Over-Tree Propagation Measurements-Phase 2

Final Report, March 30, 1992
W. P. Lone, Principal Investigator Physics Department Saint Mary's University Halifax, N. S., B3H 3C3

Investigation performed for the Communications Research Centre, Ottawa

Scientific Authority: J. H. Whitteker
Letter of Agreement Number: 36001-1-3505

Chapter 1: Introduction: site characteristics and measurement procedures.

Chapter 2: Summer and Winter Path-loss for $144 / 145 \mathrm{MHz}$ at both sites.
Chapter 3: Summer and Winter Path-loss for $222 / 225 \mathrm{MHz}$ at both sites.

Chapter 4: Summary

Appendices

A: Elevation Profiles for both paths: graphs and data tables.
B: Calculation of 'expected' path-loss for both sites.
C. Data for summer and winter path-loss for both sites.
D. Details of 'observed' path-loss calculations.

General Introduction
Abstract: Measurements were made of signal levels in the $2-\mathrm{m}$ and $1.2-\mathrm{m}$ bands in the 'shadow' region associated with "wooded/cleared" boundaries at two sites in summer (maximum foliation) and winter (minimum foliation). The observed Pathloss for both sites (called Sites \#l and \#2 respectively) is given. In general, it is found that the path-loss at both sites mainly shows anomalous behaviour inasmuch as there is little or no decrease in path-loss as the distance from the boundary increases, and that there is no clear correlation between pathloss along the 'downstream' path with seasonal change in foliation. All observations were made with vertical polarization.

General site-Characteristics

In general, an attempt had been made, for Phase 1 of this study (see the Report for 1990-1), to locate sites which would have a flat-topped wooded area, some several hundred wavelengths long along the propagation path, and then a,flat, clear area, also some hundreds of wavelengths long. Due to time constraints, such 'ideal' sites were not found (and perhaps do not exist) in the immediate vicinity of Halifax. By default, the two sites finally selected appeared to be relatively satisfactory approximations to the 'ideal'. However, it turned out that the obstacle (Cowie Hill) associated with Site \#2 was inadvertently overlooked at the time of deciding on the sites.

It might be added that even if 'ideal' sites had been available, the observed data would still-at the very least-contain a component associated with reflections from the surface of the cleared area. That is, the observed data would consist-at the very least-of the expected component associated with diffraction from the discontinuity at the boundary between the wooded and cleared areas, and a component due to reflections from the surface of the cleared area.

The sites are in Halifax County, Nova Scotia, as shown in the map in Figure 1. The distance from the transmitter (located on the roof of Saint Mary's University Administration Building) to Site \#l is 4.7 km , and the distance to site \#2 is 7 km . The line-of-sight path to Site \#l is practically unobstructed (penetrating the bottom of the first Fresnel zone only slightly), whereas the path to Site \#2 has a significant obstruction (penetrating the first Fresnel zone beyond the line-of-sight) at the mid-point (Cowie Hill). The profile sections for these two paths are given in Appendix A.

Aerial views of the immediate area at the sites are given in Figures 2 and 3. These aerial views give some indication of the conditions at the sites, especially the extent of the wooded area along the line-of-sight path. The trees associated with Site \#l are a mixture of deciduous and coniferous, whereas those at Site \#2 are almost exclusively coniferous. Photographs of the two sites in both summer and winter are shown in Figures 4 and 5.

It should also be noted here that the path from the transmitter site (at Saint Mary's University) to each of the two sites contains a significant amount of wooded areas, mostly deciduous. This factor will play a role in Chapter 4, where some reasons are offered for anomalous path-loss behaviour.

Figure 2: Aerial view of Site \#1, indicating the extent of the wooded area and the boundaries of the cleared area.

Figure 3. Aerial view of Site \#2, indicating the extent of the wooded area and the boundaries of the cleared area (parking lot)

Figure 5 View of the wooded region at Site \#2 in both summer and winter; looking directly towards the transmitting antenna. The boundary line between the wooded and cleared areas is approximately perpendicular to the direct propagation path (in the centre of the photograph) for at least 100 m on each side of the intersection point. There is some rocky debris forming a "fence" running parallel to the boundary about 15 m from the boundary, and is approximately 1 m high. The ground-level is perhaps 0.5 m lower than the parkinglot-level between this "fence" and the boundary, and is overgrown with small bushes (approximately 1 m high). Note the lamp standard (wooden pole) to the right of the propagation-path, and the power line running from this structure to its 'companions' on either side. It is being assumed that these objects have an insignificant effect on the propagation for the purposes of this study. The significant feature is the relatively similar foliage between summer and winter conditions.

Site \#l (Old Sambro Rd) Characteristics

The distance between transmitter and receiver is approximately 5 km . The trees were estimated to have an average height of ll m at the boundary.

The site was considered to be sufficiently level, on the basis of visual inspection only, although there was, in fact, a "slight" (2% approximately) downward slope in ground level with increasing distance away from the wooded/cleared boundary. The wooded area, again on the basis of visual inspection only, was taken to be sufficiently homogeneous vis a vis tree height and tree density. The photographs in Figure 4 give a view of the site looking towards the sending end of the path both in summer and in winter. First, it is seen that there are tree tops protruding above the average tree-top level by approximately 2 m . The distance between these protruding tree tops was estimated to be some 5 m on the average. Second, it is seen that the foliage is noticeably less in winter than in summer.

The cleared ground area at the wooded/cleared boundary was approximately 1 m higher--for a distance of approximately 9 m (slightly less than in the previous Report)--than the rest of the cleared area. It was decided, therefore, that the data in this 9 m interval would not be representative of the constantheight observations being maintained in this study; hence, no measurements were made within this interval.

For the winter measurements at 145 MHz , the cleared area was rather muddy (but no snow). When it was finally possible to make measurements at 225 MHz (some 2 months later), the ground was covered by hard-packed snow, perhaps a half-metre deep.

Figure 6 is a sketch of the boundary, viewed from above.

Site \#2 (Exhibition Grounds) Characteristics

The cleared site (hard-packed parking lot surface) was Considered to be sufficiently level on the basis of visual inspection only. The wooded area (primarily coniferous)--again on the basis of visual inspection only--was taken to be sufficiently homogeneous vis à vis tree height and tree density. The photographs in Figure 5 give a view of the boundary looking towards the sending end of the path in both summer and winter. It is seen that there are tree tops protruding above the average tree-top level by approximately 2 m . The distance between these protruding tree tops was estimated to be some 5 m on the average. Note that the difference between summer and winter foliation is insignificant on the basis of a simple visual inspection. This would imply that the path-loss at this site should not be noticeably dependent on season. Evidently, this expectation prescinds from all considerations pertaining to the seasondependent water-content in the leaves, etc.

The cleared-ground area immediately at the wooded/cleared boundary was approximately 0.5 m lower than the rest of the cleared area for a distance of approximately 15m. Observations were made within this $15-\mathrm{m}$ interval in spite of the discontinuity in the ground-level. Due to very severe weather conditions in the Halifax area during the period from midJanuary to mid-March, a snow-bank (approximately 1.5 m high and perhaps 3 m wide) was formed by the snow-removal activities, forming an obstacle at the above-mentioned discontinuity. Presumably, this discontinuity in ground-level would need to be taken into account when interpreting the path-loss behaviour within this interval. Figure 7 is a sketch of the boundary, viewed from above.

Figure 6 Sketch of the wooded/cleared boundary at site \#l. The distances are nominal only.

Figure 7 Sketch of the wooded/cleared boundary at site \#2, viewed from above. The distances are nominal only.

Measurement Procedures

Transmitted power was measured by using a calibrated power meter inserted into the transmission line near the antenna. Since the VSWR was observed (using a reflectometer) to be negligible, the uncertainty in the power going to the antenna is taken to be less than 1 db .

At the receiving site, a measuring-tape was strung out on the ground along the line-of-sight path away from the boundary in a down-stream direction. The mast supporting the antenna was then placed on the tape at $2-\mathrm{m}$ intervals, out to 100 m . At least three measurement-runs were made and the results were averaged. It is estimated that the uncertainty in placement of the antenna from one run to another was no more than 10 cm . The antennaheight was 1.6 m , simulating the roof-top level of a typical passenger car.

Equipment

The receiver for the $2-m$ band (144 and 145 MHz) was a synthesized amateur-radio type, modified to produce an agc (automatic gain control) voltage. This voltage drove a microammeter. An external GaAs-fet preamplifier (approximately 20 db gain) was used to provide adequate sensitivity. A commercial turret-type attenuator was placed between the antenna and the preamplifier input to avoid over-driving the receiver's agc circuit.

The receiver for the $1.2-\mathrm{m}$ band (222 and 225 MHz) was a commercial. TV Field Strength meter, modified to tune to this band. An external GaAs-fet preamplifier (approximately 20 db gain) was used to provide adequate sensitivity.

In both cases, receiver system-sensitivity was calibrated with a calibrated VHF/UHF signal generator (HP-608). The output power-level of the generator, in turn, was compared with a commercial power-meter (Narda). The uncertainty in the receiver system-sensitivity is estimated to be approximately 1 db .

The transmitters were crystal-controlled, home-built, continuous wave systems, keyed every 10 seconds with the station call-sign (VElSMU). An SWR reflectometer is part of the system, allowing the forward and reflected power levels to be easily monitored. The coded keying prevented any accidental confusion between the signal from the transmitter at Saint Mary's University and other signals. The transmitting antenna was situated on the roof of the Administration Building, and was approximately 20 m above ground level. The frequencies used for the summer measurements were 144 and 222 MHz respectively. \mathbb{A} need to avoid interference in one case and equipment changes in another resulted in using two other transmitters (and two other frequencies) for the winter measurements: 145 and 225 MHz ,
respectively. It is assumed that the difference in frequencies has no significant effect on these path-loss measurements.

Overall 'measurement system uncertainty', consisting of uncertainties in receiver sensitivity calibration, antenna gains (transmitting and receiving), and transmitted power, is estimated to be no more than 3 or 4 db . The uncertainty in distance (from transmitter to receiver) measurements is taken to be insignificant. The uncertainty in locating the receiving antenna, from one run to another, at any given distance from the wooded/cleared boundary is estimated to be no more than 10 cm . However, this particular uncertainty is presumed to affect the observed signal level, but not the uncertainty of the measurement system itself.

Since some of the winter data was obtained under damp conditions (including occasional light drizzle), results of a previous test (see last year's Report) were invoked in this current study. It will be recalled that a laboratory test was made to determine empirically the effect of water contamination on the gain of the receiving antenna (a 10 dbd amateur-grade yagi). Water was sprayed on the entire antenna, especially at the feed-point, to simulate a situation where the entire antenna could be covered with water during an observation in the field. The change in signal strength before and after moistening was negligible, in the sense that the received signal decrease after moistening was some small fraction of $\mathrm{a} d \mathrm{db}$.

The receiving antennas for both $144 / 5$ and $222 / 225 \mathrm{MHz}$ were dipoles, wịth an assumed gain of approximately 2 dbi.

The transmitting antenna for the 144 MHz measurements on Aug. 24 and 25, 1991, was a yagi (approx. 11 dbd gain) aimed at the mid-point of the two sites. The manufacturer's beam-width specifications were then used to calculate the effective power in the direction of each of the two sites. On Aug.30, 1991, the transmitting antenna was a dipole. The winter measurements on 145 MHz used the same yagi as above.

For summer measurements on 222 MHz and winter measurements on 225 MHz , however, the transmitting antenna was a dipole, again assumed to have a gain of approximately 2 dbi . With reference to the tests made (on a yagi) to determine the effect of 'dampness' on antenna performance, it was assumed that dampness would have even less of an effect on these dipoles, since they were military-grade items, formerly mounted atop Tracker aircraft operating out of Halifax out over the broad Atlantic!

Calculation of Observed Path-loss

In general, it is being assumed that the observed path-loss is to be calculated from

Path-loss \equiv lolog(Ptransmitted/Preceived),
where Preceived is the power received by the receiving antenna, and Ptransmitted is the power being launched by the transmitting antenna. For the simplified case of unity-gain (isotropic antennas at both ends of the path), the path-loss pL would be:

$$
\begin{aligned}
\mathrm{PL} & =10 \log \left[\mathrm{P}_{\mathrm{tx}} / \mathrm{P}_{\mathrm{rx}}\right] \\
& =10 \log \left[\mathrm{P}_{\mathrm{tx}} /\left(\mathrm{V}^{2} / \mathrm{Z}\right)\right],
\end{aligned}
$$

where V is the signal level at the receiver input (in volts) and Z is the input impedance (assumed to be resistive) at this input. Expressing V in terms of microvolts (call this $V(\mu)$) would give

$$
\begin{aligned}
\mathrm{PL}= & 10 \log \left[\mathrm{P}_{\mathrm{tx}} \mathrm{X} \times 10^{12} / \mathrm{V}^{2}(\mu)\right] \\
& =10 \log \mathrm{Ptx}^{2}+10 \log 50+120-20 \log \mathrm{~V}(\mu)
\end{aligned}
$$

Finally, incorporating the antenna gains (both in dbi), we have $P L=10 \log P_{t x}+\log 50+120+A_{t x}+A_{r x}-20 \log V(\mu) d b$
(this page faces p.2-1)

Figure 2-1a

Figure 2-1b

Chapter 2: 144/5 MHz: Summer and Winter Path-1oss at both Sites

Path-loss as a function of distance (in terms of wavelength) at Sites \#1 and \#2 for both Summer and winter are shown in Figures $2-1 \mathrm{a}$ and $2-1 \mathrm{~b}$ respectively. At Site \#l, for both summer and winter, there appears to be no trend towards decreasing path-loss with increasing distance from the wooded/cleared boundary. On the other hand, there is such a trend in the summer data at Site \#2 (but not in the winter data).

There appears to very little difference between Summer and winter path-loss behaviour as a function of site inasmuch as the difference between Summer and Winter at site \#l appears to be similar to that for site \#2. Recall that site \#l has a larger content of deciduous trees near the boundary, which means that seasonal effects would presumably be more significant at this site.

There is, approximately, a constant 10 db difference between Summer and winter behaviour at Site \#2, which is mainly coniferous near the boundary, and would be expected to show little--if any--seasonal effect. In addition to possible seasonal variations in the water-content of trees, there is also the conjecture that the measured path-loss is affected significantly by whatever trees stand in the propagationpath, all the way from the transmitting site to the receiving site. Since the intervening terrain in question does (on the basis of a cursory visual inspection) contain a significant quantity of deciduous trees, then the seasonal effect at site \#2 (and perhaps even more so at Site \#l) is not a surprise. A more detailed survey of this matter is beyond the scope of this study.

To give some indication of the scatter in the path-loss data, separate Summer and Winter plots are given in Figures 2-2a, 2-2b, 2-3a, and 2-3b respectively.

Further discussion of the results appears in Chapter 4, where the data for the three bands studied over the past two years ($2-\mathrm{m}$; $1.2-\mathrm{m}$, and $0.7-\mathrm{m}$) will be compared.

Figure 2-2b

Figures 2-2a and 2-2b: Separate summer and winter data displays for Site \#l (Old Sambro Rd.) to give some indication of the scatter in the data. The solid line is the averaged behaviour. The wavelength is taken to be 2.1 metres for both frequencies. The averaged summer behaviour is based on a total of eight runs, whereas it is three runs for winter.

Figure 2-3a

Figure 2-3b

Figures 2-3a and 2-3b: Separate summer and winter data displays for Site \#2 (Exhibition Grounds) to give some indication of the scatter in the data. The solid line is the averaged behaviour. The wavelength is taken to be 2.1 metres for both frequencies. The averaged summer behaviour is based on a total of eight runs, whereas it is three runs for winter.

Figure 3-1a
Expected path-loss: 99 dB

Figure 3-1b
Expected path-loss: 109 dB

Chapter 3: 222/225 MHz: Summer and Winter Path-loss at

 both sitesPath-loss as a function of distance (in terms of wavelength) at Sites \#l and \#2 for both Summer and winter are shown in Figures $3-1 a$ and $3-1 \mathrm{~b}$ respectively. At Site \#l, for both summer and winter, there appears to be a trend towards decreasing path-10ss with increasing distance from the wooded/cleared boundary. On the other hand, there is no such trend in the Site \#2 data.

There appears to very little difference between Summer and Winter path-loss behaviour as a function of site inasmuch as the difference between Summer and Winter at Site \#l appears to be similar to that for Site \#2. Recall that Site \#l has a larger content of deciduous trees near the boundary, which means that seasonal effects would presumably be more significant at this site.

As in the $2-m$ data given in Chapter 2 , there is a constant 5 to 6 db difference between Summer and winter behaviour at Site \#2 (this difference was somewhat larger for the $2-\mathrm{m}$ data). Since the boundary at Site \#2 is mainly coniferous, it would be expected to show little--if any-seasonal effect. Hence, in addition to possible seasonal variations in the water-content of trees, there is also the conjecture that the measured path-loss is affected significantly by whatever trees stand in the propagationpath, all the way from the transmitting site to the receiving site. Since the intervening terrain in question does (on the basis of a cursory visual inspection) contain a significant quantity of deciduous trees, then the seasonal effect at Site \#2 (and perhaps even more so at Site \#1) is not a surprise. A more detailed survey of this matter is beyond the scope. of this study.

To give some indication of the scatter in the path-loss data, separate Summer and Winter plots are given in Figures 3-2a, 3-2b, 3-3a, and 3-3b respectively.

Further discussion of the results appears in Chapter 4, where the data for the three bands studied over the past two years ($2-\mathrm{m}$; $1.2-\mathrm{m}$, and $0.7-\mathrm{m}$) will be compared.

Figure 3-2a

Figure 3-2b

Figures 3-2a and 3-2b: Separate summer and winter data displays for Site \#l (Old Sambro Rd.) to give some indication of the scatter in the data. The solid line is the averaged behaviour. The wavelength is taken to be 1.35 metres. The averaged behaviour is based on a total of six runs (three on each day). runs

Figure 3-3a

Figure 3-3b

Figures 3-3a and 3-3b: Separate summer and winter data displays for Site \#2 (Exhibition Grounds) to give some indication of the scatter in the data. The solid line is the averaged behaviour. The wavelength is taken to be 1.35 metres. The averaged behaviour is based on a total of three runs, all on one day.

Figure 4-1a

Figure 4-1b

Chapter 4: Comparison of path-loss behaviour for the three bands

1. Summer data at site \#l for all three bands.

The summer behaviour for Site \#l is shown in Figures 4la and 4-1b. Note that the data in Figure 4-la is displayed out to only 75 wavelengths to facilitate comparison of the three sets of data, and therefore represents only part of the total data; Figure $4-1 \mathrm{~b}$ shows the total data.

The fact that the data for 432 MHz lies between the other two frequencies is taken to be anomalous. It should be recalled, however, that the 432 MHz data was obtained using a directional antenna (approximately 10 dbi gain) aimed along the propagation path, whereas the other data for the other two frequencies was obtained using a dipole. This difference in antennas implies that the directional properties would tend to discriminate against multi-path components coming in from either side of the 'line-of-sight' propagation-path; this would not be the case for the dipoles. See the Report for the previous year for further discussion of this point.

It should also be kept in mind that there is a one-year difference between measurements made at 432 MHz and.those made at the other two frequencies. The significance of this time difference lies in the conjecture that the tree- and foliage-distribution along the path changed noticeably in the course of that one year.

```
(this page faces p.4-2)
```


Figure 4-2a

Figure 4-2b

2. Winter data at Site \#l for all three bands.

The winter behaviour for Site \#l is shown in Figures 42a and 4-2b. Note that the data in Figure 4-2a is displayed out to only 75 wavelengths to facilitate comparison of the three sets of data, and therefore represents only part of the total data; Figure 4-2b shows the total data.

The fact that the data for 432 MHz lies between the other two frequencies is taken to be anomalous. It should be recalled, however, that the 432 MHz data was obtained using a directional antenna (approximately 10 dbi gain) aimed along the propagation path, whereas the other data for the other two frequencies was obtained using a dipole.

As mentioned earlier, it should also be kept in mind that there is a one-year difference between measurements made at 432 MHz and those made at the other two frequencies. The significance of this time difference lies in the conjecture that the tree- and foliage-distribution along the path changed noticeably in the course of that one year.

Figure 4-3a

Figure 4-3b

3. Summer data at site \#2 for all three bands.

The summer behaviour for site \#2 is shown in Figures 43a and 4-3b. The data in Figure 4-3a is displayed out to only 75 wavelengths to facilitate comparison of the three sets of data, and therefore represents only part of the total data; Figure 4-3b shows the total data.

In this one case, the data for all three frequencies falls into an ordered sequence, as well as showing a decreasing path-loss with increasing distance from the wooded/cleared boundary.

As mentioned above, it should be kept in mind that there is a one-year difference between measurements made at 432 MHz and those made at the other two frequencies. The significance of this time difference lies in the conjecture that the treeand foliage-distribution along the path changed noticeably in the course of that one year.

Figure 4-4a

4. Winter data at site \#2 for all three bands.

The winter behaviour for site \#2 is shown in Figures 43a and 4-3b. Note that the data in Figure 4-3a is displayed out to only 75 wavelengths to facilitate comparison of the three sets of data, and therefore represents only part of the total data; Figure 4-3b shows the total data.

As already seen in most of the data, the fact that the data for 432 MHz lies between the other two frequencies is taken to be anomalous. Again, it should be recalled that the 432 MHz data was obtained using a directional antenna (approximately 10 dbi gain) aimed along the propagation path, whereas the other data for the other two frequencies was obtained using a dipole.

It should also be kept in mind that there is a one-year difference between measurements made at 432 MHz and those made at the other two frequencies. The significance of this time difference lies in the conjecture that the tree- and foliage-distribution along the path changed noticeably in the course of that one year.

5. Summary

In general, the data is somewhat as expected in the sense that some of it (although it is by way of exception) shows a decrease in path-loss with increasing distance from the wooded/cleared boundary.

Also, the seasonal dependence for the 1.2 -m data at Site \#2 (which is mainly coniferous at the boundary) is less pronounced than for the $2-\mathrm{m}$ data at the same site. This smaller seasonal dependence correlates somewhat with the expectation that the coniferous boundary should be seasonindependent.

On the other hand, the data is rather anomalous inasmuch as:

1. Generally, the path-loss-in the context of all three frequency-bands--does not follow an ordered sequence relative to frequency at a given site and given season, except in one case: that of the summer data at Site \#2 (Figures 4-3a and 43b). Recall that Site \#2 has mainly coniferous trees at the boundary. This inference neglects to take into account the directionality of the measurements in the $0.7-\mathrm{m}$ band. Presumably, if a dipole had been used, then the observed path-loss at $0.7-\mathrm{m}$ would have been somewhat smaller because the dipole would be responding to off-axis components. But this, inference, in turn, neglects multi-path interference effects.
2. The seasonal difference for the $2-\mathrm{m}$ and $1.2-\mathrm{m}$ bands at Site \#2 (which has mainly coniferous trees at the boundary) is approximately 10 db , which is taken to be a significant difference. This result is anomalous because the foliage at the boundary (presumably) does not change significantly from one season to another.
3. The 'quasi free-path' path-loss (taking into account Fresnel-zone blocking) is between 10 and 20 db less than observed, depending on season.
4. It is conjectured that the foliage all along path-points between the boundary and transmitter could account for the significant seasonal effect at site \#2, and perhaps could also account for the significant difference between 'expected' and 'observed' path-loss.

Distance (metres)

Profile section for site \#l (Old Sambro Rd)
The transmitting antenna is at the extreme left-hand side, and is approximately 20 m above ground level. The obstacle at 1.5 km is taken to be 15 m below the direct line from transmitter to receiver. The obstacle at slightly over 4 km is taken to be 7 m .
(tabulated data on P.A-2)

Elevation(m)

25	0	0.000
20	4.3	430.000
20	5.4	540.000
15	5.8	580.000
10	6.1	610.000
5	6.5	650.000
0	6.7	670.000
5	10.2	1020.000
10	10.4	1040.000
15	10.6	1060.000
20	11.1	1110.000
25	11.4	1140.000
30	11.6	1160.000
30	12.4	1240.000
30	13.7	1370.000
35	14.0	1400.000
40	14.5	1450.000
40	15.9	1590.000
35	16.5	1650.000
30	17.6	1760.000
25	18.7	1870.000
20	18.8	1880.000
20	20.7	2070.000
20	22	2200.000
20	25.3	2530.000
25	25.6	2560.000
30	25.8	2580.000
35	25.9	2590.000
40	26.1	2610.000
45	27.4	2740.000
50	27.8.	2780.000
50	29.2	2920.000
50	29.6	2960.000
50	30.1	3010.000
50	31.5	3150.000
55	32.4	3240.000
60	33.2	3320.000
60	36.6	3660.000
55	37.3	3730.000
50	37.8	3780.000
50	38.2	3820.000
55	38.8	3880.000
60	39.2	3920.000
65	39.5	3950.000
70	39.9	3990.000
75	40.2	4020.000
80	40.3	4030.000
85	40.9	4090.000
85	41.7	4170.000
85	46.4	4640.000
90	46.9	4690.000
95	47.6	4760.000
100	48.4	4840.000
100	49.4	4940.000
95	49.8	4980.000

Data for the Profile section for site \#l. The second column represents relative magnitudes; the third column represents the absolute distances in metres. For purposes of the Report, the quantities in this third column should be rounded off to three significant figures (the Spread-Sheet software was not able to do this operation).

Profile section for site \#2 (Exhibition Grounds)
The transmitting antenna is at the extreme left-hand side, and is approximately 20 m above ground level. The dominant obstruction is at 3.5 km and is taken to be 24 m above the direct line from transmitter to receiver.
(tabulated data on p. A-4)

Elevation(m)
"Distance"
Distance(m)

25	0	0.000
30	2.6	260.000
30	2.9	290.000
25	4.6	460.000
25	4.8	480.000
20	6.4	640.000
25	6.8	680.000
25	7.2	720.000
20	7.7	770.000
15	8.1	810.000
10	8.3	830.000
5	8.5	850.000
0	8.7	870.000
5	12.3	1230.000
5	12.7	1270.000
5	13.4	1340.000
10	13.6	1360.000
15	13.9	1390.000
20	14.1	1410.000
25	14.8	1480.000
30	15.2	1520.000
30	16.7	1670.000
30	18.7	1870.000
35	19.7	1970.000
40	21.1	2110.000
45	23.5	2350.000
50	25.8	2580.000
55	25.9	2590.000
60	26.1	2610.000
65	26.3	2630.000
70	27.8	2780.000
70	30.7	3070.000
75	30.9	3090.000
80	31.5	3150.000
85	32.2	3220.000
90	33	3300.000
95	35.1	3510.000
90	36.7	3670.000
85	37	3700.000
80	38.2	3820.000
75	38.9	3890.000
70	39.3	3930.000
65	39.4	3940.000
65	42.7	4270.000
70	43.3	4330.000
75	44	4400.000
70	44.5	4450.000
65	45.4	4540.000
65	52.7	5270.000
70	53.2	5320.000
75	55	5500.000
75	56.3	5630.000
75	57	5700.000
80	57.8	5780.000
80	58.2	5820.000
80	58.7	5870.000

Data for the Profile section for site \#2. The second column represents relative magnitudes; the third column represents the absolute distances in metres. For purposes of the Report, the quantities in this third columin should be rounded off

Elevation(m) "Distance" Distance(m)

85	59.5	5950.000
90	61.8	6180.000
95	63.6	6360.000
100	65.4	6540.000
105	67.6	6760.000

Appendix B: Calculations of Expected Path-Loss
 p.B-1

Calculation of Expected Path-1oss

The general expression for ideal (unobstructed) free-space path-loss is taken to be

$$
\text { Path-loss }(\mathrm{db})=32.5+20 \operatorname{logd}+20 \operatorname{logf},
$$

where d is the distance in km and f is the frequency in MHz

However, the paths to the sites in this Report are not ideal, so that a 'quasi-freespace' path-loss will be estimated, using the Fresnel-zone blocking model defined below. This quantity represents the 'expected' path-loss (taking obstructions into account) and represents the path-loss to the measuring site, prescinding from the effects of the wooded/cleared boundary

Fresnel-Zone Blocking Model

Reference: The ARRL UHF/Microwave Experimenter's Manual, American Radio Relay League, 225 Main St, Newington, CT 061ll, 1990, p3-32ff. The graph below is reproduced with permission.

Only the first zone will be considered, and the appropriate expression is
$F_{1}=17.3\left(d_{1} d_{2} / \pm d\right)^{1 / 2}, \quad d=d_{1}+d_{2}$
where the distances are in metres and f is in MHz. This gives the radius of the first Fresnel-zone at the indicated point along the path.

The knife-edge distance is then calculated from the actual distance in metres from line-of-sight to the obstruction, and then the corresponding attenuation is obtained from the graph.

For both sites, the calculated 'expected' values are taken to be minimum values, in the sense that they represent only the 'known' factors.
Presumably there are 'unknown' factors and these would make the 'expected' path-loss even larger.

Appendix B: Calculations of Expected Path-Loss

Expected Path-10ss for Site \#1: 144 MHz

For this site, the 'ideal' relationship yields
$32.5+20 \log 5+20 \log 144=90 \mathrm{db}$.
On the basis of the profile section shown in Appendix A, there is an obstruction, approximately 15 m below the line-of-sight, at 1.5 km from the transmitting end, and another obstruction, approximately 7 m below line-of-sight at 4 km . Assuming a simple 'knife-edge' model, these two obstructions introduce an additional loss due to Fresnel zone blocking (assuming first zone only). This additional path-loss is calculated from

$$
F_{l}(4 \mathrm{~km})=17.3(4 \mathrm{~km} * 1 \mathrm{~km} /(144 \mathrm{MHz} * 51 \mathrm{~km})) 1 / 2=41 \mathrm{~m}
$$

at the "4km" obstruction. At this point, the 'knife-edge' distance is $7 / 41=0.17$, which implies approximately 5 db attenuation, on the basis of the graph on p.B-2.

$$
F_{1}(1.5 \mathrm{~km})=17.3(1.5 \mathrm{~km} * 3.5 \mathrm{~km} /(144 \mathrm{MHz} * 5 \mathrm{~km})) 1 / 2=47 \mathrm{~m}
$$

at the l.5km obstruction. Here, the knife-edge distance is 15/47 $=0.31$, which implies approximately 3 db . Therefore, the total 'quasi free-space' path-loss for this site is 98 db .

Expected Path-10ss for site \#2: 144 MHz
For this site, the 'ideal' relationship yields
$32.5+20 \log 7+20 \log 144=93 \mathrm{db}$.
On the basis of the profile section shown in Appendix A, there is an obstruction, approximately 24 m above the line-of-sight, at 3.5 km from the transmitting end, Assuming a simple 'knife-edge' model, this obstruction will introduce an additional loss due to Fresnel zone blocking (assuming first zone only). This additional path-loss is calculated from

$$
F_{1}(3.5 \mathrm{~km})=17.3(3.5 \mathrm{~km} 3.5 \mathrm{~km} /(144 \mathrm{MHz} * 7 \mathrm{~km}))^{1 / 2}=27 \mathrm{~m}
$$

Here, the knife-edge distance is $24 / 27=.89$, which implies approximately 17 db .

Therefore, the total 'quasi free-space' path-loss for this site is taken to be 110 db .

Expected Path-1oss for Site \#l: 222 MHz

For this site, the 'ideal' relationship yields
$32.5+20 \log 5+20 \log 222=93 \mathrm{db}$.
On the basis of the profile section shown in Appendix A, there is an obstruction, approximately l5m below the line-of-sight, at 1.5 km from the transmitting end, and another obstruction, approximately 7 m below line-of-sight at 4 km . Assuming a simple 'knife-edge' model, these two obstructions introduce an additional loss due to Fresnel zone blocking (assuming first zone only). This additional path-loss is calculated from

$$
F_{1}(4 \mathrm{~km})=17.3(4 \mathrm{~km} * \perp \mathrm{~km} /(222 \mathrm{MHz} * 5 \mathrm{~km}))^{1 / 2}=33 \mathrm{~m}
$$

at the " 4 km " obstruction. At this point, the 'knife-edge' distance is $7 / 33=0.21$, which implies approximately 4 db attenuation, on the basis of the graph on p.B-2.
$\mathrm{F}_{1}(1.5 \mathrm{~km})=17.3(1.5 \mathrm{~km} * 3.5 \mathrm{~km} /(222 \mathrm{MHz} * 5 \mathrm{~km}))^{1 / 2=38 \mathrm{~m}}$
at the 1.5 km obstruction. Here, the knife-edge distance is $15 / 38$ $=0.39$, which implies approximately 2 db .

The expected path-loss is therefore taken to be 99 db .

Expected Path-10ss for Site \#2: 222 MHz

For this site, the 'ideal' relationship yields
$32.5+20 \log 7+20 \log 222=96 \mathrm{db}$.
On the basis of the profile section shown in Appendix A, there is an obstruction, approximately 24 m above the line-of-sight, at 3.5 km from the transmitting end, Assuming a simple 'knife-edge' model, this obstruction will introduce an additional loss due to Fresnel zone blocking (assuming first zone only). This additional path-loss is calculated from

$$
F_{1}(3.5 \mathrm{~km})=17.3(3.5 \mathrm{~km} * 3.5 \mathrm{~km} /(144 \mathrm{MHz} * 7 \mathrm{~km})) 1 / 2=48 \mathrm{~m}
$$

Here, the knife-edge distance is $24 / 48=0.5$, which implies approximately 13 db .

The expected path-loss is therefore taken to be 109 db .

Distance (m) Aug 24/25 PL Aug 30 PL (dB)

9.000	127.761443
11.000	127.124192
13.000	118.329925
15.000	124.169771
17.000	127.974418
19.000	122.01564
21.000	121.801162
23.000	118.089747
25.000	113.933633
27.000	120.855801
29.000	118.452551
31.000	118.9176
33.000	122.077904
35.000	115.54176
37.000	118.269255
39.000	118.639799
41.000	123.593062
43.000	121.489061
45.000	121.755884
47.000	123.087296
49.000	125.85335
51.000	122:692805
53.000	121.725829
55.000	120.015618
57.000	121.474475
59.000	126.958215
61.000	125.9504
63.000	121.846678
65.000	121.301329
67.000	118.939342
69.000	119.978735
71.000	119.784629
73.000	121.56236
75.000	120.536038
77.000	118.98299
79.000	119.618273
81.000	121.651143
83.000	119.701053
85.000	119.004896
87.000	121.272803
89.000	122.172146
91.000	119.466601
93.000	119.796634
95.000	119.9298
97.000	119.736773
99.000	120.406202
101.000	119.760668
103.000	119.455043
105.000	126.023906
107.000	120.509916
109.000	119.571322

Avg PL (dB)
124.266254 125.157673 117.882503 124.926268 126.694451 123.07996 122.629721 123.75204
115.85335
124.589993
122.118639
120.815157
124.266254
116.786346
118.088044
117.34095
124.589993
120.065458
122.118639
123.266574
126.418961
122.987862
122.629721
119.80795 120.065458 127.578509 125.276087
121.104859
123.554527
119.871711
123.954149
121.104859
123.554527
121.954668
122.455912
124.812498
122.455912
119.496719
121.404328 120.9588
122.897
120.674061
120.263625
120.398158
119.80795
121.954668
122.03639
120.9588
125.0412
123.172766
123.554527
126.356365 126.251302 118.111973 124.56447 127.381419 122.580323
122.235171
121.784905
114.998711
123.112457
120.661467
119.969202
123.30848
116.208485
118.179594
118.038751
124.120071
120.835331
121.941048
123.17786
126.145357
122.842838
122.201248
119.913025
120.82686
127.279427
125.626318
121.491588
122.572443
119.430499
122.406268
120.494719
122.671685
121.303022
121.057726
122.949632
122.072142
119.600088
120.368254
121.118639
122.549678
120.11216
120.036403 120.17029 119.772507 121.249085 121.045915
120.271684 125.560289
122.042311
122.004421

Red. Dist $(\lambda)=$ 'Reduced Distance in
4.348
5.314
6.280
7.246
8.213 units of wavelength.
9.179
10.145
11.111
12.077
13.043
14.010
14.976
15.942
16.908
17.874
18.841
19.807
20.773
21.739
22.705
23.671
24.638
25.604
26.570
27.536
28.502
29.469
30.435
31.401
32.367
33.333
34.300
35.266
36.232
37.198
38.164
39.130
40.097
41.063
42.029
42.995
43.961
44.928
45.894
46.860
47.826
48.792
49.758
50.725
51.691
52.657

Data for Fig.2-2a

in Chapter 2.

Red Dist (λ) Aug 24 PL
Aug 25 PL
Aug 30 PL
. 147.105593
$0.966 \quad 143.979729$
1.932145 .615366
$2.899 \quad 145.158108$
3.865159 .873056
$4.831 \quad 143.819172$
. $5.797 \quad 151.104785$
$6.763 \quad 146.565364$
$7.729 \quad 144.548951$
$8.696 \quad 146.741733$
9.662144 .343763
10.628144 .242958
11.594158 .563025
$12.560 \quad 147.013189$
13.527154 .160863
$14.493 \quad 149.496658$
$15.459 \quad 140.286748$
$16.425 \quad 142.331525$
$17.391 \quad 137.735171$
18.357137 .547699
$19.324 \quad 146.697304$
$20.290 \quad 140.810679$
$21.256 \quad 137.125385$
22.222139 .287268
23.188139 .873056
$24.155 \quad 137.125385$
$25.121 \quad 140.721133$
$26.087 \quad 138.528351$
$27.053 \quad 137.89455$
$28.019 \quad 137.424928$
$28.986 \quad 139.100468$
$29.952 \quad 141.416375$
$30.918 \quad 140.286748$
$31.884 \quad 138.9176$
$32.850 \quad 135.0412$
$33.816 \quad 133.079868$
$34.783 \quad 134.926153$
$35.749 \quad 135.765443$
$36.715 \quad 137.424928$
$37.681 \quad 134.266148$
$38.647 \quad 140.501225$
$39.614 \quad 133.361597$
$40.580 \quad 136.835828$
$41.546 \quad 132.455998$
$42.512 \quad 131.104785$
$43.478 \quad 133.652772$
$44.444 \quad 135.765443$
$45.411 \quad 132.455998$
$46.377 \quad 131.87395$
$47.343 \quad 134.160863$
48.309134 .589883
137.89455 133.903103 135.395775 134.535083 148.11414 134.056839 135.395775 134.700533 135.578643 142.576214 134.869196 136.555614 138.650321 136.151546 135.578643 140.721133 134.869196 136.151546 133.172766 132.370422 141.786043 135.395775 135.216678 132.370422 133.60356 132.118639 135.395775 133.172766 134.700533 134.700533 '135.765443 139.193366 143.630341 135.395775 133.172766 134.056839 133.457575 135.765443 134.213346 132.118639 133.457575 135.395775 135.765443 134.372725 130.330631 133.033789 131.290785 135.765443 131.404328 130.0328 130.9588
142.543294
143.75204
143.362552
142.987039
144.590983
136.697747
145.765443
137.389333
145.0412
145.277158 .
138.735231
141.329224
138.848596
140.397547 135.083817
143.265724
134.974104
140.814517
135.974833
136.921303
148.561288
139.80738
138.568734
135.460641 137.781001 132.493883
136.741733
135.011251
135.307491
139.0206
142.037127
142.145981
138.753742
139.828326
136.521391
135.961386
138.460568
138.906696
138.175392
135.961386
139.215599
137.1214
136.846594
136.816889
132.809282
136.815542
139.619244
137.1214
136.521391
139.215599
138.036239

Avg PL (dB).
142.514479
140.544957
141.457898
140.89341
150.859393
138.191253
144.088668
139.551743
141.722931
144.865035
139.316063
140.709265
145.353981
141.187428
141.607774
144.494505
136.710016
139.765863
135.62759
135.613141
145.681545
138.671278
136.970266
135.70611
137.085872
133.912636
137.619547
135.570789
135.967525
137.048687
138.967679
140.918574
140.890277
138.047234
134.911786
134.366031
135.614765
136.812528
136.604555
134.115391
137.7248
135.292924
136.482622
134.548537
131.414899
134.500701
135.558491
135.11428
133.266556
134.469754
134.528308

Data for Fig.2-3a in Chapter 2.

Red. Dist (λ) Run \#1 (dB)
106.036239
$5.314 \quad 111.457575$
6.280
7.246
8.213
9.179
10.145
11.111
12.077
13.043
14.010
14.976 15.942 16.908 17.874 18.841 19.807
20.773
21.739
22.705
23.671
24.638
25.604
26.570
27.536
28.502
29.469
30.435
31.401
32.367
33.333
34.300
35.266
36.232
37.198
38.164
39.130
40.097
41.063
42.029
42.995
43.961
44.928
45.894
46.860
47.826
48.792
49.758
50.725
51.691
52.657
122.110347
112.700533
116.040535
116.040535
108.535014
112.700533
106.763855
116.9176
111.75204
110.629721
110.897
110.118639
111.75204
111.75204
110.897
113.765443
113.395775
112.700533
110.897
110.897
109.635966
110.118639
110.118639
106.036239
106.763855
106.036239
110.629721
108.535014
111.457575
113.765443
110.370422
112.700533
110.629721
111.75204
110.897
113.395775
111.172766
110.897
113.395775
120.172146
112.056839
114.555614
112.056839
110.897
118.077439
114.9794
110.897
111.75204
110.370422

Run \#2 (dB)
111.75204
110.118639
113.395775
111.75204
120.172146
112.700533
103.974833
110.629721
104.609121
112.700533
111.172766
109.635966
109.635966
107.744843
108.535014
110.118639
106.679933
110.897
113.395775
112.056839
111.172766
112.372725
112.372725
111.75204
113.765443
109.635966
110.118639
109.635966
112.700533
111.75204
113.765443
113.765443
111.75204
110.897
111.457575
108.535014
108.9588
112.056839
112.056839
110.897
112.700533
119.0618
111.75204 112.700533
111.75204
112.056839
119.0618
114.555614
110.897
111.75204 110.897

Run \#3 (dB)
106.036239 111.75204
122.514414
112.056839
114.555614
114.9794
109.635966
110.897
106.763855
112.700533
111.75204
109.635966
108.535014
111.457575
110.118639
111.75204
110.370422
113.395775
113.395775
114.555614
110.370422
107.744843
108.535014
108.535014
110.629721
105.293403
111.457575
107.744843
108.535014
109.635966
112.700533
112.056839 110.897
111.172766
110.370422
110.629721
111.75204
112.700533
110.629721
110.897
114.555614
120.172146
112.056839
113.395775
111.75204
111.457575 116.9176
114.555614
110.370422
111.172766 110.897

Avg (dB)
107.558043 111.079877 118.244502 112.160853 116.61528 114.45965 107.0206 111.361607 105.984696 113.892234 111.554615 109.954741 109.635966 109.635966 110.036316 111.172766 109.104792 112.589894 113.395775
113.0412 110.806999 110.118639 110.036316 110.036316 111.361607 106.792016 109.215914 107.682135 110.455989 109.87395 112.589894 113.157779 110.987944 111.554615 110.806999 110.20175 110.455989 112.700533 111.266659 110.897 113.517246 119.786043 111.954057 113.517246 111.852446 111.457575 117.974626 114.694577 110.717895 111.554615 110.717895

Data for Fig.2-2b in Chapter 2.

Red Dist. (λ) Run \#1 (dB)
0.000
0.966
1.932
2.899
3.865
4.831
5.797
6.763
7.729
8.696
9.662 10.628
11.594
12.560
13.527
14.493
15.459
16.425
17.391
18.357
19.324
20.290
21.256
22.222
23.188
24.155
25.121
26.087
27.053
28.019
28.986
29.952
30.918
31.884
32.850
33.816
34.783
35.749
36.715
37.681
38.647
39.614
40.580
41.546
42.512
43.478
44.444
45.411
46.377
47.343
48.309
132.372725
126.679933
131.172766
131.172766
132.372725
132.372725
120.576214
128.744323
131.172766
129.87395
133.395775
123.733543
131.75204 132.700533
131.172766
124.349822 127.558043 128.744323 123.158108 128.130946 129.404328 131.75204 125.882503 131.172766 128.744323 128.130946 127.558043 127.558043 126.679933 123.733543 131.172766 122.110347 124.349822 126.679933 128.744323 126.679933
127.0206 129.404328 132.372725 126.679933 124.098039 123.733543 123.733543 123.733543 125.013189 125.882503 129.87395 129.87395 128.744323 128.130946 127.558043

Run \#2 (dB)
Run \#3 (dB)
Avg. (dB)
130.629721
128.744323
133.765443
132.372725
131.75204
131.172766
125.882503
128.130946
132.372725
129.87395
131.75204
123.733543
131.75204
132.372725
131.172766
125.882503
129.404328
128.744323
123.158108
127.558043
130.370422
133.765443
125.436975 131.75204
128.744323
125.073189
125.882503
125.882503
127.558043
124.609121
132.700533
122.110347
123.733543
128.744323
128.744323
126.352125
127.0206
129.87395
131.172766
128.744323
124.349822
123.733543
123.733543
123.733543
123.158108
126.679933
130.370422
128.744323 128.744323
128.744323
127.558043
131.172766
126.679933
132.700533
132.372725
130.629721

141
127.558043
129.404328
130.629721
129.404328
132.372725
123.733543
131.75204
132.372725
131.172766
125.436975
129.404328
129.87395
122.514414
127.558043
129.404328
131.172766
125.882503
131.1.72766
129.404328
126.679933
126.679933
128.744323
127.558043
123.733543
132.372725
122.514414
123.733543
128.130946
128.130946
127.0206
127.558043
129.404328 131.75204 126.679933
123.733543
123.733543
124.349822
124.349822
126.679933
125.882503
131.172766
130.370422
127.558043
128.744323
126.679933
131.361693 1.27 .315125 132.480517 131.954149 131.554527 133.892119 124.139458 128.744323 131.361693 129.714492 132.480517 123.733543
131.75204 132.480517 131.172766 125.198944 128.744323 129.104859 122.9382 127.744843 129.714492 132.160759 125.73144 131.361693 128.9588 126.514483 126.679933 127.315125 127.255308 124.015667 132.056839 122.242925 123.93419 127.80795 128.535014 126.679933 127.196078 129.558142 131.75204 127.315125 124.056817 123.733543 123.93419 123.93419 124.831324 126.140316 130.455912 129.635966 128.330631 128.535014 127.255308

Data for Fig.2-3b in Chapter 2.

Red $\operatorname{Dist}(\lambda)$	Sep 7 PL(dB)	Sep $8 \mathrm{PL}(\mathrm{dB})$	Avg PL(dB)
6.667	117.119	115.815	116.442
8.148	126.416	123.139	124.624
9.630	112.059	113.792	112.883
11.111	122.274	121.086	121.660
12.593	115.744	115.131	115.432
14.074	114.936	119.481	116.914
15.556	117.119	118.653	117.852
17.037	117.630	118.362	117.988
18.519	113.406	114.745	114.049
20.000	120.276	127.172	123.057
21.481	120.276	116.253	118.034
22.963	118.080	118.852	118.458
24.444	119.701	122.895	121.152
25.926	113.193	119.926	115.923
27.407	111.609	118.080	114.255
28.889	108.661	114.745	111.181
30.370	113.514	114.497	113.992
31.852	114.315	116.794	115.466
33.333	122.274	118.954	120.456
34.815	112.534	113.140	112.832
36.296	120.276	119.373	119.812
37.778	. 112.883	117.718	114.968
39.259	113.736	113.140	113.433
40.741	112.883	114.620	113.708
42.222	111.435	113.569	112.437
43.704	112.883	114.682	113.736
45.185	109.446	109.902	109.671
46.667	108.851	108.355	108.599
48.148	112.632	115.674	114.021
49.630	113.036	109.446	111.057
51.111	108.883	108.087	108.476
52.593	109.724	108.058	108.851
54.074	114.745	109.689	111.854
55.556	111.609	113.569	112.534
57.037	112.152	111.876	112.013
58.519	112.246	110.346	111.244
60.000	109.795	108.661	109.210
61.481	113.680	107.042	109.741
62.963	108.476	106.913	107.659
64.444	109.344	111.522	110.365
65.926	110.694	109.689	110.177
67.407	110.384	111.057	110.714
68.889	112.341	109.446	110.773
70.370	110.084	110.195	110.140
71.852	109.110	110.384	109.724
73.333	114.196	108.661	110.995
74.815	118.653	109.866	113.193
76.296	114.497	111.831	113.062
77.778	116.794	112.246	114.226
79.259	115.331	111.967	113.487
80.667	117.988	114.021	115.780

Data for Fig.3-2a
in Chapter 3.

FS \#2 / S / PL: 222 MHz

Red Dist.(λ)	Sep 7PL(dB)	Sep 8 PL(dB)	Avg.PL(dB)
0.000	130.499	128.000	129.160
1.481	132.682	130.121	131.308
2.963	127.172	126.179	126.662
.4 .444	131.308	132.437	131.855
5.926	131.742	127.856	129.583
7.407	128.755	130.121	129.412
8.889	130.307	130.893	130.595
10.370	128.915	130.499	129.671
11.852	125.501	126.416	125.947
13.333	129.938	127.576	128.677
14.815	129.243	133.193	130.994
16.296	125.501	125.077	125.287
17.778	126.913	129.078	127.928
19.259	129.584	128.294	128.915
20.741	135.264	134.619	134.936
22.222	125.501	127.439	126.416
23.704	126.661	128.915	127.715
25.185	132.933	134.021	133.459
26.667	125.501	125.077	125.287
28.148	128.600	134.021	130.894
29.630	131.521	137.543	134.021
31.111	130.499	131.742	131.098
32.593	126.179	126.179	126.179
34.074	123.918	125.947	124.873
35.556	129.078	127.856	128.446
37.037	124.478	129.759	126.723
38.519	123.739	123.223	123.477
40.000	123.391	125.287	124.287
41.481	122.274	129.412	125.130
42.963	131.742	127.439	129.326
44.444	127.172	125.947	126.537
45.926	129.412	130.893	130.120
47.407	120.276	123.391	121.694
48.889	127.439	125.721	126.537
50.370	125.947	124.873	125.393
51.852	122.735	125.287	123.918
53.333	127.856	129.078	128.446
54.815	128.000	127.305	127.646
56.296	125.947	132.682	128.677
57.778	123.057	131.098	126.178
59.259	123.391	128.294	125.501
60.741	125.947	125.077	125.501
62.222	123.563	125.721	124.575
63.704	124.673	125.077	124.873
65.185	125.947	123.739	124.773
66.667	125.721	126.661	126.178
68.148	125.501	125.077	125.287
696.630	126661	121.694	123.827
71.111	126.416	125.077	125.721
72.593	125.721	128.294	126.912
74.000	125.287	125.287	125.287

Data for Fig.3-3b in Chapter 3.

Red Dist(λ) Trial 1 PL(dB) Trial $2 \mathrm{PL}(\mathrm{dB})$ Trial $3 \mathrm{PL}(\mathrm{dB})$. Avg PL(dB)

6.747	117.021	122.701	115.013	117.682
8.246	123.396	119.404	124.979	122.266
9.745	109.416	109.416	109.416	109.416
11.244	128.721	127.478	117.936	123.276
12.744	109.416	109.416	112.830	110.412
14.243	113.270	109.416	109.416	110.521
15.742	128.721	119.404	112.830	118.131
17.241	117.745	119.404	114.479	116.963
18.741	111.915	113.270	106.918	110.251
20.240	111.000	109.416	119.179	112.276
21.739	104.979	106.918	103.396	104.979
23.238	123.396	113.270	112.830	115.341
24.738	113.270	122.701	117.936	117.137
26.237	113.270	109.416	115.013	112.243
27.736	115.013	109.416	109.416	110.914
29.235	113.270	112.830	109.416	111.661
30.735	109.416	104.979	103.396	105.579
32.234	109.416	109.416	106.918	108.501
33.733	103.396	104.979	103.396	103.892
35.232	104.979	103.396	103.396	103.892
36.732	108.077	108.077	105.895	107.287
38.231	112.830	115.013	112.830	113.499
39.730	100.499	100.499	100.119	100.370
41.229	101.173	100.897	101.173	101.080
42.729	109.416	106.918	105.895	107.287
44.228	109.416	112.830	109.416	110.412
45.727	106.918	106.918	108.077	107.287
47.226	106.918	104.979	104.979	105.579
48.726	100.119	100.119	100.119	100.119
50.225	103.396	104.979	104.979	104.419
51.724	115.013	112.830	111.915	113.158
53.223	109.416	112.830	111.000	110.971
54.723	109.416	117.021	112.830	112.549
56.222	106.918	112.830	108.077	108.924
57.721	106.918	109.416	108.077	108.077
59.220	103.396	104.152	104.152	103.892
60.7 .20	105.895	108.077	109.416	107.673
62.219	104.979	108.077	105.895	106.222
63.718	103.396	104.979	104.152	104.152
65.217	111.000	109.416	109.416	109.913
66.717	103.396	103.396	104.152	103.640
68.216	108.077	108.077	108.077	108.077
69.715	106.918	105.895	106.918	106.563
71.214	106.918	109.416	108.077	108.077
72.714	104.979	106.918	104.979	105.579
74.213	108.077	105.895	106.918	106.918
75.712	104.979	103.396	103.396	103.892
77.211	108.077	109.416	109.416	108.947
78.711	105.895	104.979	105.895	105.579
80.210	102.057	101.173	101.173	101.458
81.709	106.918	106.918	105.895	106.563

Data for Fig.3-2b
in Chapter 3.

Red Dist $(\lambda) \quad$ Trial $1 \mathrm{PL}(\mathrm{dB}) \quad$ Trial $2 \mathrm{PL}(\mathrm{dB}) \quad$ Trial $3 \mathrm{PL}(\mathrm{dB})$

0	123.041	122.057	122.373	122.481
1.499	124.979	123.041	124.979	124.284
2.999	125.895	123.041	123.041	123.892
4.498	125.895	124.979	123.041	124.556
5.997	115.013	116.514	115.013	115.485
7.496	122.057	121.173	121.173	121.458
8.996	122.373	121.173	121.173	121.555
10.495	119.636	121.173	118.959	119.874
11.994	122.057	123.041	117.936	120.718
19.49	123.041	125.895	123.041	123.892
20.99	126.391	129.416	129.416	128.287
22.489	118.959	119.636	117.936	118.815
23.988	131.000	135.437	135.437	133.694
25.487	122.057	121.173	122.057	121.752
26.987	121.173	121.173	121.173	121.173
28.486	118.959	118.959	119.636	119.179
29.985	119.179	119.636	119.636	119.481
31.484	119.636	120.370	119.636	119.874
32.984	121.173	121.173	121.173	121.173
34.483	121.173	119.636	119.636	120.119
35.982	124.979	122.057	126.391	124.284
37.481	119.404	117.375	117.375	118.000
38.981	122.057	123.041	123.041	122.701
40.48	120.370	121.173	121.173	120.897
41.979	121.173	121.173	119.636	120.630
43.478	123.041	122.057	123.041	122.701
44.978	122.057	119.636	121.173	120.897
46.477	121.752	122.057	121.173	121.653
47.976	118.959	121.173	117.936	119.253
49.475	119.636	119.636	117.936	119.031
50.975	122.057	120.370	123.041	121.752
52.474	119.179	120.370	119.404	119.636
53.973	117.196	117.936	117.375	117.497
55.472	129.416	131.000	125.895	128.501
56.972	129.416	131.000	129.416	129.913
58.471	119.636	122.057	121.173	120.897
59.97	124.979	124.979	124.979	124.979
61.469	134.098	138.959	125.895	131.294
62.969	138.959	138.959	129.416	134.521
64.468	129.416	127.478	125.895	127.478
65.967	123.041	122.701	123.041	122.926
67.466	121.173	120.370	119.636	120.370
68.966	120.370	120.370	119.636	120.119
70.465	126.391	124.979	125.895	125.735
71.964	121.752	121.173	121.752	121.555
73.463	119.179	118.959	118.959	119.031
74.963	129.416	125.895	126.391	127.100

Details of Path-loss Calculations

1. Summer (Aug.24 and 25, 1991) measurements on 144 MHz :

Here, the transmitter antenna is rated at 11 dbd (= 13 dbi) gain, with a beam-width of 48°. This antenna was aimed midway between the two sites (separated by 230). The estimated decrease (fall-off) in the direction of each of the sites is 1 db , The transmitter power is approximately 15 W .

At the receiver, the dipole has a gain of 2 dbi . Hence
$P I_{1}=10 \log P_{t x}+10 \log 50+120+\left(A_{t x}-1\right)+A_{r x}-20 \log V(\mu)$ becomes $=10 \log 15+10 \log 50+120+(13-1)+2-20 \log V(\mu)$
$\mathrm{PL}=163-201 \log V(\mu) . d b$.
2. Summer (Aug.30/91) measurements on 144 MHz

Transmitter power is approximately 15 W . Both antennas are dipoles. Hence,

```
PI = lologPtx + lolog50 + 120 + A Atx + A Arx - 20logV ( }\mu\mathrm{ ) becomes
    = lolog}15+10\operatorname{log}50+120+2 +2 - 20logV ( \mu
PL = 152 - 2010gV(\mu) db
```

3. Winter measurements on 145 MHz .

The transmitter power is approximately 15 W ; transmitting antenna has 13-1 dbi effective gain along the path.
$P L=10 \log P_{t x}+10 \log 50+120+\left(A_{t x}-1\right)+A_{\text {rx }}-20 \operatorname{logV}(\mu)$ becomes
$\mathrm{PI}=10 \log 15+10 \log 50+120+(13-1)+2-20 \log (\mu) ;$
$P L=161-20 \log V(\mu) d b$.

Appendix
D
4. Summer measurements on 222 MHz

Transmitter power is approximately 5 W ; both antennas are dipoles. Hence

```
PL = lologPtx + lolog50+ 120 + A Atx + Arcx - 20logV ( }\mu\mathrm{ ) becomes
    = lolog}5+\operatorname{lolog}50+120+2 + 2 - 20logV ( \mu
PL = 148 - 20logV( }\mu\mathrm{ ) db.
```

5. Winter measurements on 225 MHz .

Transmitter power is approximately 10 W ; both antennas are dipoles. Hence,

```
PL = l0logPtx + lolog50+ 120 + A Atx + A Arx - 20logV ( }\mu\mathrm{ ) becomes
    = lolog}10+10\operatorname{log}50+120+2 + 2 - 20logV (\mu)
PL = 151 - 2010gV( }\mu\mathrm{ ) db
```


SEE

UNIVERSITY:	Saint Mary's University
TITLE:	Over-Tree Propagation Measurements-
	Phase 2

RELEASABLE

UNIVERSITY:

TITLE:

CRC-CR NO:

OS CONTRACT NO:
36001-1-3505
AUTOR:
CRC SC. AUTH.: J.H. Whitteker
NUMBER OF COPIES: 2 Rec'd 23-9-92

Mark. Card with Call No..

