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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN 
MOBILE SATELLITE AND MOBILE ENVIRONMENTS: 

CONTRACT OVERVIEW 

W F McGee 
Contract U6800-6-3505 

19 March 1997 

The purpose of this note is to provide a short overview of the contract. 

The overall project was intended to examine the feasibility of spectrally efficient communication using VSB 
communication. There were three basic goals: 

1. Provide support for design of the downlink path. 

Four filter designs have been supplied, one based on half-band filter designs, a minimum/maximum phase 
design, one on Lawton decomposition, and a linear p.  lias'd design. Assistance in MATLAB programming 
was also provided. 

Reports include 

1.1 Study Into Improved Spectrum Efficiency For F.DMA/TDMA Transmission In Mobile And Mobile 
Satellite Environments:  la.  Filter Designs For Polyphase Network 

1.2. Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile And Mobile 
Satellite Environments:lb. Polyphase Realization Of VSB Filter Banks Using Spectral Factorization Into 
Symmetrical Complex Functions: Lawton's Factorization 

1.3. Phasing Filterbanks 

1.4. Prototype Filters for VSB Filter Banks Derived from Half-Band Filters. 

-1.5. Estimating Performance Deg,radation Of phase And Timing Error On VSB Filterbanks 

1.6. Phasing VSB Filter Banks 

There have been several CRC publieatio.  gs- baS'ed on this assistance.'These may be obtained from the first 
• author. 

M Sablatash, W F McGee and I Lodge Bandwidth-On-Demand Multiple Access Communications System 
Design Combining Wavelet 'Packet Trees and DFT Polyphase Filter Banks, NJIT March 1997. 

M Sablatash, W F McGee and J Lodge, Transmitter and Receiver Filter IBank Designs for Bandwidth on 
Demand Multiple Access Communications based on Combining Wavelet Packet Filter Bank Trees and DFT 
Polyphase Synthesis and Analysis Filter Banks, CRC Report VPCS #33/96 

2. Design uplink path. This work is ongoing. 

The basic goal has been to determine system options that will tolerate adjacent channel operation that is 
improperly phased. and timed. If properly phased and timed, performance would be as in the downlink 
direction. 

A basic summary of the problem has been reported. 

r 



2.1 Communication With Unsynchronized FDM Transmitters Using Maximally Decimated Filter Banks 

First, a variety of filter designs were evaluated, both by examining the pulse response, and estimating the 
error rate. The results may be summarized as follows. There is little crosstalk between channels that are not 
adjacent. The crosstalk between adjacent channels is that of a pulse through a nanowband filter, hence 
long, and with fixed area. The delay of the adjacent channel interference is determined by whether or not 
the crosstalk has gone through a minimum or a maximum phase network. Only a linear phase design 
provided crosstalk that was uniform from channel to channel; oddly enough, the Lawton design, which has 
symmetrical but complex pulse responses, also exhibited this lead/lag phenomenon. 

2.2 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And 
Mobile Environments: 3a.  Basic. Properties Of VSB Filterbanks 

2.3 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And 
Mobile Environments: 3b. Zero Forcing, Minimum IVÉE And Decision Feedback Multi-User Receivers 

2.4 Study Into Improved Spectrum Efficiency For FD.M .À2TDMA Transmission In Mobile Satellite And 
Mobile Environments: 3c. Effect Of Linear Phase Prototypes On Filterbank Crosstalk 

An approximation to error rate based on steepest descent has been developed. 

2.5 Error Rate Approximation 

A variety of equalizers has been evaluated. The minimum mean squared error equalizer minimizes the 
perturbations to the signal due to noise, intersymbol interference in the same channel, and adjacent channel 
interference. The decision feedback equalizer uses previously received data in the same channel to subtract 
tails of pulses. The vector decision feedback equalizers also uses the information about the data received in 
the adjacent channels.  The design and evaluation of the vector feedback equalizer required a program to 
perform the Bauer factorization of positive definite Toeplitz  matrice. 

2.6 Program Bauer: Spectral Factorization Of Matrix Polynomials 

"Since operation with a lack of phasing would allow QAM tiansmiÈsiort, the performance of QAM systems 
was made. The conclusion of a partial study is that QAM performance is marginally superior, but the 
optimum equalizers to combat adjacédeliannel interference require broadband equalizers, rather that the 
equalizers for VSB which span a channel and its two adjacent channels only. ..;, • 

2.7 Study Into Improved Spectrum Êfficledys•For FDMA/TDMA Trahsmission In Mobile Satellite And 
Mobile Environments:3d. Zero Forcing, Minimum MSE And Decision Feedback Multi-User QAM 
Receivers • 

Since spectrum coding puts nulls in the power spectrum, the theory of spectral coding for this application 
has been developed. The idea here is that the adjacent channel interference in VSB systems considered may, 
with the worst data sequence, completely close the data eye, if at an equal level. The spectral coding should 
result in a worst case interference equal to twice the peak of the crossstalk pulse, not the area, and this peak 
may be reduced by reducing the excess bandwidth of the transition band between channels. 

2.8 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And 
Mobile Environments: 3e. Minimum MSE And Decision Feedback Multi-User Receivers Using Spectrum 
Control 

The modifications to error rate calculations have been detailed. 

2.9 Modified Duobinary Error Rate Calculation 



The previous studies amount, in the theory of multi user communication, to implementation of mean-
squared error decorrelating receivers. The next phase of the work is to investigate in detail iterative 
decoding strategies. These involve selecting the received channel with the largest signal level, decoding it, 
and using this information to reduce the interference into the adjacent channels, and to reiterate this process. 
This will occur in conjunction with error control coding which may be used in an iterative decoding strategy 
to feed back decoding decisions that render certain transmitted data patterns to be more likely. 

As preliminary work, we examined relevant work on Intersymbol interference, and summarized it. 

2.10 Review Of Intersymbol Interference Mitigation 

A detailed examination of the calculations used in manipulating matrices for MLSE has been summarized. 

2.11 Maximum Likelihood Intersymbol Interference Receivers 

A review of CDMA multi-user detectors has been prepared. 

2.12 Review Of Multi-User CDMA 

As preliminary work on this aspect, we examined the factorization of correlation matrices, and prepared a 
comprehensive summary. 

2.13 Correlation Matrices And Sequences: A Survey 

We attempted to summarize Markov detection, because of background reading of iterative decoding of 
product codes. 

2.14 Markov Detection 

3. Consider filterbanks for spectrum 'Monitoring. 

This is unrelated to the previous two projects. The short study resulted in a report and a presentation of the 
-recommendations on 18 March 1997. The use of polyphase HR. Nyquist or root-Nyquist filters was argued. 

3.1 Polyphase Filters For Communicatieiàs EW Systems 

4. Miscellaneous 

Some sideroads were explored. 

4.1 An Vestigially Analytic Wavelet 
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMAJTDMA TRANSMISSION IN 
MOBILE AND MOBILE SATELLITE ENVIRONMENTS: 

la. FILTER DESIGNS FOR POLYPHASE NETWORK 

W F McGee 
Contract U6800-6-1604 

19/03/97 11:53 AM 

ABSTRACT 

This report and an associated report on Lawton decomposition are submitted towards milestone 1 of the 
contract. 

Three filters have been designed. They meet the same basic requirements. All are 8-band root-Nyquist 
filters with 40 dB attenuation in the stopband, and With 25 percent 'excess "bandwidth. One filter, F88_8, 
with 88 coefficients, is a minimum phase filter with equiripple stopband, one filter is the same filter but in 
the Lawton decomposition, and one filter, G6, is linear phase and has 96 coefficients. We have not been 
able to determine the equiripple linear phase polynomial meeting these requirements. 

DESIGN TECHNIQUE 

Equiripple stopband filter 

The equiripple stopband filters that work with the Nyquist filter itself are the easiest to design and we use a 
variation of Samueli's method[1]. This consists of finding a Remez equiripple approximation that uses the 
points 0 (not -el) and e as the extremum values. One the Remez approximation is complete, the zeros of the 
resulting polynomial in w=z+il  are found. The zeros on the unit circle are, by design, double, and lcnown. 
Thus, only a very few zeros are left to be determined. The polynomrals for the root-Nyquist filters are found 
by multiplying factors corresponding to each zero. F6r the minimum phase polynomial, the zeros are those 
inside the unit circle and one of each pair on the unit circle. For the Lawton decomposition, the zeros are 

•.one of each pair on the unit circle, and those zeros that are inside the unit circle in the upper half plane and 
outside the unit circle in the lower half plane. As in our previous designs, the only critical point in the 
design is to randomize the order of the ero factors when forming the product polynomials. We have found 
that using the DOS SORT command and sorting on the fourth digit is sufficient. 

' Linear Phase Filter 

The linear phase filter G6 is designed using a variant of Jain and Crochiere's method[2]. The stopband 
energy is minimized, subject to a linearized set of equations imposing the Nyquist criterion. Since it is the 
coefficients of the polynomial itself used in the design, there is no need for subsequent zero-finding or 
spectral factorization. 

REFERENCES 

1. H. Samueli, 'On the Design of Optimal Equiripple FIR Digital Filters for Data Transmission 
Applications', IEEE Trans Circuits and Systems, Vol. 35, No. 12, Dec. 1988. 

2. V. K. Jain and R. Crochiere, 'Quadrature Mirror Filter Design in the Time Domain', IEEE Trans 
Acoustics, Speech and Signal Processing', Vol. ASSP-32, April 1984, pp. 353-361. 

APPENDDC: FILTER COEFFICIENTS 



F88_8 

1.00000000000000E+0000 
1.61823816025980E+0000 
2.75725070143926E+0000 
4.23765368648018E+0000 
6.02474781466944E+0000 
8.03622653380794E+0000 
1.01428365007125E+0001 
1.21761320164196E+0001 
1.39432700075629E+0001 
1.52476417442110E+0001 
1.59130444845834E+0001 
1.58082544813400E+0001 
1.48684414183357E+0001 
1.31099754404797E+0001 
1.06358518429227E+0001 
7.63013198882190E+0000 
4.34131936534654E+0000 
1.05623472563835E+0000 
-1.93253381418263E+0000 
-4. 36140256349403E+0000  
-6.02804212276844E+0000 
-6.81652319922357E+0000 
-6.71164600815125E+0000 
-5.80020887682843E+0000 
-4.25882636501843E+0000 
-2.32986737604750E+0000 
-2.88843174734262E-0001 

• 1.59214682897403E+0000 
3.07971538706617E+0000 
4.00823871114362E+0000 
4.29862714002227E+0000 
3.96435913780564E+0000 
3.10426053637859E+0000 
1.88350315778043E+0000 
5.06027995667962E-0001 
-8.17202502692844E-0001 
-1.89923186421550E+0000 
-2.60281403997851E+0000 
-2.85719089500247E+0000 
-2.66386822722237E+0000 
-2.09111423072150E+0000 
-1.25867303383170E+0000 
-3.15640287789661E-0001 
5.84635608734211E-0001 
1.30851063902361E+0(500 
1.76116787798889E+0000 
1.89821058627549E+0000 
1.72840974004139E+0000 
1.30780331979459E+0000 
7.26733828917106E-0001 
9.24513708599137E-0002 
-4.89551272644754E-0001 
-9.32327684756014E-0001 
-1.17979227504980E+0000 
-1.21290323238222E+0000 
-1.04920913277061E+0000 
-7.36406041998196E-0001 
-3.41506225688045E-0001 



6.21731922870416E-0002 
4.07812128247680E-0001 
6.45534508001281E-0001 
7.48948634097116E-0001 
7.17041546413286E-0001 
5.71558655698175E-0001 
3.50770946954673E-0001 
1.01075475666137E-0001 
-1.31886281610273E-0001 
-3.10989453713508E-0001 
-4.13022758176200E-0001 
-4.31025258933231E-0001 
-3.73485740408923E-0001 
-2.60899294268086E-0001 
-1.20600381326107E-0001 
1.89945245090141E-0002 
1.33617488750475E-0001 
2.06955726509650E-0001 
2.32500163844096E-0001 
2.13325606356228E-0001 
1.60090938211479E-0001 
8.78489325490172E-0002 
1.24119455474760E-0002 

-5.29825493012943E-0002 
-1.00106459330409E-0001 
-1.26917776502670E-0001 
-1.37404724611510E-0001 
-1.40286798452267E-0001 
-1.46957915608508E-0001 
3.55856362044745E-0001 

Filter G6 

3.02770050420720E-0003 
2.30778381754758E-0003 
1.24411019001752E-0003 

--1.50025099631171E-0004 
-1.73387251315140E-0003 
-3.25221856218300E-0003 
-4.37880235656367E-0003 
-4.78497450871251E-0003 
-4.22500943937580E-0003 
-2.60187835930757E-0003 
-4.15535919969630E-0005 
3.10191300704333E-0003 
6.27504396887038E-0003 
8.80692412294210E-0003 
1.00317080198207E-0002 
9.43172744651368E-0003 
6.78027558230837E-0003 
2.21750963639573E-0003 
-3.67858713028097E-0003 
-9.95992456851670E-0003 
-1.54310020505306E-0002 
-1.88483857384144E-0002 
-1.91616400691483E-0002 
-1.57539729010682E-0002 
-8.64220809045814E-0003 
1.44854262241715E-0003 
1.30705458538568E-0002 
2.42408568397138E-0002 



3.27229534406831E-0002 
3.64055044459731E-0002 
3.37147612617547E-0002 
2.39910067856588E-0002 
7.76181410248865E-0003 
-1.31685967101351E-0002 
-3.57992779453820E-0002 
-5.62553829298552E-0002 
-7.02731469454432E-0002 
-7.38060754960248E-0002 
-6.36623394005680E-0002 
-3.80752068999285E-0002 
2.88816386265854E-0003 
5.71524953669061E-0002 
1.20741251269470E-0001 
1.88159050523147E-0001 
2.53011776052004E-0001 
3.08781711401758E-0001 
3.49650752818985E-0001 
3.71254013024443E-0001 
3.71254013024443E-0001 
3.49650752818985E-0001 
3.08781711401758E-0001 
2.53011776052004E-0001 
1.88159050523147E-0001 
1.20741251269470E-0001 
5.71524953669061E-0002 
2.88816386265854E-0003 
-3.80752068999285E-0002 
-6.36623394005680E-0002 
-7.38060754960248E-0002 
-7.02731469454432E-0002 
-5.62553829298552E-0002 
-3.57992779453820E-0002 
-1.31685967101351E-0002 
7.76181410248865E-0003 

- 2.39910067856588E-0002 
3.37147612617547E-0002 
3.64055044459731E-0002 
3.27229534406831E-0002 
2.42408568397138E-0002 . 
1.30705458538568E-0002 
1.44854262241715E-0003 ' 
-8.64220809045814E-0003 
-1.57539729010682E-0002 
-1.91616400691483E-0002 
-1.88483857384144E-0002 
-1.54310020505306E-0002 
-9.95992456851670E-0003 
-3.67858713028097E-0003' 
2.21750963639573E-0003 
6.78027558230837E-0003 
9.43172744651368E-0003 
1.00317080198207E-0002 
8.80692412294210E-0003 
6.27504396887038E-0003 
3.10191300704333E-0003 
-4.15535919969630E-0005 
-2.60187835930757E-0003 
-4.22500943937580E-0003 
-4.78497450871251E-0003 



' 

-4.37880235656367E-0003 
-3.25221856218300E-0003 
-.-1.73387251315140E-0003 
-1.50025099631171E-0004 
1.24411019001752E-0003 
2.30778381754758E-0003 
3.02770050420720E-0003 

The Lawton decomposition filter is defined in another report. 

FIGURES 

1. Minimum phase filter pulse response. 

2. Nyquist filtér time response. 

3. Frequency response of equiripple filter F88_8. 

4. Frequency response of linear pha'Se'filter G6. 
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN 
MOBILE AND MOBILE SATELLITE ENVIRONMENTS: 

lb. POLYPHASE REALIZATION OF VSB FILTER BANKS 
USING SPECTRAL FACTORIZATION 

INTO SYMMETRICAL COMPLEX FUNCTIONS: 
LAWTON'S FACTORIZATION 

W F McGee 
Contract U6800-6-1604 

19/03/97 11:55 AM 

ABSTRACT 

The design of filters for pulse transmission is most efficiently done using spectral decomposition. Ordinarily 
this leads to a minimum/maximum-phase real-coeffielerit . Polynomial decomposition. Both must be used as 
prototypes in a transmit filterbank for optimal VSB communication. Lawton has given a factorization into 
two complex symmetrical functions. This implies that the same prototype filter may be used in the transmit 
filterbank. This leads to the following features 

-relatively easy to design for eqUiripple or weighted response. 
-more efficient realization than min/max designs. 
-symmetrical responses. 

Linear phase prototype filters are popular in digital signal processing using filterbanks. One of the reasons 
is that the transmit filters and the receive filters are based on one prototype filter, and the filters themselves 
may be realized with the Bellanger Polyphase realization using the F1. But the length of the filters is: 
longer than needed to meet stopband filtering requirements; as a rough guide the length of the linear phase 
filters is about 25 percent more than of a minimum/maximum phase factorization of the Nyquist filter. 

"'Unfortunately, the minimum/maximum phase .decomposition requires that both prototype filters be used in 
both the transmit filters and the receiver filters. The minimum phase factor is used for half the filters and the 
maximum phase for the other half. Thisin ttirn, means that the number of filter coefficient multiplications 
is twice that required if the filters were the ame. It is true that there are savings  in  the DFT calculation, but 
for long filters, almost all the time is taken in multiplications with filter coefficiants[3]. , 

Recently Lawton[1] presented another faCiorization of a Nyquist polynomial that results in symmetrical 
filters, albeit with complex coefficients. Thus the number of coefficients would be the same as that of a 
minimum/maximum phase decomposition. And, it turns out, only one filter type need be used for the 
transmitter and one for the receiver; the Bellanger Polyphase realization is allowable, and the number of 
filter multiplications is therebythalved over that of the minimum/maximum phase realizations. 

Therefore, one may conclude that the use .of the Lawton decomposition results in a considerable 
computational saving, of the order of 25 percent, over the use of linear phase prototype filters, and 50 
percent over the use of minimum/maximum phase decomposition. 

This report presents the relevant theory. An appendix gives an example of a Lawton root-Nyquist filter for 
an 8-band filterbank. Another Appendix contains a set of simple MATLAB programs that we used to verify 
the theory. Filter responses for this 8-band, 25-percent excess bandwidth, 40-dB stopband loss design are 
given. 

I DISCUSSION 



An M-band VSB filter bank may be based on a prototype Nyquist Filter N(z) which is factored into two 
root-Nyquist filters using the relationship 

N(z) = H(z)G * (z) 

The polynomial G*(z) has coefficients that are the complex conjugate of those of G(z). Lawton provided a 
factorization in which G and H are complex, but with the following properties 

H(z) = G(z) = H(1/ z) 

These filters are all non-causal, they are made causal as follows 

P(z) = ,-(L-1)/2 ur z) 
11  ‘. 

where P(z) is causal and L-1 is the order of the polynomial P(z) which has L coefficients, commonly called 
the length of the filter in the DSP literature. 

A polynomial is specified by its zeros and an arbitrary constant which we take to be real, and, for this 
discussion, equal to unity. Thus if the zeros of P(z) are z i , 

L-1 

P(z) = 

A polynomial P(z) will be.complex symmetrical if, when 1/z 1  is distinct from zi, it is also a zero. P(z) may 
have an arbitrary number of zeros at z=-1; since it is to be a lowpass filter it will not have zeros at z=1. 

The theory of VSB filterbanks using Lawton polynomials is as follows. The M transmit filters have M real 
input sequences at a rate 2/M applied to them. The filter outputs are summed, and this signal is then applied 
to a set of M receive filters, the real outputs of which as sampled at the rate 21M. The transmit filters and 
receive filters are frequency-shifted versions of a prototype filter 15(z) and P*(z), with appropriate phasing; 
the frequency shifts are multiples of 1/M,, . 

The overall system is linear, and, neglecting the output sampling, time invariantjhus the pulse response 
contains all system information. Sinçe -the. filterbanks in question have, selective filters, it is only necessary 
to consider, for a given transmitter inpueihe' response at three receive . filter outputs; that of the receiver at 
the same frequency, and the two adjacent.... 

In a well designed system the real part of the pulse response at the same frequency will be nonzero at the 
sampling instant, and will be zero at all times that are displaced from it by multiples of M/2, the inverse of 
the sample rate. With the filters' under question, the sampling instant is L-1 sample times after the pulse is 
applied at the input. Similarly, in the adjacent channels, the real part of the pulse response in those channels 
should vanish at the main sample time and at samples displaced from it by multiples of M/2. 

In what follows we will assume that the length L is a multiple of M; this makes the polyphase filters all be 
the same length. This assumption may be removed, but does not appear to lead to great system savings, 
unless low delay is desired. 

We claim that if the transmit filters Tk(z) and the receive filters R k(z) are represented by 



7, (z) ej0 w(k+1/2)(L-1)/2p(wk+1/2 

Rk (z ) = e w(k+112)(L-1)12 p* (147k+112  z) 

where 

ø k+ , — çb k  = odd multiple °fn.  /2  

a well-designed system will result. 

Consider transmission to the receiver mate. The response is Tk(z)Rk(z) and is given by 

T (z)Rk(z)= W(k+112)(L-i)p(wk+112z)p*(wk+inz) 

But, by design, P(z)P*(z) is a Nyquist polynomial with rea coefficients n k  and these coefficients vanish at 
samples L-11-sM, where s is not zero. Consequently the coefficient of i n)  iS 

• 
w-(k+112)(L-l+rM12)w(k+1/2)(L-1) w-(k+112)(rM12) = , e j2r(k+112)(rMI2M) nL-1+rM12 — nL-1+rM12 i 'L-14-rM/2 

which vanishes when r is even and nonzero by Nyquist design, and is imaginary when r is odd; thus there in 
no intrachannel intersymbol interference. 

For an adjacent channel the response is, typically, the real part of Tk+I (z)Rk(z). This is given by 

Tk+i (z)R.  (z) = e i(9) .t+1 -00W(k+1)(L-1)p(wk+1+1/2 z)p * (wk+112 z ) 

If the zeros of P(Wk+3/2z) and P*(W k+Inz) are examined, it will be determined that they are symmetrical 
about a line half-way between the two center frequencies, and thus may be represented by C(Wz) where 
C(z) has real coefficients c k. The response at samples that are displaced by rM/2 from the center sampling 

•point L-1, r an integer, is thus - 

cL-1+rM12 ' 
,„,..1(0k4v-».)w(k+1)(L-1)w-(k+1)(L-1+rM12) 

= c e i(0,t+I-Ok)w-(k+1)(rM12) = ' ei(Ok+t7Sbk) 
L-l+rM12 L-l+rM12 

and the real part vanishes if the phase, différènees are an odd multiple 'of ir/2. 

All that remains of the design procedure is to write down the expressions for the transmitter and receiver, 
introduce the polyphase components, and identify the components. 

Recall that 

Tk (z)= e fo,1y(k+1/2)(L-0/2p (wk+ii2z)  

Rk (z ) = e-i0k w(k+1/2)(L-1)/2p * (W1/2z) 

Ok+1-0k -= odd multiple ofx  /2  
First, however, we will make some assumptions about filter lengths to simplify the discussion; these 
assumptions are not hard to remove. The filter length L is usually a multiple of M. Secondly, the phase 
shifts are often chosen[2] as 



O k = (k +1 / 2) (2(L / M ) +1)7c / 2 

Thus, 

Tk (z) = W -(k+1/2)(M/2+1)/2p(wk+1/2z) 

Rk (z) = W (k+1/2)(M/2-1)/2 p * (wk+1/2 z) 

The claimed efficiencies follow because when the phase components of P(W inz) are introduced, both the 
transmitter and receiver only involve the multiplication, of only one of the prototype filter coefficients for 
every input set of data. 

MORE EFFICIENT REALIZATIONS 

There are two cases, one involving the DFT with elen-}ents an'd the second involving the odd-time 
odd-frequency DFT with elements e i2n(k+112*÷1/2)/M  .  Fr  tha DFT, probably the simplest approach is to 
perform a polyphase expansion on A(z)=Wavv2+1)/4p(w1t2z), 

A(z)=Ez-kA r (e). 
r=0 

Then the output from the transmitter is 

M—I M-1 
\--1  z —r A t • ,..,M )11  w—rk w — k(A1 (,M/2 ) 

'el r‘••‘-• 'e'k\•‘-' • ,•1 
.. r=0 k=0 

These expression may be simplified to 

•_ zz _rAr(z m )l • w—(r+(M12+1)12)k x é • ,., M12 ). 
kV- 

r=0 • ' k=0 

If the integer M/2+1 is an even integer (case DFT) then may be accomplishedtrtalcing the DFT of the 
inputs, choosing the r+(M12+1)/2 asiapeto the rth polyphase filter, and selecting the output that is desired. 
Otherwise, is necessary to multiply the M.inputs by a phasing factor; we call this case OODFT for odd-time 

odd-frequency discrete Fourier transform. . ' 

Using the DFT leads to the following diagram. 



Figure 1 Transmitter. M real input sequences are,gpplied at rate 2/M to an ÏFFT transformer, 
resulting in M complex sequences at rate 21M. These are then filtered by the M polyphase filters, and 
the output is obtained by summing the filter outputs properly. The sampling operation may be move 
to just before the delay lines. If M/2 is even, then a further phasing is necessary at the input. 

For case DFT (M/2 odd) the inputs are, in fact, real sequences, the DFT May be done as a DFT of order 
M/2 on the complex signals X21-FiX241.  Also the output chain of delays may be exp. ressed as a chain of 
length M/2 by incorporating delays i m12  in the structure itself. 

The receiver takes the real part of the output of the filters when the input signal is applied. This is 

Rk(z) = w(k+1/2)(M/2-1)/2p * ( 'W, "2  z) 

Probably the simplest approach is to take the polyphase expansion of B(z)=W" 2-1)/2P*(Winz), 

, M-1 
• 13(Z) = Z-r Bre 

r=0 
SO 

M-1 M-1 
Rk (z) = z -r W-rkWk(M/2-1) pp, y m 

= z -r.  Br( 7M)Wk(111/2-r-1) 

r=0 r=0 "*. . 

leading to the following block diagram for the receiver. 



Figure 2. Receiver. A complex input sequence is applied at the left. It passes through a delay line with 
M taps, is then fed through M polyphase filters Will 'eôniplex coefficients, and applied to the DFT 
indicated. The output consists of the real parts of the DFT sampled at rate 21M. The sampling 
operation may be moved back to the output of the delay lines. When M12 is an even integer, further 
phasing is required at the output. 

The usual simplifications may be applied here as well. Since, for the .DFT case (M/2 odd) the outputs are 
real, the DFT may be replaced with a DFT of order M12 and appropriate real and imaginary parts of the 
output taken, and the input delay chain of length M may be replaced with one of length M/2 by 
incorporating delays of length M/2 within the filtering structure. 

REDUCTION IN ORDER OF DFTS DUE TO REAL INPUTS AND OUTPUTS 

The following material appears in elementary textbooks and we include it here for completeness. 

The replacement of the IDFT proceeds by noting that if a real input vector x with components xk  is Fourier 
transformed to a vector U with components Uk, then Um_k=U*k, and a real vector y corresponds to transform 

-V, then w=x+jy corresponds to W, then Wk=Xk+jYk  and Wm_k* =.,X1c-iYk, thereby 
2Xk=Wk+W* m_k  and j2Yk=Wk-W*m.k. 

On the other hand we are interested in the M-point transform of the M-vector whfch we write as the M/2 
transform of the even and odd numbered components: 

M-1 M12-1 M/2-1 

= := -rk Z e j2nrkl(M12), ,j2intIM E e j2nrkl(M12) = Yk  Y .1„," " 

w 
'2r 

r=0 r=0 r=0 

[Wk  W * M12-k te i2e1A1  (W — W * M12-k)] 2  
where 

M12-1 
Wk = E ( x2r-Fix2,,,) e

j2nrkl(M12) 
"M12+k 

r=0 
is the M/2-point IDFT of the complex input sequence x2r+ix2r+1 

On the other hand, if only the real output of a DFT is desired, then, since 

M-1 
-j2 X r + jyr  — LY k e n-rkIM  

k=0 



M-I 
2x2r =1(y e -j2r2rkIM *

k e 
j2z2rkIM ) 

k=0 
M-1 

=‘" e -j2n-rkl(M12)(v * 
k M-k ) 

k=0 
MI2-1 

e -j2nrkl(M12) (rk ±Y *  +Y M-k MI2+k +Y.  * MI2-k) 
k=0 

• 

2 jx 2r-Fi = jI(y Ci211*(2141)klM; • e -Fy* e  j2x(2r+l)kIM 

k=0 
kr-1 

e -j2nrkl(M12) e -j2IrklM + 07k. ) 

k=0 
MI2-1 • e -j2grkl(M12) e -j2eIM (v y * m_k  _17 

k MI2+k — Y * MI2-k) 

then 

and 

k=0 

2(X2r ) 

M/2-1 
*V" -j2n-rkl(M12)- L e 1.(1+ je-i2elm  )(Yk  
k=0  

+ Y * ) + (1— je-i2e/ )(Y MI2+k Y * A112-k )]  M-k 

SO 

which is an M/2-point DFT. 
' 

Simplifying the transmitter using a delay fide of length M/2 is obtained by noting that the output is 

• Af-t 

E z —rxr cz m wr (z mi2 ) where 
r=0 

M-1 
vr (z MI2) = w-(r+MI2+1)k xk (z MI2) 

k=0 
and the output may be rewritten as 

M-I 

E z —r Ar  (z TM  )Vr (z TMn ) 

r=0 
M/2-1 

= Ez—{4r (zM)vr (zmi2) 
'r+M/2 Vr+M/2 MI2  )] 

r=0 

IS THIS QAM? 



Using the M/2-point DFT appears to leads to a QAM system; a complex input sequence zr=x2,+jx2,.+1  is 
applied at rate 2/M and recovered at the output. But ordinarily with a QAM system, the transmitted signal is 
also analytic; i.e., it is not a function of z*,-. Practically, this means that if an input sinusoid is applied, that 
frequency and its image will also appear. The potential for the image frequency to occur is because the 
operation of conjugation is performed in the description above. This is important because many system 
functions depend on the complex signal being analytic; an example is the usual adaptive equalizer. 

For example, the transmitted signal is 

X 2r (z M12  ) T2r (z) X2r+1 (z W2  ) T2r+1 (z) 

Zr  en  ) + Z * r  (zmn  ) Zr  (Z mn  )— Z  * r  (Z mn  ) 
izr lZ) T2r+i (z) 

2 2j  
M/2 T.), (z) — (z) T, (z) 

= Zr (z ) 
• 2 
+ Z * (z M/2  -r iT2r+i (Z)  

2  

which shows explicitly that the image signal Z*(z 1e2) is being transmitted. 

Thus, I would not call this QAM: 

USE OF THE OODFT 

When the quantity M/2 is even, I. e. M/4 is an integer, there are two approaches that may be made. We 
sketch the possibilities here; they have not been fully explored. One approach is to note that in this case the 
input sequences may be staggered, and the phase difference betWeen adjacent channels is not required; all 
the cpk  may be zero. The second approach is to perform a polyphase expansion directly on P(z), and then the 
transmitted signal may be represented 

1=0 k=0 
M-1 M-1 

.Ez-prc-elyE .W
-(k+112)(r+112+m4)x  (z MI2) 

r=0 k=Cr 

This is seen as the odd-time odd-frequency DFT[4] of the input sequence, with the r+M/4 th output applied 
to the filter 13,.(-zm) and applied, with a delay of r, to the output. We recall some properties of the OODFT 
considered as a matrix O. The matrix 0 has elements 

0 
W-(r+1/2)(k+1/2) 

r,k = °k,r 

and satisfies 

w-(r+1/2)(k+1/2)-M(k+1/2) _w-(r+1/2)(k+1/2)) = 
r+M,k 

= w-(r+1/2)(k+1/2)-M(k÷1/2)/2 = 0 e j22r(k+1 2)/ 2 \k °r+M12,k r,k itjr,k 

M-1 M-1 
(z  M/2 )71 (z) = j(k  (z  M/2 )w-(k+1/2)(M/2+1)/2p(wk+1/2 z) 

k=0 k=0 .- • - 

k(z)  

• 



M-1 M-1 
02 w—(r+1/2)(k+1/2)w—(k+1/2)(s+1/2) w—(s+r+I)(k+112) 

k=0 k=0 
and the sum on k is zero unless r+s+1 is equal to M in which case the sum is -M, thus 

02  =—MI 

whereas 

N-1 N-1 
00H r,s  = w—(r+1/2)(k+1/2)+(k+1/2)(s+1/2) = w—(r—s)(k+112) 

k=0 k=0 

thus 0011=MI, where  lis the identity matrix. Thus  0 /  -N/Fld is unitary. 

If A is a diagonal matrix,- then OAOH is not quite circulant, since although . 

A4-1 f-1 
OAO H  r,s = w—(r+112)(k+1/2) A

"  w " 
(s+1/2)(k+1/2) = A  

k,k " 
k=0 k=0 

depends on r-s, and is thus the same for every element parallel to the diagonal, when wraparound occurs, 
there is a change of sign. 

These are related to the DCT-IV transforms of order N=M/2 

2 
C r,k = cos(7(k + 1 / 2)(r + 1 / 2)) 

S r  k = sin((k + 1 / 2)(r  ±1 / 2)) 
N N 

The OODFT is given by 
• • 

1 AI-1  
X(k) •  

. . 
M-1 

x(n) = X(k)14 7-(k+112)(n+112) . 

k=0 

If the numbers X(k) are real, then the numbers x(n) satisfy 

x .(M — 1 — n) = — x * (n) 
and an OODFT may be used to find the OODFT of two real vectors, the same as the DFT. 

Finally, it is to be noted that there are fast OODFT transforms, both DIF and DIT. 

FURTHER WORK 

Further simplifications in the signal processing may be possible. Choosing the length of the filters to be 
different than a multiple of M may be useful, for example. A comparison with the extensive works of 



Gopinath and Burrus, who deal with a similar structure, may be useful. Perfect reconstruction filters of this 
type have not been studied. The whole theory should be implemented in a set of program similar to 
Malvar[2]. 

CONCLUSION 

The Lawton factorization leads to a pair of transfer function each of which is symmetrical, and the transmit 
and receiver filters are frequency translates of only one filter. This leads to a significant reduction in the 
number of multiplies that must be made. 

APPENDIX 1 

Real and imaginary parts of coefficients of an 87-th order Lawton polynomial P(z) achieving a 43-dB 
stopband loss in a 25-percent excess bandwidth 8-band filterbank. 
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7.08552945036195E+0000 
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1.13193600552482E+0001 
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1.80327930613551E+0000 
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-6.40078994833277E+0000 



3.77458417944626E+0000 -5.14024514400275E+0000 
2.66169549404792E+0000 -3.84031584511743E+0000 
1.55069985004573E+0000 -2.74122045678967E+0000 
5.87898227186675E-0001 -2.05262800041196E+0000 
-8.78011640265987E-0002 -1.91656904488342E+0000 
-3.60011492514568E-0001 -2.38124529241214E+0000 
-1.48614046876179E-0001 -3.38973220851781E+0000 
5.79381488854228E-0001 -4.78591449482749E+0000 
1.80327965173330E+0000 -6.33626860409012E+0000 
3.44744101594852E+0000 -7.76448318601540E+0000 
5.38597183940840E+0000 -8.79305075600213E+0000 
7.45314522820101E+0000 -9.18557686979046E+0000 
9.45893227039002E+0000 -8.78304961395778E+0000 
1.12079493305102E+0001 -7.52866698119001E+0000 
1.25200224661555E+0001 -5.47754595506901E+0000 
1.32497766516082E+0001 -2.79012652378293E+0000 
1.33030763597247E+0001" 2.89394218636269E-0001 
1.26480521650670E+0001 3.46603125623450E+0000 
1.13193600779609E+0001„; ,6.43319540156883E+0000 
9.41492537313545E+0000 8.91221948681571E+0000 
7.08552942898205E+0000 1.06864520868263E+0001 
4.51844239422947E+0000 1.16254573209018E+0fi1 
1.91713947883487E+0000 1.16963134614286E+0001 
-5.2037507.3867829E-0001 1.09612997584975E+0001 
-2.62194322219755E+0000 9.56321292676915E+0000 
-4.25785313948548E+0000 7.70131354052050E+0000 
-5.35174950838414E+0000 5.60204142430150E+0000 
-5.88475368150392E+0000 3.48905855083330E+0000 
-5.89264088242702E+0000 1.55686510948667E+0000 
-5.45685456636677E+0000 -4.87011711439881E-0002 
-4.69092136055271E+0000 -1.24112773464097E+0000 
-3.72435100046566E+0000 -1.99461831624745E+0000 
-2.68629946269863E+0000 -2.33720684778252E+0000 
-1.69112761412604E+0000 -2.33770405264418E+0000 
-8.27544224516811E-0001 -2.08924'316060974E+0000 
-1.52367563784541E-0001 -1.69233315188186E+0000 
3.10811148148011E-0001 -1.23999149967190E+0000 
5.68503743634027E-0001 -8.06825982961436E-0001 
6.50770138306008E,0001  -4. 4302'833509899E-0001 
6.02634201281470E-0001 -1.73308749421068E-0001 
9. 999999999998E-0001 -1.19262238973405E-0015 

APPENDIX 2 
A..SET,QF MATLAB PROGRADe 

e 
makefiltm 

% makefilters: makes a set of transmit and receive filters 
load lawton % a mat-file with the coefficients 
for i=1:8 
[transmit(i,:),receive(i,i')]=filters(lawton,i-1,8) 
end 

filtersan 

function[transmit,receive]=filters(a,k,M) 
for i=1:1ength(a) 
transmit(i)=exp(j*(pi/M)*(2*k+1)*(M/4.0+0.5))*a(i)*exp(j*(pi/M)*(i - 1) * (2 * k+ 1 )); 

end 
for i=1:length(a) 
receive(i)=exp(j*(pi/M)*(2*k+1)*(-M/4.0+0.5))*conj(a(i))*exp(j*(pi/M) * (i - 1)*( 2*k+ 1 )); 

end 

typical session 



makefilt 
plot(conv(transmit(2,:),receive(3,:))) 
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FIGURES 

1. Frequency response of filter. 
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PHASING FILTERBANKS 

W F McGee 
19/03/97 11:52 AM 

The purpose of this note is to document the phasing of filter banks. 

There are two cases that commonly occur. In the first, which occurs with Lawton banks, the transmit filters 
are all frequency translates of one another, and the receive filters are their conjugates [i.e., sequence 
reversed, conjugated.]. If the phase of the transmit filters is  r1 and the corresponding receive filter is -p i , 
then the transfer function of the main channel is 

ei(t s -Pi ) H i (z)H i.(z) 
and of the crosstalk channel is 

LA i+1 (z)H i.(z) 

where 

H (z) = H(/el-1 '2  z) 
H (z) = H. (W i+112  z) 

The main coefficient is the Lth, which is generally the order of H or H.  Thus, H is of length L+1, order L, 
HH. is of order 2L, and the middle coefficient is the Lth. 

The Lth coefficient of the main channel is 

e Kri-PI)nLz -L (wi+1/2 )-L 

_where nL is real, and this is to be real. This restricts the phase differences. 

On the other hand, for the crosstalk tranger functions, the Lth coefficient is 
• " 

-L 
LZ 

and this is to be imaginary. 

Consequently the requirement is 

T.–p.+-21e (i+1/ 2)L= Ki z 

z i+1 –p i +-27r (i + (2U;  +1)—e 
2 

– p ;  + iL = (24 +1)— 
M 2 

The difference of the first two equations is 



• 2,7c L i+1 = + (U1  — Ki )ir — -- 
2 M 2 

which is satisfied by 

iv 
. = —(1

. 
+ 1 / 2)(1 — 2L / M) , among many solutions. 

2 

This means that the transmitters are 

j(i+1/2 
) 2 14,7(i+1/2)L/2H(wi+I/2 z) 

With this, the formula for the receive phase shift is 

p 2)(1+2L/M) 
2 

The receive filters are 
7r 

• 

2 w(i+1/2)L/2H . (wi+I/2 z) 

Another common filter pair involves minimum-maximum phase pairs. Here H(z) the prototype is real. The 
. transmitting filters are respectively 

and the receive filters are 

The main channel responses are 

and the crosstalk channels are 

te jr0 H(w1/2 z) , e  jri (w312 .z.) ,...} 

, . 

(w1/2 z) ,e -iPTIH(w3/2 z) ,A 

• . „. 
r11. 

j(•ri-pi).,,, yrri+1/2 \ r 
( 

r TTri+1/2 e z)n.vv z) 

• • 

e iczi+l-pi)H*. (wi+1+112z )H.(v i-Fin z)  = c(wi+i z)  

But .these requirements will result in the same equations for transmit and receive phase, and therefore the 
same solutions are valid. 
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1 Prototype Filters for VSB Filter Banks Derived from Half-Band Filters 
W F McGee 

24 September, 1996 

The purpose of this note is to document the use of half-band filters for prototype M-band filters. 

An M-band prototype Nyquist filter N(z) must meet the requirements 

M/2-1 
(w27 z) Nm. (w2,-Fiz).=  M.  

r.=0 

Here W is an M-th root of unity 

W = e -j2e1M 
and N*(z) is N(z) with conjugated coefficients. 

As a first set of prototype filters based on the half-band filters N, 1 (z) [we use the notation N, 1  instead of N2, 1  
to save space] satisfying 

let 
log 2  M-1 

NM (z) = ) = N,,,(z)N a (z 2 )N (z 4  )A 
i=0 

The general proof that this construction will work is not difficult, but we give a demonstration for M=4. The 
requirement in that case is 

N , 0 (z)N (z 2  ) + N ,0 (— jz)N  (—z 2 )  + N ,0 (—z)N , 1 (z 2 ) +  N 0  ( jz)N , i (—z 2 ) 

[N , 0 (z)+ N , 0 (z)]N , 1 (z 2 )+[N ,0 (— jz)+ N o (jz)]N 1 (—z 2 ) 
2[N , i (z 2 ) + N ,i (—z 2 )]= 4 ' 

The general proof follows by noting thài»all  the  polynomials are real and 

N ,(z).= N (z)N (e112,) , /2 , . 

and the Nyquist criterion is satisfied since 

m -1 
N M 

k =0 
M 12-1 

m  
k =0 

=  —N  (z 
2 

M —1 

Z) 1 = N M.2 
k = 0 r  

/2 
 (w 2k z)N (z  

(VV k z)N  ((4) k z  M / 2 

M/2-1 
M/ 2) +  2k M 12 WZ)N (—z ) 

= M  

Another choice of prototype is 



i.e., 

N Ai(z) = iz)N z)N  

N 4,1 (147112  z) A jz)N .0 (z)N 1 (z 2  )A. 

For M=2, W=-1, N2(z)=N,o(z), as expected. 

For M=4, W=-j, 

N4  (z) = N.0  (w1/2 z)N.0  (w-1/2 z) = N4  * (z) 

and the Nyquist criteribn is 

N,0(47 112 z)N,0047 -112 N ,0.(47 31.2 z)N z)  

,0(w 512 z)N 0(w 312 No 
( 
 v7/2, z )N 0  (w512 z) 

N, 0  (w1/2 z)N 0  (_w3/2 z) + N.0  ( w3/2 z)N 0 (W 11 2  z) 

+N,0  (_-w1/2Z)N 0  (47312 z) N,0  (_-w312 z)N.0  (_//v1/2 z) 

2[N,0  

For M=8 the construction yields 

(z) = (__W-Iniz)N0  (47-1/2 z)Na  (W-l z  2 ) 

= N,0  (W 3I2 Z)N,0  (-W 712 Z)N, i (-W3 Z 2 ) 
N  * 8  (z) = N.0  (w-3/2 z)N.0  (_147-7/2 z)Ni  (_w-3 z 2 ) 

= N,0  (-W512 Z)N,0  (W 112 .Z)N,i  (W z 2 ) .  

and the Nyquist criterion is satisfied, since " 

.1'S/ 

(w inz)  N,0  (-Win z)] = 4  



N, 0  w "2  z )N, 0  w "2  z)N, 1  (-w 3 z 2  ) 
(w7/2 z)m0  (-W11/2 z)N,1  (_w7 z 2 ) 

+mo  (w11/2 z )m o  (_w 1 5/2 z)Na ) 

,0

▪ 

(wi512 z)N 0 ( _w i912 z)N z 2 ) 

+N,0(W-112z)N,0(w312 z)N i(w 3 z 2 ) 

+N0  (W -512  z)N , 0 (W 712  z)N , I (W 7  z 2  ) 
+N0  (W -912  z)N ,0 ( 471112 z)Ni(w Il z 2 )  

▪ (w  -1312 z )N (vv15/2 z. tyr715 2 PV.  d Z ) 

= AT, 0 (w 312  z)m o  (-w 7 '2  z) N ( w 3  z 2  ) 
e• 

+N,0 (W 712  z)N, 0 (W 3 "2  z)N, i (W 3  z 2  ) 
+N,0 (-W 312  z)N, 0 (W 712  z)N , 1 (-W 3  z 2  ) 
+N ,0 (-W 712  z)N.  ,0 (-W" 2  z)N , i (W 3  z 2  ) 
+N,0  (-W712 Z)N,0  (W 3I2 Z)N (W 3 Z 2  ) 

+N,0  (-W3/2 Z)M0  (W7I2 Z)N I  (-W 3 Z 2  ) 

+N,0  (W 7/2 Z)N,0  (-W3/2 Z)Nj  (WY ) 
+N,c, (W3I2 Z)Mo (-W712 Z)N,1 (-W3 Z 2  ) r 
= N (-W 3  z 2 )  {N , 0 (W" 2  z)N, 0 (-W 712  z)+ N ,0 (-W 312  z)N, 0 (W 712  z) 

, 0 (-W 312  z)N, 0 (W 712  z)+ N,0 (W 312  z)N , 0  (714 7_712  z)} 
+N l(w 3 z 2 ){N  0  (w7/.2 z)mo  (w3/2 z) N  (_w7/2 z)mo  (_w3/2 z) 

+N,0  (_w7/2 z)m0  ( 4/312z) AT,0  (w7/2 z)N,0  (_w312 z)} 

4(Na (-w3z 2 ) 1_, IN4w3z 2 )) = 8  

The general proof for the second construction follows by noting that 

Nivin  çz) = N,0  (_iww1/22 z)N,0 0vm."12,2z)Ni (wm- /1 2z  2 )..A  

N m(z) = z)N0(we2 z)N  a(w;ii  z2  )A. 

= N /2(w  min z)N z)  Al/ 4 ) 

N * m  (Wm z) = N * A112  (WA72 WA/ Z)N,  ((WAII2W,v/Z)A114) 
= N * m12  (Wm1 / 2 z)N.  (_(wm-I/2 z )M/4 ) 

and the Nyquist criterion is satisfied since 



M12-1 M12-1 Nm(w 2k z)+ N  * m  (w2k+1 z) 

k=0 k=0 
M/2-1 M/2-1 

= Nm/2,(wm1/2 w 2k z )N ((w2 w2k z) M/4 ) EN* Ain  (wm1/2 w2k z )N,  (_(ww-1/2 w2k z )M/4 ) 

k=0 k=0 

M/2-1 M/2-1 = N A, 12 (vvm1/2 W2kz)N.((-1)1, (w2z) M/4 ) N  * fri12  (wm1/2w2k zy (_(_1)k (wm-112 z)M/4 ) 

k=0 k=0 
M14-1 M14-1 = N  ((w

M
-112 ,

47
-
/

41i/ 4 )[ Nm,2(wmi,2 w4k * A412  (wm1/2 w4k+2 z)] 
, " , 

•'k=0 k=0 
M 12-1 M12-1 +N (+(wm-i2 z) m14 )[ 11  Nm/2 

 (
uï1/211/ 4k+2 z) ( zN* (W,,,'2 w4k z)] 

" M/2 ■ 
k=0 k=0 

• 

= 
- N ((wm-inz) Mia )+ N ( _(v 1/2 m z  )M/ 4) 

 2 ' 
Which choice is better? 

There does not appear to be a great difference in length. Pick M=8 as an example. The first choice 
requires three filters whose orders could be, approximately, L, L/2 and L/4. The order of the 
product would be L+L+L=3L. For the second method, the filter lengths would be L, L and L/2, and 
the overall order would be approximately L+L+L=3L. 



ESTIMATING PERFORMANCE DEGRADATION 
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The purpose of this note is to document calculations concerning the degradation in performance of VSB 
filterbanks due to phase and timing errors. The report shows that, for the filters with high stopband loss, 
system performance is 'determined by a knowledge of the envelope function, i.e., the pulse response of the 
cascade of two root-Nyquist filters, and a çrosstalk function, which is the response of two root-Nyquist 
filters displaced in freqency by +/- the center of the lowest frequency baseband VSB channel. Formulas are 
presented for the eye opening. The performance equiyalence of stagger-QAM is 's.hown. 

If there is timing offset, then a phase shift should be applied to the received carrier so .that VSB zero 
crossings are maintained. 

A computer program to allow estimates of error rate is included, malcing use of these concepts. 

A. MULTICHANNEL VSB SYSTEMS 

A multichannel VSB communication system consists of a transmitter with M real binary (+1,-1) inputs 
Qk(zma) at rate M12 applied to appropriately phased root-Nyquist filters centered at an appropriate center 
frequency producing a complex output, and the sum of all the bandpass filter outputs is added together to 
form the channel sequence. [We do not consider the mapping from this sequence to a real radio signal, but 
assume perfect QAM communications.] The receiver consists of a b,grik of filters matched to the transmit 
filters, and a detector which takes the real part of the receive filter outputs and examines the sign of this 
sequence. 

-Such a system is linear. In this report we use time t in the formulag .for fesponses, but the responses are, in 
fact, sampled responses. 

The center frequencies for a VSB system arè (k+1/2)/M, for k=0...,M-1. 

The system design is based entirely o' root-Nyquist filters'Gtz) and H(z) such that N(z)=G(z)H(z) 
is a Nyquist filter; N(z) has equally spaced .  zeros, and the spacing is M samples. . 

Since there are M channels and M(M-1) possible crosstalk paths it might be thought that the calculation of 
system performance is very complicated. But is we assume that there is no crosstalk between channels that 
are not adjacent, then only the 'channel itself, and the two adjacent channels, and the noise, will affect 
performance. This is the case with the filters that we are using. In any case, with such high stopband losses 
the assumption that the interference from these channels is like Gaussian noise is undoubtedly useful, since 
the transfer function is not very regular.. 

The system, then, is characterized by two response functions. The first is a Nyquist response m(t) 
representing the overall response of a cascade of the two baseband prototype M-band root-Nyquist filters. 
We assume that m(t) is centered so that the primary sample time is t=0, and the m(km)=0 for k not zero [the 
Nyquist property]. Further, we assume that m(t) is real. 

The half-Nyquist transfer functions are H(z) and H* (1/z), and m(t) is the transforrn of H(z)H*(1/z). For our 
study, we assume that H(z) has real coefficients, so that H*(z)=H(z). The function m(t) is called the 
envelope function. 
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Due to the properties of VSB systems, the pulse response in the VSB channel with center frequency 1/2M 
is 

m(t)cos (27r t) 
L M 2 ) 

This response has additional zeros (i.e., more than m(t) itself) at odd multiples of M12, allowing VSB pulse 
communication at a rate 21M. 

The imaginary part of the pulse response in this channel is 

„ . (27r 1 
msin•w 

) ---- t 
M 2  • • . • . 

and the imaginary part has a zero at t=0 as well as times 1cM; there is a double zero here. 

The second response characterizing system performance is one related to crosstalk. The crosstalk in a VSB 
system with narrowband filters is then determined by the transfer function between adjacent channels. For 
VSB, the crosstalk between the two channels bordering 0-frequency is proportional to that of a narrow 
lowpass filter with transfer function H(W 1/2z)H*(W-Inz) which is synnnetric in frequency about 0- 
frequency, and has a real pulse response c(t). Here W is the Mth root of unity, 

W  = e -j2r1A1 

Due to the phasing of VSB channels, the crosstalk pulse response between the two channels is jc(t). The 
real part of the crosstalk vanishes at all times, in particular at time that are multiples of M/2, thereby 
eliminating the effects of crosstalk from adjacent this adjacent chamiel which is sending only real baseband 
symbols. 

'The crosstalk of the channel above the low-frequency channel (with positive frequency) is that of a narrow-
band bandpass filter centered at the frequency 1 1M and is 

.2r 

jc(t)e
J--t 
 m 

„ 

• 

and the real part vanishes at integer multiples of times M/2. 
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B. PHASE OFFSET 

Suppose that there is a phase error of 0, but no timing error. Then the pulse response becomes 

[ 

.2,r1 
.1-  • 

Re m(t)e 
1 

M 2  C ]ie  

which at sample times k_M/2 is 

m(kM I 2) cos( 27rkM 0) 
•. 4M 

and for k=0 this is m(0)cos(0), vanishes for k otherwise even, and is m(kM/2)sin(0), to within a sign, for k 
odd.  

The crosstalk from,the negative frequency channel is 

• Re(jc(t)e -ie  )= c(t)sin(0) 

and from the other channel is 

Re(jc(t)e- i2leriM  e -i9 )= c(t)sin(--
nt  — 6)  

and for times that are multiples of M/2, this too is proportional, to within a sign, to c(t)sin(0). 

C. TIMING OFFSET AND PHASE OFFSET 

Here, the samples are not taken at time t=0, but are offset to a sample time t, assumed small; the pulses are 
still sent at multiples of times kM/2. 

The sampled pulse response indicating intersymbol interference is then 
' 

.27,- I (H.  
Re m(t+ kM I 2)e j  M 2) e -jû  

m(t + kM I 2)cos(-
27r 

t  —6+  
2M 2 

= m(t + kM I 2)cos(-2.71. t — 0) for k even 
2M 

= ±m(t + kM 1 2)sin(1—
r 

t — 0) for k odd 
2M 

The crosstalk from the negative frequency channel is 

Re[jc(t + kM I 2)e -1e ]= c(t + kM I 2)sin(0) 
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and the crosstalk from the other channel is 

i 21r
t+  [ 

( kM/2) . Re jc(t + kM 1 2)e ---Ai - Cie  = +c(t + kM 1 2)sin( 7r t – 6 )  
M 

There seem to be two possible choices of 0 that would be best. 

In the first, set 0=0. Then there is no crosstalk from the negative frequency channel, the crosstalk from the 
other channel is 

±c(t kM/ 2)sin(-2ir t) 

the main signal is 

„ • 
im. t) cos 

the interference from.  the other symbols is 

m(t + kM / 2) cos(-
27i

)  for k even 
2M 

m(t + kM I 2)sin(-27rt ) for k odd 
2M 

2ir 

2M 2M 

The other choice would be 

27rt 
2M 

The main signal is m(t), the intrachannel interference comes only from tven numbered symbols, and is 

• • , •in(t + kM I 2) k even 
and the interference from the two adjacent channels is 

'tc(t + kM I 2)sin(0). 

It is difficult to analyze these two cases, but note that when the noise is large it is only necessary to compare 
the mean squared errors of the two. When the phase shift is kept to 0, the mean squared error is 
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27rt MSE(9 = 0) = m2  (t + I 2) cos 2  (—) 
k±0,k even 2114.  

• 27ct +1,m2(t+  
k odd 2M all  k 2 1W  

27rt signal power(0 = 0) = m2 2 (t) cos (—) 
2M 

MSE(0 = 21rt ) = 1, m 2  (t + 1 2) + 21,c 2  (t + kM 1 2) sin 2 
(-2et) 

2M k+0,k even all k 2M 

signal power(0 = —27e ) = m 2  (t) 
2M 

Since the contribution to the mean squared errdr has no contributions from the odd-numbered (and usually 
larger) odd symbols in the channel, and the crosstalk from the adjacent channels has been reduced by a 
factor of 2 for small timing errors, it appears that the'besi choice of phase offset and timing phase will be 
the second, that is 

n  27rt 
2M 

D. STAGGERED QAM 

For completeness, we include an analysis of a staggered QAM system with the same prototype filters and 
show that the performance of the dc channel is the same as the previous VSB channel with delay tracked by 
the phase. 

Recall that in an SQAM filterbank the I and Q channels are staggered, with symbols being transmitted on 
the I channel at multiples of times M, and on the Q channels at odd multiples of times M/2. 

The pulse response is m(t), which, as noted, is'reaI. 

With SQAM  the  crosstalk filters are locae tecat frequencies +1-112M, and therefore.the pulse response from a 
symbol in the I channel of the positive frequency adjacent channel is 

, , . 2r 
• j—t 

jc(t)e 2M . 

and from the lower channel is 
. 2rz 

jc(t)e 2M  

With c(t) real, m(t) real and Nyquist, there is no intersymbol or interchannel interference. 

Dl. SQAM PHASE SHIFT 

The response in the I-channel to a symbol in the I channel is 

Re(m(t)e = ni(t)cos(0) 
which vanishes for times 1cM because m(kM) is zero, and the response to a symbol from the Q channel is 
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Re(jm(t)e -ie  )= m(t)sin(0) 

The crosstalk from the positive frequency adjacent channel I to I is 

.2n 
lœ • Re(jc(t)e 2M t 

 e -j°  = ±C(t)sin(
-27r t — 0) 
2M 

which at times t=kM is 

±c(t)sin(0) 
and from Q to  lis  

27r ±c(t)cos(---- t-- 0) 
2M 

which at odd sample times (2k+1)M/2 is also • • • . 

±c(t)sin(0) . 

Thus, the interference is identical to the VSB interference. 

D2. SQAM TIMING AND PHASE SHIFT 

For time and phase shift, the intrachannel responses are 

m(t + kM)cos(0) 
m(t + (2k +1)M  / 2)  sin(0) 

for signals from the I and Q channels respectively. 

The interchannel interference is 
2rz 

Re(jc(t + kM)e 2M ±c(t + kM)sin(î—m (t + kM) -- 0) = ±c(t + kM) sin(-27r t —0) 
j—(t+kM) 27r 

2M 

from I to I and from Q to  lis  
•"• ' „ ... . . .I."' 27r ' j—(t+(k+112)M) . 

Re(c(t + (2K + 1 ):M / 2)e 2M e -J9  ..= . 

±c(t + (2K +1)M  / 2) cos(2=--7r (t + (k +1 I 2)M)— 0) = 
2M r 

±c(t + (2K +1)M I 2) sin(2'---ir t  —0) 
2M 

and from the negative frequency channel the response is the same with a sign reversal of 0, that is, 

±c(t + kM)sin(-27r t  +0) 
2M 

±c(t +(2K+1)/g/ 2)sm( 
27r  -t + 0). 
2M 

These are identical to the results of VSB with the proviso that these refer to the non-zero 0. 
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E. EYE OPENING 

The opening is the signal less all possible interference, and is, therefore 

m(t) cos 0 

- 1 m(t + kell cos 01 
kK) 

- 171(t + (2k +1)M  /2)1  sin 01 

' 2nt —1,1c(t'+ kM I 2)11 sin(— — 0)1 
2M 
2zt - 1 c(t 1-• kM I 2)11 sin( + 0)1: ; 
2M 

= m(t) cos 0 

—1,1m(t + kM)11 ços 01 
kK1 

- n1(1.  + (2k + 1)M / 2)1 sin 01 

. 2zt 2zt —2E 1 c(t + kM I 2)1 max(1 sin(—) cos 0)1,1 cos(—) sin 0)1) 
k 2M 2M . 

F. OTHER CHANNELS' 

We showed that a timing offset of t required an associated phase shift of 

0 = 

 

2r 1  
M 2 

for the first channel in a VSB system,' and that,this meant that the response to odd numbered symbols was 
zero. This is because : 

•  2r1 1)-111) — —2z —1 t)=  0 
M 2 2  M 2 

and it is clear that a phase shift' of 

27r (k +1 I 2)t 

would effect the same of the kth channel. 

But this may also be accomplished for the kth channel with the earlier phase shift, since 
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si 27r 1 M 2 n(— (k + —)(t + (21 + 1)—) —7r 1 t) M 2 2  M 2  

si 27r 1 M 2 n(— (k + —)(t + (21 + 1) —) —71. (k + Ipt) — M 2 2 M 2 

sin( 7r—(2k +1)(2/ +1)) = 0 
2 

CONCLUSION 

The basic formulas to calculate the error rate and eye opening for VSB and SQAM filter banks have been 
derived. They depend on two functions, m(t), the prototype Nyquist channel response, and c(t), the 
prototype crosstalk function. A program using these formulas have been written, and the results agree, 
more, or less, with simulations done by M. Sablatash, for a slightly different set of filters. 
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APPENDIX • 

ESTIMATION OF ERROR  RATES 

Here is a program to estimate error rates, given the prototype filter for a 32-channel system. 

%TIMING.M 

%timing calculates predictéd error rate for VSB channels 
%with time offset t and phase offset theta 
load mp32 

' 

samplerate=16; 
j=sqrt(-1); 
%calculate the channel response for SQAM m(t) 
m=conv(mp32,fliplr(mp32)); 

%calculate the crosstalk function c(t) 
h=zeros (size (mp32) ) ; 
for kk=1:length(mp32) 
h(kk)=mp32(kk)*exp(j*2*pi*(kk-1)/(2*32)); 
end 
c=real(conv(h,conj(h))); 

hold off 
for thetai=0:0 

thetai 
theta=2*pi*thetai/360; 
for offset=0:8 

offset 
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(m,32,offset) 
ffset+samplerate) 
(2*pi*offset/(2*32))-theta) 
(2*pi*offset/(2*32))+theta)]; 

a=[cos(theta)*sample 
sin(theta)*sample(m,32,o 
sample(c,16,offset)*sin( 
sample(c,16,offset)*sin( 

[u v]=max(a); 
save=a(1); 
a(1)=abs(u); 
a(v)=save; 
a=real(a); 
d=[]; 
ploterr 
hold on 

end %offset 
gtext(str(thetai)) . 

end %theta 
hold off 
j=sqrt(-1); 
i=sqrt(-1); 

9aploterr.m 
if d==[] 

d=2:2:30; , 
end 
pe=zeros(1,1ength(d));. 
sigma=zeros(1,1ength(d)); 
for k=1:length(d) 

[pe(k) sigma(k)]=err_rate(a,d(k)); 
end 
sigma=-8.68*log(sigma); 
for i=2:length(sigma) 

if sigma(i)<sigma(i-1) 
sigma(i)=sigma(i1); 
Pe(i)=Pe(i - 1)i 

end 
end 
semilogy(sigma,pe); 
xlabel('SNR [dB]'); 
ylabel('Pe'); 
'grid; 

function [pe,sigma]=err_ratse(a,d) 
% ISI, calculates error rate 
% a(1) contains the peak,.,the rest is ISI 
% d is a parameter usually/brétWeen 2 and 30 ' 
s=a(1); 
elnot=-d*a(1); 
eldouble=0; 
for i=2:length(a) 
s=s-a(i)*tanh(d*a(i)); 

1 c=abs(d*a(i)); 
temp=a(i)/cosh(c); 
elnot=elnot+c-log(2)+log(l+exp(-2*c)); 
eldouble=eldouble+temp*temp; 

end 
if s>0 

s=sqrt(s/d); 
elnot=elnot+(d*d*s*s/2); 
eldouble=eldouble+s*s; 
pe=0.5*erfcx(d*sqrt(eldouble)/sqrt(2))*exp(elnot); 
sigma=s; 
sigma=sqrt(2)*sigma; 

else 
pe=0.5; 
sigma=100000; 



7/16 

Pe/SNR with Timing error (fraction symbol time) 

8/1:6 

• 5/16 

a.) 

1 0-5 

4/16: 

10-6  

3/16 

1 0-1 

15 20 25 30 35 
SNR [dB] 

10 
0 

-8 
5 10 

1o_1 
 

1O_2  

6/16 

1 0-1 

end 

Sample output from program with input the filter MP32.MAT, the 32-channel filter derived from the 
MPEG coding standard. 
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30 25 

Pe/SNR for phase offset in all channels 

10 15 20 
SNR [dE3] 

5 

-:: 
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Phasing VSB Filter Banks 
W F McGee 

25 September, 1996 

The purpose of this note is to record the phasings required for VSB filter banks. Quasi-perfect VSB filter 
banks use a pair of transfer functions H(z) and G(z) where H(z)G*(z) forms an M-band VSB-Nyquist filter. 
We assume that these transfer functions are not necessarily causal, but suppose, for the sake of argument 
that H(z) is causal, of order N, and finally assume that H and G* form a minimum-maximum phase pair, 
that is G*(z)=H*(1/z), or G(z)=H(1/z). 

Basic result 

The transfer functions of the transmit filters for an M-band VSB filter bank may consist of M12 transfer 
functions, H(W 2'Inz) where r ranges from 0 to M/2-1, and the M12 transfer functions jG(W2r z) where r 
has the same range. The receive filters are correspondingly G*(W2'inz) and -jH*(W2'Inz). If we set 
A(z)=H(Winz) be the trànsfer function of the first filter mentioned, then the tranSfer functions are A(w2rz) 

and 

iG(w -inz)  = N(1 /  w-inz) iH(win z) jA(1 z)  

and its frequency translates by  W. 

Restoring causality. 

Focus attention on the first two (r=0) transfer functions; the same result applies to all. Since H(z) is causal it 
will not be affected. To make G(z) causal we must multiply it by where D is equal or larger than the 
degree of H. Also, system performance will not be affected if D is a multiple of M/2, since this is the rate 
that the input sequence appears. Thus, for simplicity, choose D to be the smallest multiple of M/2 that is 
larger than N; that is, 

D = —(1 +[1n7 div (M/2)]) 
2 

if N is not divisible by M/2 and D=N if N is divisible by M/2. 

This may all be accomplished simply by,padding H(z) with zeros to bring its order up to a multiple of M/2. 

'Polyphase filtering . 

Finally, we have to realize the pair of Mertiatisfer functions A(W2 ) ànd jB(W2rz) where 

B(z)=z-DA(1/z) as specified. Each may be realized by the polyphase expansion  of A(z) and B(z) of order 
M/2. Thus if 

M/2-1 
A(z) z -k Ak  (z  /K/2 ) 

k=0 
M/2-1 

B(Z) = Ez-kBk (zw2) 
k=0 

then 
M 12-1 M/2-1 

A(w2r z ) = w-2rk z -kA k  (z  M/2 ) (M/2)Z_k Ak  (z  M/2 ) 

k=0 k=0 
and 



M/2-I 
B(1472rz) = e j2nrkl(M12) z -k BI(z MI2 )  

k=0 

If we include the M/2 real input sequences X1(24/2) and Y1(e1/2) in the description then the output is simply 

M/2-I M 12-1 M1 2-1 z -k fAL  (z  M/2 ) e j2arrk/(M/2)x r  (z  M/2 ) Bk  (z  M/2 ) E  e i2m/2) iy  (z  M/2 )1 

k=0 r=0 r=0 

The calculation may be further simplified by noting that the DFT Uk and Vk of two real vectors with 
components X, and Y, may be obtained on one DFT of the complex vector with components Xr+jYr 
resulting in Wk, since , 

Uk  (Wk ) /2 

jVk =(Wk -1V * mn-k) I 2  

Thus, since we have defined the sequence Wk(zw2) by 

M/2-1 
(Z = ei2er"i2) [Xr (z MI2  ) jYr  (Z Mi2  )1 , 

r=0 
then the output may be written in the equivalent forms 

M12-I Ak  (z  M/2 ) Bk  (z  M/2 \ 
z wk (z mn )1 +  [ AR. (zmi2)— Bk(zMI2)  

WM*  12-k(Z
MI2

)1} k=0 2 2 

and many others. 



b. OFDM 

COMMUNICATION WITH UNSYNCHRONIZED FDM TRANSMITTERS 
USING MAXIMALLY DECLVIATED FILTER BANKS 

Maximally decimated filterbanks[1] achieve very efficient communications, approaching efficiencies of 100 
per cent. But it requires that users be synchronized. We examine methods to achieve comparable 
performance with users having different delays. We are primarily concerned with the uplink of transmission. 

A second problem in these multi-user communication systems is the near-far problem in which the users are 
not received with the same signal levels. These variations may arise from multipath fading, or because 
nearer transmitters inherently achieve less attenuation. 

1. PREVIOUS APPROACHES TO THIS PROBLEM 

a. Frequency orthogonal signaling. 

The most common approach is to use filter banks thapare;not 100-peicent -spectrây efficient, but which do 
allow the users to be unsynchronized in time. European work[2-5] on transmultiplexers for Satellite 
Communications is typical. The idea is use a set of bandpass Nyquist filters that are not.overlapping in 
frequency at all. The efficiency then depends on the sharpness of the cutoff of the filters. The depth of the 
stopband depends on the tolerances to interference, and must include tolerances for near-far deviations. 
Efficient realizations using tree filterbanks is in the references cited. 

channel spectrum 

frequency 

Figure 1. The use of non-overlapping spectrums means that there is little interference between users. 
But the receiver must them operate on each channel separately. 

The second approach [6] is to use orthogonal frequency division multiplexing, OFDM. Each user may be 
allowed to use QAIVI signaling. The interesting extension of the technique using the DFT is to use a 
synchronous extension. This means that the in-channel pulse response is held at its maximum for a fraction 
of a symbol time. The interchannel interference is held to be zero over the same fraction of time. The 
efficiency is decreased by the fraction of time that the response is held. 



a: typical chcinnel response time 

b: typical interchannel response time 

time 
c: OFDM inchannel response 

dotted: no synchronous extension 
solid: synchronous extension 

/\ •  
• 

d:OFDM interchannel response time 

Figure 2. OFDM with synchronous extension has a guard time which decreases the signalling rate but 
allows a wide tolerance to timing errors, both inchannel and interchannel. But the time frequencies 

' must  still be accurate. Figure a illustrates inchannel responsesfor general systems of the type we 
consider, and figure b the interchannel resPonse. Note that there is little room for timing error. 
Figure c, on the other hand, has a nài'ikrw . pulse with a flat top, and Figure d .illustrates that there is a 
significant amount of time in which the iriterchannel interference is small. , 

. • 
01-ellM is therefore useful for quasi-gylionetis communication, in which users transmit synchronously 
with an error tolerance equal to half the hbid time. 

c. Orthogonal Multiplexed S-QAM or VSB systems. 

The systems of this type have a long history[7-. They are mainly intended for applications in which a given 
channel is covered with a set of evenly spaced carriers. The modulation on each carrier is synchronous, but 
the number of levels, carrier level, etc. may be varied to cope with channels responses that are not flat with 
frequency,' or for which the noise is not flat. These systems are the subject of our study. 

CDMA 

There has been a great flurry of activity for CDMA for mobile radio systems, because such systems are 
quite efficient for cellular radio systems. CDMA channel responses, including the matched filters in the 
receivers, have responses rather different from those of narrowband systems shown above. 



• 

Ii 

• time 
CDMA inchannel response 

CDMA interchannel response 

Figure CDMA systems use a set of transmit and receive matched filters, just like the two cases previously 
considered. But the filters are derived from pseudo-noise sequences, and produce a sharp localized pulse 
response in time, but which has small, but not negligible, noise-like responses, at other times. 

Conventional CDMA systems operate on a per-channel basis, and treat the interference from other users as 
noise. The research in Multi-user CDMA systems has been to desigrf a receiver that makes use of 
information about other user's received data in deciding about the data of a particular user. There are three 
review papers [14-17]. The background theory appears in several papers[18-24]. 

. • 

Applications have been made of these ideas to'wavelet packet bases systems at MIT [25-30] in which non-
orthogonal waveforrns are used. 

Because of the great commercial interest in CDMA, many additional studies have,  appeared, many of which 
have to do with realizing receivers thealeroximate the ideal multi-user receiver, which, even with a Viterbi 
receiver, is usually judged too complex to.build. The theory has been extended to sub-optimal receivers[]. 
Among these are linear minimum mean square receivers[]. Adaptive Systems have'been studied [1. 
Engineering efficiency has been studied. Applications have been made to other systems like 0-FDM, and 
trellis coded modulation. Finally, improvements in delay tracking have been made. 
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ABSTRACT 

This report is associated with milestone 3 of the contract.. It is a more-or-less completely revised version 
issued in preliminary form in December 1996. It examines the basic waveforms in VSB filterbanks 
previously derived, and the 'elementary' analysis of:adjaçént channel interference, without using any multi-
user detection properties. Thus, the purpose of the report is to clarify the problem. 

The methodology has been to examine the pulse waveforms,  compare  with Saltzberg's analysis, and an 
error rate analysis of a simple signed-bit receiver using a characteristic function approximation to the error 
rate. 

The conclusions are as follows: 

1.When adjac'ent channels are not aligned in phase, there is a serious degradation in performance. With the 
adjacent channels at the same signal level as the channel under study, the worst combination of data 
symbols on one adjacent channel alone will close the eye opening. 

2. The sensitivity to timing phase is large, but the use of the quadrature channel should permit phasing, and 
manipulation of the real signal should allow timing to be extracted. 

3. Modified duobinary coding of waveforms does not reduce adjacent . channel interference significantly. 
However, if the bandwidth of the overlap region is reduced signiffcantly, modified duobinary coding offers 
a significant reduction in sensitivity to.adjacent channel interference. 

• 

4. It is likely preferable that adjacent channei crosstalk that is symmetrical is advisable, which implies that 
linear phase, or almost linear phase, transmit and receive filters be used. 

INTRODUCTION 

The focus of this study is the filterbank-based communication system recently documented by Sablatash, 
McGee and Lodge[6]. It is a 32-channel bank, in which two stages of two-band filtering is followed by an 
8-band polyphase filterbank. Ilhe purpose of this note is to record calculations on basic filterbanks[5], to 
give some idea of the elementary signal processing that is involved. After reviewing Saltzberg's analysis, 
we give the pulse responses of our system, and deduce sensitivity measures. Finally, we present results on 
systems using modified duobinary coding. An appendix presents our reasons for prefening mean-squared 
error (L 2  norm) rather than sum of absolute values (L 1  norm) used by Saltzberg. 

SALTZBERG'S ANALYSIS 

Filterbanks using vestigial single sideband with orthogonal multiplexing were introduced by R. W. 
Chang[1] in 1966, and were analyzed in detail by B. R Saltzberg[2] in 1967. These are the same filterbanks, 
in essence, that we are considering for use; Saltzberg used offset QAM which is equivalent to the Vestigial 
Sideband modulation that we are studying.. The filters are normalized so that the response is always equal 
to one if the channel is sampled at the pulse peak. 



Saltzberg did not use error rate as a criterion for his analysis, since in those days it was thought to be too 
difficult to analyze or to simulate. Instead, he used eye closure as the error criterion. The eye closure 
criterion considers the effect of the worst possible transmitted data sequence, and ranks one system as better 
than another if the sensitivity to the worst data sequence is less. Saltzberg was particularly interested in the 
voiceband modem channel, subject as it is to delay and gain slopes. 

Saltzberg considered two ideal filters, a 100-percent and a 50-percent raised cosine channel. In these terms, 
our filters correspond to 100-percent raised cosine filters since the pulse spectrum becomes insignificant at 
the next carrier frequency. Finally, Saltzberg analyzed the staggered QAM system, which we know is 
equivalent to the VSB systems that we are studying. 

Six types of distortion were analyzed, and these are presented in the following table. 

D1 intersymbol interference from the in-phase channel 
D2 intersymbol interference from the quadrature channet: 
D3 crosstalk from the in-phase part of the upper adjacent interference 
D4 crosstalk from the quadrature part of the upper adjacent channel. 
D5 crosstalk from the in-phase part of the lower-adjacent channel 
D6 crosstalk from the quadrature.lower adjacent channel. 

In the VSB context, these may be considered as follows 

D1 intersymbol interference from even numbered time slots 
D2 intersymbol interference from odd-numbered time slots 
D3 crosstalk from pulses in even numbered time slots in the upper adjacent channel 
D4 crosstalk from pulses in odd-numbered time slots in the upper adjacent channel 
D5 crosstalk from pulses in even numbered time slots in the lower adjacent channel 
D6 crosstalk from pulses in odd-numbered time slots in the lower açljacent channel. 

Saltzberg uses as a distortion measure either Dl+D2, which he calls the single channel distortion, or 
..D1+D2+D3+D4+D5+D6, the total distortion. When a 100 percent root raised cosine filter is used rather 
than a 50 percent root raised cosine filter , he found that the effect‘o' f carrier phase offset was less with the 
100-percent raised cosine filter due to thq slower decay of the waveform, but that the total distortion was 
about the same, because it is swamped ey the adjacent channel distortion. 

.;, 
When broadband distortions that bedome more severe as the bandwidth is increased, such a linear delay 
distortion (i.e. parabolic phase), Saltzbeirdetermined that the 50-perdent raised cosine pulses were less 
sensitive because the bandwidth was smaller, and the pulse spectrum was not a subject to the distortion that 
the broader band 100-percent raised cosine pulses were subjected to. 

We do not repeat Saltzberg's analysis, but we do present a comparable analysis. 

ANALYSIS 

Figure 1 gives the real pulse response of the first channel[5], end to end. Note that there is no intersymbol 
interference at timing instants of 16 samples apart, and that there is the typical ringing effect present in 
narrow band filters. The response is symmettical. This figure is also the average channel response 
conditioned on a +1 being transmitted. Although the response of all the channels is different, the samples 
channel responses are identical. 

Figure 2 presents the pulse/response of the imaginary part of the channel response, which indicates 
sensitivity to in-channel misadjustment in phase. This is the Hilbert transform of the real part of Figure 1, 
and the sharp zero crossini at the sampling point is useful for timing recovery and phase recovery. As the 
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theory predicts, the interference is zero at even sample points, and is a maximum at odd sampling points. 
As well, the maximum interference has a magnitude about 0.68. 

Figure 3 presents that absolute value of the pulse response of this channel; it shows the characteristics of an 
32-band Nyquist filter, i.e., zeros every 32 samples. 

Saltzberg presents in his Figure 3 the peak distortion as a function of channel timing misadjustment. At the 
decision point, the eye width is very narrow, about 24 percent Also, the signal peak is about 3.2 times the 
pulse peak. 

The pulse response from the channel that is adjacent, i.e. channel 32, is presented in Figure 4. [Other 
responses to other channels are similar, but this response is purely imaginary, and easier to comprehend.] 
As designed, the real part (Figure 4) is almost identically zero. 

But the imaginary part[Figure 5] is not zero. The response is characterized by a ramp down and up. The rate 
of change will depend on the bandwidth of the transitibn.band betWeen the two filters. But the area is fixed 
by the design of the filters, since, with the normalization noted, the area under this curve must be about 16. 
Since an interfering data stream occurs every 16 samples, this means that the peak interference from that 
adjacent channel, given the worst data sequence, is unity. This means, approximately, that, given a sequence 
of 150/16=9 sample pulses there is a probability that, if the phasing between the adjacent channels is at its 
worst, that the 'eye opening' will be completely closed, which means that, due to this one interferer alone, 
the error rate will be worse that the probability of this sequence occurring times 0.5. 

If there are two interfering channels, the peak interference will be twice as large. 

MODIFIED DUOBINARY FILTERING 

When there are phase misadjustments in the adjacent channels, the triangular-shaped pulse response of the 
crosstalk indicated is not very useful; it is better to have a response which is flat, not triangular. This may be 
accomplished by passing the triangle signal through a digital differentiator. The useful filter would be the 
transfer function corresponding to modified duobinary filtering[3], 

= 0.5- 0.5z -32 . 

.•.: 

which has 32 zeros equally spaced around the unit circle, at the crossover freqiiency of the adjacent 
channels. Since the slope of the crosàtaIWfuiiCiion is approximately . 0.25/50, or 0.005 per sample, the 
difference indicated will result in a pulse of 32*0.005/2, or about 0.08 with the bandwidth indicated. This is 
shown in Figure 9. 

This means that the duobinary filtering has reduced the peak crosstalk from an adjacent channel under phase 
misalignment by more than 2Orlog(0.25/0.08)dB, about 10. 

The main channel is, of course, also affected by the duobinary coding. and instead of the single peak of 
Figure 1, we have a doublet of Figure 7. The ripples of the response have been reduced in level, since the 
sidelobes have been added so that they tend to cancel. The imaginary part, Figure 8, is now symmetrical. 

When a binary signal is applied to a duobinary channel, a three-level signal results, and the magnitudes are 
+1, 0, and -1. Unfortunately, this means that the sensitivity has been reduced by 6 dB, since the distance to 
the decision threshold is reduced from 1 to 0.5. The sensitivity to other fluctuations has been similarly 
reduced. However, the noise is reduced by 3 dB [M(z) is always less than unity]. 

Let us consider the effect of adjacent channel bandwidth. As we have argued, the peak interference is 
proportional to the area under Figure 5, and is fixed at unity. On the other hand, the peak of Figure 5 is 
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proportional to the adjacent channel bandwidth; the narrower the band, the smaller and wider the adjacent 
channel interference. 

With duobinary coding, the peak interference with the worst data sequence is the area under the absolute 
value of Figure 9. This is just twice the area under each lobe, but this area is simply the peak of the pulse of 
Figure 5, that is, 2x0.25 or 0.5. But since the distance to the threshold in duobinary is reduced from 1 to 0.5 
this means that the adjacent channel will also completely close the eye under duobinary coding with these 
bandwidths. This would indicate that duobinary coding would be advantageous only is the bandwidth is 
reduced from 100 percent used, to 25 or 10 percent, thereby resulting in an increase in the filter lengths. 

Since the duobinary coding introduces correlation in the decoded signal, it is possible to demonstrate[4] that 
a Viterbi sequence detector will recover 3 dB in performance, thereby providing the same performance, in 
noise, as binary signaling. However, the use of a modified duobinary filter in the receiver has introduced 
correlation in the noise samples, and the design of theViterbi receiver will be complicated by this. 

ERROR RATE ANALYSIS: NO CÔNVOLÛTIONAL CODING 

Although much can be seen from an examination of pulse response, calculations have also been made of 
error rates for our system.scenarios. Here we study the impact of allowing the adjacent channels to be at 
their worst phase offsets. Instead.of system simulation we have approximated the error rate using a steepest 
descent approximation, which at this stage of the investigation is warranted. 

The error rate calculations are sununarized in one plot, Figure 10. This shows the error rate as a function is 
signal to noise ratio for four systems. The first, labeled base, is for a single channel in which that adjacent 
channels are phased properly. 

The line labeled 'equal level' shows the effect of adjacent channel interference from both adjacent channels 
at the same level as the receiver; the graph indicated an asymptotic error rate floor of about 4x10-2 . 

The.line labeled 'base duobinary' shows the typical 3-dB degradation of a duobinary system in which the 
adjacent channels are properly phased. 

The final result is labeled 'cluobinary equal level' and shows that the error rate is even poorer than the base 
system for signal to noise ratios of interest. This decrease is due almost entirely to the effect that the '0' 
level with three level coding has two adjacent thresholds, whereas the '1' of binary, and duobinary coding 
have only one adjacent threshold; as indicated previously, both the base and the duobinary system have eyes 
that are closed by one adjacent carrier gthe, same level but with the worst phase offset. . 

CONCLUSION 

The pulse responses have been examined. The inchannel response demonstrates the Nyquist property of no 
intersymbol interference. The §ensitivity to mistiming appears to be large, as Saltzberg showed. The 
quadrature response is the Hilbert transform of the channel pulse, and may be used for phasing. The real 
crosstalk is zero, as expected, but the quadrature crosstalk signal is fixed in area, so the peak interference is 
always large; this suggests sensitivity to phase misalignments in the adjacent channel. On the other hand, the 
width is so large that timing misalignments between channels do not appear to be important. This sensitivity 
to phasing misadjustments is also shown when the error rate is determined. 

The use of modified duobinary coding does not reduce the sensitivity to the adjacent when 100-percent 
raised cosine filters are used. 

The next phase of the work examines multi-user correlative receivers and the impact of spectral coding.. 

FIGURES 
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1. The real part of the response in channel to a transmitted pulse in channel 1. Since this is a VSB Nyquist 
filter response, the zero crossings occur every 16 samples as required. These responses are really sequences, 
which have been plotted with straight lines joining the sequence values. 

2. The imaginary part of the response in channel 1 to a transmitted pulse in channel 1. This is the Hilbert 
transform of Figure 1. The sharp transition is useful for time and phase adjustment. 

3. The absolute value of the response in channel 1 to a transmitted pulse in channel 1. The zero crossings 
occur every 32 samples, since this filter is an 32-band QAM filter. 

4. The real part of the crosstalk response in channel 1 to a pulse in channel 8. This is essentially zero, as 
predicted[ note the multiplier J. 

5. The imaginary part of the crosstalk from channel 32•into a receiver for channel 1. The narrower the 
transition bandwidth of these filters, the wider and less high these crosstalk responses. But the area is fixed. 
The other significant feature of the curve is the shift.no pulse of Figure 1 is centered at sequence 244, 
whereas the crosstalk is centered at about sample 275. This is because the transmit and receive filters are 
both minimum phase. If we consider crosstalk through two maximum phase networlcs, the pulse shape is 
advanced. 

6. Real part of the pulse response for channel 1 transmitter and channel 1 receiver when the duobinary filter 
is inserted. In comparison to Figure 1, there are two lobes. But also, the *ripples are somewhat smaller; this 
effect is more pronounced for smaller bandwidths. 

7. Imaginary part of the pulse response for channel 1 transmitter and channel 1 receiver when the modified 
duobinary filter is inserted. In çomparison to Figure 2, there are three lobes, and the response is 
symmetrical. 

8. The real part of the crosstalk with duobinary coding. The real  pari of the crosstalk is essentially zero. 

9. The imaginary part of the crosstalk when a modified duobinary filter is inserted into the signal stream. 
-Although the response has been reduced from the peak of Figure 5, from 0.25 to 0.08, the absolute value of 
the area is about 0.5, thereby making the worst sequence in the adjacent channel capable of closing the eye 
opening. 

• 10. Probability of error vs. SNR. Four cases are presented 
-base- the standard Plot of binary signalipg through matched filters,. , 
-equal level-binary signaling, adjacent ClInnels at equal level, worth phasing. 
-base duobinary- typical Per/SNR duobinary plot. 
-duobinary equal level- the same as equal level, but with duobinary coding. With these system bandwidths, 
there is no advantage to duobinary coding. 
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APPENDIX 1 Basis for elementary calculations of crosstalk. 

Since the crosstalk from' channel 32 to channel 1 is purely imaginary and appears, from the plots, to be 
essentially triangular and of one sign, the worst interference comes from a stream of +1s, and is effectively 
then 1/16 the sum of the coefficients. If the crosstalk transfer function is 

C(Z) =IC kZ
-k 

then 1/16 the sum of the coefficients is C(1), i.e., C evaluated at zero frequency,.which we have argued has 
magnitude M/2, where M is the number of channels. In our case, M=32, so the peak interference is 1. This 
is a general result since, for general M, the sampling rate is 21M, and so this sum is always unity. This 
means that one adjacent channel will close the eye, if there is 90-percent phase misadjustment. 

To evaluate the interference as noise we have to determine 

2 

and this is 

2rz 

—
2 I C(ei")1 2  do) I 

 M d 
and this integral is approximately given' jty the formula (21M) (height)(half-width) of C(c)). But the height is 
(M12)2, so the sum of squares is approximately (M12)(half-width). Thus, reducinithe transition bandwidths 
of the filters will reduced the mean square interference from adjacent channels, but Will not affect the peak 
interference. ' 

• Appendix 2 

PLACEMENT OF DUOMNARY FILTER 

One of the issues in duobinary filtering is where to place the filter. The are two possibilities, before or after 
the noise source. The two possibilities do not affect the signal, or the interference, but will affect the noise. 
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Tx Receiver 

Receiver Tx M(z) 

M(z) Receiver 

a: Basic Nyquist system noise 

Duobinary filter before noise source 
noise 

c: Duobinary filter after nole.$ouree ,  ' 
noise  

Tx 

In placement b, the received carrier power is reduced by 1/2 because of the filter compared to a, the base 
system, and therefore for the same carrier power, we may increase the transmit level in b by 3 dB, 
producing a received signal 3 dB larger. Of course, this is overcome by the 6 dB penalty in SNR because of 
3-level reception. 

In placement c, the carrier power is the same, but the noise power at the decision is reduced 3 dB by the 
filter. Therefore the noise performance is the same is b with its carrier power increased by 3 dB. The 
disadvantage of c is that the noise is correlated from bit-to-bit whereas in a: and b:, this is not the case. 

•If peak transmitted power is the relevant parameter, as it would be.if the output stage is to be driven as hard 
as possible, then duobinary coding is not as attractive, since it does not send any energy half the time, and 
increasing the transmitted power by 3 de mày not be feasible. 

Finally it should be mentioned that  transmit duobinary filtering may be done digitally; there is no need for 
an actual filter. ' 

7 



APPENDICES 

The MATLAB program m-files used in the calculations are appended. The filter coefficients are from 
report [61.. 

1 

1 
%MAKEPLOT.M 

(Imalceplots 
% makes the plots for report 3a 
%call mkfilt first • 
b=sample(imag(conv(transmit(32,:),receive(1,:))),16,0); 
a=[1 b b]; 
d=0.2:0.2:3.0; 
ploterr 
gtext('equal level'); 
hold on 
title('Error rates with adjacent channels equal level, 90 deg,rees phase error'); 
a=[1] 
d=2:2:20; • 
ploterr; 
gtext('base'); 
w=[0.5 0 -0.5]; 
c=conv(w,b); 
a=[0.5 c c]; 
d=[]; 
plotduo 
gtext('Duobinary:equal level'); 

gtext('base duobinary'); 

plotduo 
hold off 

8 



%ERR_RATE.M 
function [pe,sigma]=err_rate(a,d) 
% ISI, calculates error rate 
% a(1) contains the peak, the rest is ISI 
% d is a parameter usually between 2 and 30 
s=a(1); 
elnot=-d*a(1); 
eldouble=0; 
for ir----2:length(a) 

s=s-a(i)*tanh(d*a(i)); 
c=abs(d*a(i)); 
temp=a(i)/cosh(c); 
elnot=elnot+c-log(2)+log(1+exp(-2*c)); 
eldouble=eldouble+temp*temp; 

end 
if s>0 
s=sqrt(s/d); 
elnot=elnot+(d*d*s*s/2); 

• eldouble=eldouble+s*s; 
pe=0.5*erfcx(d*sqrt(eldouble)/sqrt(2))*exp(elnot); 
sigma=sqrt(2)*s; 
else 
pe=0.5; 
sigma=100000; 

end 
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qoPLOTCHAN.M 
z=-conv(transmit(1,:),receive(1,:)); 
plot(real(z)); 
grid 
title('Channel 1 response: Real part'); 
xlabel('Sample every 16 samples'); 
pause 
print 
plot(imag(z)); 
grid 
title('Channel 1 response: Imaginary part'); 
xlabel('Sample every  1 samples'); 
pause 
print 
plot(abs(z)); 
grid 
title('Channel 1 response: absolute value'); 
xlabel('Sample every 16 samples'); 
pause 
print 
y=conv(transmit(32,:), receive(1,:)); 
plot(real(y)); 
grid 
xlabel('Sample every 16 samples'); 
title('Crosstalk 32->1  Real part'); 
pause 
print 
plot(imag(y)); 
grid 
xlabel('Sample every 16 samples'); 
title('Crosstalk 32->1 Imaginary part'); 
pause 
print 
w=[0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 090 0 0 0 0 0 0 0 0 0 0 0 0-0.5]; 
zd=conv(z,w); 
plot(real(zd)); . • 
arid " • , 
title('Channel 1 duobinary respbnse: Rearpart'); 
xlabel('Sample every 16 samples'); 
pause 
print 
plot(imag(zd)); 
grid 
title('Channel 1 duobinary response: Imaginary part'); 
xlabel('Sample every 16 samples'); 
pause 
print 
yd=conv(y,w); 
plot(real(yd)); 
grid 
title('Duobinary Crosstalk 32->1 Real part'); 
xlabel('Sample every 16 samples'); 
pause 
print 
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plot(imag(yd)); 
grid 
title('Duobinary Crosstalk 32->1 Imaginary part'); 
xlabel('Sample every 16 samples'); 
pause 
print 

,;.e • • 
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%FILIERT.M 
function[transmit,receive]=filtert(a,k,M) 
j=sqrt(-1); 
b=conj(fliplr(a)); 
for i=1:length(a) 

transmit(i)=expa *(pi/2)* (k+0.5)*(1-2*(1ength(a)-1)/M))*a(i)*expa*(pi/M)*(i-1)*(2*k+1)); 
end 
for i=1:length(a) 

receive(i)=-exp(-j * (pi/2) *(k+0.5)*(1+2*(length(a)-1)/M))*b(i)*exp(j*(pi/M)*(i-1)*(2*k+1)); 
end 

r 
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%M1CFILT.M 
clear all; 
% makefilters: makes a set of transmitter and receive filters 
load f88_8 
f88_8=f88_8'; 
lawton=f88_8; 
sum=0; 
for i=1:length(lawton) 

sum=sum+lawton(i)*conj(lawton(i)); 
end 
sum=sqrt(sum); 
lawton=lawton/sum; 
for I=1:2:8 
[transmit(i,:),receive(i,:)]=filtert(lawton,i-1,8); 
end ' ,,; • 
for i=2:2:8 
[transmit(i,:),receive(i,:)]=filtert(fliplr(lawton),i-1,8); 
end 
load mv4 
load mv8 
% the high pass filters 
hmv4=mv4; 
hmv8=mv8; 
for i=1:2:length(hmv4) 

lunv4(i)=-hmv4(i); 
end; 
for i=1:2:length(hmv8) 

hmv8(i)=-hmv8(i); ,) 
end; 
% hmv4 and Innv8 are the high pass versions 

sm4=zeros(1,1:(1+8*(length(mv4)-1))); .- m8=zeros(1,1:(1+4*(1ength(mv8)-1))); 
hm4=m4; 
hm8=m8; 
for i=1:length(mv4) 
hm4(1+8*(i-1))=hinV4(i); 
m4(1+8*(i-1))=-mv4(i); 
end 
for i=1:length(mv8) 
hm8(1+4*(i-1))=hmv8(i); 
m8(1+4*(i-1))=mv8(i); 
end 
% construct the transmit and receive filters for the leaves of the tree 
tr=[]; 
re=[]; 
tr=[ conv(m4,m8)]; 
re=[conv(fliplr(m4),fliplr(m8))]; 

tr=[tr;conv(fliplr(hm4),m8)]; 
re=fte;conv(hm4,fliplr(m8))); 

tr=[tr;conv(fliplr(hm4),fliplr(hm8))]; 
re=[re;conv(hm4,hm8)]; 

13 



tr=[tr;conv(m4,f1iplr(hm8))]; 
re=[re;conv(fliplr(m4),hm8)]; 

% now make the thirty-two filters 
t=[]; 
1=0; 
for i=1:2:8 
for j=1:4 
t=[t;conv(transmit(i,:),tr(j,:))]; 
r=[r;conv(receive(i,:),re(j,:))]; 

end 
for j=1:4 

t=[t;conv(transmit(i+1,:),tr(5-j,:))]; 
r=[r;conv(receive(i+1,:),re(5-j,:))]; 

end 
end 
transmit=[]; 
receive=[]; 
tr=[]; 
re=[]; 
% scale 
transmit=2*t; 
receive=2*r; 
t=[]; 
r=0; 
i=sqrt(-1); 
j=sqrt(-1); 

r 

1 

• 
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goPLOTERR.M 
if d==[] 
d=2:2:30; 
end 
pe=zeros(1,1ength(d)); 
sigma=zeros(1,1ength(d)); 
for k=1:length(d) 
[pe(k) sigma(k)]=err_rate(a,d(k)); 
end 
sigma=-8.68*1og(sigma); 
for i=2:length(sigma) 

if sigma(0<sigma(i-15 
sigma(i)=sigma(i-1); 
pe(i)=pe(i-1); 

end 
end 
semilogy(sigma,pe); 
xlabel('SNR [dB]'); 
ylabel('Pe'); 
grid; 
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%PLOTDUO.M 
% normally a(1) will be about 0.5 
if d==[] 
d=2:2:30; 
end 
pe=zeros(1,1ength(d)); 
sigma=zeros(1,1ength(d)); 
for k=1:length(d) 
[pe(k) sigma(k)1=err_rate(a,d(k)); 
end 
sigma=-8.68*log(sigma)-3.0; 
for i=2:length(sigma) 

if sigma(i)<sigma(i-1) 
sigma(i)=sigma(i.-1); 
Pe(i)=Pe(i -1 ); 

end 
end 
semilogy(sigma,1.5*pe); 
xlabel('SNR [dB]'); 
ylabel('Pe'); 
grid; 
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN 
MOBILE SATELLITE AND MOBILE ENVIRONMENTS: 

3c. EFFECT OF LINEAR PHASE PROTOTYPES ON FILTERBANK CROSSTALK 

W F McGee 

Contract: U6800-6-1604 

14 March 1997 

The calculations of the report [1] have been extended to include a linear phase filter. The particular design 
used is the MPEG 64-channel linear phase baseband filter, the coefficients of which were supplied by 
Seymour Shlien. [Although not inunediately apparent, 'these coefficients are 17-bit integers.] After 
decimating the coefficient array, the same calculations as documented in the previous report have been 
made. 

The frequency respOnse of the filters is shown in Figure 1; the stopband loss is more than adequate for this 
application. The crosstalk between channels is shown in Figure 2. The shapes are now symmetrical 
compared to the earlier report, and somewhat broader, and thus, not as high. 

The pulse response with a mean-squared error equalizer is shown in Figure 3. The zero crossings have been 
kept, more or less, and the interchannel crosstalk has the downward blip which was evidenced in the earlier 
study. The frequency response of this filter is contrasted to the response of a matched filter in Figure 4. 

Decision feedback, as exliected, retards the pulse response, Figure 5, while maintaining the zero crossings 
and decreasing the adjacerit channel crosstalk before the main sample. The frequency response for this 
decision feedback equalizer is shown in Figure 6. 

The coefficients of the filter are included.; there are 256 coefficients, with mirror symmetry. 

The performance of the various equalizers has_been characterized -às in -the previous report, in a table. 

TABLE 1 Mean squared error for Ve3'c(immunication system with adjacent channels at equal level, 
90-degrees phase shifted, with various eqUalizers. There is no channel coding': 

System ' .. itélàti'Ve Level Relative Phase of Mean Squared 
of adjacent adjacent Error 

channels channels » (Unbiased) 
(dB) (degrees)  

Baseline 0 0 0.2 (7 dB)  
I Matched Filter alone 0 90 0.436 (3.6 dB)  

Minimum Mean Squared Error 0 90 0.295 (5.3 dB) 
Equalizer  
Single Decision Feedback 0 90 0.267 (5.7 dB) 
(Main channel only)  
Vector Decision Feedback 0 90 0.238 (6.2 dB) 
(Main-I-Adjacent Channels) 

CONCLUSION 

This linear phase filter improves performance. 

1 



Figures 

1. Frequency response of the transmit ands receive filters for 32-channel communication system using filters 
MP32. 

2. The absolute value of the sample crosstalk between all channels. There is no observable crosstalk 
between non-adjacent channels; adjacent channel crosstalk is smaller and symmetrical. 

3. Response of the main channel and adjacent channel crosstalk when a minimum mean squared error 
receiver is implemented. The signal to noise ratio is 7 dB. The adjacent channel crosstalk is reduced. 

4. Frequency response of the minimum mean squared error equalizer. 

5. Pulse response and adjacent channel responses with a ,decision feedback equalizer. These equalizers 
assume that the in-channel response after the center nià.y be eliminated by decision feedback. The adjacent 
channel crosstalk is also deduced a bit. 

• 
6. The equalizer frequency response corresponding to the pulse responses of Fig. 5. • 
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:oefficents for filter MP32 

11 6974344700016660e-006 
6974344700016660e-006 

-2.6974344700016660e-006 

I
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948689400033320e-006 3948689400033320e-006 
' 3948689400033320e-006 

.0921266333833290e-006 
-1.0789561103385000e-005 

-1!.3486995573386660e-005 .6184430043388330e-005 
.8881864513390000e-005 

-2.4276556676771660e-005 

II .9671425616774990e-005 .7763552250158320e-005 
-4.5855678883541650e-005 
-5.6645416763548320e-005 

11 .0132412336934980e-005 
.3619231133699980e-005 

-1.0250109564709000e-004 

If .2138296016048000e-004 
.4296208236725000e-004 
.6993607351402330e-004 

-1.9690971110755320e-004 

11/ 
9 .2927927830081660e-004 
.6164707772786320e-004 
.9941186741437320e-004 

-3.3717488933466660e-004 

113.7493791125495990e-004 4.1539854442187660e-004 
4.5585917758879310e-004 
-4.9362396727530310e-004 

11 5.2868937794897320e-004 5.6105894514223640e-004 
-5.8803328984225310e-004 
-6.0691480080239970e-004 

11 6.1500586677605310e-004 6.1230825552942970e-004 
-5.9612435581590650e-004 
-5.6105894514223640e-004 

1[ 5.0980786698882660e-004 4.3967527787526980e-004 
-3.4257011182791320e-004 
-2.2388405580756990e-004 

11-7.8224538970318300e-005 9.7106226707086640e-005 
2.9941186741437320e-004 
5.3138698919559650e-004 

11  7.9303406692345970e-004 1.0816554893513400e-003 
1.3999488677258600e-003 

I 1.7398213683071500e-003 
2.1012729910952090e-003 
2.4789032102981420e-003 
2.8700391633963590e-003 

11  3.2638444434817320e-003 3.6576674012292730e-003 
4.0407069850551860e-003 
4.4075538303364920e-003 

II 4.7447198808400760e-003 
5.0441264449557990e-003 
5.2922854664505450e-003 
5.4811182537141780e-003 

II 5.5971013951892480e-003 
5.6294691946162950e-003 
5.5647335957622010e-003 
5.3947982293546650e-003 

II 5.1061750391605680e-003 
4.6907676559076080e-003 
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4. .1404973879856480e-003 
3.4526595530831990e-003 

II 2.6164707772786320e-003 
1.6319257572733000e-003 
4.9901918976854980e-004 
-7.7685016720993640e-004 

113.7 439874255887850e-003 
2.1956893847270260e-003 

-5.4109732902371050e-003 

11
7.1831766001010340e-003 
9.0389775743508200e-003 
-1.0959531825116870e-002 
-1.2915140879959280e-002 

II-1.4881533308723320e-002 -1.6823671984994790e-002 
-1.8706502104697310e-002 
-2.0492122760145690e-002 

II-2.2142862853262910e-002 -2.3615765664984100e-002 
-2.4867344146379460e-002 
-2.5854464801762480e-002 

II-2.6536999338014940e-002 -2.6863328981610400e-002 
-2.6798628738080640e-002' 
-2.6299588335117490e-002 

II-2.5325902702981100e-002 -2.3845044943284920e-002 
-2.1827316583589070e-002 
-1.9243195928075320e-002 II-1.6073785555887570e-002 -1.2302822017832550e-002 
-7.9168526130014810e-003 
-2.9185820237058460e-003 II 2.6920074277165190e-003 
8.9014100073703300e-003 
1.5693450654373150e-002 

I 2.3035761569297920e-002 
3.0898608924380440e-002 
3.9241758350529500e-002 
4.8010939454893660e-002 

II 5.7155063763811420e-002 
6.6609607820374700e-002 
7.6306689401863750e-002 
8.6173830093395490e-002 . 

II 9.6135192724275220e-002 
1.0610486385637330e-001 
1.1600417789304820e-001 
1.2574456974684540e-001 

II 1.3523941887314860e-001 
1.4440245828058460e-001 
1.5315290105305220e-001 
1.6140677829525990e-001 

II 1.6908365664434980e-001 
1.7611300222827700e-001 
1.8242286696202370e-001 
1.8795243968773650e-001 II 1.9264762675918570e-001 
1.9646423402095490e-001 
1.9935983508384420e-001 

I 2.0130614568838700e-001 
2.0228372040620000e-001 
2.0228372040620000e-001 
2.0130614568838700e-001 

II 1.9935983508384420e-001 
1.9646423402095490e-001 
1.9264762675918570e-001 
1.8795243968773650e-001 

11 1.8242286696202370e-001 
1.7611300222827700e-001 
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1.6908365664434980e-001 

Il 6140677829525990e-001 5315290105305220e-001 
.4440245828058460e-001 

1.3523941887314860e-001 

li 2574456974684540e-001 1600417789304820e-001 
.0610486385637330e-001 

9.6135192724275220e-002 

!! 

.6173830093395490e-002 

.6306689401863750e-002 

.6609607820374700e-002 
5.7155063763811420e-002 

I. 8010939454893660e-002 
.9241758360529500e-002 

3.0898608924380440e-002 
9 .3035761569297920e-002 

II .5693450654373150e-002 .9014100073703300e-003 
2.6920074277165190e-003 

I(  .9185820237058460e-003 .9168526130014810e-003 
.2302822017832550e-002 

1 -1.6073785555887570e-002 
.9243195928075320e-002 
.1827316583589070e-002 

- .3845044943284920e-002 
-2,5325902702981100e-002 

11 .6299588335117490e-002 
.6798628738080640e-002 

-2.6863328981610400e-002 
-2.6536999338014940e-002 

112.5854464801762480e-002 2.4867344146379460e-002 
-2.3615765664984100e-002 
-2.2142862853262910e-002 

112.0492122760145690e-002 1.8706502104697310e-002 
-1.6823671984994790e-002 

1[
-1.4881533308723320e-002 
1.2915140879959280e-002 
1.0959531825116870e-002 

-9.0389775743508200e-003 
-7.1831766001010340e-003 

II-5.4109732902371050e-003 -3.7439874255887850e-003 
-2.1956893847270260e-003 

11
-7.7685016720993640e-004 
4.9901918976854980e-004 
1.6319257572733000e-003 
2.6164707772786320e-003 

I 3.4526595530831990e-003 
4.1404973879856480e-003 
4.6907676559076080e-003 
5.1061750391605680e-003 

II 5.3947982293546650e-003 
5.5647335957622010e-003 
5.6294691946162950e-003 
5.5971013951892480e-003 

11  5.4811182537141780e-003 5.2922854664505450e-003 
5.0441264449557990e-003 
4.7447198808400760e-003 

II 4.4075538303364920e-003 
4.0407069850551860e-003 
3.6576674012292730e-003 
3.2638444434817320e-003 II 2.8700391633963590e-003 
2.4789032102981420e-003 
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2.1012729910952090e-003 
1.7398213683071500e-003 

I 1.3999488677258600e-003 
1.0816554893513400e-003 
7.9303406692345970e-004 
5.3138698919559650e-004 

II 2.9941186741437320e-004 
9.7106226707086640e-005 

-7.8224538970318300e-005 
-2.2388405580756990e-004 

II-3.4257011182791320e-004 -4.3967527787526980e-004 
-5.0980786698882660e-004 
-5.6105894514223640e-004 II-5.9612435581590650e-004 -6.1230825552942970e-004 
-6.1500586677605310e-004 

11-6.0691480080239970e-004 -5.8803328984225310e-004 
-5.6105894514223640e-004 
-5.2868937794897320e-004 

II-4.9362396727530310e-004 -4.5585917758879310e-004 
-4.1539854442187660e-004 
-3.7493791125495990e-004 

II-3.3717488933466660e-004 -2.9941186741437320e-004 
-2.6164707772786320e-004 
-2.2927927830081660e-004 

II-1.9690971110755320e-004 -1.6993607351402330e-004 
-1.4296208236725000e-004 
-1.2138296016048000e-004 

11-1.0250109564709000e-004 -8.3619231133699980e-005 
-7.0132412336934980e-005 
-5.6645416763548320e-005 II-4.5855678883541650e-005 -3.7763552250158320e-005 
-2.9671425616774990e-005 

II-2.4276556676771660e-005 -1.8881864513390000e-005 
-1.6184430043388330e-005 
-1.3486995573386660e-005 

11-1.0789561103385000e-005 -8.0921266333833290e-006 
-5.3948689400033320e-006 
-5.3948689400033320e-006 

II-2.6974344700016660e-006 -2.6974344700016660e-006 
-2.6974344700016660e-006 

1 
1 
1 
1 
1 
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APPENDIX 3 

ERROR RATE APPROXIMATION 

We review the approximation of error rates for intersymbol and interchannel interference-limited signals in 
Gaussian noise. 

Given a signal x and (real) Gaussian noise n of variance a forming a signal s, the probability density 
function is the Fourier transform of the characteristic function (1)(co) 

- 
p(s). sme -ft,„ dco 

27r 

and the probability that  sis  less than 0 is 
; 

P(s)ds = 
o s  (co  da) -$4:13  x(C0)e-"

20.2 /2 
dco E(ei')C 212  

-jco 2ir  j , -jco 
dco 
27r 

Intersymbol interference is typically the sum of a large number of terms that are linearly independent and 
proportional to signaling symbols bk  that are, typically, +1 and -1, equally probable, and a central response 
aobo  for which ao  is positive and bo  is +1 and fixed. It malces no difference whether the interfering symbols 
are in the same or an adjacent channel. In this case that characteristic function is 

(D x  (co) = . 11 cos(coak ) 

and the problem of approximating the error rate is to approximate the integral 

dco e ja)a°  e-2,724'2 n  cos(coa k  )  
kx0 z"-2C0 

, 

The best method appears to be to useific..'nieihod of stationary phase by changing ,the line of integ,ration 
from along the real co axis to a line parallel t"c) the real axis but displaced by a digaiiFe d, i.e., replace co by 
co+jd, and to choose d to make the logarithm of the- product of the terms not inclueling 1/o) stationary, i.e., 
have a vanishing first derivative, along trgrèal d axis. Then replace'th'e logarithm with only the constant 
and second power in d, and perform the n6w-trivial integration. 

Thus define 

LUIcoj= jcoa0  + (ic0) 2 0-2  / 2 + Eln(cosh( jcoak  )) 

L(-d)= -da0 +d2 a2  I 2 + ln(cosh(da k  )) 

L(-d o )+(d -d0 ) 2 E0/2=L0 +(d-d0 ) 2 1; /2 
where do  is chosen to satisfy L'(-d 0)=0. 

Then the error rate is approximated by 

PE Q(d0.j-:0)ed 02412 e L, 
(* ) 

1 



For example, if there is no intersymbol interference, the optimum value of -do  is obtained by finding the 
stationary point of 

L= —da„, +d2 0-2  /2 

which is at d=a0/G2  with the second derivative equal to G2 . The approximation is then Q(ao/G) which is an 
exact result. 

For non-zero intersymbol interference, it is necessary to solve the equation 

O  = —ao  + do-2  + Eak  tanh(da k ) 

i. e. (**) 

do-2  = ao ak  tanh(dak ) 

and evaluate 

• L' + a2 
.(***)• 

cosh 2  (dak ) 

To solve ** explicitly for d, a common approach is to assume a value of d, calculate the right hand side 
RHS, and then update d to (d+RHS/G 2)/2. It is probably just as effective to use a Newton method, since the 
second derivative is needed at the next step. 

If solving the nonlinear equation ** appears daunting, another approach is simply to assume a variety of 
values of d, calculate a from the equation *, L" from (**). In this connection there are two asymptotic 
values of interest. 

When  d is very large, we may replace tanh(da) by sign(ak), thus ' 

1 ak  I 2 = ao  
d • 

• = 2 o 

= —d(ao . K ln(2)+ d2o-2  /2 

and the error rate approximaticin is 

a()  —±lak l 
1 PE k=1 ) 

o- 

which states that when the noise is very small, the error rate is determined by the one data sequence in 2m  
which makes the signal most sensitive to error. 

On the other hand, when d is small , the resultant equations are 

• '' ' 

2 



sigma=exp ( -k/ 8.68 ) ; 
cout « "\n" « errar,(a,.10,sigma) < • II « k; 

a 
E2 

E2 = 0.2 + 

L .: . 1, 2 

L0 =—da0 +d2 E 2  12 

PE  

This is ordinarily interpreted as Meaning that when the noise is large, the error may be determined by 
considering the noise tà be increased by the sum of squares of the interference, and this augrnented noise 
power be used to approximate the error rate. • 

The calculation has been'implemented in two C++ firpgrains, attached, one of which accepts the noise 
power as input as well as the intersymbol interference terms, and other accepts the parameter d. 

For bandpass systems the noise o2  is replaced by 202  s , since the noise power is .the sum of the I and Q 
noise, but only the I (or Q) noise influences the error rate in a synchronous system. 

II pel cpp -- given sigma, finds pe 
#include <iostream.h> 
#include <math.h> 
#include <conio.h> 
// given sigma, computes pe 
double error (double a[10],int k,double sigma); 
double pi=3.14159 - ; 
double q(double x); 

int main(void) 

clrscr; 
double a[10]=(1.0,0,0,0,0,0,0,0,0,0); 
double sigma; 
for (int k=0;k<20;k++) ' 

return 0; 

double error(double a[10],int k,double sigma) 
// d is fixed, returns error rate 

double elnot, eldoublè=0.0'; 
double d; 
double delta; 
double c,temp; 
int i; 
int counter=0; 
d=sigma*sigma; 
for (i=0;i<k;i++) d=d+a[i]*a[i]; 
d=1. 0/d; 
while ((fabs(delta/d)>0.00001)&&((counter)<30)) 

counter++;delta=1.0; 

3 



for (i=0;i<k;i++)delta=delta-a[i]*tanh(d*a[i]); 
delta=0.5*((delta/(sigma*sigma))-d); 
d=d+delta; 

1 
elnot=-d; 
for (i=0;i<k;i++) 

c=fabs(d*a[i]); 
if (c>500) temp=0; 
else temp=a[i]/cosh(c); 
elnot=elnot+c-log(2)+log(l+exp(-2*c)); 
eldouble=eldouble+temp*temp; 

elnot=(d*d*sigma*sigma/2)+elnot; 
eldouble=eldoilble+sigma*sigma; 
double pe=q(d*sqrt(eldouble))*exp((d*d*eldouble/2)+elnot); 
return pe; 

• • 

double q(double x) // error function 
// from Numerical Recipes in C page 176 

• 
double t,z,ans; • 
z=fabs(x/sqrt(2)); 

• t=1.0/(1.0+0.5*z); 
ans=0.5*t*exp(-z*z- 

1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+ 
t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+ 
t*(-0.82215223+t*0.17087277))))))))); 

return x>=0 ? ans : 1.0-ans; 

// pe2.cpp given values of d, calculates error rate given sigma, a[k] 
// assume main signal is unity 
#include <iostream.h> 
#include <math.h> 

-#include <conio.h> 
double error(double a[10],int k,double sigma); 
double q(double x); // ertbr 'function 
double pi=3.14159; 

• int main(void) ' 
, . • 

clrscr; 
double a[10)=(0,0,0,0,0,0:0,0,0,0); 
double d=0.1; ' 
for (int i=0;i<10;i++) 

error(a.,10,d)i 
d=2*d; 

return 0; 
1 
double error(double a[10],int k,double d) 
// d is fixed, returns error rate 

double elnot, eldouble=0.0; 
double sigma=1.0; 
double c,temp; 
elnot=-d; 
for (int i=0;i<k;i++) 

4 



sigma=sigma-a[i]*tanh(d*a[i]); 
c=fabs(d*a[i]); 
if (c>500) temp=0; 
else temp=a[i]/cosh(c); 
elnot=elnot+c-log(2)+log(l+exp(-2*c)); 
eldouble=eldouble+temp*temp; 

sigma=sqrt(sigma/d); 
elnot=(d*d*sigma*sigma/2)+elnot; 
eldouble=eldouble+sigma*sigma; 
double pe=q(d*sqrt(eldouble))*exp((d*d*eldouble/2)+elnot); 
cout « "\n" « d « " " « sigma « " snr = " « -8.68*log(siyma) « 

" Error rate = " « pe; 
return pe; 

double q(double x) // error funCtion 
// from Numerical Recipes in C page ,176 

double t,z,ans; 
z=fabs(x/sqrt(2)); 

• t=1.0/(1.0+0.5*z); 
ans=0.5*t*exp(-z*z- • 

1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+ 
t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+ 
t*(-0.82215223+t*0.17087277))))))))); 

return x>=0 ? ans : 1.0-ans; 

5 



PROGRAM BAUER: SPECTRAL FACTORIZATION OF MATRIX POLYNOMIALS 

W F McGee 

01/13/97 4:55 PM 

The purpose of this note is comment the program bauer.cpp. 

USAGE 

An input file INPUT.DTA 
• contains the following 

line 1-order of matrices Ai, i>=0 
line 2 number of matrices 
line 3 maximum number of iterations 
line 3 and so on elements of matrices by row and column i.e. 11,12,etc. 

An output file RESULTS.DTA will contain the following 
line 1-order of matrices Bi 
line 2 number of matrices 
line 3 etc. elements of the matricés Bi. 

DETALLS 

Kazanjian[1] has presented a FORTRAN program to factor matrix polynomials using Bauer's method. By 
this we mean factoring a matrix the elements of which are which are powers of z and 1 1 , into the product of 
a matrix whose polynomial elements are powers of z and one which is powers of 1 1 . 

In addition we demand that the original matrix, when z is replaced ly exp(jto), is positive definite. 

If A is the original matrix, it may be represented as 

A =•••A_k z k t:••.A.,z+A o  +A l z -  +.•.+A k z -k 
+' • • 

We impose the requirement that A_k=Ak H, where ll  indicates Hermitian transposition. The number of terms is 
necessarily finite (for computation), .and only,the positive elements.néed be considered. , 

The matrix spectral factorization means to•write A=B +(1 1 )11(z) where B.,(e -i111=13*-(ei'). Here 
=Bo +B2z-2 +...  

B  
-r -r " 

The Bauer factorization is iterative. Wit, the matrix Tm is formed. which an mxm Hermitian Toeplitz 
matrix with each elements a matrix, 

T. = 
The matrix Tm is factored by Cholesky decomposition into a product of two matrices Trn=LniLmli . the 
Hermitian conjugates of each other, which are respectively lower and upper diagonal. The elements B are 
found as the limit for large m of the last row of L. 

The Cholesky decomposition is more familiar as the method of completing squares. The first step is to 
derive an iterative method to determine Lm. 



•.i.e. 

We have 

L LH  = 
A in 

A 
A 0  

which may be written 

T,+1  = 
L111  

[ A  in H LI-1 I 
j(LH  L —1 A m m m I 

Iini) L(m) H  

where • 

l ( nz )en)H  = A —AL ni fiII-1L 0 m m 1 

The vector of matrices A i m  is 

( A m  
A m_ 1  
A 1 )  

and L(m) is the Cholesky decomposition of the matrix indicated. 

The calculation L,n-lA im is easily performed because L m  is lower triangular. Thus if we let B be the result, 
we have 

Ain = L mBr 

A,„,= L:01B 111  
A tn-1 L rn,21 B m +L m,22B m--1 

thus': 

B. = L 11 A  m 

B = ,22 m-1 (A —  L,,1 21 B m-1 m  

and calculations such as 

B— 1.4-1  A m.11 m 

may be easily done also by back-substitution since each diagonal element L m.11  is itself lower triangular. 

After a while we run out of coefficients for expanding the matrix Tm and have to start substituting zeros. In 
other words, Tm becomes banded. The resultant lower diagonal matrices then also become banded. 

2 



(1 z z -2  

( 1 \ • 

Z -1 2 • - 
= 

Z
2 

( 1 

Z
2 

H 

Examining the effect of introducing zeros for Am  indicates that, for example, only the elements of the lower 
triangular matrix L with indices larger than 2 are used. Since we are only interested in the limiting values of 
the elements so calculated, this means that the whole procedure may be accomplished with only m*(m+1)/2 
, matrices of L, where m is the highest positive order+1 in the matrix polynomial A(z), and for the next 
iteration the matrices are shifted up and back to make room for a new bottom row of L to be calculated. In 
the actual algorithm we actually start with the matrix all zero matrices, and gradually build up L from the 
lower right corner until it is full, and then iterate using the principles given here. 

Instead of an m by m array of matrices, Kazanjian uses a linear array of m(m+1)/2 matrices, and keep tracks 
of the differences in order to affect the required matrix multiplications. 

By considering the limiting behaviour of 

..) 
we can argue (and Kazanjian proyed) that the bottom row of the L matrix, in the limit, gives the matrices B 
required for the spectral factorization. 
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APPENDIX 
Program BAUER.CPP 

#include <fstream.h> 
#include <math.h> 
#include <stdio.h> 

// bauer factorization of positive definite matrices 

// reference Appendix 1 page 69, Kazanjian thesis 
int main() 

cout « "BAUER calculates matrix spectral factorization\n"; 
cout « "Usage: input file  is called 'input.dta'\n"; 
cout « "order'of matrices, number of matrices, number of iterations\n"; 
cout « "coefficients of matrices\n";, . 
cout « "Output is in file 'results.dtà.\n"; 

ifstream fin("input.dta"); 

int n,m,lc; 
fin » n; 

• fin » m; 
fin >> lc; 
int m2=(m*(m+1))/2; 
cout « n « " " « m « " " « m2 « 

double*** a=new double**[m]; 

for (int i=0;i<n;„i++) 

a[i]=new double*[n]; 
for (int j=0;j<n;j++)a[i][j]=new double[n]; 

1 
double***b=new double**[m2]; 
for ( i=0;i<n;i++) 

b[i]=new double*[n]; 
for (int j=0;j<n;j++) b[i][j]=hew.  double[n]; 

for (int'k=0;k<m;k++) 
for (int i=0;i<n;i++) 
for (int j=0;j<n;j++) 

, 

fin >> a[n-i-l][n-j-I][k]; 
cout « a[n-i- l][n-j-l][k] «."\n"; 

fin.close(); 

cout « n « " " «,m « " " « m2 « "\n"; 
double sum; 
int kl,k2,k3,k4; 

// zero the working matrix 
cout « "Zero the working matrix\n"; 
for (i=1;i<=n;i++) 
for (int j=1;j<=n;j++) 
for (int k=1;k<=m2;k++) 

b[i-l][j-l][k-1]=0; ) 
int nc=0; // iteration counter 
double trace1=0.0; // termination devices 
double trace2=0.0; 
// update the matrices based on the square root 
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// 25 
iterate: if (nc>0) 

k2=0; 
if (m>1) for (int k=1;k<=m-1;k++) 

k3=k2+1; 
kl=m+l-k; 
k2+=k1; 
k4=k-1; 

if (b[0][0][k3-1]1=0.0) // check if pivot is zero 

for (int j=1;j<=n;j++) 
for (int i=1;i<=n;i++) 

sum=0.0; 
if ((k1=1) 11 (j!= 1 )) 

if (k1=1) 

int 12=0; 
int 14=0; 
for (int ell=1;ell<=k4;e11++) 

int 13=k+14; 
int 11=m+1-e11; 
12=12+11; 
14=12-ell; 
for (int ii=1;ii<=n;ii++) 
sum=sum+b[i-1][ii-l] 112-1]*b[j-1][ii-1][13-1]; 

if (j1=1) 

for (int ii=1;ii<=(j-1);ii++) 
sum=sum+b[i-1][ii-1][k2-1]*b[j-1][ii-1][k3-1]; 

- ' • ) 
b[i-1] U-1] [k2-1]=(a0,.713 [j-1]  [k1-1]-su) /b[j-1] [j-1] [k3-1]; 

) • 1 
else cout « "Pivot iS  

1 
} 
// square root 
for (i=1;i<=n;i++) 
( 

sum=0.0; 
k2=0; • - 
if ((m-1)>0) for (int k=1;k<=(m-1);k++) 

k1=m+l-k; 
k2+=k1; 
for (int j=1;j<=n;j++) 

sum=sum+b [1-1] [j -1 ] [k2-1]*b[i-1] [j-1] [k2-11; 

if (3.1=1) 

for (int j=1;j<=(i-1);j++) sum=sum+b[i-1][j-1][m2-1]*b[i-1][j-1][m2-1]; 

b[i- 1][i-1] [m2-1]=sqrt(a[i-1] [i-1] [0]-sum); 
if (i<n) 

5 



[ 

1]; 

for (lot  j=i+1;j<=n;j++) 

sum=0.0; 
int k2=0; 
if (m>1) for (int k=1;k<=(m-1);k++) 

kl=m+l-k; 
k2+=k1; 
for (int ell=1;ell<=n;e11++) sum+=b[i-l][e11-1][k2-11*b[j-l][e11-1][k2- 

) // 160 
if (i>1) 
{ 
for (lot  ell=1;ell<=(i-1);e11++) 
sum+=b[i-l][e11-1 ] (m2-1]*b[j-l][e11-1][m2-1]; 

) // 180 
b[j- i) [i-l][m2-1]=(a[j-l][i-l][0]-suM)/b[i-l][i-l][m2-1]; 

} // 150 
) // 110 , 

} // 110 

for (i=1,trace2=0;i<=n;i++) 

trace2+=b[i-1] [i-1) [M2-1 ] ; 

cout « "Trace difference " « fabs(trace2-tracel) « 
if (((fabs(trace2-tracel)>1.0e-9)&& (nc<lc) )) 

tracel=trace2; , 
nc+=1; 
k2=0; 
if (m>1) for (int k=1;k<=(m-1);k++) 

kl=m+l-k; 
k3=k2+1; 
k2+=k1; 
k4=k2-1; 
for (int el1=k3;el1<=k4;.e1lit+) 

for (int i=1;i<=n;i++) 
for (int j=1;j<=n;j++) 
b[i- i] [j-l][e11-1]=b[i-l][j-1][ell+k1-1); 

goto iterate; 

else 

// output routines 
cout « "Number of Cyles-" « nc « 
cout « "coefficients bf the spectral factor of K\n"; 
k2=m2; 
for (int k=1;k<=m;k++) 

kik-i;  
k2=k2-kl; 
cout « "a( " « (k-1) « " ]\n"; 
for (int i=1;i<=n;i++) 

for (int j=1;j<=n;j++) 

if (a[n-i][n-j][k-1]<0) printf(" %6.4e " ,a[n- i) [n-j][k-1]); 
else printf(" " ,a[n- i] [n-j][k-1]);) 
cout « "\n"; 
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) 

) 
cout.precision(15); 
k2=m2; 
ofstream fout("results.dta"); 
fout « n « "\n"; 
fout « m « "\n"; 
for ( k=1;k<=m;k++) 

kl=k-1; 
k2=k2-kl; 
cout « "b[ " « (k-1) «  
for (int i=1;i<=n;i++) 

for (int j=1;j<=n;j++) 

fout « b[n- j) [n-i][k2-1] « "\n";; 
if (b[n-j][n-i][k2-1]<0)printf(" • %6.4e " ,b[n- j] [n-i][k2-1 ] ); 

else printf(" +%6.4e " ,b[n-j][n-i][k2-1 ] ); 
. e • )cout « "\n"; 

) 

) 

fout.close(); 
goto exit; 

) 
exit: 
for (i=0;i<n;i++) 

for (int j=0;j<n;j++)delete[n]b[i][j]; 
delete[n]b[i]; 

) 
delete[m21b; 
for (i=0;i<n;i++).: 

for (int j=0;j<n;j++)delete[n] a[i][j]; 
delete[n]a[i]; 

delete[m]a; 

return 0; 

INPUT.  DTA 
3 
2 
10 
1 
-1 
0 

6 
0.5 
0 
0.5 
1 
0 
1 
0 
0 
-1 
0 
0 
-0.5 
0 

RESULTS.DTA 
3 
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2 
0.808466 
o 
0 
-0.351098 
2.3716 
0 
0.108569 
0.405186 
0.973226 
0.183115 
-0.183115 
-0.0915577 
0.421656 
-0.421656 
-0.210828 
o 
0 
0 

• 
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN 
MOBILE SATELLITE AND MOBILE ENVIRONMENTS: 

3b. ZERO FORCING, MINIMUM MSE AND DECISION FEEDBACK MULTI-USER 
RECEIVERS 

W F McGee 
Contract: U6800-6-1604 

14 March 1997 

' ABSTRACT 

This report is a progress report of  work towards milestone 3 of this contract. We investigate the 
decorrelating receiver for multi-user systems when there are only two adjacent channel users. 

A MA'TLAB program to evaluate MSE equalizers has been made ançl is enclosed. Results indicate that a 
MSE equalizer tends to increase the cutoff of the chadnel filters, which is Consistent with our earlier studies. 

A decision feedback design based on whitening the output from a MSE equalizer has been designed and 
tested. 

The theoretical foundations for the study have been made and are presented herein. 

For a system with a signal to noise ratio of 7 dB, 90-degree phase shifting in the adjacent channels reduced 
to signal to mean-squared error to 2.45 dB, a minimum mean squared error equalizer increased this to 4.47 
dB, decision feedback of the channel itself raised theratio of signal to mean squared error to 4.99 dB, and 
feedback of the decicision from the adjacent channels raised the signal to mean squared error to about)Er..6. r.,. 
dB. 

These results are encouraging and deserve verification. 

The contents of the report are as follows. In section 1 we argue that VSB filterbanks are very sensitive to 
-poor phasing between adjacent channels. In section 2 we present the theory of the minimum mean squared 
error receiver, and give an example of the use'of a MATLAB program in section 3. Section 4 gives the 
theory of decision feedback equalization;when only the decoded data from the channel itself is used, and 
section 5 presents results of the MATLAB implementation of the calculations. Seetion 6 gives the theory for 
vector feedback, in which decisions are . fed back from the channel and the two adjacent channels. Section 7 
gives some numerical results of this thèse, which is based on thé theory of matrix spectral factorization. 
Section 8 reviews the theory associate'd with equalizers with a finite number of taps, but these have not yet 
been implemented. Section 9 contains the summary of the results. • 

One appendix discussed some details of the theory, another some properties of the correlation matrices, and 
an attached report describes  th ç C++ matrix factorization program BAUER.EXE that we have developed. 

1. THERE IS NO ZERO-FORCING LINEAR RECEIVER FOR IMPROPERLY PHASED 
MAXI1VIALLY DECIMATED VSB SIGNALS 

There is an inherent and fundamental problem with the use of maximally decimated VSB filter banks when 
there is not phase synchronization between the adjacent channels. There is no zero-forcing equalizer. The 
argument is as follows. Consider a VSB channel at zero frequency over the positive frequencies and another 
over the negative frequencies, but overlapping the first at 0 frequency, and consider the transmitted 
sequence consisting of all +1s. The output from both transmit filters is a dc signal. If the two channels are 
separated by 90-degrees phase shift, then when the real part is taken, the dc signals may be separated. But if 
there were a linear zero forcing equalizer that could handle arbitrary phase shifts, that equalizer cannot 
eliminate the dc signal from the adjacent channel without eliminating the de signal from the channel itself. 
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noise HO()  

H2(e) 

H1(o) E(w) 

• 

Thus, there is no zero-forcing equalizer; an equalizer which will.eliminate adjacent channel interference 
from an adjacent channel that has its phase set improperly, in the absence of noise, without affect the 
channel itself. 

Consequently there is no zero-forcing decorrelator. 

2. MSE LINEAR RECEIVER FOR MAXIMALLY DECIMATED VSB SIGNALS 

Three data streams are presented to filters with responses Ho(co),111(œ),H2(w), added together. Noise is 
added to the combination, and an equalizer E(co) to minimize the mean square difference between the real 
part of its output and the input sequence to the filter Hli(co). 

Figure 2.1 Binary (+1-1) data is presented to the input equalizers. These include channel gain, phase 
and delay, on a per channel basis. After an equalizer E(o)) we try to determine the digits sent through 
the equalizer H1. The filters .  without the channel gain, phase, and delay, are assumed to be those of 
adjacent channels of a VSB multi-channel communication system with no intersymbol or 
interchannel interference, and with restricted bandwidth. If there were no channel delay or phase 
shift, the performance would be optimum with an equalizer matched to the transxnitted pulse shaping 
filter Hl. 

This  is a classic problem[11 in noise theory. The mean squared erf6r is -  

MSE = N(f)IE(f)1 2  df 

1/2T 
 

—1127, 2T 
1/2T 

1 
▪ I —IH 0 (f+mIT)E(f+mIT)+Ho *(—f+mIT)E*(—f+mIT)1 2 c/fT 

2T —I/2T In . 

1/2T 
1 x•—n ▪ 1-2,H2 (f+mIT)E(f+inIT)+H2 *(—f+mIT)E*(—f+rnIT)1 2 d37 

—1/27, 2T m  

and the problem posed is to determine E(f) to minimize the mean squared error MSE. The first term is the 
noise passing through the equalizer, which, for our purposes, we assume white with spectral density No, the 
second term represents the intersymbol interference in the channel under study, and the other two terms 
represent the crosstalk from the adjacent channels. 
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Before we start, it would appear reasonable that the receive filter be matched to the transmitted signal filter 
I-11M, and in particular, it will not pass frequencies beyond the bandedge of its filters. 

The minimization is done by taking partial derivatives with respect to E*(f) and results in the equation 

0 NoE(f) 

+H1 *(f)[Hi (f+mIT)E(f+mIT)+1-1,*(–f+mIT)E*(–f+mIT)-1] 
In 

+Ho  * (f)[-1  IH0 (f +m I T)E(f +m I T)+ * (–f + m I T)E* (–f +m I T)] 
2T „! 

+H2  * (f)[1E H2  (f + m I T)E(f +m I T)+ H2  *(–f +m I T)E* (–f +m I T)] 
2T 

: 

Each of the expression in square brackets is periodic in f with period 1/T, and we represent them by  71(f), 
X0(f) and X2(f), and also satisfies 2%.;*(4) . These equation may be written 

= No E(f)+Hi  * (f)l (f) + * (f)ÂO (f) + H2 * (f)Â2 (f) 
, 1 

2'1 Ur) = + m 1 T)E(f + m 1 T) + * (–f + m 1 T)E * (–f + m 1 T) – 1 
2T „, 

1 4(f)..= +m I T)E(f +m I T)+ Ho  * (–f +m I T)E* (–f + m I T) 
2T „, 

1 2,2(f)=H2(f +ml T)E(f +m I T)+ H2 * (–f +m I nE*(–f +m I T) 
2T „, 

The equalizer E(f) is obtained by substituting the first equation in the three following, resulting in three 
equations for the three unknowns 4(f); and then putting these equations back into the first to solve for E(t). 

There is another important result that is.obtained from the expression fort E(f). Since the parameters 2 (f) 
are periodic in f, they may be realized wo (perhaps infinitely long) FIR filters. Thus, when samples are 
taken at the equalizer output, this is equivalent to sampling the outputs of the three matched filters and 
passing them to FIR filters. 

These three equations are of the form 

Â1(f).-q1,1A1(f)-G1,0(f)4(f)-G1,2(f)A2(f)- 1  

2, 0(f)- -G0,121(f)- G0, 0 (f)A0(f)- G0,2 (f)Â2 (f) 

Â. 2 (f) = (f) G2,0 (f)Âo (f) — G2,2 (ffi2 (f) 

i.e., 
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—1) (1 + 

G0,1 
0 ) Q2,1 

G1 ,2 ( (f) \  
1 + G0,0 G0,2 Â0(f) 

 1 + G2,2 V1'2 (f) ,/ 

G1,0 

G2,0 

.•n••. 0 

G1,0 
1+  G0,0  

G1,2 \ Al(f) \  
0 Âo (f) 

1+ G2,2 V2-'2 (f)i 0 )  I G2,1  
These equations may be solved and result in 

—1 

0 

+ G1 , 1  

G0,1 

where 

Gij (f)=  
 2 

TN() Lili(f+mIT)Hi*(f+mIT)+Hi*(—f+mIT)Hi(—f+mIT) 

= G * (f) =  G1 ,  * (—f) 

But, because of the properties of the filters, the elements whose indices are separated by 2 or more are zero. 
Thus, G0,2=G2,0=0. [If the problem had been written Irt  the frequencyordered wa.S .r, the matrix would be a 
bordered diagonal matrix, i.e., tridiagonall Also, bec'ause' of the filters, there will only be one term in the 
sum for most of the elements, except perhaps for the main diagonal term. In any case;the equations are 

1 2L. 1 ' 
 1 

A 
Â2 

and the determinant 

+ Goo  )(1 + G22 ) —G10 (1+ G22 ) —G12 (1+ G)  "-1"  
-G01 (1 + G22 ) (1 + G11 )(1 +  G22 ) G0,1  G1,2  

-G21 (1 + G00 ) G2 , 1G1,0 (1 + G11 )(1 + G00 ))  

A = (1 + G11 )(1 +  G +  d22 )  -  G01  G10 (1 + G22 ) — G21  G12  (1 + Goo  ) 
is real and positive. 

- 

Also, if the transmitting filters are root-ellquist filters, the diagonal term.  s are a constant equal to 1+2T1N0 . 

In any case, we can solve exactly, with the result 

A = ÂiGo ' 1  
o 1 + G0, 0  

Â1G  
2,2 = 1+  G2, 2  

Solving for 1 1 (f) and substituting back to find E(f) we have 
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GA ' G2,I 
* (f) HO * (f) " H2 * (f)  1 + G0 , 0 1+ L12,2 

No [l +G1,1 
G0 , 1 (f)!2 

IG2,1(f)121 

1+G00 1+G22  

The transfer function from the input to the sampled output is the sampled real part of H i (t)E(f) which is 

E(f) 

sampled {Re[1/1  (f)E(f)]1 = 

1,11(f)Ili * (f) - 111(f) 110 *  (f) 1+ Gu ' l  0,0  
sampled {Re[ 

[ I  G I G2,1 (f)I2  
G1,1 1 + G0 ,0 ., 1  +  _ G2,2 

, I Goa  (f) 12 I G2,1 (f)12  [1 +G11 _  

1 + G0.0 1 + G22  

G21  
(f)H 2  * (f)  1+ G2 , 

No[
1+' GI , .1Gm (f )12  I G2,I (f)I 2  

1 , 1  G0,0  1 + G2,2  

sampled{ [H0  (f)E(f)] } 

Go  Ho  (f)Hi* (f)- 110(f)H0*(f) 
1+ G0,0 = sampled{ 

No  [1 + 'Go i(f)1 2  
1 G0,0  

1G2,1  (02  

1+  G2,2 

Go 1  
Gol (f;), - Goo  . 1+ G0,0 

[  1+ q1 
,IG0,1(/)12 

1G2,1  (f )12 1 ' ,1 ••••i4,d0,0 
1+G2,2 

. G0,1 
1+ G0 , 0  

- 

[1 + G 1  G0.1 
 (f)12 1  G2,1  (f )12  

1,1 r2. 

G2,I 

sampled{ [112  (f)E(f)] } = 
1+  G2,2  

1 Gc1,1(f)12 1G2 , 1  (f)1 2  
[1+G11  

 
1 4-  Go.  0 1 + G2, 2 

An explicit calculation of the mean squared error is tedious, and the details are in an appendix. The result is 
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112T dfT • MSE 

-1/2T [1+ G1,1 IG1(f)12 IG2,1(f)121 
1+ G0 , 0 1+ G2 , 2  

and this also puts the power spectrum of the error in view; it is not flat. This is the so-called biased 
MSE[3,4], and is related to the unbiased MSEU by 

1 1 = — 
MSEU MSE 

When the adjacent channels are in phase and the filters are half-Nyquist, satisfying 

1 

 

T)1 2  =1  
2T 

then G0, 1  and G2,1 both vanish. For example, the terms in G0, 1  that are significant near zero frequency are 

H0 (f)H 1  * (f) + Ho * (–f) 111 (–  f) 
which vanishes if H0(f)=j1-1 1 (4). On the other hand, if 

110 (f) = jej° 111 (-f) 

then this sum is 

H0 (f) 111 * (f){1 e -i20  = 2j sin(0).H0  (f)Hi  * (f) 

Then the equalizer is 

the usual matched filter. 

Consider the crosstalk between channel 1 and channel 0, and suppose, as is connnon, that Ho(f)=Pi( -f). 
Then the expression for G 1 ,0  is 

1  
(f) = 

2 TN0 
1, +/I/1 (f +ml T)H1 *(–f +ml T)+ jHi *(–f +m 1 T)H i (f +m 1 T) = 0 

On the other, for the worst phasing, Ho(f)= I-11(4), and 

- - 

Hi *  (f)  E(f)=  
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2T 

a) 
sqrt(2T) 

sqrt(T) 

freque.ncy f 
«se  

• 1/1  

b) 
I H121 

1 G1,0(f)=
2TN0 

+mIT)H1 *(—f +mIT)+H i *(—f+mIT)11 1 (f+mIT) 

= TNo HI(f+mIT)H1*(—f+mIT) 

The time has probably come to draw some pictures. 

frequency f 1/T 

HOH1 

_Figure 2.2 Typical frequency responses. In a are plotted the responses of the transmit and receive 
filters, shovving the normalization that results in a received pulse of height unity. The crossover 
frequency represents a loss of 3 dB, as,Indicated. Part b shows the response of the overall channels. 
The bandvvidth is 1/2T, the height is 2T and the area is unity as required. The third figure indicates 
the response of the adjacent channel filteis. These are narrow, but have a fixe'd height, T. 

We now examine the equalizer frequenere.sponse in detail. 

Looking first at the denominator in the band of interest, this denominator is proportional to 

1+1 I G0,1 (f) I2 I G2,1 (f)I 2  

• Ar0 1 + -1 1 + 
No No  

At 0 frequency, the fourth term is zero. G0,1 is equal to (1/N0) for the worst case phasing. Thus the 
denominator at zero frequency is equal to 

Arc, +2 
No  +1 
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At the frequency 1/4T, the center of the filter H1, the denominator is just 1+1/N0=(N0+1)1N0 . The 
denominator appears to be periodic with period 1/2T. If we include the factor No, this means that the 
transfer function is multiplied by an expression that varies from 

1 No  + 1 
 at the filter center frequency to at 0 and 1/2T. 

No  + 1 No  (No  + 2) 

In the worst case, the numerator is 

H *G H *G * 0 0,1 2 2,1  
1 

 
1  + 1 / No  1 + / No  

which in this frequency band is equal to 

• 
. 

H1*[1-  1110 (J)17- 1112(f)I 2  
T(N o  + 1) T(N o  + 1)i 

The second factor is equal to 1 à the filter center frequency and N0/(N0+1) at 0 frequency. 

Considering both terms together, the net effect is to multiply the matched filter Hi*(f) by a factor which is 

1/  (N0  + 2) 
at the bands edges at 0  and  1/2T and 

1/(No  +1) 

at the filter center frequency. 

3. CALCULATION OF MSE - 

For actually computing MSE, a MATL4B program has been constructed, and a listing is enclosed. 

Some figures are included for equalizers of a channel with a very sharp cutoff. Fig.3.1 is' the pulse response 
of the transmit/receiver filter for one/cIiMrial.sThe pair form a Nyquist filter with 100-percent excess 
bandwidth. Fig. 3.2 is the absolute value bf all the crosstalk responses. Most are very small, but the adjacent 
channel responses are large, as expected. There are three typical responses, and thelr mirrors. In the next 
few figures we build up the equalizer response for the first channel. First the denominator in Fig. 3.3 The 
Pulse response of the denominator is shown in Fig. 3.4. For the numerator, . Fig 3.5 is the first term in the 
numerator of the equalizer transfer function. The second term, Fig. 3.6, and the third term, Fig. 3.7, 
represent crosstalk from the adjacent channels which the equalizer will try to reduce. Fig. 3.8 gives all the 
numerator. The overall equalizer re.sponse is in Fig. 3.9, which we compare to the equalizer design realized 
when there is no interference; this is simply the matched filter to the transmitted pulse. The pulse responses 
are shown in Fig. 3.10. 

4. DECISION FEEDBACK EQUALIZATION 

The improvements that result with the use of data decisions is a complicated problem, and has been solved 
by Kavehrad and Salz[2]. But first, we consider a simpler approach, in which only that decoded data from 
the channel itself is used, and this approach is based on the use of a prediction filter to whiten the error 
sequence resulting from the MSE equalizer. 
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Decision 

(Â 1 

0  

n,2" 2 ) 

_ 1 

As we derived, the error sequence from the linear minimum MSE equalizer has the spectrum 

MSE(f):=  
G0 1 (f)12  

[1+ G1,1 
1+ G0,0 

A spectral factorization of the denominator is of the form 

I G2, 1 (f)I 2  
1+  G2,2 

[1+ G1 
G0 1 (f)1 2 

 
1+ G0,0  

] IG2,i(f ) 12  -___: A
° 
 (1+ B

± 
)(1 + B-)= Aorti - z-i „nu_ z / zi) 

1+ G2,2 Iz 1 1< 1 Iz 1 >1 

Thus, 1+B, is causal and 1+B_ is anti-causal. If the output of the MSE equalizer is followed with the 
equalizer (1+B„) the resulting sequence will have an èrror sequence that is white and the mean squared error 
is 1/A0 . This is equivalent to the following D1-it:  structure 

output 
E(f)(1-1-3 ) 

Figure 4.1 Decision Feedback Receiver. The causal filter B+ whitens the error sequence from the 
non-DFE equalizer E(1) making the sequence spectrum white. The decision feedback removes the 

correlated part of the signal that results. 

This is the receiver that minimizes 

-MSE = N(f)1E(f)1 2  df 

1/2T 

+ f 1-2,11 1 (f+m1T)E(f+misT)+H i *(—f+rnIT)E*(—J.4-rrilT)—(1±B,(f))1 2  dfl 
-1/2T 

: 
m ' 

2T • 
.„ , . ------ 

. , 

. , 

1 . .41" 
. 

112,T 
+ f 1—EH0 (f+mIT)E(f+nilT)+H0 *(—f+mIT)E*(—f.+mIT)1 2 dfT 

-1/2T 2T m 
, 

1 1 2T 
1 •ç-I + f 1-2,1/2 (f+rnI71')E(f+mIT)+H2 * (—f+mIT)E * (—f+mIT)12dfT 

2T -1/2T m 

The solution to these equations has already been derived, and is 

( (1 + Goo + G22) —G10 + G22 ) 

I +Goi (1 + G22 ) (1 + )(1 + G22 ) 

—G12 (1+ Goo ) 1(—(1+ 13+ ) 

G0,1 G1,2 I 0 

—G21 (1+ Goo ) G21  G10 (1+ G11 )(1+ Goo )) . O ) 
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with the further requirement that X I  have only positive exponents of z, i.e. X I  is anti-causal, and 

A= (1 + G11 )(1 + Goo  )(1 + G22 )— Go, Gio  (1 + G22  )— G21 Gi2 (1 + Goo  ) . 

But since 

—(1 + .8± ) =  

this means that 1+B +  is equal to the spectral factor of the denominator which is causal, and X. 1  is the 
anticausal remainder when these factors are canceled. In the appendix we show that the MSE is given by the 
average of -2q* . If the'spectral factorization is 

then -21 * is 1/(a(1+B +)) and the integral for the MSE'is simply 1/a. The factor a is found, finak, by using 
Jensen's theorem concerning the logarithm of analytic functions. 

The mean squared error for the decision feedback receiver is less than that of the MSE received]] and is 
equal to 

1/2T ( 

MSE DFE = exp(— ln 1 + G11
I G0

'
1 (f)12 1 G2.1 (f)12 

—I/2T \ 1+ G0,0 1+ G2,2 

This expression may be derived without spectral factorization, but is a useful check on the factorization. 

However, we could also apply feedback from all the past received digits to further reduce the error, and this 
is the subject of vector feedback. 

5. EXAMPLE 

The design of a single feedback equalizer using the above theory have been done using the filters of the 32- 
channel VSB communication system'clès.  éfibed by Sablatash, McGee and Lodge[7]. The calculations are 
done by the MATLAB program EQUALLM attached. The program first calculatéS the transmit and receive 
filters based on a prototype filter design. These are then adjusted_ by the relative' dain.  s and phases of the 
adjacent channels; we usually assumé, eqUAl lèVel and 90-degrees phase shift. The minimum mean squared 
error equalizer is then computed, and its Mean squared error calculated. The response to a pulse in the 
channel and the two adjacent channels is piotted in Fig. 3.10, and the frequeney response is shown in Fig. 
3,.10. The required spectral factorization using the zeros of the denominator are then found, and those inside 
the unit circle used to define  B. The decision feedback equalizer is computed, along with the mean squared 
error for the decision feedback'receiver. The pulse responses are again displayed, in Fig. 5.1, and the 
channel frequency responses shown. in'Fig, 5.2. Observing the pulse responses, the decision feedback 
equalizer tends to keep the precursor response with good zero crossing, but the response after the center 
sample is allowed to vary, which is, of course, what should happen. In Fig. 5.3 we give the positive part of 
the spectral factorization of the denominator. This, convolved with its mirror image, gives the denominator, 
to within a scale factor. 

The calculation was repeated with an interchange of the transmitter and receiver filters, which tends to make 
the crosstalk response the mirror image. This had minimal impact, except the equalized crosstalk was a 
mirror image of the other case. 

ifr) 
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6. VECTOR FEEDBACK 

With vector feedback we assume that we have access to all the previous received digits of all the channels. 

Figure 6.1 Vector Feedback. In Figure 4.1 only the decoded output from the main channel is used for 
reducing mean squared error. In this model, all the relevant adjacent channel décoded data are used. 

With a mean-squared error design ciiterion, the goal is to minimize 

nD:1 

MSE = N(f)IE(f)1 2  df 
n0.3 

1/2T 1 I +rizIT)E(f +n z 1 T)+H1 *(—f +mIT)E*(—f +mIT)—(1+B + (f))1 2 diT 
2T —112T m 

1/2T 1 
1/2T  

112T 1 
H2  (f + T)E(f + m 1 T)+ H2  * (— f + m LI)E* (—f + rn I T)— D + (f)I 2 df7' 

2T  —1/2T „,  
where  B+, C+ and D+ are causal and;have only positive exponents of z-1  and thus the unknowns are the 

(real) numbers bk, ck and dk, where • 

DO 

B+ k Z -k  
k=1 

C+  =cz-k 

k=1 

D, =ECIk Z -k  
k=1 

When the partial derivative with respect to the equalizer E is taken we find that 

0 = NoE(f) + * (f)2"1 (f) + Ho * (f)4 (f) + * (f)Â'2 (f) 

where 

11 



n 

where 

_ 1 

=FA.  

.1, 1 (f). 15111/1 (f +mIT)E(f +mIT)+HI *(—f+mIT)E*(—f +mIT)]—(1+B + (f))] 

À, 0 (f).÷T-E[H0 (f + m I T)E(f +m I T)+ Ho * (—f + m I T)E* (—f + ml T)— C + (f)] 

2-1-s [112(f + m I T)E(f +m I T)+ H 2 * (—f + rn I T)E*(f + m I T)]— D(f)] 

This is the same as before, except the forms of Xi  and X2 are different The partial derivatives with respect 
to the coefficients of the polynomials B+, C+ and D+ lead to the requirement that X i , X2, and 21.0 have no 
terms that are powers of i l . As before, we may substitute for E and obtain a set of equations for Xi , X2, and 
Xo, These are 

—1 — (1+  G 1  eG G1,2 1'1 (ic)  
= G0,1 1+  G0,0 0 (f) 

—D G + \ 2,1 0  

The solution to these equations is 

1(1 + Goo  )(1 + G22  ) Glo  (1 + G22 ) —G 12 (1 + Goo ) V —(1 + 
—G m.  (1 +  G22 ) (1 + G, 1 )(1 +  G22 ) G0,1  G1,2  

—G2; (1 + Goo  ) G2,1  G1,0 (1 +  G11 )(1  + Goo —D +  

A = (1 + G1 1 ) ( 1 + Goo  )(1 +  G22)  G01 G10 ( 1  + G22 — G21  G12  (1 + Goo  ) 

We rewrite these equations to put the fact of the tridiagonality of the matrix in evidence. 

f \ (1 

—1— B . + . , 
—D + 

 
1.O  

G0,1  

1+  G1,1  

G2,1 

O ` ( 0 (f,'Y 
G1 , 2' À•1 (f) 

1 + G2,2 1 a 2 (f)> 

which we simplify to the form 

where the subscripts + and - indicate that there are only positive or negative powers of z1  in a particular 
vector. For our application the matrix r has real and constant, but probably unequal, diagonal terrns since 
we are dealing with Nyquist channels. The off diagonal terms are conjugates of each other and therefore the 
matrix is Hermitian on the unit circle. The off diagonal terms G2, 1 and G0, 1  are related, but the relationship is 
not used. 

Equations of thus type may be solved by spectral factorization[5] of the matrix r=r+r. 
Then there is a solution if we can find a constant vector K such that 
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A +  = r+ K 
K = F_A_ 

so that the dc coefficient of the second component of Ai_ is -1, and of the second and third components is 
zero. If we write the dc component of 1-+  as no, then 

( 0 \ 
K = F+0 -1  -1 

\ 0 
( 0 \ 

A, = r+r+o —i , • 

( 6.\ 
= (r+or_yi 

, 

As in the Appendix, the mean squared error for this equalizer may be calculated. Here, however, when the 
calculation is performed, we recognize three terms in the integral. The first is 

IÂ 1  (f)1 2  (1+ G1 ,1) + X; (G1,04 + G1 ,24) = À.›; (-1-13+ ) 
The second is 

IA 2 (f)1 2  (1+ G2, 2 )+ X'AG2,1= .1.,;(-D,) 
and the third is 

12., 0  (f)I 2  (1+ G0, 0  )+ 2:0Â•iGo,i 7-7 AU-C+) 

Thus, the mean squared error is 

: r1/2T 

But notice that this simply is the negative of the dc coefficient of 2,  which we label 7t.1 _0  , since A._11  has only 
positive terms, the product has only positive terms, and the integral of all but the dc term will be zero. This 
may also be seen by considering 

( 

-1 

\ I 
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ï 0 \ 
AA = (0 —1 o)r:oHri.Hr+ 1-7,-£1, 

) 

0 \ 

= (o —1o)rT,r,-.c; —1 

= (o 1 o)(r+o r_0 ) --1  1 

= (o 1  
()) 

7. EXAMPLE 

The example of section 5, based on the communication system of [7], is continued. A separate C++ 
program, BAUER.EXE, described in an attached report[5], is fed the matrices of the matrix r, and the 
spectral factorization r.,. returned. In the MATLAB program CHECKBAU.M The matrix 1-+  is first 
verified, and the mean squared error for vector feedback calculated. The channel responses could also be 
calculated, if desired. 

8. FINITE EQUALIZERSj  

In a practical system[5] the equalizers are going to be finite, oversampled, and adaptive. Neglecting the 
-oversampling, the equalizer coefficients and feedback coefficients.assumed finite in number, form the scalar 

. 

yn  = fk rn_k —Eck v„_k  —Edk Wn_k  
k=0 k=1 k=1 k=1 

and the mean squared error is the exp.  ect.  'Mph s'of the square of ly„-u ni2 , 'where {un } are the transmitted 
sequence in the channel under study, {v k l' and {wk } the transmitted sequences in the two adjacent channels, 
and fk,ck,dk  and ek  are to be determined. The received signal sequence is irk} whieh is assumed to be a linear 
combination of past present and future data sequences in all three transmitters and noise. 
If we define A and V by 

A = EIX nX. T I , V = E{X n un } 
then the coefficients are given by UnpFKIV and the minimum mean squared error is 1-V TUopt, assuming 
that the transmitted data is binary Is. 

9. CONCLUSIONS 

The ability of three equalizers to overcome the effects of adjacent channels being of the worst phase for a 
VSB multi-channel communication system has been determined. The performance measure is the unbiased 
mean squared error. The results are as follows, for a system operation in a signal-to-noise ratio of 5, i.e. 7 
dB. 
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1 
TABLE 1 Mean squared error for VSB communication system with adjacent channels at equal level, 
90-degrees phase shifted, with various equalizers. There is no channel coding. 

System Relative Level Relative phase of Mean Squared 
of adjacent adjacent Error 

channels channels (Unbiased) 
(dB) (degrees)  

Baseline 0 0 0.2 (7 dB)  
Matched Filter 0 90 0.5689 (2.45 dB)  
Minimum Mean Squared Error 0 90 0.3563 (4.47 dB) 
Equalizer  
Single Decision Feedback • 0 90 0.3168 (4.99 dB) 
(Main channel only) '  
Vector Decision Feedback O 90 0.2200 (6.57 dB) 
(Main+Adjacent Channels) 0.2098 (6.77 dB) 
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APPENDDC 1 

CALCULATION OF MSE 

The purpose of this appendix is to record the calculations. 
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2 [G 1G,12 I G2,1 12 1G0,1 12  1G0 , 1 1 2  

+ G0,0 ) 2  

The MSE has three signal related terms and a noise term. The sum of the three signal related terms which 
we call MSES, is equal to 

1/27' 
[u. 1 1 2  +14 1 2  +12, 0 1 2 1er 

-1/2T 
MSES= 1/27' I G 1 2  

= IA 1 2  [1 + 
1G

2'1 
12 

+ 0,1 ldfr 
-1/2T 1 (1 + G2,2  ) 2 (1 + G0,0  ) 2  

The noise mean squared error is 

MSEN =1 N 0 lE(f)1 2  df . 
,.; 

When the expression for E(f) are substituted, the cross terms that are zero neglected, and the infinite integral 
replaced with an integral over the finite range -1/2T to 1/2T, the integrand contains ternis 

1À'1 12 G1,1 +1 4/ 2 G0,0 +1 4 12  G2,2 + * 2 GI,2 + * À. 0 G1,0 + A 0  * Â1 Goa  + 2  * ÀI  G2,1  

and this may be written 

and, when MSES and MSEN are added together the additions and câncellations result in the following 
expression for the total mean squared error 

1/2T I G2,1 I2 1 G 1 2  
MSE = $IÀ. 1 1 2  [1'4- G1,1 0,1  

1+  G2,2  1+ G0,0  
1/27' dfl" 

tG2,1 1 2 1 G0 , 1 1 2  -1/2T [1+  G1 , 1/:  
• 1+ G22  1+  G0,0  

It is perhaps a bit clearer to keep the separate, and then the integrand is 
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1 2, 1  1 2  Gid  +I "1, 0  1 2  G0,0  +I /1, 2 1 2  'G2,2  + *2, 2 G1,2 + Â' 1 * 0 GI,0 0 * Â. 1 Goa + 2 2 *2'1G2,1 

+n 1 1 2 +141 2 +14 2  

-Â!i(( 1 +G1,1 )À, 1+ 4G1,2 + 4G1,0] 

[(1+ G0 , 0  )2, 0  2 1G0,1 

4-2,*2 [(1 + G2, 2 )A'2 -14' 1 G2,1 

= 4:1 

APPENDIX 2 PROPERTIES OF THE ELEMENTS  G. 

The report makes us of the elements Gij. Here we oWaiti'àome properties. 

From the definition' 
1 

GI (f)= EHi (f+rnIT)Hi *(f+mIT)+H; *(-f +mIT)Hi (-f+mIT) 

G1,i *  (f) = Gi,i  * (-f) 

In the communication system under consideration, the transfer functions are due to half (or root) Nyquist 
filters, with an additional gain A, phase Gand delay t. Thus, a root Nyquist filter with a channel 

In the diagonal elements the phase and delay are eliminated, and the elements are just 

A 2  / No  . 

The off-diagonal elements are more complicated. The elements G0, 1  and G1 ,0  are Mirrors of each other. So 
are G2, 1 and G1 , 2. In general, 00, 1  and G2, 3 have coefficients that are similar, but in which every second 
coefficient is of opposite sign. 

Thus, the matrix appearing in the equationS 
( \ (1 + G0,0 G0,1  

-1 = G1,0 1+ G1 , 1  
-D • - 0 G2,1 ) \ 

may be written 

0 ( Â. 0  (f) \  

G1 , 2 2'1(f) 
1+ G2, 2 \,2, 2 (f)./ 

(1+ I No  A 0A 1 G0, 1 O \ 
A 1 A 0 G1 , 0 1+ Ai2  I No Ai  A2  G1,2  

0 A2A1  'Gm  1 + IN° j  

Thus, in the matrices used in the Bauer factorization, the matrices that are related to powers of z that are not 
zero have no diagonal, no 1,3 or 3,1 term, and, are otherwise arbitrary, consistent with the overall matrix 
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polynomial being positive definite. We haven't discovered any properties that follow from these 
observations. 
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Ilmarall  at compact 
itialize the filters 
itializing filters' 
ut; 
mp=transmit; 

E7ansmit=receive; 

Ill: 
1 0.2; % sigr 

eceive=temp; 

dify per parameters 
nsmit(32,:)=a*exp(j*theta)*transmit(32,:); 
nsmit(2,:)=a*exp(j*theta)*transmit(2,:); 

R eceive(32,:)=a*exp(-j*theta)*receivé(32,:); 

ee=n:Z7(11 *) 
t1-1,12:Urree( 7. ei. 7(2: 

)the main channel 
a.. -conv(transmit(32,:),receive(1,:)); % one interferer 

I12=-conv(transmit(2,:),receive(1,:)); % the other interferer 
se=length(transmit(1,:))-16*floor(length(tranSmit , (1,:))/16);" 

o se=16-phase; 
% he peak is at index 244 so phase = 16-244 mod 16 = 12 

Il 
=real(h0); 

1 

. 

g =g01/n0; 
for i=1:length(g01) 

f -((i+phase)-16*floor((i+phase)/16)==0) 
g01(i)=0; 

end 

treal(h1); 
g11=g11/n0; 

11  r i=1:length(g11) ' if -((i+phase)-16*f1oor((i+phase)/16').=4gY 
g11(i)=0; . 

end 

11: . since these are all the same size the code could be simplified a lot 
s =0; / 
for k=1:length(g21) 
sum=sum+nO*nO*g21(k)*conj(g21(k))+dO*nO*g01(k)*conj(g01(k)); 

Ild 
s m=n0+a*a*sum . 
factor1=(1+1/n0); 

lictor0=(1+a*a/n0); c-cor2=(1+a*a/n0); 

%compute the numerator of the equalizer 

Il
11

=conv(nO*g11,receive(1,:)); 
=conv(g01,receive(32,:))/factor0; 

é2=conv(g21,receive(2,:))/factor2; 
um=e1-e2-e0; 
um=enum/n0; 

%compute the denominator 

lien=factorl*(conv(conj(fliplr(g11*n0)),g11*n0))- onv(conj(fliplr(g01)),g01)/factor0)- ... 

_mulation pz 
ta=pi/2; 
_Ululation parameters 
ta=pi/2; 

the strength of the interference 
signal-to-noise ratio 

lend 
li 
i5L=real(h2); 

. .. • . 

g21=g21/n0; 
f i=1:length(g21) 

i f -((i+phase)-16*floor((i+phase)/16)==0) 
g21(i)=0; .. end 



- 

1/É 1=eden(floor((length(eden)+1)/2)); 
. 1=(factorl-mse1)*(factor0); 
, 1=n0+a*a*nO*nO*msel 

11( 

1 .•=enum/eden is IIR, not FIR • 
ft(enum,4096); 

!efft(eden,4096); 
u./v; %, fft of the equalizer transfer function 
L'ft(transmit(1,:),4096); 
u. v; i 

.Z=fft(transmit(32,:),4096); 

11  0=fft(transmit(2,:),4096); u.*w2; 
u. *w0; 

back to the time domain 

iii [ 
=ifft(u,4096); 

ifft(w1,4096); 
/ ifft(w0,4096); 

li
v2=ifft(w2,4096); 

'nfactor=max((w1)) . 

, -wl/gainfactor; 
/gainfactor; 

Irr0=w0/gainfactor; • 

I

tl

-w2/gainfactor; . 

_ t(-200:200,center(real(w1),401)); ' 
1 d on; 
plot(-200:200,center(abs(w0),401)); 
- t(-200:200,center(abs(w2),401));. 
f igure ready' 

_id lira off; 
gure 

u =8.68*log(abs(fft(u,4096))); 
v=8.68*log(abs(fft(receive(1,:),4096))); 

II 

ot((0:(length(u1)-1))/length( )) U1),u1,'g-',(0:(length(u)-1/length(u),v,'r-'); 
abel('dB') 
I abel('relative frequency') 
title('Receive MSE equalizer with/without interference'); 

I
Ilis(10 1 -50 50]); alculate mean squared errors 
w=abs(fft(eden,4096)); 

emse=0; 
edfe=0; 
r i=1:4096 
msemse=msemse+1/w(i); 

Il
msedfe=msedfe+log(l/w(i)); , 

d;  emse=msemse/4096 

. 

msedfe=msedfe/4096; 
edfe=exp(msedfe) 

11 
zzz=('NO = ' num2str(nO) ' MSE = ' num2str(mseu(msemse)) ' a= ' num2str(a) ' theta = ' num2str(18 

Ilnter location' ext(zzz); 

II spectral factorization roots inside UC 
inding spectral factors' 

r=roots(sample(eden,16,0)); 
P=[]; 
Ilri=1:length(r) 
if abs(r(i))<1 
P=[P r(i)]; 

end 

II 
d • 
huffle the roots before multiplying again 

for i=1:length(p) 
j=l+length(p)*rand; 

I f j<=length(p) 



Il P(i)=P(j); 
P(j)=temP; 

nd 

II 

ke it a row vector 
.  
. us=poly(p); 

ill
infactor=eplus(1); 
us=real(eplus/gainfactor); 

li=zeros(1,floor((length(eden)+1)/2)); i=1:length(eplus) 
2 1+16*(i-1))=eplus(i); 
,nd 

Ill
lus=ep; 

71
e,
7:::::h m:

alc
te(17q 

t
, :
ons 
0u9a6 1) i

bove 
zer frequency response 

rpeat the culai a .  

le% lse response from main channel 
1W0=fft(transmit(32,:),4096); 

4  
4  =fft(transmit(2,:),4096); 

=u.dw2; 
11( d =u.*dw0; 

. 
*  

% back to the time domain 
ilifft(u,4096); 
- =ifft(dw1,4096); 
cw =ifft(dw0,4096); 

I dw2=ifft(dw2,4096); ' 
linfactor=dw1(1)  

=dwl/gainfactor; 
r  (170=dw0/gainfactor; 
I dw2=dw2/gainfactor; 

/gainfactor; 
ure 

plot(-200:200;center(real(dw1),401));  
lir 

)) 
on; 

r t(-200:200,center(abs(dw0),401; •• . 
_ t(-200:200,center(abs(dw2),401)); . 
grid 

 '- a/gainfactor; 
figure ready'  

hold off; 

lure 
=8.68*log(abs(fft(u,4096))); 
8.68*log(abs(fft(receive(1,:),4006))); 

plot((0:(length(u1)-1))/length(u1),u1,'g-',(0:(length(v)-1))/length(v),v,'r - '); 

zzz=['NO = ' num2str(nO) ' MSE = ' num2str(mseu(msedfe)) ' a= ' num2str(a) ' theta = ' num2str(18 
'enter location' 

Ilext(zzz); 

numdfe=conv(enum,eplus); 
- ft(u,4096).*fft(eplus,4096); 

li 

IllabelUdBq 
x-abel( relative frequency') 
title('DFE equalizer with/without interference'); 

Ilis ([0 1 -50 50]); me 



t 
verts from biased to unbaised MSE 

] =1/B-1 
= /(1-b) 

1 

. n 



I 
 turns n values of a pulse cencrea ac origin to center or screen 
rmally n is odd 

. oor(n/2); 

IIIb((length(b)-m+1):length(b)) b(1: (m+1))]; 
gd 
II 
si 
Ii  
li  
II 
I I 

, • • 'e . • 



. • 

• 

I'nted 17:39 22 Jan 97 

ample: samples a fun Motample: samples a function so the middle is included 
nction [output]=sample(a,k,offset) 
dle=offset+floor((length(a)+1)/2); . 

=middle-k*floor(middle/k); 
(mod==0) 

11 
 d=mod+k; 

— . :or (i=mod:k:length(a)) 

lirutput=[output a(i)]; - 

Ii  
Is  
h i  

I i  



II re ) k=1:32 

Ir kk=1:32 
if (k-=kk) 
z=sample(abs(conv(transmit(k,:),receive(kk,:))),16,m); 
plot(z) 
hold on 

1 

  end 
d 

off 

re 

II 

li  

1 



ecks the output from the bauer program 

lidecause MATLAB doesn't do 3d matrices, must fudge it results.dta 
- esults(1); %order of the matrices 
- esults(2); % the number of matrices 

II:ted 10:33 23 Jan 97 ecks the output fro 

Ill
Ili

kkk=0:(m-1) 
=['b' num2str(kkk) '=zeros(3,3);' 3; 

eval(s); 
for kk=1:n 

for j=1:n 
s=rb num2str(kkk) '(kk,j)=results(k);']; 
eval(s); 

III  k=k+1; 
end 

nd 
 

li 

s= [s ' +b ' num2str (j ) ' *b ' num2str (j -kk) ' " ] ; 

I

nednd 

k 
11 eval ( s ) 

kk=0:(m-1) 
=f ]; 

I for j=kk:(m-1) 
if (s==[]) 
s=['b' num2str(j) '*b' num2str(j-kk) ""]; 

II else 

1 1 
1 
1 
1 

1 
1 

1 



STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN 
MOBILE SATELLITE AND MOBILE ENVIRONMENTS: 

3d. ZERO FORCING, MINIMUM MSE AND DECISION FEEDBACK MULTI-USER QAM 
RECEIVERS 

W F McGee 
Contract: U6800-6-1604 

13 March 1997 

ABSTRACT 

This report is a progress report of work towards milestone 3 of this contract. In a previous report we studied 
VSB filter banks. Here were study the same filterbanks used for quadrature amplitude modulation (QAM). 

The reason for comparing QAM and VSB filterbanks1s that, if the 'phasing.  between channels cannot be 
maintained in a VSB system, the interference between adjacent channels is very like that of a QAM signal. 

The results indicate that QAM MSE receivers are different in philosophy from VSB MSE receivers, in that 
the bandwidth of the receive equalizers is not constrained to the bandwidth of the channel being received, 
but includes all the channels. 

A decision feedback design based on whitening the output from a MSE equalizer has been analyzed. The 
performance is good, if timing synchronization can be maintained. 

The theoretical foundations for the study have been made and are presented herein. 

This work is of peripheral interest for the project since QAM signals are not as useful as VSB signals; their 
envelope fluctuations are larger. The report does document work that may be useful in some other context; 
perhaps OFDM. 

.An appendix shows how to design M/2 channel M-band filters if a, good M-band design is in hand. 

1. THE DIFFERENCE BETWEEN QAM AND VSB SIGNALING USING FILTERBANKS 
. . 

When QAM signals are sent through à aferbank, each complex QAM signal Qi(zm) is applied to one 
channel of the filterbank at a rate 1/M, where M is the number of complex channels. Thus, the transmitted 
signal is the sum of M filtered QAM signals. In the receiver, the received signal is passed through a receive 
filterbank, and the M different outputs are sampled every M samples. 

In contract, for VSB filterbank Ts, each of M real input sequences is applied at a rate 2/M to each complex 
channel, and the real part of the output is sampled every 2/M samples. 

When VSB filterbanks are properly designed and phased, there is no intersymbol interference for each 
channel, and there is no crosstalk between adjacent channels, because the crosstalk is purely imaginary at 
the sample times. The root-Nyquist prototype filters may be designed so that there is little crosstalk between 
channels that are further apart than the adjacent channels. 

For QAM signals, on the other hand, when the same root-Nyquist filters are used, there is no intersymbol 
interference in the channel, and little crosstalk between channels that are not adjacent. But there is adjacent 
channel interference. However, since it may not be possible to maintain the phasing between adjacent VSB 
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channels in a multi-user environment, there is interest in comparing QAM and VSB signaling when there is 
no phase coordination. 

Much may be learned by considering the minimum bandwidth filters required for pulse communication. 
Assume that the filter passband is not split. Then, if the spectrum of the real VSB input signals at rate 21M 
real symbols per seconds examined, it is clear that to recover the input with a narrowband filter the 
bandwidth may be as small as 11M, but the position of the passband must be from Ic/M to (k+1)/M, where k 
is an integer. On the other hand, for complex QAM symbols at rate 11M, the filters of the filterbank may be 
anywhere, and the bandwidth must be 11M. Thus, let us considered QAM filterbanks where the filters are 
the saine as those used for VSB filterbanks, i.e., with the 3-dB crossover frequencies at k/M and (k+1)/M. 

Consider some special sequences. In particular, examine what happens when a steady signal 1 is sent on 
both channel 0 and channel M-1. The VSB input is a 1 appearing every M/2 samples, and has harmonics 
equally spaced about the unit circle at frequencies that are multiples of 21M. The dc signal generated from 
the input to the M-1 st channel is discerned from that àf the symbols of channel 0, in the receiver, by 
insisting that there be a 90-degrees phase shift between them at this frequency, and this allows the two 
symbol sequences to be discriminated. If the 90-degrè'es'phase shift is not »maintained, then the 
discrimination is not maintained, and the two detected symbols may destructively interfere with each other. 

For QAM, on the other hand, because the samples occur only every M samples instead of M/2 as for VSB, 
there are harmonics at dc and equally spaced about the unit circle at frequencies that are multip.  les of 11M, 
each of magnitude 11M. In particular, the channel in question will have two harmonics, which, added 
together, form the recovered symbol 1 again. 

Now consider crosstalk from channel M-1. Because of the restricted bandwidth assumed for the filters, only 
the tone at 0-frequency is passed by the transmit filter for channel M-1; the other tone at (M-1)1M  is not 
detected by the receive filter for channel 0. With no phase coordination between adjacent sidebands, the 
worst case would be a 45-degree phase difference, when the interference in the I channel would be as much 
as 12/2 when the Q channel interference would be zero. 

Thus, the worst interference from one adjacent channel in QAM systems that are not phase aligned is 3 dB 
less than the corresponding VSB system. 

2. MSE LINEAR RECEIVER FOR MAXIMALLY DECIMATED QAM SIGNALS 

In contrast to the VSB filterbanks, all the transmitting channels must be included' inthe definition of the 
mean squared error. Therefore, consiaèqd input data sequences » Qi(z11) acting on M input filters or 
equalizers [we use the two ternis inteichangeably] 1-1 ;(z); the transmitted signal is 

Qi  (z m  )Hi (z) 
i=0 

Furthermore, assume that the filterà H 1(z) are frequency shifted versions of a prototype filter P(z) with the 
polyphase representation 

P(z) =1,z -  r Pr (z m  ) 
r=0 

with 

11, (z) = P(W l z) 
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and therefore 

On the other hand, 

so that 

p(e prnm ) = _Me  2 ie 

. 1 Pk (1= e 0' )= 

and 

W = e - '121rIM  

is an Mth root of unity. The filter Hi(z) is centered at the frequency ifM. P(z) is a lowpass filter that meets 
the requirements for a root-Nyquist filter and with 100-percent or less excess bandwidth. This means that Hi  
and Hi, do not overlap; their product H1(z)H i+2(z) is essentially zero, where zero is defined by the stopband 
loss.. 

Note that 

M-1 

1-1; (z) = 1,147--e z -k  Pk  (z m  
k=0 

z -k (zm ) 
1 M-1 

TT /•_\ 

" 1-4 / kZ)  

We can establish thnt 

H J (l = e 1° )= ..17-116 

' • • 1. M p• e j2e112M. ••-•• fir , .j2e121d r , 
) — s.‘e e — —Le + e -e M ' 

1 .\iM j-j2Irkl2M 
[e

j0+ j2irkl2M +- 
e
- e-penm e j2e12M 

M 2 e  

= cos'(0 + 27rk / 2M) 

For any frequency between 0 and 1/2M, in fact 
ie 27ei  pk  (ei2nef = 

• 713` '221 [1-10 (e'2  )+ m  Hi (e' )] 

and therefore, for linear phase P(z), 

'1133/ 1  113k (e 2  ' )1 2  =—m2 OHO  (e i2ef  )1 2 +1H1  (ei2ni )1 2  +21H0  (ei24  )11H1  (e 2 )1cos(20 +27ck / M)] 
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where 20 is the phase angle between HO and HI, which may be easily determined for a linear phase filter. 
For example, for a length 256 filter, with M=32, this phase angle is 

20=2r/ M. 

IPk12  thus has a more or less universal shape for various k, since it is only the cosine factor which depends on 
k, and, in addition depends only on Ho(f) since in this frequency band 

1 

 

H0  (e 12e )12  +1H1  (e 12  )1 2  = M 

The matched filters for the receiver are  H(z) are the polynomials Hj with the coefficients conjugated and z 
replaced with 1/z, thus, 

HJ. * (z)  , k • k =0 . '''' • '' 

• 

Z k Pk (1 I Z M  ) = — EW — fk  I I i*(Z) 

Under the polyphase assumption, the transmitted signal may be represented as 

m_. 
Qi (z m  )Hi (z) 

• 
m -1 

=1,Q1 (z m  )P(147' z) 

f -1M-1 
= z -r14 -ir  Pr  (z m  )Q;  (z m  ) 

1=0 r=0 
M-1 M-1 . 

= EZ-r  Pre (Z m  
• r4 i=o 

Noise is added to this signal and this reCeived signal R(z) is passed through an eélualizer E(z) for channel O. 
The equalizer for the other channel Willâtiy syinmetry, be E(Wiz) but we only consider the design of the 
single equalizer. Suppose that there is a pblyphase expansion of the equalizer E(z) given by 

A4.-1 
E(z) = Z.Zr E r  (Z e  ) 

r=0 

If the variance of the white noise is. No , then the noise power of the complex signal at the output of the 
equalizer is just No  times the sum of squared absolute values of the coefficients of E(z), the sum of the sum 
of squared coefficients of the polynomials Ei(zm). 
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4\75 11.n 

DFT  

noise 

Poe)  z-i, 
P (zM)  1 -1 / 

V Z 

V z 

Foe ) 

E-7e) 
IDFT 

Figure 1Complex (e.g. ±1±j) data is presented to the input DFT matrix. The M outputs are passed through 
the filters Pk(zM) and then added, with the appropriate delay to form the transmitted signal. At the receiver, 
the equalizer is represented in its polyphase representation. The outputs are sampled. 

As far as the signals are concerned, the above may be replaced with the simpler equivalent circuit shown in 
the next figure. 

Qie 

eaao 

• IDFT 
DFT 

' 

PM-eA  

Figure 2 Equivalent circuit to Figure 1Complex (e.g. ±1±j) data is presented to the input DFT matrix. 
The M outputs are passed through the filters Pk(zM) and then added, with the appropriate delay to 
form the transmitted signal. At the receiver, the equalizer is represented in its polyphase 
representation. The outputs are sampled. 

The problem of minimizing the mean squared error in the first (the Oth) channel at the output is a standard 
problem[1] in noise theory. The output sequence is the sum of the samples of the noise passing through the 
equalizer E(z) and 
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II 
II 
II 
I I 
I I 
II 

that is, 

E k  Pk*  / (N o  + MPk  Pk*  ) 

M-1  
Qr  ( z M ) e irk2e m pk(z M )E k  ( z  M ) 

r=0 

If we use the notation SS to represent the sum of squared magnitude of coefficients of a z-transform, then 
the mean squared error is 

MSE = No  SS(E 7.) 
r.o 

+SS(1—l i  Pk E k ) 

M-1 
-FE SS Œf  Pk  E k e i2ern  ) 

r=1 

and the problem posed is to determine Bk to minimize the mean squared error MSE. In this analysis we 
assume that the mean squared value of the transmitted symbols is unity. And the mean squared error is the 
sum of the square of fluctuations in the real and the imaginary received signal. 

The first term is the noise passing through the equalizer, which, for our purposes, we assume white with 
spectral density No , the second term represents the intersymbol interference in the channel under study, and 
the other terms represent the crosstalk from the other channels. 

For subsequent analysis we use the notation P*(z) to represent the polynomial  with z replace by 1/z, and the 
coefficients conjugated. . 

The minimization is done by taking partial derivatives with respect to Bk*  and results in the equation 

0=  N o Ek  
. • 

M-1 

which we rewrite as 

+P.:{ZPsE —1 ] 
' 

D*-j2erIM [E e j27nrsrl ,M E  pi 
. s Lr .fl,e c 

1=0 

0 = No E k  

— Pk*  
M-1 M-1  

+pk* z . e _;27,/,71.mr
Lz  e

prrsrl MEs p] 
r=0 1=0 

The sum on r is zero unless s=k, and so these equations imply 

No Ek  = Pk*  (1— MPk  E k ) 
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Consequently the equalizer E(z) is given by 

E(z) = Iz k  Ek  
k=0 

M' 
 

= Ezr  Pk*  I (No  + MPk Pk* ) 
k=0 

1 'I w-rk 
= 

M r-O k=0 NO +. MPk Pk* 
M-1 

t =IH,..(z)Vr (z m  

where 
: 

1 le-1 w-rk 
Vr(e) = 

M k.0 No + MPk (e)Pk.(1 I z m  ) 

When the noise is large, the MSE equalizer is the matched filter to the transmit filter, 

Ez k Pk* No 
 k=0 

and if P(z) is a FIR filter, So is the receive equalizer a HR filter, whereas when the noise is small the 
equalizer is 

l z k  MPk  
k=0 

which is, for P FTR, IIR. This is the prooi  of the theorem that is not possible to transmit QAM signal 
through a FIR transmitter and a FIR recéiver, in the absence of noise, without crosstalk interference. 

The last expression expresses the equaliz1e7  r qs,,a. sum of frequency weighed matched filters, each matched to 
the k transmitting channel. • 

These weighting functions Vi(zm) are clearly periodic about the unit circle, and satisfy some relations based 
on the fact that we are dealing with 100-percent linear phase filterbanks. In the appendix we show that, if 
the phase is linear, we have , 

Pk (z" )Pk.(z m ) = (z m )PM_I_k*(z m  

and because of the Nyquist property 

Pk(Z M  )Pk*(Z e  )+ Pk+MI2 (ZM  )Pk+MI2*(ZM = 2/ M 

and for linear phase and Nyquist 

Pk (Z M  ) Pk*(Z M  )+ PMI2-1-k(Z M  ) PMI2-1-k*(Z M  )= 2 / M 
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Il  
II  

II 
I I  
I I 
II 

thus 

For linear phase, therefore, we may represent V i(zm) as 

1 M-1  
V .(Z M  ) 

k=0 N 0 + Aek (Z M  ) Pk* (1 I Z m 
) 

1 M 12-1 w" +w-j(M-1-k) 
= -  

m k=0 NO + MPk (Z ) Pk* ( 1 I  Z M  ) 
M12-1 j(k-(M -1)12) + j(( M-1)/2--k)  

w- j(M-1)I2 "  
M k=0 N + MPk(Z A  )Pk*(1 I Z M  ) 

2 . M/2-1 _ cos( j(k +1 / 2)27t.  / M)  
M ,(743 NO.+. 1WPk(Z AI )P0(1 /Z AI ) 

The coefficients satisfy 

Vm_, (z m  ) V: (z m  ) 
VA,,, (z m  ) = 0 

Using the previous approximation for Pk, this may be written in term sof H0  and H 1  as 

M12-1 cos(r(k +11 2)27r M)  2  Vr  (e i2lrf  ) = -W-rM-1)/2( E 
k=0  N 0  +1+ 'Ho  (e-ne )11H1 (ai21. )1cos((k + 1 / 2)2,7c / M) 

which may be approximated by 

27r 

Vr ) W-r(M-1)12 
cos(r0)d0 I 27r  

0  N +1+ —2 I Ho  (e' )11H1 )1cos(0) 
' M 

This may be evaluated using the integral 
, 

,i• . 

r2g cos(r0) , de fir 1  
( 1) (  a  JO 1+ a cos(0) a 2 -\11– + 

Vr  (e Peel  ) 1 (-1.) r  ( a 
No +1V1_ a 2  1 _ a 2  + 1 

where 

12 a = IH 0 (ene )111-11 (ene )1 
N 0  +1 M 

Two frequencies are of special interest. When f is zero, H 1  vanishes, and so a=0, and all the V, are zero 
except for r=0. When f is 1/2M, H 1  and 110  are equal to each other and their product is a maximum and 
equal to M/2, so a is equal to 1/(N0+1). Thus 

'J r 
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117,(eil r 1 

j\IN: +2N0 1+ N0  + V2N 0 + N: 
1 

The phase angle is 

w-r(M-1)/2 (4)r = wr/2 

Let us now examine again the equation for the equalizer 

' M-1. 

E(z)=1,4,.(z)vi czm, ) • 

The factors Vj have been analyzed, and it has been determined that when j is not zero, they are zero at the 
frequencies 1/2M, and a maximum in absolute value at the interband frequencies.  between the kth and the 
(k+l)st translated response Hk(z) . and Hk+1(z). 

The mean squared error is given by 

1/2M 1
— 

 MSE = MSE S-1/2M 
dflt= N°  

M . =0 No + M-Pk  Pk  

No  Vo  (ei2em  )dfM 
1/2 

1-112 VÛ  (e i2ni )df — 

This is the so-called biased MSE[3,4], auF1 is related to the unbiased MSEU by 

1 1 
= MSE 

• 

The time has probably come tc# draw some pictures. 

ritLin 

J-1/2M 
I I/2M 
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0 1 /k4; freaUency f 

0  1/M 
fl M/2  HOH 

1 
a 
8 
1 

1 
1 
1 

1 
1 

1 

1 

1 
1 

aSiMr 
a) F-Ip H1 H2 

,L sqrt(M) 
sqrt(M/2) 

frequency f 

b) 

1/M 

2 
1 H1 1 

Figure 3 Typical frequency responses. In a are plotted the responses of the transmit and receive 
filters, showing the normalization that results in a received pulse of height unity. The crossover 
frequency represents a loss of 3 dB, as indicated. Part b shows the response of the overall channels. 
The bandvvidth is 1/T, the height is T and the area is unity as required. The third figure indicates the 
response of the adjacent channel filters. These are narrow, but have a fixed height, T/2. 

Examine the differences between the corresponding relationship for the mean squared error for VSB 
-signals. For the sake of argument, assume that,T=32 samples for QAM: 

Here is a derivation that does not explicrtly use polyphase components. 
• 

• I 

The mean squared error is 

.n013 

MSE = N( f)1E(f )1 2  df 
n•0•01 

1/2M 1 m-1 
F I 0 (f +m/ M)E(f +m/ M)-11 2 dfM 

—1/2M M '1n=0 
 ki-1112M 1 +1„ 1-2,Hr  (f +m/ M)E(f +m/ M)1 2del 

r=1  —112M IY1  M=0 

and the problem posed is to determine E(f) to minimize the mean squared error MSE. The first term is the 
noise passing through the equalizer, which, for our purposes, we assume white with spectral density No , the 
second term represents the intersymbol interference in the channel under study, and the last term represent 
the crosstalk from the adjacent channels. 
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The minimization is done by taking partial derivatives with respect to E*(f) and results in the equation 

0= No E(f) 
1 frf-1  +H0 *(f)[—IH 0 (f +ml M)E(f +ml M)—l] 

M ni=0 

* (f){±- 1Hr (f +ml M)E(f  +m/ M)]  
M 

Each of the expression in square brackets is periodic in f with period 11M, and we represent them by 10(f), 
2 •1(f), 2v2(f), and so on..'This equation may be written 

•• • 

. . 
0= No E(f)+1.Hr* (f).,.(1)'  

• 

À. 0 (f)=-1---tH0 (f +ml M)E(f +ml M) 7 1. 
M nz=0 

4(f)=-1-tHr (f +ml M)E(f +m/ M) for0<r1V1-1 
M 

The equalizer E(f) is obtained by substituting the first equation in the M following, resulting in M equations 
for the M unlcnowns 24(f), ;and then putting these equations back into the first to solve for  E(t). 

There is another important result that is obtained from the expression for E(f). Since the parameters 2t,1(f) are 
periodic in f, they may be realized with (perhaps infinitely long) 1-‘1R filters with delays M. Thus, when 
samples are taken at the equalizer output, this is equivalent to sampling the outputs of all the matched filters 

•and passing them to FIR filters with delays M [i.e. in zm]. 

These M equations are of the form . . • 

Â•o - G0,1(‘f)À.1(f)- G 1 A,f_1(f )4_1(f ).-1 

i(f) G1,2(f ) 2'(f) 

A . • 

À•A4-1(f) = — GA4-1,m,24_2(f) — A4_1(f) —  Gm-i,o(f) 2,0(f) 

i.e., 

/-1.\ /1+ Go, o (f) Goa  (f) A Go , m _ 1 (f) \( À. 0 (f) 
0 G10 (f) 1+ G1 , 1 (f) A 0 2, 1 (f) 

A A A A A A 
0 j Gm_i,o(f) 0 A 1+ Gm-i,m-i („f),Am_i(f), 

where 
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(11G0  
—1 11G1  

Gi,;(f). 
MATO 

EHi(f+m/M)Hi*(f+m/M) 
ni  

* (f) 

We rewrite these equations as 

(-1\ 
O 

=FA  
A 
0 ) .. 

We have made use of the assumption that the product'of transfer ftinctioni He.;  of non-adjacent channels 
(i.e.  Ii-j1>lis zero. 

If we neglect the amplitude and phase of the channels, then the matrix  T  is circulant and Toeplitz. 

Being circulant, it is diagonalized by the DFT matrix D, where DDH=MI. 

Thus, 

D 
or = 

GDH  m 
(-1\ 

O  DGDH  A 

-  • '...». —1` r 
D HA=G 7...1,D H  O  

I 

=G-1  
A 

1/GAi_1 ) 
where G is a diagonal matrix whose elements G i  are the DFT of the first column of the circulant matrix 

M=1 r 
'2-22r/M Gr  = 1 , I — e -i r k 2 e m — 1+G +eir22r/M G +e-' G 0,0 1,0 M-1,0 • 

r=0 

The design equation for the equalizer satisfies 
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E(f)= — ( 11O(f) 11.:(f) A H *A1 -1(f ))A 
( 1/ G0  

1  = (DH) 
11 G1 

 L A j 
/ 

( 11 Go  \ 
1 11Gi  

= —(H0*  (f) His  (f) A Hm* (f ))D 
M A 

: • 

and we can interpret the factors Vi  as Fourier Transforms of the function 1/q. 

3. DECISION FEEDBACK EQUALIZATION 

The improvements that result with the use of data decisions from the channel and the two adjacent channels 
is a complicated problem, and has been solved by Kavehrad and Salz[2]in another context. But first, we 
consider a simpler approach, in which only that decoded data from the channel itself is used, and this 
approach is based on the use of a prediction filter to whiten the error sequence resulting from the MSE 
equalizer. 

Since 

I/2M 
MSEm sE  S-112M dfr  

( ,14-1 _ y  No 
m N0 +MPk Pk* J k=0  

u2m .27ifm =LinfrI NQ,V0 (e' )dfM 
r 

1/2 
= oo  e i2ef  )4f 

LI/2 
 NV( 

• 
. i.' we have the mean squared error with a spectrum 

1'1 No  MSE(f)= m k=0 No  + MPk Pk*  
.= No  Vo  (e i24214  ) 

and this is the power spectrum of the deviations from the transmitted sequence of the output from the linear 
minimum MSE equalizér. 

A spectral factorization of the denominator is of the form 
1 / [No  Vo  (z)] = Ao  (1 + )(1 +B_)= Ao n(i_z-iz i )no_z/zi) 

1z11< 1 izi>, 
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1nnn•n1 Decision 

output 
Decision 

C+ outputs of 
adjacent 
channels D+  

received 
signal E(f) 

where 1+B +  is causal and 1+B. is anti-causal. If the output of the MSE equalizer is followed with the 
equalizer (1+B +) the resulting sequence will have an error sequence that is white and the mean squared error 
is 1/A0 . This is equivalent to the following DFE structure 

output 
E(f)(11 ) 

Figure 4 Decision Feedback Receiver. The causal filter B+ whitens the error sequence from the non-
DFE equalizer E(f) making the sequence spectrum.white. The decision feedback removes the 
correlated part of the signal that results. 

r 

The mean squared error for the decision feedback receiver is less than that of the MSE receiver[1] and is 
equal to 

1/2M 

MSEDFE = exp[M ln(No  170  (e 12nfiù  ))df] 
-112M 

This expression may be derived without spectral factorization, but is a useful check on the factorization. 

4. VECTOR FEEDBACK 

With vector feedback we assume that we have access to all the previous received digits of all the channels. 

Figure 4 Vector Feedback. In Figure 3 only the decoded output from the main channel is used for 
reducing mean squared error. In this model, all the relevant adjacent channel decoded data are used. 

With a mean-squared error design criterion, the goal is to minimize 
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where 

Thus 

0 

A 
1±  çm_1,A4-1 (i)A41(f)) 

A 

MSE = Ar(f)1E(f)1 2  df 

1/2T 1 
—1,H 0 (f +m 1 T)E(f +rrt 1 T)— (1+ C o÷ (f))1 2  dfT 

1/2T T 
1/2T 1 

+/ 1-111,(f +mIT)E(f+m1T)—C R,(f)1 2 dfT 
r#0  -1/2T T 

where Cr, are causal and have only positive exponents of i l  

Cr,+ = Cr,kZ -k  
k=1 

When the partial derivative with respect to the equaliZer É is taken we find that 

M- 1 

0= N0E(f)+IH,* (f)À 5.(f) 
r.o • 

o(f)= -;-. 1[Ho(f m I T)E(f I n— ( 1 + Co,+ (f)) 

1 .1.,(f)=—I[Hr (f + m I T)E(f + m I Cr,+ (f) for r # 0 
T 

1-1 — CO3  .\ 

A 

where 

+ G0 ,0  (f) 90,1 (f) A -' (f)  Y  2i. 0(f) 
G10  (f)7. 1+  G11 (f)  A 

A 's A A 
Gm_o  (f.1„ Ô A ' 

Gi , i (f)=  Ail-N ZHi (f +m/ M)Hi  *( f +m/ M) 0   

A+  =FA. 

where the subscripts + and - indicate that there are only positive or negative powers of z 1  in a particular 
vector. For our application the matrix I-  has real and constant, but probably unequal, diagonal terms since 
we are dealing with Nyquist channels. The off diagonal terms are conjugates of each other and therefore the 
matrix is Hermitian on the unit circle. 

Equations of thus type may be solved by spectral factorization[5] of the matrix r=ri.r. 
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0 
A 
0 

(FF f1  

Then there is a solution if we can find a constant vector K such that 

A +  = F+K 
K = F_A_ 

so that the dc coefficient of the second component of A+  is -1, and of the second and third components is 
zero. If we write the dc component of r+  as r.ko, then 

(-1.` 
o  

K = F+0 -1  

0 • ) 
(- 1\; 

° A = F,F+0 -1  A  ,.  

\ (I)  ) 

0 
A =r-lr 

A 
0 

As in the Appendix, the mean squared error for this equalizer may be calculated. Here, however, when the 
calculation is performed, we recognize three terms in the integral. The first is 

À, (f)1 2 (1+ G1,1 ) + 2.:ei  (G1 0 .2  + G1,2 2,2) = X ) 

12.2 ( f)1 2 .(1 --E"' G22)+ 2:22,1G2,1 =  

The second is The second is 

and the third is " . 

14(f).1 2  (1.:-I-G00 )+À;2, I G01  =2 2 (-C.,.) 

Thus, the mean squared error is 

r1/2T 
• 

- –,1/2T A - H(f)A (f)d.fr 

But notice that this simply is the negative of the dc coefficient of Xi , which we label 2n0_0  , since A_H  has only 
positive terms, the product has only positive terms, and the integral of all but the dc term will be zero. This 
may also be seen by considering 
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(- 1\ 
o 
o 

) 

Al!A + =(-1 o o o)HrTHr+r,-4; 

=(-1 o o 

o 
(1\ 

o o o)(r„no ) -.1  

\0) 

.(1 o o o)(r+o r,H0 ) -1  

0) 

5. EXAMPLE 

We have calculated the performance and response of a system using a 32-band prototype linear phase filter 
derived from the MPEG filter coefficients. 

First, note that if a pulse has zeros at multiples of time M, at times kM, its transform satisfies the Nyquist 
- ,criterion - 

EH(W k Zj 

 

=0  
k=0 

, 
• • . •,. 

which states that the sum of shifted transftems is zero. 

What the MSE QAM equalizer E(z) appears to be doing is the following 

1. Maintain zeros crossings in P(z)E(z). 

2. Minimize noise. 

3. Force the crosstalk transfer functions to satisfy the above relation. This is done by making the crosstalk 
transfer functions asymmetrical in frequency about the frequencies (k+1/2)/M. This makes the envelope of 
the crosstalk small at sampling times. 

The problem with this strategy is that if the crosstalk from the adjacent channel is so minimized, the 
symmetry will allow crosstalk from the second chatinel, and so on. Thus the equalizer becomes very 
broadband. 

M-1 

17 



. '0.8 

0.6 

0.4 

0.2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

TABLE 1 Mean squared error for QAM communication system with adjacent channels at equal level 
vvith various equalizers. There is no channel coding. The phase shift between channels is zero. The 
noise is 7 dB below the signal. 

System Relative Level Phase shift Mean Squared 
of adjacent (degrees) Error 

channels (Unbiased) 
(dB)  

Baseline _. 0 0.2 (7 dB)  
Minimum Mean Squared Error 0 0 0.2434 (6.27 dB) 
Equalizer  
Single Decision Feedback 0 0 0.2001 (7 dB) 
(Main channel only) ' 

The calculation of the factors Vk(z) is shown in the Figure, and it ag,rees well with the theory. The equalizer 
response, in the next figure, is dramatically different ,from.,the VSB equalizers of the  previous reports. The 
mean squared error is so good with the equalizers that there appears to be little point to using vector 
feedback. 
1.6  

1.4  

1 
1.2  

n11 

Figure 5 The absolute value of the factors Vk(f). In 'real' frequency these are periodic with period 
11M. Thus, all the factors except the first have a zero at frequencies IdNI, and they associate a 
weighting near the mid-band frequencies (k+1/2)/M. The Vk's alternate in sign. 
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0.9 

r-1 

Equalizer frequency response 
50 

0 

-a 

—50 

0.1 0.2 0 3 0.4 0.5 0.6 0.7 0.8 
relative frequency 

Figure 5 The frequency response of the QAM equalizer for the channel centered at 0 frequency. This 
is what the noise sees. In order to understand the effect of this equalizer on the signals, it must be 
convolved with the transmitter transfer functions for each chànnel - in turn. 

6. CONCLUSIONS 

QAM multichannel communication is fundamentally different from the VSB designs previously considered. 
The equalizers are broadband, not narrowband, and, especially with decision feedback, appear to offer good 
performance. But this is accomplished by malçing the crosstalk envelope ring in time, and so timing is 
important for QAM systems; we have argued that it is not critical for adjacent channel interference in VSB 
systems. 

We have not studied the effects of phasing between the channels. 

In this report we have a (relatively) simple transmitter and a (relatively) more complex receiver; many times 
this may be reversed and a more complex transmitter be coupled with a simpler receiver. This is of 
particular interest when the relative cost of transmitter are significantly different; for example, in an earth-
satellite link. 
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APPENDIX 2 PROPERTIES OF THE ELEMENTS  

The report makes us of the elements Gij. Here we obtain some properties. 

From  the definition 
1 

Gi ,i (f).------,EH i (f +77 I T)Hi *(f +rn I T) 
TN°  

Gij * 
• 

= 
• 

Since Gi,j=0 if Ii-jl>1 there is just one canonical response given by C(f)=G0, 1 (f) when j-i=1, and another 
A(f) for j-i=0. Thus the matrix 

(1 + G0 ,0  (f) God (f) A Go,m_, (f) (1+  A(f) C(f) A C * (f) 
G1 , 0  (f) 1+ G1 , 1  (f) A 0 C (f) 1+ A(f) A 0 

A A A A A A 

(f) 0 A  1+  GLA_ "1,M-1 (f)j AO A C * (f) 1+ A(f) 1  \, Gm-1,0  

These would be the correct analysis if the channel transfer functions were unity. 
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• 

In the communication system under consideration, the transfer functions are due to half (or root) Nyquist 
filters, with an additional gain A, phase Oand delay T. Thus, a root Nyquist filter with a channel 

A i ej°' e 

These should be included in any more detailed analysis of system behavior. 

APPENDIX 3 

More Properties of Polyphase Components of 100-percent half-Nyquist Prototype Polynomials 

In this appendix we recall some more properties of polyphase components. It amounts to showing that, 
given an M-band prototype filter with restricted stopband loss, we may generate M/2 band filter by taking 
the even or odd numbered coefficients. 

• 
First, note that P(z) is a lowpass polynomial. In the frequency domain, since the excess bandwidth is 100 
percent, the stopbarid starts at the frequency 1 1M, and extends to -1 1M. The 3-dB frequencies are 1/2M and 
-1/2M. 

• 
The Nyquist property means that P(z)P*(z) has zeros spaced M apart except for the coefficient of z °  which 
is unity. In terms of the polyphase components this means that 

E-Pk(zM)P,..(e)=1 
k=0 

. , I , 

Consider the polynomial Q(z2) formed by taking the even coefficients of P(z). Thus 

• .. Q(z 2 )  .  P(Z)+ P(— z)  = 1--.  P(z)+ P(— z)  
2 .. 

I We argue that if M is 4 or more, then Q(z) is •  M/.  2-band  100-percent half-Nyquist filter. . , .  .. 
This follows because , . •..;,. , 

, 

I Q(Z 2 )Q(1 / Z2) . 
[( n) + P(—z)] [P(1 / Z/3  ) + (-1 / z)]  .  

2 , - 

1 =  P(z)P(11z)+P(—z)P(-11z)+P(z)P(-11z)+ P(—z)P(11z)  
2 1 

P(z)P(11 z)+ P(—z) P(-11 z) .--_ I . 
2 

The third line follows because P(z)P(-1/z) has the same magnitude on the unit circle as P(z)P(-z) and this 

I 
will be zero since the stopband of P(z) overlaps the passband of P(-z). This holds for M that is 4 or more. 
For M=4, the stopband of P(z) is at 1/4, and the stopband of P(-z) is at 1/4. This does not hold for M=2 [M 
must be even.]. 

I The last line is just the even numbered coefficients of P(z)P(1/z) which has zeros at time samples M/2, and 
thus Q(z) is as required. 
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Note that we may take the even or odd coefficients. 

Starting from, for example, a 32-band filter prototype we generate at 16-channel, and 8-channel, a 4- 
channel and a 2-channel filter by taking respectively even second, every fourth, every eighth and every 16th 
coefficient of P(z). If we had taken every thirty-second coefficient we would have the polyphase 
components. But the polynomial formed with every 16th coefficient is just 

M  R(z) = 2  )+ z -1 PAI12(z 2  ) 2 
and this is a half band filter, thus 

R(z)R(11 z) + R(—z)R(-1I z)  .1  

that is to say 

Po(z inPos(e1 )+ Pm/2(z m )Pm/2.(z m ) = 2  / M 

By making the other decimation choices, one can show that 

Pk(Z A  ) PC ( Z ill Pk+MI2(Z A  ) Pk+MI2*(Z ef  ) 21 M 

If, in addition, P(z) is linear,  phase of order D, we have 

P(1I z) = zD  P(z) 

thus if D is one less than a multiple of M 

Pk (z" )Pk.( z m ) = (el  ) (z m  

• • 
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN 
MOBILE SATELLITE AND MOBILE ENVIRONMENTS: 

3e. MINIMUM MSE AND DECISION FEEDBACK MULTI-USER RECEIVERS USING 
SPECTRUM CONTROL 

W F McGee 
Contract: U6800-6-1604 

18 March 1997 

ABSTRACT 

This report is a progress report of work towards milestone 3 of this contract. It records the calculation of 
optimal receivers for coded VSB signals. The coding in question is channel coding using, for example, 
partial response codes. . 

Such coding is useful in the system under study, because the interference from an adjacent channel, with the 
worst data sequences, may completely close the data eye; in fact, just one adjacent chanhel may close the 
data eye. We have previously found that the performance improvement will be more as the transition 
bandwidth between adjacent channels is less, that is, if the excess bandwidth is reduced. 

The purpose of this report is to record the details of the theory that have been performed, which allow the 
design of the equalizers for such a receiver. But the detailed design work has not been done. 

The case of the minimum Mean-squared error equalizer is different from our previous studies[6], but we 
indicate an equivalence between this problem and the previously studied problem to use the earlier results 
with a few changes of notation. The reason, basically, is that a decision feedback or vector feedback 
receiver can undo the spectrum control coding, turning what would be a three-level signal back to a two-
level signal. 

It should be mentioned that these equalizers are often front ends for Viterbi receivers since the error 
.sequence is white. Further, it should be noted that the same theory.applied to filter bank systems using 
staggered QAM modulation. 

1. CODING-FOR SPECTRUM CONTROL 

The power spectrum of random data.felideo be flat. However, if corrOation is introduced into the data 
sequence, the power spectrum is not flat; most often, the correlation is deliberately introduced to create 
spectral nulls[3]. This spectrum control is essential for certain technologies, for exàmple magnetic 
recording, and in baseband transmission when dc transmission is not feasible  due  to transformers, such as 
balanced telephone lines. 

For filterbank applications in which the adjacent channels may not be phased properly, it is an option to 
consider spectrum coding that introduces à spectral null in the transition band of the channel filters, since 
this will create a null in the crosstalk transfer function at mid frequency. 

For this work we use a definition of message spectrum M(f) of a stationary data sequence {B k } given by 

k e— j2nfr 

rnk  = E(Bk B0*  ) = E(Bk+1 13';‘)= m*  k  
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HO(co) 

H1 (o)  

H2(Œ1)  

noise 

E(co)  

2 

For a random sequence of uncorrelated binary digits {-1-1,-1}, the message spectrum is unity. 

Alternatively, the message spectrum is 

M (Z) k Z -k 

where z=ekù , 

The message spectrum of a data sequence that has passed through a linear filter H(z) is 

M(f)I H(f)1 2 . 

[We abuse notation and set H(f)=H(ei 2e).] 

For M-channel VSB filterbank applications, an attractive spectrum control is achieved by passing a random 
sequence with the filter 

(1 —z -m )/ 2 

producing the message spectrum with random input data of 

M(z) = —0.25z m  + 0.5 — 0.25z -m  

which produces zeros at the frequencies . , 

r, 27r 47r 27r(M - 1) 27r 
M M M 

. •and results in duobinary line coding. 

2. MSE LINEAR RECEIVER,FOR MAXIMALLY DECIMATED CODED VSB SIGNALS 

Three coded data streams are presented to «filters with responses H0M,H1(c1)),E12(0)), added together. Noise 
is added to the combination, and an equalizer E(o) to minimize the mean squàre difference between the real 
part of its output and the input sequence to the filter H1(co). 



Figure 2.1 Correlated data is presented to the input equalizers. The equalizers include channel gain, 
phase and delay, on a per channel basis. After an equalizer E(co) we try to determine the digits sent 
through the equalizer 111. The filters without the channel gain, phase, and delay, are assumed to be 
those of adjacent channels of a VSB multi-channel communication system with no intersymbol or 
interchannel interference, and with restricted bandwidth. If there were no channel delay or phase 
shift, the performance would be optimum with an equalizer matched to the transmitted pulse shaping 
filter Hl. 

A coded system like duobinary has an inherent 3-dB performance loss. There is a 6-dB penalty because the 
distance of the signal to the decision level is reduced by hall, and a 3-dB increase in performance because, 
if the coding is done in the transmitter, the signal power is reduced by 3-dB, and if the coding is done in the 
receiver, the noise power is reduced by 3 dB. The 3-dB performance loss may be received with a maximal 
likelihood sequence detector (Viterbi) . 

The design of the minimum mean squared error equaliZer is a classic problem[1] in noise theory. The mean 
squared error is .,; . 

—Pe 

MSE = N(f)1E(f)1 2  df 

1/2T 

• I -1E.Hi (f + m I T)E(f +m I T)+ HI * (—f + m I T)E* (—f + m I T)-11 2 M(f)dfT 
—1 12T 2T in 
1/2T • f I —1IH0 (f +rn 1 T)E(f + m I T)+ Ho  * (—f +m I T)E* (—f +m I T)I 2  M(f)dfT 2T —1/2T m 

I/2T 

• 1 -1IH2 (f +m 1 T)E(f +m 1 T)+ H2 * (—f + m I T)E* (—f +m I T)I 2  M(f)dfT 2T —1/2T in 

and the problem is to determine E(f) to minimize the mean squared errôr MSE. 

The sole complication in the theory results.  from the second term, and the quantity.). in the intersymbol 
interference term. The mean squared error ig that which results from a multilevel.sYstem, and is with respect 
to the average pulse under the coding, constraint. 

, • 
The first term is the noise passing through the equalizer, which, for our purposes, we assume white with 
spectral density No , the second term represents the intersymbol interference in the . channel under study, and 
the other two terms represent the crosstalk from the adjacent channels. 

Before we start, it would appedr reasonable that the receive filter be matched to the transmitted signal filter• 
Hi (f), and in particular, it will not pass-  frequencies beyond the bandedge of its filters. 

The minimization is done by taking partial derivatives with respect to E*(f) and results in the equation 
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0 = No E(f) 

+M(f)Hi * (f)[-
1  EHI (f+ml T)E(f + rn 1 T)+ (—f +m I T)E* (—f +rn I T)-11 

2T in  

+M(f)H0 *(f)[-
1  

ZHo (f +m I T)E(f +ml T)+ Ho * (—f +m I T)E*(—f +m I T)] 2T ... 

+m(f)H2*(f)[- 2,112 (f +mIT)E(f+mIT)+H 2 *(—f+mIT)E*(—f+minl 2T 

Each of the expression in square brackets is periodic in f with period 1/T, and we represent them by Xi(f), 
X0(f) and 2n.2(f). As well as being periodic, they also satisfy 24*(4) .240 . Finally, the message spectrum M(f) 
is also periodic with period 1/T. This equation may be wfitten as four equations, 

0 = No E(f)+ M(f)H i * (f )2 1 (f)+ M(f)H 0 * (f)À. 0 (f)+ M(f)H 2  (f)2 (f)

1 Â1(f)=[H1(f +mIT)E(f +mIT)+Hi *(—f+mIT)E*(—f+mIT)-1] 
2T „, 

2, 0 (f)=[-1  LH0 (f+mIT)E(f+mIT)+Ho *(—f+mIT)E*(—f+mIT)] 
2T „, 

, 1 
A 2 (f)=[— LH2 (f+mIT)E(f +mIT)+H2 *(—f+mIT)E*(—f+mIT)] 

2T n, 

The equalizer E(f) is obtained by substituting the first equation in the three following, resulting in three 
equations for the three unicnowns 24(f), and then putting these equations back into the first to solve for E(t). 

There is another important result that is obtairied from the expression for E(f). Since the parameters 24(f) 
and M(f) are periodic in f with period 1/7,.they may be realized with (perhaps infinitely long) FIR filters. 
Thus, when samples are taken at the equalizer output, this is equivalent to sampling the outputs of the three 
matched filters and passing them to Flit filters with delays times T. 

• 

These last three equations are Of the form': 

(f) = —GLIA (f) — G1,0 (DA° (f) — G1,2 (f)Â; (f) — 1 

20 (f)  -G0,1 2 1 (f) G0,0 (f) 2•0 (f) G0,2 (f)A*2 (f) 

(f) = -G2,1 (f) G2,0(f) 2t, 0(.1`) — G2,2(f)X2(f) 

i.e., 

(1+q,1 G1,0 G1,2 \ ( 2•1(f) \  
0 = Goa 1 +.G0,0 G0,2 Ao(f) 
O) G2,1 G2,0 1  ± G2,2 (f)j 

where 

4 



f  1 \ 

2, 0  

\2 J  

_ 1 

Ii 

5 

*(f+mIT)±LH i  *(—f+mIT)H i (—f+mIT) 
2TN0  

=  G * (f) = Gi ,i *(—f)=G1 ,i (f +11 T) 

But, because of the properties of the filters, the elements whose indices are separated by 2 or more are zero. 
Thus, G -o,2=G2,o=0. [If the problem had been written in the frequency-ordered way, the matrix would be a 
bordered diagonal matrix, i.e., tridiagonall Also, because of the filters, there will only be one term in the 
sum for most of the elements, exçept perhaps for the main diagonal term. In any case, the equations are 

(_1 + G1,1 
, 0,0 

G1,2 

0 

\ (A
1 (f 0 

G01 1+G O
) 

(f) 
1+  G2,2 ) ta• 2 (f)./ 

f(1 + Goo )(1+ G22 ) —Gio  (1 + G22) —G12 (1 + Goo ) \(-1" 
—G01 (1+ G22 ) (1+ Gil )(1 + G22 ) • Goa G1 ,2 (= 0) 0 

—G21 + Goo ) G2, 1 G1 ,0 (= + G11 )(1 + G00 )1  0 

and the determinant 

A = (1 + G11 )(1+ Goo )(1 + G22) —  Gm G10  + G22 )— G21 G12  (1 + Goo ) 
is real and positive. 

-Also, if the transmitting filters are normalized root-Nyquist filters,, the diagonal terms are equal to 
1+M(f)1N0 . The normalization makes the sum'of squares of the coefficients of H unity. 

In any case, we can solve exactly, with the result 

2"0 = 1+ G0,0  

À, 1 G2,I  2,2 = 
1 + G2,2  

Solving for 2n..1(f) 

) G2,1 
'These equations may be solved and result in 

— 1 
(f) = 

and substituting back to find E(f) we hay( and substituting back to find E(f) we have 

G0,1 G1,0 G1,2 G2,1 1+G1 , 1  
1 + G0 , 0 1  + G2,2 



G01 G21  
* (f) -  110 * (f)

1 + G 
H2  * (f)  

0,0 +LT2,2  E(f) = M(f)  
N0 [1+  G 

1G0 , 1  (f)1 2  1G2 , 1  (f)1 2  
ia  1+G 0 1+G22  

An explicit calculation of the mean squared error is tedious, and the details are in an appendix. The result is 

" 1/2T 
MSE = M(f)dfT 

'  

-112T  
[Go  (f)1 2 1  G2,1 (f)I2  1 + G1,1 r 1 + . LT0, 0 G • • . 2,2 

and this also puts the power spectrum of the error in view; it is not flat. This is the so-called biased 
MSE[3,41, and is related to the unbiased MSEU by 

1 1  1 
MSEU MSE 

4. DECISION FEEDBACK EQUALIZATION 

The improvements that result with the use of data decisions is a complicated problem, and has been solved 
by Kavehrad and Salz[2]in a related context. But first, we consider a simpler approach, in which only that 

-decoded data from the channel itself is used, and this approach is based- on the use of a prediction filter to 
whiten the error sequence resulting from the MSE equalizer. 

As we derived, the error sequence from the linear minimum MSE equalizer has die spectrum 

M(f)T .  MSE(f) =  • 

[1•1- IG0,1(f)12 IG2,1 (f)1 2  .• , 

G00 1+  G2,2  

A spectral factorization of the elenominator is of the form 

[1+ G1 
I Goa (f) 12 1  G2,1 (f) 12  

,1 1+ G00 1+ G22 
-=" A0  (1 + B+ )(1+ Bj =  A0 ll(1_z-1z 1 )J] (1_ziz i ) 

M(f) Iz1 kl lz,>1 

Thus, 1+13, is causal and 1+B. is anti-causal. If the output of the MSE equalizer is followed with the 
equalizer (1+B +) the resulting sequence will have an error sequence that is white and the mean squared error 
is 1/A0 . This is equivalent to the following DFE structure 
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output 
E(f)(1 ) Decision 

Figure 3. Decision Feedback Receiver. The causal filter B+ whitens the error sequence from the non- 
DFE equalizer E(f) making the sequence spectrum white. The decision feedback removes the 

correlated part of the signal that results. 

This is the receiver that minimizes 

-00 

MSE = N(f)IE(f)1 2  df 

1/2T 

• 11,H1 (f +mIT)E(f + 
2T -1/2T e • 

1/2T 
1 •g-t ± 1-2.,H0 (f + I T)E(f + 

-1/2T 2T nz 
1/2T ▪ f 1 I— LH2 (f +in I T)E(f + 

2T • -1/2T m •  

ml T)+111 *(–f+mIT)E*(–f+n-iiT)–(1i-B,(f))1 2  M(f)dfT 

niVT)+H0 *(–f +ml T)E*(–f +ml T)I 2 M(f)dfT 

mIT)+H2 *(–f+mIT)E*(–f+mIT)1 2 M(f)dfT 

If factorize M(z) as 

M(Z) =  

where  M. and M. have the coefficient of;z0 equal to unity. 

Then a simplification in the argument may be made. 

Note that for the example quoted at tfie .behinning, this factorization would be 

M(z) = 1 -(1- z -m )(1- el ) 
4 

M0 =1/4 
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1 
1 

1 

1 

1 

1/2T 
ln exp 

-112T 

E(f) Decision 
output 

outputs of 
adjacent 
channels 

c.  
D+  

8 

received 
signal 

1 

1 

N(f)I E(f)1 2  df 
=—  

M0 MO 
1/2T 

1 • 1-1,111 (f+mIT)E(f+mIT)M + +H1 *(—f+mIT)E*(—f+mIT)M_—M,(z -1 )(1+B+ (f))1 2 dfT 
4/27, 2T ni  
1/2T 

1 
▪ I —Y.1/ 0 (f+mIT)E(f+mIT)M + +Ho *(—f+mIT)E*(—f+mIT)M_I 2 df7' 

-1/2T 27' 4;7' 
1/2T 

-1Y.F/ 2 (f+mIT)E(f+InIT)M + +H2 *(—f+mIT)E*(—f+mIT)M_I 2 df7' 
4—' -1/2T 2T in  

Then the solution may be expressed in terms of the solution to the corresponding problem in the uncoded 
case if the following substitutions are made. 

: • 

In Report [6] replace with  
MSE MSE I Mo • 

,  

Hi(f) . Hi(f)M+(f) 
. 

N(f) N(f) I Mo  
1+B, (1+ .13±)M,(z) 

In particular, the expression for G is unchanged, and the mean squared error for the decision feedback 
receiver is less than that of the MSE receiver[1] and is equal to 

1 12T I Go 1  (f)1 2 1 G2,1  (f)1 2  
MSE DFE  = Mc, exp — ln  1+  G1 , 1 ' 

1 + G0 , 0 1 + G2 , 2  -1/2T \ 

Ad(f) 
[Go (f)1 2 1 G2,1  (f)1 2  

1 -I-  G11  
G0,0 1+G22  

J • 

5. VECTOR FEEDBACK 

With vector feedback we assume that we have access to all the previous received digits of all the channels. 

MSE 



It will be noticed that, since 

=Ibk.Z -k  
k=1 

C+  = CkZ —k  
k=1 

D+kZ-k  
k=1 

Figure 4 Vector Feedback. In Figure 3 only the decoded output from the main channel is used for 
reducing mean squared error. In this model, all the relevant adjacent channel decoded data are used. 

With a mean-squared error design criterion, the goal is to minimize 

1 + M(f)I—EH I (f + m I T)E(f + m I T)+111 * (—f + m I T)E* (—f + m I T)— (1+ B + (f))1 2 dfT 
2T  —I/2T m  

1/2T 
1 ▪ M(f)1-1,11 0 (f + m I T)E(f + m I T)+.Ho  * (—f +m I T)E* (—f + m I T)— C + (f)1 2 dfl" 

2T  —I/2T in  • • 
1/2T 

1 
. • 

• M(f)I -1, H2  (f +m 1 T)E(f +m 1 T)+ H2  * (—f + m I T)E* (—f +m I T)— D + (f)I 2 dfT 
2T „, —I/2T 

where B+, C+ and D+ are causal and have only positive exponents of 1 1  and thus the unlcnowns are the 
(real) numbers bk, c k  and dk, where 

MSE = N(f)IE(f)1 2  df 

1/2T 

MSE  7  N(f)  I E(f)I 2 df 
Mo Mo  

1 • 1/2T • 

2T
2, (f + m I T)E(f •-f-)i eepT)M +  + H1 * (— f + T)E* (— f + m I T)M_ — (1+ B + (f)M)1diT 

—I/2T ni • 

1/2T • 
1 x--n 

+ I —LH 0 (f +mIT)E(f +mIT)M + +H0 *(—f +mIT)E*(—f +mIT)M_—C,(f)M + 1 2 dfl 
—1/27. 
I/2T 1 ▪ $ I—EH 2 (f +mIT)E(f +ml.T)M + +H2 *(—f +ml T)E*(—f +mIT)M_—D + (f)M + 1 2 dfT 

—1127. 2T ni  

we may use the results of report [6] to calculate relevant performance characteristics, as follows. 

In Report [6] replace with  
MSE MSE I Mo  
Hi (f) Hi(f)M+(f)  
N(f) N(f) I Mo  

• • 
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1 

1+B (1+ B,..)M,.(z) 
C,. CM(z) 
D+ D+M„.(z) 

and the calculations of the previous report made. We do not repeat the details. 
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IV " ' APPENDIX 1 

CALCULATION OF MSE 

The purpose of this appendix  i  to record the calculations. 

The MSE has three signal related terms and a noise term. The sum of the three signal related terms which 
we call MSES, is equal to 

1/2T 

[I 2, 1 1 2  +1412  +14121M( f)dfT 
—1/2T 

MSES= 
1/2T 1G21 ! 2 IG,„I 2  

= 1 / 1 2  [1 
(1+ G22 )' (1+ G0

s." 
0

,1111>(f)dfT 
'  —112T 
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The noise mean squared error is 

MSEN = î N 0 1 E(f)1 2  df . 

When the expression for E(f) are substituted, the cross terms that are zero neglected, and the infinite integ,ral 
replaced with an integral over the finite range -1/2T to 1/2T, the integrand contains terms 

Â. 1  12 G1,1 +I A012  G0,0  +I A 2 12 G2,2 + * 2 G1,2 +A 0 G10 +Ao*  À.1G0,1  +2 2  * Â, I G2,1 1 , 
and this may be written 

1 2  ,I 1 G2,1 1 2 1 G 2  oal 1 G 1 2  oa  
1 Âil21Gia  ' 1 + G2,2 (1+ G'2, 2 • ) 1 + G0,0 (1+ G0 , 0 ) 2  

and, when MSES and MSEN are added together the additions and cancellations result in the following 
expression for the total mean squared error 

I/2T 
MSE = $142  M(f)[1+ G1,1 

—I/2T 
1/2T' M(f)dfT 

 1 G 12 1 G 1 2  —112T {1 .1_ G1,1 2,1 — 0,1 

It is perhaps a bit clearer to keep the I's separate, and then the integrand is, besides M(f), 

1 G 2  2,1I 
.i i- i2 

 yfr 
1+G22  1 + G0 , 0  

1+&22  1+ Gooa  

1À• 1 1 2  Gm +141 2  G0,0 +141 2  G2,2  +A 1.*A 2 G1 , 2 +A 

+I 42  +I 41 2  +I A 2 1 2  

2 *1  ((1 + G1 , 1  )À, 1  +22G1,2 + 

[(1+ G0 , 0 + À. 1 G0, /  )] 

+2:2[(1 + G2,2 )2..2 21G .2,1] 

= 

1 *Â 0 G1 0 +A. 0  *A 1  G01  + 2L. 2 * À• 1 G2,1 

APPENDIX 2 PROPERTIES OF THE ELEMENTS Gu. 

The report makes us of the elements Gij. Here we obtain some properties. 

From the definition 

11 



G0,1 
1+  G1 , 1  

G2,1 

o  .\ f  A o (f) \  

G1 , 2 A 1 (f) 
1+ G2,2 ) (f ),/ 

Thus, the matrix appearing in the equations 
(1+G00  

GI,0 
0 ) 

GI, i (f)= Al(f) ZH i (f+mIT)Hi *(f+mIT)+Hi *(—f+mIT)H i (—f+mIT) 
2 TN °  

Gij * (f) =  Go *(_f)  

In the communication system under consideration, the transfer functions are due to half (or root) Nyquist 
filters, with an additional gain A, phase Oand delay Thus, a root Nyquist filter with a channel 

In the diagonal elements the phase and delay are eliminated, and the elements are just 

A 2  /No  . 

The off-diagonal elements are more complicated. The'elements G 0, 1  and G1 ,0  are mirrors of each other. So 
are Gm  and G1 ,2. In general, G0, 1  and G2, 1  have coefficients that are similar, but in which every second 
coefficient is of opposite sign. 

may be wiitten 

(1+ ig /No  A0 A1 G0 , 1 0 
il1 A0  G1,0 1+ A  / No AI  A2  G1,2  

0 A2ii1  G2,1 1 + A:: I No  

Thus, in the matrices used in the Bauer,factorization, the matrices that are related to powers of z that are not 
zero have no diagonal, no 1,3 or 3,1 terrn, and, are otherwise arbitrary, consistent.with the overall matrix 
polynomial being positive definite. We haven't discovered any properties that follow from these 
observations. , 

• • 
Finally note that 

GQ I 2  

Minkowski's inequality. 
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MODIFIED DUOBINARY ERROR RATE CALCULATION 

W F McGee 

19 March 1997 

The purpose of this report is to give the rationale of calculating duobinary error rates. 

The calculation of error rate for modified duobinary coding is more difficult than for binary. We imagine 
that we are given the received pulse response including the filter 

M(z) = 0.5 - 0.5z -8  

where the exponent 8 reflects the use of a system in which the data is removed by taking every fourth 
sample, i.e., decimation by 4. The waveform is itselfdamPled everf fourth sample, and results in a sequence 
A.{ ...} . For a no-noise, no intersymbol interference, no crosstalk receiver, this sequence will have the 
structure {...,0,0,0,0,0,1/2,0,-1/2,0,0,0,0,...}={a k}. In the theory section we consider the 1/2 response to 

• occur at time t=0. 

The modified duobinary receiver may be though of as an interleaved set of bipolar signals. 

The received signal, neglecting noise and crosstalk, (i.e., considering only intersymbol, interference) is 

sk = ak-k' bk' = bk-eak 

With random input data {bk} the received data sequence sk  will, with random binary inputs, have three 
basic values; (+1, 0, -11. A three level receiver will determine, at a sample time, which of the three is to be 
decoded. Examine the sample s o  at time 0. 

If, in the ideal case, s0=+1, this means that the transmitted binarypulses must have been b0=1, b_2=-1, and 
the received signal will, in fact be, a0-a2. 

If, in the ideal case, s 0=-1, the transmitted Pulses must have been b0=-1, 11_2=1, and the received signal will 
be - (ao-a2). 

If, in the ideal case, s0=0, there are two choices, b0=1,b_2=1 or 14=-1, b_2=-1, and the received signal will be 
a0+a2  or -(a0+a2). • 

The threshold would, presumably, be set halfway between these signal levels. Thus, the positive threshold d 
will be set so that la0-a21-d=d-Iii0+a21, i.e., d=(1/2)(1a0-a21+Ia0+a21)=max(la01,1a21). 

The average error probability will be 



(1/ 4)Pr(1 a o  — a 2 1+n < d) + (1 / 2)Pr(a 0  + a2  +n> d)+ 
(1/  2) Pr(a o  +a2  +n < — d) + (1 I 4) Pr(-1 a 0  — a 2 1+n > — d) 
= (1 / 4) Pr(1 a0  — a2  1—d +n<0)+(1/ 2) Pr(d — (ao  + a2 )—n<0)+ 
(1 / 2)Pr(d + ao  + a2  +n  <O) + (1 / 4) Pr(' ao  — a2  1—d — n < 0) 
= (1 / 2)Pr((1 / 2)(1(2 0  — a 2  1+1 a0  + a2  I) +n< 0) + (1 / 2)Pr(d — (a o  + a2  )— n < 0) + 
(1 / 2)Pr(d+a 0  +a2  +n < 0) 
5.« (3 / 2) Pr(min(1 a 0 1,1a2 1) + n < 0) 

• For example, if a0=.52, a2=-0.48, d=0.52, and the three probabilities are 

(1 / 2) Pr(0.48 + n< 0) + (1 / 2) Pr(0.48 + n< 0)4  (1/2) Pr(0.56 + n < 0) < (3 / 2) Pr(0.48 +. 11 < O) 
: 

For our calculations we often use the approximation (3/2)Pr((1a 01+1a21)/2-1-n<O) for the'error probability. This 
is reasonable in Gaussian noise. 



REVIEW OF INTERSYMBOL INTERFERENCE MITIGATION 

W F McGee 
19 March, 1997 

Contract U6800-6-3505 

There is a great similarity between the problem of reducing the effects of intersymbol interference in data 
communications and multi-user interference reduction. This arises because the interference generated by 
other symbols in a sequence depends on the pulse response and the data symbols; for multiple users the 
intereference depends on the transmitted data and the response of different matched filters. In this appendix 
we recall the theory of intersymbol interference. 

The theory has as its basis the detection of a single symbol in noise. For example, a pulse is transmitted with 
one of two polarities, and the optimum receiver in Gaussian noise is a pulse-matched (Wiener) filter that is 
matched to the transmitted pulse shape, followed by a' àign detector. There a five commonly studied 
receivers. • • 

1. Linear Zero-Forcing Equalizer. 
2. Minimum Mean Squared Error Receiver. (MMSE) 
3. Decision Feedback Receiver. (DF) 
4. Maximum Likelihodd SEquenee Estimator (MLSE) 
5. Maximum A Priori Receiver. (MAP) 

Matched filter. 

For a pulse with shape h(t), transform H(f) in noise with spectrum N(f), the matched filter is 
• 

E(f) = H* (f) I N(f) 
and the signal to noise ratio at the decision time is 

r  H(f)I2 df P = N(f) -• 
1. Linear Zero-Forcing Equalizer. (ZF) 

,s 
A receive filter is designed to maximize  the signal  to noise ratio at the decision tiMe, and to eliminate 
interference at other sampling times. The resultant pulse shape has zeros in the pulse  response at other 
sample times. This receiver eliminate' s ile.ràY'inbol interference but'inereases the thermal noise compared to 
the matched filter. For transmitted pulse s'hape h(t), transform H(f), noise power spectrum N(f), the Z1-,  
equalizer is • 

H* (f) I N(f)  E(f)= 
.v 1H(f + m I T)1 2  

N(f + m I T) 

2. Minimum Mean Squared Error Receiver. (MMSE) 

The MSE expressed in the frequency domain is 

1 MSE = N(f)1E(f)12df +
fin 

 1— LH(f +  ml T)E(f +m I T)-11 2df 
-I/2T T 

and the optimum equalizer is 



H* (f) I N(f) E(f)= 

This receiver has gain bias, and it is necessary to convert the mean squared error with bias to the mean 
squared error without bias, a larger number, and more indicative of system operation. 

3. Decision Feedback Receiver. (DP) 

The decision Feedbach Receiver assumes that the receiver has available the previously transmitted symbols, 
and minimizes the mean squared error assuming that these are lcnown. Hence the intersymbol interference 
comes only from symbols yet to be received, that is, from the precursors of the pulse response. 

MSE = N(f)1E(f)12df f1/2T 
H(f m I T)E(f + m I T)-1, B k e -l2e.  1 2  df 

J-1122-  T . 
k=0 

4. Maximum Likelihood Sequence Estimator (MLSE) 

This receiver considers a whole sbquence to be detected, and minimizes the mean squared error over all 
possible transmitted sequences. The receiver has a pre-equalizer which minimizes noise and the precursor 
samples, a sampler, and a Viterbi receiver for the sequence. 

This receiver determines that the sequence was transmitted which is most likely to have resulted in the given 
received sequence. Because of the pre-equalizer that is used, the conditional probability does not depend on 
future transmitted symbols. Thus, the potential transmitted sequences may be pruned by only considering 
those which are most likely, at each sample time, to have resulted in the received sequence up to that time. 
Viterbi algorithm is used because the calculation of the likelihood of the output sequence given a particular 
input sequence. 

5. Minimum Bit-Error Probabilty Receiver. 

The MLSE determines which input sequence Fs mos  st likely, but MLSE does not determine the input bit 
sequences which result in the lowest eri# probability on a symbol basis. The minimum bit-error probability 
receiver  looks  at all the received signals, and determines, for a particular transmitted symbol, what was most 
likelyu to have caused the received signal. The effect of the other transmitted sphbols is averaged. There 
are iterative algorithms to perform thé "CAlpulation. 
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The purpose of this note is to sununarize the arguments in Lee and Messerschmitt[1]. 

Assume that the received signal is 

y(t) = ak h(t — kT)+ e(t) 
k=1 

where h(t) is the transmitted pulse, ak  the transmitted data, and e(t) white Gaussian noise. 

The optimum receiver calculates that input sequence {ak} . of length K that maximizes 
• 

2 Re
{ 

I uk  
:=1  

K K 
—II a k a m r(m — k) 

k=1 m=1 

where 

ttk = y(t)h * (t — kT)dt 

and r(k) is the autocorrelation of the pulse h(t). 

For each possible sequence, the computation requires in the order of K2  operations. 

The further analysis is an attempt to turn the quadratic form into a sum of squares. 

''If we represent the correlation matrix as a Toeplitz matrix 

e R with Ri  = r(i — j) i 

then the sum may bé recognized as equivalent» 
• / 

— 2 Re(u H  a) + aH  Ral 

and with an LU (Cholesky) decomposition of R=UHU 

the expression to be minimized is . - 

—1u H u  —2  Re((U-H  Ua)+ (Ua)11  Ual 

= —(U-H  u— Ua) H  (U-H  u — Ua) 

= —(w — Ua) H  (w — Ua) 

-{u 

where 
w = U-Hu 



I 

R=R+H R, 

Suppose that the correlation coefficients r(n) become zero as n increases; thus r(n)=0, n?_M. Then the matrix 
R used in the calculation of aHRa becomes banded, and so does the Cholesky factor U. In fact, as the data 
sequence becomes longer and longer, the Choleslcy factor U has the last column that does not change; it 
simply shifts down.If we examine the Cholesky factor for M=3 and for a sequence of length 8, it appears as 
follows 

(xxx000001 
0 x x x 0 000 
0 0x x x000 
000x x x 00 
0 000x x x 0 
00.00 . 0xxx 
0 00:P.,:0 0.xx 
0000000x 

where the x's indicate the non-zero entries, and, as mentioned, the last column approaches unchanging 
values. Define a non-square matrix R+ as a Toeplitz matrix with the columns thé asymptotic value. 

(x 0000000' 
y x000000 
z yx00000 
0 z y x0000 
00z y x000 

R+ = 
0 0 0 z y x 0 0 
0 0 0 0 z y x 0 
0 9 0 0 0 z- - y-x 

z y 
0'000000 z)  

Then it can be shown that 

U = 

The elements of the last column are the coefficients of a spectral factor of S(z). Also note that 

( *1 .\ 

A 
R-1 

) 

( 1 K z -(R-1) )R,R+H  

is proportional to S(z). 

The quadratic form then is 

2 



alf — 2  Re(u H R) -1  R,a)+ terms not depending on a 
= (124.a — (R÷ a —  Ru) 

where we have defined the non-square upper diagonal Toeplitz matrix R- by 

RR —I  

The advantage of this approach is that it involves a convoulution of the input sequence and the data 
sequence, whereas the use of the Cholesky factorization involves the formation of inner products in which 
the coefficients are all different. 

e(t) . . 

ak} h (t)  

{w 

{a } 

{ 12  / 
h*(-t) 

k 

R+(z)  

R-(z) sum 
of 

squares 

Figure 1 Implementation of the maximum likelihood sequence estimator using the augmented 
Cholsky matrices  R+(z) andil(z)-. 

The communications approach is in ternis of spectral factorization, as follows. 

Define transforms as follows 
, 

.1. • 

A(z) = Eak z -k 
k=1 

U(Z)= Eukz-k 
k=1 
- 

Then the likelihood is proportional to the dc coefficient of 

2 Re {A,, (z)U(z) } —  A  (z)A(z)S(z) 

A simplification occurs if the spectral factorization of the folded pulse spectrum is used, thus 

3 



e(t) 

S(z)= G(z)G. (z) 

The likelihood is then proportional to the dc coefficient of 

—[A(z)G(z)—U(z)/ G.(z)][A.(z)G.(z)—U.(z)/ G(z)} 

The second factor is just the first written backwards and with the coefficients conjugated. 

Now, A(z)G(z) will have coefficients of i l , i2, .... but W(z)=U(z)/G*(z) will have all powers of z. But as 
we vary the elements of the data sequence A(z), only the positive coefficients are of interest, and therefore 
only the causal part of W(z) is of interest. Thus, the quantity to be evaluated to determine the most likely 
data sequence is • 

K • , • 
12 

k.1 
The block diagrarn is 

{ak}---1 h(t)  

{a } 
k. 

h*(-t) 
 

G(?:).  

fw k+ F-1 
1/G*(1/z sum 

of 
squares 

Figure 2. The transmitted is a sequ'en'eç,..  'of Pulse amplitude modtilated signals, whetre the pulse is h(t). 
White noise e(t) is added. The receivér determines that set of transmitted symbols that makes the 
indicated sum of squares a minimum. 

Tector channels 

In this case there are M interfering channels, and the receiver signal may be written in the form 

y(t) = a 7k1(t — kT) + e(t) 
k=1 

where h and a are now M-vectors. 

The log-likelihood is proportional to 
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I y(t) ark h(t — kT)1 2  dt 
k=1 

and the receiver is to determine the set of transmitted data that minimizes this real number. Neglecting the 
terms that don't depend on the transmitted data, this is equivalent to minimizing 

K K 

—2  Re{  a /H, y(t)h * (t — kt)dt} +ZZa 1H, h* (t — kt)h T  (t — k' T)dta k . 
k=1 k=1 

K K 
)a k, 

k=1 k=1 k' =1 

Where 

• uk  S y(t) .4* kT)dt. 
is an M-vector with the outputs of the M matched filters hi*(4) and the matrix R is given by 

K K 

—2  Re{  akH  f y(t)h *  (t — kT)dt} + h*  (t — kT)h T  - k' T)dta k . 
k=1 k=1 if=1 

K K 

—2 Re (1, au k  } + EE a /H, R(k — k' )a k, 
k=1 k=1 xf.1 

• R(k — ) = (t — kt)h T  (t — ki T)dt 
To make further analysis easier, we now extend the set of K M-vectors to a KM-vector. This.may be done 
in many ways, but the most logical would be to either group those entries of the same channel, or those 
occuring at the same time; we opt for the first choice. 

11Thus, a is a vector consisting of the K transmitted symbols for die first channel, the K transmitted 
sym,bols for the second channel, etc. The veceor u.  consists of K outputs from the first matched filter, K 
outputs from the second matched filter,.5te. The matrix R is of the form 

( 411 A l2 0  -A, Aix 
An A 23 A 0  

R= 0 A 32 A 33 A 0  
A A A A A 

0 0 A A fri ,m  

Each element of the matrix is an K-by-K Toeplitz matrix consisting of the shifts of the pulse correlation 
matrices 

A 1  (k — k' ) = f hi*  (t — kT)15(t — k' T)dt = 

A 

thus 

=A  

5 



If we assume that each receiver is matched to the transmitted waveform for that channel including gain Ai , 
phase (pi  and delay and if we ignore the different delays [essentially quantize the delays to a symbol 
time], and if, in addition, we assume that the channel filters are otherwise frequency shifted root-Nyquist 
filters then the channel responses for QAM communication are given by 

A i ,j (k - k') .= j) 

where R(i-j) is a K-by-K matrix given by the sampled pulse response of the adjacent receiver in channel j to 
a sequence in channel i. 

In the case of VSB filterbanks the matrices are more complicated. 

The matrix R(i) vanishes if i>l, and is a unit matrix if i=0. So the only complicated portion is R(1)=C and 
R(-1)=RH(1) . The matrix C itself is Toeplitz and if thétr. ansmitting and receiving filters are linear phase, C 
is also Hermitian. • 
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APPENDUC 1 REVIEW OF MULTI-USER CDMA 

The analysis of multi-user detection systems for direct sequence CDMA starts with an elementary system. It 
consists of a M transmitters of binary {{-1-1,-1 }] waveforms using real sequences s k(t) of unit power, real 
additive white Gaussian noise. These signals are transmitted through flat channels with gains ck=qwk, added 
together with the noise. The waveforms s k(t) are assumed to be over one symbol only. Hence intersymbol 
interferences is not relevant, and it is sufficient to consider the transmission of only M bits, one for each 
transmitter, which is considered a vector x with components x k. 

A sufficient statistic for the deterrnination of the transmitted bits is obtained by passing the received signal 
through M matched filters whose outputs, when sampled, form the vector with components y k. The 
components yk  are a linear combination of the transmitted signal bits xk, and a set of correlated noise 
samples with correlation 'matrix R. 

If we define a diagonal matrix C with elements•c k, thé Channel gain for the kth transmitter, the output from 
the matched filters has the log-likelihood function proportional to • 

(y - RCx) T  R -1  (y - RCx) 

This implies that the best estimate of the transmit sequence based on the received signals y is that possible 
transmit vector x which maximizes 

2y T  CX - x TCRCx 

This is called the maxinzum likelihood receiver, and is generally considered to be too complicated to 
implement. 

The so-called conventional receiver simply looks at the sign of y. 

Yet another receiver is the decorrelating receiver which operates with the variables 

, R'y 

which is the sum of Cx and a Gaussian ii.oisé with covariance matrix 12-1 ; the covariance of y, on the other 
hand, is R. The log-likelihood of d is , . • ;, . _ 

'(d - Cx) T R(d - Cx) 

so the maximum likelihood receiver is based on maximizing 

2dTRCx - x TCRCx 

which is the same as the previous function. But the decorrelating receiver operates by taking the sign of d. 
Thus 

sign(d). 

If we compare the decorrelating receiver to the conventional receiver, the interference from the other users 
has been eliminated, but the noise power is increased. 

A minimum mean-squared error MMSE detector actually estimates x by taking a linear combination of the 
vector y to minimize 



(x - Ly) T  (x - Ly) 



CORRELATION MATRICES AND SEQUENCES: A SURVEY 
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This note summarizes properties of correlation matrices and sequences. 

'There are two main approaches in the literature: one uses matrices, the other uses sequences. We include 
vectors. I am not aware of anything new in this summary. 

1. MATRICES 

In this work we need the reversal operator on matrices 

= A*  , R+1-i,C+1-j ' 
. .„ 

defined for scalars (conjugation, vectors, matrices) 

(AB)..A.B. 

A persymmetric matrix satisfies A.A. 

Correlation matrix R 

This is a Toeplitz, positivédefinite, Hermitian, persymmetric matrix with the following properties. 

There are two main models of random processes, the non-white noise model, and the sum of sinusoids 
model. 

Non-white noise model 

Ri_i=r(i-j)=E[Z(OZ*(j)] circularly complex Gaussian noise 

r(-i)=r*(i) 
, 

( *r(0) r(-1), 4A „. r(—M) .s/ 
r(1) r(0) À r(—(M —1)) r(0) (RM  rm* 1 

Rm+, 
A A A A r  R 1  

r(M) r(M —1) A r(0) 

S(f) is the power spectrum S(f) real ;  non-negative, 

Rn  = S(f)e-I2* cif 

Independent sine waves in white noise model 

= Zia
k  1

2  ei2ek + 0.2 8 it 
k  

1 



0 

A 

S(f)= k 12 8(f - + 0-2  

Linear Prediction 

The Generalized Yule Walker equations are 

(Pm \  
0 

A 
0 

leading coefficient of a m  is 1. 
a  

—w 
the solution of 

Rm.H am  = 

Rm±l am  =- 
r(0) ( 1  
rm  Rm f ) — Rm:f ) L 0  ) 

The backward prediction problem is the vector am*  which satisfies 

( 0 \ 
A 
0 

M./ 

RM+l aM* = 

Order update solutions 

Levinson-Durbin 

0 
a .= m-1 () )+ fri ( m aM-1* 

a  

with 

'3M-1  + p m  re a m.„ 
(Pm  

RM+l aM = 
0 

Rm  rm * y aml ( r(0) r '"(  0 ) 
H + 13  rm*  r(0)1 0 rm  R m 

+ p mpm_i 

thus 
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/3 = —r H a / P m-i Af-1 
I'M = PM-1 (1-1 Pm 12  

Solution of Levinson equations 

Levinson equations are of the form 

Rm+iXm+i Ym+i 
We assume that we have a solution to the linear prediction problem and the solution to the equations 

Rm x m  = ym  
where ym  is the first M elements of ym,i . Then,.since ' 

y m rm; + 8x .el  .j 7= y m  + Rm Sx m  + rm* x(M +1) 
R M-1-1 x M+1 = y = yod 4. 1) r:*  l  e)  x(m +1)  rmH* x m  + C*-5x m  + r(0)x(M +1) 
this implies that 

êx m  = —x(M +1)f*  

x(M +1) = r
H  x 

m 
Pm  

solving the problem. 

Trench algorithm for inverse Rpil . 

The algorithm assumes that we have the solution of the linear prediction problem. 

Since 

Rm Rm--1  = I 

,,•R >es, • m* m* = I  
, • 

• and 
Rm*  = Rm  
thus 

(Rm-1 ) *  = Rm-1  
i.e., Rril  is persymmetric. 

Let 

B v 
Rm-1+1= 

j 
H ' V Y 

then 

3 



B v) [R m B+rm *y ll  R M v + yrm * (1M  
H H v y rm*B+r(0)v 11 yr(0)1 0 1) 

Rmm. 
H rm . rr(0)) 

B y 
m+1 = Rm+1(v H yj= 

Consequently, 

' v =  
Pm*  

y =1/ Pm  

This in turn requires that 

B= Rm + -1 fm*fil  m*  pm  

B* = + fmfmH  M pm  

which means that we can elitninate the inverse correlation matrix and determine that 

H 
f .f Hm* fmfm  B = B. + m  

Pm Pm  

By using the persymmetry in Rm+1 -1  and these relations for the reversed matrix, the whole of the inverse 
matrix may be calculated: Consider a 6-by-6 matrix. We lcnow the 6th row and column by the formulas for 
v. Using persymmetry of Rm4. 1 -1 , we know the first row and column. This allows the calculation of the 5th 
row and column, using the relation for B. This then gives the second row and column. Using the 
relationship for B we get the fourth row and column, for Rm,.1 -1  the third row, and we are done. 
Consequently the order of calculation is columns 6,1,5,2,4,3. 

As Golub [3] points out, only the upper  quarter neèds to be calculated for a persymmetric Hermitian matrix. 
If we have access to all the predictor pol,nomials then the inverse matrix is given by 

. 
• ._ 1 Rm'i am.ami  

•' 41.4 s'ne  ) • 0 
 

o7 M  

which is an explicit writing out of the Cholesky decomposition of the inverse of the.  correlation matrix 

R -1  = UD-1 U H  = LH D-i L 

Spectral factorization 

and 
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As noted above, the elements of the correlation matrix are the Fourier transform of the spectrum. Letting 

Sm+  (Z) = r(k)z= S+ (z -')S_(Z) 
k=-M 

S + (Z -1  ) =  
k=0 

s_ (z)= Es,*z k 
k=0 

Bauer shows that the spectral decomposition may be performed by finding the Cholesky decomposition of 
aa matrix which becomes larger and larger as follows 

1 r(0) r(-1) r(-2) 0 0 0 (x 0 0 0 0 0(x x x 0 
r(1) r(0) r(-1.) r(-2) 0 x x. 0 -  0  O x x x  O 0 

r(2) r(1) r(0) r(-1) r(-2) 0 x x x 000.0  O x x x 0 

0 r(2) r(1) r(0) r(-1) r(-2) Oxxx O. 0000x x x 

0 0 r(2) r(1) r(0) r(-1) 0  O xx x .0 0 0  O O x x 

\ 0 0 0 r(2) r(1) r(0) O 0 0 x x x j\O 0 0 0 0 x, 
where x indicates an unknown; we are only interested in the last row of the first matrix. 

When the spectral factorization has been accomplished then the correlation matrix may be written as the 
product of two Toeplitz matrices as follows 

s: (0) 0 0 

"s t  (0) s + (1) s +  (2) 0 0 s: (1) s: (0) 0 

R +1  = 0 s +  (0) s + (1) s +  (2) 0.. (2) s: (1) s: (0)• 
0 0 s (0) s (1) s +  (2) 0 s: (2) s: (1) +  

0 %. 0 s: (2)i  

Eigenvalues 

Let the eigenvectors of the correlation matrix be q i. Then 

Rqi  = i q, 
• - 

The eigenvalues must be real and positive, since R is positive definite [and Hermitian]. If the eigenvectors 
are unit-normalized, then the square matrix of eigenvectors Q given by 

q2 
is unitary and 

A qm ) 

R = QAQ H  =EA 1 q1 q,!"1  

and 
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0 

A 

R -1  = QATI QH = q i gf-1  
f  

Since 

Rq = 
an eigenvectors must be a multiple of itself backwards; typically they are the same or the negative of each 
other. 

Since 

( 1` 
o 

» 
) 

( 1 1 

Rm+i am  = Pm  

H 

a = P qiqi  
M   gigia  =pm  

O) 
and am* is the same sum but with a weighting equal to the last element in the eigenvector. 

The eigenfilter associated With an eigenvector is 

(Z) = (1 Z -1  A z -(m--1) )qi  
and the conjugate filter is 

Qi.(z)=  q[' ((1  z A - z m+1 ) = (1 .z -1  A z --(m-i) jqi. 
• 

The eigenfilters with the smallest and largest eigenyalues have their zeros on the;unit circle. 
, 

The zeros of the eigenfilter with the smà est envalue e associated.  with the frequencies of sinusoids in a "fr-  - e • icr o are  
decomposition of a random process into sine waves and white noise. The eigenfilter with the largest 
eigenvalue maximizes the signal to noise ratio for a signal with correlation marix R and white noise; its 
zeros are where the signal is not. 

Since 

r(n)= S(f)e-nen df 

it follows that 

•k = qi7 Rq Igr(r — s)qk,s = f Eqk*enuf(r-s)S(f)df = flQk  (e )1 2  S(f)df 
r,s r,s 

and since 
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1= eqk  flQk  (ene )1 2  df 
it follows that 

S S max  
where S min  and Sm  are the minimum and maximum of the power spectrum. 

The argument that the zeros of the eigenfilter of the smallest eigenvalue are on the unit circle is the 
following[4]. Let U be an eigenvector, and let the zeros of the eigenfilter U(z) be determined. Suppose that 
there is a zero off the unit circle. If they exist, they must occur in mirror pairs. Then create a new 
polynomial U'(z) with the same zeros as U, but with the zeros inside the unit circle reflected to those 
outside, i.e., replace z with l/z*. Then form the polynomial with these zeros, and a corresponding vector 
U'(z). The magnitude Of this vector is normalized to unity. Then U' IIRU' is the same as UHRU. But U is 
the minimum eigenvector, and, if its multiplicity is one, this means that U and U' must be proportional, 
since the eigenvectors are unique to within a scale factor. Thus, the zeros must all be on the unit circle. 

This argument also applies to the maximum eigenvalue, but not to any other. The reason is that although 
U' HRU and UHRU have the same value, one is an eigenvalue but the other is not necessarily an 
eigenvalue. 

2. USE OF CORRELATION Z-TRANSFORMS INSTEAD OF MATRICES. 

The theory may be usefully interpreted in terms of z-transforms. These are useful because the Toeplitz 
nature of the correlation matrices in inherent in this formulation, and we may deal with familiar transfer 
functions instead of vectors. 

Let X be a stationary sequence of zero-mean circularly complex random variables. { x(i)}. The z-transform 
of X is 

CO 

x(z). Ex(n)z' 
• 

The autocorrelation function Rxx(z) is cléfined as 

= E[X(z)x. * (0)] 

Since 

- 
R (z) = (n) z -" 

we have 

r (n) = r (-n) xx 

and define the power of the sequence as rxx(0) which is real and positive and larger in magnitude than all 
the other correlation coefficients rxx(n). 
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There is an alternative understanding of an autocorrelation function. Suppose that X is a sum of sinusoids of 
random phase, amplitude Ai, and frequency fi, and white noise. Then rxx(n) is given by 

Af 
r = tA k l2  e 2irjfnk  + iv 08 n  

k=1 

and 

M 
R )0( (z) =  N0  + Ak!2 z —n  e 2nifIn 

k =1 
and 

R (e 2nit.  )  =.N0  +. Aki 2  45(f — f k) 

In general, for two sequences X and Y we define the crosscorrelation as 

R xy  (Z) = E (X (z) y * (0)) 

If Y and Z are filtered versions of the same sequence X with transfer function G(z)'and H(z) then 

Ryz  (z) = G(z) H. (z)R, oc  (z) (2) 

where H*(z) is H(z) with its coefficients conjugated and z replaced with 1/z. Thus 

G(z)H (z) = g(n)z -" E h * (M)zm = Ez g (n)h * (m) = g(m + r)h * (m) 
n,m rr.n 

Then 

E[Y(z)z * (0)1,--= 

00 00 • 

= z--. g(n — m)x(m)Zh * (—r)x * (r) 

z g (n — m)Eh * (—r)r m  (m — r) 

—n =  z r(m + r) g (n — r)h * (m) 
m,r,n 

= z' rre  (n — s)g(s + m)h* (m) 
rn,s,n 

= G(z)H. (z)R (z) 

In particular, if Y=GX 
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2 

) 

r(1) 
r(0) 

Ryy (Z) = G(z)G.(z)R,oc  (Z) 

Since the power of FX- ÂX is positive, we must have 

PFLy  1 2  Pm PFxp-x  

The power spectrtim is defined as 

Sx (f)= Rre (e 2elf  

and is real and positive on the unit  circle. 

Also note that H. is the conjugate of H on the unit circle; i.e., H* is the analytic continuation of the 
conjugate of H off the unit circle, i.e., 

• H* (e 2e)=[H(e2e)]* 

Predictor polynomials. 

The forward predictor polynomial Fm(f1 ) of order M is defined as that polynomial of order M in f with 
the coefficient of z °  unity which minimizes the power of FmX, called the prediction error power. 

As an example, the first order predictor may be written 1+a 111  and the prediction error power is the z° 
 coefficient of 

• 
(1 + a 1 z -1 )(1 + ai*z)Rx  (z) 
i.e. 

(1+142  )r(0) + r(1)a i*  + r(-1)a 
-which is minimized when 

al= 
r(1) 
r(0) 

and the prediction error power is • 

r(U) 
Ir(1)1 2  

Pi = = Po  (1 
r(0) 

The crosscorrelation between X and the prediction error sequence F IX is Fi (f i)Rxx(z) and the coefficient 
of z 1  vanishes since it is 

r(1) 1:0-r(0) = 0 
r(0) 

and in general the coefficients of z" 1  to z-ivi  vanish for the crosscorrelation of the prediction error sequence 
of order M and the sequence being predicted. 

This general result follows because the power to be minimized is the coefficient of z °  of the autocorrelation 
of Fm(i i )X(z), i.e. is the coefficient of z°  of Fm.(i i )Fm(i i ) R(z). By taking partial derivatives with respect 
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to conjugate of the filter  coefficients,  this means that the z°  coefficient of Fm(z1)R(z)zk  is zero, for 
k=1,2,...,M. But this then means that the coefficient of ik  of Fm(i4)R(z) is zero, as stipulated. 

The backward predictor polynomial is defined as Bm(z) and is a polynomial in z with coefficient of z°  equal 
to unity which minimizes the power of B m(z)X, called the backward prediction error power. Since 
R.(z)=R(z), the backward predictor is the conjugate of the forward predictor, i.e., Bm(z)=Fm.(z-1 ), and the 
coefficients of z to zm  of Bm(z)R(z) vanish. 

r(n) 

I I I I  
..,-2-1 Ô f 2 3 4 5 ... 

Figure 1 Correlation coefficients 

-1 
F2  tz )R(z) , 

o o 
..,-2-1 0 1 2 3 4 5 ... 

Figure 2 The forward predictoi• Fm(il) mmihilates coefficients of Fm(z 1)R(z) 

B z)R(z) 
• /fey - • 

_o - o  

..,-2-1 0 1 2 3 4 5 

Figure 3 The backward predictor Bm(z) annihilates some coefficients of l3 m(z)R(z) 

The forward predictors may be derived using the Levinson-Durbin algorithm which has a simple 
explanation using these figures. The annihilate the M+1 st coefficient, simply take FM(z-1)R(z) which has 

H 
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M zeros, and the M+1st coefficient is x, say. Then subtract (x/P m)z-(m+1)B(z)R(z) which has zeros at 
1,2,...,M, and where PM is the coefficient of z °  of Bm(z)R(z) [and Fm(z-1 )R(z)]. Thus 

F m  (z')  = F m  (z - `) — Fm z +I)  B m  (z) 
Pm+i  = Pm  0.—tr„,1 2  

coefficient of z -(m+1)  of  F m  (z -1 )R(z)  F = 
Pm  

Other statistical properties of forward and backward predictors may be obtained by noting that polynomials 
of lower order operating on Fm(i l )R(z) , in particular the predictor polynomials, still leave some zeros, and 
these may be interpretéd using Equation 2as crosscorrelation properties of prediction error sequences. 

If only the reflection coefficients must be calcnlated from the correlation coefficients, the Leroux-Gueguen 
technique is preferred and works directly with the valiablé of FmRxx; defined as .1-1m(z-1 ). We have 

H m+i (z) = H m (z)—F m z -(m+1)  B m (z)R(z) 
= HAI  (z ) — Fmz -(m+1) [Fm (z -1 )R(z)]. 

H m  (z) — FAIZ —(M+1) Hms. (Z) • 
Thus 

the coefficient of i, hiN is.governed by 

hLAI+1 = hi, m  — rm hAar* -LA/ 
that is 

particular 

hm,m41  0' sam , m m hi;,m  
116, m+1  = 1• 0,m —F m h *  m ;m  = ho , m  (1—I rm  1 2  ) = ' 

(J• = M hj,M+1 

If up to the Nth reflection coefficient is required, then the indices on h vary frOm -(N-1) to N, and initially 
ho=R. These coefficients are bounded by the square root of PoPm, and are thus less than Po=r(0). 

The analytic properties of predictofpolynémials follow by considering zm+I  Fm.i. i (il ) which is a polynomial 
in z. An application of Rouche's theorem shows that zm+1Fm+I (z4) has as many zeros inside the unit circle as 
zm+i Fm(z-i..zz-m ) -Fm(z-1 ). Since F0(z-1 ) has no zeros inside, F 1  has one, etc. and Fm  has M zeros inside the 
unit circle, as long as the reflection coefficients are less than unity in magnitude. That requirement follows 
because prediction error powers cannot increase as M increases. If we consider M approaching infinity, 
then all the coefficients of 1 1  vanish in the product Fm(z-1)R(z), and we label this 
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z -1 ) I)A7 S+(z1) 1 1  4 (T  

—> 

1 _ lim B m  (z) I .01-57 — S _(z) MceD  
1 

and if we then determine the backward predictor polynomial that annihilates all the coefficients of power of 
z, we are left with on the coefficient of z° . 

1 R(z) = 1 

which shows that R(z) has been decomposed into the product of a forward and a•backward prediction 
function, but probably not a polynomial. There is a Tafgeliterature .on determining these spectral' factors. 

In statistical theory .we say that two sequences are orthogonal if the coefficient of z °  in the crosscorrelation 
is zero. From equation 2this means that two sequences H(z) and G(z) are uncorrelated if the coefficient of zo 

 of H(z)G(z)R(z) is zero. Define the sequence 

bm  = z Bm (z)X 

Then bm  and bo, are orthogonal, k=0,...,M-1since the coefficient of z°  of 

m  B m  (z)z k  Fk (z -1 )R(z) 
is zero unless k is M when the crosscorrelation is Pm. 

Robinson and Treitel deal with two other properties of these sequences. The first is to recognize that the 
coefficient of z -N  of FN(z-1)2R(z) is the prediction power times the negative reflection coefficient. 

-Therefore they associate the reflection coefficient with the correlation coefficient of FN(1 1 )X and z-
NB N(z)X, the forward and backward predictors'. 

They also consider the problem: of all correlation functions, with the first N correlation coefficients fixed, 
which set produces a prediction error that is maximum. Their conclusion is that itis the Set of coefficients 
with vanishing reflection coefficientifee->N; resulting in a prediction error of PN. Since maximum 
unpredictability corresponds to  maximum  entropy, they call FN(1 1 ) the maximum entropy filter, and 

Pm  
mEm  (CD) -=  

I Fm  (Cia)  )1 2  
is the maximum entropy estimate of the spectrum of the process of order M. As M approaches œ  the  power 
spectrum and the maximum entropy-  estima- te are the same. 

Eigenfilters 

The minimum eigenfilter associated with the random sequence X is that causal filter E(z-I ) of unit energy 
which minimizes the power of EX. Such a filter thus minimizes the z°  coefficient of E(z-I )E.(z)R(z) with the 
z°  coefficient of E(z -I )E.(z) set to unity. By taking partial derivatives of the Lagrange multiplier formulation 
of this minimization problem, we determine that E is proportional to RE for the coefficients of z°  to z-K, 
where K is the order of E(1 1 ). 

1 lim 

(z )S_ (z) 
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Test 

There are K such polynomials satisfying ER=2E over the coefficients of E (and undefined outside this 
range); they are the K eigenfilters. The K eigenvalues l k  are real and non-negative, and are in the range of 
the power spectrum S(t). 

Since R(z).R.(z), if E(z 1 ) is an eigenfilter then so is z-KE*(z) with the same eigenvalue as E, and if the 
eigenvalues are distinct, then E(z 1 ) and z-KE*(z) must be proportional to each other, and the constant of 
proportionality must have unit magnitude. With a suitable choice of constant multiplier, the eigenfilters are 
conjugate symmetric, that is, linear phase, with 

E k. (Z) Z K Ek (Z -1 ) 

The choice of the suitable constant multiplier is needed because antisymmetric filters, with the proper 
choice of multiplier, are symmetric. For example 1-1 1  has conjugate 1-z.-z(1-z -1 ), but 
j (1-z-1 )=z-1 (-j+jz) is conjugate symmetric. . • • 

The zeros on the unit circle of the minimum polynonlinl•Will tend tb be at thè maxima of S(f) and the zeros 
of the maximum eigenfilter will tend to be at the minima of the spectrum S(f). 

If the minimum eigenvalue is zero then RE is annihilated for z°  to z-K. Thus the minimum eigenfilter is also 
the forward predictor of order n and the prediction error is zero. 

As the minimum eigenfilter becomes  longer and longer, it will tend to aiiproximate an impulse at the 
frequency of the minimum of the spectrum S(f). 

If we plot the convolution of the eigenfilter with the correlation sequence, the middle portion over the extent 
of the eigenfilter tends to be large for the maximum eigenfilter and small for the minimum eigenfilter. 

Thus, the maximum eigenfilter is rather related to a matched filter, and the minimum eigenfilter to a 
prediction filter. 

- • • ( 1 0.5  0.2" 
0.5 1 0.5 

0.5 1 • 

Yule Walker 

,a0  =(1),P0  =1 

a, . (_01  = .5j, P  = 0.75 

( 1 \ 
a2  = —0.5333 , P2  = 0.75 * 224 / 225 

0 .0667 

To find spectral factorization set a=[1 0.5 0.2] 
and successively compute 
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we have 

a=[a0] 
chol(toeplitz(a)) 
using MATLAB 
and take the last column. 

= 0.8577 + 0.4853z -' + 0.2332z -2  

( 1.3393 -0.7143 0.0893 \ 

= -0.7173 1.7143 -0.7173 
, 0.0893 -0.7273 1.3393 

3. SEQUENCES *OF VECTORS. 

Since all that is needed is a definition of correlation, We inay use vectors of matrices, and define correlation 
in terms of VU",  where H represents complex conjugation. 

Thus let X be a stationary sequence of zero-mean circularly complex random vebtors {x(i)}. The z-
transform of X is 

X(z) = x(n)z -n 

The autocorrelation function Rxx(z) is defined as 

(z) = E[X(z)e (0)] 

Since 

(z) = rx, (n)z -n 

• r (n)=rH  (—n). xx lx 

Define the power of the sequence as the trace (sum of diagonal elements) of rxx(0) which is real and 
positive and equal to E(x11(0)e)), and 

I Tr(rjef  (n)I 2  ITr(r(0)1 2  

In general, for two sequences X and Y, define the crosscoi-relation as 

Rxy  (z) = E(X(z)y H  (0)) 

If Y and Z are filtered versions of the same sequence X with transfer matrices G(z) and H(z) then 
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R yz  (z) = G(z)R(z)H (z) (2) 

where H*(z) is H(z) with its coefficients Hermitian conjugated, z replaced with 1/z. 

Then 

E[Y(z)z H  (0)] = 
00 E y(n)z H  (0)z "  I 

- 

= z-n g(n — rn)x (in) Ex H  (r)hH  (-r) 
M=-0•0  ' 

Ca3 

z-n E g(n — (m .  r)hH  (-r) 
•rn=-00 = z-"g(n — r)rre  (m + r)hH  (rn) 

in,r,n 

= E z-ng(s + (n - s)h ll  (m) 

= G(z)R(z)H(z) 

In particular, if Y=GX 

Ryy (z) = G(z)Ru  (z)G.(z) 

With scalars, the power in a signal is equal to r(0). With vectors, the power of all the signals is equal to the 
trace of the correlation matrix at time 0; thus, the trace will appear. This follows because 

E[X(0) H  X(0)] .  =elf  X i  (0)X;'  (0)] = (0) = Tr[,R(0)] 

This also follows form the relationship thin inkB is square, Tr(A13)=tt(BA). 

If A is a square matrix, then the expectation of xH  Ax • 

E(x HAx) = Tr[AR(0)] 
and 

E(X H AX) = Tr[AR] 

Since the power of FX - ÀX is positive, we must have 

Tr[F>  FR] - Â, *  Tr[F, R] - er[FR]+ Â,Â*  Tr[R(0)] 
I Tr(FR)I 2  Tr[EFR]Tr(R) 

where all traces are over the elements that are the coefficients of z° . 

• i 
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The power spectrum is defined as 

S x (f)=12,cc (e 2e.  ) 

and the diagonal terms are real and positive on the unit circle. 

Predictor polynomials. 

The forward predictor polynomial Fm(z 1) of order M is defined as that polynomial of order M in z-1  with 
the coefficient of z°  unity which . minimizes the power of F mX, called the prediction error power. 

This general result follows because the power to be minimized is the coefficient of z°  of the autocorrelation 
of Fm(z-1 )X(z), i.e. is the coefficient of z°  of  Fm(Z1)  R(z):Fm.(z-1 ):Éy taking partial derivatives with 
respect to conjugate of the filter coefficients , this means that the z°  coefficient of 
Fm(z4)R(z)zk  is zero, for k=1,2,...,M. But this then means that the coefficient of z -k  of Fm(z 1 )R(z) is zero, 
as stipulated. 

For example, with the coefficient of 11  vanishing, we have, for the first order predictor 

R(1) — F(1)R(0) = 0 
F(1) = R(1)R(0) -1  
F = I — R(1)R(0) -1  z -1 

 B = I — R(0)-1  R(-1)z 

The backward predictor polynomial is defined as Bm(z) and is a matrix polynomial in z with the coefficient 
of z°  equal to the unit matrix which minimizes the power of X B m(z), called the backward prediction error 

- power. Since R.(z)=R(z), the backward predictor is the conjugate.of the forward predictor, i.e., 
Bm(z)=Fm.(z-1 ), and the coefficients of z to zm' of R(z) B m(z) vanish. 

' 
After annihilation up to degree M, the matrik coefficient of z °  is denoted Pm. Theirace of Pm  is the forward 
(or backward) prediçtion error. . . 

. r(n) 

1 I I I I 
, -2 - 1 0 1 2 3 4 5 ... 

Figure 4 Correlation coefficients 

I 

16 



-1 
F2  lz )R(z) , 

H  I_L, 1 I I 
, -2 -1 0 1 2 3 4 5 

Figure 5 The forward predictor Fm(z 1) annihilates coefficients of Fm(il)R(z) 

R(z)B 2 (z)* 

I 1  1 I I 1 . 1 0-0 

-2 -1 0 1 2 3 4 5 ... 

Figure 6 The backward predictor B m(z) annihilates some coefficients of R(z) Bm(z) 

The forward predictors may be derived using the Levinson-Durbin algorithm which has a simple 
explanation using these figures. To annihilate the M+1 st coefficient, simply take Fm(z 1 )R(z) which has M 

-.zeros, and the M+1st coefficient is x, say. Then subtract xP m-li(m+.,! )  R(z)B(z)which has zeros at 1,2,...,M, 
and where Pm  is the coefficient of z°  of R(z) Bm(eand Fm(z-I )R(z)]. Thus 

Fm,i (z -1 ) = Fm (z -1 )- GmzFm.(z) 

Pm+i = (I .'2g1f 17AÎTA/ 

FM  = [coefficient of z-(m+1)  of Fm(z- ')R(z)]Pm -1. 

Other statistical properties of forward and bacicward predictors may be obtained by noting that polynomials 
of lower order operating on Fm(z-1)R(z) , in particular the predictor polynomials, still leave some zeros, 
and these may be interpreted using Equation 2as crosscorrelation properties of prediction error sequences. 

If only the reflection coefficients must be calculated from the correlation coefficients, the Leroux-Gueguen 
technique is preferred and works directly with the variable of FmRxx, defined as Hm(z-1 ). We have 

= Hm (z ) Fm z -(m+1) [Fm  (z -1 )R(z)]. 

= H m  (z) - G m z -(M+1)v.rnm.(z) 
Thus 

the coefficient of z --1 , hi ,N  is governed by 
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1 
1 
1 
1 

• 1 
1 

1 
1 
1 

h j,M+1 = h j,M — F h *  m m-J,m 
that is 

hJMj  = h . j ,m-1 

In particular 

o-h r m  hH hm,m+J. -= m,m o,m 

ho m+i = ho,m m IT  — rfriFirm )ho,m  Pfri+1  
, him+, 0 for 1 5. j M 

If up to the Nth reflection coefficient is required, then the indices on h vary from 7(N-1) to N, and initially 
HormR. 

As before, define 

r. 

1 

1 
1 
1 
1 

liM —1 
I'm (Z -1  WilA7 M —> (>3  — 

hill —1 S_ (Z) -1  = 
M 

B ,,,,, (z)VP; 
C°  - 

and if we then determine the backward predictor polynomial that annihilates all the coefficients of power of 
z, we are left with on the coefficient of z°. 

(z -1  ) -1 R(z)S_ (z) -1 I , 
R(z).s+ (z- )s_(z) 

which shows that R(z) has been decomposed into the product of a forward and a.backward prediction 
function, but probably not a polynoinialebere is a large literatufe on Oetermining these spectral factors. 
We have impolemented a program to'clii dlis[5]. 

In statistical theory we say that two sequences are orthogonal if the coefficient of z°  in the crosscorrelation 
is zero. From equation 2this means that two sequences H(z) and G(z) are uncorrelated if the coefficient of 
z°  of H(z) R(z) G.(z) is zero. efine the sequence 

= z -friB M ' z 

Then bm  and bk  are orthogonal, k=0,...,M-lsince the coefficient of z°  of 

z'z k F, )R(z)B m  (z) 
is zero unless k is M when the crosscorrelation is Pm. 

Robinson and Treitel deal with two other properties of these sequences. The first is to recognize that the 
coefficient of iN  of FN(Z.1)2R(z) is the prediction power times the negative reflection coefficient. Therefore 

1 
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they associate the reflection coefficient with the correlation coefficient of F N(z-I )X and z-NBN(z)X, the 
forward and backward predictors. 

As to eigenvectors, one approach is to consider the vector 

Af-1 

H(z) = H k z -k  
k=0 

M-1 

ll* (Z) = Ex klizk 
k=0 

and minimize the dc coefficient of the scalar 

(z)1Z(z)ll(z) 

subject to the dc coefficient of 

(z)H(z) 

being fixed. 

These lead to equations of the form 

r(0) r(-1) A  r(—(N --  1)) `11(0)` (11(0) \ 
.r(1) • r(0) A r(—(N — 2)) h(1)h(1) 
A AA A A À  A 

r(N — 1) A r(0) h(n), h(n) ., 

Another approach would be to consider H as a matrix polynomial and minimize the trace of the dc-
coefficient. 
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APPENDIX 2 MARKOV DETECTION 

Here is a short review of the theory [1,2] of Markov detection. It covers Viterbi and least-error-bit-
probability detection. 

Assume that there is an underlying Markov process with M states u k, and associate with each transition a 
lcnown output xk. Because of the Markov property xk  depends only on the states uk_ i  and uk, and is 
stationary. The received signal is zk=xk+nk, where nk  is uncorrelated Gaussian noise. The problem is to 
determine the sequence u={uo,ui ,u2,...uK } of Markov states from the received sequence z={z o,zi ,...,zic }. Let 
1110k represent the subsequence states from time 0 to time k. 

The joint probability P(u,z) satis,fies 

K-1 K-1 K-1 
P(u, z) = P(u)P(zI u) = P(u)11P(z k  1 ilkel4k—i) . p(uk+11 p(zkluk,uk_i) 

k=0 • k=0 . k,=0 n • 

A given transition i,s assigned a length X(uk,uk_ i ) given by 

Muk  , ) -.=•• —1n(P(uk 114k-1)) ln(P(zk  I uk  , )) 

so that 

—1n(P(u, z)) = )L.(uk  , ) 
• 

The quantity -1n(P(u,z)) is the likelihood function, i.e., the length of the path. The expression above states 
that the length of the path is the sum of the length of the individual links in the path. 

The prototype problem is as follows. The beginning and end states are known. A sequence is received. The 
intermediate states are to be estimated. The probability of error is also to be determined. 

The Viterbi algorithm determines the most likely sequence. It does this by proceeding, in time, to find those 
sequences which were most likely to hâve. '' 1ed to all the states, and their likelihood; these sequences are 
called the survivor sequences. The proceduie is then repeated for the next time, màking use of the 
previously determined most likely segue' nces termihating in a particular state. Thds,'at any time k, it is only 
necessary to remember the M survivôr sdlhèriees. 

There are other algorithms for these probleMs. Let yik  represent the output sequence from time j to time k, 
inclusive, and let k  represent the pair of states (uk,uk,i), i.e., the transitions. Then another approach 
calculates the state and transition probabilities P(u klz) and P( klz)m, allowing a variety of performance 
measure' s to be optimized. Thi2 calculation is done as follows. 

Firstly, it is more convenient to use the probabilities without conditioning. Three intermediate probabilities 
are used. These are 

ak(uk) . p(tt,,z )  

13 k (ik )=1)(zIlik ) 

k (Uk _p Uk ) = P(Uk , ZkIttk_i) 



p(uk ,z) = P(uk , z ko-1 )P(z kKluk ,z10-1 ) 
= P(uk ,z ko -1 )P(zIK, I uk ) 

•-= a k (uk )P k  (uk ) 

since the outputs zkK, given uk, are independent of the earlier outputs. 

Also 

P(Ç k ,z ) = P(U  k 3U  k+11 Z) 
k-1 k = P (Uk  ,Z 0  )1)(Uk+1 ,Z k Ilik ,e0 ).FY - k1C+1 1Uk+1 k ,.,0 

= P(12 ,Z ko-1  )1)(Uk±i  , k 11.1 k )P(Z Ile,+1 112 k+1 ) 

= a k(uk)r k(uk , uk .+1)P k (uk-o) 
. • • . 

The three unknown are computed recursively by 

. Ce  k(Uk) = Ira  k-1(Uk-l)r k( Uk-1 5Uk) 

using forward recursion, with the values for k=0 assumed known, 

P k(Uk) = E P k_q(uk+1)7 k+1 (Uk Uk+1 ) 

using backward recursion;.and 

rt (uk-1, k ) = Pr(uk  1 uk_1  )Pr(x k  1 , uk  )Pr(z k  lxk  ) 
Xk 

Or 

(uk_i  , uk  ) = P(uk  , zk  1 uk_1 ) = P(zk  1 uk«, )P(uk luk _i  ). 

More details a-  lso appear in [3]. 
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ABSTRACT 

This note is a short investigation of the use of filterbanks for spectrum analysis for an application described 
by Inkol[1]. After reviewing filterbanks and windowed H4I s, we determine that they differ only in that 
filterbanks tend to use Nyquist, or root-Nyquist prototype filters, which eliminates the picket-fence effect, at 
then expense of filter length for a given stopband suppression. With root-Nyquist filters, a quadratic output 
appears natural; full Nyquist filters would tend towards envelope outputs. 

For realization, the use of polyphase filterbanks is a desirable feature, since they are very efficient. It may 
be beneficial to do the polyphase processing after the FFI', and this is discussed. But their use is 
independent of the use of windows or Nyquist filters. , 

;.; 
Wavelets are analyzed for this application, but they are not attractive, since the frequency channels are 
linearly spaced. , 

Finally, we include an estimate of the total delay that would be suffered by typical linear phase, equiripple 
stopband prototype filters. 

0. PERFORMANCE OF SPECTRUM ANALYZERS. 

In our minds we have a picture of the time-frequency plane, with a positive function of time and frequency, 
unfolding in time. But there is no universal definition for this intuitive concept, and therefore the application 
drives the tools. . 

This is commonly displayed using a waterfall plot. 
burst of sine wave 

past 

f time 
present • 

frequency 
Figui  re 1 Waterfall plot of the time frequency plane. 

Issues include 
-response time 
-spectral leakage 
-output sampling rate 
-picket fence effect 
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1. ANALYSIS/SYNTHESIS FILTERBANKS AND SPECTRUM ANALYZERS 

A spectrum analyzer measure signal power spectrum in time. A common spectrum analyzer passes the 
signal to a filterbank, and takes the instantaneous squared magnitude (or perhaps the envelope) of the output 
as an estimate of the power spectrum. 

Analysis/synthesis or synthesis/analysis filterbanks are used in signal processing and communications. The 
analysis filterbank expresses an input signal as a linear sum of signals, each of which has a restricted 
frequency response, where the frequency response is characterized by the filterbank filter responses. A 
synthesis filterbank, on the other, combines signals together to form an output signal. 

In an analysis/synthesis filterbank (first analyze, then synthesize) it is useful if the back-to-back cascade 
results in an output signal that is the same as the input...Similarly, it is useful if a synthesis/analysis 
filterbank cascade results in a set of signal that is unchanged. 

If we focus attention on the filters, a block diagram may be made. 

Analysis Synthesis 

Figure 2 Each block is a filter. The four filters in the analysis filterbank generate four channel signals 
from the composite input signal; the synthesis filterbank generdtes'a composite signal from the four 
channel signals. Often the frequency nsponse of the two corresponding filters in the analysis and 
synthesis filterbank are matched to edch pther, with the same magnitude frequency response, and 
opposite phase frequency response. , 

, • 

Analysis 

Figure 3 One implementation of a spectrum analyzer. The squared magnitude of the output signals 
are used. 
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H1 G1 G1H1 

H2 G2 G2H2 

G3H3 

G4H4 

Analysis Synthesis - Analysis 

H3 G3 

H4 G4 

If we consider the requirements on the filters, it is useful that the sum of the filter responses is a constant, 
and also that the sum of squares magnitude responses is constant in frequency. 

• • Analysis Synthesis 

r. 

Figure 4 Another implementation of a spectrum analyzer. The magnitude of the output of the cascade 
of corresponding analysis and synthesis filters used. In this realization the sum  of the four outputs is 
equal to the input 'signal in a good analysis/synthesis filterbank. 

Figure 5 The filter responses may be combined. 

. 2 NYQUIST FILTERS AND HALF-NYQUIST FILTERS 
• 

Most filterbanks are based on a lowpass prototype filter, a Nyquist filter N(z), or a,pair of prototype root-
Nyquist (sometimes called half-Nyquist) filters H(z) and G(z) such that H(z)G(z) is a Nyquist filter and H 
and G have the same magnitude response on then unit circle. If there are M channels, the Nyquist filters is 
called an M-band (or Mth band) filter has all the coefficients at times kM from the center coefficient equal 
to zero. 

This requirement in the pulse response may be interpreted in the frequency domain, and the sum of 
frequency shifted (by k/M) versions of the frequency response is a constant, usually set to unity. Thus 

E N(e i0-2 ). constant 
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frequency 

Figure 6 A set of translated Nyquist filters sums to a constant, is positive, and crossover at the 6-dB 
frequency. 

For low-pass filters that cutoff before the frequency 1 1M, this means that the loss at the frequency 1/2M is 6 
dB. 

• • 
This in turn implies that the loss of a half-Nyquist prototype filter at this frequency is 3 dB with respect to 
the loss at 0 frequency. 

If we use a root-Nyquist based fiherbank, it makes sense, it seems to me, to take'the squared magnitude of 
the filter outputs, since, with fixed-magnitude but variable frequency simisoidal input, the sum of all the 

• outputs is a constant as the frequency is swept about the unit circle. 

On the other hand, is we base the design on a full-Nyquist prototype filter it would seem reasonable to me to 
take the (unsquared) envelope of the filter outputs to represent the spectrum equalizer output, and the sum 
of all the envelopes is a constant  with a variable frequency sinusoid sweeping across the band of the 
spectrtnn analyzer. 

3. FFT-BASED FILTERBANKS 

'Because of the great efficiency of the 141-'1, there is Uemendous inrèrest'in using this signal processing 
approach to frequency selection, and to generalize it in many ways. We are going to concentrate on the 
frequency response of these filterbanIci,:hrid for that purpose it is useful to draw the typical 14F1 processor 
in the following block diagram. 

Figure 7 A representation of the usual application of the unvvindowed DFT filterbank putting the 
delays explicitly in view. 
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The transfer function from the input to the first channel output is 

N-1 i-z-m P(z) = Ez' =  

1-z-i 
and to the other filter outputs, for k=1 ..M, are 

p(wik-1 z ) 

where 

W = Ci2relfri  

and the various frequency responses are simply those of the lowpass P(z) shifted around the unit circle. 

The first generalization is the concept of windowing:,*heie weight's ar.  e hiclùded in the input arms, as 
follows 

• .•'t 

Figure 8 The first generalization is to include weights wo,.wi, etc. on the inputs and/or outputs. 

' • 
This gives a frequency response 

M-1 

P(z) = wsz' 
5=0 

The synthesis filterbank responses are shifted versions of the prototype polynomial P*(z) given by 

m-i 
P(z) =1,z' w 

s=0 

that is, P(z) with its coefficients written backwards. 

The extension of this idea is to use weights that are polynomials in fm• This is the basis of Bellanger's 
polyphase expansion; given any H(z), form the polyphase expansion 
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DFT 

. 2 -1 
z 1  

0 

2 -1 y Y1 N-1 

m-1 
H(z)=Zz' Hk (z m  ) 

s=o 

and set the weights equal to Hk(zm); this allows any frequency response. 

If the only technique available is a windowed FFT without the delays required for a polyphase Ft-el, then 
one approach is to use an 14 1-i1' whose size is the same as the length of the prototype filters, and weight it 
with the prototype filter coefficients, and throw away many of the output values. 

4. WINDOWING 

The use of windows to improve frequency response is common in spectrum analyzers. This is usually 
presented by noting that the use of the ordinary.1-eter with all the weights equal to unity is like a convolution 
with a time function that is a square pulse, and that this is reason for the poor frequency response. If we take 
the filterbank approach then the polyphase representation 'of the synthesis .filterbank is not useful, because 
the summing operation is built in. The idea then is to combine the analysis and synthesis filters in one 
branch as one filter, and simply use this in the polyphase structure. 

Consequently, the windowed DFT has the following block diagram. 

. . 

Figure 9 Windowed FFT spectrum analyzer. The squared outputs are used for spectrum analysis. 

The prototype filter is 

L-1 

H(z)=Iwk z —k  
k=0 

and this is what is drawn in the window literature[1]. But the translated responses are ordinarily not drawn. 

The windowed DFTs are used to minimize spectral leakage. This is commonly viewed by examining the 
response of prototype filter. But in the filterbank design area, we would describe the sidelobe suppression 
by the maximum interference that may be exerted in the passband of a filter due to channels separated by 
two or more channels away. We do not ordinarily worry about the effect of the next channel, because it has 
to share a signal anyway. We have attached some responses of common windows, but we have kept the 
stopband frequency fixed at 1/M. In the example figures, the number M=32, so there are 32 channels. 
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By design, then, the placement of the stopband is fixed. The remaining factors to include are the 'picket 
fence' effect, and the spectral leakage. 

The details of the examination are in Appendix 1 

It appears that there are standard windows that achieve any required spectral leakage requirement, but they 
do not have control of the 'picket fence' effect. The class of half-Nyquist filters achieves both the required 
spectral leakage and eliminate the picket fence effect. Notice that the length L=124 Dolph-Chebyshev filter 
is too long for the standard windowed FFT and so a polyphase realization would be required. 

The polyphase 1,1-e1' is a technique to realize filterbanks efficiently which allows the use of 'window' 
functions that are longer than the dimensions of the WI', and which allow less spectral leakage. 

5 AN ALTERNATIVE INTERPRETATION OF WINDOWING. 

If we examine the previous figure, it can be seen thàtileportion after the delay lines may be represented as 
a diagonal matrix operating on N inputs, followed with an N-dimension DFT. 

The signal processing, in matrix terms , is 

FD 
where F is the FF1 matrix and D is a diagonal matrix. 

This is equal to 

CF 

where C is a circulant matrix, i.e., each row is simply a shifted version of the previous row. According to 
this view, we may consider a windowed FFT as one in which the input is applied directly to the H-q.' without 
windowing, and processing is applied on the outputs. The processing is identical for all the outputs, and 
consists of talcing weighted sums of outputs; the weights are the same for each output. For example, with the 

"Hamming window, this is equivalent to talcing,the output as the same output of the DFT multiplied by 0.54 
and 0.23 times the sum of the two adjacent outputs. 

, 

+. • 
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0.54 

DFT DFT 

2  - 1 * 

2 " 1  

N-1' 

2 -1 * 
2 -1 

0.23 

0.23 

H (z) 

(-z 

H(z) 

H(-z) 

2 

: • • 
Figure 10 A Windowed DFT may also be considered as a DFT applied first, followed with a 
frequency-domain weighed sum, for each output. This may be useful if not all the outputs are 
required, for exaniple, or for hardware reasons. 

6. WAVELETS. 

The elements of wavelet theory are summarized as follows. The wavelet theory is based on a prototype half-
band filter H(z) satisfying the 2-Nyquist condition; every second coefficient of H(z)H*(z) except the center 
one vanishes. And decimation is by 2. Here is the block diagram of an analysis/synthesis system. 

, 
Figure 11 Half-band analysis synthesis. The lower * indicates the filter with its coefficients written in 
reverse order. The filter orders are odd. 

For an input sequence X(z),  thw output is, with even samples on the top and on the bottom 

X(z)[H(z)H.(z)- H(-z)II„(-z)]+ X(-z)[H(-z)H*(z)- H(z)H( -z)] 
 = X(z)[H(z)H*(z)- H(-z)H*(-z)] 

and the condition for perfect reconstruction is that 

[H(z)H.(z)- H(-z)H*(-z)] 

which has only odd coefficients is to be a monomial. 

The concept of half-band filtering may be continued by constructing an analysis tree or pyramid as follows 
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H(z) 

(-z) 
2  H(z) 

2 
(-z) 

H(22, N. 
4 4 

2 
 H(z) 

2 (-z)   

Figure 12 Tree of half-band filters and decimators. The symbol rate is reduced by 2. 

• . . • 
For analysis purposes it is actually easier to draw thesarriPling at the tips of the tree branches. As well the 
filters are reordered so that the frequency bands of adjacent outputs are touching. 

2 
(z ) 

H(z) 

(-z) 

4.1* ( . 12 )  

-H.;-z 2; 

Figure 13 This process of pyramidal analysis may be continued indefinitely. 

In the theory of wavelet the same prototype filter is used at every level, and results in a rather elegant 
theory. But for most signal processing eplications this elegance is wasteful, and it is possible to relax the 
filter design requirements for each level. Thè reason that this is desirable is the fogowing. If we write the 
transfer function from the input to output for ope output  channel it will consist of a product of filter transfer 
functions Hi(zK) or Gi(zK) where Gi(z).--tre(•=z»). Suppose that the trarfer function is 

(z)G2 (z2 )H3 (z 4) 

The transfer function for the next channel will have only one of the constituent transfer functions changed. 
This means that the transition band between the two channels is determined by the transition band of only 
one of the filters. Because in most applications the transition bands should be similar, and filters that are 
higher in the pyramid have inherently narr-ower transition bands due to the presence of powers of z ion the 
transfer function, this means that the prototypes for the leaves of the tree (the lower layers of the pyramid) 
may have wider transition bands. 

For example, the four filters for the tree in the figure are HH, HG, GG, GH. Thus if we use the notation { }. 
to mean a sequence backwards, the next sequence of filter transfer function is obtained from the previous 
sequence A by forming {HA,GA' }. 

We mention in passing that the theory of wavelets makes use of iterated transfer functions, in particular an 
iterated lowpass transfer fimction. This requires that the frequency response have its maximum at 0 
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frequency, which implies that G(z) has a zero at -1. The number...of zeros at -1 is the regularity of the 
wavelet. The Daubeschies wavelets are formed from a half-band half-Nyquist filter that has all its zeros in 
the stop band at -1; the other zeros are used to obtain the Nyquist property. 

If we examine the frequency response of the pyramidal filterbank, then the response is that of real bandpass 
filters. Since in many communications examples the resulting two sidelovbes are not useful, the input signal 
would have to restricted to positive (or negative) frequency using a Hilbert transformer; in factor, a half-
band, or quarter-band Nyquist filter may be used. This would allow envelopes to be determined. 

If it is not useful to obtain the intermediate stages in the pyramidal analysis, there appears to be no 
advantage of wavelet transforms over polyphase filtering. 

7. THE INFLUENCE OF FILTER PARAMETERS ON DELAY. 

Real time applications imply the need for fast response, and short delays. By delay we mean the time taken 
for a burst of sine wave to cause the output of detector to rise to an acceptable value. hi"general, the more 
filter coefficients that there are, the more the delay. The length of narrowband filters with good stopband 
performance is proportional to die attenuation in the stopband and the width of the transition band relative 
to the total bandwidth. The transition band is the frequency between overlapping passbands and the 
beginning of the high loss frequency band, and is commonly expressed as a percent of the distance from the 
band center to the passband edge; Typical values range up to 100 percent. An approximate results for linear 
phase filters is that the length L is approximately 

L A M 
15 a  

For example the MPEG linear phase filters with a stopband loss of 120 dB, a cutoff of 100 percent and 64 
channels has L=8Mr--512. The DFT filterbanks with a stopband loss of about 15 dB have a length M. The 

.•delay of such a filter is about L/2. 

For even less delay the use of minimum.phase filterbanks is desirable. They are not as long as a linear phase 
filterbank for'the same stopband loss, add have the least delay. 

For an M-band Nyquist filter, the pulste‘respcnse is small except for, a sequence of 2M samples. Therefore 
the risetime will be about 2M samples. 'fïere will be an associated deiay equal to about half the length of 
the Nyquist filter. 
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M 
Pulse response of a Nyquist filter 

Step responsé. The rise time is about 2M samples. 

Figure 14 Pulse responses 

8. CONCLUSION: DESIRABLE PROPERTIES OF FILTERBANK SPECTRUM ANALYZERS 

These spectrum analyzers are foridentifying narrowband signals. 

1. A given input sinusoid should, in the steady state, produce a minimal number of outputs. The outputs 
should be real positive quantities indicating the presence of a signal in a particular frequency band. The 
minimum number of possible outputs that are excited for full coVerage is two. The existence of other 
outputs due to an input sinusoid is 'spectral leakage' and should be minimized. A constant level sinusoid 
should produce a constant output. 

2. The spectrum analyzer should be such that it permits narrow band signals to be recovered. In particular, 
the input should be recoverable. 

3. If the sum of the analyzer outputs is added together, an input sinusoid swept across the band should result 
-in a constant sum. . 

4. The delay from input to output should:be small. This implies the use of minimum phase prototype filters. 

5. The risetime should be small and predictable. 

6. The output should be linear ôr quadratic  in the input signal. 

7. If two sinusoids are separated in frequency and have random phase, the outputs should be independent of 
each other. If the sinusoids are in the same bin then the output should be the sum of the outputs for each 
sinusoid in isolation. 

Based on these requirements, we reConnnénd the use of M-band minimum-phase root-Nyquist filters, and a 
quadratic detector at the output of each filter. 

For computing efficiency, the filters should be realized as FIR filters in a polyphase structure. 
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APPENDIX 1 EXAMINATION OF VARIOUS WINDOW FUNCTIONS 

In this examination, we keep the width of position of the stopband fixed. All the illustrations are of a 32- 
channel system. 

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 

'Figure 1 Frequency Response of the 'BOXCAR' width; equarweights, length 32. 

The problem with this frequency respone•is that the stopband loss is only 14 dB. The crossover loss is 
about 3 dB. 
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Figure 2 Frequency response of the Hamming window, length 64, for a 32-channel spectrum 
analyzer. The spectral leakage is about 43 dB, and the crossover loss is about 6 dB. This would be a 
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design for a full-Nyquist filterbank 
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E15-  50 — 

—60 

—70 

—80 

—90 

—100 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3 An equiripple stopband results with the Dolph-Chebyshev design. The length is 32 for a 32- 
channel system; the stopband performance is slightly better than the 'boxcar' weighi 
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Figure 4 Frequency response of a Chebyshev window of length 96. The stopband loss has increased to 
75 dB. But note that the crossover loss is not controlled; it is about 10 dB, so there will be a 

significant picket fence e ffect 
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Figure 5 Frequency response of a 32-channel spectrum analyzer with a Blaclunan window. The worst 
case sidelobe suppression is about 59 dB, and the crossover loss is about 10 dB, resulting in a picket 

'fence effect. Although it is not clear in this figure, the stopbarid loss continues to fall off as we depart 
from the main channel, which falloff is often a feature desired by system designers. 



response for f32_8 
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Figure 6 Frequency response of an 8-channel spectrum analyzer using a root-Nyquist, equiripple 
stopband. The filter length is 37. The loss at the crossover frequency is 3 dB. A 32-channel filter with 

the same loss would be about 4 times as long;abotit 150 coefficients. 
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ABSTRACT 

The purpose of the note is to propose an vestigially analytic wavelet. 

Wavelets are real functions, and thus bandpass wavelets have two sidebands, one for positive and one for 
negative frequency. This is unattractive. We propose the following definition of a vestigially analytic 
wavelet. 

Let H(z) be a half-band Nyquist filter. Let.G(z) be ii?coitespondirig high-pass counterpart; generally, 
G(z)=H(-1/z). 

Define 

(13(c0)= H((—iz) 112 )H((— iz) 114 )H((— iz) 118 )-.. 

where 

z= e iw 

and define 

W(co)= G(—jz)(1 3(co). 

-Consider the following analysis tree 

9, -I G  ( ( 2 

' G( -jz) 

Figure 1 Analytic Wavelet Tree The transfer function from the input to the output nodes is a scaled 
copy of the transform of W(co). 

Then the transfer f-unction from the input to the output nodes are the Fourier transforms of 

node 1 W(o) 
node 2 W(2o) 
node 3 W(4m) 



• etc. 

and has little negative frequency contenet; i.e., it is vestigially analytic. 

Remaining work 

Does (re exist. Chancesa re better than the proposal of issue 1. 
This is just the theory of wavelets shifted by it/2. 
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