects of very large or very small 

aspect ratios, let it suffice for purposes of this report to say that 

certain of the inter-nodal influences become (Warted, or indeed lost, 

upon assembly into the overall stiffness matrix, particularly when 

computing using single precision arithmetic. 

The second deficiency of the first mesh generation scheme is 

its introduction of highly skewed elements into the solution domain. 

Unfortunately, predominance of these highly skewed elements is (almost) 

exclusively in the region near the meniscus contact with the groove wall 
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and as a result any detrimental behavior resulting from.their skewed 

character will be markedly reflected in the solution. Due to the general 

nature of the general quadrilateral finite èlement used in this work, 

the volume integration of equation (5-25a) is performed numerically 

in the solution program using Gauss-point integration. The influence 

of highly skewed elements on the solution accuracy is reflected through 

a reduced accuracy of the numerical integration for these elements. It 

is felt that this skewed character for some of the elements is the second 

cause for the poor convergence characteristics of the first mesh generation 

scheme. 

While the influence of the second item above would be in the 

form of a misrepresentation of the thermal problem, the influence of the 

first item, in addition to contribution to the misrepresentation, is 

to provide very small and very large diagonal elements in the coefficient 

matrix (5-25a). The effect of the small diagonal elements was observed 

in the solution through nodal heat flow imbalances as large as 100 

percent of the imposed heat flow rate. Clearly, now, this subdivision 

scheme is unacceptable for use with this problem. 

5.4.2 Mesh Generation Scheme II 

A second mesh generation scheme, a modification of the first 

scheme described above, was also found to be unacceptable for this 

problem but for different reasons than for those of the first scheme. 

This second scheme sought to alleviate the problems associated with the 

first generation scheme while maintaining the same basic mechanism for 

achieving element size variation throughout the solution domain. The 

corrective measures that were taken proved to be effective but unfortun- 

ately due to the built in safeguard in this scheme to keep the aspect 
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ratio near unity for all elements, a very large number of elements are 

required. Indeed, for this scheme even at 2000 nodes within the solution 

domain, the computational results were far from , being near a converged 

state. The convergence characteristics for the second mesh generation 

scheme are presented in figure 5-6. A brief discussion 6f the second 

mesh generation scheme is given below but the purpose of this discussion 

does not warrant a detailed description of its nature. 

The prime departure of this scheme from the previous one is 

that given a prescribed number of nodes, their distribution is rearranged 

to maintain element aspect ratios near unity. In order to universally 

achieve this it was also necessary Co relax the transition from the 

coarse regions to the finer regions, and this, of course, necessitates 

the use of more elements to achieve a prescribed degree of detail near 

the meniscus contact region. The redistribution of elements mentioned 

above was effected by imposing a fixed number of elements across the 

test section thickness, and as the typical cell isLtraversed from the 

outer surface to the inner surface, elements are 'passed' from the 

metal section to the liquid section in accordance with the respective 

cross-sectional area changes. In this way a greater degree of aspect 

ratio uniformity, were achieved using this generation scheme, and while 

the resultant convergence characteristics exhibited monotonic behavior 

as illustrated in figure 5-6, the additional elements required to 

obtain the required detail near the meniscus contact region makes this 

generator impractical for use on this problem. Indeed, as can be seen 

fram figure 5-6, when comparing ordinate scales here with that of figure 
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5-5, the last data point from the second generator has not even reached. 

the starting point of the first generator. In view of this, and the 

fact that the convergence slope at 2000 nodal degrees of freedom is far 

from that of a 'near converged' situation, this generator was discarded 

as being impractical to apply with the available computational facilities. 

A third generator, which proved to be adequate for the purposes intended, 

was devised instead and used for the subsequent parametric study. This 

generation scheme is described in the following section. 

5.5 Successful Application of the  Method 

In this section the third, successful, mesh generation scheme 

É presented along with the associated convergence characteristics. The 

third generation scheme was developed entirely as a new and different 

subdivision scheme and does not incorporate any of the underlying ideas 

which led to the first two schemes. The object still remains to provide 

detail near the meniscus contact point, however, but while the former 

two methods accomplished this, the third enables in addition a more 

compatible gradation to the coarser elements and is also relatively 

free from highly skewed elements. 

The convergence characteristics for the three conductivity 

ratios to be considered, kf 
 /k 0.1, 0.01156, and 0.001, are also  m 

presented in this.section. Finally, an extrapolation technique is 

utilized to provide an estimate on the solution accuracy. The expected 

solution accuracy is found to be sufficient for the purpose intended 

by this investigation. 

- 98 - 



5.5.1 Mesh Generation Scheme III 

In this third mesh generator the virtual origin concept 

used in the previous two generators is discarded entirely. Instead, 

a deliberate attempt has been made to orient the elements in a 

fashion which more closely resembles the anticipated thermal field set 

up within the solution domain. In effecting this orientation of elements, 

it is also strived to keep the elements as close as possible to rectan-

gular in shape and to maintain the aspect ratio within a moderate 

range. A schematic of the spatial subdivision scheme is presented in 

figure 5-7 for a crude subdivision. The diagram is only representative 

of the element allocation, however, and is not to scale. 

In this subdi-eision scheme, a single parameter. NE1 is used 

as input. The remaining spatial subdivision is determined from the 

lengths associated with the appropriate section of the typical cell. 

One exception to this determination is the subdivision parameter, NF, 

in the fluid region which is taken as one-half the value of NE1 (to 

the nearest larger integral value). This is felt to be adequate since 

over the bulk of the liqùid region, little heat is flowing while near 

the meniscus contact point the coalescence of the element boundaries at 

a sinàle node at the contact point yields element thicknesses which 

are here sufficiently small to 'pick-up' the larger gradients in this 

region. The details of the generation procedure will not be presented 

here since the algebraic 'bookkeeping' becomes rather messy for this 

scheme, but a few of the salient features are indicated in the following 

paragraphs. 



Figure 5-7 
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Firstly, the inter-element boundaries formed by the lines 

joining the liquid free surface to the groove wall are constructed by 

providing a transitional development from the near-to-vertical case 

near the groove toot to the case near the meniscus attachment point 

where those boundaries form the base of an isosceles triangle hinged 

at the attachment point. This transition scheme provides element 

boundaries for this direction which are suggestive of the anticipated 

heat flow lines over the length of the groove wall. In the other 

direction these lines are subdivided equally to provide the remaining 

element boundaries. The scheme also provides elements, although rotated 

with respect to a cartesian set of axes, which are near rectangular in shape, 

certainly far more so than the elements fesulting from the previous 

two generators. Further, the use of appropriate dimensions in deter-

mining the number of element subdivisions in a particular direction 

yields elements with an aspect ratio nearer to unity. 

The second feature of this subdivision scheme is the use of 

a transition mesh in the metal 'fin' section of the groove. The mesh 

in this region has been graded from a uniform one at the groove root 

plane, where the field is expected to be relatively uniform, to a 

non-linear one at the metal fin tip providing greater detail neat the 

meniscus attachment point, where the gradients are expected to be large 

and non-linear. A non-linear spacing has also been employed in the 

direction  along the groove wall as the groove wall is traversed from 

root to tip. Although in this metal region elements of poor aspect 

ratio are generated near the upper right side of figure 5-7, these 

elements are of little consequence with respect to their contribution 
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to the thermal behavior. Their use is thus justified in consideration 

of the gains available in the more consequential region near the meniscus 

attachment point. • 

Ar  will be seen in the next section, this third subdivision 

scheme provides solutions which display a monotone, asymptotic behavior 

as the number of nodal points in the discretized description of the 

thermal problem is increased. 

5.5.2 Convergence Characteristics 

The third mesh generation scheme was used in the solution 

program and the convergence characteristics obtained for the three 

conductivity ratios, kékm  0.1, 0.01156, and 0.001. The results of 

the convergence study are presented for these cases in figures 5-8, 

5-9, and 5-10 respectively with the remaining solution parameters being 

those of the test case described earlier. It is clear from examination 

of these figures that convergence is both monotone and asymptotic for 

ffils mesh subdivision scheme. It is also clear from a cross-comparison 

of the three convergence plots that the conductivity ratio strongly 

influences the rate of convergence of the results and that the extreMely 

low ratio of 0.001 is indeed a severe test on the solution program. 

Even for this severe case, however, examination of figure 5-11, where 

the convergence trends are presented on non-expanded axes, indicates 

that the computed solution for 1800 nodal points is near its asymptotic 

value and that the effort and expenditure required to achieve a further 

improvement on the accuracy will be prohibitively large. 

The above discussion has been concerned with the convergence 

characteristics of the derived quantity, the groove equivalane Nusselt 

number. Perhaps a more fundamental indicator of convergence, however, 
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is the functional of equation (5-17) whose value is being made stationary 

by the variational statement. Treating the solution for each degree 

of subdivision as an approximate solution, the better the approximate 

solution is, the closer this functional will move towards its extreme 

value,which is obtainable only in the limit where the exact solution is 

achieved. The rate of convergence of this functional provides, therefore, 

an additional check on the solution credibility as well as an estimate 

of the closeness of the solution to its asymptote. The convergence 

characteristics for the functional are presented in figure 5-11. As 

seen from the figure the convergence trends of the functional are very 

similar to those for the derived equivalent Nusselt number, This 

realization offers further support, then, that the third mesh generation 

scheme has been successful in providing a spatial subdivision which, 

in conjunction with the solution program, will yield reliable solutions. 

The accuracy of these solutions will be estimated in the following section. 

5.5.3 Accuracy of the Results 

In this section an estimate will be made for the accuracy 

of the aforementioned results using a hyperbolic extrapolation technique. 

The data appearing in the previous graphs is presented in tabular form 

in Table 5-1 for the test case studied. 

Table 5-1 

NE1 No. of Nodes Nu. k
f
/k
m 

3 65 0.501 
5 141 0.469 
7 276 0.445 

10 547 0.425 
12 741 0.416 
14 1020 0.407 
15 1136 0.403 
16 1317 0.400 
17 1448 0.396 
19 1828 0.390 
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Anticipating that the convergence curve follows a path displaying 

an inverse dependence on the number of nodal degrees of freedom, and 

observing this basic trend in the convergence plots, the hyperbolic 

conic section appears to be a reasonable candidate  for description of 

the convergence behavior. In addition, an asymptotic limit must be 

provided by the describing curve since we know the numerical solution 

asymptotically approaches the exact solution as the number of nodal' . 

degrees of freedam becomes infinitely large (excepting machine round-

off errors). Since the hyperbolic curve description provides the above 

characteristics, it will be used in an extrapolation for purposes of 

error estimation. The estimation is performed in the following fashion. 

Using the numerical data of Table 5-1, a least squares minimi-

zation is performed to fit the data to a general hyperbola of the form 

Cl  Nu
f
.k

f
/k
m 

= + C
3 (N-C2 ) 

If an acceptable fit is obtained, extrapolation of the analytical expres-

sion describing the curve is made for N becoming infinitely large. Clearly 

from the above expression (5-32) the approximation of the limiting 

value is given by 

Zim 
N-5-go [Nu

ff
/
k

] C3 m  

A program was written which, using the data of Table 5-1, 

performed a least squares curve fit of the data to the model equation 

(5-32). Excellent agreement was found between the data and the equation 

with parameters given by 

(5-32) 

(5-33) 

II 

1 

1 —108 --. 



25.80  Nu • k / = + 0.3820 f f km N+139.5 
(5-34) 

The maximum error incurred over the entire  range of data was only 1.4 

per cent. Using the approximation for the asymptotic value given by 

equation (5-33), the estrapolated asymptote is given by 

[Nuf .kf /k  ] 0.382 

Comparison of this asymptote with the last computed value yields an 

expected error in this value of 1.96 per cent. Adding to this value 

the maximum error incurred by the correlation equation within the 

range of the data of 1.4 per cent yields a potential error in the last 

value of 3.36 per cent for this extreme parameter combination. 

Based on the good correlation agreement of the model equation 

with the data, and evaluation of the analytic asymptote of the correlation 

equation, it is expected that the actual error in the solution will be 

less than five per cent which provides a safety margin of fifty per 

cent on the incurred error. Since this test case represents a severe 

combination of physical and geometric parameters, it is anticipated 

that the errors incurred for the remaining parameter combinations will 

be less than five per cent. 

5.6 Comparison with a Limiting Analytical Solution 

As a further check on the solutions program operation, the 

solution from the finite element analysis will be tomputed for the case 

where an anlytic solution is known. This is a very restrictive case 

but it serves the purpose well of verifying correct operation of the 
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• solution program. 

The case study under examination is that for whiçh the'conduc-

tivity ratio is taken to be unity. In this case the problem is clearly 

a single component problem and becomes a member of the constriction 

resistance class of problem. Further, to enable an analytic solution • 

an equivalent full groove condition must be assumed in the groove. 

The land area -ratio (symmetric groove) will be maintained at the former' . 

value of 0.25, and the mesh generation routine developed for the multi-

component problem will be used, even though it may not be an ideal 

subdivision scheme for this problem. 

The problem geometry and boundary conditions for this verifi- . 

cation problem are illustrated in figure 5-12.. The adiabatic boundaries 

remain as they lere previously prescribed. The isothermal boundary 

is now applied at y = H over the range 05xs1-E 1 . Over the lower surface 

a uniform heat flux is prescribed. It is noted here that the analytical 

sdution to be discussed is applicable to the situation where the lower 

surface is maintained at a second isothermal temperature but that this 

very nearly corresponds to a uniform flux condition over this surface 

for the dimensions considered in this problem. The physical dimensions 

for the verification example are H = 1.4737, w = 1.0, and el  = E 2  = 0.25, 

and the conductivity for each region is taken to be unity. 

The analytical solution to the above described problem, in 

determining the total thermal resistance, can be expressed in terms of 

the Jacobian Elliptic functions and Elliptic integrals of the first kind [48] 

10(X)  RT  = (5-37) 
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K(K) w 

(5-38) 

where the modulus A is determined from 

1 = K sn ( m(K), K) (5-37) 

where sn denotes the Jacobian Elliptic sine amplitude function, K denotes 

the complete elliptic integral of the first kind, and  K,  a second 

modulus, is determined from 

Here H/w = 1.4737 and using equation (5-38) and interpolating from the 

tables in Abramowitz and Stegun [49] yields a value for the second modulus 

of 

K = 0.38027 (5-39) 

Note the modulus used here is the square root of the Abramowitz and 

Stegun modulus, m, and is merely a matter of convention. Using this 

modulus the associated complete elliptic integral of the first kind 

can be determined to be 

K(K) = 1.6327 (5-40) 

The first modulus, A, is then found using equation (5-37) from 

A = 0.38027 sn (1.2246, .38027 (5-41) 

This determination, however, is not an easy one. Returning to Abrameditz 

and Stegun [491 for guidance, the Jacobian sine amplitude function can be 

related to the Jacobian Theta functions, appropriately defined in the 

reference, by 

sn(u,K) = e s (v,K)/en (v,K) (5-42) 

where v = ffu/2K(K) (5-43) 

Following the evaluation procedure suggested by Abramowitz and Stegun [491, 



RT = 1.5246 
exact 

(5-45) 

the first modulus can be determined to be 

= 0.3530 (5-44) 

Finally, using this value in the expression for the total resistance, 

equation (5-36), yields the result 

for this geometric configuration. 

Determination of the total resistance using the finite element 

program developed for the trapezoidal groove problem, with the appropriate 

input data of, in particùlar, Xa  = 1.0 and kf
/k
m 

1.= 1.0, led directly 

to a value for the total resistance of 

RT = 1.5268 (5-46) 
FEM 

which agrees with the 'exact' analytical value to within 0.15 per cent. 

The remarkable agreement obtained for this verification example suggests, 

indeed, that reliable operation and accurate solutions can be obtained 

using the finite element solution program. 

5.7 Conclusions 

In the foregoing chapter, the basic ideas underlying the appli-

cation of the finite element method to heat conduction analysis were 

• introduced. The variational statement governing the finite element analysis 

of the heat conduction phenomenon was developed in a general fashion, 

so as to be applicable to any general orthogonal curvilinear coordinate 

system. The generalized results were seen to easily reduce to those cor-

responding to the cartesian coordinate frame utilized in the analysis 

of the trapezoidal groove heat transfer problem. Application of the 



method was made to the trapezoidal groove problem with its appropriate 

boundary conditions. 

It was found, however, that the application to the trapezoidal 

groove heat transfer problem is, indeed, not as straight forward as 

it might at first appear. The problem under examination in this work 

was found to be very special with respect to both its physical and 

geometric characteristics. The special character of the problem foiled 

the attempts made in the development of the first two mesh generation 

schemes to provide reliable solutions of adequate accuracy. 

Finally, after a great deal of effort, a third mesh generation 

scheme was developed which displays monotone, asymptotic, convergence 

characteristics. An estimation of the accuracy of the resultant solution 

indicated that for the severe test case examined, having a conductivity 

ration of kf/km 
u 0.001, solutions accurate to within approximately 

five per cent are expected, with the numerical value being larger than 

the exact value due to the extremizing nature of the variatioual budL-

ment for the problem. Solution accuracy, although this will be presented 

in a subsequent chapter, is considerably improved as the conductivity 

ratio is increased towards a value of unity. 

Finally, a verification example, for which an analytic solution 

is available, was computed and compared with the analytical value for 

the particular problem. The conductivity ratio for this example was, 

in fact, unity. The excellent agreement displayed by the 0.15 per cent 

error obtained for this example verifies correct program functioalug 

and also demonstrates that improved accuracy is available for more 

moderate conductivity ratios. 
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Chapter 6 

Numerical Results 

6.1 Introduction 

It is the purpose of this chapter to present the numerically 

predicted values for the equivalent groove Nusselt number which result 

from applying the finite element analysis developed in the preceding 

chapter to the problem under consideration in this investigation. Due 

to the nature of a numerical solution, however, the Nusselt number is 

available for only a discrete number of combinations of the problem para-

meters. Parameter combinations were therefore selected in such a fashion 

as to span a broad range of the variables and yet to be of practical 

utility. The number of test cases considered within this range is neces-

sarily limited by cost and time considerations for the solution procure-

ment. It is nevertheless felt by the investigators that the combinations 

presented in this chapter are indeed representative of situations of 

practical concern and that sufficient cases are presented to allow a 

meaningful interpolation of the results for situations that are not pre-

cisely described by the actual parameter values used in the study. 

6.2 Parametric Study 

Grooves of symmetric cross-section only are considered here 

but the program of Appendix D maintains the flexibility of solving the 

non-symmetric cross-section if it should be required by future investi-

gators. In spite of the restriction to symmetric groove cross-sections, 

however, there are still four remaining independent solution parameters 

which must be considered. In view of this four parameter character- 
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ization, it is clear that the use of an increasing number of values 

for each of the independent parameters will soon cause the parametric 

study to become prohibitively expensive and time consuming. 

The four parameters upon which the equivalent groove Nusselt 

number is dependent are given below. 

The first is the apparent contact angle that the liquid free 

surface makes with the metal groove wall. In this study a normalized 

value is used for this angle and is given by  x a/(n/2 - 0 0) where 0 0  

is the groove half-angle. Clearly the range of xa  is 0 e xOE  e 1. Four 

values of this parameter are considered in the study; xa = 0.05, 0.25, 

0.50, and 1.00. It is anticipated that due to hydrodynamic consider-

ations of replenishment flow of working fluid to the evaporation sites, 

a value of  x 0.0 cannot be physically sustained. The smallest value 

considered for x
Œ 
 is therefore a value of 0.05. In the other limit, a 

full groove condition is indicated by a value of xa = 1.00. 
The inter-

mediate value of 0.5 lies midway in the xa  range. The final value of 

0.25 is provided in the region where a marked dependence is expected to 

occur in order to provide a more complete description of the dependence 

on this parameter. The expected higher sensitivity in the region of small 

xa is supported by the numerical results. 

The second parameter considered is the groove land area ratio. 

Due to the assumed symmetry of the geometry this is equal to the groove 

root area ratio. The groove land area ratio, E, is defined as the ratio 

of the exposed land area of the fin tip to the total area of the typical 

cell. While the minimum value that this parameter can take on is neces-

sarily zero, the maximum value is limited to 0.5 by the symmetry condition 
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on the cross-section. The three values of e selected for use in the 

parametric study are e = 0.01, 0.25 and 0.49 with the exclusion of exact 

values of 0.0 and 0.50 due to the mesh generation requirements of the 

program. A value of e = 0.0, that is no land area at all, corresponds 

to a groove profile of sharp 'V' configuration. In the other extreme, 

a value of e = 0.50 dictates for a symmetric groove that the projected 

area is either originating from the groove fin tip or from the groove 

root. This profile is the rectangular profile common in moderate 

capacity, longitudinally extruded heat pipes. The intermediate value 

of e = 0.25 is considered in order to provide a more complete descrip-

tion of the heat transfer dependence on this parameter. 

The third parameter, d, is the groove depth in relation to the 

groove typical cell width and is an important parameter in considering 

the viscous losses experienced by the working fluid. While there are 

no physical limits on the range of values that can be considered (ex-

cepting unrealistically small values) it was felt by the investigators 

that the three cases d = 1.0, 1.5, and 2.0 would encompass the range 

of values typically encountered in heat pipe designs. 

The final parameter considered in the heat transfer analysis 

is the conductivity ratio of the liquid to metal thermal conductivities. 

The high value considered of 0.1 represents an upper limit on the con-

ductivity ratio while the low value of 0.001 represents an expected 

lower limit on the conductivity ratio, again considering typical moder-

ate temperature heat pipe applications. The intermediate value was 

chosen as 0.01156 since it corresponds to a methanol/stainless steel 

heat pipe materials combination. 
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The numerical results of the parametric study to determine 

the equivalent groove Nusselt number are presented in tabular form in 

Tables 6-1, 6-2, and 6-3 for the conductivity ratios kf/km = 0.1, 

0.01156, and 0.001 respectively. The product Nuek..t /k 
is treated as  m 

the dependent variable since, due to the normalization of the thermal 

problem with respect to the metal properties, a smaller overall vari-

ation results than would result by treating Nuf  as the dependent vari-

able. 

The numerical results are also presented graphically in 

figures 6-1 through 6-9. Here the systematic progression is assumed 

of fixing the conductivity ratio and land area ratio, and plotting the 

dependence of Nuf .krik on xa with the groove depth d appearing 
as the 

 m 

parameter. In the progression, the land area ratio is monotonically 

increased through its range for a fixed conductivity ratio and then the 

conductivity ratio incremented to its next value. 

A discussion of the results follows. 



Table 6-1 

Ntokf /km 

For Trapezoidal Grooves 

xa 
kf /km d E1 E 0.05 0.25 0.50 1.00 

2 

0.1 1.0 0.01 1.1336 .9422 .2056 .6628 

0.1 0.25 1.0724 .9069 .7921 .6938 

0.1 0.49 .8464 .7085 .6264 .5551 

0.1 1.5 0.01 .7519 .6381 .5538 .4642 

0.1 0.25 .7262 .6348 .5721 .5098 

0.1 0.49 .5992 .5287 .4839 .4419 

0.1 2.0 0.01 .5559 .4793 .4210 .3578 

0.1 0.25 .5487 .4914 .4511 .4104 

0.1 0.49 .4694 .4254 .3963 .3685 



d 
I 
d 
d 

1 

Table 6-2 

Nuskf /km 

For Trapezoidal Grooes 

xa 
kf/km d E1  = E 2 0.05 0.25 0.50 1.00 

.01156 1.0 0.01 .5392 .4481 .4101 .3807 

.01156 0.25 .6144 .5401 .5136 .4946 

.01156 0.49 .4745 .4270 .4106 .3993 

.01156 1.5 0.01 .3792 .3163 .2901 .2697 

.01156 0.25 .4501 .3998 .3816 .3625 

.01156 0.49 .3809 .3510 .3405 .3332 

.01156 2.0 0.01 .2912 .2479 .2295 .2152 

.01156 0.25 .3638 .3333 .3220 .3136 

.01156 0.49 .3201 .2990 .2916 .2963 
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Table 6-3 

f/kim  

For 
Trapezoidal Grooves 

.001 1.5 0.01 
.2610 

.2504 .001 
0.25 . .2480 

2464 .3723 
.3618 .001 

0.49 . .3596 
3581 .3265 .3199 

.3127 
.2178 

m xa  
kf/k d e

1 .= e
2 0.05 

0.25 0.50 
.001 1.0 

0.01  .3688 
.3483 .001 

0.25 .3389 
.3421 

.4975 .4745 
.4697 

.001 
0.49 .4671 .3953 

.3828 .3802 
.3788 

.001 2.0 0.01 .2030 
.1957 .001 

0.25 .1907 
.1942 

.3105 .3040 
.3022 

.001 
0.49 .3017 ' 

.2793 
.2752 .2744 

.2737 
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6.3 Discussion of the Results 

On examining the characteristics of figures 6-1 through 6-9, 

it becomes clear that in every case the equivalent Nusselt number de- 

creases monotonically with increasing  X.  Indeed, this is to be ex-

pected since in all cases it is the low thermal conductivity of the 

liquid working fluid that causes a preferential migration of the heat 

flow. This migration is through the metal to the location where the 

escape route through the liquid, in conjunction with the resistance of 

the metal heat flow path, offers the least resistance to the heat flow. 

For the cases considered this will invariably result in a concentration 

of the heat flow lines near the meniscus contact with the groove wall. 

Clearly, then, the shorter the liquid path that must be traversed in 

this region, the lower will be the total resistance and consequently 

the equivalent Nusselt number will be higher for these shorter liquid 

path cases. Now, the problem geometry dictates that the liquid heat 

flow  path will be reduced as the apparent contact angle, and hence xa  

for all other parameters fixed, is decreased. Thus, it is to be expect-

ed that, as xa  is decreased from the full groove condition, xa  = 1.0, 

to a state of near tangency,  xŒ = 0.05, the groove equivalent Nusselt 

number will increase. This expected behavior is consistent with that 

displayed by the numerical results. It is noted here, however, that 

the dependence of the groove Nusselt number on xa  is a relatively mild 

one. This is in contrast with the extremely sensitive behavior sug-

gested by a previous solution [16] in which the metal groove wall was 

assumed isothermal from the root to the fin tip. The relaxed dependence 

on xa 
displayed by figures 6-1 through 6-9 illustrates the importance 
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that the active participation of the metal section has on the deter- 

mination of the overal/ heat transfer for the composite problem. This 

influence is particularly important in the region near the meniscus 

contact since the local concentration of the heat flow there results in 

a rapidly changing groove wall temperature in this region, which is in 

contradiction to the formerly assumed isothermal condition. 

The second trend which is observed in the numerical results 

is that as the groove depth increases, the groove Nusselt number decreases. 

This too is consistent with the problem physics. Following the arguments 

above, it is anticipated that there will be a large adjustment of the 

thermal flow field In the region near the meniscus contact, and thus the 

dominating influence in the determination of the metal/liquid inter- 

action stems from this region. Consequently, in the remainder of the fin 

the flow field is quasi-uniform in the sense that local gradients are 

primarily determined by the total heat flow rate, and the local area, 

with only small contributions due to the bulk fluid adjacent to these 

regions. As a result, the influence of increasing d will be to add a 

section of pure conductive, variable area, metal in addition to that for 

the case of smaller groove depth. A secondary influence of increasing 

the depth for a fixed land area ratio is that the problem geometry is 

necessarily altered. Thus, 0 0  changes, with the associated influence 

on x
a = a/(n/2 0o), and even the local behavior at the meniscus con-

tact is slightly altered. Here, then, we see that the variation of one 

parameter has an influence on the interpretation of the trends displayed 

by another. Taking into account this influence, calculation indicates 
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that it is primarily the conductive differences in the metal which 

account for the decreasing Nusselt number dependence with increasing 

groove depth. 

The influence of the conductivity ratio ' kf
/km 

is to decrease 

the product Nuf-kf/km as the conductivity ratio is decreased. This also 

is physically consistent since as the conductivity of the liquid de-

creases, the heat flow becomes more concentrated within the metal,particu-

larly near the fin tip. This increased heat flow concentration results 

in a higher resistance within the metal section, and is additive to the 

higher liquid film resistance due directly to its decreased thermal con-

ductivity. This behavior is consistent with a decreasing Nuékf /km 

 product with decreasing conductivity ratio. 

The influence of changing land area ratio, however, is not 

monotonic as in the case of the previous three parameters, but rather 

produces, generally, a maximum value of the product Nuékt/km  within 

the three cases studied for a land area ratio of c = 0.25. Exception 

to this occurs at small apparent contact angles for a conductivity ratio 

of kf /km 
= 0.1. Considering the range of this land area ratio, 

0 e e 0.5, the geometric changes resulting from changes in c as the 

full range is traversed, are severe. Indeed, due to the severe geo-

metric changes incurred by the variation of c, it is difficult to 

anticipate precisely the influence of this parameter on the overall 

heat transfer since the resulting geometric changes influence both the 

liquid and the metal region geometries, and consequently the liquid/ 

metal thermal interaction. It is felt that the maximum value of the 

Nuff/km 
product is the result of a favorable balance between the 
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changing pure conductive resistance and the changing liquid/metal 

interaction, each of which is changing at a different rate. This 

observed behavior is consistent for the combinations of parameter's 

considered in this report. 

6.4 Correlations of the Equivalent Nusselt Number 

As we have noted earlier, the equivalent groove Nusselt 

number is dependent upon four parameters. As a consequence correlation 

efforts become extremely complicated when attempting to maintain accept-

able accuracy. For example, if the observed trends are second order in 

each of the parameters, then three correlation parameters are required 

to account for the dependence on x, say, and for each of these para-

meters, three additional parameters are required to account for the de-

pendence on d, and so on. This yields a total of 34 = 81 correlation 

parameters and results in a correlation  équation of extreme complexity. 

In contrast, if only a few parameters are employed, the resulting cor-

relation may be of inadequate accuracy to be of significant practical 

utility. In this work a compromise has been adopted to yield a correl-

ation of manageable complexity while maintaining adequate accuracy for 

engineering calculations. 

On examination of figures 6-1 through 6-9, it was felt that 

a two parameter correlation of each curve independently of the form 

Nuf .kr /km  = A ln (xa) + B (6-1) 

might provide adequate accuracy for engineering purposes. Indeed appli- 

cation of equation (6-1) to each of the curves independently using a 

least squares curve-fit subroutine yielded a maximum correlation error 
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at the data points of four per cent. It is anticipated, however, that 

with the inclusion of the remaining three parameter dependencies, the 

obtainable accuracy will become somewhat relaxed. 

Incorporating next the dependence of Nuf 'kf/km  on the land 

area ratio, c, . a  correlation equation of the form 

Nuff
/k
m 

= [A11
c + A12] ln(x) + [B11 

c 2 + B12 
+ B13 ] (6-2) 

was found to relax the obtainable accuracy to approximately five per 

cent. 

A further inclusion of the dependence on the groove depth 

was made by assuming the above correlation constants to be of the form 

= A111 D + 
A
112 

A12 
= A121 

D + A122 

B
11 

= B111  D + B112 
(6-3) 

B12 = B121 
D + B122 

B13 = B131 exp (B132 D) + B133  

Application of the correlation constants (6-3) in equation (6-2) 

yielded a further relaxation requirement on the accuracy to approxi-

mately six per cent. 

Inclusion of the final correlation parameter, the conductivity 

ratio, kf
/km'  vas made 

by considering the influence to be dependent on 

ln(kf /km) and assuming this influence to be quadratic in lfl(kf /km) ø 
 This 

yielded a maximum correlation error at the data points of seven per cent, 

with errors of this order occuring at only a few locations for the case 

where kf /km = 0.1. 
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The final correlation equation for the equivalent groove 

Nusselt number is given by 

Nut -kt/km  =3 A  ln(x) + B (6-4) 

where 

(6-5) A = A1  [-.389 d + l]e + A2 [-.376 d + 1] 

B = B1 [-.29 d + l]c 

+ B 2 [-.228 d + l]E 

+ B3 
[5.368 exp (-1,295 D) + 1 1  

and finally 

A1  = .0056 1n
2 (kf/km) + .1025 ln(kf/km) + .4511 

A2 
= -.0098 ln

2
(kf /km) - .1413 ln(k f/km) - .5251 

B1  = .0336 1n
2 (kf /km) + .4557 ln(kf /km) - 1.0821 

B2 =0407 1n
2 (kf/km) - .5090 ln(kf /km) - .2668 

B 3 = .0105 1n
2 (kf /km) +1254 ln(1.f 

 /k ) + 0.4986 
' m 

2 

(6-6) 

(6-7) 

(6-8) 

(6-9) 

(6-10) 

(6-11) 

A comparison of the correlation values for Nuf -kt /km  with 

the numerical data points is presented in Table 6-4. It is seen from 

the table that the largest errors, 7.01, 6.28, 5.77, 5.66, and 5.13 per 

cent, are confined to the case where kf/km  = 0.1. All other cases 

yield errors less than five per cent. Indeed, as the entries for 

kf /km = 0.0116 are examined, the correlation agreement is within four 

per cent . The maximum error of correlation for kf/km  = 0.001 is further 

reduced to 3.4 per cent. It is felt that a maximum correlation error 

of seven per cent is adequate for most heat pipe analysis and design 
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Table 6-4 

COND hATIO L E XALPHA 

0.1000 1.0000 0.0100 0.0500 
0.1000 1.0000 0.0100 0.2500 
0.1000 1.0000 0.0100 0.5000 
0.1000 1.0000 0.0100 1.0000 
0.1000 1.0003 0.2500 0.0500 
C.1000 1.0000 0.2500 0.2500 
0.1000 1.0000 0.2500 0.5000 
0.1000 1.0000 0.2500 1.0000 
0.1000 1.0000 0.4900 0.0500 
0.1000 1.0000 0.4900 0.2500 
0.1000 1.0000 0.4900 0.5000 
C.1000 1.0000 0.4900 1.0000 
0.1000 1.5000 0.0100 0.0500 
C.1000 1.5000 0.0100 0.2500 
0.1000 1.5000 0.01C0 0.5000 
0.1000 1.5000 0.0100 1.0000 
O.1000 1 .5000 0.2500 0.0500 
O.1000 1.5000 0.2500 0.2500 
0.1000 1.5000 0.2500 0.5000 
0.1000 1.5000 0.2500 1.0000 
0.1C00 1.5000 0.4900 0.0500 
C.1000 1.5000 0.4900 0.2500 
0.1C00 1.5000 0.4900 0.5000 
0.100 0 1.5000 0.4900 1.0000 
0.1000 2.0000 0.0100 0.0500 
0.100O 2.0000 0.0100 0.2500 
0.1000 2.0000 0.0100 0.5000 
G.1000 0000 0.0100 1.0000 
0.1000 2.0000 0.2500 0.0500 
0.1000 2.0000 0.2500 0.2500 
0.1000 2.0000 0.2500 0.5000 
0.1000 2.0000 0.2500 1.0000 
0.1000 2.0000 0.4900 0.0500 
0.1000 2.0000 0.4900 0.2500 
0.1000 2.0000 0.4900 0.5000 
0.1000 2.0000 0.4900 1.0000 
0.0116 1.0000 0.0100 0.0500 
0.0116 1.0000 0.0100 0.2500 
0.0116 1.0000 0.0100 0.5000 
0.0116 1.0000 0.0100 1.0000 
0.0116 1.0000 0.2500 0.0500 
0.0116 1.000 0 0.2500 0.2500 
0.0116 1.0000 0.2500 0.5000 
0.0116 1.0000 0.2500 1.0000 
0.0116 1.0000 0.4900 0.0500 
0.0116 1.0000 0.4900 0.2500 
0.0116 1.00u0 0.4900 0.5000 
0.0116 1.0000 0.4900 1.0000 

(KF/KM)* 
NU(COPR) 

1.1267 
0.8766 
0.7688 
0.6611 
1.0611 
0.8688 
0.7860 
0.7032 
0.8375 
0.7030 
0.6450 
0.5871 
0.7995 
0.6248 
0.5495 
0.4743 
0.7675 
0.6322 
0.5739 
0.5156 
0.6108 
0.5148 
0.4735 
0.4322 
0.5611 
0.4617 
0.4189 
0.3761 
0.5625 
0.4842 
0.4504 
0.4167 
0.4727 
0.4154 
0.3907 
0.3661 
0.5387 
0.4504 
0.4124 
0.3744 
0.6064 
0.5430 
0.5156 
0.4883 
0.4761 
0.4375 
0.4208 
0.4042 

(KF/KM)* 
NU (ACT) 

1.1336 
0.9427 
0.8056 
0.6628 
1.0724 
0.9069 
C.7981 
0.6936 
0.8464 
C.7085 
0.6264 
0.5551 
0.7519 
0.6381 
0.5535 
0.4842 
0.7262 
0.8348 
0.5721 
0.5095 
0.5992 
0.5287 
0.4839 
0.4419 
0.5559 
6.4793 
0.4210 
0.3578 
0.5487 
0.4914 
0.4511 
0.4104 
0.4694 
0.4254 
0.3963 
0.3685 
0.5392 
0.4481 
0.4101 
0.3807 
0.6144 
0.5401 
0.5136 
0.4946 
0.4745 
0.4270 
0.4106 
0.3993 

% EPRoti 

-0.6120 
-7.0162 
-4.5b25 
-0.2521 
-1.050.7 
-4.1994 
-1.5174 
1.3495 

-0.7821 
2.9726 
5.7613 
6.33o9 

-2.083 -) 
-0.7678 
2.1733 
5.684.3 

-0.4151 
0.3108 
1.1372 
1.927) 

-2.6204 
-2.14Co 
-2.18ob 
0.9365 

-3.6664 
-0.4925 
5.1219 
2.5165 

-1.4691 
-0.1463 
1.53oo 
0.700 

-2.349) 
- 1.4038 
-0.6604 
-0.0909 
0.5228 
0.5677 

-1.6513 
-1.2974 
0.53L5 
0.3959 

-1.2736 
0.3420 
2.4504 
2.4874 
1.2180 
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0.0116 1.5000 0.0100 0.0500 0.3842 0.3792 1.32771 
0.0116 1.5000 0.0100 0.2500 0.3226 0.3163 1.979° 
0.0116 1.5000 0.0100 0.5000 0.2960 0.2901 2.033 
0.0116 1.5000 0.0100 1.0000 0.2694 0.2697 -0.09h7 
0.0116 1.5000 0.2500 0.0500 0.4567 0.4501 1.4021 
0.C116 1.5000 0.2500 0.2500 C.4119 0.3998 3.033. 
0.C116 1.5000 0.2500 0.5000 0.3927 0.3616 2.896 
0.0116 1.5000 0 .2500 1.0000 0•3734 0.3685 1.3237 
0.0116 1.5000 0.4900 0.0500 0.3730 0.3809 -2.076 
0.0116 1.5000 0.4900 0.2500 0 .3452 0.3510 -1.664( 
0.0116 1.5000 0.4900 0.5000 0.3332 0.3405 -2.153' 
0.0116 1.5000 0.4900 1.0000 C.3212 0.3332 -3.607 
0.C116 2.0000 0.0100 0.0500 0.2792 0.2912 -4.137. 
0.0116 2.0000 0.0100 0.2500 0.2441 0.2479 -1.543 
3.0116 2.0000 0.010G 0.5000 0.2290 0.2295 -0.232 
0.0116 2.0000 0.0100 1.0000 0.2139 0.2152 -0.62ir . 
0.0116 2.0000 0.2500 1.0500 0.35 6 3 0.3638 -2. C54  
0.0116 2.0000 0.2500 0.2500 0.3303 0.3333 -0.905 
0.0116 2.0000 0.2500 0.5000 0.3191 0.3220 -0.911i . 
0.0116 2.0000 0.2500 1.0000 0.3078 0.3136 -1.834 
0.0116 2.0000 0.4900 0.0500 0.3193 0.3201 -0.2(14 
O .0116 2.0000 3 .4900 0.2500 0.3022 0.2990 1.08411 
0.0116 2.0000 0.49C0 0.5000 0.2949 0.2916 1.137 f  
0.0116 2.0000 0.4900 1.0000 0.2876 0.2663 0.451 
0.0010 1.0000 0.0100 0.0500 0.3645 0.3688 -1.17u1! 
0.0010 1.0000 0.0100 0.2500 0.3500 0.3483 0.494 . 
0.0010 1.0000 0.0100 0.5000 0.3438 0.3424 L.41011 
0.0010 1.0001 0.0100 1.0000 0.3376 0.3389 -0.387 
0.0010 1.0000 0.2500 0.0500 0.4874 0.4975 -2.029 
0.0010 1.0000 0.2500 0.2500 0.4752 0.4 1 45  
C.0010 1.0000 0.2500 0.5000 0.4699 0.4697 0.05011 
O.0010 1.0000 0.2500 1.0000 0.4647 0.4(71 -0.517 
0.0010 1.0000 0.4900 0.0500 0.3977 0.3953 0.60h i t 
0.0010 1.0000 0 .4900 0.2500 0.3877 U.3828 1.285 
0.0010 1.0000 0.4900 0.5000 0.3834 0.3802 0.847 
0.0010 1.0000 0.4900 1.0000 0.3791 n 00 1.0A5 , 
0.0010 1.5000 0.0100 0.0500 0.2620 0.2610 0.3651 
0.0010 1.5000 0.0100 0 .2500 0.2519 0.2504 0.380 
0.0010 1.5000 0.0100 0.5000 0.2475 0..14oL  
0.0010 1.5000 0.0100 1.0000 0.2432 C.2464 -1.307 
0.0010 1.5000 0.2500 0.0500 0.3748 0.3723 0.67811 
0.0010 1.5000 0.2500 0.2500 0.3663 0.3618 1.23 2  
C.0010 1.5000 0.2500 0.5000 3.3626 0.3596 0.826 1 
J.0010 1.5000 0.2500 1.3000 0.3589 0.3581 r .211 
0. 0 010 1.5000 0.4900 0.0500 0.3200 0.3265 - 1.4811 
0.0010 1.5000 0.4900 0.2500 0.3130 0 .3199 

i, 
0.0010 1.5000 0.4900 0.5000 0.3100 0.3187 - 2.745 
3.001 0 1.5000 0.4900 1.0000 0.3069 0.317 6 -3.424 
0.0010 2.0000 0.0100 0.0500 0.2037 C.2030 0.360 
O .0010 2.0000 0.0100 0.2500 0.1980 0.1957 1.179 
0.0010 2.0000 0.0100 0.5000 0.1955 0.19 4 2 0.684 
0.0010 2.0000 0.010G 1.0000 0.1931 0.1(127 0.1)1 
0.0010 2.0000 0.2500 0.0500 0.3065 0.3105 -1.274 
O .0010 2.0000 0.2500 0.2500 0.3016 0.3040 -0.783 
0.0010 2.0000 0.2500 0.5000 0.2995 0.3026 -1.09C 
0.0010 2.0000 0.2500 1.0000 0.2974 0.3017 -1.432 
0.0010 2.0000 0.4900 0.0500 0.2667  
0.0010 2.0000 0.4900 0.2500 0.2825 0.2752 2. 6 69 
0.0010 2.0000 0.4900 0.5000 0.2808 0.2744 2.323 
0.0010 2.0000 0.4900 1.0000 0.2790 0.2737 1.flv 
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calculations of engineering interest, and that the correlation equa-

tions (6-4) - (6-11) adequately maintain this agreement while keeping 

the correlation equation manageable. 

6.5 Conclusions 

In the present chapter of this report the results of a para-

metric study to explore the dependence of the equivalent groove Nusselt 

number on the four parameters, the apparent contact angle, the groove 

land area ratio, the groove depth, and the liquid/metal thermal conducti-

vity ratio, were presented. These results were found to be self-

consistent in their behavioral characteristics and to generally display 

the dependencies that are anticipated from consideration of the physics 

of the underlying thermal problem under investigation. The displayed 

trends however, illustrate a somewhat relaxed dependence on the apparent 

contact angle than that given by a previous approximate solution [16]. 

This demonstrates the importance of the contribution to the overall 

, thermal problem that is due to the metal fin region and that.the problem 

analysed is truly a composite thermal problem. Both the liquid region, 

the metal region, and the thermal interaction between the two regions 

along their common interface, are important contributions to the total 

problem solution and must all be considered. 

Finally, in closing the chapter, a correlation equation has 

been determined which interpolates the numerical data with a maximum 

error of seven per cent. It is felt that this correlation equation 

will be alequate for most engineering applications of heat pipe analysis 

and design. 
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Chapter 7 

Application of the Results 

7.1 Introduction 

In the previous chapter a study was conducted to determine the 

influence of the apparent contact angle, the groove land area ratio, the 

groove depth, and the liquid/metal thermal conductivity ratio, on the 

equivalent groove Nusselt number. These factors are all important con-

siderations in designing a heat pipe to meet prescribed operating condi-

tions. In many cases, however, a compromise must often be found, in parti- 

cular for the geometric details of the grooves, which strikes a balance 

between counteracting thermal and hydrodynamic influences of a parameter 

ch=1;c. For example, if the pipe conductance must not fall below a pre-

scribed minimum value, then parameter changes on the groove cross-section 

can be effected to provide the required conductance value. However, the 

design changes made must not sufficiently alter the hydrodynamics of the 

pipe such that the available capillary forces cannot provide a sufficient 

recirculation rate to meet the thermal loading requirements of the parti- 

cular heat pipe application. This balance, however, is not the subject 

of this report and will not be dealt with further here. 

For a given heat pipe design, of the four variable parameters 

examined in chapter 6 of this report there are three which are fixed by 

the design, while the fourth remains free to vary as the operational con- 

ditions dictate. This fourth parameter is the apparent contact angle, and, 

having selected a particular set of design parameters, is the only para-

meter which will lead to heat pipe exterior surface temperature variations 

within each of the evaporator, adiabatic, and condenser sections of the 
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heat pipe. Indeed the apparent contact angle variation is itself impli-

citly dependent upon the operational temperature and pressure, the imposed 

thermal loading, the groove material and transport fluid properties, the 

change of working fluid present, and the groove geometry for the particu-

lar heat pipe application of interest. 

Since an examination of each of the above influences independently 

would require an investigation of enormous proportions, this chapter is 

directed at determining the influence that the working contact angle will 

have on the surface temperature distribution of an operational heat pipe. 

The results of this analysis can then be used as a basis for evaluating 

the need for future, more fundamental investigations into the contact angle 

behavior. 

7.2 Case 

7.2.1 Pipe Geometry and Thermal Loading 

The computer code developed under the CRC 6656-1 (SCS) program 

will be used to determine the surface temperature distribution for a heat 

pipe having the specifications indicated below. The influence of the mini- 

mum break-away contact angle on the surface temperature variation will 

also be examined. The heat pipe specifications follow: 

Pipe: Le = 1.67 ft. 

La = 0.646 ft. 

L
c = 2.33 ft. 

L = 4.646 ft. 

rout = .02083 ft. 

rin = .0188 ft. 

Material = S.S. type 304 (km = 10 
Btu  

hr.ft.°F 
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V-grooves: Pitch = 1056 per foot 

Depth = 6.67 x 10-4 ft. 

e o = 35.38
0  

Arteries: Number = 3 arteries with 2 sizes 

1) .120 in. I.D. (2 layers of screen), (1) 
2) .060 in. I.D. (7 layers of screen), (2) 

Material = 150 mesh, .003 in. thick 

type 316 stainless steel screen 

Configuration = interference fit across a diameter, 

in-line 

Working Fluid = methanol, laboratory grade 
fluid: kf 0.1156 Btu/hr.ft. °F 

Thermal Evaporator Flux = 15,000 Btu/hr.ft. 2  
loading: (uniform over evaporator) 

Ambient Condenser Temperature = 0°F 

Condenser External Surface Heat Transfer Coefficient = 

1000 Btu/hr.ft. 2F (uniform over condenser) 

Total Heat Transfer Rate = 3280 Btu/hr = 961 watts 

For the heat pipe specifications described above, two relatively 

extreme values for the minimum break-away contact angle are examined; 

aba = 2
0  and aba = 20

0 . The determination of the local apparent contact 

angle will be performed using the hydrodynamic flow model of the previous 

report [ 16  J.  The effect of varying the minimum break-away contact angle 

in the analysis is to limit the highest value that the equivalent heat 

transfer coefficient can attain in the evaporator region. It is assumed 

in this examination that, once the angular recession has reached the mini-

mum break-away contact angle, the liquid level recession is sufficiently 

moderate and the sensitivity to liquid level is sufficiently low that the 



equivalent heat transfer coefficient will remain constant at its beak-

away angle value. This assumption requires verification and indeed, in-

vestigation, but for the purposes intended here it will suffice. 

7.2.2 Numerical Results 

The heat pipe analysis program was executed for the two test 

cases described above with the subroutine for the determination of heq 

modified to reflect'the results of this work. The groove side heat trans-

fer coefficient, heq , and the pipe exterior surface temperature distribu-

tion resulting from these two test cases are presented in Tables 7-1 

through 7-4. 

We will examine first the case where the minimum break-away 

contact angle is assumed to be aba = 20
0 . The equivalent heat transfer 

coefficient for this case, presented in Table 7-1, varies from a low value 

of 3422 Btu/(hr.ft 2 . oF) in the extreme condenser groove region to a high 

value of 4050 Btu/(hr.ft 2 . 0F) in the extreme evaporator region. The over-

all variation for a minimum break-away contact angle of 20°  is 18.4 per 

cent. Of this variation, there is only a 2.9 per cent variation over the 

evaporator region while the condenser variation in heq is 6.1 per cent. 

The relatively large region of uniform heq in the evaporator is 

the result of an assumed break-away contact angle of 20 deg. This assump-

tion of a large break-away contact angle results in a condition of full 

angular recession occurring relatively early in the hydrodynamic develop-

ment of the return liquid flow. The additional assumption taken here, 

that the equivalent heat transfer coefficient will not change appreciably 

with moderate liquid level recession, leads to a large region of uniform 
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heq on the evaporator, and thus a small variation in the 
equivalent heat 

transfer coefficient over this region. 

The relative uniformity of heq over each 
of the evaporator and 

condenser sections is reflected in Table 7-2 by a similar uniformity of 

the surface temperature distribution. Indeed, since the metal conducti-

vity is large relative to the liquid conductivity, km/kf  = 86.5, heat con-

duction within the pipe wall tends to reduce the fractional variation of 

the surface temperature for each section below that exhibited by the 

equivalent heat transfer coefficient. The evaporator surface temperature 

variation for this case is only 0.4 per cent while the condenser variation 

is 1.19 per cent. It is seen that the relative proportion of evaporator 

to condenser non-uniformity is very close to that for the equivalent heat 

transfer coefficient but that the magnitudes are greatly reduced. This 

magnitude reduction is due to the isothermalizing character of the higher 

conductivity wall material. 

Relaxing the value of the minimum break-away contact angle to 

allow angular recession of the liquid to a contact angle of 2 degrees re-

sults in the equivalent heat transfer coefficient distribution presented 

in Table 7-3. It is seen from Table 7-3 that the initial distribution 

and development of heq is identical to 
the previous case, as it must be. 

Exception to this occurs, however, in the evaporator section of the pipe 

since, here, the relaxed limitation on contact angle recession allows ad-

ditional hydrodynamic development to occur prior to the onset of liquid 

level recession. 

The additional development allowed in the contact angle reces-

sion is most visibly displayed in Table 7-3 by a larger equivalent heat 

transfer coefficient in the extreme evaporator regions. Indeed in this 
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example the equivalent heat transfer coefficient exceeds that for the 

previous case, in the extreme evaporator region, by 32.6 per cent. This 

is a substantial increase in heq and is due 
to its increased sensitivity 

at low contact angles. 

The maximum variation of the equivalent heat transfer coeffi-

cient is 34.6 per cent over the evaporator region and remains at 6.1 per 

cent for the condenser region. There is clearly a marked dependence of 

the evaporator equivalent heat transfer coefficient on the minimum break-

away contact angle. 

Examining the surface temperature variation, for this case pre-

sented in Table 7-4, the temperature variation over the external surface 

is again attenuated by the heat conduction within the higher conductivity 

heat pipe wall. In the evaporator region, the heq variation of 
32.6 per 

cent is reflected in the surface temperature by a variation of only 4.8 

per cent. The variation over the condenser region is unaffected by the 

change in the value of aba . The influence of this change in the minimum 

break-away contact angle has been to increase the pipe overall conductance 

by approximately 8 per cent. Thus although a substantial influence of aba 

is felt on heq , the resultant effect on the pipe conductance is consider-

ably less pronounced. 

7.3 Case II 

In this section a second example problem is considered and the 

influence of the minimum break-away contact angle on the pipe exterior sur-

face temperature variation and on the pipe overall conductance is investi-

gated. 
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Table 7-1. 

HEAT PIPE ANALYSIS 
GINOOVE SIDE COEFF(ETU/HRSQ.FT•F) 

Z/L PSI(DEGREES). 

9.r 27.0 43.0 63.0 81.0 99.0 117.1 135.1 153.,1 171., 

0.14 4)50. 4050. 4e31. 4050. 4050. 405 0 . 4050. 4L5‘. 4050. 
L6^5C. 4050. 4050. 4050. 4r5 0 . 4059. 405 0 . 4C5. 4050. . 
45v. 400. 405C. 4050. 4050. 4050. 405C. 14 t:50. 4 1 50. M . . 

n,.(97 4:5,. 4050. 41'50. 405 0• 4050. 4050. 405C. 4u50.  
• 4050. Y. 4050. 4050. d4050 . 4050. 405L. 4350. 

4(.5r • 4050. 4150. 4050. 405 0 . 405 3 . 4050. 4 nA'. 
...181 415 0. 4150. 4051. 4050. 4C50. 4050. 4050. 4u5,:. 4330. 
0.2 0 8 415r. 405C. 47:5 0 . 4050. 4050. 4050. 4150. 4053. 405C. 
1.236 

▪  

405e.  4Pi 0 . 4050. 4050. 4050. 4050. 4050. 4050. 
C.2b4 4e50. 40 -50. 4CW. 4050. 4050. 4050. 405C. 4050. 405 0 . 405`. 
U.292 4049. 4050. 4050. 4050. 4350. 4050. 405 0 . 4(5u. 405 0 . 
0 .319 3989. 4050. 4 1 50. 405 1 . 4050. 405C. 4050. 405,‘. 4050. 39t )•  
u.347 3934. 40,C. 4150. 4050. 4050. 4C5u. 4051.. 4(5). 4051. 39-. 
C. 3 7) 3612. 3812. 3812. 3812. 3812. 3812. 3812. 3812. 3812. 381- 

3774. 3774 , 3774 , 3774 , 3774. 3774 , 3774 , 3774. 3774. 377... 
l.431 3735. 3739. 3739. 3739. 3739. 3739. 3739. 3739. 3739. 373 4 . 

C.458 3707. 3707. 3737. 3707. 3707. 3707. 3707. 3707. 3707. 37e7. 
C.48b 3u78. 3678. 3678. 367 8 . 3678. 3678. 3678. 3676. 3678. 3b78. 
0.514 3632. 3602. 358. 3569. 3563. 3563. 3569. 3582. 36U. 3t32. 
0.542 3609. 3582. 3563. 3551. 3545. 3545. 3551. 3563. 3582. 3b9. 
L.5c,9 3588. 356 4 . 3546. 3535. 3529. 3529. 3535. 3546. 35b3. 35rn. 
0 .597 5570. 3546. 3530. 3520. 3514. 3514. 3520. 353e. 3546. 357.  
0.625 3554. 3531. 3516. 3506. 3501. 3501. 3506. 3516. 3531. 3554 •  
0 .653 3539. 3518. 35 1 3 , 3494. 3489. 3489. 3494 , 3503. 3518. 353. 
0.u 6 1 3526. 3506. 3492. 3482. 3478. 3478. 3482. J492. 150 6 . 35:o. 
0.708 3514. 3495. 3481. 3473. 3468. 3468. 3473. 34b1. 1495. 2514. 
0.736 3504. 3485. 3472. 3464. 3459. 3459. 3464. 3472. 3485.  
C.764 3495. 3477. 3464. 3456. 3452. 3452. 3456. 3404. 3477. 34"). 
e.792 3487. 3469. 3457. 3449. 3445 • 3445. 3449 , 3457. 3469. 3147.  
C.d11 3480. 3403. 3451. 3443. 3439. 3439. 3443. 3451. 3463. 34h. 
0.847 3474 ,  3457 , 3445. 3438. 3434 • 3434. 3438. 3445. 3457. 3474. 
0.875 3469. 3453. 3441. 3434. 3430. 3430. 3434. 3441. 3453. 30-‘1. 

0 .903 3466. 3449. 3438. 3430. 3427. 3427. 3430. 3438. 3449. 34bt, . 
C.931 J483. 3447. 3435. 3428. 3424. 3424. 3428. 3435 , 3447. 34ts 3 . 

C.958 3461. 3445. 3433. 3426. 3423. 3423. 3426. 3433. 3445. 34bl. 
0.986 3 460. 3444. 3433. 3425. 3422. 3422. 3425. 3433. 3444. 34t. 
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PSI (DEGREES) 

9.0 27.0 4J.0 63.0 81.0 99.0 117.L 135. 0 153.0 

Z/L 

171.11  

II 

- Table 7-2 

HEAT PIPE ANALYSIS 

SU1AFACE TEMPEhATURFS (DEG.FAHR.) 

C.'14 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.59 21.89 23.8 ,. 
C.'_42 23.89 23.89 23.89 23.89 23.39 23.89 23.59 23.89 23.89 23.0‘ir 
C•k 09 £3.89 23.69 23.89 23.89 23.89 23.89 23.89 23. 9 23. 84 23.:b4 
r.C97 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.84 23.-- 
C.125 23.59 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.8 
0 .153 23.89 23.89 23.89 23.89 23.8) 23.89 23.89 23.89 23.89 23.89 
'1 .181 23.59 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.8 
%.,.208 23.89 13.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.8' 
r..236 23.89 23.89 23.89 23.89 23.89 23.89 23.89 -3.89 23.89 23.84 
0 .264 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23. iL4 
L.292 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.84 23.84 23. ,  
0 .319 23.9(4 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.89 23.-1 
▪ 347 23.99 23.90 23.59 23.89 23.89 23.89 23.89 23.89 23.9 0 23.1) 

"....37; 15.65 16.66 16.66 16.66 16.68 18.66 16.68 16.66 16.66 1 o.61.1 
0.4C 3 16.66 16.66 16.66 16.66 16.bu 16.66 16.66 16.66 16.6 8 10.„.i 
0 .431 16.66 16.66 16.66 16.86 16. 65 16.06 16.66 16.06 18.66 1b.oti 
0.458 18.b6 18.66 16.66 16.66 16.66 16.86 16.66 16.6o lo.6b 16.6 I 
".486 16.06 16.66 15.66 16.66 16.56 16.66 16.66 16.66 16.60 16.0 
0 .514 11.2 11.01 11.00 10.99 10.98 10.98 10.99 11.30 11.31 11. 

'

▪  

.42 11.1 1C.99 1L.98 10.98 10.97 10.97 10.9s 1t. 98 10.99 11..' 1 
r.569 11.00 10.98 10.97 10.97 10.96 10.96 10.97 10.97 10.98 11.1 

1'2.99 10.97 10.96 10.96 10.95 10.95 10.96 10.95 1C.97 1 r. 
J.c)15 10.96 10.96 1L.95 10.95 10.914 10.94 10.95 10.95 10.96 1 0. )7 
0. 653 10.97 10.95 10.94 10.94 10.94 10.94 10.94 10.94 13.95 13. ; 1 
0.881 1 0 .96 10.95 10.94 10.93 10.93 10.93 10.93 1 5 .94 10.95 10. 
C.7C8 10.95 10.94 10.93 10.93 13.92 10.92 10.93 10.93 10.94 1C.- 
0.736 10.94 10.93 10.92 10.92 10.92 10.92 10.92 10.92 10.93 1C. ; I 
'.76 (4 10.94 10.93 1 1 .92 10.91 10.91 10.91 10.91 10.92 10.93 13.) 
u./92 10.93 10.92 10.91 10.91 10.91 10.91 10.91 10.91 10.92 10.4_ 

1r.93 10.92 1 1 .91 10.91 10.90 10.90 10.91 1C.91 10.92 1L. 
C.647 10.92 10.92 10.91 10.90 10.90 10.90 10.90 10.91 10.92 10.4.1 
C.,75 13.92 10.91 10.9 0 10.90 10.90 10.90 10.90 10.90 10.91 10. 4 11 

1 0 .92 10.91 1 0 .90 10.90 10.89 10.89 10.90 10.90 10.91 11.92 
0.931 1 0.92 10.91 13.90 10.9C 10.89 10.89 10.90 10.90 10.91 1C. 3 
0. 958 1'1 .92 10.91 10.90 10.89 1 1 .89 10.89 10.89 10.90 10.91  
).985 10.92 10.91 1 0 .9C 10.89 10.89 10.89 1C.89 10.9C 10.91 10.1 
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Table 7 - 3 

Z/L 

P1PL itNALYS1S 
jRt.,A, L 3IDE CUEMlin/HR-S.11 - 11 

PS1(0litle.7 E:;) 

9.s.; 27.0 14.).t. 63.3 81.) 99.. 117. lie.. 13.. 171. 

L.': 14 

69 
/ 

0.125 
'2.153 

• 18 1 
C.208 
r.'„z30 

▪ 292 
(.31'3 
C. 347 
r.375 
0.46 3 

4.31 
C.453 

▪ 514 

C.569 
.C.597 

0.653 
c. 813 1 
0.708 
C.730 
L.764 

C.  m19 
. 847 

C.875 

C.931 
C.158 
1.986 

14701. 
4073. 
4622'. 
4555. 
4'4 b0. 
414n: 1. 
432. 
4z5:. 
4179. 
4.112. 
4,49. 
JJ69. 
3934. 
3,312. 
3774. 
3739. 
3707. 
3076. 
3f)32. 
36:. 9. 
3568. 
357D. 
35 1.34. 
.3539. 
3526. 
351 14. 
35)4, 
3495. 
31487. 
348C. 
34714. 
3469. 
3140E.. 
346J. 
3461. 
314b". 

5371. 
5371. 
5371. 
5371. 
-A71. 
5371. 
5371. 
5371. 
4860. 
4566. 
4301. 
4245. 
4136. 
3ts1  L. 

3774. 
3739. 
3707. 
3678. 
3602. 
3582. 
3563. 
354u. 
3531. 
3518. 
3506. 
3495. 
3485. 
3477. 
3469. 
3463. 
3457. 
3453. 
3449. 
3447 • 
3445• 
3444. 

53/1. 
5311. 
5.3 /1. 
5371. 
5.71. 
5;71. 
5371. 
5371. 
5371. 
5371. 
5371. 

4446. 

3774, 
"37 39. 
37:7, 
3670. 

3503. 
3546. 
353C. 
3516. 
35:3. 
34)2. 
31481. 
3472. 
3464. 
3457. 
3411. 
3445. 
31441. 
3438. 
3435. 
3 1433. 
34.33. 

5371. 
5371. 
537 1. 
5371. 
537 1. 
)371. 
5371. 
5371. 
5371. 
5371. 
5371. 
537 1. 
51C 3. 
3812. 
3774. 
3739. 
3707. 
367d. 
3569. 
355 1. 

3521. 
35C6. 
3494. 
3482. 
3473. 
3464. 
3456. 
3449. 
3443. 
3438. 
3434. 
3430. 
342d. 
3426. 
3425. 

5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
r)371. 
5371. 
5371. 
5371. 
3 ,312. 
3774. 
3 /39. 
3707. 
3678. 
3563. 
3545. 
3j29. 
3514. 
35C1. 
3489. 
3478. 
3468. 
3459. 
3452. 
3445. 
3439. 
3434. 
3430. 
3427. 
3424. 
3423. 
3422. 

5311. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 
1371. 
1371. 
3812. 
3774. 
3739. 
3707. 
3078. 
3503. 
35145. 
3529. 
3514. 
3501. 
3489. 
3478. 
3468. 
3459. 
3452. 
3445. 
3439• 
3434. 
3430. 
3427. 
3424. 
3423. 
3422. 

5.371. 
5371. 
5371. 
137 1. 
5371. 
5371. 
137 1. 
5371. 
5371. 
5371. 
5371. 
S_371. 
5103. 
3812. 
3774. 
3739. 

3078. 
3565. 
355 1. 
3535. 
352C. 
35C 6. 

3494. 
31482. 
3473. 
J464. 
3456. 
3444. 
3443. 
34313. 
3434. 
343C. 
3428. 
3420. 
3425. 

5371. 

5.371. 
5371. 
5371. 
5.371. 
5371. 
537 I. 

5311 . 
5371. 

U 
381‘.. 
3774. 
37_39. 

3678. 
3582. 

3.&4';. 
353'. 
311G. 
.35r J. 

3461. 
3472. 
• 4(14. 
3457. 
3451. 
3445. 
3441. 
3438. 
343:). 
3433. 
3433. 

n 371. 
'3371. 
5371. 
5371. 
5371. 
5371. 
5371. 
5371. 

Le'etre. 
4_3/31. 
424 ). 
4138. 
3812. 
47 /4. 
4739. 
3727. 
3078. 
4002. 
.358). 
.35K 3. 
354o. 
35 31. 

34 tib. 
34 7 1. 
34!) ,4. 
3.403.  
3457. 
34'13. 
344q. 
3144/.  
3.445. 
31444. 

47. 1. 
-;;. 

4 L, 

44' . 
-e 4. . 

54 • 

'4 1 " 

• 1 I • 

• 

') .• • 

I •  
4114 . 
37 i • 1 • 

 47 1•  

3u2.. 
t: 

;‘‘;-••••• 

)1 . à. 

„ 
e. 

3Lit 7. 

3 n. . 
34ts'. 

34e n „ 

3;4 1.  
31, t 



Table 7-4 

HEAT PIPE ANALYSIS 

SJFFACE TEMPEbATURFS(DFG.rAhR.) 

4/L kS1(LEGREES) 

9.0 27.,; 45.0 63.0 t11. 1 94.( 117.0 135. 1 1.-)3.0 111. 

C • . 14 23.47 11.43 22.89 22.88 22.88 22.86 22.88 2L.84 42.93 ;3.2 
J.42 43.1) 22.93 22.89 22.88 e2.88 21.815 L2.68 22.89 12.93 

69 41.32 22.93 22.89 22.88 22.88 21.8 22.88 ct.d9 22.ii 2b.N2 
1.'97 23.37 22.94 22.89 22.88 22.88 22.88 22.88 ,2.89 22./4 41.4 
..125 2).41 22.94 22.o9 22.88 22.63 22.88 42.8a 22.d , J 2„94 21. 4 
..1'13 23.47 22.95 22.89 22.8J 22.88 14.38 42.88 22.39 22.45  

C.161 z1.3 22.96 22.89 42.88 22.88 44.88 22.dm 12.89 22.96 4 4 .5 
../08 23.'..)9 21. 4 8 22.89 22.88 22.88 22.8h 22.88 24.89 4,)..96 

. 236 23.68 23.43 22.92 22.89  22.88 21.88 22.89 22.12 23.43 21.6 
( .284 23.76 23.41 22.94 22.89 22.88 22.88 22.89 22.44 43.41 23.7c 
).2)2 23.84 23.53 2 2.96 2 2.89 22.88 12.88 [2.84 i2.)6 21.51 i1.m 
?..31) 23.91 23.67 23.28 22.93 42.89 24.99 22.93 2J.2 9 .3.67 
'.147 23.97 23.78 2 3.50 23.08 22.91 24.91 23.C8 2 3.78 i. '7 
,.475 16.86 16.66 16.86 16.66 16.66 16.8E, 16.66 18.)m 18.86 
(%401 lb.L6 18.(6 18.t6 16.66 16.86 1t. 6 b lt.uh lt1.00 
..431 11-,.66 16.66 16.66 16.66 16•60 16.8t 1b.tb 16.66 11 , .68 
'..458 18.66 16.68 1u.86 16.66 16.66 16.66 16.0; isi.uu 
...dr) 16.65 16.65 lt.t.5 16.65 16.65 16.65 16.65 16.6 ..) 16.85 14..) 

. .)14 11.02 11.C1 1C.99 10.99 10.93 10.98 1 3.99 1C.49 11.C1 11." 
7.2 11.01 10.9) 11. 98 10.97 11.97 10./7 11.97 1r.98 1 - .49 11. - 1 
).1b9 11.0C 10.98 1C.97 10.96 1r.9n 1C.9 1/.9 (, 1(.)7 1 ( .98 1(.' I 
'. 597 1c.97 17.96 10.95 1.:'.95 1r.95 1;'.9) 1C.96 10.11 1^.- 
t.f2D 1).97 10.96 1..95 11.95 111.94 10.94 1,J.93 1.15 1'.90 

1 0.96 10.9:, 11.94 11.94 11.93 1C. 4 3 10.14 1'.'44 1).15 1 ( .f 
. 481 1J.96 10.95 1C.94 10.93 11.94 16.93 10.93 11. 14 ie.95 1a.. 

-.718 10.95 1 0 .44 1C.93 11.92 1 ) .92 lf.)2 10. 4 2 12.93 1r.14 1"." 111 
. /1t, 13.94 16.93 le.92 10.92 10.92 1ts.')1 10.92 1C.'12 10.93 1...'•1 

1.164 1'.14 15.93 lr.92 10.91 11.91 1 (' .91 10.91 1c.)2 11.93 1 .11 
.792 10.93 10.92 1 L ,,.91 10.41 13.91 10.91 10.91 .41 141 .92 1:.1 

-119 1J.93 10.92 1-.91 10.9C 11.90 10.91 11.9c 1(. 1 1 1).12 1. ."- 
1 0.92 10.91 1'.91 10.9C 10.90 1C.1C 10.9r 1C./1 10.11 1 .`4 
17.92 1r.91 1..9r 10.91 10.91 10.9( 10.90 14.91 13.11 1 - . 4  

"...

• 

KJ 17.92 10.(.1 1C.9 0 10.90 10.89 11.89 10.90 1:.-13 10./1 
2 .931 17.92 10.91 11.90 1C.89 10.81 1 2 .89 1%).89 1(.0 1 - .)1 iL.J 1 
0.958 1).91 11.91 11.9C 10.89 1,..89 1(.89 10.84 11.9r 1'. 9 1 
C.98 , , 11.91 1C.9; 10.90 11.89 13 .89 1 4. .84 10.(a4 1%..-)1 V.  
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7:3.1 Pipe Geometry and Thermal Loading 

The second example considered in this section is examined for 

identical pipe, working fluid, and thermal loading characteristics as the 

previous example, with one exception. The thermal conductivity of the work-

ing fluid is taken to be 1.0 Btu/(hr-ft- °F), and, while this is a somewhat 

ficticious consideration, it is designed to illustrate the dependence of 

the heat pipe behavior on the fluid/metal thermal conductivity ratio. 

Further, the case of k
f /km = 0.1 will serve as an 

extreme case since it 

was found in chapter 6 of this report that the sensitivity of heq 
on aba 

was highest where the conductivity ratio, k...t /k , was also the highest,  m 

within the range of parameters examined. That is, the more closely the 

liquid thermal conductivity approaches that of the solid, the more highly 

dependent the heat transfer becomes on the liquid cross-sectional  configur-

ation. 

7.3.2 Numerical Results 

The results of executing the heat pipe prediction program for the 

case of kf/km = 0.1 are presented in Tables 7-5 to 7-6 for an assumed mini-

mum break-away angle of 20 degrees. From Table 7-5, the overall variation 

of heq has increased to 25.5 per cent ranging from a low value of 5472 to a 

maximum value of 7491. This is to be compared with the variation for 

kf /km = 0.01156 of 18.4 per cent. In this case the evaporator variation 

has increased to 3.9 per cent and the condenser variation to 8.5 per cent. 

Again a relatively large uniform region over the evaporator surface is 

present due to the large minimum break-away angle of 20 degrees. 



The surface temperature variation, again de-sensitized by the 

high wall thermal conductivity, is only 0.4 per cent over the evaporator 

and 1.0 per cent over the condenser surface. The relatively low surface 

temperature variations exhibited here may also be in part attributed to 

the large equivalent heat transfer coefficients in this case which more 

closely link the wall temperatures to the uniform vapor temperature. For 

example in the extreme evaporator regions, the value of h
eq 

is 1.85 times 

its former value while in the extreme condenser region it is 1.75 times 

its former value. Thus we see that, while the variation of heq has in-

creased, the surface température variation for this case has de- 

creased. Considering now the case where aba = 2 degrees, the additional 

hydrodynamic development of the liquid return flow has substantially in-

creased the extreme evaporator equivalent heat transfer coefficient to 

10,684, an increase of 42.6 per cent. The evaporator equivalent heat trans-

fer coefficient variation has correspondingly increased to 48.2 per cent 

with the condenser region again remaining as it was for the 20 degree break-

away angle case. 

Once again, the Isothermalizing of the pipe wall, and the close 

thermal link with the vapor core temperature has limited the surface temper-

ature variation, Table 7-8, over the evaporator region to 3.67 per cent. 

The condenser surface temperature variation again remains unchanged from 

the 20 degree break-away angle case. The overall pipe thermal conductance 

has increased by the change of aba  by approximately 7 per cent from the 20 

degree case. These moderate increases of the overall pipe conductance with 

relatively severe changes In the equivalent heat transfer coefficient provide 

an indication that heat pipes of high performance design may often be limited 

in their performance characteristics by the thermal behavior of the heat pipe 
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Table 7-5 

HLAT PIPE ANitLYSIS 
GPOJVL SIDE COEFF(43TU/81, -S.1.- T-F) 

Z/L PSI(bEGRELS) 

27. 43.0 63." dl.D 49.0 117.. 135.t  

:.:14 7491. 74'11. 74)1. 7491. 7491. 7441. 7441. 7441. 7491. 7.. 
:.'42 i491. 7491. 7491. 7491. 7 (4 91. 7491. 7441. 7491. 74 4 1. 7u 1. 
-.. 69 7491. 7491. 7491. 7491. 7491. 7441. 7441. 741. 7411.  
(' • '.9 7 /491. 1 491. 74 0 1. 7491. 7491. 7491. 7491. 7491. 7491. 714 1. 
.125 7491. 74141. 7491. 7491. 7491. 7491. 74)1. 7491. 1 4 1 1. 7‘. 1. 
-.153 7451. 7491. 7441. 7491. 7491. 7491. 7491. 7491. 74 1 1. 74'1. 
• 101 1 491. 7491. 7491. 7491. 7491. 74)1. 74 9 1. 7441. 7491. 74.  I.  
..2C4 7491. 7491. 7491. 7491. 7491. 7491. 7491. 7491. 7491. 74 1. 
'2.230 7491. 74)1. 74 4 1. 7491. 7491. 74 4 1. 7491. 7441. 1 441. 74 .  I.  
..2(. (4 7491. 1 491. 7491. 7491. 7491. 7441. 7 (4 91. 7441. 7441. 74'1. 
0.492 7.bo;. 74 3 1. 7411. 7491. 7491. 7491. 7491. 7441. 74)1. 1 4 . 
r.114 7345• 74/1. 74)1. 7491. 7491. 7491. 74 0 1. 7441. 7441. /4. .. 
t.147 121C. 74/1. 74)1. 7491. 7491. 7441. 74 9 1. 7491. 74 9 1. 7 '1 . 
C. 475 t.,916. 6 91o. €916. 916. C918. o9lf . o91b. t 91t2. o91t). LH1 . 
;-.413 u324. 68/4. 6624. 0824. 6824. 6824. t424. 6624. t 4 .:4. u“... 

431 674C. 67. 674C. 674 1 . 674n. 674'. 674C. 674. •)740. t/-`. 
.458 8.143 • r)683. 6co3. 6663. both 66443. 660 3 . 6663. tr. ‘. 

L.485 b c, (+2. 6594. 65)1. 6592. 6592. 6592. 6592. 6594. 6592. 4 5 ... 
..514 u443'.1 . u4C4. 6359. 6329. 6314. 6314. 6329. 6359. 64.2H. . 
7..542 £145. 635:. 6314. 6285. 6271. 6271. 6185. 6314. ts3").). 64 . 
- .5u9 u314. 6274. 6245. 6232. 6232. 6245. 6172. 6314. 617.. 
L.397 6331. 6474. 6414. 62C9. n197. 6197. 62rt:. 6234. 6274. 
C.643 6292. 623H. 6210. 6176. 6164. 6164. v176. 62C. . , 236. q,.. •  
'.653 L25t.. • 405. 6169. 6146. 6133. 6135. 6146. 6119. h2JJ. r."t. 
r.661 u225. f17o. 6141. 6119. 6109. 61n9. 6114. 6141. 617 6 . 62 
C.708 619u. u15C. 6116. 6095. 6085. 6085. 6D95. 611u. 6150. 61(..,. 
0.73o L1/1. o12(... 6r1 4. 6074. 6064. 6064. 6'74. bn94. 6126. 61:1. 
.764 (049. o1C:. oC75. 6055. 6045. 6045. 6:55. 6C75. 610)5. (1. 4 . 

r.792 bC87. 6 r57. 6038. 6)29. 6629. 6036. 6057. 6087. 
C.H1 9 n113. 6") .7. 6 C42. 6024. 6014. 6014. (- 024. oi42. 6072. L111. 
(..(347 6099. 8C5(J. 6(3C. 6011. 6002. 60:1 2. 6 (1 11. 603. 6154. 4. 

-.675 o086. )046. ot-.19. 6001. 5992. 5992. b"Cl. 6(19. br48. ( 
,.4C3 un7d. C39. 6 -11. 5993. 5984. 5984. ti993. tell. 0 ) 39. 7 , . 
.931 6 .:7 2 . tà7J33. 10..35. 5987. 5978. 5978. 5987. 6CO5. 6,33. 

L.958 V.:87. fan28. 6'21. 5983. 5974. 5974 , 5963. 6N1. o'23. O'.  
L.9du (>J28. 5999. 5981. 5972. 5972. 5981. 599-i. “.,20. v't . 
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Table 7-6 

8FAT  PIF.  ANALYSIS II  
JUPkr.CE TEMPEIIATURES(DEU.fAHR.) 

PSI(DEGREES) 

9.' 45.0 63.D u1.1 qq.( 117.(7 155. 153." 1'!. 

14 2:.7.9 59 2.: .59 20.59 20.5-) 2 . 2.59 20.59 »..39 20.54 • 
2.2.59 20.59 4/%59 20.59 20.54 20.39 21.59 2.- .59 
2:-. .51 21.59 2 . .59 20.59 41.59 21.59 2 (7.59 2e.54 2 0 .59 2.2.5111 
2C.59 2:..59 20.59 20.59 20.59 2C).59 2 1- .59 2 (' .59 

'.• 12i ). 1 .59 22).59 2 1- .59 41.59 21.59 21.59 2 1 .59 2C.59 21.3-) 
.153 22.3 

22.5; 2/2.5J 2C.59 20.59 21.59 20.59 2.1...)%i 2r.59 2.'.1111 
..9 1(2.59 2‘..59 20.59 2 0.59 20.59 2J.99 »...34 »2.59 2. ,

▪  

.• I 
22.59 12.59 2 (2.59 20.59 20.59 2C...39 20.54 2u.59 

' .258 2.59 0. 5') 2' . .59 20.59 2/%59 21.59 20.59 4 - .59 .2.59 

• 

Ili 
5.264 4'7 • 59 2".59 2.1 .59 20.59 20.99 2C.59 20.59 2.'.54 21.54 2t 
3.292 21.59 2•,).59 2 r.59 20.99 1 .2.59 2.59 21.59  

2::.59 20.59 21.59 2..;.59 21.59 2 1 .0 
. 147 2C.h7 2C.f.:3 2(.59 2.3.59 20.59 2C • 59 2J.59 21'.02 
• 15.'24 15.24 15.24 15.24 15.24 15.24 15.i4 15.24 15.24 15._ 

,.4Z3 15.24 15.24 15.24 15.24 13.24 15.24 15.24 15.24 15.24 15. - 
2.491 "1.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 15.24 1-.111 
.458 15.24 15.24 15.24 15.24 15.24 15.24 15.24 1' , .24 15.24 t 
.4 P) 13:24 15.24 15.24 15.24 15.24 15.24 15.4 Pc.24 15.24 

T.514 11.C5 11.r4 11.13 11.2 11.12 11.12 11.2 11.'3 11..:4 11.• . 
11.L4 11. 2 3 11.C 4 11.C1 11.. 1 1 11.21 11.,1 11.2 11-1 3 11.111 
11.' 11. , •2 11.t.1 11.C3 11.v:. 11.21 11.2 11. • 

11. ,* 1 11.0C 11.Cr 13.99 1 ,. 1 9 11.: 11.2C 11.:1 11. 
2 ., 11.; 1 11. 0 :: 1'..r-49 10.99 11.09 1C.99 10. ,)9 1r • 11.00 11. 11 

.L59 11. 0 1 1.49 1 1 .99 10.98 10.98 10.98 10.9S lc.99 1C.99 11. 
• 881 10.99 1 .`,6 10.98 1).97 11.97 10.98 1C.9d 10.99 11. 

1 .," lr..99 11.88 lr..97 10.97 11..97 10.47 10.97 1C.97 10.98 1111 
1!..99 10.96 1 ....97 10.96 10.98 10.56 10.9() 1(.97 10.9b 

•7f4  10.7 lr.96 10.96 19.96 1C.96 10.4b 1C.9b 1.D.97 
1".98 11.97 1i..9c 13.90 10.95 10.15 1w.s3b 1C.96 10.97 1.  

..  1 1.i7 1 0 .96 17. 9 6 10.95 11.99 1C.95 10.95 10..46 10.96 
..847 11.97 1C.96 1 .95 10.95 1(2.95 10.95 1 1 .95 1(.93 10.98 V. I  

11.91 1C.9u 1 1 .95 10.95 10.95 10.95 1 1 .95 11.2.95 10.98 1:.t7 
.

▪ 

 'e 1 i 17. s6 10.96 1  .45 11.95 ir.y4 10.94 11.95 1C. ;i5 1r.98  
1...9u 11.95 1C.95 10.94 10.94 1r.94 11.44 1r.95 1C.i, 1

• 

: 
.2.558 lr.9L 10.95 1 •- • .95 10.94 11.44 10.44 10.44 1.95 P.'.9) 1T.ft 

11 .96 10.95 1.95 11.94 11.94 10.94 1 1 .94 .  10.95 11.45 

« ! 
- 154 - 

1 



PSI(DEGREES) 

27.r 43.0 63.n 81.;.` 99.r 117.' 135.• 1 . ,3.' 1 -7 1. 9 

•L37', . 11684. 10t4 4 . 
n3714. 10684. 106i4. 
dliz. 10684. 10654. 
8344. 1 0 664. 1 6 644. 
8157. 10664. 106(14. 
7970. 10684. 10 61 4. 
7dr4. 945C. 11684. 
7644. 8736. 106J4. 
748J. 3191. 1.-J634. 
7346. 7961. 912C. 
711'• 770':. 8448. 
u41t. 6916. 6916. 
tn24. 6814. 6824. 
u741,. 674C. 674n •  
66•3. 66t.. 6663. 
6i9 2 . 6594. 65)1. 
64br. 04 (1 U. 63,9. 
t4t. 635ç. E 3 14. 
£376. 6314. 6172. 
6331. 6274. 6134. 
6192. 6236. 61C. 
t.15t. 62O. 61(09 •  
6415. 6176. 6141. 
6196. o15n. 611o. 
t171. 611t. 6:)4. 
t145. 61(-5. 6C75. 
613. 6087. u057. 

6072. 6042. 
6C99. 605. 6r30. 

680. 6048. 6C19. 
6078. 0139. (011. 
6r72. 6133. 635.  
6'67. 6026. 6))1. 
6165. 6026. 5999. 

10684. 11684. 1 0 r-34. 
10684. 10664. 10684. 
1t664. 1l(034. 

1n684. 10684. 1(684. 
10664. ltob4. 10684. 
10604. 1L684. 
1'684. 1(684. 1n6A4. 
10684. 10684. 1.'684. 
1(684. 1(.664. 1'664. 
1n684. 1(064. 1r6b4. 

1tn38. 10664. 1Co64. 
6916. 6916. 691u. 
6814. 6814. 6824. 
6741. 6740. 674n. 
6663. 6663. 6663. 
6592. 692. 6591. 
63 4 9. 6314. 6314. 
6265. 6171. 6271. 
6245. 6232. 6132. 
6 1r9. 1 197. o197. 
6176. 6164. 6164. 
u146. 6135. n135. 
6119. 6109. t ) 109. 
6095. C#85 •  6686. 
674.  6064. 6C64. 
6155. 6045. 6045. 
bniti. 6129. 6029. 
612'4. 6`14. 6C14. 
6011. h-02. 6002. 
6001. 5992. 5991. 
5993. 5984. 5964. 
59 8 7. (.0)76. 5978. 
J983. 5974. 5974. 
5961. 5972. 5972. 

10684.  10e.. 1."( , ' , 4 . 
10684. •li664. 1c684. 

1(1U4. 

10604. 1 1:tt- 4. 1;4. 

106m4. 1r1v4. 1'uo4. 

10664. 1Cht4. 
1 0 664. 1Chh4. 
10684. 106. z, 738. 
1084. 1Cut4. h'/1. 

1(604. ‘4; - . 7102. 

10n38. 7 7". 
691(, . 691t , . r 4 1n. 

68 2 4. te..4. 6624. 
674'. t74'. 074'. 
b6u 3. 60C 1. 6 (' 6 

6591. 6592. 65)1. 
6329. t361. 04%.h. . 

02M5. L114. m3.)q. 44 

6245. u272. ol1 4. 

b2C. 0274. 

6176. t2r'. 

bi4t•. vioq. 62t.1 5. 

611' 1 . t 141. 617u. t • . 
b("4 5. (11u. •115. ml' 

0 n.74. 0 4 ' 1 4. •120. t 1 $1. 

u055. u.'75 1 
uC3b. mi. o^ti7. i . 
024. t• 42. t072. 011 s. 
bC11. ni3n. 
CCC1. 6 e 19. 

5993. n 0 11. on39. 
5987. 6Ç5. uO, J3. 

5983. trC1. br28. 

5981. 5 0 99. 6116. 

96 ,;. 11684. 10684. 17684. 1 ,:t84. 1rbb4. 1684. 1'uM4. 

Jti. 10684. 10684. 10684. 10684. 10664. 10684. 1Nri. 1U34. 
• • . 

••• 

n1 • ; 

1. ,  

7t 
/4. • 

;•. • . 

7. 1 .  . 

(,•1  1  . 
rh_4. 

ul. . 

t-ut 

4 ` 

.•_; ; 1 . 

f 

i! 

f 

f 

f Z/L 

il  

f J. - 14 

..r•t)., 
r.-97 

0 

r.153 

U.216 

i

I n.436 
i(-14 

0.94 
319 P L.347 

 (_..373 
72.4nj 

1111 C.431 
45o 

r.486 
0 C.514 

(..541 
C. 5o9 
:;.597 

II 
 i..625 

L.65i 
0.681 

il 

0.708 
'.736 
1:.164 

P 

0.7i2 
0.619 
C.647 
C.875 

J  0.903 
i...931 
C.958 

f 
0.966 

Table 7-7 

HEM" PIPE ANALYSIS 
t.:JVE SIDE COEIr(BTU/HF-SÇ.FT-F) 
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Table 7-8 

11 
Ii 
11 

1 1  11 
11 

, 

dEAT PIPE ANALYSIS 

SUE, FitCE TEMOEnTURES(CEG.FAHR.) 

Z/L PS1(MGRFE3) 

9.1 27.0 45.0 63.0 81..) 49.0 117.' 

O. 14 2'...18 19.95 19.93 14.93 19.93 19.93 19. 94 1/.)1 19.1) 
• 42 2 2 .2 19.45 19.93 19.93 19.93 19.93 19.93 19.J4 14.  5 . 

;.!69 2'.22 19.95 19.93 19.93 19.91 19.43 19.93 14.43 19.15 
C.91 20.2t 19.96 19.93 19.43 19.93 19.93 19.13 1 9 .93 19.96 
Z.125 20.29 19.9e; 14.93 11.93 1 9 .93 19.93 19.93 19.93 19. 9 c 
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wall. Substantially more severe changes might be expected if an aluminum 

or copper pipe wall material were used in place of the stainless steel 

one considered here. The results are, nevertheless, consistent with the 

anticipated behavioral characteristics, with the relatively weak dependence 

of the pipe overall conductance attributable to a pipe wall limited oper-

ational mode. 

7.4 Closure 

An examination has been conducted in this chapter to study the 

effect of the assumed  minimum  break-away contact angle on heat pipe per-

fûrmance for the two test cases cited in the text. It was found that while 

the eauivalent heat transfer coefficient exhibited substantial variation 

with the minimum break-away contact angle, the resultant effect on the pipe 

exterior surface temperature variation is considerably de-sensitized. This 

de-sensitization is attributable in part to the isothermalizing nature of 

the high conductivity pipe wall material and also in part to the high 

magnitude of the equivalent heat transfer coefficient which causes the pipe 

wall temperature distribution to lie close to the uniform vapor temperature. 

In interpretting these results, however, and in drawing conclusions regard-

ing the heat pipe thermal behavior, it must be remembered that the observed 

influences are application and heat pipe design dependent. 
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Chapter 8 

Discussion and Conclusions 

8.1 Summary 

It has been the object of the investigation presented in this 

report to determine the heat transfer characteristics of grooved heat 

pipe walls. In particular this study is directed at determination of 

the 'equivalent heat transfer coefficient' which provides the thermal link 

between a hypothetical surface, the groove root surface, and the 

isothermal vapor core. Since the majority of the temperature drop 

encountered in high capacity, moderate temperature heat pipes will occur 

in the groove region, accurate prediction of the groove thermal behavior 

is fundamental to the accurate prediction of the overall performance of 

heat pipes of this design. 

The analyses presented within this report consider the general 

case of grooves having arbitrary, trapezoidal cross-section with the 

single exception that symmetric groove configurations are exclusively 

treated, i.e. the exposed fin tip area is equal to the groove root area. 

While this restriction must be placed on the interpretation of the 

results, the problem description and, indeed, the solution program, both 

maintain the flexibility of applicability to the non-symmetric situation. 

Two limiting cases of the general trapezoidal groove shape are commonly 

used in heat pipe applications. These are the case of zero land area, 

the triangular V-groove, and the case of fifty per cent land area, the 

rectangular groove. 

A mathematical description of the groove heat transfer problem 

was presented in Chapter three of this report. It was concluded in that 

chapter that the heat transfer problem is primarily one of conductive 
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1 heat transport through the metal/liquid composite from the groove root ' 

surface to the vapor core. It is assumed, however, that the hydrodynamic anal:, 

sis has been performed elsewhere and that the liquid cross-section at any 

location within the pipe is fully determined. It became clear through 

the analytical solution development of Chapter three that a complete 

analytical solution to the equivalent heat transfer coefficient problem 

is unattainable using current mathematical methods. This realization 

led to two alternatives for determination of the groove heat transfer 

characteristics; determination of upper and lower bounds which when averaged 

yield a band of solution uncertainty which is acceptable for engineering 

purposes, or a complete numerical solution to the composite heat transfer 

problem. 

Chapter four of this report is devoted to a study which establishes 

upper and lower limits by which the actual heat transfer is bounded. The 

theorems of Elrod [ 35 ] were used in this analysis but unfortunately 

the resultant range of uncertainty is unacceptably large to all;. irct 

 application of the results. The calculated limits still serve as a 

check, however, on the now required numerical solution since the numerical 

results must be between the two bounds previously calculated. The 

numerical results which were computed for the groove heat transfer 

problem satisfy this requirement. 

Convinced that a complete numerical solution is required 

to provide an acceptable solution, the finite element method was 

selected as being the most .appropriate numerical method for use in 

this problem. The prime motivation for selection of the finite element 

method over other available computational methods is its capability of 

providing the geometric flexibility demanded by the problem configuration. 

Nevertheless, application of the method was not direct. 
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The thermal problem under consideration here displays a 

remarkable combination of influences. While there is a very high 

degree of detail required to adequately describe the thermal field 

near the meniscus contact point, the remaining bulk of the cross-

sectional geometry is sufficiently significant in its thermal behavior 

that it cannot be discounted. This leads to a situation where a 

relatively large region must be discretized in order to 'pick up' 

its thermal characteristics, and within this region there exists a 

sub-region requiring extreme geometric subdivision to adequately 

describe its thermal behavior. Such a combination foiled the first 

two attempts at a viable mesh subdivision scheme. Finally, after 

a critical examination of the first two mesh generators, a third 

scheme was devised which met the problem requirements. The problems 

encountered in devising an acceptable solution procedure is in support 

of the conclusions of Chapter three, that the problem is indeed complex. 

The finite element method was described in Chapter five and 

a derivation presented for application of the method in any general 

orthogonal curvilinear coordinate system. The very close similarity 

of the resultant functional to the commonly used cartesian form allows 

extension of the method to be made to these coordinate systems with a 

minimum of effort. Application of these generalized results was made 

to the cartesian coordinate system which is used to describe the 

trapezoidal groove problem. 

Several problems were encountered in the application of the 

finite element method to the trapezoidal groove problem, with these 

problems being related exclusively to the spatial subdivision scheme. 

Briefly, these problem areas resulted from the use of elements having 
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aspect ratios much different from unity and from the use of skewed 

diamond-shaped elements. A great deal of effort was expended in 

overcoming these difficulties with the third, final mesh generation 

scheme providing acceptable results. 

The third mesh generation scheme was applied to the extreme 

parameter combination case of kf /1111 0.001, el  = c2  = 0.25, xa  = 0.05, 

and o = 20 deg. The numerical results exhibited a monotone and 

asymptotic behavior as the number of degrees of freedom of the solution 

was increased. Extrapolation of the numerical data suggested that 

the solution error at the last data point would be less than five per 

cent. In further support of the numerical results, a second case for 

which an exact analytic solution is available was computed. In this 

example, a conductivity ratio of unity and a full groove condition were 

examined, clearly not as severe a test as the previous case. Nevertheless, 

the excellent agreement displayed by the 0.15 per cent error for this 

case fully supports correct functioning of the solution program. 

A parametric study was conducted in Chapter six to determine 

the influence of the problem parameters on the equivalent heat transfer 

coefficient. Four parameters are considered here; the conductivity 

ratio ' kf /km' the groove depth, d, the groove land area ratio, e, and 

the apparent normalized contact angle, xa . Parameter variations were 

considered that encompass the range of most practical interest. A 

correlation equation, provided for convenience in application, inter-

polates the numerical data with a maximum error of correlation of 

seven per cent. Since the heat transfer is dependent on four indepen-

dent parameters, improvement in the correlation agreement can only be 

obtained at the expense of additional complexity. As was found in 

applying the results in a typical heat pipe application, as demonstrated 
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by the results of Chapter eight, the surface temperature distribution 

is relatively insensitive to the variation of the equivalent heat 

transfer coefficient. This behavior is typical of many heat pipe 

applications. 

8.2 Conclusions 

It is concluded, based on the arguments presented in Chapter 

three, that  conduction  is the prime mode of heat transfer within 

the metal/liquid composite region of grooved heat pipe walls. Although 

other modes are definitely present, they are of secondary importance 

relative to the conductive contribution to the heat transfer. These 

secondary influences are further de-emphasized by the apparent insensi-

tivity of the pipe external surface temperature variation on variations 

in the internal equivalent heat transfer coefficients for typical 

applications. 

With a limit study failing to sufficiently narrow the 

band of uncertainty in its resultant values, the heat conduction' 

equation and boundary conditions were formulated for solution by the 

finite element method. Indeed, the current finite element formulation 

of the heat conduction equation was expanded in this report to include 

its application to any general orthogonal curvilinear coordinate system. 

With this in hand, redûction to the cartesian coordinate frame is 

direct. 

The finite element method was successfully used to solve 

the groove heat transfer problem; In effecting the solution, however, 

several problems were experienced and were exclusively related to the 

mesh generation scheme used to subdivide the continuum. These problems 
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reflect directly the complex nature of the problem under consideration 

in this report. Equally important, however, is the warning that 

these problem areas offer to the finite element user. Although the 

method offers geometric flexibility, care must be exercised when 

large departures from square, orthogonal elements are required if the 

linear isoparametric quadrilateral element is used. 

Having finally devised a reliable mesh generation scheme, 

the equivalent heat transfer coefficient was computed for the combina-

tions of parameters deemed to be of practical import. .It was found 

that the dependence of the heat transfer on the apparent contact angle 

is relatively weak when compared to the severe dependence displayed 

by the approximate model presented in a previous report [16 ]• The 

trends, however, are consistent with that previous model. 

It was found by application of these results that even for 

variations in the equivalent heat transfer coefficient approaching 

fifty per cent, the influence on the surface temperature variation was 

less than ten per cent. This conclusion is extremely application 

dependent, but for heat pipes operating in the moderate temperature 

range, it is most probably a typical result. This result is an 

attractive one in the design of heat pipes. The precise details of 

the groove flow need not be exactly known a priori in order to obtain 

an approximate solution since the sensitivity of the pipe surface 

temperatures on local liquid cross-section is not extremely severe. 
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Appendix A 

Geometric Description of Trapezoidal Groove Section 

We are in this section concerned with the geometric description 

of the heat transfer analysis cross-section for heat transfer from trape-

zoidal grooves. The groove region is filled with a liquid, the heat 

pipe working fluid, while the remainder of the section is composed of 

the heat pipe containment wall material. The analysis geometry is illus-

trated in figure A-1. 

Locating the origin of a cartesian coordinate system as shown 

in the figure, the heat flow symmetry boundaries are defined by the sur-

faces x = 0 and x = w. The pipe external surface is defined by the sur-

face y = O. In general the cross-section will not consist of a sharp 

'V' configuration so that a land area and groove root area are defined 

having thicknesses c 1 and 62 respectively. For symmetric grooves 

1 = 6 2 •  The groove section is further typified by a groove half-angle 

of o while the second angle characterizing the heat transfer is the 

apparent contact angle Œ. The remaining parameters to be used in the 

geometric analysis are indicated in the figure. 

The groove root surface is defined by y = HLSD over the domain 

Oexec2' and the groove land area is defined byy=Hover the domain 

- c1 ) x w. The liquid/metal groove interface is given, then, by 

the relation 

(y - HLSD) = (x - c 2 ) cot% (A-1) 

over the domain 6 2  < x < - c1). " 



ro sine o 
cos(a + o) 

ro (bi - e 1Vsine o where 

(A7-2) 

(A-3) 

y K  A32 x2 (A-9) 

The liquid free surface, circular in cross-section in the 

absence of gravitational forces, can be characterized by a free surface 

radius of curvature, 8, where e can be determined from [16] 

and, locating a virtual origin at the intersection of the plane x = 0 

with the groove liquid/surface interface, the separation of the free 

surface radius of curvature center and then this virtual origin,K 1 , 

is given by [16] 

ro cosa 
(A-4) 

cos(a + 

Further the separation of the virtual origin and the origin of figure 

A-1 is given by 

0(figure A-1) - 0(virtual) = 2 cotOo 
- HLSD (A-5) 

Defining a parameter, K, by 

K K (c 2 cotO o 
- HLSD) 

the equation describing the free surface is 

(y - K)
2 
 +x2 

=6
2 

Expanding and rearranging equation (A-7) leads to 

y2 - 2K y + (K2 - 2 + x2) = 0 

(A-6) 

(A-7) 

(A-8) 

from which, solving for the roots of (A-8), the free surface description 

becomes 

where only the smallest of the roots is an admissible one. The domain 
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of applicability of equation (A-9) is the domain 0 e x e (w — c i ). 

For the special case of a full groove condition, the limiting value 

of equation (A-9) for e - is not immediately clear. For this case, 

however, the free surface description is given simply by 

y = H (A-10) 

as is apparent from the figure. 
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Appendix B 

Programs for Heat Transfer Limit Evaluation 

B.1 Introduction 

In this appendix the program listings for the evaluation 

of the upper and lower groove heat transfer limits are presented. The 

programs serve only as mechanism for evaluation of the integrals pre-

sented in Chapter 4 of this report and as a result there will be no 

discussion here of the underlying theory. Both programs use a modi- 

fied Simpson's Rule algorithm, the subroutine of which is included 

in the listings. To aid the interested reader, a brief nomenclature 

is included for the listings. 

B.2 Groove Heat Transfer Lower Limit Program Nomenclature 

The pertinent symbolic Fortran names used in the program 

for evaluation of the lower limit are presented here with frequent 

use made of the variables introduced in Chapter 4 of this report. 

Since duplication of .certain mainline variables occurs in subroutine 

DINTGL, only mainline variables will be included in the nomenclature. 

Al = A1 

A2 = A2 

B1 = B1 

B2 = B 2 

BETA = 

C = H - d 

Cl = C1  



C2 = C 2 

CONDI = km 

COND2 = k 

D = d 

DINTGL = subroutine for integrà evaluation 

DKAPPA = K 

DLIM1 = integration limit 

DLIM2 = integration limit 

DLIM3 = integration limit . 

DNUM = Nuf  heq/(N.kf ) 

DNUM = Num  = heq/(N•km) 

El C
1 

E2=e2 

Fxl = integrand for integral I 

Fx2 = integrand for integral II 

H = H 

HEQ = heq 

I,J,K,L = array subscripts to allow Parameter variation 

PI = u 

• Ro = ro 

RTOT = RT  

REQ = 1/(heq w) 

THETA = 00 (in degrees) 

THRAD = 0 o (in radians) 

Ul = 1/RI  • 



U2 = 1/R11  

UTOT = 1/RT  

W = w 

XALPHA = a/(r/2 - 0 0 ) 

B.3 Groove Heat Transfer Lower Limit Program Listing 

The program listing for evaluation of the lower groove heat 

transfer limit is presented on the following three pages. 
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FILE:  LCW I IN FCRIIAN A UNIVERSITY OF IIATERLOO CONVERSATIO. NAL MONITOR SYSTI . 

III 
c  . •  LC% COO / C 
C LCV001 
C CloCCVE 'L 'T AI RANFR SE LC M LCYn COt al' VER LIIT ' 

q 

C • L C »00040 
C  
C 

LCV•C(1111 
LC '000t: 

INF I IC II REAL''b( A-EIC-Z I I.ClotfCC 
DINERS. ICN E1( 2 )1E2( -3)1E( 3 ),CCNI)2( 3 )IXALEHA( 4 ) 
EXIFFfl_ N F Y# liIIIN2 . 

LCIefICI 
LCC1 

CCNINC14/CNE/A1,E 1 .C1 ,EET.A.A2 1E2 .C2 [CND() . 
. C LCMCC1 le 

C . Lciern - 
LC»0011111 C INFLI DATA 

PI = 3.14152(5E73 LCA‘00140 
C = C. 1 

Ift = 1.0 
1n 1: 1 = 1.0 1.("4C(' : 

1. C 1‘00 e 
CC 

t' 
(UK(' 

REAL( Ell) (E1(L).1.=1.3) LCMCC1K 
1 FChhAIK10.51 LC‘t0(1  PEAL( F. 1 '2 ) ( E2( L ) .1._=1  ,3) LCNOCIII 

E  

2 ECF!#A1(2110.E) LCNCC2 li: 
REAL( 512 ) ( El Y ) a=1- pa ) LCW00 

2 FCRNA1(2k10.E) ICUCO 
le. 

REAL( E14 ) (CCE rt2(J )1(1=113) LC»Cr2 C 
4 FCFNAI(Z.'110.F. / LCWCC n REAL( E 1 E ) ( )(ALIFA( 1).1=114 ) LCVICU 
S EC1ik.A1(41c10.€ ) LCNIff fv, 

MR 
 

11 E(  .Ç. II ) ( E I( L ),L=113 ) IC%Ce2ii( 
1 

LCUCC11 : • 
MR 1'1E( S 12 ) ( E2( I ),L=1 ,3 I LC» C 

1.C4C.C31( 
LCVfCCIr 
LC*C0 
L.C. 0 M0( 
LCIerC3 Et 
In 

C 
tilt 

LCWCC: 
C WI IN INAFY CALCULAIICNS LC4C(12&( 
C 

TERA I 
LCM00 

= EATAM( M-E1(  L)-E2(  1 ))/D(( 1()) 
. 111 

ICViC(1 1 
If( XALII.,4 ( I ).(1 . I.° ) XALPHA( I )--= 0.999 LCV(34 . 41( 
ALFA  = XALFEA( I)*( El /2.-111RAD) 

RC = ( M-EI( L MIS IN( THPAE) 
Il = ('st-I I( I. ) )/E1AA( "'BRAE ) 

Ic ndri:-. 

intut 
I.C»Cr 

EF:1 é = FC' ES IN( 11;AL)/ECCS( ALPHA+111FAD ) I.Cle( (.14E( 
Ch(AFFA = C1)CCE( ALFMA 1/CCOS( ALPHA+111kAE / 
AI = ( IYAFFA-E2( I )/CIAN( 1RRAE ) )/( CONE2( J MCCNE1 ) LC 0MC 

LCV00 1 icg  

4f + F2( I. )/I1AM 7BRAE ) + RC*C+ESIN( TI1RAD)/M ICMCC4K 
HI = RUBCCE(111FAL)a + El(L)/(EC*DCCS(IFIRAE)) • 

* - 1» /( DIAN( 111FAD)*CONE2(J )/CONE1) 
LCM0‘t11! 
LC0(); It ' -  

; Cl  = -CCNDI/CCNE2(J ) LCM04).51( 
A2 = LILA FFAM CCI+E2( J )/CCIn El ) + FC*ClkES IN( TFIRAt )/* LCIC 

2 z 1,(*EccE(1 F F AC ) P A + E It L )/( IICenECCS.( 1IIRAL ) ) I. ( ' CO 
- le/( DIAN( lEIRAD)*CONC2(J )/CCNE1) 

IOI 

* 

f 
i 

LCMOU L 
C2 = -C(ND1/CCNE2(J ) . 1,C1+005EC 

' 

(ccri£2(J),J=1,3) 
(MALFEA(I),I=1,4) 

LC  '.;E« L=1.3 
DC 2E 1(l,3  
EC 27 J=113 
EC 1=114 

1 



LCML114 FORIFAN A uNIVENEITY OF MATENLCC CClOrEFEAIIONAL MCN11C1 EYS11- N. 

ICN00560 
— C---------11NIIS CI 1FIFG1AIICN 1CmUUEIG 
' C ICy0a5E.0 

El l>1 = f.r. LC“(JF10 
DLI>f2 = F2(L) 

. 
1(m00600 

EL1).2 = 1-C-E5.1b(1FFAE) LC%CCe1C 
: C icV0062n 

C--- ------ IblI(I, A1 I‘ALLAIICF Ln‘Cft.00 
C icmoo64e 

CALE  EIF1G1(EI11+1,ELIY:2,FX1,DINI1) L(MC0(Er 
. CAL1 IINICI(E11y2,1A1M3,FX2,EIN12) IcCrf-cC 

* . (7 . tuvvr(lIc 
.c---------cCktliAl1CF CF R 1-ON1REE EFSULTS ic ntfilibho 

IC  Ll = EINI1 
tcleCCOC 

.. l(moil700 
U2 = 11F12 Icv(1-71c 

1

UICI = LI+C2 
11C1 = 1. 1 11(1 

1.(10172C 
LCMC(13C 

PEC = 11C1 – (C4 F2(1)/E1AN(IHRAL))/(CONE1*1) LCV(074C 
EEC = 1./(hEÇ.M) 1CMCC7FC 

1 
.ENCF = 1tt'2.'-1/CCbE2(J) 1C 070 
LbUlo, = EF1F b -c(E2(J)/CCNE1 

mCi 
i(v(1 0770 

C Icm007b0 C CL1FL1 LCMUC I 7L-C 
. 

C 1(100S0r, 
Mk11F(Et1C) LCMCr1C 

I 
10 FCia..A1( 1 1 1 ,////aC)(,IEEIABlIENING GECC«U BLAI INANEFFFI, teA40oS2C 

3.4 t 1CMFF L1NII , 1 //) 1CV40n ,-2C 
• 11.11-1A = INFAE , 1FC./11 1 iC‘t0ux40 

V.I !Ik( IHEIA 1Cy0OSFO 
1 11 FcFNA1( 1 8 ,2UX,IFAIF 61.CUVF  ANGLE  = 11 ,F1.3, 11  LEGFEES 1 1 /) LCMersEC • 

ALFLIC = ALPHAilK./FI lce0C1c. 1  
: mbl1F(E,12) ALFEEG LCVOUqSn : 

•• 

12 PCNNAT(' .12()4 1 AFFAhENI CC 1. T1AC1 ANGLE = ',7.3 1 1  EEGNFUS°9/) LCMUSU 
Mh111(E,13) 1 

i 

[cm(CPCC 
• 1:: FCF4A1( 1/ 1 ,201, 1 C1CCVF CELL FALL–It1D1H = 1 1F1.3,/) 1CNIffPlf 

1(11F(E 1 14) 11(1) 104COP2e ' 
1 14 FC).1( 0 1 92C>9 1 LANL AFEA NAlIC = ',F7.3',/ ) 1CMCC92C 

Ill(fIlE) 42(1) 1CuCp114c 
1E FCF ,4A1( 8  •,2C), 1 GbccV1 FCCI MUTE 1%A1IC =  • 11-1.3,/) Lcm10FC 

1 . LI.C11 = F+C icmCC9tC 
11eI1E(E,1E) ELGIN 1Cm0 0 970 

1( FCFbAl(' 8 ,2C)4 1 1FE1 SLCTICN LENGTH = '11-7.3,/) LCMCcbC 

In 
l() ICMCO:“r 

 FCINA1(' 1 ,2C),'ACTUAL CFCCVE DIETH = 1 .F7.31/) 
Ne k 

LCM(Ictr 
1 11.11E(illF) CCNE1 1CM(101C 

kC1MA1( 0  $12CIleCCNLUC111iI1Y CNE = ',F1.4, 41./) Lcmcio2r 
MF11F(E9n/ CChL2(J) LCMC102C I n E(kM.A1( 1  ',2C),'CCNELC11VI1Y 11C = 8 9FP.F.,/) LCMC104( 

. UP11F(e.2C) INLE ICMU10EC 
1 . 26 FCPSA1( 1 0 12CIONUBASEE CN l(F1 = 1 9FIC.E,/) Le.»ClneG 

MF11F(t,21) IFIA - 1CMC10IC 
- 21 FC1i4A1( 8 1 ,20),Ibt * àF/EM = .1 ,F9.E.,/) LCMC1rFe 

I 
2$ CCN11NLI ICMClqFC 
21 CCN11NIE 1C1G1100 

- 179 - 



- 180 - 

FlIE: LCMLIM F0R1bAN A UNIVERSITY OF WATERLCC CCNVEREATIONAL NCNIICR SYSIeN 

Ill  
;E CCblIbLI LCWC111( 

MbilE(E122) 
. 

,•, 
LCVICIef 
IC1101 

;E CCNIINLE 

;2 ECIihr0 1( 1 1 1  ) LCWC1 4( 

EN C 
 S1CF ICWC113( 

C ICWC1 ( 
LCM0111( 

C LCM0118( 
C LCMC1 

ELEI.CIAINE DINIGL(A,BeE,YNT) LCM01 
INFI1C11 }EAU(A-BIO-Z) ICWC121( 
NN = 1C 

1C1 CCN1INLE 
 . LC*C11 

LCM01 
H

11( 
= (E-A)/NU LCWC1 4 1 

SLN = (F(A)+I(E.))/4. + (F(A411/2.)+F(B-14/2.))/2. LCMCl2'( 
* 

NNN 
NN-2 + 11.*(1(A+E) 4E(11-11))/12. LCW011t 

= LCMOI c  
DC 1C2 b=2 9 NNN I.CNO128u 

hlbLE 
/b1 = ELY'll 

LCMC1Il 
Lcmri t 1C2 CCI 
LCMC1 r 

sum = StM+F(A+1E) 

IF(NN.EC.10) GC IC 102 
ERk = EPES((libl-YNIC)/Ibl) 

. LCW0171 
LCMCI 

11(Ebb.11.10E-04)  CC  IC 105 ECJI4 
10Z.: CCN11bII LCK013' 

Nb = NNe2 
= Yhl 

Lcvni 
YNIC 

llt 
woe' 

Il(bb.II.400C1) GC IC 101 LCMC13k 
R111:( 11C4) 

1C4 FCAINA1(° °1/11C IN I,ITEGRAL b CT CCNVERGEN1 Al 40000°, 
, 

1CMCIIII 
LCMC 

ME 

0  SIEDIVISICNSI./) LCNC1 1 
ICE CGN11NLE 

kElLbN 
ICNOIJ1 

E 
LCM011 

NE  LCMC 
C L(M014E 
C 
C 

LCMCIII 
LCm0 

ELNCI1Cb FX1(>) LCWC1414  
I1FLIC11 EAL ( 8(A-E 9 C-7) LCMC 
CCNbChiCNF/A1,E1yClIEFTA,A2 1 .E2,C2 LCMC 
I-3(1 = 1./(Al+E1eX+C14'ESORI(EETA**2-X**2)) 

1 

ICU° 

)1 

 j1 
FLILEN LCVOIF 

C 
ENT LCMCIII 

LCM0 
C LCMCISE 
c LCM011 

FCI1Cb FX2(X) LCW(1  1 Lb 
1 

IMFLICII 1sEALi(A-111C-Z) LCWC1EF 
CCNNCNKNE/A1lE17CIIHEIA,A2,132 1 C2 . ICMC e  
FX2 = 1./(A2+E2 0 X+C2*DSORT(EITA**2-X**2)) LCWO 1 
kElLFN LCNO 1 
ENE 

. 
LCNC16( 

I • 
la 



B.4 Groove Heat Transfer Upper Limit Program Nomenclature 

The program nomenclature used for evaluation of the upper 

limit for the trapezoidal groove heat transfer follows closely that . 

of the lower limit determination program. Where exceptions occur 

they are either self-explanatory or of no consequence, as for example 

in the case of localized working variables. As a result of the nomen-

clature similarities of the two limit prediction programs, a second 

nomenclature will not be presented here. 

B.5 Groove Heat Transfer Upper Limit Program Listing 

The program listing for evaluation of the upper groove heat 

transfer limit is presented on the final three pages of this appendix. 



FILE: HIL Ill P0M1IAN A UNIVEIS III  OF RAIEELOC) CONVERSATIONAL MONITOR SYST1 

I 

C   H ILOCG IC 
C H ILOOr 
C CFCCVE FIAI IRANEFEE LEPER LIMIT k 114 
C HI100( C 
C   HILOCO 
C HIL(101111 

1)/F l IC11 &EA'. A5( A-1,C-2 ) F1100 
DLNEN5 ICN EI( 2 1,F2( 3 ),L( 3 1,11ALFIIA( 4 ) 1411000SL 
EXIEENAL 1)(1 ,IX2 F II CC 
CCVMCN/CNF/DICAPPA,THRAC,CONI1,CCND2( 2 ), RC,*, tkAR 1, EPAR2,J H 

harr 
lIfluel 

C , U 
C-- ------ -INFIl DAIA H I LOO • 1 
C ki 114'0 

PI = 3 .141P22EEZFE1F,3 H1101 
C = C.1 H 11001 = 
CCNI I = 1.0 HILC(111( 
* = 1•C HILCC 
HE AI( E, 1 ) ( Ell I 1,1=1, 2 ) HI1CCIFC 

I ECM/0AI( ZF10. 5 ) HILCOit 
kFAC(E,; ) ( F';( 1 )11=1,3 ) 1-1100 

- . FC104A1(..:FIC.E) H1100 l 
PEAL( E ,Z 1 ( C( li )1k=193 ) 1IIC01 

Z FcrrAlualOsEl h tier 
kk AI( 5 9 4 ) ( C(EE2(J ) 1 .1=1,3) 14IICC1( 

4 ECI,NA1(ZIF10.E) 11  IlCil )5 
HEAL( E te. 1 ()(PIFFA( 1),1=1,4 ) 1. 'LC(' 

c FCI•NAI( 4111.i.E ) till( le 
IF IlE(€ 91 ) (Il ( L) ,L1 13 ) 1.1110211 
111.11 F1 F. 92 3 ( E2( L ),L=1 ,3 ) F 1100' 
*FilE(e ,2 ) (t( S ),K=1 93 ) H It Cli 

I 
 

% TiT 1E( £ 1 4 ) (CCbC2( J),J=1 13 ) b IL f 
t 1.11E( E IF. 1 ( ItAlFEA( 1) 9 1=1 94) FILL1-1" 
LC ;e. 1=1,2 F ILA 
DC 'It X=1,3 H1100 
CC :1 J=1,3 H II Cr3FI 
CC 2E 1=1,4 H1100 

C HILC611 
C FPILININAII CALCUIAIICNS EILC•311 
C HILCO ' 

TEI• AI = LAIAN(1 1-E1( l )-E2( 1 ))/D( K ) ) lillerti 
IF( XALIIM 1 ).(I .1.0 ) XA1 HIM I ) =  0.999 HI l(10 I 
ALFFP = XALFEA( 1 Ill F1/2.-TH5AD) HI1C()4 
h = LI I l +C HUAI 
kC = ( M-E1( I ))/EE IN( IHPAC) HIlClIl 
PET A = iG CS 11+( 11- FAE)/ECC5( PIFEA+IHRAE) HIECC1451 
EMAEFA = FC - DCCS( ALPHA )/ECO.f.( ALPHA+THRAL ) H IlOu 
LI Al.1 = LicAPFA»I£IN( THFAC) HUAI.' 
IF Ale2 = L ah ItAFFA-iCECCS( 1HFAt ) HIICt. 1S1 

( HILCr -1--  

C  L Ili IIS CF IN1EGI.A1 ICh EILCCIr 
C HILO° if 

CL1h11 = kEIA 
DI142 = CSOk1(11 4 *:+(CKAPPA-gC , EC0SITEHAII)xee2) 
DLIY12 = DLIWII 4 C.CCE*(ELIN:-DLIM11) 
£1.11d3 = DkAPPA-E;(L)/rIAN(TPYAE) 

11 11 0 057 1  
- HTI0011i 

H  L 00W 
811.0O5F( 
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II FILE: HILIN FOk1RAN A UNIVERSITY OF 1ATEeLcc CCNVERSAIIONAL MC14I1C14 FYSII 

r  c 

) 

; 

mit005e 
HU0051 
HILOn5t4 
F110PFE 
IIILP06C 
FUGC*61 
111L(ü62 
14110063 
HUCC64 
R11006F 
HUCCItf 
H11(161 
HIIC061. 
HUCC66 . 

 HILCO7C 
HUG071. 
HIle072i 
811.00731 
14 1100741 
141100751 
>urine' 
N 1101)711 
14 11C0714' 
FI L00791 
m110080( 
iiI1(1 0m11 
F1100g2( 
Nitoom3( 
H I100s4( 
ki1100NE( 
HILnOSE( 
14  1100147( 
ifilt08è( 
14  1L00$1( 
FILCOSC( 
F11C091( 
N 110092( 
1.11 09( 
N 110094( 
HILOOSEA 
P UCC9t( 
FIICOP1( 
e liCOSFC 
bliffël( 
HILCIOCC 
MI/C1C1C 
tlICIO2C 
FILC102C 
HIL0104C 
MIIC105C 
141101060 
11110107( 
milelObC 
EllelOEC 
141101100 

INIEGRAL TbALLATICp 

CALL IJNICIIIIIII.11,DII>12, 1-31,DINT11/ 
CALI 1110GLIEIIM129ELIN2,FX1,DINT12) 
CALL II141CL(ELIV2ILIIM3,1-X2 9 EIN12) 

CCNFLIAIICN CF REQUIRED RESULTS 

RII = LIN111 
kl2 = 11 14112 
141 = 1.11 4 1.12 
142 = I 1 1412 
R2 = (1-1(b))/(CCNLlel) 
R1C1 = 1.1 4 142+1Z 

= 2./I(11C1-13/*CC14E2(J)) 
DbUR = L1.LF - CC1.I2(J)/CCNI1 

Ct 1111 

114111(t,10) 
1 0 FCIIMAII I 1 1 ,////aCkOESIABLISHING GRCOVE HEAT TRANSFER°. 

lPFEN LIWIT',//) 
1FF1A = 1HWAte1ECe/PI 
Mk111(E.11 ) IHEIA 

11 ec1'rA1( 1, 1 92G)i,I1 FALL GICCVE ANGIE = '9E7.30 LEGNEFS',// 
ALILEC = AUFA*1EC./F1 
I 1.IlL(t e 12) ALFEEG 

12 IC1.IAII 1 6 92CIOAFFAREN1 CONIACI ANGLE = ' 1 E7.30 EFGRFFS',/) 
M 

IZ FCRMA1(' °,2C1OC1.CCVE CELL EALI—MID1H =  
1E11E(E.14) 11(I) 

14 fcewAlc• 1 920)0LAN1 ARIA 14A1TC = 
beIli((elE) 12(1) 

15 F(R1.A1( 1 1 920)OGICCVE FCC1 11EIH MAIIC = 1 . 147.391) 
IFI1E(E lp1t/ I 

1t FCRk141( 1 1 ,2C)OTEST SECIICN LENGTH = ',F7.3,// 
IIII1E(E.17) UM/ 

17 F(IIMA1(' ',2C)OACTUAL GRCONE DEPTH = 1 , 14763 9 1) 
CCNLI 

ECR1.A1(' 1 .2C) 9 1 CCNEUC1IVI1Y CNE = 11 9FE. 41,// 
CC/12( 11) 

IF FCIMA1(' 1 ,2011,'CC1iDUC1IVIIY TIC = 1 9F9.5.9/) 
lI1.I1E(f920) INC,/ 

20 FC1.14A1( 1 1 ,2C)ON1(EA5EE CN = spF10.5 9 /) 
Il1I1E(t921) IMAM 

21 FCR1.A1( 1  °,2010NU * REM = ',19.5,/) 
2E CCN1INIE 
21 CCI0I14UE 
24E CcblINEE 
25 CCN1INtE 

1e1lE(  E,22) 
Fc1.br1( 1 1 11 ) 
E1CF 
ENE 
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FILE: HILIb FOk1RAN A UNIVERSITY OF WATE&LCC CCNVESSATIONAL MCNITCR SYStee 

Il l  
C HILCIL10 
C enci H je 
C ILO! 

Siti(ilINF Elb1CLIA,h,F,IINI) EILCI C 
INFLICII PEAL*F(A-F,0-2) EIL011 
NN = IC sill 1cl CCN1INIF HILO] 
B = (I - PUNN • EllCil 
SlM = (f(A)+F(E))/4. + IF(A 4 11/2.)+F(S-H/2.))/3. IiIICII 

* + 11.*IF(A+14)+F(B-B))/12. Burl 
NNN = NN-2 FIL0121C 
DC 1C2 N=2,NNN H1L01' ? 
Stik = 51.1+E(A+N*1) H1111t 

IC2 CCN11NLE HI1C1 C 
YNI = ELbell illiCid 

01. IF1bN.E(.10) GC IC 102 HIL 
EPP = I)ES(1114 1NNIC)/Ibl) EILCI 
11(EFP.II.1.I-04) GC IC 105 HILC12bC 

102 CCN1INIE HILL1
1

111 
Nb = NN*2 H101: 
YNIC = Nbl HI101 0 
IE(bN.11.4001e) CC  IC 101 H 1 LCI. 
MMI1E1E,1041 EILC1: 

104 ECPMP1(° °1/91C1, 9 1NTEGPAL !Cl  CONVEEGENI Al  40000°, FILC1.. C 
* • SCEDI%ISICNSI,/) ElLell 

10E CCN1INIE IL01 
REICFN H110111) 
ENC ElIC13bC 

C HIL01111 
C blIC1 
C HIE01 C 

ELN(I1Cb EX1 ( 1) 1111.C141 
IWEII(II mEAL 4 F(A-E,c-z) bur! 
CCMYCN/CNE/CAAPFAtIEPAC.CCNC1,CCND2(3),M0,1 1 DPAPI,CFAR2,J EILCIIIC 
GE = LAI.SIN(EFASI/X) - IERAC P110145 
G› = IPPCCS(CFAE2/X) • GE F ILr I ir 
F11 = 1./I(CCNI2(J)I, GI. + CCNEI$GM).X) HILO! 
PEIIFN EILCI4bC 
ENI: HI101; 1 

C BILC1 
C B11011  1C 
C 1411rI5' ' 

FINCIICN EX21)1/ Hitotli. 
leFilcil F.FAI*8(A-1iIC-2) Ellel 
CCNNUNiCNE/CKAFFA,IMPAC,CCNCI,CCNO2(3),ROOt I EFAte1 l EPAN2,J FILC1FEC 
GF = rAkSIN(CFA11/X) - IEMAC /41101111: 
CM  = CAFEIN1M/1) - GE ElIflI . 

= 1./1(CCN12(.1)*GF + CCb131*GM)*X) E1101,bC 
MIlIPN FUCA' 17 1  
END HI10111. 
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Appendix C 

Finite Element Formulation of the Heat Conduction Equation 

in General Orthogonal Curvilinear Coordinates 

C.1 Introduction 

In the analytic solution of heat conduction and other potential 

field problems, the governing differential equation is conventionally for-

mulated in one of the three coordinate systems; cartesian, circular cylin-

der, or spherical. Since the governing differential equation results from 

the application of the first law of thermodynamics, in the case of heat 

conduction, to a control volume of differential dimensions, this is always 

possible. Where the bounding surfaces of the solution domain lend them-

selves to one of these coordinate system, many solutions are available [50]. 

Considerable difficulty is experienced, however, when such geometric com-

patibility is not present. 

It is sometimes possible in these cases to set up a system of 

coordinates which are 'more natural' to the field of interest, in this 

work that of heat conduction [30], such that the coordinate surfaces con-

form to the lines of flow and potential surfaces, and moreover that they 

offer geometric conformity with the bounding surfaces. The nature of such 

a coordinate system is determined by the geometry of the bounding surfaces, 

by the field behavior at the boundaries, by specifying the nature and 

position of field singularities, or by a combination of the above influences. 

In many instances these more natural coordinates allow a simple and tract-

able solution where use of the conventional three systems leaves the solu-

tion unmanageable. 
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For the above reasons, it is important that the heat conduction 

analyst be proficient in the use of orthogonal curvilinear coordinate 

systems. Unfortunately, however, while multi-directional problems can 

be reduced through their use to problems dependent upon a single curvi-

linear coordinate, there remains a large number of problems for which 

this is not the case, but for which the heat flow is predominantly uni-

directional in nature. For these problems, where a numerical solution 

may be required, the advantages gained analytically through the use of 

curvilinear coordinateà may be available through their use in the numeri-

cal solution of the problem. 

In this work the numerical solution procedure of interest is 

the finite element method. First introduced to the solution of field 

problems in 1965 [39,40], the finite element method as applied to field 

problems has since been the subject of several investigations [41-44]. In 

many of these investigations the work has been directed at alternate 

derivations of the governing functional equation and at examining the 

treatment of transient terms appearing in the differential equation. 

In all cases, however, where application of the method is made, the 

cartesian coordinate system has been used. 

It is the intent of this paper, therefore, to introduce to the 

finite element method as applied to conduction heat transfer the use of 

general orthogonal curvilinear coordinate systems. This will be accom-

plished by developing the governing functional equation with appropriate 

boundary conditions in a general orthogonal curvilinear frame. The re-

sultant functional equation is well suited for solutions using the finite 

element method. Due to the nature of orthogonal  curvilinear coordinate 

systems when appropriately chosen, their use in the finite element method 
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serves to automatically provide a variable mesh subdivision in accordance 

with the problem requirements. This is a result of the transformation 

behavior near field singularities or geometric boundaries. This behavior 

leads to a finer or coarser curvilinear coordinate spacing, in terms of 

physical distances, as is appropriate to the local features it must 

describe. As a consequence, a simple uniform subdivision scheme in the 

curvilinear frame, very simple to implement in an automatic mesh gener-

ation routine, may result in a highly complex or distorted physical sub-

division which may be more appropriate for the problem analysis. Appro-

priate choice of coordinate system is, of course, prerequisite to obtain-

ing this advantage. For the class of problems in which the bounding 

surfaces form part of an orthogonal curvilinear net, this advantage can 

provide substantial Savings both in computational time for solution and 

in programming effort. Two examples are presented to demonstrate the 

application of these results. The coordinate systems considered are 

the spherical and the oblate spheroidal coordinate systems. 

C.2 Preliminary Remarks 

Before proceeding with the development of the governing func-

tional equation, it will be instrumental to consider a general orthogonal 

curvilinear coordinate system as illustrated in Figure C-1. Here ul , 

u2' and u3 are used to denote the three principal directions in the 
curvi-

linear frame with x, y, and z denoting those of the corresponding cartesian 

system. In general, the cartesian coordinates can be related to the 

curvilinear ones through relations of the general form [30] 



(C- 1) 

Figure C-1 

In curvilinear space, a differential line element, ds, can in turn be 

related back to the cartesian coordinates and is given by 

= Î dx + 3 dy + k dz (C-2) 

By using the transformation relations (1), and the orthogonality proper-

ties of the coordinate directions, the magnitude of the vector ds can 

be given simply by 

(ds) 2 = g1 (du1 ) 2 + g2 (du2 ) 2 + g3 (du3 ) 2 (C- 3) 
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where the metric or Lame coefficients of transformation are defined 

by [30] 

Dx 2 Dv 2 az 2 
g = + + , i = 1, 2, 3 
i âui aui aui  

These metric coefficients relate the curvilinear frame to the cartesian 

one from which it was derived. 

Clearly for a length in the ui  direction where  duj  = duk  = 0 

the relationship is simply 

ds = 4--  du Ç  i 
(C-5) 

In a similar faShion the area element can be formed by 

dAi = j du duk, i = 1, 2, 3  k j 
I  j k 

where the convention has been used that the direction of the area element 

be taken normal to the surface in an outward sense. Finally, the volume 

element in curvilinear space is given by 

dV = dui  du2  du3 (C-7)  

where by definition 

By using the above relationships for length, area, and volume 

In an orthogonal curvilinear coordinate system, and by applying the 

first law of thermodynamics to the differential volume element of 

Fig. C-1, the governing differential equation can be written as [3O] 

k24-  aT k 

e  1 gl 
 au au9 g2 'u2 h13 g3 

• . pCp (C-9) 

- 189 - 

(C-4) 

(C-6) 

(C-8) 

[ 3  Wr _ P4. 



1 1 
1 1 
11 

111 
1 1 

li  âT k hT + C = 0 over S 2 n Dn 
(C -10c) 

T(u u2' u3' o) = To (u1 ,  u2' u3 ) (C -10d) II ( 

1. 

where Fourier's law of heat conduction has been used to describe the 

local transfer of heat within the continuum. 

The boundary conditions to be applied at the bounding surfaces 

of the solution domain (excepting non-linearized radiative conditions) 

will in general be given by 

T = TA (u u2' u3' 0 
(C-10a) 

over S 1, and 

kl âT k2 âT 
Du - 1 ' âu 9. 2 3 

+ hT + C = 0 (C-10b) 
111 1 • 2 2 3

Du3  
• 1 

over S 2 where tl' X 2' and 9. 3 
are the direction cosines of the bounding 111 

surfaces with respect to the curvilinear coordinates u u2' and u3 

respectively. Alternatively, condition (C-10b) can be stated as 

where n is taken as the outward normal to the bounding surface over S 2 . 

The initial condition is represented simply by 

C.3 Variational Statement 

If the concept of a variational principle is to be applied to 

the solution of heat conduction problems, then the governing differ-

ential equation (C-9) must correspond to the Euler equation for the 

corresponding variational problem. In this treatment we shall for 

simplicity of presentation and application follow the approach taken 

by Visser [40], Zienkiewicz and Parekh [44], and Zienkiewicz [51] 

where a particular instant of time is considered. In this way, time 
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derivatives of temperature and of physical parameters can be treated . 

as prescribed functions of the spatial coordinates u l , u2 , and u3 . 

This is in contrast to the use of convolution integrals in time put 

forward by Gurtin [12] in establishing a true variational principle. 

The instantaneous considerations adopted here lead to a quasi-

variational statement and can readily be converted to a restricted 

variational statement as indicated by Finlayson and Scriven [53]. 

The true variational approach, however, has been applied by Wilson 

and Nickell [42] in a cartesian coordinate frame and could also be 

extended to a general orthogonal curvilinear system by following argu-

ments similar to those presented in this work. 

Proceeding with the approach adopted here, and invoking the 

above requirement, we set 

k1 17g-  DT D 
k
247  DT D k31i  DT --u-1 + —f— — r— 

aul' 131 auj g2 au2 + au3 . g3 au3 

+ - iipCp  ri71 dTdu1du2du3  = 0 (C-11) 

where we have introduced the first variation of temperature, ST. Con-

sidering now the first integral of equation (C-11) and denoting it by 

I l' we have 

k r aT 
Il mj: jr {1.  Du 1  g Bu1I 6T du1]du2du3  - 

2 u3 u
1 

1 1 
(C- 12) 

Integrating (C-12) by parts and using the commutative property 

of the differential and variational operators yields 
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du2du3 

ul = ul (u2'u3 )  

r DT 
= • -L 

1 • —6111 du2du3 gi 'ul I 
u2 u3 u1 . u1 (u2 u3 ) 

r Jr f k1 DT D [ Du 
(6T)du1du2

du3 g1 1 Du1 
ul u2 u3 

(C-13) 

where u1(u2'u3)  represents the locus of values that the u1 coordinate 

takes on, as a function of the remaining two coordinates, as the bounding 

surface of the solution domain is traversed. Again using the commutability 

of the differential and variational operators, namely here that 

DT D 
-5 1"; (ST) . 6/1 2x _ 1 DT 2 

1 1 Dui Du)  - <S[(r) 1  1 ul 
(C-14) 

and simultaneously rearranging the integrand of the first integral of 

(C-13) we can write 

r
k1 aT ,„„ = f f _ (F273-1 1 11 3.  

u2 u 3 1  

- Jr Jr  Jr kiff T2  

gl 
(--) du1du2du3 Du

1 
ul u2 u3. 

(C-15) 

Finally, we recognize that ig2g3 du2du3 when evaluated over 

ul  = u1 (u2 ,u3 ) on the boundary is simply the projection of the surface 

element dS on the u2-u3  plane and can be represented by 

du2  du3  = dS 

u1 = u1 (u2' u3 ) 
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-4.f if aT 2 f (—) du du du 
1 Du 1 2 3 ul  u2  u3  

(C-17) 

This leads to the result that 

T If .k1 DT I 
L r- dT] £1  dS I l dui 

S1 + S2 61 boundary 

where the definition has been made that 

f = = 1, 2, 3 (C-18) 

Further, by virtue of the specified temperature condition over 

the surface S 1 (by definition, 
the surface variation in temperature over 

S 1 will be zero), equation 
(C-17) reduces to the final result for this 

term 

y Jr" [ 
DT I 
-57-1 6T] £1  d S2  

Ll Ar 1 S 2 1 boundary 

- - 1 f D 
dj f1 T )2 du1du2du3 2 

ul u2 u3 
Du1  

(c-19)  

Expressions similar to equation (C-19) can readily be derived for the 

other two coordinate directions by following the procedure illustrated 

above. Only a systematic rotation of the subscripts in equation (C-19) 

is required for its adaptation to the other coordinate directions. 

For the heat generation term of equation (C-11), considering 

only a spatial dependence of the generation rate, a direct application 
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Collecting the component equations (C-19), (C-20) and (C-21) 

to reform equation (C-11) we have 

f r r 21 er
at du2 Y g P 

 

u3  

m 6111  
ul u2 u2 

du3 

u1 u2 

p Cp (iT)T]du1du2du3  

I 1 

(C-23) 

of the calculus of variations allows the heat generation term to be 

written as 

jr jr pÇ (ST du1du2du3  dir jr jr (Pb/i. du1du2du3  

ul  u2  u3 ul  u2  u3  

and similarly for the transient term, recalling that time derivatives 

are treated as being spatially prescribed, we have 

6  { C 1 - jr { fl 317 \ 2 f 2 faT \ 2 f 3 f aT ‘ 2 
J j 2 ' g 1 2 
ul u2 u3 

+ li- PC (24 T }du1du2du3 } p at 

11 aT 21.9, }erds 2 = 0 
'1 ' bi— ul bi—  B112  2   S2 1 2 

which can more conveniently be written, using boundary condition state- 

ments (C-10b) and (C-10c), as 

11 
Ii 

11 
11 

(C-21) 

11 1  

IL 
111 

I? 

(C-22) 

r f1 aT 2 f2 2L 2 f 3 e2L2 T  6{f j (-2— (71)  + -2—  (Du )  + 2 \Du' 2 3 

+ (II)T1du1du2du3 1 p at 

+11[hT + C]dT dS 2  = 0 
S2 

-194- 

ul u2 u3 



Finally, a further application of the variational calculus to the surface 

integral yields the variational statement 

Jr Jr Jr ` f2 cT,2 f3,„2 _ 
2 Du 2 Du i 2 `Du' 

1 2 3 
iu u t 1 2 u  3 

+ ig- p Cp (e) Tldu1du2du3  
+11[ 1-e2  + CT]dS 2  = 0 

S2 

(C-24) 

Equation (0-24) above is the quasi-variational principle referred 

to earlier in this section, and its satisfaction, within the limits of the 

treatment of time dependent terms adopted here, is equivalent to satisfying 

the differential equation (C-9) from which it was derived. 

C.4 Spatial Discretization • 

Before proceeding directly to the spatial discretization of the 

solution domain for application of the finite element method, it will be 

useful to define the following vectors and matrices. The first is a 

vector very similar to the gradient field vector [33] of a cartesian frame 

and will be defined by 

T DT DT DT 
{GI = , — , — 

aul au2 au3 
(C-25) 

This vector will be henceforth referred to as the curvilinear field 

vector, although, since the curvilinear coordinates do not directly reflect 

physical distances, the components of (C-25) are not physical gradients 

uniess accompanied by their corresponding metric coefficients. The second, 
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+1I {.2.1 {T}T{T} {T}T  {c} }ds 2 2 
S 2 

=0  (C-28) 

a matrix analogous to the property matrix of a cartesian system, is 

defined by 
r 
f 1 (ul' u2' u3) o o 

[R] = : o f 2 (u1' u2' u3) o 
1 

o o f3 (u1' u2'
u
3
) i 

This matrix shall be referred to as the effective curvilinear property 

matrix. For completeness, the remaining vectors requiring definition are 

{T }  = {T(uu2' u3)1 

(1)1 = {P(uu2'
u3 )} 

{C }  = CC(u u u )1 l' 2' 3 

and 

It must be remembered that the vectors defined above at this 

stage remain continuous functions of the spatial coordinates in the curvi-

linear frame. Using their definitions, equations (C-25), (C-26) and 

(C-27), the variational statement (C-24) can be written in vector notation 

as 

jr l„ (G}T,RI{G1 j jr c 2 - )/Î {T}T{P} là- pC {T}T{T}ldu
1 
 du du 
2 3 

ul u2 u 3 

(C-26) 

(C-27) 

Dt 

1 

1 1 
1 
11 

11 
11 
11 
I! 

11 

Having expressed the variational statement in vector notation, 

we now consider the fundamental concept of the finite element method, 

that the solution domain can be spatially sub-divided into a collection 

• n 
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of finite elements, for each of which an approximate solution is assumed. 

This approximate solution will contain a specified number of arbitrary 

parameters, representative of the nodal degrees of freedom, whose deter-

mination is the object of the method. The determination of these nodal 

values for the independent variable is performed by the approximate satis-

faction of the variational statement (C-28). 

Approximating the unknown temperature distribution within a 

single element by the approximation 

{T) [N1 ,N2 ,...] = {N}T{T} (C-29) 

the curvilinear field vector can immediately be written as 

BN1/au1 aN2/au1 • .. T111 T2 1 
{G} = aN /au2 aN /au E [B] {T (C-30) 

2 2 • . i ' 1 • 1 ( .1 [71/au3  DN2/u2  • 

In the above, the Ni 's are the shape functions [33] for the element under 

consideration and their form and number will depend on the type of 

element selected for the problem at hand. 

By using the equations (C-29) and (C-30) in (C-28), the vari-

ational statement for the approximate solution becomes 

r „ r r f • 
I  " i ll 1 d 

 L

E [ i {Ti }T [B] T [R] [B] {T
4"
} - big: {T.,}T {N } {P )  

e1 r;= - i i  
. 1  + pc Ji {Ti }T {Ni}{Ni }T  {T }Idu du

2 
du 

P i j 1 3 

• I h -1 
+ ' I r — {Ti }T {Ni}{Ni }T {Ti } + {Ti }

T {Ni}{C} ; d82e  - S-i  e l 

= 0 (C-31) 

- 197- 



Ii 
11 
II 
ut 
Il  

[K] Ti  + [P] = f (C-33) 

(C - 34b 

(C - 34c I 

where the global integration over the entire field has been replaced by a 

summation of integrals, each integral being local to the element character-

ized by the summation index, e. 

The approximate variational statement (C-31) can be written more 

compactly by 

(SF = 0 O (C-32) 

where F, the approximate functional, denotes the expression within the 

outermost parentheses of (C-31). The approximate functional F, however, 

is a function only of the unknown nodal temperatures, Ti , i = 1, 2, 3, ... . 

Finding the stationary value of this functional by taking its first vari-

ation with respect to T then becomes equivalent to simply differentiating 

F with respect to each nodal temperature in turn, and setting the result 

equal to zero. 

Performing the indicated differentiation, and recalling that the 

instantaneous thermal behavior is considered in this treatment, leads to 

the matrix-differential equations 

where 

II r  T 
[K] = E [B] [R] [B] du

1 
du

2 
du

3 
+ ' h (Ni)(N dS2 

(C-34all 
e=1 - j  - Ve S 2 

_ _ 

[P] = E pc
i
1 {14i - 

du du d 
e=1 P 1 2 

u 
 -3 

Ve 

n ' r T  

and ( f )  = E 'gr.-{Ni 1 (P)  dui  du_z  du3  + 
{N

i  } 
 {c} ds 2  

,  
e=1  -V ' S 2 
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Solving the matrix-differential equations, (C-33), will pro-

vide the approximate solution for the temperature field. This is the 

ultimate objective of the analysis in applying the method. To effect 

the solution to (C-33), however, additional information is required to 

accommodate the time dependence of the equations. Following Zienkiewicz 

and Parekh this time dependence is approximated here by finite 

differences over the time interval from t to t + At. 

Evaluating (C-33) at time t + At/2 and using the first central 

difference quotient to approximate the first time derivative, we have 

[K] {T} + [P] [{Ti
} -  {T1} /t  ze {f) (C-35) 

At t + At t' 

where [K], [P], and {f}, if time dependent are assigned their mid-interval 

values. Noting that for this approximation scheme 

(C-36) {T} At 
= i 1 + {T } 

t + -7 t + At 

we have 

([1(] + 2[P]/t) {T - i IT) At At i 1 + { f}  

with {T} 2  {T} - At 
t + At t + 2 

(c-37) 

(C-38) 

These last two equations, (C-37) and (C-38), provide a con-

venient scheme to complete the integration. Other alternatives, however, 

are also available for the treatment of the time dependence [51]. The 

algebraic equations (C-37) with (C-38) and the coefficient matrix defini-

tions (C-34) define the approximate solution using the finite element 
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u1 r ' u = 8 ' u3 (C-39) 
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method in general orthogonal curvilinear coordinates. It can easily be 

demonstrated that these equations reduce to those for the cartesian case. 

In fact for a cartesian coordinate system where gl  = g2  g3  = g •. 1 the 

analogy between the gradient field vector and the curvilinear field # 

vector, and between the property matrix and the effective curvilinear 

property matrix, is complete, and becomes an equivalence. Thus the limit- 

ing behavior of these expressions is in accordance with our experience. 

C.5 Application of the Results 

The utility of the expressions derived in this work will be 

demonstrated here by means of two examples. However, since the treatment 

of heat generation and time dependent terms appearing in the governing 

differential equation is straightforward and follows accepted procedures, 

the examples presented will be restricted to the case of steady-state 

heat conduction. In both cases, linear isoparametric quadrilateral elements 

are used with the shape functions applied in the curvilinear coordinate 

frame. 

The first example considers heat conduction through a spherical 

shell of inner radius ri and outer radius ro . The curvilinear (spherical) 

plane defined by 0 a has a flux distribution prescribed while that de-

fined by 0 = u/2 is maintained at a uniform temperature, T = 0. The re-

maining two boundaries have a zero normal gradient prescribed. The problem 

geometry is that illustrated in Fig. C-2 and axisymmetric heat transfer is 

considered. The case of a = 5.0 degrees is examined. 

Denoting the curvilinear (spherical) coordinates by 



and 18.  ee r
2 

sine 

gi 

g2 

g3 

1 

r2 

2 2 sin r 0 
(C-40) 

The metric coefficients are derived from equation (C-4): 

Figure C-2 

From the above, the elements of the effective curvilinear property matrix 

can be found. Considering the axi-symmetric nature of the problem, the 

effective curvilinear property matrix becomes simply 



rk r2  sine 0 

[R] 

0 k sine 

(C-41) 

q (C-42) 

Excepting boundary condition specification, then, this is the only  

modification required to allow a standard finite element program to 

treat this problem. Boundary condition specification for the flux pre- 

scribed cases to be considered are treated in the usual fashion by apply-

ing equivalent nodal heat flow rates at the appropriate nodes. 

When the flux distribution applied over the conical section, 

0 = a, is equivalent to prescribing an isothermal boundary there, an exact 

solution is available [30]. For this case the flux distribution varies 

inversely with the radial coordinate 

and a non-dimensional thermal resistance can be determined to be 

1  Rk r =  o 2r(11<  e)  Zn  (C-43) 

where E E ri/ ro . Application of the flux distribution (C-42) to the 

problem at hand yields results which compare favorably with the exact 

solution. The comparison is presented in Table C-1 for three values 

of the parameter e. 

Since the method of subdivision used for the case of an iso-

thermal cone is adequate to describe the thermal behavior of this problem, 

a further extension was made to consideration of a uniform flux boundary 

condition for 0 = a. The convergence characteristics for this problem 

are shown in Fig. C-3 where the non-dimensional thermal resistance ob-

tained from the finite element solution is presented as a function of 

the number of nodal points, NNP, used in the spatial discretization. 
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-0.47 

-0.25 

-0.24 

0.5511 

0.9942 

4.9717 

The figure indicates a rapid and stable convergence to the limiting 

value. 

Table 1 

Comparison of FEM and Exact Solutions for Spherical Problem 

No. of Rkrn  
Œ Nodes (ref. 14) 

Rkro  % Difference 
(present) 

5 degrees .1 800 0.5537 

5 degrees .5 400 0.9967 

5 degrees .9 200 4.9836 

To indicate the effect of the two different boundary conditions 

on the thermal resistance, Fig. C-4 was constructed. Here the ratio of 

resistances, that due to a uniform flux and that due to an isothermal 

boundary at 6 == a, is plotted versus the radii ratio, e. It can be seen 

from the figure that for e approaching unity, the difference between the 

results for the two boundary conditions vanishes, as it should. However, 

for small the resistance resulting from a uniform flux over  O = a exceeds 

that due to an isothermal specification by'as much as 15 per cent. Higher 

deviations are expected for e < 0.1. This example provides another illus-

tration of the importance that boundary condition specification plays in 

determining the thermal resistance of any system. As was intended, however, 

this example also serves to illustrate the ease of application of the results 

presented in this paper. 
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Figure C-4 

The second example presented here considers the flow of heat 

from a thin circular disk located on a semi-infinite solid. Over the 

disk surface a prescribed flux distribution will be assumed while over 

the remaining free surface of the half-space the boundary is taken to 

be impervious to heat transfer. Again axi-symmetric heat transfer will 

be considered. The cross-section of the problem geometry is illustrated 

In Fig. C-5. The boundary at infinity has a prescribed temperature 

(T 0) boundary specification. 

In the case of an isothermal condition over the disk, the re- 

aultant temperature field becomes one dimensional in the oblate spheroidal 

coordinate, n, and a solution is readily obtained [30]. For other boundary 

conditions, however, this is not the case but departures from this one- 
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Figure C-5 

dimensionality are expected to be small when compared with those experi-

enced when using a cartesian, circular cylinder, or spherical coordinate 

system. This then suggests that the oblate spheroidal coordinate system 

is a I natural' one to use for analysis purposes when considering the 

geometry of Fig. C-5. 

The oblate spheroidal coordinate system is defined by the trans-

formation equations 

x = a coshn sin0 cosq) 

y a coshn sine  siwj, (C-44) 

z = a sinhn cos° 
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where a is the generating disk radius. Using the transformation equations 

(C-44) the metric coefficients can easily be determined to be 

g = g
6 
 = a

2 
(cosh

2n — sin
2
8) 

n  

g = 
2 2 2 

cosh n sin a 0 s 

and = a3  (cosh2n - sin20) coshn sine 

(C-45) 

where the coordinates n, 0, and 1P are those indicated in figure C-5. 

Surfaces corresponding to lines of constant n and lines of constant 6 

describe ellipsoids and hyperboloids of revolution respectively when re-

presented on a cartesian set of axes. The coordinate  l  represents the 

angular measure about the oz axis. It was found numerically and can be 

demonstrated analytically that n. e 10 will suffice for the location of 

the boundary at infinity for heat transfer purposes. 

Having found the metric coefficient of transformation, the 

effective curvilinear property matrix for this problem is given by 

ak coshn Sine 0 
[R] =i 

0 ak coshn sine 
(C-46) 

With the effective curvilinear property matrix defined and the flux pre-

scribed boundary then treated in the usual fashion, the problem solution 

is now possible. In this example, a uniform flux distribution over the 

disk surface will be considered. 

The dimensionless constriction resistance defined by R
* 

E Rka, 

where R is the total thermal resistance based upon the mean disk surface 

temperature, is shown in Fig. C-6 plotted versus the number of nodal 

points used to effect the solution. Again the convergence characteristics 



indicate a rapid and stable approach toward its limiting value. The 

value of 0.269 obtained using 800 nodes compares favorably with the 

exact solution for this problem of 0.27019 [50]. 
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Examining the solution behavior still further, a plot of the 

solution error in per cent is presented in Fig. C-7 as a function of the 

number of nodal points used in the mesh subdivisions. Indeed, from the 

figure it is seen that an error of less than 2 per cent is incurred when 

only 200 nodes are used to represent the continuum. Both the ease of 

application and the accuracy of the results indicate the utility of this 

work in analysing problems having a cOnvenient 'natural' coordinate system. 

C.6 Discussion and Conclusions 

A quasi-variational 'principle' has been derived in this paper 

which describes the conduction of heat within a continuum. The derivation 

presented herein extends those currently available by its explicit consider- 

ation of general orthogonal curvilinear coordinate systems in the formu-

lation of the governing variational statement for the heat conduction pro-

blem. This is of considerable utility since many problems have associated 

• with them a natural or quasi-natural coordinate system. 

Using this variational statement, a function equation, application 

of the finite element method is made by subdividing the solution domain.into 

a collection of finite curvilinear elements, as is fundamental to the method. 

Over each of these elements an approximate solution is assumed, following 

the usual procedures, and a system of simultaneous equations results. After 

application of boundary conditions, solution of this system of equations 

leads to the required approximate solution for the temperature field by 

means of determining the temperature at each of the nodes used in the dis-

cretized curvilinear solution domain. 

It was found convenient when using matrix notation to represent 

the governing functional equations, to define a 'curvilinear field vector' 

and an 'effective curvilinear property matrix' as these arise naturally 
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in the derivation. With these definitions, the matrix form of the vari-

ational statement bears a strong resemblance to the cartesian form in 

popular usage. This fact makes application of the results extremely easy 

and straightforward requiring minimal modification to existing finite 

element programs. Indeed, the results of this work reduce identically to 

those for the cartesian case when the appropriate metric coefficients 

defining the cartesian coordinate system are used. 

Two examples have been presented which illustrate the ease of 

application of the results to other than the cartesian coordinate system. 

The spherical coordinate system and the oblate spheroidal coordinate system 

are the two systems used in the examples. In both cases the solution con-

verged rapidly and monotonically to its limiting value. In particular by 

the second example, where only 800 nodes were used to represent a semi-

infinite body and approximately 0.5 per cent accuracy was obtained, the 

utility of formulating the variational problem in the appropriate co-

ordinate frame becomes clear. 

These results will find application to contact problems, problems 

involving semi-infinite or infinite domains, and generally to problems 

where a coordinate system, more natural than the cartesian one, exists to 

describe the problem geometry and field behavior. The nature of these co-

ordinate systems is to provide an automatic mesh generation, for uniform 

subdivision in the curvilinear coordinates, which locates smaller and 

larger elements (in terms of real physical size) throughout the domain 

as appropriate to the problem. These systems can also be used locally 

within larger systems and matched along common boundaries or joined using 

a relatively crude transition mesh. The net result in problems where 

there exists a more appropriate coordinate system will be a savings in 

both storage requirements and computational time to achieve a prescribed 

accuracy of solution. 
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Appendix D 

Finite Element Groove Heat Transfer Prediction Program 

D.1 Introduction 

In this section the prediction program used for determin-

ation of the heat transfer characteristics of heat pipe walls having 

trapezoidal shaped grooves is presented. The program utilizes the 

finite element method for providing an approximate, numerical solu-

tion of Laplace's equation within the two component groove section 

discussed in Chapter 3 of this report. Due to its bookkeeping and 

manipulation complexity, however, the details of implementation of 

the me .thod will not be presented here since the necessary discussion 

would be unduly lengthy and is not warranted in consideration of the 

objectives of this research. Sufficient proof has been presented 

earlier, in Chapter 5 of this report, that the program components 

are functioning correctly. 

It was also brought forward in the discussions of Chapter 5 

that large amounts of computer core were required to effect an accurate 

solution. As a result,  the  current program cannot be effectively 

run on the IBN  360/75 computing installation, which, until recently 

was the single installation available at the University of Waterloo. 

Instead, the program presented in this appendix is designed for use 

with the IBM 370/158 'virtual machine' installation now available 

at this University. As a result, a great deal of caution must be 

exercized if utilization of this program is attempted with other 

computational facilities, and even then the accuracy of the resulting 



output, unless sufficient core is available, may be questionable. 

The large core required by the solution program to provide a solution 

of acceptable accuracy is a reflection of the camplex nature of the 

problem being investigated in this research. 

D.2 Input Information 

The program as presented in the final pages of this chapter 

utilizes an automatic mesh generation routine developed specifically 

for the trapezoidal groove problem.. As a result only the parametric 

information necessary to characterize the groove geometry, materials 

combination, and the mesh refinement are required in the form of 

input data. 

The solution program is directed at the solution of the 

normalized equations and boundary conditions (3-17) - (3-27). As 

a result the typical cell width, w, is assigned a value of unity 

automatically within the program. Further, the boundary condition 

at the liquid/vapor interface is a Dirichlet condition with a norma- 

lized magnitude here of zero. Since the problem is linear in tempera-

ture throughout the entire solution field, the further internal 

assignment has been made that the metal conductivity be unity. This 

results in a normalization of the temperature field with respect to 

the metal conductivity. Finally, the thickness of the pipe wall bet-

ween the groove lower surface and the pipe exterior surface has been 

given a value of 0.1. The one-dimensional resistance of this thickness 

is later discounted in order to establish the 'equivalent' groove 



resistanCe and hence determine the groove equivalent heat transfer 

coefficient. 

The remaining information required as input data to completely 

characterize the problem consists of, NE1, the number of lateral sub-

divisions within the metal fin section, IPRINT, a printing code para-

meter, THETA, the groove half-angle, XALPHA, the normalized apparent 

contact angle, COND(2), the fluid conductivity or in the normalized 

case the conductivity ratio kf/km, El, the fin tip land area ratio, 

and E2, the groove root land area ratio. This information is fed 

into the program via two data cards. 

The first data card consists of the parameters NE1 and 1PRINT 

punched according to a 215 format. A value for NE1 of 19 was found 

acceptable in the convergence studies of Chapter 5 for the third mesh 

generation routine. A non-zero value for the IPRINT code parameter 

will cause the mesh generation details to be printed. This includes 

the x and y coordinates for each nodal point as well as a listing by 

element number of the element associated nodes and the material type 

for the element. Material type one indicates a metal eleMent while 

material type two indicates an element within the liquid region of 

the solution domain. If the value of IPRINT is not supplied on this 

first data card, a value of zero will be assigned by most computing 

installations. 

The second data card contains the remaining parameters 

specifications in the following order; InigrA, NALFHA, COND(2), El, 

E2. This information is supplied according to a 5E10.5 format. 



THETA is the groove half-angle and is supplied in units of degrees. 

The second parameter, XALPHA E a/(n/2 - . 80), is the normalized apparent 

and takes on values ranging from 0.0 to 1.0. The third parameter, 

COND(2), due to the internal specification that COND(1) •. 1.0, is 

the fluid/metal thermal conductivity ratio, kf/km • The final two 

parameters, El and E2 are the fin tip and groove root land area ratios 

respectively and can take on values in the range 0 < El 1 < 1.0. E2 - 

D.3 Program Listing 

With the above input information the problem specification 

is complete. The prediction program listing is presented in the 

remaining pages of this chapter. 



li  

1. 

1 
1. 

lit: GkCCVt FCiliAlk A UNIVFFEIlY OF IAIEILCC CCNNFI.EAIIONAI biCNI1C& EyS1Fu 

Clice001C 
GFC001320 
chcC003C 
GbecCGO4C 
GkC000En 
cwcrcnec 
GFc00070 
GRce(JOFC 
cRcCCOEC 
CROCu1CC 
CkCC(11e 
GRCC(12C 
CFC00130 
CARCC0141 
GFC00150 
GRCOrlEC 
GlcOnlle 
CkCCC1F1 
G1(00190 
Cie(Cl2CC 
Gicoo,no 
GkCCC22r 
01(00230 
CkcC(124C 
G1(00250 
CPC0C2EC 
01(0027u 
CPCCC2K 
CPC- 00290 
CF00030G 
GkCCO31C 
CI(C0(1220 
GRC0032C 
GRCCO34C 
G1(00350 
GIC(r3EC 
GleCCO3IC 
GbeCCC3FC 
ckce03LC 
GkCCé4CC 
GPC00410 
GRCC042C 
GPCCP42C 
CRCG044C 
01(0045fl 
G10014tC 
G100041C 
GFCCU4K 
GF, CCC4FC 
01(005ff 
GMCCOE1C 
01(00520 
01(00530 
GPCCC54C 
GecenEEC 

CFCCNI ttAl lkAbEFEN — FINIIE ILINFNIE 

Cc tioNCN /CNI /NuCNE,X( 200C ),Y( ' ( OO ),IF( 2000,5 )91+F 1(15 )91 ,4F.1( .75), 
*SLF I X(1 E, 2), 1F.I n F( 2000 )92( 20e0),Al2n00,E0 ),NSFLIC, 
vlEF1( t".( ),Np1(1 ),NFL,N1EPEC 
• sCIn /1 wc /CC FE( 2 )911,C1 -1AlyG ' FES ,DNU,HLEE,FLCM,F 
CCNvCN /1Nkt E/ AC( 4,4 ) 

MAIN CONTRul FRCGFAN 

hiVlbr1 
CA11 1>Fti 
cA11 ECINik 
CA11 C(1111 
EICF 
ENI 

1NFORNATICN INPUT 

11.111 OF GFCvE1R1C ANI NCEAL DATA, FiATE1.1AI IbCktIlIFE 
Abl EClib[Pla CCNLI11Cbb 

II! FIAI(E,1(CI) NI1,1Fk1101 
11(.1 Fr»AIC:If) 

Ill 

beIl1(FOL02) b11 
It!.; FLPFA1(INF1 =  

k1AI(EOCC3) LOALFHAICC)D(2),E1,E2 
. Itr2 F(11.A1 (E110.E) 

A1111(E,ICO2) L,ZALF1A,CCNI(2),E1,E2 
* = ‚Sc  
C(Nr(1) = 1.0 
ii1EI = C.1 
11.11A = ATAN1(u-11—F2)/E) 
AIPIA = XPLIFA 4 (1. 1/2.-11il1A) 
u = Fiet 4 1 

E1111v1EICN AILFCA11(N 
Nb11 = 1411 + 1 
liCik = 2. , o/(E1 4 % — F;) 
Nt = IF1)(t01b*FIOA1(NE1)) 
NNE ? FL + 1 
vicRle =  

CCvleCN/CNI /NLCNE, 14( à(( 0 1, If ';000 ),IE( 20001E ),NP I( 15 ).), FJ( 7 5 )9 
• 1.11.X(I., 21, 1E11, 1, 1( 2COU 1,2( 20ù0 ,A(2000 ,E0 ),NSFLXC 
▪ :-F IC( 1E ),NP A(1 ),NEL,N1EPFC 

CCvbC1% ilvC/CC14I( 2 )01,C,1ANG ' IFS ,DNU,NLED,FL011,F 
• v1•CN /F11 1FN 1N1 
Fi  
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1-11F: GI.CCNE ECRTIAN A UNIVERSITY OF WAIEIILCC CCNVEFEATIONAL MCNIICh EYEIEM 

NE2 = IFIX( MCFb.•ELCAll NEW G FC00561 
II( NE2.1(.0) NE2=1 GICC651 
I}( 1.}(.l.') 1n 12 = O GICCOFF. .à 
NNE; = 14E2 1 GRCCC5Î 
NIISL = NI2 I GICCCeC, 
NNFIS1 = N14LE1 + 1 GFCCOél 

N II + NE2 GICCCE2 
NINM = blk + 1 GICC0e2 
NE = NEI/2 + 1 GFCCCt4 
NNE = PE + 1 GFCCCEF 
'El  =p + NE:f(NE+NM) + NE*(NF+NE1) G $cCe6 f 
NNE = 14 106% NE2= (NNF+NNI) + NNE*(NhF4NE1) — NE GICCC6111 
NECNE = bbIF GI.CC068 
VFb1FX = FLSC — E2/1AN(1bEIA) GFCCOE4» 

= (11—E1)/511“1kF1A) Gi.CC0711 
= IM-11—E1)/ElbI1EF7A) ceccull 

11((ALI1A+IEE1P).C1.10.999*E1/2.1) GO IC 10 G1.CCC72 
CIVE  = 1.E1.11X + (FO/CCSIALFRA+7NETA))*(CCS(ALFIIA)—SIN(THFIA)) G C71 
IF(II1 V•1F•FLEI) CC. IC 15 GiCCC74 
GC 1C ;C CRCC075 

1r, C(N1INIE ORC007t 
CIVI = lekh1FX + FOCCS(711E7A) Gric0071 
CC  IC :C GIC007i .  

IE %11. 11E( E91CC4 GRCCf'n ' 
11 C4 h(FMAlIeCelIC},ICICCVk 1LF1H IS TCO SMALL IC ALLCNO, GliCCOSC 

A CC-P.111%1.W likNISC(.S°) GWCOOti1 
S7CF GRCOOR:! 

;C C(.N1INLF GI.CO0S3 
GRCCCS4 

NGEAL ECINI CCCPEINATEE cecoosFl 
CT CliCCITèé 

1• FIhST R011 GFC0087 
GkiC.CCeèt 

K = r 
I 1Ib12•IC• (TJ) CC IC 31 
wcbb = 12/F1CPI(NE2) 
cc zc J=1,NNE2 CRCC09:t 
K = K+1 GIC009a 

= (J-1)'MCFK GI.00094 
Y(g) = C.0 CiFCC09E ; 

:( CCblINLE Gr.cCrift' 
Z1 CCN1IPn 11 CUCCC9 

mCkx = (1-12)/FLCAT( NE1) Gi.c.004 
CC Z J=1,N11 % ck(CC:le • 

= 1(+1 GFCCI0( 
x11.1 = Y (K-1) + %%CFI( GkcCkfl . , 
Y1R: = C.r; GFCCICIi 

GICCIC 
CPC:CIO 

2. RCtE 2 TC NNk2 GIC010! ' 
GRCG10. 

ltiYA) = 1FIETA'E:/ (12+k1) GhC010. 
1F(bk.2.1‘•9) CC  IC 51 GkC010i 
LlE = lkbAX/b12 GRC11G 
LC FC 1=1,NNE; GI.CC1111 
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-Ilk: G1CCVE F0R1;AN A UNIVERSITY OF WATEILCC CCNVEbEAllObAl NCNIICe EYETEN 

Tk = 11-11$D111 
11- (1AlliA 4 11-E1A).G1.10.9994P1/2.1) GO IC 3E 
iE = IC - (CCE(plFE4)*CCE(111) 

4 ECI1( :IN( THETA )**2-1 COS( ALEEn*Sle( TI )) 4 *2 
III 

. /CCE(ALPHA411JETP) 

1 ZE ccttilhti 
GC TC 21 

Iii  r cOSI1HE1AI/COS1111) 

I :1  ="1 :trclb(111 II YNA) = tiklEk + FECcS(115) 

II DX = (kvAx-edINI/ELCAT1NE) 

mile = ( 1-1)Ibi2illCAT(eE2) 
Yklb • ILE1 

Lt = (11pAk-vklb)IFICA1(bE) 

II! xlel = XbAX- ( .1-1) 11 LX 

L(.  4C J=1,NN) 
â = 1( 4 1 

YlkI = 
4( ccelIkLf 

L k ik = NI2-I 

ill 

INAX-1J-114Lt 

li(lIk.EC.0) GC  •C 47 

LC 4; J=1,1Ib 
Ct = Yklb/p1CAT(bElET) 

! 
k = 

I 
b+1 

1! di CCNTINLI 
,i(e) = tkIN - .1'11 
'Cie) = xhIN 

Ill k =  
Cc 4E J=1,L19 
it = WELCA11bI2) 

MK: = X ( k-1) 4  LX 
illIlk; = t(k-1) 

4F cc le klti 
4 • cChlIktI 

i 

ex = 11,-121/ElCA1(NE1) 
Lc 4E J=1,bEl 
â = e+1 
x(e) = x111-11 4  EX 

ill 
Y1à1 = Y1K-11 

4 1 ccblIbll 
EC cCNTINII 
fl CCNTINIE e 

Dillk = INETA-TOmAx 
Xlle = iC Ele(lEETA) 
Ylli = tEk1FX  4  $0eCCE(TPE1A) 
hIlE1 = - 1 
CC EC 1=1,k1IE1 
ANG1F1 = 1F1CP1(1)/ELCA1(14D))•1, 1/2. 
Te = ltbAX 4  LEI1E*(EIN(AbG1E1))**1.00 
le((A111#4 11ITA).G1.(0.91+9 4 F1/2.)) GO TC E2 
kE = eC CCCE(AlEkA)*CCE(18) - 
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GkC01110 
GFcC1120 
GFCC113C 
GPC01140 
G;c011E0 
GFC011E0 
GRCC11IC 
GkC011F0 
G . 01190 
GlicC12CC 
Gsc0121C 
CscOir;C 
GiecC12.1C 
G;(01240 
GeCC12FC 
cscC12tC 
GecC121G 
GeC012FC 
GicC12tC 
GicC13CC 
GliGC131C 
Gecn1320 
GucC1J3C 
GscC134C 
GecC13EC 
ckcC13e-C 
GecC131C 
GicC13bC 
GscC13EC 
GscC14CC 
Gsc01410 
Gic01420 
Gic01430 
GeCc144C 
csc014EC 
GeC01460 
G>cC141C 
G;CCI4EC 
GkcC14kC 
G;cciecc 
Glic01F1C 
GkCC1F2C 
Gic01530 
GRCC1F4C 
Glc01SFO 
GYCOIFEC 
G(01510 
GicC1FFC 
G;CC1590 
GICC16C0 
GeCC1E1C 
GbcC162C 
GscC163C 
GicC164C 
GscC16EC 

2. Robs  1NE2 TC NIlFES1 



1-0141E44 N A UNIVERSITY OF MATEILCC CCNVEFEATICNAIL NCI.I1C5 EYETEkl FILE: CC  

st,1.1 E IN( THETA )es2-( COS( ALPFAlsEIN(IE )1**2)) Git016t0 
4 /CCE( ALEHA+1HETA) GFC0161t 

E; 
 GC 1C 
CCN1 'NIE 

1 
CkeC1f 

.S: G1(01( 

hE = hC CC:A UCCE( TH) GI.00170Q, 
S; CCN1 INLF CbC01711 

XhAX = ê 5114(11 ) GRCC172 
1NA = %FFI FX + FE.PCCS( TH) CRCC1 17ZG 
xC = Eciel( )11F-XmAX P*2 + ( Y1113 -IVAX 1 ,t*2) GRC0174i 
iiC = (1, 1-1C FI) ( 1./3 . + 4.*ANGLE 1 /( 3 .*PI)) + (RO-Rn GRCC175 

Xb4IN = Fie 5114(1 ) ETA) GRCe17E 
Yv1N = n 1-klE> + RFC , CO5( THETA) CRCe111'"1 

=  = 
X-X 

INA ln X-Y I/FICAT( 
1 

GRCC17£ 
DI P4A 4 1/ILCATE NF ) GRC017E 

CC Se. J=1 ,PI GRCC1r5f C 
= X+1 Gfr.00141f 

X( X ) = 11.AX-(J-1) , CX GICO1M2. 
YI h = 11AX-( J-1 )4CY GRCC1>3 

EE CCN I INLE GFCC1S4 ; 
LIL X = w-X/411% GRCCISE 
Of El J=1,NE 1 GfrCOltiF 
ANGLE ; = ( FICP1(J)/ELCA1( NE 1 )) 4 FI/2. GRCCI S1 
h = h+ 1 GFCC1SF 
x( b) = XA1N + LEIX>(1.-CCE( ANCLE2))*( FLCAU I )/FLCAl( NU)) + ckcrin 

1.-FLCA1( I )/ELCA1( Nt)  )*CELY*FICA1( J )/ELCAl( NE1) GIn CCI , 
Y( le = hIN GfrC0191 

El CCN1I1lE GICC192 
te CC11INEE GI/CC19Z 

GFC0194 - 

C 4. IAE1 GC11 ChCCUE 
GilCU196 

X = 1 GleC(191.1 
x1 x = )11P Che019S 
Y( x = 11 IF CbCe191: 
LIE X = 11 GFCC20C 

111 

EC ES .1=1,Nk 1 GFCC2n1 
ANGLE; = ( ELCA1 ( J )/FLCA1( NE 1 )1*F1/2. GFCC2 (1 2 

= b 4  1 GFCC203 
X( h ) = X111- + CIL X- ( 1.-cc5( ANCLE2)) GE‘CC204 
YIk 1IF GFCO20; 

ES CCN1 'hl} GFCC2CE 
CRU201.. 1  

FIA MENT AESCCIATEE INEICES-CLCClixIEF GFCO20 - 

f- CFCO210 
Cr1.-1 blitEŒRING kCC2  

=  C ceccàll! 
ce 11 J=I ,N* GI.0O212 

= b+1 CFCC213 
11-111, 1 I = J GI.CC21 n1  
11(19,2 = 1001 hi 1  NF'; 4  J GICC21E 
II( = NbV + NE + NE2 4  J 4  1 Gi.CC21t 
IF( b,41 =  J  + 1 GbeC21111, 
II( = 1 C1Ce21111 

ce(C21111 If CCN111.l1 
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lit: GICC‘E Fc11;AN A CNIVE1SIT1 CF lAlEALOO CoN1LYSATIoNAL NONIToR sysTEN 

IF(bk2.EC.0) GC lc 86 cic02210 

il 

EC EE. 1=1,14E2 Gcr.222C 
1 = L+1  ctcC223C 

, b = 141 ClcC224C 

11!

11(1,13 = 1F(1-1,4) + 2 
11(1,2) = I 1 (1-1,4) + I c;CC22EC 
Ilt1,Z) = 11(1,2) + NF 4  2 16 (1E2-1 4 1) + NEI 4  1 c1CC2210 
11 (1. 4 ) = 11(1,2) + 1 

CFcc22EC 

c;c0228C 

! 

11(11E) = 2 
N11(1) = 1E(1,2) ckcC23CC 
cc IZ J=2,11 

ciscC22EC 

cicc23IC 

111 

N = 141 
11(1,11 = 11(1-1,1) + 1 cicC233C 
11(1,21 = 11(1-1,1) 

cbcC232C 

cLcC234C 

il 

IL(1,23 = 11(1-1,4) cicf23EC 
11(1,4) = 11(1-1.4) + 1 48cC2JEC 
1E(11,E1 = 2  CFcC231C 

I:: CcNlibtE c;cC238r 

ïl 

ctb =  P12 -1 cNcC23EC 
11-(LI1I.EC.0)  CC  IC 76 cbc02400 

L. 

Er IE .1=1,111 CYcC241C 

• 
b = b 4 1 
11(1,12 = IEL1 -1,11 4  1 c“- C243C 
11(1,2) = 16 ( 1-1,1) 

GI.CC242C 

01cC244C 
11-11,23 = 11(1 - 1.4) . CFCC24EC 

lc Fli 99  1 : l 1e(e92) f  1  111 1 

CICC24EC 
csce247( 
cicC2418C 

It ccNiiNti cvcC241C 

11 1 
M  = 4 1 cecn2500 
It(N.1: 

,k 
= IF(1-1,1) 4 1 1  c>c0251C 

!! 

IF(N,23 = 1F(N-1,1 )  
11(1,C3  = 11(1 - 1.4) c1cC2F3C 
11(1,4) = 11(1,1) + I C5c0254C 
1I(1,E) = 1 

GFc02520 

C1cC2EEC 

le 
1.11 =  1 I2-1 C1CO2E6C 
11(111.1(.0) cc lc 80 G1CC2EIC 
cc  17 J=1,11   cpcC2FFC 

11 

N = N41 Gl.cr2F8C 
11(v,1) = IF(1-1,4) Clc026C0 
I 1 (1,2) = 11(1-1,3)  GlICC2FIC i 

11 

Ilk(b,21 = 11(1,2 )  • I cecC2E2C 
11(1,4) = 11(,1) + 1 G1CC263C 
1I-(1,E)  = 1 

11  
Gbcc264C 

, II Cc11I10E cbCC26EC 
I! EC CCN1INti GRCC266C 

pc  1 2 J=1,NE1 c1c02670 
ih,  = 1+1 GimcC261C 

I! 

I 1 t 1 ,11 = 11(1-1,4) GFCC2FEC 
11(1,23 = lEt1-1.2) c/c027CC 
ilk(b.ZI = 11(1-1,2) 4  I 

 
c1CC271C 

i
i1I(1,4I = 1 1 (1-1,4) 4 1 c1cC272C 

> 11 (1,E) = 1 cc0273C 
12 C(11111.1 G1CO2740 

' FE CCN1INII GRCO27E0 
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Iitt: 4 1 C( ‘1» lekl;APn A 1P1%1 1111 CI  11A1E11,00 CON 1/E kSATION AL MCN ITOk SYST 

EE L( \ 11E11- 
f.; 1=10411E1 

= 1 
• = 

 

%'1  
11-11,1 I = 1-1,4 + 1 
Li( ; = 1E( k-1,4) + 1,0%1- + 1n 1n E1 
11( lh,t 1 = 1,- (1.2) • 1 
I1( 1.4 1 = 1F(1,1) + 1 
IF(  1,53  = 2 
ro-ect = 1E( b,1) 
Ct  1 J=2,NF 
• = teel 
It(  1,13  = It( 1-1,41) 
IF( s,:e ; = 1E( b-1,3) 

e4,:: 1 = 1E(1,2) + 1 
1)( 4 , 4 1 = 1E11,11 + 1 
11( 1 9 : 3 2 
CcNI1b1.1 
LC .c.-C J=1,Nk1 
• = m+1 
11(1,11 = IF( N9-1,4 ) 

 1E( bp; ; = 1 1 11-1,2 
1k( by:: 1 = 1E118,21 + 1 
11(1,4 )  = •,1 + 1 

; = 1 
IC (C/%11t11 
17; lCkl 1E11 

L = 1+1 
4 = ›,« 
IL( eg '11 = lE( tv-1,4 ) + 1 
111 92 ; = 1F( n•-1,4) + NedF + INNEI 
IF( = 
1E( %, 43  = 1,1) + 1 
11(1,53  = 2 
Nik( I  3  = If(  1,1)  
%i et 1+1: -= 11( b,23 
EC 1:5  
• = 1+1 
11( 1,1 = 1111-1,4 )  
IF(  I, 3 = 1F( k-1,2 )  
111 h,Z  3 1E11-1931 
111 b,4  1  = 1k(  1,1)  + 1 
11(1,5]  = 2 

15 C(.1n 11NLE 
CC  5 J=1,NF1 
v = 
11(1,1 3  = 1E(N-1,4)  

11(1-1,2)  
li( 14,::  1 1E( 11,2 3 + 1 
11( 1,4 = IF( b 1 ) + 1 

I 
C(1n 111bli 

GFC 027 
Gicu27 
CkCI 21> 

cbt C27! 
G It C2St 
GFCC2S1 
GFCC2E.2 
GkCr2MZ 
GICC2gA 
GFCC2f4 
GFCC2tiE 
GFCC2ti1 
GFCC2bk 
GFCr2F. 
GFCC2PC 
GFC(291 
GFCC292 
GFC(293 
GkC(294 
GFCO29 
G1(629e( 
GFCC2f111 
GFCC2I-A• 
GFCC2UE 
GFCO301( 
GFCC301 
GkCC2C2 

i G FCO30.1r 
G FC 11 10F0 

GFCr3030, 

cecoio6o, 
G1(030701111 
Gi.craobC 
GFCC3riC 
GkCC31 CC 1 1 
GFCr3lICli 
GFCC3I2C 
GiCr313C I 
GFCO314C 
G 1c(JI  EC 111 
c;cemer / 
GFCr311C 
GFCC31 E•C 
GFCC-11U 
GRCCO2(C 1 

G 
G1(03210 

1 CO3220
11 

Gb(C3231 
GFCC324C I 
Gecc.32 -fc 
GICrJ2EC 
GFCr321C 

G 
GR(C32EC 

1CO32fl0 
FCLNCAFY CONDIIICNS GRCC31 CO ; 
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11
11E: GICCNE FOVIIAN A UNINEISIIY OF IAIE.11.00 CONNERSATIONAL MONITOR SYSTEk 

GFCO3310 

1/ 
I. EPECIF1EE FLUX GICC3320 

GYCC322C 
NEFINC = "n M GICO3340 
Et ItC 1=1.bEFI I IC GCC33EC 

11 NFI(I) = 1  G1CC33EC 
NFJ(1) = 1+1 GICO3370 
SCIIIX(1,1) = 1 0 0. GICC33FC 

Il ltc. CCN11b11 GFCC34CC 
SUI.FIX(1 9 2) = 1CC. GICC33E0 

GRCC34IC 

1!
= 4 

2. SPECIFIED TEhFELA1LIE NCEEE GICO3420 
CRCC342C 

N1E/EC NNL IF2 GICO3440 
EC IC2 L I =I,N1EFFC GCO34E0 

il 

TE11C(1) = C. GICC34EC 
jr; CCN11F11 GICC341C 

GICC34iC 

11 
EVALUPIE SEUI—EAFIWIETE GICO3490 

GUCC3SCO 

1 b 1 
MAl- /ni = C 

Il 

GiCO3510 
CC 11.5. b=1,11 G .5. ;CO32C 
Lc 10E J=1,4  G;CC3F30 

i 
Cc 1C-. 1=1,4 GFCC3F4G 

Li. 11. = 1Af(II(b.1)—IF(14J)) GICC35EC 
11(11.(1.kAX111) kAXEli = 11 GICC35E0 II 1Ct: CCbllbuf G;CC3E1C 

i ISM = kAliEll 4  1 GRCC3EFC 

I! EIEPLAT FA11E CF INPUI 
GICO3SSO 

GICO3610 
GRCC3ECC 

1 IC11 ICe>A1(e e.//122x, , FIblIE ELEuEb1S 8 ) 

WII1F(E.1C10) GROC2E2C 

GMCC264C 
GRCC362C 

GkCC3tEC 

1(1r 1(kkA1('1') 
MII1F(f .IC11 ) 

I, 
bk I'm ( 1  1C12 ) GICC36EC 

vFI1 El t ,IC1.3 )  
 ..///) GROC367C 

GICC2EFC 
1C12 F(IbP1( 1  '.211."  

111(12 FC.IkP1(sCI.3().'EASIC FAIAE N1EIE'.//) 
ell1F(i l lC14) FNI 

GRCC361.-C 
GRCO370C 

i IC14 FCeNA1( 1  '.2E).'bUNEFI CE NCEAL FOIN1S 1 ,15) DHCO311C 
IbI1l(C,101E) bff DUCC272C 

11 1C1F FC;MA1(e 8 ,2E),IbUItEEk CF IIEWEbIS 0 ,15) DRCO312C 

vbIlE(E,IU1I1 Cc:J="-11-F") 

11 ,1, F.4, GRCO37EC 

GYCO3770 

GRCU374C 

GRCCJ7EC 

MkIlF(E.101E) COn(1) 

g
1Clt FCINA1(i 1 ,2E), 0 cCNEUC11111Y CbE  

A 

v,  1/ 
IC17 FCbbAl(e 8 ,2E1, , DCISLUClIVITT 11C I 

0>I1Elt,le1EI : eni(el—el—F") 

mu A , ..—.--" 
GRCC37EC 
GNCO3F1 00 

GRCO27EC 

f 1C1t. FCF1'A1(' 1 1 2E)OIEST EECIICI 'lulu 1 ,1E.4, 11  F1 8 ) GRGC3810 
likI11(E.1C1F) I GRCC382C 

11 III1F(Ef1020) I 
0 ,11-E.4.°  FI') GRCO382C 

GYCO3F4C 
1C1( -  FCFMAI(' 11 ,2E11 9 1 1EST SEC71Cb LENGTH  

. IC20 eciwAl( 1 8 ,2:), 1 eCTUAI GbCcNE DEPTH e,Eb.4, 11  Fi') GRCC3SEC 

II 

I 
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.41.ti4". • L  • 1%1 ›N I  1 L e IA111.1( C  t t'h 11-bis A T 10•n AL NON 11Ck ›N sI1 

11 ;/•• f 
1..1 It >h 1.11 • • et t% I 0+1 IIII4     9 9 1 h.4, 1 III I t• wt It+1 

eitutt,i• 1 .-p, .• 
ét i.%•11 • •,.••••,••  1' '.1 1811 IIII.111••• • EC..1, 1 .1'1 n •••• n • , ..ibt 
11 , 1 1A• 11.1 1 • 1 !I  • /1  1 td4clbt 
wl 1 11(  1  ,11  2 ; ) 1111.1  l Db(0391 

11 I-11.1.411s • i ngt HAILI AII..1I     6 ,1-N*40 DEGREES') GRCC392 
ALF) AI = ALNIA•INC./F1 GRCC3: 

NR111(E0024) /111841b GICO394 
1'24 UCIO4A1l° ° ,2E›,'A11A1EN1 CCI41AC1 ANGLE  11 ,1-èi.41 ,9 1  DEGREES") GWCC3IAE 

vF111(t I 2Cn1) bk1 CkCC291 
2(.11 1-Ce n .4 1(' 0 ,1EX,'NE1*. • 15) GkCC3:11 :  

I1 1I( ,(7.02 NF2 GUCC29b 
2c02 1 ,2EX,INE/..     0 915) GerC(39 

IbI1F(E,2Cr2) Pt GRC040c. 
;LCZ kC106 All 1 2E 'NE  0 ,15) Gbec0401 

uk11LCE,;(204) NI GUCC402 
2CC4 FCeN.4 1( 1   1 915 ) GUCC4G2 

%RI -WE I :COE) bk (RCC404 
2 CE FC).%Al(s ',25),INF  6 ,15) CPC040F 

*FtlEtE,102E) GliC04CE 
1c2E FCFP..411 8  ',//,241, , ECUNtAbY CCNCIIICNS 0 ,//1 Gi4C0401 

1;11E((,1C2E) GRCC40f 
1C2E FC1.>A1( 0  '13C›, 1 1* SFECIEILE FILX°*/) GRCC4OS 

IF11f(E, 121) CkC041C 
1(27 1-Cke.,1( 1 1 ,1F), e NCCE.`: ° ,35b* I Ftile,/) Git(.C411 

LC 111 1=1 ,N£1-1.)C chc041' 
mIiI1E(E,102N1 NFI(L),NPJILIISL1FLX(L*1),SUki1X(1,2) c,F(0413 

1C2N 1-cR!.#11° '911)4,1E9 1 ( 1 ,1E9221,F-7.30 1C ev1-1.3) GUCC414:1 
110 CCNIINtE CkCC411i 

*1.11F(E,1(.2!1) GRC0416 
1(21 ECNNA1( 11  ',///,2:-.X 1 •2* EFEC111EC TEMF1‘A1UkEe,/) GkCC411 1 

t;11F(E,102C) C1ic041N 
UZI) F(ksA1( 8  ',IF), 0 NCLE 1 ,32X,'1FYFFRA1LFE 0 * /) GRCC4IL- 

LC 11E b=1,141SFEC G1CC42( 
mbl1F(E,IC31) NFR(K),ISPEC(k) GICI- ; 421 I 
ECFAA1(° 1 11E),IE,35X,F1.3) GkCC422 

IIE CCN1IN1F CRCC422 
mi.11F(tv1C32) GPC0424il l  

1(::2 eCh.%Al( 1 1 , ) GRCC42E 
CIECN CkCC42t 

11-(11).1N1.F(*C1 GC 10 12E GbC042 1 
CC 12C 1=1,14 11 GWC(42F 
wk111(E,U22) 1,X(1)11(1) GRCC4211 

1(ZZ 1-CeNP1 ( • 1 ,1C)115,1CX,FE*4,10‘ 9 1-N*4 ) GkCe43 
12 1,  LC.N 1 IN tr CRCr431 

E 91C22 ) GFC0432N.  
CC LIE b=),tfL GRCC433 
wk 111C E * 1024 ) 1.91F( lop 1 )I1F( 10,2 1,1E( 11,21,1E1 ke4),IE(10,51 GICC4:1 0  

ICZ4 1-CbehAl(° CRCC42E 
1;E CCN111.11 GRCC42t 
12t CCN1INLE GIC0431 

CLICK G1CC43i 
PUMP% (1“- 043L 
ENL GRCC44C 

• I . ! 
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II 

If1 II: LECCVF 1C1.11A› A UNIVERSITY OF sAikeux CCNVERSATIONAL MONITOR SYSTEM 

GIC04410 

111 NAM, ASSEUELY  AIL  SCIUTICN 
. 

GIC04420 
GMCC442C 

1 SlF1.(11Int SCLI,FF GPC04440 

iF GmcC44E0 l  ENALLA1ES ELLVINT NATkICES 'NE ASSEMELES 1C FCFM GLCPAL ENSIFMCFC044E0 
IIIIEMEN1PlICE CF ECINDAil CCNDITICNE GMCC447C 

 1RIANGULAII2AIICN ANC SCIDTION G1(044S0 

lii CUMmCNiCNE/NEcbS0(2(JOC),Y(2CC0)91E(2000.5)0%11(75),b1.1(75), 
CPC.C44£C 
GFc045n0 

11 
•Sl.;11X(Ift2I,IbINI.;(2000),2(2000).A(200C,EC1 ),NSELXCI GR(C4FIC 

dl 101EFICIIE),NPILIE),IFLoblEFEC 
CALL NP1I1X 

CRCC4520 
GFCC45.2C 

1 
CALI SCIL( 1) GIC04540 

III 
CALI ECIVF(2) CMCC45EC 
Illtbb 
kNr  

CMCC4SEC 
GRC04570 

1 SCIFCL111n 1 mA1k1) GR(C45bC 

111  
 GICO4SPO 
III-FNLEf. bA1M1X FCNUFE ANL MOCIFIEE TO INCCRPCMATL B.C. 

 
GRCC4bCC 

Il 
 LCAE VEC1C1 FOMMIE ANI WCEIFIII TC 1NCCMICRP1I E.C. GIC04610 

II t.t.ost-.NiCbi/hi nJn E oic 200c hy( 2CCC him 2000 9 5 ),NF1( 75 )1NPJ( /E le 
GICC462C 
GRCC462C 

ii 

abIl.11)(1:921,1E1M1,02CCC).Z(2CCO),A(2CCC.E0),NSFLNC, 
3, SFF(1E)IIIEOn FI.h1SFEC 
CCmICN/lbC/CCl•L(2)094.1ANG.FEE,DNU,HLED,FLOM.F 
CC nINCN/lphFF/A0414) 

GRC0464C 
1 C .NF I GMCC4EfC 

GRCC46EO 
CRCC461C 

! 

= 
b1 

INITIALIZE GLCBAL STIFFNESS ANE LCAC VECTCI== 
GRCC47C( 

DC 1 I=1,NECNS GFC04710 
WM C. GMCC472C 
tC 1 J=1.1  GICC473C 
A( 1,J)  = C. G1C0474C ill 1 CCblINLF GFCC47EC 

II 
 CRCC4 0 
CCMPUTE ELEMENT STIFFNESSFS AND LCAES. 

7E 
GIC04770 

1 GRCC47éC 

II 
DC .3 M=1.NFL GIC047b0 

GICC4tCC 
FLCIFkil liA1i1X CYCO4IC 

1 

II CII = (CNL(III1.51) 
C12 = C. 

GFC04820 
GMCC4820 

li 
GRCO4S40 

C21 = C. GNC048E0 
C22 = CENLIIE(M.E)) GMCC48EC 

GICC4b10 

II CAL 1 CI AU m .0 I 1,c 12 ,c21,c22 1 GRCC48E0 
GRCC4FEC 

ASSEMELE STIFFNESS MAIlda GiC 0 4900 
e -  GRCC491C 

li 

DC 2 11=1.4 GC04920 
I=11(b.1%) GICC4U3C 
CC : J1=114 

I  

GRC.C494C 
J = li(b.JM)-141 GICC4950 



Fill: GkCCVE FORTRAN A UNIVERSITY OF IATESLCC CCNVERSAIICNAL IIChI1CI YSTENII 

IV(J.LF.C) GC IC 2 GIn C049611 
At 1,J) = A( I.J) 4 AC( 11..11) GkCC491( 
CCNIINIF GkCC494 
C(N1INIF G FCC49911 
*kl1F( 1] ((AI 1.J4J=1.15E1,1).1=1.NECNS) cycCEOCC 

GRCCE01 
CCNVERT LINEARLY VARYING ELSFACE FLLXFS GFCO502 
IC ECCIVALENT NCDAL FLCII RAIES ANC ATE CPCC502C 
TO GLCEAL LCAE VECTCE G(0504 

GRCO5CE 
IFINSFLIC.FG.C)  CC  TO  5 cFcosne 
LC 4 L=1,reli)C cuCUO1C 
I = NII(I) CbCCEOF. 
J = ›FJIL/ GRCCEOU 
EX = X(J)—X(1) GkCCE1C 
EV = Y(.1)—Y(1) GRCCE11' (  
P(I) = iII)+LX n IELbFIX(1.1)/2.*SCPFLI(L.2)/6.) GICCE12 
W(J1 = i(J)+C)*(e.CIFLX(I.91)/6.+StRFL)(112)/3./ GFCC513 

4 CChlIbLF GRCC514e ,  
E CCbIlblE GRCCE1E 

GFCO516 
INIkCELCE KINEWAIIC CCNSTI.AINIS GkCCE11 
(GEOWETRIC ECUNLAEY CCNEIIIC/45) G(051

GRCCE1E 
IFIN1SFEC.EG.C)  CC TC 1 C1(0520 
CC E le=1.bIeFEC GRCCE21 -  
CALI C/CAECIIEFEC(k).NFII(I)) GRC0F22 

E CCNIINLI GRCCE2:: 
1 CCNIINIE GRCO524r 

kkILFN ckcf.52E 
ENn GFCO52é 
SCERCI,11NE GFC,FC(1.N) GYCCE21 

GkCOE2é 
L -- ----- MCEIFIES ASSEMELAGE STIFFNESS FCR T PRESCRIEEE AI NCDE N cbCO520 

GRCCE3C 
CCYY(N iCNE/NLCNS. (2000), Y (2 CCC ), IE( 2000,5 ),Ne 1 ( 75 ),"J( 7 5), GFCO531' 

eSLWFIX(IE.2).15.1b1.&(2000)12(200()).A(2000.50/ I NSFL1C. GkCCE3: 
elEFICIIE),NFli(lE).NEL,NISFEC CRCCEJZ 
CC ; b=2,1:e.kbl cpcCE34e,  

= N - 14 4 1 GFcn53E- 
IF(h.l.k.C) CC  IC 1 G4(053E, 
m(b1 = 1, (K)—A(b.h)*1 GRcCE31 
AlX,M) = C. G;(CE3t.' 

1 CCN11bLE GFC1E3f. 
= N*N-1 GRCCE4C 

IF(A.G1.NFCNE)  CC  IC 2 GiCO541ii 
CRCCE4: 

AIN,N) = C. GRcCE4:: 
ccNiiNtE GWCCE4 4r 
A(No) = 1. GiCO54E 
kIN) = I GiCCE4E 
bIlLIN GFCCE41 
INL GRCCE4F01 
SIbICL11NE SCIVF(ICNTRL) GiCO5411 

GUCCEE 
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11 1ui: GICCU ECRIFAF A UNIIFEIETII OF IAIEFLOO CONEFSATIONAL MONITOk SYSIFb 

 eCtAus A £11 CF LINIARISYNbETFICOIANEFIstS1b111AFECL! GICO5510 

1111  
ICLAI1CF£ CF 1HE FCFM A*X=h USING GAUSS—ICCIIIILE DECCNP. GFCC5520 
cèlY LIA(C)A1 A NI  FIG61—CF—EIAGCNAL ELENIFIE AIE  INFUI IN A GICCEE3C 

1:  IFAb«.2FCFbA1ICF; J(EANDEE) = J—I 4 1 AND I = T GRCCES4C 

Ill 
 I(bli•L = CCF1F0L AkIAELE GkCOESEC 

ICNIKL = 1; IFIANGULAFIZAlICN CFLY  GFCO5560 
ICNIII = 2; ECLVE: FOE R.U.E. GecrFE1C 

.4:NNE IN eIe CCNE1AN1 ‘ECTOk J:- --- CILTICN IIIL GFCCF.FFC 

Ill CCWW0F/CFE/NFCFS,X( 2000)C( (*.00 )91E( 2000.5 )tell( 75 ),14'.1( 75 ). 
GcC55EC 
CFCO5600 

! 4 SLF11X(IE,2),IElb3,F(2000),2(2000)1A(20001E0).NSFLXC, GkCCFEIC 

ill 
1 15.FECCIE ),NP1( it ) INEL.N1EPEC 

0,10.e. 
cbiceEé:C cc IGC 1=1  GlecCFE2C 

/(I) = F(I) GFCO5640 
iiim b ItC CCN11tl G;CC6FC 

ill NIFESI = 1EÇNE-1 GRCC EC 
Ie(ICN1I.L.F.Ç.;) GC TO 2 

E6 
GFCO5670 I- GPCCEEEC 

ill 
IRIANGUI,RIZAIICN GFCO5690 

GRCCE7CC 

/ DC 2 b=1,FILF.551 GFE05710 

Ill 
b = F-1 
LIF = blbr(lElbl,FECNS—b) 

GICCE72C 
GFCCE13C 

I PIVC1 = P(F,1) GFCCE74C 
LC 2 I=2 1 111,  CFCC57E0 

II CF = A(14 ,1)/11%C1 
1 = 0.1 

GFCCE7tC 
GFCCE7/C 

i J = C Gi‘cC57bC 

III tc 1 b=1 I LIN GFCCE7IC 
J = J 4 1  GicC.(C 

' I A( 1 9 J) = A( IIJ)—C1*M Ftla G;(158110 
im I CCFIINTF CFCC5F2C 

A(N,I) = CF cRcCESU 
! : CCF1INIF GFCCES4C 

G(.IC t GiCO5850 
Ill Z CCFI1F11 GRCCEFEC 

GFCO5810 
, 

'7 ECINIFG 'CM F.H.E. GRCCEFFC 

111 LC 4 14=1,NLI551 
CFCO5890 
GRCCESCC 

M  = F—I GFCO5910 : 

11 

 Lit  = FIFO(16111I,NECNE—)) 
(F) 

GICCF920 
CF = E  CFCCFS3C 

1 
Fab; = CE/A(F11) GFCCE94C 
LL 4 I=2.1Ib  GICCESEC 

II  = F 4 I GFCCESEC 
M(I) =  1 (1)—P(F.I)eCF  GICCE91C 

4 CCF1IFLI 

ii 

GICCSSEC 
iichIG. I e- e( bi(b.f.)/M NECNE,1 ) GRCCESEC 
CC E 1=1,FLEEE1 GRCCEOCC 

i N = FFCFS-1 GIC06010 

Mi 
h = F-1 GFCCE02C • II)  = b1F0(I51)1,FE(NS-10) 
IC E b=2,111 

GecC603C 
CFC0604C 

L = 1, 4 1s CFO:1E05C 



GieCCt2E 
G1(1)637 
GRCC631• 

Cke:Ct2E

Ili 
G1(1)637 
G ce31- 
GIC0639 
GI(Ct4C 
C)CC6•11 
GkC0642 .  

1 OkCrE41 

G i•CC643 
GI.CCE44 

G“C6
-17
4 1 

GF( 06 
G4C064F I 
CkCCE4k '. 
Gl.006501 
cucCt51 1 
ONCübS2/ 
GRCCt2 
GICOtS4 
GFCC6EF 
ONCCéEt 

11 

61C(657 . 
GPCCEN i 
GkCCe5f. 
GIC0660 

1, b(0t)1)601 

CkCf 601..4 , 

cemel CC 
G&Cn611( 
GPC0612,. 
G1C06130 
GRCC6141 
GiC0615l 
CkCChlE0 
GI.006170 
GFCC61Fi 
GPCCE1S1 
GleCCE2C 
GkCC621' 
ciacCe22 

1 
G1C0623 
GPCr624 
GRCCE2F 
G;C0626 
GRC0f21 
G1C0626 4  
GRCC62E 
GI.00630 
GkCCE31 
GRC0622 

I! 

GRCOE32 
GI4CC634 
GWCCEJE 

C 

VIII: Gi.CC%L FoR11AN A UNIVFItSITY OF MATEI.LCC CCNIftlEAlICNAI EYSIEN 

t: 
C  

C(  t1 1LF 
C( N1 

INC 

FikEENIAlION CF sEstuie 

St.kb(UI11n 1 

C-- ------ — CALCUIAlEE tFIIVFE CLAblIllEE AND HUNTS YEELLIE 
CCNt•Cb /CIn k/NECbe.,11121)00 ). I( ;non ), F( 2000,5 )•NP 1( 151,101 J( 7E jt 

• sLFIL '1E12 ) 91E11,1.6( 2CCC),2( 2CCO) gA( 2CCO.E0 )9NSFLIC• 
tie.k-Fc( le )9NV II( 1E )0n EL,NIEFIC 

CCNMCN/111C/CCIn C( )01•COAVG ,DNL,IILS.D,FLCI 9 F 
CALL CPLCNS 
CALL FCLE1.14( ELC1 
CALI / In ClbL( ) 
CALL 11-11.1 
FE 1( IN 
EN( 
ELP1CL1 CALC).e. 

FEIFCKME YIECELLANECUS CALCULATIONE 

C(e.koCN/CNE/CN.S.X( 2COL )0( 2(CC )•1E( 2000.5 ),).P1( 75 )9NPJ( 75 )9 
2CCC ),z( 20(0 1,A( 2CCC,5c 1INSFLXC. 

*1FFIC( ).NPIg( 1E )91, FLIblE.FEC 
CCVACb ilVC/CC1n 1( 2 )0.C.1AVG IMES .DNUIHLED.FLC1b • F 

SUkFACE kEAT FLCS  

C = C • 
11(1, / XC. kC.e. ) CC IC 2 
CC 1 L=1,N5FIXC 

= ?.F1(1 ) 
J = L ) 
LX = X( •i )—X( 1) 
CY = ( J 1—Y( 1) 
(.; = C+ [XI( 5L11 L)( L, 1 )/2.+EL1kL1( L12 ) /6. ) 
C = (+IX- ( 51.11FI)( L ip 1 )/6.+ELFEL)1( L 2 )/3• 

1 CCIn 11?n 1.1 
bl I 

A VE1AGE SUkFACF TEVFLIAILRE 

IAVC = C. 
UC J=1.4SFLXC 

= X( .i 4 1 )•••)1( ) 
fAVC = 1 PVC+ 1N'( J ) 4 k( J 4 1) ) 
CCNi 
IAVC = 1%G/(  2• 1 11) 

CVEkALL THEFItAL IFSISTArn CE 
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1111: 

Jar. ...J......r r‘m,pme m univrmQaai Mr WAICULAA, %.‘nlirszmiaunna. aq...ntiLti e:YbILM 

GRCCEEIC 

..1

FT 6 = ( lAVG-15FICT 1 MG 

DN l = :./( IES:vCCFET 2 ) ) 
116-11EIRCChL( I )*11) 

IT 1 (IF 

GkCCE62C 
GPC0662C 

GRC0664C 
GRCC66EC 

I 

 GPC066E0 
Sll FUJI 1FF FI lb') GRCC661C 
EFT: 

CCMbCF KNE/NTÇFS,1( 2(10C ),Y( 2C0C 1,1E( 2000.5 ),FF I( 75 )91n FJ( 75 ). GFC066F0 ii  
*ELNkL)(1E,21,1SEbt,R(2CCO),Z(20C0),A(2CCC,50) I NSFLIC, 

CCNNCF,1*C/CCFL(2)111,GOAVG,IESIDNU,IILSD.FLC*,F  GFC06690 
GkCC67CC 
GRCC671C 

 

; 

CCNCF/FIELI/IFIN1 cwcCe7C 

:C1 ICF*A1( 1 ',//927XONCLAI DA,A, TENPEFATURES AND BEAT FLO*°,//) GbCC674C 

F F 
Mk IlF(Ev2C1) GFC06730 

1  f,2C2) GieC067EC 11!  FCl.kAlll 1 1310FCLE°,14X010,1EXOY°,1E101Ellk.i.814eFLOW 8 ,/) GieCCtlEC 
LC :C4 F=1,FIÇté5 GRC0677C 
11.11F( (9203 ) 1% Oi( F )1,Y( F ),,k( F )9Z( N) 

MII1F( 

GIC0(780 

II! :CZ 

FCIIIA1("11E91CX,F12.5,5),E12.5,1014F8atEltkbe4) GkCC67EC 
:C4 CCF1IFlE CNcCESCO 

*FIlF(i 1 2CE) G1C06810 
111 :C5 IC11r1 ( ' 1')  

MII1f(t,2Cfl 
GleCCEE2C 
CRCOE 

06 FCI%Al(° e ,////14CXOTI SNNALY.,//) GRCC684C 
F2C 

il 

I1I1F(E I :C7) k[C* GliCCESEC 
07 FCIIA1(' ',/,2E)OSUN CF NCLA1 FLCIIIS = ofFE.E0 ETU/N/0) GRCCESEC 

b1I1f(E f 2C l G1CCEF10 
;OF ec1. n Al(1 , ,/,2E1, , vAluE  CI  FtNCI1CNAL = 0 0E13.5) GkCCES60 

111! 

TI1Ilf(f.14) litG GRCCESSC 
14 FCIFP1( 1  ',// 9 2E)104VG. ELFFACE TENF. = '9E7.20 EEG FARR') GRCCESCC 

S1I1l((121E) C  GRCCESK,  

1111 

;IE 

kb 
1/111(t v 1() ES 
kCk4A1( 6  './92E),'ICTAL MEA1 ELC1 = 11 ,F1.20 kID/Hb l ) 

;1E FCAl(i ',/, O ;ETITCIAL FESIETAKCE = ',F€.4,' DEG F/ETU/HY.) G1CC694C 
2 F 

IFL,CCFE(2)/CCNE(I) 

GRCCE92C 
GRCC6S2C 

GFCCESEC 

II M1Ilkl(,211) INLetNU2 GRCCtSEC 
17 kCI1A7(' 'il.:ENOECUIV. FLESE11.NC. = ',12 @.40 ETUMBR—SQ.FT—F1',CFCC691C 

1 1 //t2fIt'(IC. FL.) * (IF/Klig) = 11 ,Eb.40 ETt/(HR—SO.FT—F) 1 1GYCCESFC 

Ilk: OFCCVF kCilIAF à UNIVERSITY OF WATERLCC CCNIvERSATIONAL MCNI1CF EYSILM 

GICOESC 
GkCC7OCC 
GUCC7010 
GI(07020 
GRCO7C2C 
GWC07040 
GWC070EC 
GkCT70tC 
GRCC7OIC 
GFC070R0 
GkCC70E.0 
GRCC71CC 
GFCC/11C 
GFCC712C 
GFCC713C 
GICC714C 
GICC7IEC 

*II Ik( t,IE ) 
;IF FCi*A1( 'I' ) 

;F M>. 
END 
SuEbcD1 1NE ECIEM FLcb ) 
ccNbCN/CNE/NkCNS ,11( 200C ),y (  2C0C ),IE( 2000,5 ),NP1( 75 ),NPJ( 75 ). 

*EL1EL)(1E1,211,1E1b1,b(2CCC),Z(20C0),A(2000,50),NSFLIC, 
*lek1(11i),NPIllf)INEL,N1EFIC 
ELC, = C.0 
511111,a1 
RIA1(1) 1(A11,J1,J=1,IE1b1),1=1,NECNE1 
Lc IC( 11=1,NICNE 
klux = c.r 
L2 = C 
L1 1  = )5E11 11 — 1 
IF(111.C1.NECNE) 1Ib=bECNE 
LC ;Lc  12=L1,Ilb 
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F I IF : Gi•CC‘k. FekleAN A UN IVIFS I TV OF Al tit ( t.CNIO 1.›Al V(K I 1CI 

• 
1.3 LZ 4 1 

;cr 1-L 1X = FI.LX • A( 11,1.3 )+F( 12) 
IF( 11. E (.1 ) CC IC 1 1J0 
11> = 11 
11 ( 1.1.G1 WI I IM=ISEk 1 
CC :ii: 11=2, 1. lb 
LZ 1 -  1.2 + 1 _ -_-.. • - 

Z. CC FiLX = ELLX A(12,12) 4, 5( 13) GiCC123 
Z( L1) =FLLX GI( C724 

1CC 1.LC = FICA, + EEL) GIC(721: 
bLICIN GliCC72t 
ENE GRCE,721' I 
SIE}.(.4.11Nt. FNCINL(F ) GF(072t; ) 
CC.101)Cb/CNF/NE(1%S.)1( 2(.(J0 )11( 20001,1E( 200015 )INFI( IF ).NPJ( 75 )4 GRCC72 

*.u;IL)(1e,2),15EXIOZ(20CC)1Z(2C(0),A(2CCCIEC),NSFLXCe 
1 

GRC073 
*15.1-EC(IE ),NPX( ).NFL.N11.-FEC GRCC731 
F = 0.0 GUCC732 
DC It_C 1=1 INECNS G(073:1. 
F = 11'2( 1) GPCC734 

ICC CCNI INEE GIC071E 
F = GRCG73F 
bElt G(071 
ENL GliC073b 
SU:FCC 1INE QUAE(k pC 11.0 12 .C219(22) GIC07.1P 

GRCf74C 
 CCNFLIES FLENENT STIFFNESS Feb bilk FLFbINT GFC0741 
 11bEAF,LLA1bILAIEFAiplECEAFAME11.1C.ELEMENT-2 Pl. GAUSS GUACR.GkCC742t 

GRCC,74Z: 
NE‘I^b F(2,4 ),C( 2, 2),E1C1( 4.4),CE( 2.4 ).14ACJ( 4.4 ) G1C0744 
REAL':F EAE5ILI1J,GAL5EIPIlki4E.S.T,EEIE GI.00745 
REAleb 112./(12,)14,14231.)24.).:411112.Y13,Y14 1 Y2.1 .19 24,YZ.14 G4C074ti 
CC 41CN /C NE /Ni (NE, )( 2ti()0 ). 20U0 )91F( 2000.5 ),NE I( 15 ),NFJ( 75 1, GRC0747 

r'SLF LX (1E, 2 )91£1 I I  id 2000 )1 Z( 2000 ) A( 20 00 I 50 I.E1SI.LNC. GRCf74b 
‘15FIC1 I.NPII(IE ).NEL.Nle.FEC GRCC74 

CCNiNCh /11-14EF/ AC( 494 ) GRCf7EC 
Cf 1,1) = EELE(C11) GiteC7F.1 
CI 1,2) = EELE( (12 ) Gk(f752,1  
C( 2,1) = EFL E( C21 ) CbCe7EZ 
C( 212 ) LELE( (22 ) GkCC754 
I =  1F(,1 ) GliCG7SE 
J = 1E1'11 9 2 ) CUCC75t 
• = 1E(e4.2 ) GIU-C7F1 
• =  1F(!,41 GRCf75N 
XI2 = LEW X( 1 ) )-CFLE( X( J )) CYCC7SF 
xlC = EFLE( X( 1 ) )-CFIF( X(14)) GliCC7t( 
X14 = I ELF( X( I ))-EEIE( X( )) GRCC7t 1 

= ELF( X( .1) )-EE1.1( X( â )) GRCC1E; 
X24 = 1E11(1(.13-CELL( X( I.)) GRCC7t.2 
X24 = FLF( X( J-CtLF( X( 1. ) ) GFCC7he 
1'12 = IELF( Y( 1 )I-CP1F( Y( J)) GRCC7tE 

= IELE( Y( 1)1-EE11( Y( )) GRCCUt 
Y14 = IEEE( 7( 1 ) I-E,FLF( Y( )) GRCC7f1 
12: = LEM 11( J  3  )-EPLF( Y( h ) GRCf7te 
Y24 = LELF( Y(.1) )-CELE( Y( )) GI<CC7EIF 
t24 = 1E1E( Y( 1 ) )-EEtE( Y( I.)) GRCf 77Ca 

- 230 - 

F 

GRC071t 
GFCC717 
GI.CC71 1! 

ccrut
Gb(072r 

 CNCC7111 



ilf: Gi.CCI0F FciillAb A LNINEISIlY OF 1A1E5LCO CON%ERSATIONAL MCNIIOR SYsTE1/4 

clecC7/1C 
INITIALIZE AC IdAleIX  Gc07720 

GRc(1112C 

ill 

oc 1 iv=1,4 
Ji= 

A011' 9 .110 = C.10 

Gi.c07740 
Lc l 1,4 GicCllEC 

cbcClléC 
1 CCN111,01E 

il 

Gi.cC771C 
Glecel7EG • 

 IFFMS OE INTGUL (E**1)*C*E CNEF VCIAbE GICO37110 
GicClbCC 

ii 

 
Es .E112EC;Eflnt2E 

Lc IC ICA1sE=1.4 

GucCl&IC 
GAL = Gec07820 

GgcC7:1C 

I Gc 1C (;92.4,5),ICAts5 GcClédIC 
11 ; E = GP1Es GPre7EFC 

7 = cAlES Gi.(07pit0 
GC lc f G1CC7bIC 

1 : S = -CptSs GRcC/EFC 

II 
7 = GAtSs 
Gc 7C E 

GC078110 
GFcC79CC 

1 e E = GAtSs GkcC79IC 

11 
I = -GAtSs k 
CC U.  E 

Gc07920 
GFcC193C

u  E S = - cptss GcC704C , 
1 = -GAtss Gsc07950 

* E CCblIbtl GeCC19eC 
GkcC7I-IC e- Fiji). FLEYFNTS CF E eAllfx GkcC79bC 

I
GFcC79EC 

LE7J = ()13 -, V;4 - Y13 01 X24)*(124*Y12«.-Y24*X12)*Si(X22eY14.-Y23eX14)*1 G1Ic08000 
D11J = LE1J/F. 
S(1,1) = (Y;4-Y24*-Y22*1)/(é.*IE7J) 
E(1,:) = (-Y12+1Z4-E+Y14*1)/(8.*LEIJ) 
k(1,Z) = (-Y24 4 112ef.-1(14*1)/(8.*EFIJ) 
F(1,4) = (113•-I12*E+722*1)/(8.*IEIJ) 

= (-X;4 4. X24*E+X22*1)/(8.*EE1J) 
= (X12 - XZ4.E-X14*1)/(8.*LEIJ) 
= (X24-11;*E+)(14*1)/(8.*IE1J) 

E(Z,4) = (-1(12 4 112*E-1(23e1)/(8.*DEIJ) 

CCbPtlE NA1111 F/aCDLC1 CileE 

Lc 1 11n =1,2 
DC 1 Ji=1,4 
CE( 1v4J1t ) = C. 
LC 1 11=1,2 
CF( 11 9 .11 ) = C1( /11 9 .111)+C( 11,1111)*E(1C19J11) 
CC101P.LE 

COMPLIF (E***1)*CSE FECLUCI 
é 

LC 1. 11=1,4 
DC f J1=1,4 
F1C1(11,1J1) = C. 
EC é 11=1,2 

GbCOR010 
GICCid12C 
GICCFC3C 
GicCSO4C 
GICCFCEC 
GicCFC6C 
GicCEOU 
cecCbOiC 
Gi.c080FC 
GFcCFICC 
CFC08110 
Gbc0R120 
GRLCE12C 
G;c0S140 
ci, cfêlEC 
ccrtiltC 
ci&CCFI1C 
GICCblbC 

GFC0S200 
GICCh2IC 
CNCCF22C 
GFC08230 
Gecté24C 
G;crî2FC 



1 CC1n 1 IPn 1.E 
iCi CCN1 IN 

OC 11 11=1,4 
CC 11 .11 =1,4 
AO ,J1 I = 51n CLIIAC( 111,J11) 

11 CC1n 111+1.1 
11 (1.tn 

FM. 

GI.CCSJE 
ChCCb31 
GICOM.18 
GSCCK1 _ 
GICCF41- 

 GICCé41 
GRCC8e; 
GICU84311 

!I 
11.1 

FOR1;AN A UNIVEUSITY Ob wruetcc CCNYELSAIIONAL MCbliCi EYSIEll F Ill : GbCC%F 

GC08261!  
GFC0827 
GROCh2F 
CRC082.,. 
GbC0830111 

GiC0832 
GFCC831 

WICE(11,JN) = FICE(IM,J11)+E(IPM,1W)*CE(K11,JW) 
CCN1INLE 

EOM PlAhAS PPCBLEMS 

= Z.1415E2E52589793 GFCC831 
hAC = 1./(2.-P1) GiC0832 
LC 11=1,4 GSCOM33 
LC  E 11=1,4 GFCCb14 
WAt( 1 6  ,JV)=t AC( 111-110+2.4 1 F1 4 1.ALSDAE5( 1*tICE( IM9J% )*4./( MW**21CFCCK)E 

PI 
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Appendix E 

Typical Output from Finite Element Groove 

Heat Transfer Prediction Program 

E.1 Introduction 

In this appendix a typical output from the finite element pre-

diction program is presented. A value of zero was used for the code 

parameter IPRINT since the use of a non-zero value is useful primarily 

during the debugging stage of the mesh generator development. This having 

been completed and verification made that the mesh generator is function- 

ing correctly, it is unnecessary to display this information with every 

output.• 

E.2 Sample Output Description 

On the final pages of this appendix a typical output from the 

groove heat transfer prediction program is presented with a brief descrip-

tion of the output given below. Due to the brevity of the following dis-

cussion frequent reference by the reader to the sample output will be 

helpful. 

On the first page of output the 'Basic Parameters' describing 

the particular case under examination are displayed. This display includes 

material properties, problem characterization parameters, and various 

other pertinent geometric parameters. In addition to the above, inform-

ation.relevant to the spatial discretization of the problem solution 

domain are also presented. For an explanation of these parameters the 

reader is referred to figure 5-7 of Chapter 5 of this report. 
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Immediately following the display of the basic parameters, 

the boundary condition information is displayed. The specified flux 

boundary conditions over the pipe exterior surface are presented firstly. 

This information is presented in the forts of an assumed linearly liarying 

distribution between two successive nodes ranging from the first flux 

value reported at the first node number reported to the second value 

reported at the second node number reported. This is performed for each 

*element having a surface on the pipe external surface. A uniform distri-

bution of magnitude 100 (British units) is assumed internally within 

the program. Following directly the Neuman boundary condition presenta-

tion is the Dirichlet boundary condition specification over the liquid/ 

vapor interface. The interpretation of the output for this condition is 

direct with an assumed relative value of zero for these nodes. 

Where a non-zero value for the code parameter IPRINT is used, 

two tables, additional to those in the sample output, will be present. 

The first of these contains a listing of the node number, its global x-

coordinate, and its global y-coordinate, in the order mentioned. This 

will be repeated for each node in the finite element model. 

Again for the case of a non-zero value for IPRINT, a six column 

table will be presented following the table described in the previous 

paragraph. The horizontal entires of this table are respectively the 

element number, its associated nodal indices in the order of node one 

to node four, and the material type for the element. A material type 

of 1 indicates an element located in the solid region of the solution 

domain while a material type of 2 indicates an element in the liquid 

region of the cross-section. 



The next portion of the output serves to report the node 

number, its x and y coordinate value in the global system, the nodal 

temperature as determined by the solution program and the net nodal 

hAat flow rate imbalance. The net nodal heat flow imbalances reported 

here can serve as a useful check on the solver accuracy for the system 

of equations. For all internal nodes these nodal heat flow rate im-

balances should all be zero (within the solver accuracy). Experience 

with the finite element method indicates that relatively large internal 

net heat flow imbalances result near highly skewed or poor aspect ratio 

elements. Thus this column also serves as an indicator for the accepta-

bility of the mesh generation scheme. For external nodes, the net nodal 

hpat flow rate imbalances over a given surface must sum to the total 

heat  flow  occurring across that particular surface. This also provides 

a check on the solution since the total heat entering the solution domain 

must, in the steady state, exit from the solution domain. Thus, for 

steady-state problems, all of the net nodal heat flow rates should alge-

braiCally sum to zero. 

The final page of output presents a summary of the pertinent 

heat transfer data including both the computed and derived quantities of 

interest. The 'SUM OF NODAL FLOWS' is the quantity mentioned in the pre-

ceding paragraph which should sum to zero. This is, of course, relative 

to the total heat flow rate through the syetem. The number appearing on 

the sample output indicates approximately a 0.85 per cent cumulative 

round-off error when the 1828 nodes as used in this example are employed 

in discretizing the solution domain. The second entry of the summary is 

the computed value for the functional being extremized and is of import-

ance when performing convergence studies. The 'AVG. SURFACE TEMP.' is 
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the average computed external pipe surface temperature. The 'EQUIV. 

NUSSELT NO.' is the computed groove equivalent Nusselt number based upon 

the liquid thermal conductivity. The remaining entries of the summary 

are self-evident and relate to the derived quantities of Chapter 3. 

E.3 Sample Output 

The sample output described in the above section is included 

in the final pages of this appendix. 
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Appendix F 

Linear Quadrilateral Isoparametric Finite Element 

F.1 Introduction 

In this appendix, the element 'shape functions' are deter- 

mined for a linear quadrilateral isoparametric finite element. The 

word Usoparametric' is used to describe the element since the approx- 

imation for the dependent variable, in this case the temperature, is 

taken to the same degree of polynomial as is the coordinate description. 

The element is linear since the geometric discription of the local 

coordinate values between any two nodes is a linear function of the 

global coordinate values. The element under consideration is a 

general quadrilateral, a four-sided geometric configuration for which 

there is no a priori fixed relationship between the four sides. That 

is, the opposite sides are not required to be parallel or have any 

prescribed orientation and adjacent sides need not meet at any specific 

angle. 

F.2 Geometric Description 

The general quadrilateral element is illustrated in figure 

F-1. A 'natural' or 'local' coordinate system is established with the 

origin located'at the center of the quadrilateral. This coordinate 

system, in general non-orthogonal, is characterized by the coordinate 

pairs (t,$) with the coordinates t and s as shown in the figure. The 

element nodes are numbered consecutively in the local system as nodes 

1 through 4, in a clockwise sense. The natural coordinate system also 

is defined to have the property that s -1 and +1 over the surfaces 
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= -4-1 (1-s) (1- t ) , (1+s ) (1-t) ,(1+s) (i+t ) ,(1-s) (i+t )iu2 -11 

u2 2 
u2 3 

2 4  

u2 ( ' , $ )  

4-1 and 2-3 respectively and that t = -1 and +1 over the surfaces 

1-2 and 3-4 respectively. 

The global coordinates throughout the element can be related 

to the natural coordinates through the transformation equations, 

expressed in parametric form as 

ul (t,$)  I 11 
u1 2  
ul 3 u 1  _ 

From these relations it can be easily verified that for the appropriate 

combinations of t-+1 and s=+1 that both x and y take on their  re-

pective nodal point values and that the coordinate description is 

continuous within the element, the variation of both u1 and u2 being 

linear in both t and s. The equations (F-1) and (F-2), can be 

written in abbreviated functions by the definitions 

u1 (t,$) = n
)T { 1.1

1n 
}(F-3)  

u2 (t ' 5)  = {Nn}T  
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Fa 
(F-6) 

La u2 
 

where the elements of the transpose vector, {17n
}T , are called the 

dement shape functions. 

F.3 Field Description 

In a manner directly analogous to the above geometric des-

cription, the temperature field can be approximated within each element 

by a linear interpolation. Thus we have for the temperature field 

approximation the relation 

1 
T(t,$) .7-6 [(1-s)(1-t),(1+s)(1-t),(1+s)(1+t),(1-s)(1+t)] T i: 

T
2 

T3 

 4_ 

which can be also written more compactly as 

T(t,$) {N }T ITn l (F-5) 

where the N
n 

are the identical shape functions (fqr Jsoparametric 

elements) to those used in the coordinate description. 

The above defining equation (F-5), then, completes, the 

description of the temperature field throughout the element. However, 

in order to utilize this description, the 'effective  curvilinear 

field vector' defined in Chapter 5 and Appendix C of this report must 

be determined. 

The derivative operators with respect to the local coordinates 

can be expressed by 

ra  - -Dui  au2 - 

18s as as  
I I« 

I 8 1 
Dui
2 cat_ 
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rT 1 
T2 
T3 
T4 

L 

(F-9) 

1 
(F-10) T2 

T3  

T
4 

a u2  - Du2 
Dt 

1 = 
TIE 

a s rFs 

aD t 

a . 

D I 

D 

Lau2 

(F-7) 

au ]. — 1 au  
3t -5. 13 

Inverting (F-6) to solve gor the global derivatives yields 

II = (F-8) 

-Du2 D{Nn 
Ds Ds 

jI  

el 

11  

si 

si 
st 

1 
1  

where the determinant of the Jacobian transformation is given by 

1 , aul au2 t12 
I`as at as at -, 

and where the derivatives with respect to the natural coordinates, 

of say the element shape functions, can readily be found. Global 

derivatives are then found from 

i - Du2 DT 
aul , r5i7 

. 1 
-p-T-_u — 9u1 DC14n 1T DT 1 

' 
—
Du L 2J Lat as at 

Performing the indicated operations, and after excessive tedious 

algebraic manipulation, equation (F-9) can be written as 

[DaTu  

1 ià2 u2 u
23 

u
24

-  
i 1 2  

aT I ull  u12  u13  u14  

I 
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where 
111 

ru 211 
U2 2 
U2 3 
U 2  I 

4_1 

1 
737 

il 
11 
111 

with the factor 81J1 given by 

8131 = (u l u9 - 412 .1.11  ) 
-13 -24 13 34 

+ (u1
34 

u2
12 

- u
234 

u3.
12

)S .  

L2123 u214 u2 ul )t  23 14 

In the above the differencing notation has been used, for example 
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(F-13) 

(F-14) 

for u1 ,  that 

u1ij 
uli 

-u 
lj 

[ u2  - u2  S - u2  tl 
24 34 23 

u2 34 u2
S + u t 

13 
214 

-u2 +u S-ut 
24 212 214 

u2  - u2  S + u2  t j 
13 12 23 

(F-11) 

-u1  + u1  S + U1  ti 
24 34 23 

u u S -u t - 1
13 

1
34• 

1
14 

 

u
124 

-u 
 112

S + u t 
1
14 

 

-u +u  S - u
123
1 

L  113 112 

(F-12) 



u 2t  
2 

I u s  
S = + 1 

= + I  

S 11.11. 1 

In the case of a cartesian global coordinate system, as is used for 

the problem under examination in this report, the u1-direction  

is identified with x and y the u2  - direction is identified with y. 

It can also be  shown, in conclusion of this appendix, that 

.> 
by forming the necessary cross-products for the integration ' 

du
1 x  d2,  

an an area element in the u1 - u2 
plane, that 

du1 x du2 IJI  da  dt (F-15) 

which is the final relation necessary to perform the integrations of 

Chapter 5. 

It is due to the complex algebraic form of the resulting 

integrand that, orthogonal local coordinate systems excepted, numerical 

integration procedures are generally required for evaluation of the 

elements of the stiffness matrix [K] of chapter 5. The solution 

program of Appendix D uses a four point Chebyshev quadrature numerical 

integration procedure for this purpose. Higher order formulae did 

not detectibly alter the results obtained for thejlinear quadrilateral 

element when applied to the groove problem, or to either of the two 

example problems cited in Appendix C of this report. 

Figure F-1 
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