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Abstract 

This report presents the development of a new model for forest surfaces based on fractal 
geometry, or more specifically, a two-scale fractal concept. The model is designed for studying 

the electromagnetic wave scattering of communications signals from a forest. Based on the 

considerations of forest canopy surface features, the model consists of two parts: Fractional 

Brownian Motion(FBM) and Bandlimited Weierstrass Function(BWF). Theoretical analysis 

and computer generated samples of the model are introduced, and surface parameters related 

to scattering are calculated. Finally, we discuss the potential applications and extensions to 

the new model. 
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1 BACKGROUND 

In the research areas of communications and remote sensing, electromagnetic wave scattering 
from forests and vegetation environments have been intensively studied for a long time. 
The remote sensing community is interested in relating the field scattered from a forest 
or vegetation canopy to its geometric and biophysical characteristics. Studies have been 
conducted on a wide frequency band and at the higher frequencies, for example, from 1GHz 
to 100GHz. Modelling based on electromagnetic field theory is the general research method. 
The research carried out by The Wave Scattering Research Center at the University of Texas 
at Arlington is typical of work that has been carried out in this area. It has resulted in some 
useful models [1]. 

The communications community, on the other hand, is interested in studying radio-link 
performance, and how it is affected by wave attenuation, fading, and co-channel interference, 
due to the presence of a forest canopy somewhere along the path of linkage. One study for 
PCS communications at VHF and UHF frequency bands used ray tracing based on the 
Geometrical Theory of Diffraction. In this method, ray tracing was applied to the forest, 
which was represented by a Forest Macro Model(FMM). This model regarded the forest as 
a dielectric layer with an air layer on top and a ground layer on the bottom [2]. 

The applications of interest in this paper, are land-mobile communications, e.g. cellular 
telephones, as well as radio and television broadcasting. In these situations, the transmitter 
is usually elevated well above the trees, and a few kilometers away. Meanwhile, the user is 
usually at a lower altitude, as in the case of cellular telephones where the receiving antenna 
is only about 2 meters above the ground. A common situation would involve a vehicle on the 
road with a forest or bushes on the sides of the road. Trees and bushes may interfere with 
the propagation of the radio signal in the form of multipath, diffraction, and attenuation. 

In order to study the effects of trees and bushes on radio signals, the Communications 
Research Center, in conjunction with Communications Research Laboratory, is developing 
models for radio signal propagation through forests with a rough structure. The first phase 
of our research is devoted to developing a model of the forest canopy, upon which, scattering 
analysis can be subsequently carried out. 



Generally speaking, all existing forest models can be divided into two categories, either 
phenomenological or physical. The phenomenological models are based on the intuitive 
understanding of the relative importance of different forest components, such as branches, 
twigs, trunks, leaves and soil. A scattering model is then constructed by summing up 
the contributions from each forest component which is believed to be important. On the 
other hand, physical models are based on the interaction of electromagnetic waves with 
forest or vegetation canopies. The canopy can be modelled as a discrete or a continuous 
random medium. The scattered field is evaluated from this random medium. However, the 
parameters of this random medium must be pre-determined. 

The scattering medium model should characterize the effect of a forest environment on 
electromagnetic signals. Tree models are frequently based on either/or measurements and 
analytical descriptions. Both random and periodic surfaces, such as Gaussian and sinusoidal 
surfaces, have been used to model rough surfaces[3]. However, in nature, a rough surface 
like a forest is neither totally random nor totally deterministic; therefore, these models do 
not provide a good description of a naturally occurring surface. 

In analyzing and generating the complex shapes or structures of natural objects, the most 
important problem is how to describe the shape of an object efficiently. Usually, most man- 

. made objects, e.g., industrial parts and buildings, can be adequately described by using a 
set of simple shape primitives such as spheres, cylinders, cones, and cubes. However, such 
an approach is not suitable for describing n.atural shapes, since it requires a huge amount 
of data and computation to describe them in detail, and furthermore, the result is very 
complex. Thus, an effective modelling scheme which requires less storage and computation 
is needed to describe naturally occuring shapes. With the advent of fractal geometry theory, 
accurate descriptions of naturally occurring structures becomes available[4]. 

Fractals are a family of mathematical functions which are characterized by fractional di-
mension and self-similarity. A fractal set has a dimension which is typically called Hausdoff- 

. Besicovich dimension and strictly exceeds the topological dimension. Since the theory was 
founded[4], a considerable D.-umber of applications using fractal geometry has been studied 
in many fields in the past years and achieved great success. It has been pointed out that we 
can find many fractals in nature, i.e., coastlines, mountains, solid surfaces, branching pat-
tern of trees and rivers. Fractal geometries have also been noticed in the lungs of the human 



body, clouds, relationships between the magnitude of earthquakes and their frequency, the 
aggregation of galaxies, and so on[14]. 

Because of the ability of fractals to model naturally occurring structures, they are being 
increasingly used  in the analysis of complex natural shapes such as ocean surfaces[5], moun-
tain  terrains [13],  grasslands, clouds[6], and lung tree[15]. Similarly, we have incorporated 
the concept of fractals into our forest canopy model to obtain a good approximation to the 
natural forest surface features. 
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2 RATIONALES AND ASSUMPTIONS 

As mentioned before, in the study of electromagnetic wave propagation for communications 
systems, the forest is often simply modelled as a uniform dielectric layer between an air and 
ground layer. The most significant ray on the forest is the so-called lateral ray. This ray 
is propagated along the surface of the forest canopy and it represents a whole class of rays. 
This model is widely used in the calculation of wave propagation becacuse of its simplicity 
and clear physical concept. However, at high frequencies, the incident wavelength could be 
comparable with the surface roughness of a forest, the scattering from the forest components, 
(for example, the leaves, the twigs, the branches, the trunks), must be considered. A more 
suitable model is a multi-layered scattering medium model consisting of a crown layer, a 
trunk layer and a ground interface[16, 17, 18]. The geometry of wave scattering from a 
forest is shown in Fig.1. 

The scattered field at the reciever may include the contributions from a number of mul-
tipath signals such as those coming from the forest canopy, the trunks, the ground and 
combinations of them. In the first phase of our research, we will j -ust consider the scattering 
from the forest canopy surface. 

The forest canopy surface is a special kind of naturally occurring rough surface with some 
special features and would be different from case to case according to a variety of forest 
parameters such as: the density of trees, the average height, the species, the season, and so 
on. From observations, and for convienence, some of the basic features and assumptions of 
forest surfaces that are considered in our research are as follows: 

1. Different trees have different basic shapes, depending on their species. We consider 
forests which consists of a similar type of trees. 

2. Forest surfaces exibit, to some degree an element of random periodicity. This can 
be explained by the fact that all forests consist of many individual trees, which are 
separated according to a certain natural rule. Furthermore, their spatial volume is 
dependent on their age and species. 

3. The canopy surfaces are assumed to be continuous, in other words, we don't consider 
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the surface of a single tree or of a sparse forest. 

4. The surface roughness of a single tree comes from the random growing process. The 
spatial random distribution of trees in a forest is dominated by a random process based 
on competition among trees. We assume that there are two stochastic independent 

processes. 

5. In our research, we will first consider one typical geometry of wave scattering from  a 
forest .enviroment in communications. In this scenario, both the transmitter and the 
receiver are over the surface of the forest as shown in Fig.1. 



3 MODELLING FOREST SURFACES 

3.1 Two scale composite model 

Based on the preceding analysis and considerations about the basic features of a forest, 
the surface is modelled as two independent components: a small-amplitude, high-frequency 
roughness superimposed on a low-frequency variation of larger amplitude. Such a technique 
is called a tWo-scale model of roughness. The high frequency component results from the 
random growing process of a single tree, so that the spatial frequency can be related to 
the wavelength of the incident wave. The low frequency component is due to the random 
process of tree distribution and should appear as random in amplitude and periodicity. A 
more thorough treatment on the theory and applications of a composite model can be found 
in references[3,8]. The references describe the general method used for generating composite 
surfaces by superimposing two simple surfaces which are formed by filtering Gaussian noise. 
In our research, the Fractional Brownian Motion(FBM) and Bandlimited Weierstrass Func-
tion(BWF) are used separately and in combination, to model a forest canopy surface. FBM 
is especialy suited to describing n.atural fractals with random self-similarity. Conversely, the 
BWF efficiently creates natural fractals with random periodicity. Both functions have good 
analytical properties in mathematics, and have been successfully applied in a number of 
fields and applications[4, 5, 6, 7]. 

In the one dimensional case, we have the general expression of a forest surface as 

f (x) = B(x) S * W(x) (1) 

where B(x) is the FBM, W(x) is the BWF with mean zero, and S is the scale factor to 
be adjusted for different applications. Because W(x) is independent of B(x), we can easily 
obtain all of the statistics for f(x) by summing the statistics of W(x) and B(x). Thus, f(x) 
has two fractal dimensional parameters,  JJb  and H., which correspond to FBM and BWF 
respectively, and they reflect the roughness of the surface on two different scales. We can 
define the fractal dimension H of f(x) with a set, or a pair, of parameters as: H = (Ha, H). 
In this sense, the surface function, f(x), can be called a two-scale fractal. 
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A-2N1H. (1 ___. ) -2(N2-NOH.) (3) 

3.2 Bandlimited Weierstrass Function(BWF) 

The BWF is often used as the model of a rough surface because of its good analytical 
properties such as, a finite spatial frequency band and self-similarity over the corresponding 
finite range of resolution. We use it to model the basic part of the forest surface. The typical 
BWF is expressed as a weighted sum of periodic functions[9] 

N2 
W(x) = A E sin(KAms + Om), (2) 

where 0 <  II < 1 is the roughness fractal dimension of the BWF, K is the fundamental 

spatial wave n-umber, A > 1 is the spatial frequency scaling parameter, Om  is an arbitrary 
phase with uniform distribution on [0, 27r]. The number of tones or spectral lines is given by 
N =  N2 -  N1  + 1. The amplitude control factor A is 

where ay, is the given variance. The correlation and power spectrum are 

A2 N2 
C(r) = E[W(s T)W (x)] = — E cos(Kmr), and (4) 

2  m=.1V1 

A 2  N2  
P(W) E A-2—Htu[s(w —  KA" )  + 8(C.0 + KAM)]. (5) 2 

From references[5,7], we can find a similar discussion dealing with these parameters. Here 
the random amplitude Cm , with standard normal distribution, does not affect the statistical 
properties, but will improve the surface randomness. 

3.3 Fractional Brownian Motion(FBM) 

The one dimensional function FBM, B(x), is a random function of coordinate x, and is 
defined by [4] as 

pp, f  B(x dx) B(x) 1 i2 

IdxV < Y} - 2 )dt, (6) 
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(7) 

(8) 

where 0 < 14  < 1 is the fractal dimension of FBM, ab is the given normal distribution of 
the variance, dx is an increment. Sometimes, the increment process of FBM, AB(s) is also 
defined as 3..B(x) = B(x dx) — B (x). Here are other statistical features: 

1. Mean: E[B (x dx) — B (x)] = 0 

2. Variance: E[IB(x dx) — B(x)1 2] = cr2 Idx1 214  

3. Covariance: E[B(x)B (t)] = 0.204214 + 11214 — tI 214] 

4. Correlation function: 

CAB(r) = E[AB (x r).AB(x)] = a 2 Idxi 2Hbr(dx , 1-) 

where, when T < dx , the normalized correlation function r(dx , r) = 1 — ir I dxrb 

a-2 P(w) = o-îldx1214  8(c.o) w2Hb-1-1 1'(2Hb  +1)  

where r(.) is the Gamma function. 8(w) is a unit pulse function at zero. 

5. Power spectrum: 
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4 COMPUTER SIMULATED SURFACES 

The formulation and analysis for the one-dimensional(1D) case can be easily extended to 
the two-dimensional(2D) case. Thus, with the aid of a computer, we are able to create a 2D 
fractal surface. 

The basic Weierstrass surface is shown in Fig.3. When Ni and N2 are adjusted, the basic 

spatial frequency of the surface, or the field of view of the incident wave, will also change. 

If other periodic functions are used instead of the sine function in (2), different basic shapes 
can be generated to represent different tree species. Two examples are shown in Fig.4. 

For the approximation of the FBM surface, the most straightforward method is the Ran-
dom Midpoint Displacement(RMD)[10]. This algorithm  is simple and suitable for execution 
on a computer, but unfortunately, the process generated by the RMD does not have station-
ary increments, thereby preventing it from yielding a true FBM. To obtain a better approx-
imation of the FBM surface, we developed a new method called the Related RMD[11,12], 
which has not only the same advantages as RMD, but can also allow the incorporation of a 

particular correlation function  in the surface model. 

The related midpoint displacement method can work with a square lattice of points. If the 

mesh size dx denotes the resolution of such a grid, we obtain another square grid of resolution 
dx/N/i by adding the midpoints of every square. At the same time, the orientation of every 
square lattice is rotated by 45 degrees. The two types of interpolation lattice are shown in 

Fig.2. 

The interpolation formulas used here are 

f(x0) = i(i 2-11)[f (sii) + f (x21)] + (2){f (x 12 ) + f (x22)] + 21--*iTTuldx IHgi  (9) 

, and 

H  
f (xo) = i(1 — 2-  )Lf (xii) f (s21)] (2)[f (x12) f (s22)] + 21-11  /-cridx I I  g2 (10) 

for the type 1 and type 2 respectively, where r is the correlation factor between the midpoint 
and its adjacent points, H is the fractal dimension, o- is the variance of the FBM and giandg2 
are the samples of a Gaussian random variable with mean 0 and variance 1 added on the 
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midpoint. This process is continued until we obtain the expected resolution. In each stage 
we also use the successive random addition method to all of the points after the midpoint 
interpolation to get a better stationarity. By choosing r according to different small scale 
corralation functions, different surface roughness can be obtained. Two samples generated 
using RRMD are shown in Fig.5. The composite surface is derived by superimposing B(x) 
with W(x) and is shown in Fig.6. 

When carrying out the superimposing, different scales of surface roughness can be obtained 
by adjusting the scale factor S. At the same time, the random periodicity on a surface 
will disappear with decreasing S. In this way, the modelling program can also generate 
periodically random  surfaces for different cases such as a bushy or mountainous region. 

The statistics of a sample surface (mean, variance, correlation function and correlation 
length, power spectrum, slope variance, etc.) were calculated and are compared with the 
results of theoretical analysis in Fig.7 to Fig.10. Fig.8 shows the correlation functions of the 
FBM, BWF and composite surface. It is apparent that the FBM and BWF have different 
fractal features in small scale so that the composite surface will have different statistics 
depending on the different S value. From Fig.9, we find that the BWF and FBM have 
different contributions to the final composite surface in terms of frequency. Fig.10 shows 
that the composite surface has the typical power law with the fractal between 1/f and 1/f 2 . 

These results show that the theoretical analysis and calculation (dot and dash lines) are 
consistent to the statistics of the sample surface(solid lines). 
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5 CONCLUSIONS AND RECOMMENDATIONS 

In this report, a new two scale fractal model of a forest canopy has been developed as the 
first phase of our research on electromagnetic wave scattering from a forest environment. 
Following is a summary of some of the major aspects of the canopy model: 

1. In our new model, the basic features of a forest surface,  such  as the random growth  
of trees and the periodically random distribution of trees in a forest, are reflected by 
combining two typical fractal functions, namely the FBM and BWF. 

2. The composite fractal model is described by using a pair of fractal dimensions and is 
much more versatile than using a single fractal model. A number of user selectable 
parameters allows the creation of not only forest canopy surfaces, but other natural 
surfaces such as mountain regions. 

3. Along with the fractal surface, we have also derived the basic statistics of the FBM 
and BWF, specifically, the correlation function and power spectrum. These statistics 
allow the model to be analyzed in a statistical manner. 

4. The realization of a computer generated two dimensional surface is achieved by us-
ing the RRMD and BWF calculation. algorithms. A comparison between theoretical 
analysis and statistics calculated from generated surfaces show a good consistency. 

Thus, we now have a fractal-based forest canopy model which allows us to efficiently 
generate a canopy surface for a variety of forest situations. Currently, work is being carried 
out on the next phase of research which involves both analyzing the scattering from the 
fractal surface as well as improving the model itself. Following is a list of topics which will 
be investigated to improve the model. 

1. An investigation on how the main parameters, such as N, S,  H , H6, which change the 
basic fractal shape, can be changed so that the model can be extended to different 
applications such as bushes or mountain areas. 
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2. Currently, the canopy model is a static one, more research is required in terms of 
tree movements so that we can add a time varying characteristic to the model. One 
approach which is being investigated, is the use of spatial filtering techniques. Such 
techniques may be used to take into account the variability of a forest  with  time and 
seasons 

3. We will con.sider the vertical density characteristics as well as the dielectric properties 
of the surface itself. 

In terms of analyzing the scattering from the fractal model, a future report will detail 
the investigation. In particular, for scattering analysis, the fractal model is broken up into 
planar facets which at first will be considered to be conducting. Preliminary analysis will 

also only consider lst order reflections and neglects shadow region effects. Furthermore, we 

are considering the case where both the transmitter and receiver are above the canopy. 

Thus far, a computer program has been written which calculates the orientation of each 

facet in terms of its relation to the transmitter and receiver. Based on its orientation, or 
if the facet resides in a shadow region, a facet is kept if a 1st order reflection is possible. 
A summation of the scattered fields from the eligible facets is then made to determine the 

scattering effect of the fractal surface. To date, such an analysis is not applicable for a 

forest environment because of the assumption of a conducting surface. The next step in the 
scattering analysis will be to treat the model as a dielectric surface. 
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Figure 1: The geometry of wave scattering from a forest. 

Figure 2: Grid types for 2-D Related Random Midpoint Displacement method. 
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Figure 3: The BWF sample surfaces with the different field of view, where .H.„, = 0.5, a = 
2.0, A = 1.5. 

17 



80 

80 

0.1-1 

0.05- 

o 
80 

Figure 4: The BWF sample surfaces with the different basic functions. 
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Figure 5: The sample surfaces of FBM with the different fractional dimensions of Hb ---= 0.2 
(the upper) and Ilb = 0.5 (the lower) respectively. 
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Figure 6: A two-scale fractal composite surface with H = (Hill  = 0.5, 14 = 0.5). 
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Figure 7: The slope histogram of the composite surface. 
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Figure 8: Correlation function: (1) and (3) are statistical results from samples of FBM and 
BWF respectively, (2) and (4) are calculated results from th.eir formulas. (5) and (6) are 
statistical results from the composite sample surface, but with the different values of S. 
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Figure 9: Power spectrum: the dotted line and dashed line are calculated results for the 
BWF and FBM surfaces respectively, and they are superimposed to obtain the composite 
surface result(solid line), from which the different parts of frequency contributions can be 
found. 
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Figure 10: Log power spectrum: the log power spectrum of composite surface shows that 
the typical fractal feature by the power law lies between 1/f and 1/f 2  spectrums. 
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