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Chapter 1 

Introduction 

There is a wealth of literature on the design of pseudo-random (or pseudo-noise) sequences for 

wireless communications with different properties of their autocorrelation and cross-correlation 

functions (ACF and CCF). 

The theory of filter banks was developed completely independently and it is widely accepted 

that it dates back to 1976 [6]. The first digital filter bank was designed by Croisier, Esteban and 

Galand in 1976 and the first perfect-reconstruction filter bank was designed by three research 

• groups independently around 1984 (for a collection of references see [6]). The main application 

of filter banks is in data compression. Subband coding of audio, images and video, as the 

method is called, is one of the competing technologies for data compression with a number 

of theoretical and practical advantages (including relationship with multiresolution analysis, 

interoperability and fast computation) . The discovery of I. Daubechies that orthogonal filter 

banks provide orthogonal bases for the Hilbert space of square-summable sequences stimulated 

a tremendous research activity in the area. Furthermore I. Daubechies showed that provided 

the filters satisfy constraints additional to PR, regular (or smooth) continuous-time functions 

(scaling functions and wavelets) can be obtained, which are orthogonal bases for the space of 

square-integrable functions [5]. Note that filter banks have always been designed so that in 

addition to perfect reconstruction the filters have "good" frequency responses, e. g. Ho (z) has 

always been required to be a good lowpass filter and Hi (z) — to be a good highpass filter. 

This requirement is tantamous to requiring that the filter bank offer energy concentration and 

perform well in compression. In this paper we are interested in filter banks where the filters 

Ho (z) and Hi (z) are not "good" filters in this traditional sense, i. e. we would like them to have 

pseudo-noise frequency responses. fib 
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In this paper we shall consider one important class of sequences, namely complementary 

sequences. These sequences were recently found to be efficient in a new modulation for wire- • 
less communications, called spread-signature CDMA [13]. Recently it was observed by several 

researchers that these complementary sequences are a special case of two-channel orthogonal 

FIR filter banks [7, 12]. The main lesson is that the theories of complementary sequences and 

of orthogonal wavelet transforms can borrow results from  each  other for mutual benefit. In 

this paper we present the relationship between filter banks and aperiodic complementary se-

quences and their generalizations, including Welti codes, multilevel complementary sequences 

and multidimensional complementary sequences. 

Then we study periodic complementary sequences using the cyclic wavelet transform.  ap-

proach.. Two novel sets of orthogonal sequences are constructed, which are periodic symmetric 

and -antisymmetric, correspondingly. Systematic algorithms for their generation are given. These 

two new sets of orthogonal sequences are generalizations of the GRS sequences in the sense that 

the GRS sequences are members of both of these sets. As a result we have a systematic algorithm 

for the generation of all GRS sequences of a given length. Another result, borrowed from filter 

bank theory, is that the GRS sequences are realizable by a lattice structure. • 

• 
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H, • Figure 2.1: Two-channel bank 

• 
Chapter 2 

Two-channel orthogonal FIR filter 
banks 

Two-channel orthogonal FIR filter banks are the most fundamental and widely used class of 

filter banks [5, 6]. They consist of two parts (Fig. 2.1): an analysis part of two filters Ho (z) and 

Hi (z), each followed by downsampling, and a synthesis part, consisting of upsampling in each 

channel followed by two filters Go (z) and Gi (z). 

The two signals coming out of the analysis part; denoted by Yo (z) and Yi (z) and called 

subband signals, are equal to 

1 yo ( z) = [H0 (212)x(zi/2) H0(_2/2)x(_zi/2)] (2.1) 

1 
Yi (z) = —

2 
[H1 (z1 / 2 )X(z 1 /2) H1 (—z1/ 2 )X(—z 1/2 )] . 

It is easily shown that the output signal, js.>- (z) is given by 

_k(z) = [Ho (z)G 0 (z) + (z)G i (z)] X(z) (2.3) 

1 
—
2 

[Ho (—z)G 0 (z) Hi (—z)G i (z)] X(—z) (2.4) 

In perfect-reconstruction (PR) filter banks we have k(z) = X(z) and therefore 

Ho (z)G o (z) Hi (z)G i (z) = 0, (2.5) 

Ho (—z)G 0 (z)-1- Hi (—z)G i (z) = 2. (2.6) 

(2.2) 
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(2.7) 

(2.8) 

(2.9) 

The transform which represents the computation of the two subband signals  y0 [n] and  y1 [n] from 

x[n] is called a forward wavelet transform. The transform which computes the signal 'X [n] (which ii, 
is equal to x[n] provided the filter bank is PR) is called an inverse wavelet transform. Note that 

PR is very important even though the signals yo [n] and Yi  [n] are often perturbed in a controlled 

fashion prior to reconstruction. We are assured that the sole reason for the deviation from PR 

lies in the additional processing of the subband signals. 

In orthogonal filter banks the impulse response ho [n] together with its integer translates 

forms an orthogonal basis for the Hilbert space of square summable sequences. The aperiodic 
auto-correlation function (ACF) of the impulse responses ho [n] and hi [n] are half-band functions: 

< ho  [n],  ho  [n 2k] > = Sk 

< hi [n], hi [n+ 2k] > = 

while the cross-corellation is identically zero 

• ho[n], hi [n + 2k] >. 0. 

Any two sequences  h0  [n]  and h1  [n]  with the auto-correlation and cross-correlation properties in 

0  (2.7), (2.8) and (2.9) form an orthogonal two-channel FIR filter bank and the two sequences are 

an orthogonal basis for the Hilbert space of square-summable sequences. The synthesis filters 

are completely determined from the analysis filters: 

Go (z) = Hi (—z) = z -N i/o (z) (2.10) 

Gi(z) = —Ho(—z) = z-Nfti(z) , (2.11) 

where the  T  operation means transposition, conjugation of the coefficients and replacing z by 

The highpass filter is related to the lowpass as 

Hi (z) = —z -N i/o (—z) , (2.12) 

where N is the order of the filters and is necessarily odd. In the time-domain (2.12) is equivalent 

to 

[n] =  

The product filter P(z) is very important 

P(z) = Ho (z)G o (z) = Ho (z)Hi (—z) = Ho (z)fi o (z)z -N  

(2.13) 

(2.14) 
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1 0 A=(  0 z -1  (2.22) 

) • 

and 

Rn, = 1  —ce n, 

(2.23) 

A necessary and sufficient condition for perfect-reconstruction is that P(z) is half-band: • p(z),_ P(— z) = 2z 1  . (2.15) 

Splitting the even-indexed and odd-indexed coefficients is called a polyphase decomposition: 

Ho  ( z) = Hoo (z2) z-i fioi ( z2) (2.16) 
(z) = Hio (z2) (z2) (2.17) 

From (2.12) the relationship between the polyphase components of the two filters can also be 

obtained. 

Hlo(z) = z-(N-1)/21/01(z), (2.18) 

Hu(z) = —z-(N-1)121/00(z). (2.19) 

2.1 The lattice structure 

The lattice structure found by Vaidyanathan (see the appropriate references in [6]) is an efficient 

way to implement these filter banks. It has two important properties: (i) without sacrificing 

II, computational efficiency it preserves the perfect-reconstruction property even under the con-

straints of finite-word-length arithmetic, and (ii) it is general, every paraunitary filter bank can 

be implemented using the lattice structure. The generality of the lattice structure suggests that 

it can also be used to design the filter bank. 

In general we have 

(z) = c fio (—z) 

and 

Ho (z)//0 (z)-1- Ici 2 i/o (—z) Ho (—z) = 2d 

(2.20) 

(2.21) 

where Ic1 2  = 1 and d is an arbitrary constant. The paraunitary lattice [6] is based on the 

elementary paraunitary building blocks 
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The polyphase matrix of every paraunitary filter bank can be factored in the following way • Hp (z) = OERN  A(z) A(z) • • • Ro 0 +1  . (2.24) 

Given the impulse response coefficients, there are algorithms to compute the lattice coefficients 

and vice-versa [10]. 

2.2 Conclusions 

It must be noted at this point, that the theory of filter banks is usually developed assuming 

linear (or aperiodic) convolutions. However, when filter banks are used in data compression to 

avoid the increase in the number of samples (which would have compromized the compression 

performance) linear (or cyclic) convolution is used. The corresponding wavelet transforms are 

called periodic (or cyclic). The theory of aperiodic and periodic wavelet transforms can be 

developed over finite fields, and this, for example, immediately would lead to complementary 

polynomials over finite fields. 

In this Chapter the most fundamental results of filter bank theory were presented. The 

11, opportunities for generalization of this theory are numerous. Filter banks can be classified in 

many ways: 

• two-channel or multi-channel 

• one-dimensional or multi-dimensional 

• maximally-decimated or oversampled 

• orthogonal or non-orthogonal 

• FIR or TIR  

• scalar or vector 

• perfect-reconstruction or approximate reconstruction 

• many combinations of the above are possible 
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There is a significant body of literature on the design of sequences for communications applica- 

e tions. The author believes that the majority of these sequences can, in principle, be obtained 

from filter banks. Furthermore, using filter banks and wavelet transforms, new sequences can 

be obtained, that have useful properties for communications. 

• 
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(3.1) 

(3.2) 

O  
Chapter 3 

Aperiodic complementary sequences 

The theory of Golay-Rudin-Shapiro (or complementary) sequences dates back to 1949 [1]. By 

definition a complementary series consists of two finite sequences of l's and -1's such that the 

sum of autocorrelation functions of the two sequences is constant. These complementary se-

quences have been rediscovered many times in the last 40 years. They have challenging and 

still unclear properties from a theoretical perspective, and since the coefficients are binary have 

obvious computational advantages in practical implementations. In 1957 Shapiro showed how 

to construct polynomials of order N, with  coefficients equal to 1 or -1, such  that IP(z)I is min- e imal as z ranges over the unit circle. The coefficients in these pairs of polynomials turned out 

to be exactly the Golay complementary sequences. These polynomials later became known as 

Rudin-Shapiro polynomials (or equivalently Golay sequences, or even (5' codes). To give credit 

to all of them we shall call them Golay-Rudin-Shapiro (GRS) sequences. Thus, two sequences 

of length. 1, 

A = (ao, al, • • • al), 

B = (bo, b1, • • • 1)1), 

where each entry equals 1 or -1, form a pair of Golay complementary sequences if they satisfy 

the 1— 1 conditions 

E (aiai+j bibi+j) = 0, 

for j = 1, • • • 1— 1. The polynomial notation is sometimes more useful, 

(3.3) 

• A(z) -= E aizi , (3.4) 
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(3.7) 

(3.8) 

C (z) = B (z) z - N  A(z) 

D (z) = — z -N  .1j (z) z -2N  (ii(z)) 

(3.9) 

(3.10) 

1-1 
B (z) = E biz i (3.5) 

i=o 

We shall use t the notations A(z) or A, and B(z) or B,  whichever is more convenient. The two 

sequences A and B are complementary if and only if the corresponding polynomials satisfy the 

identity 

A(z)A(z 1 ) B (z)B (z -1 ) = 21 (3.6) 

If A and B are The following operations also yield complementary sequences: 

1. interchanging A(z) and B (z). 

2. reversing A and/or  B.  Thus À(z) and 111(z); Â(z) and B (z); A(z) and (z) are also 

complementary sequences. 

3. negating A and/or B 

• 
4. negating the polyphase components of A(z) and B (z) Thus A(— z) and B (— z) are also 

complementary sequences. 

The above four operations produce complementary sequences of the same length  as the original 

complementary pair. 

There are formulae to produce longer complementary pairs starting from shorter ones. If 

A(z) and B (z) is a Golay pair of sequences of length  N,  then C(z) and D(z), defined below, is 

also a Golay pair of length. 2N: 

C (z) = A(z) z - N  B (z) 

D (z) = (z) — Z -2N  (A(z) ) 

C (z) = A(z) z -N  B (z) (3.11) 

411 D(z) = —A(z) z - N  B (z) (3.12) 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

C(z) = A(z) B(z) 

D(z) = A(z) — B(z) 

C (z) = A(z) z - 2 N  13(z) 

D(z) = (z) — z -2N  (21(z)) 

Another way to construct longer complementary sequences starting from shorter ones is as 

follows. Given a Golay pair (A1 , B1 ) of length N1  and another pair (A2 , B2 ) of length N2 a new 

Golay pair (T1 , T2 ) can be obtained in the following fashion: 

T1 = A2 
+ + B2 - B1  (3.17) 2 2 

T2 A20 A1B1 B2 0 
Àl  (3.18) 2 2 

The : applied to a sequence means simply reversal of the order of the elements. 

A Golay pair is called a kernel if it cannot be obtained by a transform method from Golay 

pairs of the same length, nor derived from Golay pairs of shorter lengths. Kernels of lengths • 2, 10 and 26 have been found by computer search. Other kernels at the present time have not 

been found. Furthermore it is not known whether they exist or not. In general, in addition to 

the requirement that the length of a complementary pair 1 be even, 1 must be the sum of two 

integral squares and must satisfy some other conditions [1]. Even after almost 50 years since 

the notion of complementary sequences was advanced the question of the possible lengths of 

these complementary sequences remains an open and extremely difficult problem. The more 

this problem is investigated, the more difficult it looks. It appears that the question of the 

possible lengths of complementary sequences is similar in difficulty to the proof of the famous 

theorem of Pierre Fermat. This statement is not an exaggeration, since Fermat's theorem was 

proven recently. 

With the help of a computer it can be shown that the total number of different Golay 

pairs of lengths N = 1, 2, 4, 8,10 is equal to 4, 8, 32, 192, 128, respectively. Complementary 

sequences have found various applications in CDMA wireless communication systems [13] and 

data communications systems [21]. 

The aim here is to demonstrate the intimate relationship between PR filter banks and Golay-

0 Rudin-Shapiro systems, which has not been recognized before. 
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(3.23) 

(3.24) 

Consider for example two-channel filter bank with no downsampling and upsampling. This 

is an oversampled filter bank. The input-output relationship is 

f((z) = (Ho (z)G 0 (z) Iii (z)G 1 (z)) X(z) (3.19) 

Since there is redundancy it is not difficult to achieve perfect-reconstruction. The design in this 

case corresponds to solving the Bezout identity 

Ho  (z)G o (z) (z)G i  (z) = const (3.20) 

It is plain to see that if we choose Go (z) = Ho(z) and Gi (z) = Hi (z) then  the system 

achieves PR. In this case Ho (z) and H1  (z)  satisfy the same relationship as Golay-Rudin-Shapiro 

polynomial pairs. 

Theorem 1 A Golay-Rudin-Shapiro polynomial pair forms a tight frame for 12 (Z) with a re-

dundancy factor 2. 

Proof: Consider a scalar two-channel filter bank with no downsampling and upsampling. This 

is an oversampled filter bank. The input-output relationship is 0  
= (H0 (z)G 0 (z) -I- (z)G i  (z)) X(z) (3.21) 

Since there is redundancy it is not difficult to achieve perfect-reconstruction. The design in this 

case corresponds to solving the Bezout identity 

Ho (z)G o (z) + (z)G i  (z) = const (3.22) 

It is plain to see that if we choose Go (z) = Ho (z) and Gi (z) = Hi (z) then the system 

achieves PR. In this case Ho (z) and H1  (z)  satisfy the same relationship as Golay-Rudin-Shapiro 

polynomial pairs. D 

The fact that a i  and bi  form a tight frame means that they can represent any square-summable 

sequence. However, in general, they do not form an orthonormal basis. The simplest example 

of Golay complementary sequences is, of course, 

A = (1, 1) 

fib B = (1, —1), 
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which is the Haar case. In this case the Golay-Rudin-Shapiro polynomial pair is realizable by • a maximally-decimated filter bank. In this particular case, the complementary sequences form 

not only a tight frame, but an orthonormal basis. It is believed that only in this case the . 
complementary polynomials are realizable by a maximally-decimated filter bank (this requires 

a proof, however). 

Recently it was shown that the GRS sequences are a special case of orthogonal FIR filter 

banks [7, 12]. 

Theorem 2 (Cook lev'95) The Golay-Rudin-Shapiro (GRS) polynomial pairs are polyphase com-

ponents of a lowpass filter in an orthogonal maximally-decimated two-channel FIR filter bank. 

Proof: Suppose we are given a filter H(z) of length 2 1  — 1 with coefficients which are only +1 

and —1 satisfying 

H(z)H(z 1 ) = const .= 4 1 . (3.25) 

• 
It can be proved that the polyphase components of H(z) satisfy (3.6), i. e. they form a GRS 

polynomial pair: 

4/ = [H0 (z 2 ) + (z2 )] {Ho  (z-2 ) + zHi  (z -2 )1 

+ [H0 (z2 ) — z-1H1 (z 2 )] [H0 (z -2 ) — zH1 (z -2 )] 

= 2 [H0 (z 2)H0 (z -2 ) + H1 (z 2)H1 (z -2 )] . (3.26) 

Therefore the polyphase components of every power-complementary filter H(z) are a GRS pair. 

Now it is straightforward to establish that the filter with polyphase components equal to a GRS 

pair is power-complementary. D 

The GRS sequences being the polyphase components of orthogonal filter banks are realiz-

able by a lattice structure. The lattice coefficients are not integers in general and no obvious 

relationship among them was found. 

Years before the advent of wavelet transforms it was recognized that these GRS pairs provide 

orthonormal bases for the Hilbert space [4]. 

Note that while there are PR FIR filter banks of every even length., the requirement the 

length of the Golay sequences to be even is not sufficient. It probably should be mentioned that 

the idea th.at these GRS sequences are very closely related to filter banks occured for the first go 
14 



time to M. Sablatash [11]. Later, J. Byrnes in [12] realized that GRS sequences are related to 

le filter banks, but he didnot state exactly that they are the polyphase components. Furthermore 

Byrnes did not go into other details of the relationship between GRS pairs and filter banks, 

such as the fact that GRS pairs are realizable by a paraunitary lattice structure. The above 

theorem was proven for the first time in [7]. It seems that the first lowpass filter with more than 

. 2 coefficients for FIR perfect-reconstruction filter banks have been designed by Golay as early 

as 1949! Note that the restriction the coefficients to be binary (1 and -1) constraints the zeros 

of the filter Ii(z) and, in particular, this filter a has a pseudo-random frequency response. 

3.1 Extensions of GRS sequences 

Following Golay's work, mathematical properties, computer searches and existence problems 

for certain lengths were further investigated by various researchers. Different applications have 

required different generalizations of the original concept of Golay to be made. For their research 

into surface acoustic wave (SAW) devices Tseng and Liu studied complementary sets of sequences 

[20]. Welti advanced sequences of vectors which could be successfully used in pulsed radar for 

• range detection [17]. Complex-valued complementary sequences were considered by Frank; they 

have become known as Frank codes and have applications in the area of radar pulse compression. 

The fact that using a GRS pair we can build an orthogonal filter H(z) which forms a basis 

for square-summable sequences was observed in [4]. Note that the Barker polynomials [3] are 

somewhat related to the Rudin-Shapiro polynomials, and thus to filter banks as well. 

In this Section we briefly review some extensions of GRS sequences. This Section is short, as 

the time frame of this Contract does not allow a deeper study of the extensions of the original 

concept of Golay. It is, however, clear that the set of all possible extensions of GRS sequences is 

isomorphic to the set of all possible filter banks. Just as all filter banks have useful properties, 

by using the filter bank framework new sequences can be obtained that have useful properties. 

3.1.1 Welti codes 

A quaternary Welti sequence is defined as a sequence of length 2N whose elements are ±ce or 

±7, where multiplication is defined by 

• ce-y = -ya = 0 (3.27) 
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a2 ,7 2 1  (3.28) 

• and the out-of-phase apériodic ACF is identically zero. It can be shown that the set of all Welti 

sequences is isomorphic to the set of all complementary sequences [19] and thus to filter banks 

as well. In fact, from a Welti sequence of length 2N the first polyphase component of which has 

elements ±-y and the second polyphase component has elements +a a pair of complementary 

sequences can be constructed; for a Welti sequence of length 2N for which the first N elements 

are of the form ±a and the last N elements are of the form ±-y, the first N and the last N 

elements form a pair of complementary sequences. On the other hand, a Welti sequence can 

be constructed from a pair of complementary sequences by considering them to be the first and 

second polyphase components Of a Welti sequence (i. e. interleave them); or by concatenating 

them as long as the elements of the complementary kquences satisfy (3.27) and (3.28). Note 

that by concatenating complementary sequences orthogonal FIR filter banks can be obtained if 

and only if the filter coefficients obey the multiplication rules (3.27) and (3.28). It is clear that 

such filter banks have not been studied in the past. 

.3.1.2 Complex-coefficient complementary pairs 

Theorem 3 Suppose A(z) and B(z) are a complementary sequence. Then A(W ivi ) and B(Wig) 

are complementary sequences as well for VM > 0. 

Note that the set of complex-coefficient complementary pairs has more elements than the set 

of complementary pairs with real coefficients. For example, for M = 4, complex-coefficient 

complementary sequences have been found for lengths 3,5,6,12,13,18,24,30,36,48,50,60,72,78 and 

96, while they have been found to be non-existing only for lengths 7,9,11,15,17. 

If A(z) and B (z) are complementary sequences with complex elements, then similar properties 

are also valid, i. e. by interchange, negate, reverse and conjugate, and negate alternate, we can 

also obtain complementary sequences of the same length. 

The recursive method for constructing Golay pairs, by which sequences of length N2k can be 

constructed starting from a pair of length N, also applies to complex-coefficient complementary 

pairs. 
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3.1.3 Complementary sequences over finite fields •, It should be noted that wavelet transforms can be defined over finite fields, and immediately, 

according to the above Theorem, we can obtain complementary sequences (and Welti codes) 

over finite fields. Complementary sequences over finite fields have not been investigated and 

could be an avenue for future work on the design of sequences for wireless communications. 

3.1.4 Subcomplementary and supercomplementary sequences 

Subcomplementary and supercomplementary sequences are two relatively new extensions of GRS 

sequences. Subcomplementary sequences [26] comprise two or more finite sequences of equal 

length, assumes' to be 2 1ep0  such that the sum of their aperiodic autocorrelation functions is zero 

for all shifts p < po , minimum for 0 < p < po ,  and maximum for p = O. 

In supercomplementary sequences not only the autocorrelation functions are complementary, 

but the crosscorrelation between two appropriately defined sequences is also complementary. 

These sequences have a number of useful applications in radar, such as complementarity of 

the ambiguity functions. The Gold sequences are a special case of th.ese supercomplementary 

le sequences. 

• 
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Chapter 4 

Orthogonal periodic symmetric codes 

Note that filter banks are designed assuming aperiodic convolutions and ACF and CCF. However, 

when filter banks are used to perform data compression, periodic (or cyclic) convolutions are 

employed. In this paper we use cyclic convolutions and therefore cyclic wavelet transforms to 

• design cyclic extensions of complementary sequences. 

Here we consider the problem of the design of orthogonal system Iso , 8 2 , • • • 3m- i l. To simplify 

the signal processing operations it is desirable to deal with binary symbols, i. e. ±1. It is 

convenient and simple to assume that all orthogonal signals si are generated by cyclic shifts of 

• so  = (ao  al  • • • aN_i ) and that the sequence ai  is periodic with period N: aN+2: = ai. It is clear 

that the maximum size of this cyclic code, that is the maximum numbe'r of different codewords, 

is equal to N. If the code is of maximum size then si = (ai, • • • aN_ i+i). It is plain to see 

the formal similarity of this problem with filter bank theory. The codewords play the role of 

impulse responses of digital filters in a filter bank and the codewords (i. e. the impulse responses) 

are of length N. If orthogonality is imposed orthogonal cyclic codes of maximum size do not 

exist. Following the wavelet transform approach, however, orthogonal periodic codes can be 

constructed with size equal  to N/2. The properties of sequences depend on their autocorrelation 

functions (AFs). Since we assumed periodic sequences it is convenient to use the periodic 

autocorrelation function (PAF) 

N-1 
r[n] = E a[i]a[< i + n >N] a[i] E  1,-1, (4.1) 

i=0 

where a[N + i] = a[i] and < . > is the modulo notation. 

• Theorem 4 The system of codewords formed by double cyclic shifts of the sequence s o  = 
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(4.6) 

(4.7) 

(ao , al , • • • , aN_i ) with length N is orthogonal if • r[2n] = 0 n = 1, 2, • • • N/4 (4.2) 

and its size is N12. 

Using the DFT it can be written that 

N-1 
R [ k] = E r[n] T/Vi‘Tikk  

n=0 
N-1 N-1 

- E E a[i]ct[< i n >N]i/Ve < i n >N= 1 
n=0 i=0 
N-1 N-1 

- E a[i] E 
i=0 i=0  

- A[k]  A[—k}  = IA[k]1 2  

In our notation 

WN = e-j271N (4.4) 

110 and thus the relationship between the z-transform and DFT is given by z =We. A fundamental 

property of the DFT is that it assumes periodicity in both  time- and frequency-domains. Note 

that the DFT of the PACF is non-negative, which corresponds to the condition that the frequency 

response of the product filter in filter banks be non-negative. A polyphase decomposition can 

be applied on the PCF 

R(z) = R o (z 2) z -1  Ri (z 2 ) . (4.5) 

which in the DFT domain corresponds to 

R[k] = Ro  [2k] [2k] 

where 

N/2- 1 
R0[2k] 

=
E r [2i] wgk 

N/2- 1 
Ri  [2k] = E r[2i 1 ] 1472k . 

(4.3) 
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Note that  R0  [2k] and R1  [2k], as well as the similarly defined  A0  [2k] and A1  [2k], are not DFTs 

themselves. Since all even-indexed coefficients r[2i] are equal to zero, with the exception of r[0] 

we get 

R0 [2k] = r[0] N. (4.8) 

Taking (4.3) into consideration we get 

R[k] = (A0  [2k] + nAi  [2k] ) (A o  [-2k] WeA1  [ —2k] ) 

= A0 [2k]A0 [-2k] A1 [2k]A1 [-2k] InA1 [2k]A0 [-2k] Flii,7 k A0 [2k]A1 [-2k] (4.9) 

Note that WkA1 [2k]A0 [-2k] and Wj\-/-  Ao [2 k] [— 2k] are complex conjugates of each other. The 

conclusion is that 

R0 [2k] = 1A0 [2k11 2 lA1 [2k11 2 (4.10) 

Tirk}Ri  [2k] = 2 Re{ MIT  Ai  [2k] Ao  [2k] } (4.11) 

Formulae (4.10) and (4.11) are not known in the cyclic wavelet transform literature. The neces-

sary and sufficient condition for orthogonality of the codewords is 

1A 0 [2k]1 2 1A 1  [2k11 2  = N (4.12) 

The problem is how to find all orthogonal filters with binary coefficients? The conditions of 

orthogonality are invariant under the following operations: 

• sign inversion, i. e. if A(z) is a codeword, then —A(z) is also a codeword. 

• inversion of the order ai aN_ i_i,  i. e. if A(z) is a codeword, then z-NÀ(z) is also a 

codeword. 

• cyclic shifts 

4.1 The structure of codewords 

The polynomial representation of the codeword so  is given by A(z), which can be decomposed 

as 

frip A(z) = A o (z 2) z -1  A i (z 2 ) . (4.13) 
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In the same way, as it was done before it can be established that these polyphase components • are complementary sequences, which are periodic, however. (The non-periodic complementary 

sequences are the GRS sequences) 

An interesting question is whether these complementary sequences are themselves codewords. 

The PCF of (ai, ai+2 , • • • ai+N_2 ), i = 0,1 are 

AT/2-1 

ri  [n] = E a[2k, + i]a[2(k + n) + i] (4.14) 
k=0 

wh.ere the indice must be evaluated (mod N). Therefore 

Ay2-1 
Ri[k] = E ri [n]n-,2 = Ai[k]Ai[—k] = i =  0,1 (4.15) 

From (4.14) it follows that 

ro [n] + ri [n] = a[2k]a[2k + 2n] + E a[2k 1]a[2k + 2n + 1] 

= r[2n] n = 1, • • • N/4 (4.16) 

Since we know that r[2n] = 0 n 0, the the necessary and sufficient conditions for orthogo- e nality are 

1. Each of these complementary sequences are themselves codewords,  i. e. ri[2n] = 0 and 

ro  [2n — 1] = —ri  [2n — 1] k = 1, 2, • • • N/8 

2. The complementary sequences are not codewords,  i. e. the condition ri[2n] = 0 fails for at 

least one n; then 

ro [n] = —ri [n] (4.17) 

Let GN is the set of all codewords with length_ N. This set is a union of two sets: the set 

GIN  of codewords the polyphase components of which are themselves codewords of length. N/2 

and the set G2N  of codewords the polyphase components of which are not codewords. The set 

GN is isomorphic to the set of all orthogonal wavelet filters corresponding to a circular wavelet 

transform. 

. Theorem 5 A periodic cyclic code with length N = 2k  exists for all values of k greater than 2. 
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•

\ - 

1A0( 14e)1 2  lA1(ink )1 2  = N (4.21) 

Ao(W12vk) Aoo(Ink) Ink Aoi(Wkk ) (4.18) 

Since Ao (Wj\sr' 12 ) G GN/ 2  the condition of orthogonality 

1A00( 1-47 )1 2  +11401(Ink)12 = N/2 (4.19) 

holds. Let us define 

A1 (in) =-- ±Wilv  [A0 (w) - WZkA01(Wi4vie )} (4.20) 

The polyphase components of A1  also satisfy (4.19) and thus A1  is also a codeword, A1  E GN/ 2 . 

The sequence À1  is also a codeword. Finaly Ao  and A1  can be shown to be polyphase components 

of a codeword with length N by taking into account (4.12) and (4.19) 

Proof: First, it will be shown that a periodic cyclic code exists for k = 2. It is recognized that 

• filter banks whose polyphase components are GRS polynomials with length N/2 belong to the 

set G N . Therefore (1,1,1, -1) is a codeword. By cyclic shifts and sign inversions we can get 7 

other codewords, or the total size of the set G4  is 8. Now, suppose that A0 (Wk12 ) E GN/2  which 

has the polyphase decomposition 

Therefore A(z) = Ao (z 2) z-lAi (z 2 ) is a codeword belonging to the set G N . Q. E. D. 

4.2 Construction of codewords 

4.2.1 The case N = 4 

It is convenient to introduce three DFTs: 

B (TV = 1 -  W  - W: k  - (4.22) 

C(W 14') = 1 +W_T4/42k _W43I(4.23) 

D(W) = 1+ W,Li-  + We + lek (4.24) 

E(141:11v) = 1 - W: k  - W: k (4.25) 

The codewords for N = 4 correspond to cyclic shifts and sign inversions of B and C. The 

0 capacity of this code is Q 4 = 8. 
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4.2.2 Codewords with length N = 8 

• For N = 8 the codeword can be expressed as 

A[k] = A(W) = +14/1\ii'l  B(We)(1+W Nk(2m+1) ) 1,m E {0,1,2,3 } (4.26) 

In this case the total number of such sequences is 4.4.2.2 = 26 . For example when 1 = 0 and 

m = 0 we get the codeword (1,1,-1,-1,-1,-1,-1,-1). 

4.2.3 Codewords with length N = 16 

• For N = 16 we know that all codewords from G8 are first polyphase components of codewords 

from G16. The second polyphase components can be found from (4.20) 

A16,1 ( W1k6 ) = ± B Tivizn [ w-126k ( 2 m +1 )) + ( 1 wi26k (2m + )] 

m E 10,1,2,31, 1,p E (4.27) 

By counting the number of free variables we get for the capacity of this code G16  = 4.16.8.2 = 21 0 .  

But there are more orthogonal sets of sequences in G16. 

• complementary pairs. Note that 

The set G8 does not exhaust all 

21C(W:)1 2  ID(W)1 2 + 1E(WI4')1 2  -= 16 Vk E {0,1,2,3} . (4.28) 

Therefore we can construct more codewords in the set G16 as follows 

A16,2 ( WI% ) 
= WI/ 6k [ ( we) ± wil62 k E wi46k wi62P +1) k (c wi46k w126k D ))1 

This can be verified to be codeword by checking the PCF: 

(4.29) 

1A16,2( 1471k6) 1 2  = IC  ± Wilo2k E1 2  + IC + 14712:D1 2  

+ 2 Re{WeP+1) (C WD)(C WiekE)*} 

= 16 + 2 Re-044627'14)k  IC1 2 1 = 16 + 8Re{Wi62P+1)k (1 — We)} (4.30) 

where C = C(W) D = D(Wi4e). This means that the PCF is half-band, or 

• r [2n] = 0 

r [2n + 1] E {0, ±4} . 

(4.31) 

(4.32) 
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Taking into consideration the number of sequences in (4.26) it is figured out that there are 29  

111,  such sequences and the total capacity of G16 iS Q16 = 2 10  + e . 3.29 . Eq-u.ations (4.27) and 

(4.29) are a systematic way to construct codewords with N = 16. For example wh.en 1 = m = p0 

from (4.27) we get 

A16,1(T'171%) = B [(1  W1.26) Wi26)] 

There are eight codewords generated by A16,1: 

(4.33) 

111 — 1 — 1 — 1 — 11 — 1 — 1 — 11 — 1 — 1 — 11 (4.34) 

1 — 1 — 1 — 1 — 11 — 1 — 1 — 11 — 1 — 1 — 1111 (4.35) 

—1-1-11-1-1-11-1-1-11111-1 (4.36) 

—11-1-1-11-1-1-11111-1-1-1 (4.37) 

—1-1-11-1-1-11111-1--1-1-11 (4.38) 

—11-1--1-11111-1-1-1-11-1-1 (4.39) 

—1- 1- 11111- 1-1- 1-11-1- 1- 11 (4.40) 

—11111-1-1- 1- 11-1-1-11-1-1 (4.41) 

all of which., according to the cyclic wavelet transform principle, are generated by double cyclic 

shifts. 

4.2.4 Codewords with length N = 32 

Again we know that the codewords from G16 are the first polyphase components of codewords 

in G32. From (4.27) we obtain 

I A16 ,1  (n)1 2  = 
1B(W14_1) 12  [ i  ± wien+i) 12  + ±we2m44)12+  

2Re  (wiep-1) (1 wi.2:(2m-H.) )(1 wi-62k(2m+i) ) )] 

= 16 + 8Re [wki 2p+1.) (±w-1-62k(2m-H) _ ±w12: (2m-1-1) ) ] (4.42) 

From (4.27) and (4.42) it follows that complementary vectors of (4.27) can be found in two ways: 

= WMB (W 14.:) [(1 T412 2m _ pp+i) (1  _ wikpm+i))] (4.43) 

A16,1 ,2041 ) wikdB (we ) - we(27 -4-1)) + w16k(2P+1) + wem+i))] (4.44) 

24 



A32 = A16,1 + W A16,1,i ( 4 . 4 5 ) 

Table 4.1: Number of codewords in the symmetric orthogonal periodic code 

N 22 23 24 25 26 27 28  
number of codewords 23 26 3 x 29 7 x 215 > 7 x 222 > 7 x 230 > 7 X 239  

Thus for each first polyphase component we can find 4N = 27  second polyphase components 

(N/2 x 2 shifts, N sign inversions, and 2N vectors generated by the tilde operation). As a result 

there are 4N21°  = 217  codewords with length 32, generated according to 

If we take (4.29) as the first polyphase component the second polyphase component can be found 

according to (4.20). I4 this way we can generate 4N29  more codewords with length N = 32. 

The third way to construct codewords with length. N = 32 is as follows. The first polyphase 

component can be chosen as 

A16,3 = W [ E  wi46k D w
) + W

i46k 2k(2m+1) 
1%1 wik6

16 )1 (4.46) 

fib the Complementary vector of which is 

.416,3,1 [±E(W) weD(we) WC(W) (1 + w 1±62k(2m+1))] (4.47) 

There are 28  vectors of the type (4.46) and for each of them there are 4N complementary vectors 

of the type (4.47). Therefore the number of codewords of the third type is 4N28  = 215 . The 

total number of codewords with length N = 32 is found to be 217 + 216 + 215 = 7 . 215 .  

In general, when the second polyphase components are formed according to (4.20) and N = 
2'  k = 6, 7, • • • a lower bound on the number of codewords is GN > 2NGN/2. 

Table 4.1 summarizes the number of codewords of this periodic symmetric code. 

• 
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Chapter 5 

Orthogonal antisymmetric periodic 
codes 

In this chapter again orthogonal codes are constructed using wavelet-based approach. The 

orthogonal sets that are obtained offer high capacities and  simple signal processing operations. 

The orthogonal set of codewords is {so  s i  sm _i } where si = (a[2i], a[2i +1], • • • ,a[2i+N-1]), 
and a[N + i] = —a[i], a[2N+ i] = a[i]. It also assumed that a[i] can take only two values: 1, or 

—1. The number of codewords is M =N12 each having length N. Since periodicity is assumed 

111, the properties of the periodic autocorrelation function 

(5.1) 

which has a period equal to 2N, are very important. The periodic autocorrelation function has 

the following propertis: 

1. r[0] = Eiiv"=«-c; 1 a2 [i] = N 

2. r[IN] = Eliv=7) 1  a[i]a[i N] = —Eliv=7) 1  a2 [i] = —N 

3. r[n] = — E liv=7) 1  a[i]a[i N n] = —r[n N] =  r{—m]  

4. r[N/2] = O. This property can be established by 

70" 1 N-1 
r[n] = E a[i]a[i n] 

i=o 

• 
N-1 

r[N/2] = E a[i]a[NI2+ n] (5.2) 

a[O]a[N/2] a[1]a[N/2 + 1] + • • • + a[N/2 — l]a[N — 1] (5.3) 

— a[N/2]a[0] — a[N/2 1]a[1] — • • • — a[N — 1]a[N/2 — 1] = 0 (5.4) 
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5. r[2n] = 0 (mod 4), r[2n 1] = 2 (mod 4). These properties are not trivial and need a 

proof. It is convenient to use the transform b[i] = (1 — a[i])/2. Then the PAF becomes 

N-1 
r[n] = E (1 - 2b[i]) (1 — 2b[i n]) (5.5) 

i=0 
N-1 
E (1 - 2b[i] — 2b[i n] 4b[i]b[i n]) (5.6) 
i=0 

N-1 N-1 

= N — 2 [E (b[i] b[i n])]+ 4 E b[i]b[i (5.7) 
i=o i=o 

But considering the antisymmetry a[N i] = —a[i] we have 

1 = b[N i] b[i] , (5.8)  

and therefore 

N-1 N-1 n-1 
E (b[i] b[i n]) = 2 E b[i] n — 2 E b[i] (5.9) 
i=o i=o i=o 

• 
and therefore 

N-1 n-1 N-1 
r[n] = N — 4 E b[i] —  2m  + 4 E b[i] + 4 E b[i]b[i n] 

i=o i=o i=o 

Since N is a power of 2, the properties are easily establishec4 

(5.10) 

The DFT of the periodic autocorrelation function is 

N-1 
R[k] = E r[n]W= A[k] A[—k] = IA[k]l 2 

 n=o 
The DFT of the sequence a[0], a[1], • • • , a[N — 1] can be represented in polyphase form: 

A[k] = A0 [2k] WkA i  [2k] 

and the same decomposition can be applied with respect to the PAF: 

R[k] = Ro  [2k] + Wkiii  [2k] . 

In a similar way, as was done in the previous chapter it Can  be shown that 

(5.11) 

(5.12) 

(5.13) 

• Ro  [2k] = I A0 [2k]1 2  + Ai [2k]12 (5.14) 

Wilv Ri  [2k] = 2Ret W),-TAi  [2k] Ao  [-2k] } (5.15) 
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The necessary and sufficient condition to have orthogonality is that the autocorrelation is half-

band: 

r[2n] 0, n 1, 2, • • • N/4 — 1 

which also means that 

R0 [2k] =1./10 [2k]l 2 = N 

(5.16) 

(5.17) 

Now, for the polyphase components, T the PCF of (ai, ai-F2 )  • • ' ail-N-2)) i = 0,1 are 

N/2-1 
ri[n] = E a[2k + i]a[2(k + n) + i]]; a[N + i] =.-- —a[i], (5.18) 

k=0 
N/2-1 

R[k] = E ri [r]T4'e2  = A i [k]Ai [—k] = I Ai  [k]l 2  i =  0, 1 (5.19) 
n=0 

where r[2n] = ro [n] -I-  r1  [n] and therefore, a necessary and sufficient condition for orthogonality 

is that 

ro [n] = —ri [n]  n=  1, 2, • • • N/4 — 1 . (5.20) 

The vectors for which the above condition is fulfilled are called complementary. The comple-

gb mentary property is invariant under the following transformations: 

1. If Ao (z) and Ai (z) are complementary, then Ào (z) and  Ai (z) will also be complementary. 

2. The complementary property is invariant under cyclic shifts. z 1 A0 (z) (mod z)N 12 -1 and 

ziA i (z) (mod z)N/ 2  — 1 are also complementary. 

The GRS sequences are contained entirely in the new class of sequences, i. e. they are a subset 

of it. This implies, of course, that the number of the new sequences exceeds the number of GRS 

sequences for the same length. 

The codewords of length N are obtained as s 2i  = (a[2i], a[2i 1] • • • a[2i N — 1]). One 

sequence generates two codes s 2i and s 2i+1  with volume M = NI2 each having N/2 words. 

There are two cases: 

• 
1. The polyphase components (i. e. the complementary vectors) of a codeword are themselves 

codewords: 

ro  [2n] = ri  [2n] = 0 ro  [2n + 1] = —ri  [2n + 1] (5.21) 
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2. The polyphase components of a codeword are not codewords themselves: 

ri[2n] 0 (5.22) 

but still then ro [n] =  —T1  [n]  continues to hold. 

It is clear that in the first case an orthogonal antisymmetric periodic code with length N and 

volume N/2 can be constructed iteratively, starting from codewords with length N/2. Suppose 

we have a codeword with length N/2, which_ is also a complementary vector, Ao (z) 

It must be the first polyphase component of a codeword in the set GN, but it can be further 

decomposed using the polyphase decomposition 

A0 [2k] = A00 [41c] Wk12A01 [4k] . (5.23) 

The second polyphase componen t.  can be constructed in two ways. The first is 

Ai  [2k] =  Tiv21 40(4k) — W 2k  Aoi(4k)) 1 = 0,• • • N — 1 (5.24) 

and the second 

A1 [2k] = wN-21 (A00 (4 k) _ i-,7,r 2kA01 (4k)) (5.25) 

It is obvious that A1  e GN12, since A1  has polyphase components which have equal magnitudes 

as the polyphase components of Ao . Then, a codeword can be constructed, of which Ao  and A1  

are the first and second polyphase components, correspondingly .: 

1A01 2  IA11 2  = 2 Poe N.  (5.26) 

5.1 Examples 

From the properties of the autocorrelation function, discussed in the beginning of this chapter, 

it follows that all combinations of four bits are codewords and therefore the volume of the code 

is Q4 = 24 . 

Two cyclic groups of sequences can be constructed as cyclic shifts of the basic elements 

p(w8) 

q (W 8) 

= 1 + Ws  + + W: 
= 1— ws  + — 

(5.27) 

(5.28) 
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The elements of these groups are Wiip(W8 ) and Wiig(W8 ). Cyclic shifts of p(Ws) and q(W8) 
exhaust all combinations of four bits, i. e. all codewords in the set G4. Note that 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

P* (W8) == -WsP(W8) 

Ip(W8 )1 2  = 4 + 2(W8  + W8-1 ) = 4 + 2\fi 

q*(W8) = We(W8 ) 

lq(W8 )I 2  = 4 - 2(W8  Wi-1 ) = 4 - 2•\/-2-  

and 

P(Ws) q * (Ws) = 2(W8 - Wg 1 ) = 

For N = 8, using (5.21) and (5.24) the codeword is expressed by the formula 

A(T/1716) = W 6  [P(WI% ) We+ 1  q I/1/6 1 = 0, 1, • • • , 15, k = 0, 1 • • • 7 

(5.33) 

(5.34) 

The first polyphase component cornes from p(1/78 ), and its cyclic shifts, and the second - from 

q(W8) and its cyclic shifts. The number of different codewords is CYg =24 .23  = 27 , since 1 can 

II take 24  values and k can take 23  values. 

The next value of N is 16. All polyphase components belong to Gg. We are looking for 

codewords of the type 

A ( W32) = VV32 [14/312 (P(W8) -1412q( 1478)) (1)(W8) eq2q(W8))] 

1 = 0,1,•••,31, 

a = 1,3,5,•••,31, 

b , c E 12(2k + 1)1, k = 0,1, • • • , 7. 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

Now the orthogonality constraint is imposed to get 

Re {7- (2)W: 2  + r(4)W1 r( 6 )T47:21 

= Re [(147324  W312)(W2 In)} ==  0 (5.39) 

which is true for 

b=c+16 (5.40) 
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or 

W(W32) - W I  [W a  (P + Wb  q) + (1) + 147-c  q)] (5.43) 

or • b = —c. 

This leads to two posiible forms of the codewords from G16: 

(5.41) 

A( W32) = W1 [Wa (p + Wbg) + (p J4/ M] (5.42) 

The total number of codewords of the type (5.42) is 23 232s = 211  and the total number of 

codewords of the type (5.43) is the same. This makes the total number of codewords with length 

16 equal to 212 . The search  of codewords for higher values of N becaomes considerably more 

complicated. 

C- 
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Chapter 6 

Systematics synthesis of GRS pairs 

The problem of generation of all Golay-Rudin-Shapiro sequences is of considerable importance. 

For example, in the context of wireless communications, every user is assigned a different se-

quence, and then it is necessary to generate all sequences of a given length. 

The E-sequences having zero values of the autocorrelation function in even shifts have cor-

relation properties close to optimal. It has apparently escaped evidence the fact that these 

E-sequences are, in fact, filter banks. Note that [4] does give a method for the 'generation of 

these E-sequences, which is not complete, however. For example for N = 32 it is possible to  oh- 5  tain only 29  sequences, while there are 3.29  E-sequences of this length. The aperiodic correlation 

function is 

N-1-m 
A[m] = E a[i] a[i + m] (6.1) 

i=o 

In the previous chapters two periodic extensions of the sequence (a[O] a[1] a[N — 1]) were 

considered: symmetric, where a [N + i] = a[i], and antisymmetric, where a[N + i] = —a[i]. It is 

convenient to denote the periodic autocorrelation functions by ?In] and Va  [n] for the symmetric 

and antisymmetric cases, respectively. 

Theorem 6 The relationship among the aperiodic autocorrelation function A[m], and the two 

periodic autocorrelation functions rs [rn] and ra [m] is 

• 
A[m] = rs[m] ra[m] (6.2) 

rs[m] = A[m] A[N — m] (6.3) 

ra [m] = A[m] — A[N — m] (6.4) 
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Theorem 7 The necessary and sufficient condition the aperiodic autocorrelation function to be 

half-band, • nag-oana, 

r[2m] = 0 m = 1,2, • • • N/2, (6.5) 

is that 

r8  [2m]  = ra[2m] = 0, m 0 (6.6) 

The proof can immediately be obtained using (6.5). 

Corollary 1 The set of Golay sequences is the intersection of the sets of codewords belonging to 

the orthogonal symmetric and antisymmetric cyclic codes. In other words the Golay sequences 

are simultaneously codewords of the two codes. 

Next, the codewords for the antisymmetric code are given when N = 4. Only those of the 

type W B belog to the symmetric orthogonal code, which total eight in number. 

• 
Da = (1,1,1,1) = D' 

W -j-  Da = (-1,1,1,1) = —B 8  

W: Da = (-1 -1,1,1) = —Cs 

W: Da = (-1, —1, —1,1) = WEBS  

W: Da = (-1, —1, —1, —1) = —D' 

W: Da = (1,-1,-1,-1) = B8  

W: Da = (1,1, —1, —1) = Cs 

W; Da = (1,1,1, —1) = —W:Bs 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

• 

Ea = (1,-1,1,-1) = Es (6.15) 

Ea = (-1,1,1,1) = Bs (6.16) 

Ea = (-1,-1,1,1) = Cs (6.17) 

Ea = (-1,-1,-1,1) = —147 - Bs (6.18) 

Ea = (-1,-1,-1,-1) = —.E5 (6.19) 

Ea = (1,-1,-1,-1) = —W:Bs (6.20) 

Ea = (1,1,-1,-1) = —111Cs (6.21) 

W: Ea = (1, 1, 1, —1) = TiTT - Bs (6.22) 

14781  

w,81 

w: 
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( 6.26 ) 

(6.27) 

When N =- 8 the codewords in the symmetric code are described by the formulae 

• As(w8),,w , 8,B± W82m+1) 

and for the antisymmetric code 

Aa (Wis)=  6 (D Wi26m+1 E) 

where A(W) are the DFTs of the codewords. For the antisymmetric code we can write 

A(W) = WI% (Wim p + W16 14/871 E) 

( 6.23) 

(6.24) 

(6.25) 

When m and n are odd then the codewords of the antisymmetric code have the same structure 

with the codewords of the symmetric code of the type +We. In this case m, n = 1,3,5, 7 and 

the volume of the set is 4.4.2 = 25 , which coincides with previously obtained estimates for the 

size of the GRS set. 

For N 16 the antisymmetric codewords can be written in the following form: 

Act(w) T47-2/ (wp D +1,v-126w: E) +1,17-12tFin (weD  _ wi26w: E)  

A(W) =  W [We' (D Wi26 T4q -m E) Wi2I-4(n—m)—q-1  (E W1261n-m D)] 

where p = 0,1, • • • 15, 1, q = 0,1. For the same length the structure of the codewords belonging • 
to the symmetric orthogonal code is 

Ais = +w/B  Ri  + w-2.10 ) 4_ wti  (1  .._ ±w2t0)] (6.28) 
As2  , w l [G, 1 wi±62 E 4_ wt, (cy + -147126D)] (6.29) 

The codewords (6.27) have identical structure with (6.28) when m and n are odd which yields 

43.2 , 27  E-sequences. The codewords (6.27) are reduced to (6.29) in other cases, which_ yields 

an additional 26  E-sequences. The total volume of the set of E-sequences with length 16 is 

26  + 27  = 192. For example when m = 0, 1 = q = 0, n = 2 and t3  = 5 then 

A' = D + Wi26 W82 E +14716 (E + Wi26W82  D) = 11 — 1 — 11 — 11 —111111 — 1 — 11 (6.30) 

This polynomial is equivalent to a E-sequence, the ACF of which is (-10 — 10 — 101050 — 3010). 

It would appear that the above analytic solutions are novel and provide useful insight into 

the theory of ORS  sequences. They follow from the theory of cyclic and aperiodic wavelet 

transforms. This analytic approach becomes too cumbersome for higher lengths, but is obviously 

very convenient for short lengths. to 
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