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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE SATELLITE AND MOBILE ENVIRONMENTS:
CONTRACT OVERVIEW

W F McGee
Contract U6800-6-3505
19 March 1997

The purpose of this note is to provide a short overview of the contract.

The overall project was intended to examine the feasibility of spectrally efficient communication using VSB
communication. There were three basic goals:

1. Provide support for design of the downlink path.

Four filter designs have been supplied, one based on half-band filter designs, a minimum/maximum phase
design, one on Lawton decomposition, and a linear phasé design. Assistance in MATLAB proarammmg
was also provided. :

Reports include '

1.1 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile And Mobile
Satellite Environments: 1a. Filter Designs For Polyphase Network

1.2. Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile And Mobile
Satellite Environments: 1b. Polyphase Realization Of VSB Filter Banks Using Spectral Factorization Into
Symmetrical Complex Functions: Lawton’s Factorization

1.3. Phasing Filterbanks ,

1.4. Prototype Filters for VSB Filter Banks Derived from Half-Band Filters.

~1.5. Estimating Performance Degradation Of Phase And Timing Brror©On VSB Filterbanks

1.6. Phasing VSB Filter Banks A

. . =

There have been several CRC publlcatlons ba¥ed on this assistance. These may be obtamed from the first
author. .

M Sablatash, W F McGee and J Lodge Bandwidth-On-Demand Multiple Access Communications System
[Design Combining Wavelet [Packet Trees and DFT Polyphase Filter Banks, NJIT March 1997.

M Sablatash, W F McGee and J Lodge, Transmitter and Receiver Filter IBank Designs for Bandwidth on
Demand Multiple Access Communications based on Combining Wavelet Packet Filter Bank Trees and DFT
Polyphase Synthesis and Analysis Filter Banks, CRC Report VPCS #33/96

2. Design uplink path. This work is ongoing.
The basic goal has been to determine system options that will tolerate adjacent channel operation that is
improperly phased. and timed. If properly phased and timed, performance would be as in the downlink

direction.

A basic summary of the problem has been reported.



“Since operation with a lack of phasing would allow QAM transmissiot, the performance of QAM systems

2.1 Communication With Unsynchronized FDM Transmitters Using Maximally Decimated Filter Banks

First, a variety of filter designs were evaluated, both by examining the pulse response, and estimating the
error rate. The results may be summarized as follows. There is little crosstalk between channels that are not
adjacent. The crosstalk between adjacent channels is that of a pulse through a narrowband filter, hence
long, and with fixed area. The delay of the adjacent channel interference is determined by whether or not
the crosstalk has gone through a minimum or a maximum phase network. Only a linear phase design
provided crosstalk that was uniform from channel to channel; oddly enough, the Lawton design, which has
symmetrical but complex pulse responses, also exhibited this lead/lag phenomenon.

2.2 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And
Mobile Environments: 3a. Basic. Properties Of VSB Filterbanks

2.3 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And
Mobile Environments: 3b. Zero Forcing, Minimum MSE And Decision Feedback Multi-User Receivers

2.4 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And
Mobile Environments: 3c. Effect Of Linear Phase Prototypes On Filterbank Crosstalk

An approximation to error rate based on steepest descent has been developed.
2.5 Error Rate Approximation

A variety of equalizers has been evaluated. The minimum mean squared error equalizer minimizes the
perturbations to the signal due to noise, intersymbol interference in the same channel, and adjacent channel
interference. The decision feedback equalizer uses previously received data in the same channel to subtract
tails of pulses. The vector decision feedback equalizers also uses the information about the data received in
the adjacent channels. The design and evaluation of the vector feedback equalizer required a program to
perform the Bauer factorization of positive definite Toeplitz matrice}.

2.6 Program Bauer: Spectral Factorization Of Matrix Polynomials

was made. The conclusion of a partial study is that QAM performance is marginally superior, but the
optimum equalizers to combat adjacent ‘ehannel interference require broadband equahzers rather that the
equalizers for VSB which span a channel and its two adjacent channels only.

2.7 Study Into Improved Spectrum Efﬁciency For FDMA/TDMA Transmission In Mobile Satellite And

Mobile Env1ronments 3d. Zero Forcing, Mmlmum MSE And Decision Feedback Multl—User QAM
Receivers .

Since spectrum coding puts nulls in the power spectrum, the theory of spectral coding for this application
has been developed. The idea liere is that the adjacent channel interference in VSB systems considered may,
with the worst data sequence, completely close the data eye, if at an equal level. The spectral coding should
result in a worst case interference equal to twice the peak of the crossstalk pulse, not the area, and this peak
may be reduced by reducing the excess bandwidth of the transition band between channels.

2.8 Study Into Improved Spectrum Efficiency For FDMA/TDMA Transmission In Mobile Satellite And

Mobile Env1ronments 3e. Minimum MSE And Decision Feedback Multi-User Receivers Using Spectrum
Control

The modifications to error rate calculations have been detailed.

2.9 Modified Duobinary Error Rate Calculation




The previous studies amount, in the theory of multi user communication, to implementation of mean-
squared error decorrelating receivers. The next phase of the work is to investigate in detail iterative

_ decoding strategies. These involve selecting the received channel with the largest signal level, decoding it,

and using this information to reduce the interference into the adjacent channels, and to reiterate this process.
This will occur in conjunction with error control coding which may be used in an iterative decoding strategy
to feed back decoding decisions that render certain transmitted data patterns to be more likely.

As preliminary work, we examined relevant work on Intersymbol interference, and summarized it

2.10 Review Of Intersymbol Interference Mitigation

A detailed examination of the calculations used in manipulating matrices for MLSE has been summarized.
2.11 Maximum Likelihood Intersymbol Interference Receivers

A review of CDMA multi-user detectors has been prepared.

2.12 Review Of Multi-User CDMA

As preliminary work on this aspect, we examined the factorization of correlation matrices, and prepared a
comprehensive summary. '

2.13 Correlation Matrices And Sequences: A Survey

We attempted to summarize Markov detection, because of background reading of iterative decoding of
product codes. '

2.14 Markov Detection "
3. Consider filterbanks for spectrum ;nonitoring.

This is unrelated to the previous two projects. The short study resulted in a report and a presentation of the

“recommendations on 18 March 1997. The use of polyphase FIR Nyquist or root-Nyquist filters was argued.

3.1 Polyphase Filters For Communications EW Systems

.

* s 4. Miscellaneous
Some sideroads were explored.

4.1 An Vestigially Analytic Wavelet

1
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE AND MOBILE SATELLITE ENVIRONMENTS:

la. FILTER DESIGNS FOR POLYPHASE NETWORK

W F McGee
Contract U6800-6-1604

19/03/97 11:53 AM
ABSTRACT

This report and an associated report on Lawton decomposition are submitted towards milestone 1 of the
contract.

Three filters have been designed. They meet the same basic requirements. All are 8-band root-Nyquist
filters with 40 dB attenuation in the stopband, and with 25 percent excess bandwidth. One filter, F88_8,
with 88 coefficients, is a minimum phase filter with equiripple stopband, one filter is the same filter but in
the Lawton decomposition, and one filter, G6, is linear phase and has 96 coefficients. We have not been
able to determine the equiripple linear phase polynomial meeting these requirements.

DESIGN TECHNIQUE
Equiripple stopband filter

The equiripple stopband filters that work with the Nyquist filter itself are the easiest to design and we use a
variation of Samueli’s method[1]. This consists of finding a Remez equiripple approximation that uses the
points 0 (not -¢!) and e as the extremum values. One the Remez approximation is complete, the zeros of the
resulting polynomial in w=z+z" are found. The zeros on the unit circle are, by design, double, and known.
Thus, only a very few zeros are left to be determined. The polynomfals for the root-Nyquist filters are found
by multiplying factors corresponding to each zero. For the minimum phase polynomial, the zeros are those
inside the unit circle and one of each pair on the unit circle. For the Lawton decomposition, the zeros are

--one of each pair on the unit circle, and those zeros that are inside the unit circle in the upper half plane and

outside the unit circle in the lower half plane. As in our previous designs, the only critical point in the
design is to randomize the order of the zgro factors when forming the product polynomials, We have found
that using the DOS SORT command and sorting on the fourth digit is sufficient. ™

s "? }5” o
¢’ Linear Phase Filter

The linear phase filter G6 is designed using a variant of Jain and Crochiere’s method[2]. The stopband
energy is minimized, subject to a linearized set of equations imposing the Nyquist criterion. Since it is the

coefficients of the polynomial itself used in the design, there is no need for subsequent zero-finding or
spectral factorization. ’

REFERENCES

1. H. Samueli, ‘On the Design of Optimal Equiripple FIR Digital Filters for Data Transmission
Applications’, IEEE Trans Circuits and Systems, Vol. 35, No. 12, Dec. 1988.

2. V. K. Jain and R. Crochiere, ‘Quadrature Mirror Filter Design in the Time Domain’, IEEE Trans
Acoustics, Speech and Signal Processing’, Vol. ASSP-32, April 1984, pp. 353-361.

APPENDIX: FILTER COEFFICIENTS
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F88_8

-3

ONRR PR PO

-4
-9
-1
-1
-1
-7
-3

.00000000000000E+0000
.61823816025980E+0000
.75725070143926E+0000
.23765368648018E+0000
.02474781466944E+0000
.03622653380794E+0000
.01428365007125E+0001
.21761320164136E+0001
.39432700075629E+0001
.52476417442110E+0001
.59130444845834E+0001
.58082544813400E+0001
.48684414183357E+0001
.31099754404797E+0001
.06358518429227E+0001
.63013198882190E+0000
.34131936534654E+0000
.05623472563835E+0000
.93253381418263E+0000
.36140256349403E+0000
.02804212276844E+0000
.81652319922357E+0000
.71164600815125E+0000
.80020887682843E+0000
.25882636501843E+0000
.32986737604750E+0000
.88843174734262E-0001
.59214682897403E+0000
.07971538706617E+0000
.00823871114362E+0000
.28862714002227E+0000
.96435913780564E+0000
.10426053637859E+0000
.88350315778043E+0000
.06027995667962E-0001
.17202502692844E-0001
.89923186421550E+0000
.60281403997851E+0000
.85719089500247E+0000
.66386822722237E+0000
.09111423072150E+0000
.25867303383170E+0000
.15640287789661E-0001
.84635608734211E-0001
.30851063902361E+0H00

.76116787798889E+0000 .

.8982105862754%E+0000
.72840974004133E+0000
.3078033197394538E+0000
.26733828917106E-0001
.24513708599137E-0002
.89551272644754E-0001
.32327684756014E~-0001
.17979227504980E+0000
.21290323238222E+0000
.04920913277061E+0000
.36406041998196E-0001
.41506225688045E-0001
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.21731922870416E-0002
.07812128247680E-0001
.45534508001281E-0001
.48948634097116E-0001
.17041546413286E-0001
.71558655698175E-0001
.50770946954673E~-0001
.01075475666137E~-0001
.31886281610273E-0001
.10989453713508E~0001
.13022758176200E-0001
.31025258933231E-0001
.73485740408923E-0001
.60899294268086E-0001
.20600381326107E-0001
.89945245090141E-0002
.33617488750475E~0001
.06955726509650E~0001
.32500163844096E-0001
.13325606356228E-0001
.60090938211479E-0001
.78489325490172E~-0002
.24119455474760E-0002
.29825493012943E-0002
.00106459330409E-0001
.26817776502670E~0001
.37404724611510E-0001
.40286798452267E-0001
.46957915608508E-0001
.55856362044745E-0001

Filter G6

.02770050420720E-0003
.30778381754758E-0003
.24411019001752E-0003
.50025099631171E-0004
.73387251315140E-0003
.25221856218300E-0003
.37880235656367E-0003
.78497450871251E-0003
.22500943937580E~0003
.60187835930757E-0003
.15535919969630E-0005
.10191300704333E-0003
.27504396887038E-0003
.80692412294210E-0003
.00317080198207E-0002
.43172744651368E~-0003
.78027558230837E-0003"
.21750963639573E-0003
.67858713028097E-0003
.95992456851670E-0003
.54310020505306E~0002
.88483857384144E-0002
.91616400691483E-0002
.57539729010682E-0002
.64220809045814E-0003
.44854262241715E-0003
.30705458538568E-0002
.42408568397138E-0002
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-4
-2
-4
-4

.27229534406831E~0002
.64055044459731E-0002
.37147612617547E-0002
.39910067856588E-0002
.76181410248865E-0003
.31685967101351E-0002
.57992779453820E-0002
.62553829298552E-0002
.02731469454432E-0002
.38060754960248E-0002
.36623394005680E-0002
.80752068999285E-0002
.88816386265854E-0003
.71524953669061E~0002
.20741251269470E-0001
.88159050523147E-0001
.53011776052004E-0001
.08781711401758E-0001
.49650752818985E-0001
.71254013024443E-0001
.71254013024443E-0001
.49650752818985E-0001
.08781711401758E~0001
.53011776052004E-0001
.88159050523147E-0001
.20741251269470E-0001
.71524953669061E-0002
.88816386265854E-0003
.80752068999285E-0002
.36623394005680E~0002
.38060754960248E-0002
.02731469454432E-0002
.62553829298552E-0002
.57992779453820E-0002
.31685967101351E-0002
.76181410248865E-0003
.39910067856588E-0002
.37147612617547E-0002
.64055044459731E-0002
.27229534406831E-0002
.42408568397138E-0002
.30705458538568E-0002
.44854262241715E-0003
.64220809045814E-0003
.57539729010682E-0002
.91616400691483E-0002
.88483857384144E-0002
.54310020505306E-0002
.95992456851670E~0003

.67858713028097E-0003

.21750963639573E~0003
.78027558230837E-0003
.43172744651368E-0003
.00317080198207E-0002
.80692412294210E-0003
.27504396887038E~-0003
.10191300704333E~0003
.15535919969630E-0005
.60187835930757E~-0003
.22500943937580E-0003
.78497450871251E-0003
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-4.37880235656367E-0003
-3.25221856218300E-0003
~=1.73387251315140E-0003
-1.50025099631171E-0004
1.24411019001752E-0003
2.30778381754758E~0003
3.02770050420720E-0003

The Lawton decomposition filter is defined in another report.
FIGURES

1. Minimum phase filter pulse response.

2. Nyquist filter time response.

3. Frequency response of equiripple.filter F88_8.

4. Frequency response of linear phége”filter'G6.
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE AND MOBILE SATELLITE ENVIRONMENTS:

1b. POLYPHASE REALIZATION OF VSB FILTER BANKS
USING SPECTRAL FACTORIZATION
INTO SYMMETRICAL COMPLEX FUNCTIONS:
LAWTON’S FACTORIZATION

W F McGee
Contract U6800-6-1604

19/03/97 11:55 AM
ABSTRACT

The design of filters for pulse transmission is most effjciently done using spectral decomposition. Ordinarily
this leads to a minimum/maximum-phase real-coeffidient polynomial decomposition. Both must be used as
prototypes in a transmit filterbank for optimal VSB communication. Lawton has given a factorization into
two complex symmetrical functions. This implies that the same prototype filter may be used in the transmit
filterbank. This leads to the following features '

-relatively easy to design for equiripple or weighted response.

-more efficient realization than min/max designs.

-symmetrical responses.

Introduction

Linear phase prototype filters are popular in digital signal processing using filterbanks. One of the reasons
is that the transmit filters and the receive filters are based on one prototype filter, and the filters themselves
may be realized with the Bellanger Polyphase realization using the . But the length of the filters is.
longer than needed to meet stopband filtering requirements; as a rough guide the length of the linear phase
filters is about 25 percent more than of a minimum/maximum phase factorization of the Nyquist filter.

“Unfortunately, the minimum/maximum phase decomposition requires that both prototype filters be used in

both the transmit filters and the receiver filters. The minimum phase factor is used for half the filters and the
maximum phase for the other half. This,n turn, means that the number of filter coefficient multiplications
is twice that required if the filters were the same. It is true that there are savings in'the DFT calculation, but
for long filters, almost all the time is t‘a,kgm in multiplications with filter coefficierits[3].

. ‘;,'%.‘, v © oy
Recently Lawton[1] presented another factorization of a Nyquist polynomial that results in symmetrical
filters, albeit with complex coefficients. Thus the number of coefficients would be the same as that of a
minimum/maximum phase decomposition. And, it turns out, only one filter type need be used for the
transmitter and one for the receiver; the Bellanger Polyphase realization is allowable, and the number of

filter multiplications is thereby'halved over that of the minimum/maximum phase realizations.

Therefore, one may conclude that the use of the Lawton decomposition results in a considerable
computational saving, of the order of 25 percent, over the use of linear phase prototype filters, and 50
percent over the use of minimum/maximum phase decomposition.

This report presents the relevant theory. An appendix gives an example of a Lawton root-Nyquist filter for
an 8-band filterbank. Another Appendix contains a set of simple MATLAB programs that we used to verify
the theory. Filter responses for this 8-band, 25-percent excess bandwidth, 40-dB stopband loss design are
given.

DISCUSSION



An M-band VSB filter bank may be based on a prototype Nyquist Filter N(z) which is factored into two
root-Nyquist filters using the relationship

N(z)=H(2)G*(z)

The polynomial G*(z) has coefficients that are the complex conjugate of those of G(z). Lawton provided a
factorization in which G and H are complex, but with the following properties

H(z)= G(z)_= H(/2)

These filters are all non-causal, they are made causal as folIOWS
P@)=7"H).

where P(z) is causal and L-1 is the order of the polynomial P(z) which has L coefﬁciehts, commonly called
the length of the filter in the DSP literature.

A polynomial is specified by its zeros and an arbitrary constant which we take to be real, and, for this
discussion, equal to unity. Thus if the zeros of P(z) are z;

P(z) = H<1 z7'z)

A polynomial P(z) will be complex symmetrical 1f when 1/z; is distinct from zi, it is also a zero. P(z) may
have an arbitrary number of zeros at z=-1; since it is to be a lowpass filter it will not have zeros at z=1.

/
The theory of VSB filterbanks using Lawton polynomials is as follows. The M transmit filters have M real
input sequences at a rate 2/M applied to them. The filter outputs are summed, and this signal is then applied

_to a set of M receive filters, the real outputs of which as sampled at the rate 2/M. The transmit filters and

receive filters are frequency-shifted versions of a prototype filter P(z) and P*(z), with appropriate phasing;
the frequency shifts are multiples of 1/M\

The overall system is linear, and, neglectmg the output samphng, time invariant, Thus the pulse response -
contains all system information. Singe t}}e filterbanks in question have selective filters, it is only necessary
to consider, for a given transmitter input, Ihe response at three receive filter outputs; that of the receiver at
the same frequency, and the two adjacent. . '

In a well designed system the real part of the pulse response at the same frequency will be nonzero at the
sampling instant, and will be zero at all times that are displaced from it by multiples of M/2, the inverse of
the sample rate. With the filters under question, the sampling instant is L-1 sample times after the pulse is
applied at the input. Similarly, in the adjacent channels, the real part of the pulse response in those channels
should vanish at the main sample time and at samples displaced from it by muitiples of M/2.

In what follows we will assume that the length L is a multiple of M; this makes the polyphase filters all be
the same length. This assumption may be removed, but does not appear to lead to great system savings,

unless low delay is desired.

We claim that if the transmit filters T\(z) and the receive filters Ry(z) are represented by




-point L-1, r an integer, is thus

Y',:(Z) — €j¢k W(k+1/2)(L~l)/2p(wk+l/ZZ)

Rk (Z) — e—j¢k W(k+1/2)(L-l)/2P * (Wk+1/2z)

where

¢ i — ¢, =odd multiple ofr /2
a well-designed system will resuit.

Consider transmission to the receiver mate. The response is Ti(z)Ry(z) and is given by
TL (Z)RL (Z) = W(k+l1/2)(L—I.):P(Wk+l/2z)P ® (Wk+l/22)

But, by design, P(z)P*(zj is a Nyquist polynomial with real coefficients ny and these coefficients vanish at
samples L-1+sM, where s is not zero. Consequently the coefficient of z ™ ig

J2r(k+12X(rM12M)

Ry rermr =i =P M

W—(k+l/2.)(L—1+rM/2)W(k+l/2)(L—1) _ W k2 12)
which vanishes when r is even and nonzero by Nyquist design, and is imaginary when r is odd; thus there in
no intrachannel intersymbol interference.

For an adjacent channel the response is, typically, the real part of Tws1{z)Ri(2). This is given by
Tk+1 (Z)Rk (Z) — ej(qﬁm—¢k)W(k+1)(L—1)P(Wk+1+1/2Z)P * (Wk+1/2z)

If the zeros of P(W***2z) and P*(W*"22) are examined, it will be détermined that they are symmetrical
about a line half-way between the two center frequencies, and thus may be represented by C(W**z) where
C(z) has real coefficients cy. The response at samples that are displaced by rM/2 from the center sampling

« .
N . ~.

F @Ok~ Y17 A1 L-1) pry—(k+1) L—1+rM/2)
Crotmn€ & W w

— J@ear=81) pry—(eH1)(rM12)
= Crormn®, W

and the real part vanishes if the phase. d‘i'ﬁgéréri'c':es are an odd multiple of /2.

= iCL—I+rM/2ej‘(l;)lwr:qjk) "‘*.;T.‘-

.

All that remains of the design procedure is to write down the expressions for the transmitter and receiver
introduce the polyphase components, and identify the components.
H

3

Recall that

T/:(Z) = €j¢k W(k+l/2)(L—-l)/2p(wk+l/ZZ)

Rk (Z) = e_j¢k W(k+l/2)(L—1)/2P * (Wk+l/2z)
¢y — ¢, = odd multiple ofr / 2

First, however, we will make some assumptions about filter lengths to simplify the discussion; these
assumptions are not hard to remove. The filter length L is usually a multiple of M. Secondly, the phase
shifts are often chosen[2] as




MRk NN EE BN S B S N =

O, =Ck+1/2)QLI M)+ ) /2
Thus,

T, (z) = W—(k+1/2)(M/2+1)/2P(Wk+1lzz)
Rk (2) = W RHI2XMI2-D12 b (Wk+llzz)

The claimed efficiencies follow because when the phase components of P(W'?2z) are introduced, both the
transmitter and receiver only involve the multiplication, of only one of the prototype filter coefficients for
every input set of data.

MORE EFF. ICIENT REALIZATIONS

There are two cases, one'involving the DFT with elerqents elZra™M, and the second involving the odd-time
odd-frequency DFT with elements e2™*26H2AM g6 the DFET, probably the sunplest approach is to
perform a polyphase expansion on A(z)=W Mpwiz)

A(z) = iz_kA, (z").

r=0

Then the output from the transmitter is

ZZ#A (ZM)Z W—rAW—L(M/2+1)/2X (z MIZ)

r=0

These expression may be simplified to

Zz"’A (Z )Z w- (r+(M/2+1)/2)LX ( MIZ)

r=0 ¢
»

Ay

\

If the integer M/2+1 is an even integer (case DET) then may be accomplished by -taking the DFT of the

inputs, choosing the r+(M/2+1)/2 as inpy.to-the rth polyphase filter, and selecting the output that is desired.
Otherwise, is necessary to multiply the M inputs by a phasing factor; we call this case OODFT for odd-time

odd-frequency discrete Fourier transform.

Using the DFT leads to the following diagram.

1



XoEM2 Y

M-IDFT

XM-172]

-

Ve
Figure 1 Transmitter. M real input sequences are applied at raté 2/M to an IFFT transformer,
resulting in M complex sequences at rate 2/M. These are then filtered by the M polyphase filters, and
the output is obtained by summing the filter outputs properly. The sampling operation may be move
to just before the delay lines. If M/2 is even, then a further phasing is necessary at the input.

For case DFT (M/2 odd) the inpﬁts are, in fact, real sequences, the DFT may be done as a DFT of order
M/2 on the complex signals Xo;+jXs;,1. Also the output chain of delays may be expressed as a chain of
length M/2 by incorporating delays z™? in the structure itself.

The receiver takes the real part of the output of the filters when the input signal is applied. This is

-Rk (Z) = W(k+l/2)(M/2—l)/2P * (“{Ikﬂl?.z)

Probably the simplest approach is to take the polyphase expansion of B(z)=W<M'2'l)'2P*(W 22),

. M-l o
L B@=Y 27B,(z")
° r=0
SO ' e,

i

we e
Rk (Z) = z Z—rw—rk W‘k(M/?.—l)Br (ZM) = Z Z—rBr (ZM)Wk,(MIZ_r_l)
r=0 - '

r=0

leading to the following block diagram for the receiver.
1

'bh



M/2
X0 )
[~ Re
|
M-DFT
e
XM-132

AN
Figure 2. Receiver. A complex input sequence is applled at the left. It passes through a delay line with
M taps, is then fed through M polyphase filters with complex coefficlents and applied to the DFT
indicated. The output consists of the real parts of the DFT sampled at rate 2/M. The sampling
operation may be moved back to the output of the delay lines. When M/2 is an evén integer, further
phasing is required at the output.

The usual simplifications may be applied here as well. Since, for the .DFT case (M/2 odd) the outputs are
real, the DFT may be replaced with a DFT of order M/2 and appropriate real and imaginary parts of the
output taken, and the input delay chain of length M may be replaced with one of length M/2 by
incorporating delays of length M/2 within the filtering structure.

REDUCTION IN ORDER OF DFTS DUE TO REAL INPUTS AND OUTPUTS

The following material appears in elementary textbooks and we include it here for completeness.
/

The replacement of the IDFT proceeds by noting that if areal input vector x with components x, is Fourier
transformed to a vector U with components Uy, then Uy =U*,, and a real vector y corresponds to transform

-V, then w=x+jy corresponds to W, then WL.—XkﬂYk and WM ¥ =X-jYy, thereby

2XL—WL+W*M Kk and J2Yk—-Wk-W*M k

On the other hand we are interested in the M—pomt transform of the M-vector whxch we write as the M/2
transform of the even and odd numbered components i _ e =T

: 7 M-l M/2-1
Y, = b = ZW—er = Zejzm/(mz) 4 @d2mIM zeﬂ.n‘rkl(M/?.)
r=0
JamkiM
[We + W™ e (W, =W ,00)1/ 2
where -
Mi2-1 iy
jamrki(M
W, = Z(er + JXy,p e = Wy
r=0

is the M/2-point IDFT of the complex input sequence XarHjXge

On the other hand, if only the real output of a DFT is desired, then, since

M-1
. —j2mrkiM
x,+]y,=2Yke Jem

k=0




then
M-l
— -j2r2rkIM j2r2rkiM
2%y, = 3 (Ge™ +Y ¥, glmkiMy
k=0

M-
_ ~ j2mrki(MI2)
= Z € T +Y*0)
=0
Mi2-1

_ ~j2mkI(M12) ) "
= Z ¢ T +Y*, Yy +Y M1zt
k=0 -

and

. M-1
. — —j2n(2r+l)kl'1tl',- 7 % J2mQ2r+1)kiM
2% = ) (Te AtV e )
k=0

, M~1
R —j2mrki(MI2) ~j2rkiM *®
=jy e e Y, +Y*,.)
k=0 ’
MI2-1

. ~J2mrkI(MI2) _—j2rkiM x v
=J Z € € G +Y ¥y =Yy =Y Mi2-k)
=0

SO

2(xy, + jxg4)
MI2-1 P

— Z e—j27rrkl(M12)[(1+je—j2mk/M)(Yk +Y*M_k)+(1_je—j2nklM)(YM,2+k +Y*M/2_k )]
k=0

which is an M/2-point DFT.

Simplifying the transmitter using a delay line of length M/2 is obtained by notingﬁh_at the output is

M—l‘ ‘*@’, R

Zz-—rA'r (ZM)V;(ZMQ) where

r=0
M-1

V;, (zM/2) — Z W-(r+MI2+l)L Xk (ZMIZ )
k=0

and the output may be rewritten as .
T M-l ’
- M M2
\ > 27 A (2, (")
r=0
M/2-1

= 2 2 A (V") +27A i, Vi @]
r=0

IS THIS QAM?



Using the M/2-point DFT appears to leads to a QAM system; a complex input sequence z==x-+jXap 18
applied at rate 2/M and recovered at the output. But ordinarily with a QAM system, the transmitted signal is
also analytic; i.e., it is not a function of z*;. Practically, this means that if an input sinusoid is applied, that
frequency and its image will also appear. The potential for the image frequency to occur is because the
operation of conjugation is performed in the description above. This is important because many system
functions depend on the complex signal being analytic; an example is the usual adaptive equalizer.

For example, the transmitted signal is

X2r (Z M )TZI' (Z) + X'Zr+l (ZM/2 )I‘2r+l (Z)

Z,. ZM/2)+Z*r ZM/Z) Zr(ZM/Z _Z*r ZM/Z
C Tl Jr e HE T @

Tg’.r (Z) - jY;’.r-t-l' (Z) + I;.r (Z) + jT2r+l (Z)

Z* ZM/2
2 i 't'r ( ) 2

— Zr (ZM/Z)

‘which shows explicitly that the image signal Z*(ZM?) is being transmitted.
Thus, I would not call this QAM:
USE OF THE OODFT

‘When the quantity M/2 is even, 1. e. M/4 is an integer, there are two approaches that may. be made. We
sketch the possibilities here; they have not been fully explored. One approach is to note that in this case the
input sequences may be staggered, and the phase difference between adjacent channels is not required; all
the ¢ may be zero. The second approach is to perform a polyphase expansion directly on P(z), and then the
transmitted signal may be represented

p

Aka (Z MI2 )T;~ (Z) — EXL (ZM/2 )W—(k+l/2)(M/2+l)/2P(wk+l/2z)
k=0 ' k=0

- r.

M=1 M-1 > o
= Z Z—-rPr (_ZM )2 W—r(k+1/2)W—(k+l/2)(M/2+l)/2Xk (Z M2 )
=0 k=0 +

M-l M-1 T

— Zz—rpr (_'Z}'W)Z' 'W-(k+1/2)(r+1/2+M74)Xk.(Z.M/2)
i e

r=0

This is seen as the odd-time odd-frequency DFT[4] of the input sequence, with the r+-M/4 th output applied
to the filter P,(-zy) and applied, with a delay of 1, to the output. We recall some properties of the OODFT
considered as a matrix O. The matrix O has elements

)

- —(r+172)(k+1/2) __
rk w - Ok,r

and satisfies

QUML) _ oy —(rH 2 RHI2)

0r+M,k =W =-W - Or.k
YU -M (kI _ J2mkHI2I2 _ o Nk 2y

Orisne =W =0, =(=1"JjO,,




M-1 o M-l
Orz,x - 2 W22 g (Rl 2)(s4112). 2 AGER N CRlEY
k=0 k=0

and the sum on k is zero unless r+s+1 is equal to M in which case the sum is -M, thus

0% = -MJ

whereas

N-1 N-1
00", = 2 (DDA 412) 2 W)
k=0 k=0
thus OO"=MI, where I is the identity matrix. Thus O/ /M is unitary.

If A is a diagonal matrix; then OAOH is not quite circulant, since although

M=l : M=l
0 AOHM - 2 W (rHI2EI2) Ak,kW(SHIZ)(kHIZ) - 2 Ak,k W rk+12)

k=0 k=0

depends on r-s, and is thus the same for every element parallel to the diagonal, when wraparound occurs,
there is a change of sign.

These are related to the DCT—IV transforms of order N=M/2
C —\/zcos(lr—(k+1/2)(r+1/2))
rk N N

14
S, = \E[— sin(j—rff—(k +1/2)(r+1/2))

The OODFT is given by

X =L 3 amwmmn =3

. .‘.‘:?5-/ L n=0 N

4 M-l
x(n) =Y X(k)w etz

If the numbers X(k) are real, then the numbers x(n) satisfy

x(M—=1-n)=—-x*(n)
and an OODFT may be used to find the OODFT of two real vectors, the same as the DFT.

Finally, it is to be noted that there are fast OODFT transforms, both DIF and DIT.

FURTHER WORK

Further simplifications in the signal processing may be possible. Choosing the length of the filters to be
different than a multiple of M may be useful, for example. A comparison with the extensive works of



Gopinath and Burrus, who deal with a similar structure, may be useful. Perfect reconstruction filters of this
type have not been studied. The whole theory should be implemented in a set of program similar to
Malvar[2].

CONCLUSION

The Lawton factorization leads to a pair of transfer function each of which is symmetrical, and the transmit
and receiver filters are frequency translates of only one filter. This leads to a significant reduction in the
number of multiplies that must be made.

APPENDIX 1

Real and imaginary pafts of coefficients of an 87-th order Lawton polynomial P(z) achieving a 43-dB
stopband loss in a 25-percent excess bandwidth 8-band filterbank.

1.00000000000000E+0000, ©.00000000000000E+00C0CO
6.02634201281453E-0001" ~1.73308749421065E-0001
6.50770138305990E-0001 -4.43028339509892E-0001
5.68503743634005E-0001 -8.06825982961425E-0001
3

3.10811148147989E-0001 -1

.23999149967188E+0000
-1.52367563784534E-0001 -1.69233315188185E+0000
-8.27544224516866E-0001 -2.08924316060963E+0000
-1.69112761412608E+0000 ~2.33770405264433E+0000
-2.68629946269709E+0000 ~2.33720684778200E+0000
~3.72435100047456E+0000 -1.99461831624773E+0000
-4.69092136051541E+0000 -1.24112773464388E+0000

-5.45685456648806E+0000 -4.87011711252875E-0002

~-5.89264088209232E+0000 1.55686510941870E+0000
.88475368230399E+0000 3.48905855101805E+0000
.35174950667316E+0000 5.60204142389873E+0000
.25785314280447E+0000 7.70131354124089E+0000
.62194321626213E+0000 9.56321292569113E+0000
.20375083669207E-0001 1.09612997598607E+0001
1.91713949367004E+0000 1.16963134599259E+0001
4.51844237437369E+0000 1.16254573223672E+0001
7.08552945036195E+0000 1.06864520856758E+0001
9.41492536145766E+0000 8.91221948677361E+0000
1.13193600552482E+0001 6.43319940483572E+0000
1.26480522663350E+0001 3.46603124675669E+0000
1.33030761142224E+0001 2.89394235061912E-0001
1.32497771219642E+0001 -2.79012653749097E+0000
1.25200216962085E+0001 -5.47754597982280E+0000
1.12079504350214E+0001 ~-7.52866683303737E+0000
9.45893087582937E+0000 -8.78305004837776E+0000
7.45314676287339E+0000 -59.18557588374261E+0000
5.38597041384117E+0000 ~8.79305266663689E+0000
3.44744203460105E+0000 -7.76447990719038E+0000
1.80327930613551E+0000 -6.33627367321365E+0000
5.79381003132657E-0001 -4.78590737772589E+0000
-1.48612703832777E-0001 -3.38974131165848E-+0000
-3.60013635630387E-0001 -2.38123469553518E+0000
-8.77982530200664E~0002 -1.91658020643768E+0000
5.87894449670849E-0001 -2.05261751727577E+0000
1.55070476096977E+0000 -2.74122894054465E+0000
. 2.66168908691052E+0000 -~-3.84031046999130E+0000
3.77459238146163E+0000 -5.14024678312375E+0000
4.75074832540598E+0000 -6.40079201212804E+0000
5.47289811975366E+0000 -7.39282659083567E+0000
5.85617614047588E+0000 ~7.93768236494214E+0000
5.85618860991805E+0000 -7.93767568165784E+0000
5.47288652920018E+0000 -7.39283162356135E+0000
4.75075837550812E+0000 -6.40078994833277E+0000
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makefilt.m

% makefilters:

.77458417944626E+0000
.66169549404792E+0000
.55069985004573E+0000
.87898227186675E-0001
.78011640265987E~0002
.60011492514568E-0001
.48614046876179E-0001
.79381488854228E-0001
.80327965173330E+0000
.44744101594852E+0000
.38597183940840E+0000
.45314522820101E+0000
.45893227039002E+0000
.12079493305102E+0001
.25200224661555E+0001
.32497766516082E+0001
.33030763597247E+0001 -
.26480521650670E+0001
.13193600779609E+0001 s .,
.41492537313545E+0000
.08552942898205E+0000
.51844239422947E+0000
.91713947883487E+0000
.20375073867829E~0001
.62194322219755E+0000
.25785313948548E+0000
.35174950838414E+0000
.88475368150392E+0000
.89264088242702E+0000
.45685456636677E+0000
.69092136055271E+0000
.72435100046566E+0000
.68629946269863E+0000
.69112761412604E+0000
.27544224516811E~0001
.52367563784541E-0001
.10811148148011E-0001
.68503743634027E~0001
.50770138306008E-0001
.02634201281470E-0001
.999999999995898E-0001

-5

-2
-2

-2
-3
-4
-6
-7
-8
-9

-7
-5
-2

RPWUNVORrRPRPRROOTWN

-4
L1
-1
-2
-2
-2

-1
-8

-1

: APPENDIX
X SET.OF MATLAB

‘)

.14024514400275E+0000
-3.

84031584511743E+0000

.74122045678967E+0000
.05262800041196E+0000
-1.

91656904488342E+0000

.38124529241214E+0000
.38973220851781E+0000
.78591449482749E+0000
.33626860409012E+0000
.76448318601540E+0000
.79305075600213E+0000
.18557686979046E+0000
-8.

78304961395778E+0000

.52866698119001E+0000
.47754595506901E+0000
.79012652378293E+0000
.89394218636269E-0001
.46603125623450E+0000
.43319940156883E+0000
.91221948681571E+0000
.06864520868263E+0001
.16254573209018E+0001
.16963134614286E+0001
.09612997584975E+0001
.56321292676915E+0000
.70131354052050E+0000
.60204142430150E+0000
.48905855083330E+0000
.55686510948667E+0000
.87011711439881E-0002
.24112773464097E+0000
.99461831624745E+0000
.33720684778252E+0000
.33770}05264418E+0000
.08924316060974E+0000
~1.

69233315188186E+0000

.23999149967190E+0000
.06825982961436E~0001
-4.

43028339509899E-0001

.73308749421068E-0001
-1.

19262238973405E-0015

2
PROGRAMS

~

makes a set of transmit and receive filters

load lawton % a mat-file with the coefficients

for i=1:8

1

[transmit(i,:),receive(i,f)];filters(lawton,i—l,B)

end

filters.m

function[transmit, receivel=filters(a,k, M)

for i=1:length(a)

transmit (i) =exp (j* (pi/M)* (2*k+1)*(M/4.0+40.5)) *a (1) *exp (j* (pi/M)* (i-1)*(2*k+1));

end
for i=1l:length(a)

receive (i) =exp(j* (pi/M)* (2%k+1) * (-M/4.0+0.5)) *conj (a(i)) *exp (I * (pi/M) * (i-1) *(2*k+1) ) ;

end

typical session

A
f

b
p)

4

i




makefilt
plot(conv(transmit(2,:),receive(3,:)))
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FIGURES '

1. Frequency response of filter. '
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PHASING FILTERBANKS

W F McGee
19/03/97 11:52 AM

The purpose of this note is to document the phasing of filter banks.
There are two cases that commonly occur. In the first, which occurs with Lawton banks, the transmit filters
are all frequency translates of one another, and the receive filters are their conjugates [i.e., sequence

reversed, conjugated.]. If the phase of the transmit filters is 7; and the corresponding receive filter is -p;,
then the transfer function of the main channel is

ej(fi"pi)Hi (Z_)H,-* (Z)

and of the crosstalk chanpel is
Mo (O, (2
where
H.(z)= HW™*27)
H.(z) = H.(W*"z)

The main coefficient is the Lth, which is generally the order of H or H«. Thus, H is of length L+1, order L,
HH. is of order 2L, and the middle coefficient is the Lth,

The Lth coefficient of the main channel is )

ej(r,—p,-)an-L (Wi+l/2)—-L

_Wwhere ny, is real, and this is to be real. This restricts the phase differences.

On the other hand, for the crosstalk transfer functions, the Lth coefficient is
. »

ei(fi+1—Pi)cLz-L (Wifl )"L

E A
Y

and this is to be imaginary.
Consequently the requirement is

2r
T.—-p,+—({+1/2)L=K,w
LT P M(l ) ;
2 . T
Tl-+1—p,-+—AZ-(l+1)L=(2Ui+1)—2—
21 T
T, = p, +—=iL= 2L +1)=
i-1 p( Ml ( i )2

The difference of the first two equations is



HE

Il BN BN EE

Ty =T, =—+(U, —K)r -2
i+l i 2 ( i 1) M 2

which is satisfied by
.. .
T, = —2—(1 +1/2)(1-2L/ M), among many solutions.

This means that the transmitters are

jarunk

e 2 W(i+1/2)L/2H(Wi+1/ZZ)

With this, the formula for the receive phase shift is

. r"..

p,.=-g-(i+1/2)(1+2L/M)

The receive filters are

T
~ji+1/2)=

e ZW(i+1/2)L/2H*(Wi+IIZZ)

Another common filter paii: involves minimum-maximum phase pairs. Here H(z) the prototype is real. The
transmitting filters are respectively

[/ HOW"2), e H.(W*"7),..}

and the receive filters are

{e—p"ro.};{* (WIIZZ),e—jp'rl H(WalZZ),A }
The main channel responses are . i - o e
. ej(fi"ei)H(WiTI/ZZ)H* (Wi+1lzz)
and the crosstalk channels are

'
ej(‘rm-p,)H*(WHl:i-l/Z Z)H* (Wi+l/22) = ej(‘l‘,-+1—p3) C(WHIZ)

But these requirements will result in the same equations for transmit and receive phase, and therefore the
same solutions are valid.
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Prototype Filters for VSB Filter Banks Derived from Half-Band Filters
W F McGee
24 September, 1996
The purpose of this note is to document the use of half-band filters for prototype M-band filters.

An M-band prototype Nyquist filter N(z) must meet the requirements

Mi2-1
N N, (W 2)+ Ny (W)= M.
r=0
Here W is an M-th root of unity »
W = Ljamim
and N*(z) is N(z) with cbnjugated coefficients. R

As a first set of prototype filters based on the half-band filters N(z) [we use the notation N; instead of Na;
to save space] satisfying

N,i(z) + N,i(_z) =2
let

log, M-1 _
Ny(@)= []N:@E@*)=Ny@N,(z*)N,(z")A
i=0

The general proof that this construction will work is not difficult, but we give a demonstration for M=4. The
requirement in that case is '

No@N(2*)+ No (=N, (=2 + N (<IN, (&) + Ny ()N, (=2*) =
[N o(2)+ N (2IN,(2*)+[N o (=j2) + N, (j)IN, (=z*) =
Z[N,1(22)+N,1(—-zz)]=4 R

The general proof follows by noting thatall the polynomials are real and

. -]Y(,\,;(Z) = NM/Z(Z)N,'(ZM/? ):

7

and the Nyquist criterion is satisfied since -

M-1 M-1

NN, (Wr)= D Ny, (WEN- (-DF2'?)

k=0 F=D
MiI2-1 ’ MI2-1

= Y Ny, (W* )N ")+ Y Ny, WHWN (=z"'?)
k=0 k=0

M
E“N'(ZMIZ)'FN,(_ZM/Z)

=M

Another choice of prototype is




Ny (W"2) = Ny(=j2)N o (2)N, (z2)A

NM (Z) — N,o (__W—IIZJ-Z)NO (W-VZZ)NJ (W~IZZ )A

For M=2, W=-1, N,(z)=N ¢(z), as expected.
For M=4, W=-j,
N,(2)=N,(W"™2)N,(W'?2)= N, *(2)
and the Nyquist criterion is
N'O (W”ZZ)N.O (W—l/Zz) + N'O'(W?;/.ZZ)NO (Wl/zz) .
+N o (W N o (W32 2) + N.Or'(WH' 22N (W>?z)
— N_o (WI/ZZ)NO (_W3IZZ) + N’O (W3IZZ)N’O (Wl/zz) ,
+N_0 (_WIIZz)]V,O (WSIZZ) + N'() (_W3IZZ)N'O (_WIIZZ)
= 2Ny (W"2)+ Ny (-W"2)] =4 |

For M=8 the construction yields

N; @)= N (-W™"? jz)NO(W“”zz)Nl (W™'z%)
=N (W2)N (W 2)N  (-W?*2%)
N*(2)=No(W)N o (W )N, (-W3z?)
=N (-W* )N (W 2)N (W z*Y

. s
»

and the Nyquist criterion is satisfied, since ;

¥



0 - v

N (W>P?2)N (-W"?2)N , (-W?2?)

+N (W2 2)N o (~W'" )N, (~W'2?)

+N (W2 )N o (~W"P )N (-W"'2*)

+N o (W2 2)N ((~-W" )N (-W"2?)

+N (W 22)N (W 2)N  (W*Z?)

+N,(WP2)N (WP )N, (W'2%)

+N (WPP)N (W )N (W'2?)

+N (W22)N o (WEP2)N | (Wh2?)

=N, (W"?2)N,(-W"*2)N, (—.}.?V? 52)

+N o (W22)N o (W 2)N , (W*z*)

TN, (~W )N (W 2N, (W22

TN, (~W" N o (~-W 2N, (W22

+N o (~W"2)N o (W2 Z)N (W3z?)

+N o (W 2)N (W 2)N (-W2?)

+N o (W?2)N o (-W*?2)N, (W*2?)

+N (W2 2)N  (-W? )N, (-W’2%)

=N,l(—W3z2){N,o(W3’2z).N,o(—W”2z)+N:(—W3’2z)N,O(W7’2z)

+N o (=W )Ny (W?2)+ Ny (W 2)N o (-W?2)}

N (W2 N (W2 2)N o (W22) + Ny (W 2)N o (- W22)
N (-W")N, (W3’2zs)+N (W7’2z)N W)}

=4(N, (- W3z7)+N1(W3z2)) 8

The general proof for the second construction follows by noting that V
Nyp(2)=N ( JWyin 2N oWy 2)N | (Wi, 22 )A
N, (2)= N.o (W PN o (Wi 22N (Wil 22)A
—_ MIZV(WALIZZ)N' ((WA;IIZZ)MM )

N*, (Wyz) = N*,., (W, W, 2)N (W,/>W,2)""*)
= N *M/2 (WA{IIZZ)N' (_(WA;IIZZ)MM)

and the Nyquist criterion is satisfied since




Mi2-1 MI2-1

2 NM(WZkZ)+ ZN*M (W2k+lz)
k=0

k=0
Mi2-1 M/2-1
— 2 NMlz(WAl,[/ZWZkZ)N, ((WA;UZWZI:Z)MM) o+ ZN*M/Z (W}:[/ZWZI;Z)N' (__(WA;UZWZL'Z)MM)
k=0 k=0
M/2-1 MI2-1

- 2 M/z(WUZWZkZ)N (( 1) (WM—IIZZ)MI4)+ ZN *M/z (WUZWZKZ)N( (_1) (WA;IIZZ)MM)

k=0
M/4-1 Ml4-1

= N,((WAZWZ)MM)[ z N, (WP W 2) + ZN * o (WIRWH2 )]

MI2-1 M/2-1

+N( (WA;UZZ)MM)[ 2 Ny, (WII2W4L+2 )+ ZN*MD (WWW“z)]

_ %—N, ((WA;I/2Z)M/4)+N‘(__<WA;1/ZZ)M/4r) =M

Which choice is better?
There does not appear to be a great difference in length. Pick M=8 as an example. The first choice
requires three filters whose orders could be, approximately, L, L/2 and L/4. The order of the

product would be L+L+L=3L. For the second method, the filter lengths would be L, L and L/2, and
the overall order would be approximately L+L+L=3L.

i .
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ESTIMATING PERFORMANCE DEGRADATION
OF PHASE AND TIMING ERROR
ON VSB FILTERBANKS

W F McGee

Contract U6800-6-1604
14 March 1997

The purpose of this note is to document calculations concerning the degradation in performance of VSB
filterbanks due to phase and timing errors. The report shows that, for the filters with high stopband loss,
system performance is ‘determined by a knowledge of the envelope function, i.e., the pulse response of the
cascade of two root-Nyquist filters, and a crosstalk function, which is the response of two root-Nyquist
filters displaced in fregency by +/- the center of the lowest frequency baseband VSB channel. Formulas are
presented for the eye opening, The performance equiyalence of stagger-QAM is shown.

If there is timing offset, then a phase shift should be applied to the received carrier so that VSB zero
crossings are maintained.

A computer program to allow estimates of error rate is included, making use of these concepts.
A, MULTICHANNEL VSB SYSTEMS

A multichannel VSB communication system consists of a transmitter with M real binary (+1,-1) inputs
Qu(z™™) at rate M/2 applied to appropriately phased root-Nyquist filters centered at an appropriate center
frequency producing a complex output, and the sum of all the bandpass filter outputs is added together to
form the channel sequence. [We do not consider the mapping from this sequence to a real radio signal, but
assume perfect QAM communications.] The receiver consists of a bank of filters matched to the transmit
filters, and a detector which takes the real part of the receive filter outputs and examines the sign of this
sequence.

“Such a system is linear. In this report we use time t in the formulas for fesponses, but the responses are, in

fact, sampled responses. o
The center frequencies for a VSB system aré (k+1/2)/M, for k=0....M-1. . -
The system design is based entirely c')n,l‘a"?ﬁ’éi'r" Of root-Nyquist filters G{z) and H(z) such that N(z)=G(z)H(z)

is a Nyqnuist filter; N(z) has equally spaced zeros, and the spacing is M samples. .

Since there arg M channels and M(M-1) possible crosstalk paths it might be thought that the calculation of
system performance is very complicated. But is we assume that there is no crosstalk between channels that

are not adjacent, then only the thannel itself, and the two adjacent channels, and the noise, will affect
performance. This is the case with the filters that we are using, In any case, with such high stopband losses

the assumption that the interference from these channels is like Gaussian noise is undoubtedly useful, since

the transfer function is not very regular..

The system, then, is characterized by two response functions. The first is a Nyquist response m(t)
representing the overall response of a cascade of the two baseband prototype M-band root-Nyquist filters.
We assume that m(t) is centered so that the primary sample time is t=0, and the m(km)=0 for k not zero [the
Nyquist property]. Further, we assume that m(t) is real.

The half-Nyquist transfer functions are H(z) and H* (1/z), and m(t) is the transform of H(z)H*(1/z). For our
study, we assume that H(z) has real coefficients, so that H*(z)=H(z). The function m(t) is called the
envelope function.
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Due to the properties of VSB systems, the pulse response in the VSB channel with center frequency 1/2M

1S
m(t) cos(z—nl t)
M2

This response has additional zeros (i.e., more than m(t) itself) at odd multiples of M/2, allowing VSB pulse
communication at a rate 2/M.

The imaginary part of the pulse response in this channel is

o221
m(t) s11l'1( 2 t)

. r«..'

and the imaginary part has a zero at t=0 as well as times kM; there is a double zero here.

The second response characterizing system performance is one related to crosstalk. The crosstalk in a VSB
system with narrowband filters is then determined by the transfer function between adjacent cliannels. For

* VSB, the crosstalk between the two channels bordering O-frequernicy is proportional to that of a narrow

lowpass filter with transfer function H(W'?z)H*(W™'?z) which is symmetric in frequency about 0-
frequency, and has a real pulse response c(t). Here W is the Mth root of unity,

W - e—j?.?t/M

Due to the phasing of VSB channels, the crosstalk pulse response between the two channels is jc(t). The
real part of the crosstalk vanishes at all times, in particular at time that are multiples of M/2, thereby
eliminating the effects of crosstalk from adjacent this adjacent channel which is sending only real baseband
symbols.

“The crosstalk of the channel above the low-frequency channel (with positive frequency) is that of a narrow-

band bandpass filter centered at the frequency 1/M and is

v

27 .
. J= S
je(®e M . at

72 .
and the real part vanishes at integer multiples of times M/2.




B. PHASE OFFSET

Suppose that there is a phase error of 8, but no timing error. Then the pulse response becomes

2x1
ReI:m(t)eJ M 2l.e"jg:|

which at sample times kM/2 is

2nkM
- 4M

m(kM / 2) cos( -0)

and for k=0 this is m(0)cos(8), vanishes for k o.thervyise even, and is m(kM/2)sin(@), to within a sign, for k

odd. o

The crosstalk from the negative frequency channel is
Re(jc(t)e™ ) = c(t) sin(6)

and from the other channel is

Re(je(t)e™™ e ) = c(t) sin(—zg -6)

and for times that are multiples of M/2, this too is proportional, to within a sign, to c(t)sin(8).

4

C. TIMING OFFSET AND PHASE OFFSET

Here, the samples are not taken at time t=0, but are offset to a sample time t, assumed small; the pulses are

still sent at multiples of times kM/2. - "'}t +

The sampled pulse response indicating intersymbol interference is then
j-2—£1(1+kM/2) —io
Re| m(t+ kM [ 2)e M2 e’
2 T
=m(t+kM/2)cos(—t—-0+k—)
o 2M 2
2
=m(t+ kM /2)cos(——t—0) for k even
2M
. 2T
=*m(t+ kM / 2)sin(—1¢ - 0) for k odd
2M
The crosstalk from the negative frequency channel is

Re[je(t+ kM / 2)e™ | = c(t + kM / 2)sin()



and the crosstalk from the other channel is
. jz—”(wkMIZ) _ie . 2
Re| je(t+kM /[ 2)e ™ eV Il=Fc(t+kM/2) sm(ﬁt -0)

There seem to be two possible choices of 8 that would be best.

In the first, set 6=0. Then there is no crosstalk from the negative frequency channel, the crosstalk from the
other channel is )

2r
Te(t+ kM [ 2)sin(—-t¢
c( ) (M)

the main signal is
Dy
m(t)cos(——)
| . oM
the interference from the other symbols is
' 2mt |
m(t+kM/?2) cos(ﬂ—) for k even

m(t + kM [ Dsin(Z2) for k odd
oM

The other choice would bé'

g
2M

“The main signal is m(t), the intrachannel interference comes only ffom even numbered symbols, and is

Vit + kM [ 2) k even

and the interference from the two adjacent channels is
. -';::’f'" v i s
S et + kM 2)sin(0).

1t is difficult to analyze these two cases, but note that when the noise is large it is only necessary to compare

the mean squared errors of the two. When the phase shift is kept to 0, the mean squared error is

1




MSEO=0)= ¥, m (i / Doos’ )

k+0,k even

+ Y m? (¢ + kM 1 2)sin’ (m)+20 (t+kM /2)sin® (2——-)

kodd allk

signal power(f = 0) = m?(t) cos> (_n't)

MSE(9=-2%%)— N mP(E+kM/2)+2 > (t+kM [ 2)sin’ (—)

kx0, keven allk
signal power(6 = 2—) m* (1)

Since the contribution to the mean squared error has no conmbutlons from the odd-numbered (and usually
larger) odd symbols in the channel, and the crosstalk from the adjacent channels ‘has been reduced by a
factor of 2 for small timing errors, it appears that the ‘best choice of phase offset and tlmmc phase will be
the second, that is

'

2mt

0 =—.
2M

D. STAGGERED QAM

For completeness, we include an analysis of a staggered QAM system with the same prototype filters and
show that the performance of the dc channel is the same as the previous VSB channel with delay tracked by
the phase.

/
Recall that in an SQAM filterbank the I and Q channels are staggered, with symbols being transmitted on
the I channel at multiples of times M, and on the Q channels at odd multiples of times M/2.

The pulse response is m(t), which, as noted is reaI

With SQAM the crosstalk filters are located: at frequenc1es +/-1/2M, and therefore.the pulse response from a
symbol in the I channel of the posmve frequency adjacent channel is g

,4 };‘0 PR
277:

jeye
and from the lower channel is

~ 2,
' ) ]c(t)e 2
With c¢(t) real, m(t) real and Nyquis.t, therc;, is no intersymbol or interchannel interference.
D1. SQAM PHASE SHIFT
The response in the I-channel to a symbol in the I channel is

Re(m(t)e ™ ) = m(t) cos(6)

which vanishes for times kM because m(kM) is zero, and the response to a symbol from the Q channel is



“ jzj—r-(ﬁ
Re(je(t + kM)e 2M .

Re(jm(t)e™) = m(z)sin(0)
The crosstalk from the positive frequency adjacent channel ItoIis

.2

==t . 27
Re(je()e M ¢ = +¢(t)sin(———¢— 6
e(jc(t)e M e c(t)si (2M )

which at times t=kM is

tc(¢)sin(0)
and from Q to Lis :
2
Fe(t)cos(—t—0)
2M
which at odd sample times (2k+1)M/2 is also i
tc(2)sin(0).
Thus, the interference is identical to the VSB interference.

D2. SQAM TIMING AND PHASE SHIFT

For time and phase shift, the intrachannel responses are

m(t + kM) cos(6)
m(t + 2k +1)M / 2)sin(0)
for signals from the I and Q channels respectively. /

The interchannel interference is

0 e +c(t + kM)-sin(—zg%(t + kM) = 0) = xc(t + kM) sin(%t —-0)

i

from I to I and from Q to Lis

e R
‘ s .o

: F2E (ke 1I2)M)

Re(c(t+ (2K + )M / 2)e 2 e =
ot + (2K +1)M /2) cos(—zg%(t +(k+1/2)M)—6) =
so(t+ 2K+ M 1 2)sin(EE 1 - 6)
- . 2M
and from the negative frequency channel the response is the same with a sign reversal of 0, that is,
. 2T
Fe(t + kM) sin(———t + 6)
2M

27
He(t + K+ DM/ 2)sin(——¢ +6).
do(t +( ) )sm(ZM )

These are identical to the results of VSB with the proviso that these refer to the non-zero 6.



E.EYE OPENING
The opening is the signal less all possible interference, and is, therefore
m(t)cos 6
=" Im(t+ kM)l cos 6|

k=0

=¥ Im(t +(2k+1)M / 2)Isin 6|
k

=3 le(e+ K1 2)l1sin( 2 — gy
4 M

~S e+ kM /2 sin( 2+ O): ,
4 Y R

=m(t)cosB
=Y lm(z + kM)l cos 6l

k=0

=" Im(t +(2k+1)M / 2)!sin 6]
k

—2; le(z J_r:ka / 2)! max(l sin(j—;r;) cos0)}, cos(j—g) sin 9)!)

F. OTHER CHANNELS”

We showed that a timing offset of t required an associated phase shift of

T .9=—2-'—7£—1-l‘
S M2

for the first channel in 2 VSB system and that this meant that the response to odd numbered symbols was
zero, This is because {.

sm(———(z‘ + 21+ 1)-—-) - %—1-1‘) =

and it is clear that a phase shift of
27
—(k+1/2)
M

would effect the same of the kth channel.

But this may also be accomplished for the kth channel with the earlier phase shift, since



sm(—-—(k +—;—)(r +2L+ 1)—) —%l 9

) 1 27
sm(—ﬂ(k GO 1)7) ~ +5)r) =
sin(—g(Zk +DEI+1) =0

CONCLUSION
The basic formulas to calculate the error rate and eye opening for VSB and SQAM filter banks have been
derived. They depend en two functions, m(t), the prototype Nyquist channel response, and c(t), the
prototype crosstalk function. A program using these formulas have been written, and the results agree,
more, or less, with 51mulat10ns done by M. Sablatash, for a slightly different set of filters.
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APPENDIX

ESTIMATION OF ERROR RATES

Here is a program to estimate error rates, given the prototype filter for a 32-channel system.

- t-

%TIMING.M

$timing calculates predlcted error rate for VSB channels
$with time offset t and phase offset theta
load mp32

. .
.

. ‘.:"'?;-‘, .
samplerate=16; K
j=sqrt(-1); ’
%calculate the channel response for SQAM m(t)
m=conv (mp32, £liplr (mp32)) ;

1

%calculate the crosstalk function c(t)
h=zeros(size (mp32));

for kk=1:length (mp32)

h(kk)=mp32 (kk) *exp (j*2*pi* (kk~-1)/(2*32));
end

¢=real (conv(h,conj(h)));

hold off
for thetai=0:0
thetail
theta=2*pi*thetai/360;
for offset=0:8
offset

]
3
"

b




a=[cos (theta) *sample(m, 32, 0offset)
sin(theta) *sample (m, 32, offset+samplerate) ..
sample(c,16,0ffset) *sin((2*pi*offset/ (2*32))~theta)
sample(c,16,o0ffset) *sin((2*pi*offset/(2*32)) +theta)];
fu vl=max(a);
save=a(l);
a(l)y=abs(u);
a(v)=save;
a=real (a);
d=[1];
ploterr
hold on
end %offset
gtext (str (thetai))
end %$theta
hold off
J=sqrt(-1);
i=sqrt(-1}):

%ploterr.m i
1f d==[]

d=2:2:30;
end
pe=zeros (1, length(d)) ;.
sigma=zeros (1, length(d));
for k=l:length(d)

[pe (k) sigma(k)]l=err_rate(a,d(k));
end
sigma=-8.68*log(sigma);
for i=2:length(sigma)

if sigma(i)<sigma(i-1)

sigma (1) SLgma(l 1) ;
pe(i)=pe(i-1);

end
end ¢
semilogy (sigma, pe) ;
xlabel ('SNR [dB]')}:
yvlabel ('Pe');
“grid; ] ..

function [pe,sigma]:err_raée(g,d)
% ISI, calculates error rate
% a(l) contains the peak, .the rest is ISI
% d is a parameter usually“between 2 and 30
s=a(l);
elnot=-d*a(l};
eldouble=0;
for i=2:length(a)
s=s- a(l)*tanh(d*a(l)),
c=abs (d*a(i));
temp=a (i) /cosh(c);
elnot=elnot+c- 1og(2)+log(1+exp( 2*%c) ) ;
eldouble=eldouble+temp*temnp;
end ’
if s>0
s=sqgrt(s/d);
elnot=elnot+ (d*d*s*s/2) ;
eldouble=eldouble+s*s;
pe=0.5%erfcx(d*sqgrt (eldouble) /sqrt (2) ) *exp(elnot) ;
sigma=s;
sigma=sqrt(2) *sigma;
else
pe=0.5;
sigma=100000;



end

Sample output from program with input the filter MP32.MAT, the 32-channel filter derived from the
MPEG coding standard.

-1

Pe/SNR with Timing error (fraction symbol time)

ik

10

SNR [dB]

10



Pe/SNR for phase offset in all channels

SNR [dB]
pe.doc

11
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Phasing VSB Filter Banks
W F McGee
¢ 25 September, 1996

- The purpose of this note is to record the phasings required for VSB filter banks. Quasi-perfect VSB filter

banks use a pair of transfer functions H(z) and G(z) where H(z)G*(z) forms an M-band VSB-Nyquist filter.
We assume that these transfer functions are not necessarily causal, but suppose, for the sake of argument
that H(z) is causal, of order N, and finally assume that H and G* form a minimum-maximum phase pair,
that is G*(z)=H*(1/z), or G(z)=H(1/2).

Basic result

The transfer functions of the transmit filters for an M-band VSB filter bank may consist of M/2 transfer
functions, H(W**12z) where r ranges from 0 to M/2-1, and the M/2 transfer functions JG(W2r 12;) where r
has the same range. The receive filters are correspondlnoly GH*(W¥*122) and -JH*(W*122). If we set
A(z)=H(W'22) be the transfer function of the first ﬁlggr mentioned, then the transfer functions are A(W?z)
and

' JGWVrg) = JH(L W)= JHW™ | )= jA(L/ 2)
and its frequency translates by W,

Restoring causality.

Focus attention on the first two (r=0) transfer functions; the same result applies to all. Since H(z) is causal it
will not be affected. To make G(z) causal we must multiply it by z° where D is equal or larger than the
degree of H. Also, system performance will not be affected if D is a multiple of M/2, since this is the rate
that the input sequence appears. Thus, for simplicity, choose D to be the smallest multiple of M/2 that is
larger than N; that is, "

D=%(1+[Ndiv M 12

if Nis not divisible by M/2 and D=N if N is divisible by M/2,

o

This may all be accompllshed simply by paddma H(z) with zeros to bring its order up to a multiple of M/2.

Polyphase filtermg

)
'y

Finally, we have to realize the pair o'f-I\;I'??zl_’,transfer functions A(W?2) and jB(W?*z) where

B(z)=z"A(1/z) as specified. Each may be realized by the polyphase expansion of A(z) and B(z) of order
M/2. Thus if

1 M/2-1

. A(Z): EZ—kAk(ZMIZ)
k=0

M/2-1

B(z)= D,z B.(z"")
k=0

then
MI2-1 MI2-1
A(Wer) _ ZW -2rk LA (ZMIZ) - zeJZnTL/(MIZ) -—LA (ZMIZ)
k=0
and



Mi2-1 :
B(W?.rz) - ZeJZTLTk/(M/Z)Z—kBk (ZM/Z)

k=0

If we include the M/2 real input sequences X;(z™?) and Y;(z™?) in the description then the output is simply

&L M2\ S e M2 i "E ki M2
DAY D PTIMIIE (2M) 4 B, (2M1) Y eI iy (412
k=0 =0 r=0

The calculation may be further simplified by noting that the DFT Uy and Vy, of two real vectors with
components X; and Y, may be obtained on one DFT of the complex vector with components X+jY,
resulting in Wy, since -

U, = (Wk W) 2
JVk =(W, ._—;W%M/z_k) / 2

Thus, since we have defined the sequence Wy (zM?) by

'

Mi2-1 '

Mi2 j2mkr (M2 M2 . Mi2

W (") = Y e MM x (22 + jY (2],
r=0 .

then the output may be written in the equivalent forms

Nk A B @) | [ A B (2M)
>z 2 W, (") |+ >

k=0

Wna;/z—k (z""? ):l}

and many others.

N
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COMMUNICATION WITH UNSYNCHRONIZED FDM TRANSMITTERS
USING MAXIMALLY DECIMATED FILTER BANKS

Maximally decimated filterbanks[1] achieve very efficient communications, approaching efficiencies of 100
per cent. But it requires that users be synchronized. We examine methods to achieve comparable
performance with users having different delays. We are primarily concerned with the uplink of transmission.

A second problem in these multi-user communication systems is the near-far problem in which the users are
not received with the same signal levels. These variations may arise from multipath fading, or because
nearer transmitters inherently achieve less attenuation.

1. PREVIOUS APPROACHES TO THIS PROBLEM
a. Frequency orthogonal signaling.

The most common approach is to use filter banks thag:arg not IOO-pe’réent'spectrélly efficient, but which do
allow the users to be unsynchronized in time. European work[2-5] on transmultiplexers for Satellite
Communications is typical. The idea is use a set of bandpass Nyquist filters that are not.overlapping in
frequency at all. The efficiency then depends on the sharpness of the cutoff of the filters. The depth of the
stopband depends on the tolerances to interference, and must include tolgrances for near-far deviations.
Efficient realizations using tree filterbanks is in the references cited.

channel spectrum

R

frequency

Figure 1. The use of non-overlapping spectrums means that there is little interference between users.
But the receiver must them operate on each channel separately. '

b.OFDM T

The second approach [6] is to use orthogonal frequency division multiplexing, OFDM. Each user may be
allowed to use QAM signaling. The interesting extension of the technique using the DFT is to use a
synchronous extension. This means that the in-channel pulse response is held at its maximum for a fraction
of a symbol time. The interchannel interference is held to be zero over the same fraction of time. The
efficiency is decreased by the fraction-of time that the response is held.
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Q. ’ryp|col chonnel response T|me

4

fime
c: OFDM inchannel response
dotted: no synchronous extension
solid: synchronous extension
AN
d:OFDM interchannel response ~~ 11Me

Y

Figure 2. OFDM with synchronous extension has a guard time which decreases the signaling rate but
allows a wide tolerance to timing errors, both inchannel and interchannel. But the time frequencies

“must still be accurate. Figure a illustrates inchannel responses-for general systems of the type we

consider, and figure b the mterchannel response. Note that there is little room for timing error.
Figure c, on the other hand, has a nai’row pulse with a flat top, and Figure d illustrates that there is a
significant amount of time in which the mterchannel interference is small

-

OFDM is therefore useful for quasvSynch_ronous commumcatlon, in which users transmit synchronously
with an error tolerance equal to half the hold time.

c. Orthogonal Multiplexed S-QAM or VSB systems.

The systems of this type have a long history[7-. They are mainly intended for applications in which a given
channel is covered with a set of evenly spaced carriers. The modulation on each carrier is synchronous, but
the number of levels, carrier level, etc. may be varied to cope with channels responses that are not flat with
frequency, or for which the noise is not flat. These systems are the subject of our study.

CDMA

There has been a great flurry of activity for CDMA for mobile radio systems, because such systems are
quite efficient for cellular radio systems. CDMA channel responses, including the matched filters in the
receivers, have responses rather different from those of narrowband systems shown above.
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Figure CDMA systems use a set of transmit and receive matched filters, just like the two cases previously
considered. But the filters are derived from pseudo-noise sequences, and produce a sharp localized pulse
response in time, but which has small, but not negligible, noise-like responses, at other times.

Conventional CDMA systems operate on a per-channel basis, and treat the interference from other users as
noise. The research in Multi-user CDMA systems has been to desigd a receiver that makes use of
information about other user’s received data in deciding about the data of a particular user. There are three
review papers [14-17]. The background theory appears in several papers[18-24].

Applications have been made of these ideas to' wavelet packet basés systems at MIT [25-30] in which non-

orthogonal waveforms are used. R

Because of the great commermal interest in CDMA many additional studies have appeared many of which
have to do with realizing receivers that: agprox.lmate the ideal multi-user receiver, which, even with a Viterbi
receiver, is usually judged too complex to build. The theory has been extended to sub-optimal receivers[).
Among these are linear minimum mean square receivers[]. Adaptive Systems have ‘been studied [].
Engineering efficiency has been studied. Applications have been made to other systems like O-FDM, and
trellis coded modulation. Finally, improvements in delay tracking have been made.
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE SATELLITE AND MOBILE ENVIRONMENTS:

3a, BASIC PROPERTIES OF VSB FILTERBANKS
Revision 1

W F McGee
Contract: U6800-6-1604

14 March 1997
ABSTRACT

This report is associated with milestone 3 of the contract. It is a more-or-less completely revised version
issued in preliminary form in December 1996. It examines the basic waveforms in VSB filterbanks
previously derived, and the ‘elementary’ analysis of'gdjacent channel interference, without using any multi-
user detection properties. Thus, the purpose of the report is to clarify the problem,

The methodology has been to examine the pulse waveforms, compare with Saltzberg’s analysis, and an .

error rate analysis of a simple signed-bit receiver using a characteristic function approximation to the error
rate.

The conclusions are as follows:
1. When adjacent channels are not aligned in phase, there is a serious degradation in performance. With the
adjacent channels at the same signal level as the channel under study, the worst combination of data

symbols on one adjacent channel alone will close the eye opening.

2. The sensitivity to timing phase is large, but the use of the quadratare channel should permit phasing, and
manipulation of the real signal should allow timing to be extracted.

3. Modified duobinary coding of waveforms does not reduce adjacent channel interference significantly.

However, if the bandwidth of the overlap region is reduced sxgmﬁcantly, modified duobinary coding offers
a significant reduction in sensitivity to. adjacent channel interference.
»

4.1t is likely preferable that adjacent channel crosstalk that is symmetrical is advisable, which implies that
linear phase, or almost linear phase, tran;n}i,t_ and receive filters be used.

rE

- INTRODUCTION

The focus of this study is the filterbank-based communication system recently documented by Sablatash,
McGee and Lodge[6]. It is a 32-channel bank, in which two stages of two-band filtering is followed by an
8-band polyphase filterbank. The purpose of this note is to record calculations on basic filterbanks[5], to
give some idea of the elementary signal processing that is involved. After reviewing Saltzberg’s analysis,
we give the pulse responses of our system, and deduce sensitivity measures. Finally, we present results on
systems using modified duobinary coding. An appendix presents our reasons for preferring mean-squared
error (L; norm) rather than sum of absolute values (L; norm) used by Saltzberg.

SALTZBERG’S ANALYSIS

Filterbanks using vestigial single sideband with orthogonal multiplexing were introduced by R. W.
Chang[1] in 1966, and were analyzed in detail by B. R Saltzberg[2] in 1967. These are the same filterbanks,
in essence, that we are considering for use; Saltzberg used offset QAM which is equivalent to the Vestigial
Sideband modulation that we are studying.. The filters are normalized so that the response is always equal
to one if the channel is sampled at the pulse peak.
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Saltzberg did not use error rate as a criterion for his analysis, since in those days it was thought to be too
difficult to analyze or to simulate. Instead, he used eye closure as the error criterion. The eye closure
criterion considers the effect of the worst possible transmitted data sequence, and ranks one system as better
than another if the sensitivity to the worst data sequence is less. Saltzberg was particularly interested in the
voiceband modem channel, subject as it is to delay and gain slopes.

Saltzberg considered two ideal filters, a 100-percent and a 50-percent raised cosine channel. In these terms,
our filters correspond to 100-percent raised cosine filters since the pulse spectrum becomes insignificant at
the next carrier frequency. Finally, Saltzberg analyzed the staggered QAM system, which we know is
equivalent to the VSB systems that we are studying.

Six types of distortion were analyzed, and these are presented in the following table.

D1 intersymbol interference from the in-phase channel

D2 intersymbol interference from the quadrature channel,

D3 crosstalk from the in-phase part of the upper adjacent interference
D4 crosstalk from the quadrature part of the upper adjacent channel.
D5 crosstalk from the in-phase part of the lower-adjacent channel

D6 crosstalk from the quadrature.lower adjacent channel.

In the VSB context, these may be considered as follows

D1 intersymbol interference from even numbered time slots

D2 intersymbol interference from odd-numbered time slots

D3 crosstalk from pulses in even numbered time slots in the upper adjacent channel
D4 crosstalk from pulses.in odd-numbered time slots in the upper adjacent channel
DS crosstalk from pulses in even numbered time slots in the lower adjacent channel
D6 crosstalk from pulses in odd-numbered time slots in the lower adjacent channel.

Saltzberg uses as a distortion measure either D1+D2, which he calls the single channel distortion, or

D1+D2+D3+D4+D5+D6, the total distortion. When a 100 percent root raised cosine filter is used rather

than a 50 percent root raised cosine filter , he found that the effect of carrier phase offset was less with the
100-percent raised cosine filter due to thg slawer decay of the waveform, but that the total distortion was
about the same, because it is swamped by the adjacent channel distortion.

When broadband distortions that become nore severe as the bandwidth is mcreased such a linear delay
distortion (i.e: parabolic phase), Saltzberﬁ'detcrmmed that the 50-percent raised cosine pulses were less
sensitive because the bandwidth was smaller, and the pulse spectrum was not a subject to the distortion that
the broader band 100-percent raised cosine pulses were subjected to. -

We do not repeat Saltzberg’s a'nalysis, but we do present a comparable analysis.
ANALYSIS

Figure 1 gives the real pulse response of the first channel[5], end to end. Note that there is no intersymbol
interference at timing instants of 16 samples apart, and that there is the typical ringing effect present in
narrow band filters. The response is symmetrical. This figure is also the average channel response
conditioned on a +1 being transmitted. Although the response of all the channels is different, the samples
channel responses are identical.

Figure 2 presents the pulse fesponse of the imaginary part of the channel response, which indicates
sensitivity to in-channel misadjustment in phase. This is the Hilbert transform of the real part of Figure 1,
and the sharp zero crossing at the sampling point is useful for timing recovery and phase recovery. As the



theory predicts, the interference is zero at even sample points, and is a maximum at odd sampling points.
As well, the maximum interference has a magnitude about 0.68.

Figure 3 presents that absolute value of the pulse response of this channel; it shows the characteristics of an
32-band Nyquist filter, i.e., zeros every 32 samples.

Saltzberg presents in his Figure 3 the peak distortion as a function of channel timing misadjustment. At the

decision point, the eye width is very narrow, about 24 percent Also, the signal peak is about 3.2 times the
pulse peak.

The pulse response from the channel that is adjacent, i.e. channel 32, is presented in Figure 4. [Other
responses to other channels are similar, but this response is purely imaginary, and easier to comprehend.]
As designed, the real part (Figure 4) is almost 1dent1cally ZEro.

But the imaginary part{[Figure 5] is not zero. The response is characterized by a ramp down and up. The rate
of change will depend on the bandwidth of the transition.band between thé two filters. But the area is fixed
by the design of the filters, since, with the normalization noted, the area under this curve must be about 16.
Since an interfering data stream occurs every 16 samples, this means that the peak interference from that
adjacent channel, given the worst data sequence, is unity. This means, approximately, that, given a sequence
of 150/16=9 sample pulses there is a probability that, if the phasing between the adjacent channels is at its
worst, that the ‘eye opening’ will be completely closed, which means that, due to this one interferer alone,
the error rate will be worse that the probability of this sequence occurring times 0.5.

If there are two interfering channels, the peak interference will be twice as large.
_MODIFIED DUOBINARY FILTERING

When there are phase misadjustments in the adjacent channels, the triangular-shaped pulse response of the
crosstalk indicated is not very useful; it is better to have a response which is flat, not triangular. This may be
accomplished by passing the triangle signal through a digital differentiator. The useful filter would be the
transfer function corresponding to modified duobinary filtering[3],

M(3)=05-057"2.

v

which has 32 zeros equally spaced around the unit circle, at the crossover frequency of the adjacent ez
channels. Since the slope of the crosstalk!ﬂmctlon is approximately'0.25/50, or 0.005 per sample, the

difference indicated will result in a pulse of 32*0.005/2, or about 0.08 with the bandw1dth indicated. This is
shown in Figure 9. .

This means that the duobinary filtering has reduced the peak crosstalk from an adjacent channel under phase

misalignment by more than 20'l0g(0.25/0.08)dB, about 10.

The main channel is, of course, also affected by the duobinary coding. and instead of the single peak of
Figure 1, we have a doublet of Figure 7. The ripples of the response have been reduced in level, since the
sidelobes have been added so that they tend to cancel. The imaginary part, Figure 8, is now symmetrical.

When a binary signal is applied to a duobinary channel, a three-level signal results, and the magnitudes are

+1, 0, and -1. Unfortunately, this means that the sensitivity has been reduced by 6 dB, since the distance to

the decision threshold is reduced from 1 to 0.5. The sensitivity to other fluctuations has been similarly

reduced. However, the noise is reduced by 3 dB [M(z) is always less than unity]. |

Let us consider the effect of adjacent channel bandwidth. As we have argued, the peak interference is
proportional to the area under Figure 5, and is fixed at unity. On the other hand, the peak of Figure 5 is



proportional to the adjacent channel bandwidth; the narrower the band, the smaller and wider the adjacent
channel interference.

With duobinary coding, the peak interference with the worst data sequence is the area under the absolute
value of Figure 9. This is just twice the area under each lobe, but this area is simply the peak of the pulse of
Figure 5, that is, 2x0.25 or 0.5. But since the distance to the threshold in duobinary is reduced from 1.to 0.5
this means that the adjacent channel will also completely close the eye under duobinary coding with these
bandwidths. This would indicate that duobinary coding would be advantageous only is the bandwidth is
reduced from 100 percent used, to 25 or 10 percent, thereby resulting in an increase in the filter lengths.

Since the duobinary coding introduces correlation in the decoded signal, it is possible to demonstrate[4] that
a Viterbi sequence detector will recover 3 dB in performance, thereby providing the same performance, in
noise, as binary signaling. However, the use of a modified ducbinary filter in the receiver has introduced
correlation in the noise samples, and the design of the Viterbi receiver will be complicated by this.

ERROR RATE ANALYSIS: N©@ CONVOLUTIONAL CODING

Although much can. be seen from an examination of pulse response, calculations have also been made of
error rates for our system.scenarios. Here we study the impact of allowing the adjacent channels to be at
their worst phase offsets. Instead of system simulation we have approximated the error rate using a steepest
descent approximation, which at this stage of the investigation is warranted.

The error rate calculations are summarized in one plot, Figure 10. This shows the error rate as a function is
signal to noise ratio for four systems. The first, labeled base, is for a single channel in which that adjacent
channels are phased properly.

The line labeled ‘equal level’ shows the effect of adjacent channel interference from both adjacent channels
at the same level as the receiver; the graph indicated an asymptotic error rate floor of about 4x107%,

/
The.line labeled ‘base duobinary’ shows the typical 3-dB degradation of a duobinary system in which the
adjacent channels are properly phased.

The final result is labeled ‘duobinary equal level’ and shows that the e‘r;'or rate is even poorer than the base -

system for signal to noise ratios of i mterest. This decrease is due almost entirely to the effect that the ‘0’
level with three level coding has two ad_]acent thresholds, whereas the ‘1’ of binary and duobinary coding
have only one adjacent threshold; as indicated previously, both the base and the duobinary system have eyes __-
that are closed by one adjacent carner of,th& same level but with the worst phase offset.

T

CONCLUSION .
The pulse responses have been examined. The inchannel response demonstrates the Nyquist property of no
intersymbol interference. The sensitivity to mistiming appears to be large, as Saltzberg showed. The
quadrature response is the Hilbert transform of the channel pulse, and may be used for phasing. The real
crosstalk is zero, as expected, but the quadrature crosstalk signal is fixed in area, so the peak interference is
always large; this suggests sensitivity to phase misalignments'in the adjacent channel. On the other hand, the
width is so large that timing misalignments between channels do not appear to be important. This sensitivity
to phasing misadjustments is also shown when the error rate is determined.

The use of modified duobinary coding does not reduce the sensitivity to the adjacent when 100-percent
raised cosine filters are used.

The next phase of the work examines multi-user correlative receivers and the impact of spectral coding..

FIGURES



1. The real part of the response in channel to a transmitted pulse in channel 1. Since this is a VSB Nyquist
filter response, the zero crossings occur every 16 samples as required. These responses are really sequences,
which have been plotted with straight lines joining the sequence values.

2. The imaginary part of the response in channel 1 to a transmitted pulse in channel 1. This is the Hilbert
transform of Figure 1. The sharp transition is useful for time and phase adjustment,

3. The absolute value of the response in channe] 1 to a transmitted pulse in channel 1. The zero crossings
occur every 32 samples, since this filter is an 32-band QAM filter.

4, The real part of the crosstalk response in channel 1 to a pulse in channel 8. This is essentially zero, as
predicted[ note the multiplier ].

5. The imaginary part of the crosstalk from channel 32-into a receiver for channel 1, The narrower the
transition bandwidth of these filters, the wider and less high these crosstalk responses. But the area is fixed.
The other significant feature of the curve is the shift. The pulse of Floure 1 is centered at sequence 244,
whereas the crosstalk is centered at about sample 275. This is because the transmit and receive filters are
both minimum phage. If we consider crosstalk through two maximum phase networks, the pulse shape is
advanced. :

6. Real part of the pulse response for channel 1 transmitter and channel 1 receiver when the duobinary filter
is inserted. In comparison to Figure 1, there are two lobes. But also, the ripples are somewhat smaller; this
effect is more pronounced for smaller bandwidths.

7. Imaginary part of the pulse response for channel 1 transmitter and channel 1 receiver when the modified
duobinary filter is 1nserted In comparison to Figure 2, there are three lobes, and the response is
symmetrical,

8. The real part of the crosstalk with duobinary coding. The real part of the crosstalk is essentially zero.

9. The imaginary part of the crosstalk when a modified duobinary filter is inserted into the signal stream.

.Although the response has been reduced from the peak of Figure 3, from 0.25 to 0.08, the absolute value of

the area is about 0.5, thereby making the worst sequence in the adjacent channel capable of closing the eye
opening. e
10. Probability of error vs. SNR. Four cases are presented

-base- the standard plot of binary swnahpg through matched filters,.

-equal level-binary signaling, adjacent channels at equal level, worth phasing.

-base duobinary- typical Per/SNR duobinary plot. ‘

-duobmary equal level- the same as equal level, but with duobinary coding. With these system bandwidths,
there is no advantage to duobinary coding.

¥
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APPENDIX 1 Basis for elementary calculations of crosstalk.

Since the crosstalk from channel 32 to channel 1 is purely imaginary and appears, from the plots, to be
essentially triangular and of one sign, the worst interference comes from a stream of +1s, and is effectively
then 1/16 the sum of the coefficients. If the crosstalk transfer function is

Cz)= Zlckz""

then 1/16 the sum of the coefficients is C(1), i.e., C evaluated at zero frequency, which we have argued has
magnitude M/2, where M is the number of channels. In our case, M=32, $o the peak interference is 1. This
is a general result since, for general M, the sampling rate is 2/M, and so this sum is always unity. This
means that one adjacent channel will close the eye, if there is 90-percent phase misadjustment.

To evaluate the interference as noise we have to determine

%Elcklz

and this is ’

2 2 )
—_[IC(e"")Izda)/zzz:
My

and this integral is approximately given by the formula (2/M) (height)(half-width) of C(w). But the height is
(M/2)?, s0 the sum of squares is approximately (M/2)(half-width). Thus, reducing the transition bandwidths
of the filters will reduced the mean square interference from adjacent channels, but will not affect the peak T

interference. U i
. G
Appendix 2

PLACEMENT OF DUOBINARY FILTER

1
One of the issues in duobinary filtering is where to place the filter. The are two possibilities, before or after
the noise source. The two possibilities do not affect the signal, or the interference, but will affect the noise.



a: Basic Nyquist system nolse

Tx ‘—‘é— Receiver

b: Duobinary filter before noise source
noise

:

T — M(Z) Receiver

c: Duobinary filter affer nolse source:
noise .
Tx ——(E— M@) Receiver

In placement b, the received carrier power is reduced by 1/2 because of the filter compared to a, the base
system, and therefore for the same carrier power, we may increase the transmit level in b by 3 dB,

producing a received mgnal 3 dB larger. Of course, this is overcome by the 6 dB penalty in SNR because of
3-level reception. :

In placement c, the carrier power is the same, but the noise power at the decision is reduced 3 dB by the
filter. Therefore the noise performance is the same is b with its carrier power increased by 3 dB. The
disadvantage of c is that the noise is correlated from bit-to-bit whereas in a: and b:, this is not the case.

‘If peak transmitted power is the relevant parameter, as it would be.if the output stage is to be driven as hard

as possible, then duobinary coding is not as attractive, since it does not send any energy half the time, and
increasing the transmitted power by 3 dB' may not be feasible.

Finally it should be mentioned that transmlt duobinary filtering may be done dlgltally, there is no need for
an actual filter. . ! ,,?‘ o



APPENDICES

The MATLAB program m-files used in the calculations are appended. The filter coefficients are from
report [6].. "

%MAKEPLOT.M

%makeplots

% makes the plots for report 3a

%call mkfilt first )
b=sample(imag(conv(iransmit(32,:),receive(1,:))),16,0);
a=[1bb];

d=0.2:0.2:3.0;

ploterr . _
gtext(‘equal level'); o
hold on

title(Error rates with adjacent channels equal level, 90 degrees phase error');
a=[1]

d=2:2:20;

ploterr;

gtext('base');

w=[0.5 0-0.5];

c=conv(w,b);

a=[0.5cc];

d=[};

plotduo

gtext('Duobinary:equal level');

a=[0.5];
gtext('base duobinary');

plotduo
hold off




%ERR_RATEM
function [pe,sigma]=err_rate(a,d)
% 1ISI, calculates error rate
% a(1) contains the peak, the rest is ISI
% d 1s a parameter usually between 2 and 30
s=a(1);
elnot=-d*a(1);
eldouble=0;
for i=2:length(a)
s=s-a(i)*tanh(d*a(i));
c=abs(d*a(i));
temp=a(i)/cosh(c);
elnot=elnot+c-log(2)-+log(1+exp(-2*c));
eldouble=eldouble+temp*temp;
end
if s>0
s=sqrt(s/d);
elnot=elnot+(d*d*s*s/2);
eldouble=eldouble+s*s;
pe=0. 5*erfcx(d*sqrt(eldouble)/sqrt(Z))*exp(elnot),
sigma=sqrt(2)*s;
else
pe=0.5;
sigma=100000;
end

Lo
v
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%PLOTCHAN.M
z=-conv(transmit(1,:),receive(l,:));

plot(real(z));

grid

title('Channel 1 response: Real part");
xlabel('Sample every 16 samples');

pause

print

plot(imag(z));

grid :

titte('Channel 1 response: Imaginary part');
xlabel('Sample every 16 samples'");

pause

print

plot(abs(z)); .
grid e
title('Channel 1 response: absolute value');
xlabel('Sample every 16 samples');

pause

print

y=conv(transmit(32,:), receive(l,:));

plot(real(y));

grid

xlabel("Sample every 16 samples");

title('Crosstalk 32->1 Real part');

pause

print

plot(imag(y));

grid ’
xlabel('Sample every 16 samples");

title('Crosstalk 32->1 Imaginary part');

pause ‘

print
w=[0.500000000000000000600000000000000-0.5;
zd=conv(z,w); y

plot(real(zd));
grid 4 < g
title('Channel 1 duobinary response: Real‘part');
xlabel('Sample every 16 samples'); :

pause

print

plot(imag(zd)); '

grid T
title('Channel 1 duobinary response: Imaginary part');
xlabel(‘Sample every 16 samples');

pause

print

yd=conv(y,w);

plot(real(yd));

grid

title('Duobinary Crosstalk 32->1 Real part');
xlabel("Sample every 16 samples);

pause

print

it
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plot(imag(yd));

grid

title('Duobinary Crosstalk 32->1 Imaginary part');
xlabel('Sample every 16 samples");

pause

print .

11



%FILTERT.M

function[transmit,receive]=filtert(a,k,M)

j=sqrt(-1);

b=conj(flipir(a));

for i=1:length(a)
transmit(i)=exp(j*(pi/2)*(k+0.5)*(1-2*(length(a)-1)/M))*a(i)*exp(j* (pi/M)*(i-1)*(2 *k+1));

end

for i=1:length(a)
receive(i)=-exp(-j*(pi/2)*(k+0.5)*(1+2*(length(a)-1)/M))*b(i) *exp(j* (pi/M)*(i- 1) *(2*k+1));

end .

R o
LS
.
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%MKFILT.M
clear all;

% makefilters: makes a set of transmitter and receive filters

load £88_8
f88_8=f38_8"
lawton=f88_8;
sum=0;
for i=1:length(lawton)

sum=sum-+lawton(i)*conj(lawton(i));
end
sum=sqrt(sumy);
lawton=lawton/sum;
for i=1:2:8 _
[transmit(i,:),receive(l,:)]=filtert(lawton,i-1,8);
end ) '
for i=2:2:8
[transmit(i,:),receive(i,:)]=filtert(fliplr(lawton),i- 1,8);
end
load mv4
load mv8
% the high pass filters
hmvd=mv4;
hmv8=mv8§;
for i=1:2:length(hmv4)
hmv4(i)=-hmv4(1);
end; '
for i=1:2:length(hmv8)

hmv8(i)=-hmv8(i);
end;
% hmv4 and hmv8 are the high pass versions
md=zeros(1,1:(1+8*(length(mv4)-1)));
m8=zeros(1,1:(1-+4*(length(mv8)-1)));
hm4=m4; ey
hm8=m8§; - *
for i=1:length(mv4)
hm4(1+8*(i-1))=hmv4(i); RE
mA4(1+8*(i-1))=mv4(i); A
end :
for i=1:length(mv8)
hm8(1-+4*(i-1))=hmv8(i);
m8(1+4*(1-1))=mv8(i);
end

% construct the transmit and receive filters for the leaves of the tree

tr=[ conv(m4,m8)};
re=[conv(fliplr(m4),fliplr(m8))];

tr=[tr;conv(fliplr(hm4),m8)];
re=[re;conv(hm4,fliplr(m8))];

tr=[tr;conv(fliplr(hm4),fliplr(hm8))];
re=[re;conv(hm4,hm8)]; ’

o
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tr=[tr;conv(m4,fliplr(hm&))1;
re=[re;conv(fliplr(m4),hm8)];

% now make the thirty-two filters
t=(1;

r=[};

fori=1:2:8

for j=1:4
t=[t;conv(transmit(i,:),tr(,:)));
r=[r;conv(receive(i,:),re(,:)];
end .

for j=1:4
t=[t;conv(transmit(i+1,:),tr(5-j,:)];
r=[r;conv(receive(i+1,:),re(5-j,:)1;
end

end

transmit=[7];

receive=(l;

tr=[};

re=[];

% scale

transmit=2%t;

receive=2%r;

t=[];

r=(};

i=sqrt(-1);

j=sqrt(-1);

e

~ R
CUN
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%PLOTERR.M

if d==[]

d=2:2:30;

end
pe=zeros(1,length(d));

| sigma=zeros(1,length(d));

for k=1:length(d)
[pe(k) sigma(k)}=err_rate(a,d(k));
end
sigma=-8.68*log(sigma);
for i=2:length(sigma)
if sigma(i)<sigma(i-1)
sigma(i)=sigma(i-1);
pe(i)=pe(i-1);
end
end
semilogy(sigma,pe);
xlabel('SNR [dB]");
ylabel('Pe');
grid;

15.




%PLOTDUO.M
% normally a(1) will be about 0.5
if d==(]
d=2:2:30;
end
pe=zeros(1,length(d));
sigma=zeros(1,length(d));
for k=1:length(d)
[pe(k) sigma(k)l=err_rate(a,d(k));
end .
sigma=-8.68*log(sigma)-3.0;
for i=2:length(sigma)

if sigma(i)<sigma(i-1)

sigma(i)=sigma(i-1);
pe(i)=pe(-1);

end
end
semilogy(sigma,1.5%pe);
xlabel(SNR [dB7Y);

ylabel('Pe");

grid;
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Error rates with adjacent channels equal level, 90 degrees phase error
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE SATELLITE AND MOBILE ENVIRONMENTS:

3c. EFFECT OF LINEAR PHASE PROTOTYPES ON FILTERBANK CROSSTALK
W F McGee
Contract: U6800-6-1604

14 March 1997

The calculations of the-report [1] have been extended to include a linear phase filter. The particular design
used is the MPEG 64-channel linear phase baseband filter, the coefficients of which were supplied by
Seymour Shlien. [Although not immediately apparent, these coefficients are 17-bit integers.] After
decimating the coefficient array, the same calculations as documented in the previous report have been
made. oo

The frequency response of the filters is shown in Figure 1; the stopband loss is more than adequate for this
application. The crosstalk between channels is shown in Figure 2. The shapes are now symmetrical
compared to the earlier report, and somewhat broader, and thus, not as high.

The pulse response with a mean-squared error equalizer is shown in Figure 3. The zero crossings have been
kept, more or less, and the interchannel crosstalk has the downward blip which was evidenced in the earlier
study. The frequency response of this filter is contrasted to the response of a matched filter in Figure 4.

Decision feedback, as expected, retards the pulse response, Figure 5, while maintaining the zero crossings
and decreasing the adjacent channel crosstalk before the main sample. The frequency response for this
decision feedback equalizer is shown in Figure 6.

’

The coefficients of the filter are included.; there are 256 coefficients, with mirror symmetry.

“The performance of the various equalizers has been characterized 4s in‘the previous report, in a table.

TABLE 1 Mean squared error for VSB ‘communication system with adjacent channels at equal level,
90-degrees phase shifted, with various equalizers. There is no channel coding-

Relative phase of

System . Relative Level Mean Squared
of adjacent adjacent Error
channels channels (Unbiased)
(dB) (degrees)
Baseline 0 0 0.2 (7dB)
Matched Filter alone ' 0 90 0436 (3.6 dB)
Minimum Mean Squared Error 0 90 0.295 (5.3dB)
Equalizer
Single Decision Feedback 0 90 0.267 (5.7dB)
(Main channel only)
Vector Decision Feedback 0 90 0.238 (6.2 dB)
(Main+Adjacent Channels)
CONCLUSION

Ttiis linear phase filter improves performance.




Figures

1. Frequency response of the transmit ands receive filters for 32-channel communication system using filters
MP32.

2. The absolute value of the sample crosstalk between all channels. There is no observable crosstalk
between non-adjacent channels; adjacent channel crosstalk is smaller and symmetrical.

3. Response of the main channel and adjacent channel crosstalk when a minimum mean squared error
receiver is implemented. The signal to noise ratio is 7 dB. The adjacent channel crosstalk is reduced.

4, Frequency response of the minimum mean squared error equalizer.

5. Pulse response and adjacent channel responses with a decision feedback equalizer. These equalizers
assume that the in-channel response after the center may be eliminated by decmon feedback. The adjacent
channel crosstalk is also deduced a bit.

. r-,.'

6. The equalizer frequency response corresponding to the pulse responses of Fig. 5.
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Frequency response of filters MP32
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\matlab\bmcgee\mpeg
ited 15:01 24 Jan 97

oefficents for filter MP32

6974344700016660e-006
1 -2.6974344700016660e-006
339486894000333209—006

.69’74344’7000166609-006\
‘ !

3948689400033320e-006
M 0921266333833290e-006
-1.0789561103385000e-005
.3486995573386660e-005
1.61844300433883309—-005
.8881864513390000e-005
-2.4276556676771660e-005
l.96’71425616774990e-005
.7763552250158320e-005
-4.5855678883541650e-005
-5.6645416763548320e-005
l.0132412336934980e—005
.3619231133699980e-005
~1.0250109564709000e-004
.2138296016048000e-004 -
.4296208236725000e-004 e
.6993607351402330e-004
-1.9690971110755320e-004
£.2927927830081660e—-004

-

.6164707772786320e-004 : ~
.9941186741437320e-004
3.3717488933466660e-004
3.7493791125495990e-004
l4.1539854442187660e—-004
4.5585917758879310e-004
4.9362396727530310e-004
5.2868937794897320e-004
5.6105894514223640e-004
~5.8803328984225310e-004
-6.0691480080239970e-004 ,
6.1500586677605310e-004
6.1230825552942970e-004
-5.9612435581590650e-004
-5.6105894514223640e-004 ) <
.0980786698882660e-004 _
.3967527787526980e-004 R
.4257011182791320e-004
.2388405580756990e~-004 . ~ .
.8224538970318300e-005 - S s B ‘ =T
.7106226707086640e~-005 B ‘ ’
.9941186741437320e-004
.3138698919559650e-004
.9303406692345970e-004
.0816554893513400e-003
.3999488677258600e-003 '
.7398213683071500e-003
.1012729910952090e-003
.4789032102981420e-003
.8700391633963590e-003
.2638444434817320e-003
.6576674012292730e-003
.0407069850551860e-003
.4075538303364920e-003
.7447198808400760e-003
.0441264449557990e-003
.2922854664505450e-003
.4811182537141780e-003
.5971013951892480e-003
.6294691946162950e-003
.5647335957622010e-003
.3947982293546650e-003
.1061750391605680e-003
.6907676559076080e-003
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.1404973879856480e-003
.4526595530831990e-003
,6164707772786320e-003
.6319257572733000e-003
.9901918976854980e-004
.7685016720993640e~004
.1956893847270260e~003
.7439874255887850e-003
.4109732902371050e-003
.1831766001010340e-003
.0389775743508200e-003
.0959531825116870e-002
.2915140879959280e-002
.4881533308723320e-002
.6823671984994790e-002
.8706502104697310e-002
.0492122760145690e-002
.2142862853262910e-002
.3615765664984100e-002
.4867344146379460e~-002
.5854464801762480e-002
.6536999338014940e-002
.6863328981610400e-002
.6798628738080640e-002 °
.6299588335117490e-002
.5325902702981100e-002
.3845044943284920e-002
.1827316583589070e-002
.9243195928075320e-002
.6073785555887570e-002
.2302822017832550e~002
.9168526130014810e-003
.9185820237058460e-003
.6920074277165190e-003
.9014100073703300e-003
.5693450654373150e-002 ‘
.3035761569297920e-002

.0898608924380440e-002

.924175830529500e-002 )
.8010939454893660e-002 . o
.7155063763811420e-002 ‘

I

01

-
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.6609607820374700e-002 ST

.6306689401863750e-002 : e
.6173830093395490e~-002 . : - . e =T,
.6135192724275220e-002 Ol T -

.0610486385637330e~-001
.1600417789304820e-001 -
.2574456974684540e-001 )
.3523941887314860e-001

.4440245828058460e~-001

.5315290105305220e-001 !

.6140677829525990e-001

.6908365664434980e-001

.7611300222827700e~001

.8242286696202370e~001

.8795243968773650e-001

.9264762675918570e~-001

.9646423402095490e-001

.9935983508384420e-001

.0130614568838700e-001

.0228372040620000e-001

.0228372040620000e~-001

.0130614568838700e~-001

.9935983508384420e-001

.9646423402095490e-001

.9264762675918570e-001

.8795243968773650e-001

.8242286696202370e-001

.7611300222827700e-001
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1.6908365664434980e-001
6140677829525990e-001
'5315290105305220e—001
1 4440245828058460e-001
1.3523941887314860e-001
2574456974684540e-001
!1600417789304820e—001
.0610486385637330e-001
9.6135192724275220e-002
. 6173830093395490e-002
.6306689401863750e-002
.6609607820374700e-002
5.7155063763811420e-002
.8010939454893660e-002
.9241758360529500e-002
3.0898608924380440e-002
2.3035761569297920e-002
l.5693450654373150e—002
.9014100073703300e-003
2.6920074277165190e-003
.9185820237058460e-003
.9168526130014810e-003
.2302822017832550e-002
-1.6073785555887570e-002
.9243195928075320e-002
.1827316583589070e-002
=2.3845044943284920e-002

. -2.5325902702981100e-002
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.6299588335117490e-002
.6798628738080640e-002
.6863328981610400e-002
.6536999338014940e-002
.5854464801762480e-002
.4867344146379460e-002
.3615765664984100e-002
.2142862853262910e-002
.0492122760145690e-002
.8706502104697310e-002
.6823671984994790e-002
.4881533308723320e-002
.2915140879959280e-002
.0959531825116870e-002
.0389775743508200e-003
.1831766001010340e-003
.4109732902371050e-003
.7439874255887850e-003
.1956893847270260e~-003
.7685016720993640e-004
.99501918976854980e~004
.6319257572733000e-003
.6164707772786320e-003
.4526595530831990e-003
.1404973879856480e-003
.6907676559076080e-003
.1061750391605680e-003
.3947982293546650e-003
.5647335957622010e-003
.6294691946162950e-003
.5971013951892480e-003
.4811182537141780e-003
.2922854664505450e-003
.0441264449557990e-003
.7447198808400760e~-003
.4075538303364920e-003
.0407069850551860e-003
.6576674012292730e~-003
.2638444434817320e-003
.8700391633963590e-003
.4789032102981420e~-003
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1012729910952090e-003
7398213683071500e-003

.3999488677258600e-003
.0816554893513400e-003
.9303406692345970e-004
.3138698919559650e-004
.9941186741437320e-004
.7106226707086640e~-005
.8224538970318300e~005
.2388405580756990e-004
.4257011182791320e-004
.3967527787526980e-004
.0980786698882660e-004
.6105894514223640e-004
.9612435581590650e-004
.1230825552942970e-004
.1500586677605310e-004
.0691480080239970e-004
.8803328984225310e-004
.6105894514223640e-004
.2868937794897320e-004
.9362396727530310e-004
.5585917758879310e-004

.1539854442187660e-004

.7493791125495990e~-004
.3717488933466660e-004
.9941186741437320e-004
.6164707772786320e-004
.2927927830081660e-004
.9690971110755320e-004
.6993607351402330e-004
.4296208236725000e-004
.2138296016048000e-004
.0250109564709000e~-004
.3619231133699980e-005
.0132412336934980e-005
.6645416763548320e-005
.5855678883541650e-005
.7763552250158320e-005

.9671425616774990e-005

.4276556676771660e-005
.8881864513390000e-005
.6184430043388330e-005

.3486995573386660e-005
.0789561103385000e-005
.0921266333833290e-006
.3948689400033320e~-006
.3948689400033320e-006
.6974344700016660e-006
.6974344700016660e-006
.6974344700016660e-006
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APPENDIX 3
ERROR RATE APPROXIMATION

We review the approximation of error rates for intersymbol and interchannel interference-limited signals in
Gaussian noise.

Given a signal x and (real) Gaussian noise n of variance ¢ forming a signal s, the probability density
function is the Fourier transform of the characteristic function ®(c)

T ~jas 4O
pls) = i cbx@e >

and the probability that s-is less than O is

f"

o - o S ) o : "

jp (s)ds= | O, (0) do _ f O (0)e™ " do [ E(e’™)e=7"" dg

J Y —jo 2w ~jo “jw 2r
Intersymbol interference is typically the sum of a large number of terms that are linearly independent and
proportional to signaling symbols by that are, typically, +1 and -1, equally probable, and a central response
agbg for which ag is positive and by is +1 and fixed. It makes no difference whether the interfering symbols
are in the same or an adjacent channel. In this case that characteristic function is

@ ()= e H cos(wa, )

and the problem of approximating the error rate is to approximate the integral

(=3

d
J'ejaxzoe—w o IZHCOS(COLZL) (0

L . k0 ~2m®

The best method appears to be to use ‘the method of stationary phase by changing the line of integration

from along the real © axis to a line parallel fo the real axis but displaced by a dlstance d, i.e., replace ® by )
w+jd, and to choose d to make the loganthm of the product of the terms not including 1/e stationary, i.e, =~ — =
have a vanishing first derivative, along thg’ real d axis. Then replace the logarithm with only the constant

and second power in d, and perform the now—tr1v1a1 integration.

~

Thus define
L(jo) = jwa, +(j©) 0 12+ Y, In(cosh(joa,))
L(-d) = ~da, +d*c* / 2+ Y In(cosh(da, ))

=~ L(—dy)+(d—d,)" Lo /2=Ly+(d~dy)" L, /2
where dy is choseg to satisfy L.’ (-dg)=0.

Then the error rate is approximated by

PE = Q(d L0 )e’ """ o




’

For example, if there is no intersymbol interference, the optimum value of -dy is obtained by finding the
stationary point of

L=-da,+d*c*/2

which is at d=ay/c> with the second derivative equal to > The approximation is then Q(ag/c) which is an
exact resuit.

For non-zero intersymbol interference, it is necessary to solve the equation
0=-a, +do” +Y a, tanh(da,)
k
ie. . (%)
do* =a, —Zak tanh(da,) , -
k e e
and evaluate

2

" a

L =0+ —&  (xxx)
zk:coshz(da,__) -

To solve ** explicitly for d, a common approach is to assume a value of d, calculate the right hand side
RHS, and then update d tQ'(d+RHS/O'2)/2. It is probably just as effective to use a Newton method, since the
second derivative is needed at the next step.

If solving the nonlinear equation ** appears daunting, another approach is simply to assume a variety of
values of d, calculate ¢ from the equation *, L’’ from (**). In this connection there are two asymptotic
values of interest.

“"When d is very large, we may replace tanh(day) by sign(ay), thus =~ ™~

ROy )

ao—zlakl
o’ =,

',:.'" d )

c .'2 ,\'f?f” v
L =0""%

Ly=—-d(a,- Y la)- K In(2)+d’c* /2
and the error rate approximatio’n is

K
a, —Zlakl
1 k=1

PEzE,\?Q( )

which states that when the noise is very small, the error rate is determined by the one data sequence in 2™
which makes the signal most sensitive to error.

On the other hand, when d is small, the resultant equations are




a
5?2 =g? +2a§
L'=x?
L, =—da, +d*s* /2
PE = Q(%

This is ordinarily interpreted as meaning that when the noise is large, the error may be determined by
considering the noise t0 be increased by the sum of squares of the interference, and this augmented noise
power be used to approximate the error rate. .

The calculation has been implemented in two C++ prograns, attached, one of which accepts the noise
power as input as well as the intersymbol interference terms, and other accepts the parameter d.

For bandpass systefns the noise o” is replaced by 2%, since the noise power is the sum of the I and Q
noise, but only the I (or Q) noise influences the error rate in a synchronous system.

// pel.cpp -- given sigma, finds pe

#include <iostream.h>

#include <math.h>

#include <conio.h>

// given sigma, computes pe

double error(double a[l0], int k,double sigma);
double pi=3.14159

double g(double x);

int main(void)
{ .
clrscr;
double a[lO]—{l 0,0,0,0,0,0, 0 0,0,0}; o
double sigma;
for (int k=0;k<20;k++) -7

{ N .,
s1gma—exp( k/8.68);: . S,
cout << "\n" << error(a A0, s1gma) << 0" << k;
} y
return 0; .
} .

double error(double a[l1l0],int k,double sigma)
// d is fixed, returms error rate
( N
double elnot, eldouble=0.0;
double d;
double delta;
double c, temp;
int i;
int counter=0;
d=sigma*sigma;
for (i=0;i<k;i++) d=d+alil*alil;
d=1.0/4d;
while ((fabs(delta/d)>0.00001)&&((counter)<30))
{

counter++;delta=1.0;



for (i=0;i<k;i++)delta=delta-ali]l*tanh(d*ali]);
delta=0.5%((delta/(sigma*sigma))-4d);

d=d+delta;
}
elnot=-d;
for (i=0;i<k;i++)
{

c=fabs (d*a[i]);
if (c>500) temp=0;
else temp=ali]/cosh(c);
elnot=elnot+c-log(2)+log(l+exp(-2*c));
eldouble=eldouble+temp*temp;
}
elnot=(d*d*sigma*sigma/2) +elnot;
eldouble=eldouble+sigma*sigma;
double pe=g(d*sgrt{eldouble)) *exp((d*d*eldouble/2)+elnot) ;
return pe; '

}

o

double g(double x) // error function
// from Numerical Recipes in C page 176
{
double t,z,ans;
z=fabs (x/sqgrt(2));
t=1.0/(1.0+0.5%z);
ans=0.5*%t*exp (~z*z-
1.265512234+t*(1.00002368+t*(0.37409196+t*(0.09678418+
£*(~0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+
£*(~-0.82215223+t*0.17087277)))))))));
return x>=0 ? ans : l.0-ans;

}

// pe2.cpp given values of d, calculates error rate given sigma, alk]
// assume main signal is unity

#include <iostream.h>

#include <math.h>

“#include <conio.h> <

double error (double a[l0],int k,double sigma);
double g(double x); // erior function
double pi=3.14159; 4 e
int main(void) . . ) s
{ S "':?x;, Vo ;
clrscr; B

double a[10]1={0,0,0,0,0,0,0,0,0,0};
double d=0.1; -
for (int i=0;i<10;i++)
{

erroxr{a,10,d);

d=2+*4g;

return O0;

}
double error{double al[l0],int k,double d)
// 4 is fixed, returns error rate
{

double elnot, eldouble=0.0;

double sigma=1.0;

double c, temp;

elnot=-d;-

for (int i1=0;i<k;i++)

{



}

sigma=sigma-ali] *tanh(d*a[i]);
c=fabs (d*a[i]);
if (¢>500) temp=0;
else temp=al[i]/cosh(c);
elnot=elnot+c-log(2)+log(l+exp(-2*c));
eldouble=eldouble+temp*temp;
} .
sigma=sqrt (sigma/d) ;
elnot=(d*d*sigma*sigma/2) +elnot;
eldouble=eldouble+sigma*sigma;
double pe=qg(d*sqrt (eldouble)) *exp((d*d*eldouble/2) +elnot) ;
cout << "\n" << d << " " << sigma << " snr = " << -8.68*log(sigma) <<
Error rate = " << pe,
return pe;

double g(double x) // error function

{

// from Numerical Recipes in C page ;176

double t,z,ans;
z=fabs (x/sqxt (2));
t=1.0/(1.0+0.5%z);
ans=0.5*t*exp (-z*z- -

.26551223+£*(1.00002368+t*(0.37409196+t* (0. 09678418+

t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+
t*(~0.82215223+t*0.17087277)))))))));
return x>=0 ? ans : l.0-ans;

¥ B 0
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PROGRAM BAUER: SPECTRAL FACTORIZATION OF MATRIX POLYNOMIALS
W F McGee
01/13/97 4:55 PM

The purpose of this note is comment the program bauer.cpp.

USAGE

An input file INPUT.DTA

contains the following g

line 1-order of matrices Ai, i>=0

line 2 number of matrices

line 3 maximum number of iterations

line 3 and so on elements of matrices by row and column.ie. 11,12,etc.

An output file RESULTS.DTA will contain the following
line 1-order of mattices Bi

line 2 number of matrices

line 3 etc. elements of the matrices Bi.

DETAILS
Kazanjian[1] has presented a FORTRAN program to factor matrix polynomials using Bauer’s method. By
this we mean factoring a imatrix the elements of which are which are powers of z and z, into the product of

amatrix whose polynomial elements are powers of z and one which is powers of z”.

In addition we demand that the original matrix, when z is replaced Ey exp(jw), is positive definite.

If A is the original matrix, it may be represented as

A ='"A-kz,kv~'h§:'«A-lz+Ao +Alz‘1+...+Akz"k+...

We impose the requirement that A ;=A;", where " indicates Hermitian transposition. The number of terms is -+
necessarily finite (for computation), and;fgnly.ﬂle positive elements need be considered. h

The matrix spectral factorization means te~write A=B(z"")B.(z) where B.(e¥")"=B-(¢!*). Here
_ -1 -2 )
B,=B,+B;z7 +B,z7"+-
. B_=Bl+Blz+Blz*+ -

The Bauer factorization is iterative, Ini'it, the matrix Tm is formed. which an mxm Hermitian Toeplitz
matrix with each elements a matrix,

Ty = Ay

The matrix Tm is factored by Cholesky decomposition into a product of two matrices Tm=LmLm". the
Hermitian conjugates of each other, which are respectively lower and upper diagonal. The elements B are
found as the limit for large m of the last row of L.

The Cholesky decomposition is more familiar as the method of completing squares. The first step is to
derive an iterative method to determine Lm.



‘We have

L LH Am
Tm+l = ( '"m Hm : ]
Al AO

which may be written

L m 0 Lffl L "l_l A ;"
T = mi g gl (m) (m)H
Al Lm L 0 L

where
Heg=ly -1
L("')L("')H:AO—A;" Lf'n L A7

-
.

The vector of matrices A;"™ is

and L(m) is the Cholesky decomposition of the matrix indicated.

The calculation L, A;™ ié easily performed because Ly, is lower triangular. Thus if we let B be the result,
we have ’

AT =L, B

“l.e.

Arp_.:: L;nllB m
Am:I = Lm,ZIBm + Lm,ZZBm—I

thus::
Ty -l .
B,=L_, A,
-1
. Bm—l = Lm,?.?_ (Am—l _Lm,ZIBm)
and calculations such as
-1
Bm = Lm.llAm

may be easily done also by back-substitution since each diagonal element L w11 18 itself lower triangular.

After a while we run out of coefficients for expanding the matrix Tm and have to start substituting zeros. In
other words, Tm becomes banded. The resultant lower diagonal matrices then also become banded.



Examining the effect of introducing zeros for A,, indicates that, for example, only the elements of the lower
triangular matrix L with indices larger than 2 are used. Since we are only interested in the limiting values of
the elements so calculated, this means that the whole procedure may be accomplished with only m*(m+1)/2
, matrices of L, where m is the highest positive order+1 in the matrix polynomial A(z), and for the next
iteration the matrices are shifted up and back to make room for a new bottom row of L to be calculated. In
the actual algorithm we actually start with the matrix all zero matrices, and gradually build up L from the
lower right corner until it is full, and then iterate using the principles given here.

Instead of an m by m array of matrices, Kazanjian uses a linear array of m(m+1)/2 matrices, and keep tracks
of the differences in order to affect the required matrix multiplications.

By considering the limiting behaviour of

1 e
(1 ' 77 T, :2 =(EL1 7' 27 '-*))ﬁlLi Zz

Z

we can argue (and Kazanjian proved) that the bottom row of the L matrix, in the limit, gives the matrices B
required for the spectral factorization.

REFERENCE

1. Nerses N. Kazanjian, “Bauer-type Factorization of Positive Matrices and the Theory of Matrix
Polynomials Orthogonal.on the Unit Circle”, Ph.D. Thesis, Polytechnic Institute of Brooklyn, 1977.
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APPENDIX
Program BAUER.CPP

#include <fstream.h>
#include <math.h>
#include <stdio.h>

// bauer factorization of positive definite matrices

// reference Appendix 1 page 69, Kazanjian thesis
int main()
{
cout << "BAUER calculates matrix spectral factorization\n';
cout << "Usage: input file is called 'input.dta'\n";
cout << "order of matrices, number of matrices, number of iterations\n";
cout << "coefficients of matrices\n"; .
cout << "Output is in file 'results.dta'\n";

ifstream fin("input.dta"); o 67 o

int n,m, lc; \‘
fin >> n; ﬁp
fin >> m; :

fin >> lc;

int m2=(m* (m+1))/2;

cout << n << " " << m << " " << m2 << "\n";

double*** a=new double**[m];

for (int i=0;i<n;i++)
{ .
a[il=new double*[n};
for (int j=0;j<n;j++)alil [j]=new doubleln];
) 7
double***b=new double**[m2];
for ( i=0;i<n;i++)
{
b[il=new double*[n]; _ e
for (int j=0;j<n;j++) bl[i] [j]=new double[n];
} Sty
for (int k=0;k<m;k++) 4
for (int i=0;i<n;i++) ) .
for (int j=0;j<n;j++) o ' C ' ===
{ '- ‘.:\:‘9{::;} N o
fin >> aln-i-1][n-j-11[k]; :
cout << a[n-i-1][n-j-1] [k] <<."\n";
) "
fin.close();

y

o

]

Cout << n << " n <<’m << "N e m2 << n\nu;
double sum; .
int k1,k2,k3,k4;

// zero the working matrix
cout << "Zero the working matrix\n";
for (i=1;i<=n;i++)

for (int j=1;j<=n;j++) .

for (int k=1;k<=m2;k++)

{

bli-11([j-11[k-11=0; 1}
int nc=0; // iteration counter
double tracel=0.0; // termination devices

double trace2=0.0;
// update the matrices based on the square root




// 25
iterate: if (nc>0)

{

k2=0; . :
if (m>1) for (int k=1;k<=m-1;k++)

{
k3=k2+1;
ki=m+1l-k;
k2+=kl;
kd=k-1;

if (b[0]1{0]{k3-1]11=0.0) // check if pivot is zero

{ .
for (int j=1;j<=n;j++)
for (int i=l;i<=n;it++)

{
sum=0.0;
if ((ki=1) || (3t=1})
{ P
if (ki=1) '
{ .
int 12=0;
int 14=0;
for (int ell=1ell<=k4;ell++)
{
int 13=k+14;
int ll=mt+l-ell;
12=12+11;
14=12-ell;
for (int ii=1;ii<=n;ii++)
sum=sum+b[i-1] [ii~11{12-1]1*b({j-11[41-11(13-1];
} -
}
if (ji=1) y
{
for (int ii=l;ii<=(j-1);ii++)
sum=sum+b [i-1] {(1i-1] [(k2-1]*b{j-11(1ii-1] (k3-1];
} .
) s . - c-
in~l][j"l][kz—l]=(aE§Tl](j—l][kl—l]~sum)/b[j-1][j—1][k3-1]:
} N
} ' - .
else cout << "Pivot is zézp!\n"; . ’ S
} ’ ST C
}
// square root

for (i=l;i<=n;i++)

{

sum=0.0;
k2=0; . .
if ((m-1)>0) for (int k=1;k<={(m-1);k++)
{
kl=m+1i-k;
k2+=kl;
for (int j=1;j<=n;j++)
sum=sum+b{i-1] {§-1] (k2-11*b[i-1] {j-11[k2-11;
}
if (it=1)
{
for (int j=1;j<=(i-1);j++) sum=sum+b[i~1]{j-1][m2-1)*b[i-1]1[j-1][m2-1];
} : .
b{i-11{i-1] (m2-1l=sqgrt{ali-11{i-11(0)-sum);
if (i<n)




{

11;

for (int j=i+1l;j<=n;j++)
{
sum=0.0;
int k2=0;
if (m>1l) for (int k=1;k<={m-1);k++)

{
kl=m+1l-k;

k2+=kl;
sumt=b[i-1]1[ell~-1]{k2-11*b{j-1]1[ell-1][k2-

for (int ell=l;ell<=n;ell++)

}y // 160
if (i>1)
{
for (int ellsl;ell<=(i-1);ell++)
sum+=b[{i-1]{ell-1] [m2-1i*b{j-1]1{ell-1][m2-11;
} // 180
b[3-1][i-1] [m2-
} /7 150 :
} /7 110 L

Yy 7/ 110

for (i=1,trace2=0;i<=n;i++)

{
trace2+=b[i-17[i-1) [m2~17;

}
cout << "Trace difference " << fabs(trace2-tracel) <<
1)

if ({({fabs(trace2-tracel)>l.0e-9)&& (nc<lc)
{

tracel=trace2:;
ne+=1;

k2=0;

if (m>1) for (int k=1;k<=(m-1);k++) ,

{
kl=m+l-k;
k3=k2+1;
k2+=k1; i
kd=k2-1; s <o
for (int ell=k3;ell<=k4;eli++)
for (int i=l;i<=n;i++) *
for (int j=1;ij<=n;ij++)
b[i—l]fj"l][ell—l]:@[i—l][j—l][ell+kl—l];

7

N

goto iterate;
}
else
{
// output routines
cout << "Number of Cyles-' << nc << "\n";

1l=(alj-11[i-1][01-sum)/b[i-1][i-1]) [m2-1];

u \n" i

cout << "coefficients 6f the spectral factor of X\n";

k2=m2;
for (int k=1;k<=m;k++)
{
kl=k-1;
k2=k2-k1;
cout << "a[ * << (k-1) << “ J\n";
for (int i=l;i<=n;i++)
{

for (int j=1l;j<=n;j++)

{ .
if (aln-i]l[n-Jj)}[k~1)<0) printf(" %6.4e "

else printf(® +%6.4e
cout << "\n";

,aln-i} [n-31[k-11);
" Lyaln-il[n~311{k-11):}




}
}
cout.precision(l5);
k2=m2;
ofstream fout("results.dta');
fout << n << "\n"“;
fout << m << "\n";
for ( k=1;k<=m;k++)
{
kl=k~-1;
k2=k2-k1;
cout << "b[ " << (k-1) << " 1\n";
for (int i=l;i<=n;i++)
{
for (int j=1;j<=n;j++)
{
fout << b[n-jl[n-i1[k2~1] << "\n";;
if (bln-j]l[n-13[k2~-11<0)printf(" %$6.4e * ,bin-jlin-1i] [k2-11);
else printf(" ~ +%6.4e * bn-jln-il [k2-11);
Jcout << “\n*; e ot
}
} .
fout.close();
goto exit;
}
exit:
for (i=0;i<n;i++)
{
for (int j=0;j<n;j++)deletelnlblil[j];

deleteln)blil;

for (i=0;i<n;i++).

{
for (int j=0;j<n;j++)delete[n] alilljl;
deletelnlalil;

}

delete[m]a;

return 0; . .

}
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE SATELLITE AND MOBILE ENVIRONMENTS:

3b. ZERO FORCING, MINIMUM MSE AND DECISION FEEDBACK MULTI-USER
RECEIVERS

W F McGee
Contract: U6800-6-1604
14 March 1997
"ABSTRACT

This report is a progress report of work towards milestone 3 of this contract. We investigate the
decorrelating receiver for multi-user systems when there are only two adjacent channel users.

A MATLAB program to.evaluate MSE equallzers has been made and is enclosed. Results indicate that a
MSE equalizer tends to increase the cutoff of the chasinet filters, which is consistent with our earlier studies.

A decision feedback design based on whltenmU the output from a MSE equallzer has been designed and
tested.

The theoretical foundations for the study have been made and are presented herein.

For a system with a signal to noise ratio of 7 dB, 90-degree phase shifting in the adjacent channels reduced

to signal to mean-squared error to 2.45 dB, a minimum mean squared error equalizer increased this to 4.47

dB, decision feedback of the channel itself raised theratio of signal to mean squared error to 4.99 dB, and
feedback of the demcmon from the adjacent channels raised the signal to mean squared error to about¥6=¢ = m
dB. . S Dk

These results are encouraging and deserve verification. o

The contents of the report are as follows. In section 1 we argue that VSB filterbanks are very sensitive to

-poor phasing between adjacent channels. In section 2 we present the theory of the minimum mean squared

error receiver, and give an example of the use’of a MATLAB program in section 3. Section 4 gives the -
theory of decision feedback equalization'when only the decoded data from the channel itself is used, and

section 5 presents results of the MATLAB implementation of the calculations. Settion 6 gives the theory for
vector feedback, in which decisions are-fed back from the channel and the two adjacent channels. Section 7 ..=7,
gives some numerical results of this theo;y which is based on the theory of matrix spectral factorization.

Section 8 reviews the theory associated with equalizers with a finite number of taps but these have not yet

been implemented. Section 9 contains the summary of the results.

One appendix discussed some details of the theory, another some properties of the correlation matrices, and
an attached report describes the C++ matrix factorization program BAUER.EXE that we have developed.

1. THERE IS NO ZERO-FORCING LINEAR RECEIVER FOR IMPROPERLY PHASED
MAXIMALLY DECIMATED VSB SIGNALS

There is an inherent and fundamental problem with the use of maximally decimated VSB filter banks when
there is not phase synchronization between the adjacent channels. There is no zero-forcing equalizer. The
argument is as follows. Consider a VSB channel at zero frequency over the positive frequencies and another
over the negative frequencies, but overlapping the first at 0 frequency, and consider the transmitted
sequence consisting of all +1s. The output from both transmit filters is a dc signal. If the two channels are
separated by 90-degrees phase shift, then when the real part is taken, the dc signals may be separated. But if
there were a linear zero forcing equalizer that could handle arbitrary phase shifts, that equalizer cannot
eliminate the dc signal from the adjacent channel without eliminating the dc signal from the channel itself.




Thus, there is no zero-forcing equalizer; an equalizer which will eliminate adjacent channel interference
from an adjacent channel that has its phase set improperly, in the absence of noise, without affect the
channel itself.

Consequently there is no zero-forcing decorrelator.
2. MSE LINEAR RECEIVER FOR MAXIMALLY DECIMATED VSB SIGNALS
Three data streams are presented to filters with responses Ho(w),H;(w),H,(w), added together. Noise is

added to the combination, and an equalizer E(®) to minimize the mean square difference between the real
part of its output and the input sequence to the filter H1li(w).

| HO(w) noise
—1 Hl(e) + G[) B(o) ___
— H2(w)

Figure 2.1 Binary (+/-1) data is presented to the input equalizers. These include channel gain, phase
and delay, on a per channel basis. After an equalizer E(w) we try to determine the digits sent through
the equalizer H1. The filters without the channel gain, phase, and delay, are assumed to be those of
adjacent channels of a VSB multi-channel communication system with no intersymbol or
interchannel interference, and with restricted bandwidth. If there were no channel delay or phase

shift, the performance would be optimum with an equalizer matched to the transmitted pulse shaping
filter H1.

"This is a classic problem[1] in noise theory. The mean squared error is

ver’y
1
»

MSE = TN( PUEH df

'
"

+ | IEI?ZHI(f+m/T)E(f'+m/T)+H1*(—-f—l-m/T)E’f(—ff+m/T)“‘1|2dfT
e |

+ | IEZHO(f-l-m/T)Bj(f-l-m/T)-l-Ho*(—f+m/T)E*(—f+m/T)I2dfT
~12r mw . -

/2T 1

+ | IEZHz(f-l-m/T)E(f-l-m/T)-l-Hz*(—f+m/T)E*(—f+m/T)I2dfT
-1/2r m

and the problem posed is to determine E(f) to minimize the mean squared error MSE. The first term is the
noise passing through the equalizer, which, for our purposes, we assume white with spectral density Ny, the
second term represents the intersymbol interference in the channel under study, and the other two terms
represent the crosstalk from the adjacent channels.
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Before we start, it would appear reasonable that the receive filter be matched to the transmitted signal filter
H,(f), and in particular, it will not pass frequencies beyond the bandedge of its filters.

The minimization is done by taking partial derivatives with respect to E*(f) and results in the equation

0 =N,E(f)

+H, *(f)[E?ZH (f+m/DE(f+m/T)+H *(~f+m/T)E*(~f+m/T)~- 1]

m

+H, *(f)[z—TZH (f+mIDE(f+m | T)+Hy *(~f +m/ T)E*(~f +m/ T)]

m

+H2*(f)[%ZHz(f-i-m/T)E(f.-i—m/‘T)-i—Hz*(—f+m/T)E*(—f+m/T)]

Each of the expression in square brackets is periodic in f with period 1/T, and we represent them by A,(D),
Ao(D) and A, (), and also satisfies A;*(-f) =A;f) . These equation may be written

0= NoE(f)+H; *(FA(F)+Hy * (HAe () + Hy * (FA,(f)

A () = 2TZH(f+m/T)E(f+m/T)+H*(—f+m/T)E*( f+mlT)—1

m

Ao(f):21_Tzfi6(f'+m/:r)E(f+m/T)+Ho *(—f+m/T)E*(~f +m/T)

/lz(f)=—21?ZH2(f+m/T)E(f+m/T)+H2 *(—f +m ! T)E*(~f +m/T)

The equalizer E(f) is obtained by substituting the first equation in Ehe three following, resulting in three

equations for the three unknowns A;(£); and then putting these equations back mto the first to solve for E(f).

There is another important result that is obtamed from the expression fort E(f). Smce the parameters A;(f) =3
are periodic in f, they may be realized M}h (perbaps infinitely long) FIR filters. Thus, when samples are ’
taken at the equahzer output, this is equwalent to sampling the outputs of the three matched filters and

passing them to FIR filters,

These three equations are of the form

2 (F) = =Gy 2 (F) = Gro (F)Ao () = Gy (A, (F) =1
/’{'o(f) = _Go,1/11(f) - Go,o (f)/’{’o (f) - Go,g (f)/’{'z(f)
/’{'z(f) = —Gz,l/l](f) h Gz_o (f)/lo(f) - Gz_g (f)/lz(f)

1e.,




-1y (1+G, G, G, YA
0(=| Gy 1+Gy Gy [A(F)
0 GZ.I GZ,O 1+ GZ,Z A’Z(f)

where

Gi,j(f) =

2TN
=G, *(N) =G,; *(=f)

But, because of the properties of the filters, the elements whose indices are separated by 2 or more are zero.
Thus, Gp2=G»=0..[If thé problem had been written m the frequency-ordered way, the matrix would be a
bordered diagonal matrix, i.e., tridiagonal.] Also, because of the filters, there will only be one term in the
sum for most of the elements, except perhaps for the main diagonal term. In any case, the equations are

-1} (1+G, Gy G, (A

0|=| G, 1+G,, 0 [A,(f)
0 G,, 0 14+G,, N, ()
These equations may be solved and result in
A, A+Gp)1+Gyp)  —Go(1+Gy)  —Gy(1+Gy) Y1
/lo = X —Gy(1+Gyy) (1+ G, A+ Gzz), Go,lGl,z 0
A, =G, (1+Gy,) G,,Gi A+GA+GHN O

and the determinant

A= (1+G“)(1+G )(1+G22) Gy Gio(1+ Gy ) — G, G, 1+ Gyy)

is real and positive.

\
N
- Lo . o=
LN

Also, if the transmitting filters are root—ﬁyqulst filters, the dlaconal terms are a constant equal to 1+2T/Nj.

In any case, we can solve exactly, with the result -

A,Go,
1+ G,
MGy,
1+G,,

- 0

2 =

Solving for A(f) and substituting back to find E(f) we have
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- H ) *
1+ Goo (f)l Gzz

|Go,| (f)lz _|G2.1 (f)|2 ‘
1+ GO’0 1+ G2_2

H *(f)-Hy*(f)
E(f)=

No[l +G, —

The transfer function from the input to the sampled output is the sampled real part of H,(E(f) which is

sampled{Re[H,(E(NH]} =

H (NHH*(f)-H,(HH, *(f)l G —H,(/HH, *(f) +G
sampled {Re[ 00 - 221}
w15, G 16,0
L i1+ Gy, ' 14G,,

G - 1Go, (AP _1G,, (N
"1+ Gy, | 14Gy,

4G _IGOJ(f)IZ _le,l(f)Il
M1+ Gy, 1+ G,,

Sampled{ [Hy (HEN]}

Hy(HH, * ()~ Hy()H, *(f)

= sampled{ < I+ G° 2
: Nl1+G _IGO‘I(f)Iz_IGM(f)I2
° Y1+G,, 146Gy,
G, G
0 (=G G

s G 1G]
MR Gy, 146y,

GO,l
1+ Gy,
g \GuP 16, (P
"1+ G,, 1+Gy,
Gy,
1+G,,

G, (O 1G, ()
1+G,, 1+G,,

sampled{[H, (f)E(f)]} =
I

An explicit calculation of the mean squared error is tedious, and the details are in an appendix. The result is



1/2T

o
g G 16, (O
T 1+Gy, 1+G,,

MSE =

and this also puts the power spectrum of the error in viéw; it is not flat. This is the so-called biased
MSE[3,4], and is related to the unbiased MSEU by

N B
MSEU MSE

When the adjacent channels are in phase and the filters are half-Nyquist, satisfying
q .
a—]—;ZIHi(f+m/T)I2+IHj(—f+m/T)I2 =1

then Gg; and G, both vanish. For example, the terms in Gy that are significant near zero frequency are

Hy(HH, * () +Hy *(=HH, (=)
which vanishes if Ho(f)=jH,(-f). On the other hand, if

Hy(f) = je’ H,(-f)

then this sum is

Ho (f)Hl *(AHI _.e—jze] =2j Sin(e.)Ho.(f)Hl *(

Then the equalizer is R

o _H (). e ~%
crn BOP) = -

E N, +1

the usual matched filter. ,

Consider the crosstalk between channel 1 and channel 0, and suppose, as is common, that Ho(f)=H,(-{).
Then the expression for Gy is
\/

L S —jH (f+m/ T)H, *(=f +m/ T)+ jH, *(=f +m/ T)H,(f +m/T)=0

27N,

Gl,o N =

On the other, for the worst phasing, Ho(f)= H;(-), and
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GLO (= TN
0

1

TN,

XIHI(f+m/T)HI *¥(—f+m/T)+H *(~f+m/T)H,(f+m/T)

N H(f+m/T)H, *(~f+m/T)

The time has probably come to draw some pictures.

o) H2 H1| Ho
LG sqrt(an
(NI Y
| i /f 0 ., . frequency f
o i
AN of
\AANA
1T 0 frequency f
HOH1

D

Figure 2.2 Typical frequency responses. In a are plotted the responses of the transmit and receive
filters, showing the normalization that results in a received pulse of height unity. The crossover
frequency represents a loss of 3 dB, as.indicated. Part b shows the response of the overall channels.
The bandwidth is 1/2T, the height is 2T and the area is unity as required. The third figure indicates
the response of the adjacent channel filters. These are narrow, but have a fix'éd height, T.

T

. . 4 e v ) .
We now examine the equalizer frequenc¥;Tesponse in detail.

Looking first at the denominator in the band of interest, this denominator is p‘ropértional to

e L G E 1Gy, ()
: -NO ]+_l_ 1+L
NO NO

At 0 frequency, the fourth term is zero. Gg,; is equal to (1/Ny) for the worst case phasing. Thus the
denominator at zero frequency is equal to




At the frequency 1/4T, the center of the filter H1, the denominator is just 1+1/Ng=(Ng+1)/Ng. The
denominator appears to be periodic with period 1/2T. If we include the factor Ny, this means that the
transfer function is multiplied by an expression that varies from

at the filter center frequency to ~———————at 0 and 1/2T.
N, +1 Ny(N, +2)

In the worst case, the numerator is

HO *GO,I H2 *G2,l
1+1/N, 1+1/N,

*®_
1

which in this frequency band is equal to

g N
Hl,*[l_ \H, (A 1H, ()P ]
T(N, +1) T(N,+1)

The second factor is equal to 1 at the ﬁltér center frequency and Ny/(Ny+1) at O frequency.

Considering both terms together, the net effect is to multiply the matched filter Hy*(f) by a factor which is

. 1/(Ny+2)
at the bands edges at 0 and 1/2T and
1/ (N, +1)
P
at the filter center frequency.
3. CALCULATION OF MSE -

For actually computing MSE, a MATLAB program has been constructed, and a listing is enclosed.

Some figures are included for equalizers of a channel with a very sharp cutoff. Fig.3.1 is the pulse response -—<=%,
of the transmit/receiver filter for one: chagnel *The pair form a Nyquist filter with 100-percent excess
bandwidth. Fig. 3.2 is the absolute value 6f all the crosstalk responses. Most are very small, but the adjacent
channel responses are large, as expected. There are three typical responses, and their mirrors. In the next
few figures we build up the equalizer response for the first channel. First the denominator in Fig. 3.3 The
pulse response of the denominator is shown in Fig. 3.4. For the numerator, . Fig 3.5 is the first term in the
numerator of the equalizer transfer function. The second term, Fig. 3.6, and the third term, Fig. 3.7,
represent crosstalk from the adjacent channels which the equalizer will try to reduce. Fig. 3.8 gives all the
numerator. The overall equalizer response is in Fig. 3.9, which we compare to the equalizer design realized
when there is no interference; this is simply the matched filter to the transrmtted pulse. The pulse responses
are shown in Fig. 3.10.

4. DECISION FEEDBACK EQUALIZATION

The improvements that result with the use of data decisions is a complicated problem, and has been solved
by Kavehrad and Salz[2]. But first, we consider a simpler approach, in which only that decoded data from
the channel itself is used, and this approach is based on the use of a prediction filter to whiten the error
sequence resulting from the MSE equalizer.



“MSE = TN( PUE)? df

As we derived, the error sequence from the linear minimum MSE equalizer has the spectrum

T
MSE(f) = _,
d 4G G, (N 1G, ()P
Y1+ G,  1+Gy,

A spectral factorization of the denominator is of the form

G, (P16, (] _ T T
{HGM o Tae |t AU BB =A==/ )

Thus, 1+B, is causal and 1+B. is anti-causal. If the output of the MSE equalizer is followed with the
equalizer (1+B,) the resulting sequence will have an érror sequence that is white and the mean squared error
is 1/A,. This is equivalent to the following DFE structure

P

output

| Ena+B Y —[

I

Figure 4.1 Decision Feedback Receiver. The causal filter B+ whitens the error sequence from the
non-DFE equalizer E(f) making the sequence spectrum white. The decision feedback removes the
correlated part of the signal that results.

Decision

B, <

This is the receiver that minimizes ’

127 , A .

+ |—21?2H1(f+m/T)E(f m KT)+ Hy * (~f +m | T)E* (= f ¥ m ! T) = (1+ B, (F)PdL.
-127 m : e . S =L
T g PR AN o

+ [ V==Y Ho(f +m I T)E(f +m T+ Hy * (~f +m ! T)E* (= f +m | T)PdfT
S

+ | I—Z?ZHz(f+m/T)E(f+m/T)+H2*(—f+m/T)E*(—f+m/T)I2dfT
-1/2T m - . .

The solution to these equations has already been derived, and is

M) (@461 Ga)  ~Gip(1+Gn)  =Gy(l+Gy) =1+ B.)
Ao = “Gul+Gp)  (+Gy)1+Gy) G,,Gi, 0
A, —G,, (1+Gyy) G,,Gio 1+G,)1+Ge) . 0

9



with the further requirement that A; have only positive exponents of z, i.e. A; is anti-causal, and
A= (1+ Gy, )1+ G )1+ Gy ) = Gy, Gy (1+ Gpp) = Gy Gy (1+ Gy ).
But since

—-(1+B,)
A1+ Gy )1+ Gyl

1=

this means that 1+B, is equal to the spectral factor of the denominator which is causal, and A, is the
anticausal remainder when these factors are canceled. In the appendix we show that the MSE is given by the
average of -A* . If the'spectral factorization is '

A/[(1+Goo)(1+G22)] a(l+B,)1+B.)

then -A;* 1s 1/(c(1+B,)) and the integral for the MSE1 Is mmply Vo, The factor ot is found, finally, by using
Jensen’s theorem concerning the logarithm of analytic functions,

The mean squared error for the demsxon feedback receiver is less than that of the MSE recelver[l] and is
equal to

12T !G !2 l G !2
MSE pp = exp(— j lr{l'*‘Gu - 01 () _ Y o)) 1)
~ : -12T : 1+ Gy 1+G,,

This expression may be derived without spectral factorization, but is a useful check on the factorization.

However, we could also apply feedback from all the past received digits to further reduce the error, and this

~ 1s the subject of vector feedback.

5. EXAMPLE

The design of a single feedback equalizer usmg the above theory have been done using the filters of the 32-
channel VSB communication system descnbed by Sablatash, McGee and Lodge[7]. The calculations are

done by the MATLAB program EQUALL. M attached. The program first calculates the transmit and receive  __
filters based on a prototype filter desxgn These are then adjusted by the relative gains and phases of the  ~z
adjacent channels; we usually assume, eq‘iia] Tével and 90-degrees phase shift. The minimum mean squared

error equalizer is then computed, and its mean squared error calculated. The response to a pulse in the

channel and the two adjacent channels is plotted in Fig. 3.10, and the frequeney response is shown in Fig.

3.10. The required spectral factorization using the zeros of the denominator are then found, and those inside

the unit circle used to define B,. The decision feedback equalizer is computed, along with the mean squared

error for the decision feedback'receiver. The pulse responses are again displayed, in Fig. 5.1, and the

channel frequency responses shown in Fig. 5.2. Observing the pulse responses, the decision feedback

equalizer tends to keep the precursor response with good zero crossing, but the response after the center

sample is allowed to vary, which is, of course, what should happen. In Fig. 5.3 we give the positive part of

the spectral factorization of the denominator. ThlS convolved with its mirror image, gives the denominator,

to within a scale factor.

The calculation was repeated with an interchange of the transmitter and receiver filters, which tends to make
the crosstalk response the mirror image. This had minimal impact, except the equalized crosstalk was a
mirror image of the other case.

10



6. VECTOR FEEDBACK

With vector feedback we assume that we have access to all the previous received digits of all the channels.

received output
signal — | E + Decision b
Bi
_[CE outputs of
adjacent
Dy ' channels

Figure 6.1 Vector Feedback. In Figure 4.1 only the decoded output from the main channel is used for
reducing mean squared error. In this model, all the relevant adjacent channel decoded data are used.

With a mean-squared error design criterion, the goal is to minimize

MSE = TN( PIEE df

21
1

+ j IEZHI(f+m/T)E(f+m/T)+H1*(—f+m/T)E*(—f+m‘/T)—(1+B+(f))lzdjT
wr o |

+ | =2 Ho(f +m I TE(f +m )+ Hy *(=f +mI DE* (=f +m] T)= C, (/W4T
-1/2T m
1/2T

o+ | Ial—sz(f+m/T)E(f+m/T2+H2 *(—f+m[T)E*(~f +m/T)~ D, (f)dfT

=1/2T m

where B+, C+ and D+ are causal and have only positive exponents of z! and thus the unknowns are the
(real) numbers by, ¢, and di, where ’

i

r?[", FERYI ©a
< - _.k
©r B, = E b.z

N k=1

When the partial derivative with respect to the equalizer E is taken we find that
0= N E(f)+ H, *(HA,(F)+Hy * (Ao () + H, *(NA,(F)

where

11



/'{.,(f)=%2:I[Hl(f+m/T)E(f—i—m/T)—i—H1 *(—f—i;m/T)E*(—f+m/T)]—(1+B+(f))]

/%(f)=%2[Ho(f+m/T)E(f+m/T)+Ho FEfAmIDE*(f+m/T)-C ()]

1

A, () = -

E:I[Hz(f—i-m/T)E(f—i—m/T)—i—H2 ¥(—f+m/TYE*(—f+m/T)]-D,(f)]

m

This is the same as before, except the forms of A; and A, are different The partial derivatives with respect
to the coefficients of the polynomials B+, C+ and D+ lead to the requirement that A, A,, and Ag have no
terms that are powers of z'!. As before, we may substitute for E and obtain a set of equations for A;, A,, and
Ao. These are . .

-1- B+ 1+ Gl,l rGlO GI,Z ;l'l (f)
-C, |=| Gy, 1+ G, 0 Ao(H)
-D, . G,, 0 1+ Gy, \NAL ()

The solution to these equations is

Ay 1+ G )1+ Gp)  =Gp(1+Gp)  =Gp(1+Gy) Y(~(U+B,)

Ao |= —A- —Go_»l 1+ Gy,) 1+ G)H)A+Gy,) G,,G,, -C,

A, ~G,,(1+ Gy) G,,Gio 1+G,)(1+G,) \  -D,
where J

A =(1+G,)A+ Go )1+ Gp) = Gy G (1 + Gy ) — Gy, Gy (1 Gog)

We rewrite these equations to put the fact of the tridiagonality of the matrix in evidence.

~C, 14Gyy  Goy 0 Y A(A) s
—-1-B, = ’?,Glo 1+ Gy, ’ Gy A
‘D+ -0 GZ.] 1+ Gz,z ;l'g (f)' i

which we simplify to the form
1

A, =TA_

+

where the subscripts + and - indicate that there are only positive or negative powers of z! in a particular
vector. For our application the matrix I" has real and constant, but probably unequal, diagonal terms since
we are dealing with Nyquist channels. The off diagonal terms are conjugates of each other and therefore the
matrix is Hermitian on the unit circle. The off diagonal terms G, and Gg; are related, but the relationship is
not used.

Equations of thus type may be solved by spectral factorization[5] of the matrix I'=I",T".

Then there is a solution if we can find a constant vector K such that

12



A,=TK
K=T_A_

so that the dc coefficient of the second component of A, is -1, and of the second and third components is
zero. If we write the dc component of T, as I',q, then

0
K=T," -1
0
0
A, =TT, -1
0) . L
0) 0
A_=T7T ' =1|=(T,I)™" -1
0 0

As in the Appendix, the mean squared error for this equalizer may be calculated. Here, however, when the
calculation is performed, we recognize three terms in the integral. The first is

A (AR L+ Gy + 2 (Grog +Giahy) = 2, (-1-B,)

The second 1s

1A, NP+ Gy)+ A’ZAIGZ,I =%*2 (-D,)
and the third is

14, (I (1+G0,0)+A;AIGO,1 =A,(-C,)

Thus, the mean squared error is U

1;2\7 Ny p o ) -
i DADIT

But notice that this simply is the negative of the dc coefficient of A1, which we label A , since A" has only
positive terms, the product has only positive terms, and the integral of all but the dc term will be zero. This
may also be seen by considering

) 1

13




: 0
A"A, =0 -1 Oy T-"I, Ty -1
0

0

=0 -1 0 ,T-1

0

(0

=(0 1 O)T, o)1

=(0 1 0)T,, ™1

7. EXAMPLE

The example of section 5, based on the communication system of [7], is continued. A separate C++
program, BAUER.EXE, described in an attached report[5], is fed the matrices of the matrix I, and the
spectral factorization I, returned. In the MATLAB program CHECKBAU.M The matrix I, is first
verified, and the mean squared error for vector feedback calculated. The channel responses could also be
calculated, if desired.  ° » '

8. FINITE EQUALIZERS

In a practical system[5] the equalizers are going to be finite, oversampled, and adaptive. Neglecting the

“oversampling, the equalizer coefficients and feedback coefficients-assumed finite in number, form the scalar

Ty o0 . ——

_ _ Ny ! _ _ . T
I = karn—k Ebkun—k chvn—-k dewn—k “U X,
k=0 k=l k=1 k=1 L

and the mean ‘squared error is the exbeét'ﬁﬁoﬁ ‘of the square of ly,-u,l, Where {u,} are the transmitted
sequence in the channel under study, {v} and {wy} the transmitted sequences in the two adjacent channels,
and fy,cy,dy. and e, are to be determined. The received signal sequence is {r,} which is assumed to be a linear
combination of past present and future data sequences in all three transmitters and noise.

If we define A and V by

1
A= E‘{XanT} , V=E{X u }
then the coefficients are given by Uopl=A'1V and the minimum mean squared error is 1-V Uopt, assuming
that the transmitted data is binary 1s.

9. CONCLUSIONS

The ability of three equalizers to overcome the effects of adjacent channels being of the worst phase for a
VSB multi-channel communication system has been determined. The performance measure is the unbiased

mean squared error. The results are as follows, for a system operation in a signal-to-noise ratio of 5, i.e. 7
dB.

14




TABLE 1 Mean squared error for VSB communication system with adjacent channels at equal level,
90-degrees phase shifted, with various equalizers. There is no channel coding.

System Relative Level Relative phase of Mean Squared
of adjacent adjacent Error
channels channels (Unbiased)
(dB) (degrees)
Baseline 0 0 0.2 (7 dB)
Matched Filter 0 90 0.5689 (2.45dB)
Minimum Mean Squared Error : 0 90 0.3563 (4.47 dB)
Equalizer
Single Decision Feedback N 0 90 0.3168 (4.99 dB)
(Main channel only) '
Vector Decision Feedback 0 - 90 0.2200 (6.57 dB)
(Main+Adjacent Channels) ' 0.2098 (6.77 dB)
' REFERENCES

1. W F McGee, “Coding, Equalization and feedback of digital cable pair signals”, Canadian Electrical
Engineering Journal, Vol. 7, No. 1, 1982, pp. 3-8.

2. M Kavehrad and J Salz, “Cross-Polarization Cancellation and Equalization in Digital Transmission Over
Dually Polarized Multipath Fading Channels”, AT&T Technical Journal, Vol. 64, No. 10, Dec. 1985, pp.
2211-2245. .

3.E.Leeand D Messers‘cﬁmitt, “Digital Communication-Second Edition”, Kluwer, Boston, 1994.

e
4, John M Chioffi, Glen Dudevoir, Vedat Eyoboglu and G. David Forney Ir., “MMSE Decision-Feedback
Equalizers and Coding--Part 1: Equalization Results and Part 2: Coding Results”, IEEE Trans
Communications, Vol. 43, No. 10, Oct 1995, pp 2582-2604.

5. Majeed Abdulrahman and D D Falcoper, “Cyclostatlonary Crosstalk Suppression by Decision Feedback
Equalization on Digital Subscriber Loop's” JEEE Journal Selected Areas in Cammunzcatzans, Vol. 120,
No. 3, April 1992, pp 640-649.

.
.ot

R

6. W F McGee, “Program BAUER: Spec‘:ral Factonzatlon of Matrix Polynomlals” CRC Internal report, 22
Jan 1997, attached. R

"

7. M Sablatash, W F McGee and J Lodge, “Transmitter and Receiver Filter Bank Designs for Bandwidth-
on-Demand Multiple Access Commumcatlons using Filter Banks based on Combining Wavelet Packet
Filter Bank Trees and DFT Polyphase Synthe51s and Analysis Filter Banks”, CRC Technical Memorandum
VPCS #33/96, 30 Dec. 1996.

APPENDIX 1
CALCULATION OF MSE

The purpose of this appendix is to record the calculations.
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The MSE has three signal related terms and a noise term. The sum of the three signal related terms which
we call MSES, is equal to

12T

JIAPHA 2+ A, 2 T

-1/2T

S G, 1G,,
= J'I/I,l2 1+ —2 b \gfT
ar (1+G,,)" (1+Gy,)

The noise mean squared error is

MSEN. = TN0|E( AR Af.

ol

When the expression for E(f) are substituted, the cross terms that are zero neglected, and the infinite integral

replaced with an integral over the finite range -1/2T to 1/2T, the integrand contains terms
14,12 G HAG Gy HALR Gy + A, ¥ A,Gy + Ay ¥ A0Grg + A ¥ 4,Gyy + 4, ¥ 4,G,,

and this may be written

" IZ[G 16,2 1G, P 1G, P16, }
1 S~LLE

1+G,, (1+G,,)* 1+G,, (1+G,,)?

and, when MSES and MSEN are added together the additions and cancellations result in the following
expression for the total mean squared error

/2T _ |G |2 - IG I2
MSE= [12,*[1+G,, ——2t———2—14fT
-112T ~:“.~ .ot 1 + G2,2 1 + GO,O ‘
21 : dfT ‘
-1/2T 8l +G,f:7’_ f‘Gz,l |2 _ IGO,I |2 .

1+ G,, 1+ Gy,

It is perhaps a bit clearer to keep the A‘s separate, and then the integrand is
1

’

16
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1A 2 Gy HAG GogHAL Gy +A, % 4,6, + A, % A0Gyg +A0 ¥ A,Gy, +4, ¥A4,G,,
HA P HA 2 HA,

=0 ({(1+G, DA, +A,G, + 4Gy,

+Ao[(A+ G o)A +4,Gy,))]

+A,[A+G,,)A, +24,G,, ]

=-1

APPENDIX 2 PROPERTIES OF THE ELEMENTS G;;.

The report makes us of the elements Gij. Here we obfain'some proberties.

From the definition’

1
Gi,j(f) = TN
0

= Gj,,' (= G;,j *=f

N H(f+m/T)H, *(f+m/T)+H,.*(—f+n;/T)Hj(—f+m/T)

In the communication system under consideration, the transfer furictions are due to half (or root) Nyquist
filters, with an additional gain A, phase 8and delay t. Thus, a root Nyquist filter with a channel

0. —jwr:
Aeltie™
7

In the diagonal elements the phase and delay are eliminated, and the elements are just

A*/N,.
. . ‘-;‘; .o
The off-diagonal elements are more complicated. The elements Go,) and G, o are mhirrors of each other. So
are G,,; and Gy,. In general, Gy, and G;; have coefficients that are similar, but in which every second Ly

N

coefficient is of opposite sign. s
_ R

Thus, the matrix appearing in the equations

. |
-, 1+G,, G, 0 YA, 7
-1-B, |=| G, 1+G, G, |4,
-D, J | -0 G,, 1+G,, \4, ()
may be written
1+A; /Ny  AAG,, 0
AAG, 1+A'/N, AAG,
0 AAG,, 1+A2/N,

Thus, in the matrices used in the Bauer factorization, the matrices that are related to powers of z that are not
zero have no diagonal, no 1,3 or 3,1 term, and, are otherwise arbitrary, consistent with the overall matrix

17



polynomial being positive definite. We haven’t discovered any properties that follow from these
observations.

PO
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ar all

at compact

itialize the filters
itlalizing filters'
ilt;

mp=transmit;
transmit=receive;
eceive=temp;

mp=[];

Pmulation parameters

ta—pi/z

: % a is the strength of the
0.2; % signal-to-noise ratio

interference

dify per parameters

I nsmit (32, :)=a* exp( *theta) *transmit (32, :);
EMnsmit (2, :)=a*exp(j*theta)*transmit(2, :);
eceive(32,:)=a*exp(—j*theta)*receive(32,:);
l eive (2, :)=a*exp(-j*theta) *receive(2, :);
g [—conv(transmit(l, 1), receive(l,:)); % the main channel
®._conv(transmit (32, :),receive(l,:)); % one interferer
12=—conv(transmit(2,:),recelve( :)):; % the other interferer
Ok se=length(transmit (1 ))—16*floor(length(transmlt(l ))/16);
;Ese=16—phase;
3"the peak is at index 244 so phase = 16-244 mod 16 = 12
l;l—real (ho) ;
—gOl/nO
for i= l length(g0l)
' (1+phase)—16*floor((i+phase)/16)==0)
gOl 1)=0
l end
clllL.=real (h2);
' g21=g21/n0; J
b i=1:length(g2l)
i{f ~((i+phase)-16*floor({i+phase)/16)==0)
g21(i)=0
end B L - .
I:real (hl) ; "
gll=gll/n0; .

fr i=1:length(gll) ‘ R
‘if ~({(i+phase)-16*flooxr ( (i+phase)/16)=5)
gll(i)=0 :
end

1§ince these are all the same size the code could be simplified a
IS

=O; 1
for k=1l:length(g2l)
'sum=sum+n0*n0*g21 (k) *conj (g2l (k))+n0*n0*g0l (k) *conj (g0l (k));

s Jld

sum=nl+a*a*sum

factorl=(1+1/n0) ;
ctorO=(l+a*a/n0) ;
ccor2=(l+a*a/n0);

%compute the numerator of the equalizer
=conv(n0*gll, receive(l, :));
M=conv(g0l, receive(32,:))/factor0;
e2=conv{g2l,receive(2,:))/factor?;
um=el-e2-al;
um=enum/no;

$compute the denominator
en=factorl* (conv{conj (fliplr(gll*n0)).,gll*n0))-
onv(conj (fliplr(g0l1)).g0l)/factox0) - .

-

lot




l=eden{floor((length(eden)+1l)/2));
1= (factorl-msel) * (factor0) ;
4’1=n0+a*a*n0*n0*mse1

b=enum/eden is IIR, not FIR

£t (enum, 4096) ;

/~tft (eden, 4096) ;

u./v; % Eft of the equalizer transfer function

cft (transmit(l, :),4096);

SRR

vo=fft (transmit (32, :),4096);

O=fft(transmit(2,:),4096);

u. *w2;

u.*w0;

back to the time domain

=ifft (u,4096);
ifft(wl,4096)
=1ifft(w0,4096)

w2=1FfFft (w2,4096) ;

(

infactor=max((wl))
=wl/gainfactor;
/gainfactoxr;
NO w0/gainfactor;

—w2/ga1nfactor, i
-200:200, centexr(real (wl),b401)); '
ld on;

plot (-200:200, center (abs (w0) , 401) ) ;
It( -200:200, center (abs(w2) ,401)); .
£

igure ready'
Wid

1d off
!gure
dl=8.68*log({abs (££t(u, 4096)));
v=8.68*log(abs (fft(receive(l,:),4096)));

abel ('dB')

xtabel ('relative frequency')

title('Receive MSE equalizer with/without interference');
s{[0 1 -50 50]);
alculate mean squared errors

w=abs (£ft (eden, 4096) ) ;

emse=0; *
;iedfe=0; ‘ . -;': .o
r 1=1:4096 ’ N

msemse=msemse+1l/w(i); .
'msedfe=msedfe+log(l/w(i) ) Cai

y!ot( (0: (length(ul)-1))/lengthtul),ul, 'g-', (0: {(length(u)-1))/length(u),

s

a; Lo

Pemse=msemse/ 4096
msedfe=msedfe/4096;
iedfe=exp (msedfe)

T

zzz=['NO = ' num2str(n0) ' MSE = ' num2str(mseu(msemse)) ' a=
nter location' : -
lext (zz2) ;

spectral factorization roots inside UC
inding spectral factors'
r=roots (sample(eden, 16,0));
_[]I N
r i=1: length(r)
1f abs ))<1
)13

end

lhuffle the roots before multlplylng again
for i=1l:length(p)

j=l+length(p) *rand;

if j<=1ength(p)

num2str(a

)

v, 'r="t);

theta

num2str (18




=p(3);
p(j)=thp,
nd

ike it a row vector
plus=poly (p) ;

p(1)

infactor=eplus(l);
us=real (eplus/gainfactor);

=zeros (1, floor((length(eden)+1)/2));
i=1: length(eplus)
1+16% (1-1) ) =eplus (i) ;

Iqius ep;

numdfe=conv (enum, eplus) ;
ift(u 4096) .*fft (eplus, 4096} ;

;W contains the DFE equalizer frequency response
prepeat the calculations above - .
fft (transmit (L, :),4096);

. =0, K
i 1lse response from main channel
Aw0= fft(transmit(32 1) ,4096) ;

pp=fft (transmit (2, :),4096);
=u.*dw2;
=u. *dw0;
% back to the time domain
- ££ft (u,4096) ;
l=ifft(dw1, 4096) ;
dwO=1fft (dw0O, 4096) ;
dw2=1fft (dw2,4096) ;
nfactor=dwl (1)
=dwl/gainfactor;
dw0=dw0/gainfactor;
Aw2=dw2 /gainfactor;
/gainfactor;
ure
lot (-200:200, center (real (dwl) ,401));

D
hagld on;
it(—ZOO 200, center (abs (dw0) ,401));
£t(-200:200, center (abs ( dw2),401))
grid
a1 /gainfactor;
figure ready'

B ‘.;%; o
3.
hold off;

gure
'=8.68*log(abs (£ft (u, 4096)))
8.68*log(abs(fft(receive(l, :),4096)));
plot((0: (length(ul)-1))/length(ul),ul,'g-', (0: (length(v)-1))/length(v),v, 'r~");

:'abel ('dB')

abel ('relative frequency')
title('DFE equalizer with/without interference');
s({0 1 -50 50])

zzz={'NO = ' num2str (n0) ' MSE = ' num2str (mseu(msedfe)) ' a= ' num2str(a) ' theta
‘enter location'
ext (zzz) ;

num2str (18




-l

verts from blased to unbaised MSE
=1/B-1
/ (1-b)




rmally n is odd

=tioor(n/2);
‘o( (length (b) -m+1) :length(b)) b(l: (m+1))];

tturns n values oL a pulse centrea at origin to center or screen

l\- - '- - ‘- - -




inted 17:39 22 Jan 97

m_—

ample: samples a function so the middle is included
nction [output]=sample(a,k,offset)
dle=offset+floor((length(a)+1)/2);

=middle-k*floor (middle/k) ;

h (mod==0)

=mod+Xk;

-l

put=[];
for (i=mod:k:length(a))
ntput=[output a(i)];

‘~~";".':”' IS



.
i

S . e
7
N EN A M W

)
* ot
%

re

k=1:32

r kk=1:32

if (k~=kk)
z=sample (abs (conv (transmit (
plot(z)
hold on

end

N
~

k,:),receive(kk,:))),16,m);




tted 10:33 23 Jan 97
ecks the output from the bauer program

ecause MATLAB doesn't do 3d matrices, must fudge it

results.dta

esults(l); %order of the matrices
esults(2), % the number of matrices

kkk=0:(m—l)
=['b' num2str (kkk) '=zeros(3,3);'l;

eval (s);

for kk l:n
for j=1:n
s=['b' num2str (kkk) '(kk,j)=results(k);'];

eval(s);
k=k+1;
end

kk=0: (m-1)
=[1;
l for j=kk: (m-1)

if (s==[])
l s=['b' num2str(j) '*b'
else

I end
llnd
' eval (s)

3‘l

num2str(j-kk) '''']1;

s=[s '+b' num2str(j) '*b' num2str(j-kk) ''''];
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
N MOBILE SATELLITE AND MOBILE ENVIRONMENTS:

3d. ZERO FORCING, MINIMUM MSE AND DECISION FEEDBACK MULTI-USER QAM
RECEIVERS

W F McGee
Contract: U6800-6-1604

13 March 1997
ABSTRACT

This report is a pro gres's report of work towards milestone 3 of this contract. In a previous report we studied
VSB filter banks. Here were study the same filterbanks used for quadrature amplitude modulation (QAM).

The reason for comparing QAM and VSB filterbanks+s that, if the phasing between channels cannot be
maintained in a VSB system, the interference between adjacent channels is very like that of a QAM signal.

The results indicate that QAM MSE receivers are different in philosophy from VSB MSE receivers, in that
the bandwidth of the receive equalizers is not constrained to the bandwidth of the channel being received,

but includes all the channels.

A decision feedback design based on whitening the output from a MSE equalizer has been analyzed. The
performance is good, if timing synchronization can be maintained.

The theoretical foundations for. the study have been made and are presented herein.

This work is of peripheral interest for the project since QAM signals are not as useful as VSB signals; their

envelope fluctuations are larger. The report does document work that may be useful in some other context;
perhaps OFDM.

.An appendix shows how to design M/2 channel M-band filters if a good M-band design is in hand.

ol
>

1. THE DIFFERENCE BETWEEN QAM AND VSB SIGNALING USING FILTERBANKS

When QAM signals are sent through a f{fiférbank, each complex QAM signal Qi(z™) is applied to one
channel of the filterbank at a rate 1/M, where M is the number of complex channels. Thus, the transmitted
signal is the sum of M filtered QAM signals. In the receiver, the Teceived signal is passed through a receive
filterbank, and the M different outputs are sampled every M samples.

1
In contract, for VSB filterbanks, each of M real input sequences is applied at a rate 2/M to each complex
channel, and the real part of the output is sampled every 2/M samples.

- When VSB filterbanks are properly designed and phased, there is no intersymbol interference for each -

channel, and there is no crosstalk between adjacent channels, because the crosstalk is purely imaginary at
the sample times. The root-Nyquist prototype filters may be designed so that there is little crosstalk between
channels that are further apart than the adjacent channels.

For QAM signals, on the other hand, when the same root-Nyquist filters are used, there is no intersymbol
interference in the channel, and little crosstalk between channels that are not adjacent. But there is adjacent
channel interference. However, since it may not be possible to maintain the phasing between adjacent VSB



channels in a multi-user environment, there is interest in comparing QAM and VSB signaling when there is
no phase coordination.

Much may be learned by considering the minimum bandwidth filters required for pulse communication.
Assume that the filter passband is not split. Then, if the spectrum of the real VSB input signals at rate 2/M
real symbols per seconds examined, it is clear that to recover the input with a narrowband filter the
bandwidth may be as small as 1/M, but the position of the passband must be from k/M to (k+1)/M, where k
is an integer. On the other hand, for complex QAM symbols at rate 1/M, the filters of the filterbank may be
anywhere, and the bandwidth must be 1/M. Thus, let us considered QAM filterbanks where the filters are
the same as those used for VSB filterbanks, i.e., with the 3-dB crossover frequencies at /M and (k+1)/M.

Consider some special sequences. In particular, examine what happens when a steady signal 1 is sent on
both channel 0 and channel M-1. The VSB input is a 1 appearing every M/2 samples, and has harmonics
equally spaced about the unit circle at frequencies that are multiples of 2/M. The dc signal generated from
the input to the M-1 st channel is discerned from that of the symbols of channel 0, in the receiver, by
insisting that there be a 90-degrees phase shift between them at this frequency, and this allows the two
symbol sequences to be discriminated. If the 90-degrees phase shift is not maintained, then the
discrimination is not maintained, and the two detected symbols may destructively interfere with each other.

For QAM, on the other hand, because the samples occur only every M samples instead of M/2 as for VSB,
there are harmonics at dc and equally spaced about the unit circle at frequencies that are multiples of 1/M,
each of magnitude 1/M. In particular, the channel in question will have two harmonics, which, added
together, form the recovered symbol 1 again.

Now consider crosstalk from channel M-1. Because of the restricted bandwidth assumed for the filters, only
the tone at O-frequency is passed by the transmit filter for channel M-1; the other tone at (M-1)/M is not
detected by the receive filter for channel 0. With no phase coordination between adjacent sidebands, the
worst case would be a 45-degree phase difference, when the interference in the I channel would be as much
as V2/2 when the Q channel interference would be zero.

Thus, the worst interference from one adjacent channel in QAM systems that are not phase aligned is 3 dB
less than the corresponding VSB system.

EY

2. MSE LINEAR RECEIVER FOR MAXIMALLY DECIMATED QAM SIGNALS

In contrast to the VSB filterbanks, all the transmitting channels must be included in'the definition of the
mean squared error. Therefore, conmder_ﬂg\/} input data sequences Q; (M acting on M input filters or
equalizers [we use the two terms mterchanveably] Hi(z); the transmitted signal is

S 0. H,@)
i=0

Furthermore, assume that the filters Hi(zl) are frequency shifted versions of a prototype filter P(z) with the
polyphase representation

M-1
P(z)= Y z7"P.(z")

with

H,(z2)=P(W'z)



and

W = g~ i2niM

is an Mth root of unity. The filter Hi(z) is centered at the frequency i/M. P(z) is a lowpass filter that meets
the requirements for a root-Nyquist filter and with 100-percent or less excess bandwidth. This means that H;

and H;,, do not overlap; their product Hi(z)H;,»(z) is essentially zero, where zero is defined by the stopband
loss..

Note that
M-1 .
Hy(@)= > W " P (z")
k=0
_k " 1 M= X
2P (z )=:_,MZW! Hiz) ..
j=0

We can establish that

H,(1=e)=JM6,,

and therefore

; 1
P(l=el"Y=—=
¢ M
On the other hand,
P(e/**My = /_A_l_ei@
2 -~ -
so that - '
(e y = plginy = gaknw L (Mo i i wF
P, (e )=P(e)=¢ e +e ]

oz L | M Ciomnumc jerjamnaM |- jo-jomiam -
=ejrdc/M e;Z [619+1 +81 Jj2nk ]

MY 2

=, /i cos(0 + 27k / 2 M)
M . R

For any frequency between 0 and 1/2M, in fact
_ o127
Pk ( i )=

[H, (e )+ e M| (e*™))

and therefore, for linear phase P(z),

[P, (e = #[IHO (e P+ H, (e’ W +2A Hy (e I H, (/> Yicos(20 + 27k / M)]
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where 20 is the phase angle between HO and H1, which may be easily determined for a linear phase filter.
For example, for a length 256 filter, with M=32, this phase angle is

20=mw/ M.

[P, thus has a more or less universal shape for various k, since it is only the cosine factor which depends on

-k, and, in addition depends only on Hy(f) since in this frequency band

|H,(e/* P+ H, (ef'z’” W=M

The matched filters for the receiver are Hju(z) are the polynomials Hj with the coefficients conjugated and z
replaced with 1/z, thus,

M-l
Hj*(z)=ZW{‘ ‘P(l/z )
el

r

P (1/z") = ZW *H .(2)

j-—O

Under the polyphase assumption, the transmitted signal may be represented as

M-l
Y 0" H,(2)
i=0
M-1
= 0,(z")P(W'z)
i=0
M=-1M-1 .
= Z Zz—rw—lrpr(ZM)Qi(zM)

i=0 r=0

M- ) . M- NN
. ___. Z;_.’Pr(ZM)ZW.—”Q,'(ZM)

Noise is added to this signal and this recelved signal R(z) is passed through an equallzer E(z) for channel 0, ==
The equalizer for the other channel wlll,rhy symmetry, be E(W'z) but we only consider the design of the
single equalizer. Suppose that there is a polyphase expansion of the equalizer E(z) given by

-

M-l
E(z)= Y 2'E,(z")

] r=0

If the variance of the white noise is' Ny, then the noise power of the complex signal at the output of the
equalizer is just Np times the sum of squared absolute values of the coefficients of E(z), the sum of the sum
of squared coefficients of the polynomials E; (2.
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Figure 1Complex (e.g. +1:j) data is presented to the input DFT matrix. The M outputs are passed through
the filters Pk(zM) and then added, with the appropriate delay to form the transmitted signal. At the receiver,
the equalizer is represented in its polyphase representation. The outputs are sampled.

As far as the signals are concerned, the above may be replaced with the simpler equivalent circuit shown in

the next figure,

o
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Figure 2 Equivalent circuit to Figure 1Complex (e.g. £1£j) data is presented to the input DFT matrix.
The M outputs are passed through the filters Pk(zM) and then added, with the appropriate delay to

form the transmitted signal. At the receiver, the equalizer is represented in its polyphase

representation. The outputs are sampled.

The problem of minimizing the mean squared error in the first (the Oth) channel at the output is a standard
problem(1] in noise theory. The output sequence is the sum of the samples of the noise passing through the
equalizer E(z) and :




E—Qr(zM)ejran‘/MPk(ZM.)Ek(zM)

If we use the notation SS to represent the sum of squared magnitude of coefficients of a z-transform, then
the mean squared error is

M-1
MSE =N, Y SS(E,)

r=0

+SS(1- Y BE,)
k

M-1
+ZSS(ZﬂEk612mr/M)
r=1 k ~‘_; B

P

and the problem posed is to determine Ej, to minimize the mean squared error MSE. In this analysis we
assume that the mean squared value of the transmitted symbols is unity. And the mean squared error is the
sum of the square of fluctuations in the real and the imaginary received signal.

The first term is the noise passing through the equalizer, which, for our purposes, we assume white with
spectral density No, the second term represents the intersymbol interference in the channel under study, and
the other terms represent the crosstalk from the other channels.

For subsequent analysis we use the notation P*(z) to represent the polynomial with z replace by 1/z, and the
coefficients conjugated. .

The minimization is done by taking partial derivatives with respect to E,* and results in the equation

0=N,E,
M-1 .

+BILY. PE, 1]

5=0

M-1 M=1 s

; * _jomtkrl i e SeTTET L
+2.Pk3:’,mrM[ZeJ msr[MEsR] =
. AT d }
. r=1 IR =0
which we rewrite as R

0=N,E,

*

-P]

1
-M-1 M-1 )
* E : —jank E: j2mrsrl
+Pk e r/M[ e’ ST MEst]
r=0 =0

'The sum on r is zero unless s=k, and so these equations imply

N,E, =P (1- MP.E )
that is, ’

E,=P /(N,+MPP)




Consequently the equalizer E(z) is given by
M-l
E(x)= Y 7'E,
k=0

M-1

= Ez'P,: / (N, +MP,P))

1 M-1 M-1 W—rk
= H,.(z )2

M4 N, + MP,P,,
‘ M-l
= zH,. )V, (zM)
where
. 1 M=1 o W—rk
V) ==7Y

M & Ny+MP.(z")P.(1/ z")

When the noise is large, the MSE equalizer is the matched filter to the transmit filter,

M-l

kE—:OZ ‘PN,

and if P(z) is a FIR filter, so is the receive equalizer a FIR filter, whereas when the noise is small the
equalizer is

M-1
> 2t I MP,
=0

-

which is, for P FIR, IIR. This is the proof of the theorem that is not possible to transmit QAM signal
through a FIR transmitter and a FIR recelver, in the absence of noise, without crosstalk interference.

The last expression éxpresses the equahzer as.a sum of frequency weighed matched filters, each matched to
the k transmitting channel. - ;,_ :

These weighting functions Vj(zM) are clearly periodic about the unit circle, and satisfy some relations based

on the fact that we are dealing with 100-percent linear phase filterbanks. In the appendix we show that, if

the phase is linear, we have |

Pk(ZM) (M) = Ml—L(Z )Py H*(Z )
and because of the Nyquist property
P, (ZM)Pk* (z")+ Py (ZM)PIH-MIZ* (z")=2/M
and for linear phase and Nyquist

Pk(ZM)Pk*(ZM)+PM/2-—1-—k(ZM)PMIZ-I-k*(ZM) =2/M



For linear phase, therefore, we may represent Vj(zM) as

M 1 4 w#
V(2 )__2
M S Ny + MP(z™ YP.(1/2™)
-1 Wk i1k
i Ny +MP,(z")P.(1/z")

M/2—1W J(k—(M~1)/2) +W" JAM-1)12k)

1
M

1

—W" JIM=1)/2

Y Lzo Ny+MP,(z")P.(1/z™)
R

Y

W JM-DI2 /22_1 COS(j(k+1/2)2727/M)
= No+MP, > (2")P.(1/z2")

The coefficients satisfy

ol

VM_k(ZM) :Vk*(ZM)

Vi () =0
Using the previous approximation for Py, this may be written in term sof Hy and H, as
v (ejz"f )= i-W-’(M*.l)/Z o cos(r(k+1/2)2n ! M)
r - 2 : .
=0 N, +1 Jrﬂ-lH0 (e”*IH, (6™ )lcos((k +1/2)2m | M)

which may be approximated by

V()= W-—r(M—l)IZZf cos(r8)de | 2z
ON,+1+ ‘]i—['lﬂo (e H, (e Ycos(6)

) - »-;.- .
This may be evaluated using the integral

,[2” COS(réi),‘aj;é"/ e 1 (_1),' Y oa '
© 1l+acos(0)  1-g4° Vi—a® +1
thus
Vr (ejzan) E W—r(M~l)/2 1 (—1)r [ a }
No+141-g2 \J1-4% +1
where
a=—1 iuraro(eﬂ'?’ MH, (%)
Ny+1M

Two frequencies are of special interest. When f is zero, H; vanishes, and so a=0, and all the V, are zero
except for r=0. When f is 1/2M, H, and Hp are equal to each other and their product is a maximum and
equal to M/2, so a is equal to 1/(NO+1). Thus



L

1 1

JNZ +2N, | 1+ Ny +2N, + N2

IV, (e )=

The phase angle is
W-r(M—l)/Z (_l)r = Wr/2

Let us now examine again the equation for the equalizer

E(z) = ZH,* @V, (")

j=0

The factors Vj have been analyzed, and it has been determined that when j is not zero, 'they are zero at the
frequencies 1/2M, and a maximum in absolute value at the interband frequenmes between the kth and the
(k+1)st translated response Hy(z) and Hy,1(z).

The mean squared error is given by

112M 1 & N,
MSEMSE - J_1/2M dﬂ(?u'— g)’ m)

_JIIZM NOVO (eﬂﬂjM )dﬂw

n2M

= j_l,z NoV, (e )df

R ‘e

This is the so-called biased MSE[3,4]_,V2'1‘11‘_d_ is related to the unbiased MSEU by

S SO ;
‘i MSEU  MSE

The time has probably come ta draw some pictures.
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“signals. For the sake of argument, assume that,T=32 samples for QAM!

Nl W 4N N TE N e a .

a) HP HT H2
.\ /\\ sqrt(M)
\ sart(M/2)
' | 0 /M frequency f
| H 12|
o)
> M

AN

0 T1/M - " frequency f
®) HOH]
/\ M/2
0 1M ”

Figure 3 Typical frequency responses. In a are plotted the responses of the transmit and receive
filters, showing the normalization that results in a received pulse of height unity. The crossover
frequency represents a loss of 3 dB, as indicated. Part b shows the response of the overall channels.
The bandwidth is 1/T, the height is T and the area is unity as required. The third figure indicates the
response of the adjacent channel filters. These are narrow, but have a fixed height, T/2.

Examine the differences between the corresponding relationship for the mean squared error for VSB

Here is a derivation that does not expliEi't'l)" p'se polyphase components.

The mean squared error is o - e ‘ L
MSE = [ N(FIE(F)" df .
2M ;GM_I
+ | =X Hy(f +ml MYE(f +m/ M)—1PdfM
~1/2M M‘m=0 -
M-112M M=l
+Y, [ IS X H(f +ml MYE(f +m/ M)PdfM

r=l —12M m=0

and the problem posed is to determine E(f) to minimize the mean squared error MSE. The first term is the
noise passing through the equalizer, which, for our purposes, we assume white with spectral density Ny, the
second term represents the intersymbol interference in the channel under study, and the last term represent
the crosstalk from the adjacent channels.

10
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The minimization is done by taking partial derivatives with respect to E*(f) and results in the equation

0=N0E(f)

+H, *(f)[—M—ZH (f +m! M)E(f +m/ M)—1]

m=0

+2H *(f)— ZH (f +m! MYE(f +m/ M)]

Each of the expression in square brackets is periodic in f with period 1/M, and we represent them by Ao(f),
A(6), Ao(f), and so on.. This equation may be written

' M-1 '~,'." -
0= N,E(f)+ EHf(f)/’L,(f)

Ao(f) = MEH (f +m! M)E(f +m/ M) -1

m=0

/'t,(f)=—M—2H,(f+m/M)E(f +m! M) for0<r<M-1

m=0

The equalizer E(f) is obtained by substituting the first equation in the M following, resulting in M equations
for the M unknowns A;(f);-and then putting these equations back into the first to solve for E(f).

There is another important result that is obtained from the expression for E(f). Since the parameters Ai(f) are
periodic in f, they may be realized with (perhaps infinitely long) FIR filters with delays M. Thus, when
samples are taken at the equalizer output, this is equ1valent to sampling the outputs of all the matched filters

.and passing them to FIR filters with delays M [1 e.in 2.

These M equatlons are of the form
.

2o () = =Gooho(f) = Gm(f)?t () =Gy (N2 y _l(f) 1
2 (f) = =G Ao () = Gf'f(f)/'t (f)= G2 (HA,(f)
A

’lM-l (f)= _GM—l,M,z;tM—z (f)- Grpot, i1 (F)Aya () - G oo (f)’lo (f)

1

’“1 1+G0'0 (f) Go,l (f) A GO,M—] (f) 2’O(f)
0| | Gl 1+6,() A 0 A,(f)
Al A A A A A
0 Gro10(f) 0 A 1+ Gy (D NA ()
where
11
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G, (f)= Mﬁv

= Gj,i *(f)

S H.(f +m! M)H, *(f +m/ M)

0 m

‘We rewrite these equations as

We have made use of the assumption that the productiof ransfer fiinctions H;H; of non-adjacent channels
(i.e. li-jI>1is zero. '

If we neglect the amplitude and phase of the channels, then the matrix I" is circulant and Toeplitz.

Being circulant, it is diagonalized by the DFT matrix D, where DDH=MI.

Thus, ' \
_ DGD*?
. M
-1
0| DGD"
=—"—A
M
0 . ST
A -1 1/G,
DEA = G;i-DH 0 =G -1 L= — 1/ Gl 1 =R
0 -1 1/ G,y
where G is a diagonal matrix whose elements G; are the DFT of the first column of the circulant matrix
M=1 1 . . )
Gr — Zrk:oe]_rkzﬂM_= 1+ Go,o + e]r27t/M Gl'o + e—jr'Zn:/M GM_L() )
r=0

The design equation for the equalizer satisfies

12




E(f)=—(Hy(f) H{(f) A H,,(fHA

1/G,
1/G
-Loomr| M
M A
1/G,,,
1/ G,
1 . . . 1/G
=—(Hy(f) H (/) A Hu,(np|
M A
’ 1/G,,,

b e

and we can interpret the factors V; as Fourier Transforms of the function 1/G;.
3. DECISION FEEDBACK EQUALIZATION

The improvements that result with the use of data decisions from the channel and the two adjacent channels
is a complicated problem, and has been solved by Kavehrad and Salz[2]in another context. But first, we
consider a simpler approach, in which only that decoded data from the channel itself is used, and this

approach is based on the use of a prediction filter to whiten the error sequence resulting from the MSE
equalizer. :

Since

172M 14 Ny
MSEMSE - -’-IIZM dﬂ[ﬂ ; m)

172M °

= [ NV @™ )d

112M, 0%

-3

= [ NV (@ )df

we have the mean squared error with a spectrum

e N
MSE(f)=— Y ——"—r0
¥ ) Mk=0NO+MPkPk
— No‘,o(ejzw)

and this is the power spectrum of the deviations from the transmitted sequence of the output from the linear
minimum MSE equalizer.

A spectral factorization of the denominator is of the form

1/[NyVy(2)] = A (1+ B)(1+B.) = A [ -z"z)[J -2/ z)

Iz;l<1 Iz;>1

13



where 1+B, is causal and 1+B. is anti-causal. If the output of the MSE equalizer is followed with the
equalizer (1+B,) the resulting sequence will have an error sequence that is white and the mean squared error
is 1/Ao. This is equivalent to the following DFE structure

output

— EDA+B ) |—, Decision

B

o+

Figure 4 Decision Feedback Receiver. The causal filter B+ whitens the error sequence from thé non-
DFE equalizer E(f) making the sequence spectrum white. The decision feedback removes the
correlated part of the signal that results.

Y .
PEANN

The mean squared error for the decision feedback receiver is less than that of the MSE receiver[1] and is
equal to '

12M ]
MSE . =explM [ In(N,V, (e”"™))df]

-12M

This expression may be derived without spectral factorization, but is a useful check on the factorization.

4. VECTOR FEEDBACK

With vector feedback we assume that we have access to all the previous received digits of all the channels.

Treceived B 7 output
signal EC) ot Decision P
l:j?'jB‘; <~
rom outputs of
L=t adjacent
Dy channels

1

Figure 4 Vector Feedback. In Figure 3 only the decoded output from the main channel is used for
reducing mean squared error. In this model, all the relevant adjacent channel decoded data are used.

With a mean-squared error design criterion, the goal is to minimize

14
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MSE = TN( PVE? df

12T

+ | I-;—ZHo(f+m/T)E(f+m/T)-(1+Co+(f))lzdfT
-1/2T m
172T

53, [ 1SS H (Fm I DEG +m I T)= Co (HPT

r#0 1727 m

where C,, are causal and have only positive exponents of z!

When the partial derivative with respect to the equali’ier‘ﬁ is taken we find that

0= NE)+ Y Ha(HA(F)
r=0 '

where
M) = DH(f +m ! B +m1 D=+ Co. ()
/'L,(f)=%2[H,(f+m/T)E(f+m/T)]—C,.+(f)forr¢0
Thus
B —1-C,, 1+ Gy o () u_Go,1 N A =Gy () Ao(F)
~C |_| G- 1+G, () A 0 2,()
A || A A A A A .
._CM-—i+ GM—I.Gng?E,’ (s 0 A 1+ GM—],M—I (f) A‘M—l (f) .
where ‘ A
1
G,.J(f’)= v gH,.(f +m/ MYH, *(f +m/ M)
= Gj,,' *(f) -

A, =TA

where the subscripts + and - indicate that there are only positive or negative powers of z" in a particular
vector. For our application the matrix T" has real and constant, but probably unequal, diagonal terms since

we are dealing with Nyquist channels. The off diagonal terms are conjugates of each other and therefore the
matrix is Hermitian on the unit circle. ~

Equations of thus type may be solved by spectral factorization[5] of the matrix I'=T"T".
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Then there is a solution if we can find a constant vector K such that

A,=TK
K=TA_

so that the dc coefficient of the second component of A, is -1, and of the second and third components is
zero. If we write the dc component of T, as I'yg, then

~1
K=T," 0
=T
0

_1(',

A =TT, 0

+ T+t 40 A

0

-1 =1

A_ =TT 0 =T, T)™" 0
R V. =T A
0 0

As in the Appendix, the mean squared error for this equalizer may be calculated. Here, however, when the
calculation is performed, we recognize three terms in the integral. The first is

12, (NP 1+ Gy )+ A1 (G pAg + Gipdy) = A1 (=1- B,)

The second is

an

l’12 (f)lz(l + G, )+ ;1’*2;1’1G2,1 = ’Tz (—D+) =
and the third is ' J ,?L ‘

12 (AP (1% Gy )+ Xod Gy, = A, (=C,)
Thus, the mean squared error 1s

1/2T
A (HAHT

-1/2T
But notice that this simply is the negative of the dc coefficient of A;, which we label A, since A has only

positive terms, the product has only positive terms, and the integral of all but the dc term will be zero. This
may also be seen by considering
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-1
AfA,=(-1 0 0 o r-fr,ry 0
0
-1
=(-1 0 0 Or;Iy
0
1
=(1 0 0 0)I ) 0
0
1 3
— 1 HA\=1 0
=(1 0 0 O)T,,I'/H 0
0,
5. EXAMPLE

We have calculated the performance and response of a system using a 32-band prototype linear phase filter
derived from the MPEG filter coefficients.

First, note that if a pulse has zeros at multiples of time M, at times kM, its transform satisfies the Nyquist

-criterion o .
M-1 . ~-;‘.- .
S HWz)=0 \
k=0 . g —=,
'_-‘:" (/ v W

’ ¢
which states that the sum of shifted transforms is zero.
What the MSE QAM equalizer E(z) appears to be doing is the following
1. Maintain zeros crossings in P(z)E(z).
2. Minimize noise.
3. Force the crosstalk transfer functions to satisfy the above relation. This is done by making the crosstalk
transfer functions asymmetrical in frequency about the frequencies (k+1/2)/M. This makes the envelope of
the crosstalk small at sampling times.
The problem with this strategy is that if the crosstalk from the adjacent channel is so minimized, the

symmetry will allow crosstalk from the second channel, and so on. Thus the equalizer becomes very
broadband.

17



TABLE 1 Mean squared error for QAM communication system with adjacent channels at equal level
with various equalizers. There is no channel coding. The phase shift between channels is zero. The
noise is 7 dB below the signal.

System Relative Level Phase shift Mean Squared
of adjacent (degrees) Error
channels (Unbiased)
(dB) :

Baseline -o0 0 0.2 (7dB)
Minimum Mean Squared Error 0 0 0.2434 (6.27 dB)
Equalizer
Single Decision Feedback ; 0 0 0.2001 (7 dB)
(Main channel only) '

0.8

The calculation of the factors Vk(z) is shown in the Figure, and it agrees well with the theory. The equalizer
response, in the next figure, is dramatically different from the VSB equalizers of the previous reports. The
mean squared error is so good with the equalizers that there appears to be little point to using vector
feedback. ' '

1-6 T i ) T T T T B { T

1.4

T

0.6

04r

0.2

T

0 0.1 0.2 0.3 . ) . ) 0.8 0.9 1

Figure 5 The absolute value of the factors V(f). In ‘real’ frequency these are periodic with period
1/M. Thus, all the factors except the first have a zero at frequencies k/M, and they associate a
weighting near the mid-band frequencies (k+1/2)/M. The Vy’s alternate in sign.
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Equalizer frequency response
50 1 1 T 1 T I I

[dB]
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0 0.1 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative frequency

Figure 5 The frequency response of the QAM equalizer for the channel centered at 0 frequency. This
is what the noise sees. In order to understand the effect of this equalizer on the signals, it must be

"convolved with the transmitter transfer functions for each channel in turn.

o X
»

' '-;:H/ o
*’ 6. CONCLUSIONS

QAM multichannel communication is fundamentally different from the VSB designs previously considered.
The equalizers are broadband, not narrowband, and, especially with decision feedback, appear to offer good
performance. But this is accomplished by making the crosstalk envelope ring in time, and so timing is
important for QAM systems; we have argued that it is not critical for adjacent channel interference in VSB

systems.

We have not studied the effects of phasing between the channels.

In this report we have a (relatively) simple transmitter and a (relatively) more complex receiver; many times
this may be reversed and a more complex transmitter be coupled with a simpler receiver. This is of

particular interest when the relative cost of transmitter are significantly different; for example, in an earth-
satellite link.
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APPENDIX 2 PROPERTIES OF THE ELEMENTS G;;.

The report makes us of the elements Gij. Here we obtain some properties.

-From the definition e

(f)—ﬁ;—ZH(f+m/T)H *(f+m/T)

_G *(f),, - L |
H-r/-i-r(f)j

~

Since Gi,j=0 if li-ji>1 there is just one canonical response given by C(£)=Gy,;(f) when j-i=1, and another
A(f) for j-i=0. Thus the matrix

¥

14Gpo () Gou() A- GopaF) 1+A(f)  CH A CH)

Go(f) 1+G,(H) A 0 L CEN 1+A) A 0
A A A A A A A A
Gt () 0 A 1+ Gy () 0 A C*(f) 1+A(H)

These would be the correct analysis if the channel transfer functions were unity.
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In the communication system under consideration, the transfer functions are due to half (or root) Nyquist
filters, with an additional gain A, phase 6and delay 1. Thus, a root Nyquist filter with a channel

0. —jot;
Aie’ ig Jor;

These should be included in any more detailed analysis of system behavior.

APPENDIX 3
More Properties of Polyphase Components of 100-percent half-Nyqﬁist Prototype Polynomials

In this appendix we recall some more properties of polyphase components. It amounts to showing that,
given an M-band prototype filter with restricted stopband loss, we may generate M/2 band filter by taking
the even or odd numbered coefficients.

First, note that P(z) is a lowpass polynomial. In the frequency domain, since the excess bandwidth is 100
percent, the stopband starts at the frequency 1/M, and extends to -1/M. The 3-dB frequencies are 1/2M and
-1/2M. .

The Nyquist property means that P(z)P*(z) has zeros spaced M apart except for the coefficient of z° which
is unity. In terms of the polyphase components this means that '

M-1
P (z")P.(z")=1

k=0

Consider the polynomiai Q(z%) formed by takiné the even coefficients of P(z). Thus

P(z) + P(-z) o) P(z) + P(-z)
R N N
N 2

0(z*) =

We argue that if M is 4 or more, then Q(z) is an M/2-band 100-percent half-Nyquist filter.

¢ LA

This follows because

0G0/ ) = [(Pf§)+P(-z)][I;(l/z)+P(—1/z)] |
_P@PA/2)+ P(-0)P(=1/2)+ P(2) P(-1/2) + P(-2) P(1/ 2)
, 2
_ P(@P(1/2)+ P(~2) P(-1/2)
2

The third line follows because P(z)P(-1/z) has the same magnitude on the unit circle as P(z)P(-z) and this
will be zero since the stopband of P(z) overlaps the passband of P(-z). This holds for M that is 4 or more.
For M=4, the stopband of P(z) is at 1/4, and the stopband of P(-z) is at 1/4. This does not hold for M=2 [M
must be even.].

The last line is just the even numbered coefficients of P(z)P(1/z) which has zeros at time samples M/2, and
thus Q(z) is as required. '
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Note that we may take the even or odd coefficients.

Starting from, for example, a 32-band filter prototype we generate at 16-channel, and 8-channel, a 4-

channel and a 2-channel filter by taking respectively even second, every fourth, every eighth and every 16th
coefficient of P(z). If we had taken every thirty-second coefficient we would have the polyphase '
components. But the polynomial formed with every 16th coefficient is just

R(2) = gpo(zz) +27' P, (2%)

and this is a half band filter, thus

' R@R(/2) +RC-)R(-1/2) _
2.,

1

that is to say
Y

By (2" ) P (z") + Pyypp (") Pyyyn (2¥) =21 M

By making the other decimation choices, one can show that

P (2" ) Pu(2") + Py yyy (2 )Pk+M/2*(ZM) =2/M
If, in addition, P(z) is Iixiea;', phase of order D, we have
‘ P(1/2)=z"P(z)
thus if D is one less than a multiple of M

P (z")Pu(z™) = Py (2¥) Pyy e (2™)

certy
Fy

LN

"y
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STUDY INTO IMPROVED SPECTRUM EFFICIENCY FOR FDMA/TDMA TRANSMISSION IN
MOBILE SATELLITE AND MOBILE ENVIRONMENTS:

3e. MINIMUM MSE AND DECISION FEEDBA CK MULTI-USER RECEIVERS USING
SPECTRUM CONTROL

W F McGee
Contract: U6800-6-1604

18 March 1997
ABSTRACT

This report is a progress report of work towards milestone 3 of this contract. It records the calculation of
optimal receivers for coded VSB signals. The coding in question is channel coding using, for example,
partial response codes. .

Such coding is useful in the system under study, because the interference from an adjacent channel, with the
worst data sequences, may completely close the data eye; in fact, just one adjacent channel may close the
data eye. We have previously found that the performance improvement will be more as the transition
bandwidth between adjacent channels is less, that is, if the excess bandwidth is reduced.

The purpose of this report is to record the details of the theory that have been performed, which allow the
design of the equalizers for such a receiver. But the detailed design work has not been done.

The case of the minimum mean-squared error equalizer is different from our previous studies[6], but we
indicate an equivalence between this problem and the previously studied problem to use the earlier results
with a few changes of notation. The reason, basically, is that a decision feedback or vector feedback
receiver can undo the spectrum control coding, turning what would be a three-level signal back to a two-
level signal.

It should be mentioned that these equalizers are often front ends for Viterbi receivers since the error

-sequence is white. Further, it should be noted that the same theory,applied to filter bank systems using

staggered QAM modulation.

L CODIf\IG‘FOR SPECTRUM CONTROL
The power spectrum of random data- fehgl; Ao.be ﬂat However, if correlation is introduced into the data
sequence, the power spectrum is not flat; most often, the correlation is deliberately introduced to create

spectral nulls[3]. This spectrum control is essential for certain technologies, for exdmple magnetic

recording, and in baseband transmission when dc transmission is not feasible due to transformers, such as
balanced telephone lines.

1
For filterbank applications in which the adjacent channels may not be phased properly, it is an option to
consider spectrum coding that introduces a spectral null in the transition band of the channel filters, since
this will create a null in the crosstalk transfer function at mid frequency.

For this work we use a definition of message spectrum M(f) of a stationary data sequence {By}given by

M(f) - Z mke—ﬂﬂﬂ'

my, = E(BBy) = E(B,,,B))=m.,



For a random sequence of uncorrelated binary digits {-+1,-1}, the message spectrum is unity.

Alternatively, the message spectrum is
M) =Y mz™"
where z=¢'®, =2nf. ‘
The message spectrum of a data sequence that has passed through a linear filter H(z) is
M(AOHP.
[We abuse notation amgi set H(f):H(eim).]

For M-channel VSB filterbank applications, an attractive spectrum control is achieved by passing a random
sequence with the filter e e

(1-z7"y/2

producing the message spectrum with random input data of

M(z) =-0.25z" +0.5- 02577
which produces zeros at the frequencies

2 4w 272:(M—1)=_g£

0,—,—,..., }
M M M M

_and results in duobinary line coding.

.
»
\

2. MSE LINEAR RECEIVERFC%R M_AXMALLY DECIMATED COI')ED VSB SIGNALS T
. - -~ 4"
Three coded data streams are presented to filters with responses Ho(w),H; (), Hp(®), added together. Noise

is added to the combination, and an equalizer E(®) to minimize the mean square difference between the real

part of its output and the input sequence to the filter H1(w).

1

—| Ho@) noise
—| Hi(ow) N é E(w) —
—1 H2(w)

2




Figure 2.1 Correlated data is presented to the input equalizers. The equalizers include channel gain,
phase and delay, on a per channel basis. After an equalizer E(®) we try to determine the digits sent
through the equalizer H1. The filters without the channel gain, phase, and delay, are assumed to be
those of adjacent channels of a VSB multi-channel communication system with no intersymbol or
interchannel interference, and with restricted bandwidth. If there were no channel delay or phase
shift, the performance would be optimum with an equalizer matched to the transmitted pulse shaping
filter H1.

A coded system like duobinary has an inherent 3-dB performance loss. There is a 6-dB penalty because the
distance of the signal to the decision level is reduced by half, and a 3-dB increase in performance because,
if the coding is done in the transmitter, the signal power is reduced by 3-dB, and if the coding is done in the
receiver, the noise power is reduced by 3 dB. The 3-dB performance loss may be received with a max1mal
likelihood sequence detector (Viterbi) .

The design of the minimum mean squared error equahzer is a classic problem[l] in noise theory. The mean
squared error is .

-
¢

MSE = —_‘fN(f)I-E(]“)I2 df

127
1

+ | s r L (f +m I DE(f +m ) T)+ By * (=f +m | DE* (~f +m! T) = 1" M(£)dfT
-1/2 m
1/2TT 1

+ j IEZHO(f+m/T)E(f+m/T)‘+HO*(—f+1ﬁ/T)E*(—f+m/T)12M(f)dfT
~1/2T m '
12T

+ | l”z”lsz (F +mI DB +m 1 T+ Hy (- +m I DE (- ~f +m ! D MOFT
-1/2T m

“and the problem is to determine E(f) to minimize the mean squared error MSE. Crae

The sole complication in the theory results from the second term, and the quantity, 1 in the intersymbol
interference term. The mean squared error is that which results from a multilevel. system, and is with respect  _.
to the average pulse-under the codlng constramt ) A =
The first term is the noise passing through »_the equalizer, which, for our purposes, we assume white with

spectral density Ny, the second term represents the intersymbol interference i the channel under study, and

the other two terms represent the crosstalk from the adjacent channels.

Before we start, it would appedr reasogable that the receive filter be matched to the transmitted signal filter
H;(f), and in particular, it will not pass frequencies beyond the bandedge of its filters.

The minimization is done by taking partial derivatives with respect to E*(f) and results in the equation




0=NyE(f)

+M(f)H, “‘(]”)[—21?24H1(f+m/T)E(f+m/T)+H1 *—f+mITE*(—f+ml/T)-1]
+M(f)H0*(f)[?leHo(f+m/T)E(f+'m/T)+HO *(—f+mIT)E*(~f+m/T)]

+M(f)H2*(f)[*Z%ZHz(f+m/T)E(f+m/T)+H2 *(—=f+m!T)E*(—f +m/ T)]

Each of the expression in square brackets is periodic in f with period 1/T, and we represent them by A,(f),

Ao() and Ax(f). As well as being periodic, they also satisfy A;*(-f) =Mf) . Finally, the message spectrum M(f)
is also periodic with period 1/T. This equation may be written as four equations, -

0= N E(f)+M(HH, * (fjll(f)+M(f)Ho (NN +MOH, * (HA, ()

/ll(f)=[—21—T2H1(f+h1/T)E(f+m/T)+Hl *(—f+;éz/T)E?F(—f+m‘/T)—1]

),O(f)=[~21—TzHo(f+m/T)E(f+m/T)+H0 *(—f+m ! T)E*(~f +m/T)]

m

A (f)—[—ZH (f+mITE(f+mIT)+H,*(~f +m/T)E*(=f +m/ T)]

The equalizer E(f) is obtained by substituting the first equation in the three following, resulting in three

equations for the three unknowns A;(f), and then putting these equations back into the first to solve for E(f).

There is another important result that is obtained from the expression for E(f). Since the parameters A;(f)
and M(f) are periodic in f with period 1/F, they may be realized with (perhaps infinitely long) FIR filters.
Thus, when samples are taken at the equalizer output, thiis is equivalent to samphng the outputs of the three
matched filters and passing them to F]R ﬁlters with delays times T.

These last three equations are of the form-. .
A, = =G, 4, ()= Gyo (DA () = G (NA, () -1
Ao(F) 5 =G 12 () = Gy o (F)Ag () = Gy (NAL(F)
Ay (f) = =Gy A () = Gy (NAG (F) = Gy (DA, ()

1e.,
) (146G, G, G, YA
0 |= GO.I 1+ GO,O GO,Z Z’o(f)
0 G2,1 GZ'0 1+ Gz_2 /12 H
where ‘
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M(f)
27N,

= Gj,( >L(f):: G,-'j *(—f): Gi’j(f-*-I/T)

G, ()= S H(f+mIT)H, *(f+m/T)+H,*(~f +m/ T)H,(~f +m/T)

But, because of the properties of the filters, the elements whose indices are separated by 2 or more are zero.
Thus, Gg =G, ¢=0. [If the problem had been written in the frequency-ordered way, the matrix would be a
bordered diagonal matrix, i.e., tridiagonal.] Also, because of the filters, there will only be one term in the
sum for most of the elements, except perhaps for the main diagonal term. In any case, the equations are

-1\ (1+G,, Gy. Gy, Y4

01=| Gy, 1+.G0,0_ 0’ . A’o(f) -
0 Gy, 0 " 1+Gyy \A, (P
These equations may be solved and result in
A, ) 1+ Gp)1+G,,) =G+ Gy,) ~G, (1+Gy) -1
Ay |= X -G (1+Gy) (A+G)A+Gy) G,,G,(=0) 0
A, -G, 1+ Gy) G,,G,(=0) A+G)A+G,) N\ O

and the determinant

A= (1 +-G11)(1+ Goo)(l'*' Gzz) - G01G10 (1'*' Gzz) - G21G12 (1 + Goo)

is real and positive.

--Also, if the transmitting filters are normalized root-Nyquist filters, the diagonal terms are equal to

14+M(f)/Ny. The normalization makes the sum ‘of squares of the coefficients of H unity.

. BT
In any case, we can solve exactly, with the result

L T

:‘ ‘.\"?{” v:.io - A'IGO.I ’
1+ Gy,
—_— 2'IC?.!Z,I

2

' 1+G,,

Solving for A(f)

A’I(f):

and substituting back to find E(f) we have



A

Hy* ()= Hy * ()7 2—— H, * ()=
1+ Go 1+G,,
R |G 0I2 |G I? G
N0[1+G”_ o (V7 _ m(f)}
T 1+Gy,  1+Gy,

An explicit calculation of the mean squared error is tedious, and the details are in an appendix. The result is

uar

MSE = I M(f )d{T :
-1/2T 1+ G _ lGo,] (f)l _ I Gz_l (f)l
M 146Gy, 146Gy,

and this also puts the power spectrum of the error in view; it is not flat. This is the so-called biased
MSE[3,4], and is related to the unbiased MSEU by

1 |
MSEU -~ MSE

4. DECISION FEEDBACK EQUALIZATION

The improvements that result with the use of data decisions is a complicated problem, and has been solved
by Kavehrad and Salz[2]in a related context. But first, we consider a simpler approach, in which only that

~decoded data from the channel itself is used, and this approach is based on the use of a prediction filter to

whiten the error sequence resulting from the MSE equalizer.

As we derived, the error sequence from the linear minimum MSE equalizer has the spectrum

.
‘

g M()T
MSE(f) =& > ;
L +G,, ~ G UX_[Gu (/)

1+ G, 1+G,,

A spectral factorization of the (':Ienominator is-of the form

{1 G~ 1Go, (NP 1G,, ()

1+ Gy, 1+G,, } -1
. : =A01 B+ 1+ B_ =A0 (1- i (1- /i
e (1+B.)1+B.) IinkIl( z z)li:l1 z/z)

Thus, 1+B, is causal and 1+B. is anti-causal. If the output of the MSE equalizer is followed with the
equalizer (1+B,) the resulting sequence will have an error sequence that is white and the mean squared error
is 1/A,. This is equivalent to the following DFE structure
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-
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N

Figure 3. Decision Feedback Receiver. The causal filter B+ whitens the error sequence from the non-
DFE equalizer E(f) making the sequence spectrum white. The decision feedback removes the
correlated part of the signal that results.

This is the receiver that minimizes

MSE = TN(f)IE(f)I2 df

S e
1721

+ j |%ZHl(f+m/T)E(f+m/T)+Hl *(=f+mI TE*(=f +m] T) =1+ B, (M M(HIT
-172 m . )
el

+ ] Iz—T-zHo(f+m/T)E(f+m‘ﬁ/T)+Ho*(—f+m/T)'E*(—f;i-m/T)le(f)dfT
o

+ IEZHz(f+{n/T)E(f+m/T)+H2 *(=f+m ! TE* (= f +m/! T)*M(f)dfT

-172T m

If factorize M(z) as

M@)=MM, (2" YM_(z)
where M, and M. have the coefficient of’z0 eq;Jal to unity.
Then a simplification in the argument‘ may l;e made. - SR K =T,

. . ’ . ‘A!?r” v ‘ b
Note that for the example quoted at the béginning, this factorization would be

M<z>=%(1—z‘M>(1—zM>
M,=1/4



.

[

—NN LE(HI2d
st _ i (NEP® df

M, M,

127

~1/2T7 m

1727

+ I;—TzHo(f+m/T)E(f+m/T)M++H0*(-—f+m/T)E*(-f+m/T)M_lzdfT
~1/2T m

Ty )

+ |§2H2(f+m/T)E(f+m/T)M++H2*(—f+m/T)E*(—f+m/T)M_[2dfT
-1/27 m :

Then the solution may be expressed in terms of the solution to the corresponding problem in the uncoded
case if the following substitutions are made.

+j I;—TZH,(f+m/T)E(f+m/T)M++H1*(—f+m/T)E*(—f+m/T)M_—M+(z")(1+B+(f))12dfT

In Report [6] replace with

MSE , MSE /I M,
N(f) A NI M,
1+B, (1+B,)M,(z)

In particular, the expression for G is unchanged, and the mean squared error for the decision feedback
receiver is less than that of the MSE receiver{1] and is equal to

- v2r ) \
MSEprz = M, EXP(— J ln(l +Gy, - Gy, () _ 1G,, (N }ﬂ,J

=-1/2T 1+ GO.O 1+ GZ,Z

12T Py
o M(f)
=exp In o T |
-17[2T 1+G . — KGo, (I _|Gz,1 (NI N
: 146G, 1+G,, '
L
5. VECTOR FEEDBACK

With vector feedback we assume that we have access to all the previous received digits of all the channels.

received . ) , output
signal - ED t Declsion
B+
ol outputs of
L . adjacent
D, channels




Figure 4 Vector Feedback. In Figure 3 only the decoded output from the main channel is used for -
reducing mean squared error. In this model, all the relevant adjacent channel decoded data are used.

With a mean-squared error design criterion, the goal is to minimize
!

MSE = TN( PIEE df

var

+ | M(f)lzlszl(f+m/T)E(f+m/T)+H1*(—f+m/T)E*(—f+m/T)—(1+B+(f))IzdfT
~1/2T m h

12T !
+ j M(f)lalszo(f+m/T)E(f+m/T)+.H0*(—f+m/T)E*(—f+m/T)—C+(f)I2dfT
-12T m )

12T e st .o
+ f M(f)lalj—,EHz(f+m/T)E(f+m/T)+H2*(—f+m/T)E*(—f+m/T)—D+(f)lzdfT
~12T '{l L.

where B+, C+ and D+ are causal and have only positive exponents of z”! and thus the unknowns are the
(real) numbers by, ¢, and dy, where )

It will be noticed that, since

MSE _ 'J’?"N( f)
MO
1721 1

+ [ I—EHl(f+m/T)_E(f—f;7g_is;,_{,rT)M+-}-Hl*(—f+mr/T)E*(—f'+;n/T)M_—(1+B+(f)ifﬁ2dﬂ

-1/2T m .

ECHIPdf oo

—o0 0

121
1

+ | l-z?zHo(f+m/T)E(f+m/T)M++H0 *(—f+m/T)E*(?—f+m/T)M_ ~C, (/)M 1> dfT
-1/2T

12T 1 !

+ | I-é?sz(f+m/T)E(f+'m/_T)M+ +H, *(~f +m] T)E*(~f +m!T)M_ - D, (f)M, 1T
-1/2T

m

m

we may use the results of report [6] to calculate relevant performance characteristics, as follows.

In Report [6] replace with
MSE MSE I M,
H,(f) H. ()M, (f)
N(f) _ N M,

9



-

1+ B, (1+B,)M,(z)
C, = C+M+(Z)
D+ ) D+M+(z)

and the calculations of the previous report made. We do not repeat the details.
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- " APPENDIX 1

~

CALCULATION OF MSE
The purpose of this appendix is to record the calculations.

The MSE has three signal related terms and a noise term. The sum of the three signal related terms which
we call MSES, is equal to

1/2T7

[[APHAP A (AT

-1/2T
1/2T 2 2
G, | G, |

+ +
r (1+G,,)* (1+Gy,)

3 i|M (NdT

10



il GER NN Ea N MR I BE TN = E =

- . _ ’ -

The noise mean squared error is
MSEN = [ N,|E(f) df .

When the expression for E(f) are substituted, the cross terms that are zero neglected, and the infinite integral
replaced with an integral over the finite range -1/2T to 1/2T, the integrand contains terms

14,12 G HAN GogHALP Gy + 4, % 4,6, + 4, ¥ 4,Gry + 44 *4,Gy, + A, *4,G,

and this may be written

| AIIZA[G“— G, G, 16, 1G,P }

14G,, (+G,” 14G,, (1+G,,)

and, when MSES and MSEN are added together the additions and cancellations result in the following
expression for the total mean squared error

R 1G,,I”  1G,,I?
MSE=[I2,P M(f)[1+ Gy, - —2—— —L1dfT
~112T 1 + G2,2 1 + GO,O
_ "f‘ M(f)dfT
= [ = :
nrpy 4G, Gy lF 1G,,P

1+G,, 1+Gy,

It is perhaps a bit clearer to keep the A‘s separate, and then the integrand is, besides M(f),

I Gy H AR Gy H A1 Gy + A3 % A,Gyy + Ay * AgGro + A * 4, Gy + Ay * 4,6,

HAPHA P HA, P "
= A+ G A + A5Gy + AaGro), L g
A1+ Go)Ao +4,Ge )1
+A5[(1+Gy)A, +1,G,y, ]

Y

it
it

1

APPENDIX 2 PROPERTIES OF THE ELEMENTS G;;.

The report makes us of the elements Gij. Here we obtain some properties.

From the definition

11




A

|

G, () =2

=G, * (=G, *(=1)

S H(F+m! DH, *(f+m/T)+H, * (~f +mIT)H,(~f +m/T)

In the communication system under consideration, the transfer functions are due to half (or root) Nyquist
filters, with an additional gain A, phase 6and delay <. Thus, a root Nyquist filter with a channel

A8 gmiom
1
In the diagonal elements the phase and delay are eliminated, and the elements are just
AN,

The off-diagonal elements are more complicated. The' elements Gotl and G,{, are mirrors of each other. So
are G,; and G, ». In general, Gg; and G»,; have coefficients that are similar, but in Wthh every second
coefficient is of opposite sign.

Thus, the matrix appearing in the equations

-C, 1+Gy, Gy, 0 Y A,(H)
=1=-B, 1= G, 1+G, G, A,
—D, 0 Gy 1+Gy N4, ()
may be written :
1+A7 /N, AAG,, 0
AAG,, 1+AY/N, AAG,
0 AAG,, 1+ A2 I N,

Thus, in the matrices used in the Bauer factonzatlon, the matrices that are related to powers of z that are not
zero have no diagonal, no 1,3 or 3,1 terrf, and, are otherwise arbitrary, consistent with the overall matrix

polynomial being positive definite. We haven’t discovered any propemes that follow from these

observatlons : o .
: »gm e

Finally note that
G,,G;,; 2 G,-'jl2 ,

Minkowski’s inequality.

12
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MODIFIED DUOBINARY ERROR RATE CALCULATION
‘W F McGee

19 March 1997

The purpose of this report is to give the rationale of calculating duobinary error rates.

The calculation of error rate for modified duobinary coding is more difficult than for binary. We imagine
that we are given the received pulse response including the filter

M(z)= 0.5 -0.5z7°

where the exponent 8 reflects the use of a system in whlch the data is removed by taking every fourth
sample, i.e., decimation by 4. The waveform is itself sampled every fourth sample, and results in a sequence
A={...}. For a no-noise, no intersymbol interference, no crosstalk receiver, this sequence will have the
structure {...,0,0,0,0,0,1/2,0,-1/2,0,0,0,0,...}={ax}. In the theory section we consider ‘the 1/2 response to
occur at time t=0. .

The modified duobinary receiver may be though of as an interleaved set of bipolar signals.

The received signal, neglecting noise and crosstalk, (i.e., considering only intersymbol, interference) is
Zak & 2 by

With random input data {by} the received data sequence s will, with random binary inputs, have three
basic values; {+1, 0, -1}. A three level receiver will deterrmne, at a sample time, which of the three is to be
decoded. Examine the sample s, at time 0.

"If , in the ideal case, so=+1, this means that the transmitted binary pulses must have been by=1, b.,=-1, and

the received signal will, in fact be, a2y,
R
If, in the 1deal case, So=-1, the transrmtted pulses must have been by=-1, b.2_1 and the received signal will

be -(ap-az). . cot . . _ T
. ! . "/‘A' (P ‘e

If , in the ideal case, sg=0, there are two chowes be=1,b.o=1 or bg=-1, by=-1, and the received signal will be

ag+ay or -(ag+ay). . .

The threshold would, presumably, be set halfway between these signal levels. Thus, the positive threshold d
will be set so that la0-a2l-d=d-[40+a2l, i.e., d=(1/2)(la0-a2}+la0+a2l)=max (la0l,la2l).

The average error probability will be




1/ 4)Pr(lay —a,Hn<d)y+(1/2)Pr(a, +a, +n>d)+

(1/2)Pr(ay +a, +n<—d)+(1/4)Pr(-la, — a,l+n > —d)

=(1/4)Prlla, —a,l-d +n<0)+(1/2)Pr(d—(a, +a,)—n<0)+
(1/2)Pr(d+ay +a, +n<0)+(1/4)Pr(la, —a,l-d—n < 0)

=(1/2)Pr((1/ 2)(lay —a,lHa, +a,1)+n<0)+(1/2)Pr(d—(a, +a,)—n<0)+
(1/2)Pr(d +a, +a, +n<0)

<(3/2)Pr(min(layl,la,l) +n <0)

For example, if a0=.52, a2=-0.48, d=0.52, and the three probabilities are

(1/2)Pr(0.48 + 1 < 0) +(1/2)Pr(0.48 +n < 0) +(1/ 2)Pr(0.56 +n < 0) < (3/ 2) Pr(0.48 + 1 < 0)

o
PLENE

For our calculations we often use the approximation (3/2)Pr((laghtlay)/2+n<0) for the error probability. This
is reasonable in Gaussian noise.



REVIEW OF INTERSYMBOL INTERFERENCE MITIGATION

"W F McGee
19 March, 1997
Contract U6800-6-3505

There is a great similarity between the problem of reducing the effects of intersymbol interference in data
communications and multi-user interference reduction. This arises because the interference generated by
other symbols in a sequence depends on the pulse response and the data symbols; for multiple users the
intereference depends on the transmitted data and the response of different matched filters. In this appendix
we recall the theory of intersymbol interference.

The theory has as its basis the detection of a single symbol in noise. For example, a pulse is transmitted with
one of two polarities, and the optimum receiver in Gaussian noise is a pulse-matched (Wiener) filter that is
matched to the transmitted pulse shape, followed by a sign detector. There a fxve commonly studied
receivers,

e
MPLEREFPN

1. Linear Zero-Forcing Equalizer. (ZF)

2. Minimum Mean Squared Error Receiver. (MMSE)
3. Decision Feedback Receiver. (DF)

4, Maximum Likelihodd SEquence Estimator (MLSE)
5. Maximum A Priori Receiver. (MAP)

Matched filter.

For a pulse with shape h(t); transform H(f) in noise with spectrum N(f), the matched filter is

E(f)=H*(f)/ N(F)

and the signal to noise ratio at the decision time is

J'IH(J”)IZ
N

1. Linear Zero-Forcing Equalizer. (ZF)

A receive ﬁlter is designed to maximize the mgnal to noise ratio at the decision txme, and to eliminate _
interference at other sampling times. The resultant pulse shape has zeros in the pulse response at other S
sample times. This receiver eliminates Hftersymbol interference but intreases the thermal noise compared to

the matched filter. For transmitted pulse shape h(t), transform H(f), noise power spectrum N(f), the ZF

equalizer is -

H*(f)/ N(f)
ZlH(f+m/:r)i2
~ N(f+m/T)

i

o E()=

2. Minimum Mean Squared Error Receiver. (MMSE)

The MSE expressed in the frequency domain is
MSE = jN(f)IE(f)!zdf+_[ I—zH(f+ m/TYE(f+m/T)- llzdf

and the optimum equalizer is




By — O ING)
1,y HG +m/T)
T = N(f+ml/T)

This receiver has gain bias, and it is necessary to convert the mean squared error with bias to the mean
squared error without bias, a larger number, and more indicative of system operation.

3. Decision Feedback Receiver. (DF)

The decision Feedbach Receiver assumes that the receiver has available the previously transmitted symbols,
and minimizes the mean squared-error assuming that these are known. Hence the intersymbol interference
comes only from symbols yet to be received, that is, from the precursors of the pulse response.

MSE = [ N(HIE()df +| f;:%:;agf wm/ DE(f +mIT)~ 3 B df

k=0
4. Maximum Likelihood Sequence Estimator (MLSE)

This receiver considers a whole sequence to be detected, and minimizes the mean squared error over all
possible transmitted sequences. The receiver has a pre-equalizer which minimizes noise and the precursor
samples, a sampler, and a Viterbi receiver for the sequence.

This receiver determines that the sequence was transmitted which is most likely to have resulted in the given
received sequence. Because of the pre-equalizer that is used, the conditional probability does not depend on
future transmitted symbols. Thus, the potential transmitted sequences may be pruned by only considering
those which are most likely, at each sample time, to have resulted in the received sequence up to that time.
Viterbi algorithm is used because the calculation of the likelihood of the output sequence given a particular
input sequence, '

5. Minimum Bit-Error Probabilty Receiver.

The MLSE determines which input sequence 1s most likely, but MLSE does not determine the input bit

sequences which result in the lowest errgr probability on a symbol basis. The minimum bit-error probability
receiver looks at all the received signals, and determines, for a particular transmitted symbol, what was most
likelyu to have caused the received signal. The effect of the other transmitted syrbols is averaged. There ==,
are iterative algorithms to perform thé ¢algulation. P

4
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Maximum Likelihood Intersymbol Interference Receivers
W F McGee
Contract U6800-6-1604
19/03/97 1:27 PM

The purpose of this note is to summarize the arguments in Lee and Messerschmitt[1].
Assume that the received signal is

K -

¥(t) =Y a.h(t —kT) +e(2)
k=1

where h(t) is the transmitted pulse, ay the transmitted data, and e(t) white Gaussian noise.

The optimum receiver calculates that input sequence {a;} of length K that maximizes

{k K AK
2Re{2ukak}—22akamr(m—k)
k=1 k=1 m=l

where

uy = [ YOh* (t—kT)dt
and r(k) is the autocorrelation of the pulse h(t).
For each possible sequence, the computation requires in the order of K? operations.

The further analysis is an attempt to turn the quadratic form into a sum of squares.

“If we represent the correlation matrix as a Toeplitz matrix e

Y Rwith R =r(i— )

then the sum may be recognized as equigz}l,egt-,.to e : : 2
. B N S

-—{ui’u —2Re(ua)+ a”Ra}

and with an LU (Cholesky) decomposition of R=U"U

the expression to be minimized is .
—{uHu —2Re((U*w)? Ua) + (Ua)® Ua}
=—~Uu-Ua)? (U u—Ua)
=—(w-Ua)?(w-Ua)

where
w=U"y



Suppose that the correlation coefficients r(n) become zero as n increases; thus r(n)=0, n>M. Then the matrix
R used in the calculation of a"Ra becomes banded, and so does the Cholesky factor U. In fact, as the data
sequence becomes longer and longer, the Cholesky factor U has the last column that does not change; it
simply shifts down.If we examine the Cholesky factor for M=3 and for a sequence of length 8, it appears as
follows

(x x x 00 0 0 O
0O x x x 00 0O
0 0x xx 00O
, 0 00 x x x 0O
U=l0000 x % x0
0 0.0 000 x x «x
0 0 0:0.:0 0 x x|
\0 000 OO0 0 x)

where the x’s indicate the non-zero entries, and, as mentioned, the last column approaches unchanging
values. Define a non-square matrix R+ as a Toeplitz matrix with the columns the asymptotic value.

x 00 000 O0O
y x 0000 O0O0
z y x00O0O0O
0z y x0O0O0O
0 0 zy x0O0O
R, = 0 00 z vy x 0 0
0000 z y x O
000 O0O0 z-y-x
0.0 0000 z y
\0*0 00 00 0 z) , .
Then it can bg shown that . Q : Sy
- R=RFR,

~

The elements of the last column are the coefficients of a spectral factor of S(z). Also note that
1

- 1
b4
A

R-1
V4

(1 & K )RR

is proportional to S(z).

The quadratic form then is




a”RYR,a—2Re(w” (RFR)™ R” R,a) + terms not depending on a
=(R,a~Ruw)"(R,a~R.u)
where we have defined the non-square upper diagonal Toeplitz matrix R~ by
RR =1

The advantage of this approach is that it involves a convoulution of the input sequence and the data
sequence, whereas the use of the Cholesky factorization involves the formation of inner products in which
the coefficients are all different.

{ak} — h(i) —_é—

, W e
h*(-t) 4 R-(2) + sum
‘ T 1 of
_ squares
{ak} ————  R+(2)

Figure 1 Implementation of the maximum likelihood sequence estimator using the augmented
Cholsky matrices R,(z) and R.(z). Ce e

The communications approach is in ternis bf spectral factorization, as follows.

Define transforms as follows i " e

. X

. _ -k

IOEDWR: :

k=1
K

' ) U(z) = Z U, 7k
. - k=1

S(z) = ipkz"‘

=00

Then the likelihood is proportional to the dec coefficient of
2Re{A.(2)U(2)} - A(2)A(2)S(2)

A simplification occurs if the spectral factorization of the folded pulse spectrum is used, thus



S(2) = G(2)G.(2)

The likelihood is then proportional to the dc coefficient of

~[A(2)G(2) - U(z) | G.()1[A(2)G.(2) = U.(2) ] G(2)]
The second factor is just the first written backwards and with the coefficients conjugated.

Now, A(z)G(z) will have coefficients of z*, 22, ... but W(z)=U(z)/G*(z) will have all powers of z. But as
we vary the elements of the data sequence A(z), only the positive coefficients are of interest, and therefore

only the causal part of W(z) is of interest. Thus, the quantity to be evaluated to determine the most likely
data sequence is 4

©o K v, . P
PR 2 :
zlzakgm—k - wml
m=1 k=1
The block diagram is

{ak} —  h(t) D,

h*(-t) | 1/G*(1/z) |—=* orm

3 of
squares

{ak}. — 1 G2

)

Figure 2. The transmltted isa seqnencg/of pulse amphtude modulated signals, whetre the pulse is h(t).

White noise e(t) is added. The receivér determines that set of transmitted symbols that makes the
indicated sum of squares a minimum.

'y

~

Vector channels .

In this case there are M interfering channels, and the receiver signal may be written in the form
. K
y(£) =Y a;h(t—kT) +e(t)
k=1

where h and a are now M-vectors.

The log-likelihood is proportional to




Jiy- i aTh(t —kT)P dt
k=1

and the receiver is to determine the set of transmitted data that minimizes this real number. Neglecting the
terms that don't depend on the transmitted data, this is equivalent to minimizing

>§

—2Re{ aLJ.y(z‘)h (t— kz‘)dt}-l—iiaff h™ (¢~ kt)h" (t — k' T)dra,,
k=1

= k=1 k'=1
X K K

—2Re{Y au )+ > Y a/R(k—k Ja,
k=1

| k=l k=l

where

= fy(zﬁ)fh*,g —kT)dt--

is an M-vector with the outputs of the M matched filters h;*(-t) and the matrix R is given by

k=1 &=l

-2 Re{i a! [ y(t)h' (¢~ kT)at) +iiaf [ B (t=kD)RT ¢~k T)dra,,
k=1

K K

—2Re ia ,}+ZZafR(k——k‘ )a,.
k=1

k=1k'=1

Rk—~K) =j h' (z — kt)h” (¢ - K T)dt

To make further analysis easier, we now extend the set of K M-vectors to a KM-vector. This'may be done
in many ways, but the most logical would be to either group those entries of the same channel, or those
occuring at the same time; we opt for the first choice.

.- IIThus, a is a vector consisting of the K transmitted symbols for the first channel, the K transmitted

sym,bols for the second channel, etc. The vecfor u consists of K outputs from the first matched filter, K
outputs from the second matched filter; gtc. The matrix R is of the form

(r'~A“ A 0 A, AI,M\ e L
KA, Ay A0

R=| 0 A, A; A

A A A A.A

0 0 A Ayy

Each element of the matrix is an K-by-K Toeplitz matrix consisting of the shifts of the pulse correlation
matrices

Ay Uk=k) =B (¢ =KT)h;(t =k T)dt = A, (K =k)
thus

A =A"

it hLJ



If we assume that each receiver is matched to the transmitted waveform for that channel including gain A;,
phase @; and delay T;, and if we ignore the different delays [essentially quantize the delays to a symbol
time], and if, in addition, we assume that the channel filters are otherwise frequency shifted root-Nyquist
filters then the channel responses for QAM communication are given by

Ai'j (k -k ) - AiAjej(‘PJ—(Pi)R(i _])

where R(i-j) is a K-by-K matrix given by the sampled pulse response of the adjacent receiver in channel j to
a sequence in channel i.

In the case of VSB filterbanks the matrices are more complicated.

The matrix R(i) vanishes if i>1, and is a unit matrix if i=_0. So the only complicated portion is R(1)=C and
R(-1)=R¥(1) . The matrix C itself is Toeplitz and if the transmitting and receiving filters are linear phase, C
is also Hermitian. -

Cob e
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APPENDIX 1 REVIEW OF MULTI-USER CDMA

The analysis of multi-user detection systems for direct sequence CDMA starts with an elementary system. It
consists of a M transmitters of binary [{+1,-1}] waveforms using real sequences sy(t) of unit power, real
additive white Gaussian noise. These signals are transmitted through flat channels with gains c,=Vw,, added
together with the noise. The waveforms s,(t) are assumed to be over one symbol only. Hence intersymbol
interferences is not relevant, and it is sufficient to consider the transmission of only M bits, one for each
transmitter, which is considered a vector x with components xy.

A sufficient statistic for the determination of the transmitted bits is obtained by passing the received signal
through M matched filters whose outputs, when sampled, form the vector with components yy. The

- components yy are a linear combination of the transrmtted signal bits Xy, and a set of correlated noise

samples with correlation kmatrix R.

If we define a diagonal matrix C with elements ¢, the channel gain for the kth transmltter, the output from
the matched filters has the log-likelihood function proportlonal to, ..

(y-RCx)"R7'(y - RCx)

’

3

This implies that the best estimate of the transmit sequence based on the received signals y is that possible
transmit vector x which maximizes

2yTCx —xT"CRCx.

This is called the maxzmum lzkelzhood receiver, and is generally considered to be too complicated to
implement. :

The so-called conventional receiver simply looks at the sign of y.

Yet another receiver is the decorrelating receiver which operates with the variables

. d.=R‘1y.' o .- . 3

which is the sum of Cx and a Gaus51an n01se w1th covariance matrix R!; ; the covanance of y, on the other
hand, is R. The lou-hkellhood ofdis - . _

P -

. o
PR

I " - o
(d-Cx)" R(d-Cx)
so the maximum likelihood receiver is based on maximizing

' 2d™RCx-xTCRCx

which is the same as the previous functlon But the decorrelating receiver operates by taking the sign of d.
Thus

X = sign(d).

If we compare the decorrelating receiver to the conventional receiver, the interference from the other users
has been eliminated, but the noise power is increased.

A minimum mean-squared error MMSE detector actually estimates x by taking a linear combination of the
vector y to minimize




(x—Ly)" (x-Ly)




~'Ri_j=r('1-j)=E[Z(i)Z*(]')] circularly complex Gaussian noise - ¥

CORRELATION MATRICES AND SEQUENCES: A SURVEY
W F McGee
10 March 1997
Contract U6800-6-1604

This note summarizes properties of correlation matrices and sequences.

There are two main approaches in the literature: one uses matrices, the other uses sequences. We include
vectors. I am not aware of anything new in this summary.

1. MATRICES

In this work we need the reversal operator » on matrices

A, =A*

*iJ T RHLCH e
defined for scalars (conjugation, vectors, matrices)
(AB)«=A:Bx
A persymmetric matrix satisfies A=A«
Correlation matrix R
This is a Toeplitz, positivg: deﬁnite, Hermitian, persymmetric matrix with the following properties.

There are two main models of random processes, the non-white noise model, and the sum of sinusoids
model.

Non-white noise model

r(-)=r*@ - RO

70)  rly A H-M) )
r) 0 A r=M=D)| (10 ) (Ry T
A A A A _[rM R&J”(rﬁ‘;ﬂ r(O))
r(M) r(M-1) A r(0)

Ry =

S(f) is the power spectrum S(f) real; ndn—negative,
R, = [S(P)e”*™df

Independent sine waves in white noise model

_ 2 j2mh 2
R, —ZIakl "™ + 079,
k




| |

S(f) =Y la 2 8(f~ f)+0”

Linear Prediction

The Generalized Yule Walker equations are
P,
R 0
a,, =
M+1"M A
0

leading coeffictent of a,, is 1.

L ,'1,
Ay = —'w

() Y 1N _(rO)-rif Py
RMHaM_[’M RMJ(_f)—(rM_Rij—(O)

The backward prediction problem is the vector ay+ which satisfies

the solution of

Ry =

0
A
0
By

Order update solutions

Levinson-Durbin

with
| o Pyt + Baid Gagre
R q. = Py _ Ry Ty Y@y B r(0) rnf 0 _ 0
MM 0 re O 0 " r, Ry Naya A
A r!tf*aM—l + By Py

thus




N R 4

N

— H .
B= Ty [ Py

Py = PM—I(l_lﬁMlz)

Solution of Levinson equations

Levinson equations are of the form

RiraX et = Yara
We assume that we have a solution to the linear prediction problem and the solution to the equations

RyXu =Y
where yy is the first M elements of yy. Then,since "

Yar )_ (RM - )(xM n 5)%') ) ( 3+ R, %, + 1 px(M+1) )

Ry iXpry = = i
M1 %M1 )’M+1, (y(M‘*' ) rh O\ x(M+1) Xy F 1o, + r(0)x(M +1)

this implies that

8, = —x(M+1)f.

H
Xy

x(M+1) =~
M
solving the problem.

Trench algorithm for inverse Ry

The algorithm assumes that we have the solution of the linear prediction problem.

a

“Since s - -
A 1
v Ry Ry, =1 ’, N
“ll . ¢ -_‘_—'_’:_
S ARy Rype = 1 .
" and
Ryps =Ry )
thus
(Ry). =Ry,
i.e., Ry is persymmetric.
Let
R B v
M+l T VH 'Y
then



P
4

e . ” =
- -

P (B vj_ Ry ne B v\ (RB+r.wv" Ry+mu.) (Iy O
Ty ) e rO VT y) B+ O riv+p0)) L0 1
Consequently,

= -————fM* .

P,.
y=1/P,

v

This in turn requires that

H
po gt o Jufi
PM

and ' T r
H
B _R-—-l_l_foM
= LKy

M 3
which means that we can eliminate the inverse correlation matrix and determine that

B p, 4 Juu _ Fufi
PM PM

By using the persymmetry in Ruea”! and these relations for the reversed matrix, the whole of the inverse
matrix may be calculated. Consider a 6-by-6 matrix. We know the 6th row and column by the formulas for
v. Using persymmetry of Rumst™, we know the first row and column. This allows the calculation of the 5th
row and column, using the relation for B. This then gives the second row and column. Using the
relationship for B we get the fourth row and column, for RMM'1 the third row, and we are done.
Consequently the order of calculation is columns 6,1,5,2,4,3.

ut

As Golub [3] points out, only the upper quarter needs to be calculated for a persymmetric Hermitian matrix. =~

If we have access to all the predictor polynomials then the inverse matrix is given by

Y
N

'RJ;M = R;Il 0 -|-—aM*a1{:1{:. . ;—'?;t:f
L 0 O P,

which is an explicit writing out of the Cholesky decomposition of the inverse of the correlation matrix

R'=UuD'U?=1ED'L.

Spectral factorization



As noted above, the elements of the correlation matrix are the Fourier transform of the Spectrum. Letting

Sy (2) =

M

= =M

M
S,z =Y s, ()
k=0

M
S_(9) = Es:zk
k=0

Do)z =8, (z™)S_(2)

Bauer shows that the spectral decomposition may be performed by finding the Cholesky decomposmon of
aa matrix which becomes larger and larger as follows

r0) r(=1) r(-2)

P  r0) r(=1)

r2) 1)  r0)
0 2 )
0 0 r(2)
0 0 0

When the spectral factorization has been accomplished then the correlation matrix may be written as the

0

r(=2)

r(-1

)

r(0)

r(1)

r2)

where x indicates an unknown; we are only interested in the last row of the first matrix.

product of two Toeplitz matrices as follows

5,0
RM+1 = 0
0

s, 5,2
5,0 s, (1)

0 "

’

"

1t

‘.:5:+.(u0) '

0 0\ (x
0 0 || x
r(=2) 0 x
H=1) r=2)| |0
r0) r(=0D 0
r(l)  r(0) 0

0
s, (2)

Eigenvalues

Let the eigenvectors of the correlation matrix be g;. Then

'

Rq, = 2'iQi

0

0

0.
s, (1) 5,(2)

O % B M O
H N R OO

“ % © C o

0 =x

si (D)
5.(2)
0
0

X

- (s5(0)

" © © o ©

o o o o o

©O OO O O u

x)

0
s+ (0)
s, (D)
s, (2)

. 0
’ .
.

O O O O v o=
el ool R TR

0o )

0
s, (0)
5. (1)

55 (2)

O O ® O ® B O

O ® H xR O O

The eigenvalues must be real and positive, since R is positive definite [and Hermitian]. If the eigenvectors
are unit-normalized, then the square matrix of eigenvectors Q given by

is unitary and

and

Q=(ql g, A qM)

R=QA0" =} Li4:4]

¥ x® O O ©




H
R-—l — QA—IQH — z qfl
Since
Rq. = A,q,

an eigenvectors must be a multiple of itself backwards; typically they are the same or the negative of each
other.

Since
1
0
Ryay =Py Al
0
. 1 .
H *
g4 |0 9.4,
aw =P 25 ) TR
0

and ay- is the same sum but with a weighting equal to the last element in the eigenvector.

The eigenfilter associated with an eigenvector is

0@=(1 z' A D),

H
and the conjugate filter is

0.(2) = ‘]iH ((1 ZA | ‘ZM'+1) = M- (1 ‘z—l.- A z—(M—l))qi*

The eigenfilters with the smallest and largest eigenvalues have their zeros on the-ynit circle.
The zeros of the eigenfilter with the srnafl_'est eigenvalue are associated with the frequencies of sinusoids in a
decomposition of a random process into sine waves and white noise. The eigenfilter with the largest
eigenvalue maximizes the signal to noise ratio for a signal with correlation matrix R and white noise; its
zeros are where the signal is not.

. 1
Since

r(n) = [ S(f)e*™df

it follows that

Ae = Ra, = 35, =94, = [ Y,05,40,6™ S = [10,7 P S(raf

and since



- NN Em s

1=gq, = [10,(”)W &f
it follows that

Smin < /lk < Smax

where Spin and Sy are the minimum and maximum of the power spectrum.

The argument that the zeros of the eigenfilter of the smallest eigenvalue are on the unit circle is the

following[4]. Let U be an eigenvector, and let the zeros of the eigenfilter U(z) be determined. Suppose that

there is a zero off the unit circle. If they exist, they must occur in mirror pairs. Then create a new
polynomial U’(z) with the same zeros as U, but with the zeros inside the unit circle reflected to those
outside, i.e., replace z with 1/z*. Then form the polynomial with these zeros, and a corresponding vector
U’(z). The magnitude of this vector is normalized to unity. Then U"MRU” is the same as UMRU. But U is
the minimum eigenvector, and, if its multiplicity is one, this means that U and U’ must be proportional,
since the eigenvectors are unique to within a scale factor. Thus, the zeros must all be on the unit circle.

o,
This argument also applies to the maximum eigenvalue, but not to any other. The reason is that although
U’FRU ¢ and UHRU have the same value, one is an eigenvalue but the other is not necessarily an

eigenvalue.

2. USE OF CORRELATION Z-TRANSFORMS INSTEAD OF MATRICES.

The theory may be usefully interpreted in terms of z-transforms. These are useful because the Toeplitz
nature of the correlation matrices in inherent in this formulation, and we may deal with familiar transfer
functions instead of vectors.

Let X be a stationary sequence of zero-mean circularly complex random variables. {x(i)}. The z-transform

of X is ) .

X(2)= ix(n)Z‘" .

¢ n=e—oo

The autocorrelation function Ryx(z) is d’éﬁn_ed as

: EM(Z) = E[X(2)x*(0)] ,

Since

H=~o0

, Ry (2) = D ryx (m)z™
we have

Tig (1) = 1y (—11)

and define the power of the sequence as rxx(0) which is real and positive and larger in magnitude than all
the other correlation coefficients ryx(n).



There is an alternative understanding of an autocorrelation function. Suppose that X is a sum of sinusoids of
random phase, amplitude Ai, and frequency fi, and white noise. Then rxx(n) is given by

M
Py (R) = X’IAL,I2 e + NS,
k=1

and

n=—oco

M I
Ry @) =Ny+ Y, YAz
, k=1
and )

M
Ry (™) =Ny + Y |AL8(f = f,)
. k=l S

ol

In general, for two sequences X and Y we define the crosscorrelation as
Ry (2) = E(X(2)y *(0))
If Y and Z are filtered versions of the same sequence X with transfer function G(z)'land H(z) then

Ry (2) = G(@)Hu(2)Ryy (2) @)
where H*(z) is H(z) with-its coefficierits conjugated and z replaced with 1/z. Thus

G H.(2) = Y, g(mz™" Y h*(m)z" = 27" ™ g(m)h*(m) = Y,z gm+r)h* (m)

m rr.n

‘.

Then s - ' .

E[Y(2)2* ()=

EEY, ) @)

S—mla

n=—oo

= i Z"“ ig(n——m)x(m) ih*(_r)x*.(r)

— e b
-y z—"'m_i_ gn=m) Db (e (1)
= nfz“"rm—(m + r)é(n tj)h *(m)
= Ez'"r,m (n—9)g(s+mh*(m)
= 'g(nz)H (2)Ry« (2)

In particular, if Y=GX

8




Ryy (2) = G(2)G.(2)Ryy (2)

Since the power of FX — AX is positive, we must have

2
1P, 2 <

Py Prex

The power spectrim is defined as

Sy(f) =R (e*™)
and is real and positive on the unit circle.

Also note that Hx is the conjugate of H on the unit circle;i.e., H* is the analytic continuation of the
conjugate of H off the unit circle, i.e., :

H.(e™) =[H(6W n*.

Predictor polynomials.

The forward predictor polynomial Fu(z") of order M is defined as that polynomial of order M in z* with
the coefficient of z° unity which minimizes the power of FyyX, called the prediction error power.

As an example, the first order predictor may be written 1+a,z” and the prediction error power is the z°
coefficient of '

(I+a,z7)Y(1+a,2)Ry (2)
ie.
(IHa,?)r0) + r(Da, +r(-a,

-which is minimized when . .

a

" . R,

a, =-—
r(O) . =
and the prediction error power is " '?5 Jan B S
e r(1
=) -2 - p - ()) .
r(0) r(0)

The crosscorrelatlon between X and the prediction error sequence FiX is Fi(z"Ryx(z) and the coefficient
of z' vanishes since it is

r() -

rgl) #(0) =0

and in general the coefficients of z"' to z™ vanish for the crosscorrelation of the prediction error sequence

of order M and the sequence being predicted.

This general result follows because the power to be minimized is the coefficient of Z° of the autocorrelation
of Fy(z1)X(z), i.e. is the coefficient of z° of Fys(z)Ey(z") R(z). By taking partial derivatives with respect



to conjugate of the filter coefficients , this means that the z° coefficient of Fy(z)R(z)z" is zero, for
k=1,2,...,.M. But this then means that the coefficient of z* of Fyy(z)R(z) is zero, as stipulated.

The backward predictor polynomial is defined as By(z) and is a polynomial in z with coefficient of z° equal
to unity which minimizes the power of By (z)X, called the backward prediction error power. Since

R.(z)=R(z), the backward predictor is the conjugate of the forward predictor, i.e., By(z)=Fys(z™), and the
coefficients of z to zy; of By(z)R(2) vanish.

r(n)

HEEEEEN i

L]
21 01 23 45

Figure 1 Correlation coefficients

-1
Fplz R(z)

IRERE N

J

..-2-1 01 2 3 45

Figure 2 The forward predictor Fpi(z)) annihilates coefficients of FM(z'l)R(z)
et

B (2)R(z)
i
g
L T
.21 01 23 45

Figure 3 The backward predictor By(z) annihilates some coefficients of By(z)R(z)

The forward predictors may be derived using the Levinson-Durbin algorithm which has a simple
explanation using these figures. The annihilate the M+1 st coefficient, simply take FM(z-1)R(z) which has

10
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-In particular

M zeros, and the M+1st coefficient is x, say. Then subtract (x/Py)z ™*B(2)R(z) which has zeros at
1,2,....M, and where PM is the coefficient of z° of Bu(z)R(z) [and Fi(z )R (z)]. Thus
Fu@Y=F,&"~T,z "B, (2)
P, =P, (T, *)
coefficient of z7™*™) of F,, (z ™ )R(z)

T, =
M PM

Other statistical properties of forward and backward predictors may be obtained by noting that polynomials
of lower order operating on Fy(z")R(z) , in particular the predictor polynomials, still leave some zeros, and
these may be interpretéd using Equation 2as crosscorrelation properties of prediction error sequences.

If only the reflection coefficients must be calculated fr<.)m the correlation coefﬁcients, the Leroux-Gueguen
technique is preferred and works directly with the variable of FyRxx; defined as Hy(z"). We have

Hy,@)=H,(z)- FMZ_(M“)BM (2)R(z)
= Hy,(z )-Tyz ™ [F,(zR(@)).

= HM (Z) - FMZ_(M+1)HM* (Z)
Thus

the coefficient of z3, h; 1s-governed by

h’j.M-H = h’j.M - l_‘Mh'M—~j,M
that is

h'j, 1 M-~1 F hM—l-—] M-1

o - < e

hM My = O”_""hMM =T h;M

0M+1""h‘0M FM MM" o (1= IF IZ) o LT
hM+1_Of6¥’1<J<M

J

If up to the Nth reflection coefficient is required, then the indices on h vary from -(N-1) to N, and initially
hy=R. These coefficients are bounded by the square root of PPy, and are thus less than Po=r(0).
. i

The analytic properties of predictor polynomials follow by cons1der1nv 2! Fyg(z') which is a polynomial
inz. An apphcatlon of Rouche's theorem shows that Z""'Fy,1(z!) has as many zeros inside the unit circle as

2 Bz =2z Mz ! )..Since Fo(z ) has no zeros inside, F; has one, etc. and Fy has M zeros inside the
unit circle, as long as the reflection coefficients are less than unity in magnitude. That requirement follows
because prediction error powers cannot increase as M i mcreases If we consider M approaching infinity,
then all the coefficients of z' vanish in the product Fy(z YR(z), and we label this

11



1 lim

— -l .
S+(z—l) M-—-}ooFM(z )/"/FM—

1 lim

5@ Mo O P =

+*( —1)

"and if we then determine the backward predlctor polynomial that annihilates all the coefficients of power of

7, we are left with on the coefficient of z°.

1

— . R)=1
S, (z”1 )S_(2) 2

which shows that R(z) has been decomposed into the product of a forward and a-backward prediction
function, but probably not a polynomial. There is a [afge-literature on determining these spectral factors.
In statistical theory we say that two sequences are orthogonal if the coefficient of z° in the crosscorrelation

is zero. From equation 2this means that two sequences H(z) and G(z) are uncorrelated if the coefficient of zg
of H(z)G+(z)R(z) is zero. Define the sequence

by = z~¥BM ()X
Then by and by, are orthogonal, k=0,...,M-1since the coefficient of 70 of

2B, (2)2" F . (z")R(2)

is zero unless k is M when the crosscorrelation is Py.

Robinson and Treitel deal with two other properties of these sequences. The first is to recognize that the
coefficient of zN of FN(z-1)2R(z) is the prediction power times the negative reflection coefﬁment

~Therefore they associate the reflection coefficient with the correlation coefficient of Fn(z’ YX and 7

NBn(2)X, the forward and backward predlctors

e
,\

They also consider the problem: of all correlation functions, with the first N correlation coefficients fixed, )
which set produces a prediction error that is maximum. Their conclusion is that itris the set of coefficients . ~=Z;
with vanishing reflection coefficients fOF;zK>N resulting in a predlctlon error of Py. Since maximum
unpredictability corresponds to maximunt & entropy, they call FN(z™") the maximum entropy filter, and
P,
S n (0) = ——H——
MEM —

, |Fy, ()P
is the maximum entropy estimate of the spectrum of the process of order M. As M approaches e the power
spectrum and the maximum entropy estimate are the same.

Eigenfilters

The minimum eigenfilter associated with the random sequence X is that causal filter E(z") of unit energy
which minimizes the power of EX. Such a filter thus minimizes the z° coefficient of E(z")Es(2)R(z) with the
70 coefficient of E(z1)E«(z) set to unity. By taking partial derivatives of the Lagrange multiplier formulation
of this minimization problem, we determine that E is proportional to RE for the coefficients of z° to 2™,
where K is the order of E(z™).

12



There are K such polynomials satisfying ER=AE over the coefficients of E (and undefined outside this
range); they are the K eigenfilters. The K eigenvalues Ay are real and non-negative, and are in the range of
the power spectrum S(f).

Since R(z)=R«(z), if E(z"") is an eigenfilter then so is z¥E*(z) with the same eigenvalue as E, and if the
eigenvalues are distinct, then E(z") and z®E*(z) must be proportional to each other, and the constant of

proportionality must have unit magnitude. With a suitable choice of constant multiplier, the eigenfilters are
conjugate symmetric, that is, linear phase, with

E.(2)=z"E,(z)

The choice of the suitable constant multiplier is needed because antisymmetric ﬁlters with the proper
ch01ce of multlpher are symmetric. For example 1-z° has conjugate 1-z=-z(1-z), but
j (1-z"Y=z"'(-j+jz) is conjugate symmetric. .

The zeros on the unit circle of the minimum polynomial will tend to be at the maxima of S(f) and the zeros
of the maximum eigenfilter will tend to be at the minima of the spectrum S(f).

If the minimum eigenvalue is zero then RE is annihilated for z° to 2. Thus the minimum eigenfilter is also
the forward predictor of order M; and the prediction error is zero.

As the minimum eigenfilter becomes longer and longer, it will tend to approximate an impulse at the
frequency of the minimum of the spectrum S(f).

If we plot the convolution of the eigenfilter with the correlation sequence, the middle portion over the extent
of the eigenfilter tends to be large for the rnaxirnurn eigenfilter and small for the minimum eigenfilter.

Thus, the maximum e1genﬁlter is rather related to a matched filter, and the minimum eigenfilter to a
prediction filter.

Yule Walker

a, =| —-05333 | P, = 0.75%224 /225
0.0667

To find spectral factorization set a=[1 0.5 0.2]
and successively compute

13



a=[a 0]

chol(toeplitz(a))

using MATLAB

and take the last column.

S, =0.8577+0.4853z™" +0.23327

13393  -0.7143 0.0893

R =|-07173" 17143 -0.7173
© 1 0.0893 -0.7273 13393
3. SEQUENCES OF VECTORS

Since all that is needed is a definition of correlatlon, we may use vectors of matrices, and define correlation
in terms of VUY, where H represents complex conjugation.

Thus let X be a stationary sequence of zero-mean circularly complex random vectors {x(i)}. The z-
transform of X is

X(2)= Y x(mz™

n=—oa

The autocorrelation function Ryx(z) is defined as

R4 (2) = E[X(2)x" (0)]

Since

at

Xx(z) = erx (m)z™"

n==—ca

we have R
) H
Ty (M) =T (=n).

Define the power of the sequence as the trace (sum of diagonal elements) of rxx(0) which is real and
positive and equal to E(x™(0)x(0)), and

1 Tr(xy (m)I* < Tr (g, (0)12.

In general, for two sequences X and Y, define the crosscoirelation as

ny ()= E(X(z)yH (0))

If Y and Z are filtered versions of the same sequence X with transfer matrices G(z) and H(z) then

14



R,(2)=G@Ry()H.(z) - )

where H*(z) is H(z) with its coefficients Hermitian conjugated, z replaced with 1/z.

Then
E[Y(2)z" (0)] =

B Yy ()]

n==o

= i ™" i g(n —m)x(m) ix” (rh” (-r)

n=—oo m=-—oo"

=3 7" Satn—it) ¥ ey (m= ()

n=-e J=—00

= Y 281ty (m+ b (m)

m.r.an

= zz"‘g(s +m)r, (n—s)h" (m)

ms\n

=GRy @H.@) ‘

In particular, if Y=GX
Ry (2) = G(2)R 4 (2)Gu(2)

With scalars, the power in a signal is equal to r(0). With vectors, the power of all the signals is equal to the

trace of the correlation matrix at time Q; thus, the trace will appear. This follows because

a

ETX(0)" XOI=ELY, % (0% (O] = 3, R;(0) = TH{R(O)]

This also follows form the relationsHi'p"'ti@ if'AB is square, Tr(AB);=tr(BA).

If A is a square matrix, then the expectation of x"Ax is

E(x"Ax) = Tr[AR(0)]

and
E(X?AX) = Tr{AR]
Since the power of FX — AX is positive, we must have

Tr F.FR]— X Tr[F.R] - ATr[FR]+ AX Tr[R(0)]
| Tr(FR)? £ Tr[F.FR]Tr(R)

where all traces are over the elements that are the coefficients of z°,

15



The power spectrum is defined as

Sx(f) =Ry (™)

and the diagonal terms are real and positive on the unit circle.

Predictor polynomials.

The forward predlctor polynomial Fy(z’ ") of order M is defined as that polynomial of order M in 2’ ! with
the coefficient of z° unity which minimizes the power of FyX, called the prediction error power.

This general result follows because the power to be _rninin}ized is the coefficient of 7° of the autocorrelation
of Fu(z)X(2), i.e. is the coefficient of 20 of Fiu(z! Y R@2)Fas(zh) /By taking partial derivatives with
respect to conJuoate of the filter coefficients , this means that the z° coefficient of

Fu(zHR(2)z" is zero, for k=1,2,...,M. But this then means that the coefficient of z" * of Py(z)R(2) is zero,
as stipulated. :

For example, with the coefficient of z” vanishing, we have, for the first order predictor

R(1)-F(DHR(0) = 0
F(1) = RORO)™
F=I1-RORO)'z™
B=I-R(0)"R(-1)z

The backward predictor polynomial is defined as By(z) and is a matrix polynomial in z with the coefficient
of 2° equal to the unit matrix which minimizes the power of X By(z), called the backward prediction error

“power. Since R~(z)—R(z), the backward predlctor is the conjugate-of the forward predictor, i.e.,

Bu(z)=Fy+(z), and the coefficients of z to Mof R(z) B(z) vanish,
After anmhxlatlon up to degree M, the matnx coefﬁcxent of 2° is denoted Py. The i:race of Py, is the forward .
(or backward) predigtion error. L —_ e e

©r(n)
AR EREEEE
.-2-1 01 2 3 4 5

Figure 4 Correlation coefficients
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Foiz )R(2)

\4

o

..=2-1 0 1 2 3 4 5

Figure 5 The forward predictor Fy(z™) annihilates coefficients of FuzHR(z)

R(z)B 5(2)
AR
21 01 23 45

Figure 6 The-b:ackward predictor By(z) annihilates some coefficients of R(z) By(z)

The forward predictors may be derived using the Levinson-Durbin algorithm which has a simple
explanation using these figures. To annihilate the M+1 st coefficient, simply take Fu(z)R(z) which has M

-zeros, and the M+1st coefficient is x, say. Then subu'act xPM-'lz’(MfD R¢z)B(z)which has zeros at 1,2,...,M,
and where Py is the coefficient of z° of R(z) Bu(z)[and Fy(z )R(z)]. Thus

Fira ™) =.i?M (z™)- GMZ_(MH)FM* (z)
Py = (F=E TPy o
T, = [coefficient of 7~ of K, (zYR(z)I,,™

Other statistical properties of forward and backward predictors may be obtained by noting that polynomials

of lower order operating on Fy(z-1)R(z) , in particular the predictor polynomials, still leave some zeros,
and these may be interpreted using Equation 2as crosscorrelation properties of prediction error sequences.

If only the reflection coefficients must be calculated from the correlation coefficients, the Leroux-Gueguen
technique is preferred and works directly with the variable of FyyRxx, defined as HM(z'l). We have

HM+1 (Z) = HM (Z ) - FMZ_(MH) [FM (Z—l )R(Z)]*

=H,(2)-G,z " H,.(z)
Thus

the coefficient of z3, h;n is governed by

17




*

hj,M+1 = hj,M - FMhM—j,M
that is

h M= h joM=1 -T —th—l—j,M—l
In particular
h =0=h,, —-T,hf
M, M+1 My~ Lutlom
H H
hg yra1 = ho s — Doy ae = A=Ty Lyl = By

h,yy=0forl<j<M

If up to the Nth reflection coefficient is requirea, then the indices on h vary from -(N-1) to N, and initially
He=R. ST

PP

As before, define

lim _
S =y TR

lim -
S.@7" =, _Bu(yF,~

and if we then determine the backward predictor polynomial that annihilates all the coefficients of power of
z, we are left with on the coefficient of z°.

S.@")"R@S.(7 =T .
R(2)=8.(z")S_(2)

which shows that R(2) has been decomposed into the product of a forward and a‘backward prediction
function, but probably not a polynomialj‘z;[,here is a large literature on determining these spectral factors.

‘We have impolemented a program to 'do this[5].

In statistical theory we say that two sequences are orthogonal if the coefficient of 20 in the crosscorrelation
is zero. From equation 2this means that two sequences H(z) and G(z) are uncorrelated if the coefficient of
20 of H(z) R(z) G+(2) is zero. Define the sequence

. -M
b, =z7"B, (X
Then by and by are orthogonal, k=0,...,M-1since the coefficient of 2 of

zMZ*F, (z7)R(2)B, (2)

is zero unless k is M when the crosscorrelation is Py.

Robinson and Treitel deal with two other properties of these sequences. The first is to recognize that the
coefficient of z™ of Fn(z")*R(z) is the prediction power times the negative reflection coefficient. Therefore
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they associate the reflection coefficient with the correlation coefficient of Fn(z™)X and z™By(2)X, the
forward and backward predictors.

As to eigenvectors, one approach is to consider the vector

M=1
H(z) =Y H,z™*
k=0

M-l

H.(z) =Y H}z*
k=0
and minimize the dc coefficient of the scalar
H.()R(H()

subject to the dc coefficient of TR

H.(2)H(2)

being fixed.

These lead to equations of the form

r(0) r(-1) A r(=(N-1)Yh©O)) (h©)
M 10 A r=(¥-2) | D) | _ k)
A A A A A A
r(N-1) A 10 h(n) h(n)

Another approach would be to consider H as & maftix polynomial;tnd minimize the trace of the dc- T

coefficient. RE
AY
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APPENDIX 2 MARKOV DETECTION

Here is a short review of the theory [1,2] of Markov detection. It covers Viterbi and least-error-bit-
probability detection.

Assume that there is an underlying Markov process with M states u, and associate with each transition a
known output x. Because of the Markov property x, depends only on the states u,.; and uy, and is
stationary. The received signal is z=xX,-+ny, where ny is uncorrelated Gaussian noise. The problem is to
determine the sequence u={ugp,u;,u;,...ux} of Markov states from the received sequence z={2g,21,...,2x } . Let
ug* represent the subsequence states from time O to time k.

The joint probability P(u,z) satisfies

-1 - K~1
P(u,z) = P(u)P(zlu) = P(u)f[ Pz lug,u,_ )= ﬁP(uk+lluk )H P(z\u,,u,_,)
: ' k=0 k=0 .. k=0

A given transition is assigned a length A(u,uy.1) given by

Ay, u,_)) =—=In(P(uy,u,_)))—In(P(z, \u,,u,_, ))'

so that

—In(P(u,z)) = Zk(uk: Uyy)

The quantity -In(P(u,z)) is the likelihood function, i.e., the length of the path. The expression above states
that the length of the path is the sum of the length of the individual links in the path.

The prototype problem is as follows. The beginning and end states are known. A sequence is received. The

intermediate states are to be estimated. The probability of error is also to be determined.

n NS

The Viterbi algorithm determines the most hkely sequence It does this by proceeding, in time, to find those
sequences which were most likely to- havé led to all the states, and their likelihood; these sequences are
called the survivor sequences. The procedure is then repeated for the next time, mak.mg use of the
previously determined most likely sequences termihating in a partlcular state. Thus, at any time k, it is only
necessary to remember the M survivor ségﬁences

There are other algorithms for these problems. Let yjk represent the output sequence from time j to time k,
inclusive, and let & represent the pair of states (U, Uy41), i.€., the transitions. Then another approach
calculates the state and transition probabilities P(u,lz) and P(€,Jz)m, allowing a variety of performance
measures to be optimized. This calculation is done as follows.

Firstly, it is more convenient to use the probabilities without conditioning. Three intermediate probabilities
are used. These are

o, () = P(uy 2o )
ﬁk(uk):P(zi»{luk)
Vi Whoysiy) = Py, 2, luy )



P(u,,z) = P(u,,z¢ Y P(zilu,,zg ")
= P(u,,z8 " )P(zFu,)
= ak(uk)ﬁk(uk)

since the outputs z&, given uy, are independent of the earlier outputs.

Also

P(C,2) = P(uy,uy,,,2)

&1 k K k
= Py Zg )Pty 2 U4 20 ) P(Zp | Uy Uy Z)

=P(uk,z’5" )P(ukﬂ’Zkluk)P(z{-(HlukH)

=0, (U, )Y Uy U ) B k.(u;c+1 )

o

The three unknown are computed recursively by

0 () = z Oy (W)Y o (1)
ey )
using forward recursion, with the values for k=0 assumed known,

Biluw,)= z B it (e )Y g (s )

- LY
using backward recursion; and.

¥, Wy tty) = ZPr(ukluk_l)Pr(xkluk_l ,u, ) Pr(z,1x,)

Xt

or

Y, W) = P,z luy )= P(z,\uy,u, " ) P(ulu, ).

More details also appear in [3]. "y

REFERENCES i e

. ~ J .

1. G. David Forney Jr., “The Viterbi Algorithm”, Proceedings IEEE, Vol. 61, No. 3, March 1973, pp. 268-
278.

2. L. R. Bahl, I. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing
Symbol Error Rate”, IEEE Transactions on Information Theory, Vol. IT-19 , No. 2, March 1974, pp 284-
287. ' i

3. R. W. Chang and J. C. Hancock, “On Receiver Structures for Channels Having Memory”, IEEE
Transactions on Information Theory, Vol. IT-12, No. 4, Oct. 1966, pp. 463-468.




POLYPHASE FILTERS FOR COMMUNICATIONS EW SYSTEMS
W F McGee
10/03/97 2:05 PM
Contract U6800-6-3505

ABSTRACT

This note is a short investigation of the use of filterbanks for spectrum analysis for an application described
by Inkol[1]. After reviewing filterbanks and windowed FFTs, we determine that they differ only in that
filterbanks tend to use Nyquist, or root-Nyquist prototype filters, which eliminates the picket-fence effect, at
then expense of filter length for a given stopband suppression. With root-Nyquist filters, a quadratic output
appears natural; full Nyquist filters would tend towards envelope outputs.

For realization, the use of polyphase filterbanks is a desirable feature, since they are very efficient. It may
be beneficial to do the polyphase processing after the FFT, and this is discussed. But their use is
independent of the use of windows or Nyquist filters.

tod .

Wavelets are analyzed for this application, but they are not attractive, since the frequency channels are
linearly spaced.

Finally, we include an estimate of the total delay that would be suffered by typlcal lmear phase, equiripple
stopband prototype filters.

0. PERFORMANCE OF SPECTRUM ANALYZERS.
In our minds we have a picture of the time-frequency plane, with a positive function of time and frequency,

unfolding in time. But there is no universal definition for this intuitive concept, and therefore the application
drives the tools. i

This is commonly displayed using a waterfall plot.
burst of sine wave

impulse

/<//\67::5Y;;\;:7:§, AR

frequency .
Figl;re 1 Waterfall plot of the time frequency plane.

past

time
present

Issues include
-response time
-spectral leakage
-output sampling rate
-picket fence effect



1. ANALYSIS/SYNTHESIS FILTERBANKS AND SPECTRUM ANALYZERS

A spectrum analyzer measure signal power spectrum in time. A common spectrum analyzer passes the
signal to a filterbank, and takes the instantaneous squared magnitude (or perhaps the envelope) of the output
as an estimate of the power spectrum. .

Analysis/synthesis or synthesis/analysis filterbanks are used in signal processing and communications. The
analysis filterbank expresses an input signal as a linear sum of signals, each of which has a restricted
frequency response, where the frequency response is characterized by the filterbank filter responses. A
synthesis filterbank, on the other, combines signals together to form an output signal.

In an analysis/synthesis filterbank (first analyze, then synthesize) it is useful if the back-to-back cascade

results in an output signal that is the same as the input. Similarly, it is useful if a synthesis/analysis

filterbank cascade results in a set of signal that is unchanged.

If we focus attention on the filters, a block diagram may be made.

:

Analysis Synthesis

_Figure 2 Each block is a filter. The four filters in the analysis filterbank generate four channel signals

from the composite input signal; the synthesis filterbank genefates a composite signal from the four
channel signals. Often the frequency response of the two corresponding filters in the analysis and
synthesis filterbank are matched to esch pther, with the same magmtude frequency response, and
opposite phase frequency response.

o
'u

, I
Analysis .
Figure 3 One implementation of a spectrum analyzer. The squared magnitude of the output signals
are used.
2



If we consider the requirements on the filters, it is useful that the sum of the filter responses is a constant,
and also that the sum of squares magnitude responses is constant in frequency.

T —
—1—

Analysis . o Synthesis
Figure 4 Another implementation of a spectrum analyzer. The magnitude of the output of the cascade
of corresponding analysis and synthesis filters used. In this realization the sum of the four outputs is

equal to the input signal in a good analysis/synthesis filterbank.

(o — e
m — 6 ] | —[eeHs —

H4 G4 |——0o G4H4 —

Analysis Synthesis . . Analysis

R
Figure 5 The filter responses may be combined.
2 NYQUIST FILTERS AND HALF-NYQUIST FILTERS L

Most filterbanks are based on a lowpass p"r_ototype filter, a Nyquist filter N(z), or a pair of prototype root-
Nyquist (sometimes called half-Nyquist) filters H(z) and G(z) such that H(z)G(z) is a Nyquist filter and H
and G have the same magnitude response on then unit circle. If there are M channels, the Nyquist filters is

called an M-band (or Mth band) filter has all the coefficients at times kM from the center coefficient equal
to zero. ! :

This requirement in the pulse respornse ma-y be interpreted in the frequency domain, and the sum of
frequency shifted (by k/M) versions of the frequency response is a constant, usually set to unity. Thus

zN (e/®*™!My = constant
k
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¢

frequency

Figure 6 A set of translated Nyquist filters sums to a constant, is positive, and crossover at the 6-dB
frequency.

For low-pass filters that cutoff before the frequency 1/M, this means that the loss at the frequency 1/2M is 6
dB.

This in turn 1mp11es that the loss of a half Nyqulst prototype ﬁlter at this frequency is 3 dB with respect to -
the loss at 0 frequency

If we use a root-Nyquist based filterbank, it makes sense, it seems to me, to take the squared magnitude of
the filter outputs, since, with fixed-magnitude but variable frequency simisoidal 1nput the sum of all the
outputs is a constant as the frequency is swept about the unit circle.

On the other hand, is we base the design on a full-Nyquist prototype filter it would seem reasonable to me to
take the (unsquared) envelope of the filter outputs to represent the spectrum equalizer output, and the sum
of all the envelopes is a constant with a variable frequency sinusoid sweeping across the band of the
spectrum analyzer.

3. FFT-BASED FILTERBANKS

“Because of the great efficiency of the FFT, there is. tremendous intérest’in using this signal processing

approach to frequency selection, and to generalize it in many ways. We are going to concentrate on the
frequency response of these filterbanks, and for that purpose it is useful to draw the typical FFT processor
in the following block diagram.

4 Y
' e . N/
B WV
- DFT IDFT
-1
Z
— \/
\/
- A4

Figure 7 A representation of the usual application of the unwindowed DFT filterbank putting the
delays explicitly in view.
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The transfer function from the input to the first channel output is

N-1 l_Z—M
PR)=> 2" ==—=
5=0 l—Z

and to the other filter outputs, for k=1..M, are

P(W*'z)

where
W = g=i2mM
and the various frequency responses are simply. those of the lowpass P(z) shifted around the unit circle.

The first generalization is the concept of windowing, svhete weights are included in the input arms, as
follows

— WO ' ‘w0

> H
N w d \4

Tt - N
Y
> — —>,

— _| —>

DFT IDFT
-1
Z V¥
> | |
, h\
S - >
w .
M-1 | -
) w
Tt , u/‘l -1
Figure 8 The first generalization is to include weights wy, wy, etc. on the ihputs and/or outputs. ~=i,
."'-;',‘;g[ e oy
i

This gives a frequency response

M=1
P(z)= Zwsz_s

! s=0

The synthesis filterbank responses are s‘hii;ted versions of the prototype polynomial P*(z) given by
M=l
P* (Z) = EZ st—l—: ’
5=0
that is, P(z) with its coefficients written backwards.

The extension of this idea is to use weights that are polynomials in zM. This is the basis of Bellanger’s
polyphase expansion; given any H(z), form the polyphase expansion
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M-
H(z)=Y z"H,(z")
§=0

and set the weights equal to Hy(zy); this allows any frequency response.

If the only technique available is a windowed FFT without the delays required for a polyphase FFT, then
one approach is to use an FFT whose size is the same as the length of the prototype filters, and weight it
with the prototype filter coefficients, and throw away many of the output values.

4. WINDOWING

The use of windows to improve frequency response is common in spectrum analyzers. This is usually
presented by noting that the use of the ordinary-FFT with all the weights equal to unity is like a convolution
with a time function that is a square pulse, and that thls is reason for the poor frequency response. If we take
the filterbank approach then the polyphase representatiot: of the synthesis filterbank is not useful, because
the summing operation is built in. The idea then is to combine the analysis and synthes1s filters in one
branch as one filter, and simply use this in the polyphase structure.

Consequently, the windowed DFT has the following block diagram.

Wo
> —

27 z > __
271

DFT

2] LW_N)L L

Figure 9 Windowed FFT spectrum analyzer The squared outputs are used for spectrum analysis.

n

The prototype filter is
L1
- H(z) = EWkZ_k
k=0

and this is what is drawn in the window literature[1]. But the translated responses are ordinarily not drawn.

The windowed DFTs are used to minimize spectral leakage. This is commonly viewed by examining the
response of prototype filter. But in the filterbank design area, we would describe the sidelobe suppression
by the maximum interference that may be exerted in the passband of a filter due to channels separated by
two or more channels away. We do not ordinarily worry about the effect of the next channel, because it has
to share a signal anyway. We have attached some responses of common windows, but we have kept the
stopband frequency fixed at 1/M. In the example figures, the number M=32, so there are 32 channels.
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By design, then, the placement of the stopband is fixed. The remaining factors to include are the ‘picket
fence’ effect, and the spectral leakage.

The details of the examination are in Appendix 1

It appears that there are standard windows that achieve any required spectral leakage requirement, but they

do not have control of the ‘picket fence’ effect. The class of half-Nyquist filters achieves both the required

spectral leakage and eliminate the picket fence effect. Notice that the length L=124 Dolph-Chebysheyv filter
is too long for the standard windowed FFT and so a polyphase realization would be required.

The polyphase FFT is a technique to realize filterbanks efficiently which allows the use of ‘window’
functions that are longer than the dimensions of the FFT, and which allow less spectral leakage.

5 AN ALTERNATIVE INTERPRETATION OF WINDOWING.

If we examine the previous figure, it can be seen thdt’fhe"portion after the Hélay lines may be represented as
a diagonal matrix operating on N inputs, followed with an N-dimension DFT.

The signal processing, in matrix terms , is

FD

where F is the FFT matrix and D is a diagonal matrix.

This is equal to

| CF

where C is a circulant matrix, i.e., each row is simply a shifted version of the previous row. According to
this view, we may consider a windowed FET as one in which the input is applied directly to the FFT without
windowing, and processing is applied on the outputs. The processing is identical for all the outputs, and
consists of taking weighted sums of outputs; the weights are the same for each output. For example, with the

“Hamming window, this is equivalent to taking'a the output as the same output of the DFT multiplied by 0.54

and 0.23 times the sum of the two adjacent outputs.
RN
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Figure 10 A Windowed DFT may also be considered ;s a DFT applied first, followed with a
frequency-domain weighed sum, for each output. This may be useful if not all the outputs are
required, for example, or for hardware reasons.

6. WAVELETS.

The elements of wavelet theory are summarized as follows. The wavelet theory is based on a prototype half-
band filter H(z) satisfying the 2-Nyquist condition; every second coefficient of H(z)H*(z) except the center
one vanishes. And decimﬁtiqn is by 2. Here is the block diagram of an analysis/synthesis system.

2
H(z) AN H_(2)
" 2 < )
H (2) BN H(-2)

vy

LT N

e :
. v »
Figure 11 Half-band analysis synthesis. The lower * indicates the filter with its coefficients written in
reverse order. The filter orders are odd. -

For an input sequence X(z), the output is, with even samples on the top and on the bottom

XHDH. () - H(~2)H.(~2)] + X(~)HDH. (2) - K. H(-2)]
= X(D[H(2)H.(2)— H(-2)H.(-2)]

and the condition for perfect reconstruction is that
[H(2)H, (z) - H(-2)H.(-z)]

which has only odd coefficients is to be a monomial.

The concept of half-band filtering may be continued by constructing an analysis tree or pyramid as follows
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Figure 12 Tree of half-band filters and decimators. The symbol rate is reduced by 2.

For analysis purposes it is actually easier to draw thé';ar'rif)ling at the tips of the tree branches. As well the
filters are reordered so that the frequency bands of adjacent outputs are touching.

. N
"H(Z% L N—
H{z) ‘ 4
" H (-2 e S
a
. Ha22 N
H (-2) )
H(z2 —S—

Figure 13 This process of pyramidal analysis may be continued indefinitely.

N C.

In the theory of wavelet the same pro;otypg filter is used at every level, and results in a rather elegant
theory. But for most signal processing applications this elegance is wasteful, and it is possible to relax the
filter design requirements for each level. The. reason that this is desirable is the followmg If we write the
transfer function from the input to output for one output channel it will consist of a product of filter transfer
functions Hi(zX) or G;(zX) where G; (z)—*ﬁf (-z) Suppose that the transfer function is

HI (2)G, (z*)H, (z*) )

The transfer function for the next channel will have only one of the constituent transfer functions changed.
This means that the transition band between the two channels is determined by the transition band of only
one of the filters. Because in most applications the transition bands should be similar, and filters that are
higher in the pyramid have inherently narrower transition bands due to the presence of powers of z ion the
transfer function, this means that the prototypes for the leaves of the tree (the lower layers of the pyramid)
may have wider transition bands.

For example, the four filters for the tree in the figure are HH, HG, GG, GH. Thus if we use the notation { }«
to mean a sequence backwards, the next sequence of filter transfer function is obtained from the previous
sequence A by forming {HA,GA’}.

We mention in passing that the theory of wavelets makes use of iterated transfer functions, in particular an
iterated lowpass transfer function. This requires that the frequency response have its maximum at 0



frequency, which implies that G(z) has a zero at -1. The number.of zeros at -1 is the regularity of the
wavelet. The Daubeschies wavelets are formed from a half-band half-Nyquist filter that has all its zeros in
the stop band at -1; the other zeros are used to obtain the Nyquist property.

If we examine the frequency response of the pyramidal filterbank, then the response is that of real bandpass
filters. Since in many communications examples the resulting two sidelovbes are not useful, the input signal
would have to restricted to positive (or negative) frequency using a Hilbert transformer; in factor, a half-
band, or quarter-band Nyquist filter may be used. This would allow envelopes to be determined.

If it is not useful to obtain the intermediate stages in the pyramidal analysis, there appears to be no
advantage of wavelet transforms over polyphase filtering.

7. THE INFLUENCE OF FILTER PARAMETERS ON DELAY.

Real time applications imply the need for fast response, and short delays. By delay we mean the time taken
for a burst of sine wave to cause the output of detector to rise to an acceptable value. Ini'general, the more
filter coefficients that there are, the more the delay. The length of narrowband filters with good stopband
performance is proportional to the attenuation in the stopband and the width of the transition band relative
to the total bandwidth. The transition band is the frequency between overlapping passbands and the
beginning of the high loss frequency band, and is commonly expressed as a percent of the distance from the
band center to the passband edge; Typical values range up to 100 percent. An approx1mate results for linear
phase filters is that the length L is approximately

AM
15a

For example the MPEG linear phase filters with a stopband loss of 120 dB, a cutoff of 100 percent and 64
channels has L=8M=512. The DFT filterbanks with a stopband loss of about 15 dB have a length M. The

_delay of such a filter is about L/2.

) N
£y

For even less delay the use of minimum. phase filterbanks is desirable. They are not as long as a linear phase
filterbank for'the same stopband loss, arid have the least delay.

For an M-band Nyqiist filter, the pulse 1esponse is small except for a sequence of 2M samples Therefore

. the risetime will be about 2M samples. Tﬁere will be an associated delay equal to about half the length of

the Nyquist filter.

-
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2M
Pulse response of a Nyquist filter

<

Step responsé. The rise time is about 2M samples,

Figure 14 Pulse responses

.7 : <
"l' hr

8. CONCLUSION: DESIRABLE PROPERTIES OF FILTERBANK SPECTRUM ANALYZERS
These spectrum analyzers are for-identifying narrowband signals.

1. A given input sinusoid should, in the steady state, produce a minimal number of outputs. The outputs
should be real positive quantities indicating the presence of a signal in a particular frequency band. The
minimum number of possible outputs that are excited for full coverage is two. The existence of other
outputs due to an input sinusoid is ‘spectral leakage’ and should be minimized. A constant level sinusoid
should produce a constant output.

2. The spectrum analyzer should be such that it permits narrow band signals to be recovered. In particular,
the input should be recoverable.

3. If the sum of the analyzer outputs is added together, an input sinusoid swept across the band should result

.In a constant sum.

at -
N - .

4. The delay from input to output should be small. This implies the use of minimum phase prototype filters.

5. The risetime should be small and pre({ict:;b_le. . S L ;" o =3
6. The output should be linear or qu;dr%@tg i'r;‘;he input signal.

7. If two sinusoids are separated in frequer;cy and have fandOm phase, the ouEputé should be independent of

each other. If the sinusoids are in the same bin then the output should be the sum of the outputs for each

sinusoid in isolation. '

Based on these requirements, we recommeénd the use of M-band minimum-phase root-Nyquist filters, and a
quadratic detector at the output of each filter. - :

For computing efficiency, the filters should be realized as FIR filters in a polyphase structure.
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In this examination, we keep the width of position of the stopband fixed. All the illustrations are of a 32-
-60}
-70F
-80F
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channel system.
The problem with this frequency responge-is that the stopband loss is only 14 dB. The crossover loss is

about 3dB.

APPENDIX 1 EXAMINATION OF VARIOUS WINDOW FUNCTIONS
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Figure 2 Frequency response of the Hamming window, length 64, for a 32-channel spectrum
analyzer. The spectral leakage is about 43 dB, and the crossover loss is about 6 dB. This would be a



design for a full-Nyquist filterbank
Chebyshev length 32 cutoff 2*pi/32
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Figure 3 An equiripple stopband results with the Dolph-Chebyshev design. The length is 32 for a 32-
channel system; the stopband performance is slightly better than the ‘boxcar’ weight.



Chebyshev length 96
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Figure 4 Frequency response of a Chebyshev window of length 96. The stopband loss has increased to
75 dB. But note that the crossover loss is not controlled; i@ is about 10 dB, so there will be a
significant picket fence effect. -
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Pulsé and stip response for {32_8
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Figure 7 Step and pulse response for the 8-channel filter of Figure 6 Frequency response of an 8-

_channel spectrum analyzer using a root-Nyquist, equiripple stopband. The filter length is 37. The loss

at the crossover frequency is 3 dB. A 32-channel filter with the same loss would be about 4 times as
long, about 150 coefficients. The response is minimum phase, and so responds as soon as possible.
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AN VESTIGIALLY ANALYTIC WAVELET
Issue 2

W F McGee
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ABSTRACT
The purpose of the note is to propose an vestigially analytic wavelet.
Wavelets are real functions, and thus bandpass wavelets have two sidebands, one for positive and one for
negative frequency. This is unattractive. We propose the following definition of a vestigially analytic

wavelet.

Let H(z) be a half-band Nyqulst filter. Let.G(z) be 1t§ con’espondmg hlgh—pass counterpart generally,
G(z)=H(-1/z).

Define | | . :
O(w) = H((—jz)"* ) H((-j2)"*)H ((-J'-Z.)”8 )ews
where
z=e
and define
W(w) = G(—jz2)®(w).

“Consider the following analysis tree . N X

e L |
—» O(w)

—> ' G(-jz) 1

Figure 1 Analytic Wavelet Tree The transfer function from the input to the output nodes is a scaled
copy of the transform of W(w).

Then the transfer function from the input to the output nodes are the Fourier transforms of

nodel W(w)
node2 W(2w)
node3 W(4w)




etc.
and has little negative frequency contenet; i.e., it is vestigially analytic.
Remaining work

Does @ exist. Chancesa re better than the proposal of issue 1.
This is just the theory of wavelets shifted by /2.
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