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THE VITERBI RECEIVER FOR 

CORRELATIVE ENCODED DIGITAL FM 

P.J. McLane 

ABSTRACT 

The Viterbi Receiver for correlative encoded digital 

FM guarantees that the sequence error probability is minimal. 

Herein the receiver is completely specified. A state 

selection technique is presented which gives the minimal 

number of state variables for the realization of the Viterbi 

Algorithm which is the "heart" of the Viterbi receiver. A 

coherent version of this receiver is then analyzed for bit 

error rate using the transfer function bound technique. In 

this work we concentrate on the MSK and duobinary MSK 

modulation formats. We show that duobinary MSK is no more 

sensitive in bit errors than MSK. From earlier studies, it 

is known to have much better spectral efficiency than MSK. 
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THE VITERBI RECEIVER FOR 

CORRELATIVE ENCODED DIGITAL FM 

P.J. McLane 

1. INTRODUCTION 

Adam Lender introduced the concept of correlative 

encoding in data transmission in 1963 [1,2]. Recently a 

nice chapter on correlative encoding by Lender appeared in 

the textbook by Feher [3]. Actually Lender's introduction 

[1] of correlative encoding concerned digital FM. Since 

then it has been widely applied in many digital modulation 

formats. Pasupathy has written a nice tutorial paper [4] 

on correlative encoding techniques. Deshpande and Wittke 

[5,6] have done an extensive study on the use of correlative 

encoding in digital FM to achieve good bandwidth occupancy. 

Actually our work is a continuation of that of Deshpande 

and Wittke as some demodulators are developed for the 

modulation signals they have introduced. 

Correlative encoding has application in constant 

envelope modulation techniques. It is used in the celebrated 

tamed FM modulation technique [7]. As pointed out by Galko 

and Pasupathy [8], the encoding polynomial used in [7] is 

optimal in the sense of bandwidth efficiency in the class of 

first and second order encoding polynomials. This is also 

clear from the earlier work in [5,6] but the connection to 
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tamed FM was not made clear. Correlative encoding has also 

found application in non-constant envelope carrier mod-

ulations. For instance, it has been incorporated in a high-

rate digital radio relay design by Anderson and Barber [9]. 

Correlative encoding is just one technique in the 

quest to achieve modulations that are jointly bandwidth 

and power efficient. That is, the modulations that have 

good bandwidth occupancy and a good bit error rate. In 

correlative encoding the input source bits to the modulator 

are correlated by an encoder. The idea is to have the 

transmitted signals correlated in time and thus hopefully 

reduce their bandwidth. A reasonable measure for bandwidth 

occupancy of a signal is its 99% power bandwidth. That is, 

the frequency band that contains 99% of the power of the 

modulated signal. In this way, only 1% of the power will 

be radiated out-of-band to interfere with other signals in 

a multi-user, frequency-division-multiplexed, radio trans-

mission environment. In other applications, a different 

definition of bandwidth may be practical and will lead to 

the selection of different efficient modulations than those 

selected in radio applications. 

Correlative techniques have so far led to good bandwidth 

occupancy in digital FM. However, their power efficiency is 

not as good as that obtained with other FM modulations. For 

instance, Aulin and Sundberg [10,11] and Anderson and Taylor [12] 

t Reference 125] presents a nice explanation of tamed FM modulation 
and presents some applications for this modulation technique. 



3 

have introduced more complicated modulations that are more 

power efficient than even QPSK but have a smaller band 

efficiency than the best correlative encoded digital FM 

modulations of [5,6]. A nice table for comparing bandwidth 

and power efficiencies of digital FM modulations is given 

in [5,6]. 

Less research has been carried out on receivers for some 

of the efficient modulation formats introduced over the past 

few years. The receiver for MSK was presented by deBuda [13]. 

This receiver exploits the inherently differential nature 

of MSK modulation. A similar situation exists for tamed FM 

[7] whose receiver used many of deBuda's ideas. For tamed 

FM, however, this receiver may not be optimal. Our work 

concentrates on Viterbi Algorithm based receivers for 

correlative encoded digital FM and this receiver minimizes 

the sequence error probability. Earlier Schonhoff et al 

[14] developed this receiver for multi-level digital FM but 

without correlative encoding. Schonhoff tested his receiver 

by simulation. Our approach is to use the transfer function 

bound approach used for working out the bit error rate of 

low constraint length, convolutional codes in the recent 

text by Viterbi and Omura [15, p. 227-2521. (It is 

interesting that, when our analysis for digital modulations 

is compared with that for convolutional codes, in reality, 

only the "distance" measure changes. In this sense coding 

and modulation are really equivalent concepts.) Earlier 

Omura and Jackson [16] and Aulin [17] have used the transfer 
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function bounding technique to assess the bit error rate 

of various modulation formats. This technique was originally 

introduced by Viterbi [19]. It was also used by Forney [20] to 

work out the bit error rate of correlative encoded PAM, a 

problem earlier considered by Kobyashi [21]. 

In summary, our aim is to completely specify the Viterbi 

Receiver for Duobinary MSK and to analyze its performance 

using transfer function bounding methods. Other higher order, 

correlative polynomials for digital FM could be considered 

but both the specification and analyses becomes complicated. 

Some sort of reduced memory receiver [22] seems to be in 

order for these cases. 



Eb = s 2  (t)dt - 
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2. MAXIMUM LIKELIHOOD SEQUENCE ESTIMATOR 

A block diagram for the generation of a continuous 

phase, FM signal is shown in Fig. 1. A representation of 

the output signal is 

rt 
x(t) = A cos(271- f c t + 2uAjo. m(T)dT) 

where A is the carrier amplitude, f c  is the carrier frequency, 
A is the peak deviation and m(t) is the message. We shall 

assume coherent system operation throughout this work so that 

any phase offset terms for x(t) are ignored. The message 

signal is 

m(t) = î d p(t-kT) 
k=-0,k  

where dk is a correlative encoding of the data bits, ak and 

p(t) is a rectangular pulse of unit height and duration T. 

For instance, for duobinary encoding, the encoding polynomial 

is f(D) = (1+D)/2, and dk = (ak+ak-1 )/2 in (2). The data 

rate is 1/T bps as we shall consider only binary signalling 

where ak = ±1. 

Note from (1) that the signal energy is 

( 1 ) 

(2) 

Furthermore, if f cT is an integer, we can combine (1) and 

(2) to give the chip waveform 

v/r27 xk (t) = 7F- cos(2nfct + 
Eh (t-(k-1)T)d

k + k-1 ) 

for (k-1)T < t < kT (3) 
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where h = 2AT is the modulation index and x(t) is constructed 

from putting all the chip waveforms together contiguously 

in time. Note that h is the ratio of the one-sided peak 

deviation, A, to the Nyquist bandwidth, 1/2T. 

Equation (3) can be used to specify a phasor state 

diagram for MSK which is the case dk  = ak , i.e., no correlative 

encoding and h = 0.50. This is presented in Fig. 2 and 

will be used in our analyses. The phase-tree diagram for 

MSK is shown in Fig. 3. MSK has four possible phase states 

and the phases are connected by straight lines of slope 

u/2T. The corresponding diagrams for duobinary MSK, i.e., 

2 d
k 

= a
k + ak-1, 

 are given in Figs. 4 and 5. Comparing 

Figs. 2 through 5 it is clear that duobinary MSK will have 

better bandwidth occupancy than MSK as the phase variation 

is less and in both cases the phases are continuous and 

connected with straight lines. However, the phasor state 

diagram is more populated in the duobinary case resulting 

in lower minimum free distance, 

d . 
2Eb  (i,j) 
1 min 

f T [si j (t)-s (t)] 2dt, (4) f 0  
i0j 

and hence higher bit error rate. In (3) Ebis the common 

energy of any two signals s i (t) and s 2 (t) selected from the 

phase trees in Figs. 3 and 5. A simple calculation gives 

df = 2 for MSK and df = 1.73 for duobinary MSK. This is a 

loss in dB of 0.63 dB for duobinary MSK relative to MSK. 
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(5)  

(6)  

(7)  

However, Deshpande and Wittke [5,6] give the bandwidth 

efficiency, R/B b/s/Hz,of MSK as 0.85 and that of duobinary 

MSK as 1.09 where R = 1/T is the data rate and B is the 99% 

RF bandwidth. Thus, duobinary MSK is less power efficient 

but more band efficient, than MSK.1.  

The channel we consider will be the additive white 

Gaussian noise channel. Since the energy is the same for 

all signals in the phase tree, the log likelihood ratio test 

for deciding which signal in the tree was actually received 

is to maximize the correlation 

œ kT 

î J' r(t) s(t)dt 
k=1 (k-1)T 

where s(t) is £-th waveform in the phase tree for 

(k-1)T < t < kT. Since this functional is additive 

* q) *  = max t k-1 V(e k' ek-d 
e +0 k-1  k 

where tp is the optimal value of tp, the path metric is 

JcT 
V(0 k ,e k-1 )  =f r(t) s k9, (t)dt 

(k-1)T 

and the optimization at stage k is performed over all initial 

phases e k-1 that can reach 
e k • For instance, in MSK e k  

could be u/2 and then the communicating states, e k-1' are  
n and 0 as shown in Fig. 2. For 0, we must have ak  = dk  = 1 

t Reference [26] compares the spectra for duobinary MSK, QPSK and MSK. 
From these results, duobinary has a passband similar to QPSK and a 
much better out-of-band rolloff than MSK. Thus it should be a good 
modulation in a restricted bandwidth application, a property not 
enjoyed by MSK as its passband is wider than QPSK. It would be 
interesting to see if duobinary MSK is more robust to a restricted 
bandwidth than the non-constant envelope scheme of [27] whose error 
performance has been presented in [28]. 
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to reachu/2 and for u we must have ak = -1. The signals 

sk£ are then derived from (3) and are marked in Fig. 3 in 

the phase tree for MSK. 

The Dynamic Programming equation (6) is just a 

representation of the Viterbi Algorithm for finding the 

most likely received sequence of data bits. It might appear 

[6] that 4 states are required for MSK and 8 states for duo-

binary MSK. Actually only half this number are required 

for the Viterbi Receiver. We show this in the next section. 

Also, the basic forms of the correlation waveforms, s k£ (t) 

in (7) must be specified. We so specify these waveforms 

also in the following section. 
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3. STATE-SELECTION PROCEDURE  

The Viterbi Algorithm must operate with as few states 

as possible. Indeed, in most practical applications [22], 

some sort of reduced state operation is necessary. At 

first glance it may appear [6] that MSK requires 4 states 

(see Fig. 2) and duobinary MSK requires 8 states. Actually 

only half of this number is required. 

Consider first the case for MSK. In Fig. 2, if state 

J. and j can communicate, but a 1 in row i and column j of 

its connection matrix, A. Such matrices are used to specify 

graphs in graph theory. For MSK the connection matrix is 

shown in Fig. 6. Clearly only two sets of rows are unique. 

Thus states (1,3) and (2,4) can be used as states in 

alternating baud intervals. Note that (1,3) can only 

communicate with (2,4) and vice-versa. Consequently the 

trellis for Viterbi Algorithm based detection in MSK is as 

shown in Fig. 7. Of course, the initial state at time 0 

must be known but this is simply handled in a short training 

period for the detector. It is a simple exercise to show 

that the two-state trellis in Fig. 7 can have merges and a 

4-state trellis, using all four states in Fig. 2 cannot. 

The result in the previous paragraph could have been 

deduced without resorting to the connection matrix. However, 

the case for duobinary MSK is not so straight forward. The 

connection matrix for this case is shown in Fig. 8 and it is 
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based on the phasor state diagram in Fig. 4. For state 

selection choose any two states with the same row with all 

their non-zero entries to the left of the line of symmetry. 

This gives states (1,4). For the remaining two states 

choose states with identical rows and having all non-zero 

entries to the right of the line of symmetry. This gives 

states (5,8). Then states (1,4,5,8) can be used at one 

baud time and the remaining states (2,3,6,7) at the next. 

The resulting trellis for this case is shown in Fig. 9. 

Once again, the state for system start-up must be known, 

but this is easily established in a short initialization 

procedure. 

The basis of the Viterbi receiver for the two cases 

considered is the trellis diagrams in Figs. 7 and 9. Note 

that we have gone from a state diagram to a trellis diagram 

to specify the detector. This is the same as that done in 

setting up decoders for short constraint length convolutional 

codes (see Viterbi and Omura [15, pp. 227-235].) All that 

remains to specify the detector is an algorithm for computing 

the path metrics for, say, the two possible communicating 

states into state 2 in Fig. 9. Namely from states 4 and 1. 

This is computed from the correlation integral in (7). 

Considering all (two) state transitions into given states 

and choosing the maximum represents a solution to the 

functional equation in (6), and the whole procedure is the 

Viterbi algorithm. The procedure for computing the path 
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metrics which, following the parlance of Schonhoff et al 

[14], is called the branch metric calculator, will be 

specified below in terms of some basic correlations. 
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4. PATH METRIC CALCULATOR 

We will work out the path metric calculator for duo-

binary MSK. This calculator for MSK is easily derived 

using the procedure presented below. 

The path metric calculator is needed for the correlation 

integral in (7) which in turn is needed for the path metrics 

in the Viterbi Algorithm solution of (6). The general form 

of the correlating signal, s k9„ (t), in (7) is given in (3). 

In (3) we set dk = (ak +ak-1  J/2. Thus dk = ±1 or 0 and hence 

there are 3 instantaneous frequencies associated with xk (t) 

in (3). They are fc + A, f
c-A and fc where A = 1/4T as 

h = 2AT = 0.50. Using signal space concepts we know that 

in-phase and quadrature carriers form a basis for the signal 

space of all carrier signals of fixed frequency. Thus every 

path metric should be obtainable from an in-phase and quad-

rature correlation system for each of our 3 instantaneous 

frequencies. This is as shown in Fig. 10. An integrate-

and-dump correlation system is shown. 

It still remains to specify the path metrics in terms 

of the correlator outputs in Fig. 10. This is the path 

metric calculator diagram. The trellis for the Viterbi 

detection of duobinary MSK is shown in Fig. 9. The two classes 

of state transactions are labelled as "type A" and "type B". 

The path metrics, in terms of the correlator outputs from 

Fig. 10, are shown in Fig. 11. Also these metrics for type B 
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transitions are shown in Fig. 12. To illustrate the process, 

the path metric for the state transition 1÷2 and 4.+2 will be 

derived. Referring back to Fig. 4 one notes that the state 

transition 1+2 is specified by having ak_, = 1, ak  = -1, or 

dk = o and 0 k-1 = 0 •  Using this in (3) for h = 1/2 we find 

that
t 

sk£ (t) = cos(2rf ct). 

Thus from (7) and Fig. 10, the path metric is dc . Similarily 

for the state transition 4+2, ak-1 = -1, ak 
= -1, giving 

dk = -1, and 0
k-1 

= r/2. Thus in (3) 

s(t) = -sin[2rf ct = .71  (t-(k-1)T)] 2 

= -sin(2n(fc-à)t) 

as h = 2AT = 0.50. Hence the path metric is -d_ s  in terms 

of the notation in Fig. 10. All the other path metrics in 

Figs. 11 and 12 are derived in a similar manner. 

It is worth noting that as h = 1/2 the carrier phase 

and symbol timing signals can be easily derived from the 

input to the Viterbi receiver depicted in Fig. 10. This 

follows deBuda's idea [12,24] of squaring and filtering the 

input signal to get a digital FM signal at frequency 2fc  

with h = 1. This is then Sunde's FSK and for duobinary 

spectral lines will occur at frequencies 2fc  + à '  and 
1 1 

2fc - à where à = 2L = 1/2T. Thus the symbol timing clock 

is derived from a signal at the difference of these two 

tThe amplitude of the signal in (3) has been removed in specifying 
the correlator signals. 
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frequencies. The carrier can be derived from a signal at 

the sum of these two frequencies. The carrier signals at 

2f + A and 2fc - A are also needed for the receiver in 

Fig. 10. Duobinary MSK also has an instantaneous frequency 

at fc
. Thus, as Rhodes [26] observed, the squaring and 

filtering operations mentioned above produce a biphase 

carrier at 2f
c . This follows as duobinary MSK can have a 

QPSK component as staying at the same phase is possible from 

baud to baud. The carrier signal can then also be recovered 

from this biphase signal using standard techniques. 

Consequently timing and carrier recovery is quite 

simple for MSK and duobinary MSK. This mainly follows on 

using deBuda's idea mentioned above and this is a consequence 

of having h = 1/2. DeBuda's idea is also used in the 

receiver for tamed FM [7]. 

We now consider the bit error rate analysis for a 

perfectly coherent version of the Viterbi Receiver illustrated 

in Fig. 10. 
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5. TRANSFER FUNCTION BOUNDS: LINEAR MODULATIONS  

As mentioned earlier a nice analysis using transfer 

function bounds to obtain the bit error rate for Viterbi 

decoding of convolutional codes is given in Chapter 4 of 

the book by Viterbi and Omura [15]. From equation (4.5.8) 

of this book the bit error rate for a Viterbi decoder is 

upper bounded by 

bdf  )exp( 
E
b
df‘DT(D,L,I)  

P 4( 2N0 ' DI 
D = Z 

L = I = 1 (8) 

where df is the free distance, or minimum distance for the 

code, Z = exp(-Eb/N),N0/2is the spectral height for the AWGN 

channel and T(D,L,I) is the transfer function between states 

in the trellis where error paths rejoin the true path after 

some arbitrary diversion point from the true path. This is 

applied to the modulations we consider by just using Euclidean 

distance instead of say, Hamming distance, for a discrete 

memoryless channel and some coding technique 

Consider the trellis for MSK as shown in Fig. 7. As 

the modulation is linear we can compute Pb  for any sequence 

and it is the overall Pb for the receiving system. In 

Fig. 7 the "dotting" sequence is taken as the transmitted 

sequence. 

The state diagram for paths initially leaving the 

true path and joining it at some later time is shown in 

Fig. 13. Here L is the generic  variable for the path segment, 

I present denotes a bit error and the exponent of D denotes 

the distance between the true and erroneous signal for the 

path segment L. 
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ut 1 cos(2nfct - 7117 j s 2 (t) = 

- 16 - 

The distances for the path segments are computed using 

the Euclidean distance in (4) and the signal representation 

in (3). For instance for the transition 1+4 

t 
s 1 (t)  =4j  cos (27rf c t + 

which both follow from the phasor state diagram in Fig. 2. 

From (4) the distance for this path diversion is unity and 

the corresponding power of D in Fig. 13 is one. Thus in 

Fig. 13 the minimum distance path has df  = 2. Each other 

path cycles at least once in the self loop at node b. This 

corresponds to not crossing back over to the true path in 

the trellis in Fig. 7. The error state graph represents 

all such paths. 

It is quite easy to solve for T(D,L,I) in Fig. 13. 

Namely, 

e b =
2Leb + DLI 

giving 

DLI 
eb 1-D

2
L 

and finally 

T(D,L,I) = DLIe b  

= D2L
2
I
2 

1-D 2L 
(9) 
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Now expanding the denominator in (9) as a geometric series 

there follows 

T(D,L,I) = D 2L2 I 2 + D 4L3 I 2 

+ + D2kLk+1 I
2 
 + + 

Thus the minimum distance path has length 2, has 2 bit errors 

and distance 2. The kth error path has distance 2k, length 

k+1 and also contains just two bit errors. These facts are 

easily verified from the trellis in Fig. 7. 

To do our bit error rate analysis only (9) is required. 

Clearly, 

DT(D,L,I) _ 2ID 2L2 

DI 1-D2L " 

Substitution of this result into equation (8) and simplification 

produces the following upper bound for Pb : 

Ft- P 4n 2Q( m )/[1-exp(-E
b/N0

)] (10) 

which was also given by Aulin (17,18]. The factor of 2 

denotes the 2 bit errors for any diverging path in the 

trellis for MSK. Also the denominator is insignificant for 

most SNR's. It contributes a factor of 2 when Eb
/N

0 
is as 

small as 10 1og10 (log2) dB = -1.5 dB. The union bound 

agreement used in upper bouncling Pb  will weaken the bound at 

a higher SNR than this. At a high SNR the bit error rate 

is 2 Q(/Eb  /N0  ) which is easily predicted from the trellis. 1  
Until an improved theory is developed, the SNR where the 

bound becomes weak must be found by simulation. 
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6. TRANSFER FUNCTION BOUNDS: NONLINEAR MODULATIONS  

In section 5 we derived transfer function bounds for a 

linear modulation technique. A major simplification with 

such modulation methods is that the bit error rate is the 

same no matter what the transmitted sequence. This is not 

the case for nonlinear modulations. Omura and Jackson [16] 

and Aulin [17,18] have presented state diagrams based on 

error function bounds from these diagrams. These diagrams 

actually present a representation of error sequences based 

on averaging over all input data sequences. Often, however, 

these diagrams are quite complicated and for error analysis 

require computer assisted numerical operations on the transition 

matrix for these graphs. Even the error graphs themselves 

are not easily specified and probably some automated approach 

should be developed for constructing them. We show, at least 

for duobinary MSK, that error graphs can be simplified and 

closed form transfer function bounds can be derived from 

these simplified error state graphs. 

As an introduction we first repeat the analysis for MSK 

based on the error state graph technique [16,17,18]. From 

Fig. 2 it is clear that error is just one in phase and that 

it varies between 0 and n radians. This is true for any 

input sequence. Thus the error graph is as shown in Fig. 14. 

The distances for the exponents of D in this graph must be 

worked out using Fig. 2, the signal representation in (3) 
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and the Euclidean distance formula in (4). Clearly the 

error graphs of Figs. 13 and 14 are identical, as the 

modulation is linear, and hence the transfer function is 

as given previously in (9). Thus the error bound to the bit 

error rate is as in (10). 

We now consider a nonlinear modulation, duobinary MSK. 

We note that Aulin [18] gives another example in his thesis 

by considering continuous phase FSK with h = 2/3 and no 

correlative encoding. 

The first thing that must be worked out is to decide if 

the modulation is nonlinear. A nice test for this is as 

follows. If one can find a transmitted sequence that does 

not have a minimum distance error path, the modulation is 

nonlinear. t This assertion is easily verified. Recall that 

the bit error rate is completely specified by the expression 

Q(/df  Eb  /N o ) for large enough Eb/No However, if our assertion 

is not true it is specified by Q(17b-7N o ) with d > df 
 and 

this is a contradiction. It follows that duobinary MSK is 

nonlinear since the all one's transmitted sequence has a 

smallest distance error path of distance 3-2/n = 2.7 and 

df = 1.727 for this modulation method. The latter point is 

easily verified by computing the Euclidean distance between 

the two signal paths in the phase tree in Fig. 5. 

tThis test was suggested to the author by Stan Simmons of 
Queen's University. 
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The test for nonlinearity of a modulation given above 

suggests an error bounding method. Namely, choose a sequence 

with a minimum distance error path and then base a transfer 

function bound for this path and its neighbours by following 

the techniques in section 5. The doting sequence, 101010 etc., 

is such a sequence for duobinary MSK. If this is done for 

the doting sequence one finds that the nearest neighbour in 

distance to the minimum distance path has distance 4. The 

trellis for this case is given in Fig. 16. One notes that 

the smallest distance path in Fig. 15, i.e. for the all 

one's sequence, is missed in trellis of Fig. 16. Such are 

the consequences of nonlinearities. 

The error rate state graph for duobinary MSK is shown 

in Fig. 17. This graph is constructed from all bit error 

sequences that could occur in Fig. 4, the state diagram for 

this modulation technique. The Euclidean distances between 

error path is determined, as before, using the signal 

representation in (3) and the distance measure in (4). The 

trellis diagrams in Figs. 15 and 16 are an aid in constructing 

this graph. 

Recall from our earlier comments that an error analysis 

based on Fig. 15 contains a minimum distance path but not a 

neighbouring path with distance closest to this. Fig. 16 

contains this neighbouring path but not a minimum distance 

path. It would be nice to develop a giaph that shows how 

these two error paths interact. This is availàble in the error 

state graph in Fig. 17. Any path through e , i.e. phase 
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state n, has distance at least distance 4. Also the two smallest 

distance paths are 0, e
a 

Eb T(D,L,I) and 0, e a , cd , T(D,L,I), 

which have distances 1.727 and 2.7 respectively. Thus if 

we draw a graph with state E removed, there is really no 

loss, as paths of distance at least 4 are deleted. With this 

deletion, our graph is simplified and closed form results are 

possible. The original graph in Fig. 17 is just too unwieldy 

and, in any case, dropping state E e  represents no practical loss. 

Our reduced error state graph is shown in Fig. 18. 

Only state  Ce  from Fig. 17 has been dropped. In our reduced 

graph 

T(D,L,I) = LDx
(c
b 

+ c
d

) 

P 
and from the graph in Fig. 17 the following equations follow: 

2E
a 

= DxLI + DLIc
b + DxLIe

d 
(12) 

2c
b 

= DLIE a + DYLIEc (13) 

2E c = DxLI + DLIed + DxLIc
b 

(14) 

and 
2ed = DLIE c + DYLIE

a 

Solving (12)-(15) for (Eb+Ed) and substitution into (11) 

gives 

1, 3 1 2D2x 1D Dy l  
T(D,L,I) 

L1I 2  2[1 (D+Dx )(D+DY )] 4 .  

Our bit error rate, Pb' 
analysis can now be based on 

(16) and the basic bound on Pb given in (8), which is taken 

from Viterbi and Omura [15]. We have 

(D2x+1+D2x+y )I 2 
T(D,1,I) - 

(11) 

(15 ) 

(16) 

2 [1- 4  (D) I 2 ] 
(17) 
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where 

(D+Dx )(D+DY )  0(D) - 4 

Differentiation of T(D,1,I) with respect to I and substitution 

into (8) yields,after some simple manipulations, 

Pb  < Q( dfEb)(1 + exp[-(2x+y-df )Eb ]) 

N0 2N0  

(1 - 0[exp(-
E
b )

]
)
2 

 
2No  

where df = 142x = 1.727 and x, y are defined in Fig. 17. 

Further simplification using the definitions of x and y give 

iA 

f-- 

 Eb (1  4. 

e 

ex, [... Eb  ]) b (r ) 7171 No  

(1 - (P[exp(-Eb )]) 2  
2N0  

with df = 1.727 and 0 as defined in (18). 

The result in (20) is our error bound for duobinary 

MSK. It includes the two shortest Euclidean distance paths 

for this modulation method. It thus, should be a good error 

estimate for moderate-to-high SNR. We now compare this 

with our corresponding result for MSK in (10). 

The error rate bound in (20) for duobinary MSK and that 

in (10) for MSK are plotted for a range of SNR's in Fig. 19. 

At high SNR the degradation of duobinary MSK relative to 

MSK is 0.30 dB. It is not just the 0:63 dB loss in free 

distance due to the more complete error bounds given in (20) 

and (10). In fading environments where lower SNR's may occur 

the two schemes perform about the same. At some point for 

(18) 

(19) 

(20)  
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low Eb/No it is easy to show that the error bound for 

duobinary MSK in (20) is twice that given for MSK in (10). 

However, at the outset in using (8) from [15] a union bound 

assumption has been made. For the resulting error bound 

to be reasonably accurate a moderate-to-high SNR is required. 

Thus the doubling in error rate noted above is probably 

not a practical reality. 
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7. CONCLUSIONS  

It is clear from the foregoing that a Viterbi algorithm 

receiver for correlative encoded MSK can be clearly specified 

for first order encoding polynomials. Further, for these 

polynomials, the transfer function bounding method can be 

applied to give bit error rate estimates at moderate to 

high SNR levels. For these SNR values analysis shows that 

duobinary MSK is no more sensitive in bit error rate to SNR 

fluctuations than is MSK. 

To consider FM modulation formats with higher order 

encoding polynomials one just repeats the methodology 

presented herein. For instance, this could be done for the 

tamed FM polynomial, (1 + 2D + D 2 )/4. In addition, performance 

impairments such as phase coherence loss, sampling jitter, 

adjacent channel interference, nonlinear amplification 

(i.e., in satellite channels) and restricted bandwidth loss 

could be assessed using the transfer function bound technique. 

In many applications duobinary MSK looks very attractive as 

it has good spectral rolloff and a similar passband to QPSK. 

However, the relative worth of this modulation format will not 

be really known until the performance analyses noted above 

have been carried out. t 
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2 

3 

4 

- 34 - 

234 

 0 

0 1 0 I 

1 0 I 0 

STATE 1 
r  

* 0 

I 0 

Figure 6  Connection matrix for state selection for MSK 



T
r
e
l
l
i
s
 fo
r
 M
S
K
 d
e
m
o
d
u
l
a
t
i
o
n 

u
s
i
n
g
 t
h
e
 V
i
t
e
r
b
i
  
d
e
t
e
c
t
o
r 

MINIMUM DISTANCE PATH 
1 

I\ 2  /1 /2 /1 2 
• 1 /0 • n •  3  ,  4 3 4 3 
TYPE TYPE 

A TRANSITION'e  B 



- 36 - 

STATE-• 1 2 3 4 5 

1 0 1 1 0 0 0 0 0 

2 1 0 0 0 0 0 0 1 

3000  1 1 000 

 )( 4 0 1 1 0 0  00 0 

001 1 0 

6 0 0 0 1 1 0 0 0 

7 1 0 0 0 0 0 0 1 

* 8 0 0 0  0'O 1 1 0 

Figure 8  State connection matrix for duobinary MSK 

5 0 



2 

• 
6 

- 37 - 

\ 

MINIMUM DISTANCE PATH 
0 I ab. =I>. • 

ei  œn:T/r.  / 1 /2 

• •".••••. •••n• ••• • 
3\ 4 

g n 
1 

5\ 6 

TYPE TYPE 
A TRANSITION -'  B  

Figure 9  Trellis for duobinary MSK demodulation 

using the Viterbi detector 



dc  
cos2 irfc t 
sin 27r f t t=T 

t=T 

d C 
cos (2 ir (fc-Fil)t 
sin(271(fc+A)t) t 

—>o- d 

t=T 

t =T 
) dr  d 

cos(27i(fc -Nt) 
si n(27r(fc-A)t t=T 

d_ s  

- 38 - 

Figure 10  Receiver structure for the Viterbi Receiver 



- 39 - 

TABLE TYPE A 
TRANSITION 

I 
•2 

( — d-s) 
le d+c, 

4.  

5.  

d_ s  
-d+c 

°I s  
Figure 11  Path metrics for type A transitions 

in the trellis for duobinary MSK 

(see Fig. 9) 

(—d e ) 

— dc, 



7* 

2e 

7e 

3. 

Ese 

3* 

6e 

d- c  

ds 

—d s  

— d-c 
—c1+ 5  

«MD 

.4 

- 40 - 

TABLE TYPE B 
TRANSITION 

dc_ • 1 

Figure 12 Path metrics for type B transitions 

in the trellis for duobinary MSK 

(see Fig. 9) 



2 

- 41 - 

(1 22) \ (1 2 2) • ..._,.. • 
D L I (3,4) D L I T(D,L,I) 

I SENT OSENT  11111.1111n•11 

Figure 13  Error graph for MSK modulation 

and Viterbi reception 



- 42 - 

DLI DLI  
o 7r 

PHASE ERROR 

Figure 14  Error graph for MSK modulation 

based on an arbitrary transmitted 

sequence 



• • 

r,  • , 

• • 
7 

• • 
3 8 

• 
4 

- 43 - 

TRANSMITTED SEQUENCE 
 . 1\1/4 I 4......................................... (n. 5 /7 I e ._-, 

Figure 15  Trellis diagram for the all one's 

transmitted sequence for duobinary 

MSK 



91
  
a
a
n
bT

d  

01
0
1
0
1
0
  
e
t
c
.
 fo
r
 d
u
o
b
i
n
a
r
y
 
M
S
K
 

I-1 

1—# 

UI

Fa- • 

5 
Il 

1-h 
0 
Il 

(1) 

Il 

to 

P- 
rt 
M-
a) 
ei 

CD 

0 

• 
4 

s7 

TRANSMITTED SEQUENCE 
0 I • 0 ) I 

df  =1.727 

d=5  
• 
6 

-• I/ • • 

d= 4 
5\6 5 6 

• • 
8 7 



x = 1-2hr 
y :  1-1-2/v 

DLI/2 

Fi
g
u
r
e
 1
7
  
E
r
r
o
r
 st

at
e
 g
r
a
p
h
  
fo
r
 d
u
o
b
i
na

r
y
 
M
S
K 



0 

H
e
r
e
 w
e
 ha
v
e
 dro

p
p
e
d
 path

s
 of  

l
e
a
s
t
 di

st
an

ce 



I0 

1•n• 

- 5 
10 

1•nn• 

>mu». 

01n11 

1/n• 

1•••n 

11 10 

- 47 - 

1 I I 1 —F 1 
1•••n• 

11n1». 

DUOBINARY MSK 
IMM•in 

SeMal. 

11•••n 

LLJ  

OC 
OC 
0 -4 
Of IC) 
OC 
11.1 

615 

MODULATION 
MSK 

SNR DEGRADATION .30 dB 

nn• 

..•••• 

Inn•• 

I _I 

4 5 6 7 8 
Eb/No IN dB 

Figure 19  Bit error rate transfer function bound as a 

function of Eb/N 0 for MSK and duobinary MSK 



coAjlIclic 

MCLANE, P.J. 

--The viterbi receiver for 
correlative encéded digital FM: 
report, 

91 
C654 

ngi 
Date Due 

citet 

FORM 109 


