
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
--.

I
I
........ I,

QA
76.9
S88 Ie S6474
1988
v.1

VOLUME 1
SOFTWARE DETAILED DESIGN DOCUMENT FOR

THE INTERNETWORK GATEWAY PROJECT

Submitted to : C. R. C.
Ottawa , Ontario

SKL Document #1500 - 15 - 031 . 02 . 0
Co py #3 05 May 1988

-------Vol.1 RELEASABLE

DOC-CR-RC-88-008

[COMVIUninelp CAM

FE ., 1990

LIBi" tl - Mile lie

199P

LIBiter-

VOLUME 1
SOFTWARE DETAILED DESIGN DOCUMENT FOR

THE INTERNETWORK GATEWAY PROJECT

Submitted to: C.R.C.
Ottawa, Ontario

SKL Document #1500-15-031.02.0
Copy #3 05 May 1988

Industr acia
Library - Queen

eel- 2 0 2012
Industrie Canada

Bibliothèque - Queen

I Fe
Software Kinetics

Mee* MONS CANADA [

'RC

_MARY ---EISL _LIDDADY.---E131.19fliÈDUE_

1990

-11:23 Vol.1 RELEASABLE
DOC-CR-RC-88-008

SOFTWARE DETAILED DESIGN DOCUMENT

FOR THE

INTERNETWORK GATEWAY PROJECT

VOLUME 1

Contract No. 36001-6-3535/02-ST

05 May 1988

Prepared for:

Communications Research Centre
Ottawa, Ontario

Prepared by:

Software Kinetics Ltd.
65 Iber Road, P.O. Box 680
Stittsville, Ontario Canada

KOA 3G0

SKL Document #1500-15-031.02.0

fn:g ;

o •
" IL,

Project Engineer:

Project Manager:

Document Approval Sheet

for the

Internetwork Gateway Project

Document No: 1500-15-031.02.0

Document Name: Software Detailed Design Document
for the Internetwork Gateway Project

Approvals Signature Date

T. M. Symch h

f 196;11

Rai sicin

Technical Authority:
P. L be - CRC

Revision

01

Document Revision History

Description of Changes Origin Date

New Document Issued 23 September 1987

02 Coding and Integration 05 May 1988
Revis ions

TABLE OF VOLUMES

VOLUME 1 1.0 Introduction
2.0 Referenced/Applicable Documents
3.0 Design
3.1 Interface Design
3.2 Global Data
3.3 TLC Design
3.3.1 Efficient Real Time Executive

(ERTE)

VOLUME 2 3.3.2 IF TLC
3.3.3 EGP TLC

VOLUME 3 3.3.4 X.25 Device Driver (XDD) TLC
3.3.5 Ethernet Device Driver (EDD) TLC
3.3.6 Console Device Driver (CDD) TLC

VOLUME 4 3.3.7 Operator Interface TLC
3.3.8 STAT TLC

VOLUME 5 3.3.9 Primary Boot TLC
3.3.10 Secondary Boot TLC
3.3.10.1 Local Boot LLC
3.3.10.2 IGW Net Load LLC
3.3.10.3 Host Net Load LLC
3.3.11 Support Software
4.0 Glossary

1

2

3

3

5

26

26

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 REFERENCED/APPLICABLE DOCUMENTS

3.0 DESIGN

3.1 Interface Design

3.1.1 Console Interface 3
3.1.2 Ethernet Interface 4
3.1.3 X.25 Interface 4

3.2 Global Data

3.3 TLC Design

3.3.1 Efficient Real Time Executive (ERTE)

3.3.1.1 ERTE TLC Architecture 27
3.3.1.2 ERTE TLC Global Data 36
3.3.1.3 ERTE LLCs 38

3.3.1.3.1 ERTE Initialization LLC 38
3.3.1.3.2 ERTE_Control LLC 41
3.3.1.3.3 ERTE System Call Request 43

LLC
3.3.1.3.4 ERTE System Call Processing 46

3.3.1.4 ERTE Units 48

3.3.1.4.1 ERTE_Main Unit 48
3.3.1.4.2 Message_Buffer_Init 50

Unit
3.3.1.4.3 Message_Queue_Init Unit 52
3.3.1.4.4 Clock_Init Unit 53
3.3.1.4.5 Process_Header_Init Unit 55
3.3.1.4.6 Process_Startup Unit 56
3.3.1.4.7 New_Memory_Call Unit 58
3.3.1.4.8 Suspend Call Unit 60
3.3.1.4.9 Sleep C7,11 Unit 62
3.3.1.4.10 Setivent Call Unit 63
3.3.1.4.11 Clear Eve -jt Call Unit 65
3.3.1.4.12 Waiti'ventj-all Unit 67
3.3.1.4.13 Message_Get_Call Unit 70
3.3.1.4.14 Message_Discard_Call Unit 72
3.3.1.4.15 Open_Message_Queue Call Unit 74
3.3.1.4.16 Message_Send_Çall Fnit 76

78
80
82
84
85
87
88
90
91
93
94
96
98
99

101
103
105
107
109
110
112
114
116
117
119
121
123
126

3.3.1.4.17
3.3.1.4.18
3.3.1.4.19
3.3.1.4.20
3.3.1.4.21
3.3.1.4.22
3.3.1.4.23
3.3.1.4.24
3.3.1.4.25
3.3.1.4.26
3.3.1.4.27
3.3.1.4.28
3.3.1.4.29
3.3.1.4.30
3.3.1.4.31
3.3.1.4.32
3.3.1.4.33
3.3.1.4.34
3.3.1.4.35
3.3.1.4.36
3.3.1.4.37
3.3.1.4.38
3.3.1.4.39
3.3.1.4.40
3.3.1.4.41
3.3.1.4.42
3.3.1.4.43
3.3.1.4.44

Message_lieceive_Call Unit
Queue_Status_Call Unit
Get_Time_Call Unit
Set_Priority_Call Unit
New_Memory Unit
Suspend Unit
Sleep Unit
Set_Event Unit
Clear_Event Unit
Wait_Event Unit
Wait_Timeout Unit
Message_Get Unit
Message_piscard Unit
Open_Message_Queue Unit
Message_Send Unit
Message_Receive Unit
Queue_Status Unit
Get_Time Unit
Set_priority Unit
Panic Unit
Printf Unit
Insert_On_Run_Queue Unit
Identify_Entry Unit
Process_Entry Unit
Decode_Entry Unit
Process_Interrupt
Process_Exception
Process_Clock_Interrupt

1

1
1
1

1

#1500-15-031.02.0

II 1.0 INTRODUCTION

The Software Detailed Design Document of the Internetwork Gateway

presents the detailed design of all software components comprising the

Internetwork Gateway (IGW). The IGW is a gateway between networks

conforming to the DARPA Internet protocols. The IGW supports

interfaces to X.25 and Ethernet TCP/IP based networks, and implements

the IP, ICMP, EGP, ARP, and X.25 protocols.

The Software Detailed Design Document (SDDD) identifies all Top Level

Components (TLCs), Lower Level Components (LLCs), and Units which have

been defined for the IGW. Each LLC and Unit is described in detail,

including descriptions of the Inputs, Outputs, Local Data, Processing,

and Limitations. Additionally, for each TLC, the SDDD presents the

TLC architecture, and describes TLC global data.

1
1
1
1

1 -1-

1

1

1
#1500-15-031.02.0

2.0 REFERENCED/APPLICABLE DOCUMENTS

1) "The ETHERNET, A Local Area Network, Data Link Layer,
and Physical Layer Specification", Digital Equipment
Corporation, DEC Document AA-K759A-TK.

2) "DATAPAC 3000 Specification", Version 1.01, Telecom
Canada, June 1986.

3) "EIA Standard RS-232C", Electronics Industry of
America.

4) 1500-15-002.01.0, "Requirements Specification for
the Internetwork Gateway", Software Kinetics Ltd.,
1987.

5) 1500-15-010.02.0, "Software Top Level Design Document
for the Internetwork Gateway Project", Software
Kinetics Ltd., 1987.

6) "VAX Architecture Handbook", Digital Equipment
Corporation, 1981.

7) Defense Advanced Research Projects Agency, "Internet
Protocol", DARPA Network Working Group Report
RFC-791, USC Information Sciences Institute,
September 1981.

8) Defense Advance Research Projects Agency, "Internet
Control Message Protocol", DARPA Network Working
Group Report RFC-792, USC Information Sciences
Institute, September 1981.

9) Defense Advanced Research Projects Agency, "Exterior
Gateway Protocol Formal Specification", DARPA Network
Working Group Report RFC-904, M/A-COM Linkabit, April
1984.

10) Reltek Inc., "Q-Bus X.calibre FE? COMII-Q
Technical/Users's Guide", Reltek Inc., 1985

11) Plummer, D., "An Ethernet Address Resolution
Protocol", DARPA Network working Group Report
RFC-826, Symbolics, September 1982

3

#1500-15-031.02.0

3.0 DESIGN

The interfaces, global data, and Top Level Components (TLCs) are

described in this section.

3.1 Interface Design

The IGW supports three external interfaces:

1. Console: an interface to a serial asynchronous
communication line used to communicate with the IGW
operator.

2. Ethernet: an interface to an Ethernet network.

3. X.25: an interface to the DATAPAC X.25 network.

3.1.1 Console Interface

The Console Interface supports the RS-232C serial asynchronous

protocol using the ASCII character set. The interface is supported in

hardware by the Micro-VAX SLU device and in software by the Console

Device Driver.

I .

#1500-15-031.02.0

. 3.1.2 Ethernet Interface

The Ethernet Interface supports access to Ethernet networks using DEC

DEQNA hardware. The interface adheres to the specifications given in

Reference [1]. The interface is supported in software by the Ethernet

Device Driver and the IGW Net Boot components. The interface is used

to carry IP datagrams and ARP datagrams embedded in Ethernet packets.

3.1.3 X.25 Interface

The X.25 Interface supports access to the DATAPAC 3000 service using a

Reltek X.calibre board running IXIB software. The interface adheres

to the DATAPAC 3000 Specification (Version 1.01) [2]. The interface

is supported in software on the IGW by the X.25 Device Driver. The

interface is used to carry IF datagrams over the DATAPAC X.25

network.

#1500-15-031.02.0

3.2 Global Data

This section defines all data global to all TLCs.

The following are data structures referenced by IGW TLCs:

1) Message_Header - This structure contains a header
describing information that is stored in message
buffers. This structure is composed of the following
fields:

• M_Offset - This 32 bit integer contains a byte
offset into the message buffer where the data
begins.

• M_Length - This 32 bit integer contains the length
of the data stored in the message buffer. This
length is calculated from the beginning of the
message buffer.

• M_From - This 32 bit integer contains the process
ID number of the process that is sending the
message header to a queue.

M_OID - This 32 bit integer contains the queue ID
of the queue that is to receive the message
header.

• M_Addr - This 32 bit pointer contains the system
virtual address of the buffer containing the
actual message data. This buffer is a 1500 byte
buffer the System Virtual Address space.

• M_Next - This 32 bit pointer references the next
message header structure in the queue containing
this this message header.

• M_This - This 32 bit pointer references the system
virtual address of the copy of the message header
used within ERTE.

• M_MQ - This 32 bit pointer references the message
queue in which this message header is queued on.

1

•

#1500-15-031.02.0

2) Mesg_Queue - This structure contains a description of
an individual message queue. This structure is
composed of the following fields:

• MQ_Proc - This 32 bit integer contains the process
ID number of the process that is' receiving
messages from this queue.

MQ_Size - This 32 bit integer contains the maximum
number of message buffers that can be stored in
this queue.

MQ_Count - This 32 bit integer contains the number
of items that are currently stored in this queue.

MQ_First - This 32 bit pointer references the head
of the message queue.

• MQ_Last - This 32 bit pointer references the tail
of the message queue.

3) Dgram_Message This structure contains an IF
datagram with an initial header. This structure is
composed of the following fields:

. Out_Dest - This 32 bit field contains the outbound
next destination address of the IF datagram.

• Reserve - This array of 12 bytes is reserved for
device dependent header information.

• Internet_Header - This structure is described in
the IGW global data section.

. Data - An array of bytes containing data for an IF
datagram. This field will be interpreted as an
EGP datagram by the EGP TLC.

4) Proc - This structure contains a process header for
an individual process. This structure is composed of
the following fields:

• P_Name This 32 bit pointer references a
character string containing the name of the
process.

. P_Flags - This 32 bit integer contains status
flags indicating the state of a process. These
flags are declared as follows:

••■• 6

#1500-15-031.02.0

P_ALIVE (0x01) - This process is alive.
P_RUN (0x02) - This process is runnable.

• P_Prio - This 32 bit integer contains the process
scheduling priority of the process.

• P_Events - This 32 bit integer contains the event
flags that the process is waiting on. Each bit of
this field corresponds to an event. For the
definition of these event flags see the
Event_Flags descriptions in the constants section.

• P_Next - This 32 bit pointer references the next
process header entry on the run queue.

. P_Time - This 32 bit integer contains the time
remaining in CLOCK_INT seconds before the process
can be run.

. P_Mcount - This 32 bit integer contains the number
of message structures allocated to the process.

. P_PCB_Addr - This 32 bit integer contains the
physical address of the Process Control Block for
the Process.

. P_PCB - This structure contains the Process
Control Block for the process. For a description
of the fields in the p_ycEl structure see the PCB
description in the global data section.

5) PCB - This structure contains the Process Control
Block for a process. For a more complete description
of the Process Control Block see the VAX Architecture
Handbôok. The PCB structure is composed of the
following fields:

. PCB_KSP - This 32 bit integer containb the value
of the stack pointer to be used when the current
access mode field in the Processor Status Longword
(PSL) is 0 and Interrupt Stack (IS) is 0.

• PCB_ESP - This 32 bit integer contains the value
of the stack pointer to be used when the current
access mode field of the Processor Status Longword
(PSL) is 1. This access mode isn't used by the
IGW.

#1500-15-031.02.0

. PCB SSP - This 32 bit integer contains the value
of the stack pointer to be used when the current
access mode field of the Processor Status Longword
(PSL) is 2. This access mode isn't used by the
IGW.

• PCB_USP - This 32 bit integer contains the value
of the stack pointer to be used when the current
access mode field of the Processor Status Longword
(PSL) is 3.

• PCB_R - This array contains 14 entries, each entry
being a 32 bit register value. These entries are
indexed by register number.

. PCB_PC - This 32 bit integer contains the program
counter.

. PCB_PSL - This 32 bit integer contains the
Processor Status Longword. For a description of
the fields in the Processor Status Longword see
the PSL description in the global data section.

. PCB_POBR - This 32 bit integer contains the PO
page table base register. For a description of
the PO page table base register see the VAX
Architecture Handbook.

. PCB_POLR - This 22 bit field contains the PO page
table length register. For a description of the
PO page table length register see the VAX
Architecture Handbook.

• PCB_MBZ 1 - This 2 bit field is unused by the IGW
and must be O.

. PCB_ASTLVL - This 3 bit field , contains the AST
Level. Levels defined for this field are:

0 - AST pending for access mode 0 (kernel)
1 - AST pending for access mode 1 (executive)
2 - AST pending for access mode 2 (supervisor)
3 - AST pending for access mode 3 (user)
4 - No pending AST
5-7 - Reserved to DIGITAL.

• PCB_MBZ 2 - This 5 bit field is unused by the IGW
and mus .-- be O.

-8-

#1500-15-031.02.0

• PCB_PlBR - This 32 bit integer contains the P1
page table base register. For a description of
the P1 page table base register see the VAX
Architecture Handbook.

• PCB_P1LR - This 22 bit field contains the P1 page
table length register. For a description of the
P1 page table length register see the VAX
Architecture Handbook.

. PCB_MBZ_3 - This 9 bit field is unused by the IGW
and must be 0.

. PCB_PME - This 1 bit field contains the
Performance Monitor Enable bit. This bit is
unused by the IGW.

For a more complete description of. the Process
Control Block see the VAX Architecture Handbook.

6) PSL - This structure contains the Processor Status
Longword. The PSL is composed of the following
fields:

• PSL PSW - This 16 bit field contains the Processor
Sta7t-us Word (PSW). For a description of the
fields in the Processor Status Word see the PSW
description below.

. PSL_IPL - This 5 bit field contains the Interrupt
Priority Level (IPL). For a description of the
IPL see the VAX Architecture Handbook.

. PSL_MBZ 1 - This 1 bit field is unused by the IGW
and must be 0.

. PSL_Prev_Mode - This 2 bit field contains the
previous mode value. For a description of the
previous mode bits see the VAX Architecture
Handbook.

• PSL_Cur_Mode - This 2 bit field contains the
current mode value. For a description of the
current mode bits see the VAX Architecture
Handbook.

• PSL_IS - This 1 bit field contains the Interrupt
Stack flag. For a description of the Interrupt
Stack flag see the VAX Architecture Handbook.

9

#1500-15-031.02.0

• PSL_FPD - This 1 bit field contains the First Part
Done flag. For a description of the First Part
Done flag see the VAX Architecture Handbook.

• PSL_MBZ_2 - This 2 bit field is unused by the IGW
and must be 0.

• PSL_TP - This 1 bit field is the Trace Pending
bit. For a description of the Trace Pending bit
see the VAX Architecture Handbook.

• PSL_CM - This 1 bit field is the Compatibility
Mode bit. For a description of the Compatibility
bit see the VAX Architecture Handbook.

7) PSW - These constants identify particular fields in
the Processor Status Word:

. PSW CC C (0x0001) - The condition code for a carry
condition. For a description of the carry
condition see the VAX Architecture Handbook.

. PSW_CC_V (0x0002) - Contains the condition code
for an overflow condition. For a description of
the overflow condition code see the VAX
Architecture Handbook.

• PSW_CC_Z (0x0004) - Contains the condition code
for a zero condition. For a description of the
zero condition code see the VAX Architecture
Handbook.

• PSW _ CC _N (0x0008) - Contains the condition code
for a negative condition. For a description of
the negative condition code see the VAX
Architecture Handbook.

• PSW_Trap T (0x0010) - Contains the Trace trap
enable bit. For a description of the Trace trap
enable bit see the VAX Architecture Handbook.

• PSW_Trap_IV (0x0020) - Contains the Integer
Overflow trap enable bit. For a description of
the Integer Overflow trap enable bit see the VAX
Architecture Handbook.

• PSW_TrapJU (0x0040) - Contains the Floating
Underflow trap enable bit. For a description of

#1500-15-031.02.0

the Floating Underflow trap enable bit see the VAX
Architecture Handbook.

• PSW_TRAP_DV (0x0080) - Contains the Decimal
Overflow trap enable bit. For a description of
the Decimal Overflow trap enable bit see the VAX
Architecture Handbook.

• PSW_MBZ (Oxff00) - Is unused by the IGW and must
be O.

8) PTE - This structure contains a Page Table Entry.
The PTE structure is composed of the following
fields:

• PTE_PFN - This 21 bit field contains the Page
Frame Number (PFN) of a page of memory. The Page
frame Number being the upper 21 bits of of the
physical address of the base of the page.

• PTE_MBZ_1 - This 2 bit field is unused by the IGW
and must be O.

• PTE_Owner - This 2 bit field contains the page
owner bits. These bits are not used by the IGW or
the hardware.

• PTE_MBZ_2 - This 1 bit field is unused by the IGW
and must be O.

• PTE_Modify - This 1 bit field contains the Modify
bit. For a description of the modify bit see the
VAX Architecture Handbook.

• PTE_Prot - This 4 bit field contains the
protection code for the page. For a list of
protection codes see the VAX Architecture
Handbook.

• PTE_Valid - This 1 bit field contains the Valid
bit for the page table entry. This bit being set
indicates that the Modify bit and the Page Frame
Number are valid.

For a more complete description of a page table entry
see the VAX Architecture Handbook.

9) Internet_Header - An internet header is an element of
the Dgram_Message representing the header of an IF

#1500-15-031.02.0

packet. An Internet_Header consists of the following
fields:

• VI-IL - This field is a byte which is divided into
two subfields. The most significant four bits
identify the Version number associated with the IF
protocol in use. The least significant four bits
identify the internet Header Length in 32 bit
words.

TOS - This field is byte containing the type of
service.

• LEN - This field is a 16 bit integer which
contains the total number of bytes in the
datagram.

• ID - This field is a 16 bit integer which is used
to identify datagrams when assembling a fragmented
datagram.

. OFF - This field is a 16 bit integer which is
divided into a flags field and an offset field.
The first three most significant bits are the
flags, where the second bit is a DF (do not
fragment) bit:

IP_DF (0x40)

and the third bit is a MF (more fragment) bit:

IP_MF (0x20)

The remaining thirteen bits are the offset and
contains offset values determined at the time of
datagram fragmentation.

. TTL - This field is a byte which indicates the
maximum amount of time the datagram can survive in
the internet system.

• Protocol - This field is a byte which indicates
the next level of protocol used in the data
portion of the internet datagram. Valid protocols
are:

IH_ICMP (1)
IH_TCP (6)
IH_EGP (8)

- 12 -

#1500-15-031.02.0

• Sum - This field is a 16 bit integer which
contains a checksum on the header only.

• Src - This field is a 32 bit integer which
contains the source IF address. This field is
equivalenced to four bytes for general use.

• Dst - This field is a 32 bit integer which
contains the destination IF address. This field
is equivalenced to four bytes for general use.

. Options - This field is an optional field which,
if present, contains options for the IF datagram.
The field consists of an array of bytes. The
field is included in the VHL length count.

10) EGP_Stats_Entry - This record type defines the fields
in one particular entry of the Stats_Buffer when the
statistic is defined as EGP. The following fields
are defined for a EGP_Stats_Entry:

. IP_Address - is a 32 bit internet address

. AS - a 16 bit autonomous system number

. Type - an 8 bit Egp message type

. Code - an 8 bit Egp message code

. Direction - an 8 bit message direction indicator

11) IP_Stats_Entry - This record type defines the fields
in one particular entry of the Stats_Buffer when the
statistic is defined as IF. The following fields are
defined for a IP_Stats_Entry:

• IP_Address_A - is a 32 bit internet address

• IP_Address_B - is a 32 bit internet address

• Pkt_Size - a 32 bit integer for the size of the packet

• Direction - an 8 bit message direction indicator

12) ICMP_Stats_Entry - This record type defines the
fields in one particular entry of the Stats_Buffer
when the statistic is defined as ICMP. The following
fields are defined for a ICMP_Stats_Entry:

- 13 -

#1500-15-031.02.0

. IP_Address - is a 32 bit internet address

. Type - an 8 bit ICMP message type

. Code - an 8 bit ICMP message code

. Direction - an 8 bit message direction indicator

13) X25_Stats_Entry - This record type defines the fields
in one particular entry of the Message Buffer when
the statistic is defined as X25. The following
fields are defined for a X25_Stats_Entry:

. X121_Address - a 64 bit X121 address type

. Calls - a 32 bit count of the number of calls

. Pkt_Size - a 32 bit count of the bytes sent

. Direction - a 8 bit indicator of the traffic direction

14) Stats_Buffer is a message buffer used to accumulate
statistics related to various TLCs. The Stats_Buffer
contains the following fields:

. Descriptor - is a header in the Stats_Buffer which
contains descriptive information about the data
stored in the message buffer:

• Entries - is a 32 bit integer which contains
the number of records in the Stats_Buffer.

• Operation is a 16 bit integer which
identifies the STAT TLC operation to be applied
to all records in the Stats_Buffer:

DPLY (1) - display
CLR (2) - clear
UPD (3) - update
SI (4) - set periodic time interval

• Statistic - is a 16 bit integer which
identifies the record type in the Stats_Buffer
for an UPD operation (excluding ALL) or a
statistics type for the CLR and DPLY
operations:

EGP (1) - EGP statististics

- 14 -

#1500-15-031.02.0

ICMP (2) - ICMP statistics
IP (3) - IF statistics
X25 (4) - X.25 statistics
ALL (0) - all of the above

• List of records particular to the statistic:

EGP - the record type is EGP_Stats_Entry.

ICMP - the record type is ICMP_Stats_Entry.

IF - the record type is IP_Stats_Entry.

X25 the record type is X25_Stats_Entry.

II The following are defined data areas referenced by IGW TLCs:

1) Process_List - -This array of NPROCS ?roc entries,
each entry indexed by a PID, contains all the process
headers representing all the IGW processes. This
global data item is defined within the ILA.

2) ACT Table - This global data item consists of an
array of N ACT X.121/IP address configuration
entries. i-ach address configuration entry is
composed of the following fields:

• ACT_X121 - This 16 byte field contains the X.121
address of the address translation entry.

. ACT_Inet - This 32 bit field contains the IF
address of the address translation entry.

. ACT_Size - This 16 bit field contains the maximum
size of a packet of the address translation entry.

• ACT_Flags - This 32 bit field contains the
following flags:

REQ_REV - This constant defined as 0x00000001
(Flag R) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates reverse charging is to be
requested.

ACC_REV - This constant defined as 0x00000002
(Flag A) (determined by the associated bit

- 15 -

#1500-15-031.02.0

position in the global IGW flag string constant
TABLE_FLAGS) indicates reverse charging is to be
accepted.

REJ_IN - This constant defined as 0 x00000004 (Flag
1) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates incoming calls are to be rejected.

REJ_OUT - This constant defined as 0 x00000008
(Flag 0) (determined by the associated bit
position in the global 1GW flag string constant
TABLE_FLAGS) indidates outgoing calls are to be
rejected.

1XIB - This constant defined as 0 x00000010 (Flag
X) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates the remote host has an IXIB.

ACT_VALID - This constant defined as 0x80000000
(Flag V) indicates that the ACT entry is valid.

3) GW_Table - This global data item consists of an array
of lq_GW gateway entries. Each gateway entry is
composed of the following fields:

• GW_Dst_Net - This 32 bit field contains the
destination network that is accessed by the
gateway table entry.

. GW_Addr - This 32 bit field contains the address
of the gateway to route packets for the specified
destination network.

• GW_Mask - This 32 bit field contains the IF network
address mask for the destination network.

. GW_Hop - This 16 bit field contains the number of
gateways that must be crossed to reach the
destination.

• GW_Number - This 16 bit field contains the number
of the network table entry used to transmit
packets to the specified entry. This field is
an index into the network table and is determined
from matching the network portion of the gateway
address against the network addresses in the
network table.

- 16 -

1

#1500-15-031.02.0

GW_Flags - This 32 bit field contains the following
flags:

GW_INT - This constant defined as 0 x00000080 (Flag
E) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates that EGP should report the route in
reachability messages.

GW_GW - This constant defined as 0 x00000100 (Flag
G) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates that the route should be used by IF in
its routing table..

GW_REROUTE - This constant defined as 0 x00000004
(Flag R) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates that this route is a
"reroute" around the normal route (used to get
around down networks or gateways).

GW_VALID - This constant defined as 0 x80000001
(Flag V) indicates that the gateway entry is
valid.

4) NB_Table - This global data item consists of an array
of N_NB neighbour entries. Each network entry is
composed of the following fields:

• NB_IP_Addr - This 32 bit field contains the IF
address of the EGP neighbor gateway.

• NB_Flags - This 32 bit field contains the
following flags:

NB_ACQUIRING - This constant defined as 0x00000002
(Flag A) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates the EGP neighbour is being
acquired.

NB_DOWN - This constant defined as 0x00000040
(Flag D) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates that the neighbour is down.

NB_MAIN_NEIGHBOUR - This constant defined as

- 17 -

1

#1500-15-031.02.0

0x00000400 (Flag M) (determined by the associated
bit position in the global IGW flag string
constant TABLE FLAGS) indicates that the neighbour
is the IGW's "main" neighbour.

NB_REMOTE - This constant defined as 0 x00000800
(Flag N) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates that the acquisition was
initiated by the neighbour.

NB_ALT_NEIGHBOUR - This constant defined as
0x00000008 (Flag 0) (determined by the associated
bit position in the global IGW flag string
constant TABLE_FLAGS) indicates the neighbour is
an alternate neighbour.

NB_ROUTER - This constant defined as 0 x00000001
(Flag R) indicates a router entry.

NB_STUB - This constant defined as 0 x00001000
(Flag S) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates the neighbour is a "stub"
EGP gateway.

NB_UP - This constant defined as 0x00004000 (Flag
U) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates the neighbour is up.

NB_CURRENT - This constant defined as 0 x00000020
(Flag C) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates the neighbour is the
current routing neighbour.

NB_VALID - This constant defined as 0 x80000000
(Flag V) indicates that the EGP neighbour entry is
valid.

5) Net_Table - This global data item consists of an
array of N_NET neighbour entries. Each network entry
is composed of the following fields:

. Net_MTU - This 16 bit integer contains the
Maximum Transmission Unit (MTU) for IF datagrams.

. Net_IP_Addr - This 32 bit field contains the local

- 16 -

#1500-15-031.02.0

Internet address of the IGW on the referenced
network.

• Net_Mask - This 32 bit field contains the IF
network address mask for an entry.

• Net_QID_List - This is an array of nine 16 bit
integers containing the queue identifiers of each
interface driver that output packets are placed on
that are to be transmitted to the specified
network.

. Current_IF - This entry is a 16 bit integer
specifying the next entry in Net_QID_List to be
used to transmit a packet to the network.

. Net_Flags - This 32 bit field contains the following
flags:

Net_UP - This constant defined as 0x00004000 (Flag
U) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates the network interface is up.

Net_VALID - This constant 0 x80000000 (Flag V)
indicates that the network table entry is
allocated.

6) IP_Route_Table - This global data item consists of an
array of N_IP_ROUTE IF routing entries. Each IF
routing entry is composed of the following fields:

. Net - This 32 bit field contains the address of
the network for which this table entry indicates a
route.

. Gw - This 32 bit field contains the IF address of
the gateway to route packets to reach the network
specified in the Route_Network field of the table
entry.

. Mask - This 32 bit field contains a network
address mask for extracting address class or
subnet information from network addresses. This

• field is equivalenced to four bytes for general
use.

. Nwindex - This 32 bit field contains an index into
the Net_Table network interface table indicating

1

- 19 -

#1500-15-031.02.0

the network interface to use to route packets to
the indicated network/gateway.

Flag - This 32 bit field contains flags describing
the IF routing entry. These flags are defined as
follows:

• IF DIRECT - This constant defined as 0x00000020
(Flag C) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates the IGU is directly
connected to the network.

. IP_DEBUG - This constant defined as 0x00000040
(Flag D) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates the entry references a
debugging address..

. IP_EGP - This constant defined as 0x00000080 (Flag
E) (determined by the associated bit position in
the global IGW flag string constant TABLE_FLAGS)
indicates EGP is the source of the route.

• IP_LASTALLOC - This constant defined as 0x00000200
(Flag L) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates that the entry is the last
in the table.

. IP_TCPONLY - This constant defined as 0x00002000
(Flag T) (determined by the associated bit
position in the global IGW flag string constant
TABLE_FLAGS) indicates that non ICMP and non EGP
packets only may use the route.

• IP_NOROUTE - This constant defined as 0x00004000
(Flag U) (determined by the associated bit
position in the global IGM flag string constant
TABLE_FLAGS) indicates that the network in the
route is unreachable.

• IP_VALID - This constant defined as 0x80000000
(Flag V) indicates that this entry is valid.

• Next - This 32 field is a route structure pointer
used for linking IP_Table entries together.

7) EGP_1U)ute_Table - This global data item contains a

- 20 -

#1500-15-031.02.0

table indicating the network reachability information
accumulated by EGP. Each EGP routing table entry is
composed of the following fields:

• EGP_Route_Net - This 32 bit field contains the
network number that this routing entry describes.

. EGP_Route_GW - This 32 bit field contains the
gateway address used to route a packet to the
network specified in the EGP_Route_Net field of
the table entry.

8) PF_Table - This global data item contains the packet
filter table. The packet filter table contains:

• An array of N_PF packet filter address entries.
Each packet filter address entry is composed of
the following fields:

• PF_Address_A - This 32 bit field contains an IF
address which together with PF_Address_B define IF
source and destination addresses.

• PF_Address_B - This 32 bit field contains an IF
address which together with PF_Address_A define
IF source and destination addresses.

. PF_Mode - This 32 bit field contains the packet
filter mode. Valid packet filter modes are:

PF_RESTRICT - This constant defined as 0 x00000001
(Flag PF_RESTRICT_CHAR) indicates that packet flow
is restricted for the table entry.

PF_ALLOW - This constant defined as 0 x00000002
(Flag PF_ALLOW-CHAR) indicates that packet flow is
allowed for the table entry.

PF_RESTRICT_CHAR - This constant is the character
"R" which indicates that packet flow is restricted
for the table entry.

PF_ALLOW_CHAR - This constant is the character "A"
which indicates that packet flow is allowed for
the table entry.

9) ILA - This global data item contains the IGW Link
Area. This link area is used to communicate
information between the IGW boot and operating

- 21 -

#1500 - 15-031.02.0

software. The ILA is made up of the following
fields:

• SPT_Address - This 32 bit field contains the
physical address of the system page table.

• Link_IO - This 32 bit field contains the system
virtual address of start of the I/O addresses.

• ACT_Tb1 - This 32 bit field contains the system
virtual address of the start of the ACT_Table
global data item.

• EGP_Nb_Tb1 - This 32 bit field contains the system
virtual address of the start of the NB_Table
global data item.

• EGP_Rt_Tb1 - This 32 bit field contains the system
virtual address of the start of the
EGP_Route_Table global data item.

. Gw_Tb1 - This 32 bit field contains the system
virtual address of the start of the GW_Table
global data item.

. IP_Rt_Tb1 - This 32 bit field contains the system
virtual address of the start of the IP_Table
global data item.

• Net_Tb1 - This 32 bit field contains the system
virtual address of the start of the Net_Table
global data item.

. Pf_Table - This 32 bit field contains the system
virtual address of the start of the PF Table
global data item.

. Free_Mem - This 32 bit filed contains the system
virtual address of the start of the free memory.

. Nproc - This 32 bit integer contains the number of
process headers in the Process_List.

. Process_List - This ILA entry contains the process
header list as described in the IGW global data
section.

Iface_Types - This is an array of integers
indicating the type of each interface on the IGW.

- 22 -

1

#1500-15-031.02.0

The following are constants referenced by IGW

1) Errors - The following error codes are used by the
IGW software:

• NOERROR - This constant defined as 0 indicates
that no error was detected.

• ERROR - This constant defined as -1 indicates that
an error was detected.

. M_NOBUFS - This constant defined as -1 indicates
that an error was detected in that no free message
buffers were available.

. M_QFULL - This constant defined as -2 indicates
that an error was detected in that the queue
already contains the maximum number of items that
it is defined to be able to hold.

• M_NOQID - This constant defined as -3 indicates
that an error was detected in that a QID didn't
reference an active queue.

. M_QEMPTY - This constant defined as -4 indicates
an error was detected in that a queue was found to
contain no messages.

• M_ADDRERR - This constant defined as -5 indicates
an error was detected in that the address of a
message buffer was found to be invalid.

• M_MAXQID - This constant defined as -6 indicates
an error was detected in that a queue ID past
NMQUEUES was used.

• M_QIDBUSY - This constant defined as -7 indicates
an error was detected in that a process tried to
open or read from a queue that is allocated to
another process.

• M_ONQUEUE - This constant defined as -9 indicates
an error as detected in that a packet currently on
a queue was attempted to be discarded.

2) Event_Flags - The following event flags are defined

- 23 -

#1500-15-031.02.0

in the IGW: to represent events

• CDD_RCV
• CDD_XMIT
• Device #2 Intr
• Device #2 Intr
• Device #3 Intr
• Device #3 Intr
• Device #4 Intr
. Device #4 Intr
. Device #5 Intr
• Device #5 Intr
. Device #6 Intr
• Device #6 Intr
• Device #7 Intr
• Device #7 Intr
• Device #8 Intr
• Device #8 Intr
. Device #9 Intr -
• Device #9 Intr -
• Device #10 Intr -
• Device #10 Intr
• MSGARRIVE
• CONSOLE_XON -
• CONSOLE XOFF

- 0x00000001
- 0x00000002
- 0x00000004
- 0x00000008
- 0x00000010
- 0x00000020
- 0x00000040
- 0x00000080
- Ox00000100
- 0x00000200
- 0x00000400
- 0x00000800
- 0x00001000
- Ox00002000
- 0x00004000
- 0x00008000

Ox00010000
Ox00020000
Ox00040000
Ox00080000
Ox00100000
Ox00200000
Ox00400000

3) NMQUEUES - This constant value of 14 defines the
number of message queues to be used by the IGW.

4) NPROCS - This constant value of 20 defines the number
of process that are permitted to be run on the IGW.

5) CLOCK_INT - This constant defined as 100 contains the
number of fractions of a second in which the clock
interrupts.

6) N_ACT - This constant defined as 64 contains the
maximum number of entries in the address
configuration table. •

7) N_GW - This constant defined as 64 contains the
maximum number of entries in the gateway table.

8) N_NB - This constant defined as 16 contains the
maximum number of entries in the neighbour table.

9) N_NET - This constant defined as 8 contains the
maximum number of entries in the network table.

#1500-15-031.02.0

10) N_PF - This constant defined as 50 contains the
maximum number of entries in the packet filter table.

11) Queue_IDs - The following queue IDs are used by the
IGW:

• IP_QUEUE - 1
• IXIB_RX IP - 2
• IXIB RX1CMD - 3
• IXIB:TX_IP - 4
. IXIB_TX_CMD - 5
• DEONA_TX - 6
• DEONA_RX - 7
• CDD_TRANSMIT_QUEUE - 8
• CDD_INPUT - QUEUE - 9
. CDD OUTPUF_QUEUE - 10
• OTJTUEUE - 11

12) IXIB_IP_DATA - This constant defined as 0 x2 hex
defines an IXIB packet to contain an IF datagram.

13) IXIB_ACT - This constant defined as Oxla hex defines
an IXIB packet to contain a Address Configuration
Table load request.

14) TRUE - This constant defined as -1 indicates a true
condition.

15) FALSE - This constant defined as 0 indicates a false
condition.

16) CR - This constant defined as Ox0d hex represents a
Carriage Return character (Control-M).

17) LF - This constant defined as Ox0a hex represents a
Line Feed character (Control-J).

18) STATS_RESOURCES - This constant defined as 100
contains the maximum number of entries in the stats
buffer used in the IF and EGP TLCs

19) TABLE_FLAGS This constant defined as
"RAIDXCDEGLMNSTU" contains the flags for all IGW
tables. Specific ordering is required for ACT flags
only.

20) PROCIJIST_BLKS - This constant defined as 2 contains
the number of disketter blocks dedicated to the
process list.

- 25 -

#1500-15-031.02.0

21) DISKDIR_BLKS - This constant defined as 2 contains
the number of diskette blocks dedicated to the global
data directory disketter structure Disk_Dir.

22) IO_START - This constant defined as 0x20000000
defines the start of the IO pages

23) 10 END - This constant defined as Ox20001fff defines
the end of the IO pages.

3.3 TLC Design

The TLCs making up the IGW software are described in this section.

The section contains subsections for each TLC, and each subsection is

further divided to describe the LLCs and Units which comprise the

TLC. •

3.3.1 Efficient Real Time Executive (ERTE)

The Efficient Real Time Executive (ERTE) forms the kernel of the IGW

operating environment. The ERTE controls the processes which make up

the remaining TLCs. The ERTE offers a set of services to the

processes. The services offered include:

1) sending messages to other processes,

2) receiving messages from other processes,

3) waiting for an event to occur,

4) suspending process execution for a period of time,

5) setting or clearing process events,

- 2 6 -

#1500-15-031.02.0

6) allocating memory, and

7) reading the clock.

3.3.1.1 ERTE TLC Architecture

The ERTE TLC consists of Lower Level Components (LLCs) and Units as

shown in Figure 3-1. The LLCs are:

1) ERTE Initialization LLC - This LLC initializes software
structures and the clock hardware for the ERTE. The LLC
consists of the following units.

A. Message_Buffer_mnit Unit - This unit initializes
the message buffer allocation data structures in
the ERTE.

B. Message_Queue_init Unit - This unit initializes the
message queues used to store the message buffers
waiting to be received by a process.

C. Process_Header_Init Unit - This unit initializes
the process header for each process in the IGW, and
adds all the process headers to the system run
queue in priority order.

D. Clock_Init Unit - This unit initializes the clock
hardware on the Micro-VAX II.

E. Process_Startup Unit - This unit starts the first
process executing, thus completing initialization
of the ERTE.

F. ERTE_Main Unit - The main unit of ERTE. Execution
of ERTE begins with this unit.

2) ERTE_Control LLC - This LLC provides process control and
provides system processes with services. The LLC consists
of the following units:

A. Identify_Entry Unit - This unit vectors interrupts
and exceptions through code that sets an indicator
which informs ERTE of the type of interrupt or

- 27 -

#1500-15-031.02.0

+ +
1 ERTE 1
1 TLC 1
+--+ +

+ + + +
I I I

+----+----+ + + + + + +
1 Control 1 1 Initialization 1 System Call Processing 1
1 LLC I I LLC I — LIZ I

-I- ++ ++ +

1 System Call Request 1
LLC

Figure 3-1 (a)

- 28 -

Figure 3-1 (b)

- 29 -

II #1500-15-031.02.0

;

+ . +
1 ERTE Initialization I
I LLC I
+ + +

I
+ + + +

I I 1 I
+ + + + + ++ + + 1
I ERTE _ Main I I Message Buffer mit I I Message Queue mit I I ._ _ _ _
+ + + ++ + 1

I
+ + +

I I I
+ ++ + ++ + +

Process Header mit I I Process Startup I I Clock mit I _ _ _
++ ++ +

#1500-15-031.02.0

+ +
1 ERTE Control 1
I —141,C I

-1- + +
I

+ + + 4. +
I I I I

+ + ++ + ++ + + 1
I Decode _ Entry 1 1 Identify_Entry 1 1 Process Clock Interrupt 1 1 _ _
+ ++ ++ + 1

I
+ + + + ,
I I I

+ + ++ + ++ + +
1 Process _ Entry 1 1 Process Exception 1 1 Process Interrupt 1 ___
+ ++ ++

_
+

Figure 3-1 (c)

1 - 30 -

#1500-15-031.02.0

+ +
I ERTE_System Call Processing I
I —LLC — I
+ + +

I
+ +.-+ +

I I I
+ + ++ + ++ + +
1 Clear Event Call I 1 Get Time Call I I Message_Discar _ d Call I _ ._ _ _
+ + + ++ +

4- + +
I I I

+ + ++ + ++ + +
1 Message Get Call I I Message_Receive Call I I Message_Send Call I _ _ ._ _
+ + + + + +

+ + +
I I I

+ + ++ + ++ + +
I New (Memory_Call I I Open Message Queue C_ all I I Queue Status Call I _. _ _
+ + + + + +

+ + + +
I I I I

+ + + + + ++ + ++ + +
I Set Event Call I I. Set PriorityCall I I Sleep_Call 1 I Suspend_Call I _ _
+ ++

..._ _
++ ++ +

I Wait Event Call 1

1

1
1

1

1

1
1

Figure 3-1 (e)

- 32 -

#150 0- 15-03 1. 0 2. 0

1
1

1 ERTE_System Call Request 1

1 + + + + + +
1 1 I 1 1

+ + + +----+ + + + + + + + I
I 1 Clear Event 1 1 Get Time 1 1 Message_piscard 1 1 Message_Get 1 1 _

+ ++
_

++ ++ + 1

+ + + +
1 1 I 1

+ + + + + ++ + ++ + +
1 Message Receive 1 1 Message Send 1 1 New Memory 1 1 Open Message Queue 1

I +-
_

++
_

++
._

++
_

+

II +
1

+ +
1

+ + + +---+---+
1 Queue Status 1 1 Set Event 1 1 Set Priority 1 1 Sleep 1

I + + +
1 1

1
 +----+----+ + + +

1 Suspend 1 1 Wait Event 1
+ ++

_
+

1

++ ++ ++

1

#1500 - 15-031.02.0

exception that has caused control to pass to ERTE.

B. Process_Entry Unit - This unit controls and invokes
the units which process the current entry into
ERTE. The unit saves the context of the
interrupted process, processes the entry, restores
the context of a process, and returns ERTE from the
interrupt or exception.

C. Decode_Entry Unit - This unit examines the entry
type and calls the appropriate units to process the
entry.

D. Process_Interrupt Unit - This unit is responsible
for examining interrupt type entries, determining
if they are valid, and setting the IGW event that
represents the interrupt for the device.

F. Process_Exception Unit - When the entry is an
exception, this unit determines the specific
exception and implements the response.

G. Process_Clock_Interrupt Unit - This unit updates
the clock counters for the ERTE time keeping
system.

3) ERTE_System_Call_Processing LLC - This LLC executes the
functions required to support the ERTE system calls. The
LLC executes the system call requested by a process. This
LLC has the following units:

A. New_Hemory_Call Unit - This unit processes process
requests for additional memory.

B. Suspend_Call Unit - This unit suspends the calling
process to allow other processes to run.

C. Sleep_Call Unit - This unit suspends the execution
of the calling process for a given period of time.

D. Set_Event_Call Unit - This unit sets an ERTE event
for a corresponding process defined event.

E. Clear_Event_pall Unit - This unit clears an ERTE
event for a corresponding process defined event.

F. Wait_On_Event_Call Unit - This unit allows a
process to suspend itself until one of a set of

- 33 -

#1500-15-031.02.0

events has occurred, or an optional timeout period
has passed.

G. Message_Get_Call Unit - This unit allocates one
message buffer to the calling process.

H. Message_Discard_Call Unit - This unit permits a
process to return an allocated message buffer to
the ERTE free message buffer list.

I. Message_Send_Call Unit - This unit permits a
process to send a message buffer to another
process.

J. Message_Receive_Call Unit - This unit permits a
process to receive the first of any messages
waiting to be received.

K. Open_Message_Queue_Call - This unit permits a
process to open a message queue to hold incoming
messages that have not been received.

L. Queue_Status_Call - This Unit permits a process to
determine the status of a message queue that the
process has opened.

M. Get_Time_Call - This unit returns the ERTE syStem
time to the calling process.

N. Set_Priority_Call Unit - This unit sets the system
interrupt priority level to that requested by the
process.

4) ERTE_System_Call_Request LLC - This LLC provides the
system call request functions to all the processes of the
IGW. The units of this LLC are called by processes, and
these units provide the mechanism to call ERTE and pass
data to ERTE. The units for this LLC are:

A. New_Memory Unit - This unit issues process requests
for additional memory to ERTE.

B. Suspend Unit - This unit requests ERTE to suspend
the calling process to allow other processes to
run.

C. Sleep Unit - This unit requests ERTE suspend the
execution of the calling process for a given period

- 34 -

#1500-15-031.02.0

of time.

D. Set_Event Unit - This unit requests ERTE to set an
ERTE event for a corresponding process defined
event.

E. Clear_Event Unit - This unit requests ERTE to clear
an ERTE event for a corresponding process defined
event.

F. Wait_On_Event Unit - This unit requests ERTE to
allow a process to suspend itself until one of a
set of events has occurred, or an optional timeout
period has passed.

G. Message_Get Unit - This unit requests ERTE to
allocate one message buffer to the calling process.

H. Message_Discard Unit - This unit requests ERTE to
return an allocated message buffer to the ERTE free
message buffer list.

I. Message_Send Unit - This unit requests ERTE to to
send a message buffer to another process.

J. Message_Receive Unit - This unit requests ERTE to
to receive the first of any messages waiting to be
received by the calling process.

K. Open_Message_Queue Unit- This unit requests ERTE to
open a message queue to hold incoming messages to
the calling process.

L. Queue_Status Unit - This unit requests ERTE to
determine and return the status of a message queue
that the process has opened.

M. Get_Time Unit - This unit requests ERTE to return
the ERTE system time to the calling process.

N. Set_Priority Unit - This unit requests ERTE to set
the system interrupt priority level to that
requested by the calling process.

- 35 -

#1500-15-031.02.0

I 3.3.1.2 ERTE TLC Global Data

The following global data and constants are defined for the ERTE TLC:

1) Message_Queue_List - This array of NQUEUE Mesg_Queue
entries each entry indexed by a queue ID holds all the
message queues used by ERTE.

2) Message_List - This is the array of all Message_Header
structures available in ERTE.

3) Free ...List - This 32 bit item is a pointer to the first
free Message_Header in Message_List.

4) Run_Queue - This is the 32 bit pointer to the first and
highest priority process header in Process_List which is
runnab le.

5) Current_Process - pointer to process last to run or
currently running.

6) Free_Message_Count - This 32 bit integer contains the
count of messages on the Free_List.

7) Max_Memory - This 32 bit pointer points to the first byte
beyond free virtual memory.

8) Free_Memory - This 32 bit pointer points to the first
byte of free memory.

9) Events - This 32 bit word contains all the currently set
events. Each bit represents one events.

10) Wdog_Timer - This is a 32 bit integer containing the
current time left (in clock ticks) in the watchdog
timer. This time is used to attempt to reboot the IGW
should no process be made active for several minutes.
This timer is set to:

WDOG_START = 60000

clock ticks (10 minutes) whenever a process is made
active.

11) Nproc - This 32 bit integer contains the number of
processes that are in the IGW.

- 36 -

I .

#1500 - 15-031.02.0

12) System Calls - The following system call identifiers are
used in the IGW:

SYS_NEW - This constant defined as 0 identifies a
New_Memory system call.

SYS_SUSPEND - This constant defined as 1 identifies a
Suspend system call.

SYS_SLEEP - This constant defined as 2 identifies a
Sleep system call.

SYS_SETEVENT - This constant defined as 3 identifies
a Set_Event system call.

SYS_CLREVENT - This constant defined as 4 identifies
a Clear_Eventsystem call.

SYS_WAIT - This constant defined as 5 identifies a
Wait system call.

SYS_MGET - This constant defined as 6 identifies a
Message_Get system call.

SYS_MFREE - This constant defined as 7 identifies
a Message_Discard system call.

SYS MOPENQ - This constant defined as 8 identifies an
Open_Message_Queue system call.

SYS_MSEND - This constant defined as 9 identifies a
Message_Send system call.

SYS_MRECV - This constant defined as 10 identifies a
Message_Receive system call.

SYS_MSTATUS - This constant defined as 11 identifies
a Queue_Status system call.

SYS_GETTIME - This constant defined as 12 identifies
a Get_Time system call.

SYS_SPL - This constant defined as 13 identifies a
Set_Priority system call.

- 37 -

#1500-15-031.02.0

3.3.1.3 ERTE LLCa

The following subsections describe the ERTE LLCs.

3.3.1.3.1 ERTE Initialization LLC

The ERTE Initialization LLC is responsible for initializing the ERTE

software components, initializing the system clock registers, and

initiating processes startup. The units that the ERTE Initialization

LLC is composed of are:

- Message_Buffer_Init Unit
- Message_Queue_Init Unit
- Clock_Init Unit
- Process_Header_Init Unit
- Process_Startup Unit

3.3.1.3.1.1 Inputs

The following inputs are processed by the ERTE Initialization LLC:

1) Message_List - This global item contains the list of
message headers for message buffers.

2) Free List - This global item contains a pointer that
references the first free message in the Message_List.

3) Message_Queue_List - This global item contains the list of
queues which processes can use • to receive incoming
messages.

4) Process_List - This global item contains a list of
process headers for the IGW processes.

5) Run Queue - This global item contains a pointer to the'

1

#1500 - 15-031.02.0

first process header on the ERTE run queue.

3.3.1.3.1.2 Outputs

The following outputs are produced by the ERTE Initialization LLC:

1) Message_List - This global item contains the list of
message headers for message buffers.

2) Free List - This global item contains a pointer that
references the first free message in the Message_List.

3) Message_Queue_List - This global item contains the list of
queues which processes can use to receive incoming
messages.

4) Process_List - This global item contains a list of process
headers for the IGW processes.

5) Run_pueue - This global item contains a pointer to the
first process header on the ERTE run queue.

6) Free_Message_Count - This global item contains the number
of free messages in Message_List.

7) ICCS - This output is the Interval Clock Control register
for the MicroVAX processor clock.

8) NICR - This output is the Next Interval Count register of
the Micro-VAX processor clock. It specifies the interval
between clock interrupts.

9) PCBB Register - This output is the Process Control Block
Base register and it is written with the address of
Process Control Block for the process.

1
- 39 -

#1500-15-031.02.0

3.3.1.3.1.3 Local Data

No local data is defined for the ERTE Initialization LLC.

3.3.1.3.1.4 Processing

The ERTE Initialization LLC performs the following initialization

functions:

1) Initialization of message buffers by the Message Buffer
Initialization Unit.,

2) Initialization of message queues by the Memory Queue
Initialization Unit.

3) The initialization of the interval timer by the Clock
Initialization Unit.

4) The initialization of the process header list run queues
by the Process Header Initialization Unit.

5) The starting of the first IGW process by the Process
Startup Unit.

All of the above listed functions are called in order by the ERTE Main

Initialization Unit.

- 40 -

#1500-15-031.02.0

II 3.3.1.3.1.5 Limitations

There are no limitations defined for the ERTE Initialization LLC.

3.3.1.3.2 ERTE_Control LLC

This LLC controls the primary functions of ERTE. Each entry to ERTE,

which occurs by hardware interrupt or VAX exception, occurs through

the units of the control LLC. This LLC determines the source and type

of entry (e.g. Ethernet interrupt and system call exception) and

invokes the appropriate procedures and units to process the entry.

I 3.3.1.3.2.1 Inputs

I.
The primary input to this LLC is the location of the entry into the

LLC. Each entry type has a specific location in this LLC through

which it enters. The units of this LLC use this information to

determine the source of the interrupt (the interrupting device for

example) and the type of the entry (system call exception versus

arithmetic exception, for example). The entry locations are all in

the Identify Entry unit and are documented in section 3.3.1.4.

The second major input to ERTE is the parameters to system calls. The

ERTE Control LLC does not process or consider these inputs. The ERTE

- 41 -

#1500-15-031.02.0

System Call Processing LLC does use these inputs, so these inputs are

fully described under that LLC.

One other input to the ERTE Control LLC are the Process Header

structures. These structures contain process related information used

by ERTE to control their execution. These structures are part of the

ERTE TLC global data, and are defined in section 3.2 Global Data.

3.3.1.3.2.2 Outputs

The outputs of the ERTE Control LLC are the Process Header

structures. These structures, which reside in ERTE global data,

updated as necessary by the ERTE Control LLC to reflect the state of

processes. The description of these structures is located in 3.3.1.2

TLC Global Data.

3.3.1.3.2.3 Local Data

The ERTE Control LLC maintains one item of local data. This item is

an Entry_Type indicator. This indicator is set to a value which

represents the source and type of ERTE entries. The value in this

indicator is used to determine the course of action to be followed to

process the entry. This indicator is an integer type and is

maintained on a stack to support nested interrupts. Its values are:

are

- 42 -

#1500-15-031.02.0

1. 0 - 1 : These values represent device interrupts.
There are 10 allowed devices, with two interrupts, a
receive and a transmit, per device. The first device,
using entries 0 and 1, is the console device.
Subsequent devices are additional IXIB and Ethernet
boards.

2. 50 : This value is used to represent a system call
exception.

3. 51 : This value is used to represent a fatal error
exception.

4. 52 : This value is used to represent a non-fatal
exception.

3.3.1.3.2.4 Processing

The order of processing for the LLC is:

Identify_Entry is entered, and Entry_Type is set to reflect the
source and type of the entry.

Process_Entry is called to save the interrupted process's context,
process the entry and restore a process's context, and return from
the entry (and hence back to a process).

' 3.3.1.3.3 ERTE System Call Request LLC

I The ERTE System Call Request LLC is responsible for providing IGW

processes with the functions needed to permit the IGW processes to

II obtain ERTE system call services. Each of the units which make up

this LLC provides the capability for a process to make one system call

I and receive the results of that call. The units in this LLC are

I called by the processes requiring system call service.

-,43

#1500-15-031.02.0

3.3.1.3.3.1 Inputs

Each unit in this LLC has its own inputs and outputs. Because each

unit in this LLC is called individually by IGW processes, the inputs

will be described in their respective unit descriptions. The units of

this LLC are listed in section 3.3.1.1 TLC Architecture. The

descriptions of these units can be found in sections 3.3.1.4.23 to

3.3.1.4.38 inclusive.

3.3.1.3.3.2 Outputs

Each unit in this LLC has its own inputs and outputs. Because each

unit in this LLC is called individually by IGW processes, the outputs

will be described in their respective unit descriptions. The units of

this LLC are listed in section 3.3.1.1 TLC Architecture. The

descriptions of theàe units can be found in sections 3.3.1.4.23 to

3.3.1.4.38 inclusive.

•

•

#1500-15-031.02.0

3.3.1.3.3.3 Local Data

All local data required for the processing of ERTE system calls is

maintained by the units of this LLC. Descriptions of such local data

is included in the corresponding unit descriptions.

3.3.1.3.3.4 Processing

There is no order of processing required by this LLC to process a

system call. The IGW processes will directly call the units in this

LLC as system call services are needed. Each unit performs the

functions required to request the services of a system call from

ERTE. The proce'ssing of each system call request is described in the

section documenting the corresponding unit.

3.3.1.3.3.5 Limitations

There are no express limitations imposed on system call requests by

this LLC.

- 45 -

#1500-15-031.02.0

The ERTE System Call Processing LLC is responsible for executing the

system calls offered by ERTE to the processes ERTE controls. The

units which make up this LLC each perform the functions of one system

call. The units in this LLC are called from the ERTE Control LLC when

that LLC determines the type of system call made.

3.3.1.3.4.1 Inputs

Each unit in this LLC has its own inputs and outputs. Because each

unit in this LLC is called individually by one or more units residing

in the ERTE Control LLC, the inputs and outputs will be described in

their respective unit descriptions. The units of this LLC are listed

in section 3.3.1.1 TLC Architecture. The descriptions of these units

can be found in sections 3.3.1.4.7 to 3.3.1.4.22 inclusive.

1 3.3.1.3.4 ERTE System Call Processing LLC

1

- 46 -

#1500-15-031.02.0

3.3.1.3.4.2 Outputs

Each unit in this LLC has its own outputs. Because each unit in this

LLC is called individually by one or more units residing in the ERTE

Control LLC, the outputs will be described in their respective unit

descriptions. The units of this LLC are listed in section 3.3.1.1 TLC

Architecture. The descriptions of these units can be found in

sections 3.3.1.4.7 to 3.3.1.4.22 inclusive.

3.3.1.3.4.3 Local Data

All local data required for the processing of ERTE system calls is

maintained by the units of this LLC. Descriptions of such local data

is included in the corresponding unit descriptions.

3.3.1.3.4.4 Processing

There is no order of processing required by this LLC to process a

system call. The ERTE Control LLC units will determine the system

call which has been requested, and will call the unit in this LLC to

process that system call. Each unit performs the functions of a

single system call. The processing of each system call is described

in the section documenting the corresponding unit.

- 47 -

1

#1500-15-031.02.0

II 3.3.1.3.4.5 Limitations

There are no express limitations imposed on system call processing by

this LLC.

3.3.1.4 ERTE Units

The following subsections describe the units of ERTE.

3.3.1.4.1 ERTE_Main Unit

The ERTE_Main Unit is the starting unit for the ERTE component.

Control is initially passed to ERTE through this unit, which then

invokes all the initialization units and starts the first process.

3.3.1.4.1.1 Inputs

I There are no inputs defined for this unit.

- 48 -

1
1

1

1
1

1

#1500-15-031.02.0

II 3.3.1.4.1.2 Outputs

There are no outputs defined for this unit.

3.3.1.4.1.3 Local Data

No local data is defined for this unit.

3.3.1.4.1.4 Processing

Call Message_puffer_Init
Call Message_Queue_Init
Call Process_Header_Init
Call Clock_Init
Call Process_Startup

3.3.1.4.1.5 Limitations

No limitations are defined for this unit.

1

1
1

#1500-15-031.02.0

3.3.1.4.2 Message_Buffer_Init Unit

The Message_Buffer_Init Unit initializes the message buffers for

ERTE.

3.3.1.4.2.1 Inputs

The following inputs are processed by the unit:

1) Free_List - A global item pointing to first free message
in Message_List.

2) Message List - A global item containing a list of ERTE
messages.

3) Free_Message_Count - This global item is the count of the
number of free messages.

3.3.1.4.2.2 Outputs

The following outputs are produced by the unit:

1) Free_List - A global item pointing to first free message
in Message_List.

2) Message_List - A global item containing a list of ERTE
messages.

3) Free_Message_Count - This global item is the count of the
number of free messages.

- 50 -

#1500-15-031.02.0

1 3.3.1.4.2.3 Local Data

The following data is defined to be local to the unit:

I - This index is used to step through the Message Buffer
Table during the initialization procedure.

3.3.1.4.2.4 Procesoing

Set Free_list to address of first Message_List entry
For each message buffer I in the memory buffer list

Set next pointer of memory buffer I to address of memory
buffer I+1
Set pointer to this memory buffer field of memory buffer I

If sufficient free memory remains
If I>0

Set next field of buffer I-1 tp 0
El se

Set Free_list to 0
End if
Exit loop

Else
Set address field to free memory pointer
increment free memory pointer by buffer size

End if
Set queue ID to deliver to for memory buffer I to 0
Increment count of free memory buffers

End For

- 51

#1500-15-031.02.0

3.3.1.4.2.5 Limitations

No limitations are defined for this unit.

3.3.1.4.3 Hessage_Oueue_Init Unit

The Message_Queue_mnit Unit is responsible for the initialization of

the message buffer queues. This initialization involves the setting

of the receiving process field of each message buffer queue entry to

-1.

3.3.1.4.3.1 Inputs

There are no input defined for the unit.

11 3.3.1.4.3.2 Outputs

I The following output is produced by the unit:

Message_Queue_List - This global item is the list of message
queues available for sending and receiving ERTE messages.

- 52 -

#1500-15-031.02.0

3.3.1.4.3.3 Local Data

The following data is defined to be local to the unit:

I - This index is used to step through the message queues
during the initialization procedure.

3.3.1.4.3.4 Processing

For each message queue I'in the message queue list
Set all fields to 0

End For

3.3.1.4.3.5 Limitations

No limitations are defined for this unit.

3.3.1.4.4 Clock_Init Unit

The Clock_Init Unit is used to initialize the MicroVAX clock. This

initialization is accomplished by the setting of the MicroVAX

processor, registers NICR, and ICCS.

- 53 -

#1500-15-031.02.0

3.3.1.4.4.1 Inputs

There are no inputs defined for the unit.

3.3.1.4.4.2 Outputs

The following outputs are produced by the unit:

1) ICCS - This item is the Interval Clock Control register
as defined in the ERTE Initialization LLC section.

2) NICR - This item is the Next Interval Register as defined
in the ERTE Initialization LLC section.

3.3.1.4.4.3 Local Data

There is no local data defined for the unit.

3.3.1.4.4.4 Processing

Load Processor Register NICR with -1000000 / HZ
Load Processor Register ICCS with
ICCS_RUN + ICCS_IE + ICCS_TRANS + ICCS_INT + ICCS_ERR

1

#1500-15-031.02.0

3.3.1.4.4.5 Limitations

No limitations are defined for this unit.

3.3.1.4.5 Process_Header_Initialization Unit

Each process on the IGW has a process header describing the process.

This process header is initialized by this software unit.

3.3.1.4.5.1 Inputs

The following inputs are required by the unit:

1) Process_List - This input is a global list of process
headers for the IGW processes.

3.3.1.4.5.2 Outputs

The following outputs are produced by the unit:

1) Process_List - This output contains a list of process
headers that have been initialized by this unit. For a
description see the ERTE Initialization Unit LLC section.

2) Run_Queue - This output contains a pointer to the head
of the run queue list contained in the process table.

- 55 -

il

#1500-15-031.02.0

3.3.1.4.5.3 Local Data

The following data is defined to be local to the unit:

1) I - This index is used to reference each process header
while stepping through the process table during the
initialization procedure.

3.3.1.4.5.4 Processing

For each process I to be initialized in the process table
Call Insert_On_Run_Queue(process I header address)

End For

3.3.1.4.5.5 Limitations

No limitations are defined for this unit.

3.3.1.4.6 Process_Startup Unit

The Process_Startup Unit is called during ERTE initialization to start

the execution of the first IGW process on the beginning of the run

queue.

- 56 -

#1500 - 15-031.02.0

1 3.3.1.4.6.1 Inputs

The following inputs are required by the Unit:

1) Run_Queue - This item is the pointer to the first process
on the ERTE run queue.

2) Process_List - This input contains the list of process
headers, one for each process.

3.3.1.4.6.2 Outputs

The following output is produced by the unit:

1) PCBB - This item is the Process Control Block Base register
which 'points at the Process Control Block for the active
process.

2) Current_Process - pointer to the currently executing process

3.3.1.4.6.3 Local Data

No Local data is defined for the unit.

- 57 -

#1500-15-031.02.0

I 3.3.1.4.6.4 Processing

I Load MicroVAX processor register PCBB with physical PCB address
of the entry in the process table that is referenced by the head
of the run queue.

Set Current_Process Run_Queile
I Load process context from hardware PCB (LDPCTX)

Return from interrupt

3.3.1.4.6.5 Limitations

No limitations are defined for this unit.

3.3.1.4.7 New_Memory_Call Unit

I The New_Memory_Call unit returns a pointer to a block of memory

allocated by ERTE to the requesting process. If the required memory

I is not available, then an error indication is returned to the

ii process .

1 3.3.1.4.7.1 Inputs

I The following inputs are used by the unit:

1) Current_Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Free_Memory - This global item is the address of the first
byte of free memory.

- 55 -

#1500-15-031.02.0

4) Max_memory - This global item is the address of the last
byte of free memory.

3.3.1.4.7.2 Outputs

The following is produced or modified by the unit:

1) Process_List - This global item is a list of all process
headers for all IGW processes. This unit modifies the RO
field of the process header referenced by Run_Queue.

2) Free_Memory - This global item references the first byte
of free memory.

3.3.1.4.7.3 Local Data

No local data is defined for this unit

3.3.1.4.7.4 Processing

Extract the requested amount of memory from the R3 field of the
process header referenced by Run_Queue

If Free_Memory requested memory = Max_Memory
Put NOMEM into RO field of process header referenced by Run_Queue

Else
Put Free_Memory into RO field of process header referenced by
Run_Queue
Add requested memory to Free_Memory

Endif

- 59 -

#1500-15-031.02.0

I 3.3.1.4.7.5 Limitations

No limitations are defined for this unit.

3.3.1.4.8 Suspend C.11 Unit

The Suspend Call unit forces ERTE to reschedule the requesting task

according to the scheduling rules. It serves to allow a process to

II give up the processor to other processes of equal priority.

I 3.3.1.4.8.1 Inputs

I The following inputs are used by the unit:

1) Run_Queue - This global item points to the process header
of the first process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Current_Process - This global item points to the process
header of the active process on the run queue

- 60 -

1

#1500-15-031.02.0

3.3.1.4.8.2 Outputs

The following is produced or modified by the unit:

1) Run_Queue - This global item points to the process header
of the first process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3.3.1.4.8.3 Local Data

No local data is defined for this unit

3.3.1.4.8.4 Processing

Call Remove_from run_queue (Current_Process
Call Insert_pn_417n_Queue(Current_Process)

3.3.1.4.8.5 Limitations
C7,

No limitations are defined for this unit.

- 61 -

1

1

1

#1500-15-031.02.0

3.3.1.4.9 Sleep_Call Unit

The Sleep_Call unit removes the current process from the run queue,

and sets its time to wait to the value requested by the process.

3.3.1.4.9.1 Inputs

The following inputs are used by the unit:

1) Run_Queue - This global item points to the process header
of the first process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Current_Process - This global item points to the process
header of the active process of the run queue.

3.3.1.4.9.2 Outputs

The following is produced or modified by the unit:

1) Run_Queue - This global item points to the process header
of the first process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes. This unit modifies the
Time_To_Wait field of the process referenced by
Current_Process

- 62 -

1

#1500-15-031.02.0

I 3.3.1.4.9.3 Local Data

No local data is defined for this unit

111
3.3.1.4.9.4 Processing

Extract the requested time to wait from the R3 field of the process
header referenced by Current_Process.
Insert the requested time to wait into the Time_To_Wait field of the
process header referenced by Current Process.

Call Remove_from_run_gueue(Current_pr -o-cess)

3.3.1.4.9.5 Limitations

No limitations are defined for this unit.

I 3.3.1.4.10 Set_Event_pall Unit

The Set_Event_Call unit turns on the bits representing the events

I requested by the calling process. This is restricted to process

definable events. Requests to set other (non process definable)

I events are ignored.

1

#1500-15-031.02.0

3.3.1.4.10.1 Inputs

The following inputs are used by the unit:

1) Current_Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Events - This global 32 bit item represents the events in
the IGW. Each bit represents one event.

3.3.1.4.10.2 Outputs

The following is produced or modified by the unit:

1) Events - This global 32 bit item represents the events in
the IGW. Each bit represents one event.

2) Process_List - This global item is the list of all process
headers for all IGW processes.

3.3.1.4.10.3 Local Data

No local data is defined for this unit

- 64 -

definable events. Requests to set other (non process definable)

#1500-15-031.02.0

1 3.3.1.4.10.4 Processing

Extract the requested events to set from the R3 field of the process
header referenced by Current_Process.

Mask out all bits in the requested events which may not be defined by
a process

For each bit still set in the requested events, set the corresponding
bit in Events

For each process in Process_List
If process is waiting for one or more of the
events in requested events

Mark process as runnable
Put satisfied events into RO field of
process header

Call Insert_on_Run_Queue(process)
Endif

Endfor

3.3.1.4.10.5 Limitations

No limitations are defined for this unit.

3.3.1.4.11 Clear_Event_Çall Unit

The Clear_Event_Call unit turns off the bits representing the events

requested by the calling process. This is restricted to process

events are ignored.

- 65 -

#1500-15-031.02.0

11 3.3.1.4.11.1 Inputs

The following inputs are used by the unit:

1) Current_Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Events - This global 32 bit item represents the events in
the IGW. Each bit represents one event.

II 3.3.1.4.11.2 Outputs

The following is produced or modified by the unit:

1) Events - This global 32 bit item represents the events in
the IGW. Each bit represents one event.

3.3.1.4.11.3 Local Data

No local data is defined for this unit

- 66 -

1

#1500-15-031.02.0

3.3.1.4.11.4 Processing

Extract the requested events to cleared from the R3 field of the process
header referenced by Current_Process.

Mask out all bits in the requested events which may not be defined by
a process

For each bit still set in the requested events, clear the corresponding
bit in Events

3.3.1.4.11.5 Limitations

II No limitations are defined for this unit.

3.3.1.4.12 Wait_Event_Çall Unit

The Wait_Event_Call unit removes the calling process from the run

queue, and then sets its Awaiting_Event field of the process header to

the requested events. If any of these events is already set, then the

process is added back onto the run queue.

• 1

- 67 -

#1500-15-031.02.0

3.3.1.4.12.1 Inputs

The following inputs are used by the unit:

1) Current_Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Events - This global 32 bit item represents the events in
the IGW. Each bit represents one event.

4) Run_Queue - This global item points to the process header
of the first process on the Run Queue.

3.3.1.4.12.2 Outputs

The following is produced or modified by the unit:

1) Events - This global 32 bit item represents the events in
the IGW. Each bit represents one event.

2) Process_List - This global item is a list of all process
headers for all IGW processes. The unit modifies the the
Awaiting_Events field of the process header of the process
referenced by Current_Process.

- 68 -

#1500-15-031.02.0

3.3.1.4.12.3 Local Data

No local data is defined for this unit

3.3.1.4.12.4 Processing

Extract the time to wait from the R4 field of the
process header referenced by Current_Process

Extract the requested events to be waited on from the R3 field of the
process header referenced by Current_Process.

Put the requested events into the Awaiting_Events field of the process
header referenced by Current-Process.
Put the time to wait into Time field of process
header referenced by Current_process

Remove the process from the run queue
If any event the process is waiting for is set in Events

Set the corresponding bits in the RO field of the process header
Clear the corresponding ERTE event bits in Events
Call Insert_On_Run_Queue(process)

Endif

3.3.1.4.12.5 Limitations

No limitations are defined for this unit.

- 69 -

#1500-15-031.02.0

3.3.1.4.13 Message_pet_Call Unit

The Message_Get_Call unit allocates a message header to a process, and

copies the header into the process address space. If no free message

headers are available, then an error indication is returned.

3.3.1.4.13.1 Inputs

The following inputs are used by the unit:

1) Current_Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Message_List - This global item is a list of message
headers for process message passing.

4) Free_List - This global item is a list of free message
buffers.

5) Free_Message_Count - This global item is the count of free
messages on the free message list.

- 70 -

#1500-15-031.02.0

II 3.3.1.4.13.2 Outputs

The following is produced or modified by the unit:

1) Message_Header - This item is a data area in the calling
process that the unit copies the message header to. The
address of this area is passed to the unit in the R3 field
of the calling process header.

2) Free_List - This global item is a list of free message
buffers.

3) Free_Message_Count - This global item is a count of the
free messages on the free message list.

3.3.1.4.13.3 Local Data

II

.
No local data is defined for this unit

3.3.1.4.13.4 Processing

Extract the Message_Header address from the R3 field of the process
header referenced by Current_Process.
If no free message headers are available from Message_List

Put M_NOBUFS into RO field of the process header referenced by
Run_Queue

Else
Remove a free message header from the Message_List
Copy the message header to Message_Header (as given by
the message header address from R3)

Move No ERROR into RO field of process header
referenced by Run_Queue

Set From field of message header (local copy only)
to Current_Process to show which process has the buffer

Increment P_mcount field of process header
returned by current_process.

Endif

- 71 -

#1500-15-031.02.0

3.3.1.4.13.5 Limitations

No limitations are defined for this unit.

3.3.1.4.14 Message_piscard_Call Unit

The Message_Discard_Call unit deallocates a message header from a

process, copies the header into the ERTE address space, and adds the

header back onto the message list.

3.3.1.4.14.1 Inputs

The following inputs are used by the unit:

1) Current Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Message_Header - This item is a data area in the calling
process that the unit copies the message header to. The
address of this area is passed to the unit in the R3 field
of the calling process message header.

- 72 -

1

1

#1500-15-031.02.0

3.3.1.4.14.2 Outputs

The following is produced or modified by the unit:

1) Message_List - This global item is a list of message
headers for process message passing.

3.3.1.4.14.3 Local Data

No local data is defined for this unit.

3.3.1.4.14.4 Processing

Extract the Message_Header address from the R3 field of the process
header referenced by Current Process.

Verify that header is valid and locate
ERTE copy of header

If not valid
Return error code tp process in

RO field of process header
Else if header is on a queue

Return error code to process in
RO field of process header.

Else
Mark ERTE copy of header as

available
Add header to free list
Increment free count.

End if
Copy the message header from Message_Meader (as given by
the message header address from R3) to its position in
Message_List

1
1

- 73 -

#1500-15-031.02.0

3.3.1.4.14.5 Limitations

No limitations are defined for this unit.

3.3.1.4.15 Open_Message_Queue_Ça11 Unit

This unit opens a message queue as requested by a proces's. The queue

is assigned the queue identifier (qid) indicated by the process, is

given a maximum length as requested by the process, and is assigned to

the requesting process. If the desired qid is already in use then an

error is returned to the'requesting process. If the qid requested is

not valid, an error is returned to the requesting process.

3.3.1.4.15.1 Inputs

I The following inputs are used by the unit:

1) Message_Queue_List - This global item is a list of message queue
structures for use by processes.

.2) Current_Process - This global item points to the process header
of the active process on the run queue.

3) Process_List - This global item is a list of all process
headers for all IGW processes.

- 74 -

1 3.3.1.4.15.2 Outputs

1
The following is produced by the unit:

1) Message_Queue_List - This global item is a list of message queue
structures for use by processes.

#1500-15-031.02.0

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3.3.1.4.15.3 Local Data

No local data is defined for this unit.

3.3.1.4.15.4 Processing

Put NOERROR into RO of process header referenced by
Current_Process.

Extract the qid requested from the R3 in process header referenced
by Current_Process.

Extract the queue size from the R4 in process header referenced by
Current_process
If qid is greater than the maximum number of message queues or is
less than zero

Put M_INVQID into RO of process header referenced by -
Current_Process

Else if message queue qid in Message_Queue_List is already open
Put M_QBUSY into RO of process header referenced by

Current_Process
Else

Mark queue qid in Message_Queue_List as in use by process
referenced by Current_Process

Mark this queue as having the queue size extracted from the
process R4

Mark this queue as having zero messages queued
• Mark the first and last message references as having nothing to

reference •

Endif

0

- 75 -

1

1

1

#1500-15-031.02.0

3.3.1.4.15.5 Limitations

No limitations are defined for this unit.

3.3.1.4.16 Message_Send_Call Unit

The Message_Send_Call unit transfers a message from the requesting

process to the message queue indicated by the requesting process. If

the queue identifier (qid) of the message queue is invalid, or if the

requested queue is not in use by a process, or if the requested queue

is full, the transfer is not done and an error indication is returned

to the process.

3.3.1.4.16.1 Inputs

The following inputs are used by the unit:

1) Message_Queue_List - This global item is a list of message
queue structures for use by processes.

2) Current_Process - This global item points to the process
header of the active process on the run queue.

3) Process_List - This global item is a list of all process
headers for all IGW processes.

4) Message_Header - This global item is copied from the
process's address space to the ERTE address space. The
item contains the status and control information for an
ERTE message.

- 76 -

#1500-15-031.02.0

II 3.3.1.4.16.2 Outputs

The following is produced or modified by the unit:

1) Message_Queue_List - This global item is a list of message
queue structures for use by processes.

2) Message_Header - This global item is copied from the
process's address space to the ERTE address space. The
item contains the status and control information for an
ERTE message.

3.3.1.4.16.3 Local Data

No local data is defined for this unit.

3.3.1.4.16.4 Processing

Put NOERROR into RO of process header referenced by
•Current_Process

Extract the qid requested from the R4 in process header referenced
by Current_process

Extract a reference to the process Message_Header from the R3 in
process header referenced by Current_process

If (lid is greater than or equal to the maximum number of message
queues or is less than zero

Put M_INVOID into RO of process header referenced by Run_Queue
Else if the queue qid in Message_Queue_List is full (queue count =
queue size)

Put M_QFULL into RO of process header referenced by
Current_Process

El se
Copy Message_Header from process space to its position in
Message_List
Add Message_Header in Message_List to message queue qid in
Message_Queue_List
Increment count of messages on message queue (lid in
Message_Queue_List

Put Process id of process header referenced by

- 77 -

Current_process into Message_yeader
Endif

1

1 #1500-15-031.02.0

3.3.1.4.16.5 Limitations

No limitations are defined for this unit.

3.3.1.4.17 Message_ReceiveCall Unit

The Message_Receive_Call unit transfers a message to the requesting

process from the message queue indicated by the requesting process.

If the queue identifier (qid) of the message queue is invalid, or if

the requested queue is not in use by a process, or if the requested

queue is empty, the transfer is not done and an error indication is

returned to the process.

3.3.1.4.17.1 Inputs

The following inputs are used by the unit:

1) Message_Queue_List - This global item is a list of message
queue structures for use by processes.

2) Current_process - This global item points to the process
header of the first process on the run queue.

3) Process_List - This global item is a list of all process
headers for all IGW processes.

5) Message_List - This global list contains the message
headers for all ERTE messages.

- 78 -

1

1

1

1

1 - 79 -

#1500-15-031.02.0

1

3.3.1.4.17.2 Outputs

The following is produced or modified by the unit:

1) Message_Queue_List - This global item is a list of message
queue structures for use by processes.

2) Message_Header - This global item is copied to the
process's address space from the Message List in the ERTE
address space. The item contains the status and control
information for an ERTE message.

3.3.1.4.17.3 Local Data

No local data is defined for this unit.

3.3.1.4.17.4 Processing

Put NOERROR into RO of process header referenced by Current_Process
Extract the qid requested from the R4 in process header referenced
by Current_Process

Extract a reference to the process Message_Header from the R3 in
process header referenced by Current_Process

If qid is greater than the maximum number of message queues or is
less than zero

Put M_INVOID into RO of process header referenced by Current_Process
Else if the queue qid in Message_Queue_List is empty
(queue count = 0)

Put M_QEMPTY into RO of process header referenced by Current_Process
Else

Remove first Message_Header from message queue qid in
Message Queue List

Copy Message_Header to process space (as indicated by reference
from R3)

Decrement count of messages on message queue qid in
Message_Queue_List

Put Process id of process header referenced by

Current_Process into Message_Header 1 Endif

1

#1500-15-031.02.0

3.3.1.4.17.5 Limitations

No limitations are defined for this unit.

3.3.1.4.18 Queue_Status_Call Unit

The Queue_Status_Call unit examines the status of a queue for a

process, and returns that status to the process. The unit returns an

error indication if the requested queue identifier (qid) is invalid,

is in use by a process other than the requesting process.

3.3.1.4.18.1 Inputs

The following inputs are used by the unit:

1) Message_Queue_List - This global item is a list of message
queue structures for use by processes.

2) Current_Process - This global item points to the process
header of the first process on the run queue.

3) Process_List - This global item is a list of all process
headers for all IGW processes.

- 60 -

1

#1500-15-031.02.0

3.3.1.4.18.2 Outputs

The following is produced or modified by the unit:

1) Process_List - This global item is a list of all process
headers for all IGW processes. This unit modifies the RO
field of the process header referenced by Current_Process.

3.3.1.4.18.3 Local Data

No local data is defined for this unit.

3.3.1.4.18.4 Processing

Put NOERROR into RO of process header referenced by
Current_Process

Extract the qid requested from the R3 in process header referenced
by Current_Process

If qid is greater than the maximum number of message queues or is
less than zero

Put M_INVQID into RO of process header referenced by
Current_Process

Else if the queue qid in Message_Queue_List is not in use
Put M_NOQID into RO of process header referenced by

Current_Process
Else if the queue qid in Message_Queue_List is not in use by the
process referenced by Current_Process.

Put M_QBUSY into RO of process header referenced by
Current_Process

Else if the queue qid in Message_Queue_List is empty (queue count = 0
Put M QEMPTY into RO of process header referenced by

Current_Process
Else

Put count of number of messages on queue (from queue qid-1 in
Message_Queue_List) into RO of process header referenced by
Current_Process

Endif

- 81 -

1

#1500-15-031.02.0

3.3.1.4.18.5 Limitations

No limitations are defined for this unit.

3.3.1.4.19 Get_Time_Call Unit

The Get_Time_Call unit returns the time since the IGW was booted to

the requesting process.

3.3.1.4.19.1 Inputs

The following inputs are used by the unit:

1) Current Process - This global item points to the process
header of the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

3) Timer - This global item contains the time since the IGW
was last booted. This is a 32 bit unsigned integer.

1 - 82 -

#1500-15-031.02.0

I 3.3.1.4.19.2 Outputs

The following is produced or modified by the unit:

1) Process_List - This global item is a list of all process
headers for all IGW processes. This unit modifies the RO
field of the process header referenced by Current_Process.

3.3.1.4.19.3 Local Data

No local data is defined for this unit

3.3.1.4.19.4 Processing

Put Timer into RO of the process header referenced by
Current_Process

3.3.1.4.19.5 Limitations

No limitations are defined for this unit.

- 83 -

I #1500-15-031.02.0

II 3.3.1.4.20 Set_Priority_Call Unit

The Set_priority_Call unit sets the ERTE process priority to the

I requested value, and returns the previous priority.

11 3.3.1.4.20.1 Inputs

I
-

The following inputs are used by the unit:

1) Current Process - This global item points to the process
header 7:7f the active process on the run queue.

2) Process_List - This global item is a list of all process
headers for all IGW processes.

I 3.3.1.4.20.2 Outputs

The following is produced or modified by the unit:

1) Process_List - This global item is a list of all process
headers for all IGW processes. This unit modifies the
priority level portion of the PSL field of the process
header referenced by Current_process.

- 64 -

1

#1500-15-031.02.0

3.3.1.4.20.3 Local Data

No local data is defined for this unit.

3.3.1 14.20.4 Processing

Extract the priority level requested from the R3 field of the
process referenced by Current_Process

Extract the priority field of the process
header referenced by Current_Process and put into RO field
Put the requested priority level into the priority
field of the process header referenced by Current ...process

3.3.1.4.20.5 Limitations

No limitations are defined for this unit.

3.3.1.4.21 New_Memory Unit

The New Memory Unit provides IGW processes with the ability to

II allocate arbitrarily sized pieces of memory. The calling process

specifies the number of bytes required, and this unit then returns a

11 pointer to the allocated memory of the requested size in the system

virtual address space.

I .
I.

1 - 85 -

#1500-15-031.02.0

II 3.3.1.4.21.1 Inputs

The following inputs are required for the unit:

1) Memory_Size - This input contains the size of memory in
bytes that is to be allocated. This input is provided to
the Memory Unit by passing an integer parameter
on the stack.

3.3.1.4.21.2 Outputs

11 The unit produces the following output:

1) Memory_pointer - This input contains the pointer to the
area of memory that has been allocated. It is provided to
this unit in register RO by the New Memory System Call
Unit.

II 3.3.1.4.21.3 Local Data

II No local data is defined for the unit.

1

- 86 -

1

1
1

1

11

II 3.3.1.4.21.4 Processing

Move SYS_NEW system call identifier to register R2
Move number of bytes of memory from stack to register R3
Perform a change mode to kernel instruction (CHMK)
Return Memory_Pointer

I 3.3.1.4.21.5 Limitations

I No limitations are defined for this unit.

II 3.3.1.4.22 Suspend Unit

The Suspend Unit provides IGW processes with the ability to

temporarily suspend themselves to allow other processes awaiting

access to the CPU to be allowed to run.

3.3.1.4.22.1 Inputs

II No inputs are required by the unit.

1

1

#1500-15-031.02.0

1 - 87 -

1
1
1

1
1

1
1
mi #1500-15-031.02.0

I 3.3.1.4.22.2 Outputs

No outputs are produced by the unit.

3.3.1.4.22.3 Local Data

No local data is defined for the unit.

1 3.3.1.4.22.4 Processing

Move SYS_SUSPEND system call identifier to register R2
I Perform a change mode to kernel instruction (CHMK)

Return

3.3.1.4.22.5 Limitations

1
No limitations are defined for this unit.

3.3.1.4.23 Sleep Unit

I The Sleep Unit provides IGW processes with the ability to request ERTE

that they not be allowed to be run for a specified period of time.

1
1
1
1

- 88 -

#1500-15-031.02.0

1 3.3.1.4.23.1 Inputs

The following input is required by the Sleep Unit:

1) Time To Sleep - This input contains the amount of time
that th; calling process is to sleep for in CLOCK_INT
units. This input is provided to the Sleep Unit by passing
an integer parameter on the stack.

I 3.3.1.4.23.2 Outputs

1 No outputs are produced by the unit.

3.3.1.4.23.3 Local Data

No local data is defined for the unit.

3.3.1.4.23.4 Processing

I Move SYS_SLEEP system call identifier to register R2 Move

Time_To_Sleep from stack to register R3 Perform a change mode to

I kernel instruction (CHMK) Return

- 89 -

#1500-15-031.02.0

3.3.1.4.23.5 Limitations

No limitations are defined for this unit.

3.3.1.4.24 Set_Event Unit

The Set_Event Unit provides IGW processes with the ability to set one

or more of the IGW event flags.

3.3.1.4.24.1 Inputs

I.
The following input is required by the unit:

1) Event_Flags - This input is a 32 bit integer with each bit
specifying an event flag that is to be set. This input is
provided to the Set Event Unit by passing an
integer parameter on the stack.

3.3.1.4.24.2 Outputs

No outputs are produced by the unit.

- 90 -

#1500-15-031.02.0

I 3.3.1.4.24.3 Local Data

No local data is defined for the unit.

3.3.1.4.24.4 Processing

II 1.1é>ve SYS_SETEVENT system call identifier to register R2
Move Event_Flags from stack to register R3
Perform a change mode to kernel instruction (CHMK)

11 Return

II 3.3.1.4.24.5 Limitations

No limitations are defined for this unit.

3.3.1.4.25 Clear_Event Unit

The Clear_Event Unit provides IGW processes with the ability to clear

one or more of the IGW event flags.

- 91 -

1
1

1
1

1
1

1

#1500-15-031.02.0

II 3.3.1.4.25.1 Inputs

The following input is required by the unit:

1) Eventjlags - This input is a 32 bit integer with each bit
specifying an event flag that is to be cleared. This
input is provided to the Clear Event Unit by passing
an integer parameter on the stack.

3.3.1.4.25.2 Outputs

No outputs are produced by the unit.

3.3.1.4.25.3 Local Data

No local data is defined for the unit.

3.3.1.4.25.4 Processing

Move SYS_CLREVENT system call identifier to register R2
Move event flags from stack to register R3
Perform a change mode to kernel instruction (CHMK)
Return

1
1
1
1 - 92 -

I.

#1500-15-031.02.0

3.3.1.4.25.5 Limitations

No limitations are defined for this unit.

3.3.1.4.26 Wait_Event Unit

The Wait_Event Unit provides IGW processes with the ability to suspend

execution until one of the specified events occurs.

3.3.1.4.26.1 Inputs

The following inputs are required by the unit:

1) Event_Flags - This input is a 32 bit integer with each bit
specifying an event that is to be waited for. This input
is provided to the Wait_Event Unit by passing
an integer Parameter on the stack.

3.3.1.4.26.2 Outputs

The unit produces the following output:

1) Set_Events - This input is a 32 bit integer with each bit
specifying a bit in the requested event flags that was set
in the actual IGW event flags.

- 93 -

#1500-15-031.02.0

II 3.3.1.4.26.3 Local Data

No local data is defined for the unit.

3.3.1.4.26.4 Processing

11 Move SYS_WAIT system call identifier to register R2
Move Event_Flags from stack to register R3
Move 0 to register R4

II Perform a change mode to kernel instruction (CHMK)
Return Set_Events

3.3.1.4.26.5 Limitations

No limitations are defined for this unit.

I 3.3.1.4.27 Wait_Timeout Unit

II The Wait_Timeout Unit provides IGW processes with the ability to

suspend process execution until one of the specified events occurs or

I until the given time-out period expires.

1

1 - 94 -

I.

#1500-15-031.02.0

3.3.1.4.27.1 Inputs

The following inputs are required by the unit:

1) Event_Flags - This input is a 32 bit integer with each bit
specifying an event that is to be waited for. This input
is provided to the Wait on Event Unit by passing
an integer Parameter on the stack.

2) Timeout - This input contains the timeout period in units
of CLOCK_INT when the Wait_Timeout should return if none
of the specified event flags become set.

3.3.1.4.27.2 Outputs

The unit produces the following output:

1) Set_Events - This input is a 32 bit integer with each'bit
specifying a bit in the requested event flags that was set
in the actual IGW event flags.

3.3.1.4.27.3 Local Data

No local data is defined for the unit.

- 95 -

#1500-15-031.02.0

I 3.3.1.4.27.4 Processing

Move SYS_WAIT system call identifier to register R2 Move Event_Flags

I from stack to register R3 Move Timeout value from stack to register B4

Perform a change mode to kernel instruction (CHMK) Return Set_Events

3.3.1.4.27.5 Limitations

111

I No limitations are defined for this unit.

II 3.3.1.4.28 Message_pet Unit

I The Message_Get Unit provides IGW processes with the ability to

II allocate a free message buffer to the requesting process.

II 3.3.1.4.28.1 Inputs

I The following inputs are required by the unit:

1) Message_Header_Pointer - This input is a pointer to the
process space where ERTE will put the message header.

- 96 -

1
1

#1500-15-031.02.0

II 3.3.1.4.28.2 Outputs

The following outputs are produced by the unit:

1) Message_Header - This output is written to the message
header that is located at the address specified by the
Message_Header_Pointer input. This output contains the
header for the newly allocated message buffer.

2) Error_Value - This item is an integer value specifying if
an error occurred during system call processing. Possible
error codes are:

NOERROR - No error was detected.
M_NOBUFS - No memory or memory buffers available.
M_ADDRERR - Address error while writing header.

3.3.1.4.28.3 Local Data

No local data is defined for the unit.

3.3.1.4.28.4 Processing

Move SYS _MGET system call identifier to register R2
Move Message_Header_Pointer from stack to R3

I Perform a change mode to kernel instruction (CHMK)
Return Error_Value

#1500-15-031.02.0

1 3.3.1.4.28.5 Limitations

No limitations are defined for this unit.

3.3.1.4.29 Message_Discard Unit

The Message_Discard Unit provides IGW processes with the ability to

return allocated message buffers to the free message buffer list.

3.3.1.4.29.1 Inputs

The following inputs are required by the unit:

1) Message_Header_Pointer - This input is a pointer to the
process space that contains the message header of the
message that is to be discarded.

I 3.3.1.4.29.2 Outputs

II The following output is produced by the unit:

2) Error_Value - This item is an integer value specifying if
an error occurred during system call processing. Possible
error codes are:

NOERROR - No error was detected.
M_ADDRERR - Couldn't find or free message buffer.

1

- 98 -

#1500 - 15 - 031.02.0

3.3.1.4.29.3 Local Data

No local data is defined for the unit.

3.3.1.4.29 1 4 Processing

Move SYS_MFREE system call identifier to register R2
Move Message_Header_Pointer from stack to register R3
Perform a change mode to kernel instruction (CHMK)
Return Error_Value

I 3.3.1.4.29.5 Limitations

No limitations are defined for this unit.

3.3.1.4.30 Open_Message_pueue Unit

The Open_Message_Queue Unit provides IGW processes with the ability to

allocate a queue to accept incoming messages to the calling process.

#1500-15-031.02.0

1 3.3.1.4.30.1 Inputs

The following inputs are required by the unit:

1) Queue_ID - This input is provided to the unit
by passing the identifier of the message queue
that is to be opened on the stack.

2) Queue_Size - This input contains the maximum number of
messages that can be in the queue at a given time. This
input is provided to the Open Message Queue Unit
by passing an integer containing the maximum queue size on
the stack.

3.3.1.4.30.2 Outputs

The following output is produced by the unit:

3) Error_Value - This item is an integer value specifying
if an error occurred during system call processing.
Possible error codes are:

NOERROR - No error was detected.
M_MAXQID - Queue ID is to large.
M_QIDBUSY - Queue is already open.

- 100 -

#1500-15-031.02.0

II 3.3.1.4.30.3 Local Data

No local data is defined for the unit.

3.3.1.4.30.4 Processing

I Move SYS_MOPENQ system call identifier to register R2
Move Queue id from stack to register R3
Move Queue_Size from stack to register R4

II Perform a change mode to kernel instruction (CHMK)
Return Error_Value

3.3.1.4.30.5 Limitations

No limitations are defined for this unit.

I 3.3.1.4.31 Message_Send Unit

II The Message_Send Units provides processes with the facility to send a

message to another process.

- 101 -

1
1

1
1

1

#1500-15-031.02.0

I 3.3.1.4.31.1 Inputs

The following inputs are required by the unit:

1) Message_Header_Pointer - This input is a pointer to the
process space that contains the message header of the
message thàt is to be queued.

2) Queue_ID - This input contains the queue ID of the queue
that the message is to be queued on.

3.3.1.4.31.2 Outputs

The following output is produced by the Open Message Queue Unit:

I

NOERROR - No error was detected.
M_ADDRERR - Couldn't find message header.
M_MAXQID - Queue ID is to large.
M_NOQID - No receiving process.
M_ONQUEUE - Message buffer is already on a queue.
M_QFULL - Queue is full.

1

1

1) Error_Value - This item is an integer value specifying if
an error occurred during system call processing. Possible
error codes are:

1 - 102 -

1

1

#1500-15-031.02.0

II 3.3.1.4.31.3 Local Data

No local data is defined for the unit.

3.3.1.4.31.4 Processing

Move SYS_MSEND system call identifier to register R2
Move Message_Header_Pointer from stack to register R3
Move Queue_Id from stack to register R4
Perform a change mode to kernel instruction (CHMK)
Return Error_Vàlue

3.3 11.4.31.5 Limitations

No limitations are defined for this unit.

3.3.1.4.32 Message_Receive Unit

The Message_Receive Unit provides IGW processes with the ability to

receive messages from a message queue.

- 103 -

#1500-15-031.02.0

111

II 3.3.1.4.32.1 Inputs

The following inputs are required by the unit:

1) Message_Header_Pointer - This input is a pointer to the
process space that contains the message header of the
message that the dequeued packet is to be placed in.

2) Queue ID - This input contains the queue ID of the queue
that the message is to be received from.

-

3.3.1.4.32.2 Outputs

The following outputs are produced by the Message Receive Unit:

I

2) Error_Value - This item is an integer value specifying if
an error occurred during system call processing. Possible
error codes are:

NOERROR - No error was detected.
M_ADDRERR - Couldn't write message header.
M_MAXQID - Queue ID is to large.
M_QEMPTY - Queue is empty.
M_QIDBUSY - Queue belongs to another process.

1) Message Header - This output is written to the message
header 7t-hat is located at the address specified by the
Message_Header_Pointer input. This output contains the
header for the received message buffer.

- 104 -

#1500-15-031.02.0

3.3.1.4.32.3 Local Data

No local data is defined for the Message Receive Unit.

3.3.1.4.32.4 Processing

Move SYS_MRECV system call identifier to register R2
Move Message_Header_Pointer to register R3
Move Queue ID from stack to register R4
Perform a change mode to kernel instruction (CHMK)
Return Error_Value

3.3.1.4.32.5 Limitations

No limitations are defined for this unit.

3.3.1.4.33 Queue_Status Unit

111 The Queue_Status Unit provides IGW processes with the ability to

obtain status information from individual message queues. This status

I consists of the number of message buffers that are on the specified

I message queue, or if an error occurred, an error code is returned in

the place of the message buffer count.

- 105 -

#1500 - 15-031.02.0

II 3.3.1.4.33.1 Inputs

The following inputs are required by the unit:

1) Queue_ID - This input contains the queue identifier of the
message queue that status is to be obtained for.

3.3.1.4.33.2 Outputs

The following output is produced by the unit:

1) Queue_Status - This item is an integer value that
contains the number of items in the queue that is
specified by the Queue ID. If an error occurs in
determining the message count an error code is given for
the queue status instead. The following are the possible
error codes for the queue status input:

M_MAXQID - Queue ID is too large
M_NOQID - No process attached to queue.

3.3.1.4.33.3 Local Data

I No local data is defined for the unit.

- 106 -

• #1500-15-031.02.0

II 3.3.1.4.33.4 Processing

I Move SYS_MSTATUS system call identifier to register R2
Move Queue ID from stack to register R3
Perform a change mode to kernel instruction (CHMK)
Return Queue Status

3,3.1.4.33.5 Limitations

II No limitations are defined for this unit.

I 3.3.1.4.34 Get_Time Unit

The Get_Time Unit provides IGW processes with the ability to retrieve

the current time value from ERTE.

3.3.1.4.34.1 Inputs

No input is required by the unit.

1 - 107 -

#1500-15-031.02.0

II 3.3.1.4.34.2 Outputs

The following output is produced by the unit:

1) Current_Time - This input is a 32 bit integer that .
contains the current time.

3.3.1.4.34.3 Local Data

No local data is defined for the unit.

3.3.1.4.34.4 Processing

M ove SYS_GETTIME system call identifier to register R2
Perform a change mode to kernel instruction (CHMK)

I Return Current Time

3.3.1.4.34.5 Limitations

1 No limitations are defined for this unit.

#1500-15-031.02.0

I 3.3.1.4.35 Set_Priority Unit

The Setjriority Unit provides IGW processes with the ability to alter

the priority level that the calling process is running at.

3.3.1.4.35.1 Inputs

The following inputs are required by the unit:

1) New_Priority - This input contains the new processor
priority level for the current process.

3.3.1.4.35.2 Outputs

The following output is produced by the unit:

1) Old_priority - This item contains the processor priority
of the process before the new priority has been set.

3.3.1.4.35.3 Local Data

No local data is defined for the unit.

- 109 -

#1500-15-031.02.0

3.3.1.4.35.4 Processing

Move SYS_SPL system call identifier to register R2
Move New_Priority from stack to register R3
Perform a change mode to kernel instruction (CHMK)
Return Old_Priority

3.3.1.4.35.5 Limitations No limitations are defined for this Unit.

3.3.1.4.36 Panic Unit '

I The Panic unit issues an error message to the console and reboots the

IGW. It is used to recover from fatal system errors.

I 3.3.1.4.36.1 Inputs

II The following inputs are required by the unit:

1) Panic_Message - This input is a null terminated character
string that contains a message that is to be printed on
the IGW console.

- 110 -

#1500-15-031.02.0

3.3.1.4.36.2 Outputs

The following outputs are produced by the unit:

1) Panic Message - This output is the same as the Panic
Message input except for the fact that it is preceded by
the message "panic: " and is followed by a newline.

2) CPM - This output is MicroVAX II Console Program Mailbox
which is loaded with the value RB_REBOOT to cause the
MicroVAX to perform a reboot when halted.

3.3.1.4.36.3 Local Data

No local data is defined for the unit.

3.3.1.4.36.4 Processing

Call printf("panic: %s\n", panic message)
Set CPM to RB_REBOOT
Halt Processor

3.3.1.4.36.5 Limitations

No limitations are defined for this unit.

- 111 -

#1500-15-031.02.0

3.3.1.4.37 Printf Unit

The Printf Unit is used to display formated output messages on the IGW

console from within the ERTE kernel. This unit provides a scaled down

version of the printf C library routine.

3.3.1.4.37.1 Inputs

The following inputs are required by the unit:

1) Format_String - This input consists of a null terminated
string that is used to format the output produced by this
unit. A '%' character in this string is treated
specially. The '%' character indicates to this unit that
the following character indicates a data type that is to
be printed from the next next item to be formatted. The
following special characters may follow a 1 % 1 :

x, x, X - Print argument as a 32 bit hexadecimal
value.

d, D, u - Print argument as a 32 bit decimal
value.

s - Print null terminated string pointed to
by argument.

c - Print 8 bit character representation of
argument.

% - Print a '%' character.

See the C library printf description for further discussion
of the format string.

2) Items_To_Se_Formatted - This input consists of the data
that is to be formatted. There may be up to ten items.

- 112 -

#1500-15-031.02.0

II 3.3.1.4.37.2 Outputs

The following output is produced by the unit:

1) Formatted_Message - This output is the formatted version
of the message inputs. It is sent to the operator console
one character at a time.

3.3.1.4.37.3 Local Data

1 No local data is defined for the unit.

II 3.3.1.4.37.4 Processing

Call sscanf(Formatted_Message, Format_String, Items_To_Be_Formatted)

I
For each character in Formatted_Message

Write character into console transmit register
Loop

Test the console CSR register
While the CSR register shows transmission is incomplete

Endfor

3.3.1.4.37.5 Limitations

I No limitations are defined for this unit.

#1500-15-031.02.0

3.3.1.4.38 Insert_pn_Run_Queue Unit

The Insert_On_Run_Queue Unit is used to put a process on the run

queue. The process is added to the run queue according to its

priority.

3.3.1.4.38.1 Inputs

The fo ll owing inputs are required by the unit:

1) Process_List - This input is obtained from the
global data storage area, and contains a list of process
headers for the IGW processes.

2) Run_Queue - This input contains a pointer to the current
head of the run queue. This input is obtained from
the global data storage area.

3) Process_To_Run - This input is passed to this unit as a
parameter on the stack, and contains the address of the
entry in the process header list for the process that is
to be placed on the run queue.

- 114 -

I

1. #1500-15-031.02.0

3.3.1.4.38.2 Outputs

1) Run_Queue - This output is written to the global data
storage area, and contains the updated value of the
head of the process run queue if the process that was
being placed on the run queue was placed at the
beginning of the run queue.

3.3.1.4.38.3 Local Data

The Following data is local to the unit:

1) P - This pointer references the addresses of run queue
entries in the process table, and is used to step through
the run queue.

2) PREV - This pointer contains the previous value of the
Process Pointer P while stepping through the run queue.

3.3.1.4.38.4 Processing

Clear PREV
Move Run_Queue to P
While priority of current process is less than the priority of
the process pointed to by P

Move Process Pointer P to Process Pointer PREV
Move next run queue entry pointer for process P to Process
Pointer P

If Process Pointer P is NULL
Exit Loop

End If

I End While
Move Process Pointer P to next run queue entry pointer field for
the process that is to be placed on the run queue

II

If Process Pointer PREV is NULL
Move Process to Run pointer to Run_Queue

Else
Move Process to Run Pointer to next run queue entry
pointer field for the process entry pointed to by
process pointer PREV

End If

- 115 -

#1500-15-031.02.0

3.3.1.4.38.5 Limitations

No limitations are defined for this unit.

3.3.1.4.39 Identify_Entry Unit

This unit contains all entry points into ERTE, and it is used to

identify the source and type of each entry into ERTE.

3.3.1.4.39.1 Inputs

There are no inputs to this unit.

3.3.1.4.39.2 Outputs

The unit writes the type of entry into the ERTE Control LLC variable

Entry_Type.

- 116 -

1
1
1

1

1
11

#1500-15-031.02.0

II 3.3.1.4.39.3 Local Data

The unit maintains no local data.

3.3.1.4.39.4 Processing

The unit contains an entry point for each possible exception or

11 interrupt. At each entry point, the interrupt priority level is set

II to maximum, the Entry_Type value corresponding to that exception is

pushed onto current stack and then a jump is made to the Process_Entry

II unit.

II 3.3.1.4.39.5 Limitations

No limitations are imposed by this unit.

3.3.1.4.40 Process_Entry Unit

The Process_Entry unit controls the primary actions required to

II
process the current entry into ERTE.

1
1
1

- 117 -

1

#1500-15-031.02.0

II 3.3.1.4.40.1 Inputs

The unit takes the following inputs:

1) Entry_Type - This item contains the entry type for the
current entry. This tiem is described in the ERTE Control
LLC as a local data item. This item resides on a stack.

3.3.1.4.40.2 Outputs

This unit produces no output.

3.3.1.4.40.3 Local Data

This unit generates no local data.

3.3.1.4.40.4 Processing

Pop the Entry_Type from the stack
Save the context of the current process (VAX SVPCTX instruction)
to location
indicated by PCB_Base.
Call Decode_Entry
Restore the context of the process indicated by PCB_Pase
(VAX LDPCTX instruction).

Return from the current entry (VAX REI instruction).

1

- 118 -

#1500 - 15 - 031.02.0

I 3.3.1.4.40.5 Limitations

II This unit must be written in assembly language.

3.3.1.4.41 Deoode_Entry Unit

The Decode_Entry unit examines the Entry_Type and determines if an

11 interrupt or an exception has occurred. The unit selects the next

action based on this decision.
II

The unit also sets the PCB_Base

register to indicate the first process on the run queue is to be used

II in Load Context operations.

II 3.3.1.4.41.1 Inputs

The unit takes the following inputs:

1) Entry_Type - This parameter indicates the type of the
current entry. It is described in the ERTE Control LLC as
a local data item.

2) Run_Queue - This is the pointer to the process header
representing the process which is to be run next. See
section 3.3.1.2 TLC Global Data for a description of this
item.

3) Process_List - This is the list of process headers for all
processes. See 3.2 Global Data for a description of process
headers.

- 119 -

1

#1500-15-031.02.0

3.3.1.4.41.2 Outputs

The unit has the following outputs:

1) PCB_Base - the unit sets this VAX register to point to the
PCB portion of the process header pointed to by the
Run_Queue. See 3.3.1.2 TLC Global Data for a description
of these items.

2) Wdog_Timer - The unit sets this watch-dog timer to its
start value each time it finds that the Run_Queue is
non-zero (le it points to a process header). This item is
fully described in 3.3.1.2 TLC Global Data.

3.3.1.4.41.3 Local Data

This unit generates no local data.

3.3.1.4.41.4 Processing

If (Entry_Type >= SYS_CALL) then
Call Process_Exception

El se
Call Process_Interrupt

Endif
Loop

Test Run_Queue
While Run_Queue is zero

Set PCB_Base to PCB_Address field in process header pointed to by
Run_Queue.
Set Wdog_Timer to WDOG_START.

- 120 -

1

#1500-15-031.02.0

II 3.3.1.4.41.5 Limitations

There are no limitations for this unit.

3.3.1.4.42 Prooess_Interrupt

1
The Process_Interrupt unit examines the entry type and determines

11 whether the clock, a known device, or some unknown source caused the

II interrupt. The unit selects the actions to be executed based on the

interrupt source.

3.3.1.4.42.1 Inputs

The unit requires the following inputs:

1) Entry_Type - This integer parameter represents the type of
entry into ERTE.

- 121 -

#1500 - 15-031.02.0

II 3.3.1.4.42.2 Outputs

II The unit has no outputs.

3.3.1.4.42.3 Local Data

dl No local data is defined for the unit.

II 3.3.1.4.42.4 Processing

If Entry Type is CLOCK_ENTRY
Call —Process_Clock

Else
If Entry_Type is one of the known interface devices

Set event corresponding to device event
For each process waiting on the event

Mark process as runnable.
Set RO field to Event.
Insert process onto run queue

Endfor

El se
Call Printf(Unexpected interrupt received)

Endindif

1

#1500-15-031.02.0

3.3.1.4.42.5 Limitations

No limitations are defined for the unit.

3.3.1.4.43 Process_Exception

The Process_Exception unit examines the entry type and determines

whether a CHMK exception (le a system call) occurred, or a fatal

error, or a recoverable error has occurred.

3.3.1.4.43.1 Inputs

The unit requires the following inputs:

1) Entry_Type - This integer parameter represents the type of
entry into ERTE.

2) Process_List - This global list contains the process
headers for each process.

3) Run_Queue - This global item points to the first process
on the ERTE queue of runnable processes.

1

1
- 123 -

1

#1500-15 - 031.02.0

3.3.1.4.43.2 Outputs

The unit has no outputs.

3.3.1.4.43.3 Local Data

The following local data is defined for the unit:

1) Exception_Messages - This data is a table of messages that
identify the exceptions recognized by the ERTE. Each
entry in the table has two fields:

1. Entry - This field is an integer and contains the entry
type value for the exception.

2. Message - This is a character array of length 40, which
contains a description of the exception suitable for
display on the operators console.

3.3.1.4.43.4 Processing

If Entry_Type is SYS_CALL
Extract the R2 value for the current process (Current_process

points at current process) which holds the code for the
system call requested.

Case R2 value
SYS_CLREVENT: Call Clear_Event_Call

SYS_GETTIME:

SYS_MFREE:

SYS_MGET:

SYS MRECV:

SYS_MSEND:

SYS_NEW:

Call Get_Time_Call

Call Message_Discard_Call

Call Message_Get_Call

Call Message Receive_Call

Call Message_Send_Call

Call New_Memory_Call

- 124 -

#1500-15-031.02.0

SYS_MOPENQ:

SYS_MSTATUS:

SYS_SETEVENT:

SYS_SPL:

SYS_SLEEP:

SYS_SUSPEND:

SYS_WAIT:

Call Open Message_Queue_Call

Call Queue_Status_Call

Call Set_Event_Call

Call Set_priority_Call

Call Sleep_Call

Call Suspend_Call

Call Wait_Event_Call

Endcase
Else

If Entry_Type is a fatal error type of exception
Call Printf(Fatal exception has occurred)
Look up Entry_Type in Exception Messages
Call Printf(Exception is, Fata7_Message for Entry_Type)
Call Panic(IGW is Rebooting)

Else
Look up Entry_Type in Exception_Messages
Call Printf(Exception Occurred, Exception_Message for
Entry_Type)

Endif
Endif

3.3.1.4.43.5 Limitations

No limitations are defined for the unit.

- 125 —

1

#1500-15-031.02.0

3.3.1.4.44 Process_Clock_Interrupt

The Process_Clock unit updates the ERTE timer values for a clock

interrupt. The time since boot is incremented, the watchdog timer is

decremented, and each process waiting for time to expire has its time

to wait value decremented. If the watchdog timer is decremented to

zero, then a reboot is initiated. Each process whose time to wait

value is decremented to zero is placed on the run queue.

3.3.1.4.44.1 Inputs

The unit requires the following inputs:

1) Process_List - This global item is the list of process
headers representing all processes in the IGW.

2) Time - This global unsigned integer contains the number of
ticks since the IGW was last booted, where a tick is one
hundredth of a second.

3) Wdog_Timer - This global unsigned integer is the number of
ticks remaining in the watchdog timer, which causes a
reboot of the IGW if the no process can run for a given
period (several minutes).

- 126 -

in #1500-15-031.02.0

II 3.3.1.4.44.2 Outputs

The unit produces the following outputs:

1) Process_List - This global item is the list of process
headers representing all processes in the IGW.

2) Time - This global unsigned integer contains the number of
ticks since the IGW was last booted, where a tick is one
hundredth of a second.

3) Wdog_Timer - This global unsigned integer is the number of
ticks remaining in the watchdog timer, which causes a
reboot of the IGW if the no process can run for a given
period (several minutes).

II 3.3.1.4.44.3 Local Data

II No local data is defined for the unit.

3.3.1.4.44.4 Processing

I Load ICCS Processor register with logical or of ECCS_RUN,
ECCS_IE, ICCS_INT, and ICCS_ERR

Increment the Timer by one
II Decrement the Wdog_Timer by one

If Wdog_Timer is zero
Call Panic(Watch Dog timer expired)

11 Endif

_

I .

For each process in the Process_List
If the process is not on the run queue

If the process has a Time_To_Wait value not zero
Decrement the process Time_To_Wait by one
If the Time_To_Wait for the process is now zero

Call Insert_On_Run_Queue(process)
Endif

Endif
Endif

II Endfor

- 127 -

#1500-15-031.02.0

3.3.1.4.44.5 Limitations

No limitations are defined for the unit.

• SOFTWARE DETAILED DESIGN
DOCUMENT_ FOR THE INTER-
NETWORK 'GATEWAY P_ROJECT

QA
76.9
S88
S6474
1988
v.1

CRC LIBRARY/B BLIOTHEQUE CRC
QA76.9.S88 86474 1988

INDUSTRY CANADA/ INDUSTRIE CANADA

111111111111111111 1111111111111
208849

1

