
Vol.5 RELEASABLÉ:
JOC-CR-RC-88-008

VOLUME 5
SOFTWARE DETAILED DESIGN DOCUMENT

FOR THE
INTERNETWORK GATEWAY

Submitted to: C.R.C.
Ottawa, Ontario

SKL Document #1500-15-031.03.0
Copy 43 05 May 1988

I C

Industry Canada
Library - Queen

:',,',0uuj 2 0 7012
Industrie Canada

Bibliothèque - Queen

iiiiTINepig CAM(

\r-d? C

MUM - ORINIINIJE

VOLUME 5
SOFTWARE DETAILED DESIGN DOCUMENT

FOR THE
INTERNETWORK GATEWAY

Submitted to: C.R.C.
Ottawa, Ontario

SKL Document #1500-15-031.03.0
Copy #3 05 May 1988

 7E1.
Vol. 5 RELEASABLE

1100-01t.:-R0-88-008

SOFTWARE DETAILED DESIGN DOCUMENT

FOR THE

INTERNETWORK GATEWAY PROJECT

VOLUME 5

Contract No. 36001-6-3535/02-ST

05 May 1988

Prepared for:

Communications Research Centre
Ottawa, Ontario

Prepared by:

Software Kinetics Ltd.
65 Iber Road, P.O. Box 680
Stittsville, Ontario Canada

KOA 3G0

SKL Document #1500-15-031.02.0

1
1
1
r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I commilieereiji
CRC

c o e v irdP,0

UlnallY 81811011itillE

s, Alb
•

. D. Breeeid

Document Approval Sheet

for the

Internetwork Gateway Project

Document No: 1500 - 15 - 031.02.0

Document Name: Software Detailed Design Document
for the Internetwork Gateway Project

Signature Date Approvals

Project Engineer:

PrOject Manager:

Technical Authority:

79'83" -

\kL-k n/e

r).-ive

Revis ion

01

Document Revision History

Description of Changes Origin Date

New Document Issued 23 September 1987

02 Coding and Integration 05 May 1988

TABLE OF VOLUMES

VOLUME 1 1.0 Introduction
2.0 Referenced/Applicable Documents
3.0 Design
3.1 Interface Design
3.2 Global Data
3.3 TLC Design
3.3.1 Efficient Real Time Executive

(ERTE)

VOLUME 2 3.3.2 IP TLC
3.3.3 EGP TLC

VOLUME 3 3.3.4 X.25 Device Driver (XDD) TLC
3.3.5 Ethernet Device Driver (EDD) TLC
3.3.6 Console Device Driver (CDD) TLC

VOLUME 4 3.3.7 Operator Interface TLC
3.3.8 STAT TLC

VOLUME 5 3.3.9 Primary Boot TLC
3.3.10 Secondary Boot TLC
3.3.10.1 Local Boot LLC
3.3.10.2 IGW Net Load LLC
3.3.10.3 Host Net Load LLC
3.3.11 Support Software
4.0 Glossary

TABLE OF CONTENTS

3.3.9 Primary Boot TLC Detailed Design 1

3.3.10 Secondary Boot TLC Detailed Design 1

3.3.10.1 Local Boot LLC 3

3.3.10.1.1 Local Boot Architecture 3
3.3.10.1.2 Global Data 7
3.3.10.1.3 Local Boot LLCs 9
3.3.10.1.4 Secondary Boot Units 9

3.3.10.1.4.1 Add_To_PT Unit 9
3.3.10.1.4.2 Create_Int_Stack 11

Unit
3.3.10.1.4.3 Define_Free_Mem 12

Unit
3.3.10.1.4.4 Define_ILA Unit 14
3.3.10.1.4.5 File_Open Unit 16
3.3.10.1.4.6 File_Read Unit 18
3.3.10.1.4.7 File_Read_Line Unit 20
3.3.10.1.4.8 File Seek Unit 22
3.3.10.1.4.9 Get_Flags Unit 24
3.3.10.1.4.10 Inet_Addr Unit 25
3.3.10.1.4.11 Link IO_Pages Unit 28
3.3.10.1.4.12 Load—ACT Tbl Unit 30
3.3.10.1.4.13 Load_ERTE Unit 33
3.3.10.1.4.14 Load_GW_Tb1 Unit 36
3.3.10.1.4.15 Load IXIB Unit 40
3.3.10.1.4.16 Loadip1B_Tb1 Unit 42
3.3.10.1.4.17 Load_Net_Tb1 Unit 45
3.3.10.1.4.18 Load SCB Unit 48
3.3.10.1.4.19 Main—Unit 50
3.3.10.1.4.20 Panic Unit 52
3.3.10.1.4.21 Printf Unit 53
3.3.10.1.4.22 Read Dir Unit 57
3.3.10.1.4.23 Read —Process_ 58

List —Unit
3.3.10.1.4.24 Read_processes 60

Unit
3.3.10.1.4.25 Reboot Unit 66
3.3.10.1.4.26 Relocate Unit 67
3.3.10.1.4.27 Reserve_SPT Unit 69
3.3.10.1.4.28 Size_Memory Uni.t 71
3.3.10.1.4.29 Start_ERTE Unit 73

3.3.10.2 IGW Net Load Component 75

75

78
79
79

3.3.10.2.1 Net Load Component
Architecture

3.3.10.2.2 Global Data
3.3.10.2.3 IGW Net Load LLCs
3.3.10.2.4 IGW Net Load Units

3.3.10.2.4.1 Calc_Memory_Size Unit 79
3.3.10.2.4.2 Check_pgram Unit 81
3.3.10.2.4.3 Check IP Unit 83
3.3.10.2.4.4 Check:UDP_Hdr Unit 86
3.3.10.2.4.5 Chk_Sum Unit 89
3.3.10.2.4.6 Copy_Dgram Unit 90
3.3.10.2.4.7 Create_pgram Unit 92
3.3.10.2.4.8 Create Ip_Hdr Unit 94
3.3.10.2.4.9 CreatelUDP Hdr Unit 97
3.3.10.2.4.10 Download_Sgram Unit 100
3.3.10.2.4.11 Init_Ether Unit 102
3.3.10.2.4.12 Install_IXIB Unit 103
3.3.10.2.4.13 Install_SW Unit 106
3.3.10.2.4.14 Main Unit 109
3.3.10.2.4.15 Print_Msg Unit 110
3.3.10.2.4.16 Recv_Data Unit 111
3.3.10.2.4.17 Recv_pgram Unit 114
3.3.10.2.4.18 Reboot Unit 117
3.3.10.2.4.19 Relocate Unit , 118
3.3.10.2.4.20 Send_Dgram Unit 120
3.3.10.2.4.21 Send_Message 123

3.3.10.3 Host Net Load LLC 125

3.3.10.3.1 Host Net Load LLC
Architecture

3.3.10.3.2 Global Data
3.3.10.3.4 Host Net Load Units

125

128
130

3.3.10.3.4.1 Add_To_PT Unit 130
3.3.10.3.4.2 Create_Int_Stack 132

Unit
3.3.10.3.4.3 Define_Free_Mem Unit 134
3.3.10.3.4.4 Define_ILA Unit 136
3.3.10.3.4.5 Get Flags Unit 138
3.3.10.3.4.6 Lini-ç= IO Pages Unit 139
3.3.10.3.4.7 Load:AC -f_Tb1 Unit 141
3.3.10.3.4.8 Load_ERTE Unit 144
3.3.10.3.4.9 Load GW Tbl Unit 148
3.3.10.3.4.10 Loai_IW Unit 152
3.3.10.3.4.11 Load IXIB Unit 154
3.3.10.3.4.12 Load:NB_Tb1 Unit 156
3.3.10.3.4.13 Load_Net_Tb1 Unit 159
3.3.10.3.4.14 Load_Reg Unit 163

164
166
169

171

177
179

180

181
182
183
183

183
187
188
192
194
199

3.3.10.3.4.15 Load SCB Unit
3.3.10.3.4.16 Main—Unit
3.3.10.3.4.17 Read_Process_

List Unit
3.3.10.3.4.18 Read_Processes

Unit
3.3.10.3.4.19 Reserve SPT Unit
3.3.10.3.4.20 Write_Ia Unit

3.3.11 SUPPORT SOFTWARE Detailed Design

3.3.11.1 Write Diskettes Architecture
3.3.11.2 Write:Diskettes Global Data
3.3.11.3 Write_Diske. ttes LLC Design
3.3.11.4 Write_Diskettes Unit Design

3.3.11.4.1 Add_Files
3.3.11.4.2 Blocks
3.3.11.4.3 Directory_List
3.3.11.4.4 Init
3.3.11.4.5 Main
3.3.11.4.6 Transfer

4.0 GLOSSARY 201

1
1
1
1
1

1
1
1
1
1
1
1

1
1

#1500-15-031.02.0

3.3.9 Primary Boot TLC Detailed Design

This TLC has been eliminated from the design of the IGW because the

Boot programs residing in ROM on the Micro-VAX contain all the

functionality of the Primary Boot TLC as described in [5].

3.3.10 Secondary Boot TLC Detailed Design

1
The Secondary Boot TLC is responsible for booting the IGW from either

floppy diskette, or from a host on the Ethernet. To accomplish this

the TLC has been divided into three distinct lower level components

(Figure 3-9): •

1) Local Boot LLC - This component is responsible for
booting the IGW entirely from floppy disks.

2) IGW Net Load LLC - This component is responsible for
requesting and receiving boot software and data over
the Ethernet network. This component resides on the
IGW.

3) Host Net Load LLC - This component resides on a host,
and is responsible for sending IGW software and data
to the IGW when a request to do so is received.

The following sections describe each of these LLCs.

1
1
1
1 -1

#1500-15-031.02.0

+ +
I Secondary_Boot I
I TLC I
+ + +

I
+ + +

I I I
• + + ++ + + + + +

1 Host Net Load I 1 IGW Net Load I 1 Local Boot I _ _
I LLC I I -1LC— I I LL I
+ ++ ++ +

Figure 3-9

-2--

1
1
1
1
1
1
1
1

1
1
1

1
1
1

1
1

#1500-15-031.02.0

3.3.10.1 Local Boot LLC

The Local Boot LLC contains the software that is responsible for the

loading of the IGW system from diskette, and for the initialization of

memory hardware and tables. After this loading and initialization,

the Local Boot software will transfer control to the IGW ERTE that has

been loaded into main memory.

3.3.10.1.1 Local Boot LLC Architecture

The Local Boot LLC consists of the following units as shown in Figure

3-10:

1) Relocate Unit - This unit is used to relocate the
secondary boot program to the end of memory to allow the
loading of the IGW software.

2) Size_Memory Unit - This unit determines the amount of
physical memory in the IGW.

3) Load_SCB Unit - This unit loads the System Control Block
from a file on the IGW diskette.

4) Reserve_SPT Unit - This unit reserves the space required
to contain the System Page Table.

5) Define_ILA Unit - This unit defines the structure of the
IGW Link Area. This area contains information and
pointers to information that are used globally . by the
IGW. As part of the ILA definition procedure SPT
entries are added to the System Page Table to reference
the pages of the IGW Link Area.

6) Load_ERTE Unit - This unit is responsible for the
loading of the ERTE from diskette into IGW memory.

1 -3-

1

1
1

1
1

1

1

#1500 - 15 - 031.02.0

1 Local Boot 1
LL-Z- 1

+ + + + + ++ + ++ + +
1 Add To PT 1 1 Create Int Stack 1 1 Define Free Mem 1 1 Define ILA 1 _ _ _ _
+ + + + +

_
++

_
+

+ + + +
I I I I

+ + + + + + + + ++ + +
1 File Open 1 1 File Read 1 1 File Read Line 1 1 File Seek 1 _ _ _ _
+ + + + + + + +

+ + + +
I I I I

+ + + + + ++ + ++ + +
1 Get Flags 1 1 Inet Addr 1 1 Link I0 Pages 1 1 Load AZT Table 1 _ _ _ _ _
+ + + + + ++

_
+

+ + + +
I I I I

+ + + + + ++ + ++ + +
I Load ERTE 1 I Load GW Tbl 1 1 Load IXIB I 1 Load NB Tbl I _ _
+ ++ _ ++

_ ++ _ +

+ + + + +
I I I 1 I

+ + + +----+ + +--+---+ +---+---+ +----+---+
I Load Net Tb1 1 1 Load SCB 1 1 Main 1 1 Panic 1 1 Printf I _ _

 + ++
_

++ ++ +'+ +

+ + + +
I I I 1

+ + + + + + + + +---+----+
1 Read Dir 1 1 Read Process List 1 1 Read Processes 1 1 Reboot 1 _ _ _ _
+ + + + + ++ +

+ + + 4-
I I I 1

+ +----- + + + + + + + + + +
1 Relocate 1 1 Reserve Spt 1 1 Size Memory 1 1 Start ERTE 1 _
+ ++ _

++
_ ++ +

Figure 3-10

1 4

1

1

1
1
1

1

1
1
1
1

#1500-15-031.02.0

7) Read_Process_List Unit - This unit reads the list of
processes that are to be loaded from diskette.

8) Read_Processes Unit - This unit makes use of the list
obtained by the Read_Process_List Unit to read in the
IGW processes from diskette. This unit also sets up PPT
and SPT entries, allocates stack space (by the use of
the Allocate_Stacks Unit), and updates the PCB in
Process_List.

9) Load_ACT_Tb1 Unit - This unit reads the X.121 Address
Configuration Table from diskette and loads it into
system virtual address space. The IGW Link Area is
updated to reference the system virtual address of the
loaded table.

10) Load_Net_Tb1 Unit - This unit reads the X.121 Address
Configuration Table from diskette and loads it into
system virtual address space. The IGW Link Area is
updated to reference the system virtual address of the
loaded table.

11) Load_GW_Tb1 Unit - This unit reads the Gateway Table
from diskette and loads it into system virtual address
space. The IGW Link Area is updated to reference the
system virtual address of the loaded table.

12) Load_NB_Tbl Unit - This unit reads the Neighbor Table
from diskette and loads it into system virtual address
space. The IGW Link Area is updated to reference the
system virtual address of the loaded table.

13) Create_Int_Stack Unit - This unit allocates space for
the interrupt stack. System page table entries are
added and hardware registers are set during the
allocation procedure.

14) Define_Free_Mem Unit - This unit sets up the system page
table entries required to reference the free memory of
the IGW.

15) Link_IO_Pages Unit - This unit sets up a pointer in the
IGW Link Area to reference the area of memory that is
designated for I/O.

16) Load_IXIB Unit - This unit reads the IXIB software from
diskette and sends it to the IXIB board to be loaded
into the memory on that board.

1
1
1
1

1

1
1
1
1

1
1

#1500-15-031.02.0

17) File_ppen Unit - This unit will obtain file description
information required by the File_Read and File_Read_Line
Units.

18) File_Read Unit - This unit will read data from a floppy
disk file that has been opened by the File_Open Unit.

19) File Read_Line Unit - This unit will read a single
newline terminated record from the floppy disk file that
has been opened with the File_Open Unit.

20) Add_To_PT Unit - This unit is called to add an entry to
a page table.

21) Start_ERTE Unit - This unit transfers control from the
Local Boot LLC to the ERTE TLC thus starting IGW gateway
operations.

22) Printf - This unit is called to display formatted
messages on the IGW console during the secondary boot
procedure.

23) Reboot - This unit is used to perform a reboot of the
IGW from diskette.

24) Panic - This unit displays an error message on the IGW
console and causes the IGW to reboot from diskette.

25) Inet_Addr - This unit converts an IP address in dot
notation to 32 bit representation.

26) Get_Flags - This unit converts a flags string into a bit
pattern.

27) Main - This unit is called after secondary boot
relocation and is responsible for calling the secondary
boot units required to perform the boot.

28) File_Seek - This unit will reposition the file pointer
for the currently open file.

29) Read_Dir - This unit will read the disk directory for
both IGW diskettes from diskette number 0.

1
1
1

1
1

1

1
1
1
1

1
1
1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.1.2 Global Data

This section describes the format and contents of the data which is

defined to be globally used between the units contained within the

secondary boot procedure.

1) RELOC - This constant defines the physical address that
the secondary boot image is to be relocated to.

2) DIR_SIZE - This constant defines the number of entries
that the Disk_Dir table will hold. This value is
currently defined as 20.

3) Disk_Dir - This global data item contains a table of
DIR_SIZE directory entries for the files contained on
the IGW diskettes. The end of the directory is detected
by either the predefined constant DIR_SIZE or if there
are less entries by having the Dir_BN field of the entry
after the last valid entry to be O. Each directory
entry contains the following fields:

- Dir_Name - This field consists of an array of 15
bytes containing the file name stored as a null
terminated character string.

- Dir_Dev - This field consists of a single byte
indicating the floppy drive number that the file is
stored on.

- Dir_BN - This field consists of a 16 bit integer
containing the starting block number of the file on
the diskette.

- Dir_Size - This field consists of a 32 bit integer
containing the size of the file in bytes.

4) FICS - This global data item holds the File Input
Control Structure. This structure contains information
pertaining to the currently opened file. This structure
contains the following fields:

- OI_Start_BN - This field consists of a 16 bit
integer containing the block number of the first
block in the currently open file.

-7-

#1500-15-031.02.0

- OI_Size - This field consista of a 32 bit integer
containing the size of the currently open file in
bytes.

- OI_Dev - This field consists of a 16 bit integer
containing the floppy drive number where the
currently open file resides.

- OI_Block_Offset - This field consists of a 16 bit
integer containing the block offset from the start
of the diskette of the currently open file.

- OI_Byte_Offset - This field consists of a 16 bit
value indicating the bytes offset of the file read
position in the current block being read in the
currently open file.

- OI_Flags - This field consists of a 16 bit integer
containing flags indicating information pertaining
to the currently open file. Valid flags for this
field are:

FILE_OPEN (0x01) - File has been opened

5) Free_Phys - This global data item consists of a 32 bit
integer containing the physical address of the start of
memory that has not been allocated yet.

6) Free_Virt - This global data item consists of a 32 bit
integer containing the virtual address of the start of
virtual memory that has not been allocated yet.

7) Istack_Phys - This global data item consists of a 32 bit
integer containing the physical address of the top of
the interrupt stack.

8) Istack_Virt - This global data item consists of a 32 bit
integer containing the virtual address of the top of the
interrupt stack.

9) Proc_List - This global data item consists of an array
of 100 bytes containing the names of the files that
processes are to be loaded from. Each file name is
separated by a newline character and the list is
terminated by a null character.

10) Sys_PT - This global data item consists of a 32 bit
integer containing the starting physical address of the

1

1

1
1

1

1
1
1
1
1

#1500-15-031.02.0

system page table.

3.3.10.1.3 Local Boot LLCs

There are no LLCs defined for the Local Boot LLC.

3.3.10.1.4 Local Boot Units

The following subsections contain the unit descriptions for the
units comprising the Local Boot LLC.

3.3.10.1.4.1 Add_To_PT Unit

The Add_To_PT Unit adds page table entries to either the system II or the process page tables.

1 3.3.10.1.4.1.1 Inputs

The following inputs are used by the Add_To_PT Unit:

1) PT_Addr - This input contains the starting physical
address of the page table that page table entries are to
be added to.

2) Phys_Addr - This input contains the physical address of
the page that is to be added to the page table.

3) Virt_Addr - This input contains the virtual address of
the page that is to be added to the page table.

1
1

1
1
1

1
1

1
#1500-15-031.02.0

3.3.10.1.4.1.2 Outputs

The following outputs are produced by the Add_To_pT Unit:

1) Page Tables - This output is written to the page table
specified by the PT_Addr input. The format of these
page tables is given in the global data section.

3.3.10.1.4.1.3 Local Data

No local data is defined for the Add_To_pT Unit.

3.3.10.1.4.1.4 Processing

Move PEN of Phys_Addr to address specified by VPN of Virt_Addr +
PT Addr

Set --PT_Valid field in PT entry at VPN of Virt_Addr + PT Addr
Move PT_PW to PT_Prot field in PT entry at VPN of Virt_À-ddr +
PT_Addr

Return

3.3.10.1.4.1.5 Limitations

This unit performs no checks for incorrect virtual addresses, so

specifying invalid virtual address could result in page table entries

to be written to incorrect locations outside of the page table in

phys'ical memory.

1
1
1

1 - 1 0 -

1

#1500-15-031.02.0

I 3.3.10.1.4.2 Create_Int_Stack Unit

II The Create_Int_Stack Unit Reserves an area in physical memory

I following the global tables to contain the interrupt stack.

1 3.3.10.1.4.2.1 Inputs

I The following inputs are defined for the Create_Int_Stack Unit:

1) Free_phys - This input is read from global data and
contains the free physical memory address where the
interrupt stack is located.

2) Free_yirt - This input is read from global data and
contains the free virtual memory address where the
interrupt stack is placed.

3.3.10.1.4.2.2 Outputs

I The following outputs are produced by the Create_Int_Stack Unit:

1) Free_phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

2) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

3) Istack_Phys - This output is written to global data and
contains the physical address of the initial interrupt
stack pointer.

4) Istack_Virt - This output is written to global data and
contains the virtual address of the initial interrupt
stack pointer.

- 1 1 -

1
1
1
1
1

1

1

•
1

1
#1500-15-031.02.0

3.3.10.1.4.2.3 Local Data

No local data is defined for the Create_Int_Stack Unit.

3.3.10.1.4.2.4 Processing

Add ISTACK_SIZE to Free_Phys
Add ISTACK_SIZE to Free_Virt
Adjust Free_phys and Free_Virt to point to next page boundary if
necessary

Move Free_Phys to Istack_Phys
Move Free_yirt to Istack_Virt
Return

3.3.10.1.4.2.5 Limitations

No limitations are defined for the Create_Int_Stack Unit.

3.3.10.1.4.3 Define_Free_Mem Unit

The Define_Free_Mem Unit defines the system virtual addresses for the

area in physical memory from the beginning of the tables to the end of

the free memory.

1
1
1

1 - 12 -

1
1
1
1

1
1

1
1

1

1
1

#1500-15-031.02.0

3.3.10.1.4.3.1 Inputs

The following inputs are defined for the Define_Free_Mem Unit:

1) Table_Phys - This input is read from global data and
contains the physical memory address where table storage
begins.

2) Table_Virt - This input is read from global data and
contains the virtual memory address where table storage
begins.

3) Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

3.3.10.1.4.3.2 Outputs

The following outputs are produced by the Define_Free_Mem Unit:

1) SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

2) Free_Virt - This output is written to global data and
contains the updated value for the next free address in
physical memory.

3) ILA - This output is written to the ILA area and is
updated with the virtual address for the start of the
IGW free memory.

1
1
1
1

- 13 -

1

1
1

1
1

1
#1500-15-031.02.0

3.3.10.1.4.3.3 Local Data

No local data is defined for the Define_Free_Mem Unit.

3.3.10.1.4.3.4 Processing

Hove Free_yirt to ILA entry for free virtual memory
For each page N starting at Table_Phys to end of physical memory

Call Add_To_PT(Page Table = Sys PT,
Virt_Addr = N * P11. --E SIZE +
Phys_Addr = N * PAGE:SIZE + Table_Phys)

Endfor
Return

3.3.10.1.4.3.5 Limitations

No limitations are defined for the Define_Free_Mem Unit.

3.3.10.1.4.4 Define_ILA Unit

The Define_ILA Unit Reserves an area in physical memory following the

system page table- to contain the IGW Link Area. System page table

entries are created for this area referencing system virtual addresses

starting at the beginning of the system virtual address space.

- 14 -

1
1
1

1

1
1

#1500-15-031.02.0

3.3.10.1.4.4.1 Inputs

The following inputs are defined for the Define_ILA Unit:

1) Free_Phys - This input is read from global data and
contains the free physical memory address where the ILA
area is to be placed.

2) Free_yirt - This input is read from global data and
contains the free virtual memory address where the ILA
area is to be placed.

3) Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

3.3.10.1.4.4.2 Outputs

The following outputs are produced by the Define_ILA Unit:

1) SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output updates the IGW Link Area with any
fields of that area that are to be initialized.

1

1
1 - 15 -

1

1
1
1

1
1
1
1

1
#1500-15-031.02.0

3.3.10.1.4.4.3 Local Data

No local data is defined for the Define_ILA Unit.

3.3.10.1.4.4.4 Processing

For each page N in ILA
Call Add_To PT(Page_Table = Sys_PT, Free_Virt, Free_phys)
Add PAGE_SIiE to Free Phys
Add PAGE_SIZE to Free:Virt

Endfor
Move Sys_pt to SPT_Address field of ILA
Return

3.3.10.1.4.4.5 Limitations

No limitations are defined for the Define_ILA Unit.

3.3.10.1.4.5 File_Open Unit

The File_Open Unit searches through the memory resident disk directory

for a specified file. If the file is found in the disk directory the

File Input Control Structure (FICS) is initialized for that file and

the value of NOERROR is returned. If the file isn't in the directory

ERROR is returned.

1

1
1 - 16 -

I 3.3.10.1.4.5.1 Inputs

I The following inputs are defined for the File Open Unit:

1) Open_File_Name - This input consists of the name of the
diskette file that is to be opened.

2) Disk_Dir - This input consists of the disk directory in
global data that has been obtained by the File_pet_Dir
Unit.

3.3.10.1.4.5.2 Outputs

111 The following outputs are produced by the File_Open Unit:

1) FICS - This output is the File Input Control Structure
that has been initialized for the open file. It is
defined as global data.

3.3.10.1.4.5.3 Local Data

II No local data is defined for the File_Open Unit.

II 3.3.10.1.4.5.4 Processing

For each directory entry N in Disk_Dir
If Dir_Name field of directory entry N matches Open_File Name

Move Dir_BN field of directory entry N to IO_Start_BF
field of FICS

Move Dir_Size field of directory entry N to IO_Size field
of FIGS

Move Dir_Dev field of directory entry N tio IO_Dev field
of FICS

Move IO_Start_BN field of FICS IO_Block_Offset field of
FIGS

Move Ox7FFFF hexadecimal to IO Byte Offset field of FICS
Move FILE_OPEN to IO_Flags of—FICS
j eturn NOERROR

End
Endfor

I Return ERROR

#1500-15-031.02.0 #15 00- 15- 03 1.02. 0

- 17 -

1
1

#1500-15-031.02.0

1
3.3.10.1.4.5.5 Limitations

The Read_Dir unit must be called before this unit.

I 3.3.10.1.4.6 File_Read Unit

The File_Read Unit will read a specified number of bytes from the

diskette file that was opened with the File Open Unit into a Buffer.

II 3.3.10.1.4.6.1 Inputs

I The following inputs are defined for the File_Read Unit:

1) FICS - This input contains the File Input Control
Structure, and contains the current file input status
for the file being read. This input comes from global
data.

2) Input_Buffer - This input is the address of the
Input_Buffer output item.

3) Bytes_To_Read - This input contains the number of bytes
that are to be read from the diskette file.

4) Diskette - This input consists of the file data that is
read from the IGW diskette.

- 18 -

1

1

1
1

1

I 3.3.10.1.4.6.2 Outputs

The following outputs are produced by the File_Read Unit:

1) Input_Buffer - This output is an array of characters in
which the input data is written to.

2) FICS - This output is the File Input Control Structure
that has been updated to indicate the read data. It is
defined as global data.

3.3.10.1.4.6.3 Local Data

I The following local data is defined for this unit:

1) In_lptr - This local data item is used to point to the
input buffer in which data is being returned to the
calling unit.

I 3.3.10.1.4.6.4 Processing

I If FILE OPEN Flag isn't set in IO_Flags Field of FICS
Return ERROR

Endif
Move Input_Buffer address to In_Ptr

II Loop
While Bytes To_Read is greater than 0 and IO_Byte_Offset
field of FICS is less than 512 Cl block)

If (512 * IO_Start_BN IO_Size < 512 * IO_Block_Offset
IO Byte_Offset) using the fields in .FICS

—Return address given in In_ptr - address of Input_Buffer
Endif
Move byte from IO_In_Buf field of FICS referenced by
IO_Byte_Offset field of FICS to address referenced by
In_Ptr

Increment IO_Byte_Offset field of FICS
Increment In_Ptr
Decrement Bytes_To_Read

Endwhile
If Bytes_To_Read is 0

Exit Loop
Else

Call ROM based disk driver routine to read the disk block
addressed by the IO Block Offset field of FICS on the
disk specified by the IO_Uev field of FICS to the
IO_In_Buf field of FIGS

#1500-15-031.02.0 #1500-15-031.02.0

- 19 -

#1500-15-031.02.0

Increment IO_Block_pffset field of FICS
Clear IO_Byte_pffset field of FICS

Endif
Endloop

II Return address given in In_Ptr - address of Input_Buffer

3.3.10.1.4.6.5 Limitations

No limitations are defined for this unit.

3.3.10.1.4.7 File_Read_Line Unit

The File_Read_Line Unit will read a line of input from the diskette

I file that was opened with the File_Open Unit into a buffer.

3.3.10.1.4.7.1 Inputs

The following inputs are defined for the File_Read_Line Unit:

1) In_Ptr - This input contains the address of the
Input_Buffer output.

- 20 -

No limitations are defined for this unit.

3.3.10.1.4.7.5 Limitations

- 21 -

#1500-15-031.02.0

I 3.3.10.1.4.7.2 Outputs

The following outputs are produced by the File_Read_Line Unit:

1) Input_Buffer - This output is an array of characters in
which the input data is written to.

3.3.10.1.4.7.3 Local Data

II The following local data is defined for this unit:

1) Bytes_Read - This local data item contains the number of
bytes that have been read while performing a single
character read.

I 3.3.10.1.4.7.4 Processing

Loop
Bytes_Read = File_Read(In_ptr, 1)
If Bytes_Read isn't equal 1 or data referenced by In_ptr
is a <LF> character

Exit Loop
Endif
In_Ptr++

Endloop
I Move NULL character to data referenced by In_Ptr

Return

1

#1500-15-031.02.0

1 3.3.10.1.4.8 File_peek Unit

II The File_Seek Unit is used to position the file pointer of the open

file to the specified byte offset.

1 3.3.10.1.4.8.1 Inputs

I The following inputs are defined for the File_Seek Unit:

1) FICS - This input contains the File Input Control
Structure, and contains the current file input status
for the file being referenced. This input comes from
global data.

2) Bytes_Offset - This input contains the new value of the
byte offset into the file.

3) Diskette - This input consists of the file data that is
read from the IGW diskette to load the internal data
buffer in FICS.

1 3.3.10.1.4.8.2 Outputs

The following outputs are produced by the File_Seek Unit:

2) FICS - This output is the File Input Control Structure
that has been updated to new file pointers. It is
defined as global data.

- 22 -

1

1

1

1

• 1

I 3.3.10.1.4.8.3 Local Data

No local data is defined for this unit.

•

3.3.10.1.4.8.4 Processing

,If FILE_OPEN Flag isn't set in IO_Flags Field of FICS
Return ERROR

I Endif
If Byte_Offset is greater than or equal to IO_Size field of FICS

Return ERROR
I Endif

Move Byte Offset to IO_Block_Offset field of FICS
Divide IO_Block_Offset field of FICS by 512 placing remainder in
the IO Byte_Offset field of FICS I Add IO -S-tart_BN field of FICS to 10 Block Offset field of FICS

Call R .614 based disk driver routine to reai the disk block
addressed by the IO_Plock_Offset field of FICS on the disk

II specified by the IO_Dev field of FICS to the IO_In_puf field of
FICS
Return NOERROR

3.3.10.1.4.8.5 Limitations

II No limitations are defined for this unit.

I .

#1500-15-031.02.0 #1500-15-031.02.0

1
1

1
1

#1500-15-031.02.0

1 3.3.10.1.4.9 Get_Flags Unit

I The Get_Flags Unit is used to convert a character string containing

flags to a bit representation of those flags.

1 3.3.10.1.4.9.1 Inputs

1 The following inputs are required by the Get_Flags Unit:

1) Set_Flags - This input consists of a character string
containing the flags that are set.

2) All_Flags - This input consists of a character string
containing all possible flags given in the correct bit
order.

3.3.10.1.4.9.2 Outputs

I The following outputs are produced by the Get_Flags Unit:

1) Flags - This output consists of the flags given in
Set_Flags stored in bit positions.

1
1
1
1
1

1

1 - 24 -

1
#1500-15-031.02.0

3.3.10.1.4.9.3 Local Data

No local data is defined for the Get_Flags Unit.

3.3.10.1.4.9.4 Processing

Clear Flags
For each Flag from 0 to N - 1 in All_Flags

If Flag N is in Set_Flags
Bitwise or (I left shifted by N) into Flags

Endif
Endfor
Return Flags

3.3.10.1.4.9.5 Limitations

No limitations are defined for this unit.

3.3.10.1.4.10 Inet_Addr Unit

The Inet_Addr Unit is used to convert a character string containing an

IP address •in dot notation to a 32 bit value.

1

1

- 25 -

#1500 - 15 - 031.02.0

I 3.3.10.1.4.10.1 Inputs

II The following inputs are required by the Inet_Addr Unit:

1) Addr_Ptr - This inputs points to a character string
consisting of the IF address in dot notation.

I 3.3.10.1.4.10.2 Outputs

I The following outputs are produced by the Inet_Addr Unit:

1) IP_Addr - This output contains the 32 bit representation
of the IF address in the Addr_Ptr input.

3.3.10.1.4.10.3 Local Data

I The following local data is used by the Inet_Addr_Unit:

1) Addr_Char - This local data item is used to hold the
characters of the dot format IF address while stepping
through it.

2) Addr_Parts - This local data item is an array of 3
unsigned 32 bit integers indexed from 0 to 2. It is
used to hold the parts of IF address that have been
converted to internal representation.

3) Dot_Count - This local data item is used to count the
number of "." characters in the dot format IF address.

1
- 26 -

2:

3:

II 3.3.10.1.4.10.4 Processing

Loop
Clear IP_Addr
While Addr_Ptr points to non NULL data

Move byte pointed to by Addr_Ptr to Addr_Char
If Addr_Char is a digit

Multiply IP Addr by 10
Add (Addr_CF.ar - '0') to IP_Addr
Increment Addr_Ptr

Else
Exit Loop

Endif
Endwhile
If Addr Ptr points to a '.' character

If liot_Count is greater than or equal to 3
Return ERROR

Endif
Move IP_Addr to Entry indexed by Dot_Count in Addr_Parts
Increment Dot_Count

Else Increment Addr_Ptr

Exit Loop
Endloop
If Addr_Ptr points to data other than NULL, SPACE, or TAB

Return ERROR
Case Dot_Count

1:
Left shift Addr_Parts entry 0 by 24 bits
And IP_Addr with Oxffffff
Or Addr_Parts entry 0 into IP_Addr

Left shift Addr_Parts entry 0 by 24 bits
And Addr_Parts entry 1 with Oxff
Left shift Addr Parts entry 1 by 16 bits
And IP_Addr with Oxffff
Or Addrjarts entry 0 into IP_Addr
Or Addr_Parts entry 1 into IP_Addr

Left shift Addr_Parts entry 0 by 24 bits
And Addr_Parts entry 1 with Oxff
Left shift Addr_Parts entry 1 by 16 bits
And Addr_Parts entry 2 with Oxff
Left shift Addr_Parts entry 2 by 8 bits
And IP_Addr with Oxff
Or Addr_Parts entry 0 into IP_Addr
Or Addr_Parts entry 1 into IF Addr
Or Addr_Parts entry 2 into IPIAddr

#1500-15-031.02.0 #1500-15-031.02.0

1
1

1
1
1

1

1
1

#1500-15-031.02.0

Endcase
Return IP_Addr in reverse byte order

3.3.10.1.4.10.5 Limitations

No limitations are defined for this unit.

3.3.10.1.4.11 Link_IOjages Unit

The Link__IO_Pages Unit is used to create system virtual address for

the IO pages and store the starting virtual address of the IO pages in

the ILA.

3.3.10.1.4.11.1 Inputs

No inputs are defined for the Link_IO_Pages Unit.

1) Free_yirt - This input is read from global data and
contains the next free virtual address.

2) Sys_pt - This input is read from global data and
contains the address of the system page table.

1

1
1 - 28 -

1
1

1

II 3.3.10.1.4.11.2 Outputs

The following outputs are produced by the Link_IO_Pages Unit:

1) SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

2) ILA - This output is written to the IGW link area to
indicate the starting system virtual address of the IO
pages.

3.3.10.1.4.11.3 Local Data

No local data is defined for the Link_IO_Pages Unit.

I 3.3.10.1.4.11.4 Processing

111 Move Free_Virt to Link_IO field of ILA
111 For each page N in the IO Space

Call Add_To_PT(Page Table = Sys_PT,
Virt_Addr = N * PAE_SIZE + Free Virt,
Phys_Addr = N * PAGE SIZE +

Endfor
Return

#1500-15-031.02.0 #1500-15-031.02.0

II 3.3.10.1.4.11.5 Limitations

1 No limitations are defined for the Link_IO_Pages Unit.

1
1

1
1 - 29 -

1
#1500-15-031.02.0

11

II 3.3.10.1.4.12 Load_ACT2rb1 Unit

I The Load_ACT_Tb1 Unit loads X.25 Address Configuration Table from

diskette to the system virtual address space following the process

page tables. The ILA is updated to indicate the • correct address of

I this table.

II 3.3.10.1.4.12.1 Inputs

II The following inputs are used by the Load_ACT_Tb1 Unit:

1) X.25_ACT - This input is read from the file "x.25_act"
on the IGW diskette and contains a copy of the X.25
Address Configuration Table. This file contains the
following fields:

X121 - This field contains the X.121 address (1 to 15
bytes) of the table entry.

Inet - This field contains the IP address in dot
notation for the table entry.

Size - This field contains the maximum size for a
packet for the host described in the table entry.

Flags - This field contains flags describing a table
entry.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where the X.25
Address Configuration Table is to be placed.

3) Free_yirt - This input is read from global data and
contains the free virtual memory address where the X.25
Address Configuration Table is to be placed.

- 30 -

1

1

1
1
1

1
1

1

II 3.3.10.1.4.12.2 Outputs

The following outputs are produced by the Load_ACT_Tb1 Unit:

1) ACT_Table - This output is written to the global data
area as new entries are added to the X.25 Address
Configuration Table. This table contains the following
fields:

ACT_X121 - This field consists of a 16 byte character
string the X.121 address of the current entry.

ACT_Inet - This field consists of a 32 bit value
indicating the IP address for the current entry.

ACT_Size - This field consists of a 16 bit value
indicating the maximum size of a packet for the
current entry.

ACT_Elags - This field consists of a 32 bit value
containing the following flags.

- Request reverse charging.
- Accept reverse charging.
- Reject incoming calls.
- Reject outgoing calls.
- Remote is an IXIB.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area and is
updated with the address of the X.25 Address
Configuration Table.

- 31 -

#1500-15-031.02.0 #1500-15-031.02.0

1
1

1
1

1

1
1
1

1
1

REQ_REV (0x01)
ACC_REV (0x02)
REJ_IN (0x04)
REJ OUT (0x08)
IXIF (0x10)

1

II 3.3.10.1.4.12.3 Local Data

The following local data is defined for the Load_ACT_Tb1 Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the x.25_act
file.

2) Host - This data item is used to hold the dot notation
format of the IP addresses as they are read from the
x.25_act file.

3) Flags - This data item is a character string used to
hold the flags field of each entry that is read from
x.25_act file.

4) ACT Ptr - This data item is used to step through
ACTITable while adding table entries.

II 3.3.10.1.4.12.4 Processing

If result of File_Open("x.25_act") is less than 0
Call panic(Error message)

Endif
Clear ACT_Table
Move Free_Virt to ACT_Table pointer in ILA

11 Move Free_phys to ACTjtr While more data in x.25_act file
Call File_Read_Line(Input_Buffer, bytes to read = 100)
If first character in Input_Buffer is a '#'

Continue next loop iteration
Endif
If ACT_Table is full

Exit loop
Endif
If result of sscanf(Input Buffer, "%s %s %d %s",

11
Act_X121 field of ACT_Tal71e entry pointed to by ACT_Ptr,
Host,
Address of ACT_Size field of ACT_Table entry pointed to by ACT_PTR,
Flags) is -1

Exit Loop
Endif
ACT_Inet field of ACT_Table entry pointed to by ACT_Ptr =
Inet_Addr(Host)

If ACT Inet field of ACT_Table = -1
Carl Printf(error message indicating invalid ACT Entry)
Continue next loop iteration

#1500-15-031.02.0 #1500-15-031.02.0

1

1
1
1

1 - 32 -

#1500-15-031.02.0

Endif
ACT_Flags field of ACT_Table entry pointed to by ACT_Ptr =
bitwise or between ACT_VALID flag and Get_Flags(Flags, "RAIOX")

Set ACT_Ptr to point to next entry in ACT_Table
111 Endwhile

Add size of ACT_Table to Free Phys
Add size of ACT_Table to FreelVirt
Return

I 3.3.10.1.4.12.5 Limitations

I No limitations are defined for the Load_ACT_Tb1 Unit.

I 3.3.10.1.4.13 Load_ERTE Unit

The Load_ERTE Unit is responsible for the loading of the ERTE

1 executable image from diskette to the IGW memory. For each page of

ERTE that is loaded a system page table entry is created.

II 3.3.10.1.4.13.1 Inputs

I The following inputs are defined for the Load_ERTE Unit:

1) ERTE - This input is read from the file "ERTE" on the
IGW diskette and contains the header, text, data, and
bss areas of the ERTE executable.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where ERTE is
to be placed.

3) Free_Virt - This input is read from global data and
contains the free virtual memory address where ERTE is
to be placed.

- 33 -

1
1
1

1
1
1
1
1

1
1
1

1
1

#1500-15-031.02.0

4) Sys_pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

3.3.10.1.4.13.2 Outputs

The following outputs are produced by the Load_ERTE Unit:

1) ERTE Memory Image - This output is written to the main
memory of the IGW and contains the text, data, and bss
areas for ERTE.

2) SPT - This output is written to the system page table by
calling the Add_To_PT Unit, and contains the new page
table entries for the memory occupied by ERTE.

3) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

4) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

3.3.10.1.4.13.3 Local Data

1
The following local data is defined for the Load_ERTE Unit:

1) Counter - This local data item is an integer that is
used as a byte counter while clearing the bss area of
ERTE.

2) Exec_Header - This local data item is a structure that
is used to hold the header from the ERTE executable that
is loaded from diskette. The fields in this structure
are all 32 bit values and are defined as follows:

A_Magic - This field contains the type of the
executable image that is being loaded. Valid values
for this field are:

- 34 -

1

1
1
1
1
1
1
1
1.
1

1
1
1

1
#1500-15-031.02.0

OMAGIC (0407) - Old impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A_Text - This field contains the size of the text
segment in bytes.

A_Data - This field contains the size of the
initialized data segment in 'bytes.

A_Bss This field contains the size of the
uninitialized data segment in bytes.

A_Syms - This field contains the size of the symbol
field.

A_Entry - This field contains of the address of the
entry point of the loaded executable image.

A_Trsize - This field contains the size of the text
relocation area.

A_Drsize - This field contains the size of the data
relocation area.

3.3 010.1.4.13.4 Processing

If result of File_Open("ERTE") is less than 0
Call Panic(error message)

Endif
Bytes_Read = File_Read(address of Exec_Header,
size of Exec_Header)

If Bytes_Read not equal size. of Exec_Header
Call Panic(error message)

Endif
If A_Magic field of Exec_Header is ZMAGIC

If result of File_Seek(Offset = 1024) is less than 0
Call Panic(error message)

Endif
Else if A_Magic field of Exec_Header isn't one of OMAGIC or NMAGIC

Call Panic(error message)
Endif
Bytes_Read = Read_File(Free_Phys,
A_Text field of Exec_Header + A_Data field of Exec_Header)
If Bytes read not equal (A_Text field of Exec_Header + A_Data
field of Exec_Header)

- 35 -

1
1

#1500-15-031.02.0

1
Call Panic(error message)

Endif
For each page N in ERTE text, data, and bas areas

Call Add_To_PT(Page_Table = Sys_pT, Free_Virt, Free_phys)
Free Phys += PAGE_SIZE
Freelyirt += PAGE_SIZE

Endfor I Clear bss area of ERTE
Endfor
Return

1
3.3.10.1.4.13.5 Limitations

No limitations are defined for the Load_ERTE Unit.

I 3.3.10.1.4.14 Load_pW_Tb1 Unit

II The Load_GW_Tb1 Unit loads the Gateway Table from the file "gateway"

on diskette into the IGW main memory. This file is used to define the

various gateways that the IGW may access in addition to those

I determined through EGP.

1
1

1
1 - 36 -

1

1
1
1
1

1

#1500-15-031.02.0

3.3.10.1.4.14.1 Inputs

The following input is used by the Load_GW_Tb1 Unit:

1) Gateway - This input is read from the diskette file
"gateway" contains a copy of the Gateway Table. This
file contains the following fields:

Dst_Net - The destination network that is accessed by
a gateway table entry.

GW_Addr - The address of the gateway to route packets
for the specified destination network.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP
network address mask for the destination network.

Hop - The number of gateways that must be crossed to
reach the destination.

Flags - This field consists of user definable flags.
Valid flags are:

E - Report route via EGP.
G - Gatewayed host. Delete route if the gateway

goes down.
R - Attempt to reroute datagrams if the gateway

goes down.

2) Free_phys - This input is read from global data and
contains the free virtual memory address where the
gateway table is placed.

3) Free_Virt - This input is read from global data and
contains the free virtual memory address where the
gateway table is to be placed.

1

- 37 -

#1500-15-031.02.0

3.3.10.1.4.14.2 Outputs

The following outputs are produced by the Load_GW_Tb1 Unit:

1) GW_Table - This output is written to the global data
area as new entries are added to the Gateway Table.
This table contains the following fields:

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area and is
updated with the address of the gateway table.

3.3.10.1.4.14.3 Local Data

II The following local data is defined for the Load_GW_Tbl Unit:

1) Input_puffer - This data consists of a buffer of 100
bytes that is used to read records from the gateway
file.

2) GW_Addr - This data item consists of a character string
used to hold the IF address for each entry that is read
from the gateway file.

3) Dst_Net - This data item consists of a character string
used to hold the destination network number for each
entry that is read from the gateway file.

4) Flags - This data item is used to hold the flags field
of each entry that is read from the gateway file.

5) GW_Ptr - This data item is used to step through GW_Table
while adding table entries:

- 38 -

1
1

1
1
1
1
1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.14.4 Processing

If result of File_Open("gateway") is less than 0
Call Panic(error message)

Endif
Clear entries in GW_Table
Move Free_Virt to GW_Table pointer in ILA
Move Free_Phys to GW_Ptr
While more data in gateway file

Call File Read_Line(Input_Buffer, bytes to read = 100)
If first character in input buffer is a

Continue next loop iteration
Endif
If GW_Table is full

Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s %x %d %s %s",
Dst_Net, GW_Addr,
Address of GW_Mask field of GW Table entry pointed to by GW_Ptr,
Address of GW_Hop field of GW_fable entry pointed to by GW_Ptr,
Flags) is -1

Exit Loop
Endif
GW_Dst_Net field of GW_Table entry pointed to by GW_Ptr =
Inet_Addr(Dst Net)

If GW_Dst_Net field of GW_Table entry pointed to by GW_Ftr = -I
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif
GW_GW_Addr field of GW_Table entry pointed to by GW_Ptr =
Inet_Addr(GW_Addr)

If GW_GW_Addr field of GW_Table entry pointed to by GW_Ptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif
Move index of entry in Net Table with same network address as
the network portion of the gateway address to GW_Number
field of GW Table entry pointed to by GW_Ptr

GW_Flags field of GW Table entry pointed to by GW Ptr =
bitwise or between â-W VALID flag and Get_Flags(F7ags, "EGR")

Set GW_Ptr to point to next entry in GW_Table
Endwhile
Add size of GW_Table to Free_Phys
Add size of GW_Table to Free_Virt
Return

1 - 39 -

1
1

1
1

1
#1500-15-031.02.0

1
3.3.10.1.4.14.5 Limitations

The unit Load_Net_Table must be executed before this unit.

3.3.10.1.4.15 Load_IXIB Unit

The Load_IXIB Unit is responsible for the loading of the IXIB

communications software from diskette to the IXIBs.

3.3.10.1.4.15.1 Inputs

The following input is defined for the Load_IXIB Unit:

1) IXIB File - This input is read from the file "IXIB" on
the IGW diskette and contains the IXIB software in
Motorola S-record format.

I 3.3.10.1.4.15.2 Outputs

The following output is produced by the Load_IXIB Unit:

1) IXIB - This output is written to each IXIB by way of the
IXIB FIFO registers. The output written consists of the
IXIB File.

1

1
1 - 40 -

1
1
1
1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.15.3 Local Data

The following local data is defined for the Load_IXIB Unit:

1) Input_Buffer - This local data item consists of an array
of 512 bytes and is used to hold data from the IXIB file
while loading the IXIBs.

2) Bytes_Read - This local data is used to hold the number
of bytes that have been read from a File_Read request.

3) Ibuf_Index - This local data item used as an index to
the Input_Buffer while sending data from that buffer to
the IXIBs.

3.3.10.1.4.15.4 Processing

1
If the result of File_Open("IXIB")

Call Panic(error message)
Endif
While data remains to be read in IXIB File

Bytes_Read = File_Read(Input_Buffer, 512)
For each byte in Input_Buffer

Move byte from input buffer to IXIB FIFO for
each IXIB

Endfor
Endwhile
Return

1

1

- 41 -

1
1

1
1

1
1
1
1
1
1

#1500-15-031.02.0

3.3.10.1.4.15.5 Limitations

No limitations are defined for the Load_IXIB Unit.

3.3.10.1.4.16 Load_NB_Tb1 Unit

The Load NB Tbl Unit loads the EGP Neighbour Table from the file

"neighbour" on diskette into the IGW main memory. This file is used

to define information describing the gateways that the IGW can

communicate via EGP with.

3.3.10.1.4.16.1 Inputs

The following inputs are used by the Load_NB_Tb1 Unit:

1) Neighbour - This input is read from the diskette file
"neighbor" and contains a copy of the EGP Neighbour
Table. This file contains the following fields:

IP_ADDR - The Internet address of the EGP neighbour
gateway in dot notation.

Flags - This field consists of user definable flags.
Valid flags are:

M - Gateway is a main neighbour.
0 - Gateway is an alternate neighbour.
S - Gateway is a stub gateway.

2) Free_phys - This input is read from global data and
contains the free physical memory address where the
neighbour table is to be placed.

3) Free_Virt - This input is read from global data and

1 - 42 -

1

1
1
1
1
1
1

1
1

1

1
1

#1500-15-031.02.0

c ontins the free virtual memory address where the
neighbour table is to be placéd.

3.3.10.1.4.16.2 Outputs

The following outputs are produced by the Load_NB_Tb1 Unit:

1) NB_Table - This output is written to the global table
area of physical memory as new entries are added to the
Neighbour Table.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area and is
updated with the address of the neighbour table.

3.3.10.1.4.16.3 Local Data

The following local data is defined for the Load_NB_Tb1 Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the neighbour
file.

2) IP_Addr - This data item consists of a character string
used to hold the IP address of each EGP neighbour
gateway entry that is read from the neighbour file.

3) Flags - This data item is used to hold the flags field
of each entry that is read from the neighbour file.

4) NB_Ptr - This data item is used to step through NB_Table
while adding table entries.

1
1
1 - 43 -

1

1

1
1
1

1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.16.4 Processing

If result of File_Open("neighbour") is less than 0
Call Panic(error message)

Endif
Clear entries in NB_Table
Move Free_yirt to NB_Table pointer in ILA
Move Free_Phys to NB_Ptr
While more data in neighbour file

Call File Read_Line(Input_Buffer, bytes to read = 100)
If first 7haracter

,
 in input buffer is a '#'

Continue next loop iteration
Endif
If NB_Table is full -

Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s", IP_Addr, Flags) is -1

Exit Loop
Endif
NB_IP_Addr field of NB_Table entry pointed to by NB_ptr =
Inet_Addr(IP_Addr)

If NB_IP_Addr field of NB_Table entry pointed to by NB_Ptr = - 1
Call Printf(error message indicating invalid neighbour entry)
Continue next loop iteration

Endif
NB_Flags field of NB_Table entry pointed to by NB Ptr =
bitwise or between NB_YALID flag and Get Flags(EI-ags, "MOS")

Set NB_Ptr to point to next entry in NB_T -alle
Endwhile
Add size of NB_Table to Free_Phys
Add size of NB_Table to Free_Virt
Return

1
1
1

- 44 -

1

1
1
1
1
1

1
1

1
1

1
#1500-15-031.02.0

3.3.10.1.4.16.5 Limitations

No limitations are defined for the Load_NE_Tb1 Unit.

3.3.10.1.4.17 Load_Net_Tb1 Unit

The Load_Net_Tb1 Unit Loads the Network Table from the file "network'

on diskette into the IGW main memory. This file is used to define the

network interface information required for each network that the IGW

is connected to.

3.3.10.1.4.17.1 Inputs

1
The following inputs are used by the Load_Net_Tb1 Unit:

1) Network - This input is read from the file "network" on
the IGW diskette and contains a copy of the Network
Table. This file contains the following fields:

IP Addr - The local Internet address of the IGW on
the referenced network. This field is a string
containing the IP address in dot notation.

Interface_Id - The interface number of the network
interface represented by this entry. Each interface
is given a number which is used to direct datagrams
to the correct interface for transmission.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP
network address mask.

MTU - The maximum transmission unit for IP datagrams.

1 - 45 -

1

1
1

1
1
1
1
1
1

1
1

#1500-15-031.02.0

This value is specified as an integer.

Flags - This field consists of one user definable
flag which is "U" indicating that the interface
should be marked as being up.

2) Free_phys - This input is read from global data and
contains the free physical memory address where the
gateway table is to be placed.

3) Free_Virt - This input is read from global data and
contains the free virtual memory address where the
gateway table is to be placed.

3.3.10.1.4.17.2 Outputs

The following outputs are produced by the Load_Net_Tb1 Unit:

1) Net_Table - This output is written to the global data
area as new entries are added to the Network Table.
This table is defined in section 3.2.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area and is
updated with the address of the gateway table.

1
1
1
1

- 46 -

1
1
1

1

1

1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.17.3 Local Data

The following local data is defined for the Load_Net_Tb1 Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the network
file.

2) IP_Addr - This data item is used to hold the IP address
for each entry that is read from the network file.

3) Flags - This data item is used to hold the flags field
of each entry that is read from the network file.

4) Net_Ptr - This data item is used to step through
Net_Table while adding table entries.

5) Interface_Number - This data item is used to hold the
interface id number of each entry read form the network
file.

6) Mask - This data item is used to hold the address mask
for each entry read from the network file.

7) MTU - This data item is used to hold the network MTU for
each entry read from the network file.

3.3.10.1.4.17.4 Processing

If result of File_Open("network") is less than 0
Call Panic(Error message)

Endif
Clear entries in Net_Table
Move Free_Virt to Net_Table pointer in ILA
Move Free_Phys to Net_Ptr
hi le more data in network file

Call File_Read_Line(Input_Buffer, bytes to read = 100)
If first character in input buffer is a

Continue next loop iteration
Endif
If Net_Table is full

Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s %x %d %s",
IP_Addr, Interface_Number, Net_Mask, MTU, Flags) is -1

Exit Loop
Endif

1 - 47 -

1

1
1

1

1

1
#1500-15-031.02.0

Search Net_Table for an entry with Net_IP_Addr field = IP_Addr
If table entry found

Add Interface_Number to the end of the Net_pID_List for the
found entry

Else
Set Net Ptr to the first empty position in Net_Table
Net_IPJ-ddr field of Net_Table entry pointed to by Net_Ptr =
Inet_Addr(IP_Addr)

If Net_ IP Addr field Net_Table entry pointed to by Net_Ptr = -1
Ca11 Frintf(error message indicating invalid network Entry)
Continue next loop iteration

Endif
Net_Flags field of Net_Table entry pointed to by Net_Ptr =
bitwise or between NET VALID and Get Flags(Flags, "U")
Set Net_MTU referenced 1-D-y Net Ptr to gTU
Set Net_Mask referenced byPtr to Mask
Set Current_IF field referencei by Net_Ptr to zero.

Endwhile
Add size of Net_Table to Free_Phys
Add size of Net_Table to Free_Virt
Return

3.3.10.1.4.17.5 Limitations

No limitations are defined for the Load_Net_Tb1 Unit.

3.3.10.1.4.15 Load_SCB Unit

The Load_SCB Unit loads the System Control Block from a file to the

SCB area of memory.

1
1
1
1 - 45 -

#1500-15-031.02.0

I 3.3.10.1.4.18.1 Inputs

I The following inputs are used by the Load_SCB Unit:

1) SCB_Init - This input is read from a file on the IGW
diskette. This file contains an image of the System
Control Block.

I 3.3.10.1.4.18.2 Outputs

The following outputs are produced by the Load_SCB Unit:

1) SCB - This output is written to the address specified by
the SCBB processor register (physical address 0), and
contains the System Control Block that has been obtained
from the SCB_init input.

2) SCBB - This output is written to the System Control
Block Base Register, and contains the physical address
of the SCB.

3) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3.3.10.1.4.18.3 Local Data

I No local data is defined for the Load_SCB Unit.

- 49 -

1
1

1

1
1
1
1
1
1
1
1

1
#1500-15-031.02.0

3.3.10.1.4.18.4 Processing

If result of Open_File("SCB_init") is less than 0
Call printf(Error message)
Call Reboot()

Endif
Bytes_Read = File_Read(Address of SCB = 0, Size of SCB = 512)
If Bytes_Read not equal Size of SCB

Call printf(Error message)
Call Reboot()

Endif
Move 0 to the system control block base register (processor
register SCBB)

Move Size of SCB to Free_Phys
Return

3.3.10.1.4.18.5 Limitations

This unit must be called before any other unit which allocates

physical memory.

3.3.10.1.4.19 Main Unit

The Main Unit is called after secondary boot relocation. This unit is

responsible for calling the other units that make up the secondary

boot procedure.

1
1
1
1 - 50 -

1
1
1
1
1
1
1
1
1
1
1

1

1
1

#1500-15-031.02.0

3.3.10.1.4.19.1 Inputs

No inputs are defined for the Main Unit.

3.3.10.1.4.19.2 Outputs

The following outputs are produced by the Main Unit:

1) Console - This output is written to the IGW console and
contains messages to indicate the start and end of the
IGW loading procedure.

3.3.10.1.4.19.3 Local Data

No local data is defined for the Main Unit.

3.3.10.1.4.19.4 Processing

Call Printf("Loading IGW...")
Call Read_Dir()
Call Load_SCB()
Call Reserve SPT()
Call Define_TLA()
Call Size Memory()
Call Load —ERTE()
Call Read—Process_List()
Call Readl.Processes()
Move Free Phys to Table Phys
Move Free:Virt to Table:Virt
Call Load_ACT_Tb1()
Call Load Net Tbl()
Call Load—GW .2111()
Call Load—NB_Tb1()
Reserve space from unloaded tables
Call Create Int_Stack()
Call Define—Free_Mem()
Call Link_IF, Pages()
Call Load IXI-13()
Call Prinf("done.\n")

1 - 51 -

1
1

1 •
#1500-15-031.02.0

Call Start_ERTE()

II 3.3.10.1.4.19.5 Limitations

II No limitations are defined for the Main Unit.

II 3.3.10.1.4.20 Panic Unit

The Panic Unit causes the IGW to display a panic message on the

II console and perform a reboot.

II 3.3.10.1.4.20.1 Inputs

The following inputs are required by the Panic Unit:

'1) Panic_Message This input is a null terminated
character string that contains a message that is to be
printed on the IGW console.

1

1

1

1 - 52 -

1
1
1

1

1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.20.2 Outputs

The following output is produced by the Panic Unit:

1) Panic_Message - This output is the same as the Panic
Message input except for the fact that it is preceded
by the message "panic: " and is followed by a newline.

3.3.10.1.4.20.3 Local Data

No local data is defined for the Panic Unit.

3.3.10.1.4.20.4 Processing

Call printf("panic: %s\n", panic message)
Call Reboot()

3.3.10.1.4.20.5 Limitations

No limitations are defined for this unit.

3.3.10.1.4.21 Printf Unit

The Printf Unit will send formatted text strings to the operator's

console during the boot procedure.

1
1

1 - 53 -

1
#1500-15-031.02.0

II 3.3.10.1.4.21.1 Inputs

II The following inputs are used by the Printf Unit:

Format_String - This input consists of a null terminated
string that is used to format the output produced by
this unit. A '%' character in this string is treated
specially. The '%' character indicates to this unit
that the following character indicates a data type that
is to be printed from the next next item to be
formatted. The following special characters may follow
a

x, x, X - Print argument as a 32 bit hexadecimal
value.

d, D, u - Print argument as a 32 bit decimal
value.

- Print null terminated string pointed to
by argument.

- Print 8 bit character representation of
argument.

- Print a '%' character.

This input is passed as the address of the format string
to the Printf Unit.

2) Items_To_pe_Tormatted - This input consists of the data
that is to be formatted.

3) TXCS - This input contains the Console Transmitter
Control Status Register, and is used to examine the
status of the console transmitter.

1
1
1
1
1

1
1
1

1
1

1)

- 54 -

1
1

1

1

1
1

#1500-15-031.02.0

3.3.10.1.4.21.2 Outputs

The following outputs are produced by the Printf Unit:

1) Formatted Message - This output is the formatted version
of the message inputs. It is sent to the operator
console one character at a time.

2) TXCS - This output is written to the Console Transmitter
Control Status Register during the process of character
transmission.

3) TXDB - This output is written to the Console Transmitter
Data Buffer Register, and contains the bytes of the data
that is to be sent to the console.

3.3.10.1.4.21.3 Local Data

The following local data is defined for the Printf Unit:

1) Output_Buffer This local data item is an array of 100
bytes that is used to hold the string to be displayed
after it has been formatted.

2) Save_TXCS - This local data item is used to save the
value of TXCS during transmission of characters to the
console.

3) Timeout - This local data item is used for a timeout
counter while checking TXCS.

1
1
1 - 55 -

1
#1500-15-031.02.0

I 3.3.10.1.4.21.4 Processing

sprintf(Output_Buffer, Format_String, Items_To_Be_Formated)
Move 30000 to Timeout
For each character N in Output_Buffer

While TXCS_RDY bit of Processor Register TXCS is clear
Decrement Timeout
If Timeout is less than or equal to 0

Exit Loop
Endif

Endwhile
If character N of Output_Buffer is a NULL character

Exit Loop
Endif
Move Processor Register TXCS to Save_TXCS
Clear Processor Register TXCS
Move character N of Output_Buffer to Processor Register TXDB
If character N of Output_Buffer is a <LF>

Call Printf("\r")
Endif
Move 30000 to Timeout
While TXCS_RDY bit of Processor Register TXCS is clear

Decrement Timeout
If Timeout is less than or equal to 0

Exit Loop
Endif

Endwhile

11 Move Save_TXCS to Processor Register TXCS Endfor
Return

1

1
1
1
1

1

1

1

1
1

#1500-15-031.02.0

3.3.10.1.4.21.5 Limitations

Only 10 format items cari be specified with each call to this unit, and

the maximum length of the final formatted string must be less than 100

characters.

3.3.10.1.4.22 Read_Dir Unit

1
The Read_Dir Unit reads the directory for diskettes 0 and 1 from

diskette O. This directory is used by the File_Open Unit to determine

file location and other information for the files that are on the

diskettes.

3.3.10.1.4.22.1 Inputs

The following inputs are defined for the Read_Dir Unit:

1) Diskette - This input is read from diskette 0 starting
at block 16. This input contains the directory
information for both diskettes 0 and 1.

1
1

- 57 -

1
1

1
1
1

1

1
#1500-15-031.02.0

3.3.10.1.4.22.2 Outputs

The following outputs are produced by the Read_Dir Unit:

1) Disk_Dir - This output is written to global data and
contains a copy of the diskette directory obtained from
diskette 0.

3.3.10.1.4.22.3 Local Data

No local data is defined for the Read_Dir Unit.

3.3.10.1.4.22.4 Processing

Call ROM routine to read 1K directory at diSk address 8K to
Disk_Dir structure

Return

3.3.10.1.4.22.5 Limitations

1
The maximum size of a directory is predefined to be 1024 bytes and

cannot be exceeded.

3.3.10.1.4.23 Read_process_List Unit

1
The Read_Process_List Unit reads the list of process from a file on

II disk and stores it in the Proc_List area that is declared to be global

II within the Local Boot component.

1
1 - 58 -

1
1

1

1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.23.1 Inputs

The following input is used by the Read_Process_List Unit:

1) Proc_List File - This input is obtained from the
"Proc_List" diskette file and contains a copy of the
names of the files containing the processes (and their
priorities) that the Read_Processes Unit is to load into
the IGW. Each entry is separated by newlines and
process are separated from priorities by spaces.

3.3.10.1.4.23.2 Outputs

The following output is produced by the Read_Process_List Unit:

1) Proc_List - This output is written to the Proc_List
array and contains the list of process that are to be
loaded. The entries in the list are each separated by a
newline character and the end of the list is indicated
by a Null character following a newline character.
Names are separated from priorities by spaces.

3.3.10.1.4.23.3 Local Data

No local data is defined for the Read_Process_List Unit:

3.3.10.1.4.23.4 Processing

If result of File_ppen("Proc_List") is less than 0
Call Panic(error message)

Endif
If result of File_Read(address of Proc_List,
bytes to read ..--1024) is less than or equal to 0

Call Panic(error message)
Endif
Add a Null character to the end of Proc_List
Return

1
1 - 59 -

1

1 3.3.10.1.4.23.5 Limitations

11 The maximum size of the process list input file that this unit will

accept is 1024 bytes.

I 3.3.10.1.4.24 Read_Processes Unit

Il The Read_Processes Unit lods the processes specified in the list

"Proc_List" that has been created by the Read_Process_List Unit. This I involves placing the process text, data, bss, and stack area in

Il physical memory and creating a process page table for them. System

page table entries will also be added to reference the process page

I table.

II 3.3.10.1.4.24.1 Inputs

The following inputs are used by the Read_Processes Unit:

1) Proc_List - This input comes from the global data that
has been loaded by the Read_Process_List Unit. This
input contains a list of file names to load processes
from as well as the priority of each of the processes.

2) Process Images From Diskette - This input consists of
the binary images of the IGW processes that are to be
loaded from diskette.

3) Free_Phys - This input is read from global data and
contains the free physical memory address where the
processes are to be loaded.

4) Free_Virt - This input is read from global data and

- 60 -

#1500-15-031.02.0 #1500-15-031.02.0

1
1
1

1

#1500-15-031.02.0

contains the free virtual memory address where the
processes are to be loaded.

5) Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

II 3.3.10.1.4.24.2 Outputs

The following outputs are produced by the Read_Processes Unit:

1) Process_Header_List - This output is written to the ILA
and contains the initialized process headers including
PCBs for the processes that have been loaded into
memory.

2) Processes In Memory - This output is written to the IGW
main memory and contains the text, data, bss, and stack
areas of the IGW processes that have been loaded.

3) Process Page Tables - This output is written to IGW
memory and contains the process page tables for PO and
P1 address space for each process that is loaded by this
unit.

4) System Page Table - This output is updated with the
system page table entries required to reference the
process page tables that have been creadted by this
unit.

5) Free_phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

6) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

7) ILA - This output contains the value for the number of
processes that have been loaded. This value is written
to the Nproc field of the IGW Link Area.

•

- 61 -

1
1
1

1

1

1

1

1

1

1
1

#1500-15-031.02.0

3.3.10.1.4.24.3 Local Data

The following local data is defined for the Read_Processes Unit:

1) Process_Name_Pointer - This local data item is used to
step through the Proc_List input to obtain each
Current_Process_Entry item for the entries in Proc_List.

2) Current_Process_Entry - This local data item is used to
store the entry in the Proc_List input that contains the
filename and priority of the current process.

3) Current_Process_Name - The local data item is used to
store the naine the current process that is being loaded
from diskette to main memory.

4) Current_process_priority - This piece of data is used to
store the priority of the processes as they are read
from diskette and loaded to the IGW.

5) Exec_Header - This local data item is a structure that
is used to hold the header from the IGW processes that
are loaded from diskette. The fields in this structure
are all 32 bit values and are defined as follows:

A_Magic - This field contains the type of the
executable image that is being loaded. Valid values
for this field are:

OMAGIC (0407) - Old impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A_Text - This field contains the size of the text
segment in bytes.

A_Data - This field contains the size of the
initialized data segment in bytes.

A_Bss This field contains the size of the
uninitialized data segment in bytes.

A_Syms - This field contains the size of the symbol
field.

A_Entry - This field contains of the address of the
entry point of the loaded executable image.

- 62 -

1
1
1
1
1

1

1
1

1
1

1
#1500-15-031.02.0

A_Trsize - This field contains the size of the text
relocation area.

A_Drsize - This field contains the size of the data
relocation area.

6) Proc_Phys - This local data item is used to hold the
physical address of the loaded process text area.

7) Proc_yirt - This local data item is used to hold the
virtual address of the loaded process text ares.

8) Stack_Phys - This local data item is used to hold the
physical address of the stack area.

9) Stack_Virt - This local data item is used to hold the
virtual address of the stack area.

10) PO_Phys - This local data item contains the physical
address of the PO page table.

11) PO_Virt - This local data item contains the virtual
address of the PO page table.

12) PO_Len - This local data item contains the length of the
PO page table.

13) Pl_Phys - This local data item contains the physical
address of the P1 page table.

14) Pl_Virt - This local data item contains the virtual
address of the P1 page table.

15) Pl_Len - This local data item contains the length of the
P1 page table.

16) Nproc - This local data item contains the number of
process that have been loaded into IGW memory.

1
1
1
1 - 63 -

#1500-15-031.02.0

3.3.10.1.4.24.4 Processing

Loop
Move Process_Name_Pointer to Current_Entry
Move address of next newline character in string pointed to
by Process_Namejointer to Process_Name_Pointer

If no newline was found in the string pointed to by
Process_Name_Pointer

Exit Loop
If process header list is full

Process error condition
Endif
Move Null character to character pointed to by
Process_Name_Pointer
Increment Process_Name_pointer
sscanf(Current_Entry, "%s %d", Current_Process_Name,
address of Current_Process_Priority)

If result of File_Open(Current_Process_Name) is less than 0
Call Panic(error message)

Endif
If result of File_Read(address of Exec_Header,
size of Exec_Header) isn't equal size of Exec_Header

Call Panic(error message)
Endif
If A_Magic field of Exec_Header is ZMAGIC

If result of File_Seek(Offset m 1024) is less than 0 .
Call Panic(error message)

Endif
Else if A_Magic field of Exec_Header isn't one of °MAGIC or NMAGIC

Call Panic(error message)
Endif
If result of File_Read(Free_Phys,
A_Text field of Exec_Header A_Data field of Exec_Header)
isn't equal (A_Text field of Exec_Header A_Data field of
Exec_Header)

Call Panic(error message)
Endif
Move Free_Phys to Proc_Phys
Move 0 to Proc Virt
Add A_Text field of Exec_Header to Free_Phys
Add A_Data field of Exec_Header to Free_Phys
For each address in bss area

Clear memory referenced by Free_Phys
Increment Eree_Phys

Endfor
Adjust Free_Phys to point to page boundary if required
Move Free_phys to Stack_Phys
Move stack virtual address to Stack_Virt

#1500 - 15-031.02.0

For Counter equals 1 to PROC_KERN_STACK_SIZE + PROC_USER_STACK_SIZE
Clear memory referenced by Free_Phys
Increment Free_Phys

End for
Advance Free_virt to start of next page if necessary
Move Free_Phys to PO_Phys
Move Free_Virt to PO_Virt
For each page in process text, data, and bss areas

Call Add_To_yT(Page_Table = PO_Phys, Proc_Virt,
Proc_Phys)

Add PAGE_SIZE to Proc_Phys
Add PAGE_SIZE to Proc_Virt

Endfor
Add length of PO page table to Free_Phys
Add length of PO page table to Free_Virt
Move P1 PT start physical address to Pl_Phys
Move P1 PT start system virtual address to Pl_yirt
For each page in stack area

Call Add_To_PT(Page_Table = Pl_Phys, Stack'Virt,
Stack_Phys)

Add PAGE_SIZE to Stack_Phys
Add PAGE_SIZE to Stack_yirt

Endfor
Add length of P1 PT to Free_Phys
Add length of P1 PT to Free_Virt
Adjust Free_Phys to next page if necessary
Adjust Free_Virt to next page if necessary
Set Name field of process entry indexed by Nproc in
Process_Header_List to name stored in Current_Process_Name

Set Priority field of process entry indexed by Nproc in
Process_Header_List to priority stored in
Current_Process_Priority
Set PCB_Address field of process entry indexed by Nproc in
Process_Header_List to the physical address of the hardware PCB
Initialize kernel and user stack pointer in PCB
Initialize Processor_Status_Longword in PCB
Move PO_Virt to Program_Base_Register in the hardware PCB
Move PO_Len to Program_Length_Register in the hardware PCB
Move Pl_Virt to Control_Base_Register in hardware PCB
Hove Pl_Len to Control_Length_Register in hardware PCB
For each page N in process page tables PO and P1

Call Add_To_PT(Page_Table = Sys_PT,
Virt_addr = PO_Virt,
Phys_addr = PO_Phys)

Add PAGE_SIZE to PO_Phys
Add PAGE_SIZE to Pl_Virt

Endfor
Increment Nproc

Endloop

- 65 -

#1500-15-031.02.0
1
1

Move Nproc to Nproc field of ILA
Return

3.3.10.1.4.24.5 Limitations

The unit Read_process_List must be called prior to this unit.

3.3.10.1.4.25 Reboot Unit

The Reboot Unit causes the IGW to perform a reboot.

3.3.10.1.4.25.1 Inputs

No inputs are defined for the Reboot Unit.

3.3.10.1.4.25.2 Outputs

The following output is produced by the Reboot Unit:

1) MicroVAX II Console Program Mailbox - This output is
loaded with the value RB_REBOOT to cause the MicroVAX to
perform a reboot.

I 3.3.10.1.4.25.3 Local Data

No local data is defined for the Reboot Unit.

3.3.10.1.4.25.4 Processing

I Set MicroVAX II Console Program Mailbox to RB_REBOOT
Halt Processor

3.3.10.1.4.25.5 Limitations

No limitations are defined for this unit.

I 3.3.10.1.4.26 Relocate Unit

II The Relocate Unit copies the software for the entire Sec_Boot TLC from

the beginning of memory to the memory location RELOC. After this

I relocation control is transferred to the Main Unit of the Sec_Boot

1 TLC.

#1500 - 15-031.02.0 #1500 - 15-031.02.0

- 67 -

1
1
1
1
1
1
1
1

1
1
1

1
1

#1500-15-031.02.0

3.3.10.1.4.26.1 Inputs

The following input is used by the Relocate Unit:

1) Original Sec_Boot Program Image - This input is the
image in memory of the secondary boot program before
relocation.

3.3.10.1.4.26.2 Outputs

The following output is produced by the Relocate Unit:

1) Relocated Sec_Boot Program Image - This output is a copy
of the original Sec_Boot program that has been relocated
to location RELOC in memory.

3.3.10.1.4.26.3 Local Data

No local data is defined for the Relocate Unit.

3.3.10.1.4.26.4 Processing

Move relocation address RELOC to stack pointer
For memory locations from the end of the data area to the
beginning of the relocation area

Clear memory location
Endfor
Copy Sec_Boot image to relocation address RELOC
Transfer control to main() Unit in relocated image

1
- 68 -

1
1
1
1
1

1

II 3.3.10.1.4.26.5 Limitations

No limitations are defined for the Relocate Unit.

3.3.10.1.4.27 Reserve_SPT Unit

The Reserve_SPT Unit reserves a predefineed number of pages following

the SCB to contain the system page table. This is accomplished by

setting the System Base Register (SBR) and System Length Register

(SLR) to indicate the start and length of the system page table.

3.3.10.1.4.27.1 Inputs

The following inputs are defined for the Reserve_SPT Unit:

1) Freephys - This input is read from global data and
contains the free physical memory address where the
system page table is placed.

1
1
1

#1500-15-031.02.0 #1500-15-031.02.0

1 - 69 -

1
1

1
1
1
1
1
1
1
1

#1500-15-031.02.0

3.3.10.1.4.27.2 Outputs

The following outputs are produced by the Reserve_SPT Unit:

1) SBR - This output is written to the System Base
Register, and contains the base address of the system
page table (SPT_BASE).

2) SLR - This output is written to the System Length
Register, and contains the length of the system page
table in long words (SPT_LENGTH / 4).

3) Freephys - This output is written to global data and
contains the updated address of the next free physical
memory address.

4) Sys_PT - This output is written to global data and
contains the physical address of the system page table.

3.3.10.1.4.27.3 Local Data

No local data is defined for the Reserve_SPT Unit.

3.3.10.1.4.27.4 Processing

Move Freephys to Sys_pT
Move Sys_pT to processor register SBR
Move SPT_LENGTH to processor register SLR
Add SPT_LENGTH * 4 to Free_phys
Return

1
1
1
1
1
1 - 70 -

1

1

1
#1500 - 15 - 031.02.0

1

II 3.3.10.1.4.27.5 Limitations

1 This unit must be called immediately after the Load_SCB unit.

I 3.3.10.1.4.28 Size_Memory Unit

1
The Size_Memory Unit counts up the number of bytes of physical memory

I in the IGW.

II 8.3.10.1.4.28.1 Inputs

1
The following inputs are used by the Size_Memory Unit:

1) PFN_Map_Addr - This input is found at 0x48 (hex) plus
the address stored in register R11 by the boot ROMs.
This input contains the starting address of the PFN map.

2) PFN_Map_Size - This inputs is found at 0 x44 (hex) plus
the address stored in register Rll by the boot ROMs.
This input contains the size of the PFN map.

1
1
1
1

- 71 -

1
1
1
1
1
1
1

1
1

1
#1500-15-031.02.0

3.3.10.1.4.28.2 Outputs

The following output is produced by the Size_Memory Unit:

Memory_Size - This output is written to the ILA to
indicate the number of bytes of memory that is in the
IGW.

3.3.10.1.4.28.3 Local Data

The following local data is defined for the Size_Memory Unit:

1) Good Page_Counter - This data item is used to count the
numbe-r of good pages of memory in the IGW.

2) PFN_Pointer - This data item is a pointer to the current
byte that is being examined in the PFN map.

3) PFN_Counter - This data item is used to count through
the PFN map while looking for good pages.

3.3.10.1.4.28.4 Processing

Clear Good_page_Counter
Move PFN_Map_Addr to PFN_Pointer
Move PFN_Map_Size to PFN_Counter
While byte pointed to by PFN_Pointer equals Oxff (hex) and
PFN_Counter is greater than 0

Add 8 to Good_page_Counter
Increment PFN_Pointer
Decrement PFN_Counter

Endwhile
Move 512 * Good_Page_Counter to Memory_Size field in ILA
Return

1
1
1
1

- 72 -

111
#1500-15-031.02.0

I 3.3.10.1.4.28.5 Limitations

I The number , of pages of memory is calculated in units of 8 pages at a

time. ,

I

I 3.3.10.1.4.29 Start_ERTE Unit

I The Start_ERTE Unit transfers control from the Sec_poot TLC to the

ERTE TLC.

1 3.3.10.1.4.29.1 Inputs

II The following inputs are.required buy the Start_ERTE Unit:

1) Free_phys - The starting physical address of the free
memory area. This input is obtained from global data.

2) Free_Virt - The starting virtual address of the free
memory area. This input is obtained from global data.

3) Istack_Virt - The system virtual address of the top of
the interrupt stack.

- 73 -

1
1
1
1
1

#1500-15-031.02.0

1 3.3.10.1.4.29.2 Outputs

The following outputs are defined for the Start_ERTE Unit.

1) PO_PT - This output is written to the free memory area
and contains the page table entry for the instruction
that transfers control to ERTE.

2) POBR - This output is written'to the PO Base Register
and contains the base address of the PO page table used
to switch to virtual addressing mode.

3) POLR - This output is written to the PO Length Register
and contains the length of the PO page table used to
switch to virtual addressing mode.

4) ISP - This output is written to the interrupt stack
pointer and contains the starting address of the
interrupt stack.

I 3.3.10.1.4.29.3 Local Data

No local data is defined for the Start_ERTE Unit.

3.3.10.1.4.29.4 Processing

I Move Istack_Virt to ISP
Move Free_Virt - (physical address of LABEL_1 shifted right by 9

I bit positions) to POBR
Move (physical address of LABEL _1 shifted right by 9 bit
positions) + 1 to POLR

Call Add_To_PT(Page_Table = Free_Phys - (physical address of I

LABEL _1 shifted right by 9 bit positions),
Virtjddr = Address of LABEL_1,
Phys_Addr = Address of LABEL_1)

I Call Add_To_PT(Page_Table = Free_Phys - (physical address of
LABEL 1 shifted right by 9 bit positions),
Virtjddr = Address of LABEL_1 + 512,
Phys_Addr = Address of LABEL _1 + 512)

Clear Translate Buffer Invalid-ate All Register (TIBA)
Move 1 to Map Enable Register (MAPEN)

LABEL_1:
Transfer control to virtual address of start of ERTE

1
- 74 -

1
1
1
1
1

1

3.3.10.1.4.29.5 Limitations

II No limitations are defined for this unit.

II 3.3.10.2 IGW Net Load Component

1
This component provides the Net Load boot operations for the IGW. The

II component sends requests for software to be downloaded to a known

cooperating host on the Ethernet, and then receives and installs the

I software. The IGW software is loaded into IGW memory, and the IXIB

II software is loaded onto the IXIB board.

1 3.3.10.2.1 Net Load Component Architecture

II The IGW Net Load Component is composed of the following units (Figure

3- 1 1) :

1) Calc_Mem_Size - This unit calculates the amount of
IGW memory (in bytes).

2) Check_Dgram - This unit checks a received datagram to
ensure it is from the correct host and contains no
errors.

3) Check_IP - This unit checks the IP header of the
received datagram for errors.

4) Check_UDP - This unit checks the UDP header of the
received datagram for errors.

5) Chk_Sum - This unit adds a value to a ones complement
check sum.

#1500-15-031.02.0 #150 0- 15- 0 31.02.0

- 75 -

#1500-15-031.02.0

+ +
1 IGW Net Load 1 _ , I LLC I
+ + +

1
+ 4' + 4- +

I I I I
+ + + + + + + ----.- + + + + +

I Calc ._ Mem Size I 1 Check Dgram I 1 Check IF 1 1 Check UDF I _ _ _
+ + + + +

._
+ + +

+ + + +
I I I I

+----+----+ + + + + + + + + +
I Chk Sum 1 I Copy_Dgram 1 1 Create_Dgram I 1 Create_IP_Hdr 1 ._
+ ++ ++ ++ +

I I I I
+ + ++ + ++ + ++ + 4-

1 Create UDP Hdr I 1 Download Dgram 1 I mit Ether I I Install Ixib 1 _ _ _ _
+ ++ ++ ++ +

+ + + + +
I I I I I

+ + + +--+--.-+ + + + + -+ + + + +
I Install SW _ I I Main 1 1 Print Msg I 1 Rcv Data I 1 Rev Dgram 1 _ _
+ + + + + + + + + +

+ + + +
I I I I

II 1 Reboot 1 1 Relocate I 1 Send D I I Send Start msg I
+---+----+ + + + + + + + + +

gram
+ ++ ++ ++ +

Figure 3-11

- 76 -

#1500-15-031.02.0

6) Copy_Dgram - This unit copies a the data of a
datagram to IGW memory.

7) Create_Dgram - This unit creates a datagram to
contain an outgoing message.

8) Create_IP_Hdr - This unit creates the IP header for
an outgoing datagram.

9) Create_UDP_Hdr - This unit creates the UDP header for
an outgoing datagram.

10) Download_Dgram - This unit downloads the data portion
of a datagram to the IXIB board.

11) Init_Ether - This unit initializes the Ethernet
hardware for receive and transmit operation without
interrupts.

12) Install_Ixib - This unit controls the receiving and
downloading of IXIB software from the cooperating
host.

13) Install_SW - This unit controls the receiving and
loading of IGW software.

14) Main - This unit is the starting unit of the
component.

15) Print_Msg - This unit causes an error message to be
displayed on the operator's console.

16) Rcv_Data - This unit begins and controls the process
of requesting for software to be downloaded, and then
receiving the software.

17) Rcv_Dgram - This unit receives a datagram from the
Ethernet device.

18) Reboot - This unit causes the IGW to reboot when a
boot failure is detected.

19) Relocate - This unit relocates the Net Load component
to high memory in the IGW.

20) Send_Dgram - This unit controls the Ethernet hardware
to send a datagram to the cooperating host.

1

1

1
1

1
1
1
1
1
1
1
1
1

#1500-15-031.02.0

21) Send_Start_Msg - This unit prepares a message to be
sent to the cooperating host.

3.3.10.2.2 Global Data

The following constants are defined as global data within this
TLC:

1) ZERO (0) - A constant to represent a null pointer
(zero address).

2) SEND_IGW (1) - This constant represents the code used
when requesting the cooperating host to download IGW
software.

3) SEND_IXIB (2) - This constant represents the code
used when requesting the cooperating host to download
IGW software.

4) VALID_ADDRESS (8000 hex) - This constant is used to
mark the address of an Ethernet BDL as valid (See the
DEQNA User's Guide).

5) INITIALIZED (8000 hex) - This constant is used to
mark an Ethernet BDL as initialized (See the DEQNA
User's Guide).

6) END_MSG (2000 hex) - This constant is used to mark an
Ethernet BDL as the last for the current packet being
transmitted (See the DEQNA User's Guide).

- 78 -

#1500-15-031.02.0

11

3.3.10.2.3 IGW Net Load LLCs

II No LLCs are defined for the Net Load Component.

I 3.3.10.2.4 IGW Net Load Units

The following sections contain the unit descriptions for all units

II comprising the IGW Net Load Component.

I 3.3.10.2.4.1 Calc_Memory_Size Unit

The Calc_Memory_Size unit calculates the size of IGW memory in bytes.

3.3.10.2.4.1.1 Inputs

The following input is used by the unit:

I

1) Boot_Info_Pointer - This thirty-two bit pointer
references a table of boot information left by the
Boot ROMS of the Micro-VAX.

2) Boot_Info - This is a table of information prepared
by the Micro-VAX boot ROMS which specifies
information useful to the boot procedure. The
information used by this unit is:

1) Page Map - This table is at offset PAGE_MAP
(48 1.7ex) from the start of Boot_Info. The
page map consists of a list of bytes, one for
each set of 8 memory pages (or portion
thereof). Each bit in each byte represents
one page. If the bit is 1, then the page is

- 79 -

1

1

1
1

1

#1500-15-031.02.0

good, otherwise the page is bad.

• 2) Page_Map_Size - The size of Page_Map (in
bytes) is located at offset MAP_SIZE (44 hex)
from the start of Boot_Info.

3.3.10.2.4.1.1 Outputs

1 The following outputs are produced by the unit:

1) Memory_Size - The size in bytes of good memory from
address zero up to, but excluding, the first bad page
as indicated by the page map.

1
3.3.10.2.4.1.3 Local Data

II The following local data is defined for this unit:

1) Page_Map_pointer - This thirty-two bit pointer is
used to step through the page map table.

2) Good_Count - A count of the number of good pages in
the Page_Map.

3.3.10.2.4.1.4 Processing

I Set Good_Count to 0
Set Page_Mappointer to Boot_Info Page_Map start
While (contents of byte referenced by Page_Map_pointer is all ones)

Increment Good_Count by one
Increment Page_Map_pointer by one

Endwhile

I Set Memory_Size to (Good_Count * 8 pages per count * 512 bytes per page)
Return(Memory_Size)

1
1

- 80 -

1
1

1
1
1

1
1
1
1
1

1
#1500-15-031.02.0

3.3.10.2.4.1.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.2 Check_Dgram Unit

The Check_Dgram unit examines a datagram received form the cooperating

host and verifies that it is correct and complete. The unit verifies

the IP and UDP headers , for the received datagram according the the

protocol specification. The unit also ensures that the source and

destination addresses are correct.

3.3.10.2.4.2.1 Inputs

The following inputs are used by the unit:

1) Buffer - This input parameter is a thirty-two bit
pointer to the buffer containing the received
datagram.

1

1
1

- 81 -

II 3.3.10.2.4.2.1 Outputs

The following outputs are produced by the unit:

1) Data_Address - This return parameter is a thirty-two
bit pointer to the address in the Buffer where the
datagram data begins (the byte immediately following
the UDP header). This parameter is returned as zero
if an error is detected in IF or UDP headers.

3.3.10.2.4.2.3 Local Data

The following local data is defined for the unit:

1) UDP_Start - This item is a thirty-two bit pointer to
the start of the UDP header. This item is returned
from the Check UDF unit. The value is set to zero if
the UDP header contains an error.

3.3.10.2.4.2.4 Processing

UDP_Start = Check_IP(Buffer)
If (UDP_Start != ZERO)

II Data_Address = Check_UDP(UDP_Start)
El se

Return(UDP_Start)
II Endif

Return(Data_Address)

#1500-15-031.02.0 #1500-15-031.02.0

- 82 -

1

1
1
1
1
1
1

1

11 3.3.10.2.4.2.5 Limitations

II There are no limitations defined for this unit.

II 3.3.10.2.4.3 Check_IP Unit

1
The Check_IP unit checks an IP datagram header for the datagram

II received.

11 3.3.10.2.4.3.1 Inputs

1
The following input is used by the unit:

1) Buffer - this thirty-two bit pointer parameter is a
pointer to the start of the received datagram.

3.3.10.2.4.3.1 Outputs

The following is output by the unit:

1) UDP_Start - This thirty-two bit return parameter is a
pointer to the start of the UDP header in the
datagram.

- 83 -

#1500 - 15-031.02.0 #1500 - 15-031.02.0

1
1
1

1

1
1

1

1
1

#1500-15-031.02.0

3.3.10.2.4.3.3 Local Data

The following local is defined for the unit:

1) IP_Header - This structure contains the IP Header
required for datagram transmission. It consists of
the following fields:

1) Version - 4 bits contain the IP version
number (4).

2) IHL - 4 bits containing the IP header length
in 32 bit words. This is held constant at 5
for this application because no options are
used.

3) Service_Type - 8 bits containing the type os
service requested from IP. This field is
held at 0, representing routine or normal
service.

4) Total_Length - 16 bits containing the total
length of the datagram, including header and
data. It is the sum of IHL field and the
Data_Size parameter.

5) Time_To_Live - 8 bits which contain the
number of seconds the datagram is allowed to
live before it is declared undeliverable. It
is set to 10 for all transmitted datagrams,
which is more than adequate for the
application.

6) Protocol - 8 bits containing the protocol
number for the datagram. The number is 17
for the IMP protocol.

7) Header_Checksum - 16 bits containing the
checksum for the IP header of the datagram.

8) Source_Address - 32 bits containing the
source address of the datagram. For this
unit, this will be the Internet address of
the IGW.

9) Destination_Address - 32 bits containing the
destination address of the datagram. For
this unit, this will be the Internet address

- 84 -

1
1

- 85 -

1
1

#1500-15-031.02.0

of the cooperating host.

2) Csum - This 16 bit integer is used to accumulate the
header checksum for the datagram header.

3) Error - This 32 bit integer is used to indicate that
an error has been detected.

II 3.3.10.2.4.3.4 Processing

II Set Error to FALSE
If (Version field of IP_Header != 4)

Set Error to TRUE
Endif
If (Identification field of IP_Header != 0)

Set Error to TRUE
Endif

II If (Flags field of IP_Header != 0)
Set Error to TRUE

Endif
II If (Fragment_Offset field of IP_Header != 0)

Set Error to TRUE
Endif
If (Protocol field of IP Header != 17)

Set Error to TRUE
Endif
If (Destination_Address field of IP_Header != Internet address of IGW on
the Ethernet)

Set Error to TRUE
Endif

II If (Source_Address field of IP_Header != Internet address of the
cooperating host)

Set Error to TRUE
Endif II Set Csum to 0
For each 16 bit word in IP_Header

Csum = Chk_Sum(word, Csum)

II
Endfor
If (Csum != 0 and Csum != -1)

Set Error to TRUE
Endif
If (Error = TRUE)

return(0)
II Else

u Retrn(Buffer IHL field of datagram)
Endif

1

1
#1500 - 15-031.02.0

1
II 3.3. 10.2.4.3.5 Limitations

Il There are no limitations defined for this unit.

II 3.3.10.2.4.4 Check_pDP_Hdr Unit

1
The Check_UDP_Hdr unit checks an UDP datagram header for the datagram

II to be transmitted.

II 3.3.10.2.4.4.1 Inputs

1
The following input is used by the unit:

1) UDP_Hdr - This thirty-two bit parameter is a pointer
to the UDP header in the datagram.

2) Buffer - This thirty-two bit parameter is a pointer
to the start of the datagram, which is assumed to be
the start of the IP header.

1 - 86 -

1

1
1

1

1

1
1

3.3.10.2.4.4.1 Outputs

The following is output by the unit:

1) Data_Start - This thirty-two bit return parameter is
a pointer to the the start of the data in the
datagram.

II 3.3.10.2.4.4.3 Local Data

The following local is defined for the unit:

1) UDP_Header - This structure contains the UDP Header
required for datagram transmission. It consists of
the following fields:

1) Source_Port - 16 bits containing the number
of the IGW port number used for this
application. This number is always zero.

2) Destination_Port - 16 bits containing the
number of the port number used by the
cooperating host for this application. This
number is determined by the host
administrator.

3) Length - 16 bits containing the length in
bytes of the UDF datagram, including UDP
header and data.

4) Check_Sum - 16 bits containing the checksum
for the datagrm. The checksum is the ones
complement of the ones complement sum of all
the 16 bit words in the Message, the UDP
header (with the Check_Sum field at zero),
the IP header source and destination
addresses, the IP header protocol field (one
byte with a zero byte prepended to make a 16
bit value), and the IP header total length
field.

2) Csum - This 16 bit integer is used to accumulate the
header checksum for the datagram header.

#1500-15-031.02.0 #1500-15-031.02.0

II 3.3.10.2.4.4.4 Processing

1 - 87 -

#1500-15-031.02.0

Set Csum to , 0
Set Data Start to UDP_Hdr 4. 8
If (Chec Sum field of UDP_Hdr != 0)

Set Check Sum field of UDP Hdr to 0
For each 16 bit word in UDF_Header

Csum = Chk_Sum(word, Csum)
Endfor
For each 16 bit word in Data_Start

Csum = Chk_Sum(word, Csum)
Endfor

II For each 16 bit word in source address field of IP_Hdr
Csum = Chk_Sum(word, Csum)

Endfor
For each 16 bit word in destination address field of IP_Hdr

Csum = Chk_Sum(word, Csum)
Endfor
Csum = Chk_Sum(protocol field of IP_Hdr prepended with a zero
byte, Csum)

Csum = Chk_Sum(Total_Length field of IP_Hdr, Csum)

I Endif

If (Csum != 0 and Csum != -1)
Return(0)

I Else
Return(Data_Start)

Endif

3.3.10.2.4.4.5 Limitations

II There are no limitations defined for this unit.

1

1

1

1 - 88 -

1
1
1

1
1

1

#1500 - 15-031.02.0
1

3.3.10.2.4.5 Chk_Sum Unit

The Chk_Sum unit adds a value to a checksum. The sum is the one' s

complement of the 16 one's complement sum of 16 bit words.

3.3.10.2.4.5.1 Inputs

The following input is used by the unit:

1) Word - This 16 bit input parameter is the 16 bit word
to be added to the checksum.

2) Sum - This 16 bit input parameter is the current
value of the checksum.

3.3.10.2.4.5.1 Outputs

The following output is produced by the unit:

1) New_Sum - This 16 bit return parameter is the new
value of the checksum.

1 - 89 -

1.
1
1

•

1
1

#1500-15-031.02.0

3.3.10.2.4.5.3 Local Data

There is no local data defined for this unit.

3.3.10.2.4.5.4 Processing

Set Sum to the ones complement of Sum
New_Sum = Sum + Word using 16 bit arithmetic
If a carry occurred

Add 1 to New_Sum
Endif
Set New_Sum to the ones complement of New_Sum
Return(New_Sum)

11 3.3.10.2.4.5.5 Limitations

1
There are no limitations defined for this unit.

1
_ 3.3.10.2.4.6 Copy_Dgram Unit

The Copy_Dgram unit copies a datagram received from the cooperating

host into IGW memory.

1

1

1

1

1 - 90 -

1
1

#1500-15-031.02.0

II 3.3.10.2.4.6.1 Inputs

The following input is used by the unit:

1) Dgram - This thirty-two bit parameter is a pointer to
the data portion of the datagram. The datagram
resides in a buffer global to this unit.

2) Page This thirty-two bit integer parameter
indicates which page of IGW physical memory to copy
the datagram into.

I 3.3.10.2.4.6.1 Outputs

The following output is produced by the unit:
II

1) Memory_Page - The IGW physical page of memory
indicated by Page is written with the datagram data.

3.3.10.2.4.6.3 Local Data

II The following local data is defined for this unit

1) Memory_Page_Addr - The data in the datagram is copied
into the IGW physical memory page specified by Page.
The starting address of the memory page is calculated
and stored in this local item.

- 91 -

1
1
1

1
1
1

#1500-15-031.02.0

Il 3.3.10.2.4.6.4 Processing
Calculate Memory_Page_Addr = Page * 512
For each of the 512 bytes in Dgram

Copy byte(i) in Dgram to Memory_Page_Addr + i
Endfor

1
3.3.10.2.4.6.5 Limitations

II
There are no limitations defined for this unit.

II

II 3.3.10.2.4.7 Create_Dgram Unit

II The Create_Dgram unit builds the IP datagram header and the UDP

datagram header for a message to be sent to the cooperating hosts.

II 3.3.10.2.4.7.1 Inputs

II The following input is used by the unit:

1) Message - This thirty-two bit parameter is a pointer
to the message to be sent to the cooperating host.

- 92 -

1

1

1
1
1

1
1

1

1
1
1
1
1
1
1

1
1

1
1

#1500-15-031.02.0

1 3.3.10.2.4.7.1 Outputs

The following are output by the unit:

1) Dgram - This thirty-two bit return parameter is a
pointer to the datagram structure prepared by the
unit.

3.3.10.2.4.7.3 Local Data

The following local data is defined for the unit:

1) Datagram - This item pulls together the headers and
data of the datagram so that they can be referenced
in a single structure. The structure has the
following fields:

1) IF_Hdr - 32 bit pointer to the IP datagram
header.

2) UDP_Hdr - 32 bit pointer to the UDF datagram
header.

3) Dgram_Msg - 32 bit pointer to the datagram
data.

2) Msg_Size - This item is a thirty-two bit integer
containing the size (in bytes) of the message to be
sent. This value is always 8 because the message
consists of two 32 bit words.

- 93 -

1

1

I

I 3.3.10.2.4.7.4 Processing

IP Hdr field of Datagram = Create_IP_Hdr(Msg_Size)
UD -17 Hdr field of Datagram = Create_DDP_Hdr(IP_Hdr field of
Datagram, Message)
Set Dgram_Msg field of Datagram to Message
Set Dgram to the address of Datagram

II Return(Dgram)

II 3.3.10.2.4.7.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.8 Create_Ip_Hdr Unit

The Create_Ip_Hdr unit creates an IF datagram header for the datagram

III to be transmitted.

3.3.10.2.4.8.1 Inputs

The following input is used by the unit:

1) Data Size - this thirty-two bit integer parameter is
the 7ength of the datagram data field in bytes.

#1500-15-031.02.0 #1500-15-031.02.0

- 94 -

1
1
1
1
1
1
1

1

1

1
#1500-15-031.02.0

1 3.3.10.2.4.8.1 Outputs

The following is output by the unit:

1) Header - This thirty-two bit return parameter is a
pointer to the the header generated by the unit.

II 3.3.10.2.4.8.3 Local Data

The forlowing local is defined for the unit:

1) IP_Header - This structure contains the IP Header
required for datagram transmission. It consists of
the following fields:

1) Version - 4 bits contain the IP version
number (4).

2) IHL - 4 bits containing the IP header length
in 32 bit words. This is held constant at 5
for this application because no options are
used.

3) Service_Type - 8 bits containing the type os
service requested from IP. This field is
held at 0, representing routine or normaL
service.

4) Total_Length - 16 bits containing the total
length of the datagram, including header and
data. It is the sum of IHL field and the
Data_Size parameter.

5) Time_To_Live - 8 bits which contain the
number of seconds the datagram is allowed to
live before it is declared undeliverable. It
is set to 10 for all transmitted datagrams,
which is more than adequate for the
application.

6) Protocol - 8 bits containing the protocol
number for the datagram. The number is 17

1

- 95 -

1
1

1
1
1

#1500-15-031.02.0

for the UDP protocol.

7) Header_Checksum - 16 bits containing the
checksum for the IP header of the datagram. -

8) Source_Address - 32 bits containing the
source address of the datagram. For this
unit, this will be the Internet address of
the IGW.

9) Destination_Address - 32 bits containing the
destination address of the datagram. For
this unit, this will be the Internet address
of the cooperating host.

2) Csum - This 16 bit unsigned integer is used to
accumulate the header checksum for the datagram
header.

3.3.10.2.4.8.4 Processing

II Set Version field of IP_Header to 4
Set IHL field of IP_Header to 5
Set Service_Type field of IP_Header to 0
Set Total_Length field of IP_Header to IHL + Data_Size
Set Identification field of IP_Header to 0
Set Flags field of IP_Header to 0
Set Fragment_Offset field of IP_Header to 0
Set Time_To_Live field of IP_Header to 10
Set Protocol field of IP_Header to 17

I Set Source_Address field of IP_Header to Internet address of IGW on
the Ethernet
Set Destination Address field of IP Header to Internet address of the
cooperating host

11 Set Header_Checksum field of IP_Header to 0
Set Csum to 0
For each 16 bit word in IP_Header

II Csum = Chk Sum(word, Csum)
Endfor
Set Header_Checksum field of IP_Header to Csum

I Set Header to the address of IP_Header
Return(Header)

1 •

1
1 - 96 -

1

#1500-15-031.02.0

1 3.3.10.2.4.8.5 Limitations

II There are no limitations defined for this unit.

3.3.10.2.4.9 Create_pDP_Hdr Unit

The Create UDP Hdr unit creates an UDP datagram header for the

datagram to be transmitted.

II 3.3.10.2.4.9.1 Inputs

1
The following input is used by the unit:

1) Data_Size - this thirty-two bit integer parameter is
the length of the datagram data field in bytes.

2) Message - This thirty-two bit parameter is a pointer
to the message to be placed in a UDP datagram.

3) IP_Hdr - This thirty-two bit parameter is a pointer
to the IP header for the datagram, which is assumed
to be 5 thirty-two bit words long.

1

1
1

1 - 97 -

#1500-15-031.02.0

II 3.3.10.2.4.9.1 Outputs

The following is output by the unit:

1) Header - This thirty-two bit return parameter is a
pointer to the the header generated by the unit.

11 3.3.10.2.4.9.3 Local Data

II The following local is defined for the unit:

1) UDP_Header - This structure contains the UDP Header
required for datagram transmission. It consists of
the following fields:

1) Source_Port - 16 bits containing the number
of the IGW port nimber used for this
application. This number is always zero.

2) Destination_Port - 16 bits containing the
number of the port number used by the
cooperating host for this application. This
number is determined by the host
administrator.

3) Length - 16 bits containing the length in
bytes of the UDP datagram, including UDP
header and data.

4) Check_Sum - 16 bits containing the checksum
for the datagrm. The checksum is the ones
complement of the ones complement sum of all
the 16 bit words in the Message, the UDP
header (with the Check_Sum field at zero),
the IP header source and destination
addresses, the IP header protocol field (one
byte with a zero byte prepended to make a 16
bit value), and the IP header total length
field.

2) Csum - This 16 bit unsigned integer is used to
accumulate the header checksum for the datagram
header.

- 98 -

1
1
1
1

1

1
1
1 •

1
1

11

11 3.3.10.2.4.9.4 Processing

Set Source Port field of UDP Hdr to 0

11 Set Destination Port field of UDP_Hdr to DEST_PORT Set the Length field of UDP_Hdr to 8 + Data_Size

Set Check Sum field of UDP_Header to 0
II Set Csum --c, 0

For each 16 bit word in UDP_Header
Csum = Chk_Sum(word, Csum)

I Endfor
For each 16 bit word in Message

Csum = Chk_Sum(word, Csum)

I Endfor
For each 16 bit word in source address field of IP_Hdr

Csum = Chk_Sum(word, Csum)
Endfor

II
For each 16 bit word in destination address field of IP_Hdr

Csum = Chk_Sum(word, Csum)
End for

II
Csum = Chk_Sum(protocol field of IP_Hdr prepended with a zero
byte, Csum)

Csum = Chk_Sum(Total_Length field of IP_Hdr, Csum)
i If (Csum = 0)

Set Csum to the one's complement of 0
Il Endif

Set Check_Sum field of IP_Header to Csum

#1500-15-031.02.0 #1500-15-031.02.0

11 Set Header to the address of UDP_Header
Return(Header)

1

1
#1500-15-031.02.0

11

3.3.10.2.4.9.5 Limitations

II The IP header for the datagram must be created before this unit is

called. The IP header length is assumed to be 5 thirty-two bit words

in length.

3.3.10.2.4.10 Download Dgram Unit

1
The Download_Dgram unit copies a datagram received from the II cooperating host into IXIB board.

1) Dgram - This thirty-two bit parameter is a pointer to
the data portion of the datagram. The datagram
resides in a buffer global to this unit.

2) IXIB• FIFO - This item is the IXIB device port used by
the IXIB as a FIFO queue for transferring data to the
IXIB.

- 100 -

3.3.10.2.4.10.1 Inputs

The following input is used by the unit:

1
1

1

1

1
1

1

1

1 3.3.10.2.4.10.2 Outputs

The following output is produced by the unit:

1) IXIB_Data - The IXIB is loaded with the data in the
datagram.

3.3.10.2.4.10.3 Local Data

I No local data is defined for this unit.

II 3.3.10.2.4.10.4 Processing

• For each of the 512 bytes in Dgram
Write the byte in Dgram to IXIB_FIFO register of each IXIB device

111 Endfor

1
3.3.10.2.4.10.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.11 Init_pther Unit

II The Init_Ether unit initializes the DEQNA Ethernet interface for

operation without interrupts.

#1500-15-031.02.0 #1500-15-031.02.0

1
1

1
1 - 101 -

I

I

#1500-15-031.02.0

I 3.3.10.2.4.11.1 Inputs

I No inputs are used by the unit.

3.3.10.2.4.11.1 Outputs

The following outputs are used by the unit:

1) Ether_CSR - This device register is used to provide
control information to the DEQNA interface.

3.3.10.2.4.11.3 Local Data

I The constant SOFTWARE_RESET (2) is the only local data defined for

this unit. This constant is used to create a software reset condition

I on the DEQNA interface board, which will reset the board into the

desired state for use without interrupts.

3.3.10.2.4.11.4 Processing

Write SOFTWARE_RESET to Ether_CSR

- 102 -

1

1
1

1

1 3.3.10.2.4.11.5 Limitations

I There are no limitations defined for this unit.

3.3.10.2.4.12 Install_IXIB Unit

The Install_IXIB unit receives IXIB software from the cooperating host

I and loads the software down to IXIB board.

I 3.3.10.2.4.12.1 Inputs

1
No input is used by the unit.

3.3.10.2.4.12.1 Outputs

The unit produces the following output:

1) IXIB Software - The IXIB Software collected by the
unit is downloaded to the IXIB board.

1
1

1

#1500-15-031.02.0 #1500-15-031.02.0

1 - 103 -

1

1 3.3.10.2.4.12.3 Local Data

The following local data is used by the unit:

1) Count - This thirty-two bit integer contains the
count of received IXIB software datagrams.

2) Time_Out - This item is a thirty-two bit word which
contains the maximum time to wait for the next
datagram to arrive. The value of this item is 30
seconds.

3) Dgram_Buffer - This data item is an area of
contiguous memory available to the unit Rcv_Dgram to
place a received datagram into.

4) Message - This item is a thirty_two bit pointer to
the start of the message contained in the received
datagram. The message consists of:

1) Message_Type - A eight bit byte containing
the type of message. Message types are:

A) DATA (1) - The message contains
download software.

B) END (0) - The message is the last
message of the downloading process.

2) Message_Data - 512 eight bit bytes of
download data.

5) Status - This thirty-two bit word is used to receive
status returned by called units.

- 104 -

#1500-15-031.02.0 #1500-15-031.02.0

1
1

1
1
1

1
1
1
1
1

1
1

1

1 3.3.10.2.4.12.4 Processing

Set Count to zero

Il Loop
Status = Rcv_Dgram(Buffer, Time_Out)
If (Status = ERROR)

return(ERROR)
Endif
Message = Check Dgram(Buffer)
If (Message = ZERO)

return(ERROR)
If (Message_Type field of Message != END)

Increment Count by 1
Call Download_Dgram(Message)

Endif
While (Message_Type field of Message !I.: END)

111 If (Count != End_Count field in Message)
return(ERROR)

Endif

return(NOERROR)

3.3.10.2.4.12.5 Limitations

II There are no limitations defined for this unit.

1
1

1

#1500-15-031.02.0 #1500-15-031.02.0

1

1
1
1
1

11 3.3.10.2.4.13 Install_SW Unit

I The Install_SW unit receives IGW software from the cooperating host

II and loads the software into IGW memory.

II 3.3.10.2.4.13.1 Inputs

II No input is used by the unit.

I 3.3.10.2.4.13.2 Outputs

The unit produces the following output:

1) IGW Software - The IGW Software collected by the unit
is written to the IGW memory.

2) Special_Registers - A global variable containing:

SCBB - SCB base register
ISP - interrupt stock pointer
SBR - system base register
SLR - system length register
ERTE_VIRT - ERTE starting virtual address

3) Free_phys - start at free physical memory after
software is loaded

1
1
1

#1500-15-031.02.0 #1500-15-031.02.0

1 - 106 -

1
1

#1500-15-031.02.0

1
1 3.3.10.2.4.13.3 Local Data

The following local data is used by the unit:

1) Page - This thirty-two bit integer contains the
memory page number that the next datagram of the IGW
software will be written to.

2) Count - This thirty-two bit integer contains the
count of received IGW software datagrams.

3) Time_Out - This item is a thirty-two bit word which
contains the maximum time to wait for the next
datagram to arrive. The value of this item is 30
seconds.

4) Dgram_Buffer - This data item is an area of
contiguous memory into available to the unit
Rcv_Dgram to place a received datagram into.

5) Message - This item is a thirty_two bit pointer to
the start of the message contained in the received
datagram. The message consists of:

1) Message_Type - A thirty-two bit word
containing the type of message. Message
types are:

A) DATA (1) - The message contains
download software.

B) END (0) - The message is the last
message of the dowloading process.

2) Message_Data - 512 eight bit bytes of
download data.

6) Status - This thirty-two bit word is used to receive
status returned by called units.

1
1
1
1

1
1
1

1
1
1

- 107 -

1
1
1
1

• 1
1

1

11 3.3.10.2.4.13.4 Processing

Set Page to zero
Set Count to zero

Loop
Status = Rcv_pgram(Buffer, Time_Out)
If (Status = ERROR)

return(ERROR)
Endif
Message = Check_Dgram(Buffer)
If (Message = ZERO)

return(ERROR)
If (Message_Type field of Message != END)

Increment Count by 1
Call Copy_Data(Message, Page)
If ncrement Page by 1

Endi
While (Message Type field of Message != END)

II If (Count != End_Count field in Message)
return(ERROR)

Endif

I For (each Special_Register field in Message)
Copy the field to the corresponding special register global variable

End for

1
3.3.10.2.4.13.5 Limitations

There are no limitations defined for this unit.

#1500-15-031.02.0 #1500-15-031.02.0

II
 See Free_Phys to Page*PAGE_SIZE

return(NOERROR)

- 108 -

1
1

1) VAX Registers - The unit will copy the values from
the global Special_Registers input to the
corresponding VAX internal registers.

The unit produces the following outputs:

I

11 3.3.10.2.4.14 Main Unit

I The Main unit of the IGW Net Load component is the unit which first

I receives control from- the IGW Boot ROMS. The unit then directs the

process of loading the IGW and IXIB software and data, and then

II trahfers control to the IGW operating software.

II 3.3.10.2.4.14.1 Inputs

II The following input is used by the unit:

1) Boot_Info_Pointer - This input is supplied by the
Micro-VAX boot ROMS in register R11. It is a pointer
to an area of memory where boot information is
stored.

2) Special_Registers - This input is a global table
containing the values for the Micro-VAX internal
registers.

111 3.3.10.2.4.14.2 Outputs

#1500-15-031.02.0 #1500-15-031.02.0

1
1
1
1 - 109 -

#1500 - 15 - 031.02.0

11 3.3.10.2.4.14.3 Local Data

No local data is defined for this unit.

3.3.10.2.4.14.4 Processing

II Call Calc_Memory_Size(Boot_Info_Pointer)
Call Relocate()
Call Receive_Data()

II Copy fields in Special_Registers input to corresponding VAX
internal registers.

Set up a local page table to map the memory containing the "jump

11
to ERTE" instruction into its physical memory location

Set up POBR and POLR internal registers to select the page table
just created.

Set the MAPEN internal register to turn on the VAX memory management. II Jump to the start of the IGW ERTE TLC.

I 3.3.10.2.4.14.5 Limitations

No limitations are defined for this unit

3.3.10.2.4.15 Print_Msg Unit

The Print Msg unit prints the string passed to it as a parameter to be

displayed on the IGW console.

-.110 -

1
1

1
11

#1500-15-031.02.0

1

1 3.3.10.2.4.15.1 Inputs

I The following input is used by the unit:

1) Message - This thirty-two bit parameter is a pointer
to the start of the message to be printed, which is
global to this unit.

2) Transmit_CSR - This input/output device register
contains the status and control information for the
console device transmitter.

1
3.3.10.2.4.15.1 Outputs

E The following are output by this unit:

1) Transmit_Data - This device register is the output
data register for the console device.. Characters of
the message are written to this register to be
displayed on the console.

2) Transmit_CSR - This input/output device register
contains the status and control information for the
console device transmitter. It is written to set up
the transmitter for writing characters to the
console.

- 111 -

1

1
1
1
1

1

1

1 - 112 -

3.3.10.2.4.15.3 Local Data

There is no local data defined for this unit.

1
3.3.10.2.4.15.4 Processing

Write the Transmit_CSR to set up the transmitter for writing
characters without generating interrupts.

II
For each character in Message

Write the character to Transmit_pata
Loop

II

Test Transmit_CSR
While (Transmit_pSR show output is not completed)

Endfor
1

1
3.3.10.2.4.15.5 Limitations

There are no limitations defined for this unit.

3.3.10.2.4.16 Receive_pata Unit

II The Receive_Data unit controls the activities and procedures used to

receive software and data from the cooperating host and to load it

into the IGW memory or the IXIB.

1
1
1
1

#1500-15-031.02.0 #1500-15-031.02.0

1

1

1

1 3.3.10.2.4.16.1 Inputs

I There are no inputs defined for this unit.

3.3.10.2.4.16.1 Outputs

There are no outputs defined for this unit.

11

3.3.10.2.4.16.3 Local Data

Il The following local data is defined for the unit:

1) Status - Returned status from called units.

3.3.10.2.4.16.4 Processing

Call Init_Ethernet()

Status = Send_Message(SEND_IGW)

II
If Status indicates an error occurred

Call Reboot()
Endif

Status = Install_IGW_Software()
If Status indicates an error occurred

Call Reboot()
•Endif

Status = Send Message(SEND_IXIB)

II

If Status indicates an error occurred
Call Reboot()

Endif

II Status = Install_IXIB_Software()
If Status indicates an error occurred

Call Reboot()
Endif

#1500-15-031.02.0 #1500-15-031.02.0

1

1 - 113 -

1

#1500-15-031.02.0

3.3.10.2.4.16.5 Limitations

No limitations are defined for this unit.

3.3.10.2.4.17 Recv_pgram Unit

11 The Recv_pgram unit manipulates the Ethernet hardware to allow the

receipt of an Ethernet packet, which is expected to contain an IP I datagram. The unit implements a time-out so that the attempt to

II receive a datagram can be aborted if no datagram arrives.

1 3.3.10.2.4.17.1 Inputs

II The following input is used by the unit:

1) Buffer_Pointer - This thirty-two bit parameter is a
pointer to the input buffer supplied by the calling
unit. The received datagram will be placed in this
buffer, less the Ethernet header.

2) Time_Out - This thirty-two bit unsigned integer is a
value used to determine how long to wait for an
incoming Ethernet packet before assuming that an
error has occurred or no packet is coming.

3) Ether_CSR - This input is the Control and Status
register of the DEQNA hardware. It supplies status
information when read.

1
1
1

1

- 114 -

1
1
1

1
1
1
1
1

1
#1500-15-031.02.0

1 3.3.10.2.4.17.1 Outputs

The following are output by this unit:

1) Buffer - The received datagram is loaded into the
buffer pointed at by Buffer_Pointer. The datagram
does not include the Ethernet header.

2) Status - This thirty-two bit return parameter
indicates whether a successful receive operation
occurred. If the receive was successful, then
NOERROR is returned, otherwise ERROR is returned.

3) Ether_CSR - This input is the Control and Status
register of the DEQNA hardware. Control information
is passed to the register when it is written.

4) Rcv_BDL_Reg - This DEQNA device register is used to
load the address of the Receive_BDL into the DEQNA to
begin a receive operation.

3.3.10.2.4.17.3 Local Data

The following local data is defined for this unit:

1) Receive_pDL - This global item is a list of Buffer
Descriptors for DEQNA receive operations. The buffer
descriptors are predefined by the Init_Ether unit.

- 115 -

1
1

#1500-15-031.02.0

1 3.3.10.2.4.17.4 Processing

Write Bufferjointer into Address_Bits field of second BDL in
Receive_BDL
/* first BDL is for Ethernet header */

Set Status to NOERROR
Write address of Receive_BDL into Rcv_BDL_Reg
/* This starts DEQNA receive operation */

Clear Ether_CSR Receive Interrupt Request bit

Loop
If (Ether_CSR Receive Interrupt Request bit is set)

Examine Receive Status Word 1 of second BDL in Receive_BDL
If the ERROR/USED bit of the status word is set

Set Status to ERROR
Endif Eise

11 Decrement Time_Out
If (Time_Out = 0)
Endi et Status to ERROR

Endif
While (Timer := 0)

I

Return(Status)

3.3.10.2.4.17.5 Limitations

I

I This unit does not attempt to distinguish between types of receive

errors. Also, the Time_Out defines a loop count which specifies how

II many times a loop must be executed before a time-out occurs. Because

the time-out should be several seconds, this value must be very

large.

1
- 116 -

#1500-15-031.02.0

I 3.3.10.2.4.18 Reboot Unit

I The Reboot unit issues a message to the console, and then causes the

IGW to reboot itself.

3.3.10.2.4.18.1 Inputs

I There are no inputs to the unit.

3.3.10.2.4.16.1 Outputs

There are no outputs from the unit.

3.3.10.2.4.18.3 Local Data

I There is no local data defined for the unit.

1) Halt_Control - This item is a thirty-two bit pointer
to the 16 bit Q-Bus register used to direct the
operation of the Micro-VAX processor when a Halt
occurs. The value of this item is 200B801C(Hex)

2) REBOOT This constant defines the value of
Halt_Control to reboot the machine when a halt
occurs. The value is 23(Hex).

- 117 -

1

1

I 3.3.10.2.4.18.4 Processing

Call Print Msg("Boot Failure - IGW Rebooting")

II Write REB0(7T into the Halt_pontrol
Execute a Halt instruction

II 3.3.10.2.4.18.5 Limitations

1
There are no limitations defined for this unit.

3.3.10.2.4.19 Relocate Unit

I The Relocate unit copies the IGW Net Load boot program from low memory

to the top of memory.

3.3.10.2.4.19.1 Inputs

II The following input is used by the unit:

1) Memory_Size - This 32 bit integer contains the amount
of memory in bytes available in the IGW.

1

1

#1500-15-031.02.0 #1500-15-031.02.0

1

- 118 -

1
1

1

1

1 3.3.10.2.4.19.1 Outputs

The following output is produced by the unit:

1) Relocated_Code - The program code is relocated to the
top of IGW memory.

3.3.10.2.4.19.3 Local Data

II The following local data is defined for the unit:

1) Program_Start - This 32 bit item is the address of
the start of the program in memory. This item is
determined from a Start symbol defined at compile
time.

2) Program_End - This 32 bit item is the address of the
end of the program in memory. This item is
determined from a End symbol defined at compile
time.

3) Program_Size - This 32 bit item is the size of the
program in memory.

II 3.3.10.2.4.19.4 Processing

I Set Program_Start to address of Start symbol
Set Program_End to address of End symbol
Set Program_Size to Program_End - Program_Start

I Copy program code from its current start to Memory_Size - Program_Size
Transfer control to rqlocated code

#1500-15-031.02.0 #1500-15-031.02.0

1
1

II 3.3.10.2.4.19.5 Limitections

I There are no limitations defined for this unit.

3.3.10.2.4.20 Send_Dgram Unit

The Send_Dgram unit takes a datagram with IP and UDP headers and adds

I an Ethernet header, and then outputs the datagram to the the

Ethernet.

I 3.3.10.2.4.20.1 Inputs

I The following input is used by the unit:

1) Transmit_BDL - This global item is a list of Buffer
Descriptors for DEQNA receive operations. The buffer
descriptors are predefined by the Init_Ether unit.

2) Ether_CSR - This input is the Control and Status
register of the DEQNA hardware. It supplies status
information when read.

- 120 -

#1500-15-031.02.0 #1500-15-031.02.0

1

II 3.3.10.2.4.20.1 Outputs

The following outputs are produced by the unit:

1) Status - This thirty-two bit return parameter
indicates whether a successful transmit operation
occurred. If the transmit was successful, then
NOERROR is returned, otherwise ERROR is returned.

2) Ether_CSR - This output is the Control and Status
register of the DEQNA hardware. Control information
is passed to the device when it is written.

3) Xmit_BDL_Reg - This DEQNA device register is used to
load the address of the Transmit_BDL into the DEQNA
to begin a transmit operation.

II 3.3.10.2.4.20.3 Local Data

I The following local data is defined for the unit:

1) Ether_Hdr - This item consists of seven 16 bit words
used to hold the header for the received ethernet
packet. The item contains the following fields:

1) Dest_Addr - 48 bit (three 16 bit words)
Ethernet address for the destination of the
packet.

2) Src_Addr - 48 bit (three 16 bit words)
Ethernet address for the source of the
packet.

3) Ether Type - 16 bit word containing the type
of Ethernet packet. This field is used to
identify the higher level protocol carried by
the packet.

1

#1500-15-031.02.0 #1500-15-031.02.0

1
1
1
1

1 - 121 -

1

1
1

1

1
1
1
1

1
1
1

1
1

#1500-15-031.02.0

3.3.10.2.4.20.4 Processing

Set the Dest_Addr field of Ether_Hdr to the destination Ethernet
address of the cooperating host

Set the Src_Adar field of Ether_Hdr to the Ethernet address of the
IGW

Set the Ether_Type field of Ether_Hdr to IP_TYPE

Set the Address_Bits of the first BDL in Transmit_BDL to the address
of Ether Hdr

Set the Aidr_Descriptor_Bits of first BDL in Transmit_BDL to
VALID_ADDRESS
Set the Buffer_Length field of the first BDL in Transmit_BDL to 7
/* seven 16 bit words in Ethernet header */

Set the Flag field of first BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the second BDL in Transmit_BDL to the
IP_Hdr field of Dgram

Set the Addr_Descriptor_Bits of second BDL in Transmit_BDL to
VALID_ADDRESS
Set the Buffer Length field of the second BDL in Transmit_BDL to 10
/* ten 16 bit words in IP header */
Set the Flag field of second BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the third BDL in Transmit_BDL to the
UDP_Hdr field of Dgram
Set the Addr_Descriptor_Bits of third BDL in Transmit_BDL to
VALID_ADDRESS
Set the Buffer_Length field of the third BDL in Transmit_BDL to 4
/* four 16 bit words in UDP header */

Set the Flag field of third BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the fourth BDL in Trensmit_BDL to the
Dgram_Msg field of Dgram
Set the Addr_Descriptor Bits of fourth BDL in Transmit_BDL to the
logical or of VALID_ADURESS and END_MSG.

Set the Buffer_Length field of the fourth BDL in Transmit_BDL to 4
/* four 16 bit words of datagram data */

Set the Flag field of fourth BDL in Transmit_BDL to INITIALIZED

Set the Address_Bits of the fifth BDL in Transmit_BDL to the zero
Set the Addr_Descriptor_Bits of fifth BDL in Transmit_BDL to
INVALID_ADDRESS

Set the Buffer_Length field of the fifth BDL in Transmit BDL to 0
Set the Flag field of fifth BDL in Transmit_BDL to INITIKLIZED

Write 0 to Ether_CSR

I Write address of Transmit_BDL to Xmit_BDL_Reg

1 - 122 -

#1500-15-031.02.0

/* starts transmission */

Set Csr to Ether_CSR
While (Csr does not indicate transmission completed)

Set Csr to Ether_CSR
Endwhile

3.3.10.2.4.20.5 Limitations

3.3.10.2.4.21 Send_Message

II The Send_Message unit prepares a message to the cooperating host which

requests that the host begin dowloading either IGW software or IXIB

software to the IGW.

I 3.3.10.2.4.21.1 Inputs

I The following input is used by the unit:

1) Message_Type This thirty-two bit parameter
specifies the message sent to the host. The value of
the item is either SEND_IGW or SEND_IXIB (these
values are defined under global data).

- 123 -

#1500-15-031.02.0

II 3.3.10.2.4.21.1 Outputs

There are no outputs from this unit.

3.3.10.2.4.21.3 Local Data

I The unit uses the following local data:

1) Message - This item is the message sent to the
cooperating host requesting the host begin
downloading. The message consists of two thirty-two
bit words. The first word indicates the type of data
to be returned:

1) IGW_SW - IGW software

2) IXIB_SW - IXIB software

The second word contains the size of the IGW memory
in bytes. This word is only applicable for IGW_SW
messages.

2) Dgram - This item is a thirty-two bit pointer to a
datagram structure created and returned by the
Create_Dgram unit.

3) Status - This thirty_two bit item contains the status
returned by the Send_Dgram unit.

- 124 -

1 Host Net Load 1
LLC

+ + +
1

+ +---+ +
1 I I

+ + ++ + ++ + +
1 Add To PT 1 1 Create Int Stack 1 1 Define Free Memory 1 _ _ _ _ _ + + + + +

_
+

+ 4- + +
I 1 I 1

+ + + + + ++ + ++ + +
1 Define _ ILA 1 1 Get Flags 1 1 Link IO Pages 1 1 Load ACT Tbl 1 _ _ _ + + +

_
+ + + + +

+ + + +
I I I 1

+ + + + + + +----+ -I- 1
1 Load _ _ _ ERTE 1 1 Load GW Tbl 1 1 Load IGW 1 1 _ + + + + + + 1

I I 1 1 + + + + + ++ + ++-----+ +
1 Load _ IXIB 1 1 Load NB Tbl 1 1 Load Net Tbl 1 1 Load Reg 1 _ _ + + + + +

_
++ +

+ + + +
1 I I I

+--.---- + + +--+---+ + + + + + +
1 Load _ SCB 1 1 Main 1 1 Read Process List 1 1 Read_processes I ____ _ + + + + + ++ +

I I
+ + ++ + +

1 Reserve SPT 1 1 Write ILA 1 _
— + ++ 1+

1

1

1

1
1

3.3.10.2.4.21.4 Processing

Copy Message Type to Message
Dgram = Create Dgram(Message)
Status = Send Sgram(Dgram)
If (Status != —NOERROR)

return(ERROR)
Endif

11 3.3.10.2.4.21.5 Limitations

1
There are no limitations defined for this unit.

3.3.10.3 Host Net Load LLC

I The Host Net Load ,LLC contains the host software that is responsible

for the loading of the IGW system from a remote host. To load the IGW

1 software, an image of the IGW memory containing the IGW software is

built in a file, and the file is then sent to the IGW.

3.3.10.3.1 Host Net Load LLC Architecture

I The Host Net Load LLC consists of the following units as shown in

Figure 3-12:

1) Load_SCB Unit - This unit loads the System Control Block
to the IGW_Image file.

2) Reserve_SPT Unit - This unit reserves the space required
to contain the System Page Table.

3) Define_ILA Unit - This unit defines the structure of the

#1500-15-031.02.0 #1500-15-031.02.0

1

1 - 125 -

#1500 - 15-031.02.0

1

1
1

1
1

1
1
1
1
1

1
#1500-15-031.02.0

1

IGW Link Area. This area contains information and
pointers to information that are used globally by the
IGW. As part of the ILA definition procedure SPT
entries are added to the System Page Table to reference
the pages of'the IGW Link Area.

4) Load_ERTE Unit - This unit is responsible for the
1,oading of the ERTE from diskette into IGW memory.

5) Read_Process_List Unit - This unit reads the list of
processes that are to be loaded on the IGW.

6) Read_Processes Unit - This unit makes use of the list
obtained by the Read_Process_List Unit to read in the
IGW processes from disk. This unit also sets up PPT and
SPT entries, allocates stack space (by the use of the
Allocate_Stacks Unit), and updates the PCB in
Process_List.

7) Load_ACT_Tb1 Unit - This unit reads the X.121 Address
Configuration Table from disk and loads it into system
virtual address space. The IGW Link Area is updated to
reference the system virtual address of the loaded
table.

8) Load_Net_Tb1 Unit - This unit reads the X.121 Address
Configuration Table from disk and loads it into system
virtual address space. The IGW Link Area is updated to
reference the system virtual address of the loaded
table.

9) Load_GW_Tb1 Unit - This unit reads the Gateway Table
from disk and loads it into system virtual address
space. The IGW Link Area is updated to reference the
system virtual address of the loaded table.

10) Load_NB_Tb1 Unit - This unit reads the Neighbor Table
from disk and loads it into system virtual address
space. The IGW Link Area is updated to reference the
system virtual address of the loaded table.

11) Create_Int_Stack Unit - This unit allocates space for
the interrupt stack. System page table entries are
added and hardware registers are set during the
allocation procedure.

12) Define_Free_Mem Unit - This unit sets up the system page
table entries required to reference the free memory of
the IGW.

1 - 127 -

1

1
1

1

1

1

1
#1500-15-031.02.0

13) Link_IO_Pages Unit - This unit sets up a pointer in the
IGW Link Area to reference the area of memory that is
designated for I/O.

14) Load_IXIB Unit - This unit reads the IXIB software from
disk and send it to the IGW.

15) Add_To_PT Unit - This unit is called to add an entry to
a page table.

16) Get_Flags - This unit converts a flags string into a bit
pattern.

17) Main - This unit is responsible for listening for load
requests and calling the appropriate units to load the
software.

18) Load IGW - This units is called to load the IGW software
to the requesting IGW.

19) Load_IXIB - This units is called to load the IXIB
software to the requesting IGW.

20) Write ILA - This unit is called to write the ILA to the
IGW_Iiii-age file.

21) Load_Reg - This unit is called to load register values
required by the IGW into a buffer to be sent to the IGW.

I 3.3.10.3.2 Global Data

This section describes the format and contents of the data which is

I defined to be globally used between the units contained within the

Host Net Load procedure.

1) Free_Fhys - This global data item consists of a 32 bit
integer containing the physical address of the start of
memory that has not been allocated yet.

2) Free_yirt - This global data item consists of a 32 bit
integer containing the virtual address of the start of
memory that has not been allocated yet.

1

1 - 128 -

1
1

1
1

1
1

1
1
1

#1500-15-031.02.0

1
Istack_Phys - < rhis global data item consists of a 32 bit
integer containing the physical address of the top of
the interrupt stack.

4) Istack_yirt - This global data item consists of a 32 bit
integer containing the virtual address of the top of the
interrupt stack.

5) Proc_List - This global data item consists of an array
of 256 bytes containing the names of the files that
processes are to be loaded from. Each file name is
separated by a newline character and the list is
terminated by a null character.

6) Sys_FT - This global data item consists of a 32 bit
integer containing the starting physical address of the
system page table.

7) Sys_Len - This global data item contains the length of
the system page table.

8) ILA - This global data item contains a memory image of
the IGW ILA.

9) ILA_Phys - This global data item contains the physical
address of the start of the IGW ILA.

10) ERTE_Virt - This global data item contains the virtual
address of the start of ERTE.

11) Table_Phys - This global data item contains the physical
address of the table area.

12) Table_yirt - This global data item contains the virtual
address of the table area.

13) IGW_Image - This global data item consists of a file
used to access the IGW_Image file.

1
1

1 - 129 -

#1500-15-031.02.0

II 3.3.10.3.4 Host Net Load Units

II The following subsections contain the unit descriptions for the units

comprising the Host Net Load LLC.

II 3.3.10.3.4.1 Add_TopT Unit

II The Add_To_PT Unit adds page table entries to either the system or the

process page tables.

I 3.3.10.3.4.1.1 Inputs

II The following inputs are used by the Add_To_PT Unit:

1) PT_Addr - This input contains the starting physical
address of the page table that page table entries are to
be added to.

2) Phys_Addr - This input contains the physical address of
the page that is to be added to the page table.

3) Virt_Addr - This input contains the virtual address of
the page that is to be added to the page table.

- 130 -

1

1
1
1
1
1

1

1

3.3.10.3.4.1.2 Outputs

The following outputs are produced by the Add_To_PT Unit:

1) Page Tables - This output is written to the page table
specified by the PT_Addr input. The format of these
page tables is given in the global data section.

3.3.10.3.4.1.3 Local Data

I The following local data is defined for the Add_To_PT Unit:

1) Cur_Pos - This local data item is used to store the
current position in the IGW_Image file.

2) Cur_PTE - This local data item hold a page table entry
as described in the VAX Architecture Handbook.

II 3.3.10.3.4.1.4 Processing

Cur Pos = tell(IGW_Image)

I Call lseek(IGW_Image, VPN of Virt_Addr PT_Addr, L_SET)
Move PFN of Phys_Addr to PFN of Cur_PTE
Set PT_Valid field in Cur_Pte
Move PT_UW to PT_Prot field in Cur_PTE

II Call write(IGW Image, Address of Cur PTE, 4)
Call lseek(IGW:Image, Cur_Pos, L_SET7
Return

1
1
1
1
1
1

#1500-15-031.02.0 #1500-15-031.02.0

1 - 131 -

1
1

1
1

1
1
1
1

1

II 3.3.10.3.4.1.5 Limitations

This unit performs no checks for incorrect virtual addresses, so

specifying invalid virtual address could result in page table entries

to be written to incorrect locations outside of the page table in

physical memory.

3.3.10.3.4.2 Create_Int_Stack Unit

The Create_Int_Stack Unit Reserves an area in physical memory

following the global tables to contain the interrupt stack.

3.3.10.3.4.2.1 Inputs

The following inputs are defined for the Create_Int_Stack Unit:

1) Freephys - This input is read from global data and
contains the free physical memory address where the
interrupt stack is located.

2) Free_Virt - This input is read from global data and
contains the free virtual memory address where the
interrupt stack is placed.

1

1

#1500-15-031.02.0 #1500-15-031.02.0

1 - 132 -

#1500-15-031.02.0

II 3.3.10.3.4.2.2 Outputs

The following outputs are produced by the Create_Int_Stack Unit:

1) Free Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

2) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

3) Istack_Virt - This output is written to global data and
contains the virtual address of the initial interrupt
stack pointer.

3.3.10.3.4.2.3 Local Data

No local data is defined for the Create_Int_Stack Unit.

3.3.10.3.4.2.4 Processing

Add ISTACK_SIZE to Free_PhYs
Add ISTACK_SIZE to Free_yirt
Adjust Free_Phys and Free_Virt to point to next page boundary if

IInecessary
Move Free_yirt to Istack_Virt
Return

- 133 -

1
1
1

#1500-15-031.02.0

II 3.3.10.3.4.2.5 Limitations

II No limitations are defined for the Create_Int_Stack Unit.

11 3.3.10.3.4.3 Define Free Hem Unit

1
The Define_Free_Mem Unit defines the system virtual addresses for the

II area in physical memory from the beginning of the tables to the end of

the free memory.

II 3.3.10.3.4.3.1 Inputs

II The following inputs are defined for the Define_Free_Mem Unit:

1) Table_Phys - This input is read from global data and
contains the physical memory address where table storage
begins.

2) Table_yirt - This input is read from global data and
contains the virtual memory address where table storage
begins.

3) Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

1
1
1

1

1

1 - 134 -

1

II 3.3.10.3.4.3.2 Outputs

The following outputs are produced by the Define_gree_blem Unit:

1) SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

2) Free_Virt - This output is written to global data and
contains the updated value for the next free address in
physical memory.

3) ILA - This output is written to the ILA area and is
updated with the virtual address for the start of the
IGW free memory.

II 3.3.10.3.4.3.3 Local Data

No local data is defined for the Define_Free_Mem Unit.

3.3.10.3.4.3.4 Processing

II Move Free_yirt to ILA entry for free virtual memory
For each page N starting at Table_Phys to end of physical memory

Call Add_To_PT(Page_Table = Sys PT,
Virt_Addr = N * PAGE_SIZE +
Phys_Addr = N * PAGE_SIZE + Table_Phys)

Endfor
Return

#1500-15-031.02.0 #1500-15-031.02.0

- 135 -

#1500-15-031.02.0

11 3.3.10.3.4.3.5 Limitations

I No limitations are defined for the Define_Free_Mem Unit

3.3.10.3.4.4 Define_ILA Unit

The Define_ILA Unit Reserves an area in physical memory following the

II system page table to contain the IGW Link Area. System page table

entries are created for this area referencing system virtual addresses

II starting at the beginning of the system virtual address space. The

II ILA data structure isn't written to the IGW_Image disk file until the

rest of IGW_Image is completed.

3.3.10.3.4.4.1 Inputs

The following inputs are defined for the Define_ILA Unit:

II

2) Free_Virt - This input is read from global data and
contains the free virtual memory address where the ILA
area is to be placed.

3) Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

1) Free_Phys - This input is read from global data and
contains the free physical memory address where the ILA
area is to be placed.

- 136 -

1
1
1
1
1

1

II 3.3.10.3.4.4.2 Outputs

The following outputs are produced by the Define_ILA Unit:

1) SPT - This output is written to the system page table by
the use of the Add_To_PT Unit, and contains new entries
which are added to the system page table.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_yirt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output updates the IGW Link Area data
structure with any fields of that area that are to be
initialized.

II 3.3.10.3.4.4.3 Local Data

No local data is defined for the Define_ILA Unit.

3.3.10.3.4.4.4 Processing

111 Move Free_Phys to ILA_Phys
For each page in ILA

Call Add_To_PT(Page_Table = Sys_PT, Free_Virt, Freephys)
Add PAGE_SIZE to Freejhys
Add PAGE_SIZE to Free_Virt

Endfor II Move Sys_pt to SPT_Address field of ILA
Return

1
1

1

#1500-15-031.02.0 #1500-15-031.02.0

1 - 137 -

1

1

1
1

1

1
#1500-15-031.02.0

3.3.10.3.4.4.5 Limitations

No limitations are defined for the Define_ILA Unit.

3.3.10.3.4.5 Getjlags Unit

The Get_Flags Unit is used to convert a character string containing

flags to a bit representation of those flags.

3.3.10.3.4.5.1 Inputs

The following inputs are required by the Get_Flags Unit:

1) Set_Flags - This input consists of a character string
containing the flags that are set.

2) All_Flags - This input consists of a character string
containing all possible flags given in the correct bit
order.

1
1
1
1
1 - 138 -

#1500-15-031.02.0

II 3.3.10.3.4.5.2 Outputs

The following outputs are produced by the Get_Flags Unit:

1) Flags - This output consists of the flags given in
Set_Flags stored in bit positions.

3.3.10.3.4.5.3 Local Data

No local data is defined for the Get_Flags Unit.

3.3.10.3.4.5.4 Processing

Clear Flags
For each Flag from 0 to N - 1 in All Flags

If Flag N is in Set-Flags
Bitwise or (I left shifted by N) into Flags

Endif
Endfor
Return Flags

3.3.10.3.4.5.5 Limitations

No limitations are defined for this unit.

3.3.10.3.4.6 Link_IO_Pages Unit

The Link_IO_Pages Unit is used to create system virtual address for

the IO pages and store the starting virtual address of the IO pages in

the ILA.

- 139 -

1

1
1

1
1
1

1

#1500-15-031.02.0

3.3.10.3.4.6.1 Inputs

No inputs are defined for the Link_IO_Pages Unit.

1) Free_Virt - This input is read from global data and
contains the next free virtual address.

2) Sys_Pt - This input is read from global data and
contains the address of the system page table.

3.3.10.3.4.6.2Outputs

The following outputs are produced by the Link_IO_Pages Unit:

1) SPT - This output is written to the system page table by
the use of the Add_To_FT Unit, and contains new entries
which are added to the system page table.

2) ILA - This output is written to the IGW link area data
structure to indicate the starting system virtual
address of the IO pages.

3.3.10.3.4.6.3 Local Data

No local data is defined for the Link_IO_Pages Unit.

3.3.10.3.4.6.4 Processing

Move Free_Virt to Link_IO field of ILA
For each page N in the TO Space

Call Add_To_PT(Page_Table = Sys_PT,
Virt_Addr = N * PAGE_SIZE + Free Virt,
Phys_Addr = N * PAGE_SIZE + IO_pFlYS)

Endfor
Return

1
1

- 140 -

1

1

1

1
1
1
1
1

1
#1500-15-031.02.0

3.3.10.3.4.6.5 Limitations

No limitations are defined for the Link_I°_Pages Unit.

3.3.10.3.4.7 Load_ACT_Tb1 Unit

The Load_ACT Tbl Unit loads the X.25 Address Configuration Table from

disk to the system virtual address space following the process page

tables. The ILA is updated to indicate the correct address of this

table.

3.3.10.3.4.7.1 Inputs

The following inputs are used by the Load_ACT_Tb1 Unit:

1) X.25_ACT - This input is read from the file "x.25_act"
and contains a copy of the X.25 Address Configuration
Table. This file contains the following fields:

X121 - This field contains the X.121 address (1 to 15
bytes) of the table entry.

Inet - This field contains the IP address in dot
notation for the table entry.

Size - This field contains the maximum size for a
packet for the host described in the table entry.

Flags - This field contains flags describing a table
entry.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where the X.25
Address Configuration Table is to be placed.

• - 141 -

#1500-15-031.02.0

3) Free_Virt - This input is read from global data and
contains the free virtual memory address where the X.25
Address Configuration Table is to be placed.

3.3.10.3,4.7.2 Outputs

II The following outputs are produced by the Load_ACT_Tb1 Unit:

1) ACT_Table - This output is written to the global data
area of the IGW_Image file as new entries are added to
the X.25 Address Configuration Table. This table
contains the following fields:

I
ACT_Inet - This field consists of a 32 bit value
indicating the IF address for the current entry.

ACT_Size - This field consists of a 16 bit value
indicating the maximum size of a packet for the
current entry.

ACT_Flags - This field consists of a 32 bit value
containing the following flags.

ACT_X121 - This field consists of a 16 byte character
string the X.121 address of the current entry.

REQ_REV (0x01)
ACC_REV (0x02)
REJ_IN (0x04)
REJ OUT (0x08)
IXIB (0x10)

- Request reverse charging.
- Accept reverse charging.
- Reject incoming calls.
- Reject outgoing calls.
- Remote is an IXIB.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area data
structure and is updated with the address of the X.25
Address Configuration Table.

- 142 -

1
1
1

1

1

1
1
1

1

1
1

#1500-15-031.02.0

II 3.3.10.3.4.7.3 Local Data

The following local data is defined for the Load_ACT_Tb1 Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the x.25_act
file.

2) Host - This data item is used to hold the dot notation
format of the Ir addresses as they are read from the
x.25_act file.

3) Flags - This data item is a character string used to
hold the flags field of each entry that is read from
x.25_act file.

4) ACT_Ftr - This data item is used to step through
ACT_Table while adding table entries.

5) Fp - This local data item is a pointer to a FILE
structure referencing the x.25_act file.

6) ACT_Table - This local data item is an image of the
ACT_Table output.

3.3.10.3.4.7.4 Processing

Fp = fopen("x.25_act", "r")
If Fp is null

Call printf(Error message)
Call exit(-1)

Endif
Clear ACT_Table
.Move Free_Virt to ACT_Table pointer in ILA
Move start address of ACT_Table to ACT_Ptr
While more data in x:- 25_act file

Call fgets(Input_Buffer, bytes to read = 100, Fp)
If first character in Input_Buffer is a '#'

Continue next loop iteration
Endif
If ACT_Table is full

Exit loop
Endif
If result of sscan'f(Input_Buffer, "%s %s %d %s",
Act X121 field of ACT_Table entry pointed to by ACT_Ftr,
Hos 1F,
Address of ACT_Size field of ACT_Table entry pointed to by ACT_FTR,

- 143 -

1

#1500-15-031.02.0

1

1

1

Flags) is -1
Exit Loop

Endif
ACT_Inet field of ACT_Table entry pointed to by ACT_Ptr =
Inet_Addr(Host)

If ACT Inet field of ACT_Table = -1
Ca -1-1 Printf(error message indicating invalid ACT Entry)
Continue next loop iteration

Endif
ACT_Flags field of ACT Table entry pointed to by ACT_Ptr =
bitwise or between ACF_VALID and Get Flags(Flags, "RAIOX")

Set ACT_Ptr to point to next entry in --ACT_Table
Endwhile
Call fclose(Fp)
Call write(IGW Image, Address of ACT_Table, size of ACT_Table)
Add size of ACT-Table to Free Phys
Add size of ACT_Table to FreeiVirt
Return

3.3.10.3.4.7.5 Limitations

No limitations are defined for the Load_ACT_Tb1 Unit.

3.3.10.3.4.8 Load_ERTE Unit

The Load_ERTE Unit is responsible for the loading of the ERTE

executable image from a file to the IGW memory image file. For each

page of ERTE that is loaded a system page table entry is created.

1 - 144 -

1

1
1

1
1
1
1

1
#1500-15-031.02.0

3.3.10.3.4.8.1 Inputs

The following inputs are defined for the Load_ERTE Unit:

1) ERTE - This input is read from the file "ERTE" contains
the header, text, data, and bss areas of the ERTE
executable.

2) Free_phys - This input is read from global data and
contains the free physical memory address where ERTE is
to be placed.

3) Free_yirt - This input is read from global data and
contains the free virtual memory address where ERTE is
to be placed.

4) Sys_Pt - This input is read from global data and
contains the physical address of the systeM page table
that has been defined by the Reserve_SPT Unit.

3.3.10.3.4.8.2 Outputs

The following outputs are produced by the Load_ERTE Unit:

1) ERTE Memory Image - This output is written to the disk
IGW memory image file and contains the text, data, and
bss areas for ERTE.

2) SPT - This output is written to the system page table by
calling the Add_To_pT Unit, and contains the new page
table entries for the memory occupied by ERTE.

3) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

4) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

1
- 145 -

1
1
1
1
1

1
1

1
1
1

1
1

#1500-15-031.02.0

3.3.10.3.4.8.3 Local Data

The following local data is defined for the Load_ERTE Unit:

1) Exec_Header - This local data item is a structure that
is used to hold the header from the ERTE executable that
is loaded from diskette. The fields in this structure
are all 32 bit values and are defined as follows:

A_Magic - This field contains the type of the
executable image that is being loaded. Valid values
for this field are:

°MAGIC (0407) - Old impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A_Text - This field contains the size of the text
segment in bytes.

A_Data - This field contains the size of the
initialized data segment in bytes.

A_Bss This field contains the size of the
uninitialized data segment in bytes.

A_Syms - This field contains the size of the symbol
field.

A_Entry - This field contains of the address of the
entry point of the loaded executable image.

A_Trsize - This field contains the size of the text
relocation area.

A_prsize - This field contains the size of the data
relocation area.

2) Buffer - This local data item consists of an array of
512 bytes used to read ERTE from disk.

3) Bytes_Read - This local data item contains the number of
bytes that have been read in result of a read call.

4) Byte_Count - This local data item is used to hold a
count for the purpose of reading the ERTE image from
disk.

1 - 146 -

1
1
1

1

1
1
1

1

1

1
#1500-15-031.02.0

3.3.10.3.4.8.4 Processing

Fd = open("ERTE", 0)
If Fd is less than 0

Call printf(Error message)
Call exit(-1)

Endif
Bytes_Read = read(Fd, Address of Exec_Header,
Size of Exec_Header)

If Bytes_Read not equal size of Exec_Header
Call printf(Error message)
Call exit(-1)

Endif
If A_Magic field of Exec_Header is ZMAGIC

If result of lseek(Fd, Offset = 1024, L_SET) is less than 0
Call printf(Error message)
Call exit(-1)

Endif
Bise if A_Magic field of Exec_Header isn't one of OMAGIC or NMAGIC ZMAGIC

Call printf(Error message)
Call exit(-1)

Endif
Move A_Text field of Exec Header to Byte Count
Add A_Data field of Execiieader to Byte_Eount
While Byte_Count is greater than 0

Subtract 512 from Byte_Count
If Byte count less than 0

If Byte_Count equals -512
Exit loop

Endif
Bytes_Read = read(Fd, Buffer, 512 4- Byte_Count)
Call write(IGW_Image, Buffer, Bytes_Read)

Else
Bytes_Read = read(Fd, Buffer, 512)
If Bytes_Read isn't 512

Call printf(Error message)
Call exit(-1)

Endif
Call write(IGW_Image, Buffer, Bytes_Read)

Endif
Endwhile
Call close(Fd)
Move Free_Virt to ERTE_yirt
For each page N in ERTE text, data, and bss areas

Call Add_To_PT(Page_Table = Sys_PT, Free_Virt, Free_Phys)
Free_Phys PAGE_SIZE
Free Virt 4.= PAGE_SIZE

Endfor

1 - 147 -

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

1
#1500-15-031.02.0

Call lseek(IGW_Image, Free_phys, L_SET)
Return

3.3.10.3.4.8.5 Limitations

No limitations are defined for the Load_ERTE Unit.

3.3.10.3.4.9 Load_GW_Tb1 Unit

The Load_GW_Tb1 Unit loads the Gateway Table from the file "gateway"

into the IGW_Image file. The gateway file is used to define the

various gateways that the IGW may access in addition to those

determined through EGP.

3.3.10.3.4.9.1 Inputs

The following input is used by the Load_GW_Tb1 Unit:

1) Gateway - This input is read from the file "gateway"
contains a copy of the Gateway Table. This file
contains the following fields:

Dst_Net - The destination network that is accessed by
a gateway table entry.

GW_Addr - The address of the gateway to route packets
for the specified destination network.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP
network address mask for the destination network.

Hop - The number of gateways that must be crossed to
reach the destination.

1 - 148 -

1
1
1

1
1
1
1
1
1

1
1

#1500-15-031.02.0

Flags - This field consists of user definable flags.
Valid flags are:

E - Report route via EGP.
G - Gatewayed host. Delete route if the gateway

goes down.
R - Attempt to reroute datagrams if the gateway

goes down.

2) Free_phys - This input is read from global data and
contains the free virtual memory address where the
gateway table is placed.

3) Free_Virt - This input is read from global data and
contains the free virtual memory address where the
gateway table is to be placed.

3.3.10.3.4.9.2 Outputs

The following outputs are produced by the Load_GW_Tb1 Unit:

1) GW_Table - This output is written to the global data
area as new entries are added to the Gateway Table.
This table contains the following fields:

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area data
structure and is updated with the address of the gateway
table.

1
1
1
1
1 - 149 -

1
1
1
1
1
1

1

1

1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.3.4.9.3 Local Data

The following local data is defined for the Load_3W_Tb1 Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the gateway
file.

2) GW_Addr - This data item consists of a character string
used to hold the IP address for each entry that is read
from the gateway file.

3) Dst_Net - This data item consists of a character string
used to hold the destination network number for each
entry that is read from the gateway file.

4) Flags - This data item is used to hold the flags field
of each entry that is read from the gateway file.

5) GW_Ptr - This data item is used to step through GW_Table
while adding table entries.

6) Fp - This local data item is a pointer to the FILE
structure describing the gateway file.

7) GW_Table - This local data item is a memory image of the
GW_Table output.

3.3.10.3.4.9.4 Processing

Fp = fopen("gateway", 0)
If Fp is Null

Call printf(Error message)
Call exit(-1)

Endif
Clear entries in GW_Table
Move Free_yirt to GW Table pointer in ILA
Move start address of GW_Table to GW_Ptr
While more data in gateway file

Call fgets(Input_Buffer, bytes to read = 100, Fp)
If first character in input buffer is a TIP

Continue next loop iteration
Endif
If GW_Table is full

Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s %x %d %s %s",

1 - 150 -

1

1
1

1
1
1
1
1
1

1
#1500-15-031.02.0

Dst_Net, GW Addr,
Address of G-W_Mask field of GW_Table entry pointed to by GW_Ptr,
Address of GW_Hop field of GW_Table entry pointed to by GW_Ptr,
Flags) is -1

Exit Loop
Endif
GW_Dst_Net field of GW_Table entry pointed to by GW_Ptr =
Inet_Addr(Dst_Net)

If GW_Dst_pet field of GW_Table entry pointed to by GW_Ptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif
GW_GW_Addr field of GW_Table entry pointed to by GW_ytr =
Inet Addr(GW_Addr)

If GWIGW_Addr field of GW_Table entry pointed to by GW_Iptr = -1
Call Printf(error message indicating invalid gateway entry)
Continue next loop iteration

Endif
Move index of entry in Net Table with same network address as the
network portion of the gateway address to GW Number
field of GW_Table entry pointed to by GW_Ptr

GW_Flags field of GW Table entry pointed to by GW Ptr =
bitwise or between G-W_VALID flag and Get Flags(Frags, "EGR")

Set GW_Ptr to point to next entry in GW_TZL-ble
Endwhile
Call fclose(Fp)
Add size of GW_Table to Free Phys
Add size of GW_Table to FreelVirt
Call write(IGW_Image, Address of GW_Table, Size of GW_Table)
Return

3.3.10.3.4.9.5 Limitations

The unit Load_Net_Table must be executed before this unit.

1
1
1
1 - 151 -

1

1
1
1

#1500-15-031.02.0

3.3.10.3.4.10 Load_IGW Unit

The Load_IGW Unit is called to load the IGW software to the IGW that

is requesting to be loaded.

3.3.10.3.4.10.1 Inputs

The following inputs are defined for the IGW_Load Unit:

1) IGW Image - This input is a file that contains the
created IGW memory image.

2) S - This input contains the file descriptor to reference
the socket that is used to access the remote IGW.

3) Remote - This input consists of a structure of type
sockaddr_in and contains the address information for the
IGW that is requesting the IGW software.

II 3.3.10.3.4.10.2 Outputs

The following outputs are produced by the Load_IGW Unit:

2) S - This item contains the file descriptor to reference
the socket that is used to send data to the remote IGW.

1

1

- 152 -

1
1
1

1

1

1

1
1
1
1

#1500-15-031.02.0

3.3.10.3.4.10.3 Local Data

The following local data is defined for the Main Unit.

1) Bytes_Read - This local data item contains the number of
bytes have been read from the IGW_Image file on a read
request.

2) Buffer - This local data item is a buffer of 513
characters used in reading from IGW_Image and sending
data to the IGW.

3.3.10.3.4.10.4 Processing

IGW Image = open("IGW Image", (read only, create, truncate))
If -i-GW_Image is less . han 0

Call printf(Error message)
Call exit(-1)

Endif
Call Load_SCBC)
Call Reserve SPT()
Call Define ÎLA()
Call Load El7TE()
Call ReadiProcess_List()
Call Read Processes()
Move Free—Phys to Table_Phys
Move Freelyirt to Table_Virt
Call Load ACT_Tb1()
Call LoadDiet_Tb1()
Call Load_GW Tbl()
Call Load NBITb1()
Reserve space for unloaded tables
Call Create Int_Stack()
Call Define:Free_Mem()
Call Link_IO Pages()
Call Write In()
Call lseek(IGW_Image, OL, L_SET)
Move NL_DATA to first byte in Buffer
Loop

Bytes_Read = read(IGW_Image, Address of second byte in
Buffer, 512)

If Bytes_Read is less than or equal 0
Exit Loop

Endif
Call sendto(S, Buffer, 513, 0, Address of Remote, Size of
Remote)

Endloop

- 153 -

1
1

1

1
1
1
1
1

1

1
1

#1500-15-031.02.0

Call close(IGW_Image)
Move NLEND to first byte of Buffer
Call Load Reg(Address of second byte in Buffer)
Call send rt-o(S, Buffer, 513, 0, Address of Remote, Size of Remote)
Return

3.3.10.3.4.10.5 Limitations

1 No limitations are defined for this unit.

The Load_IXIB Unit is called to load the IXIB software to the IGW that

is requesting the IXIB software to be loaded.

3.3.10.3.4.11.1 Inputs

The following inputs are defined for the IGW_Load Unit:

1) IXIB.S28 - This input is obtained from the disk file
"IXIB.S28" and contains the IXIB software in Motorola
S-Record format.

2) S - This input contains the file descriptor to reference
the socket that is used to access the remote IGW.

3) Remote - This input consists of a structure of type
sockaddr_in and contains the address information for the
IGW that is requesting the IXIB software.

1

3.3.10.3.4.11 Load IXIB Unit 3.3.10.3.4.11 Load_IXIB Unit

- 154 -

1
1
1
1
1

1
1

1

1
#1500-15-031.02.0

3.3.10.3.4.11.2 Outputs

The following outputs are produced by the Load_IGW Unit:

2) S - This item contains the file descriptor to reference
the socket that is used to send data to the remote IGW.

3.3.10.3.4.11.3 Local Data

The following local data is defined for the Main Unit.

1) Bytes_Read - This local data item contains the number • f
bytes have been read from the IGW_Image file on a read
request.

2) Buffer - This local data item is a buffer of 513
characters used in reading from IGW_Image and sending
data to the IGW.

3) IXIB_S28 - This local data item contains the file
descriptor to access the IXIB.S28 input.

3.3.10.3.4.11.4 Processing

IXIB S28 = open("IXIB.S28", 0)
If IIIB S28 is less than 0

—Call printf(Error message)
Call exit(-1)

Endif
Move NL_DATA to first byte in Buffer
Loop

Bytes_Read = read(IXIB_S28, Address of second byte in
Buffer, 512)

If Bytes_Read is less than or equal 0
Exit Loop

Endif
Call sendto(S, Buffer, 513, 0, Address of Remote, Size of
Remote)

Endloop
Call close(IXIB S28)
Move NL_END to f-irst byte of Buffer
Call sendto(S, Buffer, 513, 0, Address of Remote, Size of Remote)

II Return

1 - 155 -

1
1
1
1
1
1
1

1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.3.4.11.5 Limitations

No limitations are defined for this unit.

3.3.10.3.4.12 Load_NB_Tb1 Unit

The Load_NB_Tb1 Unit loads the EGP Neighbour Table from the file

"neighbour" into the IGW_Image file. The neighbour file is used to

define information describing the gateways that the IGW can

communicate via EGP with.

3.3.10.3.4.12.1 Inputs

1
The following inputs are used by the Load_NB_Tb1 Unit:

1) Neighbour - This input is read from the disk file
"neighbor" and contains a copy of the EGP Neighbour
Table. This file contains the following fields:

IP_ADDR - The Internet address of the EGP neighbour
gateway in dot notation.

Flags - This field consists of user definable flags.
Valid flags are:

M - Gateway is a main neighbour.
0 - Gateway is an alternate neighbour.
S - Gateway is a stub gateway.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where the
neighbour table is to be placed.

3) Free_Virt - This input is read from global data and
contains the free virtual memory address where the

1 - 156 -

1
1

1
1

1

1
1
1
1
1

1
1

#1500-15-031.02.0

neighbour table is to be placed.

3.3.10.3.4.12.2 Outputs

The . following outputs are produced by the Load_NB_Tb1 Unit:

1) NB_Table - This output is written to the global table
area of physical memory as new entries are added to the
Neighbour Table.

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area and is
updated with the address of the neighbour table.

3.3.10.3.4.12.3 Local Data

I The following local data is defined for the Load_NB_Tb1 Unit:

1) Input_Buffer - This data consists of a buffer of 100
bytes that is used to read records from the neighbour
file.

2) IP_Addr - This data item consists of a character string
used to hold the IP address of each EGP neighbour
gateway entry that is read from the neighbour file.

3) Flags - This data item is used to hold the flags field
of each entry that is read from the neighbour file.

4) NB_Ptr - This data item is used to step through NB_Table
while adding table entries.

5) Fp - This local data item contains a pointer to the FILE
structure that references the neighbour file.

6) NB_Table - This local data item contains a memory image
of the NB_Table output.

- 157 -

1
1

1

1
1
1
1
1

1
1

#1500-15-031.02.0

3.3.10.3.4.12.4 Processing

Fp = fopen("neighbour", "r")
If Fp is null

Call printf(Error message)
Call exit(-1)

Endif
Clear entries in NB_Table
Move Free_yirt to NB_Table pointer in ILA
Move start address of NB_Table to NB_Ptr
While more data in neighbour file

Call fgets(Input_Buffer, bytes to read = 100, Fp)
If first character in input buffer is a '#'

Continue next loop iteration
Endif
If NB_table is full

Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s", IP_Addr, Flags) is -1

Exit Loop
Endif
NB_IP_Addr field of NB_Table entry pointed to by NB_Ptr =
Inet_Addr(IP_Addr)

If NB_IP_Addr field of NB_Table entry pointed to by NB_Ytr = -I
Call Printf(error message indicating invalid neighbour entry)
Continue next loop iteration

Endif
NB_Flags field of NB Table entry pointed to by NB Ptr =
bitwise or between FB_VALID flag and Get_Flags(Frags, "MOS")

Set NB_Ptr to point to next entry in NB_Table
Endwhile
Call fclose(Fp)
Add size of NB_Table to Free Phys
Add size of NB_Table to FreelYirt
Call write(IGW_Image, Address of NB_Table, Size of NB_Table)
Return

1

1
1
1 - 158 -

1

1

1

1

1

#1500 - 15 - 031.02.0

3.3.10.3.4.12.5 Limitations

No limitations are defined for the Load_NB_Tb1 Unit.

3.3.10.3.4.13 Load_pet_Ibl Unit

The Load_Net_Tb1 Unit Loads the Network Table from the file "network"

into the IGW main memory. This file is used to define the network

interface information required for each network that the IGW is

connected to.

3.3.10.3.4.13.1 Inputs

The following inputs are used by the Load_Net_Tb1 Unit:

Network - This input is read from the file "network" and
contains a copy of the Network Table. This file
contains the following fields:

IP_Addr - The local Internet address of the IGW on
the referenced network. This field is a string
containing the IP address in dot notation.

Interface_Id - The interface number of the network
interface represented by this entry. Each interface
is given a number which is used to direct datagrams
to the correct interface for transmission.

Mask - The IP network address mask. This field
consists of a hexadecimal constant specifying the IP
network address mask.

MTU - The maximum transmission unit for IP datagrams.
This value is specified as an integer.

- 159 -

1)

1

1
1

1
1
1

1
1
1

#1500 - 15-031.02.0

Flags - This field consists of one user definable
flag which is "U" indicating that the interface
should be marked as being up.

2) Free_Phys - This input is read from global data and
contains the free physical memory address where the
gateway table is to be placed.

3) Free_yirt - This input is read from global data and
contains the free virtual memory address where the
gateway table is to be placed.

3.3.10.3.4.13.2 Outputs

The following outputs are produced by the Load_Net_Tb1 Unit:

1) Net_Table - This output is written to the global data
area as new entries are added to the Network Table.
This table contains the following fields:

2) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

4) ILA - This output is written to the IGW Link Area data
structure and is updated with the address of the gateway
Table.

1

- 160 -

1
1
1
1
1
1
1
1

1

#1500-15-031.02.0

3.3.10.3.4.13.3 Local Data

The following local data is defined for the Load_Net_Tb1 Unit:

1) Input_puffer - This data consists of a buffer of 100
bytes that is used to read records from the network
file.

2) IP_Addr - This data item is used to hold the IP address
for each entry that is read from the network file.

3) Flags - This data item is used to hold the flags field
of each entry that is read from the network file.

4) Net_Ptr - This data item is used to step through
Net_Table while adding table entries.

5) Fp - This local data item contains a pointer to the FILE
structure that references the network file.

6) Net_Table - This local data item contains a memory image
of the Net _Table Output.

7) Interface_Number - This data item is used to hold the
interface id number of each entry read form the network
file.

8) Mask - This data item is used to hold the address mask
for each entry read from the network file.

9) MTU - This data item is used to hold the network MTU for
each entry read from the network file.

- 161 -

1

1
1

1
1

1

1

#1500-15-031.02.0

3.3.10.3.4.13.4 Processing

Fp = fopen("network", "r")
If Fp is null

Call printf(Error message)
Call exit(-1)

Endif
Clear entries in Net_Table
Move Free_Virt to Net_Table pointer in ILA
Move start address of Net_Table to Net_Ptr
While more data in network file

Call fgets(Input_Buffer, bytes to read = 100, Fp)
If first character in input buffer is a '#'

Continue next loop iteration
Endif
If Net_Table is full

Exit loop
Endif
If result of sscanf(Input_Buffer, "%s %s %x %d %s",
IP_Addr, Interface_Number, Net_Mask, MTU, Flags) is -1

Exit Loop
Endif
Search Net_Table for an entry with Net_IP_Addr field = IP_Addr
If table entry found

Add Interface_Number to the end of the Net_QID_List for the
found entry

Else
Set Net_Ptr to the first empty position in Net_Table
Net IP_Addr field of Net_Table entry pointed to by Net_Ptr =
Ine-t_Addr(IP_Addr)

If Net IP_Addr field Net Table entry pointed to by Net Ptr = -1
Ca -171 Printf(error message indicating invalid netwo7k Entry)
Continue next loop iteration

Endif
Net_Flags field of Net_Table entry pointed to by Net Ptr =
bitwise or between NET VALID and Get Flags(Flags, "F")

Set Net_MTU referenced i7y Net_Ptr to ii-TU
Set Net_Mask referenced by Net Ptr to Mask
Set Current_IF field referenced by Net_Ptr to zero.

Endif
Endwhile
Call fclose(Fp)
Add size of Net_Table to Free_Phys
Add size of Net_Table to Free_Virt
Call write(IGW_Image, Address of Net_Table, size of Net_Table)
Return

- 162 -

1
1
1

1

1
1
1

1

1
1

1
1

#1500-15-031.02.0

3.3.10.3.4.13.5 Limitations

No limitations are defined for the Load_Net_Tb1 Unit.

3.3.10.3.4.14 Load_Reg Unit

The Load_Reg Unit loads a buffer with initial values for processor

registers required by the IGW.

3.3.10.3.4.14.1 Inputs

The following inputs are required by the Load_Reg Unit:

1) Buffer - This input contains the address of the output
Buffer.

3.3.10.3.4.14.2 Outputs

The following outputs are required by the Load_Reg Unit:

1) Buffer - This output consists of an array of 32 bit
values used to define the IGW processor registers. The
entries of this array are referenced as follows:

1) SCBB - This entry holds the system control block
base register.

2) ISP - This entry holds the address of the top of
the system interrupt stack.

3) SBR - This is the base register for the system
page table.

4) SLR - This is the length register for the system
page table.

- 163 -

1
1

1
1

1

1
#1500-15-031.02.0

5) ERTE_VIRT - This is the virtual address of the
ERTE entry point.

I 3.3.10.3.4.14.3 Local Data

No local data is defined for the Load_Reg Unit.

II 3.3.10.3.4.14.4 Processing

Move 0 to SCBB entry in Biffer
Move Istack_Virt to ISP entry in Buffer
Move Sys_PT to SBR entry in Buffer
Move SPT LENGTH to SLR entry in Buffer
Move ERTE_Virt to ERTE_VIRT entry in Buffer

3.3.10.3.4.14.5 Limitations

No limitations are defined for the Load_Reg Unit.

3.3.10.3.4.15 Load_SCB Unit

The Load_SCB Unit loads the System Control Block from a file to the

IGW_Image file.

1

1
1

- 164 -

1

1

1

#1500 - 15-031.02.0

3.3.10.3.4.15.1 Inputs

The following inputs are used by the Load_SCB Unit:

1) SCB Init - This input is read from a file on disk. This
file- contains an image of the System Control Block.

3.3.10.3.4.15.2 Outputs

The following outputs are produced by the Load_SCB Unit:

1) SCB - This output is written to the address specified by
the SCBB processor register (physical address 0), and
contains the System Control Block that has been obtained
from the SCB_Init input.

2) SCBB - This output is written to the System Control
Block Base Register, and contains the physical address
of the SCB.

3) Free_phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

3.3.10.3.4.15.3 Local Data

The following local data is defined for the Load_SCB Unit:

1) Fd - This local data item contains a file descriptor for
the SCB_Init file.

2) Buffer - This local data item is an input buffer for the
system control block, it consists of an array of 512
bytes.

3) Bytes_Read - This local data item is a count for the
number of bytes read by the read function call.

1

1 - 165 -

1

1

11
#1500-15-031.02.0

11

II 3.3.10.3.4.15.4 Processing

Fd = open("SCB Init", 0)
I If Fd is less :É-han 0

Call perror(Error message)
Call exit(-1)

Endif
Bytes_Read = Read(Fd, Buffer, Size of SCB = 512)
If Bytes_Read not equal Size of SCB

Call perror(Error message)

II Call exit(-1)
Endif
Call close(Fd)

II Call write(IGW_Image, Buffer, Bytes_Read)
Move Size of SCB to Free_Phys
Return

3.3.10.3.4.15.5 Limitations

This unit must be called before any unit that allocates IGW physical

memory.

3.3.10.3.4.16 Main Unit

The Main Unit is the first software in the Host_pet_Load LLC. This

II unit is responsible for listening for load requests from an IGW and

II calling the appropriate units to load the requested software.

1

1 - 166 -

1
1
1

1
1
1
1
1

#1500-15-031.02.0

3.3.10.3.4.16.1 Inputs

The following inputs are defined for the Main Unit:

1) IGW - This input is read from a socket consisting of UDP
datagrams sent by an IGW.

3.3.10.3.4.16.2 Outputs

No outputs are defined for the Main Unit

3.3.10.3.4.16.3 Local Data

The following local data is defined for the Main Unit:

1) S - This local data item contains a file descriptor for
the socket used to communicate to the IGW with.

2) Bytes_Read - This local data item is used to hold the
number of bytes read into Buffer.

3) Remote - This local data item is a structure of type
sockaddr_in, and is used to hold the sockaddr in
structure for the IGW.

4) Remote_Len - This local data item holds the length of
Remote.

5) Buffer - This local data item is an array of 8 bytes
used to read UDP packets from the IGW.

6) SP - This local data item is a pointer to a servant
structure describing the IGW server.

1 - 167 -

1

1

#1500-15-031.02.0

3.3.10.3.4.16.4 Processing

SP = getservbyname("igw", "udp")
I Run as daemon in background

S = socket(AF_INET, SOCK_DGRAM, 0)
Clear sin_addr field of Remote
Move s_port field of SP to sin_port field of Remote
Remote_len = sizeof(Remote)
Call bind(S, &Remote, Remote_Len)
Loop

Bytes_Read = recvfrom(S, Buffer, 8, 0, Address of Remote,
Address of Remote Len)

If Bytes_Read isn't 8
Call printf(Error Message)
Continue

Endif
Run as sub-process

Case first integer in Buffer
LOAD_IGW:

Move second integer in Buffer to
Memory_Size

Call Load_IGW(S, Address of
Remote)

LOAD_IXIB:
Call Load_IXIB(S, Address of
Remote)

Otherwise
Call printf(Error message)

Endcase
End sub-process

Endloop

1
1

1
1 - 168 -

1

1
1

1
#1500-15-031.02.0

3.3.10.3.4.16.5 Limitations

No limitations are defined for the Main Unit.

3.3.10.3.4.17 Read_Process_List Unit

The Read_Process_List Unit reads the list of processes from a file on

disk and stores it in the Proc_List area that is declared to be global

within the Host_Net_Load LLC.

3.3.10.3.4.17.1 Inputs

The following input is used by the Read_Process_List Unit:

1) Proc_List File - This input is obtained from the
"Proc_List" file and contains a copy of the names of the
files containing the processes (and their priorities)
that the Host_Net_Load LLC is to load into the IGW.
Each entry is separated by newlines and process are
separated from priorities by spaces.

1
1
1
1

- 169 -

1
1

1
1
1
1
1

1
1

1

1
1

#1500-15-031.02.0

3.3.10.3.4.17.2 Outputs

The following output is produced by the Read_Process_List Unit:

1) Proc_List - This output is written to the Proc_List
array and contains the list of process that are to be
loaded. The entries in the list are each separated by a
newline character and the end of the list is indicated
by a Null character following a newline character.
Names are separated from priorities by spaces.

3.3.10.3.4.17.3 Local Data

The following local data is defined for the Read_Process_List
Unit:

1) Bytes_Read - This local data item contains the number of
bytes read while reading the Proc_List file.

2) Fd - This local data item contains the file descriptor
used to access the Proc_List file.

3.3.10.3.4.17.4 Processing

Fd = open("Proc_List", 0)
If Fd is less than 0

Call printf(Error message)
Call exit(-1)

Endif
Bytes_Read = read(Fd, Address of Proc_List, bytes to read = 1024)
If Bytes_Read is less than or equal to 0

Call Printf(Error message)
Call exit(- 1)

Endif
Call close(Fd)
Add a Null character to the end of Proc_List
Return

1
- 170 -

The following inputs are used by the Read_Processes Unit:

11

II 3.3.10.3.4.17.5 Limitations

II The maximum size of the process list input file that this unit will

accept is 1024 bytes.

II 3.3.10.3.4.18 Readprocesses Unit

II The Read_Processes Unit loads the processes specified in the list

"Proc_List" that has been created by the Read_Process_List Unit. This

II involves placing the process text, data, bss, and stack area in the

II IGW_Image file, and creating a process page table for them. System

page table entries will also be added to reference the process page

II
table.

II 3.3.10.3.4.18.1 Inputs

#1500-15-031.02.0 #150 0- 15-03 1 .02.0

1

1) Proc_List - This input comes from the global data that
has been loaded by the Read_Process_List Unit. This
input contains a list of file names to load processes
from as well as the priority of each of the processes.

2) Process Images From Disk - This input consists of the
binary images of the IGW Processes that are to be loaded
from disk.

3) Free_phys - This input is read from global data and
contains the free physical memory address where the
processes are to be loaded.

4) Free_Virt - This input is read from global data and

- 171 -

#1500 - 15-031.02.0

contains the free virtual memory address where the
processes are to be loaded.

5) Sys_Pt - This input is read from global data and
contains the physical address of the system page table
that has been defined by the Reserve_SPT Unit.

3.3.10.3.4.18.2 Outputs

The following outputs are produced by the Read_Processes Unit:

1) Process_Header_List - This output is written to the ILA
and contains the initialized process headers including
PCBs for the processes that have been loaded into
memory.

2) Processes In Memory - This output is written to the
IGW_Image file and contains the text, data, bss, and
stack areas of the IGW processes that have been loaded.

3) Process Page Tables - This output is written to the
IGW_Image file and contains the process page tables for
PO and P1 address space for each process that is loaded
by this unit.

4) System Page Table - This output is updated with the
system page table entries required to reference the
process page tables that have been creadted by this
unit.

5) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

6) Free_Virt - This output is written to global data and
contains the updated address of the next free virtual
memory address.

7) ILA - This output contains the value for the number of
processes that have been loaded. This value is written
to the Nproc field of the IGW Link Area.

1

11

II 3.3.10.3.4.18.3 Local Data

The following local data is defined for the Read_Processes Unit:

1) Process_Name_Pointer - This local data item is used to
step through the Proc_List input to obtain each
Current_Process_Entry item for the entries in Proc_List.

2) Current_Process_Entry - This local data item is used to
store the entry in the Proc List input that contains the
filename and priority of the current process.

3) Current_Process_Name - The local data item is used to
store the name the current process that is being loaded
from disk to the IGW_Image file.

4) Current_Process_Priority - This piece of data is used to
store the priority of the processes as they are read
from disk and loaded to the IGW_Image file.

5) Exec_Header - This local data item is a structure that
is used to hold the header from the IGW processes that
are loaded from diskette. The fields in this structure
are all 32 bit values and are defined as follows:

A_Magic - This field contains the type of the
executable image that is being loaded. Valid values
for this field are:

°MAGIC (0407) - Old impure format.
NMAGIC (0410) - Read-only text.
ZMAGIC (0413) - Demand load format.

A_Text - This field contains the size of the text
segment in bytes.

A_Data - This field contains the size of the
initialized data segment m is used to hold the
virtual address of the stack area.

10) PO_Phys - This local data item contains the physical
address of the PO pag ne table.

11) PO_Virt - This local data item contains the virtual
address of the PO page table.

12) PO_Len - This local data item contains the length of the
PO page table.

#1500-15-031.02.0 #1500-15-031.02.0

1

1
1
1
1
1

1
1
1
1

- 173 -

1

1
1

1

1
#1500-15-031.02.0

13) Pl_Phys - This local data item contains the physical
address of the P1 page table.

14) Pl_yirt - This local data item contains the virtual
address of the P1 page table.

15) Pl_Len - This local data item contains the length of the
P1 page table.

16) Nproc - This local data item contains the number of
process that have been loaded into IGW memory.

17) Fd - This local data item contains the file descriptor
for the process file that is being loaded.

18) Buffer - This local data item contains an array of 512
bytes used to read in processes.

19) Bytes_Read - This local data item contains the number of
bytes returned from a read operation.

20) Byte_Count - This local data item is used to count the
bytes that have been read from a process file.

3.3.10.3.4,18.4 Procesoing

1

1

Loop
Move Process_Name_Pointer to Current_Entry
Move address of next newline character in string pointed to
by Process_Name_Pointer to Process_Name_Pointer
If no newline was found in the string pointed to by
Process_Name_Pointer

Break Loop
If process header list is full

Process error condition
Endif
Move Null character to character pointed to by
Process Name_Pointer
Increment Process_Name_Pointer
sscanf(Current_Entry, "%s %d", Current_Process_Name,
address of Current_Process_Priority)

Ed = open(Current_Process_Name, 0)
If is less than 0

Call printf(Error message)
Call exit(-1)

Endif
Bytes_Read = read(Fd, address of Exec_Header,

- 174 -

1

1
1
1

1

1

1
1
1

#1500-15-031.02.0
1

size of Exec_Header) isn't equal size of Exec_Header
Call printf(Error message)
Call exit(- 1)

Endif
If A Magic field of Exec Header is ZMAGIC

if result of lseek(F -d, Offset = 1024, L_SET) is less than 0
Call printf(Error message)
Call exit(-1)

Endif
Else if A_Magic field of Exec_Header isn't one of OMAGIC or NMAGIC

Call printf(Error message)
Call exit(-1)

Endif
Move A Text field of Exec_Header to Byte Count
Add A_Data field of Exec_Header to Bytej-ount
While Byte_Count is greater than 0

Subtract 512 from Byte_Count
If Byte count less than 0

If Byte_Count equals -512
Exit loop

Endif
Bytes_Read = read(Fd, Buffer, 512 + Byte_Count)
Call write(IGW_Image, Buffer, Bytes_Read)

El se
Bytes_Read = read(Fd, Buffer, 512)
If Bytes_Read isn't 512

Call printf(Error message)
Call exit(- 1)

Endif
Call write(IGW_Image, Biffer, Bytes_Read)

Endif
Endwhile
Call close(Fd)
Move Free_Phys to Proc_Phys
Move 0 to Proc Virt
Add A_Text field of Exec_Header to Free Phys
Add A_Data field of Exec_Header to Free:Phys
Add A_Bss field of Exec_Header to Free Phys
Adjust Free_Phys to point to page boun -dary if required
Move Free_Phys to Stack_Phys
Move stack virtual address to Stack Virt
Add PROC_KERN STACK_SIZE to Free_Phys
Add PROC_USER—STACK_SIZE to Free Phys
Advance Free_iirt to start of ne;it page if necessary
Move Free Phys to PO_Phys
Move Free:Virt to PO_Virt
For each page in process text, data, and bss areas

Call Add To_PT(Page_Table = PO_Phys, Proc Virt,
Proc_Phys)

- 175 -

1
1

#1500 - 15 - 031.02.0

Add PAGESIZE to Proc_Phys

i
PAGE AGE SIZE to Proc_Virt

Endfc
Add length of PO page table to Free_Phys

11

Add length of PO page table to Free_yirt
Move P1 PT start physical address to Pl_Phys
Move P1 PT start system'virtual address to Pl_Virt
For each page in stack area

Call Add_To_PT(Page_Table = Pl_Phys, Stack_Virt,
Stack_Phys)

Add PAGE SIZE to Stack Phys
Endfnld PAGE_SIZE to Stack_Virt

Add length of P1 PT to Free_Phys
Add length of P1 PT to Free_Virt

•I Adjust FreePhys to next page if necessary
Adjust Free_Virt to next page if necessary
Call lseek(IGW_Image, Free_Phys, L_SET)
Set Name field of process entry indexed by Nproc in
Process_Header_List to name stored in Current_Process_Name

Set Priority field of process entry indexed by Nproc in

ir :11-pirder7Ltota t priority stored in

Set PCB_Address field of process entry indexed by Nproc in

It
Process_Header_List to the physical address of the hardware PCB

Initialize kernel and user stack pointer in PCB
Initialize Processor_Status_Longword in PCB
Move PO_Virt to Program_Base_Register in the hardware PCB
Move PO_Len to Program_Length_Register in the hardware PCB
Move Pl_Virt to Control_Base_Register in hardware PCB
Move Pl_Len to Control_Length_Register in hardware PCB
For each page in process page tables PO and P1

Call Add_To_PT(Page_Table = Sys_PT,
Virt_addr = PO_yirt,
Phys_addr = PO_Phys)

Add PAGE_SIZE to PO_Phys
Add PAGE_SIZE to PO_Virt•

Endfor
Increment Nproc

11 Endloop
Move Nproc to Nproc field of ILA

I Return

1

- 176 -

1
1

#1500 - 15-031.02.0

1 3.3.10.3.4.18.5 Limitations

II The Read_Process_List unit must be called before this unit.

II 3.3.10.3.4.19 Reserve_SPT Unit

1
The Reserve_SPT Unit reserves a predefineed number of pages following

I the SCB to contain the system page table. This is accomplished by

setting the System Base Register (SBR) and System Length Register

I (SLR) to indicate the start and length of the system page table.

3.3.10.3.4.19.1 Inputs

The following inputs are defined for the Reserve_SPT Unit:

1) Free_yhys - This input is read from global data and
contains the free physical memory address where the
system page table is placed.

1
1
1

1

1 - 177 -

#1500-15-031.02.0

II 3.3.10.3.4.19.2 Outputs

The following outputs are produced by the Reserve_SPT Unit:

1) Free_Phys - This output is written to global data and
contains the updated address of the next free physical
memory address.

2) Sys_PT - This output is written to global data and
contains the physical address of the system page table.

3) Sys_Len - This output is written to global data and
contains the number of PTEs in the system page table.

3.3.10.3.4.19.3 Local Data

No local data is defined for the Reserve_SPT Unit.

1 3.3.10.3.4.19.4 Processing

Move Free_Phys to Sys_PT
111 Move SPT_LENGTH to Sys_Len

Add SPT LENGTH * 4 to Free_Phys
Call lseek(IGW_Image, SPT_LENGTH, L_INCR)
Return

I .
- 178 -

3.3.10.3.4.20.1 Inputs

#1500-15-031.02.0

1 3.3.10.3.4.19.5 Limitations

I This unit must be called immediately fter the Load_SCB unit.

II 3.3.10.3.4.20 Write_ILA Unit

The Write_ILA Unit will write the ILA to the IGW_Image file.

I The following inputs are defined for the Define_ILA Unit:

1) ILA - This input is obtained from global data and
contains the IGW ILA.

2) ILA_Phys - This input is obtained from global data and
contains the physical address of the ILA for the IGW.

3.3.10.3.4.20.2 Outputs

II The following outputs are produced by the Define_ILA Unit:

1) IGW_Image - This output is written to the IGW_Image file .
and is loaded with the ILA. 1

1
1
1

- 179 -

1
1

1
1

1

1
1

1
1

1

1
1

#1500-15-031.02.0

3.3.10.3.4.20.3 Local Data

No local data is defined for the Define_ILA Unit.

3.3.10.3.4.20.4 Processing

Call lseek(IGW_Image, ILA_Phys, L_SET)
Call write(ICW_Image, ILA, Size of ILA)

3.3.10.3.4.20.5 Limitations

No limitations are defined for the Define_ILA Unit.

3.3.11 SUPPORT SOFTWARE Detailed Design

The support software which must be created for the IGW consists of

Makefile scripts and the program Write_piskettes. The Makefile

scripts will be used to build all executable images for the IGW

software. Additionally, the Makefile scripts will also be used to

produce listings of software, and to prepare bootable floppies. The

preparation of these Makefile scripts will be completed during the

coding phase of IGW development.

The Write_Diskettes program is called by the Makefile scripts to

The krogram produces the diskettes

required for booting entirely from floppy disks. The diskettes

contain all the IGW and IXIB software required to completely boot the

produce bootable IGW diskettes.

- 180 -

1

1
1

1

#1500-15-031.02.0

1
IGW. This program is detailed in the following subsections.

3.3.11.1 Write_Diskettes Architecture

111 The Write_Diskettes program writes configuration files and images to

II two RX50 diskettes which are required to boot an IGW. Write_Diskettes

consists of the following units:

I 1) Main - This unit is the control unit which prompts the
user to confirm that the diskettes are to be written and
then calls the units to write the primary boot

II
information, the secondary boot image, the directory

e list, and th bootable files and images to the diskettes.

2) Addjiles - This unit adds the file name and the file
size in bytes of each file to the directory list.

3) Blocks - This unit converts a byte count to the number of
blocks required on a RX50 diskette.

4) Directory_List - This unit calls Add_Files to build the
directory list and then assigns the starting block number
and the floppy drive number for each entry in the list.

5) Init - This unit confirms the intent to write the
diskettes. When the write is to occur, the diskettes are
opened for writing.

6) Transfer - This unit copies a file from a specified
source directory to a specified diskette.

1
1
1

- 181 -

1
1

1
1

1
1
1
1

1
1

1
#1500-15-031.02.0

3.3.11.2 Write_Diskettes Global Data

The global data for the Write_Diskettes program is listed as follows:

PRIMARY BOOT - This global data item is an array of bytes
which contain the full pathname of the primary boot block
information. This global data item will be defined
during coding.

2) SECONDARY_BOOT - This global data item is an array of
bytes which contains the full pathname of the secondary
boot image. This global data item will be defined during
coding.

3) DIR_NAME - This global data item is an array of bytes
which contains the pathname to the directory of
configuration files and bootable images as a null
terminated character string. This global data item will
be defined during coding.

4) DIR_SIZE (30) - This global data item is a 32 bit integer
which contains the maximum number of directory entries in
a directory list.

5) BLK_SIZE (512) - This global data item is a 32 bit
integer which contains the number of bytes in a block on
a RX50 diskette.

6) DISK_SIZE (800) - This global data item is a 32 bit
integer which contains the total number of blocks on a
RX50 diskette.

7) DISK1 - This global data item is an array of bytes which
contains the full pathname of the first floppy drive as a
null terminated character string. The definition of this
global data item depends on the device names of the
support system.

8) DISK2 - This global data item is an array of bytes which
contains the full pathname of the second floppy drive as
a null terminated character string. The definition of
this global data item depends on the device names of the
support system.

1)

1 - 182 -

1
1
1

1
#1500-15-031.02.0

I

II 3.3.11.3 Write_Diskettes LLC Design

The Write Diskettes proram does not contain an loer I g y w level

components.

II 3.3.11.4 Write_Diskettes Unit Design

II The following sections describe the units of the Write_Piskettes

1

1
program.

II 3.3.11.4.1 Add_Files

II Add_Files adds the file name and the size of the file in bytes of each

file in a specified directory into the directory listing. An error is

II returned when all files cannot be added to the directory list.

3.3.11.4.1.1 Inputs

The following inputs are required by the Add_Files unit:

1) Dir_Name - This input parameter is a pointer to a
character string which contains the full pathname of
the target directory.

2) DIR_SIZE - This global data input is a 32 bit integer
which contains the maximum number of directory
entries in Disk_Dir.

- 183 -

1
1
1
1
1

1
1

1

#1500-15-031.02.0

3.3.11.4.1.2 Outputs

The following outputs are returned by the Addjiles unit:

1) Disk_Dir - This output parameter is a table of at
most DIR_SIZE directory entries for the files which
will be contained on the IGW diskettes. Each
directory entry contains the following fields:

- Dir_Name - This field consists of an array of 15
bytes containing the file name stored as a null
terminated character string.

- Dir_Dev - This field consists of a single byte
indicating the floppy drive number that the file
is stored on.

- - This field consists of a 16 bit integer
containing the starting block number of the file
on the diskette.

- Dir_Size - This field consists of a 32 bit
integer containing the size of the file in
bytes.

2) Added_Entries - This output function value is a 16
bit integer which indicates the number of directory
entries added to Disk_Dir.

1
1
1

1
- 184 -

1

1
1
1
1
1
1
1
1
1
1
1

#1500-15-031.02.0

3.3.11.4.1.3 Local Data

The following local data is defined for the Add_Files unit:

1) Dir Ptr - This local data item is a pointer to a
dire-ctory which is opened for reading.

2) Dir_Struct - This local data item is a structure
defined by the DIR.H include file which identifies by
name the files in the directory pointed to by
Dir_Ptr. The directory structure includes the
following fields:

- D_Namlen - This field consists of a 16 bit
integer which defines the number of characters
in the directory file name.

- Dname - This field consists of an array of 255
bytes which contains the name of the file in the
directory.

3) Stat_Buf - This local data item structure is defined
by the STAT.H include file which identifies
characteristics of a file. The buffer includes the
following fields:

- St_Mode - This field is a 16 bit integer which
contains a set of flag's describing the file.
S_IFMT is used to determine the type of file, in
particular:

S_IFDIR (0x4000) - indicates the file is a
directory

- St_Size - This field consists of a 32 bit
integer which contains the size of the file.

1
1
1

- 185 -

1

1
1

1

1
11

#1500-15-031.02.0

3.3.11.4.1.4 Processing

Set the Added_Entries to zero
Dir Ptr= Opendir(Dir Name)
DirlStruct = Readdir(Fir_Ptr)
While Dir_Struct is not NULL

/* Process the filename if the file name is not a directory */

Call Stat(Dir_Name, address of Stat_Buf)
If St_Mode and S IFMT is not equal to S IFDIR

Increment Adà-ed_Entries
If Added_Entries exceeds the maximum entries DIR_SIZE

Return(ERROR)
Endif

/* Set the file name and file size in bytes for the entry */

Parse the file name from the D Namlen bytes in D_Name
Set the Dir_Name field in the Fisk_Dir entry Added_Entries to
the parsed file name

Set the Dir_Size field in the Disk_Dir entry Added_Entries to
the St_Size field in Stat_puf

Endif

/* Read the next file name in the directory */

Dir_Struct = Readdir(Dir_Ptr)

Endwhile
Call Closedir(Dir_ptr)
Return(Added_Entries)

1
1
1
1

- 186 -

1
1
1
1
1

1
1
1

1

1
1

#1500-15-031.02.0

3.3.11.4.1.5 Limitations

No limitations are defined for the Add_Files unit.

3.3.11.4.2 Blocks

Blocks determines the number of blocks required on a diskette given

both the size of the file in bytes and the size of a block in bytes.

3.3.11.4.2.1 Inputs

The following inputs are required by the Blocks unit:

1) File_Size - This input parameter is a 32 bit integer
which contains the size of the file in bytes.

2) Blk_Size - This input parameter is a 32 bit integer
which contains the size of a diskette block in bytes.

3.3.11.4.2.2 Outputs

The following outputs are returned by the Blocks unit:

1) Block_Count - This output function value is a 32 bit
integer which contains the number of blocks the file
requires on the diskette.

1 - 187 -

1
1

1
1
1
1
1
1
1
1

1
1

#1500-15-031.02.0

3.3.11.4.2.3 Local Data

No local data is defined for the Blocks unit.

3.3.11.4.2.4 Processing

Set the Block_Count equal to the File_Size divided by the Blk_Size The

remainder equals the File_Size less the BlockCount times the Blk_Size

If the remainder is not zero Increment the BlockCount Endif Return(

Block_Count).

3.3.11.4.2.5 Limitations

No limitations are defined for the Blocks unit.

3.3.11.4.3 Directory_List

Directory_List compiles the list of configuration files and bootable

images in a directory listing. For each entry in the list, a floppy

drive and the starting block number are assigned. A message is

printed to standard output and an error returned when the floppy drive

requirements are exceeded.

1
- 188 -

1
1

1

#1500-15-031.02.0

11

II 3.3.11.4.3.1 Inputs

II The following inputs are required by the Directory_List unit:

1) Block_Count - This input parameter is a 32 bit
integer which centains the number of disketté blocks
used on the first floppy drive.

2) DIR_NAME - This global data input is an array of
bytes which contains the pathname to the directory of
configuration files and bootable images as a null
terminated character string.

3) BLK_SIZE - This global data input is a 32 bit integer
which contains the number of bytes in block on a RX50
diskette.

4) DISK_SIZE - This global data input is a 32 bit
integer which contains the total number of blocks on
a RX50 diskette.

I 3.3.11.4.3.2 Outputs

The following outputs are returned by the Directory_List unit:

1) Disk_Dir - This output parameter is a table of at
most DIR_SIZE directory entries for the files which
will be contained on the IGW diskettes. Each
directory entry contains the following fields:

- Dir_Name - This field consists of an array of 15
bytes containing the file name stored as a null
terminated character string.

- Dir_Dev - This field consists of a single byte
indicating the floppy drive number that the file
is stored on.

- Dir_BN - This field consists of a 16 bit integer
containing the starting block number of the file
on the diskette.

1

1

1

- 189 -

1

#1500-15-031.02.0

- Dir_Size - This field consists of a 32 bit
integer containing the size of the file in
bytes.

2) Entry_Count - This output function value is a 16 bit
integer which indicates the success of updating the
directory list. The positive integer Added_Entries
indicates the number of entries added, otherwise the
error indication is given:

-
ERROR - This negative integer value indicates not

all entries were added to the directory
list.

3.3.11.4.3.3 Local Data

The following local data is defined for the Directory_List unit:

1) Dir_ptr - This local data item is a pointer to a
directory which is opened for reading.

2) Format_String - This local data item is a pointer to
a character string which contains information prompts
to the operator on the number of diskettes either
used or required.

I 3.3.11.4.3.4 Processing

II
/* Compile file names and sizes of all configuration files and

bootable images */

Entry_Count = Add_Files(address of DIR_NAME, address of Disk_Dir)
If Entry_Count is equal to ERROR

Return(Entry_Count)
Endif

/* Linearly sort the file names by size from smallest to largest */

II For Index which indexes the first Entry_Count - 1 Disk_Dir entries
For Jindex which indexes the Disk_Dir entries subsequent to Index

If the Dir_Size of entry Index exceeds Dir_Size of entry Jindex
Temp entry = Disk_Dir entry Index

-190 -

1

1
1

1
1

1
1

#1500-15-031.02.0

Disk_pir entry Index = Disk_Dir entry Jindex
Disk_pir entry Jindex = temp entry

Endif
Endfor

Endfor

/* Compute the starting block number and floppy drive components
for each file name, accounting for the blocks required to store
te directory list

Dir list size = Entry_Count * size of a Disk_pir directory entry
Block_Count = BlockCount + Blocks(dir list size, BLK_SIZE)
Set the floppy drive to the integer one
For each of the Entry_Count directory entries in Disk_Dir

Entry size = Blocks(Dir_Size, BLK_SIZE)
If the Block_Count + entry size exceeds the DISK_SIZE

If the floppy drive has already been set to two
Call Printf(Format_String)
Return(ERROR)

Endif
Reset the Block_Count to one
Reset the floppy drive to the integer two

Endif
Set Disk_pir Dir_BN equal •to the Block_Count
Set the Disk_Dir Dir_Dev equal to the floppy drive
Block_Count = Block_Count + entry size

Endfor
If the floppy drive is still one

Call Printf(Format_String)
Endif
Return(CONTINUE)

1
1
1
1

- 191 -

1
1

1

1

1

1

1

1
#1500-15-031.02.0

3.3.11.4.3.5 Limitations

No limitations are defined for the Directory_List unit.

3.3.11.4.4 Init

Init confirms the intent to write the diskettes. When the write is to

occur, the diskettes are opened for writing.

3.3.11.4.4.1 Inputs

The following inputs are required by the Init unit:

1) DISK1 - This global data item is an array of bytes
which contains the full pathname of the first floppy
drive as a null terminated character string.

2) DISK2 - This global data item is an array of bytes
which contains the full pathname of the second
floppy drive as a null terminated character string.

- 192 -

#1500-15-031.02.0

3.3.11.4.4.2 Outputs

The following outputs are returned by the mit unit:

1) Disk_Descr_l - This output parameter is a 32 bit
integer which contains a file descriptor to which the
source file Filename is copied.

2) Disk_Descr_2 - This output parameter is a 32 bit
integer which contains a file descriptor to which the
source file Filename is copied.

3) Status - This output parameter is a 16 bit integer
which indicates the intent to write the diskettes:

CONTINUE - The diskettes are written
ERROR - The diskettes are not written

3.3.11.4.4.3 Local Data

The following local data is defined for the mit unit:

1) Flags - This local data item is a 32 bit integer
which indicates that both diskettes are opened for
write only.

2) Format_String - This local data item is a pointer to
a character string which contains input/output
prompts used to confirm the rewrite of the diskettes.

3) Response - This local data item is a pointer to a
character string which contains the confirmation from
the operator.

- 193 -

#1500-15-031.02.0

3.3.11.4.4.4 Processing

Set the first diskette descriptor Disk_Descr_l to zero
Set the second diskette descriptor Disk_Descr_2 to zero

II
/* Prompt operator for confirmation of writing diskettes */

II Call Printf(Format_String)
Call Scanf(Format_String, Response)
If the first character in the Response is not "Y" or "y"

Call Printf(Format_String)
Status = ERROR
Return(Status)

Endif

/* Open both diskettes for writing */

II Status = CONTINUE
Flags = O_WRONLY
Disk_Descr_l = Open(address of DISK1, Flags)

111 Disk_Descr 2 = Open(address of DISK2, Flags)
Return(St -a-tus)

I/ 3.3.11.4.4.5 Limitations

No limitations are defined for the mit unit.

3.3.11.4.5 Main

II The Main unit initiates the update of the IGW diskettes and, upon

confirmation by the operator, copies bootable images and the

II configuration files to the two available diskettes.

. pp The diskette in floy drive one is used first II The first block

II contains primary boot information. Subsequent blocks contain the

- 194 -

1

1
1
1

1
1
1

#1500-15-031.02.0

secondary boot image, a disk directory of subsequent files and images,

configuration files and bootable images. The number of blocks

required for each section following the primary boot block is

dynamically determined and, as a result, may require the diskette in

the second floppy drive.

3.3.11.4.5.1 Inputs

1
The following inputs are required by the Main unit:

1) PRIMARY_BOOT - This global input parameter is an
array of bytes which contains the full pathname of
the primary boot file information as a null
terminated character string.

2) SECONDARY_BOOT - This global data item is an array of
bytes which contains the full pathname of the
secondary boot image as a null terminated character
string.

3) BLK_SIZE - This global data item is a 32 bit integer
which contains the number of bytes in a block on a
RX50 diskette.

4) DIR_NAME - This global data item is an array of bytes
which contains the pathname to the directory of
configuration files and bootable images as a null
terminated character string.

1
- 195 -

1
1
1
1
1
1
1

1
1
1
1
1
1

1

1
#1500-15-031.02.0

3.3.11.4.5.2 Outputs

No outputs are returned by the Main unit.

3.3.11.4.5.3 Local Data

The following local data is defined for the Main unit:

1) Disk_pescr_l - This local data item is a 32 bit
integer containing a descriptor which identifies
floppy drive one.

2) Disk_Descr_2 - This local data item is a 32 bit
integer containing a descriptor which identifies
floppy drive two.

3) Stat_Buf - This local data item structure is defined
by the STAT.H include file which identifies
characteristics of a file. The buffer includes the
following fields:

- St_Size - This field consists of a 32 bit
integer which contains the size of the file.

4) Disk_Dir - This local data item is a table of at most
DIR_SIZE directory entries for the files which will
be contained on the IGW diskettes. Bach directory
entry contains the following fields:

- Dir_Name - This field consists of an array of
15 bytes containing the file name stored as a
null terminated string.

- Dir_pev - This field consists of a single byte
indicating the floppy drive number that the
field is stored on.

- Dir_BN - This field consists of a 16 bit
integer containing the starting block number of
the file on the diskette. - Dir_Size - This
field consists of a 32 bit integer containing
the size of the file in bytes.

1 - 196 -

1

1
1

1
1
1

- 197 -

#1500-15-031.02.0

5) Filename - This local data item is an array of bytes
which contains the full pathname of a file to be
transferred to a diskette as a null terminated
character string.

6) Block_Count - This local data item is a 32 bit
integer which contains the next diskette block in
which data can be written.

7) Byte_Count - This local data item is a 32 bit integer
which contains the number of diskette bytes to be
skipped.

8) L_SET (0x00) - This local data item is a 32 bit
integer which defines the seek mode to be front the
start of the file.

9) L_INCR (0x01) - This local data item is a 32 bit
integer which defines the seek mode to be from the
current seek position.

3.3.11.4.5.4 Processing

/* Initialize both floppy drives */

Call Init(Disk_Descr_l, Disk_Descr_2)
Block_Count = 1

II Byte_Count = (Block_Count - 1) * BLK_SIZE

/* Copy the primary boot information to the first block */

Call Lseek(Disk_Descr 1, Byte Count, L_SET)
Call Stat(address of FRIMARY FOOT pathname, address of Stat_Buf)
Call Transfer(address of PRIFARY BOOT pathname, St_Size, Disk_Descr_l) II Block_Count = Blocks(St_Size, BLIT SIZE)
Byte_Count = (Block_Count - 1) * —BLK_SIZE

II /* Copy the secondary boot image */

Call Lseek(Disk_Descr 1, Byte_Count, L_SET)

I Call Stat(address of FECONDARY BOOT pathname, address of Stat Buf)
Call Transfer(address of SECONFARY_BOOT pathname, St_Size,)
Block_Count = Blocks(St_Size, BLK SIZE)
Byte_Count = (Block_Count - 1) * —BLK_SIZE

II /* Compile the directory listing of configuration files and bootable
images and write to the diskette. */

1

1
#1500-15-031.02.0

Call Lseek(Disk_Descr 1, Byte Count, L_SET)
II Entry count = Directorî .5 _List(-7ddress of Disk_Dir, Block_Count)

If the entry count is not ERROR
Dir list size = entry count * size of a Disk_Dir directory entry
Call Write(Disk_Descr_l, Disk_Dir, dir list size)
Byte_Count = Blocks(dir list size, BLK SIZE) * BLK_SIZE
Call Lseek(Disk_Descr_l, Byte_Count - -dir list size, L_TNCR)

/* Write each item to the diskette on the appropriate
floppy drive. */

For each of the entry count entries in Disk_Dir
Concatenate DIR_NAME and the Disk_Dir Dir_Name to Filename
Byte_Count = Blocks(Dir_Size, BLK_SIZE) * BLK_SIZE - Dir_Size
If Dir_Dev equals 1

Call Transfer(address of Filename, Dir_Size, Disk_Pescr_l)
Call Lseek(Disk_Descr_l, Byte_Count, L_INCR)

Else
Call Transfer(address of Filename, Dir_Size, Disk_pescr_2)
Call Lseek(Disk_Descr_2, Byte_Count, L_INCR)

End if

II Endfor
Endif

/* Release the diskettes on both the floppy drives */

I Call Close(Disk_Descr_l)
Call Close(Disk_Descr_2)

11 End

II 3.3.11.4.5.5 Limitations

No limitations are defined for the Main unit.

- 198 -

1
1
1
1
1

1

1

1
#1500-15-031.02.0

3.3.11.4.6 Transfer

Transfer copies a file from the specified source directory to the

specified diskette.

3.3.11.4.6.1 Inputs

The following inputs are required by the Transfer unit:

1) Filename - This input parameter is a pointer to a
character string which conains the full pathname of
the source file.

2) Size - This input parameter is a 32 bit integer which
contains the number of bytes in the source file
Filename.

3) Disk_pescr - This input parameter is a 32 bit integer
which containing a descriptor of the floppy drive to
which the source file Filename is copied.

11 3.3.11.4.6.2 Outputs

11 No outputs are returned by the Transfer unit.

1
1

- 199 -

1

#1500-15-031.02.0

II 3.3.11.4.6.3 Local Data

II The following local data is defined for the Transfer unit:

1) Buf - This local data item is an array of bytes into
which the source file Filename is read.

2) File_Descr - This local data item is a 32 bit integer
which is used to reference the source file Filename
in the Open, Read, Write, and Close file operations.

3) Flags - This local data item is a 32 bit integer which
indicates the source file Filename is opened for read
only.

II 3.3.11.4.6.4 Processing

II Flags = O_RDONLY
File_pescr = Open(Filename, Flags)
Call Read(File_Descr, Buf, Size)

I Call Write(Disk_Descr, Buf, Size)
Call Close(File_Descr)
Return

1
3.3.11.4.6.5 Limitations

No limitations are defined for the Transfer unit.

1 - 200 -

•

#1500-15-031.02.0

II 4.0 GLOSSARY

ARP - Address Resolution Protocol
ASCII - American Standard Code for Information Interchange
CDD - Console Device Driver
CHMK - Change Mode to Kernel (VAX instruction)
CPU - Central Processing Unit
CRC - Communications Research Centre
CRT - Cathode Ray Tube (a video terminal)
CSR - Control/Status Register (in input output

DARPA - Defense Advanced Research Projects Agency
control register)

DEQNA - Digital Equipment Corporation's Ethernet
interface for Q-Bus

DMA - Direct Memory Access
EDD - Ethernet Device Driver
EGP - Exterior Gateway Protocol
ERTE
FIFO

- Efficient Real Time Executive
- First In First Out (a queue)

ICMP - Internet Control Message Protocol
IGW - Internet Gateway
ILA - IGW Link Area (an area of IGW memory)
IP - Internet Protocol
IXIB - Intelligent X.25 Interface Board
LLC - Lower Level Component
MTU - Maximum Transmission Unit
OI - Operator Interface
PCB
PPT

- Process Control Block
- Process Page Table

ROM - Read-Only Memory
SCB - System Control Block
SPT - System Page Table
STAT - Statistics processing component of the IGW

software
SVA - System Virtual Address
TCP - Transmission control Protocol
TLC - Top Level Component
TLD - Top Level Design
UDP - User Datagram Protocol
XDD - X.25 Device Driver
XON/XOFF - Flow control on a serial line

- 201 -

SOFTWARE DETAILED DESIGN
DOCUMENT FOR THE INTER-..
NETWORK GATEWAY PROJECT

QA
76.9
S88
S6474
1988
v.5

INDUSTRY CANADA / INDUSTRIE CANADA

11111111111811 111 3111111111

