

. 5 7 . . .

) 'cum*\ mm:mm s CANADA

LIBRARY / DIBLIOTHEQUE

Industry Canada
Library - Queen

A%E 2 0 2012

Industrie Canada |
Bibliothéque - Queen |
\

VOLUME 5
SOFTWARE DETAILED DESIGN DOCUMENT
FOR THE
INTERNETWORK GATEWAY
Submitted to: C.R.C.
Ottawa, Ontario

SKI. Document #1500-15-031.03.0
Copy #3 05 May 1988

N BN =IlN IS BE S I EE B B BN B Em

I
1

{

[

SOFTWARE DETAILED DESIGN DOCUMENT
FOR THE

INTERNETWORK GATEWAY PROJECT

VOLUME 5

Contract No, 36001-6-3535/02-8T

05 May 1988

Prepared for:

Comnmunications Research Centre
Ottawa, Ontario

Prepared by:

Software Kinetics Ltd.
65 Iber Road, P.0O. Box 680
Stittsville, Ontario Canagda
KOoA 3GO

SKL Document #1500-15-031.02.0

[I
Vol.5 RELEASABLE
DOC-CR-RC-88-008

PNCE— A
— //rrlp
B ST
s N
P S i [
N L <3 o
% — ;
PRSI N . pd AR
,_. A i T - s,
St N -
A) A
eSS N ~
e -
,\'\./.,.f, N
e

I3

- : ' : . -
[kS - P o - i - - -

[|
k]

i

Document Name:

Approvals

Project Engineer:

Prbject Hanager:

Technical Authority:

Document Approval Sheet

for the

Internetwork Gateway Project

Document No: 1500-15-031.02.0

Software Detailed Design Document
for the Internetwork Gateway Project

Signature Date

WM%@M

WQ:J\JK

T. M. Symch

)

P. Labbe - CRC

Sy /788"
M@c—\ f)/ B3
3

7 L>xb~u/ 24

2 , . . .

Revision

01

02

Document Revision History

Description of Changes

New Document Issued

Coding and Integration

Origin Date

23 September 1987

05 May 1988

TABLE OF VOLUMES

VOLUME 1 1.0 Introduction
2.0 Referenced/Applicable Documents
3.0 Design
3.1 Interface Design
3.2 Global Data
3.3 TLC Design
3.3.1 Efficient Real Time Executive
(ERTE)
VOLUME 2 3.3.2 IP TLC
3.3.3 EGP TLC
VOLUME 3 3.3.4 X.25 Dewvice Driver (XDD) TLC
3.3.5 Ethernet Device Driver (EDD) TLC
3.3.6 Console Device Driver (CDD) TLC
VOLUME 4 3.3.7 Operator Interface TLC
3.3.8 BSTAT TLC
VOLUME b .3. Primary Boot TLC

0 ©Secondary Boot TLC
0.1 Local Boot LLC
0.2 1IGW Net Load LLC
0.3 Host Net Load LLC
1 Support Software

Glossary

TABLE OF CONTENTS

3.3.9 Primary Boot TLC Detailed Design
3.3.10 Secondary Boot TﬁC Detailed Design
3.3.10.1 Local Boot LLC

1 Local Boot Architecture
2 Global Data

.3 Local Boot LLCs
4 Secondary Boot Units

1 Add_To_PT Unit
.2 Create_Int_Stack
Unit
3.3.10.1.4.3 Define_Free_HMenm
Unit
Define_ILA Unit
File_Open Unit
File_Read Unit
File_Read_Line Unit
File_Seek Unit
Get_Flags Unit

-
-
-
.
.

-
-
-
.
.

-
-
.
.
.

-
.
.
.
.

-
-
-
.
-

-
-
-
.
-

3.3.10.1.4.4

3.3.10.1.4.5

3.3.10.1.4.6

3.3.10.1.4.7

3.3.10.1.4.8

3.3.10.1.4.9

3.3.10.1.4.10 Inet_Addr Unit

3.3.10.1.4.11 Link_IO_Pages Unit

3.3.10.1.4.12 Load_ACT_Tbl Unit

3.3.10.1.4.13 Load_ERTE Unit

3.3.10.1.4.14 Load_GW_Tbl Unit

3.3.10.1,.4.15 Load IXIB Unit

3.3.10.1.4.16 Load_NB_Tbl Unit

3.3.10.1.4.17 Load_Net_Tbl Unit

3.3.10.1.4.18. Load_SCB Unit

3.3.10.1.4.19 Main Unit

3.3.10.1.4.20 Panic Unit

3.3.10.1.4.21 Printf Unit

3.3.10.1.4.22 Read_Dir Unit

3.3.10.1.4,23 Read_Process__
List Unit

3.3.10.1.4.24 Read_Processes
Unit

0.1.4.25 Reboot Unit
0.1.4.26 Relocate Unit
0.1.4.27 Reserve_SPT Unit
0.1.4.28 Size_Memory Unit
0.1.4.29 Start_ERTE Unit

3.3.10.2 IGW Net Load Component

O O ~JW

(X}

12

14
16
18
20
22
24
25
28
30
33
36
40
42
45
48
50
52
53
57
58

60

66
67
69
71
73

75

.

3.3.10.2.1 Net Load Component 75
Architecture
3.3.10.2.2 Global Data 78
3.3.10.2.3 IGW Net Load LLCs 79
3.3.10.2.4 IGW Net Load Units 79
3.3.10.2.4.1 Calc_Memory_Size Unit 79
3.3.10.2.4.2 Check_Dgram Unit 81
3.3.10.2.4.3 Check_IP Unit 83
3.3.10.2.4.4 Check_UDP_Hdr Unit 86
3.3.10.2.4.5 Chk_Sum Unit 89
3.3.10.2.4.6 Copy_Dgram Unit 90
3.3.10.2.4.7 Create_Dgram Unit 92
3.3.10.2.4.8 Create_Ip_Hdr Unit 94
3.3.10.2.4,9 Create_UDP_Hdr Unit 97
3.3.10.2.4.10 Download_Dgram Unit 100
3.3.10.2.4.11 Init_Ether Unit 102
3.3.10.2.4.12 Install_ IXIB Unit 103
3.3.10.2.4.13 Install_SW Unit 106
3.3.10.2.4.14 Main Unit 109
3.3.10.2,4.15 Print_Msg Unit 110
3.3.10.2.4.16 Recv_Data Unit 111
3.3.10.2.4.17 Recv_Dgram Unit 114
3.3.10.2.4.18 Reboot Unit 117
3.3.10.2.4.19 Relocate Unit . 118
3.3.10.2.4.20 ©Send_Dgram Unit 120
3.3.10.2.4.21 ©Send_ Message 123
3.3.10.3 Host Net Load LLC 125
3.3.10.3.1 Host Net Load LLC 125
Architecture .
3.3.10.3.2 Global Data 128
3.3.10.3.4 Host Net Load Units - 130
3.3.10.3.4.1 Add_To_PT Unit 130
3.3.10.3.4.2 Create_Int_Stack 132
- Unit

3.3.10.3.4.3 Define_Free_Mem Unit 134
3.3.10.3.4.4 Define_ILA Unit 136
3.3.10.3.4.5 Get_Flags Unit 138
3.3.10.3.4.6 Link_TO_ Pages Unit 139
3.3.10.3.4.7 Load_ACT_Tbl Unit 141
3.3.10.3.4.8 Load_ERTE Unit 144
3.3.10.3.4.9 Load_GW_Tbl Unit 148
3.3.10.3.4.10 Load_IGW Unit 152
3.3.10.3.4.11 Load_IXIB Unit 154
3.3.10.3.4,12 Load_NB_Tbl Unit 156
3.3.10.3.4.13 Load_Net_Tbl Unit 1569
3.3.10.3.4.14 Load_Reg Unit 163

4.0

3.3.10.3.4.15
3.3.10.3.4.16
3.3.10.3.4.17

Load_SCB Unit
Main Unit
Read_Process_
List Unit
Read_Processes
Unit

Reserve_SPT Unit
Write_ ILA Unit

3.3.11 SUPPORT SOFTWARE Detailed Design

GLOSSARY

3.3.11
3.3.11
3.3.11
3.3.11

WWWwWwWww

W N -

Write_Diskettes
Write_Diskettes
Write_Diskettes
Write_Diskettes

Blocks

1
2
3

.4 Init
5 Main
6

Transfer

Architecture
Global Data
LLC Design

Unit Design

Add_Files

Directory_List

164
166
169

171

177
179

180

181
182
183
183

183
187
188
192
194
199

201

#1500-15-031,02.0

3.3.9 Primary Boot TLC Detailed Design

This TLC has been eliminated <from the design of the IGW because the

Boot programs residing in ROM on the Micro-VAX contain all the

functionality of the Primary Boot TLC as described in [5].
3.3.10 Secondary Boot TLC Detailed Design

The Secondary Boot TLC is responsible for booting the IGW from either
floppy diskette, or from a host on the Ethernet. To accomplish this
the TLC has been divided into three distinct lower level components

(Figure 3-9):

1) Local Boot LLC - This component is responsible for
booting the IGW entirely from floppy disks.

2) IGW Net Load LLC - This component is responsible for
requesting and receiving boot software and data over
the Ethernet network. This component resides on the
IGW.

3) Host Net Load LLC - This conponent resides on a host,

and is responsible for sending IGW software and data
to the IGW when a regquest to do so is received.

The following sections describe each of these LLCs.

#1500-15-031.02.0

+
I
|
+
+ ________

|
o ——— e ———— +
| Host_Net Load |
| LLC |
e e e +

TLC

| TLLC

Figure 3-9

[LLC

#1500-15-

3.3.10.1

The Local

loading of the IGW system from diskette, and for the initialization of

menory hardware and tables. After this loading and initialization,

the Local

031.02.0

Local Boot LLC

Boot LLC contains the software that is responsible for the

Boof software will transfer control to the IGW ERTE that has

been loaded into main menory.

3.3.10.1.

The Local

3-10:

1)

2)
3)

4

1 Local Boot LLC Architecture

Boot LLC consists of the following units as shown in Figure

Relocate Unit - This wunit is used to relocate the
secondary boot program to the end of memory to allow the
loading of the IGW software.

Size Memory Unit - This unit determines the amount of
physical memory in the IGW.

Load_SCB Unit - This unit loads the System Control Block
from a file on the IGW diskette.

Reserve_ SPT Unit - This unit reserves the space required

to contain the System Page Table.

5)

- 6)

Define_ILA Unit - This unit defines the structure of the
IGW Link Area. This area contains information and
pointers <to information that are used globally by the
IGW. As part of +the 'ILA definition procedure SPT
entries are added to the System Page Table to reference
the pages of the IGW Link Area.

Load ERTE Unit - This unit is responsible for the
loading of the ERTE from diskette into IGW memory.

+ ————— + —-———— + ————— 4+ ————— + ———— + —_———— +
1 I i I 1 | i
] 1 1 1] 1 1
1 + — + | i 1 1 ! I
1 1 i | i | 1 1 t .
| _m_ I 1 ! 1 “ “
1 1 1 i 1 } 1
1 1 H I 1 1 I i 1 o <
1 1 It 1 1 + — + 1 i 1 + — + 1)
1 IO I i i 1 | t 1 i i 1 :
+ — 4+ g 1 } 1 10O 1 J i RS I 1
| oAl] i 1~ 1 1 i 1 01 1
I 1 4 P+ —+ i 1 .91 | 1 I 1 O 1 I
1 1@ ! I i 1 1 @ | i + —+ 1 + — + 4+ —+ .9 1 i + — +
1 1Al i & I 1 Bt 1 1 I I | | 1 T I 1 |
i 1 1 1 | 1 R 1 1 — 1 ! 14 1 1 Mo 1 1 31
I + — 4+ I 1 D1 1 PO 1 1 Ql t PP 1 1 i 1 1 EH ot
| | v + —4+ 0 1 1 B + — 4+ gt i + — 4+ 1 [
| + — + 4+ — 4+ |1 i 1 & i t |1 I i At 1 i 1 Ko
1 1 1 I [1 P ! f Mmoo 1 1 H 1 4+ — + 1 t
i 1 B ! 1~ I 1 Tt + —+ 2Z | 1 A I 1 | + — 4+ P
| 1 @ | 1 bo-A 1 i o} 1 1 i 1 1 ! 10 ! 1 H
1 2 1 1) 1 i 01 1 1 T t + —+ i PO i 1 |
1 1|1 1 1 | 1 1 g1 1 1 @ | 1 : 1 I 0 1 I
| 10 | + —+ 1 | 1 1 I 01 | + — + 1 TN 1 1 u i
| 10 i o + — 4+ i TS] ! | ! i 01 1 ! i
1 1 H i + — 4+ | I 1 - 1 t O 1 I 1 01 | + — +
+ — 4+ 1 I 1 1 + —+ i + — 4+ ! 1 -4 t 1 O 1 |
1 | f1 ! 101 I i 1 | + — 4+ g 1 + — 4+ H i + — +
1 1 0 1 g1l 1 i 0l 1 + — 4+ i i @ 1 Pyt 1 | 1
4+ —— + | 1 gt ! P -d i 1o 1 l I | b 1 T | 1 >t
1 | 1 1A | [1 1 o | I i m | 1 1 1 o 1 IoH
S’ | i P4 i i I ! [1 1 H o I + — + I 1 © | | t O 1
1 O | i 1 O 1 1 O I [T 1 1 1 i t 0 t 1B
1 O i I Al i 1 © | i ' ! 1 H I + —+ i 1 Mo i 1 Q| o
I m 1 | 1 1 + — 4+ 01 + — 4+ O + — 4+ |1 1 i t 1 1 i + — 4+ 51 —
o 1 + — + t P 1 1A 1 I O 1 1 g ! + — + 1 ' t
|~ + —+ i ! | ¢ 1 1| I 1 @t I 1A 1 | 1 O ™
[| + — + 1 10 i [1 1 Ot + — 4+ @ | 1 + —+ | 1 N
1 0 i 1 I 1 i 1~ 1 A 1 [! LA I] 1 i t -d)
1 O 1 1 1M i bo-d 1 io-d 1 ! 1 j I 1 i TS | i i 0 H
[1 1 1 01 1 oo i 141 i + — + I + — 4+ i 1w i 1 i a)
I | 1 1 © i 1 i | i 1 1 i 1 i 141 i + — + b
4+ —— 4+ i 1 2 i + — + 1 + —+ I + —+ | + — + 1 [1 -
1 1 0 i 1 1 i i I 1 i 1 t | 1 + —+ fx
1 [] + — 4+ 1 + —+ 1 1~ I 1 mi 1 1 0 ! 1t
I 1P 1 1] 1 i i 1 1 .Q 4 1 1 Ot ! i 0 | (A
I 1 g } 1 0| 1 i H 1 1 B i P 0 I 1 Q| | Pl
+ — 4+ H I 1 1 o) I 10 1 1 j1 i] j1 + — 4+ 0| t 1 »n
1 1| 1 P DI i 13 | I = + —+4+ T | 1 1 O I N B
i 10 | 1Mo ! 1 & | + —4+ 01 | 1 © 1 1 H i 1 o1
i 1 P + — 4+ |1 +—+4 |1 i 1] 1 1 O 1 Pt + —+ b1
1 I | 1o 1 1 I (o 1 141 1 t | | 1 H
1 PO 1 i~ 1 1 O | 1 1 @1 t 1 1 I [oAl I 1 O |
1 1 H 1 1Al 1 Pat 1 1 01 i + — + 1 1 © i 1 1 @1
I 1 U ! 1 1 iH 1 1 41 [i IR] | 1 O
o 4 i I I I 1 1 | 1 1 | | I + — + i 1 m 1 I Mot
. i + —+ i + — + 1 + —+ ! + —+ I ! i i 1 1 | ! i
-~ 1 1 1 i 1 1~ i + — + t + —+
o I 4+ —+ I + —+ 1 + —+ 1 + — + i 1.1 1 [
. 1 ! i i i | I i | 1 ! | 1 i B 1 + —+ i + — +
—_ 1 1B I Fgol 1 i 0 i PR | 1|1 1 i 1 i 1 1
Py 1 1y | | i 1 D i 1 H I b oo i b H I 1 1 O |
o i o t 101 1 [i 1 M1 i 1@t 1 A | 1P
" 1 I O} ! i O | 1 1A i 1 F ot + —4+ Z 1 1 1At 1 1 @ |
O + — 4+ B + — 4+ |1 + — 4 k| +—+4+ |1 i |t +— 1 |t + — 4+ 01
v 1| IO i 1 T} 1 Tt 10 1 0
' O T e 1 2 1 @ i @ 1 @1 I~
o (oI P 1 01 1 01 1 O 1 1 @1 1@ |
ps (= o 1O 141 [| 1 Mo Mt
o 1 I i i 1 I | 1 1 1 i i I |
—_ 4+ —+ + —+ + — 4+ + —+ + —+ + —+ + —+
%

#1500-15-031.02.0

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

Read_Process_List Unit - This unit reads the list of
processes that are to be loaded from diskette.

Read_Processes Unit - This unit makes use of the list
obtained by the Read_Process_List Unit to read in the
IGHW processes from diskette. This unit alsc sets up PPT
and §SPT entries, allocates stack space (by the use of
the Allocate_Stacks Unit), and updates the PCB in
Process_List.

Load ACT_Tbl Unit - This unit reads the X.121 Address
Configuration Table from diskette and 1loads it into
system wvirtual address space. The IGW Link Area is
updated to reference the system virtual address of the
loaded table. ' 4
Load Net_Tbl Unit - This unit reads the X.121 Address
Configuration Table from diskette and 1loads it into
system virtual address space. The IGW Link Area is

updated to reference the system virtual address of <the
locaded table.

Load_GW_Tbl Unit - This wunit reads the Gateway Table
from diskette and loads it into system virtual address
space., The IGW Link Area is updated to reference the

system virtual address of the lcaded table.

Load NB_Tbl Unit - This unit reads the Neighbor Table

from diskette and loads it into system wvirtual address

space., The IGW Link Area is updated to reference the
system virtual address of the loaded table.

Create_Int_Stack Unit - This unit allocates space for
the interrupt stack. System page table entries are
addeqd and hardware registers are set during the

allocation procedure.

Define_Free_Mem Unit - This unit sets up the system page
table entries required to reference the free memory of
the IGW. '

Link_I0_Pages Unit - This unit sets up a pointer in the
IGW Link Area to reference the area of memory that 1is
designated for I/0.

Load_IXIB Unit - This unit reads the IXIB scoftware frem
diskette and sends it to the IXIB beoard to Dbe loaded
inte the memory on that board..

#1500-156-031.02.0

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

File _Open Unit - This unit will obtain file description
information required by the File_Read and File_Read_Line
Units.

File_Read Unit - This unit will read data from a floppy
disk file that has been opened by the File_Open Unit.

File Read_Line Unit - This wunit will read a single
newline terminated record from the floppy disk file that
has been opened with the File_Open Unit.

Add_To_PT Unit - This wnit is called to add an entry to
a page table.

Start_ERTE Unit -~ This unit transfers control from the
Local Boot LLC to the ERTE TLC thus starting IGW gateway
operations.

Printf - This wunit is <called *to display formatted
messages on the IGW console during the secondary boot
procedure.

Reboot - This wunit is used to perform a reboot of the
IGW from diskette. 3

Panic - This unit displays an error message on the IGW
console and causes the IGW to reboot from diskette.

Inet_Addr - This wunit converts an IP address in dot
notation to 32 bit representation.

Get_Flags - This unit converts a flags string into a bit
pattern.
Main - This unit 1is called after secondary boot

relocation and is responsible for calling the secondary
boot units reguired to perform the boot.

File_Seek - This unit will reposition the file pointer
for the currently open file.

Read_Dir - This wunit will read the disk directory for
both IGW diskettes from diskette number 0.

#1500-15-031.02.0

3.3.10.1.2 Global Data

This section describes the format and contents of the data which is

defined

to Dbe globally used between the units contained within

secondary boot procedure.

1)

2)

3)

4)

RELOC - This constant defines the physical address that
the secondary boot image is to be relocated to.

DIR_SIZE -~ This constant defines the number of entries
that the Disk_Dir table will hold. This value 1is
currently defined as 20.

Disk_Dir - This global data item contains a table of
DIR_SIZE directory entries for the files contained on
the IGW diskettes. The end of the directory is detected
by either the predefined constant DIR_SIZE or if there
are less entries by having the Dir BN field of the entry
after the last valid entry to be 0. Each directory
entry contains the following fields: '

- Dir_Name - This field consisgts of an array of 15
bytes containing the file name stored as a null
terminated character string.

- Dir_Dev - This field «consists of a single byte
indicating the floppy drive number that the file is
stored on.

- Dir_BN - This field consists of a 16 bit integer
containing the starting block number of the file on
the diskette.

- Dir_Size - This field consists of a 32 bit integer
containing the size of the file in bytes.

FICS - This global data item holds the File Input
Control Structure. This structure contains information
pertaining to the currently opened file. This structure

contains the following fields:

- QOI_Start_BN - This field «consists of a 16 bit
integer containing the block number of the first
block in the currently open file. :

the

#1500-15-031.02.0

?)
6)
7)
8)

9)

10)

- O0I_BSize - This field consists of a 32 bit integer
containing the size of the currently open file in
bytes.

- ©OI_Dev - This field consists of a 16 bit integer
containing the floppy drive number where the
currently open file resides.

- OI_Block_Offset - This field consists of a 16 bit
integer containing the block offset from the start
of the diskette of the currently open file.

- OI_Byte_Offset - This field consists of a 16 bit
value indicating the bytes offset of the file read
position in the «c¢urrent block being read in the
currently open file.

- ©OI_Flags - This field consists of a 16 bit integer
containing flags indicating information pertaining
to the currently open file. Valid flags for this

field are:
FILE_OPEN (0x01) - File has been opened.
Free_Phys - This global data item consists of a 32 bit

integer containing the physical address of the start of
memory that has not been allocated yet.

Free_Virt - This global data item consists of a 32 bit
integer containing the virtual address of the start of
virtual memory that has not been allocated vet.

Istack_Phys - This global data item consists of a 32 bit
integer containing the physical address of the top of
the interrupt stack.

Istack;Yirt - This global data item consists of a 32 bit
integer containing the virtual address of the top of the
interrupt stack.

Proc_List - This global data item consists of an array
of 100 bytes containing the names of +the files that
processes are to be loaded from. Each file name is
separated by a newline character and the 1list 1is
terminated by a null character.

S¥ys_PT - This global data item consists of a 32 bit
integer containing the starting physical address of the

#1500-15-031.02.0

system page table.

3,3.10.1.3 Local Boot LLCs

There are no LLCs defined for the Local Boot LLC.

3.3.10.1.4 Local Boot Units

The -following subsections contain the unit descriptions for the
units comprising the Local Boot LLC.

3.3.10.1.4.1 Add_To_PT Unit

The Add_To_PT Unit adds page table entries to either the systen
or the process page tables.

3.3.10.1.4.1.1 1Inputs

The following inputs are used by the Add_To_PT Unit:

1)

2)

3)

PT_Addr - This dinput contains the starting physical
address of the page table that page table entries are to
be added to. ‘

Phys_Addr - This input contains the physical address of
the page that is to be added to the page table.

Virt_Addr - This input contains the virtual address of
the page that is to be added to the page table. .

#1500-15-031.02.0

3.3.10.1.4.1.2 Outputs
The following outputs are produced by the Add_To_PT Unit:
1) Page Tables - This output is written to the page table
specified by the PT_Addr input. The format of these
page tables is given in the global data section.

3.3.10.1.4.1.3 Local Data

No local data is defined for the Add_To_ PT Unit.

3.3.10.1.4.1.4 Processing

Move PEN of Phys_Addr'to address specified by VPN of Virt_Addr +
PT_Addr

Set PT_Valid field in PT entry at VPN of Virt_Addr + PT_Addr
Move PT_UW to PT_Prot field in PT entry at VPN of Virt Addr +

PT_Addr
Return

3.3.10.1.4.1.5 Limitations

This unit performs no checks for incorrect virtual addresses, so
specifying invalid virtual address could result in page table entries
to be written to incorrect locations outside of the page table in

phyéical nemnery.

#1500-15-031.02.,0

3.3.10.1.4.2 Create_Int_Stack Unit

The Create_Int_Stack Unit Reserves an area in physical memnory

following the global tables to contain the interrupt stack.

3.3.10.1.4.2.1 Inputs

The following inputs are defined for the Create_Int Stack Unit:

1) Free_Phys - This dinput is read from global data and
contains the free physical nmemory address where the
interrupt stack is located.

2) Free_Virt - This input is read from global data and
contains the free virtual memory address where the
interrupt stack is placed.

3.3.10.1.4.2.2 Outputs
The following outputs are produced by the Create_Int_Stack Unit:

1) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
menory address.

2) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

3) Istack_Phys - This output is written to global data and
contains the physical address of the initial interrupt
stack pointer.

4) Istack_Virt - This output is written to global data and
contains the virtual address of the initial interrupt
stack pointer. ’

#1500-15-031.02.0

3.3.10.1.4.2.3 Local Data

No local data is defined for the Create_Int_Stack Unit.

3.3.10.1.4.2.4 Processing

Add ISTACK_SIZE to Free_ Phys

Add ISTACK_SIZE to Free_Virt

Adjust Free_Phys and Free_Virt to point to next page boundary if
necessary

Move Free_Phys to Istack_Phys

Move Free_Virt to Istack_Virt
Return

3.3.10.1.4.2.5 Limitations

No limitations are defined for the Create_Int_Stack Unit.

3.3.10.1.4.3 Define_Free_Mem Unit

The Define_Free_ Men Unit.defines the system virtual addresses for the

area in physical memory from the beginning of the tables to the end of

the free memory.

#1500-15-031.02.0

3.3.10.1.4.3.1 Inputs

The following inputs are defined for the Define_Free Mem Unit:

1)

2)

3)

Table_Phys - This input is read from global data and
contains the physical memory address where table storage
begins.

Table_Virt - This input is read from global data and
contains the virtual memory address where table storage
begins.

Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_ SPT Unit.

3.3.10.1,4.3,2 Outputs

The following outputs are produced by the Define_Free_Mem Unit:

1)

2)

3)

SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

Free_Virt - This output is written to global data and
contains the updated value for the next free address in
physical memory .

ILA - This output is written to the ILA area and is
updated with the virtual address for the start of +the
IGW free memory.

13

#1500-15-031.02.0

3.3.10.1.4.3.3 Local Data

No local data is defined for ﬁhe Define_Free_Mem Unit.

3.3.10.1.4.3.4 Processing

Move Free_ Virt to ILA entry for free virtual menory
For each page N starting at Table_Phys to end of physical memory
Call Add4_To_PT(Page_Table = Sys_ PT,

Virt_Addr = N * PAGE_SIZE + Table_Virt,
Phys_Addr = N * PAGE_SIZE + Table_Phys)
Endfor :
Return

3.3.10.1.4.3.5 Limitations

No limitations are defined for the Define_Free_Mem Unit.

3.3.10.1.4.4 Define_ILA Unit

The Define_ ILA Unit Reserves an area in physical memory following the
system page table. to c¢contain the IGW Link Area. ©System page table
entries are created for thigs area referencing system virtual addresses

starting at the beginning of the system virtual address space.

#1500-15~-031.02.0

3.3.10,1.4.4.1 Inputs

The following inputs are defined for the Define_ ILA Unit:

1) Free_Phys =~ This input is read from global data and
contains the free physical memory address where the ILA
area is to be placed..

2) Free_Virt - This input is read from global data and
contains the free virtual memory address where +the ILA
area is to be placed.

3) ©Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve SPT Unit.

3.3.10.1,4,4.2 Outputs
The following outputs are produced by the Define ILA Unit:

1) ©SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and |
contains the updated address of the next £free wvirtual
nemory address. '

4) ILA -~ This output updates the IGW Link Area with any
fields of that area that are to be initialized. '

#1500-15-031.02.0

'3.3.10.1,4.4.3 Local Data

No local data is defined for the Define_ILA Unit.

3.3.10.1.4.4.4 Processing

For each page N in ILA
Call Add To_PT(Page_Table = Sys_PT, Free_Virt, Free_FPhys)
Add PAGE_SIZE to Free_Phys
Add PAGE_SIZE to Free_Virt

Endfor

Move Sys_Pt to SPT_Address field of ILA
Return .

3.3,10.,1.4.4.5 Limitations
No limitations are defined for the Define_ILA Unit.
3.3.10.1.4.5 File_Open Unit

The File Open Unit searches through the memory resident disk directory
for a specified file. If the file is found in the disk directory the
File Input Control Structure (FICS) is initialized for that file and
the value of NOERROR is returned. If the file isn't in the directory

ERROR is returned.

#1500-15-031.02.0

3.3.10.1.4.5.1 Inputs

The following inputs are defined for the File Open Unit:

1)

2)

Open_File Name - This input consists of the name of the
diskette file that is to be opened.

Disk_Dir =~ This input consists of the disk directory in
global data that has been obtained by the File_Get Dir
Unit.

3.3.10.1.4.5.2 Outputs

The following outputs are produced by the File_ Open Unit:

1)

FICS' - This output is the File Input Control Structure
that has been initialized for the open file. It is
defined as global data.

3.3.10.1.4.5.3 Local Data

No local data is defined for the File Open Unit.

3.3.10.1.4.5.4 Processing

For each directory entry N in Disk_Dir
If Dir_Name field of directory entry N matches Open_File_Name

Endfor

Move Dir_ BN field of directory entry N to IO_Start_ BN

field of FICS

Move Dir_Size field of directory entry N to IO_Size field

of FICS

Move Dir_Dev field of directory entry N tio I0_Dev field

of FICS

Move IO_Start BN field of FICS IO_Block_Offset field of

FICS

Move Ox7FFFF hexadecimal to IO _Byte Offset field of FICS
Move FILE_OPEN to I0_Flags field of FICS
Return NOERROR

Endif

Return ERROR

17

#1500-15-031.02.0

3.3.10,1.4.5.5 Limitations

The Read_Dir unit must be called before this unit.

3.3.10.1.4.6 File_Read Unit

The File_Read Unit will read a specified number of bytes from

the

diskette file that was opened with the File_Open Unit into a Buffer.

3.3.10,1.4.6.1 Inputs

The following inputs are defined for the File_Read Unit:

1)

2)

3)

4)

FICS - This input contains the File Input Control
Structure, and contains the current £file input status
for the file being read. This input comes from global
data.

Input_Buffer - This input is the address of the
Input_Buffer output item. oo

Bytes _To_Read - This input contains the number of bytes
that are to be read from the diskette file,

Diskette - This input consists of the file data that is
read from the IGW diskette.

18 -

#15600-15-031.02.0

3.3.10.1.4.6.2 Outputs

The following outputs are produced by the File_Read Unit:

1)

2).

Input_Buffer -~ This output is an array of characters in
which the input data is written to.

FICS -~ This output is the File Input Control Structure

- that has been updated to indicate the read data. It is

defined as global data.

3.3.10.1.4.6.3 Local Data

The following local data is defined for this unit:

1)

In_Ptr - This local data item is used to point to the
input buffer in which data 1is being returned to the
calling unit.

3.3.10.1,4.6.4 Processing

If FILE_OPEN Flag isn't set in IO_Flags Field of FICS

Return ERROR

Endif

Move Input_Buffer address to In_Ptr

Loop

While Bytes_To_Read is greater than 0 and IO_Byte Offset
field of FICS is less than 512 (1 block)

If (512 * I0_Start_ BN + IO_Size < 512 * I0_Block Offset +
I0_Byte_Offset) using the fields in FICS

Return address given in In_Ptr - address of Input_Buffer

Endif

Move byte from I0_In_Buf field of FICS referenced by
I0 Byte Offset field of FICS to address referenced by
In_Ptrx

Increment I0_Byte_ Offset field of FICS

Increment In_Ptr

Decrement. Bytes_To_Read

Endwhile
If Bytes_To_Read is O

Else

Exit Loop

Call ROM based disk driver routine to read the disk block

addressed by the IO_Block_Offset field of FICS on the
disk specified by the IO Dev field of FICS to the
I0_In_Buf field of FICS

19

#1500-15-031.02.0

Increment IQ0_Block Offset field of FICS
Clear 10 _Byte Offset field of FICS
Endif
~Endloop
Return address given in In_Ptr - address of Input_Buffer

3.3.10.,1.4.6.5 Limitations

No limitations are defined for this unit.

3.3.10.1.4.7 File_Read_Line Unit

The File_Read Line Unit will read a line of input from the diskette

file that was opened with the File Open Unit into a buffer.

3.3.10.1.4.7.1 Inputs

The following inputs are defined for the File_Read_Line Unit:

1) In_Ptr - This input contains the address of the
Input_Buffer output.

#1500-15-031.02.0

3.3.10.1,4.7.2 Outputs
The following outputs are produced by the File_Read_Line Unit:

1) Input_Buffer - This output is an array of characters in
which the input data is written to.

3.3.10.1.4.7.3 Local Data
The following local data is defined for this unit:

1) Bytes_Read - This local data item contains the number of
bytes that have been read while performing a single
character read.

3.3.10.1.4.7.4 Processing

Loop
Bytes_Read = File_Read(In_Ptr, 1)
If Bytes_Read isn't equal 1 or data referenced by In_Ptr
is a <LF> character
Exit Loop
Endif
In Ptr++
Endloop
Move NULL character to data referenced by In_Ptr
Return

3.3.10.1,4,7.5 Limitations

No limitations are defined for this unit.

21

#1500-15-031.02.0

3.3.10.1.4.8 File_Seek Unit

The File_Seek Unit is wused to position the file pointer of the open

file to the specified byte offset.
3.3.10.1.4.8.1 Inputs

The following inputs are defined for the File_Seek Unit:

1) FICS -~ This input contains the File Input Control
Structure, and contains the current file input status
for the file being referenced. This input comes from
global data.

2) Bytes_Offset - This input contains the new value of the
" byte offset into the file. .

3) Diskette - This input consists of the file data that is

read from the IGW diskette to load the internal data
buffer in FICS.

3.3.10.1.4.8.2 Outputs
The following outputs are produced by the File_Seek Unit:
2) FICS - This outpuﬁ is the File Input Control Structure

that has been updated to new file pointers. It is
defined as global data. ' "

22

#1500-15-031.02.0

3.3.10,1.4.8.3 Local Data

No local data is defined for this unit.

3.3.10.1.4.8.4 Processing

.If FILE_OPEN Flag isn't set in IO_Flags Field of FICSH

Return ERROR
Endif :
If Byte_Offset is greater than or equal to I0_Size field of FICS
Return ERROR
Endif
Move Byte_Offset to IO_Block Offset field of FICS
Divide IO_Block_Offset field of FICS by 512 plac1ng remainder in
the IO_Byte_Offset field of FICS
Add IO_Start_BN field of FICS to IO_Block Offset field of FICS
Call ROM based disk driver routine to read the disk block
addressed by the I0O_Block_ Offset field of FICS on the disk
gpecified by the IO_Dev field of FICS to the I0_In_Buf field of
FICS
Return NOERROR

3.3.10.1.4.8.5 Limitations

No limitations are defined for this unit.

#1500-15-031.02.0

3.3.10.1.4.9 Get_Flags Unit

The Get_Flags Unit is wused to convert a character string containing

flags to a bit representation of those flags.
3.3.10.1.4.9.1 Inputs
The following inputs are required by the Get_Flags Unit:

1) Bet_Flags - This input consists of a character string
containing the flags that are set.

'2) All Flags - This input consists of a character string
containing all possible flags given in the correct bit
order.

3.3.10.1.4.9.2 Outputs
The following outputs are produced by the Get _Flags Unit:

1) Flags -~ This output consists of the flags given in
Set_Flags stored in bit positions.

#1500-15-031.02.0

3.3.10.1.4.9.3 Local Data

No local data is defined for the Get_Flags Unit.

3.3.10,1.4.9.4 Processing
Clear Flags
For each Flag from ¢ to N - 1 in All_Flags
If Flag N is in Set_Flags
Bitwise or (1 left shifted by N) into Flags
Endif

Endfor
Return Flags

3.3.10.1.4.9.5 Limitations
No limitations are defined for this unit.
3.3.10.1,4.10 Inet_Addr Unit

The Inet_ Addr Unit is used to convert a character string

IP address -in dot notation to a 32 bit value.

.

containing an

#1500-15-031.02.0

3.3.10.1.4.10.1 Inputs

The following inputs are required by the Inet_Addr Unit:

1) Addr_Ptr - This inputs points +to a character string

consisting of the IP address in dot notation.
3.3.10.1.4.10.2 Outputs
The following outputs are produced by the Inet_ Addr Unit:

1) IP_Addr - This output contains the 32 bit representation
of - the IP address in the Addr_Ptr input.

3.3.10.1.4.10.3 Local Data
The following local data is used by the Inet_Addr_Unit:

1) Addr_Char - This 1local data item is used to hold. the
characters of the dot format IP address while stepping
through it. '

2) Addr_Parts - This 1local data item is an array of 3
unsigned 32 bit integers indexed from 0 to 2. It 1is
used to hold the parts of IP address that have been

converted to internal representation.

3) Dot_Count -~ This 1local data item is used to count the
nunber of "." characters in the dot format IP address.

#1500-15-031.02.0

3.3.10.1.4,10.4 Processing

.Loop

Clear IP_Addr
While Addr_Ptr points to non NULL data
Move byte pointed to by Addr_Ptr to Addr_Char
If Addr_Char is a digilt
Multiply IP_Addr by 10

Add (Addr_Char - '0') to IP_Addr
Increment Addr_Ptr
Else
Exit Loop
Endif
Endwhile
If Addr_Ptr points to a ',' character

If Dot_Count is greater than or egual to 3
Return ERROR
Endif ' .
Move IP_Addr to Entry indexed by Dot_Count in Addr_Parts
Increment Dot _Count
Increment Addr_Ptr
Else
Exit Loop
Endloop .
If Addr_Ptr points to data other than NULL, SPACE, or TAB
Return ERROR
Case Dot_Count
l: '
Left shift Addr_Parts entry 0 by 24 bits
And IP_Addr with Oxffffff
Or Addr_Parts entry 0 into IP_Addr

Left shift Addr_Parts entry 0 by 24 bits
And Addr_Parts entry 1 with Oxff

Left shift Addr_Parts entry 1 by 16 bits
And IP_Addr with Oxffff

Or Addr_Parts entry 0 into IP_Addr

Or Addr_Parts entry 1 into IP_Addar

Left shift Addr_Parts entry 0 by 24 bits
And Addr_Partes entry 1 with Oxff

Left shift Addr_Parts entry 1 by 16 bits
And Addr_Parts entry 2 with Oxff

Left shift Addr_Parts entry 2 by 8 bits
And IP_Addr with Oxff

Or Addr_Parts entry 0 into IP_Addr

Or Addr_Parts entry 1 into IP_Addr

Or Addr_Parts entry 2 into IP_Addr

#1500-15-031.02.0

Endcase
Return IP_Addr in reverse byte order

3.3.10.1.,4.10.5 Limitations

No limitations are defined for this unit.

3.83.10.1.4.11 Link_IO_Pages Unit

The Link_TQO_Pages Unit is wused to create system virtual address for
the I0 pages and store the starting virtuwal address of the IO pages in

the ILA.

3.3.10.1.4.11.1 Inputse

No inputs are defined for the Link_IO_Pages Unit.
1) Free_ Virt - This input is read from global data and
contains the next free virtual address.

2) ©Sys_Pt - This input is ©read <from global data and
contains the address of the system page table.

#1500-15-031.02.0

3.3.10.1.4.11.2 Outputs

The following outputs are produced by the Link_lo_fages Unit:

1)

2)

SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

ILA - This output is written to the IGW link area to
indicate the starting system virtual address of the IO
pages. ’

3.3.10.1.4.11.3 Local Data

No local data is defined for the Link_IO_Pages Unit.

3.3.10.1.4.11,4 Processing

Move Free_Virt to Link_IO field of ILA
For each page N in the IO Space
Call Add_To_PT(Page_Table = Sys_PT,

Virt_Addr = N * PAGE_SIZE + Free_Virt,
Phys_Addr = N * PAGE_SIZE + IOQO_PHYS)
Endfor
Return

3.3.10.1.4.11.5 Limitations

No limitations are defined for the Link IO Pages Unit.

29

#1500-15-031.02.0

3.3.10.1.4.12 Load_ACT_Tbl Unit

The Load ACT_Tbl Unit loads X.25 Address Configuration Table

from

diskette to the system virtual address space following the process

page tables. The ILA is updated to indicate the .correct address of

this table.

3.3.10.1.4.12.1 Inputs

The following inputs are used by the Load ACT_Tbl Unit:

1) X.25_ACT - This input is read from the file "x.25_act"®
on the IGW diskette and contains a copy of the X.25
Address Configuration Table. This file contains the

following fields:

X121 - This field contains the X.121 address (1 to 15
bytes) of the table entry.

Inet - This . field contains the IP address in dot
notation for the table entry.

Size - This field c¢ontains the maximun size for a
packet for the host described in the table entry.

Flags - This field contains flags describing a table
entry. : ’ -
2) Free_Phys - This input 1is read from global data and

contains the free physical memory address where the X.25
Address Configuration Table is to be placed. :

3) Free Virt - This input is read from global data anad
contains the free virtual memory address where the X.25
Bddress Configuration Table is to be placed.

1)

2)

3)

4)

#1500-15-031.02.,0

3.3.10.1.4.12.2 OQOutputs

The following outputs are produced by the Load ACT_Tbl Unit:

ACT_Table - This output is written to the global data
area as new entries are added to the X.25 Address
Configuration Table. This table contains the following
fields:

ACT_X121 - This field consists of a 16 byte character
string the X.121 address of the current entry.

ACT_Inet - This field consists of a 32 bit value
indicating the IP address for the current entry.

ACT_Size - This field consists of a 16 bit value
indicating the maximum size of a packet for the
current entry.

ACT_Flags - This field consgists of a 32 bit value
containing the following flags. a

REQ_REV (0x01) - Request reverse charging.
ACC_REV (0x02) - Accept reverse charging.
REJ_IN (Ox04) - Reject incoming calls.
REJ_OUT (0x08) - Reject outgoing calls.
IXIB (0x10) - Remote is an IXIB.

Free_Phys - This output is written to g¢global data and
contains the updated address of the next free physical
memory address.

Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memnory address.

ILA - This output is written to the IGW Link Area and is
vpdated with the address of the X.25 Address
Configuration Table,

31

#1500-15-031.02.0

3.3.10.1.4.12.3 Local Data

The following local data is defined for the Load_ACT_Tbl Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the x.25_act
file.

2) Host - This data item is used to hold the dot notation

format of the IP addresses as they are read from the
X.25_act file.

3) Flags - This data 4item is a character string used to
hold the flags field of each entry that is read fron
x.25_act file.

4) ACT_Ptr - This data item is used to step through
ACT_Table while adding table entries.

3.3.10.1,4.12.4 Processing

If result of File_ Open("x.25_act") is less than O
Call panlc(Error message)
Endif
Clear ACT _Table
Move Free_Virt to ACT Table pointer in ILA
Move Free_Phys to ACT_Ptr
While more data in x.25_act file
Call File_Read_Line(Input_Buffer, bytes to read = 100)
If first character in Input_Buffer is a '#'
Continue next loop 1teratlon
Endif
If ACT_Table is full
Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s %4 %s"
Act_X121 field of ACT_Table entry p01nted to by ACT Ptr,
Host,
Address of ACT_Size field of ACT_Table entry pointed to by ACT _PTR,
Flags) is -1
Exit Loop
Endif
ACT_Inet field of ACT_Table entry p01nted to by ACT_Ptr =
Inet_Addr(Host)
If ACT_Inet field of ACT_Table = -1
Call Printf(error message indicating invalid ACT Entry)
Continue next loop iteration

#1500-15-031.02.0

Endif :
ACT _Flags field of ACT _Table entry pointed to by ACT Ptr =
bitwise or between ACT_VALID flag and Get_Flags(Flags, "RAIOX")

Set ACT_Ptr to point to next entry in ACT_Table

Endwhile

Add size of ACT _Table to Free_Phys

Add size of ACT_Table to Free_Virt

Return

3.3.10.1.4.12.5 Limitations
No limitations are defined for the Load_ACT_Tbl Unit.
3.3.10.1.4.13 Load_ERTE Unit

The Load_ERTE Unit is responsible for the loading of the ERTE

executable image from diskette to the IGW memory. For each page of

_ERTE that is loaded a system page table entry is created.

3.3.10.1.4.,13.1 Inputs

"The following inputs are defined for the Load_ ERTE Unit:

1) ERTE - This input is read from the file "ERTE" on the
IGW diskette and contains the header, text, data, and
bss areas of the ERTE executable.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where ERTE 1is
to be placed.

3) Free_Virt ~ This input is read from global data and
contains the free virtual memory address where ERTE 1is
to be placed.

#1500-15-031.02.0

4) ©Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

3.3.10.1.4.13.2 Outputs

The following outputs are produced by the Load ERTE Unit:

1) ERTE Memory Image - This output is written to the main
memory of the IGW and contains the text, data, and bss
areas for ERTE. ’

2) ©SPT - This output is written to the system page table by
calling the Add_To_PT Unit, and contains the new page
table entries for the memory occupied by ERTE.

3) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

4) Free_Virt - This output is written to global data and

contains the updated address of the next free virtual
memory address.

3.3.10.,1.4.13.3 Local Data

The following local data is defined for the Load_ERTE Unit:

1) Counter - This 1local data item is an integer that is
used as a byte counter while c¢learing the bss area of
ERTE.

2) Exec_Header - This local data item is a structure that

is used to hold the header from the ERTE executable that
is loaded from diskette. The fields in this structure
are all 32 bit values and are defined as follows:

A_Magic - This field contains the type of the
executable image that is being loaded. Valid values
for this field are:

34

-/

#1500-15-031.02.0

OMAGIC (0407) ~ 014 impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A Text - This field <contains the size 0f the text

segment in bytes.

A_Data -~ This field <contains the size of the

initialized data segment in bytes.

A_Bss - This field contains the
uninitialized data segment in bytes.

A_Syms - This field contains the size of the symbol
field.
A_Entry - This field contains of the address of the

entry point of the loaded executable image.

A_Trsize - This field contains the size of the text

relocation area.

A-Drgize - This field contains the size of the data

relocation area.

3.,3,10.,1.4.13.4 Processing

If result of File Open("ERTE") is less than O
Call Panic(error message)-

Endif ' .

Bytes_Read = File_Read(address of Exec_Header,

size of Exec_Header)

If Bytes_Read not equal size of Exec_Header
Call Panic(error message)

Endif ' ,

If A_Magic field of Exec_Header is ZMAGIC

If result of File_Geek(Offset = 1024) is less than O

Call Panic(error message)
Endif ‘

Else if A_Magic field of Exec_Header isn't one of OMAGIC or NMAGIC

Call Panic(error message)
Endif »
Bytes_Read = Read_File(Free_Phys,

A_Text field of Exec_Header + A_Data field of Exec_Header)
If Bytes read not eqgual (A_Text field of Exec_Header + A_Data

field of Exec_Header)

#1500-15-031.02.0

Call Panic(error message)
Endif
For each page N in ERTE text, data, and bss areas
Call Add_To_PT(Page_Table = Sys_PT, Free_Virt, Free_Phys)
Free_Phys += PAGE_SIZE
Free Virt += PAGE_SIZE
Endfor
Clear bss area of ERTE
Endfor
Return

3.3.10.1.4.13.5 Limitations

No limitations are defined for the Load_ERTE Unit.

'3.3,10.1.4.14 Load_GW_Tbl Unit

The Load_GW_Tbl Unit loads the Gateway Table from the file "gateway"”
on diskette into the IGW main memory. This file is used to define the
various gateways that the IGW may access in addition to those

determined through EGP.

#1500-15-031.02.0

3.3.10.1.4.14,1 Inputs

The following input is used by the Load_GW_Tbl Unit:

1)

2)

3)

Gateway - This input is8 read from the diskette file
"gateway" contains a copy of the Gateway Table. This
file contains the following fields:

Dst_Net - The destination network that is accessed by
a gateway table entry.

GW_Addr - The address of the gateway to route packets
for the specified destination network.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP
network address mask for the destination network.

Hop - The number of gateways that must be crossed to
reach the destination.

Flags - This field consists of user definable flags.
Valid flags are:

E - Report route via EGP. ~

G - Gatewayed host. Delete route if the gateway
goes down. .

R - Attempt to reroute datagrams if the gateway
goeg down.

Free_Phys - This input is read from global data and
contains the free wvirtual memory address where the
gateway table ig placed.

Free_Virt - This input is read from global data and
contains the free wvirtual memory address where the
gateway table is to be placed. ~

37

#1500-15-031.02.0

3.3.10.1.4.14.2 Qutputs

The -following outputs are produced by the Load GW_Tbl Unit:

1)

2)

3)

4)

GW_Table - This output is written to the global data
area as new entries are added to the Gateway Table.
This table contains the following fields:

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
mnemory address.

Free Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address,

ILA - This output is written to the IGW Link Area and is
updated with the address of the gateway table.

3.3.10.1.4.14.3 Local Data

The following local data is defined for the Load_GW_Tbl Unit:

1)

2)

3)

4)

5)

~Input_Buffer - This data consists of a buffer of 100

bytes that is used to read records from the gateway
file.

GW_Addr - This data item consists of a character string
used to hold the IP address for each entry that is ;ead
from the gateway file.

Dst_Net: - This data item consists of a character string
used to hold the destination network numnber for each
entry that is read from the gateway file.

Flags - This data item is used to hold the flags field
of each entry that is read from the gateway file.

GW_Ptr - This data item is used to step through GW_Table
while adding table entries.

38

#1500-15-031.02.0

3.3.10.1.,4.14.4 Processing

If result of File Open("gateway") is less than O

Call Panic(error message)

Endif

Clear entries in GW_Table

Move Free_Virt to GW_Table pointer in ILA
Move Free_ Phys to GW_Ptr

While more data in gateway file

Call File Read_Line(Input_Buffer, bytes to read

If first character in input buffer is a '#°'
Continue next loop iteration

Endif

If GW_Table is full
Exit loop

Endif

If result of sscanf(Input_Buffer, "%s %s %x %4 %s %s",

Dst_Net, GW_Addr,

Address of GW_Mask field of GW_Table entry pointed to by GW_Ptr,
Address of GW _Hop field of GW_Table entry pointed to by GW_Ptr,
Flags) is -1

Exit Loop :

Endif »
GW_Dst_Net field of GW_Table entry pointed to by GW_Ptr =
Inet_Addr(Dst _Net)

If GW _Dst Net field of GW_Table entry pointed to by GW_Ptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif

GW_GW_Addr field of GW_Table entry pointed to by GW_Ptr =

Inet Addr(GW_Addr)

If GW_GW_Addr field of GW_Table entry pointed to by GW_Ptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif

Move index of entry in Net_Table with same network address as

the network portion of the gateway address to GW_Number
field of GW_Table entry pointed to by GW_Ptr

GW_Flags field of GW_Table entry pointed to by GW_Ptr =

bitwise or between GW_VALID flag and Get_Flags(Flags, "EGR")

Set GW_Ptr to point to next entry in GW_Table

Endwhile ' : '
Add size of GW_Table to Free_Phys

Add size of GW_Table to Free_Virt

Return

100)

#1500-15-031.02.0

3.3.10.,1.4.14.5 Limitations

The unit Load_Net_Table must be executed before this unit.

3.3.10.1.4.15 Load_IXIB Unit

The Load IXIB Unit is responsible for the loading of the . IXIB

communications software from diskette to the IXIBs.

3.3.10.1.4.15.1 Inputs

The following input is defined for the Load IXIB Unit:

1)

IXIB File - This input is read from the file "IXIB"™ on
the IGW diskette and contains the IXIB software in
Motorola S-record format.

3.3.10.1.4.15.2 Outputs

The following output is produced by the Load IXIB Unit:

1)

IXIB - This output is written to each IXIB by way of the
IXIB FIFO registers. The output written consists of the
IXIB File.

#15600-15-031.02.0

3.3.10.1.4.15.3 Local Data

The following local data is defined for the Load_ IXIB Unit:

1) Input_Buffer - This local data item consists of an array
of 512 bytes and is used to hold data from the IXIB file
while locading the IXIBs.

2) Bytes Read -~ This local data is used to hold the number
of bytes that have been read from a File_Read request.

3) Ibuf_Index - This 1local data item used as an index to
the Input_Buffer while sending data from that buffer to
the IXIBs.

3.3.10.1.4.15.4 Processing

If the result of File_Open("IXIB")
Call Panic(error message)
Endif
While data remains to be read in IXIB File
Bytes_Read = File_Read(Input_Buffer, 512)
For each byte in Input_Buffer
Move byte from input buffer to IXIB FIFO for
each IXIB
Endfor
Endwhile
Return

#1500-15-

3.3.10.1.

031.02.0

4,15.5 Limitations

No limitations are defined for the Load_IXIB Unit.

3.3.,10.1.4.16 Load_NB_Tbl Unit

The Load NB_Tbl Unit loads

"neighbou
to define

communica

3.3'10'1.

r'" on diskette into the IGW main memory.

the ' EG

information describing

te via EGP with.

4.,16.1 Inputs

p

Neighbour Table from the file

the gateways that +the IGW

The following inputs are used by the Load_ NB_Tbl Unit:

1)

2)

3)

Neighbour - This

input is read from the diskette file

"neighbor™ and contains a
Table. This file contains the following fields:

co

py of the EGFP Neighbour

IP_ADDR - The Internet address of the EGP neighbour
gateway in dot notation.

Flags - This field consists of user definable flags.

Yalid flags are:

M - Gateway
O - Gateway
S - Gateway

Free_Phys ~ This

contains the free
neighbour table is

Free_Virt - This

is a main neighbour.
is an alternate neighbour.
is a stub gateway.

input
physical

is

read from global data and
memory address where the

to be placed.

input

is

read from global data and

This file is used

can

42 -

#1500-15-031.02.0

contains the free virtual memory address where the
neighbour table is to be placed.

3.3.10,1.4.16.2 QOutputs

The following outputs are produced’by the Load_NB_Tbl Unit:

1) NB_Table - This output is written to the global table
area of physical memory as new entries are added to the
Neighbour Table,

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical

" memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memnory address.

4) ILA - This output is written to the IGW Link Area and is
updated with the address of the neighbour table.

3.3.10.1.4.16.3 Local Data

The following local data is defined for the Load_NB_Tbl Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the neighbour
file,

2) IP_Addr - This data item consists of a character string

used to hold the IP address of each EGP neighbour
gateway entry that is read from the neighbour file.

3) Flags - This data item is used to hold the flags field
of each entry that is read from the neighbour file.

4) NB_Ptr - This data item is used to step through NB Table
while adding table entries.

43

#1500-15-031.02.0

3.3.10.1.4.16.4 Processing

If result of File_Open("neighbour") is less than O
Call Panic(error message)
Endif
Clear entries in NB_Table
Move Free_Virt to NB_Table pointer in ILA
Move Free_ Phys to NB_Ptr
While more data in neighbour file
Call File_Read_Line(Input_Buffer, bytes to read = 100)
If first character in input buffer is a '#°'
Continue next loop iteration

Endif

If NB_Table is full
Exit loop

Endif

If result of sscanf(Input_Buffer, "$s %s", IP_Addr, Flags) ig -1
Exit Loop

Endif

NB_IP_Addr field of NB_Table entry pointed to by NB_Ptr =
Inet_Addr(IP_Addr)

If NB_IP_Addr field of NB_Table entry pointed to by NB _Ptr = -1
Call Printf(error message indicating invalid neighbour entry)
Continue next loop iteration

Endif

NB_Flags field of NB_Table entry pointed to by NB Ptr =

bitwise or between NB_VALID flag and Get Flags(Flags, "MOS™)
Set NB_Ptr to point to next entry in NB_Table

Endwhile

Add size of NB_Table to Free_Phys

Add size of NB_Table to Free_Virt

Return

#1500-15-031.02.0

3.3.10.1.4.16.5 Limitations

No limitations are defined for the Load_NB_Tbl Unit.

3.3.10.1.4.17 Load_Net_Tbl Unit

The Load_Net Tbl Unit Loads the Network Table from the file "network™
on diskette into the IGW main memory. This file is used to define the
network interface information reguired for each network that +the IGW

is connected to.
3.,3.10,1.4.17.1 Inputs
The following inputs are used by the Load_Net_Tbl Unit:

1) Network - This input is read from the file “"network" on
the IGW diskette and contains a copy of +the Network
Table. This file contains the following fields:

IP_Addr -~ The local Internet address of the IGW on
the referenced network. This field 1is a string
containing the IP address in dot notation.

Interface _I4d -~ The interface number of the network
interface represented by this entry. Each interface
is given a number which is used to direct datagrams
to the correct interface for transmission.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP
network address mask.

MTU - The maximum transmission unit for IP datagrams.

#1500-15-031.02.0

2)

3)

This value is specified as an integer.

Flags - This field consists of one user definable
flag which is "U"™ indicating +that the interface
should be marked as being up.

Free_Phys - This input 1is read from global data and
contains the free physical memory address where the
gateway table is to be placed.

Free_Virt - This input is read from global data and
contains the free wvirtual memory address where the
gateway table is to be placed.

3.3.10.1.4.17.2 Outputs

The following outputs are produced by the Load Net_ _Tbl Unit:

1)

2)

3)

4)

Net_Table - This output is written to the global data
area as new entries are added to the Network Table.
This table is defined in section 3.2.

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
nenory address.

ILA - This output is written to the IGW Link Area and is
updated with the address of the gateway table.

46

#1500-15-031.02.0

3.3.10.1.4.,17.3 Local Data

The following local data is defined for the Load_Net_Tbl Unit:

1) Input_Buffer - This data «consists of a buffer of 100
bytes that is used to read records from the network
file.

2) IP_Addr - This data item is used to hold the IP address

for each entry that is read from the network file.

3) Flags - This data item is used to hold the flags field
of each entry that is read from the network file. N

4) Net Ptr - This data item is wused to step through
Net_Table while adding table entries.

5) Interface_Number - This data item is used to hold the
interface 1id number of each entry read form the network
file.

6) Mask - This data item is used to hold the address mask

for each entry read from the network file.

7) MTU - This data item is used to hold the network MTU for
each entry read from the network file.

3.3.10.,1.4.17.4 Processing

If result of File_Open("network™) is less than O
Call Panic(Error message)
Endif
Clear entries in Net_Table
Move Free_Virt to Net_Table pointer in ILA
Move Free_Phys to Net_Ptr
While more data in network file
Call File Read_Line(Input_Buffer, bytes to read = 100)
If first character in input buffer is a '#'
Continue next loop iteration
Endif
If Net_Table is full
Exit loop
Endif _ .
If result of sscanf(Input_Buffer, "%s %s %x %4 %s",
IP_Addr, Interface_Number, Net_Mask, MTU, Flags) is -1
Exit Loop
Endif

#1500-15-031.02.0

Search Net_Table for an entry with Net IP_Addr field = IP_Addr
If table entry found

Add

Interface_ Number to the end of the Net_QID_List for the

found entry

Else
Set

Net_IP_Addr field of Net_Table entry pointed to by Net_Ptr

Net_Ptr to the first empty position in Neﬁ_Iable

it

Inet_Addr(IP_Addr)
If Net_IP_ Addr field Net_Table entry pointed to by Net_Ptr = -1

Call Printf(error message indicating invalid network Entry)
Continue next loop iteration .

Endif
Net Flags field of Net_Table entry pointed to by Net_ Ptr =
bitwise or between NET_VALID and Get_Flags(Flags, "U")

Set

Set

Set
Endwhile
Add size of
Add size of
Return

Net_MTU referenced by Net_Ptr to MTU
Net_Mask referenced by Net_Ptr to Mask
Current_IF field referenced by Net_Ptr to zero.

Net_Table to Free_Phys
Net_Table to Free_Virt

3.3.10.1.4.17.5 Limitations

No limitations are defined for the Load_Net_Tbl Unit.

3.3.10.1.4.18 Load_BSCB Unit

The Load_SCB Unit loads the System Control Block from a file to the

SCB area of memory.

#1500-15-031.02.0

3.3.10.1.4.18.1 Inputs

The following inputs are used by the Load_SCB Unit:

1)

SCB_Init - This input is read from a file on the IGW
diskette. This file contains an image of the ©Systen
Control Block.

3.3.10.1.4.18.2 Outputs

The following outputs are produced by the Load_SCB Unit:

1)

2)

3)

SCB - This output is written to the address specified by
the SCBB processor register (physical address 0), and
contains the System Control Block that has been obtained
from the SCB_init input.

SCBB - This output 1is written to the System Control
Block Base Register, and contains the physical address
of the SCB.

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3,3.10.1.4.18.3 Local Data

No local data is defined for the Load_SCB Unit.

49

#1500-15-031.02.0

3.3.10.1.4.18.4 Processing

If result of Open_File("SCB_init") is less than 0
Call printf(Error message)
Call Reboot()
Endlf
Bytes_Read = File_ Read(Address of SCB = 0, Size of BCB = 512)
If Bytes_Read not equal Size of SCB
Call printf(Error message)
Call Reboot()
Endif
Move 0 to the system control bleock base register (processor
register SCBB)
Move Size of SCB to Free_Phys
Return

3.3.10.1.4.18.5 Limitations .

This unit must be called before any other wnit which allocates

physical memory.
3.3.10.1.4.19 Main Unit
The Main Unit is called after secondary boot relocation. This unit is

responsible for «calling the other units that make up the secondary

boot procedure.

#1500-15-031.02.0

3.3.10.1.4.19.1 Inputs

No inputs are defined for the Main Unit.

3.3.10.1.4.19.2 Qutputs

The following outputs are produced by the Main Unit:

1) Console - This output is written to the IGW console and
contains messages to indicate the start and end of the
IGW loading procedure.

3.3,10.1.4.19,3 Local Data

No local data is defined for the Main Unit.

3.3.10.,1.4.19.4 Processaing

Call Printf("Loading IGW...")
Call Read_Dir()

Call Load_SCB()

Call Reserve_ SPT()

Call Define_ ILA()

Call Size Memory()

Call Load_ ERTE()

Call Read_Process_List()

Call Read Processes()

Move Free_Phys to Table_Phys
Move Free_Virt to Table_Virt
Call Load_ACT_Tbl()

Call Load_Net_Tbl()

Call Load GW_Tbl()

Call Load NB_Tbl()

Reserve space from unloaded tables
Call Create_Int_Stack()

Call Define_Free_Mem()

Call Link_IO_Pages()

Call Load_ _TIXIB()
Call Printf("done.\n")

51

#1500-15-031.02.0

Call Start_ ERTE()

3.3.10.,1.4.19.,5 Limitations

No limitations are defined for the Main Unit.
3.3.10.1.4.20 Panic Unit

The Panie¢ Unit causes +the IGW +to display a panic message on

console and perform a reboot.
3.3.10.1.4.20.,1 Inputs

The following inputs are regquired by the Panic Unit:

"l) Panic_Message - This input is a null terminated
character string that contains a message that is to be
printed on the IGW console.

the

#1500-15-031.02.0

3.3.10.1.4.20.2 OQutputs -

The following output is produced by the Panic Unit:

1) Panic_Message =~ This output is the sane
Message input except for the fact that it
by the message "panic: " and is followed by

3.3.10.1.4.20.3 Local Data

No local data is defined for the Panic Unit.

3.3.10.1.4.20.4 Processing

Call printf("panic: %s\n", panic message)
Call Reboot()

3.3.10.1.4.20.5 Limitations
No limitations are defined for this unit.

3.3.10.1.4.21 Printf Unit

The Printf Unit will send formatted text strings to

console during the boot procedure. .

as the Panic
is preceded
a newline.

the operator’'s

#15600-15-031.02.0

3.3.10.1.4.21.1 Inputs

The following inputs are used by the Printf Unit:

1)

2)

3)

Format_String - This input consists of a null terminated
gstring that is used to format the output produced by
this unit. A '%' character in this string is treated

specially. The '%' character indicates +to this wunit
that the following character indicates a data type that
is to be printed from the next next item to be

formatted. The following special characters may follow
a '%$':
X, %, X - Print argument as a 32 bit hexadecimal
value.
d, D, w - Print argument as a 32 bit decinal
value.
s - Print null terminated string pointed to
by argument.
c - Print 8 bit character representation of
argument.
% - Print a '$' character.

This input is passed as the address of the format string
to the Printf Unit.

Itens_To_Be Formatted - This input consists of the data
that is to be formatted.

TXCS - This input <contains the Console Transmitter
Control Status Register, and is used to examine the
status of the conscle transmitter.

54

#1500-15-031.02.0

3.3.10,1.4.21.2 OQutputs

The following outputs are produced by the Printf Unit:

1) Formatted Message - This output is the formatted version
operator

of the message inputs. It is sent to the
console one character at a time.

2) TXCS - This output is written to the Console Transmitter
character

Control Status Register during the process of
transmission.

3) TXDB - Thisg output is written to the Console Transmitter
Data Buffer Register, and contains the bytes of the data

that is to be sent to the console.

3.3.10.1.4.21.3 Local Data

The following local data is defined for the Printf Unit:

1) Output_Buffer - This local data item is an array of 100
bytes that is used to hold the string to be displayed
after it has been formatted.

2) Save_TXCS - This local data item is used to save the
value of TXCS during transmission of characters
console.

3) Timeout - This local data item is used for a timeout

counter while checking TXCS.

55

#1500-15-031.02.0

3.3.10.1.4.21.4 Processing

sprintf(Output_Buffer, Format_String, Items_To_Be_Formated)

"Move 30000 to Timeout

For each character N in Output_Buffer
While TXCS_RDY bit of Processor Register TXCS is clear
Decrement Timeout ,
If Timeout ig lesgs than or equal to 0
Exit Loop
Endif
Endwhile
If character N of Output_Buffer is a NULL character
Exit Loop
Endif
Move Processor Register TXCS to Save_TXCS
Clear Processor Register TXCS
Move character N of Output_Buffer to Processor Register TXDB
If character N of Output_Buffer is a <LF>
Call Printf("\r")
Endif
Move 30000 to Timeout
While TXCS_RDY bit of Processor Register TXCS is clear
Decrement Timeout
If Timeout is less than or equal to 0
Exit Loop
Endif
Endwhile
Move Save_TXCS to Processor Register TXCS
Endfor
Return

66

#1500-15-031.02.0

3.3.10.1,4.21.5 Limitations

Only 10 format items can be specified with each call to this unit, and
the maximum length of the final formatted string must be less than 100

characters.
3.3.10.1.4.22 Read_Dir Unit

The Read_Dir Unit reads the directory for diskettes O and 1 from
diskette 0, This directory is used by the File_Open Unit to determine
file location and other information for the files that are on‘ the

diskettes.

3.3.10.1.4.22.1 Inputs

The following inputs are defined for the Read_Dir Unit:

1) Diskette - This input is read from diskette 0 starting
at block 16. This input contains the directory
information for both diskettes 0 and 1.

#1500-15~031.02.0

3.3.10,1.4.22.2 OQOutputs
The following outbuts are producedvby the Read_Dir Unit:
1) Disk _Dir - This output is written to global data and

contains a copy of the diskette directory obtained from
diskette 0.

3.3.10.,1.4.22.3 Local Data

No local data is defined for the Read Dir Unit.

3.3.10.1.4.22.4 Processing

Call ROM routine to read 1K directory at disk address 8K to
Disk_Dir structure
Return

3.3.10.1.4.22.5 Limitations

The maximum size of a directory is predefined to be 1024 Dbytes

cannot be exceeded.

3.3.10.1.4.23 Read_Process_Lisgt Unit

and

The Read_Process_List Unit reads the list of process from a file on

disk and stores it in the Proc_List area that is declared to be global

within the Local Boot component.

58 -

#1500-15-031.02.0

3.3.10,1.4.23.1 Inputs

The following input is used by the Read Process_List Unit:

1)

Proc_List File - This input is obtained from the
"Proc_List" diskette file and contains a copy of the
names of the files containing the processes (and their
priorities) that the Read_Processes Unit is to load into
the IGW. Each entry is separated by newlines and
process are separated from priorities by spaces.

3.3.10.1,4.23.2 Outputs

The following output is produced by the Read_Process_List Unit:

1)

Proc_List - This output is written to the Proc_List
array and contains the list of process that are to. be
loaded. The entries in the ligt are each separated by a
newline character and the end of the list is indicated
by a Null character following a newline character.
Names are separated from priorities by spaces.

3.3.10.1.4.23.3 Local Data

No local data is defined for the Read_Process_List Unit:

3.3.10.1.4,23.4 Processing

If result of File _Open("Proc_List") is less than 0
Call Panic(error message)

Endif

If result of File_Read(address of Proc_List,
bytes to read = 1024) is less than or egual to 0

Endif

Call Panic(error message)

Add a Null character to the end of Proc_List

Return

#1500-15-031.02.0

3.3.10.1.4.23.5 Limitations

The maximum size of the process 1list input file that this unit will

accept is 1024 bytes.

3.3.10.1.4.24 Read_Processes Unit

The Read_Processes Unit loads the processes specified in the

"Proe_List"” that has been created by the Read_Process_List Unit.

involves placing the process text, data, bss, and stack area

1i

st

This

in

physical memory and c¢reating a process page table for them. Systen

page table entfies will also be added to reference the process page

table.
3.3.10.1.4.24.1 Inputs

The following inputs are used by the Read_Processes Unit:

1) Proe_List - This input comes from the global data that

' has been loaded by the Read Process_List Unit. This
input contains a list of file names to load processes
from as well as the priority of each of the processes.

2) Process Images From Diskette - This input consists of
the binary images of the IGW processes that are to be
loaded from diskette.

3) Free_Phys - This input 1is read from global data and
contains the free physical memory address where the

processes are to be loaded.

4) Free_Virt - This input 1is 1read from global data and

60

i L
Il N N A Ee 5

Il N =N BN

#1500-15-031.02.0

5)

contains the free wvirtual memory address where the
processes are to be loaded.

Sys_Pt -~ This dinput is 1read from global data and

contains the physical address of the system page table -

that has been defined by the Reserve_ SPT Unit.

3.3.10.1.4.24.2 Outputs -

The following outputs are produced by the Read_ Processes Unit:

1)

2)

3)

4)

5)

6)

7)

Process_ Header_List - This output is written to the ILA
and contains the initialized procesgs headers including
PCBs for the processes that have been loaded into
memory.

Processes In Memory - This output is written to the IGW
main memory and contains the text, data, bss, and stack
areas of the IGW processes that have been loaded.

Process Page Tablegs - This output is written to IGW
memory and contains the process pagé tables for PO and
Pl address space for each process that is loaded by this
unit. :

System - -Page Table - This output is updated with the

system page table entries required to reference the

process page tables that have been creadted by this
unit. .

Free Phys - This output is written to global data and
contains the updated address of the next free physical
memory address. ‘

Free_ Virt - This output is written to global data and
contains the updated address of the next free wvirtual
memory address. -

ILA - This output contains the value for the number of
processes that have been loaded. This value is written
to the Nproc field of the IGW Link Area.

61

#1500-15-031.02.0

3.3.10.1.4.24.3 Local Data

The following local data is defined for the Read Processes Unit:

1)

2)

3)

4)

5)

Process_Name_Pointer - This local data item is used to
step through the Proc_List input to obtain each
Current_Process_Entry item for the entries in Proc_List.

Current_Process_Entry - This local data item is used to
store the entry in the Proc_List input that contains the
filename and priority of the current process.

Current_Process_Name - The local data item is used to
store the name the current process that is being loaded
from diskette to main memory.

Current_Process_Priority - This piece of data is used to
store the priority of the processes as they are read
from diskette and loaded to the IGW.

Exec_Header - This local data item is a structure that
is used te hold the header from the IGW processes that
are loaded from diskette. The fields in this structure

are all 32 bit values and are defined as follows:

A _Magic - This £field <c¢ontains the type of the.

executable image that is being loaded. Valid values
for this field are:

OMAGIC (0407) - 0ld impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A _Text - This £field contains the size of the text
segment in bytes.

A Data -~ This field contains the size of the
initialized data segment in bytes.

A Bss - This field contains the size of the
uninitialized data segment in bytes.

A_Synms - This field contains the size of the synmbol
field. '

A _Entry - This field contains of the address of the

entry point of the loaded executable image.

62

#1500-15-031.02.0

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

A_Trsize =~ This field contains the size of the text
relocation area. ‘

A _Drsize - This field contains the size of the data
relocation area.

Proc_Phys - This local data item is used to hold the
physical address of the loaded process text area.

Proc_Virt - This local data item is used to hold the
virtual address of the loaded process text area.

Stack_Phys =~ This 1local data item is used to hold the
physical address of the stack area.

Stack_Virt - This local data item is used to hold the
virtual address of the stack area.

PO_Phys - This 1local data item contains the physical
address of the PO page table.

PO_Virt - This local data item contains the virtual
address of the PO page table.

PO_Len - This local data item contains the length of the
PO page table.

Pl1_Phys - This local data item contains the physical
address of the Pl page table.

Pl1_Virt - This. local data item contains the virtual
address of the Pl page table.

Pl _Len - This local data item contains the length of the
Pl page table.

Nproc - This local data item contains the number of
process that have been loaded into IGW memory.

63

#1500-15-031.02.0

3.3,

Loop

10.1.4.24.4 Procéssing

Move Process_Name_Pointer to Current_Entry
Move address of next newline character in string pointed to
by Process_Name_Pointer to Process_Name_ Pointer
If no newline was found in the string pointed to by
Process_Name_Pointer
Exit Loop
If process header list is £full
Process error condition
Endif
Move Null character to character pointed to by
Process_Name_Pointer
Increment Process_Name_Pointer
sscanf(Current_Entry, "$%$s %d", Current_Process_Nane,
address of Current_Process_Priority)
If result of File_Open(Current_Process_ Name) is less than 0
Call Panic(error message)
Endif :
If result of File_Read(address of Exec_Header,
size of Exec_Header) isn't equal size of Exec_Header
Call Panic(error message)
Endif
If A _Magic field of Exec_Header is ZMAGIC
If result of File_Seek(Offset = 1024) is less than 0
Call Panic(error message
Endif :

Else if A_Magic field of Exec_Header isn't one of OMAGIC or NMAGIC

Call Panic(error message)

-Endif

If result of File Read(Free_Phys,
A_Text field of Exec_Header + A_Data field of Exec_Header)
isn't equal (A_Text field of Exec_Header + A_Data field of
Exec_Header)
Call Panic(error message)
Endif
Move Free_Phys to Proc_Phys
Move 0 to Proc_Virt
Add A_Text field of Exec_Header to Free_Phys
Add A_Data field of Exec_Header to Free_Phys
For each address in bss area
Clear memory referenced by Free_Phys
Increment Free_Phys
Endfor '
Adjust Free_Phys to point to page boundary if required
Move Free_Phys to Stack_Phys
Move stack virtual address to Stack_Virt

64

#1500~-15-031.02.0

For Counter eqguals 1 to PROC_KERN_STACK_SIZE + PROC_USER_STACK_SIZE
Clear memory referenced by Free_ Phys
Increment Free_ Phys
Endfor
Advance Free_virt to start of next page if necessary
Move Free_ Phys to PO_Phys
" Move Free_Virt to PO_Virt
For each page in process text, data, and bss areas
Call Add_To_PT(Page_Table = PO_Phys, Proc_Virt,
Proc_Phys)
Add PAGE_SIZE to Proc_Phys
Add PAGE_SIZE to Proc_Virt
Endfor
Add length of PO page table to Free_Phys
Add length of PO page table to Free_Virt
Move Pl PT start physical address to Pl_Phys
Move Pl PT start system virtual address to Pl_Virt
For each page in stack area i
Call Add_To_PT(Page_Table = Pl _Phys, Stack' Virt,
Stack_Phys) '
Add PAGE_BSIZE to Stack_FPhys
Add PAGE_SIZE to Stack_Virt
Endfor
Add length of Pl PT to Free_ Phys
Add length of Pl PT to Free_Virt
Adjust Free_Phys to next page if necessary
Adjust Free_Virt to next page if necessary
Set Name field of process entry indexed by Nproc in
Process_Header_List to name stored in Current_Process_Name
Set Priority field of process entry indexed by Nproc in
Process_Header_List to priority stored in
Current_Process_Priority
Set PCB_Address field of process entry indexed by Nproc in
Process_Header_List to the physical address of the hardware PCB
Initialize kernel and user stack pointer in PCB
Initialize Processor_Status_Longword in PCB
Move FO_Virt to Program_Base_Register in the hardware PCB
Move PO_Len to Program_Length_Register in the hardware PCB
Move Pl_Virt to Control_Base Register in hardware PCB
Move Pl_Len to Control_Length Register in hardware PCB
For each page N in process page tables PO and Pl
Call Add_To_ PT(Fage_Table = Sys_ PT,
Virt_addr PO_Virt,
Phys_addr PO_Phys)
Add PAGE_SIZE to PO_Phys
Add PAGE_SIZE to Pl _Virt
Endfor
Increment Nproc
Endloop

now

#1500-15-031.02.0

Move Nproc to Nproc field of ILA
Return :

3.3.10.1.4.24.5 Limitations

The unit Read_Process_List must be called prior to this unit.

3.3.10.1.4.25 Reboot Unit

The Reboot Unit causes the IGW to perform a reboot.

3.3.10.1.4.25.1 Inputs

No inputs are defined for the Reboot Unit.

3.3.10.1.4.25.2 Outputs

The following output is produced by the Reboot Unit:

1) MicroVAX 1II Coﬁsole Program Mailbox - This output is
loaded with the value RB_REBOOT to cause the MicroVAX to
perform a reboot.

66

#1500-15-031.02.0

3.3.10.1.4.25.3 Local Data

No local data is defined for the Reboot Unit.

. 3.3.10.1.4.25.4 Processing

Set MicroVAX II Console Program Mailbox to RB_REBOOT
Halt Processor

3.3.10.1.4.25.5 Limitations

No limitations are defined for this unit.

363-10.1.4'26 Reloc&te Unit

The Relocate Unit copies the software for the entire Sec_Boot TLC from
the beginning of memory to the memory location RELOQC. After this
relocation c¢ontrol is transferred to the Main Unit of the Sec_Boot

TLC.

#1500-15-031.02.0

3.3.10.1.4.26.1 Inputs

The following input is used by the Relocate Unit:

1) Original Sec_Boot Program Image - This input is the
image in memory of the secondary boot program before

relocation.

3.3.10.1.4.26.2 Outputs

The following output is produced by the Relocate Unit:

1) Relocated Sec_Boot Program Image - This output is a copy
of the original Sec_Boot program that has been relocated

to location RELOC in memory.

3.3.10.1.4.26.3 Local Data

No local data is defined for the Relocate Unit.

3.3.10.1.4.26.4 Processing

Move relocation address RELOC to stack pointer
For memory locations from the end of the data area to
beginning of the relocation area
Clear memory location
Endfor
Copy Sec_Boot image to relocation address RELOC
Transfer control to main() Unit in relocated image

the

68

#1500-15-031.02.0

3.3.10.1.4.26.5 Limitations

No limitations are defined for the Relocate Unit.

3.3.10.1.4.27 Reserve_SPT Unit

The Reserve SPT Unit reserves a predefineed number of pages following
the 5CB to contain the system page table. . This is accomplished by
setting the System Base Register (SBR) and System Length Register

(SLR) to indicate the start and length of the system page table.

3.3.10.1.4.27.1 Inputs

The following inputs are defined for the Reserve_ SPT Unit:

1) Free_Phys - This input is read from global data and
contains the free physical mnemory address where the
system page table is placed.

’ .

#1500-156-031.02.0

3.3.10.1.4.27.2 Qutputs

The following outputs are produced by the Reserve SPT Unit:

1)

2)

3)

4)

SBR - This output is written to the ©System Base
Register, and contains the base address ~ of the systenm
page table (SPT_BASE).

SLR - This output is written to the System Length
Register, and contains the 1length of the system page
table in long words (SFT_LENGTH / 4).

Free_Phys - This output is written to global data and

"contains the updated address of the next free physical

memory address.

Sys _PT - This output is written to global data and
contains the physical address of the system page table.

3.3.10.1.4.27.3 Local Data

No local data is defined for the Reserve_ SPT Unit.

3.3.10.1.4.27.4 Processing

Move Free_FPhys to Sys_ PT

Move Sys_PT to processor register SBR
Move SPT_LENGTH to processor register SLR
Add SPT_LENGTH * 4 to Free_Phys

Return

70

#1500-15-031.02.0

3.3.10.1.4.27.5 Limitations

This unit nust be called immediately after the Load SCB unit.

3.3.10.1.4.28 Size_Memory Unit

The Size_Memory Unit counts up the number

in the IGW.

3.3.10,1.4.28.1 Inputs

The following inputs are used by the Size_ Memory Unit:

1)

2)

PEN_Map_Addr -~ This input is found at Ox48 (hex) plus
the address stored in register R11 by the boot ROMs.
This input contains the starting address of the PFN map.

PEN_Map_Size - This inputs is found at Ox44 (hex) plus
the address stored in register R1l by the boot ROMs.
This input contains the size of the PFN map.

of bytes of physical memory

71

‘

#1500-15-031.02.0

3.3.10.1.4.28.2 Outputs

The following output is produced by the Size Memory Unit:

indicate the number of bytes of memory that is in
IGW.

3.3.10.1.4.28.3 Local Data

The following local data is‘defined for the Size_Memory Unit:
number of good pages of memory in the IGW.

byte that is being examined in the PFN map.

the PEN map while looking for good pages.

3.3.10.1.4.28.4 Processing

Clear Good_Page_Counter
Move PFN_Map_ Addr to PEN_Pointer
Move PFN_Map_Size to PEN_Counter
While byte pointed to by PFN_Pointer equals Oxff (hex) and
PFN_Counter is greater than O
Add 8 to Good_Page_Counter
Increment PEFN_Pointer
Decrement PEFN_Counter
Endwhile]
Move 512 * Good_Page_Counter to Memory_Size field in ILA
Return

Memory_ Size - This output is written to the ILA to

1) Good_Page_Counter - This data item is used to count the

2) PFN_Pointer - This data item is a pointer to the current

3) PEN_Counter - This data item is used to count through

72

I Im e

#1500-15-031.02.0

3.3.10.1.4.28.5 Limitations

The number of pages of memory is calculated

time.

3.3.10.1.4.29 Start_ERTE Unit

in units of 8 pages

The ©Start_ERTE Unit transfers control from the Sec_Boot TLC to

ERTE TLC.

3.3.10.1.4.29.1 Inputs

1) Free_Phys -~ The starting physical
memory area. This input is obtained
2) Free_Virt - The starting virtual

memory area. This input is obtained

The following inputs are. required buy the Start ERTE Unit:

address of the free
from global data.

address of the free
from global data.

3) Istack_Virt - The system virtual address of the top of

the interrupt stack.

at a

the

#1500-15-031.02.0

3.3.10.1.4.29.2 OQutputs
The following outputs are defined for the Start_ERTE Unit.

1) PO_PT - This output is written to the free memory area
and contains the page table entry for the instruction
that transfers control to ERTE.

2) POBR - This output is ﬁritten'to the PO Base Register
and contains the base address of the PO page table used
to switch to virtual addressing mode.

3) POLR - This output is written to the P00 Length Register
: and contains the length of the P0 page table used to
switch to virtual addressing mode.

4) ISP - This output is written to the interrupt stack
pointer and c¢ontains the starting address of the
interrupt stack.

3.3.10.1.4.29.3 Local Data

No local data is defined for the Start ERTE Unit.

3.3.10.1.4.29.4 Processing

Move Istack_Virt to ISP
Move Free Virt - (physical address of LABEL_1 shifted right by 9
bit positions) to POBR
Move (physical address of LABEL 1l shifted right by 9 bit
positions) + 1 to POLR
Call Add_To_PT(Page_Table = Free_Phys - (physical address of
LABEL_1 shifted right by 9 bit positions),
Virt_Addr = Address of LABEL_1,
Phys_Addr = Address of LABEL_ 1)
Call Add_To_PT(Page_Table = Free_ Phys - (physical address of
LABEL_1 shifted right by 9 bit positions),
Virt_Addr = Address of LABEL_1 + 512, .
Phys_Addr = Address of LABEL_1l + 512) '
Clear Translate Buffer Invalidate All Register (TIBA)
Move 1 to Map Enable Register (MAPEN)

LABEL 1:
Transfer control to virtual address of start of ERTE

#1500-15-031.02.0

3.3.10.1.4.29.5 Limitations

No limitations are defined for this unit.

3.3.10.2 IGW Net Load Component

This component provides the Net Load boot operations for the IGW. The

component sends requests for software to be downloaded +to a known

cooperating host on the Ethernet, and +then receives and installs the

software. The IGW software is loaded into IGW memory, and the IXIB

software is loaded onto the IXIB board.

3.3.10.2.1 Net Load Component Architecture

.The IGW Net Load Component is composed of the following units (Figure

3-11):

1) Calc_Mem_Size - This wunit calculates the amount of:
ICW memory (in bytes).

2) Check_Dgram - This unit checks a received datagram to
ensure it is from the correct host and contains no
errors. '

3) Check_IP =~ This wunit checks the IP header of the

received datagram for errors.

4) Check_UDP - This unit checks the UDP header of the
received datagram for errors.

5) Chk_Sum - This unit adds a value to a ones complement
check sum.

#1500-15-031.02.0

Frmmmm e +
| IGW Net Load |
| TLLC |
it fmmm +
I
Fmm e fm—-—- o Frmmmm e Fomm e +
I I I | |
pmmm o m + H-————- tmmm + et + - pom——— + |
| Calc Mem Size | | Check Dgram | | Check IP | | Check_ UDP | |
R + e R + e + |
I
Fommm e et T e e +
I I S I I !
e T i e + o frmm e + o frmmm + |
| Chk_Sum | | Copy Dgram | | Create_ Dgram | | Create IP Hdr |]
o —————— R R + oA et T +
I
e atatal el LR o ————————— e Frm——————— e i L +
| I ‘ | | I
frmm———— Fommm + o + fm———— o ———— + == fmmm +
| Create UDP Hdr | | Download Dgram | | Init Ether | | Install Ixib | |
o ——— e e ——————— + - e I et —————- + |
I
e T aatalats it e Fom e ——— e +
I | | I I I
- tm—m—— + ot e dm———— I e + p-———- o + |
| Install SW | | Main | | Print Msg | | Rcv_Data | | Rcv_Dgram | |
oo I + b T + ot m e I +
I
frm e Frmmm e o e ettt e PR +
| I -] I
e e A ittty + - frm - + - Fmmmmm +
| Reboot | | Relocate | | Send Dgram | | Send Start Msg |
o + e mmm e + - B et + Am———- e ——— —————t

Figure 3-11

#1500-15-031.02.0

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

Copy_Dgram - This wunit copies a the data of a
datagram to IGW memory.

Create_Dgram - This unit creates a datagram to
contain an outgoing message.

Create_IP_Hdr - This unit creates the IP header for
an outgoing datagram.

Create_ UDP_HdAr - This unit creates the UDP header for
an outgoing datagram.

Download_Dgram - This unit downloads the data portion
of a datagram to the IXIB board.

Init_Ether - This unit initializes the Ethernet
hardware for receive and transmit operation without
interrupts.

Install_Ixib -~ This unit controls the receiving and
downloading of IXIB software from the cooperating
host.

Install_SW - This wunit controls the receiving and
loading of IGW software.

Main - This wunit is the starting unit of the
component.

Print_Msg - This wunit causes an error message to be
displayed on the operator's console.

Rcv_Data - This wunit begins and controls the process
of requesting for software to be downloaded, and then
receiving the software.

Rcv_Dgram =~ This wunit receives a datagram from the
Ethernet device. ‘

Reboot - This wunit causes the IGW to reboot when a
boot failure is detected.

Relocate - This unit relocates the Net Load component
to high memory in the IGW.

Send_Dgram - This unit controls the Ethernet hardware
to send a datagram to the cooperating host.

71

#1500-15-031.02.0

21) SBend_BStart_Msg - This wunit prepares a message to be
sent to the cooperating host.

3.3.10.2.2 Global Data

The following constants are defined as global data within this
TLC:

1) ZERO (0) - A <constant to represent a null pointer
(zero address).

2) SEND_IGW (1) - This constant represents the code used
when requesting the cooperating host to download IGW
software, '

3) BSEND_IXIB (2) - This constant represents the code
used when reguesting the cooperating host to download
IGW software. :

4) VALID_ADDRESS (8000 hex) - This constant is used to
nark the address of an Ethernet BDL as valid (See the
DEQNA User's Guide).

5) INITIALIZED (8000 hex) - This constant is used to
mark an Ethernet BDL as initialized (See the DEQNA
User's Guide). .

6) END_MBG (2000 hex) - This constant is used to mark an
Ethernet BDL as the last for the current packet being
transmitted (See the DEQNA User's Guide).

#1500-15-031.02.0

3.3.10.2.3 IGW Net Load LLCs

No LLCs are defined for the Net Load Component.

3.3.10.2.4 IGW Net Load Units

The following sections contain the unit descriptions for all

comprising the IGW Net Load Component.

3.3.10.2.4.1 Calc_Memcry_Size Unit

units

The Calc_Memory_Size unit calculates the size of IGW memory in bytes.

3.3.10.2.4.1.1 Inpute

The following input is used by the unit:

1)

2)

Boot_Info_Pointer - This thirty-two bit pointer
references a table of boot information left by the
Boot ROMS of the Micro-VaX.

Boot_Info - This is a table of information prepared
by the Micro-VvaAX boot ROMS which specifies
information useful to the boot procedure. The
information used by this unit is:

1) Page_Map - This table is at offset PAGE_MAP
(48 hex) from the start of Boot_Info. The
page map consists of a list of bytes, one for
each .set of 8 memory pages (or portion
thereof). Each bit in each byte represents
one page. If the bit is 1, then the page is

#1500-15-031.02.0

good, otherwise the page is bad.

2) Page_Map_Size - The size of Page_Map (in
bytes) is located at offset MAP_SIZE (44 hex)
from the start of Boot_Info.

3.3.10.2.4.,1.1 Outputs

The following outputs are produced by the unit:

1) Memory_Size - The size in bytes of good memory from
address zero up to, but excluding, the first bad page
as indicated by the page map.

3.3.10.2.4.1.3 Local Data
The following local data is defined for this unit:

1) Page_Map_Pointer - This thirty-two bit pointer is |
used to step through the page map table. |

2) Good_Count - A count of the number of good pages in
the Page_ Map.

3.3.10.2.4.1.4 Processing

S5et Good_Count to 0

Set Page_Map_ Pointer to Boot_Info Page_Map start

-While (contents of byte referenced by Page_Map_ Pointer is all ones)
Increment Good_Count by one ‘
Increment Page_ Map Pointer by one

Endwhile

S5et Memory_Size to (Good_Count * 8 pages per count * 512 bytes per page)
Return(Memory_Size)

#1500-15-031.02.0

3.3.10.2.4.1.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.2 Check_Dgram Unit

The Check_Dgram unit examines a datagram received form the cooperating

host and verifies that it is correct and complete. The unit verifies

~the IP and UDP headers for the received datagram according the the

protocol specification. The unit also ensures that the source and

destination addresses are correct.
3.3.10.2.4.2.1 Inputs

The following inputs are used by the unit:

1) Buffer - This input parameter is a thirty-two bit
pointer to the buffer containing the received
datagranm.

- 81 -

#1500-15~031.02.0

3.3.10.2.4.2.1 Outputs
The following outputs are produced by the unit:

1)} Data_Address -~ This return parameter is a thirty-two
bit pointer to the address in the Buffer where the
datagram data begins (the byte immediately following
the UDP header). This parameter is returned as zero
if an error is detected in IP or UDP headers,

3.3.10.2.4.2.3 Local Data
The following local data is defined for the unit:

1) UDP_Start - This item is a thirty-two bit pointer to
the start of the UDP header. This item is returned
from the Check_ UDP unit. The value is set to zero if
the UDP header contains an error.

3.3.10.2.4.2.4 Processing

UDP_Start = Check_IP(Buffer)
If (UDP_Start != ZERO)
Data_Address = Check UDP(UDP_Start)
Else
Return(UDP_Start)
Endif
Return(Data_Address)

82

#1500-15-031.02.0

3.3.10.2.4.2.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.3 Check_IP Unit

The Check_IP unit checks an IP datagram header for

received.

3.3.10.2.4.3.1 Inputs

The following input is used by the unit:

the

1) Buffer - this thirty-two bit pointer parameter
pointer to the start of the received datagran.

3.3.10.2.4.3.1 QOutputs

The following is output by the unit:

1) UDP_Start -~ This thirty-two bit return parameter

pointer to the start of the UDP header
datagram.

in

datagram

is a

is a
the

#1500-15-031.02.0

3.3.10.2.4.3.3 Local Data

The following local is defined for the unit:

1) 1IP Header - This structure contains the IP Header
required for datagram transmission. It consists of
the following fields:

1)

2)

3)

4)

5)

6)

1)

8)

9)

Version - 4 bits contain the IP wversion
nunber (4).

IHL - 4 bits containing the IP header length
in 32 bit words. This is held constant at 5
for +this application because no options are
used.

Service_Type =~ B bits containing the type os
service requested from IP. This field 1is
held at 0, -representing routine or normal
service. :

Total_LengtH - 16 bits containing the total
length of the datagram, including header and
data. It is the sum of IHL field and the

Data_Size parameter.

Time To_Live - 8 bits which contain the
nunber of seconds the datagram is allowed to
live before it is declared undeliverable. It
is set to 10 for all transmitted datagrams,
which i1s more than adequate for the
application.

Protocol - 8 .bits containing the protocol
number for the datagram. The number is 17
for the UDP protocol.

Header_Checksum - 16 bits containing the
checksum for the IP header of the datagranm.

Source_Address - 32 bits containing the
source address of the datagram. For this
unit, this will be the Internet address of
the IGW.

Destination_Address - 32 bits containing the
destination address of the datagram. For
this wunit, this will be the Internet address

84

#1500-15-031.02.0

of the cooperating host.

2) Csum - This 16 bit integer is used to accumulate the
header checksum for the datagram header.

3) Error - This 32 bit integer is used to indicate that
" an error has been detected.

3.3.10.2.4.3.4 Processing

l Set Error to FALSE
If (Version field of IP_Header != 4)
Set Error to TRUE
Endif ;
| l If (Identification field of IP_Header != 0)
| Set Error to TRUE
Endif
l If (Flags field of IP Header != 0)
_ Set Error to TRUE
Endif
If (Fragment_Offset field of IP_Header != 0)
l Set Error to TRUE
Endif
If (Protocol field of IP_Header != 17)
I Set Error to TRUE
Endif
If (Destination_Address field of IP_Header != Internet address of IGW on
l the Ethernet)
Set Error to TRUE
Endif
If (Source_Address field of IP_Header != Internet address of the
l cooperating host)
Set Error to TRUE
Endif
l Set Csum to O
For each 16 bit word in IP_Header
‘ Csum = Chk_Sum(word, Csum)
l Endfor
If (Csum != 0 and Csum != -1)
Set Error to TRUE
Endif
l If (Error = TRUE)
. return(0)
Else
l Return(Buffer + TIHL field of datagram)
Endif

#1500-15-031.02.0

3.3.10.2.4.3.5 Limitations
There are no limitations defined for this unit.
3.3.10.2.4.4 Check_UDP_Hdr Unit

The Check_UDP_Hdr unit checks an UDP datagram header for the datagranm

to be transmitted.
3.3.10.2.4.4.1 Inputs

The following input is used by the unit:

1) UDP_Hdr - This thirty-two bit parameter is a pointer
to the UDP header in the datagran.

2) -Buffer - This thirty-two bit parameter is a pointer
to the start of the datagram, which is assumed to be
the start of the IP header.

#1500-15-031.02.0

3.3.10.2.4.4,1 Outputs

The following is output by the unit:

1) Data_Start - This thirty-two bit return parameter is

a pointer to the the start of

datagram.

3.3.10.2.4.4.3 Local Data

The following local is defined for the unit:

the data in the

1) UDP_Header - This structure contains the UDP Header

required for datagram transmission.

the following fields:

It consists of

1) BSource_Port - 16 bits containing the number
of the IGW port number wused for this
application. This number is always zero.

2) Destination_Port - 16 bits containing the | |
numnber of the port number used by the
cooperating host for this application. This
numnber is determined by the . host
administrator.

3) Length - 16 bits containing the length in

bytes of the UDP datagram, including UDP

header and data.

4) Check_Sum - 16 bits containing the checksum
for the datagrm. The checksum is the ones
conplement of the ones complement sum of all

the 16 bit words in the

Megssage, the UDP

header (with the Check_Sum field at zero),

the IP header source

and destination

addresses, the IP header protocol field (one
byte with a zero byte prepended to make a 16
bit wvalue), and the IP header total length

field.

2) Csum‘ - This 16 bit integer is used to accumulate the
header checksum for the datagram header.

3.3.10.2.4.4.4 Processing

#1500-15-031.02.0

Set Csum to:-0
Set Data_Start to UDP_Hdr + 8
If (Check_Sum field of UDP_Hdr != 0)
Set Check_Sum field of UDP_Hdr to O
For each 16 bit word in UDP_Header
Csum = Chk_Sum({word, Csum)
Endfor
For each 16 bit word in Data_Start
Csum = Chk_Sum(word, Csum)
Endfor
For each 16 bit word in source address field of IP_HAr
Csum = Chk_Sum(word, Csumn)
Endfor

For each 16 bit word in destination address field of IP_Hdr

Csum = Chk_Sum(word, Csum)
Endfor

Csum = Chk_Sum(protocol field of IP_Hdr prepended with a zero

byte, Csum)
Csum = Chk_Sum(Total_Length field of IP_Hdr, Csum)

Endif

If (Csum != 0 énd Csun !'= -1)
Return(0)

Else

Return(Data_Start)
Endif

3.3.10.2.4.4.5 Limitations

There are no limitations defined for this unit.

88

- v_\ — -’ - -

#1500-15-031.02.0

3.3.10.2.4.5 Chk_Sum Unit

The Chk_Sum unit adds a value to a checksum. The sum is the one's

complement of the 16 one's complement sum of 16 bit words.
3.3.10.2.4.5.1 Inputs
The following input is used by the unit:

1) Word - This 16 bit input parameter is the 16 bit word
to be added to the checksum.

2) Sum - This 16 bit input parameter is the current
value of the checksum.

3.3.10.2.4.5.,1 Outputs
The following output is produced by the unit:

1) New_Sum - This 16 bit return parameter is the new
value of the checksunm.

] - -
- -(- -l - _

M .

. . . - '

)

#1500-15-031.02.0

3.3.10.2.4.5,3 Local Data

There is no local data defined for this unit.

3.3.10.2.4.5.4 Processing
Set Sum to the ones complement of Sunm
New_Sum = Sum + Word using 16 bit arithmetic
I£f a carry occurred

Add 1 to New_Sum
Endif

Set New_Sum to the ones complement of New_Sum
Return(New_Sum)

3.3.10.2.4.5.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.6 Copy_Dgram Unit

The Copy_ Dgram unit copies a datagram received

host into IGW memory.

from

the

cooperating

#1500-15-031.02.0

3.3.10.2.4.6.1 Inputs
The following input is used by the unit:

1) Dgram - This thirty-two bhit paraméter is a pointer to
the data portion of the datagram. The datagranm
resides in a buffer global to this unit.

2) Page - This thirty-two bit integer parameter

indicates which page of IGW physical memory to copy
the datagram into.

3.3.10.2.4,6.1 Outputs
The following output is produced by the unit:

1) Memory_Page - The IGW physical page of memory
indicated by Page is written with the datagram data.:

3.3.10.2.4.6.3 Local Data
The following local data is defined for this unit

1) Memory_Page_Addr - The data in the datagram is copied
into the IGW physical memory page specified by Page.
The starting address of the memory page is calculated
and stored in this local item.

91

1

#1500-15-031.02.0

3.3.10.2.4.6.4 Processing

Calculate Memory_Page_Addr = Page * 512
For each of the 512 bytes in Dgram

Copy byte(i) in Dgram to Memory_Page_ Addr + i
Endfor

3.3.10.2.4.6.5 Limitations
There are no limitations defined for this unit.
3.3.10.2.4.7 Create_Dgram Unit

The Create_Dgram wunit builds the IP datagram header and the TUDP

datagram header for a message to be sent to the cooperating hosts.

3.3.10.2.4.7.1 Inputs

The following input is used by the dnit:

1) Message - This thirty-two bit parameter is a pointer
to the message to be sent to the cooperating host.

#1500-15-031.02.0

3.3.10.2.4.7.1 Outputs

The following are output by the unit:

1) Dgram - This thirty-two bit return parameter is a
pointer to the datagram structure prepared by the
unit.

3.3.10.2.4.7.3 Local Data

The following local data is defined for the unit:

1) Datagram - This item pulls together the headers and
data of the datagram so that they can be referenced

in a single structure. The structure has the
following fields:

1) IP_Hdr -~ 32 bit pointer to the IP datagran
header,

2) UDP_Hdr - 32 bit pointer to the UDP datagram

header.
3) Dgram_Msg - 32 bit pointer to the datagram
data.
2) Msg _Size - This item is a thirty-two bit integer
containing the size (in bytes) of the message to be
sent. This wvalue 1is always 8 because the message

consists of two 32 bit words.

93

#1500-15-031.02.0

3.3.10.2.4,7.4 Processing

IP_Hdr field of Datagram = Create IP Hdr(Msg _Size)
UDP_Hdr field of Datagram = Create UDP_HAr(IP_Hdr field of
Datagram, Message)

Set Dgram_Msg field of Datagram to Message

Set Dgram to the address of Datagram
Return(Dgram)

3-3‘.10v2|4|7l5 Limitdtions
There are no limitations defined for this unit.
3.3.10.2.4.8 Create_Ip Hdr Unit

-The Create_Ip_Hdr unit creates an IP datagram header for the datagranm

to be transmitted.
3.3.10.2.4.8.,1 Inputs

The following input is used by the unit:

1) Data_Size - this thirty-two bit integer parameter is
the length of the datagram data field in bytes.

#1500-15-031.02.0

3.3.10.2.4.8.1 Outputs

The following is output by the unit:

1) Header

-~ This thirty-two bit returnAparameter.is a

pointer to the the header generated by the unit.

3.3.10.2.4.8.3 Local Data

The following local is defined for the unit:

1) 1IP_Header =~ This structure contains the IP Header

regquired for datagram transmission. It consists of
the following fields:

1)

2)

3)

4)

5)

6)

Version =~ 4 Dbits contain the IP version
number (4).

IHL - 4 Dbits containing the IP header length
in 32 bit words. This is held constant at 5

for this application because no options are
used.

Service_Type - 8 bits containing the type os
service reguested from IP. This field 1is

held at O, representing routine or normal.

service.

Total_Length - 16 bits containing the total
length of the datagram, including header and
data. It is the sum of IHL field and the
Data_Size parameter.

Time_To_Live - 8 bits which contain the
number of seconds the datagram is allowed to
live before it is declared undeliverable. It
is set to 10 for all transmitted datagrams,
which 1s more than adeguate for the
application.

Protocol -~ 8 bits containing the protocol
nunber for the datagram. The number is 17

95

#1500~15-031.02.0 .

for the UDP protocel.

7) Header_Checksum - 16 bits containing the
checksum for the IP header of the datagran.

8) Source_Address -~ 32 bits containing the
source address of the datagranm. For this

unit, this will be the Internet address of
the IGW. .

9) Destination_Address - 32 bits containing the
destination address of the datagram. For
this wunit, this will be the Internet address
of the cooperating host.

2) Csum -~ This 16 bit unsigned integer is wused to
accumulate the header checksum for the datagram
header.

3.3.10.2.4.8.4 Processing

Set IHL field of IP_Header to 5

Set Service_Type field of IP_Header to O

Set Total_Length field of IP Header to IHL + Data_Size

Set Identification field of IP_Header to O

Set Flags field of IP_Header to O

Set Fragment_Offset field of IP_Header to O

Set Time_To_Live field of IP_Header to 10

Set Protocol field of IP Header to 17)

Set Source_Address field “of IP _Header to Internet address of IGW on
the Ethernet

. Set Destination_Address field of IP Header to Internet address of the
cocoperating host

Set Header_Checksum field of IP_Header to O

Set Csum to O

For each 16 bit word in IP_Header

Csum = Chk_Sum(word, Csum)
Endfor
Set Header_Checksum field of IP_Header to Csum

Set Header to the address of IP_Header
Return(Header)

l Set Version field of IP_Header to 4

#1500-15-031.02.0

3.3.10.2.4,8,.5 Limitations

v

There are no limitations defined for this unit.

3.3.10.2.4.9 Create_UDP_Hdr Unit

The Create_UDP_Hdr wunit creates an UDP datagram header for

datagram to be transmitted.

3.3.10.2.4.9.1 Inputs

The following input is used by the unit:

1) Data_Size -~ this thirty-two bit integer parameter is
the length of the datagram data field in bytes.

2) Message - This thirty-two Dbit parameter is a pointer
to the message to be placed in a UDP datagram.

3) IP_Hdr - This thirty-two bit parameter is a pointer
to the IP header for the datagram, which is assumed
to be 5 thirty-two bit words long.

the

#1500-15-031.02.0 ¢

3.3.10.2.4.9.1 OQutputs

The following is output by the unit:

1) Header - This <thirty-two bit return parameter is a

pointer to the the header generated by the unit.

'3.3.10.2.4.9.3 Local Data

The following local is defined for the unit:

1) UDP_Header -~ This structure contains the UDP Header
required for datagram transmission. It consists of

the following fields:

1) Bource_Port - 16 bits containing the nunber
of the IGW port number wused for this
application. This number is always zero.

2) Destination_Port - 16 bits containing the
number of the port number used by the
cooperating host for this application. This
number is determined by the host
administrator.

3) Length - 16 bits containing the length in

bytes of the UDP datagram, including UDP

header and data.

4) Check_Sum - 16 bits containing the checksunm
for the datagrm. The checksum is the ones
complement of the ones complement sum of all

the 16 bit words in the

Message, the UDP

header (with the Check_Sum field at zero),

the IP header source

and destination

addressges, the IP header protocol field (one
byte with a zero byte prepended to make a 16
bit wvalue), and the IP header total length

field.

2) Csum - This 16 bit wunsigned

accumulate the header checksum

header.

integer 1is used to
for the datagran

98

#1500-15-031.02.0

3.3.10.2.4.9.4 Processing

Set Source_Port field of UDP_Hd4r to 0
Set Destination_Port field of UDP_Hdr to DEST_PORT
Set the Length field of UDP_Hdr to 8 + Data_Size

Set Check_Sum field of UDP_Header to 0
Set Csum to O

For each 16 bit word in ﬁDP_Header

Csum = Chk_Sum(word, Csum)

Endfor

For each 16 bit word in Message
Csum = Chk_Sum(word, Csum)

‘Endfor

For each 16 bit word in source address field of IP_Hdr
Csum = Chk_BSum(word, Csum)

Endfor]

For each 16 bit word in destination address field of IP_Har
Csum = Chk_Sum(word, Csum)

Endfor

Csum = Chk_Sum(protocol field of IP_Hdr prepended with a zero
byte, Csum)

Csum = Chk_Sum(Total_Length field of IP_Hdr, Csum)

If (Csum = 0)

Set Csum to the one's complement of 0

Endif :

S5et Check_Sum field of IP_Header to Csun

Set Header to the address of UDP_Header
Return(Header)

#1500-15-031.02.0

3.3.10.2.4.9.5 Limitations

The IP header for the datagram must be created before this unit

is

called. The IP header length is assumed to be 5 thirty-two bit words

in length.

3.3,10.2.4.10 Download_Dgram Unit

The Download_Dgram unit copies a datagram received from the
cooperating host into IXIB board.
3.3.10.2.4.10.1 Inputs
The following input is used by the unit:
1) Dgram -~ This thirty-two bit parameter is a pointer to
the data portion of the datagram. The datagram
resides in a buffer global to this unit.
2) IXIB_FIFO - This item is the IXIB device port used by
the IXIB as a FIFQ gueue for transferring data to the
IXIB.
!
- 100 -

#1500-15-031.02.0

3.3.10.2.4.10.2 Outputs
The following output is produced by the unit:

1) IXIB_Data - The IXIB is loaded with the data in the
datagram.

3.3.10,2.4.10.3 Local Data

No local data is defined for this unit.

3.3.10.2.4.10.4 Processing

For each of the 512 bytes in Dgran

Write the byte in Dgram to IXIB_FIFO register of each IXIB device
Endfor

3.3.10.2.4.10.5 Limitations
There are no limitations defined for this unit.
3.3.10.2.4.11 Init_Ether Unit

The Init_Ether unit initializes the DEQNA Ethernet interface for

operation without interrupts.

- 101 -

#1500~15-031.02.0

3.3.10.2.4.11.1 Inputs

No inputs are used by the unit,

3.3.10.2.4.11.1 Outputs

The following outputs are used by the unit:

1) Ether_ CSR - This device register is used to provide
control information to the DEQNA interface.

3.3.10.2.4.11.3 Local Data

The constant SOFTWARE_RESET (2)\is the only local data defined for
this unit. This constant is used to create a software reset condition
ocn the DEQNA ‘interface board, which will reset the board into the
desired state for use without interrupts.

3.3,.10.2.4.11.4 Processeing

Write SOFTWARE_RESET to Ether_CSR

- 102 -

#1500~-15-031.02.0

3.3.10,2.4.11.5 Limitations
There are no limitations defined for this unit.

3.3.10.2.4.12 Install_IXIB Unit

and loads the software down to IXIB board.
3.3.10.2.4.12.; Inputs

No input is used by the unit.
3.3.10.2.4.12.1 Qutputs

The unit produces the folléwing output:

1) 1IXIB Software - The IXIB Software collected by the
unit is downloaded to the IXIB board. '

The Install_IXIB unit receives IXIB software from the cooperating host

103

#1500-15-031.02.0

3.3.10.2.4.,12.3 Local Data

The following local data is used by the unit:

1) Count - This +thirty-two bit integer contains the
count of received IXIB software datagrams.

2) Time_Out -~ This item is a thirty-two bit word which
contains the maximum +time to wailt for the next
datagram to arrive. The wvalue of this item is 30
seconds. ’

3) Dgram_Buffer - This data item is an area of
contiguous memory available to the wnit Rev_Dgram to
place a received datagram into.

4) Message - This item is a thirty two bit pointer to
the start of the message contained in the received
datagram. The message consists of:

1) Message_Type - A eight bit byte containing
the type of message. Message types are:
b) DATA (1) - The nmessage contains
download software.
B) END (0) - The message is the last
message of the downloading process.
2) Message_Data - b5l2 elght Dbit bytes of
download data.
5) ©Status - This thirty-two bit word is used to receive

status returned by called units.

- 104 -

#1500-15-031.02.0

3.3.10.2.4.12.4 Processging
Set Count to zero

Loop
Status = Recv_Dgram(Buffer, Time_Out)
If (Status = ERROR)
return(ERROR)
Endif
Message = Check_Dgram(Buffer)
If (Message = ZERO)
return(ERROR)
If (Message_Type field of Message = END)
Increment Count by 1
Call Download Dgram(Message)
Endif
While (Message_ Type field of Message != END)

If (Count != End_Count field in Message)
return(ERROR)
Endif

"return({NOERROR)

3.3.10.2.4.12.5 Limitations

There are no limitations defined for this unit.

105

#1500-15-031.02.0

3.3.10.2.4.13 Install_SW Unit

The Install_SW unit receives IGW software from the cooperating

and loads the software into IGW menory.

3.3,10.2.4.13.,1 Inputs

No input is used by the unit.

)

3.3.10.2.4.13.2 Outputs

The unit produces the following output:

1)

3)

IGW Software - The IGW Software collected by the unit
is written to the IGW memory.

Special Registers - A global variable containing:

SCBB - SCB base register

ISP - interrupt stock pointer

SBR - system base register

SLR - system length register

ERTE_VIRT - ERTE starting virtual address

Free_Phys - start at free physical memory after
software is loaded

host

- 106 -

#1500-15-031.02.0

3.3.10.2.,4.13.3 Local Data

The following local data is used by the unit:

1)

2)

3)

4)

5)

6)

Page - This thirty-two bit integer contains the
memory page number that the next datagram of the IGW
software will be written to.

Count - This thirty-two bit - integer contains the
count of received IGW software datagrams.

Time_Out - This item is a thirty-two bit word which
contains the maximum time to wait £for +the next
datagram to arrive. The wvalue of this item is 30

seconds.

Dgram_Buffer - This data item 1is an area of
contiguous memory into available to the unit
Rcv_Dgram to place a received datagram.into.

Message - This item is a thirty_two bit pointer to
the start of the message contained in the received
datagram. The message consists of:

1) Message_Type - A thirty-two bit word
containing the type of message. Message
types are:

A) DATA (1) - The nmessage contains
download software.

B) END (0) - The message is the last
message of the dowloading process.

2) Message_Data - 512 eight bit bytes of
download data.

Status - This thirty-two bit word is used to receive
status returned by called units.

- 107

#1500-15-031.02.0

3.3.10.2.4.13.4 Processing

Set Page to zero
Set Count to zero

Loop
Status = Rcv_Dgram(Buffer, Time_Out)
If (Status = ERROR)
return(ERROR)
Endif
Message = Check_ Dgram(Buffer)
If (Message = ZERO)
return(ERROR)
If (Message_Type field of Message != END)
Increment Count by 1
Call Copy_Data(Message, Page)
Increment Page by 1
Endif
While (Message_ Type field of Message != END)

return(ERROR)
Endif

For (each Special_ Register field in Message)

Copy the field to the corresponding special register global variable
Endfor

See Free_Phys to Page*PAGE_SIZE
return(NOERROR)

3.3.10.,2.4.,13.5 Limitations

There are no limitations defined for this unit.

I If (Count != End_Count field in Message)

- 108 -

#1500-15-031.02.0

3.3.10.2.4.14 Main Unit

process of loading the IGW and IXIB software and data,

registers.
3.3.10.2.4.14.2 Outputs
The unit produces the following outputs:

the global Special_ Registers input to
corresponding VAX internal registers.

The Main wunit of the IGW Net Load component is the unit which first

receives control from the IGW Boot ROMS. The wuwnit then directs the

and then
tranfers control to the IGW operating software.
303-10&204.14-1 Inputg
The following input is used by the unit:
1) Boot_;nfo_Pointer - This input is supplied by the
Micro-VAX boot ROMS in register R11l. It is a pointer
to an area of memory where boot information is
stored.
2) Special Registers - This input is a global table

containing the values for the Micro-VAX internal

1) VAX Registers - The unit will copy the values from

the

- 109 -

#1500-15-031.02.0

3.3.10.2,4.14.3 Local Data

No local data is defined for this unit.

3.3.10.2.4.14.4 Processing -

Call Calc_Memory_Size(Boot_Info_Pointer)
Call Relocate()
Call Receive_Data()

Copy fields in Special_Registers input to corresponding VAX
internal registers.

Set up a local page table to map the memory containing the "jump
to ERTE" instruction into its physical memory location

Set up POBR and POLR internal registers to select the page table
just created.

Set the MAPEN internal register to turn on the VAX memory management.
Jump to the start of the IGW ERTE TLC.

3.3.10.2.4.14.5 Limitations
No limitations are defined for this unit
3.3.10.2.4.15 Print_Msg Unit

The Print_Msg unit prints the string passed to it as a parameter to be

displayed on the IGW console.

- 110 -

#1500-15-031.02.0

3.3.10.2,4.15,1 Inputs

The following input is used by the unit:

1)

2)

Message - This thirty-two bit parameter is a pointer

to the start of the message to be printed, which \is
global to this unit.

Transmit_CSR - This input/output device register
contains the status and control information for the
console device transmitter.

3.3.10.2.4.15,1 Qutputs

The following are output by this unit:

1)

2)

Transmit _Data -~ This device register is the output
data register for the console device. Characters of
the message are written .to this register to be
displayed on the console.

Transmit_CSR ~ This input/output device register
contains the status and control information for <the
console device transmitter. It is written to set up
the transmitter for writing characters to the
console.

111

#1500-15-031.02.0

3.3.10.2,.4.15,3 Loc¢cal Data

There is no local data defined for this unit.

3.3.10.2.4.15.4 Processing

Write the Transmit_CSR to set up the transmitter for writing
characters without generating interrupts.
For each character in Message

Write the character to Transmit_ Data
Loop

Test Transmit_CSR

While (Transmit_CSR show output is not completed)
Endfor

3.3.10.2.4.15.5 Limitations
There are no limitations defined for this unit.
3.3.10.2.4.16 Receive_Data Unit

The Receive_Data unit controls the activities and procedures used to
receive software and data from the cooperating host and to load it

into the IGW memory or the IXIB.

- 112 -

#1500-15-031.02.0

3.3.10.2.4.16.1 Inputs

There are no inputs defined for this unit.

3.3.10.2.4.16.1 Outputs

There are no outputs defined for this unit.

3.3.10.2.4.16.3 Local Data

The following local data is defined for the unit:

1) Status - Returned status from called units.

3.3.10.2.4.16.4 Processing
Call Init_Ethernet()

Status = Send_Message(SEND_IGW)

If Status indicates an error occurred
Call Reboot()

Endif

Status = Install_IGW_Software()
If Status indicates an error occurred
Call Reboot()

-Endif

Status = Send_Message(SEND_IXIB)

If Status indicates an error occurred
Call Reboot()

Endif

Status = Install IXIB_Software()

If Status indicates an error occurred
Call Reboot()

Endif

113

#1500-15-031.02.0

3.3.10,2.4.16.5 Limitations
No limitations are defined for this unit.
3.3.10.2.4.17 Recv_Dgram Unit

The Recv_Dgram unit manipulates the Ethernet hardware to allow the
receipt of an Ethernet packet, which is expected to contain an IP

datagram. The unit implements a time-out so that the attempt to

3.3.10.2.4.17.1 Inputs

The following input is used by the unit:

1) Buffer_ Pointer - This thirty-two bit parameter is a
pointer to the input buffer supplied by the «calling
unit. The received datagram will be placed in this
buffer, less the Ethernet header.

2) Time Out - This thirty-two bit unsigned integer is a
value used to determine how 1long to wait for an
incoming Ethernet packet before assuming that an
error has occurred or no packet is coming.

3) Ether_ CSR - This input 1is the Control and Status
register of the DEQNA hardware. It supplies status
information when read.

l receive a datagram can be aborted if no datagram arrives.

- 114 -

#1500-15-031.02.0

3.3.10.2.4.17.1 Qutputs

The following are output by this unit:

1)

2)

3)

4)

Buffer - The received datagram is loaded into the
buffer pointed at by Buffer_Pointer. The datagram
does - not include the Ethernet header.

Status - This thirty-two bit return parameter
indicates whether a successful receive operation
occurred. If +the receive was successful, then

NOERROR is returned, otherwise ERROR is returned.

Ether_ CSR =~ This input is +the Control and Status
register of the DEQNA hardware. Control information
is passed to the register when it is written.

Recv_BDL_Reg - This DEQNA device register is used to
load the address of the Receive_BDL into the DEQNA to
begin a receive operation.

3.3.10.2.4.17.3 Local Data

The following local data is defined for this unit:

1)

Receive_BDL - This global item is a list of Buffer
Descriptors for DEQNA receive operations. The buffer
descriptors are predefined by the Init_Ether unit.

- 115 -

.#1500-15-031.02.0

3.3.10.2.4.17.4 Processing

Write Buffer_Pointer into Address_Bits field of second BDL in
Receive_BDL .

/* first BDL is for Ethernet header */

Set Btatus to NOERROR

Write address of Receive_BDL into Rcv_BDL_Reg
/* This gstarts DEQNA receive operation */
Clear Ether_CSR Receive Interrupt Reguest bit

Loop.
If (Ether_CB8R Receive Interrupt Request bit is set)
Examine Receive Status Word 1 of second BDL in Receive_ BDL
If the ERROR/USED bit of the status word is set
S5et Status to ERROR
Endif
Else
Decrement Time_Out
If (Time_Out = 0)
Set Btatus to ERROR
Endif
Endif
While (Timer != 0)

Return(Status)

' 3.3.10.2.4.17.5 Limitations

This unit does not attempt to distinguish between types of receive
errors. Also, the Time_Out defines a loop count which specifies how
many times a loop must be executed before a time-out occurs. Because

the +time-out should be several seconds, this value must be very

large.

- 116 -

#1500-15-031.02.0

3.3.10.2,4.18 Reboot Unit

The Reboot unit issuwes a message to the console, and then causes

IGW to reboot itself.

3.3.10.2.4.,18,1 Inputs

There are no inputs to the unit.

3.3.10.2.4.18.1 Qutputs

There are no outputs from the unit.

1)

2)

...' l.. -.l'

3-3.101204-18-3 LOC&l Dat&

There is no local data defined for the unit.

Halt_Control -~ This item is a thirty-two bit pointer
to the 16 bit Q-Bus register wused to direct the
operation of the Micro-VAX processor when a Halt
occurs. The value of this item is 200BBO1C(Hex)

REBOOT - This constant defines the value of
Halt_Control to reboot the machine when a halt
ogcurs. The value is 23(Hex).

the

117

#1500-15-031.02.0

3.3.10.2.4.18.4 Processing

Call Print_Msg("Boot Failure - IGW Rebooting")
Write REBOOT into the Halt_Control
Execute a Halt instruction

3.3.10.2.4.18.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.19 Relocate Unit

The Relocate unit copies the IGW Net Load boot program from low memory

to the top of memory.

3.3.10.2.4.19.1 Inputs

The following input is used by the unit:

1) Memory_Size - This 32 bit integer contains the amount
of memory in bytes available in the IGW.

- 118 -

i -

#1500-15-031.02.0

3.3.10.2,4.19.1 Outputse
The following output is produced by the unit:

1) ﬁelocated_Code - The program code is relocated to the
top of IGW memory. ’

3.3.10.2.4.19.3 Local Data

The following local data is defined for the unit:

1) Program_Start - This 32 bit item is the address of
the start of the program in memory. This item is
determined from a Start symbol defined at compile
time.

2) Program_End - This 32 bit item is the address of the
end of the program in menory. This item is
determined from a End symnbol defined at comnpile
time.

3) Program_Size - This 32 bit item is the size of the

program in memory.

3.3.10.2,4,19.4 Processing

Set Program_Start to address of Start symbol
Set Program_End to address of End synmnbol
Set Program_§Size to Program_End - Program_Start

Copy progranm code from its current start to Memory_Size - Program_GSize
Transfer control to relocated code.

- 119 -

#1500-15-031

3.3.10.2.4,1

.02.0

9.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.20 Send_Dgram Unit

The Send_Dgr
an Ethernet

Ethernet.

3.301002'4'2

am unit takes a datagram with IP and UDP headers and

header, and then outputs the datagram to the

0.1 Inputs

The. following input is used by the unit:

1)

2)

Transmit_BDL - This global item is a list of Buffer
Descriptors for DEQNA receive operations. The buffer
descriptors are predefined by the Init_Ether unit.

Ether_CSR - This input is +the Control and Status
register of the DEQNA hardware. It supplies status
information when read.

qdds

the

120 -

#1500-15-031.02.0

3.3.10.2.4.20.1 Outputs

The following outputs are produced by the unit:

1) 'Status - This thirty-two bit return parameter.
indicates whether a successful +transmit operation
occurred. If the transmit was successful, then

NOERROR is returned, otherwise ERROR is returned.

2) Ether_CSR - This output is the Control and Gtatus
register of the DEQNA hardware. Control information
is passed to the device when it is written.

3) Xmit_BDL_Reg - This DEQNA device register is used to
load the address of the Transmit_BDL into the DEQNA
to begin a transmit operation.

3.3.10.2.4.20f3 Local Data

The following local data is defined for the unit:

1) Ether_Hdr - This item consists of seven 16 bit words
used to hold the header for +the received ethernet
packet. The item contains the following fields:

1) Dest_Addr -~ 48 bit (three 16 bit words)
Ethernet address for the destination of the
packet.

2) ©Src_Addr - 48 Dbit (three 16 bit words)
Ethernet address for the source . of the
packet.

3) Ether Type - 16 bit word containing the type

of Ethernet packet. This field is wused to
identify the higher level protocol carried by
the packet.

- 121

#1500-15-031.02.0

3.3.10.2.4.20.4 Processing

Set the Dest_Addr field of Ether_Hdr to the destination Ethernet
address of the cooperating host

Set the Src_Addr field of Ether_Hdr to the Ethernet address of the
IGHW

Set the Ether_ Type field of Ether_Hdr to IP_TYPE

Set the Address_Bits of the first BDL in Transmit_BDL to the address
of Ether_Hdr

Set the Addr_Descriptor_Bits of flrst BDL in Transmit_BDL to
VALID_ADDRESS

Set the Buffer_Length field of the first BDL in Transmit_BDL to 7

/* seven 16 bit words in Ethernet header */

Set the Flag field of first BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the sgecond BDL in Transmit_BDL to the
IP_Hdr field of Dgram

Set the Addr_Descriptor_Bits of second BDL in Transmit_BDL to
VALID_ ADDRESS

Set the Buffer Length field of the second BDL in Transmit_BDL to 10
/* ten 16 bit words in IP header */

Set the Flag field of second BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the third BDL in Transmit_BDL to the
UDP_Hdr field of Dgram

Set the Addr_Descriptor_Bits of third BDL in Transmit_BDL to
VALID_ADDRESS

Set the Buffer_Length field of the third BDL in Transmit_BDL to 4
/* four 16 bit words in UDP header */

Set the Flag field of third BDL in Transmit_ BDL to INITIALIZED

Set the Address Bits of the fourth BDL in Transmit_BDL to the
Dgram_Msg field of Dgram

Set the Addr_Descriptor_Bits of fourth BDL in Transmit_BDL to the
logical or of VALID_ADDRESS and END_MSG.

Set the Buffer_ Length field of the fourth BDL in Transmit _BDL to 4
/* four 16 bit words of datagram data */

Set the Flag field of fourth BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the fifth BDL in Transmit_BDL to the zero
Set the Addr_Descriptor_Bits of fifth BDL in Transmit_BDL to
INVALID_ADDRESS

Set the Buffer_ Length field of the fifth BDL in Transmit_BDL to O
Set the Flag field of fifth BDL in Transmit_BDL to INITIALIZED

Write 0 to Ether_CSR
Write address of Transmit_BDL to Xmit_BDL_Reg

- 122

#1500-15-031.02.0

/* starts transmission */

. Set Csr to Ether_ CSR

While (Csr does not indicate transmission completed)
Set Csr to Ether_ CSR
Endwhile

3.3.10.2.4,20.5 Linmitations
3.3.10.2.4.21 Send_Message

The Send_Message unit prepares a message to the cooperating host which

requests that the host begin dowloading either IGW software or IXIB

software to the IGW.
3.3.10.2.4.21.1 Inputs

The following input is used by the unit:

1) Message_Type - This thirty-two bit parameter
specifies the messadge sent to the host. The value of
the item is either SEND_IGW or SEND_IXIB (these
values are defined under global data).

- 123 -

#1500-15-031.02.0

3.3.10.2.4,21.1 OQutputs

There are no outputs from this unit.

3.3.10.2.4.21.3 Local Data

The unit uses the following local data:

1)

2)

3)

Message - This item 1is the message sent to the
cooperating host requesting the host begin
downloading. The message consists of two thirty-two

bit words. The first word indicates the type of data
to be returned: ‘

1) IGW_SW - IGW software

2) IXIB_SW - IXIB software
The second word contains the size of the IGW memory
in bytes. This word is only applicable for IGW_SW
messages. ~
Dgram - This item is a thirty-two bit pointer to a
datagranm structure created and returned by ~the

Create_Dgram unit,

Status - This thirty_two bit item contains the status
returned by the Send Dgram unit.

124

e +
| Host Net Load |
| LLC [
o m————— o mmm——— +
f
i e o e +
! I ! I
A m——— Hm———— + o} e ——— e ittt + |
| Add_To PT | | Create_Int Stack | | Define_Free_Memory | |
e i e L + |
|
et et e e ta L L T L e il +
I I f I I
 alatet Amm———— + fmm——— o + A m———— Frmmm———— + odmm———— o ——— + |
| Define ILA | | Get_Flags | | Link IO Pages | | Load ACT Tbl | |
D ettt + ot — T ———— I T i R +
I
e T Eiataiata L L PP e et L +
! | I I
Homm——— e + Hmm———— fomm——— + D Eaa + |
| Load ERTE | | Load GW Tbl | !} Load IGW | |
A + e et + A ——————— +
I
e ettt E e o o mm +
| | I ! I
o A ——— + e o + - e e + b — e + |
| Load TIXIB | | Load NB Tbl | | Load Net Tbl | | Load Reg |]
A ———————— L L e I T T + o m— +
I
e ettt o o e it +
| I | ! |
Ao I T e B Frmmm o e et + |
| Load:-SCB | | Main | | Read Process List | | Read Processes | |
Ao e + e ——— R e + o + |
|
e ittt e e e e e e e e ————————— +
I !
o Fmmm——— + Hm———- Hmm——— +
| Reserve_SPT | | Write ILA |
e e I R &

Figure 3-12

#1500-15-031.02.0

3.3.10.2.4.21.4 Processing

Copy Message_Type to Message

Dgram = Create_Dgram(Message)
Status = Send_Dgram(Dgram)
If (Status != NOERROR)

return{ ERROR)
Endif .

3.3.10.2.4.21.5 Limitations
There are no limitations defined for this unit.
3.3.10.3 Host Net Load LLC

The Host Net Load LLC contains the host software that is responsible
for the loading of the IGW system from a remote host. To load the IGW
software, an image of the IGW memory containing the IGW software is

built in a file, and the file is then sent to the IGW.
3.3.10.3.1 Host Net Load LLC Architecture

The Host Net Load LLC consists of the following units as shown in
Figure 3-12:

1) Load_8CB Unit - This unit loads the System Control Block
to the IGW_Image file.

2) Reserve_SPT Unit - This unit reserves the space required
to contain the System Page Table.

3) Define_ILA Unit - This unit defines the structure of the

- 125 -

#1500-15-031.02.0

#1500-15~-031.02.0

4)

5)

6)

7)

8)

)

10)

11)

12)

IGW Link Area. This area contains information and
pointers to information +that are used globally by the
IGW. As part of the ILA definition ©procedure SPT
entries are added to the System Page Table to reference
the pages of "the IGW Link Area. _

Load_ERTE Unit - This wunit is responsible for the
loading of the ERTE from diskette into IGW memory.

Read_Process_List Unit - This unit reads the list of
processes that are to be loaded on the IGW.

Read Processes Unit - This unit makes use of the list
obtained by the Read_Process_List Unit to read ~in the
IGW processes from disk. This unit also sets up PPT and

SPT entries, allocates stack space (by the use of the
Allocate_Stacks Unit), and updates the PCB in
Process_List.

Load _ACT_Tbl Unit - This unit reads the X.121 Address
Configuration Table from disk and locads it into system
virtual address space. The IGW Link Area is updated to
reference the system virtual address of the loaded
table. '

Load_Net_Tbl Unit - This unit reads the X.121 Address
Configuration Table from disk and lcads it into systen
virtual address space. The IGW Link Area is updated to
reference the system virtual address of the loaded
table.

Load_GW_Tbl Unit - This wunit reads the Gateway Table
from disk and loads it into system wvirtual address
space. The IGW Link Area is updated to reference the

system virtual address of the locaded table.

Load _NB_Tbl Unit - This unit reads the Neighbor Table
from disk and loads it into system wvirtual address
space. The IGW Link Area is updated to reference the
system virtual address of the loaded table.

Create_Int_Stack Unit - This unit allocates space for
the interrupt stack. System page table entries are
added and hardware registers are set during the

allocation procedure.

Define_Free_Mem Unit - This unit sets up the system page
table entries required to reference the free memory of
the IGW.

127

#1500-15-031.02.0

13)

14)

15)

16)

17)

18)

19)

20)

21)

3.3.10.3.

This section describes the format and contents of +the data which is

defined
Host Net

1)

2)

Link_IO_Pages Unit - This unit sets up a pointer in the
IGW Link Area to reference the area of memory that is
designated for I1/0.

Load_IXIB Unit - This unit reads the IXIB software from
disk and send it teo the IGW.

Add_To_ PT Unit - This unit is called to add an entry to
a page table.

Get_Flags - This unit converts a flags string into a bit
pattern.
Main - This unit is responsible for listening for load

requests and calling the appropriate units te lcad the
software.

Load_IGW - This units is called to lcad the IGW software
to the requesting IGW. ‘

Load_IXIB - This wunits is called <to load the IXIB
software to the requesting IGW.

Write ILA - This unit is called to write the ILA to the
IGW_Image file.

Load_Reg - This unit is called to load register values
required by the IGW into a buffer to be sent to the IGW.

2 Global Data

to be globally used between the units contained within
Load procedure.

Free_Phys - This global data item consists of a 32 bit
integer ceontaining the physical address of the start of
memnory that has not been allocated yet.

Free_Virt - This global data item consists of a 32 bit
integer containing the virtual address of the start of
memory that has not been allocated yet.

the

128

#1500-15-031.02.0

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

Istack_Phys - @his Qlobal data item consists of a 32 bit
integer containing the physical address of +the top of
the interrupt stack.

Istack_Virt - This global data item consists of a 32 bit
integer containing the virtual address of the top of the
interrupt stack.

Proc_List - This global data item consists of an array
of 256 bytes containing the names of the files that
processes are to be loaded from. Each file name is

separated by a newline character and the list 1is
terminated by a null character.

Sys_PT - This global data item consists of a 32 bit
integer containing the starting physical address of the
system page table.

~

Sys_Lien - This global data item contains the length of

the system page table.

ILA - This global data item contains a memory image of
the IGW ILA.

ILA_Phys - This global data item contains the physical
address of the start of the IGW ILA.

ERTE_Virt - This global data item contains the virtual
address of the start of ERTE.

Table_Phys - This global data item contains the physical
address of the table area.

Table_Virt -~ This global data item contains the virtual
address of the table area. :

IGW_Image -~ This global data item consists of a file
used to access the IGW_Image file.

129

I ,. '|. -

‘

P _.

1

’-— -

#1500-15-031.02.0

3.3.10.3.4 Host Net Load Units

The following subsections contain the unit descriptions for the

comprising the Host Net Load LLC.

3.3.10.3.4.1 Add_To_PT Unit

units

The Add_To_PT Unit adds pége table entries to either the system or the

process page tables.

3.3.,10.,3.4.1.1 Inputs

The following inputs are used by the Add_To_ PT Unit:

1)

2)

3)

FT_Addr - This input contains the starting physical
address of the page table that page table entries are to
be added to.

Phys Addr - This input contains the physical address of
the page that is to be added to the page table.

Virt_Addr - This input contains the virtual address of
the page that is to be added to the page table.

130 -

#1500-15-

3.3.10.3.

031.02.0

4.1.2 Qutputs 3

The following outputs are produced by the Add_To_ PT Unit:

1)

3.3!10.3‘

Page Tables - This output is written to the page table
specified by the PT_Addr input. "The format of these
page tables is given in the global data section.

4,1.3 Local Data

The following local data is defined for the Add_To_PT Unit:

1)

2)

3.3.10.3.

Cur_Pos =
Call lsee
Move PFEN

Cur_Pos - This local data item is used to store the
current position in the IGW_Image file.

Cur_PTE - This local data item hold a page table entry
as described in the VAX Architecture Handbook.

4.1.4 Processing

tell(IGW_TImage)
k(IGW_Image, VPN of Virt_Addr + PT_Addr, L_SET)
of Phys_Addr to PEFN of Cur_PTE

Set PT_Valid field in Cur_Pte

Move PT_UW to PT_Prot field in Cur_PTE

Call write(IGW_Image, Address of Cur_PTE, 4)
Call lseek(IGW_Image, Cur_Pos, L_SET)

Return

131

#1500-15-031.02.0

3.3.10.3.4.1.5 Limitations

This unit performs no checks for incorrect wvirtual addresses, so
specifying invalid virtual address could result in page table entries

to be written to incorrect locations outside of the page table in

physical memory.
3.3.10.3.4.2 Create_Int_Stack Unit

The Create_Int_Stack Unit Reserves an area in physical memory

following the global tables to contain the interrupt stack.

3.3.,10.3.4.2.1 Inputs

The following inputs are defined for the Create_Int_Stack Unit:

1) Free_Phys - This input is read from global data and
contains the free physical memory address where the
interrupt stack is located.

2) Free_Virt - This input is 1read from global data and

contains the free wvirtual memory address where the
interrupt stack is placed.

- 132 -~

#1500-15-031.02.0

3.3.10.3.4.2.2 Outputs

The following outputs are produced by the Create_Int_Stack Unit:

1)

2)

3)

Free Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

Free_Virt - This output is written to global data and
contains the updated address of the next £free virtual
memory address.

Istack_Virt - This output is written to global data and
contains the virtual address of the initial interrupt
stack pointer.

3.3.10.,3.4.2.3 Local Data

No local data is defined for the Create_Int_Stack Unit.

3.3.10.3.4.2.4 Processing

Add ISTACK_SIZE to Free_Phys

Add ISTACK_SIZE to Free_Virt

Adjust Free_Phys and Free_ Virt to point to next page boundary if
necessary

Move Free_Virt to Istack_Virt

Return

- 133

#1500-15-031.02.0

3.3.10.3.4.2.5 Limitations

No limitations are defined for the Create_Int_Stack Unit.

3.3.10.3.4.3 Define_Free_Mem Unit

The Define_Free_Mem Unit defines the system virtual addresses for the

area in physical memory from the beginning of the tables to the end of

the free memory.

3.3.10.3.4.83.1 Inputs

The following inputs are defined for the Define_Free Mem Unit:

1)

2)

3)

Table_Phys - This input 1is read from global data and
contains the physical memory address where table storage
begins.

Table _Virt - This input is read from global data and
contains the virtual memory address where table storage
begins.

Sys_Pt - This input is read <from global data and
contains the physical address of the system page table
that has been defined by the Reserve_ S5PT Unit.

134 -

#1500-15~-031.02.0

3.3.10.3.4.3.2 Outputs

The following outputs are produced by the Define_Eree_Mem Unit:

1))

2)

3)

SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

Free_Virt - This output is written to global data and
contains the updated value for the next free address in
physical memory.

ILA - This output is written to the ILA area and is
updated with the virtual address for the start of the
IGW free memory.

3.3.10.3.4.3.3 Local Data

No local data is defined for the Define Free Mem Unit.

3.3.10.3.4.3.4 Processing

Move Free_Virt to ILA entry for free virtual memory

For each page N starting at Table Phys to end of physical memory
Call Add_To_PT(Page_Table = Sys PT,
Virt_Addr = N * PAGE_SIZE + Table_ Virt,

Phys Addr

Endfor
Return

N * PAGE_SIZE + Table_Phys)

- 135

#1500-15-031.02.0

3.3.10.3.4.3.5 Limitations
No limitations are defined for the Define_Free_Mem Unit.

3.3.10.3.4.4 Define_ILA Unit

The Define_ILA Unit Reserves an area in physical memory following the
system page table to contain the IGW Link Area. System page table
entries are created for this area referencing system virtual addresses
starting at the beginning of the system virtual address space. The
ILA data structure isn't writtén to the IGW_Image disk file until the

rest of IGW_Image is completed.
3.3.10.3.4.4.1 Inputs

The following inputs are defined for the Define_ ILA Unit:

1) Free_Phys - This input is read from global data and
contains the free physical memory address where the ILA
area is to be placed.

2) Free_Virt - This input 1is read from global data and
contains the free virtual memory address where the ILA
area is to be placed.

3) Sys_Pt - This input 1is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

- 136 -

#1500-15-031.02.0

3.3.10.3.4.4.2 Outputs

The following outputs are produced by the Define_ ILA Unit:

1)

2)

3)

4)

SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

ILA ~ This output updates the IGW Link Area data
structure with any fields of that area that are to be
initialized. '

3.3.10.3.4.4.3 Local Data

No local data is defined for the Define_ ILA Unit.

3.3.10.3.4.4.4 Processing

Move Free_Phys to ILA_Phys

For each page in ILA
Call Add_To_PT(Page_Table = Sys_PT, Free_Virt, Free_-Phys)
Add PAGE_SIZE to Free_Phys
Add PAGE_SIZE to Free_Virt

Endfor

Move Sys_Pt to SBPT_Address field of ILA

Return

137

#1500-15-031.02.0

3.3.10.3.4.4.5 Limitations

No limitations are defined for the Define_ILA Unit.

3.3.10.3.4.5 Get_Flags Unit

The Get _Flags Unit is wused to convert a character string containing

flags to a bit representation of those flags.

3.3.,10.3.4.5.1 Inputs

The following inputs are required by the Get_Flags Unit:

1) B8Set _Flags - This input consists of a character striﬁg

containing the flags that are set.

2) All Flags - This input consists of a character string

containing all possible flags given in the correct

order.

bit

- 138 -

#1500-15-031.02.0

3.3.10.3.4.5.2 Outputs
The following outputs are produced by the Get_Flags Unit:

1) Flags - This output consists of the flags given in
Set_Flags stored in bit positions.

3.3.10.3.4.5.3 Local Data

No local data is defined for the Get_Flags Unit.

3.3.10.3:4.5.4 Processing
Clear Flags
For each Flag from 0 to N - 1 in All Flags
If Flag N is in Set_Flags
Bitwise or (1 left shifted by N) into Flags
Endif

Endfor
Return Flags

3.3.10.3.4.5.5 Limitations

No limitations are defined for this unit.

3.3.10.3.4.6 Link_IO_Pages Unit

The Link_JIO_FPages Unit is used to create system virtual address for

the I0 pages and store the starting virtuval address of the IO pages in

‘the ILA.

- 139 -

#1500-15-031.02.0

3.3.10.3.4.6.1 Inputs

No inputs are defined for the Link_IO_Pages Unit.

1)

2)

Free_Virt - This input 1is read from global data and
contains the next free virtual address.

Sys_Pt - This input is read €from global data and

- contains the address of the system page table.

3.3.10.3.4.6.2 Outputs

The following outputs are produced by the Link_IO_Pages Unit:

1)

2)

SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

ILA - This output is written to the IGW link area data
structure to indicate the starting system virtual
address of the IO pages.

3.3.10.3.4.6.3 Local Data

No local data is defined for the Link_TIO_Pages Unit.

3.3.10.,3.4.6.4 Processing

Move Free_Virt to Link_I0 field of ILA

For each page N in the IO Space

Call Add_To_PT(Page_Table = Sys_PT,
Virt_Addr = N * PAGE_SIZE + Free_Virt,

Phys_Addr

Endfor
Return

N * PAGE_SIZE + IO_PHYS)

140

#1500-15-031.02.0

3.3.10.3.4.6.5 Limitations
No limitations are defined for the Link_IO_Pages Unit.
3.3.10.3.4.7 Load_ACT_Tbl Unit

The Load_ACT_Tbl Unit loads the X.25 Address Configuration Table
disk to the system virtual address space following the process
tables. The ILA is updated to indicate the correct address of

table.
3.3.10.3.4.7.1 Inputs

The following inputs are used by the Load ACT_Tbl Unit:

1) X.25_ACT - This input is read from the file "x.25_act"
and contains a copy of the X.25 Address Configuration
Table. This file contains the following fields:

X121 - This field contains the ¥X.121 address (1 to 15
bytes) of the table entry.
Inet - This field contains the IP address in dot

notation for the table entry.

Size ~ This field contains the maximum size for a
packet for the host described in the table entry.

Flags -~ This field contains flags describing a table
entry.
2) Free_Phys -~ This input is read from global data and

contains the free physical memory address where the X.25
Address Configuration Table is to be placed.

from

page

this

141 -

. ,

#1500-15-031.02.0

3)

Free_Virt - This input is read from global data and
contains the free virtual memory address where the X.25
Address Configuration Table is to be placed.

3.3.10.3.4.7.2 Outputs

The following outputs are produced by the Load_ ACT_Tbl Unit:

1)

2)

3)

4)

ACT_Table - This output is written to the global data
area of the IGW_Image file as new entries are added to
the X.25 Address Configuration Table. This table

contains the following fields:

ACT_X121 - This field consists of a 16 byte character
string the X.121 address of the current entry.

ACT_Inet - This field <consists of a 32 bit value
indicating the IP address for the current entry.

ACT Size - This field consists of a 16 bit value
indicating the maximum size of a packet for the
current entry.

ACT Flags - This field oconsists of a 32 bit value
containing the following flags.

REQ_REV (0x0l) - Request reverse charging.
ACC_REV (0x02) - Accept reverse charging.
REJ_IN (0x04) - Reject incoming calls.
REJ_OUT (0x08) - Reject outgoing calls,.
IXIB (0x10) - Remote is an IXIB.

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memnory address.

Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

ILA - This output is written to the IGW Link Area data
structure and is updated with the address of the X.25
Address Configuration Table.

142

HE BN T BN B B B e
_ ; i

M

NN EE NN B

L}
’

#1500-15-031.02.0

3.3.10.3.4.7.3 Local Data

The following local data is defined for the Loaa_ACT_Ibl Unit:

1) Input_Buffer - This data congists of a buffer of 100
bytes that is used to read records from the x.25_act
file,

2) Host - This data item is used to hold the dot notation

format of the IP addresses as they are read from the
X.25_act file.

3) Flags - This data item is a character string used to
hold the flags field of each entry <that is read from
Xx.25_act file.

4) ACT_Ptr =~ This data item is wused to step through
ACT_Table while adding table entries.

5) Fp -~ This local data item is a pointer to a FILE
structure referencing the x.25_act file.

6) ACT_Table - This local data item is an image of the
ACT_Table output. .

3.3.10.3.4.7.4 Processing

Fp = fopen("x.25_act", "x")
If Fp is null
Call printf(Error message)
Call exit(-1) ‘
Endif
Clear ACT_Table

‘Move Free_Virt to ACT _Table pointer in ILA

Move start address of ACT_Table to ACT_Ptr
While more data in x.-25_act file
Call fgets(Input_Buffer, bytes to read = 100, Fp)
If first character in Input_Buffer is a '#°
Continue next loop iteration
Endif
If ACT_Table is full
Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s %d %s",
Act_X121 field of ACT_Table entry pointed to by ACT_Ptr,
Host,
Address of ACT_Size field of ACT_Table entry pointed to by ACT_PTR,

- 143 -

#1500-15-031.02.0

Flags) is -1
Exit Loop
Endif
ACT Inet field of ACT_Table entry pointed to by ACT_Ptr =
Inet_Addr(Host)
If ACT _Inet field of ACI_Table = -1
Call Printf(error message indicating invalid ACT Entry)
Continue next loop iteration
Endif
ACT Flags field of ACT_Table entry pointed to by ACT_Ptr =
bitwise or between ACT_VALID and Get_Flags(Flags, "RAIOX")
Set ACT_Ptr to point to next entry in ACT_Table
Endwhile
Call fclose(Fp)

- Call write(IGW_Image, Address of ACT_Table, size of ACT_Table)

Add size of ACT_Table to Free_Phys
Add size of ACT_Table to Free_Virt
Return

3.3.10.3.4.7.5 Limitations

No limitations are défined for the Load_ACT_Tbl Unit.
3.3.10.3.,4.8 Load_ERTE Unit

The Load_ ERTE Unit is responsible for the' loading of the

executable image from a file to the IGW memory image file. For

page of ERTE that is loaded a system page table entry is created.

ERTE

each

144 -

#1500-15-031.02.0

3.3.10.3.4.8.1 Inputs

The following inputs are defined for the Load_ERTE Unit:

1) ERTE - This input is read from the file "ERTE" contains
the header, text, data, and bss areas of +the ERTE
executable.

2) Free_Phys - This input 1s read from global data and
contains the free phy51ca1 memory address where ERTE is
to be placed

3) Free_ert - This dinput is read from global data and
contains the free virtual memory address where ERTE 1is
to be placed.

4) ©Sys_Pt - Thig input is read fromn global data and

contains the physical address of the system page table
that has been defined by the Reserve_ SPT Unit.

3.83.10.3.4.8.2 Outputs

f

The following outputs are produced by the Load_ ERTE Unit:

1) ERTE Memory Image - This output is written to the disk
IGW memory image file and contains the text, data, and
bss areas for ERTE.

2) SPT - This output is written to the systen page table by
calling the Add_To_PT Unit, and contains the new page
table entries for the memory occupied by ERTE,.

3) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

4) Free_Virt - This output is written to global data and
contains the updated address of the next £free virtual
memory address.

‘- 145

#1500-15-031.02.0

3.3.10.3.4.8.3 Local Data

The following local data is defined for the Load_ERTE Unit:

1)

2)

3)

4)

Exec_Header - This local data item is a structure that
is used to hold the header from the ERTE executable that
is loaded from diskette. The fields in this structure

are all 32 bit values and are defined as follows:

A _Magic - This field ocontains the type of the
executable image that is being loaded. Valid values
for this field are:

OMAGIC (0407) - 0ld impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A_Text =~ This field ocontains the size of the text
segment in bytes.

A_Data ~ This field <contains the size of the
initialized data segment in bytes.

A _Bss - This field <contains the size of the
uninitialized data segment in bytes.

A _Syms - This field contains the size of the symbol
field.
A_Entry - This field contains of the address of the

entry point of the loaded executable image.

A _Trsgize - This field contains the size of the text
relocation area.

A _Drsize - This field contains the size of the data-

relocation area.

Buffer - This local data item consists of an array of
512 bytes used to read ERTE from disk.

Bytes_Read - This local data item contains the number of
bytes that have been read in result of a read call.

Byte_Count - This local data item is used to hold a
count for the purpose of reading the ERTE image from
disk.

146

#1500-15-031.02.0

3.3.10.3.4.8.4 Proceesing

Fd = open("ERTE", 0)
If F4 is less than 0
Call printf(Error message)
Call exit(-1)
Endif
Bytes_Read = read(Fd, Address of Exec_Header,
Size of Exec_Header) ?
If Bytes_Read not equal size of Exec_ Header
Call printf(Error message)
Call exit(-1)
Endif
If A_Magic field of Exec_Header is ZMAGIC

If result of lseek(Fd, Offset = 1024, L_SET) is less

Call printf(Error message)
Call exit(-1)
Endif

Else if A _Magic field of Exec_Header isn't one of OMAGIC or NMAGIC ZMAGIC

Call printf(Error message)
Call exit(-1)
Endif
Move A_Text field of Exec_Header to Byte_Count
Add A_Data field of Exec_Header to Byte_Count
While Byte_Count is greater than O
Subtract 512 from Byte_Count
If Byte count less than O
If Byte_Count equals -512
Exit loop
Endif

Bytes_Read = read(Fd, Buffer, 512 + Byte_Count)

Call write(IGW_Image, Buffer, Bytes_Read)
Else
Bytes_Read = read(Fd, Buffer, 512)
If Bytes_Read isn't 512
Call printf(Error message)
Call exit(-1)
Endif
Call write(IGW_Image, Buffer, Bytes_ Read)
Endif

Endwhile

Call close(Fd)

Move Free Virt to ERTE_Virt

For each page N in ERTE text, data, and bsgs areas
Call Add_To_PT(Page_Table = Sys_ PT, Free_Virt,
Free_Phys += PAGE_SIZE
Free_Virt += PAGE_SIZE

Endfor

Free_ Phys)

than O

147

#1600-15-031.02.0

Call lseek(IGW_Image, Free_Phys, L_SET)
Return

3.3.10.3.4.8.5 Limitations
No limitations are defined for the Load ERTE Unit.
3.3.10.3.4.9 Load_GW_Tbl Unit

The Load_GW_Tbl Unit loads the Gateway Table from the file "gateway"
into the IGW_Image file. The gateway file is wused to define the
various gateways +that the IGW may access in addition +to those

determined through EGP.
3.3.10.3.4.9.1 Inputs

The following input is used by the Load_GW_Tbl Unit:

1) Gateway - This input is read from the file "gateway"
contains a copy of the Gateway Table. This file
contains the following fields:

Dst_Net - The destination network that is accessed by
a gateway table entry.

GW_Addr - The address of the gateway to route packets
for +the specified destination network.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the 1IP

network address mask for the destination network.

Hop - The number of gateways that must be crossed to
reach the destination.

- 148 -

#1500-15-031.02.0

2)

3)

Flags ~ This field consists of user definable flags.
Valid flags are:

E - Report route via EGP.

G - Gatewayed host. Delete route if the gateway
goes down.

R - Attempt to reroute datagrams if the gateway
goes down.

Free Phys ~ This input is read from global data and
contains the free wvirtual memory address where the
gateway table is placed. ’

Free Virt =~ This dinput' is read from global data and
contains the free virtual memory address where the

gateway table

is to be placed.

3.3.10.3.4.9.2 Outputs

The following outputs are produced by the Load_GW_Tbl Unit:

1)

2)

3)

4)

GW_Table -~ This output is written to the global data
area as new entries are added to the Gateway Table.
This table contains the following fields:

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

ILA - This output is written to the IGW Link Area data
structure and is updated with the address of the gateway
table,

149

#1500-15-031.02.0

3.3.10.3.4.9.3 Local Data

The following local data is defined for the Load GW_Tbl Unit:

1) Input_Buffer - "This data consists of a buffer of 100
bytes that is used to read records from the gateway
file.

2) GW_Addr - This data item consists of a character string

used to hold the IP address for each entry that is

from the gateway file.

3) Dst_Net - This data item consists of a character string
used to hold the destination network number for

entry that is read from the gateway file.

4) Flags - This data item is used to hold the flags field
of each entry that is read from the gateway file.

5) GW_Ptr - This data item is used to step through GW_Table

while adding table entries.

6) Fp - This local data item is a pdinter to the FILE

structure describing the gateway file.

7) GW_Table - This local data item is a memory image of the

GW_Table output,.

3.3.10.3.4,9.4 Processing

Fp = fopen("gateway", 0)
If Fp is Null
Call printf(Error message)
Call exit(~1)
Endif
Clear entries in GW_Table
Move Free_ Virt to GW_Table’ pomnter in ILA
Move start address of GW_Table to GW_Ptr
While more data in gateway file
Call fgets(Input_Buffer, bytes to read = 100, Fp)
If first character in input buffer is a '#'
Continue next loop lteratlon
Endif
If GW_Table is full
Exit loop
Endif
If result of sscanf(Input__ Buffer, "$s %s %$x %d %s %s"

150

#1500-15-031.02.0

Dst_Net, GW_Addr,
Address of GW_Mask field of GW_Table entry pointed to by GW_FPtr,
Address of GW_Hop field of GW_Table entry pointed to by GW_Ptr,
Flags) is -1
Exit Loop

Endif

GW_Dst_Net field of GW_Table entry pointed to by GW_Ptr =
Inet_Addr(Dst_Net)

If GW_Dst_Net field of GW_Table entry pointed to by GW_Ptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif

GW_GW_Addr field of GW_Table entry pointed to by GW_Ptr =

Inet_Addr(GW_Addr)

If GW_GW_Addr field of GW_Table entry pointed to by GW_Ptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif

Move index of entry in Net_Table with same network address as the

network portion of the gateway address to GW_Number
field of GW_Table entry pointed to by GW_Ptr

GW_Flags field of GW_Table entry pointed to by GW_Ptr =

bitwise or between GW_VALID flag and Get_Flags(Flags, "EGR")

Set GW_Ptr to point to next entry in GW_Table

Endwhile

Call fclose(Fp)

Add size of GW_Table to Free_Phys

Add size of GW_Table to Free_Virt

Call write(IGW_Image, Address of GW_Table, Size of GW_Table)
Return

3.3.10.3.4.9.5 Limitations

The unit Load_Net Table must be executed before this unit.

- 151

#1500-15-031.02.0

3.3.10.3.4.10 Load_IGW Unit

The Load_IGW Unit is called to load the IGW software to the IGW

is requesting to be loaded.

3.3.10.3.4.10,1 Inputs

The following inputs are defined for the IGW_Load Unit:

R

2)

3)

IGW 1Image - This input is a file that contains the
created IGW memory image.

S - This input contains the file descriptor to reference
the socket that is used to access the remote IGW.

Remote - This input consists of a structure of type
sockaddr_in and contains the address information for the
IGW that is requesting the IGW software,

3.3.10.3.4.10.2 Outputs

The following outputs are produced by the Load IGW Unit:

2)

5 - This item contains the file descriptor to reference
the socket that is used to send data to the remote IGW.

that

152 -

#1500-15-031.02.0

3.3.10.3.4.10.3 Local Data

The following local data is defined for the Main Unit.

1) Bytes_Read - This local data item contains the number of
bytes have been read from the IGW_Image file on a read
request.

2) Buffer - This local data item is a buffer of 513

characters used in reading from IGW_Image and sgending
data to the IGW.

3.3.10.3.4.10.4 Processing

IGW_Image = open("IGW_Image", {(read only, create, truncate))
If IGW_Image is less than O
Call printf(Error message)
Call exit(-1)
Endif
Call Load_SCB()
Call Reserve_ SPT()
Call Define_ ILA()
Call Load_ERTE()
Call Read_Process_List()
Call Read_Processes()
Move Free_Phys to Table_ Phys
Move Free_Virt to Table Virt
Call Load_ACT_Tbl()
Call Load_Net_Tbl()
Call Load_GW_Tbl()
Call Load NB_Tbl()
Reserve space for unloaded tables
Call Create_Int_Stack()
Call Define_Free_Men()
Call Link_IO_Pages()
Call Write TILA()

‘Call lseek(IGW_Image, OL, L_SET)

Move NL_DATA to first byte in Buffer

Loop
Bytes_Read = read(IGW_Image, Address of second byte in
Buffer, 512)
If Bytes_Read is less than or equal 0
Exit Loop
Endif
Call sendto(S, Buffer, 513, 0, Address of Remote, Size of
Remote)
Endloop

1563

#1500-15-031.02.0

Call close(IGW_Image)

Move NL_END to first byte of Buffer

Call Load_Reg(Address of second byte in Buffer)

Call sendto(S, Buffer, 513, 0, Address of Remote, Size of Remote)

Return

3.3.10.3,4.10.5 Limitations

No limitations are defined for this unit.

3.3.10.3.4.11 Load_IXIB Unit

The Load_IXIB Unit is called to load the IXIB software to the IGW

is requesting the IXIB software to be loaded.

3.3.10.3.4.11.1 Inputs

The following inputs are defined for the IGW_Load Unit:

1)

2)

3)

IXIB.S28 =~ This input is obtained from the disk file
"IXIB.S28" and contains the IXIB software in Motorola
S-Record format.

S - This input contains the file descriptor to reference
the socket that is used to access the remote IGW.

Remote - This input consists of a structure of type
sockaddr_in and contains the address information for the
IGW that is requesting the IXIB software.:

that

154 -

#1500-15-031.02.0

3.3.10.3.,4.11.2 Outputs
The following outputs are produced by the Load_IGW Unit:

2) S - This item contains the file descriptor to reference

the socket that is used to send data to the remote IGW.
3.3.10.3.4.11.3 Local Data
The following local data is defined for the Main Unit,

1) Bytes_Read - This local data item contains the number of
bytes have been read from the IGW_Image file on a read
request.

2) Buffer - This 1local data item is a buffer of 513
characters used in reading from IGW_Image and sending
data to the IGW.

3) 1IXIB_S28 - This local data item contains the file
descriptor to access the IXIB.S28 input.

3.3.10.3.4.11.4 Processing

IXIB_S528 = open("IXIB.S28", 0)

If IXIB_S528 is less than O

Call printf(Error méssage)
Call exit(-1)

Endif ‘
Move NL_DATA to first byte in Buffer
Loop
Bytes_Read = read(IXIB_S528, Address of second byte in
Buffer, 512) ‘
If Bytes_Read is less than or egqual O
Exit Loop
Endif
Call sendto(5, Buffer, 513, 0, Address of Remote, Size of
Remote)
Endloop

Call .close(IXIB_S528)

Move NL_END to first byte of Buffer

Call sendto(S, Buffer, 513, 0, Address of Remote, Size of Remote)
Return

165

#1500-15-031.02.0

3.3.10.,3.4.11.5 Limitations
No limitations are defined for this unit.
3.3.10.3.4.12 Load_NB_Tbl Unit

The Load_NB_Tbl Unit loads the EGP Neighbour Table from the file
"neighbour” into the IGW_Image file. The neighbour file is used to
define information describing the gateways that the IGW can

communicate via EGP with.
3.3.10.3.,4.12.1 Inputs

The following inputs are used by the Load_NB_Tbl Unit:

1) Neighbour - This input 1s read from the disk file
"neighbor" and contains a copy of the EGP Neighbour
Table. This file contains the following fields:

IP_ADDR - The Internet address of the EGP neighbour
gateway in dot notation. :

Flags -~ This field consists of user definable flags.
Valid flags are:

M - Gateway is a main neighbour.
O - Gateway 1is an alternate neighbour.
S - Gateway 1s a stub gateway.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where the
neighbour table is to be placed.

3) Free_Virt - This input is read from global data and
contains the free wvirtual memory address where the

-~ 156 -

#1500-15-031.02.0

neighbour table is to be placed.

3.3.10.3.4.12.2 Outputs

The following outputs are produced by the Load_NB Tbl Unit:

1)

2)

3)

4)

NB_Table - This output is written to the global table
area of physical memory as new entries are added to the
Neighbour Table.

Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address. '

Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

ILA - This output is written to the IGW Link Area and is
updated with the address of the neighbour table.

3.3.10.3.,4.12.3 Local Data

The following local data is defined for the Load NB Tbl Unit:

1)

2)

3)

4)

5)

6)

Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the neighbour
file.

IP_Addr - This data item consists of a character string
used to hold the IP address of each EGP neighbour
gateway entry that is read from the neighbour file.

Flags - This data item is used to hold the flags field
of each entry that is read from the neighbour file. '

NB_Ptr - This data item is used to step through NB_Table
while adding table entries.

Fp - This local data item contains a pointer to the FILE
structure that references the neighbour file,

NB_Table - This local data item contains a memory image
of the NB_Table output.

187

I E N T B ME B B O Eaa B Em

-,

-#1500-15-031.02.0

3.3.10.3.4.12.4 Processing

Fp = fopen("neighbour", "r")
If Fp is null
Call printf(Error message)
Call exit(-1)
Endif
Clear entries in NB_Table
Move Free_Virt to NB_Table pointer in ILA
Move start address of NB_Table to NB_Ptr
While more data in neighbour file
Call fgets(Input_Buffer, bytes to read

If first character in input buffer is a

Continue next loop iteration
Endif
If NB_table is full

Exit loop
Endif

= 100, Fp)
V#!

If result of sscanf(Input_Buffer, "%s %s", IP_Addr, Flags) is -1

Exit Loop
Endif

NB_IP_Addr field of NB_Table entry pointed to by NB_Ptr =

Inet_Addr(IP_Addr)

If NB_IP_Addr field of NB_Table entry pointed to by NB Ptr = -1
Call Printf(error message indicating invalid neighbour entry)

Continue next loop iteration
Endif

NB_Flags field of NB_Table entry pointed to by NB_Ptr =
bitwise or between NB_VALID flag and Get_Flags(Flags, "MOS")
Set NB_Ptr to point to next entry in NB_Table

Endwhile

- Call fclose(Fp)

Add size of NB_Table to Free_ Phys
Add size of NB_Table to Free Virt -
Call write(IGW_Image, Address of NB_Table,

~Return

Size of NB_Table)

- 158

#1500-15-031.02.0

3.3.10.3.4,12.5 Limitations
No limitations are defined for the Load_NB Tbl Unit.
3.3.10.3.4.13 Load_Net_Tbl Unit

The Load_Net_Tbl Unit Loads the Network Table from the file "network"
inte the IGW main memory. This file is used to define +the network

interface information required for each network that the IGW is

connected to.
3.3.10.3.4.13.1 Inputs

The following inputs are used by the Load_Net _Tbl Unit:

1) Network - This input is read from the file "network" and
contains a copy of the Network Table. This £file
contains the following fields:

IP_Addr - The local Internet address of the IGW on
the referenced network. This field 1is a string
containing the IP address in dot notation.

Interface_Id - The interface number of the network
interface represented by this entry. Each interface
is given a number which is used to direct datagrans
to the correct interface for transmigsion.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP

network address mask.

MTU - The maximum transmission unit for IP datagrams.
This value 1g specified as an integer.

- 159 -

#1500-15-031.02.0

Flags - This field consists of one user definable
flag which is "U"™ indicating +that the interface
should be marked as being up.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where the
gateway table is to be placed.

3) Free Virt - This input is read from global data and
contains the free wvirtual memnory address where the
gateway table is to be placed.

3.3.10.3.4.13.2 Outputs
The following outputs are produced by the Load_Net Tbl Unit:

1) Net_Table - This output is written to the global data
area as new entries are added to the Network Table.
This table contains the following fields:

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address. '

4) ILA - This output is written to the IGW Link Area data
structure and is updated with the address of the gateway
Table.

160

sl
W o
-

‘#1500~15-031.02.0

3.3.10.3,4.13.3 Local Data

1)

2)

3)

4)

5)

6)

1)

8)

9)

- The following local data is defined for the Load_Net Tbl Unit:

Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the network
file.

IP_Addr - This data item is used to hold the IP address
for each entry that is read from the network file.

Flags - This data item is used to hold the flags field
cf each entry that is read from the network file.

Net_Ptr - This data item 18 wused to step through
Net_Table while adding table entries. '

Fp - This local data item contains a pointer to the FILE
structure that references the network file.

Net_Iable‘— This local data item contains a memory image
of the Net_Table Output.

Interface_ Number - This data item is used to hold the
interface id number of each entry read form the network
file.

Mask - This data item is used to hold the address mask
for each entry read from the network file.

MTU - This data item is used to hold the network MTU for
each entry read from the network £file.

161

#1500-15-031.02.0

3.3.10.3.4.13.4 Processing

Fp = fopen("network"”, "zr")
If Fp is null
Call printf(Error message)
Call exit(-1)
Endif
Clear entries in Net_Table
Move Free_Virt to Net_Table pointer in ILA
Move start address of Net_Table to Net Ptr
While more data in network file
Call fgets{Input_Buffer, bytes to read = 100, Fp)
If first character in input buffer is a '#°'
Continue next loop iteration
Endif
If Net_Table is full
Exit loop
Endif
If result of sscanf(Input_Buffer, "%$s %5 $x %d $s",
IP_Addr, Interface_Number, Net_ Mask, MTU, Flags) is -1
Exit Loop
Endif :
Search Net_Table for an entry with Net_ IP Addr field IP_Addr
If table entry found
Add Interface_Number to the end of the Net_ QID List for the
found entry
Else
Set Net_Ptr to the first empty position in Net_ Table
Net_IP_Addr field of Net_Table entry pointed to by Net Ptr =
Inet_Addr(IP_Addr)
If Net_IP_Addr field Net_Table entry pointed to by Net Ptr = -1
Call Printf(error message indicating invalid network Entry)
Continue next loop iteration
Endif
Net_Flags field of Net_Table entry pointed to by Net_Ptr =
bitwise or between NET_VALID and Get_Flags(Flags, "U")
Set Net MTU referenced by Net Ptr to MTU
Set Net_Mask referenced by Net Ptr to Mask
Set Current_IF field referenced by Net_Ptr to zero.
Endif
Endwhile
Call fclose(Fp)
Add size of Net_Table to Free_Phys
Add size of Net_Table to Free Virt
Call write(IGW Image, Address of Net_Table, size of Net_Table)
Return

- 162 -

#1500-15-031.02.0

3.3.10.8.4.13,.5 Limitations

No limitations are defined for the Load_Net_Tbl Unit.:

P

3.3.10.3.4.14 Load_Reg Unit

The Load_Reg Unit loads a buffer with initial values for processor

registers required by the IGW.
3.3.10.3.4.14.1 Inputs

The following inputs are required by the Load_Reg Unit:
1) Buffer - This input contains the address of the output
Buffer.
3.3.10.3.4,14.2 Outputs
The following outputs are required by the Load Reg Unit:
1) Buffer - This output consists of an array of 32 bit
values used to define the IGW processor registers. The

entries of this array are referenced as follows:

1) ©SCBB - This entry holds the system control block
base register.

2) ISP - This entry holds the address of the top of
the system interrupt stack.

3) SBR - This is the base register for the system
page table.

4) BSLR - This is the length register for the system
page table.

- 163 -

#1500-15-031.02.0

5) ERTE_VIRT - This is the virtual address

ERTE entry point.

3.3.10.3.4.14.3 Local Data

No local data is defined for the Load_Reg Unit.

"3.3.10.3.4.14.4 Processing

Move 0 to SCBB entry in Buffer

Move Istack_Virt to ISP entry in Buffer
Move Sys_PT to SBR entry in Buffer

Move SPT_LENGTH to SLR entry in Buffer

Move ERTE_Virt to ERTE_VIRT entry in Buffer

3.3.10.,3.4.14.5 Limitations

No limitations are defined for the Load_Reg Unit.

3.3.10.3.4.15 Load_SCB Unit

The Load_SCB Unit loads the System Control Block

IGW_Image file.

from a

of the

file to the

- 164 -

#1500-15-031.02.0

3.3.10.3.4.15,1 Inputs

The following inputs are used by the Load_ SCB Unit:

1) SCB_Init - This input is read from a file on disk. This
file contains an image of the System Control Block.

1

3.3.10.3.4.15.2 Outputs
The following outputs are produced by the Load_SCB Unit:

1) SCB - This output is written to the address specified by
the SCBB processor register (physical address 0), and
contains the System Control Block that has been obtained
from the SCB_Init input.

2) SCBB - This output is written to the System Control
Block Base Register, and contains the physical address
of the SCB.

3) Free_Phys - This output is written to global data and

contains the updated address of the next. free physical
memory address.

3.3.10.3.4.15.3 Local Data

The following local data is defined for the Load_ SCB Unit:

1) Fd - This local data item contains a file descriptor for
the SCB Init file.

2) Buffer - This local data item is an. input buffer for the
system control block, it consists of an array of Blz2
bytes. :

3) Bytes_Read - This local data item is a count for the
number of bytes read by the read function call.

165

#1500~-15-031.02.0

3.3.10.3.4.15.4 Processing

Fd = open("SCB_Init", 0)

If Fd is less than O
Call perror(Error message)
Call exit(-1)

Endif

~ Bytes_Read = Read(Fd, Buffer, Size of SCB. = 512)

If Bytes_ Read not equal Size of SCB
Call perror(Error message)
Call exit(-1)
Endif
Call close(Fa4d)
Call write(IGW_Image, Buffer, Bytes_Read)
Move Size of SCB to Free_Phys
Return

3.3.10.3.4.15.5 Limitations

This unit must be called before any unit that allocates IGW physical

memory.

3.3.10.3.4.16 Main Unit

The Main Unit is the first software in the Host_Net_lLoad LLC. This

unit is responsible for listening for load requests from an IGW and

calling the appropriate units to load the requested software.

- 166 -

#1500-15-031.02.0

3.3.10.3.4.16.1 Inputs

The following inputs are defined for the Main Unit:

1) IGW - This input is read from a socket consisting of UDP
datagrams sent by an IGW.
3.3.10.3.4.16.2 Outputs
No outputs are defined for the Main Unit
3.3.10.3.4.16.3 Local Data
The following local data is defined for the Main Unit:

1) 5 - 'This local data item contains a file descriptor for
the socket used to communicate to the IGW with.

2) Bytes_Read - This local data item is used to hold the
number of bytes read into Buffer.

3) Remote - This local data item is a structure of type
sockaddr_in, and is wused +to hold the sockaddr_in
structure for the IGW.

4) Remote_Len - This local data item holds the length of
Remote.

5) Buffer - This local data item is an array of 8 bytes
used to read UDP packets from the IGW.

6) SP - This local data item is a pointer to a servant
structure describing the IGW server.

167

#1500-15-031.02.0

3.3.10.3.4.16.4 Processing

SP = getservbyname("igw", "udp")

Run as daemon in background

5 = socket(AF_INET, SOCK_DGRAM, 0)

Clear sin_addr field of Remote

Move s_port field of SP to sin_port field of Remote
Remote_len = sizeof(Remote) '

Call bind(S, &Remote, Remote_Len)

Loop

Endloop

Bytes_Read = recvfrom(S, Buffer, 8, 0, Address of Remote,
Address of Remote_Len)
If Bytes_Read isn't 8
Call printf(Error Message)
Continue
Endif
Run as sub-process
Case first integer in Buffer
LOAD_IGW:
Move second integer in Buffer to
Memory_Size
Call Load_IGW(S, Address of
Remote)
LOAD_IXIB: ‘
Call Load_IXIB(S, Address of
Remote) '
Otherwise
Call printf(Error message)
Endcase '
End sub-process

e
O

168

#1500-15-031.02.0

3.3.10.3.4.16.5 Limitations
No limitations are defined for the Main Unit.
3.3.10.3.4.17 Read_Process_List Unit

The Read_Process_List Unit reads the list of processes from a file on

disk and stores it in the Proc_List area that is declared to be global

within the Host_Net_Load LLC.

3.3.10.3.4.17.1 Inputs

The following input is used by the Read_Process_List Unit:

1)

Proc_List File - This input is obtained from the
"Proc_List"™ file and contains a copy of the names of the
files containing the processes (and their priorities)
that the Host_Net_load LLC is to load into the IGW.
Each entry is separated by newlines and process are
separated from priorities by spaces.

169

#1500-15-031.02.0

3.3.10.3.4.17.2 Outputs

The following output is produced by the Read_Process_List Unit:

1)

Proc_List - This output is written to the Proc_List
array and contains the list of process that are to be
loaded. The entries in the list are each separated by a
newline c¢haracter and the end of the list is indicated
by a Null character following a newline <c¢haracter.
Names are separated from priorities by spaces.

303.10030401713 Locdl Datd

The following 1local data is defined for the Read_Process_List

Unit:

1)

2)

Bytes_Read - This local data item contains the number of
bytes read while reading the Proc_List file.

Fd - This local data item contains the file descriptor
used to access the Proc_List file.

3.3.10.3.4.17.4 Processging

Fd = open("Proc_List", 0)

If Fd is less than 0
Call printf(Error message)
Call exit(-1) '

Endif

Bytes_Read = read(Fd, Address of Proc_List, bytes to read = 1024)
If Bytes_Read is less than or equal to 0

Call Printf(Error message)

Call exit(-1)

Endif

Call close(Fd)
Add a Null character to the end of Proc_List

Return

170

#1500-15-031.02.0

3.3.10.3.4.17.%5 Limitations

The maximum size of the ©process list input file that this unit will

accept is 1024 bytes.
3.3.10,3.4.18 Read_Processes Unit

The Read_Processes Unit loads the processes specified in the list
“"Proc_List" that has been created by the Read_ Process_List Unit. This
involves placing the process text, data, bss, and stack area in the
IGw;Image file, and creating a process page table for them. Systen
page table entries will also be added to reference the process page

table.
3.3.10.3.4.18.1 Inputs

The following inputs are used by the Read_ Processes Unit:

1) Proc_List ~ This input comes from the global data that
has been loaded by the Read_Process_List Unit. This
input contains a list of file names to load processes
from as well as the priority of each of the processes.

2) Process Images From Disk - This input consists of the
binary images of the IGW processes that are to be loaded
from disk,

3) Free_Phys - This input 1is read from global data and
contains the free physical mnemory address where the

processes are to be loaded.

4) Free_Virt ~ This input is read from global data and

- 171 -

#1500-15-031.02.0

5)

contains the free wvirtual memory address where the
processes are to be loaded.

Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_ SPT Unit.

3.3.10.3.4.18.2 Outputs"

The following outputs are produced by the Read_Processes Unit:

1)

2)

3)

4)

5)

6)

7)

Process_Header_List - This output is written to the ILA
and contains the initialized process headers including
PCBs for the processes +that have been loaded into
MeNOTY .

Processes In Memory - This output is written to the
IGW_Image file and contains the text, data, bss, and
stack areas of the IGW processes that have been loaded.

Process Page Tables - This output is written to the
IGW_Image file and contains the process page tables for
PO and Pl address space for each process that is loaded
by this unit. :

System 'Page Table - This output is updated with the
system page table entries required to reference the
process page tables that have been creadted by this
unit.

Free Phys - This output i1s written to global data and
contains the updated address of the next free physical
memory address.

Free Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address, ' '

ILA - This output contains the value for the number of
processes that have been loaded. This value is wWritten
to the Nproc field of the IGW Link Area.

172

#1500~-15-031.02.0

3.3.10.3.4.18.3 Local Data

The following local data is defined for the Read_Processes Unit:

1)

2)

3)

4)

5)

10)

11)

12)

Process_Name_Pointer - This local data item is used to
step through the Proc_List input +to obtain each
Current_Process_Entry item for the entries in Proc¢_List.

Current_Process_Entry - This local data item is used to
store the entry in the Proc_List input that contains the
filename and priority of the current process.

Current_Process_Name - The local data item is used to
store the name the current process that is being loaded
from disk to the IGW_Image file.

Current_Process_Priority - This piece of data is used to
store the priority of the processes as they are read
from disk and loaded to the IGW_Image file.

Exec_Header - This local data item is a structure that
is used to hold the header from the IGW processes that
are loaded from diskette. The fields in this structure
are all 32 bit values and are defined as follows:

A Magic - This field contains +the type of the
executable image that is being loaded. Valid values
for this field are:

OMAGIC (0407) - 0ld impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A Text - This £field <contains the size of the text
segment in bytes.

A_Data - This field <containg the size of the
initialized data segment m is used +to hold the
virtual address of the stack area.

PC_Phys - This 10091 data item contains the physical
address of the PO page table.

PO_Virt - This 1local data item contains the virtual
address of the PO page table.

PO_Len - This local data item contains the length of the
PO page table.

173

#1500-15-031.02.0

13) Pl1_Phys - This local data item contains the physical

address of the Pl page table.

14) Pl _Virt - This local data item contains the virtual

address of the Pl page table.

-15) Pl_Len - This local data item contains the length of the

Pl page table,

16) Nproc - This 1local data item contains the number of

process that have been loaded into IGW memory.

17) F4 - This local data item containg the file descriptor

for the process file that is being loaded.

18) Buffer - This local data item contains an array of 512

bytes used to read in processes.

19) Bytes_Read - This local data item contains the number of

bytes returned from a read operation.

20) Byte_Count - This local data item is used to count the

bytes that have been read from a process file.

3.3.10.3.4,18.4 Processing

Move Process_Name_Pointer to Current_Entry
Move address of next newline character in string pointed to
by Process_Name_Pointer to Process_Name_ Pointer
If no newline was found in the string pointed to by
Process_Name_Pointer
Break Loop
If process header list is full
Process error condition
Endif
Move Null character to character pointed to by
Process_Name_Pointer
Increment Process_Name_Pointer /
sscanf(Current_Entry, "%$s %4", Current_Process_Name,
address of Current_Process_Priority)
Fd = open(Current_Process_Name, 0)
If is less than 0
Call printf(Error message)
Call exit(-1)
Endif
Bytes_Read = read(Fd, address of Exec_Header,

174

i \ .

#1500~-15-031.02.0

size of Exec_Header) isn't egual size of Exec_Header
Call printf(Error message)
Call exit(~1)
Endif
I£f A Magic field of Exec_Header is ZMAGIC

If result of lseek(Fd, Offset = 1024, L_SET) is less than 0

Call printf(Error message)
Call exit(~1)
Endif

Else if A_Magic field of Exec_Header isn't one of OMAGIC or NMAGIC

Call printf(Error message)
Call exit(-1)
Endif
Move A_Text field of Exec_Header to Byte_Count
Add A_Data field of Exec_Header to Byte_Count
While Byte_Count is greater than 0
Subtract 512 from Byte_Count
If Byte count less than O
If Byte_Count egquals =-51l2
Exit loop
Endif
Bytes_Read = read(Fd, Buffer, 512 + Byte_Count)
Call write(IGW_Image, Buffer, Bytes_Read)
Else
Bytes_Read = read(Fd, Buffer, 512)
If Bytes_Read isn't 512
Call printf(Error message)
Call exit(-1)
Endif .
Call write(IGW_Image, Buffer, Bytes_Read)
Endif
Endwhile
Call close(Fqd)
Move Free_Phys to Proc_Phys
Move 0 to Proc_Virt
Add A_Text field of Exec _Header to Free Phys
Add A_Data field of Exec_Header to Free_Phys
Add A_Bss field of Exec_Header to Free_Phys
Adjust Free_Phys to point to page boundary if required
Move Free_Phys to Stack_FPhys
Move stack virtual address to Stack_Virt
Add PROC_KERN_STACK_SIZE to Free_Phys
Add PROC_USER_STACK_SIZE to Free_Phys
Advance Free_Virt to start of next page if necessary
Move Free_Phys to PO_Phys
Move Free_Virt to PO_Virt
For each page in process text, data, and bss areas
Call Add_To_PT(Page_Table = PO_Phys, Proc_Virt,
Proc_Phys)

175

#1500-15-031.02.0

Add PAGE_SIZE to Proc_Phys
Add PAGE_SIZE to Proc_Vir
Endfor :
Add length of PO page table to Free_Phys
Add length of PO page table to Free_Virt
Move Pl PT start physical address to Pl_Phys
Move Pl PT start system virtual address to Pl_Virt
For each page in stack area
Call Add_To_PT(Page_Table = Pl_Phys, Stack_Virt,
Stack_Phys)
Add PAGE _SIZE to Stack_Phys
Add PAGE_STIZE to Stack_Virt
Endfor
Add length of Pl PT to Free_ Phys
Add length of Pl PT to Free_ Virt
Adjust Free_Phys to next page if necessary
Adjust Free_Virt to next page if necessary
Call lseek(IGW_Image, Free_Phys, L_SET)
Set Name field of process entry indexed by Nproc in
Process _Header_List to name stored in Current_Process_Name
Set Priority field of process entry indexed by Nproc in
Process_ Header_List to priority stored in
Current_Process_Priority
Set PCB_Address field of process entry indexed by Nproc in
Process_Header_List to the physical address of the hardware PCB
Initialize kernel and user stack pointer in PCB
Initialize Processor_Status_Longword in PCB
Move PO_Virt to Program_Base_ Register in the hardware PCB
Move PO_Len to Program_Length_ Register in the hardware PCB
Move Pl_Virt to Control_Base_Register in hardware PCB
Move Pl_Len to Control_Length_Register in hardware PCB
For each page in process page tables PO and Pl
Call Add_To_PT(Page_Table = Sys_PT,
Virt_addr = PO_Virt,
Phys_addr = PO_Phys)
Add PAGE_SJTZE to PO_Phys
Add PAGE_SIZE to PO_Virt
Endfor ‘ '
Increment Nproc
Endloop
Move Nproc to Nproc field of ILA
- Return '

- 176

#1500-15-031.02.0

3.3.10.3.4.18.5 Limitations

The Read_Process_List unit must be called before this unit.
3.3.10.3.4.19 Reserve_SPT Unit

The Reserve_SPT Unit reserves a predefineed number of pages following
the SCB to contain the system page table. This is accomplished by
setting the System Base Register (SBR) and System Length Register

(SLR) to indicate the start and length of the system page table.

3.3.10.3.4.,19.1 Inputs

The following inputs are defined for the Reserve_ SPT Unit:

1) Free_Phys - This input is read from global data and
contains the free physical memory address where the
system page table is placed.

- 177 -

#1500-15-031.02.0

3.3.10.3.4.19.2 Outputs
The following outputs are produced by the Reserve_ SPT Unit:
1) Free_Phys - This output is written to global data and
contains the updated address of the next free physical

memory address.

2) S8ys PT - This output is written to global data and
contains the physical address of the system page table.

3) Sys_Len - This output is written to global data and
contains the number of PTEs in the system page table.

3.3.10.3.4.19.3 Local Data

No local data is defined for the Reserve_ SPT Unit.

3.3.10.3.4.,19.4 Processing

Move Free_ Phys to Sys_PT

Move SPT_LENGTH to Sys_Len

Add SPT_LENGTH * 4 to Free_Phys

Call lseek(IGW_Image, SPT_LENGTH, L_INCR)

Return

- 178

#1500-15-031.02.0

3.3.10.3.4.19.5 Limitations

This vnit must be called immediately after the Load_SCB unit.
3.3.10.3.4.20 Write_ILA Unit

?he Write_ ILA Unit will write the ILA to the IGW_Image file.
3.3.10.3.4.20.1 Inputs

The following inputs are defined for the Define_ILA Unit:

1) ILA - This input 1is obtained from global data and
contains the IGW ILA. :

2) ILA_Phys - This input is obtained from global data and
contains the physical address of the ILA for the IGW.

3.3.10.3.4.20.2 Qutputs
The following outputs are proauced by the Define_ ILA Unit:

1) IGW_Image - This output is written to the IGW_Image file .
and is loaded with the ILA.

- 179

#1500~15-031.02.0

3.3.10.3.4.20.3 Local Data

No local data is defined for the Define_ ILA Unit.

3.3.10.3.4.20.4 Processing

Call lseek(IGW Image, ILA_Phys, L_SET)
Call write(IGW_Image, ILA, Size of ILA)

3.3.10.3.4.20.5 Limitations
No limitations are defined for the Define_ ILA Unit.
3.3.11 SUPPORT SOFTWARE Detailed Design

The support software which nmnust be created for the IGW consi;ts of
Makefile scripts and the program Write_Diskett;s. The Makefile
scripts will be wuwsed to build all executable images for the IGW
software. Additionally, the Makéfile scripts will also be wused ¢to
produce listings of softwafe, and to prepare»bootable floppies. The

preparation of these Makefile scripts will be completed during the

‘coding phase of IGW development.

The Write Diskettes program is called by the Makefile scripts to
produce bootable IGW diskettes. The program produces the diskettes
required for booting entirely from £floppy disks. The diskettes

contain all the IGW and IXIB software reguired to completely boot the

-~ 180 =~

#1500-156-031.02.0

IGW. This program is detailed in the following subsections.

3.3.11.1 Write_Diskettes Architecture

The Write_Diskettes program writes configuration files and images to

two RX50 diskettes which are regquired to boot an IGW. Write Diskettes

consists of the following units:

1) Main - This unit is the control unit which prompts the
user to confirm that the diskettes are to be written and
then calls the units to write +the primary boot

information, the secondary boot image, the directory
list, and the bootable files and images to the diskettes.

2) MAdd_Files - . This unit adds the file name and the file
size in bytes of each file to the directory list.

3) Blocks - This unit converts a byte count to the number of
blocks required on a RX50 diskette.

4) Directory_List - This unit calls Add_¥iles to build the
directory list and then assigns the starting block number
and the floppy drive .number for each entry in the list.

5) Init - This unit confirms the intent to write the
diskettes. When the write is to occur, the diskettes are
opened for writing.

6) Tranéfer - This wunit copies a file from a sgspecified
source directory to a specified diskette.

- 181 -

#1500-15-031.02.0

3.3.11.2 Write_Diskettes Global Data

The global data for the Write_Diskettes program is listed as follows:

1)

2)

3)

4)

5)

6)

)

8)

PRIMARY_BOOT - This global data item is an array of bytes
which contain the full pathname of the primary boot block
information. This global data item will be defined
during coding.

SECONDARY_BOOT - This global data item is an array of
bytes which contains the full pathname of the "secondary

boot image. This global data item will be defined during
coding.)

DIR_NAME - This global data item is an array of bytes
which contains the pathname to the directory of
configuration files and bootable images as a null
terminated character string. This global data item will

be defined during coding.

DIR_SIZE (30) - This global data item is a 32 bit integer
which contains the maximum number of directory entries in
a directory list.

BLK_SIZE (512) - This global data item is a 32 bit
integer which contains the number of bytes in a block on
a RX50 diskette.

DISK_BSIZE (800) ~ This global data item is a 32 bit
integer which contains the total number of blocks on a
RXB0 diskette.

DISK1 - This global data item is an array of bytes which
contains the full pathname of the first floppy drive as a
null terminated character string. The definition of this
global data item depends on the device names of the
support system.

DISK2 -~ This global data item is an array of bytes which
contains the full pathname of the second floppy drive as
a null terminated character string. The definition of

this global data item depends on the device names of the
support system.

182

#1500~15-031.02.0

P
3.3.11.8 Write_Diskettes LLC Design

The Write Diskettes program does not contain any lower level

components.
3.3.11.4 Write_Diskettes Unit Design

The £following sections describe the units of the Write_Diskettes

program.
3.3.11.4.1 Add_Files

Add_Files adds the file name and the size of the file in bytes of each
file in a specified directory into the directory listing. An error is

returned when all files cannot be added to the directory list.
3.3.11.4.1.1 Inputs

The following inputs are required by the Add_Files unit:

1) Dir_Name -~ This input parameter is a pointer to a
character string which contains the full pathname of
the target directory.

2) DIR_SIZE - This global data input is a 32 bit integer

which contains the maximum number of directory .
entries in Disk_Dir.

- 183 -

#1500-15-031.02.0

3.3.11.4.1.2 Outputs

The following outputs are returned by the Add_Files unit:

1)

2)

Disk_Dir - This output parameter is a table of at

most DIR_SIZE directory entries for the files which-

will be contained on the IGW diskettes. Each
directory entry contains the following fields:

- Dir_Name - This field consists of an array of 15
bytes containing the file name stored as a null
terminated character string. ‘

- Dir_Dev - This field consists of a single byte
indicating the floppy drive number that the file
is stored on.

- Dir_BN - This field consists of a 16 bit integer

containing the starting block number of the file
on the diskette.

~ Dir_Size - This field —consists of a 32 bit

integer containing the size of +the file in
bytes.

Added_Entries - This output function value is a 16

bit integer which indicates the number of directory
entries added to Disk_Dir.

184

#1500-15-031.02.0

3.3.11.4.1.3 Local Data

The following local data is defined for the Add _Files unit:

1)

2)

3)

Dir_Ptr - This local data item is a pointer to a
directory which is opened for reading.

Dir_Struct - This local data item is a structure
defined by the DIR.H include file which identifies by
name the files in the directory pointed to by
Dir_Ptr. The directory structure includes the
following fields:

-~ D_Namlen -~ This field <consists of a 16 bit
integer which defines the number of characters
in the directory file nanme.

- Dname - This field consists of an array of 255
bytes which contains the name of the file in the
directory.

Stat_Buf - This local data item structure is defined
by +the STAT.H include file which identifies
characteristics of a file. The buffer includes the
following fields:

-~ ©Bt_Mode - This field is a 16 bit integer which
contains a set of flags describing the file.
S_IFMT is used to determine the type of file, in
particular: '

S_IFDIR (0x4000) - indicates the file is a
directory

- 8t _SBSize - This field consists of a 32 bit
integer which containsg the size of the file.

185

#1500-15-031.02.0

3.3.11.4.1.4 Processing

Set the Added_Entries to zero
Dir_Ptr = Opendir(Dir_Name)
Dir_Struct = Readdir(Dir_Ptr)
While Dir_Struct is not NULL

/* Process the filename if the file name is not a directory */

Call Stat(Dir_Name, address of Stat_Buf)
If St_Mode and S_IFMT is not egual to S_IFDIR
Increment Added_Entries '
If Added_Entries exceeds the maximum entries DIR_SIZE
Return(ERROR)
Endif)

/* Set the file name and file size in bytes for the entry */
Parse the file name from the D _Namlen bytes in D_Nanme
Set the Dir_Name field in the Disk_Dir entry Added_Entries to
the parsed file nanme
Set the Dir_Size field in the Disk_Dir entry Added_Entries to
the St_Size field in Stat_Buf

Endif

/* Read the next file name in the directory */

Dir_Struct = Readdir(Dir_ Ptr)

Endwhile
Call Closedir(Dir_Ptr)
Return(Added_Entries)

~ 186

#1500-15~031.02.0

3.3.11.4.1.5 Limitations

No limitations are defined for the Add_Files unit.

3.3.11.4.2 Blocks

Blocks determines the number of blocks required on a diskette given

both the size of the file in bytes and the size of a block in bytes.

3.3.11.4.2.,1 Inputs

The following inputg are required by the Blocks unit:

1) File_Size - This input
which containsgs the size

2) Blk_Size -~ This input
which contains the size

3.3.11.4.2.2 Outputs

parameter is a 32 bit integer
of the file in bytes.

parameter is a 32 bit integer
of a diskette block in bytes.

The following outputs are returned by the Blocks unit:

1) Block_Count - This output function value ig a 32 bit
integer which contains the number of blocks the file
requires on the diskette.

#1500-15-031.02.0

3.3.11.4.2.3 Local Data

No local data is defined for the Blocks unit.

3.3.11.4.2.4 Processing

Set the Block_Count equal to the File_Size divided by the Blk_Size The
remainder equals the File_Size less the Block_Count times the Blk_Size
If the remainder is not zero Increment the Block_Count Endif Return(
Block_Count).

3.3.11.4.2.5 Limitations

No limitations are defined for the Blocks unit.

3.3.11.4.3 Directory_List

Directory_List compiles the list of configuration files and bootable
images in a directory listing. For each entry in the list, a floppy
drive and the starting block number are assigned. A message 1is
printed to standard output and an error returned when the floppy drive

requirements are exceeded.

- 188 -

#1500-15-031.02.0

3.3.11.4.3.1 Inputs

The following inputs are reguired by the Directory List unit:

1)

2)

3)

4)

Block_Count - This .input parameter is a 32 bit
integer which contains the number of disketté blocks
used on the first floppy drive.

DIR_NAME - This global data input is an array of
bytes which contains the pathname to the directory of
configuration files and bootable images as a null
terminated character string.

BLK_SIZE - This global data input is a 32 bit integer
which contains the number of bytes in block on a RX50
diskette.

DISK_SIZE - This global data input is a 32 bit
integer which contains the total number of blocks on
a RX50 diskette.

3.3.11.4.3.2 OQutputs

The following outputs are returned by the Directory_ List unit:

1)

Disk _Dir - This output pardmeter is a table of at
most DIR_SIZE directory entries for the files which
will be <contained on the IGW diskettes. Each

directory entry contains the following fields:

- Dir_Name - This field consists of an array of 156
bytes containing the file name stored as a null
terminated character string.

- Dir_Dev - This field consists of a single byte
indicating the floppy drive number that the file
is stored on.

- Dir_BN - This field consists of a 16 bit integer
containing the starting block nunber of the file
on the diskette.

189

#1500-15-031.02.0

- Dir_Size - This field consists of a 32 bit
integer containing the size of the file ' in
bytes.

2) Entry_Count - This output function value is a 16 bit
integer which indicates the success of wupdating the
directory list. The positive integer Added_Entries
indicates the number of entries added, otherwise the
error indication is given:

ERROR - This negative integer value indicates not
all entries were added to the directory
list.

3.3.11.4.3.3 Local Data

The following local data is defined for the Directory List unit:

1) Dir_Ptr - This 1local data item is a pointer to a
directory which is opened for reading.

2) Format_String - This local data item is a pointer to
a character string which contains information prompts
to the operator on the number of diskettes either
used or required. l

3.3.11.4.3.4 Processing

/* Compile file names and sizes of all configuration files and
bootable images */

"Entry_Count = Add_Files(address of DIR_NAME, address of Disk_Dir)
If Entry_Count is equal to ERROR

Return(Entry_Count)
Endif

/* Linearly sort the file names by size from smallest to largest */
For Index which indexes the first Entry_Count - 1 Disk _Dir entries
For Jindex which indexes the Disk_Dir entries subsequent to Index

If the Dir_Size of entry Index exceeds Dir_Size of entry Jindex
Temp entry = Disk _Dir entry Index

- 190 -

#1500-15-031.02.0

Disk_Dir entry Index = Disk_Dir entry Jindex
Disk_Dir entry Jindex = temp entry
Endif
Endfor
Endfor

/* Compute the starting block number and floppy drive components
for each file name, accounting for the blocks reqguired to store
the directory list */

Dir list size = Entry_Count * size of a Disk_Dir directory entry
Block_Count = Block_Count + Blocks(dir list size, BLK_SIZE)
Set the floppy drive to the integer one
For each of the Entry_Count directory entries in Disk_Dir
Entry size = Blocks(Dir_Size, BLK_SIZE)
If the Block_Count + entry size exceeds the DISK_SIZE
If the floppy drive has already been set to two
Call Printf(Format_String)
Return(ERROR)
Endif
Reset the Block_Count to one
Reset the floppy drive to the integer two
Endif :
Set Disk_Dir Dir_BN egual to the Block_Count
Set the Disk_Dir Dir_Dev egual to the floppy drive
Block_Count = Block_Count + entry size
Endfor
If the floppy drive is still one
Call Printf(Format_String)
Endif
Return(CONTINUE)

- 191 =~

#1500-15-031.02.0

3.3.11.4.3.5 Limitations
No limitations are defined for the Directory_List unit.

3.3.11.4.4 Init

Init confirms the intent to write the diskettes. When the write is

occur, the diskettes are opened for writing.
3.3.11.4.4.1 Inputs

The following inputs are required by the Init unit:

1) DISKl - This global data item is an array of bytes
which contains the full pathname of the first floppy
drive as a null terminated character string.

2) DISK2 - This global data item is an array of bytes

which contains +the full pathname of the second
floppy drive as a null terminated character string.

- 182

to

#1500-15-031.02.0

3.3.11.4.4.2 Outputs

The following outputs are returned by the Init unit:

1) Disk_Descr_l1 - This output parameter is a 32 bit
integer which contains a file descriptor to which the
source file Filename is copied.

2) Disk_Descr_2 - This output parameter is a 32 bit
integer which contains a file descriptor to which the
source file Filename is copied.

3) Status - This output parameter is a 16 bit integer
which indicates the intent to write the diskettes:

CONTINUE - The diskettes are written
ERROR - The diskettes are not written
3.3.11.4.4.3 Local Data
The following local data is defined for the Init unit:

1) Flags - This 1local data item is a 32 bit integer
which indicates that both diskettes are opened for
write only.

2) Format_String - This local data item is a pointer to
a character string which contains input/output

prompts used to confirm the rewrite of the diskettes.

3) Response - This 1local data item is a pointer to a
character string which contains the confirmation from

the operator.

193

#1500-15-031.02.0

3.3.11.4.4.4 Processing

Set the first diskette descriptor Disk_Descr_l to zero
Set the second ‘diskette descriptor Disk_Descr_2 to zero

/* Prompt operator for confirmation of writing diskettes */
Call Printf(Format_String)
Call Scanf(Format_String, Response)
If the first character in the Response is not "Y¥" or "y"
Call Printf(Format_String)
Status = ERROR
Return(Status)
Endif
/*¥ Open both diskettes for writing */
Status = CONTINUE
Flags = O_WRONLY
Disk_Descr_1 = Open(address of DISKl, Flags)

Disk_Descr_2 = Open(address of DISK2, Flags)
Return(Status)

3.3.11.4.4.5 Limitations

No limitations are defined for the Init unit.

3.8.,11.4.5 Maip

The Main unit initiates the update of the IGW diskettes and, upon
confirmation by the operator, coplies bootable images and the

configuration files to the two available diskettes.

The diskette in floppy drive one is ‘used first. The first block

contains primary boot information. Subsegquent blocks contain the

- 194 -

#1500-15-031..02.0

secondary boot image, a disk directory of subsequent files and images,
configuration files and Dbootable images. The number of blocks
required for each section following the primary boot block is
dynamically determined and, as a fesult, may require the digskette in

the second floppy drive.
3.3.11.4.5.1 Inputs

The following inputs are regquired by the Main unit:

1) PRIMARY _BOOT - This global input parameter is an
array of byvtes which containsg the full pathname of
the primary boot file information as a -null

terminated character string.

2) SECONDARY_BOOT - This global data item is an array of
bytes which contains +the full pathname of the
secondary boot image as a null terminated character
string.

3) BLK_SIZE -~ This global data item is a 32 bit integer
which contains the number of bytes in a block on a
RX50 diskette.

4) DIR_NAME - This global data item is an array of bytes
which contains the pathname to the directory of
configuration files and bootable images as a null
terminated character string.

- 195 -

#1500-15-031.02.0

3.3.11.4.5.2 Qutputs
No outputs are returned by the Main unit.
3.3.11.4.5.3 Local Data

The following local data is defined for the Main unit:

1) Disk_Descr_l1 - This local data iten
integer <containing a descriptor which
floppy drive one.

2) Disk_Descr_2 - This local data iten
integer <c¢ontaining a descriptor which
floppy drive two.

is a 32 bit
identifies

is a 32 bit
identifies

3) ©Stat_Buf - This local data item structure is defined

by the STAT.H include file which

identifies

characteristics of a file. The buffer includes the

following fields:

- ©St_Size - This field «consists of a 32 bit
integer which contains the size of the file.

4) Disk_Dir - This local data item is a table of at most

DIR_SIZE directory entries for the files

which will

be c¢contained on the IGW diskettes. Fach directory

entry contains the following fields:

- Dir_Name - This field consists of an array of
15 bytes containing the file name stored as a

null terminated string.

- Dir_Dev =~ This field consists of a single byte

indicating the floppy drive number
field is stored on.

- Dir_ BN - This field <consists of

that the

a 16 bit

integer containing the starting block number of
the file on the diskette. =~ Dir_Size - This

field <consists of a 32 bit integer
the size of the file in bytes.

containing

196

- #1500-15-031.02.0

5)

6)

7)

8)

92)

‘Filename - This local data item is an array of bytes
which contains the full pathname of a file to be
transferred to a diskette as a null terminated
character string. .

Block_Count - This local data item is a 32 bit
integer which contains the next diskette block in
which data can be written.

Byte_Count - This local data item is a 32 bit integer
which contains the number of diskette bytes to be
skipped.

L_SET (0x00) - This local data item is a 32 bit
integer which defines the seek mode to be from the

~start of the file.

L_INCR (O0x01) - This local data item is a 32 bit
integer which defines the seek mode to be from the
current seek position.

3.3.11.4.5.4 Processing

/* Initialize both floppy drives */

Call Init(Disk_Descr_1, Disk_Descr_2)

Block_Count
Byte_Count

=1
(Block_Count - 1) * BLK_SIZE

/* Copy the primary boot information to the first block */

Call Lseek(Disk_Descr_1l, Byte_Count, L_SET)
Call Stat(address of PRIMARY BOOT pathname, address of Stat_Buf
Call Transfer(address of PRIMARY_ BOOT pathname, St_Size, Disk_Descr_1

Block_Count
Byte_Count

= Blocks(St_Size, BLK_SIZE)
(Block_Count - 1) * BLK_SIZE

/* Copy the secondary boot image */

Call Lseek(Disk_Descr_1l, Byte_Count, L_SET)
Call Stat(address of SECONDARY_ BOOT pathname, address of Stat_Bu
Call Transfer(address of SECONDARY_BOOT pathname, St_Size, Disk_Descr_1

Block_Count
Byte_Count

= Blocks(St_Size, BLK_SIZE)
(Block_Count - 1) * BLK_SIZE

)

£)

/* Compile the directory listing of configuration files and bootable
images and write to the diskette.

197

*/

)

)

#15600-15-031.02.0

Call Lseek(Disk_Descr_1, Byte_Count, L_SET)
Entry count = Directory_List(address of Disk_Dir, Block_Count)
If the entry count is not ERROR
Dir list size = entry count * size of a Disk _Dir directory entry
Call Write(Disk_Descr_1, Disk_Dir, dir list size)
Byte_Count = Blocks(dir list size, BLK_SIZE) * BLK_SIZE
Call Lseek(Disk_Descr_1, Byte_ Count - dir list size, L_INCR)

/* Write each item to the diskette on the appropriate
floppy drive. */

For each of the entry count entries 'in Disk_Dir
Concatenate DIR_NAME and the Disk_Dir Dir_Name to Filenanme
Byte_Count = Blocks(Dir_Size, BLK_SIZE) * BLK_SIZE - Dir_GSize
If Dir_Dev eguals 1
Call Transfer(address of Filename, Dir_Size, Disk_Descr_1
Call Lseek(Disk_Descr_1, Byte_Count, L_INCR)
Else :
Call Transfer(address of Filename, Dir_Size, Disk_Descr_2
Call Lseek(Disk_Descr_2, Byte_Count, L_INCR)
Endif
Endfor
Endif

/* Release the diskettes on both the floppy drives */

Call Close(Disk_Descr_1)
Call Close(Disk_Descr_2)
End

3.3.11.4.5.5 Limitations

No limitations are defined for the Main unit. .

- 198 -

)

)

#1500-15-031.02.0

3.3.11,4.6 Transfer

Transfer copies a file from the specified source directory %o the

specified diskette.
3.3.11.4.6.1 Inputs

The following inputs are reguired by the Transfer unit:

1) Filename -~ This input parameter is a pointer to a
character string which contains the full pathname of
the source file.

2) ©Size - This input parameter is a 32 bit integer which
contains the number of bytes in the source file
Filename,.

3) Disk_Descr - This input parameter is a 32 bit integer

which containing a des¢riptor of the floppy drive to
~which the source file Filename is copied.

3.3.11.4.6.2 Outputs

No outputs are returned by the Transfer unit.

- 199 -

#1500-15-031.02.0

3.3.11.4.6.3 Local Data

The following local data is defined for the Transfer unit:

1) Buf - This local data item is an array of bytes into
which the source file Filename is read.
2) File_Descr - This local data item is a 32 bit integer

which is used to reference the source file Filename
in the Open, Read, Write, and Close file operations.

3) Flags - This local data item is a 32 bit integer which

indicates the source file Filename is opened for read

only.

3.3.11.4.6.4 Processing

Flags = O_RDONLY

File Descr = Open(Filename, Flags)
Call Read(File_Descr, Buf, Size)
Call Write(Disk_Descr, Buf, Size)
Call Close(File Descr)

Return

3.3.11.4.6.5 Limitations

No limitations are defined for the Transfer unit.

200

I- — ’ 1 | | ‘

.
‘-

r- ‘- ’- - - ,- l- A i-

#1500-15-031.02.0

4.0 GLOSSARY

ARP
ASCII
CDD
CHMK
CPU
CRC
CRT
CSR

DARPA
DEQNA

DMA
EDD
EGP
ERTE
FIFO
ICHMP
IGW
ILA
1P
IXIB
LLC
MTU
01
PCB
PPT
ROM
SCB
SPT
STAT

SVA
TCP
TLC
TLD
UDp
XDD
XON/XOFF

Address Resolution Protocol

American Standard Code for Information Interchange
Console Device Driver

Change Mode to Kernel (VAX instruction)
Central Processing Unit]

Communications Research Centre

Cathode Ray Tube (a video terminal)
Control/Status Register (in input output
control register)

Defense Advanced Research Projects Agency
Digital Equipment Corporation's Ethernet
interface for Q-Bus '

Direct Memory Access

Ethernet Device Driver

Exterior Gateway Protocol

Efficient Real Time Executive

First In First Out (a gueue)

Internet Control Message Protocol

Internet Gateway

IGW Link Area (an area of IGW memory)

Internet Protocol

Intelligent X.25 Interface Board

Lower Level Component

Maximum Transmission Unit

Operator Interface

Process Control Block

Process Page Table

Read-Only Memory

System Control Block

System Page Table

Statistics processing component of the IGW
software ’

System Virtual Address

Transmission control Protocol

Top Level Component

Top Level Design

User Datagram Protocol

X.25 Device Driver

Flow control on a serial line

- 201

T "

ij

|

SOFTWARE DETAILED DESIGN

DOCUMENT FOR THE INTER-
'NETWORK GATEWAY PROJECT

14 o [N . . .
Vi,

LT

