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SUMMARY: 

This final report presents the results obtained in the 2-year CRC/SPAR 
RESEARCH PROJECT: STATISTICAL TRAFFIC MODELLING IN WIDEBAND 
MULTIMEDIA SATELLITE COMMUNICATIONS. The overall project has six 
following steps: 
• Step 1: Survey of voice traffic models, 
• Step 2: Survey of constant bit rate video traffic models, 
• Step 3: Survey of variable bit rate video traffic models, 
• Step 4: Study of data traffic models, 
• Step 5: Study and development of multimedia traffic models, 
• Step 6: Performance evaluation of queueing and multiaccess schemes using 

the developed model 
Interim reports have been delivered at the end of each step. This final report 
integrates these interim reports and includes new results. It is organized as 
follows. 
Main technical results obtained in Steps 1-6 are presented in the Technical 
Report Traffic Modeling in a Multimedia Environment. After a short introduction in 
Chapter 1, we present a survey of voice, video and data traffic models in 
Chapters 2. In Chapter 3, we discuss the modeling of aggregate multimedia 
traffic, present our proposed Pareto Modulated Poisson Process (PMPP) Model 
for long-range dependent video or data traffic sources, and the proposed model 
for aggregate multimedia traffic. Chapter 4 provides the conclusions and 
suggested further research. The derivations of the Index of Dispersion for 
Counts (IDC) of the MMPP and PMPP are included in the Appendix. 
Attachment #1 is the User Manual of the Traffic Generator. It describes the structure 
and use of the developed traffic generator for a multimedia environment on 
OPNET. This traffic generator can be used to evaluate the performance (e.g., loss 
probability, blocking probability, delay,...) of queueing and communications 
networks by simulation using OPNET. 
Attachment #2 is the Technical Report Performance of CFDAMA in a Multimedia 
SATCOM System using MF-TDMA. It presents the simulation results on the 
performance of the Combined Free/Demand Assigru-nent Multiple-Access 
scheme in a multimedia SATCOM environment by using the developed traffic 
generator and OPNET. 
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Abstract 

With the advent of B-ISDN (Broadband ISDN), significant effort has been devoted 

to supporting real time traffic such as voice and video along with jitter tolerant traffic 

such as data traffic, in a packet switched environment. The wide spectrum of traffic 

sources exhibits a diverse mixture of traffic characteristics. Hence it is imperative to 

develop a model that aptly characterizes the variability and statistical correlations 

of the packet arrival process. In this project we survey the existing traffic mod-

els available in the literature and also propose a new model, consisting of doubly 

stocllastic Poisson processes (the PMPP and MMPP) for aggregate traffic. A traffic 

generator comprising the standard traffic model is also built. The performance of a 

G/D/1 queue and performance of the CFDAMA (Combined free/demand assignment 

multiple access) protocol are evaluated using the proposed model, by simulation. 
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Chapter 1 

Introduction 

The evolving BISDN (Broadband ISDN) networks provide bearer service support-

ing real time traffic such as voice and video traffic along with jitter tolerant traffic 

such as data traffic. These wide spectrum of traffic sources (such as computer data, 

VBR video and voice, etc.,) exhibit a diverse mixture of traffic characteristics. Also, 

through statistical multiplexing, several of these individual sources may share a high 

transmission rate link capacity. Designing and managing these evolving networks 

require prediction of network performance. Analytical techniques, computer simula-

tion, projections from existing data are methods that are used to evaluate and design 

networks. 

Y' Traditionally the Poisson model has been used as the model for characterizing 

packet traffic. However, recent studies indicate that these models are no longer appli-

cable to the diverse mixture of traffic present in the broadband networks. Hence it is 

imperative to develop a model that aptly characterizes the variability and statistical 

correlations in the aggregate packet arrival process. This model may then be used to 

evaluate the network performance (Q0S, utility, etc.) or to evaluate the connection 

admission control and source policing algorithms. Also, recent studies in LAN data 

traffic indicate that such data traffic exhibits long-range dependence and self-similar 

(or fractal) characteristics, i.e., the traffic exhibits "burstiness" across a wide range of 

time scales ranging from milliseconds to hours. Hence in a multi-media environment 



fractal traffic co-exists with non-fractal traffic. Characterizing such a mix of traffic 

by an unique model poses a great challenge to the modeler. The model proposed 

should be versatile in the sense that it should be able to capture the long term and 

short term correlations In this project we propose an traffic model 

to characterize the traffic in a multi-media environment. 

The key objectives of this project are as follows: 

• To study the various models proposed in the literature for the various con-

stituents of the aggregate traffic (voice, video and data traffic). 

• To develop a traffic generator in the OPNET environment, comprising of - 

standard traffic models (such as on/off model, MMPP, etc.). 

• To study and propose a new traffic model that accurately characterizes the 

aggregate traffic. 

• To investigate the queueing performance of the aggregate traffic model through 

simulation. 

• To evaluate the performance of the CFDAMA (Combined free/demand assign-

ment multiple access) protocol using the traffic model proposed. 

This report summarizes the results of the study conducted in this project. This 

report is organized as follows. The following chapter surveys and classifies the various 

models proposed for voice, video and data traffic. In chapter 3, we propose a new 

model for aggregate data traffic and present the simulation results for this model. 

The queueing performance of this model is also presented in this chapter. Chapter 4 
concludes the results of the study conducted in this project. Attachment el , "User 

Manual of traffic generator", explains the usage of the traffic generator, built in the 

OPNET environment and Attachment #2, "Performance of CFDAMA in multime-

dia SATCOM system using MF-TDMA", presents the results of the analysis of the 

CFDAMA protocol using the proposed model. 
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Chapter 2 

Survey of traffic models 

2.1 Survey of voice traffic models 

With the advent of B-ISDN significant effort has been devoted to supporting real time 

communication application such as real time voice and video in a packet switched 

environment. In such a multiplexing environment, the packets from many sources 

are statistically multiplexed on to a single high speed link in order to exploit the 

bursty nature of the sources. Such a statistical multiplexing introduces different 

delays to packets. Real time traffic (like voice and video) are delay sensitive (loss 

insensitive) while data traffic is loss sensitive (delay insensitive). Hence in packet 

networks supporting real time traffic delay is bounded at the expense of some loss. 

However, in order to meet a required grade of service the loss of packets have to 

be kept within a certain limit. This necessitates that the buffer used to queue the 

packets in the statistical multiplexer be engineered to keep the delay and packet loss 

within specified limits. In order to do so, a thorough understanding of the packet 

arrival process to the statistical multiplexer and simple but accurate models to analyze 

such a system are required. Traditionally a Poisson approximation has always been 

adopted to characterize the packet arrival process. But recent studies indicate that 

the packet arrival process to the multiplexer is highly correlated and that the Poisson 

approximation for the arrival process results in erroneous results since it fails to 
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account for these correlations. 

The queueing behaviour when voice is coded with silence detection is different 

from that when voice is coded without silence detection. Many models have been 

proposed to characterize the superposition arrival process of statistically multiplexed 

voice (with silence detection). The arrival process in such a superposition is found 

to have a strong positive correlation and a Poisson approximation results in serious 

underestimation of delay. 

The superposition arrival process in continuous bit rate (CBR) traffic (such as 

voice without silence detection and constant bit rate video) is found to have negative 

correlations and a Poisson approximation here, results in overestimation of delay. 

2.1.1 Modeling of a single voice source 

Traditionally the voice source (telephone) in a circuit switched environment has been 

modeled as a 2 state process. The source is either in the OFF state (on-hook) or ON 

state (off-hook). The length of an off-hook period corresponds to the duration of the 

call and is called the call holding time. It should however be noted that during each 

call, the user is not always talking and there are periods of silence between successive 

bursts or talkspurts. 

With the digitization of speech and introduction of Digital Speech Interpolation 

(DSI) techniques [1], the voice source transmits only when there is speech activity. 

Such a system has been modeled by 3 states: on-hook, off-hook and burst. If each 

burst is packetized for transmission, a fourth state is needed which represents the 

state of a packet transmission during the burst state, as shown in Figure 2.1. 

The above model characterizes the single source at a higher level (i.e., at a call 

level). Different approach has been followed to characterize the single source at the 

packet level. In this model the voice source is active when there is speech activity (i.e., 

the talker is actually speaking) and during these times the voice source periodically 

generates fixed length packets. A voice source is inactive when the speaker is silent 

(during the course of the call) and during these times the voice source does not 

1 
1 
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Speech with silence removal 

Packetized voice with silence removal 

Figure 2.1: Call level models for a single voice source 

generate packet, Figure2.2. Experimental results have proved that the duration of 

the active periods fits the exponential distribution very well, while the duration of 

the inactive period is not as well approximated by the exponential distribution [2, 3]. 

However for analytical simplicity the silence periods have always been modeled as 

exponentially distributed. 

Single voice source - Model 1 

If T ms is the packetization time then, the packet stream from a single voice source is 

characterized by arrivals at fixed intervals of T ms during talkspurts and no arrivals 

during silences. The talkspurts are assumed to be exponentially distributed with 

mean a' generating a geometrically distributed number of packets of mean  a 1  /T.  

The silent periods are assumed to be exponentially distributed with mean /3 -1 . Under 

these assumptions the packet arrival process can either be treated as a renewal process 

(since the talkspurt and silence periods are independent and identically distributed) 

or as a 2 state (ON/OFF) discrete time (or continuous time) Markov chain with the 

transition rates from ON to OFF state equal to a and from OFF to ON state equal 

to /3, Figure 2.3. 

7 
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Figure 2.2: The packet arrival process from a single voice source 
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Figure 2.3: Two state continuous time Markov chain model 
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Figure 2.4: Probability density function for packet interarrival time from a single 

voice source. 

For a packet of 64 bytes, coded with 32 Kbps ADPCM T = 16 ms. Typical values 

of a-1  = 352 ms (with a mean of 352/16 = 22 packets) and 0 -1  = 650 ms [4]. The 

interarrival period for such a source is T ms for most of the packets and ocassionally 

greater than T ms, when there is a silence period in between. Hence the probability 

density function of the interarrival period, as shown in Figure 2.4 ([4])is as given 

below, 

f (t) = p.8( 1  — T) (1 — exp-nt-T) 

where p is the probability that a packet is followed by another packet after T ms and 

is given by p = exp .' 1 — aT . Therefore, 

f (t) = (1 — aT)S(t — T) aT exp -e(t-T) (2.1) 

The cumulative distribution function for the interarrival time F(t) is obtained by 

integrating f(t) and is given by 

F(t) = [(1 — aT) aT(1 — exp-fkt-T) )]U(t — T) (2.2) 
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where U(t) is the unit step function. 

The number of packets per talkspurt is geometrically distributed with mean equal 

to 1/aT, and the distribution is given by 

= (1 — cet) i-l aT i =1,2,3,... 

The squared coefficient of variation (variance divided by the square of the mean ) 

of an interarrival time is given by 

cî P2 )/[710 + ( 1  — /3 ) ] 2 (2.3) 

cî = 18.1 (with typical values). Hence the packet arrival process from a single voice 

source is highly bursty as is reflected by the high value of cî compared to that of a 

Poisson process which has a c2i  = 1. 

Single voice source - Model 2 

Another approaa followed in characterizing an individual voice source is by approx-

imating it as an Interrupted Poisson Process (IPP). Here again the talkspurt and 

silence period are assumed to be exponentially distributed, but the arrivals during 

the talkspurt are Poisson with a rate A, rather than deterministic [5]. This process can 

be visualized as a Poisson Process which is alternately turned ON for an exponential 

period of time and then turned OFF for another independent exponential period of 

time - hence the name Interrupted Poisson Process. 

2.1.2 Statistical Multiplexing of Voice 

The schematic of a statistical multiplexer is as shown in Figure 2.5 [6]. The speech 
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High speed line 

VC packets per second 

Figure 2.5: Schematic of a statistical voice multiplexer 
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signals generated by each source are digitized by an A/D coder generating a bit 

stream of 64 Kbps (8 bits per sample * 8000 samples per second). This may further 

be compressed by an ADPCM coder to produce a bit stream of 32 Kbps. Further if 

DSI [1] is used, then a speech detector (SD) is employed to monitor the output of 

the A/D converter continuously. It allows the voice packetizer (VP) to form voice 

packets only if there is speech activity on the input source. 

There are N such sources each of which generates a packet every I/V seconds. The 

packets so generated are fed to a common queue from which a server removes them 

for transmission over a communication link at the rate of VC packets per second. 

Hence C is the link capacity and is equal to the number of voice sources that will 

just saturate the link. Since on the average, less than half the lines will be active at 

any one time, the channel capacity C can in principle, be less than N. Hence during 

periods in which the number of active sources generating packets are more than C 

(i.e., more than C packets arrive in a frame consisting of C time slots, where a timeslot 

= T ms is the transmission period of a packet), packets accumulate in the queue and 

this backlog of packets is eliminated during periods in which the number of active 

sources fall below C. Hence the packet arrival process is highly correlated and burstyl 

as it is dictated by the number of speech sources in talkspurt. It may also be noted 

that queueing of packets may also result due to the stochastics of arrival process, i.e., 

1  the term bursty is used when referring to processes whose interarrival time distribution shows 

greater variability than Poisson process 

11 



2 
Ck 

2 or more packets arriving simultaneously. (However this queueing does not seem to 

cause significant amount of delay.) 

The statistical multiplexing of voice has been studied extensively and treated 

analytically in the literature ([6, 4, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16]). All the studies 

concur that the modeling of aggregation of voice sources as a Poisson process gives 

erroneous results. The Poisson approximation works well only at low to moderate 

traffic intensities. (Traffic intensity or utilization of such a system is given by p = 

(N/C)(1/a1(110 +11a) ,  (NIC)(01(a+ 0)) where the quantities N,C,ce-1  and 0-1 

are as defined previously.) 

An excellent treatment of the superposition arrival process giving an intuitive 

explanation of the deviation of the process from that of a Poisson process is found 

in [4]. In [4, 7] the superposition non renewal point process is approximated by a 

renewal process with an inflated coefficient of variation, characterized by the indices 

of dispersion of counts (IDC) and intervals (IDI). It principally focuses on the de-

pendence among successive interarrival times in the aggregate packet arrival process. 

Let {X k ,k > 1 } represent the sequence of packet interarrival times from the super-

position process of N voice sources. Then, the index of dispersion for intervals (IDI), 

also called the k interval squared coefficient of variation sequence, is the sequence 

{c2k , k > 1} defined by 

2 k Var-fX1  + X2 + Xie  
Ck 

E[{X1 + X2 + • • • + Xkli 2  

Assuming that Xk, k > 1 is stationary we note that the sum Xi  + X2 + • • • + Xk = 

Xj+1 Xi+2 Xi+k. Denoting this sum by Sk we have 

k  V ar(Sk) 
[E(Sk )? 

V ar(Sk) 
 k[E(X1 )]2  

k Var(X i ) C ov(Xi, Xi) 
k [E(X1)] 2  
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2 2 Ei---1 (k — j) C ov(X i  X1-1-3) 3 =1  = cl k>  1 (2.4) 
k [E(X1 )] 2  

For k = 1, cîc  =  cî is the squared coefficient of variance (variance divided by square 

of the mean) of a single interarrival time. For k >  1,4  measures the cumulative 

covariance (normalized by the square of the mean) among k consecutive interarrival 
times. 

The IDI has the following properties for the various processes A 

a) For a Poisson process  4  = 1 for all k. 

b) For a renewal process  4  =  e for all k. 

c) For a stationary point process with positive correlation cy, 

increases monotonically and the asymptote in the limit depends upon the sum 

of all correlation coefficients. 

To define the Index of dispersion for counts (IDC) let A(t) denote the number of 

arrivals in an interval of length t, then 

Var[A(t)]  I DC = I (t) = t >  E[N (t)] 

The Poisson process has  1(t)  = 1 for all t. 
It has been noted in [4, 8] that variability in the variance of the sum of consecutive 

interarrivals (or equivalently the variance of the arrival counts) is the major cause of 

packet queueing delays. The variability in the packet arrival process is strikingly 

revealed if we add together groups of n successive interarrival times and compare the 

variance of the resulting series with that of the original interarrival time series. It 

would be interesting to note that the variance of the times between n arrivals is much 

larger than n times the variance of the original series. 

[4, 8] also point out that IDI and IDC can best characterize the variability. The 

figures 2.3, 2.4 of [4] show that for the voice superposition arrival process 
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a) IDC increases nonlinearly with t (indicating deviation from Poisson process) 

IDI, cL, (where n denotes the number of processes superposed) tends to 1 for 

all k as n oo. 

IDI,e2k7, —> cî.1  as k ---> oc for all n. 

These results imply the following: 

i) Although the single interval in the superposition process tends to be an expo-

nentially distributed variable, as the number of voice sources increase, positive 

correlations over many consecutive intervals exist (as indicated by c2k  > 1 for 

k > 1) and this causes the process to be substantially deviated from a Pois-

son distribution. Hence the notion of relevant time scale is important while 

analyzing the superposition arrival process. 

ii) Approximation of the arrival process thus depends upon identifying the relevant 

time scale and the relevant time scale in turn depends upon the traffic intensity 

in the queue (since the traffic intensity relates the arrival rate with the service 

rate). 

The correlation and traffic variability effects of the arrival process become sig-

nificant only at higher loading (corresponding to an utilization 0.73 as noted 

in [4]). Under these conditions a Poisson approximation leads to underestima-

tion of delays. This is due to the fact that as p —› 1 the traffic interaction in 

the queue spans over many intervals. 

iv) The Poisson approximation holds good for low to moderate loading. 

v) In terms of the buffer sizes the Poisson approximation holds good for the voice 

multiplexers with small buffer sizes. For multiplexers with large buffer sizes 

the Poisson approximation does not hold due to the effect of correlations in the 

successive interarrival times of the queued packets. 
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2.1.3 Modeling of Statistically multiplexed voice 

Several studies ([6, 4, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16]) have dealt with the issue of 

characterizing the superposition of voice sources and analyzing the behaviour of the 

resulting queue. All of them concur that superposition process is not Poisson but they 

differ in their approaches to modeling the process or in the choice of the performance 

parameter evaluated using their model. While most of the models are used to evaluate 

the mean and standard deviation of delay as performance measures of the queueing 

system under consideration, few analysis like [10], [14], [15], [16] argue that for a 

multiplexer with a finite buffer, the average statistics like mean queue length and 

mean packet delay are no longer suitable performance measures. [10],[14],[15] choose 

the packet loss probability and maximum tolerable packet delay as the performance 

measures, while [16] also evaluates the temporal behaviour of packet loss. Table 1 

gives an overview of the various models proposed in the literature to characterize the 

superposition arrival process of voice, and the respective performance measure the 

models were used to evaluate. 

A brief description of each of the models used to characterize the superposition 

arrival process is given in the following sections. 

Renewal Process 

As observed earlier, the packet arrival process from a single source can be modeled 

as a renewal process with exponentially distributed talkspurts alternating with expo-

nentially distributed silence periods. [6, 4, 7] approximate the superposition arrival 

process as a renewal process with inflated coefficient of variation for the interarrival 

time. A 2 parameter approximation technique as in [17, 18] called the Queueing 

Network Analyzer (QNA) approach is adopted. In this method the superposition 
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1 

1 

1 

Si. Model Reference Queue Solution Performance measures studied 
No. characterizing Model Technique 

arrival process. 

1. Renewal [6] GI/G/1 QNA mean waiting dine. 
Process. 

[4],[7] G1/G/1 QNA mean and standard deviation of 
delay. 

[10] GI/D/1/K QNA packet loss probability. 

2. MMPP [9] SPP/G/1 Matrix Geometry mean,standard deviation and survivor 
function of delay. 

[10] MMPP/D/1/K technique of packet loss probability. 

uniformization in 

phase type 
queues[20],[21] 

3 IPP [5] N-WP/G/1 Supplementary mean waiting time. 
variable method 

4. Semi-Markov [11] Phase Functional queue length distribution and packet 
process(OL/ iteration and loss probability. 
UL model) spectral 

facto rization. 
[12],[13] Phase Matrix Geometry survivor function of delay. 

process 
[16] Blocking blocking performance, temporal 

state model behaviour of packet loss. 

5. Discrete-time [15] Frame based mean packet loss probability and 
Markov chain bivariate survivor function of packet loss. 

Markov chain 

6. Uniform arrival [14] Fluid flow differential packet loss probability. 
and service equations. 
model 

[12],[13] Fluid flow differential survivor function of delay. 
equations. 

[9] Fluid flow differential packet loss probability. 
equations. 

Table 1: Modela for superposition for voice sources 

Table 2.1: Models 
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arrival process is characterized by 2 parameters; one is the average arrival rate (A) 

and the other is the squared coefficient of variation of the interarrival time (c2a ). The 

squared coefficient of variation of the interarrival time of the renewal process may be 

approximated from the original superposition process by one of 2 methods:[17] 

• Stationary interval method:Here the moments of the renewal interval is approx-

imated with the moments of the stationary interval in the superposition arrival 

process. 

• Asymptotic method: In this method the moments of the renewal interval is 

determined by matching the asymptotic behaviour of the moments of the sum 

of successive intervals. 

The formula for the squared coefficient of variation of the interarrival time distribution 

(c ) in the approximating renewal process for the aggregate packet arrival process is 

as given below ([4]) 

ca2  = w c2i  +  (1 —  w) 

where 

squared coefficient of variation of a single voice source 

w = 1/[1 + 4(1 — p) 2 (N — 1)) 
p = traffic intensity 

N = number of sources multiplexed 

The QNA approximation as given above selects an increasingly higher squared 

coefficient of variation c2a  as N increases (when p is kept constant), to directly capture 

the effect of covariance. (See Figure 5 of [4]). 

The other parameter A of the approximating renewal process can be found as 

A = N A 1  where A 1  is the mean arrival rate of a single source. 

Let 7 and cs2  be the mean and squared coefficient of variation associated with the 

packet service time. (ca2  = 0 if the service time is constant) 

Now, given the mean and squared coefficient of variation of the interarrival and 

service times (A, c2a ,  r , C.29 ), the congestion measures for the queue such as the mean and 

(2.6) 
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standard deviation of delay can be obtained by regarding it as a GI/G/1 queue (with 

renewal arrival process). See [19] for specific formulas. The mean delay calculated by 

this model in [4] seems to agree well with simulation results especially at high traffic 

intensities, where the Poisson approximation fails. 

[10] also uses this renewal process model with QNA approximations but introduces 

an additional heuristic needed to handle finite buffers. Given the distribution P(Qc.„ = 

i) (probability that the queue length is equal to 0 for an infinite buffer case, P(Qk  = 

K) for a multiplexer with K buffers is approximated in [10] by 

P(Qco  = K)  P(Qk  = K) = (2.7) P(Qco  < K) 

where P(Q,, = K) is obtained as outlined before. An approximate method for solving 

2.7 is given in [10]. 

Markov Modulated Poisson Process 

Markov modulated Poisson process (MMPP) is a nonrenewal, doubly stochastic Pois-

son process where the rate process is determined by the state of a continuous time 

Markov chain. In other words in state k of the underlying Markov chain arrivals occur 

according to a Poisson rate Ale . [9], [10] model the superposition arrival process as a 

2 state MMPP. 

In [9] the approximating MMPP is chosen in such a way that several of its char-

acteristics identically match with those of the original superposition. There are 4 

parameters for the 2 state MMPP chosen, namely, the mean sojourn times in states 

1 and 2,ri 1  and the Poisson arrival rates in states 1 and 2 )■ 1  and A2 respectively. In 

order to determine these 4 parameters of the model the following 4 characteristics of 

the model are matched with those of the superposition process: 

1. the mean arrival rate 

2. the variance to mean ratio of the number of arrivals in an interval (0, t1) 

18 



3. the long term variance to mean ratio of the number of arrivals and 

4. the third moment of the number of arrivals in (0, t 2 ) 

First  ail the above characteristics are determined for the superposition arrival 

process as follows. Consider the single voice source as a renewal process (single voice 

source - model 1 of 2.1). then the interarrival distribution is as given by (2). Taking 

the Laplace Stieltjes transform (LST) of (2) we have 

f(s) —

o 

 exp .' dF(t) = [1 — aT aT131(s ,6)]exp-3T (2.8) 

Expected interarrival time of a single source = —r(0) = T crT/(3. 
Equivalently, the mean packet arrival rate A is given by 

= 1/(T + aT/P) (2.9) 

Now let A(0, t) denote the number of arrivals of a stationary renewal process in 

the interval (0, t) and let 

Mr (t) E[Ar(0,t)] 

be the rth moment of arrivals in (0, t) and let 

Mr (s) = L[M,.(t)] 

where L(.) denotes the Laplace transform. Using the results of the renewal process 

we have 

Mi (s) = A/s 2  

M2(s) = A 1+1(s)
.2  1 —f(s) 

M3  (3 
)

1+4,r( s)+12  (s) 

" 82 (1-1(s))2  

But M1  (t)  = At. Using (9) for A gives 

(t) = tl(T aTI13) 

The Index of dispersion for counts, I(t), satisfies 

timt/(t) Var [A(0, t)] V ar(X) 
Mi(t) E2 (X) 

(2.10.1) 

(2.10.2) 

(2.10.3) 

(2.11.1) 
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where X is the interarrival time. Therefore 
iimt _* __ Var[A(0,t)]  = 1— (1— aT)2  

(t) (aT-I-T3T) 2  (2.11.2) 

The values of M2 (t) and M3 (t) can be obtained by numerical transform inversion 

of (2.10.2) and (2.10.3). 

For the superposition process, the number of arrivals is given by 

As(O, t) t) 
i=1 

For the superposition process, the number of arrivals is given by 

As(0, t)  

where  A(0, t)  is the number of arrivals during the interval from source i. 
Hence , (t) = E[A:9 (0, t)] = n  M (t) (2.12.1) 

var[tl'(0,t)1 Var[A(0,t)]  
E[A 5  (OM] E[A(o,t)] 

The third central moment of the superposition process is given by 

ti .“0,t) = El[il 3 (0,t) — E(As(0,t))1 3 1 

= n[M3 (t) — 3M2 (t)M1  (t) 2M(t)] 

(2.12.2) 

(2.12.3) 

Now for the MMPP, from [9] we have the probability generating function of the 

number of arrivals in an interval 

g(z,t) = 7r exp{[R (z — 1)4}e 

where 

7r = ri+1 r2 (r2, r i ) (equilibrium probability vector) 

e = (1, 1) T  

—Ti 7'1 R =  
r2 --r2 

A1 0  A = 
0 A2 
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If At  is the number of arrivals in the stationary 2 state MMPP over the interval 
(0, t), then 

At  = E[A] = Air24-9ri  t 
(2.14.1) 

Var(At) 1 + 2(A1--),2)2r1r2 2(A1-7 2)2r i r2  \ (1 exp-(r1+' ) ') (2.14.2) A t (ri-l-r2) 2 (Air2-1-A2ri) (Air2 -1-A2r1) •  

hint Var(At) =  1 2(AI-A2)2r1r2 (2.14.3) .-c;.° At I  (ril-r2) 2 (Air2+),2ri) 

3rd moment of number of arrivals in (0, t2) = g(3) (1, t2) (2.14.4) 

Equation sets of 2.12 and 2.14 are equated to determine the 4 unknowns A i , A2, ri 
and r2 . Once these are known, Matrix Geometric Techniques [20] can be used to 
solve the resulting MMPP/G/1 queue as dealt in detail in [9]. In [9] the model was 
used to evaluate the average delay of an infinite buffer, voice multiplexer with good 
accuracy. The method however did not work well for the finite buffer case. 

In [10] two MMPP models were used to study the performance of fixed buffer 
multiplexers. The first model was used to evaluate the paaet loss of moderate to 
large buffers while the second model was used for large buffer. Here, the arrival 
process is considered to consist of an underload and overload period. An overload 
state occurs when the number of sources in talkspurt exceeds the capacity of the 

system. 

In the first model of moderate to large buffers, the variance in the arrival process 
during the overload states are considered, since the packet loss in such buffers are 

expected to occur in overload states only. The parameters that are matched are as 

follows 

1. Value of E[AH(0, t)]/t at t = 0, with that of the superposition process, where 
AH(0, t) is the number of arrivals in time t for the MMPP given that the process 
started in the high arrival rate (H) at t = 0. 

2. E[AH(0, t)]/t at t = oo with that of the superposition process. 

3. The derivative of E[AH(0,t)]/t at t = 0 with that of the superposition process. 
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4. The value of the Var[AH (0,t)] at t = tr„, with that of the superposition arrival 

process. The value of tw, is chosen so that Var[AB-(0, t)] match well over a 

period of one second, which is the average ON/OFF period of the voice source. 

For the second model discussed in [10], the first 3 parameters matched are as given 

above and in addition Var[AL(0, t)] at t = t,„„ is matched with that of the superposi-

tion arrival process. Simulation results of [10] suggest that this model performs better 

than [9] for finite buffer case. 

Interrupted Poisson process 

IPP is a special case of a 2 state MMPP, where one state is an ON state with associated 

positive Poisson rate, and the other state is an OFF state with associated rate zero. 

As discussed in an earlier section, such models have been used to characterize the 

packet arrival process from a single source. In a similar fashion the aggregated arrival 

process can be approximated by the superposition of IPPs, called the N-IPP. The 

N-IPP is an MMPP. If we denote the state of the N-IPP at time t as J(t) where 

J(t) = j is the number of IPPs in their ON state, then J(t) is an (N 1) state 

continuous time Markov chain: (a birth and death process). The arrival in state j of 

the Markov chain is Poisson with rate jA while the birth and death rates are (N— j)ry 

and jco respectively. (where 7-4  and co-1  are the mean ON time and OFF time of 

the model). [5] adopts this approach for modeling the superposition arrival process. 

In [5], unlike the MMPP approach, the component process (arrival from a sin-

gle voice source) is characterized rather than the superposition process. Hence, the 

packet arrival process from a single source is approximated as an IPP with 3 defining 

parameters, namely, the mean arrival rate in the ON state A, the mean ON time -y -1  

and the mean OFF time u.)- 1 . To determine these 3 defining parameters of the IPP 

from the statistical characteristics of the packet arrival process from a single voice 

source, 3 methods are considered in [5]. 
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3(c2  — 1) 
(k — 3c2  -I- 1)m 

(2.16) 

9(c2  — 1) 3  
(k — 3c 2  + 1)(2k — 3c4  — 1)m (2.17) 

1) The mean interval method:The mean ON time -y -1 , OFF time co -1  and the 

mean arrival interval during ON time 1/A of the IPP are matched with the 

mean talkspurt a-1 , mean silence period [3 -1  and the packet arrival interval 

period  T,  during talkspurts. 

2) 3 moments method:The first 3 moments of interarrival time distributions of the 

IPP are matched with those of the packet arrival process. If m, c, k are the 

mean, the coefficient of variation and the third central moment of the packet 

interarrival time of the packet arrival process respectively, then from [5] we have 

2(k — 3c2  + 1) 
A =  (2.15) (2k — 3c4  — 1)m 

3) 2 moments and peakedness method: An important characteristics of the ar-

rival stream is the peakedness. The exponential peakedness function Zexp (p,) is 

defined as the variance to mean ratio of the number of busy servers in a ficti-

tious infinite exponential server system with service rate ,u, to which the arrival 

stream is hypothetically offered. For the packet arrival process from a single 

source, z„p (p) is given by (from[5]) 
aT ie —1 

Zesp (it) = (1 — — aT lexp -e) 

Hence, in this method as the name suggests, the first 2 moments of the inter-

arrival time distributions and a peakedness are matched to yield ([5]) 

1 (c2  — 1)(z — 1)1i 
A = —  (2.18) c2  + 1 — 2z 

2(z — 1)/2 
=  

(z — 1)(c2  — 1),um c2  + 1  —2z 
(2.19) 
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Figure 2.6: Phase process 

2/i 2 m(c2  — 1)(z  —  1) 2  
= [pm(c2  — 1)(z — 1) + c2  -I- 1 — 2z](c 2  + 1 — 2z) 

(2.20) 

After having approximated the arrival process from a single source with the pa-

rameters (7,W, )t) determined by one of the above methods, the superposition can be 

analyzed as a N-IPP/G/1 queue as outlined in [5]. Simulation results in [5] show 

that the 2 moments and peakedness method is the most accurate of the 3 methods 

discussed. 

Semi-Marlcov Process 

In [11], [12], [13] and [16] the superposition arrival process is modeled as a Semi-

Markov process or a two dimensional Markov chain. 

As discussed before, each of the active sources feed packets to the multiplexer at 

the rate of V packets per second and these are removed by the multiplexer at the 

rate of VC packets per second. The number of packets arriving to the multiplexer 

depends on the number of sources in their active state. Hence, the number of active 

sources as a function of time (J(t) can be modeled as a continuous time Markov 

chain as shown in Figure 2.6 ([11]). It is called the phase process in [11]. In [11] 

an approximate generating function of the probability density function of the queue 

length is computed by focusing on instants of completion of an overload/underload 

(OL/UL) cycle, which is defined as follows. Let Jo  be the smallest integer greater 

than C (the channel capacity) and let J2, = Jo — 1. Then overload starts at the 
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instant the number of active voice sources changes from Ju  to Jo  (since, in such a 

condition more than C packets arrive in a frame of C transmission slots) and ends at 

the instant when the number of active voice sources change from Jo  to  J.  Underload 

begins at this time and persists till overload starts again. The period between the 

start of successive overload is called the OL/UL cycle. The number of packets in the 

queue at the end of the n th OL/UL cycle is denoted by Qu  and the queue at the end 

of n lth OL/UL cycle by Q 7,4. 1  (Figure 2.7 [11]). Then, 

P{Q.+11Qn,Q.-1, • • .1 = P{Qn+11Q.} 

Therefore the sequence  Q be viewed as the states of a Semi-Markov chain whose 

state transition intervals correspond to the OL/UL cycle times, which are random 

variables. [11] discusses two methods - functional iteration and spectral factorization 

to determine the probability generating function of the probability density function 

of the queue length. However [11] does not evaluate the stochastic equilibrium dis-

tribution of the queue length. 

[12] and [13] discuss a method to determine the stochastic equilibrium distribution 

of the multiplexer queue by approximating the superposition arrival process by a 

semi-Markov chain. The semi-Marko\'T process approximated is as described below. 

Consider the phase process as shown in Figure 2.6. The following approximations are 

made 

a) when J(t) < C (corresponding to the underload state UL), the length of the 

queue (when it is non-empty) decreases at the rate of V(C — J(t)) packets per 

second. If the queue is empty it remains so as long as J(t) < C. No queue 

increment is allowed . 

b) when J(t) = C (this is possible only if C is an integer), the rate of change of 

the queue length is zero. 

c) when J(t) > C (corresponding to the overload state OL), the length of the queue 

increases at the rate of V(J(t) — C) packets per second. No queue decrement 

is allowed. 
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Figure 2.7: No. of active voice sources and multiplexer queue length as a function of 

time 
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C 

Figure 2.8: Semi-Markov process 

Let the states of the process be denoted by (qt , vt ) where vt  = J(t) , the number of 

sources in talkspurt at time t and qt  is the number of packets in the queue. Transitions 

from 9i, j) to (i, j  —1) or  (i, j+  1) are called phase transitions, since the queue length 

does not change. The transitions from (i, j) to (i +  1, j)  is a queue increment and to 

(i —1, j) is a queue decrement. The process is shown in Figure 2.8. It can be observed 

that the transition probabilities for the process shown depend on the current state of 

the process. Hence there exists a Markov chain embedded at the instants of phase 

state changes, queue increments and queue decrements. Also the expected sojourn 

time in any state depends only upon the state. Therefore the process is a semi-Markov 

process. The parameters of this semi-Markov process are the packet generation rate 

,the mean talkspurt and silence periods, the communication link capacity and the 

total number of voice sources. 

To compute the equilibrium probability pij that qt  = i and vt  =  j the following 
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E. = the probabi li ty that a blocking period starts in state (i,K) 

Figure 2.9: Blocking state diagram 

equation from renewal theory is used in [12] and [13] 

qij Mij 
7-= v,N 

--‘k qklrnkl 

where 

(2.21) 

qij = equilibrium probability for the embedded Markov chain 

= expected sojourn time in state (i,j) 

Matrix Geometric method is used to solve equation 2.21 in [12] and [13]. Com-

parison of the results obtained by this approach with the simulation shows that the 

model overestimates the probability that the queue is empty. This is due to the 

approximations underlying the mode. 

[16] also approximates the superposition as a semi-Markov chain. However, the 

system considered is a finite buffer one and the emphasis is placed on the placed 

on the packet loss which is incurred only when the buffer is full. If K is the total 

buffer capacity in packets and 7ri,K, the equilibrium probability of i voice calls in 

talkspurt when the buffer is fullthen we have 7ri,K  = 0 for i < C, since the buffer will 

not be full when the service rate is greater than the arrival rate. Hence the packets 

would be lost only for states greater than C. [16] considers these states alone and 

calls it the bloaing states (Figure 2.9 [16]). Focusing on the blocking states analytical 

expressions are derived in [16] for the temporal behaviour of packet loss. Results show 

that the packet loss rate changes slowly and has large fluctuations. Increasing the 

buffer size merely extends the non-blocking periods and thereby reduces the overall 

aaverage packet loss rate. However, once a blocking period occurs, the length of the 

period as well as the packet loss within this period becomes irrelevant to the buffer 
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size. 

1 

Discrete time Markov model 

Here again the state of the process is the tuple consisting of the number of sources 

in talkspurt and the number of packets in the queue. But the sampling is done after 

every frame and hence the process is in discrete time domain. The state of the system 

at the beginning of the nth frame is given by  (ta ,  bn ) where tv, is the number of users 

in talkspurt and bn  is the queue length. 

Such a system is studied in [15] for a finite buffered voice multiplexer. Two 

schemes for discarding the packets are considered. In the first scheme a buffer of size 

K is properly selected so that all the packets within the buffer can be transmitted 

within their time (delay) constraint. All the packets arriving after the buffer is full 

are discarded. In the second scheme, all the arriving packets are stored in the buffer 

and at the end of a frame, the system randomly selects a packet to drop from the 

arrivals in the frame. This process is repeated until the all the remaining packets 

meet their delay constraint. This saeme balances the packet loss for each user. 

For both the schemes the transition probability, 

P1j,k1 -= PrItn+i = k,bn+1= = = 0<i, k<N 0<j l<K 

and the equilibrium state probability 

= Pr{t = n, b = m} 0 < n < N, ;0<m<K 

in both the schemes are determined by considering the queue length transitions from 

bn  to b7,+1 for the following four cases 

• case 1: bn  > C and tn  < K — bn + 1; enough packets in the queue to keep the 

server busy and not too many arrivals to cause overflow. 
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• case 2: 1)2, < C and t„ < K — b, 2 + 1; not enough packets in the system to keep 

the server busy and not too many arrivals to cause overflow. 

• case 3: b,,, > C and t,-, > K — 14„, + 1; the server keeps busy a nd overflow 

may occur. Due to overflow some packets will be discarded. Let the number 

of packets discarded D1  = d. Then D1  is a random variable with probability 

density function WI:), (d). 

• case 4: bri  < C and t ri  > K —  b  +1; the server may go idle and overflow may 

occur. Let D1  be the number of packets discarded and R the number of packets 

served in the frame (then the server is free for C—R timeslots during the frame). 

Then R and D1  are random variables with a joint probability density function 

OR,D i  (r, d). 

[[15] discusses the computation of the pdfs 111 D1 (d) and OR,Di(r, d)  for both the 

schemes. Results show that scheme 2 performs better than scheme 1 as it spreads the 

packet loss across the users. 

Uniform Arrival and Service model 

The Uniform Arrival and Service (UAS) model, which assumes that the information 

flow in and out of the buffer is uniform rather than in discrete packets was used by [23] 
for modeling data traffic. In the UAS model the source generates information to the 

transmitter at a rate of one unit of information per unit time and the server removes 

information from the buffer at a uniform rate not to exceed C units of information 

per unit of time. As in the semi-Markov process of [12], while the system is in state 

J(t) = j > C, the buffer content increases at the rate of j — C units of information 

per unit of time (if the queue reaches its limits it will stay on its limit) and when 

the system is in state J(t) = j < C, the buffer content reduces at the rate of C — j 
units of information per unit of time as long as the buffer is nonempty(if the buffer 
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becomes empty it will stay empty)[14],[12] and [13] approximate the superposition 

arrival process by this model. 

In [14] the UAS mcidel is used to model a finite buffer multiplexer. The equilibrium 

distribution is described by a set of differential equations, which together with a set 

of boundary conditions can be solved to yield the equilibrium distribution of delay 

and packet loss. The method is briefly outlined below. 

If Pi(t, b) be the probability that at time t there are b packets in the queue and i 
lines are in their talkspurt, where 0 < i < N,t > 0 and 0 < b < K. If St be a small 

time interval, then from Figure 2.6 we have 

Pi(t St,b) — (i — C)St}p(i — 1,i)St 

+Pi_f i{t,b — (i — C)St}p(i + 1, i)St 

H-P{t,b — (i — C)St}(1 — p*(i)St) 0(St) (2.22) 

where 

p*(i) = p(i,i I) p(i,i  —1)  
p(i,i +1) = (N — i)P i N 
p(i,i —1) = ia i 0 

Dividing equation 2.22 by Si and letting Si 0 we get 

a  Pi(t,b) 
(i C)

013i(t,b) p(i — 1, i)Pi_i (t, b) at Ob 
+Xi + 1, i)Fi+i(t,b) 

—p*(i)Pi(t,b) 0 < b < K (2.23) 

To find time independent equilibrium probability hm t_,à0Pi(t, b) define Fi (b) = 

/im t .4,0 Pi(t, b), then equation 2.23 becomes 

dFi (i — C)— = p(i — 1, i)Fi_i(b) p(i  +1,  i)Fi+i(b) — p*(i)Fi(b) ; 
db 

Equation 2.24 can be written in matrix form as 

DdF(b)I db = MF(b) 0 < b < K (2.25) 
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(2.24) 



I  

F (b) = E exp(zkb)akOk 
k=0 

0 < b < m (2.26) 
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where 

D diagt—C, 1— C,2 — C, N 

— P* ( 13 ) P(1 , 0 ) 
p(0,1) —p* (1) p(2,1) 

p(1,2)  _p*()  p(3, 2) 

p(N — 2, N — 1) —p*(N — 1) p(N, N — 1) 

p(N — 1, N) —p * (N) 

The solution to the differential equation 2.25 is 

zk = eigen value of D' M 

cbk = right eigen vector of D' M 

The ak are coefficients got by solving boundary conditions. For an infinite buffer 

case, closed form expressions exist for zk, Ok and ak, as given in [23]. In the case of 

finite buffers [14] discusses a method of formulating the boundary equations to solve 

for (1)1 Zk and ak. 
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Figure 2.10: Rate Distortion Curves 

2.2 Survey of video traffic models 

The introduction of BISDN/ATM technologies to broadband networks and the ad-
vancements in source coding algorithms for video, have made feasible the use of vari-

able bit rate coding for video transmission. This would engender a flexible communi-

cation network with a high efficiency, as network resources can be shared dynamically 
by numerous users. 

A VBR video codec produces a variable bit rate output by adapting the generated 
bit rate to the the local and temporal image complexity, while maintaining a con-

stant image quality. This can be observed from the rate distortion curves shown in 

Figure 2.10. These curves depict the variation in the output bit rate as a function of 

distortion in the output. From the figure it is evident that in order to maintain a low 
distortion (or high quality) in the output, a higher bit rate codec is required, however 
a lower bit rate codec produces high distortion in the output. While a constant bit 

rate coder, produces a constant bit rate output at the expense of quality, a VBR 

codec maintains a constant quality by varying the bit rate. 
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The advantages of employing VBR video codecs are many. First of all at low 

bit rates, use of constant bit rate video codecs, produces a highly varying picture 

quality which is particularly annoying to the viewer. Use of VBR video codecs helps 

maintain a constant quality. Secondly, at high bit rates use of VBR video yields high 

bandwidth gains by using channel sharing among multiple users. In certain cases 

VBR coding also alleviates the need of sophisticated coding algorithms, as the same 

effects in picture quality could be achieved by using higher bit rates. 

VBR video sources are highly bursty. The burstiness of VBR video sources is a 

subjective measure [21] that depends on the content of the video (e.g., picturephone, 

teleconference, broadcast television etc.,) and the encoding scheme used (DCT, Mo-

tion compensated DCT, DPCM, MPEG etc.). As the video signals are expected to 

occupy most of the bandwidth in the future broadband networks, accurate modeling 

of a VBR video source based on its statistical characteristics is required for the design 

of such networks. Numerous works in the literature have focussed on modeling VBR 

video sources. This section surveys the various models that have been proposed in 

the literature to characterize VBR video sources. 

2.2.1 Characteristics of VBR video 

The charcteristics of VBR video depend on the information content of the picture 

and the encoding algorithm used. The bit rate of the coded video is dependent on 

the motion activity in the scene, namely low, medium and high motion. Due to the 

continuity of motion within a scene only small portion of the picture changes from 

frame to frame. Hence variations in bit rate are smaller within a scene. The bit 

rate of the coder also depends on the changes in the content of the video (like cuts, 

scene changes, etc.). Highest bit rates arise during scene changes and last only one or 

two frames depending on the coding algorithm. However, the data rate output of a 

VBR video encoder does not actually reflect the changes in the information content 
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of original video signal, since the compression of the bit rate achieved by various 
algorithms are different. 

The data buffering scheme used by the encoder also influences the bit rate vari-

ations of the encoder. For example in an encoder that uses frame buffering, all 
the variations arising from the locality of an image within a frame are smoothed, 

whereas in a multi-frame buffered codec variations in bit rate between frames are also 

smoothed. 

There is a strong correlation among the bit rates of successive frames due to the 

nature of actual video scenes and interframe coding. Correlations that occur because 

data on part of an image is highly correlated with data on the same part on the 

next line are called spatial correlations. Correlations that occur because data on one 

part of an image is highly correlated with data on the same part of the next image 

are called temporal correlations. Spatial and temporal correlations together with the 

encoding scheme greatly influence the bit rate output of VBR video codec. 

Table 2.2 adapted from [21] summarizes the bit rate variations that occur in a 

VBR video codec and the corresponding time scale they occur. Hence modeling a 

VBR video source is a difficult and complex task as the bit rate process posseses a 

high degree of variability at different levels. Thus, modeling of a VBR video source 

may be done at one of 3 levels, namely at a scene level, frame level or intraframe 

level, as depicted in Figure 2.11. 
Various models have been proposed in the literature to characterize VBR sources 

with scene changes and without scene changes (at a frame level). However the char-

acteristics of VBR video at the intraframe level have not been well understood. The 

following sections give a brief overview on the various models proposed to characterize 

interscene and intrascene variations. 
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Type Time scale Causes Characteiistics 

ong term variability Several seconds Scene changes Discontinuous variation,differing 

(multiple scenes) statistical characteristics before 
and after the change 

ihort term variability Between 1 frame Subject motion, Smooth variations with temporal 
(intrascene ) period and several camera motion, correlations,with occasional large 

seconds, pattern variation, variations due to subject and 
camera motion. 

[ntraframe variability Less than 1 frame Spatial variation Variations that have a periodicity 
period, of the due to image scanning or block 

characteristics processing. 
within an image. 

Table 2.2: Classification of bit rate variations 

1 

1 
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Intraframe variation model 

Figure 2.11: Modeling of VBR video 

••n 
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2.2.2 Models of Intrascene variations (i.e. without scene 

changes) 

These models are applicable to video scenes with relatively uniform activity levels, 

with few scene changes like video conference scenes showing a person talking. Under 

these circumstances the variations in bit rate is small and the bit rate process pos-

sesses short term corelations only. Infact the study of .such bit rate processes have 

shown that they possess bell shaped nearly normal distributions [21], [22], [23], [24], 

[25],[26]. The autocorrelation function of the bit rate process closely resembles a neg-

ative exponential (for a frame buffered codec). Based on these a few models have 

been suggested to characterize intrascene variations. 

Autoregressive process model 

An autoregressive process model of order M (denoted AR(M)) is one which predicts 

the future values of a time series by regressing on the past M sets of values. Such 

process models have exponentially decaying autocorrelation and a Gaussian distribu-

tion. Based on this, AR process was suggested as a model for VBR video in [23], [27], 

[25], [24]. 

An autoregressive process model for VBR video is defined as 

A(n) = E aA(n — m) be(n) (2.27) 
m=1 

where A(n) represents the source bit rate during the nth frame,M is the order of the 

model, e(n) is a Gaussian random process (with mean 7/ and variance 1). an,(m = 

1, 2, ... M) and b are constants. For M = 1 we have the first order AR process given 

by 

A(n) = aA(n — 1) be(n) 
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(Since the value of the sequence depends only on its previous instant it is called a 

continuous state Auto Regressive Markov model). The parameters of this model are 

a,b and the mean value ri of e(n). 
The mean and autocovariance of the AR process are given by 

bri  E(A) = 1 a 
(2.28) —  

C(n) = a n 

1 — a2  n > 0 (2.29) 

Hence the parameters a,b and ri are obtained by matching the equations (2.28) 
and (2.29) with empirical data. 

Due to its simplicity and accuracy the AR(1) process is an excellent candidate for 

modeling VBR video sources. But it does not lend itself to a queueing analysis easily. 

Hence, this model has its utility limited to simulations. 

Another important utility of the AR process is the fact that it can be used to 

statistically characterize a multiplex of video sources [21]. If A(n) denotes the signal 

which results from multiplexing N, AR processes, A i  (n), A2 (n), A3 (n), AN(n), we 

have 

A(n) = 

If Ai(n) are mutually independent then the mean and variance of the resulting 

multiplex are given by 

E[A(n)] = E E[Ai(n)] 

E[A(n)A(n S)] = E E[Xi(n)Xi(n S)] 

Hence, if Ai(n) are identical AR processes, the resulting multiplex A(n) is also an 

AR process with parameters a and b same as the original AR processes and whose 

mean and variance are N times those of Ai(n). 
Though first order AR processes AR(1) were found to be reasonably accurate 

in modeling VBR video sources, a better matching may be achieved if the order of 

regression is increased. In this case the autocovariance of the resultant process is a 
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sum of several exponentials. [24] proposes an alternative solution to achieve the same 

effect. Here the bit rate per frame A(n) is modeled as a sum of N, AR(1) processes 

i.e., 

A(n) = Ef3i(n) 

where 

f3(n) = aix i (n — 1) bi ei(n) 

e(n) are Gaussian random processes with mean pi  and unit variance. It is shown 

that a choice of N=2 provides a fair accuracy/complexity tradeoff. The method of 

determining the parameters of the process is discussed in [24] 

Markov models 

The Markov models have the memoryless property and lend themselves quite well to 

an analytical treatment. Due to this reason they have an edge over the AR process 

model described before. Two types of markov models have been proposed: 

(a) Continuous time, discrete state, Markov models. 

(b) Discrete time, discrete state, Markov models. 

(a) Continuous time, discrete state, Markov models 

The bit rate process A(t) from a video source is modeled as a continuous time, 

discrete state, Markov model in [23],[27]. The spectrum of possible values of bit rates 

from the video source is quantized into M discrete levels (where state M corresponds 

to peak bit rate level) of stepsize A and these M +1 levels (including 0) correspond to 

the state space of the Markov process. Now, the continuous process A(t), 2  describing 

the bit rate of the video source at time t is sampled at random points in the time 

domain, and is quantized into the nearest level Y(t) (Figure 2.12). Hence the pro- 

'since the bit rate is of the order of several Mbps and the packet length is small, this model 
assumes the data as a continuous bit stream, ignoring the effects of packetization. 
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Figure 2.12: Poisson sampling and quantization of the source rate 

Mc (m-i). 

«NS. 
Figure 2.13: State transition rate diagram of Discrete time, discrete space,Markov 

process 

cess can be seen as switching between different states ( as determined by the value 

of Y(t)), spending exponentially distributed time periods in each state (due to the 

poisson sampling). Since the process being modeled is of uniform activity, only state 

transitions to nearest neighbour states are allowed. The approximation of A(t) by 

Y(t) can be improved by decreasing the quantization step size A (and thus increasing 

M) and increasing the sample rate. 

This model can be used to model both a single video source or a multiplex of N 

video sources. In the latter case the state space is formed by quantizing the aggregate 

rate of the multiplex AN(t) into M discrete levels. As before state changes between 

nearest neighbours are only allowed. Hence it results in a birth death process Whose 

state transition rate diagram is shown in Figure 2.13. The exponential transition 

rates between states iA and jA are given by 

= (M — i)a j  < M (2.30.1) 
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i > 0 -1 = 

= 

Figure 2.14: Minisource model 

li - M > 1 

(2.30.2) 

(2.30.3) 

(2.30.4) 

a 

The birth death process of Figure 2.13 can be considered to represent a population 

of `minisources', where each minisource is as given in Figure 2.14, i.e., each minisource 

is in one of the states ON or OFF. When ON it generates information at the rate of 

A bits/sec. Then the probability the system is in state kA is same as the probability 

that there are k minisources out of M minisources in their ON state. It can be shown 

that A'N (t) has a binomial distribution 

PlYN (t) = = k(  — p) m-k  

where 

P = + 

E(YN ) =--- M A p 

Cr(0) = M A 2  p(1 

C(r) = C'N (0) exp —(a 0) 7  

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Here, the parameters of the continuous time, discrete state Markov model namely 

a, 13 and A can be determined by matching the mean  E(À) , variance C(0) and 
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Figure 2.15: Discrete time, discrete state, Markov process model 

exponential autocovariance C(T) as given by equations (2.32) to (2.34) with the 

corresponding measured values. The number of min isources required for a good 
approximation of a multiplex of N video sources was found experimentally to be 20N 
[23], [27]. 

As already mentioned Markov models lead to tractable analytical treatment. In 

[23], [27] a fluid flow analysis has been carried through to arrive at the survivor 
function of buffer occupancy. 

(b) Discrete time, discrete space, Markov model 

This model is used to characterize a multiplex of N video sources in [28]. In this 

model the total range of bit rates of the multiplex are quantized into M discrete levels. 

As before these levels form the state space of the Markov chain. However the time 

is discrete, corresponding to a duration of a frame. Since it is discrete, each state of 

the Markov chain has three possible transitions: increase, decrease or remain at the 

same level, as shown in Figure 2.15. There are 3 parameters (ai , -yi ) associated 
with each state i, i 0, 1, 2, ... M where ai is the transitionprobability of moving 

forward one state, fii is the transition probability of going from state i to state i — 1 

and yi is the probability of staying in the same state i. As before if A(n) represents 

the bitrate at the nth frame, then 

A(n + 1) = A(n) -I- WA() (2.35) 

where 
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is a discrete random variable and 

1 with probability  c(n) 

WA(n) = —1 with probability ›,(n) 

0 with probability -y),(n) 

And the parameters at each state i satisfy 

ai+Pi+ -yi= 1 i= 0,1,2,...M 

WA(n) 

(2.36) 

The parameters ai,Pi can be selected suitably. In the selection of ai, 0,, it is 

desirable to have the property that the sequence {a i }  is a decreasing sequence and 

the sequence {Oi }  is an increasing sequence. This assures that when the bit rate is 

below the average there is a tendency to increase and when it is above theaverage, 

there is a tendency to decrease. With appropriate selection of parameters, the steady 

state probability of being at state i, P(i) can be determined. 

Autoregressive moving average models 

In [29] an Autoregressive moving average (ARMA) model has been proposed for 

characterizing the output of a non-frame buffered video codec. The ARMA models 

have autocovariances that exhibit recorrelation. Since the output bit rate from a non-

fraine buffered video codec also exhibits recorrelation (temporal and spatial), ARMA 

models serve as a better choice to model the output bit rate process from a non-

frame buffered video codec. The ARMA model was used to represent the cell arrival 

in intervals of typically 100its. The number of cells in the ith interval is modeled by 

a discrete state, autoregressive moving average process, Xi given by 

(2.37) = g(aZi-ni vi) with a < 1 

where Yi  and Zi  are a sequence of correlated Gaussian random variables with zero 

mean (since a white noise sequence cri , with zero mean is applied at the filter's in- 

put). The moving average part, i,e., the sequence Yi models frame correlations and 
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the autoregressive part,  Z ,  models scene and frame correlations. The sequence of 

uncorrelated Gaussian random variables vi, with zero mean, models the white noise 

stochastic component. g(.) is a Zero memory Non linear (ZMNL) operator whia 
converts the output of the ARMA filter into strictly positive random variables. The 

method of parameter estimation of the ARMA process is described in detail in [29]. 

TES models 

TES (Transform expand sample) [30, 31, 32] is a non-parametric method which can 

accurately capture the histogram and approximate autocorrelation function of any 

data set. TES methodology assumes that some stationary empirical time series (such 

as traffic measurements over time) is available and then it tries to construct a model 

such that the marginal distribution (or histogram), leading autocorrelation and sam-

ple path realizations (histories) matches with the empirical values quite well. 

TES processes come in 2 flavours: TES+ and TES -  process (i.e with positive 

and negative lag - 1 autocorrelations respectively). TES+ gives rise to the sequence 

{U }  given by 

{ U0 if n = 0 
Un+  = 

if n > 0 

while TES -  gives rise to the sequence {Un, 

(2.38) 

Un+ n even 
Un-  = (2.39) 

1 — U9t n odd 

Here, U0  is distributed uniformly on [0,1); {V,,} is a sequence of IID random vari-

ables, independent of U0 , called the innovation sequence and angular brackets denote 

modulo - 1 (fractional part) operator < x > = x — max 1 integer  n:  n < xl. The 

sequences {U } and 1Un of the form (13) and (14) are called background sequences 

and give rise to a sequence of stationary random variables with uniform marginals 

on [0,1) and different autocorrelation structures. For practical purposes, transformed 
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TES processes {X72+ } and { X,7}, obtained from (13) and (14) by some transformation 

D (called a distortion) are of importance. i.e., 

X,t =D(U ); X7,7 = D (U9,7) (2.40) 

The sequences {X;t} and {X;} are called foreground sequences . The idea is to 

create suitable foreground sequences with marginal distributions matching the given 

(empirical) distribution, by using the inversion method [33]. For a given distribu-

tion function F, the inversion method uses distortion D = F-1  to genarate station-

ary sequences {X: } and {X—} with marginal distribution F. In the empirial TES 

methodology, the distortion is effected in two stages. First, in order to "smooth" 

TES sample paths, a family of transformations called stitching transformations Se , 

0 < < 1 is employed. 

Se(Y) = 1—y 

if0 < y < e 
ife << 1 

(2.41) 

Processes of the form {Se (Un+)} and {S(U7.)). are called stitched TES processes. 

For 0 < e < 1 the effect of Se  is to render the sample paths of background TES 

sequences more "continuous-looking". In the second stage the inversion method is 

applied to the stitched processes to generate the foreground sequences with matched 

distributions as the given distribution F. Thus the distortion is given by 

D = F-1 (Se (U,- )) or F-1 (Se (U,;1- )) 

However TES methodology models empirical densities as histograms, as is explained 

in [31]. 

TES methodology also fits the autocorrelation of the empirical data with that of 

the model. This is carried out by a heuristic search for a pair ( e , fv ) , (where e is a 

stitching parameter and f„ is an innovation density) such that the autocorrelation 
function approximates its empirical counterpart. The search can efficiently be carried 

out using the visual, interactive software environment called TEStool [34]. 
GOB (group of block) level source model, for compressed H.261 standard VBR 

video over a local area network was constructed in [31, 30]. The GOB is a suitable 
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unit of packet transport. (Each DCT coded frame is divided into 12 group-of-block 

coded subscreens). At the GOB level the bit rate process is characterized by an 

autocorrelation that is periodic both at the spatial GOB scan rate and at temporal 

frame rate. In order to fit a TES model to this data, the raw data is first transformed 

into a new sequence called the residual sequence {R7,}  which has a faster decaying 

autocorrelation function. This transformed sequence could effectively and easily be 

fitted with a TES model as explained in [31, 30]. 

TES models can be used to generate synthetic streams of realistic traffic to drive 

simulations of communication networks. However they suffer from the handicap of 

not leading to tractable mathematical analysis. 

2.2.3 Modeling scene changes 

These models are useful in describing video sources with high motion and scene 

changes as in broadcast applications. Models that are proposed for video sources 

with scene changes must capture both short term and long term correlations. In 

this section we examine a few models that have been proposed to characterize video 

sources with scene changes. 

Continuous time, discrete state, Markov process model 

This model proposed in [35] is an extension of the model by [23] (discussed in section 

3.2). Here, as in [23] the source changes between various fixed rate levels, with 

exponentially distributed times in each level. However, here, the possible data rate 

lev.els are built from a linear combination of two basic rates, a higher rate Ah and a 

lower rate A/ . This model can represent the bit rate from a single video source or an 

aggregate of N video sources. The state transition rate diagram for an aggregate of 
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= NpAi 
NpAI Ah 

N video sources using this model is shown in Figure 2.16. (The labels in each state 

indicate the data rate in that state). The basic rate A1 corresponds to parameter A 

in the model [23]. Transitions based on A 1  model the short term correlations, while 

transitions based on Ah model the long term correlations. Hence with no transitions 

based on Ah, this model reduces to the model of intrascene variations as in [23]. 

For an aggregate of N video sources, there are NM +1 low rate levels and N 1 

high rate levels, where M is chosen arbitrarily. The parameters of the model are 

determined by matching the theoretical values with measured values. For N =  1, 

the parameters c and d are determined by matching the fraction of time spent in 

high activity level q(= cl (c d)) and the average time spent in high activity level 

with the actual measured data. For determining a, b, A 1  and Ah, the autocovariance, 

variance, mean ratio (-y)(ratio of average bit rate in high level tot that of low level) 

and the overall mean bit rate Tn as given by equations 2.43 to 2.45 are matched with 

the actual measured values. 

C(r) = C(0)exp —(a b)r (2.42) 

C(0) = Np(1 — p)A.? where p = (2.43) 

(2.44) 

= NpAt qAh where q = (2.45) 

For the sake of analysis this model can be viewed as a superposition of simpler ON-

OFF mini-processes, NM of the type shown in Figure 2.17a, and N of the type shown 

in Figure 2.17b, then the state of the aggregate process model is the couplet (i, j) 

where i, j denote the number of each type of mini-processes which are in the ON 

state. A fluid flow analysis (as in [23]) has been carried out in [35] to determine the 

survivor function of buffer occupancy. 
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Figure 2.16: Continuous time, discrete state, Markov process  mode'  
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Figure 2.17: Miniprocess models 
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Figure 2.18: Markov modulated AR process 

Markov modulated AR process 

As seen before, an AR process captures short term correlations quite accurately .  In 

[36], [37], [38] an AR process with time varying parameters is proposed as a model to 

• characterize the bit rate process from a motion adaptive video codec (one that adapts 

the encoding scheme to the motion in the scene picturised). The time dependence 

of the parameters of the AR process captures long term corre lations. According to 

this model the no. of bits in a frame is given by a first o rder Gaussian AR process 

whose parameters are determined by the state of a Marko v chain(Figure 2.18). Thus 

each state of the Markov chain, with its own set of parameters, represents the various 

classes of motion. A Gaussian density was used because it was found from the study 

[36, 37, 38] that the bit rate distribution of the VBR coded full motion video can be 

represented by a composite Gaussian PDF. 

In this model, the range of bit rates are separated into N adjacent intervals de-

marked by thresholds i = 1, 2, ... N — 1 and 0 < < -y2  < -yAr-l . 
 These bit 

rate intervals form the state space of the Markov chain. i.e., state 1 corresponds to 

the range 0 < <yi  and state i corresponds to range -yi_ I  < < where A n 

 represents the number of bits in frame n. If Sn  denotes the state of the process at 
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frame n, then the model can be represented mathematically as 

= 
a(i)\_ i  --E GO-t(i), 0-2 (i)) if S = 

G ( 71(i) v (i)) if S S S=i  
(2.46) 

where G(.) denotes a Gaussian random variable with specified mean and variance. 

77(i) and v(i) denote the mean and variance of An  conditioned on state  j.  i.e., 77(i) = 

E[A n iSn  = i]; v(i) var(An I.Sn  = i). a(i) is the correlation coefficient between the 

bit rates of two successive frames when the Markov chain is in state i. 

Increasing the number of states  N,  results in an accurate model at the expense 

of increasing its complexity. The number of parameters of the model depends on the 

number of states, as a set of parameters characterize the AR process in each state. 

The parameters of the AR process in various states are obtained by matching the 

following statistics with the measured values, for each state: 

it(i) (2.47) (a) mean bit rate in state 477(i) = 1 — a(i) 

(b) variance of bit rate in state  j,  v(i) = o-2(i) 
(2.48) 

1 — a 2 (i) 

(c) measure of correlation of bit rates, .13 2  (i) = 
1
2

(i) (2.49) a 

where D2 (i) is the measure of correlation of bit rates between two succesive frames. 

i.e., 

D 2  (i) = ERA n, — An — 1) 2 1.5n  = = 

Hence the parameters of the AR process in each state, namely, p(i), o-(i), and a(i) 
are obtained from equations 2.47 to 2.49. 

The duration of a state is geometrically distributed with mean k ,as  given by the 

following p.d.f., 

Fi(k) 0 = (1 0 i) k (k = 1, 2, ...) 

where k is interms of the number of frames. The quantity -1,- and ni,j  ( probability the 

next state is j given that the present state is i) can be obtained from measurements 
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(2.50) 

f (x) = E Pi G(77(i), v(i)) (2.51) 

53 

directly. Then the transition probability ,  matrix P can be obtained as 

P 

1 — 0 1  01712 01713 

0271-21 1 — 02 0271'23 

0371'31 037r32 1 - 03 

If the vector p = [pi,  P2,. pN] denotes the steady state probability (obtained by 
solving p = p P and E = 1) then the number of bits generated according to this 
model has the following PDF 

i=1 

This model can also be used to characterize an aggregate of N sources. As before, 
though this model is a good candidate for simulation, it does not provide a suitable 
framework for a queueing analysis. 

Model of Indices 

A novel method of video traffic characterization, that does not depend on the variable 
bit rate coding algorithm employed is discussed in [39]. Here, a set of simple param-
eters called the indices that sufficiently cliaracterize the video sequence are identified 
by working on the uncoded video sequence. The bit rate process from any coder is 
then predicted from a linear combination of the corresponding indices. 

The parameters developed are grouped into 3 classes. One is derived from the 

histogram of the pixel information. The second is derived from the spatial correlation 
of the pixel values in a frame and the third set of indices are derived from the temporal 

correlations of the pixel values along the time axis. 



The first class of parameters are derived from histogram of the pixel values of a 

single frame. Three indices are considered under this category, namely the average 

index (which gives a measure of the brightness in a frame), variance index(which 

gives a measure of the variability of the pixel values in a frame) and the entropy 

index (which represents the best possible compression performance for the codes that 

use first order statistics of the pixel values). 

For the second class of parameters based on spatial correlation, the indices chosen 

were vertical entropy (which is entropy of «difference in intensity between adjacent 

rows in a pixel array of a frame) and the horizontal entropy index (entropy of the 

difference in intensity between adjacent columns in a pixel array of a frame) 

For the third class of parameters, based on temporal correlation, the indices cho-

sen were difference index (reveals the difference in the amplitude of pixels between 

consecutive frames), motion index(the magnitude of the displacement vector corre-

sponding to the pixels within the frame) temporal entropy index (entropy of the 

temporal difference in the vertical consecutive frames). 

Study of the several coding schemes in [39] revealed that the output bit rate 

process was strongly correlated with some of the indices. Hence the output bit rate 

was predicted using a linear predictor model, a model fitting algorithm was then used 

to reduce the number of parameters according to linear regression measures of fit. 

Though the model averts the necessity of modeling the bit rate process from 

different encoders separately, it cannot be used for an analytical evaluation. 

Switched fractal source 

In [40] and [41] a switched fractal source has been proposed as a model to charac-

terize video source of less than 5 Mbps, using a highly compressed encoding scheme. 

Here the cell generation process is modeled directly in order to reproduce the bursty 

characteristics of the VBR traffic. In the encoding characterized, the original image 
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pa(t) = A a  tpa 

pi(t)  

(2.52) 

(2.53) 

P 

Pa 

Figure 2.19: active/inactive process model 

is divided into smaller sub-blocks, each block is transfered into another domain and 

the blocks of transform coefficients are scanned, coded and packaged into ATM cells. 

Due to the highly compressed nature of the coding scheme, the number of ATM cells 

produced after processing each block is small, either zero or one. Hence the cell 

generation process at the sub-block level can be modeled by a simple active/inactive 

process as shown in Figure 2.19. It was found that the transition probabilities  Pa  

(inactive to active) and pi (active to inactive) were dependent on the time spent in 

their present state. In particular the relationship is of the form p(t) oc tr)  where D is 

known as the fractal dimension and the model is called a fractal model. Therefore 

where ila , Ai are proportionality constants and Da , Di are fractal dimensions. The 

parameters are obtained from a logarithmic plot of experimentally measured active 

and inactive time periods. Such a fractal model accurately represents the cell traffic 

characteristics of uniformly active images. 

In order to represent the traffic statistics of varying activity levels, a model that 

switches between multiple fractal sources is proposed. [41] discusses a five-mode 

fractal source model. The five cell generation modes correspond to average bit rates 

of 1, 2, 3, 4 and 5 Mbps. These five fractal sources were obtained by monitoring the 

traffic produced by five artificially constructed images, in which each of the image 

sub-blocks (when coded) produced average bit rates of 1-5 Mbit/sec, respectively. 

Logarithmic plots of the experimentally measured, active and inactive time periods 
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were plotted. Parameters A and D of equations 2.52 and 2.53 are given by the y-axis 

intercept and straight line gradient of these plots, respectively. 

To simplify the switching process, each row of sub-blocks in an image (thirty two 

16 x 16 sub-blocks per row for 512 x 512 images) can be divided into image 'sections', 

each containing N (N = 8) sub-blocks. Switching between fractal sources is permitted 

only at the beginning of one of these sections. The switching scheme used is given by 

Lo i  
n = 0 

L.-1 + 1 8.1, n > 0  

 1 < LN < 5 

where L 7, is the activity level for image section n, Lo  is the 'starting' or 'average' 

activity level for the image (directly proportional to the average complexity of the 

image), 8  is a normally distributed random variable with zero mean and standard 

deviation a. The results of mean delay obtained by a queueing simulation using 

this model indicates that this model behaves similar to the 'real' traffic for network 

utilization levels upto 90%. 

Self Similarity and VBR video 

Recent studies [42] of VBR video have revealed that they exhibit the phenomenon of 

statistical self similarity. A self similar phenomenon exhibits structural similarities 

across all (or atleast a wide range) of time scales. 

In [42], the results of detailed statistical analysis of a 2-hour long empirical sam-

ple of VBR video are discussed. The samples were obtained by applying a simple 

intraframe compression code to an action movie. The study showed that the autocor-
relation function of the VBR video sequence decays hyperbolically, ( a manifestation 

of long range dependence). The power spectral density or periodogram of the VBR 
video does not seem to approach zero near the origin, instead it obeys a power law of 

the form ura for 0 < a < 1, which is another indication of long range dependence. 

Also, the marginal bandwidth distribution possesses a "heavy-tail". 

L„ = (2.54 ) 
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The above mentioned properties of long range dependence and heavy tailed 

marginals are not captured by conventional analytic source models. However these 

can be modeled by using self-similar processes. (Refer [42] for an explanation of self-

similar processes). [42] also presents an algorithm for generating synthetic self-similar 

VBR video traffic. 
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2.3 Survey of data traffic models 

Data traffic is highly bursty. Unlike real time traffic (voice or video), data traffic is 

delay or jitter tolerant, while being sensitive to losses. The statistical characteristics 

of data traffic are complex and application dependent. Modeling of data traffic is 

of fundamental importance in the performance evaluation and traffic engineering of 

packet (or BISDN) networks. Accurate models of packet data traffic may be used for 

analytical performance evaluation of packet data networks. Hence such models should 

be easy to implement and analyze, besides capturing the statistical characteristics of 

data traffic accurately. Many models have been proposed in the literature [43, 44, 45, 

9, 46, 47, 48, 49] characterizing both individual traffic sources or a superposition of 

multiple sources. 

Traditionally data traffic has been modeled by a Poisson process. Poisson process 

is characterized by arrivals with exponentially distributed inter-arrival times. Though 

the Poisson process provides an easy means for generating traffic, it is unrealistic 

[45, 50]. Other conventional models like fluid flow models [43], batch Poisson [44], 

MMPP [9] and HAP [46] incorporate some form of Markovian structure, to exploit 

the wealth of analytical tools already available. These models are appropriate for 

estimating many performance measures of interest and have been used with some 

degree of success. 

Recent studies of packet data traffic [51, 52, 53] in local area networks have thrown 

more light on the modeling of data traffic. The studies revealed that data traffic 

exhibits long range dependence and statistical self-similarity, i.e, the traffic exhibits 

"burstiness" across a wide range of time scales, ranging from milliseconds to minutes 

to hours. These findings have paved the way for more accurate models called the 

fractal models [47, 48, 49] that capture the long term correlations and burstiness of 

data traffic. 
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2.3.1 Overview of data traffic models 

The statistical characteristics of data models are complex and application dependent. 

There have been many models proposed in the literature for characterizing individual 

data traffic sources or a superposition of multiple sources. The conventional models 

like fluid flow, batch Poisson, MMPP and HAP incorporate some form of Marko-

vian structure, either in the way the way the arrival processes are modulated or in 

the arrival process themselves, for reasons of mathematical tractability. Thus these 

models are good candidates for the analytical performance evaluation of packet data 

networks. 

However, the recent studies of data traffic in local area networks [51, 52, 53] 

reveal that data traffic exhibits long range dependence and statistical self-similarity. 

Self-similar phenomena display structural similarities across all (or atleast a wide 

range of) time scales. Figure 2.20 reproduced from [50] helps explain the concept of 

self-similarity pictorially. Figure 2.20 (sets of figures on the left) shows a sequence 

of simple plots of the packet counts for five different choices of time units. From 

Figure 2.20 it is evident that 

a) plots of traffic measurements at various time scales look intuitively similar to 

one another (statistical self-similarity). 

b) plots are distinctively different from white noise. 

c) plots show that at every time scale ranging from milliseconds to minutes and 

hours, bursts consists of bursty sub-periods separated by less bursty sub-periods. 

The conventional models mentioned previously, do not capture the aspects of 

statistical self-similarity and long range dependence in data traffic, as shown in Fig-

ure 2.20 (right side)) which shows the traffic plots generated by a batch Poisson 

model. Hence new models that can represent self-similar (or fractal) characteristics 
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Figure 2.20: Ethernet traffic (packets per unit time) on five different time scales (left 

side). Synthetic traffic from compound Pgifson model (right side). 
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Figure 2.21: Models for data traffic 

have been proposed [47, 48, 49]. Thus the modeling approaches for data traffic may 

broadly be classified as shown in Figure 2.21. 

The implications of fractal nature of traffic are manifold. In order to understand 

them, we present a brief outlook on the manifestations of self-similarity in packet 

data traffic [54, 50, 55, 56 ] . 

Let X = (X 1 , X2, X3 , ...) be a covariance stationary stochastic process. For each 

m = 1,2,3, ..., let X(m) = (4')  ;k .= 1,2,3, ...) denote a new (aggregated) time 

series obtained by averaging the original series X over non-overlapping blocks of size 

m. i.e, for each m = 1, 2, 3, ..., X(m) is given by 4"")  = 1/m(X,,( k_ i )-1-...-1-Xkni ). Let 

al , a2 , a3  be constants. The data traffic exhibits the following self-similar properties: 

(a) slowly decaying variances: variance of sarnple mean decreases more slowly than 

the reciprocal of the sample size. 

i.e., Var(X (m ) ) = a 1 m-13  with 0 < < 1 

— For conventional models the variance of the sample mean decreases like 

. 

Conventional models 
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(b) long range dependence: autocorrelations decay hyperbolically rather than ex-

ponentially, 

autocorrelation r(k) = a2 k -P with 0 < /3 < 1 

implying a nonsummable autocorrelation function, > r(k) < oo. The self-

similarity parameter or Hurst parameter H --= 1 - 2 

- For conventional models the autocorrelation decays exponentially and is 

thus summable. 

(c) 1/f noise: The spectral density f(.) obeys a power law behaviour near.  the origin. 

i.e., 

as a 0 with 0 < < 1 

- Conventional models have spectral density broadened at the origin. i.e., 

a = O. 

(d) Fractal Dimension: The fractal dimension (or correlation dimension) [55] for 

data traffic is less than 1. 

- Conventional models have fractal dimension equal to 1. 

Implications of self-similarity in data traffic 

• Due to the fractal nature of data traffic, the expected number of arrivals in an 

interval of length t may scale as At D , where A is packet arrival rate and D is 

the fractal dimension. Hence standard engineering measurements such as rates, 

utilizations and occupancies may be arbitrary in that they depend critically on 

the length of the measurement interval. (i.e., Mil/ 

• The degree of self similarity measured in terms of the Hurst parameter H or 

the fractal dimension D, provide a satisfactory measure of burstiness (burstier 

the traffic, higher the value of H and lower the value of D). Other commonly 

AtD-1) .  

62 



used measures of burstiness such as index of dispersion (for counts), peak to 

mean ratio or coefficient of variation are meaningless, since for fractal traffic 

these measures can assume any value depending on the length of the interval 

over which these measurements are made. 

• The presence of low frequencies in the spectral density (or equivalently the 

slowly decaying autocorrelation and variances) causes heavy losses and long 

delays during long time frame bursts. Hence nature of network congestion 

produced by fractal traffic differs drastically from that predicted by conventional 

traffic models. 

• For fractal traffic the overall packet loss decreases very slowly with increasing 

buffer size. 

• Source models for individual sources are expected to show extreme variability 

in terms of the inter arrival times of packets. 

• Aggregation of bursty traffic streams does not produce smooth "Poisson-like," 

superposition process as previously assumed. Hence new traffic models that 

capture long range dependence and fractal properties are required. 

The fractal models that have been proposed in the literature account for the self-

similar phenomena exhibited in data traffic. However all the fractal or self-similar 

models proposed do not lead to tractable analytic solutions. On the other hand, 

the conventional traffic models that are blessed with a wealth of analytical tools, fail 

to capture the long term correlations and fractal properties of packet traffic. The 

models currently considered in literature (like Markov model, MMPP, ARIMA, etc.), 

may be used to capture fractal properties. However the process of modeling long 

range dependence with the help of short-range dependent processes is equivalent to 

approximating a hyperbolically decaying autocorrelation function by a sum of expo-

nentials and hence requires a large number of parameters. Parsimonious modeling 
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of fractal properties by conventional models can be achieved by resorting to some 

approximations. 

2.3.2 Conventional models 

This section gives a brief overview of each of the conventional models. As already 

mentioned, these models do not capture the long term correlations and self-similar 

properties of data traffic. 

Fluid flow model 

The fluid flow model [43] (also referred to as Uniform Arrival and Service model 

(UAS)) assumes that the information flow in and out of the buffer (at the multiplexer) 

is uniform and continuous rather than in discrete packets. In this model the source 

generates information to the transmitter at the rate of one unit of information per 

unit time and the server removes information from the buffer at a uniform rate not to 

exceed C units of information per unit time. With these assumptions the equilibrium 

queue distribution is described by a set of differential equations, which together with 

a set of boundary conditions can be solved to yield the equilibrium queue distribution. 

The method is outlined in the section on voice traffic models. 

Though this modeling methodology leads to a tractable analysis, its largest draw-

back is that it cannot model the short-term queue increases that occur when two or 

more packets arrive almost simultaneously. 
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Batch Poisson model 

The batch Poisson model [44] is an extension of the Poisson model. Here the arrivals 

occur in batches. The batch arrival is Poisson. The batch size can be random. 

However a geometric batch size helps to derive simple analytical results. Besides the 

burstiness captured by this model, correlations can also be modeled by choosing the 

batch size distribution of successive batch arrivals according to a Markov chain. The 

batch Poisson model is a special case of the general Batch Markovian Arrival Process 

(BMAP) for which extensive analytical (transient and steady state) results exist [57]. 

Hence this model provides an efficient means for analysis. 

However study of data traffic [45] has indicated that simultaneous or back to back 

arrival of packets are rare (due to the finite packetization time). Hence the model is 

not realistic. 

Packet trains model 

In [45] a new model called the packet trains model is proposed to characterize the 

data traffic in a token passing ring LAN. The model is based on the observation that 

data traffic exhibits source locality (i.e., given a packet going from node A to B, there 

is a high probability that the next packet will be going from node A to B or from B 

to A. The traffic on the network (here a token passing ring) is divided into a number 

of packet streams between various pairs of nodes of the network. Each node-pair 

stream consists of a number of trains. Each train consists of a number of packets 

(or cars) going in either direction (from node A to B or node B to A), as shown in 

Figure 2.22. The intercar time is smaller than a (user) specified maximum called 

maximum allowed intercar gap (MAIG). The inter-train time is larger than MAIG. 

Hence the inter-train time is a user parameter, while the inter-car interval is a system 

parameter. Partitioning of the network into streams based on node-pair processes as 
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et---  Inter train time 

Intercar time 

AB AB AB 

Figure 2.22: Packet train model 

explained above helps increase the predictability of data traffic, since they make use 

of the property of source locality inherent in data traffic. Hence this model is good 

for simulation purposes. 

MMPP models 

Markov modulated Poisson Process (MMPP) is a nonrenewal, doubly stochastic Pois-

son process where the rate process is determined by the state of a continuous time 

Markôv chain. In other words underlying is a continuous state Markov chain, where 

the sojourn time for state j is exponentially distributed with mean 7'7 1 . When in 

state j, cells are generated according to a Poisson process with rate Aj . [9] uses a two 

state MMPP and approximates the traffic of multiple data and voice sources. The 

details of fitting the MMPP to the data and voice traffic is discussed in the section 

on voice traffic. 

HAP inodels 

The HAP (Hierarchial Arrival Process) model is based on the fact that there are 

many processes modulating a single packet arrival stream. For example the long- 

term correlation depends on the user and application behaviour, while the short- 
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User 

Application 

message 

Figure 2.23: HAP model 

term correlation depends primarily on the network hardware and software. HAP 

[46] models both the short-term and long-term correlations by modeling the arrival 

process at 3 levels - user, application and message (Figure 2.23). A set of parameters 

describe the arrival and departure processes at each level. As shown, users arrive in 

the system according to an interarrival time distribution (with mean A) and stay in 

the system according to a service distribution (with mean p). The user may invoke 

applications according to an interarrival time distribution (with mean Ai) which may 

remain active according to a specified distribution (with mean yi ). During the active 

interval, the application generates several types of messages with different rates and 

with different message size distributions. The HAP can be mapped into a MMPP 
[46] and analysis can be carried out with the resultant MMPP. 

The HAP model captures the correlation at different levels. It also lends itself to 

analysis easily. However, the HAP, models the arrival process only at a message level. 

2.3.3 Fractal models 

This section briefly discusses the models proposed in the literature to capture fractal 

properties of packet traffic. 
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Chaotic Maps 

[47] uses deterministic chaotic maps to model fractal properties in packet traffic. 

Chaotic maps are low dimensional non linear systems whose time evolution is de-

scribed by a knowledge of an initial state and a set of dynamical laws. The trajectory 

of chaotic system are very often fractal in nature. Hence by adjusting the parameters 

of the chaotic maps it is possible to capture the fractal nature of packet traffic. 

Consider a one-dimensional map in which the state variable x n, evolves over time 

according to the non linear map: 

xn-Fi = f(x)  y  = 0 (0 < x„ < d) 

x,„,44  = f2 (x) Y. =1 (d < x7, <1) 

The packet generation process is modeled as follows: 

• The source alternates between a passive and active state. 

• When y7, = 0 (0 <  x d) the source is in passive state and when y7, = 0 
(d < x 1) the source is in active state (Figure 2.24). 

• Every iteration of the map in the active state is taken to generate a packet (or 

batch of packets). 

• suitable fi (.) and f2 (.) should be chosen so that properties of y(n) match those 

of actual packet traffic. 

The Intermittancy Map with fi(.) and f2 (.) as given below captures fractal prop-

erties of data traffic well [47] 

{

c + x„+ cx„m 0 < x„ < d 

where c — 1- e -d  (Figure 2.25) 

x ra —d 
Xn+i 

i-d 
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Figure 2.24: Basic source model (Chaotic Map) 
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1 
xn. 1 

Figure 2.25: Intermittancy map 
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While chaotic maps is effective in characterizing mua of the fractal properties 

of data traffic like 1/f noise, "thick-tail" behaviour of interarrival time densities, 

etc., using very few parameters, there are considerable analytical difficulties in their 

application. 

Fractional Brownian Motion model 

The fractional brownian motion is a self-similar process. i.e., if Z(t) is a brownian 
motion process then Z(at) is identical in distribution to aH Z (t), where (1/2 < H <1) 

is the self-similarity parameter. In [48] a model based on Fractional Brownian Motion 

is proposed to characterize the self-similar properties of packet traffic. The following 

model is studied : 
A ( t) = mt m Z (t) 

where A(t) is the number of cell arrivals to the multiplexer in the time interval (0, t], 
m is the arrival rate of a Poisson process and Z(t) is a fractional brownian motion with 

self-similarity parameter H. The above model is based on a diffusion approximation 

of the number of arrivals from a Poisson process. The parameters of the model are 

H, m and a. The above model could also be used to characterize the superposition 

of N independent and identically distributed cumulative traffic processes. Hence now 

A(t) = Eiiv± /  Ai(t). Now, the parameters H and a characterize the type of the traffic 

mix while m gives its amount. In [48] an analysis is done by using a storage model 

based on A(t) as the input process. 

Doubly stochastic Poisson process 

Doubly stochastic Poisson process is a time dependent Poisson process in which the 

rate of the Poisson process À(t) is a stationary stochastic process in continuous time. 
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By choosing an appropriate stochastic process for the intensity of the Poisson process, 

the fractal properties of packet traffic can be modeled [49]. [49] considers the following 

stochastic process for A(t) 

)%(t) = a(1 E ai cos(wi t 4- i )) 

where a is Rayleigh distributed random variable and Oi  are i.i.d. random variables 

uniform over the interval [—z, +4 It is shown in [49] that by choosing suitable 

values for the constants ai  such that the increment )n (t + h) — A(t) is a fractional 

brownian motion process, the self-similar nature of packet traffic can be captured. 

This model is easy to simulate but will not lead to a queueing model of manageable 

complexity. To allow the ease of analysis, this model can be approximated by a 

discrete state Markov model, with the intensity of the Poisson process quantized 

into discrete levels. Now, the transition between levels are a'ssumed to occur with 

exponential transition rates, depending on the current level. 
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Chapter 3 

Modeling of aggregate 

multi-media traffic 

In this chapter we address the problem of modeling aggregate multi-media traffic, 

discussing in detail the new model proposed. As outlined in the previous chapter, 

various constituents of aggregate multi-media traffic exhibit a diverse mixture of traffic 

characteristics. Our goal is to develop a model that aptly characterizes the variability 

and statistical correlations in the packet arrival process. The developed model is to be 

used for network performance evaluation or evaluation of multiple access schemes or 

for evaluating/devising connection admission control and source policing algorithms. 

In other words the model developed need only characterize the statistical correlations 

and burstiness (or variability) present in the arrival process. Also, recent studies of 

LAN data traffic indicate that such traffic exhibits long range dependence and self-

similar (or fractal) characteristics, i.e., the traffic exhibits "burstiness" across a wide 

range of time scales ranging from milliseconds to hours. Hence, in a multi-media 

environment fractal traffic co-exists with non-fractal traffic. Characterizing such a 

mix of traffic by an unique model poses a great challenge to the modeller . The 

model proposed should be versatile in the sense that it should be able to capture 

the long term and short term correlations of the multiplex. Also, the model should 

be parsimonious in the number of parameters, lest the parameters lose their physical 
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significance.In the few aggregate models proposed [58] [59] [60] [61] [62] [63] for multi-

media traffic, the self-similarcharacteristics of the component traffic has not been 

accounted for. Motivated by this fact we suggest a new aggregate model consisting 

of switched Poisson processes. 

The doubly stochastic Poisson process model was examined as a candidate model. 

The doubly stochastic Poisson process N(t); t <= 0 is a time dependent Poisson pro-

cess A(t), in continuous time, i.e, in each realization of the series of events )e varies 

with time and is itself a realization of a stochastic process. The MMPP (Markov 
modulated Poisson process), a special case of doubly stochstic Poisson process, has 

previously been succesfully used to model the arrival process from a set of voice 

sources [9], [10] and a set of video sources [58], [59], [60], [61] .The MMPP is itself a 

correlated non-renewal stream. In these methods the MMPP models can accurately 

characterize the aggregate arrival process (either from a set of voice sources or from 

a set of video sources as the case may be) because a large number of statistics can be 

matched and the correlations among the arrival process accurately captured. Hence 

an aggregate of voice and aggregate of video sources may be accurately characterised 

by the MMPP.Hence once again, the stress is on capturing the statistical correlations 

as found in the aggregate traffic. 

However, data traffic exhibits long range dependence and statistical self-similarity. 

Also, earlier measurements of data traffic [64] indicate that the message length distri-

bution is bimodal. Since a burst of packets are produced for each message, this also 

suggests that the burst of data packets may be bimodally distributed. Thus the data 

traffic may consist of short and long bursts. Also, as observed in [65], the number of 

bytes in each burst has a very heavy upper tail. This suggests that when one of the 

burst states begin, they extend for a longer time. Based on these observations, we 

propose a new model for data traffic. We model the data traffic by a 2-state doubly 

stochastic Poisson process, with sojourn times in each state having an independent 

and identical heavy tailed distribution, such as the Pareto distribution. The two 

states of the switched Poisson process may correspond to the long and short burst 
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rates. This model captures the long range dependence present in data traffic. 

This chapter of the report is organised as follows. The next section discusses 

about the MMPP model used for voice and video. The following section presents the 

new model (PMPP) proposed in this research. The last section discusses about the 

aggregate model and the simulation results. 

3.1 Characterization of aggregate voice and video 

traffic 

3.1.1 Characterization of aggregate voice traffic 

A single voice source may be modeled by the well-known ON-OFF process in which 

the voice source alternates between exponentially distributed ON and OFF periods 

with parameters a and b respectively. While in the ON state the source generates 

packets at a constant rate r aand in the OFF state no packets are generated. 

Now consider the superposition of N voice sources of the type mentioned above. 

This results in a N +1 state birth-death process. The state space grows as the number 

of sources in the superposition is increased. Three main approaches are proposed 

in the literature [58] for the representation of the superposition of on-off sources. 

The first approach explicitly takes into account the individual component of each of 

the sources [66, 16, 67]. The second is based on matching a few of the statistical 

parameters of the aggregate arrival process with that of a suitably chosen simple 

arrival process such as that of the MMPP. The last approach resorts to the fluid flow 

approximation [43, 14]. The first approacll has the limitation that the computational 

complexity dramatically increases in practical cases while the fluid flow approach 

cannot account for the cell level and its results are not accurate for large buffer sizes 

[14]. The second approach is the widely used one. Here, as originally proposed in 

[9], the aggregate packet arrival process from the superposition of many voice sources 

may be represented by a doubly stochastic Poisson process which is modulated in a 
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Markovian manner. Heffes and Lucantoni approximate the aggregate packet arrival 

process by a 2 state Markov modulated Poisson process (MMPP). The approximating 

MMPP model is chosen in such a way that its statistical characteristics match those 

of the aggregate traffic from the voice sources. There are 4 parameters for the chosen 

2 state MMPP, namely, the mean sojourn times rA-1  and ri3-1  in states A and B 

respectively and the Poisson arrival rates, AA and AB in states A and B respectively. 

They propose a matching technique by which the four parameters of the MMPP may 

be determined from the statistical characteristics of the original superposition. 

3.1.2 Characterization of aggregate video traffic 

Video sources with uniform activity level may be modeled by the model originally 

proposed by Maglaris et. al. [23]. In this model each video source is represented by a 

continuous-time, discrete state Markov chain. The bitrate from a source is quantized 

into M discrete levels of stepsize . The model switches between the various levels 

spending exponentially distributed time in each level. As noted in [23] the continuous-

time, discrete-state Markov chain may be constructed from the superposition of M 

mini-sources, where each mini-source is in one of the states ON or OFF. When ON it 

generates packets at a constant rate and when OFF, does not generate any packets. 

Thus an ON-OFF characterization is given to the video traffic as well and following 

the same approach as in the case of voice, the superposition of video sources may 

also be approximated by a 2-state MMPP. Several matching techniques [58] [59] [60] 

[61] have been proposed to obtain the parameters of the resultant MMPP, when the 

constituent ON-OFF processes are bursty. 

Hence the aggregate of voice sources and the aggregate of video sources may each 

be mapped into a MMPP. The MMPP is a correlated nonrenewal stream and hence 

it can account for correlations for the input process. Also, with the MMPP a large 

number of statistics can be matched and the correlation among the arrival process can 

be captured over larger time intervals. The MMPP is a special class of the random 

hazard function considered in [68] and [69]. The statistics of the MMPP like mean, 
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Variance, IDC (Index of Dispersion for Counts) may be derived from the probability 

generating function of the process. This is outlined in the Appendix. (The IDC for 

MMPP has already been derived in [9]. However, here we take a different approach). 

The IDC of MMPP is given by 

I() = 1 + 2(AA — ,\B) 2rArB  t  
rB) 2 (ÀArB ABrA) 

2(\A  — AB) 2rA TB  
, (1 — expHrA+rB )t ) (3.1) (rA TB) 3 (AArB ABTA)t 

where AA (AB) is the rate in state A (state B) and rA-1  (r13 1 ) is the mean sojourn time 

in state A (state B). 
The IDC of a process is indicative of the burstiness of the process. In figure 3.1 

the dotted curve shows the log-log plot of IDC of MMPP for AA = 100, AB = 120, 
TA -= rB = 0.33. As seen inthe curve the IDC settles down at a value after an initial 

linear behaviour (in log-log plot). A linear behaviour of IDC with time (in log-log 

plot) for ever, as is the curve shown in solid lines would indicate the presence of 

long term correlations. Hence MMPP is able to capture the burstiness only over a 

certain range of intervals. In the case of data traffic, which has been found to possess 

long term correlations, the MMPP may not be an adequate model. This stresses the 

need of a new model that could capture the long term correlations. The next section 

proposes a simple model called the PMPP, the IDC of which is plotted in figure 1.(A i 
 = 100, A2  = 120 and a = 1.5.) 

3.2 Characterization of aggregate data traffic 

Earlier measurements of data traffic [64] indicate that the message length distribution 

of data traffic is bimodal. Since a burst of packets are produced for each message, this 

also suggests that the burst of data packets may be bimodally distributed. As noted 

in [70], if a source generates a long burst of data like file transfer among short bursts 

which may correspond to commands, the source traffic essentially consists of short 
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and long bursts. Hence the net data traffic from many such data sources is also likely 

to be bimodal and can be rightly characterized as a switched Poisson process that 

switches between the longer and shorter burst rates. Till now many models based 

on switched Poisson processes (like Batch Poisson, MMPP,etc.,) have been proposed 

to characterize data traffic in broadband networks. But recent studies [51] [52] [53] 
[54] [50], of packet data traffic in local area networks have thrown more light on the 

characteristics of data traffic. The studies revealed that data traffic exhibits long 

range dependence and statistical self-similarity (or fractal characteristics), i.e., the 

traffic exhibits "burstiness" across a wide range of time scales ranging from millisec-

onds to minutes to hours. The characteristics of such traffic are markedly different 

from those of the traditionally used models to characterize data traffic. Such traffic is 

characterized by long range dependent correlations, a spectral density that diverges 

at the origin and by variances that decay as fractional power of the sample size. 

Mandelbrot originally suggested [71] that the superposition of many sourc es which 

exhibit the "Noah effect" (or infinite variance syndrome) results in a self-similar 

stream. In [54] [50] Leland et. al. employ this method to provide an explanation for 

the observed self-similarity of the traffic interms of the nature of the traffic generated 

by an individual source. They suggest that each of the individual sources contributing 

to the self-similar traffic stream can be represented by the familiar on-off abstraction. 

However, these on-off sources exhibit the "Noah effect" in that they have a highly 

variable on and off periods (sojourn times). i.e., the sojourn times of the on-off sources 

are charcterized by "heavy-tailed" distributions. Similar conclusions were also made 

in [53] based on studies on individual ISDN data traffic sources. Hence the sojourn 

times of individual sources can aptly be characterised by a heavy tailed distribution 

like the stable Pareto distribution.This distribution has a survival function of the 

form: 

P > = x > 0 , x > 1 (3.2) 
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a > 0, x > 1 (3.3) xe+ 1  px (x ) 

The density function is given by 

The parameter a denotes the thickness of the tail of the distribution. If 1 < a < 2, 
then the Pareto distribution posseses an infinite variance but a finite mean as given 

by 

E(X) = a  
a-1 

 

The tail of the stable Pareto distribution decays far more slowly (by a power law) than 

an exponential distribution. A Pareto distributed random variable takes a larger value 

with a higher probabilty than an exponentially distributed random variable. Higher 

the value of a, thicker the tail of the distribution. It has also been proved in [72] 
that if 1 < a < 2 for the sojourn times of the constituent on-off processes then the 

resultant superposition process is self-similar with Hurst parameter H = (3 - a)/2. 
(The Hurst parameter is a measure of the self- similarity). 

The above characterization gives an insight into the behaviour of the individual 

sources. However, in practice, it is just sufficient to capture the self-similar char-

acteristics of the aggregate traffic stream. Self-similarity is measured by the Hurst 

parameter H. Self-similar processes with 0.5 < H < 1 are also long range dependent. 

Processes with a high Hurst parameter (in the vicinity of 1) are highly bursty while 

those with a low Hurst parameter (near 0.5) are less bursty. Hence the Hurst param-

eter H is indicative of the resultant aggregated stream. The aggregated stream may 

directly be modelled by processes which can exhibit self-similar characteristics. 

Based on these observations, we approximate the aggregate data traffic by a doubly 

stochastic Poisson process. A doubly stochastic Poisson process is a time dependent 

Poisson process where the intensity function or the mean rate of occurence of events 

is a stochastic process. [49] illustrates the versatility of this process in characterizing 

self-similarity. The stochastic process considered in [49] is a continuous one. Here we 

model data trafB.c as a Poisson process alternated between 2 levels Ai  and )12. The 

sojourn times in these two states are independent and identically distributed with 

(3.4) 
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IDC(t) Var(Xi  + X2 + X3 + Xt)/nXavg (3.5) 

Pareto distribution with parameter a. The two states of this switched Poisson process 

would correspond to the long and short burst rates. The sojourn time distribution 

is chosen to be a thick tailed one in order to capture the long term dependencies in 

the net arrival process. Since the Poisson process is switched between two rates by 

the underlying Pareto distribution, we call this model a Pareto modulated Poisson 

process (PMPP). 

In order to determine if the model captures the long term correlations, we looked 

at the IDC (Index of dispersion of Counts) and the Variance time plots of the model. 

For a given time interval of length t, the Index of dispersion of count s is given by 

the ratio of the variance of the no. of arrivals during the interval to the mean of the 

number of arrivals in the same interval. If we divide the time axis into equal intervals 

called frames and if (X1 , X2, X3 , ...) a re the number of packets generated by the 

process in succesive frames, then IDC is defined as follows. 

where Xavg  is the average number of packets generated in a frame. IDC of a process 

is indicative of the burstiness of the process. Pure Poisson process has a IDC of 1. A 

process having IDC greater than one is overdispersed while that having IDC below 

one is underdispersed. For a self-similar stream of Hurst parameter H, IDC increases 

monotonically and is proportional to t2H-1 . Hence such an IDC when plotted in a 

log-log plot produces a straight line appearance.The value of the Hurst parameter, H, 
of the stream may then be calculated from the slope m of the IDC curve, in log-log 

plot. i.e., 

H = (m+ 1)/2 (3.6) 

The PMPP model considered is akin to the random hazard doubly stochastic 

Poisson process considered in [68] and [69]. Generally stated such processes alternate 

between two levels A i  and À2,  with the sojourn times in each state forming an alter-

nating renewal process with interval p.d.f.'s fi (x) and f2 (x) respectively. If vi  (y2 ) is 

the average sojourn time in state 1 (state 2), fi*(s) (.f(s)) is the laplace transform 
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of the p.d.f of the sojourn time in state 1 (state 2) and if  Ri(s) (Ri(s)) is the laplace 

transform of the survivor function in state 1 (state 2), then the laplace transform of 

the probability generating function of the process is given by [69] 

1 ( /11 V2 ) 
+ À1(1 S + A2(1 - Z) 

(A1 — 2 ) 2  ( (1 —  z ) 2  

+ v2 (s + (1 — z ))(s + A2(1 z)) 

Iq(s + A 1 (1  — z))/r2̀ (s  +  A 2 (1 — 4)  
(1 — f (s + A i (1 — z)./(s + A 2 (1 — 4))) 

(3.7) 

An explicit expression for the laplace transform of the mean and variance may be 

obtained from the above equation. These may inturn be inverted to yield the mean 

and variance of the doubly stochastic process, from which the expression for IDC may 

be derived. For the case of PMPP an explicit expression for IDC has been derived as 

detailed in the Appendix. The expression for the IDC of PMPP is 

ipc(t) = 1 + (A1 A2)2  (a 1 ) t 2' 
,\n 1 + A2 a 

As seen from the above expresion, IDC increases as a fractional power of the 

interval under consideration. Such is the characteristics of a long range dependent 

self-similar process. When plotted in a log-log scale the IDC has a slope m equal to 

2 — a. From (6) the Hurst parameter, H may be derived from the slope m as follows 

— H= 3  2 

We arrive at the same realation as in [72]. Hence as we vary the parameter a of 

the pareto distribution, the Hurst parameter of the packet stream generated varies. 

The PMPP model was simulated on OPNET and the IDC was computed. Fig-

ures 3.3 and 3.4 compare the IDC curves obtained from equation 3.8 against simu-

lation for values of A1 = 100, A2 = 120 and a = 1.3 and 1.5 respectively. As seen 

(3.8) 

(3.9) 
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from these curves, the results obtained from simulation agree fairly with the theo-

retical results. The IDC plot for Ai  = 100 and A2 = 120 and for various values of a 

of the Pareto distributed sojourn times is shown in Figure 3.5. As seen, the linear 

characteristics of IDC in a log-log plot suggest that the model exhibits self-similar 

characteristics. Also, given in the figure are the Hurst parameter H estimated from 

the slope of the IDC. It is seen that the Hurst parameter so obtained satisfies the 

relation 3.9, quite fairly. 

The Variance time curves for the PMPP were also obtained from simulation. The 

variance time curve is obtained by computing the variance of the arithmeic mean of the 

count process. i.e., if as before X = X2, X3, . . .) denote the number of packets 

generated by the process in succesive frames, let X(m) = (47)  ; k = 1,2,3, ...) 
denote a new (aggregated) time series obtained by averaging the original series X 
over non-overlapping blocks of size m.i.e, for each m = 1,2,3, ..., X(m) is given by 

= 1/m(X,n ( k_ i )+. .-I-X km ). Then plotting Variance(X(m) against various values 

of m gives the variance time plots. While for conventional models the variance of the 

sample mean is inversely proportional to the sample size, for long-range dependent 

processes, it decreases as a fractional power of sample size (i.e.,it decreases more slowly 

than the reciprocal of the sample size). Hence in the case of long-range dependent 

processes 

Var(X (m ) ) = a 1 m-)3  with 0 < < 1 

where a l  is a constant. When the variance time curve is plotted in a log-log scale, 

the slope 0 is related to the Hurst parameter, H, by the relation 

H =1-1/3112 (3.10) 

Figure 3.6 shows the variance time plot for various values of a with Al  = 100 and A2 
= 120) obtained from simulation. The linear behaviour of Variance time curve in a 

log-log plot shows the presence of slowly decaying variances. The Hurst parameter 

estimated from these graphs also indicate that the relation 3.9 holds well. 

Hence the PMPP is efficient in characterizing the fractal nature of the data traffic. 
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Also the proposed model captures the presence of the long and short bursts inherent 

in data traffic. This model is easy to simulate when compared to other methods 

for generation of self-similar traffic. Hence this method may be used to generate a 

self-similar traffic stream with H = (3 - a)/2. The other 2 parameters of the model 

namely A 1  and A2 are to be matched with that of the aggregate traffic stream by a 

suitable matching technique. 

The PMPP model was used to match an actual traffic trace from Bellcore Etherne 
t traffic data from October 1989. The traffic file is available via anonymous FTP 
from flash.bellcore.corn. The Hurst parameter was estimated from a log-log plot of 

the IDC of the trace, to be 0.8202. From the Hurst parameter H of the trace the 

parameter a was determined to be a = 1.3596 using relation 3.9. The parameters 

A 1  and A2 were obtained by matching the average number of packets generated from 

the traffic data and IDC(1) (i.e, IDC at lag 1) of the data with equations 5.1 and 3.8 
respectively. The est imated values of A 1  and A2 are A 1  = 2.8565 packets/ 10ms and 

A2 =  6.8235 packets/10ms. The PMPP model was simulated using these values for 

the parameters A 1 , A2 and a and the IDC was plotted. The IDC plot obtained from 

simulations (circled plot) is compared against the original plot (starred plot) in figure 

3.7. Also shown in the figure is the plot of IDC (bold line) obtained by using the 

equation 3.8. As can be observed from the figure the plots obtained from simulation 

closely follow the IDC plot obtained from the experimental data. 

3.3 Aggregate traffic model 

The aggregate traffic model that we propose is shown in Figure 3.8. We approximate 

the aggregate of voice, video and data sources each by a two stated doubly stochastic 

Poisson process. As has already been explained the aggregate packet arrival process 

from Voice sources and Video sources may each be approximated by a 2-state MMPP. 

The data traffic may be modelled by the 2-state switched Poisson process proposed 

in the previous section. The resulting model is the superposition of three 2-state 
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switched Poisson processes, giving rise to an eight state switched Poisson process as 

shown in Figure 3.9. The model is simple and easy to simulate. 

If the data traffic is also approximated by a 2 state MMPP, then by the property 

that the superposition of MMPP is again an MMPP, we obtain an eight state MMPP. 

However, this model is not accurate in the sense that it does not capture the long 

term correlations of data. However, if the PMPP is selected for data traffic, we obtain 

an eight state switched Poisson process, which may not simplify into a simple form 

as in the case of MMPP. 

3.4 Performance evaluation of a G/D/1 queue 

In this section we present the queueing performance of the aggregate traffic model 

proposed. The queueing system that we consider here is a G/D/1 queueing system. 

The server serves a fixed number of packets per second, as is the case in an ATM 

multiplexer. The arrival process to the queue, that we study are a PMPP or a MMPP 

or the aggregate traffic, which is constituted by 2 MMPPs one each for voice and video 
and a PMPP for data. We present the simulation results, i.e., the survivor function 
of the queue length distributions for all these cases. 

First we investigate the queueing performance of the long-range dependent model 
proposed in this research - the PMPP model. The parameters for the PMPP that we 
consider are A 1  = 200 and A2 = 250. The value of a determines the Hurst parameter 
of the aggregate stream. 

Figure 3.10 shows the survivor function of queue length for various Hurst param-

eters, for a loading of p = 0.9. As can be seen from the graph the queue length 
distributions appear to be Weibullian or "stretched exponential". Such behaviour is 
due to the long range dependent correlations exhibited by this model. In [73], the 
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G/D/1 queue fed by FBM (fractal brownian motion) traffic was also shown to result 

in a Weibull distribution of the form 

P(X > x) exp --yx (2 — 2H) (3.11) 

Also, similar results were obtained in [74] by aggregating many ON/OFF sources 

with heavy tailed sojourn times. Hence higher the Hurst parameter of the traffic 

stream, more heavy tailed the queue length distribution is. This indicates that for 

a long range dependent stream with a high Hurst parameter may suffer more loss. 

Also, increasing the buffer size does not result in a significant reduction in the loss 

probabilty. Figure 3.11 plots the Probability of loss against the Hurst parameter, for 

a finite buffer size of K = 150. It can be noted that higher the Hurst parameter of 

the input stream, higher the loss. 

In order to compare the performance of a MMPP model in the same scenario, we 

simulated the equivalent MMPP for the PMPP under consideration. i.e, we choose A i  

and A2 to be the same as the ones before that is A 1  = 200 and A2 = 250. Also, as in the 

case of PMPP, the sojourn times in both the states are identical, but exponentially 

distributed. The average sojourn time in each state is equated to the average sojourn 

time in the corre sponding PMPP, giving us a fair basis of comparison of the 2 
models. Figure 3.12 compares the queuing behavior of a PMPP with H = 0.95 and 

its equivalent MMPP model. As seen from the figure the residual function of the 

queue decays at a faster rate in the case of the MMPP arrival process. This is due to 

the fact that the MMPP model is a short range dependent model. 

In the PMPP model the two rates A 1  and A2 may correspond to the long and short 

burst rates inherent in data traffic. The difference between these two rates A 1  and 

A2, SA may intuitively be thought as representing the burstiness of the traffic stream. 

The previous set of results with A 1  = 200 and A2 = 250 had a (5. ,\ of 50. Figure 3.13 
plots the queue length distributions for the case when SA = 100. The load is 0.9 as 

before, however now the A 1  = 175 and A2 = 275. As seen from the figure the residual 

function of queue length is more heavy tailed than in the case of SA = 50. Hence with 

an increase SA, we see a more burstier traffic stream. 
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Now we investigate the G/D/1 queue by feeding it with the aggregate traffic con-

sisting of voice, video and data. As discussed in the previous section, voice and video 

traffic are modelled by a MMPP, while data is modelled by a PMPP. To illustrate 

the effect of the long term dependent data on the aggregate traffic, we also consider 

additionally an aggregate model where data is model by a MMPP. The difference in 

the queueing performance of both the aggregate model illustrates the impact of long 

term dependent correlations. The parameter values used are as follows: 

• for voice (MMPP):  A  =- 28 pkts/ms ; A2 = 41 pkts/ms;  a1 = 0.000956 ms -1 ; 
a2  = 0.0250 ms-1  

• for video (MMPP): A3 =  24 pkts/ms ; A4 = 39 pkts/ms; a 3  = 0.0087 ms -1 ; a4 
 = 0.0483 ms-1  

• for data (PMPP): A5 = 10 pkts/ms; A6 = 38 pkts/ms; alpha5  = 1.4; a6  = 1.4. 

where for the MMPPs the a stand for the transition rate from one state to another 

and for the PMPP the a is the parameter of the Pareto distribution. The above 

traffic composition has a ratio of 1:1:1. i.e., togehther voice and video are twice that 

of the data traffic. The server serves at the rate of 100 pkts/ms, thus giving a p of 

0.8. 

Another simulation was run with the same parameters for voice  and  video and a 

MMPP with the following parameters for data: A5 = 10 pktS/111S; A6 -= 38 pkts/ms; a 5 
 = a6  -= 0.2857. Figure 3.14 shows the survivor function distribution for queue length. 

As seen there the aggregate model using PMPP for data has a similar behaviour as 

the other aggregate model using MMPP. This is due to the fact that the volume of 

the long range dependent traffic is less when compared with the others. 

To verify if the converse is true, we simulated a tra-ffic composition consisting 

twice as much data as voice and video. The same parameters were used for voice and 

video, while for data (PMPP), the following values were used A5 = 60 pkts/ms; )%6 = 
150 pkts/ms and a5  = a6  = 1.4. Now the service rate was increased to 200 pkts/ms. 
Again in order for a comparison to be made with a MMPP, an aggregate model using 
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MMPP data was used. The following parameters were used for the MMPP used for 

data: A5 := 60 pkts/ms; A6 =  150 pkts/ms and a5  = a6  = 0.2857. This gives a 

combination of 2:1 for data vs voice and video. 

Figure 3.15 shows the queue length distributions for this case. It can be clearly 

noted that the model using PMPP has a heay- tailed distribution than the other model 

using MMPP. Hence the traffic composition also plays a role in the determination of 

how the net traffic will behave. 

To summarise the queueing performance of the traffic model under consideration: 

Results indicate that the PMPP has a queueing behaviour similar to that of the long 

range dependent models reported in the literature. Also, the results for the aggregate 

traffic indicate that the composition of the traffic is also important in engineering the 

length of the buffers at the multiplexers. Finally, the finding of this project opens 

up a new avenue of research, which is the analysis of queues fed by PMPP arrival 

process. 
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Figure 3.9: Superposed process 
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Chapter 4 

Conclusion 

4.1 Summary of completed tasks 

This report presented the results of the study conducted during this project on traffi c 

modeling. Following aspects have been addressed by this study 

• The various traffic models proposed in the literature for voice, video and data 

traffic were surveyed and classified. 

• A traffic generator comprising of standard traffic models like on/off model, 

MMPP, etc., was built on OPNET. 

• A new model for the aggregate packet traffic was proposed. This model was 

simulated on OPNET and studied. 

• The queueing performance of aggregate multi-media traffic was studied by sim-

ulating the aggregate model on OPNET. 

• The performance of a CFDAMA (Combined free/demand assignment multi-

ple access) protocol in a multi-media SATCOM system was studied, using the 

proposed aggregate model. 
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4.2 Results and conclusions 

Various models proposed for the constituents of the multi-media traffic were surveyed. 

The models proposed for aggregate traffic in the literature did not account for the 

fact that in the multi-media environment, fractal (long-range dependent) traffic co-

exists with non-fractal traffic. The aggtgate model consisting of doubly stochastic 

Poisson processes (MMPP and PMPP), proposed in this research, accounts for both 

the fractal and non-fractal traffic. Also, the simulation results of the new model for 

data-traffic, PMPP (Pareto modulated Poisson process) showed that it had an IDC 
that increased with lag and a variance-time curve that decreased with lag (on a semi-

log plot), characteristics reminiscent of long-range dependence. These properties were 

also analytically verified. 

The results of the performance study indicate that the PMPP has a queueing be-

haviour similar to that of the long-range dependent models proposed in the literature, 

i.e., the survivor function of queue length has a "stretched exponential" behaviour. 

The performance study of the aggregate traffic model indicates that the queueing 

behaviour is affected by the ratio of the long-range dependent traffic in the aggregate 

traffic mix. Thus implying that the composition of aggregate traffic is also important 

in engineering the buffers at the statistical multiplexers of multi-media traffic. 

The aggregate traffic model proposed is easy to simulate and forms a part of the 

traffic generator developed during this study period. 

4.3 Suggestions for future study 

The findings of this project opens up a new avenue of research: the analytical tech-

niques for evaluating the queueing performance of the aggregate model. This in itself 

is a complex task, given the non-Markovian nature of the processes involved. 
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Appendix 

Derivation of Index of dispersion of counts 

Consider the two state, random hazard doubly stochastic Poisson process as in [69]. 

Let the Poisson rates in states 1 and 2 be À 1  and A2 respectively. Let 

fi (t) be the p.d.f. of sojourn time in state 1. 

be the average sojourn time in state 1. 

Fi (t) be the cumulative distribution function of sojourn time in state 1. 

Ri (t) be the survivor function of sojourn time in state 1. 

fi"(s), F1*(s), Ri(s) be the Laplace transform of fi (t), Fi (t) and Ri (t) respectively. 

Let f2 (t), F2 (t), R2(t), v2, f;(s), F2* (s), R(s) be the corresponding quantities for 

state 2. 

Let N(t) be the number of arrivals in time t. From 3.7 the general form of the 

Laplace transform of the probability generating function of N(t) is given by 

1 v2  0*(z, s) 
+ v2 (8 + A i (1 — z) s + A2 (1 — z)) 

(1- A2) 2  ( (1 - 4 2  
+U2 (s + Ai (1 — z))(s + À 2 (1 — z))) 

Rï(s + A 1 (1 — z)).M(s + A 2 (1 — z))  
fi'(s + A 1 (1 — z).f(s + A2(1 — z))) 
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1  s=r1 

( ) R(s) = 8+1, 

as 

Air2 + A2ri .  , 2(A1 — A2) 2  
(ri + r2 )3 2 (r i  + r2)2 r1r2  C{V ar[N (t)il = 

Differentiating the above expression partially with respect to z and setting z = 1, 

gives the Laplace transform of the average number of packets generated. 

+ À2v2  .C-(E[N(t)]} — 
v2 )s2  

Inverting the above equation, the mean of the counting process is obtained as 

(Aivi + A2v2 
+ V2 

) E[N (5.1) 

The Laplace transform of variance of N(t) can be obtained by differentiating 3.7 

twice and setting z = 1. 

Ai + A2v2 2(A1 — A2) 2  V1  V2  £{1/ ar[N (t)]} 
(v1 + v2) s 2 (v + v2 ) 2  32  

x 1 (iii  + v2 * (s)R 2*(s)  
(5.2) 

vi v2  ) — fr(s)1(3)) .1 

An explicit equation for the variance may be obtained by inverting the above 

equation depending on the sojourn time densities fi (t) and f2 (t). 

MMPP 

In the case of MMPP (Markov Modulated Poisson Process), 

(t) = 
( t ) exp -ri 

vi  = 1/r 1  

The corresponding Laplace transforms are 

f2(t) = r 2 exp-r2 i 

 R2 (t) = exp- r2t 

1/2  = 1/r2  

Substituting the above in equation 5.2, we have the Laplace transform of variance 
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{

1  r2 
  s3  s3(s (ri r2))] 

Inverting we have 

Var [N (t)] = (A1r2 + A2ri)  t 2(A1 - À2) 2  
r2 (r 1  + r2 )

3r1r2t  

2(A1 - A2)2 ri r2 (1 - exp -(1.1  +r2) t ) 
(r i r2) 4  

From 5.1 and 5.3 the IDC of 2-state MMPP may be obtained as 

2()n 1  - A2) 2rir2 1(t)  =  1+  

\ (1 expHrl+r2)t ) 
(ri r2)3 (Air2 A2rot 

PMPP 

For PMPP (Pareto Modulated Poisson process) 

(t) = f2(t) = at -(a+1) 1  <c < 2 t > 1 

1 < ce < 2 t > 1 

Fi (t) -= F2 (t) = 1 - t 1 < < 2 t > 1 

= V2 = 

Since here, t > 1 the Laplace transforms of these functions have to be computed 
from definition as follows. Let 

RI(s) = R(s) =  j  exp' t' dt = g(s, a) (5.4) 

Integrating by parts, we have the following recursion, 

1 g (s , ce) = -
s 

[exp- s - a g (s , ce + 1)] (5.5) 

Extending the recursion, 

- s g (s , a) = exp 
 {1 + °É) ( 1) irrk.  1-1°(ai  + (5.6) 

(5.3) 

(r i r2) 2 (1r2 )n 2ri) 

2(Ai - A2) 2 rir2 
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Now, 

Ms) = f2* ( 8 ) + 1 ) 

Substituting the above functions in equation 5.2 and making use of recursion 5.5 

we have 

Al + A2  £{1i ar[N (t)]} 
2s 2  

Pti — A2) 2  [i  + 2(a — 1)  [exp —ag(s,  a  + 1)1 2 1 
2s3 as [1 — a2g2 (s, + 1)] 

Since we want to determine the behaviour of variance as t oo or equally as s O. 

Now, as s —› 0, exp" R--2, 1, then 

Al + A2  rIV ar[N(t)]} 
2s 2  

(A 1  — A 2 ) 2  [1  + 2(a  — 1)  [1  — ag(s , ce +  1)] -1 
 2s3 as [1 + ag(s ,  a  + 1)]  

Now from recursion 5.5, 1 + ag(s , a + 1) = 2 — sg(s , a) a nd 

1—  ag(s, a + 1) sg(s , a + 1), hence 

ar[N(t)11 = 2+  2A2  

(A 1  — A2) 2  {1  + 2(a —  1)  g(s, a + 1)  1 
2s3 a 2 — sg(s,a)j 

Now, for small s, sg(s , a) ,cd 1, (from equation 5.6). Also for small s, the first term 

inside the braces my be neglected. Inverting, the final equation we have 

Var[N(t)] = (À1 + A2) t + (À1 — A2) 2  (a — 1  
(5.7) 2 2 a 

Also, mean is given by, 
 Xi  + A2  E[N(t)] 2  t 

Hence the IDC may be obtained by dividing the variance by the meàn and is give 

n by 

r(t) = 1 4- (À1  -  A2)2  (a 1 ) t2-e'  
Al + A2 a 

(5.8) 
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1 INTRODUCTION 

Future high-speed networks are expected to support various services with different char-
acteristics such as voice, data, and video. The traffic which is generated from these services 

is substantially different in their nature. Studying and understanding the impact of different 
traffic types with different characteristics on the performance are crucial for a successful 
and efficient design of such networks. To ease these tasks, a simulation model has been 
implemented in opnet (optimized network engineering tool) environment. Several traffic 
models have been implemented: ON/OFF model ( for all types of traffic), MMPP ( Markow 
Modulated Poisson Process, for voice and video traffic), PMPP ( Pareto Modulated Poisson 

Process, for data traffic). 

1.1 ON/OFF SOURCES MODEL 

The basic ON/OFF source model is characterized by alternating independent ON (burst) 
and OFF (silence) periods, where this periods may have general distributions. Cells are 

generated during the ON period with constant rate A (cells/sec) . No cell is generated 
during OFF period. All type of traffic sources can be decomposed into a superposition of 

the basic ON/OFF sources. 

Figure 1: The basic ON/OFF source model 

Each voice source is represented by an ON/OFF source. ON and OFF periods are 
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N voice sources 

es 

N video sources 

exponentially distributed with the mean 1/a and 1/j3, respectively. 

Data source is modeled as a set of ON/OFF sources. The ON period is Pareto distributed 

with the mean 1/a, the OFF period is exponentially distributed with the mean  

Figure 2: The ON/OFF sources model for voice, data, and video 

Each video source is represented by a set of n (varies from 13 to 20) independent mini 

ON /OFF sources. The ON and OFF periods are exponentially distributed with the mean 

1/a and 1/p, respectively. 

1.2 OTHER SOURCES MODEL 

Other traffic models also have been implemented in this integrated traffic model. They 

are MMPP for voice, PMPP for data, and MMPP for video. These are proposed models 

and are used popularly. 
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1.3 IDI AND IDC PROBE MODEL 

The dependence among successive interval times in the aggregated packet arrival process 

is characterized by the indices of dispersion of intervals (IDI) and counts (IDC). To calculate 

IDI and IDC, a large amount of data must be collected. The IDI and IDC probe model will 

do this job. 
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2 MODEL INTERNAL STRUCTURE 

This section describes the internal structure of all the process models: the primary traf-

fic integrated (trf_generator) process model, the basic supporting ON/OFF (trf_vc_on_off, 
trf_dt_on_off, trf_vd_on..off) process model, and the statistic probe (trf_idi_idc) process model. 

In each section, first the State Transition Diagram (STD) is displayed and discussed, and 

then each individual state is described in detail. 

INPUTS PROCESS MODELS OUTPUTS 

Figure 3: Structure Programming of Integrated Traffic Model 

2.1 PRIMARY PROCESS MODEL: trf_generator 

The task of this primary process model is to generate the number of traffic sources 

according to the number of sources and type of model wanted.The trf_generator process 

model is composed of four states, and transitions that define the transfer of control between 
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Figure 4: The trf_generator State Transition Diagram 

the states. The process model STD is depicted in the following diagram. 

mit  This is the first state entered by the process model and the initial interrupt should be 

a begin simulation interrupt. The traffic model for voice (vc_model), video (vd_model) 
and data (dt_model) are user selectable. This state obtains the model used in simu-

lation for voice (trf_vc_on_off or trf_vc_mmpp), for data (trf_dt_on_off or trf_dt_pmpp), 
and for video (trf_vd_on_off or trf_vd_mmpp). It gets the number of voice (N_voice), 
data (N_data), and video (N_video) sources for ON/OFF models. For other models, 

these values should be set to 1. 

idle This unforced st-ate:stays idle all the time till the end of simulation. 

creator This state gets the control from idle state via CREATE_1NTRPT transition. It 

invokes the coressponding number of sources for each traffic type models based on 

inputs obtained in  mit  state and returns the control to idle state. 

end This state is entered when the simulation time is finished. 

5 



(de lault) 

• • 
• (OH_OAVNTAPT) 

(0)11_01.4.,INTRPT) • 
• 

• 

Figure 5: The general ON/OFF State Transition Diagram 

2.2 SUPPORTING PROCESS MODEL: trf_vc_on_off 

All the ON/OFF traffic model processes has the similar structure, called ON/OFF source 

structure. This section will examine the general structure, and also the difference between 

them. The general ON/OFF source model process has four states:  mit, off, on and send. 

Its task is to generate packets (or format packets) with any distribution. Normally, the 

process will generate packets during ON time with the constant rate A (lambda) . During 

the OFF time, no packet is generated. 

mit  This state will get all the parameters needed: the rate of transition from ON to OFF a 

(alpha), the rate of transition from OFF to ON /3 (beta), the rate of generating packets 

during ON time A (lambda). 

off This state schedules a transition to on state according to exponential distribution with 

the mean 1/,3. During OFF period, it stays idle. 

on This state schedules a transition to off state according to exponential distribution (except 

for data, where the Pareto distribution is used) with the mean 1/a. During ON period, 
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it generates packets by transferring the control to send state. 

send This state forms- the unformatted packets (or formatted packets), and send them at a 

constant rate A. 

2.3 THE STATISTIC PROBE MODEL: trf_idi_idc 

The definition of IDI and IDC is given in Appendix B. This section only discusses the 

statistic probe model trf_idi_idc which is implemented as a probe to collect data need in 

calculating the IDI and IDC curves. This process model is placed in a node located between 

sources and destination. No delay time for packets when they go through the node. The node 

collects the interarrival time between two successive packet arrivals, and also the number of 

packets count per unit time (1 sec). The process model has four states: init, idle, idi, and 

idc. 

- 

' (ffagivrir..) 

Figure 6: The trf_idi_idc State Transition Diagram 

init This state prompts the user to input the filenames for storing the data for IDI and IDC 
calculation. 
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idle This is the only unforced state in the process. It gives control to idi state whenever a 

packet arrives or to idc state whenever a unit time has elapsed. 

idi This state calculates the time interval between two successive packet arrivals, writes it 

to the specified IDI data filename. This also advances the incoming packets. 

idc This state is entered every unit time (1 sec). It records the number of packets that have 

passed through the node during that unit time, and writes it to the specified IDC data 

filename. 

8 



1 

1 

3 EXAMPLE USAGE 

3.1 DEFINING ,  THE TASK 

This chapter presents a practical example of creating a simulation executable, running 

simulations, and analyzing simulation results. The user will be guided step by step how 

to solve the problem. He will use the Process Editor, Node Editor, Simulation Tool, and 

provided programs to perform the analysis. The task in this chapter is to use the integrated 

model to simulate the traffic behavior of a set of voices, data, and video sources. 

3.2 CREATING A SIMULATION EXECUTABLE 

3.2.1 CREATING THE PROCESS MODEL 

The Process Editor is used to create the process models. Open the primary process model 

trf_generator. The next step is to defined which type of models vve want to use for each type 

of traffic. Here is the table of all models provided. 

TYPES MODELS 

trf vc_on_off 
voice 

trf vc_mmpp 

trf dt_on_off 
data 

trf dt_pmpp 

trf vd_on_off 
video 

trf_vd_mmpp 

Figure 7: All models implemented 

Assume that the user wants to use ON/OFF sources for all types of traffic. So the process 
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Figure 8: Choose the desired models for each type of traffic 

models used are: trf_vc_on_off, trf_dt_on_off, and trf_vd_on_off. 

• Open the "child process" (OPNET concept of sub- processes invoked from a principal 
running process) attribute menu by clicking at the child process icon. 

• Chose the proper process models by clicking at their names. All the chosen names will 

appear at the right hand side. 

• Correct mistake by chose the name at the right hand side. 

The last step in this Process Editor is to combine and save the process model under the 
name Traffic. 

3.2.2 CREATING THE NODE MODEL 

The Node Editor is used to create the node model. In this example, the user will create three 

modules: the src (source), the prb (probe), and the sink (sink). The src module will generate 

the packets. The prb module will collect the data need for IDI and IDC calculations. The 
sink module will destroy all generated packets. 
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Figure 9: Create the src module 

3.2.2.1 Creating the src module 

• Create a processor module. Name the module src. 

• Open the processoT attribute menu. 

• Chose trf_generator for the process model. Enable the begsi'm intrpt and the endsim 
intrpt. 

• Close the processor attribute menu. 

3.2.2.2 Creating the prb module 

• Create a processor module. Name the module prb. 

• Open the processor attribute menu. Chose trf_idi_idc for the process model. Enable 

the begsim intrpt and the endsim intrpt. 

• Close the processor attribute menu. 
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Figure 10: The Traffic node model 

3.2.2.3 Creating the sink model 

• Create a processor module. Name the module sink. 

• Open the processor attribute menu. Chose sink for the process model. 

• Close the processor attribute menu. 

3.2.2.4 Connect the Modules with Packet Streams 

• Activate the create packet stream action button. 

• Connect a stream from src to prb. • 

• Connect another stream from prb to sink. 

Save the created node under the name Traffic and close this Node Editor. 
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Figure 11: Define the network model 

3.2.3 CREATE THE NETWORK MODEL 

The traffic network model will consist of a single node object based on the Trafic  node 

model. The Network Editor is used both to define the network model and create the simu-

lation executable. 

3.2.3.1 Define the network model 

• Open the Network Editor. 

• Activate the create fixed comm. node action button. 

• Select Traffic from the menu available node models, then name the node Traffic. 

3.2.3.2 Create the simulation executable 

• Activate the archive, bind simulation action button. 

• Supply the filename Traffic. 
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Figure 12: Input all parameters need to run the simulation 

Opnet builds the model archive and binds the separate simulation components, creating 

a simulation executable' called Traffic.sim. 

3.2.4 EXECUTING THE SIMULATION 

The user will use the Simulation Tool to invoke the stand-alone simulation executable. 

Supply the model-indep- endent simulation parameters to the Simulation Tool data table as 

shown below. 

3.3 ANALYZING THE RESULTS 

The user will use the provided programs to calculate the IDI and IDC curves. These 

programs are written in matlab. The code of the programs can be found in Appendix C.The 
IDI and IDC curves are obtained. One of the results, the IDC curve, is shown below. 
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A APPEND-IX A: TIPS ON FORMATTED PACKET 

This section has an example to show the user how to create a formatted packets. 

/* create a formatted packet */ 
f_pkptr = op_pk_create_fmt( "example_pkt"); 

/* assign integer fields in the packet */ 
op_pk_nfd_set( f_pkptr, "fd_int_1", 3); 
db_value = 5 * 200; 
op_pk_nfd_set( Lpkptr,"fd_int_2", int_value); 

/* assign double fields in the packet */ 
op_pk_nfd_set( f_pkptr, "fd_double_1", 2511.67); 
int_value = 5.4 * 200.55; 
op_pk_nfd_set( f_pkptr,"fd_double_2", int_value); 

/* encapsulated a higher-level packet in the packet */ 
enc_pkptr = op_pk_create( 24 ); 
op_pk_nfd_set( f_pkptr,"fd_packet",enc_pkptr); 

/* send the defined packet out of the processor */ 
op_pk_send( f_pkptr, OUTSTRM); 
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B APPENDIX B: THEORY 
B.1 INDEX OF DISPERSION FOR INTERVALS (IDI) 

The index of dispersion of intervals is used to focus on the dependence among successive 

interarrival times in the aggregate packet arrival process. 

Let {Xk,k >=  1} represent the sequence of packet interarrival times from the super-

position process of integrated traffic sources. The IDI, also called the k interval squared 

coefficient of variation sequence, is the sequence {c, k = 1} defined by 

2 kVar{X i  + X2  + • + Xk  
Ck  = ERX1 + X2 + Xic11 2  

Assuming that Xk,k = 1 is stationary we note that the sum X1 + X2 + ••• Xk = 
Xi+1+ Xj+2 Denoting this sum by Sk we have 

2 kVar(Sk) Var(5k)  
[E(Sk)] 2 k[E(X 1 )] 2  

B.2 INDEX OF DISPERSION FOR COUNTS (IDC) 

To define the Index of Dispersion for Counts (IDC), let N(t) denote the counting process 

associated with an arrivâl process. The index of dispersion for counts, I(t), is the function 

1(t)=
Var[N(t)]  >0 E[N(t)] 
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C APPENDIX C: PROGRAMS 
C.1 PROGRAM FOR CALCULATING IDI 

This program is provided by Hamid-Reza Mehrvar and is written in matlab. Here is an 

example to calculate the IDI with 100000 data from the file trf_05_idi. 

clear 

% This Program calculates Index of Dispersion for Interval 

% and also collect Statistics for Variance-time decaying curve. 

% Index of dispersion and Variance-time values are calculated 

% in interval of length of L frame time, T. The results are 

% in vectors I and V1 and are plotted versus L. 

no_data=100000; 

fptl=fopen( 'trf_05_idi'); 

S=0; 

for k=1:100000 

X=fscanf(fpt1, 3 %f ) ,1); 

S=S+X; 

end 

avg=S/100000; 

L=[1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 

600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,9000, 10000 

b=length(L); 

%diary output 
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for r=1:b 

clear fpt1 sum Sum V E no_batch X Y 

fpt1=fopen('trf_05_idi'); 

if (L(r)==1) no_batch=5000; 

else no_batch=fix(no_data/ L(r)); 

end 

for i=1:no_1)atch 

Y(i)=0; 

for j=1:L(r) 

X=fscanf(fpt1,1,f',1); 

Y(i)=Y(i)+ X; , 

end 

end 

n=length(Y); 

E=sum(Y)/n; 

sum=0; 

for j=1:n 

sum=sum+ (Y(j)-E) - 2; 

end 

V=sum/(n- 1); 

1(r) =V/(1,(r)*E - 2); 

V1(r)=V/(L(r) - 2); 
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save trf_05_idi L I V1 

loglog(L,I) 

end 

C.2 PROGRAM FOR CALCULATING IDC 

This program is provided by Hamid-Reza Mehrvar and is written in matlab. Here is an 

example to calculate the IDC with 100000 data from the file trf_05_idc. 

clear 

% This Program calculates Index of Dispersion for Count Process 

% and also collect Statistics for Variance-time decaying curve 

% Index of dispersion and Variance-time values are calculated 

% in interval of leAgth of L frame time, T. The results are 

% in vectors I and V1 and are plotted versus L. 

no_data=100000; 

L= [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]; 

b=length(L); 

%diary output 

for r=1:b 

clear fpt1 sum Sum V E no_batch X Y 
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fpt1=fopen('trf_05_idc'); 

no_batch=fix(no_datal L(r)); 

for i=1:no_batch 

Y(i)=0; 

for j=1:L(r) 

X=fscanf(fptl,'%f',1); 

Y(i)=Y(i)+ X; 

end 

end 

n=1ength(Y); . 

E=sum(Y)/n; 

sum=0; 

for j=1:n 

sum=sum+ (Y(j)-E) - 2; 

end 

V=sum/(n- 1); 

I(r) =V/E; 

V1(r)=V/(L(0 - 2); 

save trf_05_idc L 1 V1 

loglog(L,I) 

end 

%diary off 
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ATTACHMENT # 2 

Technical Report:  

Performance of CFDAMA in a Multimedia SAT- 
COM System using MF-TDMA 

by 
R. Di Girolarno and T. Le-Ngoc 

Report Summary 
The main purpose of this work is to evaluate the performance of CFDAMA in a 

multimedia SATCOM system, using an MF-TDMA frame. This report presents the 
progress made in the development of the OPNE'l' Network Simulator for the above mul-
tiple access scheme. Originally, models of the CFDAMA protocol were available only for 
Poisson type data traffic, and constant bit rate (CBR) voice. These initial simulations dear-
ly showed the usefulness of CFDAMA in a satellite environment. However, many ques-
tions regarding CFDAMA remained unanswered. Of primary concern is the performance 
of CFDAMA in a multimedia envirorunent, when users generate both real-time traffic 
(with variable bit rates (VBR)) and long-range dependent data traffic. To answer this, the 
OPNET models were modified to include the newly developed traffic generator, which 
produces the desired traffic profiles. 

The simulation results presented were carried out for MF-TDMA with CFDAMA-
PA. The traffic considered is multimedia (VBR voice and video arià long-range dependent 
data). For the real-time traffic we investigate the loss probability, whereas delay is the fig-
ure of merit for the jitter-tolerant traffic. The MMPP model is used to represent the VBR 
voice and video traffic, while the PMPP model is used for the data traffic sources. Two slot 
assignment (scheduler) strategies are investigated. Scheduler 1 treats all users indepen-
dently, while scheduler 2 treats all users collectively. Results show that the CFDAMA pro-
tocol still performs well under the conditions tested. The overall conclusions are: 

1. Treating the users collectively, for slot assignment, reduces the loss probability 
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considerably, since we can make better use of each users random traffic levels. 
2. Although the loss probability is reduced, the data delay is increased for sched-

uler 2. This comes about since the lower loss implies that more real-time packets 
are being transmitted, leaving less slots for the data traffic, and therefore a larg-
er delay. 

3. Scheduler 1 results in large loss probabilities which are independent of load lev-
els. 
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1. Introduction 
This report presents a review of the current state of the OPNET network simulator, 

for the proposed fixed satellite system. The purpose is to give an overview of the basic op-
eration of the system, the type of traffic generated by the earth terminals, and the sched-
uling algorithms included in the on-board processing satellite. 

The basic system considered, uses CFDAMA (Combined free/demand assign-
ment multiple access), with a multi-frequency time-division multiple access (MF-TDMA) 
frame - a secondary access scheme resting on top of a primary access scheme. In order to 
support real-time traffic, an underlying frame structure must be present in the primary ac-
cess scheme. The recurring frame allows the user requirements to be met for constant and 
variable bit rate (CBR and VBR) sources. The basic scheme is out lined in Section 2. Section 
3 then presents a description of the models. The different traffic sources, requesting strat-
egies, and schedulers are discussed. Flowcharts are also given showing the progression of 
the simulations. Section 4 highlights the parameters for the system under study. Results 
and conclusions are included in Section 5. The figures of merit include the data cell  delay 
experienced by the data packets as they wait for a slot (when a packet is given a slot, we 
mean that this packet is transmitted), and the real-time loss probability resulting from a 
lack of capacity on the uplink. 

2. Basic Operation of CFDAMA with MF-TDMA 

For any fixed bandwidth, the number of slots available per frame is limited to 
some  N.  For MF-TDMA, the slots are divided arnongst a number of carriers (TDMA is 
a special case of MF-TDMA with a single carrier). Since the satellite network envisioned is 
to serve a large number of low load earth terminals (direct to homes, small businesses,...) 
it would be unwise to assign the available slots to the users on a fixed basis, since many of 
these would go idle, thereby reducing overall channel utilization. For such a case, it is not 
hard to imagine a user having to wait many frames for his preassigned slot while the slots 
of users who have no information to transmit, go empty. Therefore, it seems natural to as-
sign slots based on user requirements, by having each of the users make requests or reser-
vations for these. This is a dynamic capacity allocation scheme. There are a host of 
techniques which aim to achieve this goal. These include TDMA-reservation, Aloha-res-
ervation, combined random-reservation multiple access (CRRb.4A)[1,2], and combined 
fixed/demand assignment multiple access. For our purposes, we propose to investigate 

Page 3 



the performance of CFDAMA (Combined free/demand assignment multiple access). Ear-
ly results with Poisson type data traffic suggest that this technique performs very well for 
a range of user sizes [3]. 

The main concept of CFDAMA is to interleave channels which are assigned based 
on requests, with those which are assigned freely. The concept of free assignment will be 
explained later. Every frame is divided into two sections: a reservation section and a traffic 
section (See Figure 1). The users make requests in the reservation section, and when they 
are given a slot, they transmit their packet in the traffic section. 

The basic operation can be explained by considering Figure 2, which shows how 
requests are transmitted over time, and how the scheduler deals with these requests. For 
the moment, consider only jitter-tolerant traffic. As user k receives packets, it stores these 
in its queue. Depending on the reservation strategy employed (see Section 2.1), user k 
sends requests to the on board processor (OBP) scheduler. These requests arrive at the sat-
ellite after the appropriate delay and are placed in a scheduler queue along with the re-
quests from  ail  other users. These requests are then serviced at the start of every frame. 
When the scheduler services a request, we mean that it assigns a slot in the current frame 
to the user that initiated the request. The scheduler assigns all the slots in the current 
frame, and notifications are sent to the users so that they may transmit at the specified 
time. This notification arrives at the user terminals, again after a suitable transmission de-
lay. 

At the scheduler, the requests are served on a first-come first served basis. Owing 
to the randomness of user transmissions, it is possible that after assigning a certain num-
ber of slots, the scheduler queue becomes empty. The scheduler knows that there are slots 
available, but it has no more requests to service. However, by the time the scheduler noti-
fi cation arrives at the user earth terminals, additional packets may have arrived. 'There-
fore, the scheduler can free assign any unused slots to earth terminals. When the 
notification for the free assigned slots arrives at the earth terminals, and these terminals 
have packets to transmit, these can be transmitted without having made a request. The de-
lay experienced by these packets is therefore very small. 

The above discussion strictly applies only to jitter-tolerant traffic which can be 
queued. For real-time traffic, the situation is slightly different. Basically, the earth terminal 
makes a request every frame, depending on the number of slots it requires. Therefore, 
once a user is given notification that his real-time call is accepted, he makes a request for 
the number slots he requires for the first frame. After one round trip delay, the user trans- 
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mits in the slots which have been assigned by the scheduler. In the meantime, he has con-
tinued to generate real-time packets, and has continued to make requests, once every 
frame. The scheduler has serviced these, and has sent notification back to the earth termi-
nal. In essence, the real-time traffic has a g-uaranteed number of slots every frame. The 
only problem is that the earth terminal must queue all the real-time packets for an entire 
round trip tirne (which is the time taken before acknowledgment for the first request is re-
ceived). Fortunately this is an absolute delay, and can be included as part of the call set-
up phase. 

The scheduling for real-time traffic is also slightly different. Since the real-time 
traffic should have priority over the jitter-tolerant traffic, the scheduler first services re-
quests for the former (this is denoted in Figure 2 by having two queues - one for the real-
time and the other for the jitter-tolerant traffic). After servicing these requests, the sched-
uler services the jitter-tolerant requests, as discussed above. 

-411E---- Frame ti e OW' 
' . . . . 
88 8 . 11 .1 :::::::'; : : : : : : , i111:11: . . . . 8 • 
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Figure 1: MF-TDMA Frame Format 
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Figure 2: Satellite and Earth Terminal Description 
2.1. Possible Requesting Strategies 

There are three ways in which a user may transmit its requests. These include pre-
assigned (PA), piggybacking (PB), and random access (RA). In the PA case, the reservation 
slots are assigned to each of the users in a fixed manner. A user simply waits for his slot 
and transmits the requests at the appropriate time. In the PB scheme, the frame has no ex-
plicit reservation section. Rather, each packet has a field which it can use to make requests 
for additional slots. At the satellite, the scheduler examines this field for every packet, and 
if necessary, places the request in its scheduler queue. One of the problems with this tech-
nique deals with the initial access. How does a user continue to make requests if it has not 
sent a packet? For our purposes, we will assume that a user is given initial access by means 
of free assigned slots. For the final technique mentioned above, namely RA, all the reser-
vation slots are available to all users. Each user which must send a request, does so by se-
lecting one of these reservation slots randomly, and transmitting his request. Obviously, 
more than one user can send a reservation in the same reservation slot. This collision is 
resolved by allowing those packets for which the requests have collided to get through via 
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free assigned slots. Unfortunately, the packets for real-time users c an  not be queued while 
waiting for a free assigned slot, and these will have to be blocked. 

3. Model Description 

The overall  model for the system is show-n in Figure 3. In the end, each of the indi-
vidual components will be modeled in OPNET, and combined to produce a complete net-
work simulator. In this report, only the shaded regions will be discussed, namely the 
traffic generator, the multiple access scheme, and the scheduler. 

Figure 3: Network Simulator 

OPNET is art event driven simulation tool which allows a communication network to be 
described based on the principal of hierarchical layers. At the top layer, we define the 
overall  structure of the network we wish to simulate - this is known as the network model. 
For a communication system with N users, the network layout contains N earth termi-
nals, each supporting multimedia (or ATM) traffic, and one on-board processing satellite. 
The case for 10 users is shown in Figure 4. For large networlcs, the cumbersome procedure 
of entering the layout manually is avoided, by using an external 'C' program to generate 
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the desired layout. This program accepts as input the number of user earth terminals 
(ET's), and produces the corresponding network model. 

Figure 4: Network Layout 
Each of the N+1 elements of the network model is called a node. The definitions 

of these nodes comprise the second layer of the OPNET model. Each of these nodes is 
made up of processors, which perform specific functions (processes) within the network. 
The N earth terminals, for instance, are all identical and have two distinct functions to per-
form. That is 

• packets must be generated according to the traffic generator. This function is accomplished by 
the processor called atm_source. 

• arriving packets must be stored, requests must be made according to the requesting strategy, and 
packets must be transmitted in response to a slot assignment from the on-board satellite 
scheduler. These three functions are all part of the multiple access scheme, and are lumped 
together and performed by the processor called earth_terminal. 

These processors are shown in Figure 5a. When the packets are generated by the 
atm_source, they immediately go to the earth_terminal, via the link. shown. 

At the satellite, the main operations to be performed include the storing of the in-
coming packets, and the assigning or scheduling of the slots for the upcoming frame. 
These fui-ictions are performed in the processor block ob_processor (See Figure 5b). 
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The next level of the OPNET hierarchy is concerned with the processes which are 
performed in each of the processors shown in Figure 5. 

a) Earth Terminal Nodes 

b) Satellite Node 

Figure 5: Processors within each Node 

3.1 Process Descriptions 

In OPNET, the processes are defined by means of state transition diagrarns. Each 
of the states contains the C-code to perform the desired operation. The function of all the 
above processors is explained below: 

atm source  Process 

As stated earlier, the basic function to be performed in this processor is to generate 
the multimedia traffic. The state transition diagram is shown in Figure 6. The process 
starts in state  mit,  at the beginning of the simulation (this is denoted by the large solid ar-
row beside the state). The objective of this state is to initiali7e variables, and to prompt the 
user to enter the baffic models to be used for each traffic type, the number of such models, 
and the parameters for these models. The available models, and the parameters required 
are shown in Table 1. 
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Figure 6: State Transition Diagram for atm_source Processor 
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Table 1 Traffic Models Available 

Traffic Models Model Parameters 
Type Available 
Data Poisson average arrival rate X 

2 state MMPP average arrival rate in each state X 1 , X 2  
sojourn tirnes in each state a p  a2  

2 state PMPP average arrival rate in each state X 1 , X 2  
sojourn tirnes in each state a 

on-off sources # of data sources 
(Pareto on times) arrival rate in on state 

sojourn times in on and off states g, a 

Voice 2 state MMPP average arrival rate in each state x l , X 2  
sojourn times in each state a l, a2  

on-off sources # of voice sources 
(Exponential on arrival rate in on state 
times) sojourn times in on and off states (3, a 

Video 2 state MMPP average arrival rate in each state X 1 , X 2  
sojourn times in each state a r  az  

on-off mini- # of mini-sources/ video source 
sources # of video sources 

arrival rate in on state 
sojourn times in on and off states f3, a 

Once this is done, the process moves to state create,  which invokes the suitable number 
and type of processes. Essentially, this state calls other state transition diagrams, much 
like a computer program calls a subroutine. Once these processes have been  invoked, the 
atm_source processor goes to a wait state, and stays there until the end of the simulation. 



The processes invoked by atm_source, are any combination of data, voice, and 
video sources listed in Table 1. In this report, simulation results are obtained for multime-
dia type traffic with voice and video generated by a Markov Modulated Poisson process 
(MMPP) and data by a Pareto Modulated Poisson Process (PMPP). The state transition di-
agrams for all of these is shown in Figure 7. Again, variable initialization is performed in 
state Mit. The 2 state process is then ini tially set to state  I. The program then waits in state 
st 1 (no action is performed in st_1).  Essentially the program stall s here, until an arrival 
occurs, the sojourn time in the state ends, or the simulation time expires. The basic events 
are shown in Figure 8. The only differences between the MMPP and PMPP models is that 
the sojourn tirnes in each of the states is Pareto distributed for the latter, and exponentially 
distributed for the former. 

Figure 7: State Transition diagram for MMPP (and PMPP) 
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time 

STATE: send 
1.We create a packet with the appro-

priate formats. This packet is tagged 
with its creation time, source num-
ber, etc. 

2. We schedule the next packet arrival. 

STATE: stl st2 
1.We set the current state to state 2. 
2. Schedule the first arrival in state 2. 

go to wait state st 2 ) (1. End simulations) 

pojoufn time 
in state 1 ends 

simulati 
expires 

STATE: st2 stl 
1.We set the current state to state 1. 
2. Schedule the first arrival in state 1. 

arrival 

ST.ATE: send 
1.We create a packet with the appro-

priate formats. This packet is tagged 
with its creation time, source num-
ber, etc. 

2. We schedule the next packet arrival. 

Retum to state a 2 ) 

time 

go to wait state st 1 ) ( 1. End simulations) 

sojouin time 
in state 2 ends 

simulati 
expires 

C Wait state st 1 

Wait state st 2 

Figure 8: Flowchart  for MMPP (and PMPP) 

The reader can find a description of the on-off model in [4]. 
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earth_terminal Process 

As the packets are created in the atm_source processor they are immediately 
transferred to the earth_terminal processor. As discussed earlier, this processor has three 
main haletions: 

1.queue arriving packets 
2. send requests when a reservation slot is available to the earth terminal, 

and 
3. transmit padoets when the scheduler has assigned a slot to the earth ter-

minal. 
The state transition diagram is shown in Figure 9. 

Figure 9: State Transition diagram for earth_terminal Process 

As before, the process starts in state init,  where the various variables are initialized, 
and the user is prompted to enter the number of slots available per frame (no_slots_per_frame), 

the number of frequency carriers (no_carriers), and the reservation channel capacity (over-
head used for the reservation slots). From the number of slots available, the program cal-
culates the number of slots per carrier (no_slots_per_carrier). 
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no_siots_per_carrier = no_slots_per_frame/no_carriers. 

Since a single earth terminal cannot transmit on two carriers simultaneously (in order to 
maximize transmitter output power), the number of slots any earth terminal can be given 
per frame is limited to no_slots_per_carrier. If an earth terminal has requested more than this 
number, the packets making the request are lost if they are voice or video, or delayed if 
they are jitter-tolerant.- 

After the Mit state, the process moves on to the wait state, where it pauses until one 
of three events occurs. For a general description, see Figure 10. • 
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1. 
2. 

STATE: Tx req video 

Similar to STATE 
Tx req voice, with obvi-
ous modifications 

(  STATE: wait 
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by 
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for  

e have an ar- ET receives no 
cation that it 
been given a slo 
the scheduler. 

El' has a re4 
vation slot 
video. 

ET haj a 
reserva 
slot or 
data. 

Data en 
incorre 
leads to 4 
alizable 

iered is 
b t or 
n unre- ve 
ystem 

STATE: queue  

1. Store generated pack-
ets in a queue 

2. For convenience, we 
have used a separate 
queue for data, voice, 
and video. 

STATE: send 

Look in queue. 
If there are packets, 
these can be trans-
mitted. In reality, the 
program does not 
transmit these pack-
ets. Rather, after ob-
taining a slot, the 
packet will arrive at 
its destination after 
one round trip delay 
(if we ignore the 
switching delays in-
curred at the satel-
lite). Therefore, at 
this point we can al-
ready calculate the 
overall delay experi-
enced by this packet, 
and update the statis-
tics of interest. 

STATE: Tx req data  

1. Checks if there are 
any packets for 
which requests 
have not been 
made. If so, it sends 
the request for 
these packets. 

STATE: Tx req voice  

1.If there are any voice 
packets for which a 
request has not been 
sent, then a request is 
sent to the scheduler 
for these packets. 

2. A request is made 
only for those pack-
ets generated in the 
same frame, since 
voice should request 
capacity on a frame-
by-frame basis. 

STATE: term 

1. If the information en-
tered in state init is not 
compatible (i.e. they 
result in a situation that 
cannot be realized), 
then the simulation ter-
minates. 

Retum to wait state 

Figure 10: Flowchart for earth_terminal Process 
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scheduller Process 
The final processor to consider is the scheduler processor in the ob_processor node. Gen-
erally, the scheduler has two functions: 

1.To place requests in a scheduler queue. 
2.To assign slots based on these requests. 

However, we have aug-mented the function of this process to include: 
a. inform the users when they have a reservation slot. In reality, for PA, aLl users know 

exactly  when  their reservation slots occur. Nonetheless, it proves simpler to allow 
the scheduler to inform the earth terminals that they have an upcoming reserva-
tion slot, since this is done once every frame, similar to the slot assignment. There-
fore, at the begirming of every frame, the scheduler tells the appropriate earth 
terminals that they have a reservation slot. 

b. write out the statistics observed to a file at the end of the simulation (after the du-
ration of the simulation has elapsed). 

The state transition diagram is shown in Figure 11. Again, the process starts in state  mit,  
in order to initialize variables. Then it immediately goes to states res_slot_as  and data_slo-
t as. In the former, we notify the earth ten-ninals that they will have a reservation slot in 
0.135 sec. (round trip delay /2). In the latter state, the available slots are assigned by the 
scheduler. Currently, two different techniques have been employed for slot assignment. 
In the first scheduler, known as Sc.heduler 1, a hard decision is made as to the number of 
slots to assign to an earth terminal. A threshold for video and for voice is agreed upon dur-
ing the call set-up phase. This threshold is based on the average number of arrivals expect-
ed. For example, if an earth terminal expects to receive, on average, 0.35 voice cells per 
frame and 0.05 video cells per frame, a suitable threshold may be 1 voice and video cell 
per frame. For this case, every earth terminal is given up to a maximum of 1 cell per frame 
for both voice and video (a maximum of 2 real-time cells per frame). This is done to ensure 
that no one user can overload the system by transmitting much more than his average. 
Figure 12 shows an example of how the slot assignment is done. The threshold is set to 1, 
as discussed above, and the number of users is 973. 

Scheduler 1 is somewhat pessimistic, as is shown by the simulation results in sec-
tion 5. Notice that an earth terminal's real time packets may be blocked even if there is un-
used capacity in the MF-TDMA frame. This is because the slot assignment for each earth 
terminal is done independently of the status of the other earth terminals. Basically, if one 
earth terminal requires no slots for real-time packets, then his unused capacity can be giv-
en to another user. For the case we have been considering, this other user would then be 
able to send 4 real-time packets per frame (2 each for voice and video). This is the main 
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reason for considering the modified scheduler, which we refer to as Scheduler 2. 

Figure 11: State Transition Diagram for scheduler Process 
In this modified scheduler, slots are assigned based on the global state of all  user 

requests. Essentially, four passes are performed over the scheduler queue, for every 
frame. 
• Passl: The scheduler determines how many real-time channels are required for all 

earth terminals.(i.e. no_vid_cells_required, no_voice_cells_required). 
• Pass2: If no_vid_cells_required+no_voice_cells_required <= no_slots_per_frame, then all real-

time requests are satisfied. Otherwise, only no_slots_per_frame slots are as-
signed (the maximum), in a round robin fashion. 

• Pass3: If there are still empty channels after Pass2, then these are assigned to the 
data packets whose requests are in the scheduler queue. This assignment is 
on a first-come first-served basis. 

• Pass4: If empty slots remain after Pass3, then these are freely assigned to earth  ter-
minais.  By the time these slots 'arrive' at the earth terminals, it is possible 
that the ET's have a data packet in their queue which can use this slot. This 
packet would then be transmitted without having to wait for its request to 
be honored. 

This scheduling strategy is expected to reduce the loss probability substantiaLly, but as a 
result of more real-time packets getting through per frame, there will be less slots for data, 
and the data delay is expected to go up somewhat. 
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Scheduler 
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ests for 
e i arrive queue empty 

--I>  
User 1 requires (2,1,0)---°-  
User 2 requires (0,1,0) 
User 3 requires (1,0,0) 
User 4 requires (0,0,0) 
User 5 requires (2,0,1) 
User 6 requires (0,2,1) 
User 7 requires (3,0,1) 

: 
: 

User 970 requires(0,0,0) 
User 971 requires (1,0,1) 
User 972 requires (1,2,1) 
User 973 requires (0,0,0) 

ests for 
Le i+1 

: 

: 

: 

Figure 12: Example of Scheduler 1 

Naturally there are no requests in the scheduler queue at the start of the simula-
tion, and so all  channels are free assigned to the earth terminals, in a round robin mariner. 
The process then pauses in state wait and stays there until one of the following events oc-
curs: the next frame begins; a request is received; or the simulation is over. These are ex-
plained in Figure 13. Both methods of slot assignment are considered 



End simulations 
Return to wait state 

STATE: data slot as  Scheduler 1 

1. Initially, we check if there are any requests from video packets. 
If so, these are assismed, up to the maximum allowed (threshold 
for video). 

2. The same is done for the requests coming from the voice pack-
ets. Slots are assigned up to the maximum allowed (threshold 
for voice). 

3. If any requests from video or voice cannot be honored, this im-
plies that the packets at the earth terminals will be blocked. 
Consequently, we update the statistic monitoring the number 
of cells (or packets) lost. 

4. We also keep track of how marty slots are still available, and 
how many slots have been assigned to each earth terminal (re-
spectively no_sk4s_lett and open_oells[earth_termlnall). 

5. We check the queue for requests from data packets and service 
these on a first-corne first-served basis, decrementing 
no_slots_lett and open_eells[earth_termlnal] as we go along. 

6. If a request at the head of this queue cannot be served because 
an earth terminal has already been assigned the maximum 
number of slots per frame (no_slots_per_oarrier), then this re-
quest is ignored, and we look at requests following this one. 

7. If after serving all requests (video, voice, and data) there are still 
slots available, these are freely assigned to earth terminals in a 
round robin mariner. Again the restriction that no earth termi-
nal transmit more than no_slots_per_oarrier is observed. 

STATE: data slot as  Scheduler 2 

1. Add up all the requests from the video and voice packets. If 
this total is less than no_slots_per_frame, then all requests are 
assigned a slot. 

2. If the total is larger than no_stots_per_trarne then ordy the 
first no_slots_per __frame requests are assigned a slot The as-
signment of slots to the first no_siots_per_trame is done in a 
round robin fashion, so that no ET is favored from frame to 
frame. 

3. If  any  requests from video and voice packets cannot be ser-
viced, those packets will be blocked at the earth terminals. The 
statistic monitoring the number of cells lost is updated. 

4. We also keep track of how many slots are still available, and 
how many slots have been assigned to each earth terminal (r 
spectively no_siots Jett and open_cens(earth_tertrinall). 

5. We check the queue for requests from data packets and ser-
vice these on a first-come first-served basis, decrementing 
no_slots_lett and open_oellslearthjerminal] as we go along. 

6. If a request at the head of this queue cannot be served because 
an earth terminal has already been assigned the maximum 
number of slots per frame (no_stots_per_carrIer), then this r 
quest is ignored, and we look at requests following this one. 

7. If after serving all requests (video, voice, and data) there are 
still slots available, these are freely assigned to earth terminals 
in a round robin mariner. Again the restriction that no earth 
terminal transmit more than no_slots_per_oarder is observed 

STATE: wait ) 

Neframe begins 

STATE: res slot as  
1. Inform the earth terminals that they have a 

reservation slot in 0.135 sec. 
2. The users are informed based on the PA 

strategy. 

STATE: data_slot_as 

A requsl is 
receiv 

STATE: queue req  

1. We queue the re-
quests (for conve-
nience, we have a 
different queue for 
each traffic type). 

lir  Simul tion time 
has el psed 

STATE: end sim  

1. Write out the neces-
sary statistics to a 
file. 

see below for description of Scheduler 1 and 2 

Figure 13: Flowchart for scheduler Process 
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slot # 1 2 3 4 61 62 63 64 

4. Illusfrative Example 
The example considered to illustrate the performance of MF TDMA with CF-

DAMA_PA is based on the scenarios of the advanced SATCOM system. The parameters 
are listed below: 

1. MF-TDMA frame capacity = 8.192 Mb/s (512 slots of 48 bytes each). 
2. Up and downlink frame duration  =24 ms. 
3. MF-TDMA frame composi tion: 
• 8 carriers of 1.024 Mb/s. 
Figure 14 below shows a typical MF-TDMA frame with no overhead. In these re-

sults, overhead will not be considered, so that maximum channel utility is 1. 

Carrier 8 

Carrier 7 

Carrier 6 

Carrier 5 

Carrier 4 

Carrier 3 

Carrier 2 

Carrier 1 

24 msec. 

Figure 14: MF-'TDMA frame 
5. Multi-frame duration  =16  frames or 384 ms. 
6.Switch port capacity  = 4 x MF-TDMA frame capacity or 32.768 Mb/s. 
7.Buffer memory size / port = 0.9 Mbytes or 18750 cells of 48 bytes each. 
8. Maximum number of terminals (for 100% load) per MF-TDMA frame = 1024. 
9.Load per user is fixed, and total system load is varied by increasing the n-umber 

of terminals. The load points considered are highlighted in Table 2. 
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1 

Table 2 Load Points Considered 

L,oad Number of Terminals Maximum number of cells/ 
terminal/frame 

1.0 1024 0.5 

0.95 973 0.53 

0.8 820 0.62 

0.5 512 1.0 

0.2 205 2.5 

10. Four cases of aggregated source traffic are considered in the simulations. These 
are shown. in Table 3. 

Table 3 Parameters of Aggregated Sources 

Case 1 Case 2 Case 3 Case 4 
Voice Video Equal Data 
Dominant Dominant Load Dominant 

% of voice 70 10 33.3 20 

% of video 10 70 33.3 10 

% of data 20 20 33.3 70 
able 4 below shows the characteristics of the individual traffic sources. 

Table 4 Parameters of Individual Sources 

Peak to Aver- Peak Rate Average rate Average rate 
age ratio (Kbps) (Kbps) (cells/frame) 

Voice 2 .5 64 25.6 16 

Video 5 384 76.8 4.8 

Data 200 128 0.64 0.04 

11. Data is generated by a PMPP source with a Hurst parameter 0.8. Voice and vid-
eo are generated by MMPP sources, whose parameters are determined by map-
ping the aggregate voice and video into 2-state MMPP's [5 ] . The results of the 
mapping produces a sojou.rn time and an average arrival rate in each of the 
states (ct i , x. 2, Œ r  X2). 
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5 , Simulation Results 

The simulation results are shown in Figures 15to 18. Figure 15 shows the data cell delay 
for scheduler 1, for the four traffic mixes. As expected, as the percentage of data increases, 
the data delay also increases. Note also that the results for the voice and video dominant 
cases yield similar data delay performance (curves are overlapping). Figure 16 shows the 
actual number of real-time packets lost, as a result of blocking, for Scheduler 1. This figure 
of merit is used, as opposed to the more traditional loss probability, since for Scheduler 1, 
the loss probability is constant for all loads. As the load increases, the number of packets 
lost increases lin.early (as seen in Figure 16), but the number of packets transmitted also 
increases linearly, resulting in a constant ratio. This phenomenon is attributed directly to 
the scheduler. With increasing load, the only parameter that changes is the number of ter-

minais.  Since this scheduler honors requests for each of these terminals independently, it 
makes no difference whether there are 205 terminals (0.2 load) or 973 terminals (0.95 load). 
The actual values of the loss probabilities for the four traffic mixes, are shown in Table 5. 
Note that this loss probability, can also be understood as a blocking rate. 

Figure 17 shows the data delay results for Scheduler 2. Again the data delay is the same 
for both the video and voice dominant cases. For the simulation times observed (order of 
io6  packets), no packets were lost while using this scheduler. As a result, we can conclude 
that the loss probability is less than  io,  for all cases considered. 

Figure 18 shows a comparison of the data cell delay, for the voice dominant case for the 
two schedulers. As expected, Scheduler 1 results in lower delay since the threshold im-
posed by the scheduler allows more data requests to be honored, and more channels to be 
free assigned. However, the price paid is the very high loss probability. In fact, the gain is 
so small that we conclude Scheduler 2 is more advantageous. 

Table 5 Loss Probability for the four Traff ic Mixes for Scheduler 1 

Traffic Mix Loss Probability 
Voice Dominant 0.135 

Video Dominant 0.135 

Equal Mix 0.077 

Data Dominant 0.040 
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Figure 15: Data Cell Delay for Scheduler 1 
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Figure 16: Ntunber of Real-Tirne cells Lost for Scheduler 1 
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Figure 17: Data Cell Delay for Scheduler 2 
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